Sample records for nmr line width

  1. Possible 6-qubit NMR quantum computer device material; simulator of the NMR line width

    NASA Astrophysics Data System (ADS)

    Hashi, K.; Kitazawa, H.; Shimizu, T.; Goto, A.; Eguchi, S.; Ohki, S.

    2002-12-01

    For an NMR quantum computer, splitting of an NMR spectrum must be larger than a line width. In order to find a best device material for a solid-state NMR quantum computer, we have made a simulation program to calculate the NMR line width due to the nuclear dipole field by the 2nd moment method. The program utilizes the lattice information prepared by commercial software to draw a crystal structure. By applying this program, we can estimate the NMR line width due to the nuclear dipole field without measurements and find a candidate material for a 6-qubit solid-state NMR quantum computer device.

  2. An NMR study of microvoids in polymers

    NASA Technical Reports Server (NTRS)

    Toy, James; Mattix, Larry

    1995-01-01

    An understanding of polymer defect structures, like microvoids in polymeric matrices, is crucial to their fabrication and application potential. In this project guest atoms are introduced into the microvoids in PMR-15 and NMR is used to determine microvoid sizes and locations. Xenon is a relatively inert probe that would normally be found naturally in polymer or in NMR probe materials. There are two NMR active xenon isotopes, Xe-129 and Xe-131. The Xe atom has a very high polarizability, which makes it sensitive to the intracrystalline environment of polymers. Interactions between the Xe atoms and the host matrix perturb the Xe electron cloud, deshielding the nuclei, and thereby expanding the range of the observed NMR chemical shifts. This chemical shift range which may be as large as 5000 ppm, permits subtle structural and chemical effects to be studied with high sensitivity. The Xe(129)-NMR line shape has been found to vary in response to changes in the pore symmetry of the framework hosts line Zeolites and Clathrasil compounds. Before exposure to Xe gas, the PMR-15 samples were dried in a vacuum oven at 150 C for 48 hours. The samples were then exposed to Xe gas at 30 psi for 72 hours and sealed in glass tubes with 1 atmosphere of xenon gas. Xenon gas at 1 atmosphere was used to tune up the spectrometer and to set up the appropriate NMR parameters. A single Xe-129 line at 83.003498 Mhz (with protons at 300 Mhz) was observed for the gas. With the xenon charged PMR-15 samples, a second broader line is observed 190 ppm downfield from the gas line (also observed). The width of the NMR line from the Xe-129 absorbed in the polymer is at least partially due to the distribution of microvoid sizes. From the chemical shift (relative to the gas line) and the line width, we estimate the average void sizes to be 2.74 +/- 0.20 angstroms. Since Xe-129 has such a large chemical shift range (approximately 5000 ppm), we expect the chemical shift anisotropy to contribute to the line width (delta upsilon = 2.5 kHz).

  3. Operating nanoliter scale NMR microcoils in a 1 tesla field.

    PubMed

    McDowell, Andrew F; Adolphi, Natalie L

    2007-09-01

    Microcoil probes enclosing sample volumes of 1.2, 3.3, 7.0, and 81 nanoliters are constructed as nuclear magnetic resonance (NMR) detectors for operation in a 1 tesla permanent magnet. The probes for the three smallest volumes utilize a novel auxiliary tuning inductor for which the design criteria are given. The signal-to-noise ratio (SNR) and line width of water samples are measured. Based on the measured DC resistance of the microcoils, together with the calculated radio frequency (RF) resistance of the tuning inductor, the SNR is calculated and shown to agree with the measured values. The details of the calculations indicate that the auxiliary inductor does not degrade the NMR probe performance. The diameter of the wire used to construct the microcoils is shown to affect the signal line widths.

  4. Precise measurement of charged defects in III-V compounds (supplement 2)

    NASA Technical Reports Server (NTRS)

    Soest, J. F.

    1973-01-01

    Experimental methods and related theory which will permit the measurement of low concentrations of vacancies and other defects in III-V compound semiconductors are discussed. Once the nature of these defects has been determined, this information can be incorporated into a transport theory for devices constructed from these materials, and experiments conducted to test the theory. The vacancies and other defects in the III-V compounds are detected by measurement of the nuclear magnetic resonance (NMR) line width. Most of the III-V compounds have at least one isotope with a nuclear quadrupole moment. In a crystal with a cubic crystal field (characteristic of most III-V compounds) there is no quadrupole splitting of the Zeeman resonance line. However, a defect removes the cubic symmetry locally and causes splitting which result in a change of the NMR width. This change can be used to detect the presence of vacancies.

  5. [19F]fluorine nuclear-magnetic-resonance study of the interaction of difluoro-oxaloacetate with aspartate transaminase.

    PubMed Central

    Briley, P A; Eisenthal, R; Harrison, R; Smith, G D

    1977-01-01

    Difluoro-oxaloacetate interacts with the aldimine form of aspartate transaminase to give a complex, the dissociation constant of which has been determined spectrophotometrically and by 19F n.m.r. (nuclear magnetic resonance). The 19F n.m.r. line-width-pH and chemical-shift-pH profiles of difluoro-oxaloacetate in the presence of the aldimine form of the enzyme both show inflexion points in the pH5 and pH8 regions, which may arise from variations in the binding of difluoro-oxaloacetate as specific groups on the enzyme are successively protonated. Difluoro-oxaloacetate also interacts with apoenzyme to form a complex, the dissociation constant of which was determined by 19F n.m.r. The 19F n.m.r. line-width-pH and chemical-shift-pH profiles of difluoro-oxaloacetate in the presence of apoenzyme show a single inflexion point in the region of pH8. The absence, in this case, of an inflexion in the pH5 region indicates that the latter, present in the corresponding profiles for the aldimine form of the enzyme, results from ionization of an enzyme group associated with the pyridoxal phosphate cofactor. PMID:17399

  6. Monitoring Cocrystal Formation via In Situ Solid-State NMR.

    PubMed

    Mandala, Venkata S; Loewus, Sarel J; Mehta, Manish A

    2014-10-02

    A detailed understanding of the mechanism of organic cocrystal formation remains elusive. Techniques that interrogate a reacting system in situ are preferred, though experimentally challenging. We report here the results of a solid-state in situ NMR study of the spontaneous formation of a cocrystal between a pharmaceutical mimic (caffeine) and a coformer (malonic acid). Using (13)C magic angle spinning NMR, we show that the formation of the cocrystal may be tracked in real time. We find no direct evidence for a short-lived, chemical shift-resolved amorphous solid intermediate. However, changes in the line width and line center of the malonic acid methylene resonance, in the course of the reaction, provide subtle clues to the mode of mass transfer that underlies cocrystal formation.

  7. A sequential assignment procedure for proteins that have intermediate line widths in MAS NMR spectra: amyloid fibrils of human CA150.WW2.

    PubMed

    Becker, Johanna; Ferguson, Neil; Flinders, Jeremy; van Rossum, Barth-Jan; Fersht, Alan R; Oschkinat, Hartmut

    2008-08-11

    The second WW domain (WW2) of CA150, a human transcriptional activator, forms amyloid fibrils in vitro under physiological conditions. Based on experimental constraints from MAS NMR spectroscopy experiments, alanine scanning and electron microscopy, a structural model of CA150.WW2 amyloid fibrils was calculated earlier. Here, the assignment strategy is presented and suggested as a general approach for proteins that show intermediate line width. The (13)C,(13)C correlation experiments were recorded on fully or partially (13)C-labelled fibrils. The earlier (13)C assignment (26 residues) was extended to 34 of the 40 residues by direct (13)C-excitation experiments by using a deuterated sample that showed strongly improved line width. A 3D HNC-TEDOR (transferred-echo double-resonance) experiment with deuterated CA150.WW2 fibrils yielded 14 amide nitrogen and proton resonance assignments. The obtained chemical shifts were compared with the chemical shifts determined with the natively folded WW domain. TALOS (Torsion angle likelihood obtained from shift and sequence similarity) predictions confirmed that, under physiological conditions, the fibrillar form of CA150.WW2 adopts a significantly different beta structure than the native WW-domain fold.

  8. Applications of ZVMo NMR spectroscopy. 17. ZVMo and UN relaxation time measurements confirming that (Mo(CN)8)U is dodecahedral in aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brownlee, R.T.; Shehan, B.P.; Wedd, A.G.

    1987-07-01

    Variable-temperature NMR line width measurements of ZVMo and UN in aqueous solutions of K4(Mo(CN)8) x 2H2O indicate that the stereochemistry of the (Mo(CN)8)U ion in solution is dodecahedral. A value for the ZVMo quadrupole coupling constant of 3.61 MHz is obtained. 27 references, 1 figure, 1 table.

  9. The role of cysteine 206 in allosteric inhibition of Escherichia coli citrate synthase. Studies by chemical modification, site-directed mutagenesis, and 19F NMR.

    PubMed

    Donald, L J; Crane, B R; Anderson, D H; Duckworth, H W

    1991-11-05

    Escherichia coli citrate synthase is strongly and specifically inhibited by NADH, but this inhibition can be prevented by reacting the enzyme with Ellman's reagent. We have now labeled the single reactive cysteine covalently with monobromobimane and isolated and sequenced the bimane-containing cyanogen bromide peptide and identified the cysteine as Cys-206. Modeling studies suggest that this residue is on the subunit surface, 25-30 A from the active site. Mutation of Cys-206 to serine (C206S), or of Gly-207 to alanine (E207A), weakened NADH binding and inhibition; when these mutations were present together, NADH binding was weaker by 18-fold and inhibition by 250-fold. The mutations also had small effects on substrate binding at the active site. Cys-206 of wild type enzyme and of the mutant E207A was alkylated with 1,1,1-trifluorobromoacetone and the environment of the fluorine nuclei studied by 19F NMR. With wild type enzyme, the NMR spectrum consisted of two peaks of about equal intensity but different line widths, at -8.65 ppm (line width 11.2 +/- 0.5 Hz) and -7.6 ppm (line width 57 +/- 4 Hz). As the labeled wild type citrate synthase was titrated with KCl, the narrow peak converted to the broad one. The same range of KCl concentrations was needed for this conversion as for the allosteric activation of E. coli citrate synthase. The E207A mutant gave the broader NMR peak almost exclusively. We propose that the fluorine label in wild type citrate synthase exists in two conformational states with different mobilities, exchanging slowly on the NMR time scale, and that treatment with KCl, or truncation of the Glu-207 side chain by mutagenesis, stabilizes one of these states. Consistent with this explanation is the finding that Cys-206 reacts more quickly with Ellman's reagent in the presence of KCl, and that this rate is faster yet in the E207A mutant.

  10. Fatty acyl chain order in lecithin model membranes determined from proton magnetic resonance.

    PubMed

    Bloom, M; Burnell, E E; MacKay, A L; Nichol, C P; Valic, M I; Weeks, G

    1978-12-26

    Proton magnetic resonance (1H NMR) has been used to compare the local orientational order of acyl chains in phospholipid bilayers of multilamellar and small sonicated vesicular membranes of dipalmitoyllecithin (DPL) at 50 degrees C and egg yolk lecithin (EYL) at 31 degrees C. The orientational order of the multilamellar systems was characterized using deuterium magnetic resonance order parameters and 1H NMR second moments. 1H NMR line shapes in the vesicle samples were calculated using vesicle size distributions, determined directly using electron microscopy, and a theory of motional narrowing, which takes into account the symmetry properties of the bilayer systems. The predicted non-Lorentzian line shapes and widths were found to be in good agreement with experimental results, indicating that the local orientational order (called "packing" by many workers) in the bilayers of small vesicles and in multilamellar membranes is substantially the same. This results was found to be true not only for the largest 1H NMR line associated with the nonterminal methylene protons but also for the resolved 1H NMR lines due to the alpha-CH2 and the terminal CH3 positions on the acyl chain. Analysis of the vesicle 1H NMR spectra of EYL taken with different medium viscosities yielded a value of approximately 4 X 10(-8) cm2 s-1 for the lateral diffusion constant of the phospholipid molecules at 31 degrees C.

  11. /sup 2/H NMR demonstration of amino acid - nucleotide interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khaled, M.A.; Watkins, C.L.; Lacey, J.C. Jr.

    Deuterium (/sup 2/H) NMR was used to investigate the interaction of L-Phenylalanine (with aromatic protons replaced by deuterons (Phe-D/sub 5/)), with 5'-AMP and polyadenylic acid (poly A). A considerable change in line width of the aromatic deuteron signals of Phe was observed. These data were plotted using a Scatchard-type equation, and yielded apparent binding constants for L-Phe to 5'-AMP and poly A of 7 and 11 M/sup -1/, respectively. Future applications of /sup 2/H-NMR in the study of nucleic acid-protein interactions are discussed.

  12. (14)N overtone transition in double rotation solid-state NMR.

    PubMed

    Haies, Ibraheem M; Jarvis, James A; Brown, Lynda J; Kuprov, Ilya; Williamson, Philip T F; Carravetta, Marina

    2015-10-07

    Solid-state NMR transitions involving outer energy levels of the spin-1 (14)N nucleus are immune, to first order in perturbation theory, to the broadening caused by the nuclear quadrupole interaction. The corresponding overtone spectra, when acquired in conjunction with magic-angle sample spinning, result in lines, which are just a few kHz wide, permitting the direct detection of nitrogen compounds without the need for labeling. Despite the success of this technique, "overtone" resonances are still broadened due to indirect, second order effects arising from the large quadrupolar interaction. Here we demonstrate that another order of magnitude in spectral resolution may be gained by using double rotation. This brings the width of the (14)N solid-state NMR lines much closer to the region commonly associated with high-resolution solid-state NMR spectroscopy of (15)N and demonstrates the improvements in resolution that may be possible through the development of pulsed methodologies to suppress these second order effects.

  13. Application of CRAFT in two-dimensional NMR data processing.

    PubMed

    Krishnamurthy, Krish; Sefler, Andrea M; Russell, David J

    2017-03-01

    Two-dimensional (2D) data are typically truncated in both dimensions, but invariably and severely so in the indirect dimension. These truncated FIDs and/or interferograms are extensively zero filled, and Fourier transformation of such zero-filled data is always preceded by a rapidly decaying apodization function. Hence, the frequency line width in the spectrum (at least parallel to the evolution dimension) is almost always dominated by the apodization function. Such apodization-driven line broadening in the indirect (t 1 ) dimension leads to the lack of clear resolution of cross peaks in the 2D spectrum. Time-domain analysis (i.e. extraction of frequency, amplitudes, line width, and phase parameters directly from the FID, in this case via Bayesian modeling into a tabular format) of NMR data is another approach for spectral resonance characterization and quantification. The recently published complete reduction to amplitude frequency table (CRAFT) technique converts the raw FID data (i.e. time-domain data) into a table of frequencies, amplitudes, decay rate constants, and phases. CRAFT analyses of time-domain data require minimal or no apodization prior to extraction of the four parameters. We used the CRAFT processing approach for the decimation of the interferograms and compared the results from a variety of 2D spectra against conventional processing with and without linear prediction. The results show that use of the CRAFT technique to decimate the t 1 interferograms yields much narrower spectral line width of the resonances, circumventing the loss of resolution due to apodization. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Solid-state 27Al MRI and NMR thermometry for catalytic applications with conventional (liquids) MRI instrumentation and techniques.

    PubMed

    Koptyug, Igor V; Sagdeev, Dmitry R; Gerkema, Edo; Van As, Henk; Sagdeev, Renad Z

    2005-07-01

    Multidimensional images of Al2O3 pellets, cordierite monolith, glass tube, polycrystalline V2O5 and other materials have been detected by 27Al, 51V, and 23Na NMR imaging using techniques and instrumentation conventionally employed for imaging of liquids. These results demonstrate that, contrary to the widely accepted opinion, imaging of "rigid" solids does not necessarily require utilization of solid state NMR imaging approaches, pulse sequences and hardware even for quadrupolar nuclei which exhibit line widths in excess of 100 kHz, such as 51V in polycrystalline V2O5. It is further demonstrated that both 27Al NMR signal intensity and spin-lattice relaxation time decrease with increasing temperature and thus can potentially serve as temperature sensitive parameters for spatially resolved NMR thermometry.

  15. Origin and Correction of Magnetic Field Inhomogeneity at the Interface in Biphasic NMR Samples

    PubMed Central

    Martin, Bryan T.; Chingas, G. C.

    2012-01-01

    The use of susceptibility matching to minimize spectral distortion of biphasic samples layered in a standard 5 mm NMR tube is described. The approach uses magic angle spinning (MAS) to first extract chemical shift differences by suppressing bulk magnetization. Then, using biphasic coaxial samples, magnetic susceptibilities are matched by titration with a paramagnetic salt. The matched phases are then layered in a standard NMR tube where they can be shimmed and examined. Line widths of two distinct spectral lines, selected to characterize homogeneity in each phase, are simultaneously optimized. Two-dimensional distortion-free, slice-resolved spectra of an octanol/water system illustrate the method. These data are obtained using a 2D stepped-gradient pulse sequence devised for this application. Advantages of this sequence over slice-selective methods are that acquisition efficiency is increased and processing requires only conventional software. PMID:22459062

  16. 1H line width dependence on MAS speed in solid state NMR - Comparison of experiment and simulation

    NASA Astrophysics Data System (ADS)

    Sternberg, Ulrich; Witter, Raiker; Kuprov, Ilya; Lamley, Jonathan M.; Oss, Andres; Lewandowski, Józef R.; Samoson, Ago

    2018-06-01

    Recent developments in magic angle spinning (MAS) technology permit spinning frequencies of ≥100 kHz. We examine the effect of such fast MAS rates upon nuclear magnetic resonance proton line widths in the multi-spin system of β-Asp-Ala crystal. We perform powder pattern simulations employing Fokker-Plank approach with periodic boundary conditions and 1H-chemical shift tensors calculated using the bond polarization theory. The theoretical predictions mirror well the experimental results. Both approaches demonstrate that homogeneous broadening has a linear-quadratic dependency on the inverse of the MAS spinning frequency and that, at the faster end of the spinning frequencies, the residual spectral line broadening becomes dominated by chemical shift distributions and susceptibility effects even for crystalline systems.

  17. Self-exchange reaction of [Ni(mnt)2](1-,2-) in nonaqueous solutions.

    PubMed

    Kowert, Bruce A; Fehr, Michael J; Sheaff, Pamela J

    2008-07-07

    The rate constant, k, for the homogeneous electron transfer (self-exchange) reaction between the diamagnetic bis(maleonitriledithiolato)nickel dianion, [Ni(mnt) 2] (2-), and the paramagnetic monoanion, [Ni(mnt) 2] (1-), has been determined in acetone and nitromethane (CH 3NO 2) using (13)C NMR line widths at 22 degrees C (mnt = 1,2-S 2C 2(CN) 2). The values of k (2.91 x 10 (6) M (-1) s (-1) in acetone, 5.78 x 10 (6) M (-1) s (-1) in CH 3NO 2) are faster than those for the electron transfer reactions of other Ni(III,II) couples; the structures of [Ni(mnt) 2] (1-) and [Ni(mnt) 2] (2-) allow for a favorable overlap that lowers the free energy of activation. The values of k are consistent with the predictions of Marcus theory. In addition to k, the spin-lattice relaxation time, T 1e, of [Ni(mnt) 2] (1-) is obtained from the NMR line width analysis; the values are consistent with those predicted by spin relaxation theory.

  18. NMR spectroscopy of Group 13 metal ions: biologically relevant aspects.

    PubMed

    André, J P; Mäcke, H R

    2003-12-01

    In spite of the fact that Group 13 metal ions (Al(3+), Ga(3+), In(3+) and Tl(+/3+)) show no main biological role, they are NMR-active nuclides which can be used in magnetic resonance spectroscopy of biologically relevant systems. The fact that these metal ions are quadrupolar (with the exception of thallium) means that they are particularly sensitive to ligand type and coordination geometry. The line width of the NMR signals of their complexes shows a strong dependence on the symmetry of coordination, which constitutes an effective tool in the elucidation of structures. Here we report published NMR studies of this family of elements, applied to systems of biological importance. Special emphasis is given to binding studies of these cations to biological molecules, such as proteins, and to chelating agents of radiopharmaceutical interest. The possibility of in vivo NMR studies is also stressed, with extension to (27)Al-based MRI (magnetic resonance imaging) experiments.

  19. PIC microcontroller based external fast analog to digital converter to acquire wide-lined solid NMR spectra by BRUKER DRX and Avance-I spectrometers.

    PubMed

    Koczor, Bálint; Rohonczy, János

    2015-01-01

    Concerning many former liquid or hybrid liquid/solid NMR consoles, the built in Analog-to-Digital Converters (ADCs) are incapable of digitizing the fids at sampling rates in the MHz range. Regarding both strong anisotropic interactions in the solid state and wide chemical shift dispersion nuclei in solution phase such as (195)Pt, (119)Sn, (207)Pb etc., the spectrum range of interest might be in the MHz range. As determining the informative tensor components of anisotropic NMR interactions requires nonlinear fitting over the whole spectrum including the asymptotic baseline, it is prohibited by low sampling rates of the ADCs. Wide spectrum width is also useful in solution NMR, since windowing of wide chemical shift ranges is avoidable. We built an external analog to digital converter with 10 MHz maximal sampling rate, which can work simultaneously with the built in ADC of the spectrometer. The ADC was tested on both Bruker DRX and Avance-I NMR consoles. In addition to the analog channels it only requires three external digital lines of the NMR console. The ADC sends data to PC via USB. The whole process is controlled by software written in JAVA which is implemented under TopSpin. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Structure and transport properties of a plastic crystal ion conductor: diethyl(methyl)(isobutyl)phosphonium hexafluorophosphate.

    PubMed

    Jin, Liyu; Nairn, Kate M; Forsyth, Craig M; Seeber, Aaron J; MacFarlane, Douglas R; Howlett, Patrick C; Forsyth, Maria; Pringle, Jennifer M

    2012-06-13

    Understanding the ion transport behavior of organic ionic plastic crystals (OIPCs) is crucial for their potential application as solid electrolytes in various electrochemical devices such as lithium batteries. In the present work, the ion transport mechanism is elucidated by analyzing experimental data (single-crystal XRD, multinuclear solid-state NMR, DSC, ionic conductivity, and SEM) as well as the theoretical simulations (second moment-based solid static NMR line width simulations) for the OIPC diethyl(methyl)(isobutyl)phosphonium hexafluorophosphate ([P(1,2,2,4)][PF(6)]). This material displays rich phase behavior and advantageous ionic conductivities, with three solid-solid phase transitions and a highly "plastic" and conductive final solid phase in which the conductivity reaches 10(-3) S cm(-1). The crystal structure shows unique channel-like packing of the cations, which may allow the anions to diffuse more easily than the cations at lower temperatures. The strongly phase-dependent static NMR line widths of the (1)H, (19)F, and (31)P nuclei in this material have been well simulated by different levels of molecular motions in different phases. Thus, drawing together of the analytical and computational techniques has allowed the construction of a transport mechanism for [P(1,2,2,4)][PF(6)]. It is also anticipated that utilization of these techniques will allow a more detailed understanding of the transport mechanisms of other plastic crystal electrolyte materials.

  1. Proton clouds to measure long-range contacts between nonexchangeable side chain protons in solid-state NMR.

    PubMed

    Sinnige, Tessa; Daniëls, Mark; Baldus, Marc; Weingarth, Markus

    2014-03-26

    We show that selective labeling of proteins with protonated amino acids embedded in a perdeuterated matrix, dubbed 'proton clouds', provides general access to long-range contacts between nonexchangeable side chain protons in proton-detected solid-state NMR, which is important to study protein tertiary structure. Proton-cloud labeling significantly improves spectral resolution by simultaneously reducing proton line width and spectral crowding despite a high local proton density in clouds. The approach is amenable to almost all canonical amino acids. Our method is demonstrated on ubiquitin and the β-barrel membrane protein BamA.

  2. Investigations of CuFeS{sub 2} semiconductor mineral from ocean rift hydrothermal vent fields by Cu NMR in a local field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matukhin, V. L.; Pogoreltsev, A. I.; Gavrilenko, A. N., E-mail: ang-2000@mail.ru

    The results of investigating natural samples of chalcopyrite mineral CuFeS{sub 2} from massive oceanic sulfide ores of the Mid-Atlantic ridge by the {sup 63}Cu nuclear magnetic resonance (NMR {sup 63}Cu) in a local field at room temperature are presented. The significant width of the resonance lines found in the {sup 63}Cu NMR spectrum directly testifies to a wide distribution of local magnetic and electric fields in the investigated chalcopyrite samples. This distribution can be the consequence of an appreciable deviation of the structure of the investigated chalcopyrite samples from the stoichiometric one. The obtained results show that the pulsed {supmore » 63}Cu NMR can be an efficient method for studying the physical properties of deep-water polymetallic sulfides of the World Ocean.« less

  3. Isotope labeling for studying RNA by solid-state NMR spectroscopy.

    PubMed

    Marchanka, Alexander; Kreutz, Christoph; Carlomagno, Teresa

    2018-04-12

    Nucleic acids play key roles in most biological processes, either in isolation or in complex with proteins. Often they are difficult targets for structural studies, due to their dynamic behavior and high molecular weight. Solid-state nuclear magnetic resonance spectroscopy (ssNMR) provides a unique opportunity to study large biomolecules in a non-crystalline state at atomic resolution. Application of ssNMR to RNA, however, is still at an early stage of development and presents considerable challenges due to broad resonances and poor dispersion. Isotope labeling, either as nucleotide-specific, atom-specific or segmental labeling, can resolve resonance overlaps and reduce the line width, thus allowing ssNMR studies of RNA domains as part of large biomolecules or complexes. In this review we discuss the methods for RNA production and purification as well as numerous approaches for isotope labeling of RNA. Furthermore, we give a few examples that emphasize the instrumental role of isotope labeling and ssNMR for studying RNA as part of large ribonucleoprotein complexes.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zohar, S.; Sterbinsky, G. E.

    Here, we propose an experimental technique for extending feedback compensation of dissipative radiation used in nuclear magnetic resonance (NMR) to encompass ferromagnetic resonance (FMR). This method uses a balanced microwave power detector whose output is phase shifted π/2, amplified, and fed back to drive precession. Using classical control theory, we predict an electronically controllable narrowing of field swept FMR line-widths. This technique is predicted to compensate other sources of spin dissipation in addition to radiative loss.

  5. Lattice damage and Al-metal precipitation in 2.5 MeV-electron-irradiated AlH3

    NASA Astrophysics Data System (ADS)

    Zogal, O. J.; Vajda, P.; Beuneu, F.; Pietraszko, A.

    1998-04-01

    AlH3 powder was bombarded with energetic electrons at 20 K and at room temperature and investigated by EPR, NMR, X-ray diffractometry, and microwave dielectric-constant measurements. The EPR spectra of the irradiated powder and of a selected single crystal cuboid of ˜ {10^{ - 1}} mm edge show a complex asymmetric line centered at g = 2.009, with a Curie-like temperature dependence, attributed to radiation-induced color centers and/or their agglomerates. At the same time, the grains, which have become shiny black after irradiation, exhibit an increase of both the real and the imaginary part of ɛ. 27Al-NMR spectra of the irradiated powder present a Knight-shifted line at 1600(50) ppm, close to the position of bulk metallic Al, and corresponding to a concentration of c(Al) ˜ {10^{ - 1}}. In addition, the main hydride line differs from that before irradiation, demonstrating an alteration of environmental symmetry. The irradiation induces also a change in shape and width of the 1H-NMR line, another indication of symmetry change in the lattice. Finally, a refined X-ray single-crystal structure analysis of the irradiated cuboid indicates a change of structure from trigonal R -3 c to R -3, with a loss of mirror symmetry for the two Al sites caused by the introduction of Al-defects in the vicinity of one of them.

  6. Ein statistisches Modell zum Einfluß der thermischen Bewegung auf NMR-Festkörperspektren

    NASA Astrophysics Data System (ADS)

    Ploss, W.; Freude, D.; Pfeifer, H.; Schmiedel, H.

    Es wird ein statistisches Modell zum Einfluß der thermischen Bewegung auf die NMR-Linienform vorgestellt, das die Verschmälerung von Festkörper-Spektren bei wachsender Temperatur beschreibt. Das Modell geht von der Annahme aus, daß nach einer Ortsveränderung eines Kerns infolge thermischer Bewegung jede beliebige Kernresonanzfrequenz mit der durch das Festkörperspektrum vorgegebenen Wahrscheinlichkeit angenommen werden kann. Am Beispiel der Festkörper-Gaußlinie wird der Unterschied zu dem bekannten Modell von ANDERSON und WEISS verdeutlicht.Translated AbstractA Statistical Model for the Influence of Thermal Motion on N. M. R. Spectra in SolidsA theory is proposed which allows to describe the narrowing of n. m. r.-line width in the presence of thermal motions of the spins. The model is based on the assumption, that the local resonance frequency of a given spin immediately after the jump is distributed according to the n. m. r.-line shape of the rigid lattice. The difference to the well-known ANDERSON-WEISS-model of spectral narrowing is demonstrated for a gaussian line shape.

  7. Optimized co-solute paramagnetic relaxation enhancement for the rapid NMR analysis of a highly fibrillogenic peptide.

    PubMed

    Oktaviani, Nur Alia; Risør, Michael W; Lee, Young-Ho; Megens, Rik P; de Jong, Djurre H; Otten, Renee; Scheek, Ruud M; Enghild, Jan J; Nielsen, Niels Chr; Ikegami, Takahisa; Mulder, Frans A A

    2015-06-01

    Co-solute paramagnetic relaxation enhancement (PRE) is an attractive way to speed up data acquisition in NMR spectroscopy by shortening the T 1 relaxation time of the nucleus of interest and thus the necessary recycle delay. Here, we present the rationale to utilize high-spin iron(III) as the optimal transition metal for this purpose and characterize the properties of its neutral chelate form Fe(DO3A) as a suitable PRE agent. Fe(DO3A) effectively reduces the T 1 values across the entire sequence of the intrinsically disordered protein α-synuclein with negligible impact on line width. The agent is better suited than currently used alternatives, shows no specific interaction with the polypeptide chain and, due to its high relaxivity, is effective at low concentrations and in 'proton-less' NMR experiments. By using Fe(DO3A) we were able to complete the backbone resonance assignment of a highly fibrillogenic peptide from α1-antitrypsin by acquiring the necessary suite of multidimensional NMR datasets in 3 h.

  8. A proposed method for electronic feedback compensation of damping in ferromagnetic resonance

    DOE PAGES

    Zohar, S.; Sterbinsky, G. E.

    2017-07-10

    Here, we propose an experimental technique for extending feedback compensation of dissipative radiation used in nuclear magnetic resonance (NMR) to encompass ferromagnetic resonance (FMR). This method uses a balanced microwave power detector whose output is phase shifted π/2, amplified, and fed back to drive precession. Using classical control theory, we predict an electronically controllable narrowing of field swept FMR line-widths. This technique is predicted to compensate other sources of spin dissipation in addition to radiative loss.

  9. A proposed method for electronic feedback compensation of damping in ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Zohar, S.; Sterbinsky, G. E.

    2017-12-01

    We propose an experimental technique for extending feedback compensation of dissipative radiation used in nuclear magnetic resonance (NMR) to encompass ferromagnetic resonance (FMR). This method uses a balanced microwave power detector whose output is phase shifted π / 2 , amplified, and fed back to drive precession. Using classical control theory, we predict an electronically controllable narrowing of field swept FMR line-widths. This technique is predicted to compensate other sources of spin dissipation in addition to radiative loss.

  10. Major Variations in HIV-1 Capsid Assembly Morphologies Involve Minor Variations in Molecular Structures of Structurally Ordered Protein Segments*

    PubMed Central

    Lu, Jun-Xia; Bayro, Marvin J.; Tycko, Robert

    2016-01-01

    We present the results of solid state nuclear magnetic resonance (NMR) experiments on HIV-1 capsid protein (CA) assemblies with three different morphologies, namely wild-type CA (WT-CA) tubes with 35–60 nm diameters, planar sheets formed by the Arg18-Leu mutant (R18L-CA), and R18L-CA spheres with 20–100 nm diameters. The experiments are intended to elucidate molecular structural variations that underlie these variations in CA assembly morphology. We find that multidimensional solid state NMR spectra of 15N,13C-labeled CA assemblies are remarkably similar for the three morphologies, with only small differences in 15N and 13C chemical shifts, no significant differences in NMR line widths, and few differences in the number of detectable NMR cross-peaks. Thus, the pronounced differences in morphology do not involve major differences in the conformations and identities of structurally ordered protein segments. Instead, morphological variations are attributable to variations in conformational distributions within disordered segments, which do not contribute to the solid state NMR spectra. Variations in solid state NMR signals from certain amino acid side chains are also observed, suggesting differences in the intermolecular dimerization interface between curved and planar CA lattices, as well as possible differences in intramolecular helix-helix packing. PMID:27129282

  11. Chromophore orientation in bacteriorhodopsin determined from the angular dependence of deuterium nuclear magnetic resonance spectra of oriented purple membranes.

    PubMed

    Moltke, S; Nevzorov, A A; Sakai, N; Wallat, I; Job, C; Nakanishi, K; Heyn, M P; Brown, M F

    1998-08-25

    The orientation of prosthetic groups in membrane proteins is of considerable importance in understanding their functional role in energy conversion, signal transduction, and ion transport. In this work, the orientation of the retinylidene chromophore of bacteriorhodopsin (bR) was investigated using 2H NMR spectroscopy. Bacteriorhodopsin was regenerated with all-trans-retinal stereospecifically deuterated in one of the geminal methyl groups on C1 of the cyclohexene ring. A highly oriented sample, which is needed to obtain individual bond orientations from 2H NMR, was prepared by forming hydrated lamellar films of purple membranes on glass slides. A Monte Carlo method was developed to accurately simulate the 2H NMR line shape due to the distribution of bond angles and the orientational disorder of the membranes. The number of free parameters in the line shape simulation was reduced by independent measurements of the intrinsic line width (1.6 kHz from T2e experiments) and the effective quadrupolar coupling constant (38. 8-39.8 kHz from analysis of the line shape of a powder-type sample). The angle between the C1-(1R)-1-CD3 bond and the purple membrane normal was determined with high accuracy from the simultaneous analysis of a series of 2H NMR spectra recorded at different inclinations of the uniaxially oriented sample in the magnetic field at 20 and -50 degrees C. The value of 68.7 +/- 2.0 degrees in dark-adapted bR was used, together with the previously determined angle of the C5-CD3 bond, to calculate the possible orientations of the cyclohexene ring in the membrane. The solutions obtained from 2H NMR were then combined with additional constraints from linear dichroism and electron cryomicroscopy to obtain the allowed orientations of retinal in the noncentrosymmetric membrane structure. The combined data indicate that the methyl groups on the polyene chain point toward the cytoplasmic side of the membrane and the N-H bond of the Schiff base to the extracellular side, i.e., toward the side of proton release in the pump pathway.

  12. Spin-injection optical pumping of molten cesium salt and its NMR diagnosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishikawa, Kiyoshi

    2015-07-15

    Nuclear spin polarization of cesium ions in the salt was enhanced during optical pumping of cesium vapor at high magnetic field. Significant motional narrowing and frequency shift of NMR signals were observed by intense laser heating of the salt. When the hyperpolarized salt was cooled by blocking the heating laser, the signal width and frequency changed during cooling and presented the phase transition from liquid to solid. Hence, we find that the signal enhancement is mostly due to the molten salt and nuclear spin polarization is injected into the salt efficiently in the liquid phase. We also show that opticalmore » pumping similarly induces line narrowing in the solid phase. The use of powdered salt provided an increase in effective surface area and signal amplitude without glass wool in the glass cells.« less

  13. Multivariate Analysis of Two-Dimensional 1H, 13C Methyl NMR Spectra of Monoclonal Antibody Therapeutics To Facilitate Assessment of Higher Order Structure.

    PubMed

    Arbogast, Luke W; Delaglio, Frank; Schiel, John E; Marino, John P

    2017-11-07

    Two-dimensional (2D) 1 H- 13 C methyl NMR provides a powerful tool to probe the higher order structure (HOS) of monoclonal antibodies (mAbs), since spectra can readily be acquired on intact mAbs at natural isotopic abundance, and small changes in chemical environment and structure give rise to observable changes in corresponding spectra, which can be interpreted at atomic resolution. This makes it possible to apply 2D NMR spectral fingerprinting approaches directly to drug products in order to systematically characterize structure and excipient effects. Systematic collections of NMR spectra are often analyzed in terms of the changes in specifically identified peak positions, as well as changes in peak height and line widths. A complementary approach is to apply principal component analysis (PCA) directly to the matrix of spectral data, correlating spectra according to similarities and differences in their overall shapes, rather than according to parameters of individually identified peaks. This is particularly well-suited for spectra of mAbs, where some of the individual peaks might not be well resolved. Here we demonstrate the performance of the PCA method for discriminating structural variation among systematic sets of 2D NMR fingerprint spectra using the NISTmAb and illustrate how spectral variability identified by PCA may be correlated to structure.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Xuchu; Hu, Mary; Wei, Xiaoliang

    Understanding the solvation structures of electrolytes is important for developing nonaqueous redox flow batteries that hold considerable potential for future large scale energy storage systems. The utilization of an emerging ionic-derivative ferrocene compounds, ferrocenylmethyl dimethyl ethyl ammonium bis (triflyoromethanesulfonyl)imide (Fc1N112-TFSI), has recently overcome the issue of solubility in the supporting electrolyte. In this work, 13C1H and 17O NMR investigations were carried out using solvent. It was observed that the spectra of 13C experience changes of chemical shifts while those of 17O undergo line width broadening, indicating interactions between solute and solvent molecules

  15. Revisiting NMR composite pulses for broadband 2H excitation

    PubMed Central

    Shen, Ming; Roopchand, Rabia; Mananga, Eugene S.; Amoureux, Jean-Paul; Chen, Qun; Boutis, Gregory S.; Hu, Bingwen

    2014-01-01

    Quadrupolar echo NMR spectroscopy of static solids often requires RF excitation that covers spectral widths exceeding 100 kHz, which is difficult to obtain due to instrumental limitations. In this work we revisit four well-known composite pulses (COM-I, II, III and IV) for broadband excitation in deuterium quadrupolar echo spectroscopy. These composite pulses are combined with several phase cycling schemes that were previously shown to decrease finite pulse width distortions in deuterium solid-echo experiments performed with two single pulses. The simulations and experiments show that COM-II and IV composite pulses combined with an 8-step phase cycling aid in achieving broadband excitation with limited pulse width distortions. PMID:25583576

  16. Fast acquisition of multidimensional NMR spectra of solids and mesophases using alternative sampling methods.

    PubMed

    Lesot, Philippe; Kazimierczuk, Krzysztof; Trébosc, Julien; Amoureux, Jean-Paul; Lafon, Olivier

    2015-11-01

    Unique information about the atom-level structure and dynamics of solids and mesophases can be obtained by the use of multidimensional nuclear magnetic resonance (NMR) experiments. Nevertheless, the acquisition of these experiments often requires long acquisition times. We review here alternative sampling methods, which have been proposed to circumvent this issue in the case of solids and mesophases. Compared to the spectra of solutions, those of solids and mesophases present some specificities because they usually display lower signal-to-noise ratios, non-Lorentzian line shapes, lower spectral resolutions and wider spectral widths. We highlight herein the advantages and limitations of these alternative sampling methods. A first route to accelerate the acquisition time of multidimensional NMR spectra consists in the use of sparse sampling schemes, such as truncated, radial or random sampling ones. These sparsely sampled datasets are generally processed by reconstruction methods differing from the Discrete Fourier Transform (DFT). A host of non-DFT methods have been applied for solids and mesophases, including the G-matrix Fourier transform, the linear least-square procedures, the covariance transform, the maximum entropy and the compressed sensing. A second class of alternative sampling consists in departing from the Jeener paradigm for multidimensional NMR experiments. These non-Jeener methods include Hadamard spectroscopy as well as spatial or orientational encoding of the evolution frequencies. The increasing number of high field NMR magnets and the development of techniques to enhance NMR sensitivity will contribute to widen the use of these alternative sampling methods for the study of solids and mesophases in the coming years. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Enhanced spectral resolution by high-dimensional NMR using the filter diagonalization method and "hidden" dimensions.

    PubMed

    Meng, Xi; Nguyen, Bao D; Ridge, Clark; Shaka, A J

    2009-01-01

    High-dimensional (HD) NMR spectra have poorer digital resolution than low-dimensional (LD) spectra, for a fixed amount of experiment time. This has led to "reduced-dimensionality" strategies, in which several LD projections of the HD NMR spectrum are acquired, each with higher digital resolution; an approximate HD spectrum is then inferred by some means. We propose a strategy that moves in the opposite direction, by adding more time dimensions to increase the information content of the data set, even if only a very sparse time grid is used in each dimension. The full HD time-domain data can be analyzed by the filter diagonalization method (FDM), yielding very narrow resonances along all of the frequency axes, even those with sparse sampling. Integrating over the added dimensions of HD FDM NMR spectra reconstitutes LD spectra with enhanced resolution, often more quickly than direct acquisition of the LD spectrum with a larger number of grid points in each of the fewer dimensions. If the extra-dimensions do not appear in the final spectrum, and are used solely to boost information content, we propose the moniker hidden-dimension NMR. This work shows that HD peaks have unmistakable frequency signatures that can be detected as single HD objects by an appropriate algorithm, even though their patterns would be tricky for a human operator to visualize or recognize, and even if digital resolution in an HD FT spectrum is very coarse compared with natural line widths.

  18. Enhanced spectral resolution by high-dimensional NMR using the filter diagonalization method and “hidden” dimensions

    PubMed Central

    Meng, Xi; Nguyen, Bao D.; Ridge, Clark; Shaka, A. J.

    2009-01-01

    High-dimensional (HD) NMR spectra have poorer digital resolution than low-dimensional (LD) spectra, for a fixed amount of experiment time. This has led to “reduced-dimensionality” strategies, in which several LD projections of the HD NMR spectrum are acquired, each with higher digital resolution; an approximate HD spectrum is then inferred by some means. We propose a strategy that moves in the opposite direction, by adding more time dimensions to increase the information content of the data set, even if only a very sparse time grid is used in each dimension. The full HD time-domain data can be analyzed by the Filter Diagonalization Method (FDM), yielding very narrow resonances along all of the frequency axes, even those with sparse sampling. Integrating over the added dimensions of HD FDM NMR spectra reconstitutes LD spectra with enhanced resolution, often more quickly than direct acquisition of the LD spectrum with a larger number of grid points in each of the fewer dimensions. If the extra dimensions do not appear in the final spectrum, and are used solely to boost information content, we propose the moniker hidden-dimension NMR. This work shows that HD peaks have unmistakable frequency signatures that can be detected as single HD objects by an appropriate algorithm, even though their patterns would be tricky for a human operator to visualize or recognize, and even if digital resolution in an HD FT spectrum is very coarse compared with natural line widths. PMID:18926747

  19. Nuclear magnetic resonance studies of amino acids and proteins. Side-chain mobility of methionine in the crystalline amonio acid and in crystallne sperm whale (Physeter catodon) myoglobin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keniry, M.A.; Rothgeb, T.M.; Smith, R.L.

    1983-04-12

    Deuterium (/sup 2/H) nuclear magnetic resonance (NMR) spectra and spin-lattice relaxation times (T/sub 1/) were obtained of L-(epsilon-/sup 2/H/sub 3/)methionine, L-(epsilon-/sup 2/H/sub 3/)methionine in a D,L lattice, and (S-methyl-/sup 2/H/sub 3/)methionine in the crystalline solid state, as a function of temperature, in addition to obtaining /sup 2/H T/sub 1/ and line-width results as a function of temperature on (epsilon-/sup 2/H/sub 3/)methionine-labeled sperm whale (Physeter catodon) myoglobins by using the method of magnetic ordering. Also recorded were /sup 13/C cross-polarization ''magic-angle'' sample-spinning NMR spectra of (epsilon-/sup 13/C)methionine-labeled crystalline cyanoferrimyoglobin (at 37.7 MHz, corresponding to a magnetic field strength of 3.52 T)more » and of the same protein in aqueous solution. (JMT)« less

  20. NMR in an electric field: A bulk probe of the hidden spin and orbital polarizations

    NASA Astrophysics Data System (ADS)

    Ramírez-Ruiz, Jorge; Boutin, Samuel; Garate, Ion

    2017-12-01

    Recent theoretical work has established the presence of hidden spin and orbital textures in nonmagnetic materials with inversion symmetry. Here, we propose that these textures can be detected by nuclear magnetic resonance (NMR) measurements carried out in the presence of an electric field. In crystals with hidden polarizations, a uniform electric field produces a staggered magnetic field that points to opposite directions at atomic sites related by spatial inversion. As a result, the NMR resonance peak corresponding to inversion partner nuclei is split into two peaks. The magnitude of the splitting is proportional to the electric field and depends on the orientation of the electric field with respect to the crystallographic axes and the external magnetic field. As a case study, we present a theory of electric-field-induced splitting of NMR peaks for 77Se,125Te, and 209Bi in Bi2Se3 and Bi2Te3 . In conducting samples with current densities of ≃106A/cm 2 , the splitting for Bi can reach 100 kHz , which is comparable to or larger than the intrinsic width of the NMR lines. In order to observe the effect experimentally, the peak splitting must also exceed the linewidth produced by the Oersted field. In Bi2Se3 , this requires narrow wires of radius ≲1 μ m . We also discuss other potentially more promising candidate materials, such as SrRuO3 and BaIr2Ge2 , whose crystal symmetry enables strategies to suppress the linewidth produced by the Oersted field.

  1. Dynamic NMR under nonstationary conditions: Theoretical model, numerical calculation, and potential of application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babailov, S. P., E-mail: babajlov@niic.nsc.ru; National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050; Purtov, P. A.

    An expression has been derived for the time dependence of the NMR line shape for systems with multi-site chemical exchange in the absence of spin-spin coupling, in a zero saturation limit. The dynamics of variation of the NMR line shape with time is considered in detail for the case of two-site chemical exchange. Mathematical programs have been designed for numerical simulation of the NMR spectra of chemical exchange systems. The analytical expressions obtained are useful for NMR line shape simulations for systems with photoinduced chemical exchange.

  2. Advanced slow-magic angle spinning probe for magnetic resonance imaging and spectroscopy

    DOEpatents

    Wind, Robert A.; Hu, Jian Zhi; Minard, Kevin R.; Rommereim, Donald N.

    2006-01-24

    The present invention relates to a probe and processes useful for magnetic resonance imaging and spectroscopy instruments. More particularly, the invention relates to a MR probe and processes for obtaining resolution enhancements of fluid objects, including live specimens, using an ultra-slow (magic angle) spinning (MAS) of the specimen combined with a modified phase-corrected magic angle turning (PHORMAT) pulse sequence. Proton NMR spectra were measured of the torso and the top part of the belly of a female BALBc mouse in a 2T field, while spinning the animal at a speed of 1.5 Hz. Results show that even in this relatively low field with PHORMAT, an isotropic spectrum is obtained with line widths that are a factor 4.6 smaller than those obtained in a stationary mouse. Resolution of 1H NMR metabolite spectra are thus significantly enhanced. Results indicate that PHORMAT has the potential to significantly increase the utility of 1H NMR spectroscopy for in vivo biochemical, biomedical and/or medical applications involving large-sized biological objects such as mice, rats and even humans within a hospital setting. For small-sized objects, including biological objects, such as excised tissues, organs, live bacterial cells, and biofilms, use of PASS at a spinning rate of 30 Hz and above is preferred.

  3. Tortuosity measurement and the effects of finite pulse widths on xenon gas diffusion NMR studies of porous media

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Hurlimann, M. D.; Sen, P. N.; Schwartz, L. M.; Patz, S.; Walsworth, R. L.

    2001-01-01

    We have extended the utility of NMR as a technique to probe porous media structure over length scales of approximately 100-2000 microm by using the spin 1/2 noble gas 129Xe imbibed into the system's pore space. Such length scales are much greater than can be probed with NMR diffusion studies of water-saturated porous media. We utilized Pulsed Gradient Spin Echo NMR measurements of the time-dependent diffusion coefficient, D(t), of the xenon gas filling the pore space to study further the measurements of both the pore surface-area-to-volume ratio, S/V(p), and the tortuosity (pore connectivity) of the medium. In uniform-size glass bead packs, we observed D(t) decreasing with increasing t, reaching an observed asymptote of approximately 0.62-0.65D(0), that could be measured over diffusion distances extending over multiple bead diameters. Measurements of D(t)/D(0) at differing gas pressures showed this tortuosity limit was not affected by changing the characteristic diffusion length of the spins during the diffusion encoding gradient pulse. This was not the case at the short time limit, where D(t)/D(0) was noticeably affected by the gas pressure in the sample. Increasing the gas pressure, and hence reducing D(0) and the diffusion during the gradient pulse served to reduce the previously observed deviation of D(t)/D(0) from the S/V(p) relation. The Pade approximation is used to interpolate between the long and short time limits in D(t). While the short time D(t) points lay above the interpolation line in the case of small beads, due to diffusion during the gradient pulse on the order of the pore size, it was also noted that the experimental D(t) data fell below the Pade line in the case of large beads, most likely due to finite size effects.

  4. Effect of proton irradiation on the normal-state low-energy excitations of Ba(Fe 1-xRh x) 2As 2 superconductors

    DOE PAGES

    Moroni, M.; Gozzelino, L.; Ghigo, G.; ...

    2017-09-19

    Here, we present a 75As nuclear magnetic resonance (NMR) and resistivity study of the effect of 5.5 MeV proton irradiation on the optimal electron doped (x = 0.068) and overdoped (x = 0.107) Ba(Fe 1–xRh x) 2As 2 iron based superconductors. While the proton induced defects only mildly suppress the critical temperature and increase residual resistivity in both compositions, sizable broadening of the NMR spectra was observed in all the irradiated samples at low temperature. The effect is significantly stronger in the optimally doped sample where the Curie Weiss temperature dependence of the line width suggests the onset of ferromagneticmore » correlations coexisting with superconductivity at the nanoscale. 1/T 2 measurements revealed that the energy barrier characterizing the low energy spin fluctuations of these compounds is enhanced upon proton irradiation, suggesting that the defects are likely slowing down the fluctuations between (0,π) and (π,0) nematic ground states.« less

  5. Effect of proton irradiation on the normal-state low-energy excitations of Ba(Fe 1-xRh x) 2As 2 superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moroni, M.; Gozzelino, L.; Ghigo, G.

    Here, we present a 75As nuclear magnetic resonance (NMR) and resistivity study of the effect of 5.5 MeV proton irradiation on the optimal electron doped (x = 0.068) and overdoped (x = 0.107) Ba(Fe 1–xRh x) 2As 2 iron based superconductors. While the proton induced defects only mildly suppress the critical temperature and increase residual resistivity in both compositions, sizable broadening of the NMR spectra was observed in all the irradiated samples at low temperature. The effect is significantly stronger in the optimally doped sample where the Curie Weiss temperature dependence of the line width suggests the onset of ferromagneticmore » correlations coexisting with superconductivity at the nanoscale. 1/T 2 measurements revealed that the energy barrier characterizing the low energy spin fluctuations of these compounds is enhanced upon proton irradiation, suggesting that the defects are likely slowing down the fluctuations between (0,π) and (π,0) nematic ground states.« less

  6. Si-29 NMR spectroscopy of naturally-shocked quartz from Meteor Crater, Arizona: Correlation to Kieffer's classification scheme

    NASA Technical Reports Server (NTRS)

    Boslough, M. B.; Cygan, R. T.; Kirkpatrick, R. J.

    1993-01-01

    We have applied solid state Si-29 nuclear magnetic resonance (NMR) spectroscopy to five naturally-shocked Coconino Sandstone samples from Meteor Crater, Arizona, with the goal of examining possible correlations between NMR spectral characteristics and shock level. This work follows our observation of a strong correlation between the width of a Si-29 resonance and peak shock pressure for experimentally shocked quartz powders. The peak width increase is due to the shock-induced formation of amorphous silica, which increases as a function of shock pressure over the range that we studied (7.5 to 22 GPa). The Coconino Sandstone spectra are in excellent agreement with the classification scheme of Kieffer in terms of presence and approximate abundances of quartz, coesite, stishovite, and glass. We also observe a new resonance in two moderately shocked samples that we have tentatively identified with silicon in tetrahedra with one hydroxyl group in a densified form of amorphous silica.

  7. Using 31P NMR spectroscopy at 14.1 Tesla to investigate PARP-1 associated energy failure and metabolic rescue in cerebrocortical slices.

    PubMed

    Zeng, Jianying; Hirai, Kiyoshi; Yang, Guo-Yuan; Ying, Weihai; Swanson, Raymond A; Kelly, Mark; Mayer, Moriz; James, Thomas L; Litt, Lawrence

    2004-08-01

    PARP-1 activation by H(2)O(2) in an acute preparation of superfused, respiring, neonatal cerebrocortical slices was assessed from PAR-polymer formation detected with immunohistochemistry and Western blotting. (31)P NMR spectroscopy at 14.1 Tesla of perchloric acid slice extracts was used to assess energy failure in a 1-h H(2)O(2) exposure as well as in a subsequent 4-h recovery period where the superfusate had no H(2)O(2) and specifically chosen metabolic substrates. Although more data are needed to fully characterize different bioenergetic responses, a high NMR spectral resolution (PCr full-width at half-max approximately.01 ppm) and narrow widths for most metabolites (<.2 ppm) permitted accurate quantifications of spectrally resolved resonances for ADP, ATP, NAD(+)/NADH, and other high energy phosphates. It appears possible to use brain slices to quantitatively study PARP-related, NAD-associated energy failure, and rescue with TCA metabolites.

  8. Analysis of the (Trimethylsilyl)propionic Acid-β(12-28) Peptide Binding Equilibrium with NMR Spectroscopy.

    PubMed

    Jayawickrama, D A; Larive, C K

    1999-06-01

    The binding of a small molecule, (trimethylsilyl)propionic acid (TSP), to a 17-residue peptide, β(12-28), is examined using (1)H NMR spectroscopy. β(12-28) (VHHQKLVFFAEDVGSNK) is a central fragment of the 40-42-residue Alzheimer's-associated Aβ peptide. This peptide has been previously shown to form soluble aggregates in low-pH aqueous solution. The TSP resonance is broadened appreciably in solutions containing relatively high concentrations (∼2 mM) of the peptide. The changes in TSP line width measured by titration of a peptide solution with TSP indicate a 1:1 binding stoichiometry. If the concentrations of both the peptide and TSP are reduced by 1 order of magnitude, the resonances of both species are sharp, suggesting that TSP binds predominately to the aggregated peptide. Nuclear Overhauser effect experiments indicate that the TSP interacts predominately with the side chains of the aliphatic peptide residues Leu(17) and Val(18). Pulsed-field gradient NMR measurements of TSP and peptide diffusion coefficients provide a more quantitative picture of the TSP-peptide binding equilibrium. The measured diffusion coefficients were used to calculate the fractions of the free and bound TSP. These results substantiate the conclusion that the stoichiometry of the TSP-peptide binding equilibrium is essentially 1:1 and further indicate anticooperative behavior in solutions containing an excess of TSP resulting in a dissociation of the peptide aggregates.

  9. A system for NMR stark spectroscopy of quadrupolar nuclei.

    PubMed

    Tarasek, Matthew R; Kempf, James G

    2010-05-13

    Electrostatic influences on NMR parameters are well accepted. Experimental and computational routes have been long pursued to understand and utilize such Stark effects. However, existing approaches are largely indirect informants on electric fields, and/or are complicated by multiple causal factors in spectroscopic change. We present a system to directly measure quadrupolar Stark effects from an applied electric (E) field. Our apparatus and applications are relevant in two contexts. Each uses a radiofrequency (rf) E field at twice the nuclear Larmor frequency (2omega(0)). The mechanism is a distortion of the E-field gradient tensor that is linear in the amplitude (E(0)) of the rf E field. The first uses 2omega(0) excitation of double-quantum transitions for times similar to T(1) (the longitudinal spin relaxation time). This perturbs the steady state distribution of spin population. Nonlinear analysis versus E(0) can be used to determine the Stark response rate. The second context uses POWER (perturbations observed with enhanced resolution) NMR. Here, coherent, short-time (

  10. Line width resonance of the longitudinal optical phonon in GaAs:N

    NASA Astrophysics Data System (ADS)

    Mialitsin, Aleksej; Mascarenhas, Angelo

    2013-03-01

    We extend resonant Raman scattering studies of Mascarenhas et al. [PRB68, 233201 (2003)] of GaAs1-xNx to the ultra-dilute nitrogen doping concentrations, whereby we unambiguously resolve the line width resonances of the LO phonon. A discontinuity is observed in the LO phonon line width resonance energy as a function of concentration. With decreasing nitrogen concentration the EW line width resonance energy reduces by ca. 40 meV at x = 0 . 4 % . This value corresponds to the concentration, at which the localized to delocalized transition manifests itself in the electro-reflectance signature line widths.

  11. Evaluation of width and width uniformity of near-field electrospinning printed micro and sub-micrometer lines based on optical image processing

    NASA Astrophysics Data System (ADS)

    Zhao, Libo; Xia, Yong; Hebibul, Rahman; Wang, Jiuhong; Zhou, Xiangyang; Hu, Yingjie; Li, Zhikang; Luo, Guoxi; Zhao, Yulong; Jiang, Zhuangde

    2018-03-01

    This paper presents an experimental study using image processing to investigate width and width uniformity of sub-micrometer polyethylene oxide (PEO) lines fabricated by near-filed electrospinning (NFES) technique. An adaptive thresholding method was developed to determine the optimal gray values to accurately extract profiles of printed lines from original optical images. And it was proved with good feasibility. The mechanism of the proposed thresholding method was believed to take advantage of statistic property and get rid of halo induced errors. Triangular method and relative standard deviation (RSD) were introduced to calculate line width and width uniformity, respectively. Based on these image processing methods, the effects of process parameters including substrate speed (v), applied voltage (U), nozzle-to-collector distance (H), and syringe pump flow rate (Q) on width and width uniformity of printed lines were discussed. The research results are helpful to promote the NFES technique for fabricating high resolution micro and sub-micro lines and also helpful to optical image processing at sub-micro level.

  12. Biological Ion Exchanger Resins

    PubMed Central

    Damadian, Raymond; Goldsmith, Michael; Zaner, K. S.

    1971-01-01

    Biological selectivity is shown to vary with medium osmotic strength and temperature. Selectivity reversals occur at 4°C and at an external osmolality of 0.800 indicating that intracellular hydration and endosolvent (intracellular water) structure are important determinants in selectivity. Magnetic resonance measurements of line width by steady-state nuclear magnetic resonance (NMR) indicate a difference in the intracellular water signal of 16 Hz between the K form and Na form of Escherichia coli, providing additional evidence that changes in the ionic composition of cells are accompanied by changes in endosolvent structure. The changes were found to be consistent with the thermodynamic and magnetic resonance properties of aqueous electrolyte solutions. Calculation of the dependence of ion-pairing forces on medium dielectric reinforces the role of endosolvent structure in determining ion exchange selectivity. PMID:4943653

  13. Pulsed NMRON relaxation measurements and thermometric NMR in the quasi-2 dimensional femomagnet: Mn(COOCH 3) 2·4H 2O

    NASA Astrophysics Data System (ADS)

    Le Gros, M.; Kotlicld, A.; Turrell, B. G.

    1990-08-01

    The measurement of the field dependence of the nuclear spin-lattice relaxation time of 54Mn in the two manganese sites in the quasi-2 dimensional ferromagnet Mn(COOCH 3) 2·4H 20 obtained by the pulsed NMRON technique is reported. This technique allows the observation in low fields of the higher frequency resonance which previously could not be measured by CW methods. The anomaly in the 54Mn relaxation time observed in the 55Mn level crossing regime is discussed, and the thermometric observation of the field dependence and lice width of the resonance lines from the abundant 55Mn spin systems is reported and related to the 54Mn spin-lattice relaxation behavior.

  14. Fractional motion model for characterization of anomalous diffusion from NMR signals.

    PubMed

    Fan, Yang; Gao, Jia-Hong

    2015-07-01

    Measuring molecular diffusion has been used to characterize the properties of living organisms and porous materials. NMR is able to detect the diffusion process in vivo and noninvasively. The fractional motion (FM) model is appropriate to describe anomalous diffusion phenomenon in crowded environments, such as living cells. However, no FM-based NMR theory has yet been established. Here, we present a general formulation of the FM-based NMR signal under the influence of arbitrary magnetic field gradient waveforms. An explicit analytic solution of the stretched exponential decay format for NMR signals with finite-width Stejskal-Tanner bipolar pulse magnetic field gradients is presented. Signals from a numerical simulation matched well with the theoretical prediction. In vivo diffusion-weighted brain images were acquired and analyzed using the proposed theory, and the resulting parametric maps exhibit remarkable contrasts between different brain tissues.

  15. Fractional motion model for characterization of anomalous diffusion from NMR signals

    NASA Astrophysics Data System (ADS)

    Fan, Yang; Gao, Jia-Hong

    2015-07-01

    Measuring molecular diffusion has been used to characterize the properties of living organisms and porous materials. NMR is able to detect the diffusion process in vivo and noninvasively. The fractional motion (FM) model is appropriate to describe anomalous diffusion phenomenon in crowded environments, such as living cells. However, no FM-based NMR theory has yet been established. Here, we present a general formulation of the FM-based NMR signal under the influence of arbitrary magnetic field gradient waveforms. An explicit analytic solution of the stretched exponential decay format for NMR signals with finite-width Stejskal-Tanner bipolar pulse magnetic field gradients is presented. Signals from a numerical simulation matched well with the theoretical prediction. In vivo diffusion-weighted brain images were acquired and analyzed using the proposed theory, and the resulting parametric maps exhibit remarkable contrasts between different brain tissues.

  16. NMR logging apparatus

    DOEpatents

    Walsh, David O; Turner, Peter

    2014-05-27

    Technologies including NMR logging apparatus and methods are disclosed. Example NMR logging apparatus may include surface instrumentation and one or more downhole probes configured to fit within an earth borehole. The surface instrumentation may comprise a power amplifier, which may be coupled to the downhole probes via one or more transmission lines, and a controller configured to cause the power amplifier to generate a NMR activating pulse or sequence of pulses. Impedance matching means may be configured to match an output impedance of the power amplifier through a transmission line to a load impedance of a downhole probe. Methods may include deploying the various elements of disclosed NMR logging apparatus and using the apparatus to perform NMR measurements.

  17. Discrete decoding based ultrafast multidimensional nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Wei, Zhiliang; Lin, Liangjie; Ye, Qimiao; Li, Jing; Cai, Shuhui; Chen, Zhong

    2015-07-01

    The three-dimensional (3D) nuclear magnetic resonance (NMR) spectroscopy constitutes an important and powerful tool in analyzing chemical and biological systems. However, the abundant 3D information arrives at the expense of long acquisition times lasting hours or even days. Therefore, there has been a continuous interest in developing techniques to accelerate recordings of 3D NMR spectra, among which the ultrafast spatiotemporal encoding technique supplies impressive acquisition speed by compressing a multidimensional spectrum in a single scan. However, it tends to suffer from tradeoffs among spectral widths in different dimensions, which deteriorates in cases of NMR spectroscopy with more dimensions. In this study, the discrete decoding is proposed to liberate the ultrafast technique from tradeoffs among spectral widths in different dimensions by focusing decoding on signal-bearing sites. For verifying its feasibility and effectiveness, we utilized the method to generate two different types of 3D spectra. The proposed method is also applicable to cases with more than three dimensions, which, based on the experimental results, may widen applications of the ultrafast technique.

  18. Automatic alignment of individual peaks in large high-resolution spectral data sets

    NASA Astrophysics Data System (ADS)

    Stoyanova, Radka; Nicholls, Andrew W.; Nicholson, Jeremy K.; Lindon, John C.; Brown, Truman R.

    2004-10-01

    Pattern recognition techniques are effective tools for reducing the information contained in large spectral data sets to a much smaller number of significant features which can then be used to make interpretations about the chemical or biochemical system under study. Often the effectiveness of such approaches is impeded by experimental and instrument induced variations in the position, phase, and line width of the spectral peaks. Although characterizing the cause and magnitude of these fluctuations could be important in its own right (pH-induced NMR chemical shift changes, for example) in general they obscure the process of pattern discovery. One major area of application is the use of large databases of 1H NMR spectra of biofluids such as urine for investigating perturbations in metabolic profiles caused by drugs or disease, a process now termed metabonomics. Frequency shifts of individual peaks are the dominant source of such unwanted variations in this type of data. In this paper, an automatic procedure for aligning the individual peaks in the data set is described and evaluated. The proposed method will be vital for the efficient and automatic analysis of large metabonomic data sets and should also be applicable to other types of data.

  19. 1H NMR study of the effect of heme insertion on the folding of apomyoglobin

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yasuhiko; Takemoto, Kenji; Matsuo, Hitomi

    2002-01-01

    NMR signals arising from His EF5 and His GH1 N ɛH protons of sperm whale myoglobin and apomyoglobin have been assigned, and the protein folding has been studied through the analysis of these signals. His EF5 and His GH1 N ɛH protons participate in the internal hydrogen bonds at the B-GH and EF-H interfaces, respectively, and their signals are remarkably sensitive to local structural alterations at these sites. The shifts of these signals in alkaline pH condition were only slightly affected by the removal of heme, indicating that the overall protein folding is essentially retained in apoprotein. The line width of His EF5 proton signal, however, increased largely in the spectra of apomyoglobin and this result suggests a conformational lability of the EF-H interface in the absence of heme. Furthermore, the His EF5 proton signal was found to be influenced by not only the orientation of heme relative to the protein, but also by the type of hemin used to reconstitute apomyoglobin. These results clearly demonstrate the presence of a long-range structural correlation between the heme active site and the EF-H interface.

  20. NMR reaction monitoring in flow synthesis

    PubMed Central

    Gomez, M Victoria

    2017-01-01

    Recent advances in the use of flow chemistry with in-line and on-line analysis by NMR are presented. The use of macro- and microreactors, coupled with standard and custom made NMR probes involving microcoils, incorporated into high resolution and benchtop NMR instruments is reviewed. Some recent selected applications have been collected, including synthetic applications, the determination of the kinetic and thermodynamic parameters and reaction optimization, even in single experiments and on the μL scale. Finally, software that allows automatic reaction monitoring and optimization is discussed. PMID:28326137

  1. NMR reaction monitoring in flow synthesis.

    PubMed

    Gomez, M Victoria; de la Hoz, Antonio

    2017-01-01

    Recent advances in the use of flow chemistry with in-line and on-line analysis by NMR are presented. The use of macro- and microreactors, coupled with standard and custom made NMR probes involving microcoils, incorporated into high resolution and benchtop NMR instruments is reviewed. Some recent selected applications have been collected, including synthetic applications, the determination of the kinetic and thermodynamic parameters and reaction optimization, even in single experiments and on the μL scale. Finally, software that allows automatic reaction monitoring and optimization is discussed.

  2. Mechanism for microwave heating of 1-(4'-cyanophenyl)-4-propylcyclohexane characterized by in situ microwave irradiation NMR spectroscopy.

    PubMed

    Tasei, Yugo; Yamakami, Takuya; Kawamura, Izuru; Fujito, Teruaki; Ushida, Kiminori; Sato, Motoyasu; Naito, Akira

    2015-05-01

    Microwave heating is widely used to accelerate organic reactions and enhance the activity of enzymes. However, the detailed molecular mechanism for the effect of microwave on chemical reactions is not yet fully understood. To investigate the effects of microwave heating on organic compounds, we have developed an in situ microwave irradiation NMR spectroscopy. (1)H NMR spectra of 1-(4'-cyanophenyl)-4-propylcyclohexane (PCH3) in the liquid crystalline and isotropic phases were observed under microwave irradiation. When the temperature was regulated at slightly higher than the phase transition temperature (Tc=45 °C) under a gas flow temperature control system, liquid crystalline phase mostly changed to the isotropic phase. Under microwave irradiation and with the gas flow temperature maintained at 20 °C, which is 25 °C below the Tc, the isotropic phase appeared stationary as an approximately 2% fraction in the liquid crystalline phase. The temperature of the liquid crystalline state was estimated to be 38 °C according to the line width, which is at least 7 °C lower than the Tc. The temperature of this isotropic phase should be higher than 45 °C, which is considered to be a non-equilibrium local heating state induced by microwave irradiation. Microwaves at a power of 195 W were irradiated to the isotropic phase of PCH3 at 50 °C and after 2 min, the temperature reached 220 °C. The temperature of PCH3 under microwave irradiation was estimated by measurement of the chemical shift changes of individual protons in the molecule. These results demonstrate that microwave heating generates very high temperature within a short time using an in situ microwave irradiation NMR spectrometer. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Narrow-band generation in random distributed feedback fiber laser.

    PubMed

    Sugavanam, Srikanth; Tarasov, Nikita; Shu, Xuewen; Churkin, Dmitry V

    2013-07-15

    Narrow-band emission of spectral width down to ~0.05 nm line-width is achieved in the random distributed feedback fiber laser employing narrow-band fiber Bragg grating or fiber Fabry-Perot interferometer filters. The observed line-width is ~10 times less than line-width of other demonstrated up to date random distributed feedback fiber lasers. The random DFB laser with Fabry-Perot interferometer filter provides simultaneously multi-wavelength and narrow-band (within each line) generation with possibility of further wavelength tuning.

  4. Uncertainties Associated with Theoretically Calculated N2-Broadened Half-Widths of H2O Lines

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Tipping, R. H.; Gamache, R. R.

    2010-01-01

    With different choices of the cut-offs used in theoretical calculations, we have carried out extensive numerical calculations of the N2-broadend Lorentzian half-widths of the H2O lines using the modified Robert-Bonamy formalism. Based on these results, we are able to thoroughly check for convergence. We find that, with the low-order cut-offs commonly used in the literature, one is able to obtain converged values only for lines with large half-widths. Conversely, for lines with small half-widths, much higher cut-offs are necessary to guarantee convergence. We also analyse the uncertainties associated with calculated half-widths, and these are correlated as above. In general, the smaller the half-widths, the poorer the convergence and the larger the uncertainty associated with them. For convenience, one can divide all H2O lines into three categories, large, intermediate, and small, according to their half-width values. One can use this division to judge whether the calculated half-widths are converged or not, based on the cut-offs used, and also to estimate how large their uncertainties are. We conclude that with the current Robert- Bonamy formalism, for lines in category lone can achieve the accuracy requirement set by HITRAN, whereas for lines in category 3, it 'is impossible to meet this goal.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, Jared W.; Yazaydin, A. O.; Kirkpatrick, Robert J.

    Amorphous calcium carbonate (ACC) is a metastable precursor to crystalline CaCO{sub 3} phases that precipitates by aggregation of ion pairs and prenucleation clusters. We use {sup 43}Ca solid-state NMR spectroscopy to probe the local structure and transformation of ACC synthesized from seawater-like solutions with and without Mg{sup 2+} and computational molecular dynamics (MD) simulations to provide more detailed molecular-scale understanding of the ACC structure. The {sup 43}Ca NMR spectra of ACC collected immediately after synthesis consist of broad, featureless resonances with Gaussian line shapes (FWHH = 27.6 {+-} 1 ppm) that do not depend on Mg{sup 2+} or H{sub 2}Omore » content. A correlation between {sup 43}Ca isotropic chemical shifts and mean Ca-O bond distances for crystalline hydrous and anhydrous calcium carbonate phases indicates indistinguishable maximum mean Ca-O bond lengths of {approx}2.45 {angstrom} for all our samples. This value is near the upper end of the published Ca-O bond distance range for biogenic and synthetic ACCs obtained by Ca-X-ray absorption spectroscopy. It is slightly smaller than the values from the structural model of Mgfree ACC by Goodwin et al. obtained from reverse Monte Carlo (RMC) modeling of X-ray scattering data and our own computational molecular dynamics (MD) simulation based on this model. An MD simulation starting with the atomic positions of the Goodwin et al. RMC model using the force field of Raiteri and Gale shows significant structural reorganization during the simulation and that the interconnected carbonate/water-rich channels in the Goodwin et al. model shrink in size over the 2 ns simulation time. The distribution of polyhedrally averaged Ca-O bond distances from the MD simulation is in good agreement with the {sup 43}Ca NMR peak shape, suggesting that local structural disorder dominates the experimental line width of ACC.« less

  6. Separation and analysis of trace degradants in a pharmaceutical formulation using on-line capillary isotachophoresis-NMR.

    PubMed

    Eldridge, Stacie L; Almeida, Valentino K; Korir, Albert K; Larive, Cynthia K

    2007-11-15

    NMR spectroscopy is widely used in the pharmaceutical industry for the structure elucidation of pharmaceutical impurities, especially when coupled to a separation method, such as HPLC. However, NMR has relatively poor sensitivity compared with other techniques such as mass spectrometry, limiting its applicability in impurity analyses. This limitation is addressed here through the on-line coupling of microcoil NMR with capillary isotachophoresis (cITP), a separation method that can concentrate dilute components by 2-3 orders of magnitude. With this approach, 1H NMR spectra can be acquired for microgram (nanomole) quantities of trace impurities in a complex sample matrix. cITP-NMR was used in this work to isolate and detect 4-aminophenol (PAP) in an acetaminophen sample spiked at the 0.1% level, with no interference from the parent compound. Analysis of an acetaminophen thermal degradation sample revealed resonances of several degradation products in addition to PAP, confirming the effectiveness of on-line cITP-NMR for trace analyses of pharmaceutical formulations. Subsequent LC-MS/MS analysis provided complementary information for the structure elucidation of the unknown degradation products, which were dimers formed during the degradation process.

  7. Towards Using NMR to Screen for Spoiled Tomatoes Stored in 1,000 L, Aseptically Sealed, Metal-Lined Totes

    PubMed Central

    Pinter, Michael D.; Harter, Tod; McCarthy, Michael J.; Augustine, Matthew P.

    2014-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is used to track factory relevant tomato paste spoilage. It was found that spoilage in tomato paste test samples leads to longer spin lattice relaxation times T1 using a conventional low magnetic field NMR system. The increase in T1 value for contaminated samples over a five day room temperature exposure period prompted the work to be extended to the study of industry standard, 1,000 L, non-ferrous, metal-lined totes. NMR signals and T1 values were recovered from a large format container with a single-sided NMR sensor. The results of this work suggest that a handheld NMR device can be used to study tomato paste spoilage in factory process environments. PMID:24594611

  8. Towards using NMR to screen for spoiled tomatoes stored in 1,000 L, aseptically sealed, metal-lined totes.

    PubMed

    Pinter, Michael D; Harter, Tod; McCarthy, Michael J; Augustine, Matthew P

    2014-03-03

    Nuclear magnetic resonance (NMR) spectroscopy is used to track factory relevant tomato paste spoilage. It was found that spoilage in tomato paste test samples leads to longer spin lattice relaxation times T1 using a conventional low magnetic field NMR system. The increase in T1 value for contaminated samples over a five day room temperature exposure period prompted the work to be extended to the study of industry standard, 1,000 L, non-ferrous, metal-lined totes. NMR signals and T1 values were recovered from a large format container with a single-sided NMR sensor. The results of this work suggest that a handheld NMR device can be used to study tomato paste spoilage in factory process environments.

  9. Continuous modulations of femtosecond laser-induced periodic surface structures and scanned line-widths on silicon by polarization changes.

    PubMed

    Han, Weina; Jiang, Lan; Li, Xiaowei; Liu, Pengjun; Xu, Le; Lu, YongFeng

    2013-07-01

    Large-area, uniform laser-induced periodic surface structures (LIPSS) are of wide potential industry applications. The continuity and processing precision of LIPSS are mainly determined by the scanning intervals of adjacent scanning lines. Therefore, continuous modulations of LIPSS and scanned line-widths within one laser scanning pass are of great significance. This study proposes that by varying the laser (800 nm, 50 fs, 1 kHz) polarization direction, LIPSS and the scanned line-widths on a silicon (111) surface can be continuously modulated with high precision. It shows that the scanned line-width reaches the maximum when the polarization direction is perpendicular to the scanning direction. As an application example, the experiments show large-area, uniform LIPSS can be fabricated by controlling the scanning intervals based on the one-pass scanned line-widths. The simulation shows that the initially formed LIPSS structures induce directional surface plasmon polaritons (SPP) scattering along the laser polarization direction, which strengthens the subsequently anisotropic LIPSS fabrication. The simulation results are in good agreement with the experiments, which both support the conclusions of continuous modulations of the LIPSS and scanned line-widths.

  10. Efficient design of multituned transmission line NMR probes: the electrical engineering approach.

    PubMed

    Frydel, J A; Krzystyniak, M; Pienkowski, D; Pietrzak, M; de Sousa Amadeu, N; Ratajczyk, T; Idzik, K; Gutmann, T; Tietze, D; Voigt, S; Fenn, A; Limbach, H H; Buntkowsky, G

    2011-01-01

    Transmission line-based multi-channel solid state NMR probes have many advantages regarding the cost of construction, number of RF-channels, and achievable RF-power levels. Nevertheless, these probes are only rarely employed in solid state-NMR-labs, mainly owing to the difficult experimental determination of the necessary RF-parameters. Here, the efficient design of multi-channel solid state MAS-NMR probes employing transmission line theory and modern techniques of electrical engineering is presented. As technical realization a five-channel ((1)H, (31)P, (13)C, (2)H and (15)N) probe for operation at 7 Tesla is described. This very cost efficient design goal is a multi port single coil transmission line probe based on the design developed by Schaefer and McKay. The electrical performance of the probe is determined by measuring of Scattering matrix parameters (S-parameters) in particular input/output ports. These parameters are compared to the calculated parameters of the design employing the S-matrix formalism. It is shown that the S-matrix formalism provides an excellent tool for examination of transmission line probes and thus the tool for a rational design of these probes. On the other hand, the resulting design provides excellent electrical performance. From a point of view of Nuclear Magnetic Resonance (NMR), calibration spectra of particular ports (channels) are of great importance. The estimation of the π/2 pulses length for all five NMR channels is presented. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Minimum line width of ion beam-modified polystyrene by negative carbon ions for nerve-cell attachment and neurite extension

    NASA Astrophysics Data System (ADS)

    Sommani, P.; Tsuji, H.; Sato, H.; Kitamura, T.; Hattori, M.; Gotoh, Y.; Ishikawa, J.

    2007-04-01

    The minimum line width of the negative-ion-modified polystyrene (PS) for guidance and immobilizations of nerve-cell body and neurite extension have been investigated. Carbon negative ions were implanted into PS at fluence of 3 × 1015 ions/cm2 and energy of 5-20 keV through the various triangle apertures of the micro-pattern mask. After in vitro culture of the nerve-like cells of rat adrenal pheochromocytoma (PC12h), results showed that the minimum line widths for a single cell attachment and for neurite extension were 5-7 and 3-5 μm, respectively. While the minimum line width for attachment of cell group with long neurite was about 20 μm. The suitable widths for a large number of cells and for neurite extension were 20 and 5 μm, respectively. Therefore, the guidance for a clear separation of the attachment size of cell body and neurite extension could be achieved by the different modified line widths.

  12. Line width determination using a biomimetic fly eye vision system.

    PubMed

    Benson, John B; Wright, Cameron H G; Barrett, Steven F

    2007-01-01

    Developing a new vision system based on the vision of the common house fly, Musca domestica, has created many interesting design challenges. One of those problems is line width determination, which is the topic of this paper. It has been discovered that line width can be determined with a single sensor as long as either the sensor, or the object in question, has a constant, known velocity. This is an important first step for determining the width of any arbitrary object, with unknown velocity.

  13. Real-time line-width measurements: a new feature for reticle inspection systems

    NASA Astrophysics Data System (ADS)

    Eran, Yair; Greenberg, Gad; Joseph, Amnon; Lustig, Cornel; Mizrahi, Eyal

    1997-07-01

    The significance of line width control in mask production has become greater with the lessening of defect size. There are two conventional methods used for controlling line widths dimensions which employed in the manufacturing of masks for sub micron devices. These two methods are the critical dimensions (CD) measurement and the detection of edge defects. Achieving reliable and accurate control of line width errors is one of the most challenging tasks in mask production. Neither of the two methods cited above (namely CD measurement and the detection of edge defects) guarantees the detection of line width errors with good sensitivity over the whole mask area. This stems from the fact that CD measurement provides only statistical data on the mask features whereas applying edge defect detection method checks defects on each edge by itself, and does not supply information on the combined result of error detection on two adjacent edges. For example, a combination of a small edge defect together with a CD non- uniformity which are both within the allowed tolerance, may yield a significant line width error, which will not be detected using the conventional methods (see figure 1). A new approach for the detection of line width errors which overcomes this difficulty is presented. Based on this approach, a new sensitive line width error detector was developed and added to Orbot's RT-8000 die-to-database reticle inspection system. This innovative detector operates continuously during the mask inspection process and scans (inspects) the entire area of the reticle for line width errors. The detection is based on a comparison of measured line width that are taken on both the design database and the scanned image of the reticle. In section 2, the motivation for developing this new detector is presented. The section covers an analysis of various defect types, which are difficult to detect using conventional edge detection methods or, alternatively, CD measurements. In section 3, the basic concept of the new approach is introduced together with a description of the new detector and its characteristics. In section 4, the calibration process that took place in order to achieve reliable and repeatable line width measurements is presented. The description of an experiments conducted in order to evaluate the sensitivity of the new detector is given in section 5, followed by a report of the results of this evaluation. The conclusions are presented in section 6.

  14. The Mean Metal-line Absorption Spectrum of Damped Ly α Systems in BOSS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mas-Ribas, Lluís; Miralda-Escudé, Jordi; Pérez-Ràfols, Ignasi

    We study the mean absorption spectrum of the Damped Ly α (DLA) population at z ∼ 2.6 by stacking normalized, rest-frame-shifted spectra of ∼27,000 DLA systems from the DR12 of the Baryon Oscillation Spectroscopic Survey (BOSS)/SDSS-III. We measure the equivalent widths of 50 individual metal absorption lines in five intervals of DLA hydrogen column density, five intervals of DLA redshift, and overall mean equivalent widths for an additional 13 absorption features from groups of strongly blended lines. The mean equivalent width of low-ionization lines increases with N {sub H} {sub i}, whereas for high-ionization lines the increase is much weaker.more » The mean metal line equivalent widths decrease by a factor ∼1.1–1.5 from z ∼ 2.1 to z ∼ 3.5, with small or no differences between low- and high-ionization species. We develop a theoretical model, inspired by the presence of multiple absorption components observed in high-resolution spectra, to infer mean metal column densities from the equivalent widths of partially saturated metal lines. We apply this model to 14 low-ionization species and to Al iii, S iii, Si iii, C iv, Si iv, N v, and O vi. We use an approximate derivation for separating the equivalent width contributions of several lines to blended absorption features, and infer mean equivalent widths and column densities from lines of the additional species N i, Zn ii, C ii*, Fe iii, and S iv. Several of these mean column densities of metal lines in DLAs are obtained for the first time; their values generally agree with measurements of individual DLAs from high-resolution, high signal-to-noise ratio spectra when they are available.« less

  15. The effect of lane line width and contrast upon lanekeeping.

    PubMed

    McKnight, A S; McKnight, A J; Tippetts, A S

    1998-09-01

    The combined effect of lane line width and line-pavement contrast upon lanekeeping was studied through simulation. Some 124 subjects, ages 17-79 (x = 56.30), 52% male, each performed 42 trials over road segments representing three levels of width crossed with 14 line-pavement contrast ratios. Lanekeeping performance was recorded in terms of heading error, position error, lane excursions and road excursions. Subjects were stratified into two levels of ability on a combined measure of visual, attentional and psychomotor variables known to decline with age. Contrast and width had a negligible effect upon performance except at very low contrast ratios, ca 1.02 at high pavement luminance levels (e.g. concrete) and 1.04 for very low luminance levels (e.g. asphalt). These ratios are similar to those encountered at night on wet roads. Mean overall performance error at the low contrast ratios increased by a factor of 1.6, 1.8 and 2.2 for 8, 6 and 4" widths, respectively. Lower ability subjects exhibited greater error at almost all contrast ratios, with no consistent relationship between degree of decrement and either width or contrast. The results suggest that lane line width and contrast have a negligible effect upon lanekeeping performance except at extremely low levels of contrast, where both have large effects. Further research in the roadway environment is needed to determine the relationships of line width and contrast ratio to lanekeeping on normal and degraded surface conditions.

  16. Sensitivity Gains, Linearity, and Spectral Reproducibility in Nonuniformly Sampled Multidimensional MAS NMR Spectra of High Dynamic Range.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suiter, Christopher L.; Paramasivam, Sivakumar; Hou, Guangjin

    Recently, we have demonstrated that considerable inherent sensitivity gains are attained in MAS NMR spectra acquired by nonuniform sampling (NUS) and introduced maximum entropy interpolation (MINT) processing that assures the linearity of transformation between the time and frequency domains. In this report, we examine the utility of the NUS/MINT approach in multidimensional datasets possessing high dynamic range, such as homonuclear 13C–13C correlation spectra. We demonstrate on model compounds and on 1–73-(U-13C,15N)/74–108-(U-15N) E. coli thioredoxin reassembly, that with appropriately constructed 50 % NUS schedules inherent sensitivity gains of 1.7–2.1-fold are readily reached in such datasets. We show that both linearity andmore » line width are retained under these experimental conditions throughout the entire dynamic range of the signals. Furthermore, we demonstrate that the reproducibility of the peak intensities is excellent in the NUS/MINT approach when experiments are repeated multiple times and identical experimental and processing conditions are employed. Finally, we discuss the principles for design and implementation of random exponentially biased NUS sampling schedules for homonuclear 13C–13C MAS correlation experiments that yield high quality artifact-free datasets.« less

  17. Sensitivity gains, linearity, and spectral reproducibility in nonuniformly sampled multidimensional MAS NMR spectra of high dynamic range

    PubMed Central

    Suiter, Christopher L.; Paramasivam, Sivakumar; Hou, Guangjin; Sun, Shangjin; Rice, David; Hoch, Jeffrey C.; Rovnyak, David

    2014-01-01

    Recently, we have demonstrated that considerable inherent sensitivity gains are attained in MAS NMR spectra acquired by nonuniform sampling (NUS) and introduced maximum entropy interpolation (MINT) processing that assures the linearity of transformation between the time and frequency domains. In this report, we examine the utility of the NUS/MINT approach in multidimensional datasets possessing high dynamic range, such as homonuclear 13C–13C correlation spectra. We demonstrate on model compounds and on 1–73-(U-13C, 15N)/74–108-(U-15N) E. coli thioredoxin reassembly, that with appropriately constructed 50 % NUS schedules inherent sensitivity gains of 1.7–2.1-fold are readily reached in such datasets. We show that both linearity and line width are retained under these experimental conditions throughout the entire dynamic range of the signals. Furthermore, we demonstrate that the reproducibility of the peak intensities is excellent in the NUS/MINT approach when experiments are repeated multiple times and identical experimental and processing conditions are employed. Finally, we discuss the principles for design and implementation of random exponentially biased NUS sampling schedules for homonuclear 13C–13C MAS correlation experiments that yield high-quality artifact-free datasets. PMID:24752819

  18. In Situ 13C and 23Na Magic Angle Spinning NMR Investigation of Supercritical CO2 Incorporation in Smectite-Natural Organic Matter Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowers, Geoffrey M.; Hoyt, David W.; Burton, Sarah D.

    2014-01-29

    This paper presents an in situ NMR study of clay-natural organic polymer systems (a hectoritehumic acid [HA] composite) under CO2 storage reservoir conditions (90 bars CO2 pressure, 50°C). The 13C and 23Na NMR data show that supercritical CO2 interacts more strongly with the composite than with the base clay and does not react to form other C-containing species over several days at elevated CO2. With and without organic matter, the data suggest that CO2 enters the interlayer space of Na-hectorite equilibrated at 43% relative humidity. The presence of supercritical CO2 also leads to increased 23Na signal intensity, reduced line widthmore » at half height, increased basal width, more rapid 23Na T1 relaxation rates, and a shift to more positive resonance frequencies. Larger changes are observed for the hectorite-HA composite than for the base clay. In light of recently reported MD simulations of other polymer-Na-smectite composites, we interpret the observed changes as an increase in the rate of Na+ site hopping in the presence of supercritical CO2, the presence of potential new Na+ sorption sites when the humic acid is present, and perhaps an accompanying increase in the number of Na+ ions actively involved in site hopping. The results suggest that the presence of organic material either in clay interlayers or on external particle surfaces can significantly affect the behavior of supercritical CO2 and the mobility of metal ions in reservoir rocks.« less

  19. Neonatal line width in deciduous incisors from Neolithic, mediaeval and modern skeletal samples from north-central Poland.

    PubMed

    Kurek, Marta; Żądzińska, Elżbieta; Sitek, Aneta; Borowska-Strugińska, Beata; Rosset, Iwona; Lorkiewicz, Wiesław

    2016-01-01

    The neonatal line is usually the first accentuated incremental line visible on the enamel. The prenatal environment significantly contributes to the width of the neonatal line, influencing the pace of reaching post-delivery homeostasis by the newborn's organism. Studies of the enamel of the earliest developing deciduous teeth can provide an insight into the prenatal development and the perinatal conditions of children of past human populations, thus being an additional source contributing to consideration of the influence of prenatal and perinatal factors modifying growth processes. The aim of this study was to examine whether the neonatal line, reflecting the conditions of the prenatal and perinatal environment, differed between the Neolithic, the mediaeval and the modern populations from the Kujawy region in north-central Poland. The material consisted of longitudinally ground sections of 57 human deciduous incisors obtained from children aged 1.0-7.5 years representing three archaeological series from Brześć Kujawski site. All teeth were sectioned in the labio-linqual plane using a diamond blade (Buechler IsoMet 1000). Final specimens were observed with the microscope Delta Optical Evolution 300 at 10× and 40× magnifications. For each tooth, linear measurements of the neonatal line width were performed on its labial surface at the three levels from the cemento-enamel junction. No significant difference was found in the mean neonatal line width depending on the tooth type and archaeological site, although the thickest neonatal line characterised children from the Neolithic series. In all analysed series, the neonatal line width was diversified depending on the child's age at death. The value of Spearman's rank correlation coefficient calculated for the correlation between the child's age at death and the neonatal line width was statistically significant. A clear increase in the width of the neonatal line was thus observed along with a decrease in the child's age at death. Copyright © 2015 Elsevier GmbH. All rights reserved.

  20. Electron Stark Broadening Database for Atomic N, O, and C Lines

    NASA Technical Reports Server (NTRS)

    Liu, Yen; Yao, Winifred M.; Wray, Alan A.; Carbon, Duane F.

    2012-01-01

    A database for efficiently computing the electron Stark broadening line widths for atomic N, O, and C lines is constructed. The line width is expressed in terms of the electron number density and electronatom scattering cross sections based on the Baranger impact theory. The state-to-state cross sections are computed using the semiclassical approximation, in which the atom is treated quantum mechanically whereas the motion of the free electron follows a classical trajectory. These state-to-state cross sections are calculated based on newly compiled line lists. Each atomic line list consists of a careful merger of NIST, Vanderbilt, and TOPbase line datasets from wavelength 50 nm to 50 micrometers covering the VUV to IR spectral regions. There are over 10,000 lines in each atomic line list. The widths for each line are computed at 13 electron temperatures between 1,000 K 50,000 K. A linear least squares method using a four-term fractional power series is then employed to obtain an analytical fit for each line-width variation as a function of the electron temperature. The maximum L2 error of the analytic fits for all lines in our line lists is about 5%.

  1. Disparity of spectral behavior of RR Tel and RX Pup in the UV

    NASA Astrophysics Data System (ADS)

    Sanad, M. R.

    2010-07-01

    The main aim of this study is to use archival low-dispersion spectra from the International Ultraviolet Explorer (IUE) in an attempt to follow up the spectral behavior of two symbiotic Mira systems RR Tel and RX Pup of the period from 1978-1995 and 1979-1989 for two systems respectively. We concentrated on studying N IV 1486 Å intercombination line, coming from the emission nebulae ( Bryan and Kwok, 1991; Muerset et al., 1991; Murset and Nussbaumer, 1994), by calculating the line fluxes and line widths of N IV 1486 Å. We found that there is a disparity of spectral variability for these physical parameters at different times for both systems. For RR Tel, both line fluxes and line widths are increasing with the phase, while for RX Pup, both line fluxes and line widths are decreasing with the phase. There is a relation between the parameters of this emission line (line flux, line width) and phase, which we attribute to the variations of temperature of the emission nebulae at different times, as a result of the activity of the hot component.

  2. Specific anion binding to sulfobetaine micelles and kinetics of nucleophilic reactions.

    PubMed

    Marte, Luisa; Beber, Rosane C; Farrukh, M Akhyar; Micke, Gustavo A; Costa, Ana C O; Gillitt, Nicholas D; Bunton, Clifford A; Di Profio, Pietro; Savelli, Gianfranco; Nome, Faruk

    2007-08-23

    With fully micellar bound substrates reactions of OH- with benzoic anhydride, Bz(2)O, and of Br- with methyl naphthalene-2-sulfonate, MeONs, in micellized sulfobetaines are strongly inhibited by NaClO4 which displaces the nucleophilic anions from the micellar pseudophases. Micellar incorporations of ClO4- and Br- are estimated with an ion-selective electrode and by electrophoresis, and partitioning of Br- between water and micelles is related to changes in NMR spectral (79)Br- line widths. Extents of inhibition by ClO4- of these nucleophilic reactions in the micellar pseudophase are related to quantitative displacement of the reactive anions from the micelles by ClO4-. The kinetic data are correlated with physical evidence on the strong interactions between sulfobetaines and ClO4-, which turn sulfobetaine micelles anionic and effectively provoke displacement of OH- and Br-.

  3. Determination of natural line widths of Kα X-ray lines for some elements in the atomic range 50≤Z≤65 at 59.5 keV

    NASA Astrophysics Data System (ADS)

    Kündeyi, Kadriye; Aylıkcı, Nuray Küp; Tıraşoǧlu, Engin; Kahoul, Abdelhalim; Aylıkcı, Volkan

    2017-02-01

    The semi-empirical determination of natural widths of Kα X-ray lines (Kα1 and Kα2) were performed for Sn, Sb, Te, I, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd and Tb. For the semi-empirical determination of the line widths, K shell fluorescence yields of elements were measured. The samples were excited by 59.5 keV γ rays from a 241Am annular radioactive source in order to measure the K shell fluorescence yields. The emitted K X-rays from the samples were counted by an Ultra-LEGe detector with a resolution of 150 eV at 5.9 keV. The measured K shell fluorescence yields were used for the calculation of K shell level widths. Finally, the natural widths of K X-ray lines were determined as the sums of levels which involved in the transition. The obtained values were compared with earlier studies.

  4. High resolution NMR measurements using a 400MHz NMR with an (RE)Ba2Cu3O7-x high-temperature superconducting inner coil: Towards a compact super-high-field NMR.

    PubMed

    Piao, R; Iguchi, S; Hamada, M; Matsumoto, S; Suematsu, H; Saito, A T; Li, J; Nakagome, H; Takao, T; Takahashi, M; Maeda, H; Yanagisawa, Y

    2016-02-01

    Use of high-temperature superconducting (HTS) inner coils in combination with conventional low-temperature superconducting (LTS) outer coils for an NMR magnet, i.e. a LTS/HTS NMR magnet, is a suitable option to realize a high-resolution NMR spectrometer with operating frequency >1GHz. From the standpoint of creating a compact magnet, (RE: Rare earth) Ba2Cu3O7-x (REBCO) HTS inner coils which can tolerate a strong hoop stress caused by a Lorentz force are preferred. However, in our previous work on a first-generation 400MHz LTS/REBCO NMR magnet, the NMR resolution and sensitivity were about ten times worse than that of a conventional LTS NMR magnet. The result was caused by a large field inhomogeneity in the REBCO coil itself and the shielding effect of a screening current induced in that coil. In the present paper, we describe the operation of a modified 400MHz LTS/REBCO NMR magnet with an advanced field compensation technology using a combination of novel ferromagnetic shimming and an appropriate procedure for NMR spectrum line shape optimization. We succeeded in obtaining a good NMR line shape and 2D NOESY spectrum for a lysozyme aqueous sample. We believe that this technology is indispensable for the realization of a compact super-high-field high-resolution NMR. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. 27 Al MAS NMR Studies of HBEA Zeolite at Low to High Magnetic Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Jian Zhi; Wan, Chuan; Vjunov, Aleksei

    27Al single pulse (SP) MAS NMR spectra of HBEA zeolites with high Si/Al ratios of 71 and 75 were obtained at three magnetic field strengths of 7.05, 11.75 and 19.97 T. High field 27Al MAS NMR spectra acquired at 19.97 T show significantly improved spectral resolution, resulting in at least two well-resolved tetrahedral-Al NMR peaks. Based on the results obtained from 27Al MAS and MQMAS NMR acquired at 19.97 T, four different quadrupole peaks are used to deconvolute the 27Al SP MAS spectra acquired at vari-ous fields by using the same set of quadrupole coupling constants, asymmetric parameters and relativemore » integrated peak intensities for the tetrahedral Al peaks. The line shapes of individual peaks change from typical quadrupole line shape at low field to essentially symmetrical line shapes at high field. We demonstrate that for fully hydrated HBEA zeolites the effect of second order quadrupole interaction can be ignored and quantitative spectral analysis can be performed by directly fitting the high field spectra using mixed Gaussian/Lorentzian line shapes. Also, the analytical steps described in our work allow direct assignment of spectral intensity to individual Al tetrahedral sites (T-sites) of zeolite HBEA. Finally, the proposed concept is suggested generally applicable to other zeo-lite framework types, thus, allowing a direct probing of Al distributions by NMR spectroscopic methods in zeolites with high confi-dence.« less

  6. Line shape parameters of PH3 transitions in the Pentad near 4-5 μm: Self-broadened widths, shifts, line mixing and speed dependence

    NASA Astrophysics Data System (ADS)

    Malathy Devi, V.; Benner, D. Chris; Kleiner, Isabelle; Sams, Robert L.; Fletcher, Leigh N.

    2014-08-01

    Accurate knowledge of spectroscopic line parameters of PH3 is important for remote sensing of the outer planets, especially Jupiter and Saturn. In a recent study, line positions and intensities for the Pentad bands of PH3 have been reported from analysis of high-resolution, high signal-to noise room-temperature spectra recorded with two Fourier transform spectrometers (2014) [1]. The results presented in this study were obtained during the analysis of positions and intensities, but here we focus on the measurements of spectral line shapes (e.g. widths, shifts, line mixing) for the 2ν4, ν2 + ν4, ν1 and ν3 bands. A multispectrum nonlinear least squares curve fitting technique employing a non-Voigt line shape to include line mixing and speed dependence of the Lorentz width was employed to fit the spectra simultaneously. The least squares fittings were performed on five room-temperature spectra recorded at various PH3 pressures (∼2-50 Torr) with the Bruker IFS-125HR Fourier transform spectrometer (FTS) located at the Pacific Northwest National Laboratory (PNNL), in Richland, Washington. Over 840 Lorentz self-broadened half-width coefficients, 620 self-shift coefficients and 185 speed dependence parameters were measured. Line mixing was detected for transitions in the 2ν4, ν1 and ν3 bands, and their values were quantified for 10 A+A- pairs of transitions via off-diagonal relaxation matrix element formalism. The dependences of the measured half-width coefficients on the J and K rotational quanta of the transitions are discussed. The self-width coefficients for the ν1 and ν3 bands from this study are compared to the self-width coefficients for transitions with the same rotational quanta (J, K) reported for the Dyad (ν2 and ν4) bands. The measurements from present study should be useful for the development of a reliable theoretical modeling of pressure-broadened widths, shifts and line mixing in symmetric top molecules with C3v symmetry in general, and of PH3 in particular.

  7. Line shape parameters of PH 3 transitions in the Pentad near 4–5 μm: Self-broadened widths, shifts, line mixing and speed dependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malathy Devi, V.; Benner, D. C.; Kleiner, Isabelle

    2014-08-01

    Accurate knowledge of spectroscopic line parameters of PH 3 is important for remote sensing of the outer planets, especially Jupiter and Saturn. In a recent study, line positions and intensities for the Pentad bands of PH 3 have been reported from analysis of high-resolution, high signal-to noise room-temperature spectra recorded with two Fourier transform spectrometers (2014) [1]. The results presented in this study were obtained during the analysis of positions and intensities, but here we focus on the measurements of spectral line shapes (e.g. widths, shifts, line mixing) for the 2ν 4, ν 2 + ν 4, ν 1 andmore » ν 3 bands. A multispectrum nonlinear least squares curve fitting technique employing a non-Voigt line shape to include line mixing and speed dependence of the Lorentz width was employed to fit the spectra simultaneously. The least squares fittings were performed on five room-temperature spectra recorded at various PH 3 pressures (~2–50 Torr) with the Bruker IFS-125HR Fourier transform spectrometer (FTS) located at the Pacific Northwest National Laboratory (PNNL), in Richland, Washington. Over 840 Lorentz self-broadened half-width coefficients, 620 self-shift coefficients and 185 speed dependence parameters were measured. Line mixing was detected for transitions in the 2ν 4, ν 1 and ν 3 bands, and their values were quantified for 10 A+A- pairs of transitions via off-diagonal relaxation matrix element formalism. The dependences of the measured half-width coefficients on the J and K rotational quanta of the transitions are discussed. The self-width coefficients for the ν 1 and ν 3 bands from this study are compared to the self-width coefficients for transitions with the same rotational quanta (J, K) reported for the Dyad (ν 2 and ν 4) bands. The measurements from present study should be useful for the development of a reliable theoretical modeling of pressure-broadened widths, shifts and line mixing in symmetric top molecules with C 3v symmetry in general, and of PH 3 in particular.« less

  8. Amide I SFG Spectral Line Width Probes the Lipid-Peptide and Peptide-Peptide Interactions at Cell Membrane In Situ and in Real Time.

    PubMed

    Zhang, Baixiong; Tan, Junjun; Li, Chuanzhao; Zhang, Jiahui; Ye, Shuji

    2018-06-13

    The balance of lipid-peptide and peptide-peptide interactions at cell membrane is essential to a large variety of cellular processes. In this study, we have experimentally demonstrated for the first time that sum frequency generation vibrational spectroscopy can be used to probe the peptide-peptide and lipid-peptide interactions in cell membrane in situ and in real time by determination of the line width of amide I band of protein backbone. Using a "benchmark" model of α-helical WALP23, it is found that the dominated lipid-peptide interaction causes a narrow line width of the amide I band, whereas the peptide-peptide interaction can markedly broaden the line width. When WALP23 molecules insert into the lipid bilayer, a quite narrow line width of the amide I band is observed because of the lipid-peptide interaction. In contrast, when the peptide lies down on the bilayer surface, the line width of amide I band becomes very broad owing to the peptide-peptide interaction. In terms of the real-time change in the line width, the transition from peptide-peptide interaction to lipid-peptide interaction is monitored during the insertion of WALP23 into 1,2-dipalmitoyl- sn-glycero-3-phospho-(1'- rac-glycerol) (DPPG) lipid bilayer. The dephasing time of a pure α-helical WALP23 in 1-palmitoyl-2-oleoyl- sn-glycero-3-phospho-(1'- rac-glycerol) and DPPG bilayer is determined to be 2.2 and 0.64 ps, respectively. The peptide-peptide interaction can largely accelerate the dephasing time.

  9. 27Al-NMR studies of the structural phase transition in LaPd2Al2

    NASA Astrophysics Data System (ADS)

    Aoyama, Taisuke; Kobayashi, Fumiaki; Kotegawa, Hisashi; Tou, Hideki; Doležal, Petr; Kriegner, Dominik; Javorský, Pavel; Uhlířová, Klára

    2018-05-01

    We performed 27Al-NMR measurements for the CaBe2Ge2 type single crystalline LaPd2Al2 in the temperature range from 100 K to 5 K to investigate the origin of the structural phase transition. We found that the line profile of the 27Al-NMR spectrum does not change entirely on passing through the structural phase transition at Tst. Meanwhile, the peak position of the central line slightly change (≈ 30 ppm) below 70 K, suggesting the orbital shift changes below Tst. The present 27Al-NMR studies evidence that the local electronic state at Al site is hardly affected by the structural phase transition.

  10. LC-UV-solid-phase extraction-NMR-MS combined with a cryogenic flow probe and its application to the identification of compounds present in Greek oregano.

    PubMed

    Exarchou, Vassiliki; Godejohann, Markus; van Beek, Teris A; Gerothanassis, Ioannis P; Vervoort, Jacques

    2003-11-15

    Structure elucidation of natural products usually relies on a combination of NMR spectroscopy with mass spectrometry whereby NMR trails MS in terms of the minimum sample amount required. In the present study, the usefulness of on-line solid-phase extraction (SPE) in LC-NMR for peak storage after the LC separation prior to NMR analysis is demonstrated. The SPE unit allows the use of normal protonated solvents for the LC separation and fully deuterated solvents for flushing the trapped compounds to the NMR probe. Thus, solvent suppression is no longer necessary. Multiple trapping of the same analyte from repeated LC injections was utilized to solve the problem of low concentration and to obtain 2D heteronuclear NMR spectra. In addition, a combination of the SPE unit with a recently developed cryoflow NMR probe and an MS was evaluated. This on-line LC-UV-SPE-NMR-MS system was used for the automated analysis of a Greek oregano extract. Combining the data provided by the UV, MS, and NMR spectra, the flavonoids taxifolin, aromadendrin, eriodictyol, naringenin, and apigenin, the phenolic acid rosmarinic acid, and the monoterpene carvacrol were identified. This automated technique is very useful for natural product analysis, and the large sensitivity improvement leads to significantly reduced NMR acquisition times.

  11. Laboratory measurements of VUV N2 photoabsorption cross sections and line widths: applications to planetary atmospheric transmission models

    NASA Astrophysics Data System (ADS)

    Smith, P. L.; Stark, G.; Yoshino, K.

    2003-05-01

    The analyses of VUV occultation measurements of the N2-rich atmospheres of Titan and Triton are hampered by the lack of fundamental spectroscopic data for N2. There is a need for reliable photoabsorption cross sections and line widths for the 100 electronic bands of N2 in the 80 to 100 nm wavelength region. We present analyses of new measurements of individual line strengths and widths in N2 bands in the region 94 to 100 nm. Within individual bands, we find significant departures from the predicted line strength distributions based on isolated band models. Line width analyses within each band indicate that predissociation-broadening is often highly dependent on the rotational quantum number. We illustrate the importance of N2 line widths in the analysis of occultation measurements via N2 transmission models over selected wavelength regions. We have continued to compile on-line molecular spectroscopic atlas based on our N2 laboratory data: http://cfa-www.harvard.edu/amdata/ampdata/N2ARCHIVE/n2home.html. The archive includes published and unpublished 14N2, 14N15N, and 15N2 line lists and spectroscopic identifications, excited state energy levels, band and line f-values, a summary of published band f-value and line width measurements, and a cross-referenced summary of the relevant N2 literature. The listings are searchable by wavelength interval or band identification and are suitable for down-loading in a convenient format. We gratefully acknowledge funding support from NASA grant NAG5-9059 and the Smithsonian Institution Atherton-Seidell Grant Program.

  12. Folded inflatable protective device and method for making same

    DOEpatents

    Behr, V.L.; Nelsen, J.M.; Gwinn, K.W.

    1998-10-20

    An apparatus and method are disclosed for making an inflatable protective device made of lightweight material that can withstand the initial stress from inflation and enhance radial inflation. The device includes a cushion and an inflator port. The invention further includes several stacks of folded cushion material including a combination of full-width stacks and half-width stacks: a first full-width stack defined by one or more fan folds in a first lateral half of the cushion wherein the folds are substantially centered above a first center line and are substantially over the inflator port; a second full-width stack defined by one or more fan folds in a second lateral half of the cushion wherein the folds are substantially centered above the first center line and substantially over the inflator port in the first full-width stack; a first half-width stack defined by a plurality of fan folds in the bottom of the cushion where neither edge of each fold extends substantially over the second center line; and a second half-width stack defined by a plurality of fan folds in the top of the cushion wherein neither edge of each fold extends substantially over the second center line. 22 figs.

  13. Folded inflatable protective device and method for making same

    DOEpatents

    Behr, Vance L.; Nelsen, James M.; Gwinn, Kenneth W.

    1998-01-01

    An apparatus and method for making an inflatable protective device made of lightweight material that can withstand the initial stress from inflation and enhance radial inflation. The device includes a cushion and an inflator port. The invention further includes several stacks of folded cushion material including a combination of full-width stacks and half-width stacks: a first full-width stack defined by one or more fan folds in a first lateral half of the cushion wherein the folds are substantially centered above a first center line and are substantially over the inflator port; a second full-width stack defined by one or more fan folds in a second lateral half of the cushion wherein the folds are substantially centered above the first center line and substantially over the inflator port in the first full-width stack; a first half-width stack defined by a plurality of fan folds in the bottom of the cushion where neither edge of each fold extends substantially over the second center line; and a second half-width stack defined by a plurality of fan folds in the top of the cushion wherein neither edge of each fold extends substantially over the second center line.

  14. In situ {sup 13}C MAS NMR study of n-hexane conversion on Pt and Pd supported on basic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanova, I.I.; Pasau-Claerbout, A.; Seivert, M.

    n-Hexane conversion was studied in situ on Pt and Pd supported on aluminum-stabilized magnesium oxide and Pt on Zeolite KL catalysts (Pt/Mg(Al)O, Pd/Mg(Al)O and Pt/KL) by means of {sup 13}C MAS NMR spectroscopy. n-Hexane 1-{sup 13}C was used as a labelled reactant. Forty NMR lines corresponding to 14 different products were resolved and identified. The NMR line assignments were confirmed by adsorption of model compounds. The NMR results were further quantified and compared with continuous flow microreactor tests. Four parallel reaction pathways were identified under flow conditions: isomerization, cracking, dehydrocyclization, and dehydrogenation. Aromatization occurs via two reaction routes: (1) n-hexanemore » dehydrogenation towards hexadienes and hexatrienes, followed by dehydrogenation of a cyclic intermediate. The former reaction pathway is prevented under NMR batch conditions. High pressures induced in the NMR cells at high reaction temperatures (573, 653 K) shift the reaction equilibrium towards hydrogenation. NMR experiments showed that on Pt catalysts aromatization occurs via a cyclohexane intermediate, whereas on Pd it takes place via methylcyclopentane ring enlargement. 54 refs., 15 figs., 3 tabs.« less

  15. 33S nuclear magnetic resonance spectroscopy of biological samples obtained with a laboratory model 33S cryogenic probe

    NASA Astrophysics Data System (ADS)

    Hobo, Fumio; Takahashi, Masato; Saito, Yuta; Sato, Naoki; Takao, Tomoaki; Koshiba, Seizo; Maeda, Hideaki

    2010-05-01

    S33 nuclear magnetic resonance (NMR) spectroscopy is limited by inherently low NMR sensitivity because of the quadrupolar moment and low gyromagnetic ratio of the S33 nucleus. We have developed a 10 mm S33 cryogenic NMR probe, which is operated at 9-26 K with a cold preamplifier and a cold rf switch operated at 60 K. The S33 NMR sensitivity of the cryogenic probe is as large as 9.8 times that of a conventional 5 mm broadband NMR probe. The S33 cryogenic probe was applied to biological samples such as human urine, bile, chondroitin sulfate, and scallop tissue. We demonstrated that the system can detect and determine sulfur compounds having SO42- anions and -SO3- groups using the S33 cryogenic probe, as the S33 nuclei in these groups are in highly symmetric environments. The NMR signals for other common sulfur compounds such as cysteine are still undetectable by the S33 cryogenic probe, as the S33 nuclei in these compounds are in asymmetric environments. If we shorten the rf pulse width or decrease the rf coil diameter, we should be able to detect the NMR signals for these compounds.

  16. Investigation of hydrogenation of toluene to methylcyclohexane in a trickle bed reactor by low-field nuclear magnetic resonance spectroscopy.

    PubMed

    Guthausen, Gisela; von Garnier, Agnes; Reimert, Rainer

    2009-10-01

    Low-field nuclear magnetic resonance (NMR) spectroscopy is applied to study the hydrogenation of toluene in a lab-scale reactor. A conventional benchtop NMR system was modified to achieve chemical shift resolution. After an off-line validity check of the approach, the reaction product is analyzed on-line during the process, applying chemometric data processing. The conversion of toluene to methylcyclohexane is compared with off-line gas chromatographic analysis. Both classic analytical and chemometric data processing was applied. As the results, which are obtained within a few tens of seconds, are equivalent within the experimental accuracy of both methods, low-field NMR spectroscopy was shown to provide an analytical tool for reaction characterization and immediate feedback.

  17. High-throughput microcoil NMR of compound libraries using zero-dispersion segmented flow analysis.

    PubMed

    Kautz, Roger A; Goetzinger, Wolfgang K; Karger, Barry L

    2005-01-01

    An automated system for loading samples into a microcoil NMR probe has been developed using segmented flow analysis. This approach enhanced 2-fold the throughput of the published direct injection and flow injection methods, improved sample utilization 3-fold, and was applicable to high-field NMR facilities with long transfer lines between the sample handler and NMR magnet. Sample volumes of 2 microL (10-30 mM, approximately 10 microg) were drawn from a 96-well microtiter plate by a sample handler, then pumped to a 0.5-microL microcoil NMR probe as a queue of closely spaced "plugs" separated by an immiscible fluorocarbon fluid. Individual sample plugs were detected by their NMR signal and automatically positioned for stopped-flow data acquisition. The sample in the NMR coil could be changed within 35 s by advancing the queue. The fluorocarbon liquid wetted the wall of the Teflon transfer line, preventing the DMSO samples from contacting the capillary wall and thus reducing sample losses to below 5% after passage through the 3-m transfer line. With a wash plug of solvent between samples, sample-to-sample carryover was <1%. Significantly, the samples did not disperse into the carrier liquid during loading or during acquisitions of several days for trace analysis. For automated high-throughput analysis using a 16-second acquisition time, spectra were recorded at a rate of 1.5 min/sample and total deuterated solvent consumption was <0.5 mL (1 US dollar) per 96-well plate.

  18. A self optimizing synthetic organic reactor system using real-time in-line NMR spectroscopy.

    PubMed

    Sans, Victor; Porwol, Luzian; Dragone, Vincenza; Cronin, Leroy

    2015-02-01

    A configurable platform for synthetic chemistry incorporating an in-line benchtop NMR that is capable of monitoring and controlling organic reactions in real-time is presented. The platform is controlled via a modular LabView software control system for the hardware, NMR, data analysis and feedback optimization. Using this platform we report the real-time advanced structural characterization of reaction mixtures, including 19 F, 13 C, DEPT, 2D NMR spectroscopy (COSY, HSQC and 19 F-COSY) for the first time. Finally, the potential of this technique is demonstrated through the optimization of a catalytic organic reaction in real-time, showing its applicability to self-optimizing systems using criteria such as stereoselectivity, multi-nuclear measurements or 2D correlations.

  19. Shock-tube studies of atomic silicon emission in the spectral range 180 to 300 nm. [environment simulation for Jupiter probes

    NASA Technical Reports Server (NTRS)

    Prakash, S. G.; Park, C.

    1978-01-01

    Emission spectroscopy of shock-heated atomic silicon was performed in the spectral range 180 to 300 nm, in an environment simulating the ablation layer expected around a Jovian entry probe with a silica heat shield. From the spectra obtained at temperatures from 6000 to 10,000 K and electron number densities from 1 quadrillion to 100 quadrillion per cu cm, the Lorentzian line-widths were determined. The results showed that silicon lines are broadened significantly by both electrons (Stark broadening) and hydrogen atoms (Van der Waals broadening), and the combined line-widths are much larger than previously assumed. From the data, the Stark and the Van der Waals line-widths were determined for 34 silicon lines. Radiative transport through a typical shock layer was computed using the new line-width data. The computations showed that silicon emission in the hot region is large, but it is mostly absorbed in the colder region adjacent to the wall.

  20. Dynamics in supercooled polyalcohols: Primary and secondary relaxation

    NASA Astrophysics Data System (ADS)

    Döß, A.; Paluch, M.; Sillescu, H.; Hinze, G.

    2002-10-01

    We have studied details of the molecular dynamics in a series of pure polyalcohols by means of dielectric spectroscopy and 2H nuclear magnetic resonance (NMR). From glycerol to threitol, xylitol and sorbitol a systematic change in the dynamics of the primary and secondary relaxation is found. With increasing molecular weight and fragility an increase in the width of the α-peak is observed. Details of the molecular reorientation process responsible for the α-relaxation were exploited by two-dimensional NMR experiments. It is found that in the same sequence of polyalcohols the appearance of the secondary relaxation changes gradually from a wing type scenario to a pronounced β-peak. From NMR experiments using selectively deuterated samples the molecular origin of the secondary relaxation could be elucidated in more detail.

  1. Voigt equivalent widths and spectral-bin single-line transmittances: Exact expansions and the MODTRAN®5 implementation

    NASA Astrophysics Data System (ADS)

    Berk, Alexander

    2013-03-01

    Exact expansions for Voigt line-shape total, line-tail and spectral bin equivalent widths and for Voigt finite spectral bin single-line transmittances have been derived in terms of optical depth dependent exponentially-scaled modified Bessel functions of integer order and optical depth independent Fourier integral coefficients. The series are convergent for the full range of Voigt line-shapes, from pure Doppler to pure Lorentzian. In the Lorentz limit, the expansion reduces to the Ladenburg and Reiche function for the total equivalent width. Analytic expressions are derived for the first 8 Fourier coefficients for pure Lorentzian lines, for pure Doppler lines and for Voigt lines with at most moderate Doppler dependence. A strong-line limit sum rule on the Fourier coefficients is enforced to define an additional Fourier coefficient and to optimize convergence of the truncated expansion. The moderate Doppler dependence scenario is applicable to and has been implemented in the MODTRAN5 atmospheric band model radiative transfer software. Finite-bin transmittances computed with the truncated expansions reduce transmittance residuals compared to the former Rodgers-Williams equivalent width based approach by ∼2 orders of magnitude.

  2. Interferometric investigation of emission lines from the solar corona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, P.M.; Henderson, G.

    1973-11-01

    The profiles of the Fe XN, lambda 5303, and Fe X, lambda 6374, emission lines of the solar corona were observed at different posttions using a photoelectric scanning Fabry -- Perot interferometer. These profiles were obtained during the eclipse of 7th March 1970, in Mexico and at the Pic-du-Midi coronagraph in October, 1970. The half-widths of these profiles were determined for both the coronal lines and temperatures were derived from these widths. No systematic temperature variation was discovered, however there was some suggestion of the existence of a fluctuation with time in the width of the emission lines. (auth)

  3. Mixing of sulfur between pyritic and organic phases during coal conversion processes: Annual final report, March 1, 1986-February 28, 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunkerton, L.V.; Nigam, A.; Mitra, S.

    1987-05-01

    In preparation for using /sup 33/S NMR for characterization of organic sulfur types in coal, previously prepared substituted dibenzothiophene model compounds were converted to their corresponding sulfones and their sulfur-33 nmr recorded. The sulfur-33 NMR spectra of dibenzothiophene-5,5-dioxide (2), 2-(p-methylphenylsulfonyl) dibenzothiophene-5,5-dioxide (4), and 2-(methylsulfonyl) dibenzothiophene-5,5-dioxide (6) are reported. The chemical shifts were in the +2 to -21 ppM range. The line widths ranged 70 to 200 Hz. The changes in /sup 13/C chemical shift experienced by aromatic carbons upon oxidizing the sulfide to its sulfone were also studied and the data used to identify which sulfone was formed in multiplemore » thioether-containing aromatics after partial oxidation. Continuing results on the use of the substituted dibenzothiophenes to monitor mixing of sulfur between pyritic and organic phases are also reported. Non-isothermal hydrodesulfurization of model organic sulfur compounds was carried out in a cola-like environment. The model sulfur compounds represented different types of carbon-sulfur bonds commonly encountered in coal. Similar experiments were carried out in the presence of troilite (iron sulfide) to investigate the possibility of sulfur migration from the organic compound to the iron sulfide. Next, iron pyrite was hydrodesulfurized in the presence of some organic molecules to see if sulfur could be incorporated into the organic molecules during the process. Results show that sulfur from organic compounds can be absorbed by troilite, and, similarly, sulfur from pyrite can form new carbon-sulfur bonds during hydrodesulfurization. Based on these observations, it is suggested that during coal conversion reactions it is possible to have intermigration of sulfur between the organic and the inorganic phases.« less

  4. A solid-state NMR study of the dynamics and interactions of phenylalanine rings in a statherin fragment bound to hydroxyapatite crystals.

    PubMed

    Gibson, James M; Popham, Jennifer M; Raghunathan, Vinodhkumar; Stayton, Patrick S; Drobny, Gary P

    2006-04-26

    Extracellular matrix proteins regulate hard tissue growth by acting as adhesion sites for cells, by triggering cell signaling pathways, and by directly regulating the primary and/or secondary crystallization of hydroxyapatite, the mineral component of bone and teeth. Despite the key role that these proteins play in the regulation of hard tissue growth in humans, the exact mechanism used by these proteins to recognize mineral surfaces is poorly understood. Interactions between mineral surfaces and proteins very likely involve specific contacts between the lattice and the protein side chains, so elucidation of the nature of interactions between protein side chains and their corresponding inorganic mineral surfaces will provide insight into the recognition and regulation of hard tissue growth. Isotropic chemical shifts, chemical shift anisotropies (CSAs), NMR line-width information, (13)C rotating frame relaxation measurements, as well as direct detection of correlations between (13)C spins on protein side chains and (31)P spins in the crystal surface with REDOR NMR show that, in the peptide fragment derived from the N-terminal 15 amino acids of salivary statherin (i.e., SN-15), the side chain of the phenylalanine nearest the C-terminus of the peptide (F14) is dynamically constrained and oriented near the surface, whereas the side chain of the phenylalanine located nearest to the peptide's N-terminus (F7) is more mobile and is oriented away from the hydroxyapatite surface. The relative dynamics and proximities of F7 and F14 to the surface together with prior data obtained for the side chain of SN-15's unique lysine (i.e., K6) were used to construct a new picture for the structure of the surface-bound peptide and its orientation to the crystal surface.

  5. Resolution enhancement in in vivo NMR spectroscopy: detection of intermolecular zero-quantum coherences

    NASA Astrophysics Data System (ADS)

    Faber, Cornelius; Pracht, Eberhard; Haase, Axel

    2003-04-01

    Intermolecular zero-quantum coherences are insensitive to magnetic field inhomogeneities. For this reason we have applied the HOMOGENIZED sequence [Vathyam et al., Science 272 (1996) 92] to phantoms containing metabolites at low concentrations, phantoms with air inclusions, an intact grape, and the head of a rat in vivo at 750 MHz. In the 1H-spectra, the water signal is efficiently suppressed and line broadening due to susceptibility gradients is effectively removed along the indirectly detected dimension. We have obtained a 1H-spectrum of a 2.5 mM solution of γ-aminobutyric acid in 12 min scan time. In the phantom with air inclusions a reduction of line widths from 0.48 ppm in the direct dimension to 0.07 ppm in the indirect dimension was observed, while in a deshimmed grape the reduction was from 1.4 to 0.07 ppm. In a spectrum of the grape we were able to resolve glucose resonances at 0.3 ppm from the water in 6 min scan time. J-coupling information was partly retained. In the in vivo spectra of the rat brain five major metabolites were observed.

  6. Semiclassical perturbation Stark widths of singly charged argon spectral lines

    NASA Astrophysics Data System (ADS)

    Hamdi, Rafik; Ben Nessib, Nabil; Sahal-Bréchot, Sylvie; Dimitrijević, Milan S.

    2018-03-01

    Using a semiclassical perturbation approach with the impact approximation, Stark widths for singly charged argon (Ar II) spectral lines have been calculated. Energy levels and oscillator strengths needed for this calculation have been determined using the Hartree-Fock method with relativistic corrections. Our Stark widths are compared with experimental results for 178 spectral lines. Our results may be of interest not only for laboratory plasma, lasers and technological plasmas but also for white dwarfs and A- and B-type stars.

  7. X-ray spectra of Hercules X-1. 1: Iron line fluorescence from a subrelativistic shell

    NASA Technical Reports Server (NTRS)

    Pravdo, S. H.; Becker, R. H.; Boldt, E. A.; Holt, S. S.; Serlemitsos, P. J.; Swank, J. H.

    1977-01-01

    The X-ray spectrum of Hercules X-1 was observed in the energy range 2-24 keV from August 29 to September 3, 1975. A broad iron line feature is observed in the normal high state spectrum. The line equivalent width is given along with its full-width-half-maximum energy. Iron line fluorescence from an opaque, cool shell of material at the Alfven surface provides the necessary luminosity in this feature. The line energy width can be due to Doppler broadening if the shell is forced to corotate with the pulsar at a radius 800 million cm. Implications of this model regarding physical conditions near Her X-1 are discussed.

  8. Differential Off-line LC-NMR (DOLC-NMR) Metabolomics To Monitor Tyrosine-Induced Metabolome Alterations in Saccharomyces cerevisiae.

    PubMed

    Hammerl, Richard; Frank, Oliver; Hofmann, Thomas

    2017-04-19

    A novel differential off-line LC-NMR approach (DOLC-NMR) was developed to capture and quantify nutrient-induced metabolome alterations in Saccharomyces cerevisiae. Off-line coupling of HPLC separation and 1 H NMR spectroscopy supported by automated comparative bucket analyses, followed by quantitative 1 H NMR using ERETIC 2 (electronic reference to access in vivo concentrations), has been successfully used to quantitatively record changes in the metabolome of S. cerevisiae upon intervention with the aromatic amino acid l-tyrosine. Among the 33 metabolites identified, glyceryl succinate, tyrosol acetate, tyrosol lactate, tyrosol succinate, and N-acyl-tyrosine derivatives such as N-(1-oxooctyl)-tyrosine are reported for the first time as yeast metabolites. Depending on the chain length, N-(1-oxooctyl)-, N-(1-oxodecanyl)-, N-(1-oxododecanyl)-, N-(1-oxomyristinyl)-, N-(1-oxopalmityl)-, and N-(1-oxooleoyl)-l-tyrosine imparted a kokumi taste enhancement above their recognition thresholds ranging between 145 and 1432 μmol/L (model broth). Finally, carbon module labeling (CAMOLA) and carbon bond labeling (CABOLA) experiments with 13 C 6 -glucose as the carbon source confirmed the biosynthetic pathway leading to the key metabolites; for example, the aliphatic side chain of N-(1-oxooctyl)-tyrosine could be shown to be generated via de novo fatty acid biosynthesis from four C 2 -carbon modules (acetyl-CoA) originating from glucose.

  9. Conformational dynamics in fluorophenylcarbamoyl-alpha-chymotrypsins.

    PubMed

    Kairi, M; Gerig, J T

    1990-06-19

    A series of fluorine-substituted diphenylcarbamoyl chlorides have been synthesized and used to prepare corresponding diphenylcarbamoylated derivatives of alpha-chymotrypsin. The enzyme is rapidly inactivated by these compounds, as has been previously observed for the unsubstituted chloride, and the derivatives are stable enough to permit extensive studies by fluorine NMR spectroscopy. In combination with previously reported results, these NMR experiments suggest that the aromatic rings of a diphenylcarbamoyl group attached to chymotrypsin may be found in two magnetically and dynamically distinguishable sites, with exchange between these sites taking place by a process that involves rotation about the carbamoyl N-CO bond and localized unfolding of the enzyme. The extent to which a given fluoroaromatic ring is found in one of these sites is dependent on the position of the fluorine substituent and the nature of the partner aromatic ring. It is found that a 2-fluorophenyl ring, when present, dominantly determines site occupation, while a 3-fluorophenyl ring has no effects that are detectably different from those of an unsubstituted phenyl ring. There is evidence for slow aromatic ring rotation within at least one of the phenyl ring interaction sites. Saturation transfer and lineshape methods provide information about the rates of interconversion of the N-phenyl groups between these sites. Line-width, spin-lattice relaxation times and fluorine-proton nuclear Overhauser effects determined at 282 and 470 MHz are reported for each system examined.

  10. 31P and 13C NMR analyses of the energy metabolism of the thermophilic anaerobe Clostridium thermocellum.

    PubMed

    Tolman, C J; Kanodia, S; Roberts, M F

    1987-08-15

    The energy metabolism of an anaerobic obligate thermophile, Clostridium thermocellum, has been examined as a function of incubation temperature using 31P NMR spectroscopy. Specifically investigated were the generation and availability of ATP as a function of temperature, activation energies for key processes in energy metabolism including formation of a pH gradient across the cell membrane, transport of key nutrients, and initial steps in glycolysis, and the existence of a membrane phase transition in the intact organism. Cells generate ATP via glycolysis at all temperatures examined; hence, limitation of the energy supply is not directly responsible for the lack of growth of this organism at low temperatures. Estimations of activation energies show a distinct hierarchy in the ATP-utilizing reactions examined. Conservation of ATP hydrolysis energy as delta pH has the lowest activation energy (less than or equal to 4 kcal/mol), two transport processes exhibit 10 kcal/mol activation energies, and early phosphorylation steps in glycolysis have significantly higher activation energies (approximately 25 kcal/mol). Neither the membrane-bound ATPase responsible for formation of the pH gradient nor the permease involved in phosphate transport shows evidence of a change in behavior around the phase transition temperature determined for extracted lipids of C. thermocellum. Line widths of inorganic phosphate do show a break in behavior around 35-40 degrees C. Possible explanations for this behavior are discussed.

  11. Accuracy and precision of protein-ligand interaction kinetics determined from chemical shift titrations.

    PubMed

    Markin, Craig J; Spyracopoulos, Leo

    2012-12-01

    NMR-monitored chemical shift titrations for the study of weak protein-ligand interactions represent a rich source of information regarding thermodynamic parameters such as dissociation constants (K ( D )) in the micro- to millimolar range, populations for the free and ligand-bound states, and the kinetics of interconversion between states, which are typically within the fast exchange regime on the NMR timescale. We recently developed two chemical shift titration methods wherein co-variation of the total protein and ligand concentrations gives increased precision for the K ( D ) value of a 1:1 protein-ligand interaction (Markin and Spyracopoulos in J Biomol NMR 53: 125-138, 2012). In this study, we demonstrate that classical line shape analysis applied to a single set of (1)H-(15)N 2D HSQC NMR spectra acquired using precise protein-ligand chemical shift titration methods we developed, produces accurate and precise kinetic parameters such as the off-rate (k ( off )). For experimentally determined kinetics in the fast exchange regime on the NMR timescale, k ( off ) ~ 3,000 s(-1) in this work, the accuracy of classical line shape analysis was determined to be better than 5 % by conducting quantum mechanical NMR simulations of the chemical shift titration methods with the magnetic resonance toolkit GAMMA. Using Monte Carlo simulations, the experimental precision for k ( off ) from line shape analysis of NMR spectra was determined to be 13 %, in agreement with the theoretical precision of 12 % from line shape analysis of the GAMMA simulations in the presence of noise and protein concentration errors. In addition, GAMMA simulations were employed to demonstrate that line shape analysis has the potential to provide reasonably accurate and precise k ( off ) values over a wide range, from 100 to 15,000 s(-1). The validity of line shape analysis for k ( off ) values approaching intermediate exchange (~100 s(-1)), may be facilitated by more accurate K ( D ) measurements from NMR-monitored chemical shift titrations, for which the dependence of K ( D ) on the chemical shift difference (Δω) between free and bound states is extrapolated to Δω = 0. The demonstrated accuracy and precision for k ( off ) will be valuable for the interpretation of biological kinetics in weakly interacting protein-protein networks, where a small change in the magnitude of the underlying kinetics of a given pathway may lead to large changes in the associated downstream signaling cascade.

  12. Cytotoxic Effects of Sarcophyton sp. Soft Corals—Is There a Correlation to Their NMR Fingerprints?

    PubMed Central

    Farag, Mohamed A.; Fekry, Mostafa I.; Al-Hammady, Montasser A.; Khalil, Mohamed N.; El-Seedi, Hesham R.; Meyer, Achim; Westphal, Hildegard; Wessjohann, Ludger A.

    2017-01-01

    Sarcophyton sp. soft corals are rich in cembranoid diterpenes, which represent the main chemical defense of corals against their natural predators in addition to their myriad biological effects in humans. Quantitative NMR (qNMR) was applied for assessing the diterpene variation in 16 soft coral specimens in the context of their genotype, origin, and growing habitat. qNMR revealed high diterpene levels in Sarcophyton sp. compared to Sinularia and Lobophyton, with (ent)sarcophines as major components (17–100 µg/mg) of the coral tissues. Multivariate data analysis was employed to classify samples based on the quantified level of diterpenes, and compared to the untargeted NMR approach. Results revealed that qNMR provided a stronger classification model of Sarcophyton sp. than untargeted NMR fingerprinting. Additionally, cytotoxicity of soft coral crude extracts was assessed against androgen-dependent prostate cancer cell lines (PC3) and androgen-independent colon cancer cell lines (HT-29), with IC50 values ranging from 10–60 µg/mL. No obvious correlation between the extracts’ IC50 values and their diterpene levels was found using either Spearman or Pearson correlations. This suggests that this type of bioactivity may not be easily predicted by NMR metabolomics in soft corals, or is not strongly correlated to measured diterpene levels. PMID:28677625

  13. Cytotoxic Effects of Sarcophyton sp. Soft Corals-Is There a Correlation to Their NMR Fingerprints?

    PubMed

    Farag, Mohamed A; Fekry, Mostafa I; Al-Hammady, Montasser A; Khalil, Mohamed N; El-Seedi, Hesham R; Meyer, Achim; Porzel, Andrea; Westphal, Hildegard; Wessjohann, Ludger A

    2017-07-04

    Sarcophyton sp. soft corals are rich in cembranoid diterpenes, which represent the main chemical defense of corals against their natural predators in addition to their myriad biological effects in humans. Quantitative NMR (qNMR) was applied for assessing the diterpene variation in 16 soft coral specimens in the context of their genotype, origin, and growing habitat. qNMR revealed high diterpene levels in Sarcophyton sp. compared to Sinularia and Lobophyton , with (ent)sarcophines as major components (17-100 µg/mg) of the coral tissues. Multivariate data analysis was employed to classify samples based on the quantified level of diterpenes, and compared to the untargeted NMR approach. Results revealed that qNMR provided a stronger classification model of Sarcophyton sp. than untargeted NMR fingerprinting. Additionally, cytotoxicity of soft coral crude extracts was assessed against androgen-dependent prostate cancer cell lines (PC3) and androgen-independent colon cancer cell lines (HT-29), with IC 50 values ranging from 10-60 µg/mL. No obvious correlation between the extracts' IC 50 values and their diterpene levels was found using either Spearman or Pearson correlations. This suggests that this type of bioactivity may not be easily predicted by NMR metabolomics in soft corals, or is not strongly correlated to measured diterpene levels.

  14. Relativistic redshifts in quasar broad lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tremaine, Scott; Shen, Yue; Liu, Xin

    2014-10-10

    The broad emission lines commonly seen in quasar spectra have velocity widths of a few percent of the speed of light, so special- and general-relativistic effects have a significant influence on the line profile. We have determined the redshift of the broad Hβ line in the quasar rest frame (determined from the core component of the [O III] line) for over 20,000 quasars from the Sloan Digital Sky Survey Data Release 7 quasar catalog. The mean redshift as a function of line width is approximately consistent with the relativistic redshift that is expected if the line originates in a randomlymore » oriented Keplerian disk that is obscured when the inclination of the disk to the line of sight exceeds ∼30°-45°, consistent with simple active galactic nucleus unification schemes. This result also implies that the net line-of-sight inflow/outflow velocities in the broad-line region are much less than the Keplerian velocity when averaged over a large sample of quasars with a given line width.« less

  15. Characterization of lunar ferromagnetic phases by the effective linewidth method

    NASA Technical Reports Server (NTRS)

    Patton, C. E.; Schmidt, H.

    1978-01-01

    The effective line-width technique, first developed to study the physics of microwave relaxation in ferrites, has been successfully applied to lunar matter. Effective line-width measurements have been made on two selected samples containing disperse spherical metallic iron particles below 40 microns in diam. The data were obtained for fields from 7 to 12 kOe and a temperature range 125 - 300 K. The effective line width was field-independent and temperature-independent at 650 - 750 Oe. The high-field tails of the ferromagnetic resonance absorption were highly Lorentzian. From the relatively large and temperature-independent high-field effective line widths, it appears that (1) the metallic iron phases in lunar soil are rather impure; (2) the impurities are passive, in that there is no evidence for a temperature peak process; and (3) these samples contain no appreciable magnetite.

  16. Squid detected NMR and MRI at ultralow fields

    DOEpatents

    Clarke, John [Berkeley, CA; McDermott, Robert [Louisville, CO; Pines, Alexander [Berkeley, CA; Trabesinger, Andreas Heinz [CH-8006 Zurich, CH

    2007-05-15

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  17. Squid detected NMR and MRI at ultralow fields

    DOEpatents

    Clarke, John; McDermott, Robert; Pines, Alexander; Trabesinger, Andreas Heinz

    2006-05-30

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  18. Squid detected NMR and MRI at ultralow fields

    DOEpatents

    Clarke, John [Berkeley, CA; Pines, Alexander [Berkeley, CA; McDermott, Robert F [Monona, WI; Trabesinger, Andreas H [London, GB

    2008-12-16

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  19. SQUID detected NMR and MRI at ultralow fields

    DOEpatents

    Clarke, John; McDermott, Robert; Pines, Alexander; Trabesinger, Andreas Heinz

    2006-10-03

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  20. Proton NMR study of α-MnH 0.06

    NASA Astrophysics Data System (ADS)

    Soloninin, A. V.; Skripov, A. V.; Buzlukov, A. L.; Antonov, V. E.; Antonova, T. E.

    2004-07-01

    Proton nuclear magnetic resonance (NMR) spectra and spin-lattice relaxation rates for the solid solution α-MnH 0.06 have been measured over the temperature range 11-297 K and the resonance frequency range 20-90 MHz. A considerable shift and broadening of the proton NMR line and a sharp peak of the spin-lattice relaxation rate are observed near 130 K. These effects are attributed to the onset of antiferromagnetic ordering below the Néel temperature TN≈130 K. The proton NMR line does not disappear in the antiferromagnetic phase; this suggests a small magnitude of the local magnetic fields at H-sites in α-MnH 0.06. The spin-lattice relaxation rate in the paramagnetic phase is dominated by the effects of spin fluctuations.

  1. Comparison of Trajectory Models in Calculations of N2-broadened Half-widths and N2-induced Line Shifts for the Rotational Band of H2O-16 and Comparison with Measurements

    NASA Technical Reports Server (NTRS)

    Lamouroux, J.; Gamache, R. R.; Laraia, A. L.; Ma, Q.; Tipping, R. H.

    2012-01-01

    In this work, Complex Robert-Bonamy calculations of half-widths and line shifts were done for N2-broadening of water for 1639 transitions in the rotational band using two models for the trajectories. The first is a model correct to second order in time, the Robert-Bonamy parabolic approximation. The second is the solution of Hamilton's equations. Both models use the isotropic part of the atom-atom potential to determine the trajectories. The present calculations used an intermolecular potential expanded to 20th order to assure the convergence of the half-widths and line shifts. The aim of the study is to assess if the difference in the half-widths and line shifts determined from the two trajectory models is greater than the accuracy requirements of the spectroscopic and remote sensing communities. The results of the calculations are compared with measurements of the half-widths and line shifts. It is shown that the effects of the trajectory model greatly exceed the needs of current remote sensing measurements and that line shape parameters calculated using trajectories determined by solving Hamilton's equations agree better with measurement.

  2. 31P NMR spectroscopy studies of phospholipid metabolism in human melanoma xenograft lines differing in rate of tumour cell proliferation.

    PubMed

    Lyng, H; Olsen, D R; Petersen, S B; Rofstad, E K

    1995-04-01

    The concentration of phospholipid metabolites in tumours has been hypothesized to be related to rate of cell membrane turnover and may reflect rate of cell proliferation. The purpose of the study reported here was to investigate whether 31P NMR resonance ratios involving the phosphomonoester (PME) or phosphodiester (PDE) resonance are correlated to fraction of cells in S-phase or volume-doubling time in experimental tumours. Four human melanoma xenograft lines (BEX-t, HUX-t, SAX-t, WIX-t) were included in the study. The tumours were grown subcutaneously in male BALB/c-nu/nu mice. 31P NMR spectroscopy was performed at a magnetic field strength of 4.7 T. Fraction of cells in S-phase was measured by flow cytometry. Tumour volume-doubling time was determined by Gompertzian analysis of volumetric growth data. BEX-t and SAX-t tumours differed in fraction of cells in S-phase and volume-doubling time, but showed similar 31P NMR resonance ratios. BEX-t and WIX-t tumours showed significantly different 31P NMR resonance ratios but similar fractions of cells in S-phase. The 31P NMR resonance ratios were significantly different for small and large HUX-t tumours even though fraction of cells in S-phase and volume-doubling time did not differ with tumour volume. None of the 31P NMR resonance ratios showed significant increase with increasing fraction of cells in S-phase or significant decrease with increasing tumour volume-doubling time across the four xenograft lines.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Characterization of KCNE1 inside Lipodisq Nanoparticles for EPR Spectroscopic Studies of Membrane Proteins.

    PubMed

    Sahu, Indra D; Zhang, Rongfu; Dunagan, Megan M; Craig, Andrew F; Lorigan, Gary A

    2017-06-01

    EPR spectroscopic studies of membrane proteins in a physiologically relevant native membrane-bound state are extremely challenging due to the complexity observed in inhomogeneity sample preparation and dynamic motion of the spin-label. Traditionally, detergent micelles are the most widely used membrane mimetics for membrane proteins due to their smaller size and homogeneity, providing high-resolution structure analysis by solution NMR spectroscopy. However, it is often difficult to examine whether the protein structure in a micelle environment is the same as that of the respective membrane-bound state. Recently, lipodisq nanoparticles have been introduced as a potentially good membrane mimetic system for structural studies of membrane proteins. However, a detailed characterization of a spin-labeled membrane protein incorporated into lipodisq nanoparticles is still lacking. In this work, lipodisq nanoparticles were used as a membrane mimic system for probing the structural and dynamic properties of the integral membrane protein KCNE1 using site-directed spin labeling EPR spectroscopy. The characterization of spin-labeled KCNE1 incorporated into lipodisq nanoparticles was carried out using CW-EPR titration experiments for the EPR spectral line shape analysis and pulsed EPR titration experiment for the phase memory time (T m ) measurements. The CW-EPR titration experiment indicated an increase in spectral line broadening with the addition of the SMA polymer which approaches close to the rigid limit at a lipid to polymer weight ratio of 1:1, providing a clear solubilization of the protein-lipid complex. Similarly, the T m titration experiment indicated an increase in T m values with the addition of SMA polymer and approaches ∼2 μs at a lipid to polymer weight ratio of 1:2. Additionally, CW-EPR spectral line shape analysis was performed on six inside and six outside the membrane spin-label probes of KCNE1 in lipodisq nanoparticles. The results indicated significant differences in EPR spectral line broadening and a corresponding inverse central line width between spin-labeled KCNE1 residues located inside and outside of the membrane for lipodisq nanoparticle samples when compared to lipid vesicle samples. These results are consistent with the solution NMR structure of KCNE1. This study will be beneficial for researchers working on studying the structural and dynamic properties of membrane proteins.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Siyao; Lazarian, A.; Yan, Huirong, E-mail: hryan@pku.edu.cn

    We address the problem of the different line widths of coexistent neutrals and ions observed in molecular clouds and explore whether this difference can arise from the effects of magnetohydrodynamic (MHD) turbulence acting on partially ionized gas. Among the three fundamental modes of MHD turbulence, we find that fast and slow modes do not contribute to line width differences. We focus on the Alfvénic component, and consider the damping of Alfvén modes by taking into account both neutral-ion collisions and neutral viscosity. We confirm that the line width difference can be explained by the differential damping of the Alfvénic turbulencemore » in ions and the hydrodynamic turbulence in neutrals, and find it strongly depends on the properties of MHD turbulence. We consider various regimes of turbulence corresponding to different media magnetizations and turbulent drivings. In the case of super-Alfvénic turbulence, when the damping scale of Alfvénic turbulence is below the Alfvénic scale l{sub A}, the line width difference does not depend on magnetic field strength. In other turbulence regimes, however, the dependence is present and evaluation of magnetic field from the observed line width difference is possible.« less

  5. CA II K-line metallicity indicator for field RR Lyrae stars

    NASA Astrophysics Data System (ADS)

    Clementini, Gisella; Tosi, Monica; Merighi, Roberto

    In order to check and, possibly, improve the Preston's Delta S calibration scale, CCD spectra have been obtained for 25 field RR Lyrae variables. Eleven of the program stars have values of (Fe/H) derived by Butler and Deming (1979) from the Fe II lines' strength. For them we find that the equivalent width of the Ca II K line is extremely well correlated to the (Fe/H) values, the best fit relation being: (Fe/H) = 0.43W(K) - 2.75 where W(K) is the equivalent width of the K line. We conclude that the use of the K line equivalent width is at present the best method to derive the (Fe/H) abundance of the RR Lyrae stars.

  6. Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-192- Ashe-Hanford/Scooteney-Tap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchinson, Ken

    2004-01-26

    Vegetation Management for the Ashe-Hanford (tower 13/1 to 15/2) and Scooteney Tap (tower 2/1+1200 to 4/1+50) line corridor. The Ashe-Hanford line is a 500 kV single circuit transmission line having an easement width of 350 feet. The Scooteney Tap line is a 230 kV single circuit line having an easement width of 262.5 feet on the Department of Energy’s Hanford Nuclear Reservation (Reservation) and an easement width of 100 feet on private lands. The proposed work will be accomplished in the indicated sections of the transmission lines as referenced on the attached checklist. The work will include the performance ofmore » tower pad maintenance and access road maintenance in the referenced areas. Maintenance will include the control of all brush species within 30 feet of transmission structures and controlling all vegetation, except grass along the access roads to provide a 14-foot width for travel. Noxious weed management will also occur on the rights-of- way where needed.« less

  7. Anomalous broadening and shift of emission lines in a femtosecond laser plasma filament in air

    NASA Astrophysics Data System (ADS)

    Ilyin, A. A.; Golik, S. S.; Shmirko, K. A.; Mayor, A. Yu.; Proschenko, D. Yu.

    2017-12-01

    The temporal evolution of the width and shift of N I 746.8 and O I 777.4 nm lines is investigated in a filament plasma produced by a tightly focused femtosecond laser pulse (0.9 mJ, 48 fs). The nitrogen line shift and width are determined by the joint action of electron impact shift and the far-off resonance AC Stark effect. The intensive (I = 1.2·1010 W/cm2) electric field of ASE (amplified spontaneous emission) and post-pulses result in a possible LS coupling break for the O I 3p 5P level and the generation of Rabi sidebands. The blueshifted main femtosecond pulse and Rabi sideband cause the stimulated emission of the N2 1+ system. The maximal widths of emission lines are approximately 6.7 times larger than the calculated Stark widths.

  8. First identification of pure rotation lines of NH in the infrared solar spectrum

    NASA Technical Reports Server (NTRS)

    Geller, M.; Farmer, C. B.; Norton, R. H.; Sauval, A. J.; Grevesse, N.

    1991-01-01

    Pure rotation lines of NH of the v = 0 level and v = 1 level are detected in high-resolution solar spectra obtained from the Atmospheric Trace Molecule Spectroscopy (ATMOS) experimental observations. It is pointed out that the identification of the lines is favored by the typical appearance of the triplet lines of nearly equal intensities. The observed equivalent widths of these triplet lines are compared with predicted intensities, and it is observed that these widths are systematically larger than the predicted values. It is noted that because these very faint lines are observed in a region where the signal is very low, a systematic error in the measurements of the equivalent widths cannot be ruled out; therefore, the disagreement between the observed and predicted intensities is not considered to be real.

  9. Split-cross-bridge resistor for testing for proper fabrication of integrated circuits

    NASA Technical Reports Server (NTRS)

    Buehler, M. G. (Inventor)

    1985-01-01

    An electrical testing structure and method is described whereby a test structure is fabricated on a large scale integrated circuit wafer along with the circuit components and has a van der Pauw cross resistor in conjunction with a bridge resistor and a split bridge resistor, the latter having two channels each a line width wide, corresponding to the line width of the wafer circuit components, and with the two channels separated by a space equal to the line spacing of the wafer circuit components. The testing structure has associated voltage and current contact pads arranged in a two by four array for conveniently passing currents through the test structure and measuring voltages at appropriate points to calculate the sheet resistance, line width, line spacing, and line pitch of the circuit components on the wafer electrically.

  10. A survey of ultraviolet interstellar absorption lines

    NASA Technical Reports Server (NTRS)

    Bohlin, R. C.; Jenkins, E. B.; Spitzer, L., Jr.; York, D. G.; Hill, J. K.; Savage, B. D.; Snow, T. P., Jr.

    1983-01-01

    A telescope-spectrometer on the Copernicus spacecraft made possible the measurement of many ultraviolet absorption lines produced by the interstellar gas. The present survey provides data on ultraviolet absorption lines in the spectra of 88 early-type stars. The stars observed are divided into four classes, including reddened stars, unreddened bright stars, moderately reddened bright stars, and unreddened and moderately reddened faint stars. Data are presented for equivalent width, W, radial velocity V, and rms line width, D, taking into account some 10 to 20 lines of N I, O I, Si II, P II, S II, Cl I, Cl II, Mn II, Fe II, Ni II, Cu II, and H2. The data are based on multiple scans for each line. Attention is given to details of observations, the data reduction procedure, and the computation of equivalent width, mean velocity, and velocity dispersion.

  11. Stark broadening of He I lines

    NASA Astrophysics Data System (ADS)

    Dimitrijevic, M. S.; Sahal-Brechot, S.

    1990-03-01

    Results are presented from calculations of the electron-, proton-, and ionized helium-impact line widths and shifts for 77 neutral helium multiplets in the UV, visible, and IR regions of the spectrum. The calculations are performed using a semiclassical perturbation formalism (Sahal-Brechot, 1969). Tables are given for the line widths and shift for He I resonance lines at a perturber density of 10 to the 13th/cu cm.

  12. Targeted Molecular Imaging of Cancer Cells Using MS2-Based 129 Xe NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Keunhong; Netirojjanakul, Chawita; Munch, Henrik K.

    Targeted, selective, and highly sensitive 129Xe NMR nanoscale biosensors have been synthesized using a spherical MS2 viral capsid, Cryptophane A molecules, and DNA aptamers. The biosensors showed strong binding specificity toward targeted lymphoma cells (Ramos line). Hyperpolarized 129Xe NMR signal contrast and hyper-CEST 129Xe MRI image contrast indicated its promise as highly sensitive hyperpolarized 129Xe NMR nanoscale biosensor for future applications in cancer detection in vivo.

  13. Improved Characterization of Healthy and Malignant Tissue by NMR Line-Shape Relaxation Correlations

    PubMed Central

    Peemoeller, H.; Shenoy, R.K.; Pintar, M.M.; Kydon, D.W.; Inch, W.R.

    1982-01-01

    We performed a relaxation-line-shape correlation NMR experiment on muscle, liver, kidney, and spleen tissues of healthy mice and of mouse tumor tissue. In each tissue studied, five spin groups were resolved and characterized by their relaxation parameters. We report a previously uncharacterized semi-solid spin group and discuss briefly the value of this method for the identification of malignant tissues. PMID:7104438

  14. Temperature dependence of broadline NMR spectra of water-soaked, epoxy-graphite composites

    NASA Astrophysics Data System (ADS)

    Lawing, David; Fornes, R. E.; Gilbert, R. D.; Memory, J. D.

    1981-10-01

    Water-soaked, epoxy resin-graphite fiber composites show a waterline in their broadline proton NMR spectrum which indicates a state of intermediate mobility between the solid and free water liquid states. The line is still present at -42 °C, but shows a reversible decrease in amplitude with decreasing temperature. The line is isotropic upon rotation of the fiber axis with respect to the external magnetic field.

  15. Spectroscopic requirements for HALOE: An analysis of the HCl and HF channels

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Smith, M. A. H.; Park, J. H.; Harvey, G. A.; Russell, J. M., III; Richardson, D. J.

    1982-01-01

    Spectral line parameters that have absorption features within the HCl and HF channels of the Halogen Occultation Experiment (HALOE) were evaluated. Line positions and identification of stratospheric and solar absorption features in both channels are presented based on an analysis of high-resolution, balloon-borne solar occultation spectra. For the relevant HCl and HF lines and for transitions of the interfering species, the accuracy of the following spectral parameters was assessed: line positions, line strengths, lower state energies, air-broadened collisional half-widths, and temperature dependence of the air-broadened half-widths. In addition, since the HALOE instrument and calibration cells are filled with mixtures of HCl in N2 and HF in N2, the self-broadened and N2-broadened HF and HCl half-widths were also considered.

  16. Negative Magnetoresistance in Amorphous Indium Oxide Wires

    PubMed Central

    Mitra, Sreemanta; Tewari, Girish C; Mahalu, Diana; Shahar, Dan

    2016-01-01

    We study magneto-transport properties of several amorphous Indium oxide nanowires of different widths. The wires show superconducting transition at zero magnetic field, but, there exist a finite resistance at the lowest temperature. The R(T) broadening was explained by available phase slip models. At low field, and far below the superconducting critical temperature, the wires with diameter equal to or less than 100 nm, show negative magnetoresistance (nMR). The magnitude of nMR and the crossover field are found to be dependent on both temperature and the cross-sectional area. We find that this intriguing behavior originates from the interplay between two field dependent contributions. PMID:27876859

  17. Development of LC-13C NMR

    NASA Technical Reports Server (NTRS)

    Dorn, H. C.; Wang, J. S.; Glass, T. E.

    1986-01-01

    This study involves the development of C-13 nuclear resonance as an on-line detector for liquid chromatography (LC-C-13 NMR) for the chemical characterization of aviation fuels. The initial focus of this study was the development of a high sensitivity flow C-13 NMR probe. Since C-13 NMR sensitivity is of paramount concern, considerable effort during the first year was directed at new NMR probe designs. In particular, various toroid coil designs were examined. In addition, corresponding shim coils for correcting the main magnetic field (B sub 0) homogeneity were examined. Based on these initial probe design studies, an LC-C-13 NMR probe was built and flow C-13 NMR data was obtained for a limited number of samples.

  18. Lunar Sodium and Potassium Exosphere in May 2014

    NASA Astrophysics Data System (ADS)

    Oliversen, R. J.; Kuruppuaratchi, D. C. P.; Mierkiewicz, E. J.; Derr, N. J.; Rosborough, S.; Gallant, M. A.; Roesler, F. L.

    2015-12-01

    We apply high resolution spectroscopy to investigate the lunar exosphere by measuring sodium and potassium spectral line profiles to determine the variations in exospheric effective temperatures and velocities. Observations were made at the National Solar Observatory McMath-Pierce Telescope during May 2014. Data were collected over several nights, centered on full moon (May 14) and covering a waxing phase angle of 67° to a waning phase angle of 75°. We used a dual-etalon Fabry-Perot spectrometer with a resolving power of 184,000 (1.63 km s-1) to measure the line widths and radial velocity shifts of the sodium D2 (5889.951 Å) and potassium D1 (7698.965 Å) emission lines. The field of view was 3 arcmin (~330 km) and positioned at several locations, each centered at 1.5 arcmin (~165 km) off the East and West sunlit limbs. The deconvolved line widths indicate significant differences between the sodium and potassium temperatures. The sodium line widths were mostly symmetric as a function of phase for both the waxing and waning phases. At phase angles > 40º (outside of the magnetotail) the full width half maximum (FWHM) line widths are 1.5 - 2.0 km s-1 or ~1500 K for FWHM = 1.75 km s-1. Inside the magnetotail (phase angle < 40º) and near full moon (phase angle ~6°), the FWHM increased to ~4 km s-1. The implied line width temperature is 8000 K, although some of the observed line width may be due to a dispersion in velocities from many contribution along the extended sodium tail. Unlike sodium, the potassium line widths are wider by 50% during the waxing phase compared to the waning phase at phases > 40º. The potassium temperatures pre-magnetotail passage are ~1000 K while the temperatures post-magnetotail passage are ~2000K. At phase angles < 40º, the potassium intensities decreased dramatically; on consecutive days, when the phase angle changed from 44º to 31º to 20º, the relative intensities dropped by 1.0:0.6:0.15. The potassium intensity in the East and West equatorial regions (latitude < 10º) were similar; however, the potassium intensity was brightest off the limb near Aristarchus (latitude ~24º), which was the crater we observed nearest the KREEP region. This work was partially supported by the NASA Planetary Astronomy programs, NNX11AE38G and NNX13AL30G.

  19. N2 pressure - broadened O3 line widths and strengths near 1129.4 cm-1

    NASA Technical Reports Server (NTRS)

    Copeland, G. E.; Majorana, L. N.; Harward, C. N.; Steinkamp, R. J.

    1982-01-01

    A Beer's Law experiment was performed with a tunable diode laser to find the N2 pressure broadening characteristics of a single 03 absorption line at 1129.426 cm for N2 pressures from 10 to 100 torr (O3 pressure = 3.16 torr). SO2 line positions were used for wavelength calibration. Line shapes were interatively fitted to a Lorentz function. Results were delta (HWHM in MHz) = 47.44 (+ or - 5.34) MHz + 1.730 (+ or - 0.088) MHz/torr *p(torr) with sigma = 0.9897. This intercept compares well with the Doppler O3 - O3 broadened (at 3.16 torr) width of 44.52 Hz. This result in a HWHM line width of 0.44 cm atm at 760 torr and 285 K. The line strengths integrated over delta nu = 0.55 cm were found to be N2 pressure dependent.

  20. Ultraviolet observations of cool stars. IV - Intensities of Lyman-alpha and Mg II in epsilon Pegasi and epsilon Eridani, and line width-luminosity correlations

    NASA Technical Reports Server (NTRS)

    Mcclintock, W.; Linsky, J. L.; Henry, R. C.; Moos, H. W.

    1975-01-01

    A spectrometer on the Copernicus satellite has been used to confirm the existence of a line width-luminosity relation for the Ly-alpha and Mg II 2800-A chromospheric emission lines in K-type stars by observation of a K2 dwarf (epsilon Eri) and a K2 supergiant (epsilon Peg). Combined with previously reported observations of lines in three K giants (alpha Boo, alpha Tau, and beta Gem), the data are consistent with an identical dependence of line width on absolute visual magnitude for the Ca II K, Ly-alpha, and Mg II 2795-A lines. Surface fluxes of Ly-alpha, Mg II 2800-A, and O V 1218-A (upper limit) for epsilon Eri, and of Mg II 2800-A for epsilon Peg are also compared with values reported previously for the three giant stars.

  1. Tracing bacterial metabolism using multi-nuclear (1H, 2H, and 13C) Solid State NMR: Realizing an Idea Initiated by James Scott

    NASA Astrophysics Data System (ADS)

    Cody, G.; Fogel, M. L.; Jin, K.; Griffen, P.; Steele, A.; Wang, Y.

    2011-12-01

    Approximately 6 years ago, while at the Geophysical Laboratory, James Scott became interested in the application of Solid State Nuclear Magnetic Resonance Spectroscopy to study bacterial metabolism. As often happens, other experiments intervened and the NMR experiments were not pursued. We have revisited Jame's question and find that using a multi-nuclear approach (1H, 2H, and 13C Solid State NMR) on laboratory cell culture has some distinct advantages. Our experiments involved batch cultures of E. coli (MG1655) harvested at stationary phase. In all experiments the growth medium consisted of MOPS medium for enterobacteria, where the substrate is glucose. In one set of experiments, 10 % of the water was D2O; in another 10 % of the glucose was per-deuterated. The control experiment used both water and glucose at natural isotopic abundance. A kill control of dead E. coli immersed in pure D2O for an extended period exhibited no deuterium incorporation. In both deuterium enriched experiments, considerable incorporation of deuterium into E. coli's biomolecular constituents was detected via 2H Solid State NMR. In the case of the D2O enriched experiment, 58 % of the incorporated deuterium is observed in a sharp peak at a frequency of 0.31 ppm, consistent with D incorporation in the cell membrane lipids, the remainder is observed in a broad peak at a higher frequency (centered at 5.4 ppm, but spanning out to beyond 10 ppm) that is consistent with D incorporation into predominantly DNA and RNA. In the case of the D-glucose experiments, 61 % of the deuterium is observed in a sharp resonance peak at 0.34 ppm, also consistent with D incorporation into membrane lipids, the remainder of the D is observed at a broad resonance peak centered at 4.3 ppm, consistent with D enrichment in glycogen. Deuterium abundance in the E. coli cells grown in 10 % D2O is nearly 2X greater than that grown with 10 % D-glucose. Very subtle differences are observed in both the 1H and 13C solid-state NMR experiments, most notably in the spectral region corresponding to glycogen H and C, respectively. Interestingly, whereas in both experiments the predominant site of incorporation was in the membrane lipids, the line width of the aliphatic-D resonance in the D2O enriched experiment is 67 % wider than that observed in the D-glucose enriched experiment. This difference could be due to greater residual 1H-2H dipolar coupling in membrane lipids synthesized with 10 % D2O due to D being incorporated during NADP(D) reduction of the fatty acid precursor during synthesis and the H-glucose being the source of carbon and hydrogen starting with acetyl-CoA. In the case of the D-glucose experiment, the narrower absorption line may be consistent with individual FA's being more homogeneously deuterated. Analysis of the membrane lipids is currently being performed via GCMS in order to gain potentially more insight to guide interpretation of the 2H solid state NMR spectra.

  2. Études RMN haute résolution et RPE des composés Ba 3C 60 et Ba 6C 60

    NASA Astrophysics Data System (ADS)

    Rezzouk, Abdellah; Dafir, Driss; Errammach, Youssef; Rachdi, Férid

    2003-07-01

    We report the results of 13C MAS NMR and EPR measurements on Ba 3C 60 and Ba 6C 60 fullerides. Using high resolution NMR, we were able to identify an isotropic line around 156 ppm for Ba 3C 60 and a broad isotropic one with three components at 132, 134.6, 139.9 ppm for Ba 6C 60 compound. The latter line is consistent with orientationally ordered C 60 molecules leading to three unequivalent carbon sites in agreement with X-ray studies. A strong diamagnetic shift was observed for the NMR line of Ba 6C 60 that is interpreted in terms of transition moment in an indirect gap system. EPR results confirm the insulating nature of both studied compounds. To cite this article: A. Rezzouk et al., C. R. Physique 4 (2003).

  3. Dipolar filtered magic-sandwich-echoes as a tool for probing molecular motions using time domain NMR

    NASA Astrophysics Data System (ADS)

    Filgueiras, Jefferson G.; da Silva, Uilson B.; Paro, Giovanni; d'Eurydice, Marcel N.; Cobo, Márcio F.; deAzevedo, Eduardo R.

    2017-12-01

    We present a simple 1 H NMR approach for characterizing intermediate to fast regime molecular motions using 1 H time-domain NMR at low magnetic field. The method is based on a Goldmann Shen dipolar filter (DF) followed by a Mixed Magic Sandwich Echo (MSE). The dipolar filter suppresses the signals arising from molecular segments presenting sub kHz mobility, so only signals from mobile segments are detected. Thus, the temperature dependence of the signal intensities directly evidences the onset of molecular motions with rates higher than kHz. The DF-MSE signal intensity is described by an analytical function based on the Anderson Weiss theory, from where parameters related to the molecular motion (e.g. correlation times and activation energy) can be estimated when performing experiments as function of the temperature. Furthermore, we propose the use of the Tikhonov regularization for estimating the width of the distribution of correlation times.

  4. Characterisation of blends of polyisoprene and polystyrene by on-line hyphenation of HPLC and (1) H-NMR: LC-CC-NMR at critical conditions of both homopolymers.

    PubMed

    Sinha, Pritish; Hiller, Wolf; Pasch, Harald

    2010-11-01

    Blends of polystyrene (PS) and polyisoprene (PI) were analysed by on-line hyphenation of LC at critical conditions and (1) H-NMR. Chromatography at critical conditions was established for both PS and PI. At both critical conditions, a perfect separation into the blend components was achieved. By operating at critical conditions of one blend component and size exclusion mode for the other it is possible to determine the molar mass using a suitable calibration. By using NMR as a detector, the microstructure of PI can be identified, quantified and the chemical composition of the blends can be calculated by monitoring the signal intensities of the olefinic protons of isoprene and the aromatic protons of PS. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Three new sesquiterpenes from Pterocarpus santalinus.

    PubMed

    Li, Li; Tao, Run-Hong; Wu, Ji-Ming; Guo, Ya-Ping; Huang, Chao; Liang, Hong-Gang; Fan, Le-Zhi; Zhang, Hai-Yan; Sun, Ren-Kuan; Shang, Lei; Lu, Li-Na; Huang, Jian; Wang, Jin-Hui

    2018-04-01

    Three new sesquiterpenes of canusesnol K (1), canusesnol L (2) and 12, 15-dihydroxycurcumene (3), along with five known ones (4-8), were isolated from the heartwood extract of Pterocarpus santalinus. Their structures were established by extensive analyses of 1D and 2D NMR spectroscopy, including 1 H NMR, 13 C NMR, HSQC, HMBC and NOESY, and HRESI-MS. The absolute configurations of the new compounds were established with Modified Mosher's method. The cytotoxic activities of all these compounds against HepG2 (human liver cancer), MCF-7 (human breast cancer), MDA-MB-231 (human breast cancer), and Hela (human cervical carcinoma) cancer cell lines were evaluated. Compound 1 exhibited moderate cytotoxic activity toward MDA-MB-231 cell lines.

  6. NMR and MRI apparatus and method

    DOEpatents

    Clarke, John; Kelso, Nathan; Lee, SeungKyun; Moessle, Michael; Myers, Whittier; McDermott, Robert; ten Haken, Bernard; Pines, Alexander; Trabesinger, Andreas

    2007-03-06

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. Additional signal to noise benefits are obtained by use of a low noise polarization coil, comprising litz wire or superconducting materials. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  7. Neon and [CII] 158 μm Emission Line Profiles in Dusty Starbursts and Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Samsonyan, A.; Weedman, D.; Lebouteiller, V.; Barry, D.; Sargsyan, L.

    2017-07-01

    Identifying and understanding the initial formation of massive galaxies and quasars in the early universe is a fundamental goal of observational cosmology. A rapidly developing capability for tracing luminosity sources to high redshifts is the observation of the [CII] 158 μm emission line at redshifts z > 4 using ground based submillimeter interferometers, with detections now having been made to z = 7. This has long been known as the strongest far-infrared line in most sources, often carrying about 1% of the total source luminosity, and is thought to be associated with star formation because it should arise within the photodissociation region (PDR) surrounding starbursts. The sample of 382 extragalactic sources has been analysed that have mid-infrared,high resolution spectroscopy with the Spitzer Infrared Spectrograph (IRS) and also spectroscopy of the [CII] 158 μm line with the Herschel Photodetector Array Camera and Spectrometer (PACS). The emission line profiles of [NeII] 12.81μm , [NeIII] 15.55 μm , and [CII] 158 μm are studied, and intrinsic line widths are determined. All line profiles together with overlays comparing positions of PACS and IRS observations are made available in the Cornell Atlas of Spitzer IRS Sources (CASSIS). Sources are classified from AGN to starburst based on equivalent widths of the 6.2 μm polycyclic aromatic hydrocarbon feature. It is found that intrinsic line widths do not change among classification for [CII], with median widths of 207 km s-1 for AGN, 248 km s-1 for composites, and 233 km s-1 for starbursts. The [NeII] line widths also do not change with classification, but [NeIII] lines are progressively broader from starburst to AGN. A small number of objects with unusually broad lines or unusual redshift differences in any feature are identified.

  8. Non-Linear Signal Detection Improvement by Radiation Damping in Single-Pulse NMR Spectra

    PubMed Central

    Schlagnitweit, Judith; Morgan, Steven W; Nausner, Martin; Müller, Norbert; Desvaux, Hervé

    2012-01-01

    When NMR lines overlap and at least one of them is affected by radiation damping, the resonance line shapes of all lines are no longer Lorentzian. We report the appearance of narrow signal distortions, which resemble hole-burnt spectra. This new experimental phenomenon facilitates the detection of tiny signals hidden below the main resonance. Theoretical analysis based on modified Maxwell–Bloch equations shows that the presence of strong transverse magnetization creates a feedback through the coil, which influences the magnetization of all spins with overlapping resonance lines. In the time domain this leads to cross-precession terms between magnetization densities, which ultimately cause non-linear behavior. Numerical simulations corroborate this interpretation. PMID:22266720

  9. Dependence of NMR noise line shapes on tuning, matching, and transmission line properties

    PubMed Central

    Bendet-Taicher, Eli; Müller, Norbert; Jerschow, Alexej

    2014-01-01

    The tuning and matching conditions of rf circuits, as well as the properties of the transmission lines connecting these to the preamplifier, have direct consequences for NMR probe sensitivity and as for the optimum delivery of rf power to the sample. In addition, tuning/matching conditions influence radiation damping effects, which manifest themselves as fast signal flip-back and line broadening effects, and can lead to concentration-dependent frequency shifts. Previous studies have also shown that the appearance of spin-noise and absorbed circuit noise signals heavily depended on tuning settings. Consequently, all these phenomena are linked together. The mutual connections and interdependences of these effects are highlighted and reviewed here. PMID:25505374

  10. Investigation of Local Structures in Cation-ordered Microwave Dielectric A Solid-state NMR and First Principle Calculation Study

    NASA Astrophysics Data System (ADS)

    Kalfarisi, Rony G.

    Solid-state Nuclear Magnetic Resonance (ssNMR) spectroscopy has proven to be a powerful method to probe the local structure and dynamics of a system. In powdered solids, the nuclear spins experience various anisotropic interactions which depend on the molecular orientation. These anisotropic interactions make ssNMR very useful as they give a specific appearance to the resonance lines of the spectra. The position and shape of these resonance lines can be related to local structure and dynamics of the system under study. My research interest has focused around studying local structures and dynamics of quadrupolar nuclei in materials using ssNMR spectroscopy. 7Li and 93Nb ssNMR magic angle spinning (MAS) spectra, acquired at 17.6 and 7.06 T, have been used to evaluate the structural and dynamical properties of cation-ordered microwave dielectric materials. Microwave dielectric materials are essential in the application of wireless telecommunication, biomedical engineering, and other scientific and industrial implementations that use radio and microwave signals. The study of the local environment with respect to average structure, such as X-ray diffraction study, is essential for the better understanding of the correlations between structures and properties of these materials. The investigation for short and medium range can be performed with the use of ssNMR techniques. Even though XRD results show cationic ordering at the B-site (third coordination sphere), NMR spectra show a presence of disorder materials. This was indicated by the observation of a distribution in NMR parameters derived from experimental . {93}Nb NMR spectraand supported by theoretical calculations.

  11. The Effect of Changes in the ASCA Calibration on the Fe-K Lines in Active Galaxies

    NASA Technical Reports Server (NTRS)

    Yaqoob, T.; Padmanabhan, U.; Dotani, T.; Nandra, K.; White, Nicholas E. (Technical Monitor)

    2001-01-01

    The ASCA calibration has evolved considerably since launch and indeed, is still evolving. There have been concerns in the literature that changes in the ASCA calibration have resulted in the Fe-K lines in active galaxies (AGN) now being systematically narrower than was originally thought. If this were true, a large body of ASCA results would be impacted. In particular, it has been claimed that the broad red wing (when present) of the Fe-K line has been considerably weakened by changes in the ASCA calibration. We demonstrate explicitly that changes in the, ASCA calibration over a period of about eight years have a negligible effect on the width, strength, or shape of the Fe-K lines. The reduction in both width and equivalent width is only approximately 8% or less. We confirm this with simulations and individual sources, as well as sample average profiles. The average profile for type 1 AGN is still very broad, with the red wing extending down to approximately 4 keV. The reason for the claimed, apparently large, discrepancies is that in some sources the Fe-K line is complex, and a single-Gaussian model, being an inadequate description of the line profile, picks up different portions of the profile with different calibration. However, one cannot make inferences about calibration or astrophysics of the sources using models which do not describe the data. Better modeling of the Fe-K in such cases gives completely consistent results with both old and current calibration. Thus, inadequate modeling of the Fe-K line in these sources can seriously underestimate the line width and equivalent width, and therefore lead to incorrect deductions about the astrophysical implications.

  12. Calculation of correlation times for the. gamma. -alumina-supported molybdenum subcarbonyl, Mo(CO) sub 3 (ads)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, G.W.; Hanson, B.E.

    1989-07-05

    The theory of carbon-13 NMR line widths in the solid state for molecules with large chemical shift anisotropies is applied to the adsorbed molybdenum subcarbonyls Mo(CO){sub 3}(ads) and Mo(CO){sub 5}(ads). Correlation times for the rotation of the molybdenum subcarbonyl groups Mo(CO){sub 3}(ads) and Mo(CO){sub 5}(ads) on partially dehydroxylated alumina are calculated. Good agreement is obtained between data reported at observation frequencies of 15 to 75.5 MHz for carbon-13 for Mo(CO){sub 3}(ads). The correlation time for this adsorbed species is calculated to have a lower limit of 4.6 {plus minus} 0.5 ms. The presence of broad lines in the room temperaturemore » spectra for Mo(CO){sub 3}(ads) is thus explained by a slow molecular motion. Data for Mo(CO){sub 5}(ads) are available at observation frequencies of 15 to 90.5 MHz. A good fit to the experimental data is obtained assuming either long or short correlation times for this species. Thus literature estimates of <10{sup {minus}6}s for the correlation time for this species cannot be confirmed with certainty from the analysis presented here.« less

  13. Comprehensive analysis of NMR data using advanced line shape fitting.

    PubMed

    Niklasson, Markus; Otten, Renee; Ahlner, Alexandra; Andresen, Cecilia; Schlagnitweit, Judith; Petzold, Katja; Lundström, Patrik

    2017-10-01

    NMR spectroscopy is uniquely suited for atomic resolution studies of biomolecules such as proteins, nucleic acids and metabolites, since detailed information on structure and dynamics are encoded in positions and line shapes of peaks in NMR spectra. Unfortunately, accurate determination of these parameters is often complicated and time consuming, in part due to the need for different software at the various analysis steps and for validating the results. Here, we present an integrated, cross-platform and open-source software that is significantly more versatile than the typical line shape fitting application. The software is a completely redesigned version of PINT ( https://pint-nmr.github.io/PINT/ ). It features a graphical user interface and includes functionality for peak picking, editing of peak lists and line shape fitting. In addition, the obtained peak intensities can be used directly to extract, for instance, relaxation rates, heteronuclear NOE values and exchange parameters. In contrast to most available software the entire process from spectral visualization to preparation of publication-ready figures is done solely using PINT and often within minutes, thereby, increasing productivity for users of all experience levels. Unique to the software are also the outstanding tools for evaluating the quality of the fitting results and extensive, but easy-to-use, customization of the fitting protocol and graphical output. In this communication, we describe the features of the new version of PINT and benchmark its performance.

  14. D IR Line Shapes for Determining the Structure of a Peptide in a Bilayer

    NASA Astrophysics Data System (ADS)

    Woys, Ann Marie; Lin, Y. S.; Skinner, J. S.; Zanni, M. T.; Reddy, A. S.; de Pablo, J. J.

    2010-06-01

    Structure of the antimicrobial peptide, ovispirin, on a lipid bilayer was determined using 2D IR spectroscopy and spectra calculated from molecular dynamics simulations. Ovispirin is an 18 residue amphipathic peptide that binds parallel to the membrane in a mostly alpha helical conformation. 15 of the 18 residues were ^1^3C^1^8O isotopically labeled on the backbone to isolate the amide I vibration at each position. 2D IR spectra were collected for each labeled peptide in 3:1 POPC/POPG vesicles, and peak width along the diagonal was measured. The diagonal line width is sensitive to the vibrator's electrostatic environment, which varies through the bilayer. We observe an oscillatory line width spanning 10 to 24 cm-1 and with a period of nearly 3.6 residues. To further investigate the position of ovispirin in a bilayer, molecular dynamics simulations determined the peptide depth to be just below the lipid headgroups. The trajectory of ovispirin at this depth was used to calculate 2D IR spectra, from which the diagonal line width is measured. Both experimental and simulated line widths are similar in periodicity and suggest a kink in the peptide backbone and the tilt in the bilayer. A. Woys, Y. S. Lin, A. S. Reddy, W. Xiong, J. J. de Pablo, J. S. Skinner, and M. T. Zanni, JACS 132, 2832-2838 (2010).

  15. Synthesis, Characterization, and Anti-Cancer Activity of Some New N'-(2-Oxoindolin-3-ylidene)-2-propylpentane hydrazide-hydrazones Derivatives.

    PubMed

    El-Faham, Ayman; Farooq, Muhammad; Khattab, Sherine N; Abutaha, Nael; Wadaan, Mohammad A; Ghabbour, Hazem A; Fun, Hoong-Kun

    2015-08-13

    Eight novel N'-(2-oxoindolin-3-ylidene)-2-propylpentane hydrazide-hydrazone derivatives 4a-h were synthesized and fully characterized by IR, NMR ((1)H-NMR and (13)C-NMR), elemental analysis, and X-ray crystallography. The cyto-toxicity and in vitro anti-cancer evaluation of the prepared compounds have been assessed against two different human tumour cell lines including human liver (HepG2) and leukaemia (Jurkat), as well as in normal cell lines derived from human embryonic kidney (HEK293) using MTT assay. The compounds 3e, 3f, 4a, 4c, and 4e revealed promising anti-cancer activities in tested human tumour cells lines (IC50 values between 3 and 7 μM) as compared to the known anti-cancer drug 5-Fluorouracil (IC50 32-50 μM). Among the tested compounds, 4a showed specificity against leukaemia (Jurkat) cells, with an IC50 value of 3.14 μM, but this compound was inactive in liver cancer and normal cell lines.

  16. Magnetic polarons in antiferromagnetic CaMnO3-x (x<0.01) probed by O17 NMR

    NASA Astrophysics Data System (ADS)

    Trokiner, A.; Verkhovskii, S.; Yakubovskii, A.; Gerashenko, A.; Monod, P.; Kumagai, K.; Mikhalev, K.; Buzlukov, A.; Litvinova, Z.; Gorbenko, O.; Kaul, A.; Kartavtzeva, M.

    2009-06-01

    We study with O17 NMR and bulk magnetization a lightly electron doped CaMnO3-x (x<0.01) polycrystalline sample in the G -type antiferromagnetic state. The O17 NMR spectra show two lines with very different intensities corresponding to oxygen sites with very different local magnetic environments. The more intense unshifted line is due to the antiferromagnetic (AF) matrix. The thermal dependence of the magnetic moment of the AF sublattice deduced from the O17 linewidth is typical of insulating three-dimensional Heisenberg antiferromagnets. The less intense, strongly shifted line directly evidences the existence of ferromagnetic (FM) domains embedded in the AF spin lattice. The extremely narrow line in zero magnetic field indicates a nearly perfect alignment of the manganese spins in the FM domains which also display an unusually weak temperature dependence of their magnetic moment. We show that these FM entities start to move above 40 K in a slow-diffusion regime. These static and dynamic properties bear a strong similarity with those of a small size self-trapped magnetic polaron.

  17. PACCE: Perl Algorithm to Compute Continuum and Equivalent Widths

    NASA Astrophysics Data System (ADS)

    Riffel, Rogério; Borges Vale, Tibério

    2011-05-01

    PACCE (Perl Algorithm to Compute continuum and Equivalent Widths) computes continuum and equivalent widths. PACCE is able to determine mean continuum and continuum at line center values, which are helpful in stellar population studies, and is also able to compute the uncertainties in the equivalent widths using photon statistics.

  18. Resolution Limits of Nanoimprinted Patterns by Fluorescence Microscopy

    NASA Astrophysics Data System (ADS)

    Kubo, Shoichi; Tomioka, Tatsuya; Nakagawa, Masaru

    2013-06-01

    The authors investigated optical resolution limits to identify minimum distances between convex lines of fluorescent dye-doped nanoimprinted resist patterns by fluorescence microscopy. Fluorescent ultraviolet (UV)-curable resin and thermoplastic resin films were transformed into line-and-space patterns by UV nanoimprinting and thermal nanoimprinting, respectively. Fluorescence immersion observation needed an immersion medium immiscible to the resist films, and an ionic liquid of triisobutyl methylphosphonium tosylate was appropriate for soluble thermoplastic polystyrene patterns. Observation with various numerical aperture (NA) values and two detection wavelength ranges showed that the resolution limits were smaller than the values estimated by the Sparrow criterion. The space width to identify line patterns became narrower as the line width increased. The space width of 100 nm was demonstrated to be sufficient to resolve 300-nm-wide lines in the detection wavelength range of 575-625 nm using an objective lens of NA= 1.40.

  19. A simple formula for estimating Stark widths of neutral lines. [of stellar atmospheres

    NASA Technical Reports Server (NTRS)

    Freudenstein, S. A.; Cooper, J.

    1978-01-01

    A simple formula for the prediction of Stark widths of neutral lines similar to the semiempirical method of Griem (1968) for ion lines is presented. This formula is a simplification of the quantum-mechanical classical path impact theory and can be used for complicated atoms for which detailed calculations are not readily available, provided that the effective position of the closest interacting level is known. The expression does not require the use of a computer. The formula has been applied to a limited number of neutral lines of interest, and the width obtained is compared with the much more complete calculations of Bennett and Griem (1971). The agreement generally is well within 50% of the published value for the lines investigated. Comparisons with other formulas are also made. In addition, a simple estimate for the ion-broadening parameter is given.

  20. NMR Observation of Mobile Protons in Proton-Implanted ZnO Nanorods

    PubMed Central

    Park, Jun Kue; Kwon, Hyeok-Jung; Lee, Cheol Eui

    2016-01-01

    The diffusion properties of H+ in ZnO nanorods are investigated before and after 20 MeV proton beam irradiation by using 1H nuclear magnetic resonance (NMR) spectroscopy. Herein, we unambiguously observe that the implanted protons occupy thermally unstable site of ZnO, giving rise to a narrow NMR line at 4.1 ppm. The activation barrier of the implanted protons was found to be 0.46 eV by means of the rotating-frame spin-lattice relaxation measurements, apparently being interstitial hydrogens. High-energy beam irradiation also leads to correlated jump diffusion of the surface hydroxyl group of multiple lines at ~1 ppm, implying the presence of structural disorder at the ZnO surface. PMID:26988733

  1. Selecting maxillary anterior tooth width by measuring certain facial dimensions in the Kurdish population.

    PubMed

    A L-Kaisy, Neda; Garib, Balkees Taha

    2016-03-01

    One of the most difficult aspects of complete denture fabrication is selecting appropriately sized maxillary anterior teeth that will harmonize with the face. There are no generally accepted or naturally observed principles to guide dentists in this selection. The purpose of this study was to determine whether a relationship exists between various facial measurements and the different single or combined mesiodistal widths of maxillary anterior teeth in a Kurdish population. A total of 65 Kurdish dental students participated in this study. Two standardized digital photographs of the face (relaxed and smiling capture) were recorded. The interpupillary distance (IPD), inner canthal distance (ICD), interalar distance (IAD), and width of the 2 central incisors were determined by Image J software. The mesiodistal width and the combined straight-line width of the centrals, laterals, and canines were measured directly from the casts of the participants with digital calipers. A simple linear regression and the Pearson correlation coefficient were used to investigate the relationship between the particular facial measurement and the widths of the anterior teeth (α=.05). Significant correlations existed between the IPD and different tooth measurements; the highest was with the mean width of the canines (r=0.55). The proposed proportion between the IPD and the central incisor width was 6.93. The golden proportion of the ICD to the width of the central incisors and of the IAD to the straight-line width of the 6 anterior teeth could be used as a dependent parameter in Kurdish men. The IPD can be used to predict the width of anterior teeth in both sexes. In men, the width of the central incisors may be estimated from the ICD and the straight-line width of the 6 anterior teeth from the IAD. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  2. Tooth display and lip position during spontaneous and posed smiling in adults.

    PubMed

    Van Der Geld, Pieter; Oosterveld, Paul; Berge, Stefaan J; Kuijpers-Jagtman, Anne M

    2008-08-01

    To analyze differences in tooth display, lip-line height, and smile width between the posed smiling record, traditionally produced for orthodontic diagnosis, and the spontaneous (Duchenne) smile of joy. The faces of 122 male participants were each filmed during spontaneous and posed smiling. Spontaneous smiles were elicited through the participants watching a comical movie. Maxillary and mandibular lip-line heights, tooth display, and smile width were measured using a digital videographic method for smile analysis. Paired sample t-tests were used to compare measurements of posed and spontaneous smiling. Maxillary lip-line heights during spontaneous smiling were significantly higher than during posed smiling. Compared to spontaneous smiling, tooth display in the (pre)molar area during posed smiling decreased by up to 30%, along with a significant reduction of smile width. During posed smiling, also mandibular lip-line heights changed and the teeth were more covered by the lower lip than during spontaneous smiling. Reduced lip-line heights, tooth display, and smile width on a posed smiling record can have implications for the diagnostics of lip-line height, smile arc, buccal corridors, and plane of occlusion. Spontaneous smiling records next to posed smiling records are therefore recommended for diagnostic purposes. Because of the dynamic nature of spontaneous smiling, it is proposed to switch to dynamic video recording of the smile.

  3. Fano resonances of a ring-shaped "hexamer" cluster at near-infrared wavelength

    NASA Astrophysics Data System (ADS)

    Liu, Tong-Tong; Xia, Feng; Sun, Peng; Liu, Li-Li; Du, Wei; Li, Meng-Xue; Kong, Wei-Jin; Wan, Yong; Dong, Li-Feng; Yun, Mao-Jin

    2018-03-01

    Fano resonances have been studied intensely in the last decade, since it is an important way to decrease the resonance line width and enhance local electric field. However, achieving a Fano line-shape with both narrow line width and high spectral contrast ratio is still a challenge. In this paper, we theoretically predict the Fano resonance induced by the extinction of normal plane wave in a ring-shaped hexamer cluster at near-infrared wavelength. In order to obtain the narrow Fano line width and high spectral contrast ratio, the relationships between the Fano line-shape and the parameters of the nanostructure are analyzed in detail. The nanostructure is simulated by using commercial software based on finite element method. The simulation results show that when the structural parameters are optimized, the Fano line width can be narrowed down 0.028 eV with a contrast ratio of 86%, and the local electric field enhancement factor at the Fano resonance wavelength can reach to 36. Furthermore, the effective mode volume of the structure is 3.9 ×10-23m3 which is lower than the available literature. These results indicate many potential applications of the Fano resonance in multiwavelength surface-enhanced Raman scattering and biosensing.

  4. Bayesian deconvolution and quantification of metabolites in complex 1D NMR spectra using BATMAN.

    PubMed

    Hao, Jie; Liebeke, Manuel; Astle, William; De Iorio, Maria; Bundy, Jacob G; Ebbels, Timothy M D

    2014-01-01

    Data processing for 1D NMR spectra is a key bottleneck for metabolomic and other complex-mixture studies, particularly where quantitative data on individual metabolites are required. We present a protocol for automated metabolite deconvolution and quantification from complex NMR spectra by using the Bayesian automated metabolite analyzer for NMR (BATMAN) R package. BATMAN models resonances on the basis of a user-controllable set of templates, each of which specifies the chemical shifts, J-couplings and relative peak intensities for a single metabolite. Peaks are allowed to shift position slightly between spectra, and peak widths are allowed to vary by user-specified amounts. NMR signals not captured by the templates are modeled non-parametrically by using wavelets. The protocol covers setting up user template libraries, optimizing algorithmic input parameters, improving prior information on peak positions, quality control and evaluation of outputs. The outputs include relative concentration estimates for named metabolites together with associated Bayesian uncertainty estimates, as well as the fit of the remainder of the spectrum using wavelets. Graphical diagnostics allow the user to examine the quality of the fit for multiple spectra simultaneously. This approach offers a workflow to analyze large numbers of spectra and is expected to be useful in a wide range of metabolomics studies.

  5. Probing microsecond time scale dynamics in proteins by methyl (1)H Carr-Purcell-Meiboom-Gill relaxation dispersion NMR measurements. Application to activation of the signaling protein NtrC(r).

    PubMed

    Otten, Renee; Villali, Janice; Kern, Dorothee; Mulder, Frans A A

    2010-12-01

    To study microsecond processes by relaxation dispersion NMR spectroscopy, low power deposition and short pulses are crucial and encourage the development of experiments that employ (1)H Carr-Purcell-Meiboom-Gill (CPMG) pulse trains. Herein, a method is described for the comprehensive study of microsecond to millisecond time scale dynamics of methyl groups in proteins, exploiting their high abundance and favorable relaxation properties. In our approach, protein samples are produced using [(1)H, (13)C]-d-glucose in ∼100% D(2)O, which yields CHD(2) methyl groups for alanine, valine, threonine, isoleucine, leucine, and methionine residues with high abundance, in an otherwise largely deuterated background. Methyl groups in such samples can be sequence-specifically assigned to near completion, using (13)C TOCSY NMR spectroscopy, as was recently demonstrated (Otten, R.; et al. J. Am. Chem. Soc. 2010, 132, 2952-2960). In this Article, NMR pulse schemes are presented to measure (1)H CPMG relaxation dispersion profiles for CHD(2) methyl groups, in a vein similar to that of backbone relaxation experiments. Because of the high deuteration level of methyl-bearing side chains, artifacts arising from proton scalar coupling during the CPMG pulse train are negligible, with the exception of Ile-δ1 and Thr-γ2 methyl groups, and a pulse scheme is described to remove the artifacts for those residues. Strong (13)C scalar coupling effects, observed for several leucine residues, are removed by alternative biochemical and NMR approaches. The methodology is applied to the transcriptional activator NtrC(r), for which an inactive/active state transition was previously measured and the motions in the microsecond time range were estimated through a combination of backbone (15)N CPMG dispersion NMR spectroscopy and a collection of experiments to determine the exchange-free component to the transverse relaxation rate. Exchange contributions to the (1)H line width were detected for 21 methyl groups, and these probes were found to collectively report on a local structural rearrangement around the phosphorylation site, with a rate constant of (15.5 ± 0.5) × 10(3) per second (i.e., τ(ex) = 64.7 ± 1.9 μs). The affected methyl groups indicate that, already before phosphorylation, a substantial, transient rearrangement takes place between helices 3 and 4 and strands 4 and 5. This conformational equilibrium allows the protein to gain access to the active, signaling state in the absence of covalent modification through a shift in a pre-existing dynamic equilibrium. Moreover, the conformational switching maps exactly to the regions that differ between the solution NMR structures of the fully inactive and active states. These results demonstrate that a cost-effective and quantitative study of protein methyl group dynamics by (1)H CPMG relaxation dispersion NMR spectroscopy is possible and can be applied to study functional motions on the microsecond time scale that cannot be accessed by backbone (15)N relaxation dispersion NMR. The use of methyl groups as dynamics probes extends such applications also to larger proteins.

  6. Natural abundant (17) O NMR in a 1.5-T Halbach magnet.

    PubMed

    Sørensen, Morten K; Bakharev, Oleg N; Jensen, Ole; Nielsen, Niels Chr

    2016-06-01

    We present mobile, low-field (17) O NMR as a means for monitoring oxygen in liquids. Whereas oxygen is one of the most important elements, oxygen NMR is limited by a poor sensitivity related to low natural abundance and gyro-magnetic ratio of the NMR active (17) O isotope. Here, we demonstrate (17) O NMR detection at a Larmor frequency of 8.74 MHz in a 1.5-T Halbach neodymium magnet with a home-built digital NMR instrument suitable for large-scale production and in-line monitoring applications. The proposed (17) O NMR sensor may be applied for direct, noninvasive measurements of water content in, for example, oil, manure, or food in automated quality or process control. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Relation of short-range and long-range lithium ion dynamics in glass-ceramics: Insights from 7Li NMR field-cycling and field-gradient studies

    NASA Astrophysics Data System (ADS)

    Haaks, Michael; Martin, Steve W.; Vogel, Michael

    2017-09-01

    We use various 7Li NMR methods to investigate lithium ion dynamics in 70Li 2S-30 P 2S5 glass and glass-ceramic obtained from this glass after heat treatment. We employ 7Li spin-lattice relaxometry, including field-cycling measurements, and line-shape analysis to investigate short-range ion jumps as well as 7Li field-gradient approaches to characterize long-range ion diffusion. The results show that ceramization substantially enhances the lithium ion mobility on all length scales. For the 70Li 2S-30 P 2S5 glass-ceramic, no evidence is found that bimodal dynamics result from different ion mobilities in glassy and crystalline regions of this sample. Rather, 7Li field-cycling relaxometry shows that dynamic susceptibilities in broad frequency and temperature ranges can be described by thermally activated jumps governed by a Gaussian distribution of activation energies g (Ea) with temperature-independent mean value Em=0.43 eV and standard deviation σ =0.07 eV . Moreover, use of this distribution allows us to rationalize 7Li line-shape results for the local ion jumps. In addition, this information about short-range ion dynamics further explains 7Li field-gradient results for long-range ion diffusion. In particular, we quantitatively show that, consistent with our experimental results, the temperature dependence of the self-diffusion coefficient D is not described by the mean activation energy Em of the local ion jumps, but by a significantly smaller apparent value whenever the distribution of correlation times G (logτ ) of the jump motion derives from an invariant distribution of activation energies and, hence, continuously broadens upon cooling. This effect occurs because the harmonic mean, which determines the results of diffusivity or also conductivity studies, continuously separates from the peak position of G (logτ ) when the width of this distribution increases.

  8. Cavity mode-width spectroscopy with widely tunable ultra narrow laser.

    PubMed

    Cygan, Agata; Lisak, Daniel; Morzyński, Piotr; Bober, Marcin; Zawada, Michał; Pazderski, Eugeniusz; Ciuryło, Roman

    2013-12-02

    We explore a cavity-enhanced spectroscopic technique based on determination of the absorbtion coefficient from direct measurement of spectral width of the mode of the optical cavity filled with absorbing medium. This technique called here the cavity mode-width spectroscopy (CMWS) is complementary to the cavity ring-down spectroscopy (CRDS). While both these techniques use information on interaction time of the light with the cavity to determine absorption coefficient, the CMWS does not require to measure very fast signals at high absorption conditions. Instead the CMWS method require a very narrow line width laser with precise frequency control. As an example a spectral line shape of P7 Q6 O₂ line from the B-band was measured with use of an ultra narrow laser system based on two phase-locked external cavity diode lasers (ECDL) having tunability of ± 20 GHz at wavelength range of 687 to 693 nm.

  9. Characterization of Finite Ground Coplanar Waveguide with Narrow Ground Planes

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Tentzeris, Emmanouil M.; Katehi, Linda P. B.

    1997-01-01

    Coplanar waveguide with finite width ground planes is characterized through measurements, conformal mapping, and the Finite Difference Time Domain (FDTD) technique for the purpose of determining the optimum ground plane width. The attenuation and effective permittivity of the lines are related to its geometry. It is found that the characteristics of the Finite Ground Coplanar line (FGC) are not dependent on the ground plane width if it is greater than twice the center conductor width, but less than lambda(sub d)/8. In addition, electromagnetic field plots are presented which show for the first time that electric fields in the plane of the substrate terminate on the outer edge of the ground plane, and that the magnitude of these fields is related to the ground plane width.

  10. Spectra of High-Ionization Seyfert 1 Galaxies: Implications for the Narrow-Line Region

    NASA Technical Reports Server (NTRS)

    Moore, David; Cohen, Ross D.; Marcy, Geoffrey W.

    1996-01-01

    We present line profiles and profile parameters for the Narrow-Line Regions (NLRs) of six Seyfert 1 galaxies with high-ionization lines: MCG 8-11-11, Mrk 79, Mrk 704, Mrk 841, NGC 4151, and NGC 5548. The sample was chosen primarily with the goal of obtaining high-quality [Fe VII] lambda6087 and, when possible, [Fe X] lambda6374 profiles to determine if these lines are more likely formed in a physically distinct 'coronal line region' or are formed throughout the NLR along with lines of lower critical density (n(sub cr)) and/or Ionization Potential (IP). We discuss correlations of velocity shift and width with n(sub cr) and IP. In some objects, lines of high IP and/or n(sub cr) are systematically broader than those of low IP/n(sub cr). Of particular interest, however, are objects that show no correlations of line width with either IP or n(sub cr). In these objects, lines of high and low IP/n(sub cr), are remarkably similar, which is difficult to reconcile with the classical picture of the NLR, in which lines of high and low IP/n(sub cr) are formed in physically distinct regions. We argue for similar spatial extents for the flux in lines with similar profiles. Here, as well as in a modeling-oriented companion paper, we develop further an idea suggested by Moore & Cohen that objects that do and do not show line width correlations with IP/n(sub cr) can both be explained in terms of a single NLR model with only a small difference in the cloud column density distinguishing the two types of object. Overall, our objects do not show correlations between the Full Width at Half-Maximum (FWHM) and IP and/or n(sub cr). The width must be defined by a parameter that is sensitive to extended profile wings in order for the correlations to result. We present models in which FWHM correlations with IP and/or n(sub cr) result only after simulating the lower spectral resolution used in previous observational studies. The models that simulate the higher spectral resolution of our observational study produce line width correlations only if the width is defined by a parameter that is more sensitive to extended profile wings than is the FWHM. Our sample of six objects is in effect augmented by incorporating the larger sample (16 objects) of Veilleux into some of our discussion. This paper focuses on new interpretations of NLR emission-line spectra and line profiles that stem directly from the observations. Paper 2 focuses on modeling and complements this paper by illustrating explicitly the effects that spatial variations in electron density, ionization parameter, and column density have on model profiles. By comparing model profiles with the observed profiles presented here, as well as with those presented by Veilleux, Paper 2 yields insight into how the electron density, ionization parameter, and column density likely vary throughout the NLR.

  11. Development of stable, narrow spectral line-width, fiber delivered laser source for spin exchange optical pumping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Bo; Tong, Xin; Jiang, Chenyang

    2015-06-05

    In this study, we developed a stable, narrow spectral line-width, fiber delivered laser source for spin exchange optical pumping. An optimized external cavity equipped with an off-the-shelf volume holographic grating narrowed the spectral line-width of a 100 W high-power diode laser and stabilized the laser spectrum. The laser spectrum showed a high side mode suppression ratio of >30 dB and good long-term stability (center wavelength drifting within ±0.002 nm during 220 h of operation). Finally, our laser is delivered by a multimode fiber with power ~70 W, center wavelength of 794.77 nm, and spectral bandwidth of ~0.12 nm.

  12. Effects on Calculated Half-Widths and Shifts from the Line Coupling for Asymmetric-Top Molecules

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Boulet, C.; Tipping, R. H.

    2014-01-01

    The refinement of the Robert-Bonamy formalism by considering the line coupling for linear molecules developed in our previous studies [Q. Ma, C. Boulet, and R. H. Tipping, J. Chem. Phys. 139, 034305 (2013); 140, 104304 (2014)] have been extended to asymmetric-top molecules. For H2O immersed in N2 bath, the line coupling selection rules applicable for the pure rotational band to determine whether two specified lines are coupled or not are established. Meanwhile, because the coupling strengths are determined by relative importance of off-diagonal matrix elements versus diagonal elements of the operator -iS1 -S2, quantitative tools are developed with which one is able to remove weakly coupled lines from consideration. By applying these tools, we have found that within reasonable tolerances, most of the H2O lines in the pure rotational band are not coupled. This reflects the fact that differences of energy levels of the H2O states are pretty large. But, there are several dozen strongly coupled lines and they can be categorized into different groups such that the line couplings occur only within the same groups. In practice, to identify those strongly coupled lines and to confine them into sub-linespaces are crucial steps in considering the line coupling. We have calculated half-widths and shifts for some groups, including the line coupling. Based on these calculations, one can conclude that for most of the H2O lines, it is unnecessary to consider the line coupling. However, for several dozens of lines, effects on the calculated half-widths from the line coupling are small, but remain noticeable and reductions of calculated half-widths due to including the line coupling could reach to 5%. Meanwhile, effects on the calculated shifts are very significant and variations of calculated shifts could be as large as 25%.

  13. Effects on calculated half-widths and shifts from the line coupling for asymmetric-top molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Q.; Boulet, C.; Tipping, R. H.

    2014-06-28

    The refinement of the Robert-Bonamy formalism by considering the line coupling for linear molecules developed in our previous studies [Q. Ma, C. Boulet, and R. H. Tipping, J. Chem. Phys. 139, 034305 (2013); 140, 104304 (2014)] have been extended to asymmetric-top molecules. For H{sub 2}O immersed in N{sub 2} bath, the line coupling selection rules applicable for the pure rotational band to determine whether two specified lines are coupled or not are established. Meanwhile, because the coupling strengths are determined by relative importance of off-diagonal matrix elements versus diagonal elements of the operator −iS{sub 1} − S{sub 2}, quantitative toolsmore » are developed with which one is able to remove weakly coupled lines from consideration. By applying these tools, we have found that within reasonable tolerances, most of the H{sub 2}O lines in the pure rotational band are not coupled. This reflects the fact that differences of energy levels of the H{sub 2}O states are pretty large. But, there are several dozen strongly coupled lines and they can be categorized into different groups such that the line couplings occur only within the same groups. In practice, to identify those strongly coupled lines and to confine them into sub-linespaces are crucial steps in considering the line coupling. We have calculated half-widths and shifts for some groups, including the line coupling. Based on these calculations, one can conclude that for most of the H{sub 2}O lines, it is unnecessary to consider the line coupling. However, for several dozens of lines, effects on the calculated half-widths from the line coupling are small, but remain noticeable and reductions of calculated half-widths due to including the line coupling could reach to 5%. Meanwhile, effects on the calculated shifts are very significant and variations of calculated shifts could be as large as 25%.« less

  14. Semi-empirical calculations of line-shape parameters and their temperature dependences for the ν6 band of CH3D perturbed by N2

    NASA Astrophysics Data System (ADS)

    Dudaryonok, A. S.; Lavrentieva, N. N.; Buldyreva, J.

    2018-06-01

    (J, K)-line broadening and shift coefficients with their temperature-dependence characteristics are computed for the perpendicular (ΔK = ±1) ν6 band of the 12CH3D-N2 system. The computations are based on a semi-empirical approach which consists in the use of analytical Anderson-type expressions multiplied by a few-parameter correction factor to account for various deviations from Anderson's theory approximations. A mathematically convenient form of the correction factor is chosen on the basis of experimental rotational dependencies of line widths, and its parameters are fitted on some experimental line widths at 296 K. To get the unknown CH3D polarizability in the excited vibrational state v6 for line-shift calculations, a parametric vibration-state-dependent expression is suggested, with two parameters adjusted on some room-temperature experimental values of line shifts. Having been validated by comparison with available in the literature experimental values for various sub-branches of the band, this approach is used to generate massive data of line-shape parameters for extended ranges of rotational quantum numbers (J up to 70 and K up to 20) typically requested for spectroscopic databases. To obtain the temperature-dependence characteristics of line widths and line shifts, computations are done for various temperatures in the range 200-400 K recommended for HITRAN and least-squares fit procedures are applied. For the case of line widths strong sub-branch dependence with increasing K is observed in the R- and P-branches; for the line shifts such dependence is stated for the Q-branch.

  15. Backbone dynamics of a model membrane protein: assignment of the carbonyl carbon /sup 13/C NMR resonances in detergent-solubilized M13 coat protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, G.D.; Weiner, J.H.; Sykes, B.D.

    The major coat protein of the filamentous bacteriophage M13 is a 50-residue amphiphilic polypeptide which is inserted, as an integral membrane-spanning protein, in the inner membrane of the Escherichia coli host during infection. /sup 13/C was incorporated biosynthetically into a total of 23 of the peptide carbonyls using labeled amino acids (alanine, glycine, lysine, phenylalanine, and proline). The structure and dynamics of carbonyl-labeled M13 coat protein were monitored by /sup 13/C nuclear magnetic resonance (NMR) spectroscopy. Assignment of many resonances was achieved by using protease digestion, pH titration, or labeling of the peptide bond with both /sup 13/C and /supmore » 15/N. The carbonyl region of the natural-abundance /sup 13/C NMR spectrum of M13 coat protein in sodium dodecyl sulfate solution shows approximately eight backbone carbonyl resonances with line widths much narrower than the rest. Three of these more mobile residues correspond to assigned peaks (glycine-3, lysine-48, and alanine-49) in the individual amino acid spectra, and another almost certainly arises from glutamic acid-2. A ninth residue, alanine-1, also gives rise to a very narrow carbonyl resonance if the pH is well above or below the pK/sub a/ of the terminal amino group. These data suggest that only about four residues at either end of the protein experience large-amplitude spatial fluctuations; the rest of the molecule is essentially rigid on the time scale of the overall rotational tumbling of the protein-detergent complex. The relative exposure of different regions of detergent-bound protein was monitored by limited digestion with proteinase K. Comparable spectra and digestion patterns were obtained when the protein was solubilized in sodium deoxycholate, suggesting that the coat protein binds both amphiphiles in a similar fashion.« less

  16. Addressable-Matrix Integrated-Circuit Test Structure

    NASA Technical Reports Server (NTRS)

    Sayah, Hoshyar R.; Buehler, Martin G.

    1991-01-01

    Method of quality control based on use of row- and column-addressable test structure speeds collection of data on widths of resistor lines and coverage of steps in integrated circuits. By use of straightforward mathematical model, line widths and step coverages deduced from measurements of electrical resistances in each of various combinations of lines, steps, and bridges addressable in test structure. Intended for use in evaluating processes and equipment used in manufacture of application-specific integrated circuits.

  17. The relaxation matrix for symmetric tops with inversion symmetry. I. Effects of line coupling on self-broadened ν1 and pure rotational bands of NH3.

    PubMed

    Ma, Q; Boulet, C

    2016-06-14

    The Robert-Bonamy formalism has been commonly used to calculate half-widths and shifts of spectral lines for decades. This formalism is based on several approximations. Among them, two have not been fully addressed: the isolated line approximation and the neglect of coupling between the translational and internal motions. Recently, we have shown that the isolated line approximation is not necessary in developing semi-classical line shape theories. Based on this progress, we have been able to develop a new formalism that enables not only to reduce uncertainties on calculated half-widths and shifts, but also to model line mixing effects on spectra starting from the knowledge of the intermolecular potential. In our previous studies, the new formalism had been applied to linear and asymmetric-top molecules. In the present study, the method has been extended to symmetric-top molecules with inversion symmetry. As expected, the inversion splitting induces a complete failure of the isolated line approximation. We have calculated the complex relaxation matrices of self-broadened NH3. The half-widths and shifts in the ν1 and the pure rotational bands are reported in the present paper. When compared with measurements, the calculated half-widths match the experimental data very well, since the inapplicable isolated line approximation has been removed. With respect to the shifts, only qualitative results are obtained and discussed. Calculated off-diagonal elements of the relaxation matrix and a comparison with the observed line mixing effects are reported in the companion paper (Paper II).

  18. The Relaxation Matrix for Symmetric Tops with Inversion Symmetry. I. Effects of Line Coupling on Self-Broadened v (sub 1) and Pure Rotational Bands of NH3

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Boulet, C.

    2016-01-01

    The Robert-Bonamy formalism has been commonly used to calculate half-widths and shifts of spectral lines for decades. This formalism is based on several approximations. Among them, two have not been fully addressed: the isolated line approximation and the neglect of coupling between the translational and internal motions. Recently, we have shown that the isolated line approximation is not necessary in developing semi-classical line shape theories. Based on this progress, we have been able to develop a new formalism that enables not only to reduce uncertainties on calculated half-widths and shifts, but also to model line mixing effects on spectra starting from the knowledge of the intermolecular potential. In our previous studies, the new formalism had been applied to linear and asymmetric-top molecules. In the present study, the method has been extended to symmetric-top molecules with inversion symmetry. As expected, the inversion splitting induces a complete failure of the isolated line approximation. We have calculated the complex relaxation matrices of selfbroadened NH3. The half-widths and shifts in the ?1 and the pure rotational bands are reported in the present paper. When compared with measurements, the calculated half-widths match the experimental data very well, since the inapplicable isolated line approximation has been removed. With respect to the shifts, only qualitative results are obtained and discussed. Calculated off-diagonal elements of the relaxation matrix and a comparison with the observed line mixing effects are reported in the companion paper (Paper II).

  19. A self optimizing synthetic organic reactor system using real-time in-line NMR spectroscopy† †Electronic supplementary information (ESI) available: Details about the methodology, LabView scripts, experimental set-ups, additional spectra and self-optimization can be found in the SI. See DOI: 10.1039/c4sc03075c Click here for additional data file.

    PubMed Central

    Sans, Victor; Porwol, Luzian; Dragone, Vincenza

    2015-01-01

    A configurable platform for synthetic chemistry incorporating an in-line benchtop NMR that is capable of monitoring and controlling organic reactions in real-time is presented. The platform is controlled via a modular LabView software control system for the hardware, NMR, data analysis and feedback optimization. Using this platform we report the real-time advanced structural characterization of reaction mixtures, including 19F, 13C, DEPT, 2D NMR spectroscopy (COSY, HSQC and 19F-COSY) for the first time. Finally, the potential of this technique is demonstrated through the optimization of a catalytic organic reaction in real-time, showing its applicability to self-optimizing systems using criteria such as stereoselectivity, multi-nuclear measurements or 2D correlations. PMID:29560211

  20. Structure of the charge density wave in cuprate superconductors: Lessons from NMR

    NASA Astrophysics Data System (ADS)

    Atkinson, W. A.; Ufkes, S.; Kampf, A. P.

    2018-03-01

    Using a mix of numerical and analytic methods, we show that recent NMR 17O measurements provide detailed information about the structure of the charge-density wave (CDW) phase in underdoped YBa2Cu3O6 +x . We perform Bogoliubov-de Gennes (BdG) calculations of both the local density of states and the orbitally resolved charge density, which are closely related to the magnetic and electric quadrupole contributions to the NMR spectrum, using a microscopic model that was shown previously to agree closely with x-ray experiments. The BdG results reproduce qualitative features of the experimental spectrum extremely well. These results are interpreted in terms of a generic "hot-spot" model that allows one to trace the origins of the NMR line shapes. We find that four quantities—the orbital character of the Fermi surface at the hot spots, the Fermi surface curvature at the hot spots, the CDW correlation length, and the magnitude of the subdominant CDW component—are key in determining the line shapes.

  1. Imaging performance of annular apertures. II - Line spread functions

    NASA Technical Reports Server (NTRS)

    Tschunko, H. F. A.

    1978-01-01

    Line images formed by aberration-free optical systems with annular apertures are investigated in the whole range of central obstruction ratios. Annular apertures form lines images with central and side line groups. The number of lines in each line group is given by the ratio of the outer diameter of the annular aperture divided by the width of the annulus. The theoretical energy fraction of 0.889 in the central line of the image formed by an unobstructed aperture increases for centrally obstructed apertures to 0.932 for the central line group. Energy fractions for the central and side line groups are practically constant for all obstruction ratios and for each line group. The illumination of rectangular secondary apertures of various length/width ratios by apertures of various obstruction ratios is discussed.

  2. Finite Ground Coplanar (FGC) Waveguide: Characteristics and Advantages Evaluated for Radiofrequency and Wireless Communication Circuits

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.

    1999-01-01

    Researchers in NASA Lewis Research Center s Electron Device Technology Branch are developing transmission lines for radiofrequency and wireless circuits that are more efficient, smaller, and make lower cost circuits possible. Traditionally, radiofrequency and wireless circuits have employed a microstrip or coplanar waveguide to interconnect the various electrical elements that comprise a circuit. Although a coplanar waveguide (CPW) is widely viewed as better than a microstrip for most applications, it too has problems. To solve these problems, NASA Lewis and the University of Michigan developed a new version of a coplanar waveguide with electrically narrow ground planes. Through extensive numerical modeling and experimental measurements, we have characterized the propagation constant of the FGC waveguide, the lumped and distributed circuit elements integrated in the FGC waveguide, and the coupling between parallel transmission lines. Although the attenuation per unit length is higher for the FGC waveguide because of higher conductor loss, the attenuation is comparable when the ground plane width is twice the center conductor width as shown in the following graph. An upper limit to the line width is derived from observations that when the total line width is greater than ld/2, spurious resonances due to the parallel plate waveguide mode are established. Thus, the ground plane width must be less than ld/4 where ld is the wavelength in the dielectric. Since the center conductor width S is typically less than l/10 to maintain good transverse electromagnetic mode characteristics, it follows that a ground plane width of B = 2S would also be electrically narrow. Thus, we can now treat the ground strips of the FGC waveguide the same way that the center conductor is treated.

  3. THE FORMATION OF IRIS DIAGNOSTICS. VIII. IRIS OBSERVATIONS IN THE C ii 133.5 nm MULTIPLET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rathore, Bhavna; Pereira, Tiago M. D.; Carlsson, Mats

    The C ii 133.5 nm multiplet has been observed by NASA’s Interface Region Imaging Spectrograph (IRIS) in unprecedented spatial resolution. The aims of this work are to characterize these new observations of the C ii lines, place them in context with previous work, and to identify any additional value the C ii lines bring when compared with other spectral lines. We make use of wide, long exposure IRIS rasters covering the quiet Sun and an active region. Line properties such as velocity shift and width are extracted from individual spectra and analyzed. The lines have a variety of shapes (mostlymore » single-peak or double-peak), are strongest in active regions and weaker in the quiet Sun. The ratio between the 133.4 and 133.5 nm components is always less than 1.8, indicating that their radiation is optically thick in all locations. Maps of the C ii line widths are a powerful new diagnostic of chromospheric structures, and their line shifts are a robust velocity diagnostic. Compared with earlier quiet Sun observations, we find similar absolute intensities and mean line widths, but smaller redshifts; this difference can perhaps be attributed to differences in spectral resolution and spatial coverage. The C ii intensity maps are somewhat similar to those of transition region lines, but also share some features with chromospheric maps such as those from the Mg ii k line, indicating that they are formed between the upper chromosphere and transition region. C ii intensity, width, and velocity maps can therefore be used to gather additional information about the upper chromosphere.« less

  4. Antiproliferative Cardenolide Glycosides of Elaeodendron alluaudianum from the Madagascar Rainforest1

    PubMed Central

    Hou, Yanpeng; Cao, Shugeng; Brodie, Peggy; Callmander, Martin; Ratovoson, Fidisoa; Randrianaivo, Richard; Rakotobe, Etienne; Rasamison, Vincent E.; Rakotonandrasana, Stephan; TenDyke, Karen; Suh, Edward M.; Kingston, David G. I.

    2010-01-01

    Bioassay-guided fractionation of an ethanol extract of a Madagascar collection of Elaeodendron alluaudianum led to the isolation of two new cardenolide glycosides (1 and 2). The 1H and 13C NMR spectra of both compounds were fully assigned using a combination of 2D NMR experiments, including 1H-1H COSY, HSQC, HMBC, and ROESY sequences. Both compounds 1 and 2 were tested against the A2780 human ovarian cancer cell line and the U937 human histiocytic lymphoma cell line assays, and showed significant antiproliferative activity with IC50 values of 0.12 and 0.07 μM against the A2780 human ovarian cancer cell line, and 0.15 and 0.08 μM against the U937 human histiocytic lymphoma cell line, respectively. PMID:19058971

  5. VUV spectroscopic study of the ? state of H2

    NASA Astrophysics Data System (ADS)

    Dickenson, G. D.; Ubachs, W.

    2014-04-01

    Spectral lines, probing rotational quantum states J‧ = 0, 1, 2 of the inner well vibrations (υ‧ ≤ 8) in the ? state of molecular hydrogen, were recorded in high resolution using a vacuum ultraviolet Fourier transform absorption spectrometer in the wavelength range 73-86 nm. Accurate line positions and predissociation widths are determined from a fit to the absorption spectra. Improved values for the line positions are obtained, while the predissociation widths agree well with previous investigations.

  6. Optimization of homonuclear 2D NMR for fast quantitative analysis: application to tropine-nortropine mixtures.

    PubMed

    Giraudeau, Patrick; Guignard, Nadia; Hillion, Emilie; Baguet, Evelyne; Akoka, Serge

    2007-03-12

    Quantitative analysis by (1)H NMR is often hampered by heavily overlapping signals that may occur for complex mixtures, especially those containing similar compounds. Bidimensional homonuclear NMR spectroscopy can overcome this difficulty. A thorough review of acquisition and post-processing parameters was carried out to obtain accurate and precise, quantitative 2D J-resolved and DQF-COSY spectra in a much reduced time, thus limiting the spectrometer instabilities in the course of time. The number of t(1) increments was reduced as much as possible, and standard deviation was improved by optimization of spectral width, number of transients, phase cycling and apodization function. Localized polynomial baseline corrections were applied to the relevant chemical shift areas. Our method was applied to tropine-nortropine mixtures. Quantitative J-resolved spectra were obtained in less than 3 min and quantitative DQF-COSY spectra in 12 min, with an accuracy of 3% for J-spectroscopy and 2% for DQF-COSY, and a standard deviation smaller than 1%.

  7. Absolute intensities and self-, N2-, and air-broadened Lorentz halfwidths for selected lines in the nu3 band of (C-12)H3D from measurements with a tunable diode laser spectrometer

    NASA Technical Reports Server (NTRS)

    Malathy Devi, V.; Benner, D. C.; Rinsland, C. P.; Smith, M. A. H.; Thakur, K. B.

    1986-01-01

    Absolute intensities and self-, air- and N2-broadened half-widths have been determined for the first time for individual lines in the nu3(A1) band of (C-12)H3D near 7.6 microns from measurements of individual vibration-rotation lines using a tunable diode laser spectrometer. The intensity measurements are believed to be accurate to within three percent. Within experimental uncertainties, equal broadening efficiencies are found for both air and nitrogen. Self-broadened half-widths determined for three transitions yield an average half-width value of 0.803 + or -0.0010/cm/atm at 296 K.

  8. The Distance to the Coma Cluster from the Tully--Fisher Relation

    NASA Astrophysics Data System (ADS)

    Herter, T.; Vogt, N. P.; Haynes, M. P.; Giovanelli, R.

    1993-12-01

    As part of a survey to determine the distances to nearby (z < .04) Abell clusters via application of the Tully--Fisher (TF) relation, we have obtained 21 cm HI line widths, optical rotation curves and photometric I--band CCD images of galaxies within and near the Coma cluster. Because spiral galaxies within the cluster itself are HI deficient and thus are detected marginally or not at all in HI, distance determinations using only the radio TF relation exclude true cluster members. Our sample includes eight HI deficient galaxies within 1.5 degrees of the cluster center, for which optical velocity widths are derived from their Hα and [NII] rotation curves. The 21 cm line widths have been extracted using a new algorithm designed to optimize the measurement for TF applications, taking into account the effects of spectral resolution and smoothing. The optical width is constructed from the velocity histogram, and is therefore a global value akin to the HI width. A correction for turbulent broadening of the HI is derived from comparison of the optical and HI widths. Using a combined sample of 260 galaxies in 11 clusters and an additional 30 field objects at comparable distances, we have performed a calibration of the radio and optical analogs of the TF relation. Preliminary results show a clear linear relationship with a small offset between optical and radio widths, and good agreement in deriving Tully--Fisher distances to clusters. Our Coma sample consists of 28 galaxies with optical widths and 42 with HI line widths, with an overlapping set of 20 galaxies. We will present the data on the Coma cluster, and discuss the results of our analysis.

  9. Elucidating proline dynamics in spider dragline silk fibre using 2H-13C HETCOR MAS NMR.

    PubMed

    Shi, Xiangyan; Yarger, Jeffery L; Holland, Gregory P

    2014-05-14

    (2)H-(13)C HETCOR MAS NMR is performed on (2)H/(13)C/(15)N-Pro enriched A. aurantia dragline silk. Proline dynamics are extracted from (2)H NMR line shapes and T1 in a site-specific manner to elucidate the backbone and side chain molecular dynamics for the MaSp2 GPGXX β-turn regions for spider dragline silk in the dry and wet, supercontracted states.

  10. Characterization of the Coupling Between Adjacent Finite Ground Coplanar (FGC) Waveguides

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Katehi, Linda P. B.; Tentzeris, Emmanouil M.

    1997-01-01

    Coupling between adjacent Finite Ground Coplanar (FGC) waveguides as a function of the line geometry is presented for the first time. A two Dimension-Finite Difference Time Domain (2D-FDTD) analysis and measurements are used to show that the coupling decreases as the line to line separation and the grOUnd plane width increases. Furthermore, it is shown that for a given spacing between the center lines of two FGC lines, the coupling is lower if the ground plane width is smaller Lastly, electric field plots generated from the 2D-FDTD technique are presented which demonstrate a strong slotline mode is established in the coupled FGC line.

  11. Dielectric image line groove antennas for millimeterwaves

    NASA Astrophysics Data System (ADS)

    Solbach, K.; Wolff, I.

    Grooves in the ground plane of dielectric image lines are proposed as a new radiating structure. A figure is included showing the proposed groove structure as a discontinuity in a dielectric image line. A wave incident on the dielectric image line is partly reflected by the discontinuity, partly transmitted across the groove, and partly radiated into space above the line. In a travelling-wave antenna, a number of grooves are arranged below a dielectric guide, with spacings around one guide wavelength to produce a beam in the upper half space. A prescribed aperture distribution can be effected by tapering the series radiation resistance of the grooves. This can be done by adjusting the depths of the grooves with a constant width or by varying the widths of the grooves with a constant depth. Attention is also given to circular grooves. Here, the widths of the holes are chosen so that they can be considered as waveguides operating far below the cut-off frequency of the fundamental circular waveguide mode.

  12. Relating Line Width and Optical Depth for CO Emission in the Large Mgellanic Cloud

    NASA Astrophysics Data System (ADS)

    Wojciechowski, Evan; Wong, Tony; Bandurski, Jeffrey; MC3 (Mapping CO in Molecular Clouds in the Magellanic Clouds) Team

    2018-01-01

    We investigate data produced from ALMA observations of giant molecular clouds (GMCs) located in the Large Magellanic Cloud (LMC), using 12CO(2–1) and 13CO(2–1) emission. The spectral line width is generally interpreted as tracing turbulent rather than thermal motions in the cloud, but could also be affected by optical depth, especially for the 12CO line (Hacar et al. 2016). We compare the spectral line widths of both lines with their optical depths, estimated from an LTE analysis, to evaluate the importance of optical depth effects. Our cloud sample includes two regions recently published by Wong et al. (2017, submitted): the Tarantula Nebula or 30 Dor, an HII region rife with turbulence, and the Planck cold cloud (PCC), located in a much calmer environment near the fringes of the LMC. We also include four additional LMC clouds, which span intermediate levels of star formation relative to these two clouds, and for which we have recently obtained ALMA data in Cycle 4.

  13. Vacuum ultraviolet molecular nitrogen photoabsorption cross sections for planetary atmospheric transmission models

    NASA Astrophysics Data System (ADS)

    Stark, G.; Smith, P. L.; Yoshino, K.; Rufus, J.; Huber, K. P.

    2001-11-01

    The analyses of VUV occultation measurements of the N2-rich atmospheres of Titan and Triton are hampered by the lack of fundamental spectroscopic data for N2. In particular, there is a need for reliable photoabsorption f-values and line widths for the ~ 100 electronic bands of N2 in the 80 to 100 nm wavelength region. As part of our continuing program of laboratory measurements and analyses of the N2 VUV absorption spectrum, we present the results of new measurements of individual line strengths and widths in selected bands. These results indicate that within a number of individual bands there are significant departures from the predicted line strength distributions based on isolated band models. New line width measurements in the 95 to 100 nm region are also presented and compared to other values found in the literature. We have continued to compile on-line molecular spectroscopic atlas based on our N2 laboratory data: http://cfa-www.harvard.edu/amdata/ampdata/N2ARCHIVE/n2home.html. The archive includes published and unpublished 14N2, 14N15N, and 15N2 line lists and spectroscopic identifications, excited state energy levels, band and line f-values, a summary of published band f-value and line width measurements, and a cross-referenced summary of the relevant N2 literature. The listings are searchable by wavelength interval or band identification and are suitable for down-loading in a convenient format. We gratefully acknowledge funding support from NASA grant NAG5-9059 and the Smithsonian Institution Atherton-Seidel grant program.

  14. NMR studies of non-Fermi-liquid behavior in disordered Kondo systems

    NASA Astrophysics Data System (ADS)

    Liu, Chia-Ying

    A number of heavy-fermion alloys have been discovered to have non-Fermi-liquid (NFL) properties in contrast to the Fermi-liquid behavior expected for normal metals. Since nuclear magnetic resonance (NMR) studies in the heavy-fermion UCusb{5-x}Pdsb{x} by our group, the "Kondo disorder" model has been recognized as one of the possible origins of NFL behavior. This dissertation describes the use of NMR to study NFL behavior in the two heavy-fermion systems Ce(Rusb{1-x}Rhsb{x})sb2Sisb2 (x = 0.5) and Usb{1-x}Thsb{x}Pdsb2Alsb3\\ (x > 0.6). The cerium compound is disordered on non-f atoms (ligand disordered), whereas the uranium system is disordered on the f sublattice. Both exhibit complex phase diagrams and NFL behavior. sp{29}Si powder-pattern NMR spectra from a randomly-oriented powder sample of CeRhRuSisb2 show broad linewidths at low temperature, consistent with disorder-induced NFL behavior. The spectra from a field-aligned sample further confirm that these broad linewidths are due to distributions of local susceptibilities. The NMR widths are in good agreement with the distribution P(Tsb{K}) of Kondo temperatures Tsb{K} derived from the previous analysis of Graf et al., Phys. Rev. Lett. 78, 3769 (1997), including a "hole" in P(Tsb{K}) for small Tsb{K}\\ lbrack P(Tsb{K} = 0) = 0rbrack which describes the return to Fermi-liquid behavior below 1 K observed in the specific heat. The Kondo disorder model successfully explains the NMR linewidth and the NFL behavior in CeRhRuSisb2 either with or without consideration of RKKY interaction between Ce moments. In Usb{1-x}Thsb{x}Pdsb2Alsb3 (x = 0.7, 0.8, 0.9) the sp{27}Al NMR spectra in unaligned powders were initially thought to indicate a metallugical problem, namely, the existence of a second phase. After careful comparison of the behavior of Knight shifts in different concentrations, those extra lines were recognized as impurity satellites instead of coming from a second phase. These impurity satellites are due to specific U near-neighbor configurations to Al sites and appear clearly in the field-aligned spectra. The intensities of the impurity satellites are proportional to the probabilities of finding occupied U sites in specific near-neighbor shells around an Al site. Comparison of the calculated and observed satellite intensities allows us to reconstruct the spectra taken from field-aligned powders with the c axis both perpendicular and parallel to the external field. The narrow linewidths observed at low temperatures suggests that "Kondo disorder" is not the cause of NFL behavior in these alloys. Several theoretical models have been proposed to explain the source of the NFL behavior in Usb{1-x}Thsb{x}Pdsb2Alsb3.

  15. Spatial resolution of a hard x-ray CCD detector.

    PubMed

    Seely, John F; Pereira, Nino R; Weber, Bruce V; Schumer, Joseph W; Apruzese, John P; Hudson, Lawrence T; Szabo, Csilla I; Boyer, Craig N; Skirlo, Scott

    2010-08-10

    The spatial resolution of an x-ray CCD detector was determined from the widths of the tungsten x-ray lines in the spectrum formed by a crystal spectrometer in the 58 to 70 keV energy range. The detector had 20 microm pixel, 1700 by 1200 pixel format, and a CsI x-ray conversion scintillator. The spectral lines from a megavolt x-ray generator were focused on the spectrometer's Rowland circle by a curved transmission crystal. The line shapes were Lorentzian with an average width after removal of the natural and instrumental line widths of 95 microm (4.75 pixels). A high spatial frequency background, primarily resulting from scattered gamma rays, was removed from the spectral image by Fourier analysis. The spectral lines, having low spatial frequency in the direction perpendicular to the dispersion, were enhanced by partially removing the Lorentzian line shape and by fitting Lorentzian curves to broad unresolved spectral features. This demonstrates the ability to improve the spectral resolution of hard x-ray spectra that are recorded by a CCD detector with well-characterized intrinsic spatial resolution.

  16. Dependence with the oxidation state of X-ray transition energies, intensities and natural line widths of CrKβ spectra

    NASA Astrophysics Data System (ADS)

    Torres Deluigi, M.; Tirao, G.; Stutz, G.; Cusatis, C.; Riveros, J. A.

    2006-06-01

    The Kβ emission spectrum of chromium was experimentally analyzed in different compounds and compared with previous data. Measurements of whole Kβ spectra were performed with a wavelength dispersive commercial XRF equipment. To study possible effects of the chemical state in the width and position of the main Kβ 1,3 line, high resolution measurements were also performed. In the latter measurements, a spectrometer based on a backdiffracting crystal analyzer with spherical focalization and synchrotron radiation monochromatic excitation was used. Kβ 1,3 line shifts in relation to metallic Cr were observed, both to higher energies (≅+1 eV) for Cr III and to lower energies (≅-0.5 eV) for Cr VI. It was also found that the natural width of CrKβ 1,3 line, the ionization energy of the 3p orbital of Cr, and the relative intensities of Kβ″ and Kβ 2,5 lines with respect to the main Kβ 1,3 line increase as the oxidation state increases. The use of these features as an index for chemical state analysis is discussed.

  17. Experimental and theoretical investigation of the rocking curves measured for Mo K α X-ray characteristic lines in the double-crystal nondispersive scheme

    NASA Astrophysics Data System (ADS)

    Marchenkov, N. V.; Chukhovskii, F. N.; Blagov, A. E.

    2015-03-01

    The rocking curves (RCs) for Mo K α1 h Mo K α2 characteristic X-ray lines have been experimentally and theoretically studied in the nondispersive scheme of an X-ray double-crystal TPC-K diffractometer. The results of measurements and theoretical calculations of double-crystal RCs for characteristic X-rays from tubes with a molybdenum anode and different widths of slits show that a decrease in the slit width leads to an increase in the relative contribution of the Mo K α2-line RC in comparison with the intensity of the tails of the Mo K α1-line RC. It is shown that the second peak of the Mo K α2 line becomes increasingly pronounced in the tail of the Mo K α1-line RC with a decrease in the slit width. Two plane-parallel Si plates (input faces {110}, diffraction vector h <220>) were used as a monochromator crystal and a sample. The results of measuring double-crystal RCs are in good agreement with theoretical calculations.

  18. THz Dynamic Nuclear Polarization NMR

    PubMed Central

    Nanni, Emilio A.; Barnes, Alexander B.; Griffin, Robert G.; Temkin, Richard J.

    2013-01-01

    Dynamic nuclear polarization (DNP) increases the sensitivity of nuclear magnetic resonance (NMR) spectroscopy by using high frequency microwaves to transfer the polarization of the electrons to the nuclear spins. The enhancement in NMR sensitivity can amount to a factor of well above 100, enabling faster data acquisition and greatly improved NMR measurements. With the increasing magnetic fields (up to 23 T) used in NMR research, the required frequency for DNP falls into the THz band (140–600 GHz). Gyrotrons have been developed to meet the demanding specifications for DNP NMR, including power levels of tens of watts; frequency stability of a few megahertz; and power stability of 1% over runs that last for several days to weeks. Continuous gyrotron frequency tuning of over 1 GHz has also been demonstrated. The complete DNP NMR system must include a low loss transmission line; an optimized antenna; and a holder for efficient coupling of the THz radiation to the sample. This paper describes the DNP NMR process and illustrates the THz systems needed for this demanding spectroscopic application. THz DNP NMR is a rapidly developing, exciting area of THz science and technology. PMID:24639915

  19. Stark width regularities within spectral series of the lithium isoelectronic sequence

    NASA Astrophysics Data System (ADS)

    Tapalaga, Irinel; Trklja, Nora; Dojčinović, Ivan P.; Purić, Jagoš

    2018-03-01

    Stark width regularities within spectral series of the lithium isoelectronic sequence have been studied in an approach that includes both neutrals and ions. The influence of environmental conditions and certain atomic parameters on the Stark widths of spectral lines has been investigated. This study gives a simple model for the calculation of Stark broadening data for spectral lines within the lithium isoelectronic sequence. The proposed model requires fewer parameters than any other model. The obtained relations were used for predictions of Stark widths for transitions that have not yet been measured or calculated. In the framework of the present research, three algorithms for fast data processing have been made and they enable quality control and provide verification of the theoretically calculated results.

  20. Hexamethylbenzene as a sensitive nuclear magnetic resonance probe for studying organic crystals and glasses

    NASA Astrophysics Data System (ADS)

    Jansen-Glaw, B.; Rössler, E.; Taupitz, M.; Vieth, H. M.

    1989-06-01

    Deuterated hexamethylbenzene (HMB) is used as a probe molecule for 2H NMR studies of the crystalline state of hexachlorobenzene and of several organic glasses. By measuring the spin-lattice relaxation and the line shape in the temperature range of 4-300 K the dynamical parameters of the molecular reorientation are investigated. For the system HMB/hexachlorobenzene, we find exponential relaxation and for the corresponding T1 an increase of its activation energy by a factor of 2 in comparison to the neat HMB. A homogeneous mixing of the guest and host molecules is found at least for guest concentrations up to 7%. In contrast, nonexponential spin-lattice relaxation is characteristic for all glass matrices, indicating motional heterogeneities. A log-Gauss distribution for the corresponding motional correlation times gives a good fit of the data. Its width parameter decreases linearly with temperature, while the mean correlation times are described by an Arrhenius law. The mean activation energy is reduced by a factor of about 3.5 as compared to neat HMB, demonstrating a loose packing of the molecules in the glass matrices.

  1. Compressed sensing and the reconstruction of ultrafast 2D NMR data: Principles and biomolecular applications.

    PubMed

    Shrot, Yoav; Frydman, Lucio

    2011-04-01

    A topic of active investigation in 2D NMR relates to the minimum number of scans required for acquiring this kind of spectra, particularly when these are dictated by sampling rather than by sensitivity considerations. Reductions in this minimum number of scans have been achieved by departing from the regular sampling used to monitor the indirect domain, and relying instead on non-uniform sampling and iterative reconstruction algorithms. Alternatively, so-called "ultrafast" methods can compress the minimum number of scans involved in 2D NMR all the way to a minimum number of one, by spatially encoding the indirect domain information and subsequently recovering it via oscillating field gradients. Given ultrafast NMR's simultaneous recording of the indirect- and direct-domain data, this experiment couples the spectral constraints of these orthogonal domains - often calling for the use of strong acquisition gradients and large filter widths to fulfill the desired bandwidth and resolution demands along all spectral dimensions. This study discusses a way to alleviate these demands, and thereby enhance the method's performance and applicability, by combining spatial encoding with iterative reconstruction approaches. Examples of these new principles are given based on the compressed-sensed reconstruction of biomolecular 2D HSQC ultrafast NMR data, an approach that we show enables a decrease of the gradient strengths demanded in this type of experiments by up to 80%. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Method for Assessment of Changes in the Width of Cracks in Cement Composites with Use of Computer Image Processing and Analysis

    NASA Astrophysics Data System (ADS)

    Tomczak, Kamil; Jakubowski, Jacek; Fiołek, Przemysław

    2017-06-01

    Crack width measurement is an important element of research on the progress of self-healing cement composites. Due to the nature of this research, the method of measuring the width of cracks and their changes over time must meet specific requirements. The article presents a novel method of measuring crack width based on images from a scanner with an optical resolution of 6400 dpi, subject to initial image processing in the ImageJ development environment and further processing and analysis of results. After registering a series of images of the cracks at different times using SIFT conversion (Scale-Invariant Feature Transform), a dense network of line segments is created in all images, intersecting the cracks perpendicular to the local axes. Along these line segments, brightness profiles are extracted, which are the basis for determination of crack width. The distribution and rotation of the line of intersection in a regular layout, automation of transformations, management of images and profiles of brightness, and data analysis to determine the width of cracks and their changes over time are made automatically by own code in the ImageJ and VBA environment. The article describes the method, tests on its properties, sources of measurement uncertainty. It also presents an example of application of the method in research on autogenous self-healing of concrete, specifically the ability to reduce a sample crack width and its full closure within 28 days of the self-healing process.

  3. Correlation between the line width and the line flux of the double-peaked broad Hα of 3C390.3

    NASA Astrophysics Data System (ADS)

    Zhang, Xue-Guang

    2013-03-01

    In this paper, we carefully check the correlation between the line width (second moment) and the line flux of the double-peaked broad Hα of the well-known mapped active galactic nucleus (AGN) 3C390.3 in order to show some further distinctions between double-peaked emitters and normal broad-line AGN. Based on the virialization assumption MBH ∝ RBLR × V2(BLR) and the empirical relation RBLR ∝ L˜0.5, one strong negative correlation between the line width and the line flux of the double-peaked broad lines should be expected for 3C390.3, such as the negative correlation confirmed for the mapped broad-line object NGC 5548, RBLR × V2(BLR) ∝ L˜0.5 × σ2 = constant. Moreover, based on the public spectra around 1995 from the AGN WATCH project for 3C390.3, one reliable positive correlation is found between the line width and the line flux of the double-peaked broad Hα. In the context of the proposed theoretical accretion disc model for double-peaked emitters, the unexpected positive correlation can be naturally explained, due to different time delays for the inner and outer parts of the disc-like broad-line region (BLR) of 3C390.3. Moreover, the virialization assumption is checked and found to be still available for 3C390.3. However, the time-varying size of the BLR of 3C390.3 cannot be expected by the empirical relation RBLR ∝ L˜0.5. In other words, the mean size of the BLR of 3C390.3 can be estimated by the continuum luminosity (line luminosity), while the continuum emission strengthening leads to the size of BLR decreasing (not increasing) in different moments for 3C390.3. Then, we compared our results of 3C390.3 with the previous results reported in the literature for the other double-peaked emitters, and found that before to clearly correct the effects from disc physical parameters varying (such as the effects of disc precession) for long-term observed line spectra, it is not so meaningful to discuss the correlation of the line parameters of double-peaked broad lines. Furthermore, due to the probable `external' ionizing source with so far unclear structures, it is hard to give one conclusion that the positive correlation between the line width and the line flux can be found for all double-peaked emitters, even after the considerations of disc physical parameters varying. However, once one positive correlation of broad-line parameters is found, the accretion disc origination of the broad line should be considered first.

  4. Functional Characteristics of Tumor Associated Protein Spot14 and Interacting Proteins in Mouse Mammary Epithelial and Breast Cancer Cell Lines

    DTIC Science & Technology

    2012-03-01

    enhanced accumulation of total lipids evaluated by Bodipy staining and NMR analysis. A major finding in this report is that glycolytic and lipogenic enzyme...total lipid component using NMR Metabolomics showed significant increases in the quantity of intracellular (CH2)n and (CH3) acyl chains (i.e. fatty...Mass Spectrometry (GC-MS) methods were developed. GC-MS differs from NMR analysis of lipid fractions in that GC-MS distinguishes between fatty acids

  5. Broad-Band Spectroscopy of Hercules X-1 with Suzaku

    NASA Technical Reports Server (NTRS)

    Asami, Fumi; Enoto, Teruaki; Iwakiri, Wataru; Yamada, Shin'ya; Tamagawa, Toru; Mihara, Tatehiro; Nagase, Fumiaki

    2014-01-01

    Hercules X-1 was observed with Suzaku in the main-on state from 2005 to 2010. The 0.4- 100 keV wide-band spectra obtained in four observations showed a broad hump around 4-9 keV in addition to narrow Fe lines at 6.4 and 6.7 keV. The hump was seen in all the four observations regardless of the selection of the continuum models. Thus it is considered a stable and intrinsic spectral feature in Her X-1. The broad hump lacked a sharp structure like an absorption edge. Thus it was represented by two different spectral models: an ionized partial covering or an additional broad line at 6.5 keV. The former required a persistently existing ionized absorber, whose origin was unclear. In the latter case, the Gaussian fitting of the 6.5-keV line needs a large width of sigma = 1.0-1.5 keV and a large equivalent width of 400-900 eV. If the broad line originates from Fe fluorescence of accreting matter, its large width may be explained by the Doppler broadening in the accretion flow. However, the large equivalent width may be inconsistent with a simple accretion geometry.

  6. Measurement and Quantification of Heterogeneity, Flow, and Mass Transfer in Porous Media Using NMR Low-Field Techiques

    NASA Astrophysics Data System (ADS)

    Paciok, E.; Olaru, A. M.; Haber, A.; van Landeghem, M.; Haber-Pohlmeier, S.; Sucre, O. E.; Perlo, J.; Casanova, F.; Blümich, B.; RWTH Aachen Mobile Low-Field NMR

    2011-12-01

    Nuclear magnetic resonance (NMR) is renowned for its unique potential to both reveal and correlate spectroscopic, relaxometric, spatial and dynamic properties in a large variety of organic and inorganic systems. NMR has no restrictions regarding sample opacity and is an entirely non-invasive method, which makes it the ideal tool for the investigation of porous media. However, for years NMR research of soils was limited by the use of high-field NMR devices, which necessitated elaborate NMR experiments and were not applicable to bulky samples or on-site field measurements. The evolution of low-field NMR devices during the past 20 years has brought forth portable, small-scale NMR systems with open and closed magnet arrangements specialized to specific NMR applications. In combination with recent advances in 2D-NMR Laplace methodology [1], low-field NMR has opened up the possibility to study real-life microporous systems ranging from granular media to natural soils and oil well boreholes. Thus, information becomes available, which before has not been accessible with high-field NMR. In this work, we present our recent progress in mobile low-field NMR probe design for field measurements of natural soils: a slim-line logging tool, which can be rammed into the soil of interest on-site. The performance of the device is demonstrated in measurements of moisture profiles of model soils [2] and field measurements of relaxometric properties and moisture profiles of natural soils [3]. Moreover, an improved concept of the slim-line logging tool is shown, with a higher excitation volume and a better signal-to-noise due to an improved coil design. Furthermore, we present our recent results in 2D exchange relaxometry and simulation. These include relaxation-relaxation experiments on natural soils with varying degree of moisture saturation, where we could draw a connection between the relaxometric properties of the soil to its pore size-related diffusivity and to its clay content. Also models, simulations and possibilities are discussed to derive from the so obtained information a "characteristic pore shape" that can be used to characterize and to fingerprint natural soils. [1] L. Venkataramanan et al., IEEE Trans. Signal Process. 2002, 50, 1017-26. [2] O. Sucre et al., Open Magn. Reson. J. 2010, 3, 63-68. [3] B. Blümich et al., New J. Phys. 2011, 13, 015003.

  7. Enhanced efficiency of solid-state NMR investigations of energy materials using an external automatic tuning/matching (eATM) robot.

    PubMed

    Pecher, Oliver; Halat, David M; Lee, Jeongjae; Liu, Zigeng; Griffith, Kent J; Braun, Marco; Grey, Clare P

    2017-02-01

    We have developed and explored an external automatic tuning/matching (eATM) robot that can be attached to commercial and/or home-built magic angle spinning (MAS) or static nuclear magnetic resonance (NMR) probeheads. Complete synchronization and automation with Bruker and Tecmag spectrometers is ensured via transistor-transistor-logic (TTL) signals. The eATM robot enables an automated "on-the-fly" re-calibration of the radio frequency (rf) carrier frequency, which is beneficial whenever tuning/matching of the resonance circuit is required, e.g. variable temperature (VT) NMR, spin-echo mapping (variable offset cumulative spectroscopy, VOCS) and/or in situ NMR experiments of batteries. This allows a significant increase in efficiency for NMR experiments outside regular working hours (e.g. overnight) and, furthermore, enables measurements of quadrupolar nuclei which would not be possible in reasonable timeframes due to excessively large spectral widths. Additionally, different tuning/matching capacitor (and/or coil) settings for desired frequencies (e.g. 7 Li and 31 P at 117 and 122MHz, respectively, at 7.05 T) can be saved and made directly accessible before automatic tuning/matching, thus enabling automated measurements of multiple nuclei for one sample with no manual adjustment required by the user. We have applied this new eATM approach in static and MAS spin-echo mapping NMR experiments in different magnetic fields on four energy storage materials, namely: (1) paramagnetic 7 Li and 31 P MAS NMR (without manual recalibration) of the Li-ion battery cathode material LiFePO 4 ; (2) paramagnetic 17 O VT-NMR of the solid oxide fuel cell cathode material La 2 NiO 4+δ ; (3) broadband 93 Nb static NMR of the Li-ion battery material BNb 2 O 5 ; and (4) broadband static 127 I NMR of a potential Li-air battery product LiIO 3 . In each case, insight into local atomic structure and dynamics arises primarily from the highly broadened (1-25MHz) NMR lineshapes that the eATM robot is uniquely suited to collect. These new developments in automation of NMR experiments are likely to advance the application of in and ex situ NMR investigations to an ever-increasing range of energy storage materials and systems. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Enhanced efficiency of solid-state NMR investigations of energy materials using an external automatic tuning/matching (eATM) robot

    NASA Astrophysics Data System (ADS)

    Pecher, Oliver; Halat, David M.; Lee, Jeongjae; Liu, Zigeng; Griffith, Kent J.; Braun, Marco; Grey, Clare P.

    2017-02-01

    We have developed and explored an external automatic tuning/matching (eATM) robot that can be attached to commercial and/or home-built magic angle spinning (MAS) or static nuclear magnetic resonance (NMR) probeheads. Complete synchronization and automation with Bruker and Tecmag spectrometers is ensured via transistor-transistor-logic (TTL) signals. The eATM robot enables an automated "on-the-fly" re-calibration of the radio frequency (rf) carrier frequency, which is beneficial whenever tuning/matching of the resonance circuit is required, e.g. variable temperature (VT) NMR, spin-echo mapping (variable offset cumulative spectroscopy, VOCS) and/or in situ NMR experiments of batteries. This allows a significant increase in efficiency for NMR experiments outside regular working hours (e.g. overnight) and, furthermore, enables measurements of quadrupolar nuclei which would not be possible in reasonable timeframes due to excessively large spectral widths. Additionally, different tuning/matching capacitor (and/or coil) settings for desired frequencies (e.g.7Li and 31P at 117 and 122 MHz, respectively, at 7.05 T) can be saved and made directly accessible before automatic tuning/matching, thus enabling automated measurements of multiple nuclei for one sample with no manual adjustment required by the user. We have applied this new eATM approach in static and MAS spin-echo mapping NMR experiments in different magnetic fields on four energy storage materials, namely: (1) paramagnetic 7Li and 31P MAS NMR (without manual recalibration) of the Li-ion battery cathode material LiFePO4; (2) paramagnetic 17O VT-NMR of the solid oxide fuel cell cathode material La2NiO4+δ; (3) broadband 93Nb static NMR of the Li-ion battery material BNb2O5; and (4) broadband static 127I NMR of a potential Li-air battery product LiIO3. In each case, insight into local atomic structure and dynamics arises primarily from the highly broadened (1-25 MHz) NMR lineshapes that the eATM robot is uniquely suited to collect. These new developments in automation of NMR experiments are likely to advance the application of in and ex situ NMR investigations to an ever-increasing range of energy storage materials and systems.

  9. Power supply circuit for an ion engine sequentially operated power inverters

    NASA Technical Reports Server (NTRS)

    Cardwell, Jr., Gilbert I. (Inventor)

    2000-01-01

    A power supply circuit for an ion engine suitable for a spacecraft has a voltage bus having input line and a return line. The power supply circuit includes a pulse width modulation circuit. A plurality of bridge inverter circuits is coupled to the bus and the pulse width modulation circuit. The pulse width modulation circuit generates operating signals having a variable duty cycle. Each bridge inverter has a primary winding and a secondary winding. Each secondary winding is coupled to a rectifier bridge. Each secondary winding is coupled in series with another of the plurality of rectifier bridges.

  10. Absorption line studies of reflection from horizontally inhomogeneous layers. [in cloudy planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Appleby, J. F.; Van Blerkom, D. J.

    1975-01-01

    The article details an inhomogeneous reflecting layer (IRFL) model designed to survey absorption line behavior from a Squires-like cloud cover (which is characterized by convection cell structure). Computational problems and procedures are discussed in detail. The results show trends usually opposite to those predicted by a simple reflecting layer model. Per cent equivalent width variations for the tower model are usually somewhat greater for weak than for relatively strong absorption lines, with differences of a factor of about two or three. IRFL equivalent width variations do not differ drastically as a function of geometry when the total volume of absorbing gas is held constant. The IRFL results are in many instances consistent with observed equivalent width variations of Jupiter, Saturn, and Venus.

  11. Narrow line width dual wavelength semiconductor optical amplifier based random fiber laser

    NASA Astrophysics Data System (ADS)

    Shawki, Heba A.; Kotb, Hussein E.; Khalil, Diaa

    2018-02-01

    A novel narrow line-width Single longitudinal mode (SLM) dual wavelength random fiber laser of 20 nm separation between wavelengths of 1530 and 1550 nm is presented. The laser is based on Rayleigh backscattering in a standard single mode fiber of 2 Km length as distributed mirrors, and a semiconductor optical amplifier (SOA) as the optical amplification medium. Two optical bandpass filters are used for the two wavelengths selectivity, and two Faraday Rotator mirrors are used to stabilize the two lasing wavelengths against fiber random birefringence. The optical signal to noise ratio (OSNR) was measured to be 38 dB. The line-width of the laser was measured to be 13.3 and 14 KHz at 1530 and 1550 nm respectively, at SOA pump current of 370 mA.

  12. Theoretical and experimental determination of L -shell decay rates, line widths, and fluorescence yields in Ge

    NASA Astrophysics Data System (ADS)

    Guerra, M.; Sampaio, J. M.; Madeira, T. I.; Parente, F.; Indelicato, P.; Marques, J. P.; Santos, J. P.; Hoszowska, J.; Dousse, J.-Cl.; Loperetti, L.; Zeeshan, F.; Müller, M.; Unterumsberger, R.; Beckhoff, B.

    2015-08-01

    Fluorescence yields (FYs) for the Ge L shell were determined by a theoretical and two experimental groups within the framework of the International Initiative on X-Ray Fundamental Parameters Collaboration. Calculations were performed using the Dirac-Fock method, including relativistic and QED corrections. The experimental value of the L3FY ωL 3 was determined at the Physikalisch-Technische Bundesanstalt undulator beamline of the synchrotron radiation facility BESSY II in Berlin, Germany, and the L α1 ,2 and L β1 line widths were measured at the Swiss Light Source, Paul Scherrer Institute, Switzerland, using monochromatized synchrotron radiation and a von Hamos x-ray crystal spectrometer. The measured fluorescence yields and line widths are compared to the corresponding calculated values.

  13. Time-resolved spectrophotometry of the AM Herculis system E2003 + 225

    NASA Technical Reports Server (NTRS)

    Mccarthy, Patrick; Bowyer, Stuart; Clarke, John T.

    1986-01-01

    Time-resolved, medium-resolution photometry is reported for the binary system E2003 + 225 over a complete orbital period in 1984. The object was 1.5-2 mag fainter than when viewed earlier in 1984. The fluxes, equivalent widths and full widths at FWHM for dominant lines are presented for four points in the cycle. A coincidence of emission lines and a 4860 A continuum line was observed for the faster component, which had a 500 km/sec velocity amplitude that was symmetric around the zero line. An aberrant emission line component, i.e., stationary narrow emission lines displaced about 9 A from the rest wavelengths, is modeled as Zeeman splitting of emission from material close to the primary.

  14. The 3 micron spectrum of the classical Be star Beta Monocerotis A

    NASA Technical Reports Server (NTRS)

    Sellgren, K.; Smith, R. G.

    1992-01-01

    A 3.1-3.7-micron spectrum of the classical Be star Beta Mon A is presented at a resolution of lambda/Delta-lambda of 700-800. The spectrum shows strong hydrogen recombination lines, including Pf-delta and a series of Humphreys lines from Hu 19 to Hu 28. The relative recombination line strengths suggest that Pf-delta has a large optical depth. The Humphreys lines have relative strengths consistent with case B and may be optically thin. The line widths observed are broader than the Balmer lines and similar in width to Fe II lines, consistent with a disk model in which optically thinner lines arise primarily from a faster rotating inner disk, while optically thicker lines come mainly from a slower rotating outer disk. The apparent lack of Stark broadening of the Humphreys lines is used to place an upper limit on the circumstellar electron density of about 10 exp 12/cu cm.

  15. THE LICK AGN MONITORING PROJECT 2011: SPECTROSCOPIC CAMPAIGN AND EMISSION-LINE LIGHT CURVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barth, Aaron J.; Bennert, Vardha N.; Canalizo, Gabriela

    2015-04-15

    In the Spring of 2011 we carried out a 2.5 month reverberation mapping campaign using the 3 m Shane telescope at Lick Observatory, monitoring 15 low-redshift Seyfert 1 galaxies. This paper describes the observations, reductions and measurements, and data products from the spectroscopic campaign. The reduced spectra were fitted with a multicomponent model in order to isolate the contributions of various continuum and emission-line components. We present light curves of broad emission lines and the active galactic nucleus (AGN) continuum, and measurements of the broad Hβ line widths in mean and rms spectra. For the most highly variable AGNs wemore » also measured broad Hβ line widths and velocity centroids from the nightly spectra. In four AGNs exhibiting the highest variability amplitudes, we detect anticorrelations between broad Hβ width and luminosity, demonstrating that the broad-line region “breathes” on short timescales of days to weeks in response to continuum variations. We also find that broad Hβ velocity centroids can undergo substantial changes in response to continuum variations; in NGC 4593, the broad Hβ velocity shifted by ∼250 km s{sup −1} over a 1 month period. This reverberation-induced velocity shift effect is likely to contribute a significant source of confusion noise to binary black hole searches that use multi-epoch quasar spectroscopy to detect binary orbital motion. We also present results from simulations that examine biases that can occur in measurement of broad-line widths from rms spectra due to the contributions of continuum variations and photon-counting noise.« less

  16. The Lick AGN Monitoring Project 2011: Spectroscopic Campaign and Emission-line Light Curves

    NASA Technical Reports Server (NTRS)

    Barth, Aaron J.; Bennert, Vardha N.; Canalizo, Gabriela; Filippenko, Alexei V.; Gates, Elinor L.; Greene, Jenny E..; Li, Weidong; Malkan, Matthew A.; Pancoast, Anna; Sand, David J.; hide

    2016-01-01

    In the Spring of 2011 we carried out a 2.5 month reverberation mapping campaign using the 3 m Shane telescope at Lick Observatory, monitoring 15 low-redshift Seyfert 1 galaxies. This paper describes the observations, reductions and measurements, and data products from the spectroscopic campaign. The reduced spectra were fitted with a multicomponent model in order to isolate the contributions of various continuum and emission-line components. We present light curves of broad emission lines and the active galactic nucleus (AGN) continuum, and measurements of the broad Hß line widths in mean and rms spectra. For the most highly variable AGNs we also measured broad H beta line widths and velocity centroids from the nightly spectra. In four AGNs exhibiting the highest variability amplitudes, we detect anticorrelations between broad H beta width and luminosity, demonstrating that the broad-line region "breathes" on short timescales of days to weeks in response to continuum variations. We also find that broad H beta velocity centroids can undergo substantial changes in response to continuum variations; in NGC 4593, the broad H beta velocity shifted by approximately 250 km s(exp -1) over a 1 month period. This reverberation-induced velocity shift effect is likely to contribute a significant source of confusion noise to binary black hole searches that use multi-epoch quasar spectroscopy to detect binary orbital motion. We also present results from simulations that examine biases that can occur in measurement of broad-line widths from rms spectra due to the contributions of continuum variations and photon-counting noise.

  17. Conventional sample enrichment strategies combined with high-performance liquid chromatography-solid phase extraction-nuclear magnetic resonance analysis allows analyte identification from a single minuscule Corydalis solida plant tuber.

    PubMed

    Sturm, Sonja; Seger, Christoph; Godejohann, Markus; Spraul, Manfred; Stuppner, Hermann

    2007-09-07

    Identification of putative biomarker molecules within the genus Corydalis (Papaveraceae) was pursued by combining conventional off-line sample enrichment with high-performance liquid chromatography-solid phase extraction-nuclear magnetic resonance (HPLC-SPE-NMR) based structure elucidation. Off-line reversed phase solid phase extraction (SPE) was used to enrich the desired analytes from a methanolic extract (93 mg dry weight) of a miniscule single tuber (233 mg dry weight) of C. solida. An aliquot of the SPE fraction (2.1 mg) was subjected to separation in the HPLC-SPE-NMR hyphenation. Chromatographic peaks bearing the metabolites under investigation were trapped in the SPE device in a single experiment and transferred to a 600 MHz NMR spectrometer equipped with a 30 microl cryofit insert fed into a 3 mm cryoprobe. Recorded homo- and heteronuclear 1D and 2D NMR data allowed the identification of the three analytes under investigation as protopine, allocryptopine, and N-methyl-laudanidinium acetate. The latter is a rare alkaloid, which has been isolated only once before.

  18. Accumulation of ammonium in Norway spruce (Picea abies) seedlings measured by in vivo 14N-NMR.

    PubMed

    Aarnes, H; Eriksen, A B; Petersen, D; Rise, F

    2007-01-01

    (14)N-NMR and (31)P-NMR have been used to monitor the in vivo pH in roots, stems, and needles from seedlings of Norway spruce, a typical ammonium-tolerant plant. The vacuolar and cytoplasmic pH measured by (31)P-NMR was found to be c. pH 4.8 and 7.0, respectively, with no significant difference between plants growing with ammonium or nitrate as the N-source. The (1)H-coupled (14) NH 4+ resonance is pH-sensitive: at alkaline pH it is a narrow singlet line and below pH 4 it is an increasing multiplet line with five signals. The pH values in ammonium-containing compartments measured by (14)N-NMR ranged from 3.7 to 3.9, notably lower than the estimated pH values of the P(i) pools. This suggests that, in seedlings of Norway spruce, ammonium is stored in vacuoles with low pH possibly to protect the seedlings against the toxic effects of ammonium ( NH 4+) or ammonia (NH3). It was also found that concentrations of malate were 3-6 times higher in stems than in roots and needles, with nitrate-grown plants containing more malate than plants grown with ammonium.

  19. Automated Defect and Correlation Length Analysis of Block Copolymer Thin Film Nanopatterns

    PubMed Central

    Murphy, Jeffrey N.; Harris, Kenneth D.; Buriak, Jillian M.

    2015-01-01

    Line patterns produced by lamellae- and cylinder-forming block copolymer (BCP) thin films are of widespread interest for their potential to enable nanoscale patterning over large areas. In order for such patterning methods to effectively integrate with current technologies, the resulting patterns need to have low defect densities, and be produced in a short timescale. To understand whether a given polymer or annealing method might potentially meet such challenges, it is necessary to examine the evolution of defects. Unfortunately, few tools are readily available to researchers, particularly those engaged in the synthesis and design of new polymeric systems with the potential for patterning, to measure defects in such line patterns. To this end, we present an image analysis tool, which we have developed and made available, to measure the characteristics of such patterns in an automated fashion. Additionally we apply the tool to six cylinder-forming polystyrene-block-poly(2-vinylpyridine) polymers thermally annealed to explore the relationship between the size of each polymer and measured characteristics including line period, line-width, defect density, line-edge roughness (LER), line-width roughness (LWR), and correlation length. Finally, we explore the line-edge roughness, line-width roughness, defect density, and correlation length as a function of the image area sampled to determine each in a more rigorous fashion. PMID:26207990

  20. Internal kinematics of disk galaxies in the local universe

    NASA Astrophysics Data System (ADS)

    Catinella, Barbara

    2005-11-01

    This dissertation makes use of a homogeneous sample of several thousand normal, non-interacting, spiral galaxies, for which I-band photometry and optical and/ or radio spectroscopy are available, to investigate the average kinematic properties of disk systems at low redshifts ( z [Special characters omitted.] 0.1). New long-slit Ha rotation curves (RCs) for 402 galaxies, which were incorporated into the larger sample, are presented in this work. The main goals of this thesis are: (a) The definition of a set of average, or template , RCs in bins covering a wide range of galaxy luminosity. The template relations represent an accurate description of the average circular velocity field of local spiral galaxies, and are intended to be a standard reference for more distant samples and to constrain theoretical models of galactic disks. (b) The characterization of the systematics associated with different velocity width measurement techniques, and the derivation of a robust measure of rotational velocity to be used for applications of the Tully-Fisher (TF) distance method. A direct cross-calibration of the optical and radio widths has been obtained. (c) The assessment of the impact of the limitations on optical line widths extracted from fixed apertures, such as those being collected for ~10 6 galaxies by the on-going Sloan Digital Sky Survey (SDSS). Since the SDSS fiber technique generally does not sample the full extent of a galaxy RC, the observed line widths yield rotational width measurements that depend on the redshifts of the objects, on the physical sizes of their line-emitting regions, and on the intrinsic shapes of their RCs. Numerical simulations of these biases have been carried out for galaxies with realistic circular velocity fields (described by the template RCs) in the redshift range covered by the SDSS spectroscopic sample. Statistical corrections to be applied to the aperture line widths as a function of galaxy redshift and luminosity have been derived, and their impact on the TF relation examined. The use of the SDSS line widths, corrected for aperture effects, has the potential to solve the debated issue of luminosity evolution of galaxies at intermediate redshifts.

  1. Structure of an LiKSO 4 single crystal studied by 7Li and 39K NMR at low temperature

    NASA Astrophysics Data System (ADS)

    Lim, A. R.; Jeong, S.-Y.

    2000-09-01

    The 7Li and 39K nuclear magnetic resonances in an LiKSO 4 single crystal grown by the slow evaporation method have been investigated using a Bruker FT nuclear magnetic resonance (NMR) spectrometer. From the experimental data, the quadrapole coupling constant and asymmetry parameter were determined at room temperature and low temperature, respectively. Unlike the case at 300 K, the 7Li NMR line consists of three sets at 180 K, while 39K nucleus exhibits six sets for the rotation around the three crystallographic axes. The three resonance lines of 7Li and 39K at low temperature can be explained by the existence of three kinds of twin domain, rotated with respect to each other by 120° around the c-axis. The three resonance lines are also related to the crystallographic mirror plane. Structure of ferroelastic LiKSO 4 crystals at 180 K can be directly inferred from the domain pattern obtained by 7Li and 39K NMR. The above results show that the equations of the twin boundaries belong to the mm2 F6 mm ferroelastic species. Therefore, the symmetry of phases III and II is given by orthorhombic structure with Cmc2 1 ( mm2) and hexagonal structural with P6 3mc (6 mm), respectively.

  2. Speeding up NMR by in Situ Photo-Induced Reversible Acceleration of T1 -Relaxation (PIRAT).

    PubMed

    Stadler, Eduard; Dommaschk, Marcel; Frühwirt, Philipp; Herges, Rainer; Gescheidt, Georg

    2018-03-05

    Increasing the signal-to-noise ratio is one of the major goals in the field of NMR spectroscopy. In this proof of concept, we accelerate relaxation during an NMR pulse sequence using photo-generated paramagnetic states of an inert sensitizer. For the follow-up acquisition period, the system is converted to a diamagnetic state. The reversibility of the photo-induced switching allows extensive repetition required for multidimensional NMR. We thus eliminate the obstacle of line-broadening by the presence of paramagnetic species. In this contribution, we show how cycling of synchronized light/pulse sequences leads to an enhanced efficiency in multidimensional NMR. Our approach utilizes a molecular spin switch reversibly altering between a paramagnetic and diamagnetic state. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. 2H and 27Al solid-state NMR study of the local environments in Al-doped 2-line ferrihydrite, goethite, and lepidocrocite

    DOE PAGES

    Kim, Jongsik; Ilott, Andrew J.; Middlemiss, Derek S.; ...

    2015-05-13

    Although substitution of aluminum into iron oxides and oxyhydroxides has been extensively studied, it is difficult to obtain accurate incorporation levels. Assessing the distribution of dopants within these materials has proven especially challenging because bulk analytical techniques cannot typically determine whether dopants are substituted directly into the bulk iron oxide or oxyhydroxide phase or if they form separate, minor phase impurities. These differences have important implications for the chemistry of these iron-containing materials, which are ubiquitous in the environment. In this work, 27Al and 2H NMR experiments are performed on series of Al-substituted goethite, lepidocrocite, and 2-line ferrihydrite in ordermore » to develop an NMR method to track Al substitution. The extent of Al substitution into the structural frameworks of each compound is quantified by comparing quantitative 27Al MAS NMR results with those from elemental analysis. Magnetic measurements are performed for the goethite series to compare with NMR measurements. Static 27Al spin–echo mapping experiments are used to probe the local environments around the Al substituents, providing clear evidence that they are incorporated into the bulk iron phases. As a result, predictions of the 2H and 27Al NMR hyperfine contact shifts in Al-doped goethite and lepidocrocite, obtained from a combined first-principles and empirical magnetic scaling approach, give further insight into the distribution of the dopants within these phases.« less

  4. Measurements of air-broadened and nitrogen-broadened half-widths and shifts of ozone lines near 9 microns

    NASA Technical Reports Server (NTRS)

    Smith, M. A. H.; Rinsland, C. P.; Devi, Malathy V.; Benner, D. Chris; Thakur, K. B.

    1988-01-01

    Air- and nitrogen-broadened half-widths and line shifts at room temperature for more than 60 individual vibration-rotation transitions in the nu1 fundamental band of (O-16)3 and several transitions in the nu3 band were determined from infrared absorption spectra. These spectra were recorded at 0.005/cm resolution with a Fourier-transform spectrometer. A tunable-diode-laser spectrometer operating in the 1090-1150/cm region was also used to record data on oxygen-, nitrogen-, and air-broadened half-widths for selected individual transitions. The nitrogen- and air-broadened half-widths determined by these two different measurement techniques are consistent to within 4 percent. The results are in good agreement with other published measurements and calculations.

  5. 25 CFR 169.26 - Telephone and telegraph lines; radio, television, and other communications facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... width in excess of 50 feet on each side of the centerline, unless special requirements are clearly set forth in the application which fully justify a width in excess of 50 feet on each side of the centerline... from those showing the line of route, and shall be drawn to a scale of 50 feet to an inch. Such maps...

  6. 25 CFR 169.26 - Telephone and telegraph lines; radio, television, and other communications facilities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... width in excess of 50 feet on each side of the centerline, unless special requirements are clearly set forth in the application which fully justify a width in excess of 50 feet on each side of the centerline... from those showing the line of route, and shall be drawn to a scale of 50 feet to an inch. Such maps...

  7. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Line width of a single longitudinal mode emitted by an AlGaAs heterojunction laser

    NASA Astrophysics Data System (ADS)

    Bogatov, Alexandr P.; Eliseev, P. G.; Luk'yanov, S. A.; Pak, G. T.; Petrakova, T. V.

    1988-11-01

    A nonmonotonic dependence of the emission line width on the power was observed for a single longitudinal mode of an AlGaAs heterojunction laser. This behavior could be due to the dependence of the waveguide coefficient of the amplitude-phase coupling on the nature of operation of the laser.

  8. EISCAT and ESRAD radars observations of polar mesosphere winter echoes during solar proton events on 11-12 November 2004

    NASA Astrophysics Data System (ADS)

    Belova, E.; Kirkwood, S.; Sergienko, T.

    2013-07-01

    Polar mesosphere winter echoes (PMWE) were detected by two radars, ESRAD at 52 MHz located near Kiruna, Sweden, and EISCAT at 224 MHz located near Tromsø, Norway, during the strong solar proton event on 11-12 November 2004. PMWE maximum volume reflectivity was estimated to be 3 × 10-15 m-1 for ESRAD and 2 × 10-18 m-1 for EISCAT. It was found that the shape of the echo power spectrum is close to Gaussian inside the PMWE layers, and outside of them it is close to Lorentzian, as for the standard ion line of incoherent scatter (IS). The EISCAT PMWE spectral width is about 5-7 m s-1 at 64-67 km and 7-10 m s-1 at 68-70 km. At the lower altitudes the PMWE spectral widths are close to those for the IS ion line derived from the EISCAT data outside the layers. At the higher altitudes the PMWE spectra are broader by 2-4 m s-1 than those for the ion line. The ESRAD PMWE spectral widths at 67-72 km altitude are 3-5 m s-1, that is, 2-4 m s-1 larger than ion line spectral widths modelled for the ESRAD radar. The PMWE spectral widths for both EISCAT and ESRAD showed no dependence on the echo strength. It was found that all these facts cannot be explained by turbulent origin of the echoes. We suggested that evanescent perturbations in the electron gas generated by the incident infrasound waves may explain the observed PMWE spectral widths. However, a complete theory of radar scatter from this kind of disturbance needs to be developed before a full conclusion can be made.

  9. Coexistence of superconductivity and antiferromagnetism probed by simultaneous nuclear magnetic resonance and electrical transport in (TMTSF)2PF6 system.

    PubMed

    Lee, I J; Brown, S E; Yu, W; Naughton, M J; Chaikin, P M

    2005-05-20

    We report simultaneous NMR and electrical transport experiments in the pressure range near the boundary of the antiferromagnetic spin density wave (SDW) insulator and the metallic/superconducting (SC) phase in (TMTSF)2PF6. Measurements indicate a tricritical point separating a line of second-order SDW/metal transitions from a line of first-order SDW/metal(SC) transitions with coexistence of macroscopic regions of SDW and metal(SC) order, with little mutual interaction but strong hysteretic effects. NMR results quantify the fraction of each phase.

  10. 133Cs-NMR Study on the Ground State of the Equilateral Triangular Spin Tube CsCrF4

    NASA Astrophysics Data System (ADS)

    Matsui, K.; Goto, T.; Manaka, H.; Miura, Y.

    2018-03-01

    We have investigated the hyperfine coupling between Cs and Cr on the S = 3/2 equilateral triangular spin tube CsCrF4, utilizing 133Cs-NMR. At paramagnetic state above 80 K, we have obtained spectra containing a single peak, which reflects the single crystallographic Cs site. From the temperature dependence of the peak shift and peak width, we evaluated effective values of the isotropic and the anisotropic part of hyperfine coupling. The latter was compared with the calculated dipole contribution. Using obtained parameters with assumed spin structure, we tried to reproduce the broadened spectrum in the ordered state at 2.0 K. The preliminary analysis shows the 120-degree structure does not accord with the observed spectra at the ordered state.

  11. Measurements of argon-, helium-, hydrogen-, and nitrogen-broadened widths of methane lines near 9000 per cm

    NASA Technical Reports Server (NTRS)

    Fox, Kenneth; Jennings, Donald E.; Stern, Elizabeth A.; Hubbard, Rob

    1988-01-01

    Pressure-broadened widths of rotational-vibrational lines in CH4 have been measured at very high spectral resolution in the R-branch of the 3nu3 overtone. The broadening gases were Ar, He, H2, and N2. Results are presented as averages for J-multiplets at ambient temperature. The overall values (per cm per atm) for these R-branch lines are 0.0651 (CH4-Ar), 0.0508 (CH4-He), 0.0728 (CH4-H2), and 0.0715 (CH4-N2).

  12. The Sloan Digital Sky Survey Reverberation Mapping Project: The C IV Blueshift, Its Variability, and Its Dependence Upon Quasar Properties

    NASA Astrophysics Data System (ADS)

    Sun, Mouyuan; Xue, Yongquan; Richards, Gordon T.; Trump, Jonathan R.; Shen, Yue; Brandt, W. N.; Schneider, D. P.

    2018-02-01

    We use the multi-epoch spectra of 362 quasars from the Sloan Digital Sky Survey Reverberation Mapping project to investigate the dependence of the blueshift of C IV relative to Mg II on quasar properties. We confirm that high-blueshift sources tend to have low C IV equivalent widths (EWs), and that the low-EW sources span a range of blueshift. Other high-ionization lines, such as He II, also show similar blueshift properties. The ratio of the line width (measured as both the full width at half maximum and the velocity dispersion) of C IV to that of Mg II increases with blueshift. Quasar variability enhances the connection between the C IV blueshift and quasar properties (e.g., EW). The variability of the Mg II line center (i.e., the wavelength that bisects the cumulative line flux) increases with blueshift. In contrast, the C IV line center shows weaker variability at the extreme blueshifts. Quasars with the high-blueshift C IV lines tend to have less variable continuum emission, when controlling for EW, luminosity, and redshift. Our results support the scenario that high-blueshift sources tend to have large Eddington ratios.

  13. Experimental and theoretical investigation of the rocking curves measured for MoK{sub α} X-ray characteristic lines in the double-crystal nondispersive scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchenkov, N. V., E-mail: marchenkov@ns.crys.ras.ru; Chukhovskii, F. N.; Blagov, A. E.

    2015-03-15

    The rocking curves (RCs) for MoK{sub α1} and MoK{sub α2} characteristic X-ray lines have been experimentally and theoretically studied in the nondispersive scheme of an X-ray double-crystal TPC-K diffractometer. The results of measurements and theoretical calculations of double-crystal RCs for characteristic X-rays from tubes with a molybdenum anode and different widths of slits show that a decrease in the slit width leads to an increase in the relative contribution of the MoK{sub α2}-line RC in comparison with the intensity of the tails of the MoK{sub α1}-line RC. It is shown that the second peak of the MoK{sub α2} line becomesmore » increasingly pronounced in the tail of the MoK{sub α1}-line RC with a decrease in the slit width. Two plane-parallel Si plates (input faces (110), diffraction vector h 〈220〉) were used as a monochromator crystal and a sample. The results of measuring double-crystal RCs are in good agreement with theoretical calculations.« less

  14. Raman Spectra of Crystalline Double Calcium Orthovanadates Ca10M(VO4)7 (M = Li, K, Na) and Their Interpretation Based on Deconvolution Into Voigt Profiles

    NASA Astrophysics Data System (ADS)

    Khodasevich, I. A.; Voitikov, S. V.; Orlovich, V. A.; Kosmyna, M. B.; Shekhovtsov, A. N.

    2016-09-01

    Unpolarized spontaneous Raman spectra of crystalline double calcium orthovanadates Ca10M(VO4)7 (M = Li, K, Na) in the range 150-1600 cm-1 were measured. Two vibrational bands with full-width at half-maximum (FWHM) of 37-50 cm-1 were found in the regions 150-500 and 700-1000 cm-1. The band shapes were approximated well by deconvolution into Voigt profiles. The band at 700-1000 cm-1 was stronger and deconvoluted into eight Voigt profiles. The frequencies of two strong lines were ~848 and ~862 cm-1 for Ca10Li(VO4)7; ~850 and ~866 cm-1 for Ca10Na(VO4)7; and ~844 and ~866 cm-1 for Ca10K(VO4)7. The Lorentzian width parameters of these lines in the Voigt profiles were ~5 times greater than those of the Gaussian width parameters. The FWHM of the Voigt profiles were ~18-42 cm-1. The two strongest lines had widths of 21-25 cm-1. The vibrational band at 300-500 cm-1 was ~5-6 times weaker than that at 700-1000 cm-1 and was deconvoluted into four lines with widths of 25-40 cm-1. The large FWHM of the Raman lines indicated that the crystal structures were disordered. These crystals could be of interest for Raman conversion of pico- and femtosecond laser pulses because of the intense vibrations with large FWHM in the Raman spectra.

  15. 31P-nuclear magnetic resonance spectroscopy in vivo of six human melanoma xenograft lines: tumour bioenergetic status and blood supply.

    PubMed Central

    Lyng, H.; Olsen, D. R.; Southon, T. E.; Rofstad, E. K.

    1993-01-01

    Six human melanoma xenograft lines grown s.c. in BALB/c-nu/nu mice were subjected to 31P-nuclear magnetic resonance (31P-NMR) spectroscopy in vivo. The following resonances were detected: phosphomonoesters (PME), inorganic phosphate (Pi), phosphodiesters (PDE), phosphocreatine (PCr) and nucleoside triphosphate gamma, alpha and beta (NTP gamma, alpha and beta). The main purpose of the work was to search for possible relationships between 31P-NMR resonance ratios and tumour pH on the one hand and blood supply per viable tumour cell on the other. The latter parameter was measured by using the 86Rb uptake method. Tumour bioenergetic status [the (PCr + NTP beta)/Pi resonance ratio], tumour pH and blood supply per viable tumour cell decreased with increasing tumour volume for five of the six xenograft lines. The decrease in tumour bioenergetic status was due to a decrease in the (PCr + NTP beta)/total resonance ratio as well as an increase in the Pi/total resonance ratio. The decrease in the (PCr + NTP beta)/total resonance ratio was mainly a consequence of a decrease in the PCr/total resonance ratio for two lines and mainly a consequence of a decrease in the NTP beta/total resonance ratio for three lines. The magnitude of the decrease in the (PCr + NTP beta)/total resonance ratio and the magnitude of the decrease in tumour pH were correlated to the magnitude of the decrease in blood supply per viable tumour cell. Tumour pH decreased with decreasing tumour bioenergetic status, and the magnitude of this decrease was larger for the tumour lines showing a high than for those showing a low blood supply per viable tumour cell. No correlations across the tumour lines were found between tumour pH and tumour bioenergetic status or any other resonance ratio on the one hand and blood supply per viable tumour cell on the other. The differences in the 31P-NMR spectrum between the tumour lines were probably caused by differences in the intrinsic biochemical properties of the tumour cells rather than by the differences in blood supply per viable tumour cell. Biochemical properties of particular importance included rate of respiration, glycolytic capacity and tolerance to hypoxic stress. On the other hand, tumour bioenergetic status and tumour pH were correlated to blood supply per viable tumour cell within individual tumour lines. These observations suggest that 31P-NMR spectroscopy may be developed to be a clinically useful method for monitoring tumour blood supply and parameters related to tumour blood supply during and after physiological intervention and tumour treatment. However, clinically useful parameters for prediction of tumour treatment resistance caused by insufficient blood supply can probably not be derived from a single 31P-NMR spectrum since correlations across tumour lines were not detected; additional information is needed. PMID:8260356

  16. Nuclear spin noise in NMR revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrand, Guillaume; Luong, Michel; Huber, Gaspard

    2015-09-07

    The theoretical shapes of nuclear spin-noise spectra in NMR are derived by considering a receiver circuit with finite preamplifier input impedance and a transmission line between the preamplifier and the probe. Using this model, it becomes possible to reproduce all observed experimental features: variation of the NMR resonance linewidth as a function of the transmission line phase, nuclear spin-noise signals appearing as a “bump” or as a “dip” superimposed on the average electronic noise level even for a spin system and probe at the same temperature, pure in-phase Lorentzian spin-noise signals exhibiting non-vanishing frequency shifts. Extensive comparisons to experimental measurementsmore » validate the model predictions, and define the conditions for obtaining pure in-phase Lorentzian-shape nuclear spin noise with a vanishing frequency shift, in other words, the conditions for simultaneously obtaining the spin-noise and frequency-shift tuning optima.« less

  17. Effects of interventions on normalizing step width during self-paced dual-belt treadmill walking with virtual reality, a randomised controlled trial.

    PubMed

    Oude Lansink, I L B; van Kouwenhove, L; Dijkstra, P U; Postema, K; Hijmans, J M

    2017-10-01

    Step width is increased during dual-belt treadmill walking, in self-paced mode with virtual reality. Generally a familiarization period is thought to be necessary to normalize step width. The aim of this randomised study was to analyze the effects of two interventions on step width, to reduce the familiarization period. We used the GRAIL (Gait Real-time Analysis Interactive Lab), a dual-belt treadmill with virtual reality in the self-paced mode. Thirty healthy young adults were randomly allocated to three groups and asked to walk at their preferred speed for 5min. In the first session, the control-group received no intervention, the 'walk-on-the-line'-group was instructed to walk on a line, projected on the between-belt gap of the treadmill and the feedback-group received feedback about their current step width and were asked to reduce it. Interventions started after 1min and lasted 1min. During the second session, 7-10days later, no interventions were given. Linear mixed modeling showed that interventions did not have an effect on step width after the intervention period in session 1. Initial step width (second 30s) of session 1 was larger than initial step width of session 2. Step width normalized after 2min and variation in step width stabilized after 1min. Interventions do not reduce step width after intervention period. A 2-min familiarization period is sufficient to normalize and stabilize step width, in healthy young adults, regardless of interventions. A standardized intervention to normalize step width is not necessary. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Detector Sampling of Optical/IR Spectra: How Many Pixels per FWHM?

    NASA Astrophysics Data System (ADS)

    Robertson, J. Gordon

    2017-08-01

    Most optical and IR spectra are now acquired using detectors with finite-width pixels in a square array. Each pixel records the received intensity integrated over its own area, and pixels are separated by the array pitch. This paper examines the effects of such pixellation, using computed simulations to illustrate the effects which most concern the astronomer end-user. It is shown that coarse sampling increases the random noise errors in wavelength by typically 10-20 % at 2 pixels per Full Width at Half Maximum, but with wide variation depending on the functional form of the instrumental Line Spread Function (i.e. the instrumental response to a monochromatic input) and on the pixel phase. If line widths are determined, they are even more strongly affected at low sampling frequencies. However, the noise in fitted peak amplitudes is minimally affected by pixellation, with increases less than about 5%. Pixellation has a substantial but complex effect on the ability to see a relative minimum between two closely spaced peaks (or relative maximum between two absorption lines). The consistent scale of resolving power presented by Robertson to overcome the inadequacy of the Full Width at Half Maximum as a resolution measure is here extended to cover pixellated spectra. The systematic bias errors in wavelength introduced by pixellation, independent of signal/noise ratio, are examined. While they may be negligible for smooth well-sampled symmetric Line Spread Functions, they are very sensitive to asymmetry and high spatial frequency sub-structure. The Modulation Transfer Function for sampled data is shown to give a useful indication of the extent of improperly sampled signal in an Line Spread Function. The common maxim that 2 pixels per Full Width at Half Maximum is the Nyquist limit is incorrect and most Line Spread Functions will exhibit some aliasing at this sample frequency. While 2 pixels per Full Width at Half Maximum is nevertheless often an acceptable minimum for moderate signal/noise work, it is preferable to carry out simulations for any actual or proposed Line Spread Function to find the effects of various sampling frequencies. Where spectrograph end-users have a choice of sampling frequencies, through on-chip binning and/or spectrograph configurations, it is desirable that the instrument user manual should include an examination of the effects of the various choices.

  19. A new mathematical formulation of the line-by-line method in case of weak line overlapping

    NASA Technical Reports Server (NTRS)

    Ishov, Alexander G.; Krymova, Natalie V.

    1994-01-01

    A rigorous mathematical proof is presented for multiline representation on the equivalent width of a molecular band which consists in the general case of n overlapping spectral lines. The multiline representation includes a principal term and terms of minor significance. The principal term is the equivalent width of the molecular band consisting of the same n nonoverlapping spectral lines. The terms of minor significance take into consideration the overlapping of two, three and more spectral lines. They are small in case of the weak overlapping of spectral lines in the molecular band. The multiline representation can be easily generalized for optically inhomogeneous gas media and holds true for combinations of molecular bands. If the band lines overlap weakly the standard formulation of line-by-line method becomes too labor-consuming. In this case the multiline representation permits line-by-line calculations to be performed more effectively. Other useful properties of the multiline representation are pointed out.

  20. Association of Anterior Cruciate Ligament Width With Anterior Knee Laxity.

    PubMed

    Wang, Hsin-Min; Shultz, Sandra J; Schmitz, Randy J

    2016-06-02

    Greater anterior knee laxity (AKL) has been identified as an anterior cruciate ligament (ACL) injury risk factor. The structural factors that contribute to greater AKL are not fully understood but may include the ACL and bone geometry. To determine the relationship of ACL width and femoral notch angle to AKL. Cross-sectional study. Controlled laboratory. Twenty recreationally active females (age = 21.2 ± 3.1 years, height = 1.66.1 ± 7.3 cm, mass = 66.5 ± 12.0 kg). Anterior cruciate ligament width and femoral notch angle were obtained with magnetic resonance imaging of the knee and AKL was assessed. Anterior cruciate ligament width was measured as the width of a line that transected the ACL and was drawn perpendicular to the Blumensaat line. Femoral notch angle was formed by the intersection of the line parallel to the posterior cortex of the femur and the Blumensaat line. Anterior knee laxity was the anterior displacement of the tibia relative to the femur (mm) at 130 N of an applied force. Ten participants' magnetic resonance imaging data were assessed on 2 occasions to establish intratester reliability and precision. Using stepwise backward linear regression, we examined the extent to which ACL width, femoral notch angle, and weight were associated with AKL. Strong measurement consistency and precision (intraclass correlation coefficient [2,1] ± SEM) were established for ACL width (0.98 ± 0.3 mm) and femoral notch angle (0.97° ± 1.1°). The regression demonstrated that ACL width (5.9 ± 1.4 mm) was negatively associated with AKL (7.2 ± 2.0 mm; R(2) = 0.22, P = .04). Femoral notch angle and weight were not retained in the final model. A narrower ACL was associated with greater AKL. This finding may inform the development of ACL injury-prevention programs that include components designed to increase ACL size or strength (or both). Future authors should establish which other factors contribute to greater AKL in order to best inform injury-prevention efforts.

  1. Molybdenum electron impact width parameter measurement by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Sternberg, E. M. A.; Rodrigues, N. A. S.; Amorim, J.

    2016-01-01

    In this work, we suggest a method for electron impact width parameter calculation based on Stark broadening of emission lines of a laser-ablated plasma plume. First, electron density and temperature must be evaluated by means of the Saha-Boltzmann plot method for neutral and ionized species of the plasma. The method was applied for laser-ablated molybdenum plasma plume. For molybdenum plasma electron temperature, which varies around 10,000 K, and electron density, which reaches values around 1018 cm-3, and considering that total measured line broadening was due experimental and Stark broadening mainly, electron impact width parameter of molybdenum emission lines was determined as (0.01 ± 0.02) nm. Intending to validate the presented method, it was analyzed the laser-ablated aluminum plasma plume and the obtained results were in agreement with the predicted on the literature.

  2. Line width measurement below 60 nm using an optical interferometer and artificial neural network

    NASA Astrophysics Data System (ADS)

    See, Chung W.; Smith, Richard J.; Somekh, Michael G.; Yacoot, Andrew

    2007-03-01

    We have recently described a technique for optical line-width measurements. The system currently is capable of measuring line-width down to 60 nm with a precision of 2 nm, and potentially should be able to measure down to 10nm. The system consists of an ultra-stable interferometer and artificial neural networks (ANNs). The former is used to generate optical profiles which are input to the ANNs. The outputs of the ANNs are the desired sample parameters. Different types of samples have been tested with equally impressive results. In this paper we will discuss the factors that are essential to extend the application of the technique. Two of the factors are signal conditioning and sample classification. Methods, including principal component analysis, that are capable of performing these tasks will be considered.

  3. Single steady frequency and narrow-linewidth external-cavity semiconductor laser

    NASA Astrophysics Data System (ADS)

    Zhao, Weirui; Jiang, Pengfei; Xie, Fuzeng

    2003-11-01

    A single longitudinal mode and narrow line width external cavity semiconductor laser is proposed. It is constructed with a semiconductor laser, collimator, a flame grating, and current and temperature control systems. The one facet of semiconductor laser is covered by high transmission film, and another is covered by high reflection film. The flame grating is used as light feedback element to select the mode of the semiconductor laser. The temperature of the constructed external cavity semiconductor laser is stabilized in order of 10-3°C by temperature control system. The experiments have been carried out and the results obtained - the spectral line width of this laser is compressed to be less than 1.4MHz from its original line-width of more than 1200GHz and the output stability (including power and mode) is remarkably enhanced.

  4. Common angle plots as perception-true visualizations of categorical associations.

    PubMed

    Hofmann, Heike; Vendettuoli, Marie

    2013-12-01

    Visualizations are great tools of communications-they summarize findings and quickly convey main messages to our audience. As designers of charts we have to make sure that information is shown with a minimum of distortion. We have to also consider illusions and other perceptual limitations of our audience. In this paper we discuss the effect and strength of the line width illusion, a Muller-Lyer type illusion, on designs related to displaying associations between categorical variables. Parallel sets and hammock plots are both affected by line width illusions. We introduce the common-angle plot as an alternative method for displaying categorical data in a manner that minimizes the effect from perceptual illusions. Results from user studies both highlight the need for addressing line-width illusions in displays and provide evidence that common angle charts successfully resolve this issue.

  5. An Atlas of Computed Equivalent Widths of Quasar Broad Emission Lines

    NASA Astrophysics Data System (ADS)

    Korista, Kirk; Baldwin, Jack; Ferland, Gary; Verner, Dima

    We present graphically the results of several thousand photoionization calculations of broad emission-line clouds in quasars, spanning 7 orders of magnitude in hydrogen ionizing flux and particle density. The equivalent widths of 42 quasar emission lines are presented as contours in the particle density-ionizing flux plane for a typical incident continuum shape, solar chemical abundances, and cloud column density of N(H) = 1023 cm-2. Results are similarly given for a small subset of emission lines for two other column densities (1022 and 1024 cm-2), five other incident continuum shapes, and a gas metallicity of 5 Z⊙. These graphs should prove useful in the analysis of quasar emission-line data and in the detailed modeling of quasar broad emission-line regions. The digital results of these emission-line grids and many more are available over the Internet.

  6. Results of Detailed Modeling of the Narrow-Line Region of Seyfert Galaxies

    NASA Technical Reports Server (NTRS)

    Moore, David; Cohen, Ross D.

    1996-01-01

    We present model line profiles of [O II] lambda3727, [Ne III] lambda3869, [O I] lambda5007, [Fe VII] lambda6087, [Fe X] lambda6374, [O I] lambda6300, H(alpha) lambda6563, and [S 2] lambda6731. The profiles presented here illustrate explicitly the pronounced effects that collisional de-excitation, and that spatial variations in both the ionization parameter and cloud column density, have on Narrow-Line Region (NLR) model profiles. The above effects were included only qualitatively in a previous analytical treatment by Moore and Cohen. By making a direct correspondence between these model profiles and the analytical model profiles of Moore and Cohen, and by comparing with the observed profiles presented in a companion paper and also with those presented elsewhere in the literature, we strengthen some of the conclusions of Moore and Cohen. Most notably, we argue for constant ionization parameter, uniformly accelerated outflow of clouds that are individually stratified in ionization, and the interpretation of emission-line width correlations with ionization potential as a column density effect. For comparison with previous observational studies, such as our own in a companion paper, we also calculate profile parameters for some of the models, and we present and discuss the resulting line width correlations with critical density (n(sub cr)) and Ionization Potential (IP). Because the models we favor are those that produce extended profile wings as observed in high spectral resolution studies, the line width correlations of our favoured models are of particular interest. Line width correlations with n(sub cr) and/or IP result only if the width parameter is more sensitive to extended profile wings than is the Full Width at Half-Maximum (FWHM). Correlations between FWHM and n(sub cr) and/or IP result only after convolving the model profiles with a broad instrumental profile that simulates the lower spectral resolution used in early observational studies. The model in agreement with the greatest number of observational considerations has electron density decreasing outward from n(sub e) approx. equals 10(exp 6)/cu cm to n(sub e) approx. equals 10(exp 2)/cu cm and, due to collisional de-excitation effects in the lowest velocity clouds, it generates broad flat-topped profile peaks in the lines of lowest critical density (e.g., [O II] lambda3727 and [S II] lambda(lambda)6716, 6731). Because the observed profile peaks of both low and high critical density lines are often very similar, our favored model requires a contribution to NLR emission-line spectra from low-velocity, low-density, and low-ionization gas not included in the model NLR.

  7. Enhancing the resolution of 1H and 13C solid-state NMR spectra by reduction of anisotropic bulk magnetic susceptibility broadening.

    PubMed

    Hanrahan, Michael P; Venkatesh, Amrit; Carnahan, Scott L; Calahan, Julie L; Lubach, Joseph W; Munson, Eric J; Rossini, Aaron J

    2017-10-25

    We demonstrate that natural isotopic abundance 2D heteronuclear correlation (HETCOR) solid-state NMR spectra can be used to significantly reduce or eliminate the broadening of 1 H and 13 C solid-state NMR spectra of organic solids due to anisotropic bulk magnetic susceptibility (ABMS). ABMS often manifests in solids with aromatic groups, such as active pharmaceutical ingredients (APIs), and inhomogeneously broadens the NMR peaks of all nuclei in the sample. Inhomogeneous peaks with full widths at half maximum (FWHM) of ∼1 ppm typically result from ABMS broadening and the low spectral resolution impedes the analysis of solid-state NMR spectra. ABMS broadening of solid-state NMR spectra has previously been eliminated using 2D multiple-quantum correlation experiments, or by performing NMR experiments on diluted materials or single crystals. However, these experiments are often infeasible due to their poor sensitivity and/or provide limited gains in resolution. 2D 1 H- 13 C HETCOR experiments have previously been applied to reduce susceptibility broadening in paramagnetic solids and we show that this strategy can significantly reduce ABMS broadening in diamagnetic organic solids. Comparisons of 1D solid-state NMR spectra and 1 H and 13 C solid-state NMR spectra obtained from 2D 1 H- 13 C HETCOR NMR spectra show that the HETCOR spectrum directly increases resolution by a factor of 1.5 to 8. The direct gain in resolution is determined by the ratio of the inhomogeneous 13 C/ 1 H linewidth to the homogeneous 1 H linewidth, with the former depending on the magnitude of the ABMS broadening and the strength of the applied field and the latter on the efficiency of homonuclear decoupling. The direct gains in resolution obtained using the 2D HETCOR experiments are better than that obtained by dilution. For solids with long proton longitudinal relaxation times, dynamic nuclear polarization (DNP) was applied to enhance sensitivity and enable the acquisition of 2D 1 H- 13 C HETCOR NMR spectra. 2D 1 H- 13 C HETCOR experiments were applied to resolve and partially assign the NMR signals of the form I and form II polymorphs of aspirin in a sample containing both forms. These findings have important implications for ultra-high field NMR experiments, optimization of decoupling schemes and assessment of the fundamental limits on the resolution of solid-state NMR spectra.

  8. Scanning electron microscope measurement of width and shape of 10nm patterned lines using a JMONSEL-modeled library.

    PubMed

    Villarrubia, J S; Vladár, A E; Ming, B; Kline, R J; Sunday, D F; Chawla, J S; List, S

    2015-07-01

    The width and shape of 10nm to 12 nm wide lithographically patterned SiO2 lines were measured in the scanning electron microscope by fitting the measured intensity vs. position to a physics-based model in which the lines' widths and shapes are parameters. The approximately 32 nm pitch sample was patterned at Intel using a state-of-the-art pitch quartering process. Their narrow widths and asymmetrical shapes are representative of near-future generation transistor gates. These pose a challenge: the narrowness because electrons landing near one edge may scatter out of the other, so that the intensity profile at each edge becomes width-dependent, and the asymmetry because the shape requires more parameters to describe and measure. Modeling was performed by JMONSEL (Java Monte Carlo Simulation of Secondary Electrons), which produces a predicted yield vs. position for a given sample shape and composition. The simulator produces a library of predicted profiles for varying sample geometry. Shape parameter values are adjusted until interpolation of the library with those values best matches the measured image. Profiles thereby determined agreed with those determined by transmission electron microscopy and critical dimension small-angle x-ray scattering to better than 1 nm. Published by Elsevier B.V.

  9. Metallic Li colloids studied by Li-7 MAS NMR in electron-irradiated LiF

    NASA Astrophysics Data System (ADS)

    Zogal, O. J.; Beuneu, F.; Vajda, P.; Florian, P.; Massiot, D.

    Li-7 MAS NMR spectra of 2.5 MeV electron-irradiated LiF crystals have been measured in a field of 9.4 T. Besides the resonance line of the ionic compound, a second well-separated spectrum is observed in the region of the Knight shift value for metallic lithium. At room temperature, the latter can be decomposed into two components with different Knight shift and linewidth values. When the temperature is increased, line narrowing takes place at first, indicating shortening of correlation times for self-diffusion, independently in both components. Above 370 K, both lines broaden and approach each other before collapsing into a single line. The high ppm component disappears after crossing the melting temperature of metallic lithium (454 K). The two lines are attributed to different types of metallic Li: one to bulk-like metal, the other to Li present initially under pressure and relaxing to the former under thermal treatment.

  10. Stark parameter dependence of the rest core charge of the emitters for multiply charged ions spectral lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Šćepanović, M., E-mail: mara.scepanovic@gmail.com; Purić, J.

    2016-03-25

    Stark width and shift simultaneous dependence on the upper level ionization potential and rest core charge of the emitter has been evaluated and discussed. It has been verified that the found relations, connecting Stark broadening parameters with upper level ionization potential and rest core charge of the emitters for particular electron temperature and density, can be used for prediction of Stark line width and shift data in case of ions for which observed data, or more detailed calculations, are not yet available. Stark widths and shifts published data are used to demonstrate the existence of other kinds of regularities withinmore » similar spectra of different elements and their ionization stages. The emphasis is on the Stark parameter dependence on the upper level ionization potential and on the rest core charge for the lines from similar spectra of multiply charged ions. The found relations connecting Stark widths and shift parameters with upper level ionization potential, rest core charge and electron temperature were used for a prediction of new Stark broadening data, thus avoiding much more complicated procedures.« less

  11. Visual search performance on an lcd monitor: effects of color combination of figure and icon background, shape of icon, and line width of icon border.

    PubMed

    Huang, Kuo-Chen; Chiu, Tsai-Lan

    2007-04-01

    This study investigated the effects of color combinations for the figure/icon background, icon shape, and line width of the icon border on visual search performance on a liquid crystal display screen. In a circular stimulus array, subjects had to search for a target item which had a diameter of 20 cm and included one target and 19 distractors. Analysis showed that the icon shape significantly affected search performance. The correct response time was significantly shorter for circular icons than for triangular icons, for icon borders with a line width of 3 pixels than for 1 or 2 pixels, and for 2 pixels than for 1 pixel. The color combination also significantly affected the visual search performance: white/yellow, white/blue, black-red, and black/ yellow color combinations for the figure/icon background had shorter correct response times compared to yellow/blue, red/green, yellow/green, and blue/red. However, no effects were found for the line width of the icon border or the icon shape on the error rate. Results have implications for graphics-based design of interfaces, such as for mobile phones, Web sites, and PDAs, as well as complex industrial processes.

  12. Non-Maxwellian Analysis of the Transition-region Line Profiles Observed by the Interface Region Imaging Spectrograph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudík, Jaroslav; Dzifčáková, Elena; Polito, Vanessa

    2017-06-10

    We investigate the nature of the spectral line profiles for transition-region (TR) ions observed with the Interface Region Imaging Spectrograph (IRIS) . In this context, we analyzed an active-region observation performed by IRIS in its 1400 Å spectral window. The TR lines are found to exhibit significant wings in their spectral profiles, which can be well fitted with a non-Maxwellian κ distribution. The fit with a κ distribution can perform better than a double-Gaussian fit, especially for the strongest line, Si iv 1402.8 Å. Typical values of κ found are about 2, occurring in a majority of spatial pixels wheremore » the TR lines are symmetric, i.e., the fit can be performed. Furthermore, all five spectral lines studied (from Si iv, O iv, and S iv) appear to have the same full-width at half-maximum irrespective of whether the line is an allowed or an intercombination transition. A similar value of κ is obtained for the electron distribution by the fitting of the line intensities relative to Si iv 1402.8 Å, if photospheric abundances are assumed. The κ distributions, however, do not remove the presence of non-thermal broadening. Instead, they actually increase the non-thermal width. This is because, for κ distributions, TR ions are formed at lower temperatures. The large observed non-thermal width lowers the opacity of the Si iv line sufficiently enough for this line to become optically thin.« less

  13. ¹⁴N Quadrupole Resonance line broadening due to the earth magnetic field, occuring only in the case of an axially symmetric electric field gradient tensor.

    PubMed

    Aissani, Sarra; Guendouz, Laouès; Marande, Pierre-Louis; Canet, Daniel

    2015-01-01

    As demonstrated before, the application of a weak static B0 magnetic field (less than 10 G) may produce definite effects on the ¹⁴N Quadrupole Resonance line when the electric field gradient tensor at the nitrogen nucleus level is of axial symmetry. Here, we address more precisely the problem of the relative orientation of the two magnetic fields (the static field and the radio-frequency field of the pure NQR experiment). For a field of 6G, the evolution of the signal intensity, as a function of this relative orientation, is in very good agreement with the theoretical predictions. There is in particular an intensity loss by a factor of three when going from the parallel configuration to the perpendicular configuration. By contrast, when dealing with a very weak magnetic field (as the earth field, around 0.5 G), this effect drops to ca. 1.5 in the case Hexamethylenetetramine (HMT).This is explained by the fact that the Zeeman shift (due to the very weak magnetic field) becomes comparable to the natural line-width. The latter can therefore be determined by accounting for this competition. Still in the case of HMT, the estimated natural line-width is half the observed line-width. The extra broadening is thus attributed to earth magnetic field. The latter constitutes therefore the main cause of the difference between the natural transverse relaxation time (T₂) and the transverse relaxation time derived from the observed line-width (T₂(⁎)). Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Mapping and characterization of the major quantitative trait locus qSS7 associated with increased length and decreased width of rice seeds.

    PubMed

    Qiu, Xianjin; Gong, Rong; Tan, Youbin; Yu, Sibin

    2012-12-01

    Seed shape in rice (Oryza sativa) is an important factor that determines grain appearance, cooking quality and grain yield. Here, we report a major quantitative trait locus qSS7 on the long arm of chromosome 7 for seed length, seed width and the ratio of seed length to width, identified using a segregating population derived from a cross between an indica variety Zhenshan97 and a chromosomal segment substitution line of a japonica variety Cypress within the genetic background of Zhenshan97. The Cypress allele at qSS7 contributes to an increase in seed length and the ratio of length to width, but a decrease in seed width, without significantly changing seed weight, plant height, heading date or number of spikelets per panicle. Using a large F(2) population generated from a substitution line that carries only a heterozygous single segment surrounding qSS7, we delimited the QTL to a 23-kb region containing two annotated genes. Progeny testing of the informative recombinants suggested that this qSS7 region is a composite QTL in which at least two genes contribute to seed length and width. Sequence comparison and expression analysis of two probable candidate genes revealed differences between the parental lines. These results will facilitate cloning of the gene(s) underlying qSS7 as well as marker-assisted transfer of desirable genes for seed shape in rice improvement.

  15. Synchrotron radiation-based quasi-elastic scattering using time-domain interferometry with multi-line gamma rays.

    PubMed

    Saito, Makina; Masuda, Ryo; Yoda, Yoshitaka; Seto, Makoto

    2017-10-02

    We developed a multi-line time-domain interferometry (TDI) system using 14.4 keV Mössbauer gamma rays with natural energy widths of 4.66 neV from 57 Fe nuclei excited using synchrotron radiation. Electron density fluctuations can be detected at unique lengths ranging from 0.1 nm to a few nm on time scales from several nanoseconds to the sub-microsecond order by quasi-elastic gamma-ray scattering (QGS) experiments using multi-line TDI. In this report, we generalize the established expression for a time spectrum measured using an identical single-line gamma-ray emitter pair to the case of a nonidentical pair of multi-line gamma-ray emitters by considering the finite energy width of the incident synchrotron radiation. The expression obtained illustrates the unique characteristics of multi-line TDI systems, where the finite incident energy width and use of a nonidentical emitter pair produces further information on faster sub-picosecond-scale dynamics in addition to the nanosecond dynamics; this was demonstrated experimentally. A normalized intermediate scattering function was extracted from the spectrum and its relaxation form was determined for a relaxation time of the order of 1 μs, even for relatively large momentum transfer of ~31 nm -1 . The multi-line TDI method produces a microscopic relaxation picture more rapidly and accurately than conventional single-line TDI.

  16. Characterization of active phosphorus surface sites at synthetic carbonate-free fluorapatite using single-pulse 1H, 31P, and 31P CP MAS NMR.

    PubMed

    Jarlbring, Mathias; Sandström, Dan E; Antzutkin, Oleg N; Forsling, Willis

    2006-05-09

    The chemically active phosphorus surface sites defined as PO(x), PO(x)H, and PO(x)H2, where x = 1, 2, or 3, and the bulk phosphorus groups of PO4(3-) at synthetic carbonate-free fluorapatite (Ca5(PO4)3F) have been studied by means of single-pulse 1H,31P, and 31P CP MAS NMR. The changes in composition and relative amounts of each surface species are evaluated as a function of pH. By combining spectra from single-pulse 1H and 31P MAS NMR and data from 31P CP MAS NMR experiments at varying contact times in the range 0.2-3.0 ms, it has been possible to distinguish between resonance lines in the NMR spectra originating from active surface sites and bulk phosphorus groups and also to assign the peaks in the NMR spectra to the specific phosphorus species. In the 31P CP MAS NMR experiments, the spinning frequency was set to 4.2 kHz; in the single-pulse 1H MAS NMR experiments, the spinning frequency was 10 kHz. The 31P CP MAS NMR spectrum of fluorapatite at pH 5.9 showed one dominating resonance line at 2.9 ppm assigned to originate from PO4(3-) groups and two weaker shoulder peaks at 5.4 and 0.8 ppm which were assigned to the unprotonated PO(x) (PO, PO2-, and PO3(2-)) and protonated PO(x)H (PO2H and PO3H-) surface sites. At pH 12.7, the intensity of the peak representing unprotonated PO(x) surface sites has increased 1.7% relative to the bulk peak, while the intensity of the peaks of the protonated species PO(x)H have decreased 1.4% relative to the bulk peak. At pH 3.5, a resonance peak at -4.5 ppm has appeared in the 31P CP MAS NMR spectrum assigned to the surface species PO(x)H2 (PO3H2). The results from the 1H MAS and 31P CP MAS NMR measurements indicated that H+, OH-, and physisorbed H2O at the surface were released during the drying process at 200 degrees C.

  17. On-line comprehensive two-dimensional normal-phase liquid chromatography × reversed-phase liquid chromatography for preparative isolation of Peucedanum praeruptorum.

    PubMed

    Wang, Xin-Yuan; Li, Jia-Fu; Jian, Ya-Mei; Wu, Zhen; Fang, Mei-Juan; Qiu, Ying-Kun

    2015-03-27

    A new on-line comprehensive preparative two-dimensional normal-phase liquid chromatography × reversed-phase liquid chromatography (2D NPLC × RPLC) system was developed for the separation of complicated natural products. It was based on the use of a silica gel packed medium-pressure column as the first dimension and an ODS preparative HPLC column as the second dimension. The two dimensions were connected with normal-phase (NP) and reversed-phase (RP) enrichment units, involving a newly developed airflow assisted adsorption (AAA) technique. The instrument operation and the performance of this NPLC × RPLC separation method were illustrated by gram-scale isolation of ethanol extract from the roots of Peucedanum praeruptorum. In total, 19 compounds with high purity were obtained via automated multi-step preparative separation in a short period of time using this system, and their structures were comprehensively characterized by ESI-MS, (1)H NMR, and (13)C NMR. Including two new compounds, five isomers in two groups with identical HPLC and TLC retention values were also obtained and identified by 1D NMR and 2D NMR. This is the first report of an NPLC × RPLC system successfully applied in an on-line preparative process. This system not only solved the interfacing problem of mobile-phase immiscibility caused by NP and RP separation, it also exhibited apparent advantages in separation efficiency and sample treatment capacity compared with conventional methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. On the Detectability of Oxygen X-Ray Fluorescence and Its Use as a Solar Photospheric Abundance Diagnostic

    NASA Astrophysics Data System (ADS)

    Drake, Jeremy J.; Ercolano, Barbara

    2008-08-01

    Monte Carlo calculations of the O Kα line fluoresced by coronal X-rays and emitted just above the temperature minimum region of the solar atmosphere have been employed to investigate the use of this feature as an abundance diagnostic. While they are quite weak, we estimate line equivalent widths in the range 0.02-0.2 Å, depending on the X-ray plasma temperature. The line remains essentially uncontaminated by blends for coronal temperatures T <= 3 × 106 K and should be quite observable, with a flux gtrsim2 photons s-1 arcmin-2. Model calculations for solar chemical mixtures with an O abundance adjusted up and down by a factor of 2 indicate 35%-60% changes in O Kα line equivalent width, providing a potentially useful O abundance diagnostic. Sensitivity of equivalent width to differences between recently recommended chemical compositions with "high" and "low" complements of the CNO trio important for interpreting helioseismological observations is less acute, amounting to 20%-26% at coronal temperatures T <= 2 × 106 K. While still feasible for discriminating between these two mixtures, uncertainties in measured line equivalent widths and in the models used for interpretation would need to be significantly less than 20%. Provided a sensitive X-ray spectrometer with resolving power >=1000 and suitably well-behaved instrumental profile can be built, X-ray fluorescence presents a viable means for resolving the solar "oxygen crisis."

  19. Shining a light on galactic outflows: photoionized outflows

    NASA Astrophysics Data System (ADS)

    Chisholm, John; Tremonti, Christy A.; Leitherer, Claus; Chen, Yanmei; Wofford, Aida

    2016-04-01

    We study the ionization structure of galactic outflows in 37 nearby, star-forming galaxies with the Cosmic Origins Spectrograph on the Hubble Space Telescope. We use the O I, Si II, Si III, and Si IV ultraviolet absorption lines to characterize the different ionization states of outflowing gas. We measure the equivalent widths, line widths, and outflow velocities of the four transitions, and find shallow scaling relations between them and galactic stellar mass and star formation rate. Regardless of the ionization potential, lines of similar strength have similar velocities and line widths, indicating that the four transitions can be modelled as a comoving phase. The Si equivalent width ratios (e.g. Si IV/Si II) have low dispersion, and little variation with stellar mass; while ratios with O I and Si vary by a factor of 2 for a given stellar mass. Photoionization models reproduce these equivalent width ratios, while shock models under predict the relative amount of high ionization gas. The photoionization models constrain the ionization parameter (U) between -2.25 < log (U) < -1.5, and require that the outflow metallicities are greater than 0.5 Z⊙. We derive ionization fractions for the transitions, and show that the range of ionization parameters and stellar metallicities leads to a factor of 1.15-10 variation in the ionization fractions. Historically, mass outflow rates are calculated by converting a column density measurement from a single metal ion into a total hydrogen column density using an ionization fraction, thus mass outflow rates are sensitive to the assumed ionization structure of the outflow.

  20. Maskless Lithography Using Negative Photoresist Material: Impact of UV Laser Intensity on the Cured Line Width

    NASA Astrophysics Data System (ADS)

    Mohammed, Mohammed Ziauddin; Mourad, Abdel-Hamid I.; Khashan, Saud A.

    2018-06-01

    The application of maskless lithography technique on negative photoresist material is investigated in this study. The equipment used in this work is designed and built especially for maskless lithography applications. The UV laser of 405 nm wavelength with 0.85 Numerical Aperture is selected for direct laser writing. All the samples are prepared on a glass substrate. Samples are tested at different UV laser intensities and different stage velocities in order to study the impact on patterned line width. Three cases of spin coated layers of thickness 90 μm, 40 μm, and 28 μm on the substrate are studied. The experimental results show that line width has a generally increasing trend with intensity. However, a decreasing trend was observed for increasing velocity. The overall performance shows that the mr-DWL material is suitable for direct laser writing systems.

  1. Automatic alternative phase-shift mask CAD layout tool for gate shrinkage of embedded DRAM in logic below 0.18 μm

    NASA Astrophysics Data System (ADS)

    Ohnuma, Hidetoshi; Kawahira, Hiroichi

    1998-09-01

    An automatic alternative phase shift mask (PSM) pattern layout tool has been newly developed. This tool is dedicated for embedded DRAM in logic device to shrink gate line width with improving line width controllability in lithography process with a design rule below 0.18 micrometers by the KrF excimer laser exposure. The tool can crete Levenson type PSM used being coupled with a binary mask adopting a double exposure method for positive photo resist. By using graphs, this tool automatically creates alternative PSM patterns. Moreover, it does not give any phase conflicts. By adopting it to actual embedded DRAM in logic cells, we have provided 0.16 micrometers gate resist patterns at both random logic and DRAM areas. The patterns were fabricated using two masks with the double exposure method. Gate line width has been well controlled under a practical exposure-focus window.

  2. Maskless Lithography Using Negative Photoresist Material: Impact of UV Laser Intensity on the Cured Line Width

    NASA Astrophysics Data System (ADS)

    Mohammed, Mohammed Ziauddin; Mourad, Abdel-Hamid I.; Khashan, Saud A.

    2018-04-01

    The application of maskless lithography technique on negative photoresist material is investigated in this study. The equipment used in this work is designed and built especially for maskless lithography applications. The UV laser of 405 nm wavelength with 0.85 Numerical Aperture is selected for direct laser writing. All the samples are prepared on a glass substrate. Samples are tested at different UV laser intensities and different stage velocities in order to study the impact on patterned line width. Three cases of spin coated layers of thickness 90 μm, 40 μm, and 28 μm on the substrate are studied. The experimental results show that line width has a generally increasing trend with intensity. However, a decreasing trend was observed for increasing velocity. The overall performance shows that the mr-DWL material is suitable for direct laser writing systems.

  3. Fine pattern replication on 10 x 10-mm exposure area using ETS-1 laboratory tool in HIT

    NASA Astrophysics Data System (ADS)

    Hamamoto, K.; Watanabe, Takeo; Hada, Hideo; Komano, Hiroshi; Kishimura, Shinji; Okazaki, Shinji; Kinoshita, Hiroo

    2002-07-01

    Utilizing ETS-1 laboratory tool in Himeji Institute of Technology (HIT), as for the fine pattern replicated by using the Cr mask in static exposure, it is replicated in the exposure area of 10 mm by 2 mm in size that the line and space pattern width of 60 nm, the isolated line pattern width of 40 nm, and hole pattern width of 150 nm. According to the synchronous scanning of the mass and wafer with EUVL laboratory tool with reduction optical system which consisted of three-aspherical-mirror in the NewSUBARU facilities succeeded in the line of 60 nm and the space pattern formation in the exposure region of 10mm by 10mm. From the result of exposure characteristics for positive- tone resist for KrF and EB, KrF chemically amplified resist has better characteristics than EB chemically amplified resist.

  4. High-performance liquid chromatography with nuclear magnetic resonance detection applied to organosilicon polymers. Part 2. Comparison with other methods.

    PubMed

    Blechta, Vratislav; Kurfürst, Milan; Sýkora, Jan; Schraml, Jan

    2007-03-23

    LC-NMR utilizing (1)H and (29)Si NMR spectroscopy is ideally suited for the analysis of silicones. It is shown that reversed phase gradient LC-NMR surpasses standard gel permeation chromatography (GPC) and diffusion ordered spectroscopy (DOSY) in the analysis of model hydride terminated polydimethylsiloxane. (1)H and (29)Si NMR in the stopped-flow arrangement leads to full identification of the components. Concentration gradient introduces a dependence of the (29)Si shifts on solvent composition, this dependence can be substantially reduced by a proposed method of referencing. It is shown that the ADEQUATE version of powerful but insensitive 2D INADEQUATE experiment can be used for complete line assignment.

  5. Dynamics of Hydrophobic Core Phenylalanine Residues Probed by Solid-State Deuteron NMR

    PubMed Central

    Vugmeyster, Liliya; Ostrovsky, Dmitry; Villafranca, Toni; Sharp, Janelle; Xu, Wei; Lipton, Andrew S.; Hoatson, Gina L.; Vold, Robert L.

    2016-01-01

    We conducted a detailed investigation of the dynamics of two phenylalanine side chains in the hydrophobic core of the villin headpiece subdomain protein (HP36) in the hydrated powder state over the 298–80 K temperature range. Our main tools were static deuteron NMR measurements of longitudinal relaxation and line shapes supplemented with computational modeling. The temperature dependence of the relaxation times reveals the presence of two main mechanisms that can be attributed to the ring-flips, dominating at high temperatures, and small-angle fluctuations, dominating at low temperatures. The relaxation is non-exponential at all temperatures with the extent of non-exponentiality increasing from higher to lower temperatures. This behavior suggests a distribution of conformers with unique values of activation energies. The central values of the activation energies for the ring-flipping motions are among the smallest reported for aromatic residues in peptides and proteins and point to a very mobile hydrophobic core. The analysis of the widths of the distributions, in combination with the earlier results on the dynamics of flanking methyl groups (Vugmeyster et al., J. Phys. Chem. B 2013, 117, 6129–6137), suggests that the hydrophobic core undergoes slow concerted fluctuations. There is a pronounced effect of dehydration on the ring-flipping motions, which shifts the distribution toward more rigid conformers. The cross-over temperature between the regions of dominance of the small-angle fluctuations and ring-flips shifts from 195 K in the hydrated protein to 278 K in the dry one. This result points to the role of solvent in softening the core and highlights aromatic residues as markers of the protein dynamical transitions. PMID:26529128

  6. Dynamics of Hydrophobic Core Phenylalanine Residues Probed by Solid-State Deuteron NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vugmeyster, Liliya; Ostrovsky, Dmitry; Villafranca, Toni

    We conducted a detailed investigation of the dynamics of two phenylalanine side chains in the hydrophobic core of the villin headpiece subdomain protein (HP36) in the hydrated powder state over the 298–80 K temperature range. We utilized static deuteron NMR measurements of longitudinal relaxation and line shapes supplemented with computational modeling. The temperature dependence of the relaxation times reveals the presence of two main mechanisms that can be attributed to the ring-flips, dominating at high temperatures, and small-angle fluctuations, dominating at low temperatures. The relaxation is non- exponential at all temperatures with the extent of non-exponentiality increasing from higher tomore » lower temperatures. This behavior suggests a distribution of conformers with unique values of activation energies. The central values of the activation energies for the ring-flipping motions are among the smallest reported for aromatic residues in peptides and proteins and point to a very mobile hydrophobic core. The analysis of the widths of the distributions, in combination with the earlier results on the dynamics of flanking methyl groups (Vugmeyster et al., J. Phys. Chem. 2013, 117, 6129–6137), suggests that the hydrophobic core undergoes concerted fluctuations. There is a pronounced effect of dehydration on the ring-flipping motions, which shifts the distribution toward more rigid conformers. The cross-over temperature between the regions of dominance of the small-angle fluctuations and ring-flips shifts from 195 K in the hydrated protein to 278 K in the dry one. This result points to the role of solvent in the onset of the concerted fluctuations of the core and highlights aromatic residues as markers of the protein dynamical transitions.« less

  7. NMR Microscopy - Micron-Level Resolution.

    NASA Astrophysics Data System (ADS)

    Kwok, Wing-Chi Edmund

    1990-01-01

    Nuclear Magnetic Resonance Imaging (MRI) has been developed into a powerful and widely used diagnostic tool since the invention of techniques using linear magnetic field gradients in 1973. The variety of imaging contrasts obtainable in MRI, such as spin density, relaxation times and flow rate, gives MRI a significant advantage over other imaging techniques. For common diagnostic applications, image resolutions have been in the order of millimeters with slice thicknesses in centimeters. For many research applications, however, resolutions in the order of tens of microns or smaller are needed. NMR Imaging in these high resolution disciplines is known as NMR microscopy. Compared with conventional microscopy, NMR microscopy has the advantage of being non-invasive and non-destructive. The major obstacles of NMR microscopy are low signal-to-noise ratio and effects due to spin diffusion. To overcome these difficulties, more sensitive RF probes and very high magnetic field gradients have to be used. The most effective way to increase sensitivity is to build smaller probes. Microscope probes of different designs have been built and evaluated. Magnetic field gradient coils that can produce linear field gradients up to 450 Gauss/cm were also assembled. In addition, since microscope probes often employ remote capacitors for RF tuning, the associated signal loss in the transmission line was studied. Imaging experiments have been carried out in a 2.1 Tesla small bore superconducting magnet using the typical two-dimensional spin warp imaging technique. Images have been acquired for both biological and non-biological samples. The highest resolution was obtained in an image of a nerve bundle from the spinal cord of a racoon and has an in-plane resolution of 4 microns. These experiments have demonstrated the potential application of NMR microscopy to pathological research, nervous system study and non -destructive testings of materials. One way to further improve NMR microscopy is to implement a higher static magnetic field which will increase signal strength. In the future, NMR microscopy should prove to be useful in the studies of cell linings, T1 & T2 relaxation mechanisms and NMR contrast agents.

  8. VizieR Online Data Catalog: Blazars equivalent widths and radio luminosity (Landt+, 2004)

    NASA Astrophysics Data System (ADS)

    Landt, H.; Padovani, P.; Perlman, E. S.; Giommi, P.

    2004-07-01

    Blazars are currently separated into BL Lacertae objects (BL Lacs) and flat spectrum radio quasars based on the strength of their emission lines. This is performed rather arbitrarily by defining a diagonal line in the Ca H&K break value-equivalent width plane, following Marcha et al. (1996MNRAS.281..425M). We readdress this problem and put the classification scheme for blazars on firm physical grounds. We study ~100 blazars and radio galaxies from the Deep X-ray Radio Blazar Survey (DXRBS, Cat. and ) and 2-Jy radio survey and find a significant bimodality for the narrow emission line [OIII]{lambda}5007. This suggests the presence of two physically distinct classes of radio-loud active galactic nuclei (AGN). We show that all radio-loud AGN, blazars and radio galaxies, can be effectively separated into weak- and strong-lined sources using the [OIII]{lambda}5007-[OII]{lambda}3727 equivalent width plane. This plane allows one to disentangle orientation effects from intrinsic variations in radio-loud AGN. Based on DXRBS, the strongly beamed sources of the new class of weak-lined radio-loud AGN are made up of BL Lacs at the ~75 per cent level, whereas those of the strong-lined radio-loud AGN include mostly (~97 per cent) quasars. (4 data files).

  9. Antiferromagnetic Ordering in Quasi-Triangular Localized Spin System, β'-Et2Me2P[Pd(dmit)2]2, Studied by 13C NMR

    NASA Astrophysics Data System (ADS)

    Otsuka, Kei; Iikubo, Hideaki; Kogure, Takayuki; Takano, Yoshiki; Hiraki, Ko-ichi; Takahashi, Toshihiro; Cui, Hengbo; Kato, Reizo

    2014-05-01

    We performed 13C NMR measurements of a selectively 13C isotope-labeled single-crystal sample of a frustrated spin system, β'-Et2Me2P[Pd(dmit)2]2. A long-range antiferromagnetic (AF) ordering below 17 K was confirmed by the observation of NMR spectrum broadening and well split resonance lines at lower temperatures. NMR spectra in the AF state can be well explained by a two sublattice model. From the analysis of the angular dependence of the NMR spectrum, we clarified the magnetic structure in the AF state, where the easy and hard axes are the crystallographic c*- and b-axes, respectively, and the effective localized moments are quite small, ˜0.28 μB/dimer. This suggests a strong quantum fluctuation effect due to magnetic frustrations in a quasi-triangular spin-1/2 system.

  10. Measurements of solar transition zone velocities and line broadening using the ultraviolet spectrometer and polarimeter on the Solar Maximum Mission

    NASA Technical Reports Server (NTRS)

    Simon, G.; Mein, P.; Vial, J. C.; Shine, R. A.; Woodgate, B. E.

    1982-01-01

    The UVSP instrument on SMM is able to observe solar regions at two wavelengths in the same line with a band-pass of 0.3 A. Intensity and Doppler velocity maps are derived. It is shown that the numerical values are sensitive to the adopted Doppler width and the range of velocities is limited to within 30 km/sec. A method called Double Dopplergram Determination (DDD) is described for deriving both the Doppler width and the velocity (up to 80 km/sec), and the main sources of uncertainties are discussed. To illustrate the method, a set of C IV 1548 A observations is analyzed according to this procedure. The mean C IV Doppler width measured (0.15 A) is comparable to previous determinations. A relation is found between bright regions and down-flows. Large Doppler widths correspond to strong velocity gradients.

  11. The Iron Abundance of IOTA Herculis From Ultraviolet Iron Lines

    NASA Astrophysics Data System (ADS)

    Grigsby, J.; Mulliss, C.; Baer, G.

    1995-03-01

    We have obtained (Adelman 1992, 1993, private comunication) coadded, high-resolution IUE spectra of Iota Herculis (B3 IV) in both short wavelength (SWP) and long wavelength (LWP) regions. The spectra span the ultraviolet spectrum from 110 - 300 nm and have a SNR of roughly 30 -50; they are described in Adelman et. al. (1993, ApJ 419, 276). Abundance indicators were 54 lines of Fe II and 26 lines of Fe III whose atomic parameters have been measured in the laboratory. LTE synthetic spectra for comparison with observations were produced with the Kurucz model atmosphere and spectral synthesis codes ATLAS9/SYNTHE (Kurucz 1979, ApJS 40,1; Kurucz and Avrett 1981, SAO Special Report 391). Model parameters were chosen from the literature: effective temperature = 17500 K, log g =3.75, v sin i= 11 km/s, and turbulent velocity = 0 km/s. (Peters and Polidan 1985, in IAU Symposium 111, ed. D. S. Hayes et al. (Dordrecht: Reidel), 417). We determined the equivalent widths of the chosen lines by fitting gaussian profiles to the lines and by measuring the equivalent widths of the gaussians. We derived abundances by fitting a straight line to a plot of observed equivalent widths vs. synthetic equivalent widths; we adjusted the iron abundance of the models until a slope of unity was achieved. The abundances derived from the different ionization stages are in agreement: Fe II lines indicate an iron abundance that is 34 +15/-10% the solar value([Fe/H]=-0.47 +0.16-0.15dex), while from Fe III lines we obtain 34 +/- 10% ([Fe/H]=-0.47 +0.11/-0.15 dex). A search of the literature suggests that no previous investigations of this star's iron abundance have found agreement between the different ionization stages. We thank Saul Adelman for his generous assistance, and the Faculty Research Fund Board of Wittenberg University for support of this research.

  12. Intrinsic line shape of electromagnetic radiation from a stack of intrinsic Josephson junctions synchronized by an internal cavity resonance

    NASA Astrophysics Data System (ADS)

    Koshelev, Alexei

    2013-03-01

    Stacks of intrinsic Josephson-junctions are realized in mesas fabricated out of layered superconducting single crystals, such as Bi2Sr2CaCu2O8 (BSCCO). Synchronization of phase oscillations in different junctions can be facilitated by the coupling to the internal cavity mode leading to powerful and coherent electromagnetic radiation in the terahertz frequency range. An important characteristic of this radiation is the shape of the emission line. A finite line width appears due to different noise sources leading to phase diffusion. We investigated the intrinsic line shape caused by the thermal noise for a mesa fabricated on the top of a BSCCO single crystal. In the ideal case of fully synchronized stack the finite line width is coming from two main contributions, the quasiparticle-current noise inside the mesa and the fluctuating radiation in the base crystal. We compute both contributions and conclude that for realistic mesa's parameters the second mechanism typically dominates. The role of the cavity quality factor in the emission line spectrum is clarified. Analytical results were verified by numerical simulations. In real mesa structures part of the stack may not be synchronized and chaotic dynamics of unsynchronized junctions may determine the real line width. Work supported by UChicago Argonne, LLC, under contract No. DE-AC02-06CH11357.

  13. Comprehensive analysis of line-edge and line-width roughness for EUV lithography

    NASA Astrophysics Data System (ADS)

    Bonam, Ravi; Liu, Chi-Chun; Breton, Mary; Sieg, Stuart; Seshadri, Indira; Saulnier, Nicole; Shearer, Jeffrey; Muthinti, Raja; Patlolla, Raghuveer; Huang, Huai

    2017-03-01

    Pattern transfer fidelity is always a major challenge for any lithography process and needs continuous improvement. Lithographic processes in semiconductor industry are primarily driven by optical imaging on photosensitive polymeric material (resists). Quality of pattern transfer can be assessed by quantifying multiple parameters such as, feature size uniformity (CD), placement, roughness, sidewall angles etc. Roughness in features primarily corresponds to variation of line edge or line width and has gained considerable significance, particularly due to shrinking feature sizes and variations of features in the same order. This has caused downstream processes (Etch (RIE), Chemical Mechanical Polish (CMP) etc.) to reconsider respective tolerance levels. A very important aspect of this work is relevance of roughness metrology from pattern formation at resist to subsequent processes, particularly electrical validity. A major drawback of current LER/LWR metric (sigma) is its lack of relevance across multiple downstream processes which effects material selection at various unit processes. In this work we present a comprehensive assessment of Line Edge and Line Width Roughness at multiple lithographic transfer processes. To simulate effect of roughness a pattern was designed with periodic jogs on the edges of lines with varying amplitudes and frequencies. There are numerous methodologies proposed to analyze roughness and in this work we apply them to programmed roughness structures to assess each technique's sensitivity. This work also aims to identify a relevant methodology to quantify roughness with relevance across downstream processes.

  14. Homogeneous and inhomogeneous broadenings and the Voigt line shapes in the phase-resolved and intensity sum-frequency generation vibrational spectroscopy.

    PubMed

    Chen, Shun-Li; Fu, Li; Gan, Wei; Wang, Hong-Fei

    2016-01-21

    In this report, we show that the ability to measure the sub-1 cm(-1) resolution phase-resolved and intensity high-resolution broadband sum frequency generation vibrational spectra of the -CN stretch vibration of the Langmuir-Blodgett (LB) monolayer of the 4-n-octyl-4'-cyanobiphenyl (8CB) on the z-cut α-quartz surface allows the direct comparison and understanding of the homogeneous and inhomogeneous broadenings in the imaginary and intensity SFG vibrational spectral line shapes in detail. The difference of the full width at half maximum (FWHM) of the imaginary and intensity sum-frequency generation vibrational spectroscopy spectra of the same vibrational mode is the signature of the Voigt line shape and it measures the relative contribution to the overall line shape from the homogeneous and inhomogeneous broadenings in SFG vibrational spectra. From the phase-resolved and intensity spectra, we found that the FWHM of the 2238.00 ± 0.02 cm(-1) peak in the phase-resolved imaginary and intensity spectra is 19.2 ± 0.2 cm(-1) and 21.6 ± 0.4 cm(-1), respectively, for the -CN group of the 8CB LB monolayer on the z-cut α-quartz crystal surface. The FWHM width difference of 2.4 cm(-1) agrees quantitatively with a Voigt line shape with a homogeneous broadening half width of Γ = 5.29 ± 0.08 cm(-1) and an inhomogeneous standard derivation width Δω = 5.42 ± 0.07 cm(-1). These results shed new lights on the understanding and interpretation of the line shapes of both the phase-resolved and the intensity SFG vibrational spectra, as well as other incoherent and coherent spectroscopic techniques in general.

  15. Investigating the Luminous Environment of SDSS Data Release 4 Mg II Absorption Line Systems

    NASA Astrophysics Data System (ADS)

    Caler, Michelle A.; Ravi, Sheth K.

    2018-01-01

    We investigate the luminous environment within a few hundred kiloparsecs of 3760 Mg II absorption line systems. These systems lie along 3760 lines of sight to Sloan Digital Sky Survey (SDSS) Data Release 4 QSOs, have redshifts that range between 0.37 ≤ z ≤ 0.82, and have rest equivalent widths greater than 0.18 Å. We use the SDSS Catalog Archive Server to identify galaxies projected near 3 arcminutes of the absorbing QSO’s position, and a background subtraction technique to estimate the absolute magnitude distribution and luminosity function of galaxies physically associated with these Mg II absorption line systems. The Mg II absorption system sample is split into two parts, with the split occurring at rest equivalent width 0.8 Å, and the resulting absolute magnitude distributions and luminosity functions compared on scales ranging from 50 h-1 kpc to 880 h-1 kpc. We find that, on scales of 100 h-1 kpc and smaller, the two distributions differ: the absolute magnitude distribution of galaxies associated with systems of rest frame equivalent width ≥ 0.8 Å (2750 lines of sight) seems to be approximated by that of elliptical-Sa type galaxies, whereas the absolute magnitude distribution of galaxies associated with systems of rest frame equivalent width < 0.8 Å (1010 lines of sight) seems to be approximated by that of Sa-Sbc type galaxies. However, on larger scales greater than 200 h-1 kpc, both distributions are broadly consistent with that of elliptical-Sa type galaxies. We note that, in a broader context, these results represent an estimate of the bright end of the galaxy luminosity function at a median redshift of z ˜ 0.65.

  16. A reassessment of absolute energies of the x-ray L lines of lanthanide metals

    NASA Astrophysics Data System (ADS)

    Fowler, J. W.; Alpert, B. K.; Bennett, D. A.; Doriese, W. B.; Gard, J. D.; Hilton, G. C.; Hudson, L. T.; Joe, Y.-I.; Morgan, K. M.; O'Neil, G. C.; Reintsema, C. D.; Schmidt, D. R.; Swetz, D. S.; Szabo, C. I.; Ullom, J. N.

    2017-08-01

    We introduce a new technique for determining x-ray fluorescence line energies and widths, and we present measurements made with this technique of 22 x-ray L lines from lanthanide-series elements. The technique uses arrays of transition-edge sensors, microcalorimeters with high energy-resolving power that simultaneously observe both calibrated x-ray standards and the x-ray emission lines under study. The uncertainty in absolute line energies is generally less than 0.4 eV in the energy range of 4.5 keV to 7.5 keV. Of the seventeen line energies of neodymium, samarium, and holmium, thirteen are found to be consistent with the available x-ray reference data measured after 1990; only two of the four lines for which reference data predate 1980, however, are consistent with our results. Five lines of terbium are measured with uncertainties that improve on those of existing data by factors of two or more. These results eliminate a significant discrepancy between measured and calculated x-ray line energies for the terbium L l line (5.551 keV). The line widths are also measured, with uncertainties of 0.6 eV or less on the full-width at half-maximum in most cases. These measurements were made with an array of approximately one hundred superconducting x-ray microcalorimeters, each sensitive to an energy band from 1 keV to 8 keV. No energy-dispersive spectrometer has previously been used for absolute-energy estimation at this level of accuracy. Future spectrometers, with superior linearity and energy resolution, will allow us to improve on these results and expand the measurements to more elements and a wider range of line energies.

  17. Broadband optical frequency comb generator based on driving N-cascaded modulators by Gaussian-shaped waveform

    NASA Astrophysics Data System (ADS)

    Hmood, Jassim K.; Harun, Sulaiman W.

    2018-05-01

    A new approach for realizing a wideband optical frequency comb (OFC) generator based on driving cascaded modulators by a Gaussian-shaped waveform, is proposed and numerically demonstrated. The setup includes N-cascaded MZMs, a single Gaussian-shaped waveform generator, and N-1 electrical time delayer. The first MZM is driven directly by a Gaussian-shaped waveform, while delayed replicas of the Gaussian-shaped waveform drive the other MZMs. An analytical model that describes the proposed OFC generator is provided to study the effect of number and chirp factor of cascaded MZM as well as pulse width on output spectrum. Optical frequency combs at frequency spacing of 1 GHz are generated by applying Gaussian-shaped waveform at pulse widths ranging from 200 to 400 ps. Our results reveal that, the number of comb lines is inversely proportional to the pulse width and directly proportional to both number and chirp factor of cascaded MZMs. At pulse width of 200 ps and chirp factor of 4, 67 frequency lines can be measured at output spectrum of two-cascaded MZMs setup. Whereas, increasing the number of cascaded stages to 3, 4, and 5, the optical spectra counts 89, 109 and 123 frequency lines; respectively. When the delay time is optimized, 61 comb lines can be achieved with power fluctuations of less than 1 dB for five-cascaded MZMs setup.

  18. Slope mass movements on rocky sea-cliffs: A power-law distributed natural hazard on the Barlavento Coast, Algarve, Portugal

    NASA Astrophysics Data System (ADS)

    Teixeira, Sebastião Braz

    2006-06-01

    The coast of the Central Algarve, Portugal, is dominated by sea-cliffs, cut on Miocene calcarenites; here, the main coastal geologic hazards result from the conflict between human occupation and sea-cliff recession. The evolution of this rocky coast occurs through an intermittent and discontinuous series of slope mass movements, along a 46 km cliff front. For the last 30 years, the increase of tourism occupation has amplified the risks to both people and buildings. In the last decade we have seen several accidents caused by cliff failure, which killed or wounded people and destroyed several buildings. The definition of buffer zones limited by hazard lines parallel to the cliff edge, where land use is restricted, is a widely used and effective preventive measure for mitigating risk. Rocky coasts typically show a slow cliff evolution. The process of gathering statistically significant field inventories of mass movements is, thus, very long. Although mass movement catalogues provide fundamental information on sea cliff evolution patterns and are an outstanding tool in hazard assessment, published data sets are still rare. In this work, we use two inventories of mass movement width, recorded on sea cliffs cut on Miocene calcarenites: a nine year long continuous field inventory (1995-2004) with 140 recorded events, and a 44 year long catalogue based on comparative analysis of aerial photographs (1947-1991), that includes 177 events. The cumulative frequency-width distributions of both data sets fit, above a critical width value corresponding to the threshold of full completeness of the inventories, to power-law distributions. The knowledge of the limits of the catalogues enabled the construction of a 53 year long record inventory over the range of mean width ⩾3 m ( n=167 events) and maximum width ⩾4 m ( n=155 events). The data assembled corresponds to a partial series and was converted to a return period-size distribution. Both return period-width distributions (mean width and maximum width) are also power-law distributions. Equations of return period-width distributions give the width of hazard lines corresponding to the width of mass movement, in which return period equals the period that hazard line is referred to.

  19. QSO Narrow [OIII] Line Width and Host Galaxy Luminosity

    NASA Astrophysics Data System (ADS)

    Bonning, E. W.; Shields, G. A.; Salviander, S.

    2004-05-01

    Established correlations between galaxy bulge luminosity L, black hole mass MBH, and stellar velocity dispersion sigma in galaxies suggest a close relationship between the growth of supermassive black holes and their host galaxies. Measurements of the MBH - sigma relationship as a function of cosmic time may shed light on the origin of this relationship. One approach is to derive MBH and sigma from the widths of QSO broad and narrow lines, respectively (Shields et al. 2003, ApJ, 583, 124; Nelson 2000, ApJ, 544, L91). We investigate the utility of using the velocity of the narrow line emitting gas as a surrogate for stellar velocity dispersion in QSOs by examining host magnitudes and [OIII] line widths for low redshift QSOs. For our limited range of L, the increase in sigma with L predicted by the Faber-Jackson relation is substantially obscured by scatter. However, sigma([O III]) is consistent in the mean with host galaxy luminosity. EWB is a NASA GSRP fellow. GAS and SS are supported under Texas Advanced Research Program grant 003658-0177-2001 and NSF grant AST-0098594.

  20. EASY: a simple tool for simultaneously removing background, deadtime and acoustic ringing in quantitative NMR spectroscopy--part I: basic principle and applications.

    PubMed

    Jaeger, Christian; Hemmann, Felix

    2014-01-01

    Elimination of Artifacts in NMR SpectroscopY (EASY) is a simple but very effective tool to remove simultaneously any real NMR probe background signal, any spectral distortions due to deadtime ringdown effects and -specifically- severe acoustic ringing artifacts in NMR spectra of low-gamma nuclei. EASY enables and maintains quantitative NMR (qNMR) as only a single pulse (preferably 90°) is used for data acquisition. After the acquisition of the first scan (it contains the wanted NMR signal and the background/deadtime/ringing artifacts) the same experiment is repeated immediately afterwards before the T1 waiting delay. This second scan contains only the background/deadtime/ringing parts. Hence, the simple difference of both yields clean NMR line shapes free of artefacts. In this Part I various examples for complete (1)H, (11)B, (13)C, (19)F probe background removal due to construction parts of the NMR probes are presented. Furthermore, (25)Mg EASY of Mg(OH)2 is presented and this example shows how extremely strong acoustic ringing can be suppressed (more than a factor of 200) such that phase and baseline correction for spectra acquired with a single pulse is no longer a problem. EASY is also a step towards deadtime-free data acquisition as these effects are also canceled completely. EASY can be combined with any other NMR experiment, including 2D NMR, if baseline distortions are a big problem. © 2013 Published by Elsevier Inc.

  1. Sonographic analysis of the intercostal spaces for the application of high-intensity focused ultrasound therapy to the liver.

    PubMed

    Kim, Young-Sun; Park, Min Jung; Rhim, Hyunchul; Lee, Min Woo; Lim, Hyo Keun

    2014-07-01

    The purposes of this study were to assess the widths of the intercostal spaces of the right inferior human rib cage through which high-intensity focused ultrasound therapy would be applied for treating liver cancer and to elucidate the demographic factors associated with intercostal space width. From March 2013 to June 2013, the widths of the intercostal spaces and the ribs at six areas of the right inferior rib cage (area 1, lowest intercostal space on anterior axillary line and the adjacent upper rib; area 2, second-lowest intercostal space on anterior axillary line and the adjacent upper rib; areas 3 and 4, lowest and second-lowest spaces on midaxillary line; areas 5 and 6, lowest and second-lowest spaces on posterior axillary line) were sonographically measured in 466 patients (214 men, 252 women; mean age, 53.0 years) after an abdominal sonographic examination. Demographic factors and the presence or absence of chronic liver disease were evaluated by multivariate analysis to investigate which factors influence intercostal width. The width of the intercostal space was 19.7 ± 3.7 mm (range, 9-33 mm) at area 1, 18.3 ± 3.4 mm (range, 9-33 mm) at area 2, 17.4 ± 4.0 mm (range, 7-33 mm) at area 3, 15.4 ± 3.5 mm (range, 5-26 mm) at area 4, 17.2 ± 3.7 mm (range, 7-28 mm) at area 5, and 14.5 ± 3.6 mm (range, 4-26 mm) at area 6. The corresponding widths of the ribs were 15.2 ± 2.3 mm (range, 8-22 mm), 14.5 ± 2.3 mm (range, 9-22 mm), 13.2 ± 2.0 mm (range, 9-20), 14.3 ± 2.2 mm (range, 9-20 mm), 15.0 ± 2.2 mm (range, 10-22 mm), and 15.1 ± 2.3 mm (range, 8-21 mm). Only female sex was significantly associated with the narrower intercostal width at areas 1, 2, 3, and 5 (regression coefficient, 1.124-1.885; p = 0.01-0.04). There was substantial variation in the widths of the intercostal spaces of the right inferior rib cage such that the anterior and inferior aspects of the intercostal space were relatively wider. Women had significantly narrower intercostal spaces than men.

  2. Ultraviolet photometry from the orbiting astronomical observatory. XVI - The stellar Lyman-alpha absorption line

    NASA Technical Reports Server (NTRS)

    Savage, B. D.; Panek, R. J.

    1974-01-01

    The stellar Lyman-alpha line at 1216 A was observed in 29 lightly reddened stars of spectral type B2.5 to B9 by a far-UV spectrophotometer on OAO-2. The equivalent widths obtained range from 15 A at type B2.5 to 65 A at type B8; in the late-B stars, the L-alpha line removes 2 to 3% of the total stellar flux. In this sampling, the strength of the L-alpha line correlates well with measures of the Balmer discontinuity and Balmer line strengths; luminosity classification does not seem to affect the line strength. The observed line widths also agree with the predictions of Mihala's grid of non-LTE model atmospheres. In some cases, the L-alpha line influences the interstellar column densities reported in the interstellar OAO-2 L-alpha survey. Hence, these data toward lightly reddened B2 and B1.5 stars should be regarded as upper limits only.

  3. Shift measurements of the stark-broadened ionized helium lines at 1640 and 1215 angstrom. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Vanzandt, J. R.

    1976-01-01

    Time-resolved measurements were made of the shifts of the ionized helium lines at 1,640 A (n = 3 approaches 2) and 1,215 A (n = 4 approaches 2), and of the Stark profile of the 1,215 A wavelength line. An electromagnetic shock tube was used as a light source. The plasma conditions corresponded to electron temperatures of approximately 3.5 eV and electron densities of 0.8 to 1.8 x 10 to the 17th power/cubic cm. The measured shifts fell between two previous estimates of plasma polarization shifts. The measured Stark width of the 1,215 A wavelength line was up to 30% greater than the theoretical width.

  4. An investigation into a micro-sized droplet impinging on a surface with sharp wettability contrast

    NASA Astrophysics Data System (ADS)

    Lim, C. Y.; Lam, Y. C.

    2014-10-01

    An experimental investigation was conducted into a micro-sized droplet jetted onto a surface with sharp wettability contrast. The dynamics of micro-sized droplet impingement on a sharp wettability contrast surface, which is critical in inkjet printing technology, has not been investigated in the literature. Hydrophilic lines with line widths ranging from 27 to 53 µm, and contact angle ranging from 17° to 77°, were patterned on a hydrophobic surface with a contact angle of 107°. Water droplets with a diameter of 81 µm were impinged at various offset distances from the centre of the hydrophilic line. The evolution of the droplet upon impingement can be divided into three distinct phases, namely the kinematic phase, the translating phase where the droplet moves towards the centre of the hydrophilic line, and the conforming phase where the droplet spreads along the line. The key parameters affecting the conformability of the droplet to the hydrophilic line pattern are the ratio of the line width to the initial droplet diameter and the contact angle of the hydrophilic line. The droplet will only conform completely to the hydrophilic pattern if the line width is not overly small relative to the droplet and the contact angle of the hydrophilic line is sufficiently low. The impact offset distance does not affect the final shape and final location of the droplet, as long as part of the droplet touches the hydrophilic line upon impingement. This process has a significant impact on inkjet printing technology as high accuracy of inkjet droplet deposition and shape control can be achieved through wettability patterning.

  5. Studies on 405nm blue-violet diode laser with external grating cavity

    NASA Astrophysics Data System (ADS)

    Li, Bin; Gao, Jun; Zhao, Jun; Yu, Anlan; Luo, Shiwen; Xiong, Dongsheng; Wang, Xinbing; Zuo, Duluo

    2016-03-01

    Spectroscopy applications of free-running laser diodes (LD) are greatly restricted as its broad band spectral emission. And the power of a single blue-violet LD is around several hundred milliwatts by far, it is of great importance to obtain stable and narrow line-width laser diodes with high efficiency. In this paper, a high efficiency external cavity diode laser (ECDL) with high output power and narrow band emission at 405 nm is presented. The ECDL is based on a commercially available LD with nominal output power of 110 mW at an injection current of 100 mA. The spectral width of the free-running LD is about 1 nm (FWHM). A reflective holographic grating which is installed on a home-made compact adjustable stage is utilized for optical feedback in Littrow configuration. In this configuration, narrow line-width operation is realized and the effects of grating groove density as well as the groove direction related to the beam polarization on the performances of the ECDL are experimentally investigated. In the case of grating with groove density of 3600 g/mm, the threshold is reduced from 21 mA to 18.3 mA or 15.6 mA and the tuning range is 3.95 nm or 6.01 nm respectively when the grating is orientated in TE or TM polarization. In addition, an output beam with a line-width of 30 pm and output power of 92.7 mW is achieved in TE polarization. With these narrow line-width and high efficiency, the ECDL is capable to serve as a light source for spectroscopy application such as Raman scattering and laser induced fluorescence.

  6. Cyclotron resonance in HgTe/CdTe-based heterostructures in high magnetic fields

    PubMed Central

    2012-01-01

    Cyclotron resonance study of HgTe/CdTe-based quantum wells with both inverted and normal band structures in quantizing magnetic fields was performed. In semimetallic HgTe quantum wells with inverted band structure, a hole cyclotron resonance line was observed for the first time. In the samples with normal band structure, interband transitions were observed with wide line width due to quantum well width fluctuations. In all samples, impurity-related magnetoabsorption lines were revealed. The obtained results were interpreted within the Kane 8·8 model, the valence band offset of CdTe and HgTe, and the Kane parameter EP being adjusted. PMID:23013642

  7. Interfacial Water at Protein Surfaces: Wide-Line NMR and DSC Characterization of Hydration in Ubiquitin Solutions

    PubMed Central

    Tompa, Kálmán; Bánki, Péter; Bokor, Mónika; Kamasa, Pawel; Lasanda, György; Tompa, Péter

    2009-01-01

    Wide-line 1H-NMR and differential scanning calorimetry measurements were done in aqueous solutions and on lyophilized samples of human ubiquitin between −70°C and +45°C. The measured properties (size, thermal evolution, and wide-line NMR spectra) of the protein-water interfacial region are substantially different in the double-distilled and buffered-water solutions of ubiquitin. The characteristic transition in water mobility is identified as the melting of the nonfreezing/hydrate water. The amount of water in the low-temperature mobile fraction is 0.4 g/g protein for the pure water solution. The amount of mobile water is higher and its temperature dependence more pronounced for the buffered solution. The specific heat of the nonfreezing/hydrate water was evaluated using combined differential scanning calorimetry and NMR data. Considering the interfacial region as an independent phase, the values obtained are 5.0–5.8 J·g−1·K−1, and the magnitudes are higher than that of pure/bulk water (4.2 J·g−1·K−1). This unexpected discrepancy can only be resolved in principle by assuming that hydrate water is in tight H-bond coupling with the protein matrix. The specific heat for the system composed of the protein molecule and its hydration water is 2.3 J·g−1·K−1. It could be concluded that the protein ubiquitin and its hydrate layer behave as a highly interconnected single phase in a thermodynamic sense. PMID:19348762

  8. EUV observations of quiescent prominences from Skylab

    NASA Technical Reports Server (NTRS)

    Moe, O. K.; Cook, J. W.; Mango, S. A.

    1979-01-01

    Measurements of line intensities and line widths for three quiescent prominences observed with Naval Research Laboratory slit spectrograph on ATM/Skylab are reported. The wavelengths of the observed lines cover the range 1175 A to 1960 A. The measured intensities have been calibrated to within approximately a factor 2 and are average intensities over a 2 arcsec by 60 arcsec slit. Nonthermal velocities from the measured line widths are derived. The nonthermal velocity is found to increase with temperature in the prominence transition zone. Electron densities and pressures are derived from density sensitive line ratios. Electron pressures for two of the prominences are found to lie in the range 0.04-0.08 dyn/sq cm, while values for the third and most intense and active of the three prominences are in the range 0.07-0.22 dyn/sq cm.

  9. Development of a micro nuclear magnetic resonance system

    NASA Astrophysics Data System (ADS)

    Goloshevsky, Artem

    Application of Nuclear Magnetic Resonance (NMR) to on-line/in-line control of industrial processes is currently limited by equipment costs and requirements for installation. A superconducting magnet generating strong fields is the most expensive part of a typical NMR instrument. In industrial environments, fringe magnetic fields make accommodation of NMR instruments difficult. However, a portable, low-cost and low-field magnetic resonance system can be used in virtually any environment. Development of a number of hardware components for a portable, low-cost NMR instrument is reported in this dissertation. Chapter one provides a discussion on a miniaturized Helmholtz spiral radio-frequency (RF) coil (average diameter equal to 3.5 mm) and an NMR probe built around a capillary (outer diameter = 1.59 mm and inner diameter = 1.02 mm) for flow imaging. Experiments of NMR spectroscopy, static and dynamic (flow) imaging, conducted with the use of the miniaturized coil, are described. Chapter two presents a microfabricated package of two biaxial gradient coils and a Helmholtz RF coil. Planar configuration of discrete wires was used to create magnetic field gradients. Performance of the microfabricated gradient coils while imaging water flow compared well with a commercial gradient set of much larger size. Chapter three reports on flow imaging experiments with power law fluids (aqueous solutions of sodium salt of carboxymethyl cellulose (CMC)) of different viscosities, carried out in the NMR probe with the miniaturized RF coil and capillary. Viscosities of the CMC solutions were determined based on the curve fits of the velocity profiles and simultaneous measurements of the flow rates. The curve fits were carried out according to the power law model equations. The NMR viscosity measurements compared well with measurements of the same CMC samples, performed on a conventional rotational rheometer. A portable, home-built transceiver, designed for NMR applications utilizing a miniaturized RF coil, is described in chapter four. The maximum RF power, occurring in the transceiver, was 21.5 dBm. Two transistor-transistor logic (TTL) switches functioned as an active duplexer. A quadrature detection scheme was used. The transceiver, combined with a filter/amplifier module, data acquisition (DAQ and RF generating PC boards, was successfully tested in NMR spectroscopy experiments at low magnetic field. It was demonstrated that, starting with the RF probe, a typical, large size NMR instrument can be miniaturized without impairment to the quality of the data. Such an instrument will be readily used in many industrial process control applications (e.g. for analysis of material properties and identification of chemicals).

  10. High-pressure autoclave for multipurpose nuclear magnetic resonance measurements up to 10 MPa

    NASA Astrophysics Data System (ADS)

    Behr, W.; Haase, A.; Reichenauer, G.; Fricke, J.

    1999-05-01

    High-pressure nuclear magnetic resonance (NMR) is an established method in NMR spectroscopy: on-line coupling of high-performance liquid chromatography with NMR, for example, reveals structural information which cannot be obtained with any other method. However, applications has been focused solely on high-pressure NMR spectroscopy, even though high-pressure NMR imaging allows in situ studies of processes such as the fluid exchange in porous media. A versatile high-pressure autoclave for NMR imaging is described in this article. The autoclave allows measurements in any horizontal NMR imager using magnetic field coil systems with an inside diameter of more than 70 mm. Any sample with a diameter up to 28 mm and a length of about 200 mm can be investigated. The autoclave is constructed for operating pressures up to 10 MPa and is temperature controlled between 10 and 60 °C. The materials of the high-pressure cell which are the thermoplastic polyetheretherketon (PEEK) for the pressure tube and brass (63% Cu, 37% Zn) for the caps also permit investigations with aggressive fluids such as supercritical carbon dioxide. Inlet and outlet valves allow replacement of fluids and pressure variations in the autoclave during the NMR measurement. FLASH NMR images of the fluid exchange of methanol for liquid carbon dioxide in silica alcogels at 6.5 MPa are presented in order to demonstrate possible applications.

  11. The Solar Flare 4: 10 keV X-ray Spectrum

    NASA Technical Reports Server (NTRS)

    Phillips, K. J. H.

    2004-01-01

    The 4-10 keV solar flare spectrum includes highly excited lines of stripped Ca, Fe, and Ni ions as well as a continuum steeply falling with energy. Groups of lines at approximately 7 keV and approximately 8 keV, observed during flares by the broad-band RHESSI spectrometer and called here the Fe-line and Fe/Ni-line features, are formed mostly of Fe lines but with Ni lines contributing to the approximately 8 keV feature. Possible temperature indicators of these line features are discussed - the peak or centroid energies of the Fe-line feature, the line ratio of the Fe-line to the Fe/Ni-line features, and the equivalent width of the Fe-line feature. The equivalent width is by far the most sensitive to temperature. However, results will be confused if, as is commonly believed, the abundance of Fe varies from flare to flare, even during the course of a single flare. With temperature determined from the thermal continuum, the Fe-line feature becomes a diagnostic of the Fe abundance in flare plasmas. These results are of interest for other hot plasmas in coronal ionization equilibrium such as stellar flare plasmas, hot gas in galaxies, and older supernova remnants.

  12. A measurement of the width and shift of the Fe I 3719.94 A line broadened by helium. [for stellar atmosphere studies

    NASA Technical Reports Server (NTRS)

    Driver, R. D.; Lombardi, G.

    1977-01-01

    Results are reported for measurements of the widths and shifts of the overlapping helium-broadened profiles of the Fe I absorption lines at 3719.94 and 3722.56 A, which were performed in a ballistic piston compressor using a saturated solution of FeCl3 in ethanol. It is found that at 4000 K, the 3719.94-A line has a gamma/n (FWHM) value of approximately 5.2 billionths rad/sec per cu cm, the blue shift of this line corresponds to a beta/n value of about 0.49 billionth rad/sec per cu cm, and the 3722.56-A line has the same values. These results are compared with previous experimental determinations and with theoretical calculations of neutral-line broadening for the Fe I lines. The significance of these measurements with respect to the solar spectrum and cool DG white dwarfs is discussed.

  13. Dynamics and conformations of PEO chains chemically bonded on silica: comparison between 1H and 2H NMR.

    PubMed

    Tajouri, T; Hommel, H

    2007-06-01

    1H NMR was used to study the motion of monomer units in a layer of poly(ethylene oxide) chains grafted on silica. First, the dependence of the relaxation times on the grafting ratios is discussed qualitatively from a phenomenological point of view. Next, the NMR line narrowing effect by high-speed rotation is observed in the same samples with different grafting ratios. The magic angle spinning technique permits determination of two correlation times for each grafting ratio: tau(c) characteristic of an environment with a fast motion and tau(l) characteristic of an environment with a slow motion. In addition, the dynamics of these grafted chains are investigated by deuterium NMR (2H NMR), which is sensitive to the anisotropy of molecular motion. The evolution has been studied for two extreme grafting ratios and each time as a function of temperature. The anisotropy is more marked at low temperatures and for a low grafting ratio. The results are consistent with the 1H NMR relaxation times measured as a function of temperature. Copyright 2007 John Wiley & Sons, Ltd.

  14. On the Analytical Superiority of 1D NMR for Fingerprinting the Higher Order Structure of Protein Therapeutics Compared to Multidimensional NMR Methods.

    PubMed

    Poppe, Leszek; Jordan, John B; Rogers, Gary; Schnier, Paul D

    2015-06-02

    An important aspect in the analytical characterization of protein therapeutics is the comprehensive characterization of higher order structure (HOS). Nuclear magnetic resonance (NMR) is arguably the most sensitive method for fingerprinting HOS of a protein in solution. Traditionally, (1)H-(15)N or (1)H-(13)C correlation spectra are used as a "structural fingerprint" of HOS. Here, we demonstrate that protein fingerprint by line shape enhancement (PROFILE), a 1D (1)H NMR spectroscopy fingerprinting approach, is superior to traditional two-dimensional methods using monoclonal antibody samples and a heavily glycosylated protein therapeutic (Epoetin Alfa). PROFILE generates a high resolution structural fingerprint of a therapeutic protein in a fraction of the time required for a 2D NMR experiment. The cross-correlation analysis of PROFILE spectra allows one to distinguish contributions from HOS vs protein heterogeneity, which is difficult to accomplish by 2D NMR. We demonstrate that the major analytical limitation of two-dimensional methods is poor selectivity, which renders these approaches problematic for the purpose of fingerprinting large biological macromolecules.

  15. Magnet Design with High B0 Homogeneity for Fast-Field-Cycling NMR Applications

    NASA Astrophysics Data System (ADS)

    Lips, O.; Privalov, A. F.; Dvinskikh, S. V.; Fujara, F.

    2001-03-01

    The design, construction, and performance of a low-inductance solenoidal coil with high B0 homogeneity for fast-field-cycling NMR is presented. It consists of six concentric layers. The conductor width is varied to minimize the B0 inhomogeneity in the volume of the sample. This is done using an algorithm which takes the real shape of the conductor directly into account. The calculated coil geometry can be manufactured easily using standard computerized numeric control equipment, which keeps the costs low. The coil is liquid cooled and produces a B0 field of 0.95 T at 800 A . The field inhomogeneity in a cylindrical volume (diameter 5 mm, length 10 mm) is about 10 ppm, and the inductance is 190 μH. Switching times below 200 μs can be achieved. During 6 months of operation the coil has shown good stability and reliability.

  16. Electroreflectance spectra from multiple InGaN/GaN quantum wells in the nonuniform electric field of a p–n junction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avakyants, L. P.; Aslanyan, A. E.; Bokov, P. Yu., E-mail: pavel-bokov@physics.msu.ru

    A line at E = 2.77 eV (with a width of Γ = 88 meV) related to interband transitions in the region of multiple quantum wells in the active region is detected in the electroreflectance spectra of the GaN/InGaN/AlGaN heterostructure. As the modulation bias is reduced from 2.9 to 0.4 V, the above line is split into two lines with energies of E{sub 1} = 2.55 eV and E{sub 2} = 2.75 eV and widths of Γ{sub 1} = 66 meV and Γ{sub 2} = 74 meV, respectively. The smaller widths of separate lines indicate that these lines are causedmore » by interband transitions in particular quantum wells within the active region. The difference between the interband transition energies E{sub 1} and E{sub 2} in identical quantum wells in the active region is related to the fact that the quantum wells are in an inhomogeneous electric field of the p–n junction. The magnitudes of the electric-field strengths in particular quantum wells in the active region of the heterostructure are estimated to be 1.6 and 2.2 MV/cm.« less

  17. Saw-tooth refractive x-ray optics with sub-micron resolution

    NASA Astrophysics Data System (ADS)

    Cederstrom, Bjorn; Ribbing, Carolina; Lundqvist, Mats

    2002-11-01

    Saw-tooth refractive x-ray lenses have been used to focus a synchrotron beam to sub-μm line width. These lenses are free from spherical aberration and work in analogy with 1-D focusing parabolic compound refractive lenses. However, the focal length can be varied by a simple mechanical procedure. Silicon lenses were fabricated by wet anisotropic etching, and epoxy replicas were molded from the silicon masters. Theses lenses provided 1-D intensity gains up to a factor of 40 and the smallest focal line width was 0.74 μm, very close to the theoretical expectation. Two crossed lenses were put in series to obtain 2-D focusing and the 80 μm by 275 μm source was imaged to 1.0 μm by 5.4 μm. Beryllium lenses were fabricated using conventional computer-controlled milling. The focal line width was 1.7 μm, nearly 3 times larger than predicted by theory. This can be attributed to large surface roughness and a bent lens shape.

  18. Automatic NMR field-frequency lock-pulsed phase locked loop approach.

    PubMed

    Kan, S; Gonord, P; Fan, M; Sauzade, M; Courtieu, J

    1978-06-01

    A self-contained deuterium frequency-field lock scheme for a high-resolution NMR spectrometer is described. It is based on phase locked loop techniques in which the free induction decay signal behaves as a voltage-controlled oscillator. By pulsing the spins at an offset frequency of a few hundred hertz and using a digital phase-frequency discriminator this method not only eliminates the usual phase, rf power, offset adjustments needed in conventional lock systems but also possesses the automatic pull-in characteristics that dispense with the use of field sweeps to locate the NMR line prior to closure of the lock loop.

  19. MEMS-Based Force-Detected Nuclear Magnetic Resonance (FDNMR) Spectrometer

    NASA Technical Reports Server (NTRS)

    Lee, Choonsup; Butler, Mark C.; Elgammal, Ramez A.; George, Thomas; Hunt, Brian; Weitekamp, Daniel P.

    2006-01-01

    Nuclear Magnetic Resonance (NMR) spectroscopy allows assignment of molecular structure by acquiring the energy spectrum of nuclear spins in a molecule, and by interpreting the symmetry and positions of resonance lines in the spectrum. As such, NMR has become one of the most versatile and ubiquitous spectroscopic methods. Despite these tremendous successes, NMR experiments suffer from inherent low sensitivity due to the relatively low energy of photons in the radio frequency (rt) region of the electromagnetic spectrum. Here, we describe a high-resolution spectroscopy in samples with diameters in the micron range and below. We have reported design and fabrication of force-detected nuclear magnetic resonance (FDNMR).

  20. Measurements of resonant scattering in the Perseus cluster core with Hitomi SXS

    NASA Astrophysics Data System (ADS)

    Sato, K.; Zhuravleva, I.

    2017-10-01

    Hitomi (ASTRO-H) SXS allows us to investigate fine structures of emission lines in extended X-ray sources for the first time. Thanks to its high energy resolution of 5 eV at 6 keV in orbit, Hitomi SXS finds a quiescent atmosphere in the Intra cluster medium of the Perseus cluster core where the gas has a line-of-sight velocity dispersion below 200 km/sec from the line width in the spectral analysis (Hitomi collaboration, Nature, 2016). The resonant scattering is also important to measure the gas velocity as a complementary probe of the direct measurement from the line width. Particularly in the cluster core, resonant scattering should be taken into account when inferring physical properties from line intensities because the optical depth of the He-alpha resonant line is expected to be larger than 1. The observed line flux ratio of Fe XXV He-α resonant to forbidden lines is found to be lower in the cluster core when compared to the outer region, consistent with resonant scattering of the resonant line and also in support of the low turbulent velocity.

  1. Rotational Dynamics of the Methyl Radical in Superfluid 4He Nanodroplets

    DOE PAGES

    Morrison, Alexander M.; Raston, Paul L.; Douberly, Gary E.

    2012-12-07

    Here, we report the ro-vibrational spectrum of the ν 3(e') band of the methyl radical (CH 3) solvated in superfluid 4He nanodroplets. Five allowed transitions produce population in the N K = 0 0, 1 1, 1 0, 2 2 and 2 0 rotational levels. The observed transitions exhibit variable Lorentzian line shapes, consistent with state specific homogeneous broadening effects. Population relaxation of the 00 and 11 levels is only allowed through vibrationally inelastic decay channels, and the PP 1(1) and RR 0(0) transitions accessing these levels have 4.12(1) and 4.66(1) GHz full-width at half-maximum line widths, respectively. The linemore » widths of the PR 1(1) and RR 1(1) transitions are comparatively broader (8.6(1) and 57.0(6) GHz, respectively), consistent with rotational relaxation of the 2 0 and 2 2 levels within the vibrationally excited manifold. The nuclear spin symmetry allowed rotational relaxation channel for the excited 1 0 level has an energy difference similar to those associated with the 2 0 and 2 2 levels. However, the PQ 1(1) transition that accesses the 1 0 level is 2.3 and 15.1 times narrower than the PR 1(1) and RR 1(1) lines, respectively. The relative line widths of these transitions are rationalized in terms of the anisotropy in the He-CH 3 potential energy surface, which couples the molecule rotation to the collective modes of the droplet.« less

  2. SUZAKU MONITORING OF THE IRON K EMISSION LINE IN THE TYPE 1 ACTIVE GALACTIC NUCLEUS NGC 5548

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Yuan; Elvis, Martin; Wilkes, Belinda J.

    2010-02-20

    We present seven sequential weekly observations of NGC 5548 conducted in 2007 with the Suzaku X-ray Imaging Spectrometer (XIS) in the 0.2-12 keV band and Hard X-ray Detector (HXD) in the 10-600 keV band. The iron Kalpha line is well detected in all seven observations and Kbeta line is also detected in four observations. In this paper, we investigate the origin of the Fe K lines using both the width of the line and the reverberation mapping method. With the co-added XIS and HXD spectra, we identify Fe Kalpha and Kbeta line at 6.396{sup +0.009}{sub -0.007} keV and 7.08{sup +0.05}{submore » -0.05} keV, respectively. The width of line obtained from the co-added spectra is 38{sup +16}{sub -18} eV (FWHM = 4200{sup +1800}{sub -2000} km s{sup -1}) which corresponds to a radius of 20{sup +50}{sub -10} light days, for the virial production of 1.220 x 10{sup 7} M{sub sun} in NGC 5548. To quantitatively investigate the origin of the narrow Fe line by the reverberation mapping method, we compare the observed light curves of Fe Kalpha line with the predicted ones, which are obtained by convolving the continuum light curve with the transfer functions in a thin shell and an inclined disk. The best-fit result is given by the disk case with i = 30 deg. which is better than a fit to a constant flux of the Fe K line at the 92.7% level (F-test). However, the results with other geometries are also acceptable (P>50%). We find that the emitting radius obtained from the light curve is 25-37 light days, which is consistent with the radius derived from the Fe K line width. Combining the results of the line width and variation, the most likely site for the origin of the narrow iron lines is 20-40 light days away from the central engine, though other possibilities are not completely ruled out. This radius is larger than the Hbeta emitting parts of the broad-line region at 6-10 light days (obtained by the simultaneous optical observation), and smaller than the inner radius of the hot dust in NGC 5548 (at about 50 light days).« less

  3. Voigt deconvolution method and its applications to pure oxygen absorption spectrum at 1270 nm band.

    PubMed

    Al-Jalali, Muhammad A; Aljghami, Issam F; Mahzia, Yahia M

    2016-03-15

    Experimental spectral lines of pure oxygen at 1270 nm band were analyzed by Voigt deconvolution method. The method gave a total Voigt profile, which arises from two overlapping bands. Deconvolution of total Voigt profile leads to two Voigt profiles, the first as a result of O2 dimol at 1264 nm band envelope, and the second from O2 monomer at 1268 nm band envelope. In addition, Voigt profile itself is the convolution of Lorentzian and Gaussian distributions. Competition between thermal and collisional effects was clearly observed through competition between Gaussian and Lorentzian width for each band envelope. Voigt full width at half-maximum height (Voigt FWHM) for each line, and the width ratio between Lorentzian and Gaussian width (ΓLΓG(-1)) have been investigated. The following applied pressures were at 1, 2, 3, 4, 5, and 8 bar, while the temperatures were at 298 K, 323 K, 348 K, and 373 K range. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Requirements on paramagnetic relaxation enhancement data for membrane protein structure determination by NMR.

    PubMed

    Gottstein, Daniel; Reckel, Sina; Dötsch, Volker; Güntert, Peter

    2012-06-06

    Nuclear magnetic resonance (NMR) structure calculations of the α-helical integral membrane proteins DsbB, GlpG, and halorhodopsin show that distance restraints from paramagnetic relaxation enhancement (PRE) can provide sufficient structural information to determine their structure with an accuracy of about 1.5 Å in the absence of other long-range conformational restraints. Our systematic study with simulated NMR data shows that about one spin label per transmembrane helix is necessary for obtaining enough PRE distance restraints to exclude wrong topologies, such as pseudo mirror images, if only limited other NMR restraints are available. Consequently, an experimentally realistic amount of PRE data enables α-helical membrane protein structure determinations that would not be feasible with the very limited amount of conventional NOESY data normally available for these systems. These findings are in line with our recent first de novo NMR structure determination of a heptahelical integral membrane protein, proteorhodopsin, that relied extensively on PRE data. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. NMR-Spectroscopy for Nontargeted Screening and Simultaneous Quantification of Health-Relevant Compounds in Foods: The Example of Melamine

    PubMed Central

    2009-01-01

    The recent melamine crisis in China has pointed out a serious deficiency in current food control systems, namely, they specifically focus on selected known compounds. This targeted approach allowed the presence of melamine in milk products to be overlooked for a considerable time. To avoid such crises in the future, we propose that nontargeted screening methods need to be developed and applied. To this end, NMR has an extraordinary potential that just started to be recognized and exploited. Our research shows that, from the very same set of spectra, 1H NMR at 400 MHz can distinguish between melamine-contaminated and melamine-free infant formulas and can provide quantitative information by integration of individual lines after identification. For contaminated Chinese infant formulas or candy, identical results were obtained when comparing NMR with SPE-LC/MS/MS. NMR was found to be suitable for routine nontargeted and targeted analyses of foods, and its use will significantly increase food safety. PMID:20349917

  6. Advances in 7xx-nm fiber-coupled modules with application to Tm fiber laser pumping and DPAL (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Patterson, Steven G.; Guiney, Tina; Stapleton, Dean; Braker, Joseph; Alegria, Kim; Irwin, David A.; Ebert, Christopher

    2017-02-01

    DILAS has leveraged its industry-leading work in manufacturing low SWaP fiber-coupled modules extending the wavelength range to 793nm for Tm fiber laser pumping. Ideal for medical, industrial and military applications, modules spanning from single emitter-based 9W to TBar-based 200W of 793nm pump power will be discussed. The highlight is a lightweight module capable of <200W of 793nm pump power out of a package weighing < 400 grams. In addition, other modules spanning from single emitter-based 9W to TBar-based 200W of 793nm pump power will be presented. In addition, advances in DPAL modules, emitting at the technologically important wavelengths near 766nm and 780nm, will be detailed. Highlights include a fully microprocessor controlled fiber-coupled module that produces greater than 400W from a 600 micron core fiber and a line width of only 56.3pm. The micro-processor permits the automated center wavelength and line width tuning of the output over a range of output powers while retaining excellent line center and line width stability over time.

  7. H2-broadening, shifting and mixing coefficients of the doublets in the ν2 and ν4 bands of PH3 at room temperature

    NASA Astrophysics Data System (ADS)

    Salem, Jamel; Blanquet, Ghislain; Lepère, Muriel; Younes, Rached ben

    2018-05-01

    The broadening, shifting and mixing coefficients of the doublet spectral lines in the ν2 and ν4 bands of PH3 perturbed by H2 have been determined at room temperature. Indeed, the collisional spectroscopic parameters: intensities, line widths, line shifts and line mixing parameters, are all grouped together in the collisional relaxation matrix. To analyse the collisional process and physical effects on spectra of phosphine (PH3), we have used the measurements carried out using a tunable diode-laser spectrometer in the ν2 and ν4 bands of PH3 perturbed by hydrogen (H2) at room temperature. The recorded spectra are fitted by the Voigt profile and the speed-dependent uncorrelated hard collision model of Rautian and Sobelman. These profiles are developed in the studies of isolated lines and are modified to account for the line mixing effects in the overlapping lines. The line widths, line shifts and line mixing parameters are given for six A1 and A2 doublet lines with quantum numbers K = 3n, (n = 1, 2, …) and overlapped by collisional broadening at pressures of less than 50 mbar.

  8. Line parameters for CO2 broadening in the ν2 band of HD16O

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy; Benner, D. Chris; Sung, Keeyoon; Crawford, Timothy J.; Gamache, Robert R.; Renaud, Candice L.; Smith, Mary Ann H.; Mantz, Arlan W.; Villanueva, Geronimo L.

    2017-01-01

    CO2-rich planetary atmospheres such as those of Mars and Venus require accurate knowledge of CO2 broadened HDO half-width coefficients and their temperature dependence exponents for reliable abundance determination. Although a few calculated line lists have recently been published on HDO-CO2 line shapes and their temperature dependences, laboratory measurements of those parameters are thus far non-existent. In this work, we report the first measurements of CO2-broadened half-width and pressure-shift coefficients and their temperature dependences for over 220 transitions in the ν2 band. First measurements of self-broadened half-width and self-shift coefficients at room temperature are also obtained for majority of these transitions. In addition, the first experimental determination of collisional line mixing has been reported for 11 transition pairs for HDO-CO2 and HDO-HDO systems. These results were obtained by analyzing ten high-resolution spectra of HDO and HDO-CO2 mixtures at various sample temperatures and pressures recorded with the Bruker IFS-125HR Fourier transform spectrometer at the Jet Propulsion Laboratory (JPL). Two coolable absorption cells with path lengths of 20.38 cm and 20.941 m were used to record the spectra. The various line parameters were retrieved by fitting all ten spectra simultaneously using a multispectrum nonlinear least squares fitting algorithm. The HDO transitions in the 1100-4100 cm-1 range were extracted from the HITRAN2012 database. For the ν2 and 2ν2 -ν2 bands there were 2245 and 435 transitions, respectively. Modified Complex Robert-Bonamy formalism (MCRB) calculations were made for the half-width coefficients, their temperature dependence and the pressure shift coefficients for the HDO-CO2 and HDO-HDO collision systems. MCRB calculations are compared with the measured values.

  9. Theoretical Studies of N2-broadened Half-widths of H2O Lines Involving High j States

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Tipping, R. H.; Lavrentieva, N. N.

    2012-01-01

    Based on the properties of the energy levels and wave functions of H2O states, one can categorize H2O lines into individually defined groups such that within the same group, the energy levels and the wave functions associated with two paired lines have an identity property while those associated with different pairs have a similarity property. Meanwhile, by thoroughly analyzing processes used to calculate N2-broadened half-widths, it was found that the 'Fourier series' of W(sup a)(sub L(sub 1))(sub K(sub 1))(sub K(sub 1)) (t; j(sub f) T(sub f) and W(sup a)(sub L(sub 1))(sub K(sub 1))(sub K(sub 1)) (t; j(sub i) T(sub i), and a factor P(sub 222) (j(sub f) T(sub f) j(sub i) T(sub i)) are the key items in the Robert-Bonamy formalism to distinguish contributions to ReS2(r(sub c)) among different transitions of j(sub f) T(sub f) - j(sub i). However, these items are completely determined by the energy levels and the wave functions associated with their initial and final states and they must bear the latter's features as well. Thus, it becomes obvious that for two paired lines in the same group, their calculated half-widths must be almost identical and the values associated with different pairs must vary smoothly as their ji values vary. Thus, the pair identity and the smooth variation rules are established within individual groups of lines. One can use these rules to screen half-width data listed in HITRAN and to improve the data accuracies.

  10. Alfvén Wave Turbulence as a Coronal Heating Mechanism: Simultaneously Predicting the Heating Rate and the Wave-induced Emission Line Broadening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oran, R.; Landi, E.; Holst, B. van der

    We test the predictions of the Alfvén Wave Solar Model (AWSoM), a global wave-driven magnetohydrodynamic (MHD) model of the solar atmosphere, against high-resolution spectra emitted by the quiescent off-disk solar corona. AWSoM incorporates Alfvén wave propagation and dissipation in both closed and open magnetic field lines; turbulent dissipation is the only heating mechanism. We examine whether this mechanism is consistent with observations of coronal EUV emission by combining model results with the CHIANTI atomic database to create synthetic line-of-sight spectra, where spectral line widths depend on thermal and wave-related ion motions. This is the first time wave-induced line broadening ismore » calculated from a global model with a realistic magnetic field. We used high-resolution SUMER observations above the solar west limb between 1.04 and 1.34 R {sub ⊙} at the equator, taken in 1996 November. We obtained an AWSoM steady-state solution for the corresponding period using a synoptic magnetogram. The 3D solution revealed a pseudo-streamer structure transversing the SUMER line of sight, which contributes significantly to the emission; the modeled electron temperature and density in the pseudo-streamer are consistent with those observed. The synthetic line widths and the total line fluxes are consistent with the observations for five different ions. Further, line widths that include the contribution from the wave-induced ion motions improve the correspondence with observed spectra for all ions. We conclude that the turbulent dissipation assumed in the AWSoM model is a viable candidate for explaining coronal heating, as it is consistent with several independent measured quantities.« less

  11. An Experimental and Theoretical Study of Nitrogen-Broadened Acetylene Lines

    NASA Technical Reports Server (NTRS)

    Thibault, Franck; Martinez, Raul Z.; Bermejo, Dionisio; Ivanov, Sergey V.; Buzykin, Oleg G.; Ma, Qiancheng

    2014-01-01

    We present experimental nitrogen-broadening coefficients derived from Voigt profiles of isotropic Raman Q-lines measured in the 2 band of acetylene (C2H2) at 150 K and 298 K, and compare them to theoretical values obtained through calculations that were carried out specifically for this work. Namely, full classical calculations based on Gordon's approach, two kinds of semi-classical calculations based on Robert Bonamy method as well as full quantum dynamical calculations were performed. All the computations employed exactly the same ab initio potential energy surface for the C2H2N2 system which is, to our knowledge, the most realistic, accurate and up-to-date one. The resulting calculated collisional half-widths are in good agreement with the experimental ones only for the full classical and quantum dynamical methods. In addition, we have performed similar calculations for IR absorption lines and compared the results to bibliographic values. Results obtained with the full classical method are again in good agreement with the available room temperature experimental data. The quantum dynamical close-coupling calculations are too time consuming to provide a complete set of values and therefore have been performed only for the R(0) line of C2H2. The broadening coefficient obtained for this line at 173 K and 297 K also compares quite well with the available experimental data. The traditional Robert Bonamy semi-classical formalism, however, strongly overestimates the values of half-width for both Qand R-lines. The refined semi-classical Robert Bonamy method, first proposed for the calculations of pressure broadening coefficients of isotropic Raman lines, is also used for IR lines. By using this improved model that takes into account effects from line coupling, the calculated semi-classical widths are significantly reduced and closer to the measured ones.

  12. Non-LTE, line-blanketed model atmospheres for late O- and early B-type stars

    NASA Technical Reports Server (NTRS)

    Grigsby, James A.; Morrison, Nancy D.; Anderson, Lawrence S.

    1992-01-01

    The use of non-LTE line-blanketed model atmospheres to analyze the spectra of hot stars is reported. The stars analyzed are members of clusters and associations, have spectral types in the range O9-B2 and luminosity classes in the range III-IV, have slow to moderate rotation, and are photometrically constant. Sampled line opacities of iron-group elements were incorporated in the radiative transfer solution; solar abundances were assumed. Good to excellent agreement is obtained between the computed profiles and essentially all the line profiles used to fix the model, and reliable stellar parameters are derived. The synthetic M II 5581 equivalent widths agree well with the observed ones at the low end of the temperature range studied, but, above 25,000 K, the synthetic line is generally stronger than the observed line. The behavior of the observed equivalent widths of N II, N III, C II and C III lines as a function of Teff is studied. Most of the lines show much scatter, with no consistent trend that could indicate abundance differences from star to star.

  13. Diatomic predissociation line widths

    NASA Technical Reports Server (NTRS)

    Child, M. S.

    1973-01-01

    Predissociation by rotation and curve crossing in diatomic molecules is discussed. The pattern of predissociation line widths is seen as providing a highly sensitive yardstick for the determination of unknown potential curves. In addition, the computation of such a pattern for given potential curves is considered a matter of routine, unless the predissociation happens to occur from an adiabatic potential curve. Analytic formulas are used to provide physical insight into the details of the predissociation pattern, to the extent that a direct inversion procedure is developed for determination of the repulsive potential curves for Type 1 predissociations.

  14. Characterization of molecular disorder in vapor-deposited thin films of aluminum tris(quinoline-8-olate) by one-dimensional 27Al NMR under magic angle spinning.

    PubMed

    Utz, Marcel; Nandagopal, Magesh; Mathai, Mathew; Papadimitrakopoulos, Fotios

    2006-01-21

    Aluminum tris (quinoline-8-olate) (Alq3) is used as an electron-transport layer in organic light-emitting diodes. The material can be obtained in a wide range of different solid phases, both crystalline and amorphous, by deposition from the vapor phase or from solution under controlled conditions. While the structure of the crystalline polymorphs of Alq3 has been investigated thoroughly by x-ray diffraction as well as solid-state NMR, very little information is currently available on the amount of structural disorder in the amorphous forms of Alq3. In the present contribution, we report the use of 27Al NMR spectroscopy in the solid state under magic angle spinning to extract such information from amorphous vapor deposits of Alq3. The NMR spectra obtained from these samples exhibit different degrees of broadening, reflecting distributions of the electric-field gradient tensor at the site of the aluminum ion. These distributions can be obtained from the NMR spectra by solving the corresponding inverse problem. From these results, the magnitude of structural disorder in terms of molecular geometry has been estimated by density-functional theory calculations. It was found that the electric-field gradient anisotropy delta follows a bimodal distribution. Its majority component is centered around delta values comparable to the meridianal alpha crystal polymorph and has a width of about 10%, corresponding to distortions of the molecular geometry of a few degrees in the orientation of the ligands. Alq3 samples obtained at higher deposition rates exhibit higher degrees of disorder. The minor component, present at about 7%, has a much smaller anisotropy, suggesting that it may be due to the facial isomer of Alq3.

  15. NMR Evidences of the Coupling between Conduction Electrons and Molecular Degrees of Freedom in the Exotic Member of the Bechgaard Salt (TMTSF)2FSO3

    NASA Astrophysics Data System (ADS)

    Satsukawa, Hidetaka; Yajima, Akio; Hiraki, Ko-ichi; Takahashi, Toshihiro; Kang, Haeyong; Jo, Younjung; Kang, Woun; Chung, Ok-Hee

    2016-12-01

    We performed 77Se- and 19F-NMR measurements on single crystals of (TMTSF)2FSO3 to characterize the electronic structures of different phases in the temperature-pressure phase diagram, determined by precise transport measurements [Jo et al., Phys. Rev. B 67, 014516 (2003)]. We claim that such varieties of electronic states in the refined phase diagram are caused by strong couplings of the conduction electrons with FSO3 anions, especially with the permanent electric dipoles on the anions. We suggest that as temperature decreases, the FSO3 anions form orientational ordering through two steps; first, only the tetrahedrons form an orientational order leaving the orientations of the electronic dipoles in random (transition I); then the dipoles form a perfect orientational order at a lower temperature (transition II). In the intermediate temperature range between transitions I and II, we found an appreciable enhancement of homogeneous and inhomogeneous widths of the 77Se-NMR spectrum. From the analysis of the angular dependence of the linewidth, we attributed these anomalies to the intramolecular charge disproportionation or imbalance and its slow dynamics caused by the coupling with the permanent electric dipole of the anion. Results of 19F-NMR relaxation and lineshape measurements support this picture very well. Electronic structures at higher pressures up to 1.25 GPa are discussed on the basis of the results of the 77Se- and 19F-NMR measurements.

  16. New insight into hydration and aging mechanisms of paper by the line shape analysis of proton NMR spectra

    NASA Astrophysics Data System (ADS)

    Mallamace, D.; Vasi, S.; Missori, M.; Corsaro, C.

    2016-05-01

    The action of water within biological systems is strictly linked either with their physical chemical properties and with their functions. Cellulose is one of the most studied biopolymers due to its biological importance and its wide use in manufactured products. Among them, paper is mainly constituted by an almost equimolar ratio of cellulose and water. Therefore the study of the behavior of water within pristine and aged paper samples can help to shed light on the degradation mechanisms that irremediably act over time and spoil paper. In this work we present Nuclear Magnetic Resonance (NMR) experiments on modern paper samples made of pure cellulose not aged and artificially aged as well as on ancient paper samples made in 1413 in Perpignan (France). The line shape parameters of the proton NMR spectra were studied as a function of the hydration content. Results indicate that water in aged samples is progressively involved in the hydration of the byproducts of cellulose degradation. This enhances the degradation process itself through the progressive consumption of the cellulose amorphous regions.

  17. Spectroscopic characterization of natural calcite minerals.

    PubMed

    Gunasekaran, S; Anbalagan, G

    2007-11-01

    The FT-IR, FT-Raman, NMR spectral data of ten different limestone samples have been compared. FT-IR and FT-Raman spectral data show that calcium carbonate in limestone, principally in the form of calcite, as identified by its main absorption bands at 1426, 1092, 876 and 712 cm(-1). The sharp diffractions at the d-spacings, 3.0348, 1.9166 and 1.8796 confirm the presence of calcite structure and the calculated lattice parameters are: a=4.9781 A, c=17.1188 A. The range of 13C chemical shifts for different limestone samples is very small, varying from 198.38 to 198.42 ppm. The observed chemical shifts are consistent with the identical C-O bonding in different limestone samples. 27Al MAS NMR spectra of the samples exhibit a central line at 1 ppm and another line at 60 ppm corresponding to octahedral and tetrahedral Al ions, respectively. The five component resonances were observed in 29Si MAS NMR spectrum of limestone and these resonances were assigned to Si (4 Al), Si (3 Al), Si (2 Al), Si (1 Al) and Si (0 Al) from low field to high field.

  18. Water dynamics on ice and hydrate lattices studied by second-order central-line stimulated-echo oxygen-17 nuclear magnetic resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adjei-Acheamfour, Mischa; Tilly, Julius F.; Beerwerth, Joachim

    Oxygen-17 stimulated-echo spectroscopy is a novel nuclear magnetic resonance (NMR) technique that allows one to investigate the time scale and geometry of ultraslow molecular motions in materials containing oxygen. The method is based on detecting orientationally encoded frequency changes within oxygen’s central-transition NMR line that are caused by second-order quadrupolar interactions. In addition to the latter, the present theoretical analysis of various two-pulse echo and stimulated-echo pulse sequences takes also heteronuclear dipolar interactions into account. As an experimental example, the ultraslow water motion in polycrystals of tetrahydrofuran clathrate hydrate is studied via two-time oxygen-17 stimulated-echo correlation functions. The resulting correlationmore » times and those of hexagonal ice are similar to those from previous deuteron NMR measurements. Calculations of the echo functions’ final-state correlations for various motional models are compared with the experimental data of the clathrate hydrate. It is found that a six-site model including the oxygen-proton dipolar interaction describes the present results.« less

  19. Indirect detection of 10B (I = 3) overtone NMR at very fast magic angle spinning

    NASA Astrophysics Data System (ADS)

    Duong, Nghia Tuan; Kuprov, Ilya; Nishiyama, Yusuke

    2018-06-01

    The application of overtone nuclear magnetic resonance (OT NMR) to symmetric spin transitions of integer quadrupolar nuclei is of considerable interest since this transition is immune to the first-order quadrupolar interaction, thus resulting in narrow NMR lines. Owing to its roles in nature and its high natural abundance, 14N (I = 1) OT NMR has been explored, in which the indirect and/or direct acquisitions of 14N OT were experimentally demonstrated. However, other than 14N nucleus, no OT NMR observation of other integer quadrupolar nuclei has been reported in the literature. In this work, we extend the application of OT NMR to another integer quadrupolar nucleus, namely 10B (I = 3). However, this is not straightforward owing to the unfavorable characteristics of 10B isotope. Here, for the first time, we present the selective acquisition of 10B central (-1 ↔ +1) OT NMR via detection of 1H nuclei on perborate monohydrate sample. Numerical calculations are in a good agreement with the experimental results. Both show that the optimal sensitivity is achieved when the carrier frequency is applied at the second OT spinning sideband, i.e. an offset of twice of the spinning frequency from the center band.

  20. Functional Characteristics of Tumor-Associated Protein Spot14 and Interacting Proteins in Mouse Mammary Epithelial and Breast Cancer Cell Lines

    DTIC Science & Technology

    2009-09-01

    merely qualitative, so in order to quantify the functional effect of S14 overexpression, NMR based metabolomics was used. The literature reports that...overexpression in DIP medium, even though fatty acids were significantly increased. Due to limitations of NMR based metabolomics, the chain length of the...S14 affects glucose carbon conversion directly into fatty acids. Interestingly, glucose consumption and lactate excretion was identical in either

  1. THE TWO REGIMES OF PHOTOSPHERIC MOTIONS IN {alpha} HYDRA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, David F., E-mail: dfgray@uwo.ca

    2013-02-10

    High-resolution spectroscopic observations of {alpha} Hya were acquired between 2003 and 2010. Analysis of line shifts, differential shifts, line widths, and line bisectors points to two regimes of velocity fields in the photosphere of {alpha} Hya: (1) normal granulation embedded in (2) large convection cells. Variations occur on a wide range of timescales, from several years on down. Radial velocity variations, which are irregular and span 786 m s{sup -1}, have a distribution consistent with a true mean rise velocity of the large cells of {approx}725 m s{sup -1} and a dispersion of {approx}220 m s{sup -1}. The distribution ofmore » granulation velocities, as measured from the widths of spectral lines, shows only small variations, consistent with the two regime concepts. On the multi-year timescale, radial velocity changes, small temperature variations ({approx}10 K), and small line-width variations ({approx}<0.8%) track each other, possibly with phase shifts. The granulation velocity gradient for {alpha} Hya is about half as large as the Sun's and no variation with time was seen, implying that any variation in velocity gradient from one large cell to the next must be less than a few percent. The asymmetry in the granulation velocity distribution, as specified in the flux deficit, is smaller than expected for {alpha} Hya's position in the HR diagram and appears to be variable.« less

  2. A New Black Hole Mass Estimate for Obscured Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Minezaki, Takeo; Matsushita, Kyoko

    2015-04-01

    We propose a new method for estimating the mass of a supermassive black hole, applicable to obscured active galactic nuclei (AGNs). This method estimates the black hole mass using the width of the narrow core of the neutral FeKα emission line in X-rays and the distance of its emitting region from the black hole based on the isotropic luminosity indicator via the luminosity scaling relation. Assuming the virial relation between the locations and the velocity widths of the neutral FeKα line core and the broad Hβ emission line, the luminosity scaling relation of the neutral FeKα line core emitting region is estimated. We find that the velocity width of the neutral FeKα line core falls between that of the broad Balmer emission lines and the corresponding value at the dust reverberation radius for most of the target AGNs. The black hole mass {{M}BH,FeKα } estimated with this method is then compared with other black hole mass estimates, such as the broad emission-line reverberation mass {{M}BH,rev} for type 1 AGNs, the mass {{M}BH,{{H2}O}} based on the H2O maser, and the single-epoch mass estimate {{M}BH,pol} based on the polarized broad Balmer lines for type 2 AGNs. We find that {{M}BH,FeKα } is consistent with {{M}BH,rev} and {{M}BH,pol}, and find that {{M}BH,FeKα } correlates well with {{M}BH,{{H2}O}}. These results suggest that {{M}BH,FeKα } is a potential indicator of the black hole mass for obscured AGNs. In contrast, {{M}BH,FeKα } is systematically larger than {{M}BH,{{H2}O}} by about a factor of 5, and the possible origins are discussed.

  3. Temperature Dependence of Molecular Line Strengths and Fei 1565 nm Zeeman Splitting in a Sunspot

    NASA Astrophysics Data System (ADS)

    Penn, M. J.; Walton, S.; Chapman, G.; Ceja, J.; Plick, W.

    2003-03-01

    Spectroscopic observations at 1565 nm were made in the eastern half of the main umbra of NOAA 9885 on 1 April 2002 using the National Solar Observatory McMath-Pierce Telescope at Kitt Peak with a tip-tilt image stabilization system and the California State University Northridge-National Solar Observatory infrared camera. The line depth of the OH blend at 1565.1 nm varies with the observed continuum temperature; the variation fits previous observations except that the continuum temperature is lower by 600 K. The equivalent width of the OH absorption line at 1565.2 nm shows a temperature dependence similar to previously published umbral molecular observations at 640 nm. A simple model of expected OH abundance based upon an ionization analogy to molecular dissociation is produced and agrees well with the temperature variation of the line equivalent width. A CN absorption line at 1564.6 nm shows a very different temperature dependence, likely due to complicated formation and destruction processes. Nonetheless a numerical fit of the temperature variation of the CN equivalent width is presented. Finally a comparison of the Zeeman splitting of the Fei 1564.8 nm line with the sunspot temperature derived from the continuum intensity shows an umbra somewhat cooler for a given magnetic field strength than previous comparisons using this infrared 1564.8 nm line, but consistent with these previous infrared measurements the umbra is hotter for a given magnetic field strength than magnetic and temperature measurements at 630.2 nm would suggest. Differences between the 630.2 nm and 1564.8 nm umbral temperature and magnetic field relations are explained with the different heights of formation of the lines and continua at these wavelengths.

  4. A Simple Approach for Obtaining High Resolution, High Sensitivity ¹H NMR Metabolite Spectra of Biofluids with Limited Mass Supply

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Jian Zhi; Rommereim, Donald N.; Wind, Robert A.

    2006-11-01

    A simple approach is reported that yields high resolution, high sensitivity ¹H NMR spectra of biofluids with limited mass supply. This is achieved by spinning a capillary sample tube containing a biofluid at the magic angle at a frequency of about 80Hz. A 2D pulse sequence called ¹H PASS is then used to produce a high-resolution ¹H NMR spectrum that is free from magnetic susceptibility induced line broadening. With this new approach a high resolution ¹H NMR spectrum of biofluids with a volume less than 1.0 µl can be easily achieved at a magnetic field strength as low as 7.05T.more » Furthermore, the methodology facilitates easy sample handling, i.e., the samples can be directly collected into inexpensive and disposable capillary tubes at the site of collection and subsequently used for NMR measurements. In addition, slow magic angle spinning improves magnetic field shimming and is especially suitable for high throughput investigations. In this paper first results are shown obtained in a magnetic field of 7.05T on urine samples collected from mice using a modified commercial NMR probe.« less

  5. NMR studies of the helical antiferromagnetic compound EuCo2P2

    NASA Astrophysics Data System (ADS)

    Higa, N.; Ding, Q.-P.; Kubota, F.; Uehara, H.; Yogi, M.; Furukawa, Y.; Sangeetha, N. S.; Johnston, D. C.; Nakamura, A.; Hedo, M.; Nakama, T.; Ōnuki, Y.

    2018-05-01

    In EuCo2P2, 4f electron spins of Eu2+ ions order antiferromagnetically below a Néel temperature TN = 66.5 K . The magnetic structure below TN was reported to be helical with the helix axis along the c-axis from the neutron diffraction study. We report the results of 153Eu, 59Co and 31P nuclear magnetic resonance (NMR) measurements on EuCo2P2 using a single crystal and a powdered sample. In the antiferromagnetic (AFM) state, we succeeded in observing 153Eu, 59Co and 31P NMR spectra in zero magnetic field. The sharp 153Eu zero field NMR (ZF NMR) lines indicate homogeneous Eu ordered moment. The 59Co and 31P ZF NMR spectra showed an asymmetric spectral shape, indicating a distribution of the internal magnetic induction at each nuclear position. The AFM propagation vector k characterizing the helical AFM state can be determined from the internal magnetic induction at Co site. We have determined the model-independent value of the AFM propagation vector k distributed from (0, 0, 0.86)2π/c to (0, 0, 0.73)2π/c, where c is the lattice parameter.

  6. Determination of free fatty acids in pharmaceutical lipids by ¹H NMR and comparison with the classical acid value.

    PubMed

    Skiera, Christina; Steliopoulos, Panagiotis; Kuballa, Thomas; Diehl, Bernd; Holzgrabe, Ulrike

    2014-05-01

    Indices like acid value, peroxide value, and saponification value play an important role in quality control and identification of lipids. Requirements on these parameters are given by the monographs of the European pharmacopeia. (1)H NMR spectroscopy provides a fast and simple alternative to these classical approaches. In the present work a new (1)H NMR approach to determine the acid value is described. The method was validated using a statistical approach based on a variance components model. The performance under repeatability and in-house reproducibility conditions was assessed. We applied this (1)H NMR assay to a wide range of different fatty oils. A total of 305 oil and fat samples were examined by both the classical and the NMR method. Except for hard fat, the data obtained by the two methods were in good agreement. The (1)H NMR method was adapted to analyse waxes and oleyloleat. Furthermore, the effect of solvent and in the case of castor oil the effect of the oil matrix on line broadening and chemical shift of the carboxyl group signal are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Determination of vibration-rotation lines intensities from absorption Fourier spectra

    NASA Technical Reports Server (NTRS)

    Mandin, J. Y.

    1979-01-01

    The method presented allows the line intensities to be calculated from either their equivalent widths, heights, or quantities deduced from spectra obtained by Fourier spectrometry. This method has proven its effectiveness in measuring intensities of 60 lines of the molecule H2O with a precision of 10%. However, this method cannot be applied to isolated lines.

  8. Solid-phase extraction NMR studies of chromatographic fractions of saponins from Quillaja saponaria.

    PubMed

    Nyberg, Nils T; Baumann, Herbert; Kenne, Lennart

    2003-01-15

    The saponin mixture QH-B from the tree Quillaja saponaria var. Molina was fractionated by RP-HPLC in several steps. The fractions were analyzed by solid-phase extraction NMR (SPE-NMR), a technique combining the workup by solid-phase extraction with on-line coupling to an NMR flow probe. Together with MALDI-TOF mass spectrometry and comparison with chemical shifts of similar saponins, the structures of both major and minor components in QH-B could be obtained. The procedure described is a simple method to determine the structure of components in a complex mixture. The two major fractions of the mixture were found to contain at least 28 saponins, differing in the carbohydrate substructures. Eight of these have not previously been determined. The 28 saponins formed 14 equilibrium pairs by the migration of an O-acyl group between two adjacent positions on a fucosyl residue.

  9. High-resolution laser absorption spectroscopy of ozone near 1129.4 cm (-1)

    NASA Technical Reports Server (NTRS)

    Majorana, L. N.

    1981-01-01

    A Beer's Law experiment was performed with a tunable diode laser to determine self broadened line shape parameters of one infrared absorption ozone line in the nu1 band for ten pressures from 0.26 to 6.29 torr at 285 K. The SO2 line positions were used for wavelength calibration. Line shapes were iteratively fitted to the Voigt function at a Doppler width of 29.54 MHz (HWHM) resulting in values for the integrated line strength, (S), of (0.144 +/- 0.007) x 10 to the minus 20th/cm molecule/cu cm, line center frequency, nu sub o, of 1129.426/cm and the Lorentzian contributions to halfwidth. A linear least squares fit of (alpha sub L)5 as a function of pressure yielded a zero intercept of 15.27 +/- 0.29 MHz (rho = 0.99) and a broadening parameter, (alpha sub L)5, of 5.71 +/- 0.29 MHz/Torr. This results in a line width (FWHM) of 0.144 +/- .007/cm at 760 torr and 285 K.

  10. Note: A rectangular pulse generator for 50 kV voltage, 0.8 ns rise time, and 10 ns pulse width based on polymer-film switch.

    PubMed

    Wu, Hanyu; Zhang, Xinjun; Sun, Tieping; Zeng, Zhengzhong; Cong, Peitian; Zhang, Shaoguo

    2015-10-01

    In this article, we describe a rectangular pulse generator, consisting of a polymer-film switch, a tri-plate transmission line, and parallel post-shaped ceramic resistor load, for 50-kV voltage, 0.8-ns rise time, and 10-ns width. The switch and resistors are arranged in atmospheric air and the transmission line can work in atmospheric air or in transformer oil to change the pulse width from 6.7 ns to 10 ns. The fast switching and low-inductance characteristics of the polymer-film switch ensure the fast rising wavefront of <1 ns. This generator can be applied in the calibration of nanosecond voltage dividers and used for electromagnetic pulse tests as a fast-rising current injection source.

  11. Development and applications of tunable, narrow band lasers and stimulated Raman scattering devices for atmospheric lidar

    NASA Technical Reports Server (NTRS)

    Wilkerson, Thomas D.

    1993-01-01

    The main thrust of the program was the study of stimulated Raman processes for application to atmospheric lidar measurements. This has involved the development of tunable lasers, the detailed study of stimulated Raman scattering, and the use of the Raman-shifted light for new measurements of molecular line strengths and line widths. The principal spectral region explored in this work was the visible and near-IR wavelengths between 500 nm and 1.5 microns. Recent alexandrite ring laser experiments are reported. The experiments involved diode injection-locking, Raman shifting, and frequency-doubling. The experiments succeeded in producing tunable light at 577 and 937 nm with line widths in the range 80-160 MHz.

  12. Three-dimensional finite-element analysis of chevron-notched fracture specimens

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Newman, J. C., Jr.

    1984-01-01

    Stress-intensity factors and load-line displacements were calculated for chevron-notched bar and rod fracture specimens using a three-dimensional finite-element analysis. Both specimens were subjected to simulated wedge loading (either uniform applied displacement or uniform applied load). The chevron-notch sides and crack front were assumed to be straight. Crack-length-to-specimen width ratios (a/w) ranged from 0.4 to 0.7. The width-to-thickness ratio (w/B) was 1.45 or 2. The bar specimens had a height-to-width ratio of 0.435 or 0.5. Finite-element models were composed of singularity elements around the crack front and 8-noded isoparametric elements elsewhere. The models had about 11,000 degrees of freedom. Stress-intensity factors were calculated by using a nodal-force method for distribution along the crack front and by using a compliance method for average values. The stress intensity factors and load-line displacements are presented and compared with experimental solutions from the literature. The stress intensity factors and load-line displacements were about 2.5 and 5 percent lower than the reported experimental values, respectively.

  13. Analysis of He I 1083 nm Imaging Spectroscopy Using a Spectral Standard

    NASA Technical Reports Server (NTRS)

    Malanushenko, Elena V.; Jones, Harrison P.

    2004-01-01

    We develop a technique. for the analysis of He I 1083 nanometer spectra which addresses several difficulties through determination of a continuum background by comparison with a well calibrated standard and through removal of nearby solar and telluric blends by differential comparison to an average spectrum. The method is compared with earlier analysis of imaging spectroscopy obtained at the National Solar Observatory/Kitt Peak Vacuum Telescope (NSO/KPVT) with the NASA/NSO Spectromagnetograph (SPM). We examine distributions of Doppler velocity and line width as a function of central intensity for an active region, filament, quiet Sun, and coronal hole. For our example, we find that line widths and central intensity are oppositely correlated in a coronal hole and quiet Sun. Line widths are comparable to the quiet sun in the active region, are systematically lower in the filament, and extend to higher values in the coronal hole. Outward velocities of approximately equal to 2 to 4 kilometers per second are typically observed in the coronal hole. The sensitivity of these results to analysis technique is discussed.

  14. 2.5 MHz Line-Width High-energy, 2 Micrometer Coherent Wind Lidar Transmitter

    NASA Technical Reports Server (NTRS)

    Petros, Mulugeta; Yu, Jirong; Trieu, Bo; Bai, Yingxin; Petzar, Paul; Singh, Upendra N.; Reithmaier, Karl

    2007-01-01

    2 micron solid-state lasers are the primary choice for coherent Doppler wind detection. As wind lidars, they are used for wake vortex and clear air turbulence detection providing air transport safety. In addition, 2 micron lasers are one of the candidates for CO2 detection lidars. The rich CO2 absorption line around 2 micron, combined with the long upper state life of time, has made Ho based 2 micron lasers a viable candidate for CO2 sensing DIAL instrument. The design and fabrication of a compact coherent laser radar transmitter for Troposphere wind sensing is under way. This system is hardened for ground as well as airborne applications. As a transmitter for a coherent wind lidar, this laser has stringent spectral line width and beam quality requirements. Although the absolute wavelength does not have to be fixed for wind detection, to maximize return signal, the output wavelength should avoid atmospheric CO2 and H2O absorption lines. The base line laser material is Ho:Tm:LuLF which is an isomorph of Ho:Tm:YLF. LuLF produces 20% more output power than Ho:Tm:YLF. In these materials the Tm absorption cross-section, the Ho emission cross-section, the Tm to Ho energy transfer parameters and the Ho (sup 5) I (sub 7) radiative life time are all identical. However, the improved performance of the LuLF is attributed to the lower thermal population in the (sup 5) I (sub 8) manifold. It also provides higher normal mode to Q-switch conversion than YLF at high pump energy indicating a lower up-conversion. The laser architecture is composed of a seed laser, a ring oscillator, and a double pass amplifier. The seed laser is a single longitudinal mode with a line width of 13 KHz. The 100mJ class oscillator is stretched to 3 meters to accommodate the line-width requirement without compromising the range resolution of the instrument. The amplifier is double passed to produce greater than 300mJ energy.

  15. THE CORES OF THE Fe K{alpha} LINES IN ACTIVE GALACTIC NUCLEI: AN EXTENDED CHANDRA HIGH ENERGY GRATING SAMPLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu, X. W.; Wang, J. X.; Yaqoob, T.

    We extend the study of the core of the Fe K{alpha} emission line at {approx}6.4 keV in Seyfert galaxies reported by Yaqoob and Padmanabhan using a larger sample observed by the Chandra high-energy grating (HEG). The sample consists of 82 observations of 36 unique sources with z < 0.3. Whilst heavily obscured active galactic nuclei are excluded from the sample, these data offer some of the highest precision measurements of the peak energy of the Fe K{alpha} line, and the highest spectral resolution measurements of the width of the core of the line in unobscured and moderately obscured (N {submore » H} < 10{sup 23} cm{sup -2}) Seyfert galaxies to date. From an empirical and uniform analysis, we present measurements of the Fe K{alpha} line centroid energy, flux, equivalent width (EW), and intrinsic width (FWHM). The Fe K{alpha} line is detected in 33 sources, and its centroid energy is constrained in 32 sources. In 27 sources, the statistical quality of the data is good enough to yield measurements of the FWHM. We find that the distribution in the line centroid energy is strongly peaked around the value for neutral Fe, with over 80% of the observations giving values in the range 6.38-6.43 keV. Including statistical errors, 30 out of 32 sources ({approx}94%) have a line centroid energy in the range 6.35-6.47 keV. The mean EW, among the observations in which a non-zero lower limit could be measured, was 53 {+-} 3 eV. The mean FWHM from the subsample of 27 sources was 2060 {+-} 230 km s{sup -1}. The mean EW and FWHM are somewhat higher when multiple observations for a given source are averaged. From a comparison with the H{beta} optical emission-line widths (or, for one source, Br{alpha}), we find that there is no universal location of the Fe K{alpha} line-emitting region relative to the optical broad-line region (BLR). In general, a given source may have contributions to the Fe K{alpha} line flux from parsec-scale distances from the putative black hole, down to matter a factor {approx}2 closer to the black hole than the BLR. We confirm the presence of the X-ray Baldwin effect, an anti-correlation between the Fe K{alpha} line EW and X-ray continuum luminosity. The HEG data have enabled isolation of this effect to the narrow core of the Fe K{alpha} line.« less

  16. The Effects of High Frequency ULF Wave Activity on the Spectral Characteristics of Coherent HF Radar Returns

    NASA Astrophysics Data System (ADS)

    Wright, D. M.; Yeoman, T. K.; Woodfield, E. E.

    2003-12-01

    It is now a common practice to employ ground-based radars in order to distinguish between those regions of the Earth's upper atmosphere which are magnetically conjugate to open and closed field lines. Radar returns from ionospheric irregularities inside the polar cap and cusp regions generally exhibit large spectral widths in contrast to those which exist on closed field lines at lower latitudes. It has been suggested that the so-called Spectral Width Boundary (SWB) might act as a proxy for the open-closed field line boundary (OCFLB), which would then be an invaluable tool for investigating reconnection rates in the magnetosphere. The exact cause of the increased spectral widths observed at very high latitudes is still subject to considerable debate. Several mechanisms have been proposed. This paper compares a dusk-sector interval of coherent HF radar data with measurements made by an induction coil magnetometer located at Tromso, Norway (66° N geomagnetic). On this occasion, a series of transient regions of radar backscatter exhibiting large spectral widths are accompanied by increases in spectral power of ULF waves in the Pc1-2 frequency band. These observations would then, seem to support the possibility that high frequency magnetospheric wave activity at least contribute to the observed spectral characteristics and that such wave activity might play a significant role in the cusp and polar cap ionospheres.

  17. Spectrum radial velocity analyser (SERVAL). High-precision radial velocities and two alternative spectral indicators

    NASA Astrophysics Data System (ADS)

    Zechmeister, M.; Reiners, A.; Amado, P. J.; Azzaro, M.; Bauer, F. F.; Béjar, V. J. S.; Caballero, J. A.; Guenther, E. W.; Hagen, H.-J.; Jeffers, S. V.; Kaminski, A.; Kürster, M.; Launhardt, R.; Montes, D.; Morales, J. C.; Quirrenbach, A.; Reffert, S.; Ribas, I.; Seifert, W.; Tal-Or, L.; Wolthoff, V.

    2018-01-01

    Context. The CARMENES survey is a high-precision radial velocity (RV) programme that aims to detect Earth-like planets orbiting low-mass stars. Aims: We develop least-squares fitting algorithms to derive the RVs and additional spectral diagnostics implemented in the SpEctrum Radial Velocity AnaLyser (SERVAL), a publicly available python code. Methods: We measured the RVs using high signal-to-noise templates created by coadding all available spectra of each star. We define the chromatic index as the RV gradient as a function of wavelength with the RVs measured in the echelle orders. Additionally, we computed the differential line width by correlating the fit residuals with the second derivative of the template to track variations in the stellar line width. Results: Using HARPS data, our SERVAL code achieves a RV precision at the level of 1 m/s. Applying the chromatic index to CARMENES data of the active star YZ CMi, we identify apparent RV variations induced by stellar activity. The differential line width is found to be an alternative indicator to the commonly used full width half maximum. Conclusions: We find that at the red optical wavelengths (700-900 nm) obtained by the visual channel of CARMENES, the chromatic index is an excellent tool to investigate stellar active regions and to identify and perhaps even correct for activity-induced RV variations.

  18. Synthesis, crystal structure, and biological evaluation of a series of phloretin derivatives.

    PubMed

    Wang, Li; Li, Zheng-Wei; Zhang, Wei; Xu, Rui; Gao, Fei; Liu, Yang-Feng; Li, Ya-Jun

    2014-10-13

    A one-step synthesis of phloretin derivatives 2-11 from phloretin in good to excellent yields is reported. Their structures were characterized by 1H-NMR, 13C-NMR and MS, and the structures of 8 and 11 were determined by X-ray diffraction analysis. A mechanism for the formation of 9-11 is proposed. Compared with the anticancer drug docetaxel, phloretin, phloretin derivatives and phlorizin exhibited moderate cytotoxicity toward the MDA-MB-231, SPC-A1, A549, MCF-7 and EC109 cell lines. Among all of the tested compounds, 7 exhibited the strongest cytotoxicity toward the five cell lines and was more active than docetaxel in MDA-MB-231 cells. Our findings suggest that these derivatives hold great promise for further development as anticancer agents.

  19. --No Title--

    Science.gov Websites

    family:arial;width:100%;background-color:#fff;margin:0}form{margin:0;padding:0 %);background:-webkit-gradient(linear,left top,left bottom,color-stop(0%,#00527f),color-stop(100%,#00324d :16px;line-height:36px;color:white;font-weight:bold}#outer{width:100%;background-color:#eee;margin:0

  20. --No Title--

    Science.gov Websites

    }.caption-box{background:#000;background-color:rgba(0,0,0,.8);color:#fff;padding:1em}.caption-box .teaser }.carousel-caption .headline{color:#fff;font-size:16px;margin:0}@media (min-width:768px){.carousel-caption ;width:auto;height:auto}.carousel-controls{background-color:#000;line-height:1;margin-left:-15px;margin-right

  1. The D1Πu state of HD and the mass scaling relation of its predissociation widths

    NASA Astrophysics Data System (ADS)

    Dickenson, G. D.; Ubachs, W.

    2012-07-01

    Absorption spectra of HD have been recorded in the wavelength range of 75-90 nm at 100 K using the vacuum ultraviolet Fourier transform spectrometer at the Synchrotron SOLEIL. The present wavelength resolution represents an order of magnitude improvement over that of previous studies. We present a detailed study of the D1Πu-X1Σ+g system observed up to v‧ = 18. The Q-branch transition probing levels of Π- symmetry are observed as narrow resonances limited by the Doppler width at 100 K. Line positions for these transitions are determined to an estimated absolute accuracy of 0.06 cm-1. Predissociation line widths of Π+ levels are extracted from the absorption spectra. A comparison with the recent results on a study of the D1Πu state in H2 and D2 reveals that the predissociation widths scale as μ-2J(J + 1), with μ being the reduced mass of the molecule and J the rotational angular momentum quantum number, as expected from an interaction with the B‧1Σ+u continuum causing the predissociation.

  2. Hitomi observation of radio galaxy NGC 1275: The first X-ray microcalorimeter spectroscopy of Fe-Kα line emission from an active galactic nucleus

    NASA Astrophysics Data System (ADS)

    Hitomi Collaboration; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steven W.; Angelini, Lorella; Audard, Marc; Awaki, Hisamitsu; Axelsson, Magnus; Bamba, Aya; Bautz, Marshall W.; Blandford, Roger; Brenneman, Laura W.; Brown, Gregory V.; Bulbul, Esra; Cackett, Edward M.; Chernyakova, Maria; Chiao, Meng P.; Coppi, Paolo S.; Costantini, Elisa; de Plaa, Jelle; de Vries, Cor P.; den Herder, Jan-Willem; Done, Chris; Dotani, Tadayasu; Ebisawa, Ken; Eckart, Megan E.; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew C.; Ferrigno, Carlo; Foster, Adam R.; Fujimoto, Ryuichi; Fukazawa, Yasushi; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi C.; Gandhi, Poshak; Giustini, Margherita; Goldwurm, Andrea; Gu, Liyi; Guainazzi, Matteo; Haba, Yoshito; Hagino, Kouichi; Hamaguchi, Kenji; Harrus, Ilana M.; Hatsukade, Isamu; Hayashi, Katsuhiro; Hayashi, Takayuki; Hayashida, Kiyoshi; Hiraga, Junko S.; Hornschemeier, Ann; Hoshino, Akio; Hughes, John P.; Ichinohe, Yuto; Iizuka, Ryo; Inoue, Hajime; Inoue, Yoshiyuki; Ishida, Manabu; Ishikawa, Kumi; Ishisaki, Yoshitaka; Iwai, Masachika; Kaastra, Jelle; Kallman, Tim; Kamae, Tsuneyoshi; Kataoka, Jun; Katsuda, Satoru; Kawai, Nobuyuki; Kelley, Richard L.; Kilbourne, Caroline A.; Kitaguchi, Takao; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Koyama, Katsuji; Koyama, Shu; Kretschmar, Peter; Krimm, Hans A.; Kubota, Aya; Kunieda, Hideyo; Laurent, Philippe; Lee, Shiu-Hang; Leutenegger, Maurice A.; Limousin, Olivier O.; Loewenstein, Michael; Long, Knox S.; Lumb, David; Madejski, Greg; Maeda, Yoshitomo; Maier, Daniel; Makishima, Kazuo; Markevitch, Maxim; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; McNamara, Brian R.; Mehdipour, Missagh; Miller, Eric D.; Miller, Jon M.; Mineshige, Shin; Mitsuda, Kazuhisa; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Hideyuki; Mori, Koji; Mukai, Koji; Murakami, Hiroshi; Mushotzky, Richard F.; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakashima, Shinya; Nakazawa, Kazuhiro; Nobukawa, Kumiko K.; Nobukawa, Masayoshi; Noda, Hirofumi; Odaka, Hirokazu; Ohashi, Takaya; Ohno, Masanori; Okajima, Takashi; Ota, Naomi; Ozaki, Masanobu; Paerels, Frits; Paltani, Stéphane; Petre, Robert; Pinto, Ciro; Porter, Frederick S.; Pottschmidt, Katja; Reynolds, Christopher S.; Safi-Harb, Samar; Saito, Shinya; Sakai, Kazuhiro; Sasaki, Toru; Sato, Goro; Sato, Kosuke; Sato, Rie; Sawada, Makoto; Schartel, Norbert; Serlemitsos, Peter J.; Seta, Hiromi; Shidatsu, Megumi; Simionescu, Aurora; Smith, Randall K.; Soong, Yang; Stawarz, Łukasz; Sugawara, Yasuharu; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shin'ichiro; Takei, Yoh; Tamagawa, Toru; Tamura, Takayuki; Tanaka, Takaaki; Tanaka, Yasuo; Tanaka, Yasuyuki T.; Tashiro, Makoto S.; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yohko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi Go; Uchida, Hiroyuki; Uchiyama, Hideki; Uchiyama, Yasunobu; Ueda, Shutaro; Ueda, Yoshihiro; Uno, Shin'ichiro; Urry, C. Megan; Ursino, Eugenio; Watanabe, Shin; Werner, Norbert; Wilkins, Dan R.; Williams, Brian J.; Yamada, Shinya; Yamaguchi, Hiroya; Yamaoka, Kazutaka; Yamasaki, Noriko Y.; Yamauchi, Makoto; Yamauchi, Shigeo; Yaqoob, Tahir; Yatsu, Yoichi; Yonetoku, Daisuke; Zhuravleva, Irina; Zoghbi, Abderahmen; Kawamuro, Taiki

    2018-03-01

    The origin of the narrow Fe-Kα fluorescence line at 6.4 keV from active galactic nuclei has long been under debate; some of the possible sites are the outer accretion disk, the broad line region, a molecular torus, or interstellar/intracluster media. In 2016 February-March, we performed the first X-ray microcalorimeter spectroscopy with the Soft X-ray Spectrometer (SXS) on board the Hitomi satellite of the Fanaroff-Riley type I radio galaxy NGC 1275 at the center of the Perseus cluster of galaxies. With the high-energy resolution of ˜5 eV at 6 keV achieved by Hitomi/SXS, we detected the Fe-Kα line with ˜5.4 σ significance. The velocity width is constrained to be 500-1600 km s-1 (FWHM for Gaussian models) at 90% confidence. The SXS also constrains the continuum level from the NGC 1275 nucleus up to ˜20 keV, giving an equivalent width of ˜20 eV for the 6.4 keV line. Because the velocity width is narrower than that of the broad Hα line of ˜2750 km s-1, we can exclude a large contribution to the line flux from the accretion disk and the broad line region. Furthermore, we performed pixel map analyses on the Hitomi/SXS data and image analyses on the Chandra archival data, and revealed that the Fe-Kα line comes from a region within ˜1.6 kpc of the NGC 1275 core, where an active galactic nucleus emission dominates, rather than that from intracluster media. Therefore, we suggest that the source of the Fe-Kα line from NGC 1275 is likely a low-covering-fraction molecular torus or a rotating molecular disk which probably extends from a parsec to hundreds of parsecs scale in the active galactic nucleus system.

  3. Identification of degradation products in loxoprofen sodium adhesive tapes by liquid chromatography-mass spectrometry and dynamic pressurized liquid extraction-solid-phase extraction coupled to liquid chromatography-nuclear magnetic resonance spectroscopy.

    PubMed

    Murakami, Tomonori; Kawasaki, Takao; Takemura, Akira; Fukutsu, Naoto; Kishi, Naoyuki; Kusu, Fumiyo

    2008-10-24

    Rapid and unambiguous identification of three degradation products (DP-1, DP-2 and DP-3) found in heat-stressed loxoprofen sodium adhesive tapes (Loxonin tapes) was achieved by LC-MS and dynamic pressurized liquid extraction (PLE)-solid-phase extraction (SPE) coupled to LC-NMR without complicated isolation or purification processes. The molecular formulae of the degradation products were determined by accurate mass measurements and product ion analyses and on-line hydrogen/deuterium (H/D) exchange experiments provided information about changes in the degradation of loxoprofen. To compensate for the low sensitivity of NMR, on-line dynamic PLE-SPE was employed and higher concentrations of degradation products trapped on the SPE column were afforded in a shorter time than they would be in such time-consuming sample preparations as pre-concentration after extraction. The loop-storage procedure was used in the LC-NMR analysis to allow the acquisition of the (1)H spectra of the three degradation products in one chromatographic run without affecting the peak separation and to avoid the carry-over of previously eluted DP-1 of high concentration by washing the NMR detection cell prior to the measurement of the DP-2 spectrum. Based on the resulting (1)H NMR spectra in combination with the MS results, DP-1 was successfully identified as an oxidation product having an oxodicarboxylic acid structure formed by the cleavage of the cyclopentanone ring of loxoprofen, DP-2 as a cyclopentanone ring-hydroxylated loxoprofen and DP-3 as a loxoprofen l-menthol ester.

  4. Coupling Between Microstrip Lines With Finite Width Ground Plane Embedded in Thin Film Circuits

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Dalton, Edan; Tentzeris, Manos M.; Papapolymerou, John

    2003-01-01

    Three-dimensional (3D) interconnects built upon multiple layers of polyimide are required for constructing 3D circuits on CMOS (low resistivity) Si wafers, GaAs, and ceramic substrates. Thin film microstrip lines (TFMS) with finite width ground planes embedded in the polyimide are often used. However, the closely spaced TFMS lines a r e susceptible to high levels of coupling, which degrades circuit performance. In this paper, Finite Difference Time Domain (FDTD) analysis and experimental measurements a r e used to show that the ground planes must be connected by via holes to reduce coupling in both the forward and backward directions. Furthermore, it is shown that coupled microstrip lines establish a slotline type mode between the two ground planes and a dielectric waveguide type mode, and that the via holes recommended here eliminate these two modes.

  5. Application of comprehensive NMR-based analysis strategy in annotation, isolation and structure elucidation of low molecular weight metabolites of Ricinus communis seeds.

    PubMed

    Vučković, Ivan; Rapinoja, Marja-Leena; Vaismaa, Matti; Vanninen, Paula; Koskela, Harri

    2016-01-01

    Powder-like extract of Ricinus communis seeds contain a toxic protein, ricin, which has a history of military, criminal and terroristic use. As the detection of ricin in this "terrorist powder" is difficult and time-consuming, related low mass metabolites have been suggested to be useful for screening as biomarkers of ricin. To apply a comprehensive NMR-based analysis strategy for annotation, isolation and structure elucidation of low molecular weight plant metabolites of Ricinus communis seeds. The seed extract was prepared with a well-known acetone extraction approach. The common metabolites were annotated from seed extract dissolved in acidic solution using (1)H NMR spectroscopy with spectrum library comparison and standard addition, whereas unconfirmed metabolites were identified using multi-step off-line HPLC-DAD-NMR approach. In addition to the common plant metabolites, two previously unreported compounds, 1,3-digalactoinositol and ricinyl-alanine, were identified with support of MS analyses. The applied comprehensive NMR-based analysis strategy provided identification of the prominent low molecular weight metabolites with high confidence. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Defining genetic and chemical diversity in wheat grain by 1H‐NMR spectroscopy of polar metabolites

    PubMed Central

    Corol, Delia I.; Jones, Huw D.; Beale, Michael H.; Ward, Jane L.

    2017-01-01

    Scope The application of high‐throughput 1H nuclear magnetic resonance (1H‐NMR) of unpurified extracts to determine genetic diversity and the contents of polar components in grain of wheat. Methods and results Milled whole wheat grain was extracted with 80:20 D2O:CD3OD containing 0.05% d4–trimethylsilylpropionate. 1H‐NMR spectra were acquired under automation at 300°K using an Avance Spectrometer operating at 600.0528 MHz. Regions for individual metabolites were identified by comparison to a library of known standards run under identical conditions. The individual 1H‐NMR peaks or levels of known metabolites were then compared by Principal Component Analysis using SIMCA‐P software. Conclusions High‐throughput 1H‐NMR is an excellent tool to compare the extent of genetic diversity within and between wheat species, and to quantify specific components (including glycine betaine, choline, and asparagine) in individual genotypes. It can also be used to monitor changes in composition related to environmental factors and to support comparisons of the substantial equivalence of transgenic lines. PMID:28087883

  7. High-Field Superconductivity on Iron Chalcogenide FeSe

    NASA Astrophysics Data System (ADS)

    Shi, Anlu; Kitagawa, Shunsaku; Ishida, Kenji; Böhmer, Anna E.; Meingast, Christoph; Wolf, Thomas

    2018-06-01

    We have performed ac-susceptibility and 77Se-NMR measurements on single-crystal FeSe in the field range from 12.5 to 14.75 T below 1.6 K in order to investigate the superconducting properties of the B phase. Our results show that although superconductivity persists beyond the A-B transition line (H*), the broadening of the 77Se-NMR linewidth arising from the superconducting diamagnetic effect decreases at around H*, suggesting that superconducting character is changed at H*.

  8. Measurement of the profile and intensity of the solar He I lambda 584-A resonance line

    NASA Technical Reports Server (NTRS)

    Maloy, J. O.; Hartmann, U. G.; Judge, D. L.; Carlson, R. W.

    1978-01-01

    The intensity and profile of the helium resonance line at 584 A from the entire disk of the sun was investigated by using a rocket-borne helium-filled spectrometer and a curve-of-growth technique. The line profile was found to be accurately represented by a Gaussian profile with full width at half maximum of 122 + or - 10 mA, while the integrated intensity was measured to be 2.6 + or - 1.3 billion photons/s per sq cm at solar activity levels of F(10.7) = 90.8 x 10 to the -22nd per sq m/Hz and Rz = 27. The measured line width is in good agreement with previous spectrographic measurements, but the integrated intensity is larger than most previous photoelectric measurements. However, the derived line center flux of 20 + or - 10 billion photons/s per sq cm/A is in good agreement with values inferred from airglow measurements.

  9. Dynamic "Scanning-Mode" Meniscus Confined Electrodepositing and Micropatterning of Individually Addressable Ultraconductive Copper Line Arrays.

    PubMed

    Lei, Yu; Zhang, Xianyun; Xu, Dingding; Yu, Minfeng; Yi, Zhiran; Li, Zhixiang; Sun, Aihua; Xu, Gaojie; Cui, Ping; Guo, Jianjun

    2018-05-03

    Micro- and nanopatterning of cost-effective addressable metallic nanostructures has been a long endeavor in terms of both scientific understanding and industrial needs. Herein, a simple and efficient dynamic meniscus-confined electrodeposition (MCED) technique for precisely positioned copper line micropatterns with superior electrical conductivity (greater than 1.57 × 10 4 S/cm) on glass, silicon, and gold substrates is reported. An unexpected higher printing speed in the evaporative regime is realized for precisely positioned copper lines patterns with uniform width and height under horizontal scanning-mode. The final line height and width depend on the typical behavior of traditional flow coating process, while the surface morphologies and roughness are mainly governed by evaporation-driven electrocrystallization dynamics near the receding moving contact line. Integrated 3D structures and a rapid prototyping of 3D hot-wire anemometer are further demonstrated, which is very important for the freedom integration applications in advanced conceptual devices, such as miniaturized electronics and biomedical sensors and actuators.

  10. [The application of Doppler broadening and Doppler shift to spectral analysis].

    PubMed

    Xu, Wei; Fang, Zi-shen

    2002-08-01

    The distinction between Doppler broadening and Doppler shift has analyzed, Doppler broadening locally results from the distribution of velocities of the emitting particles, the line width gives the information on temperature of emitting particles. Doppler shift results when the emitting particles have a bulk non random flow velocity in a particular direction, the drift of central wavelength gives the information on flow velocity of emitting particles, and the Doppler shift only drifts the profile of line without changing the width. The difference between Gaussian fitting and the distribution of chord-integral line shape have also been discussed. The distribution of H alpha spectral line shape has been derived from the surface of limiter in HT-6M Tokamak with optical spectroscope multichannel analysis (OSMA), the result by double Gaussian fitting shows that the line shape make up of two port, the emitting of reflect particles with higher energy and the release particle from the limiter surface. Ion temperature and recycling particle flow velocity have been obtained from Doppler broadening and Doppler shift.

  11. Formation of conductive copper lines by femtosecond laser irradiation of copper nitride film on plastic substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xiaodong; Yuan, Ningyi, E-mail: nyyuan@cczu.edu.cn; Center for Low-Dimensional Materials, Micro-Nano Devices and Systems, Changzhou University, Changzhou 213164, Jiangsu

    2015-05-15

    In this paper, we report a simple method to form conductive copper lines by scanning a single-beam femtosecond pulse laser on a plastic substrate covered with copper nitride (Cu{sub 3}N) film. The Cu{sub 3}N films were prepared by DC magnetron sputtering in the presence of an Ar + N{sub 2} atmosphere at 100 °C. The influence of the laser power and scanning speed on the formed copper line width, surface features, and morphology was analyzed by means of optical microscopy, X-ray diffraction, non-contact 3D profilometer, and scanning electron microscopy. The experimental results demonstrate that low laser power and low scanningmore » speed favor the formation of uniform and flat Cu lines. After process optimization, copper lines with a width less than 5 μm were obtained, which provides an attractive application prospect in the field of flexible electronic devices.« less

  12. Stocking, growth, and habitat relations in New Hampshire hardwoods

    Treesearch

    William B. Leak

    1983-01-01

    Data from hardwood stands in New Hampshire substantiated the crown-width relationships used to develop the B-line (based on circular crowns) in the 1969 northern hardwood stocking guide, and produced an A-line slightly lower than the original line. Position of the A-line was unrelated to site or forest type. Diameter growth of hardwoods on moist and dry soils declined...

  13. Can we improve C IV-based single epoch black hole mass estimations?

    NASA Astrophysics Data System (ADS)

    Mejía-Restrepo, J. E.; Trakhtenbrot, B.; Lira, P.; Netzer, H.

    2018-05-01

    In large optical surveys at high redshifts (z > 2), the C IV broad emission line is the most practical alternative to estimate the mass (MBH) of active super-massive black holes (SMBHs). However, mass determinations obtained with this line are known to be highly uncertain. In this work we use the Sloan Digital Sky Survey Data Release 7 and 12 quasar catalogues to statistically test three alternative methods put forward in the literature to improve C IV-based MBH estimations. These methods are constructed from correlations between the ratio of the C IV line-width to the low ionization line-widths (Hα, Hβ and Mg II) and several other properties of rest-frame UV emission lines. Our analysis suggests that these correction methods are of limited applicability, mostly because all of them depend on correlations that are driven by the linewidth of the C IV profile itself and not by an interconnection between the linewidth of the C IV line with the linewidth of the low ionization lines. Our results show that optical C IV-based mass estimates at high redshift cannot be a proper replacement for estimates based on IR spectroscopy of low ionization lines like Hα, Hβ and Mg II.

  14. An Empirical Expression for the Line Widths of Ammonia

    NASA Technical Reports Server (NTRS)

    Brown, Linda R.; Peterson, Dean B.

    1994-01-01

    The hydrogen-broadened line widths of 116 (sup 14)NH(sub 3) ground state transitions have been measured at 0.006 cm(sup -1) resolution using a Bruker spectrometer in the 24 to 210 cm(sup -1) region. The rotational variation of the experimental widths with J(sup '),K(sup ') = 1,0 to 10,10 has been reproduced to 2.4 % using an heuristically derived expression of the form

    gamma = a(sub 0) + a(sub 1) J(sup ') + a (sub 2) K(sup ') + a(sub 3) J(sup ')(sup 2) + a(sub 4) J(sup ') K(sup ')

    where J(sup ') and K(sup ') are the lower state symmetric top quantum numbers. This function has also been applied to the measured widths of the 58 transitions of nu(sub 1) at 3 (micro)m, each broadened by N(sub 2), O(sub 2), Ar, H(sub 2), and He. The rms of the observed minus calculated widths are 5% or better for the five foreign broadeners. The values of the fitted constants suggest that for some broadeners the expression might also be written as

    gamma = a(sub 0) + b(sub 1) J(sup ') + b(sub 2)(J(sup ' )- K(sup ')) + b(sub 3) J(sup ')(J(sup ') - K(sup '))

    .

  15. Particle-in-Cell Simulation of Collisionless Driven Reconnection with Open Boundaries

    NASA Technical Reports Server (NTRS)

    Kimas, Alex; Hesse, Michael; Zenitani, Seiji; Kuznetsova, Maria

    2010-01-01

    First results are discussed from an ongoing study of driven collisionless reconnection using a 2 1/2-dimensional electromagnetic particle-in-cell simulation model with open inflow and outflow boundaries. An extended electron diffusion region (EEDR) is defined as that region surrounding a reconnecting neutral line in which the out-of-plane nonideal electric field is positive. It is shown that the boundaries of this region in the directions of the outflow jets are at the positions where the electrons make the transition from unfrozen meandering motion in the current sheet to outward drifting with the magnetic field in the outflow jets; a turning length scale is defined to mark these positions, The initial width of the EEDR in the inflow directions is comparable to the electron bounce width. Later. as shoulders develop to form a two-scale structure. thc EEDR width expands to the ion bounce width scale. The inner portion of the EEDR or the electron diffusion region proper remains at the electron bounce width. Two methods are introduced for predicting the reconnection electric field using the dimensions of the EEDR. These results are interpreted as further evidence that the EEDR is the region that is relevant to understanding the electron role in the neutral line vicinity.

  16. Dynamic nuclear polarization using frequency modulation at 3.34 T.

    PubMed

    Hovav, Y; Feintuch, A; Vega, S; Goldfarb, D

    2014-01-01

    During dynamic nuclear polarization (DNP) experiments polarization is transferred from unpaired electrons to their neighboring nuclear spins, resulting in dramatic enhancement of the NMR signals. While in most cases this is achieved by continuous wave (cw) irradiation applied to samples in fixed external magnetic fields, here we show that DNP enhancement of static samples can improve by modulating the microwave (MW) frequency at a constant field of 3.34 T. The efficiency of triangular shaped modulation is explored by monitoring the (1)H signal enhancement in frozen solutions containing different TEMPOL radical concentrations at different temperatures. The optimal modulation parameters are examined experimentally and under the most favorable conditions a threefold enhancement is obtained with respect to constant frequency DNP in samples with low radical concentrations. The results are interpreted using numerical simulations on small spin systems. In particular, it is shown experimentally and explained theoretically that: (i) The optimal modulation frequency is higher than the electron spin-lattice relaxation rate. (ii) The optimal modulation amplitude must be smaller than the nuclear Larmor frequency and the EPR line-width, as expected. (iii) The MW frequencies corresponding to the enhancement maxima and minima are shifted away from one another when using frequency modulation, relative to the constant frequency experiments. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Hyperpolarization of {sup 133}Cs nuclei enhanced by ion movement in a cesium salt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishikawa, Kiyoshi

    2011-12-15

    Hyperpolarization of {sup 133}Cs nuclei in CsCl salt is achieved through spin transfer from an optically pumped Cs vapor, with maximum polarizations of 0.1% demonstrated. Motional narrowing of the enhanced NMR line indicates that ion movement facilitates this process by transporting spin-polarized ions from the interface into the salt. The resulting NMR enhancement allows measurement of the polarization and its dynamics in real time. Based upon the NMR frequency and the longitudinal spin relaxation time, we find no evidence that the salt is contaminated by Cs metal or paramagnetic impurities. The Cs nuclear polarization reported here could be improved severalmore » orders of magnitude by intense laser heating of the entire sample.« less

  18. Vibrations and reorientations of H2O molecules in [Sr(H2O)6]Cl2 studied by Raman light scattering, incoherent inelastic neutron scattering and proton magnetic resonance.

    PubMed

    Hetmańczyk, Joanna; Hetmańczyk, Lukasz; Migdał-Mikuli, Anna; Mikuli, Edward; Florek-Wojciechowska, Małgorzata; Harańczyk, Hubert

    2014-04-24

    Vibrational-reorientational dynamics of H2O ligands in the high- and low-temperature phases of [Sr(H2O)6]Cl2 was investigated by Raman Spectroscopy (RS), proton magnetic resonance ((1)H NMR), quasielastic and inelastic incoherent Neutron Scattering (QENS and IINS) methods. Neutron powder diffraction (NPD) measurements, performed simultaneously with QENS, did not indicated a change of the crystal structure at the phase transition (detected earlier by differential scanning calorimetry (DSC) at TC(h)=252.9 K (on heating) and at TC(c)=226.5K (on cooling)). Temperature dependence of the full-width at half-maximum (FWHM) of νs(OH) band at ca. 3248 cm(-1) in the RS spectra indicated small discontinuity in the vicinity of phase transition temperature, what suggests that the observed phase transition may be associated with a change of the H2O reorientational dynamics. However, an activation energy value (Ea) for the reorientational motions of H2O ligands in both phases is nearly the same and equals to ca. 8 kJ mol(-1). The QENS peaks, registered for low temperature phase do not show any broadening. However, in the high temperature phase a small QENS broadening is clearly visible, what implies that the reorientational dynamics of H2O ligands undergoes a change at the phase transition. (1)H NMR line is a superposition of two powder Pake doublets, differentiated by a dipolar broadening, suggesting that there are two types of the water molecules in the crystal lattice of [Sr(H2O)6]Cl2 which are structurally not equivalent average distances between the interacting protons are: 1.39 and 1.18 Å. However, their reorientational dynamics is very similar (τc=3.3⋅10(-10) s). Activation energies for the reorientational motion of these both kinds of H2O ligands have nearly the same values in an experimental error limit: and equal to ca. 40 kJ mole(-1). The phase transition is not seen in the (1)H NMR spectra temperature dependencies. Infrared (IR), Raman (RS) and inelastic incoherent neutron scattering (IINS) spectra were calculated by the DFT method and quite a good agreement with the experimental data was obtained. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Structure of sunspot light bridges in the chromosphere and transition region

    NASA Astrophysics Data System (ADS)

    Rezaei, R.

    2018-01-01

    Context. Light bridges (LBs) are elongated structures with enhanced intensity embedded in sunspot umbra and pores. Aims: We studied the properties of a sample of 60 LBs observed with the Interface Region Imaging Spectrograph (IRIS). Methods: Using IRIS near- and far-ultraviolet spectra, we measured the line intensity, width, and Doppler shift; followed traces of LBs in the chromosphere and transition region (TR); and compared LB parameters with umbra and quiet Sun. Results: There is a systematic emission enhancement in LBs compared to nearby umbra from the photosphere up to the TR. Light bridges are systematically displaced toward the solar limb at higher layers: the amount of the displacement at one solar radius compares well with the typical height of the chromosphere and TR. The intensity of the LB sample compared to the umbra sample peaks at the middle/upper chromosphere where they are almost permanently bright. Spectral lines emerging from the LBs are broader than the nearby umbra. The systematic redshift of the Si IV line in the LB sample is reduced compared to the quiet Sun sample. We found a significant correlation between the line width of ions arising at temperatures from 3 × 104 to 1.5 × 105 K as there is also a strong spatial correlation among the line and continuum intensities. In addition, the intensity-line width relation holds for all spectral lines in this study. The correlations indicate that the cool and hot plasma in LBs are coupled. Conclusions: Light bridges comprise multi-temperature and multi-disciplinary structures extending up to the TR. Diverse heating sources supply the energy and momentum to different layers, resulting in distinct dynamics in the photosphere, chromosphere, and TR.

  20. The abundance of interstellar sulphur and zinc in high density sight-lines

    NASA Technical Reports Server (NTRS)

    Harris, A. W.; Mashesse, J. M.

    1986-01-01

    On the basis of early absorption line studies of individual lines of sight with the Copernicus satellite, chlorine, sulphur and zinc were classed together as elements which showed little or no depletion, relative to hydrogen, in the interstellar medium. The abundances of other less volatile elements, such as Fe and Mg were found to vary widely from one sight-line to another with gas-phase abundances in some cases being orders of magnitude below their solar counterparts. Detailed studies are reported of the depletion/density behavior of two other volatile elements which were previously considered to be virtually undepleted, S and Zn, using equivalent width data from both Copernicus and IUE observations. The results provide further evidence that the established dependence of depletion on n bar (H) extends to volatile elements and show that their use as tracers of metallicity, or for estimating hydrogen column densities, may lead to large errors in sight-lines through dense regions. It now appears that such elements may take part in the surface chemistry of grains and be important constituents of grain mantle material, although they probably do not contribute significantly to the bulk mass of grains. Due to the very similar atomic masses and ionization potentials of sulphur and phosphorous, the thermal velocity distributions of the singly ionized species of these elements in interstellar clouds should be very similar. However, a comparison of Doppler widths (b-values) derived for SIT and PIT in the same sight-lines from the Bohlin et al Copernicus equivalent width measurements has revealed an unexpected systematic discrepancy of a factor of approx. 1.7. This Discrepancy indicates that the normally adopted oscillators strengths of the PII lambda lambda 1153 and 1302 A lines may require revision.

  1. Very narrow band model calculations of atmospheric fluxes and cooling rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, L.S.; Berk, A.; Acharya, P.K.

    1996-10-15

    A new very narrow band model (VNBM) approach has been developed and incorporated into the MODTRAN atmospheric transmittance-radiance code. The VNBM includes a computational spectral resolution of 1 cm{sup {minus}1}, a single-line Voigt equivalent width formalism that is based on the Rodgers-Williams approximation and accounts for the finite spectral width of the interval, explicit consideration of line tails, a statistical line overlap correction, a new sublayer integration approach that treats the effect of the sublayer temperature gradient on the path radiance, and the Curtis-Godson (CG) approximation for inhomogeneous paths. A modified procedure for determining the line density parameter 1/d ismore » introduced, which reduces its magnitude. This results in a partial correction of the VNBM tendency to overestimate the interval equivalent widths. The standard two parameter CG approximation is used for H{sub 2}O and CO{sub 2}, while the Goody three parameter CG approximation is used for O{sub 3}. Atmospheric flux and cooling rate predictions using a research version of MODTRAN, MODR, are presented for H{sub 2}O (with and without the continuum), CO{sub 2}, and O{sub 3} for several model atmospheres. The effect of doubling the CO{sub 2} concentration is also considered. These calculations are compared to line-by-line (LBL) model calculations using the AER, GLA, GFDL, and GISS codes. The MODR predictions fall within the spread of the LBL results. The effects of decreasing the band model spectral resolution are illustrated using CO{sub 2} cooling rate and flux calculations. 36 refs., 18 figs., 1 tab.« less

  2. 75 FR 3486 - Susquehanna to Roseland 500kV Transmission Line, Environmental Impact Statement, Delaware Water...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-21

    ... connection with the Susquehanna to Roseland 500kV Transmission Line. SUMMARY: Pursuant to National... Recreational River, and Appalachian National Scenic Trail, in connection with the proposed Susquehanna (Berwick... expand the width of the transmission line right-of-way beyond the Applicant's current holdings. The...

  3. Line intersect sampling: Ell-shaped transects and multiple intersections

    Treesearch

    Timothy G. Gregoire; Harry T. Valentine

    2003-01-01

    The probability of selecting a population element under line intersect sampling depends on the width of the particle in the direction perpendicular to the transect, as is well known. The consequence of this when using ell-shaped transects rather than straight-line transects are explicated, and modifications that preserve design-unbiasedness of Kaiser's (1983)...

  4. 29 CFR 1917.16 - Line handling. (See also § 1917.95(b)).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... also § 1917.95(b)). (a) In order to provide safe access for handling lines while mooring and unmooring... be used. (b) When stringpiece or apron width is insufficient for safe footing, grab lines or rails... the water edge of a berth and a shed or other structure.) ...

  5. 29 CFR 1917.16 - Line handling. (See also § 1917.95(b)).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... also § 1917.95(b)). (a) In order to provide safe access for handling lines while mooring and unmooring... be used. (b) When stringpiece or apron width is insufficient for safe footing, grab lines or rails... the water edge of a berth and a shed or other structure.) ...

  6. The analysis of ensembles of moderately saturated interstellar lines

    NASA Technical Reports Server (NTRS)

    Jenkins, E. B.

    1986-01-01

    It is shown that the combined equivalent widths for a large population of Gaussian-like interstellar line components, each with different central optical depths tau(0) and velocity dispersions b, exhibit a curve of growth (COG) which closely mimics that of a single, pure Gaussian distribution in velocity. Two parametric distributions functions for the line populations are considered: a bivariate Gaussian for tau(0) and b and a power law distribution for tau(0) combined with a Gaussian dispersion for b. First, COGs for populations having an extremely large number of nonoverlapping components are derived, and the implications are shown by focusing on the doublet-ratio analysis for a pair of lines whose f-values differ by a factor of two. The consequences of having, instead of an almost infinite number of lines, a relatively small collection of components added together for each member of a doublet are examined. The theory of how the equivalent widths grow for populations of overlapping Gaussian profiles is developed. Examples of the composite COG analysis applied to existing collections of high-resolution interstellar line data are presented.

  7. Electron scattering wings on lines in interacting supernovae

    NASA Astrophysics Data System (ADS)

    Huang, Chenliang; Chevalier, Roger A.

    2018-03-01

    We consider the effect of electron scattering on lines emitted as a result of supernova interaction with a circumstellar medium, assuming that the scattering occurs in ionized gas in the pre-shock circumstellar medium. The single scattering case gives the broad component in the limit of low optical depth, showing a velocity full width half-maximum that is close to the thermal velocities of electrons. The line shape is approximately exponential at low velocities and steepens at higher velocities. At higher optical depths, the line profile remains exponential at low velocities, but wings strengthen with increasing optical depth. In addition to the line width, the ratio of narrow to broad (scattered) line strength is a possible diagnostic of the gas. The results depend on the density profile of the circumstellar gas, especially if the scattering and photon creation occur in different regions. We apply the scattering model to a number of supernovae, including Type IIn and Type Ia-circumstellar medium (CSM) events. The asymmetry to the red found in some cases can be explained by scattering in a fast wind region that is indicated by observations.

  8. Spectroscopic Results From Blue Hills Observatory of the 2009-2011 Eclipse of epsilon Aurigae

    NASA Astrophysics Data System (ADS)

    Gorodenski, S. A.

    2012-02-01

    The purpose of this paper is to report spectroscopic results of epsilon Aurigae during the 2009-2011 eclipse. Spectra of the sodium D lines and an absorption line occurring at approximately 5853Å were taken from February 13, 2010, to October 10, 2011, with an LHIRES III spectrograph and a 16-inch Meade telescope at Blue Hills Observatory in Dewey, Arizona. Equivalent width and radial velocity data support the presence of a void or ring structure within the eclipsing disk, and they support a central disk clearing around an unseen primary central object. The results also indicate the disk does not end at fourth contact but continues for a significant distance. Analysis of radial velocities demonstrated the profile of the 5853Å line has a disk component in addition to the primary F0 star component. A split line at this location was observed. From the equivalent width profile of the 5853Å line the duration of the split line event was estimated to be 101 days. Other lesser results are presented and discussed.

  9. VizieR Online Data Catalog: Spectroscopic survey of youngest field stars II. (Frasca+, 2018)

    NASA Astrophysics Data System (ADS)

    Frasca, A.; Guillout, P.; Klutsch, A.; Freire Ferrero, R.; Marilli, E.; Biazzo, K.; Gandolfi, D.; Montes, D.

    2018-01-01

    Radial velocity (RV) and projected rotational velocity (vsini) of the single stars and SB1 systems are quoted in Table A1 along with the V magnitude and B-V color index. The vsini values measured from the full width at half maximum of the of the cross-correlation function (CCF) and by means of the code ROTFIT are both listed in Table A1. Table A2 and A3 report RV and vsini from the CCF for the components of SB2 and triple (SB3) systems, respectively. Table A4 reports, for the single stars and SB1 systems, the spectral type, atmospheric parameters (Teff, logg, and [Fe/H]), the equivalent width of the lithium 6708-A line (corrected for the FeI blends) and the net equivalent width of Hα line, measured after the subtraction of the inactive photospheric template. (4 data files).

  10. Thermal Boundary Layer Effects on Line-of-Sight Tunable Diode Laser Absorption Spectroscopy (TDLAS) Gas Concentration Measurements.

    PubMed

    Qu, Zhechao; Werhahn, Olav; Ebert, Volker

    2018-06-01

    The effects of thermal boundary layers on tunable diode laser absorption spectroscopy (TDLAS) measurement results must be quantified when using the line-of-sight (LOS) TDLAS under conditions with spatial temperature gradient. In this paper, a new methodology based on spectral simulation is presented quantifying the LOS TDLAS measurement deviation under conditions with thermal boundary layers. The effects of different temperature gradients and thermal boundary layer thickness on spectral collisional widths and gas concentration measurements are quantified. A CO 2 TDLAS spectrometer, which has two gas cells to generate the spatial temperature gradients, was employed to validate the simulation results. The measured deviations and LOS averaged collisional widths are in very good agreement with the simulated results for conditions with different temperature gradients. We demonstrate quantification of thermal boundary layers' thickness with proposed method by exploitation of the LOS averaged the collisional width of the path-integrated spectrum.

  11. Air-photo based change in channel width in the Minnesota River basin: Modes of adjustment and implications for sediment budget

    NASA Astrophysics Data System (ADS)

    Wesley Lauer, J.; Echterling, Caitlyn; Lenhart, Christian; Belmont, Patrick; Rausch, Rachel

    2017-11-01

    The Minnesota River and major tributaries have experienced large increases in discharge over the past century. Aerial photograph-based measurements of channel width were made for the 1938-2015 period at 16 multibend subreaches by digitizing the area between vegetation lines and dividing by centerline length. Results show considerable increases in width for the main stem (0.62 ± 0.10%/y) and major tributaries (0.31 ± 0.08%/y) but are inconclusive for smaller channels (width < 25 m). Width change for a 146.5-km reach of the lower Minnesota River between 1938 and 2008 is similar to that from the subreach-scale analysis. Widening was associated with lateral centerline movement and temporal change in at-a-station hydraulic geometry for water surface width, indicating that widening is associated with cross-sectional change and not simply upward movement of the vegetation line. Digital elevation model analysis and regional hydraulic geometry show that the main stem and larger tributaries account for the vast majority ( 85%) of bankfull channel volume. High-order channels are thus disproportionately responsible for sediment production through cross section enlargement, although floodplains or off-channel water bodies adjacent to these channels likely represent important sediment sinks. Because channel enlargement can play an important role in sediment production, it should be considered in sediment reduction strategies in the Minnesota River basin and carefully evaluated in other watersheds undergoing long-term increases in discharge.

  12. Ab initio non-adiabatic study of the 4pσ B'' 1Σ+u state of H2

    NASA Astrophysics Data System (ADS)

    Glass-Maujean, M.; Schmoranzer, H.

    2018-05-01

    Fully ab initio non-adiabatic multichannel quantum defect calculations of the 4pσ B'' 1∑u+ energy levels, line intensities and widths, based on the latest quantum-chemical clamped-nuclei calculations of Wolniewicz and collaborators are presented for H2. The B″ state corresponds to the inner well of the ? state. The B'' v ≥ 1 levels are rapidly predissociated through vibrational coupling with the 3pσ B' 1Σ+u continuum so that coupled-equation calculations become unstable. Multichannel quantum defect theory, on the other hand, is demonstrated to be particularly suited to this situation. Experimental data as level energies, line intensities and dissociation widths were revisited and corrected. Reinvestigating previously published spectra, several new lines were assigned.

  13. Analysis of the 0.511 MeV radiation at the OSO-7 satellite. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Dunphy, P. P.

    1974-01-01

    Observations of the 0.511 MeV positron annihilation, gamma ray on the OSO-7 satellite are presented. Variables which affect the counting rate are discussed. An upper limit flux of .0076 photons/sq cm/sec is obtained for the quiet sun and a positive solar flux of .063(+ or - .0002) photons/sq cm/sec is obtained for the 3B flare of 4 August 1972. The width of this annihilation line gives an upper limit temperature for the annihilation region of approximately 6 million K. An analysis of the line width and position also shows that the contribution to the line from positronium annihilation is less than 100% at the 99% confidence level. An upper limit is also found for an isotropic cosmic flux.

  14. Erratum: ``CO Line Width Differences in Early Universe Molecular Emission-Line Galaxies: Submillimeter Galaxies versus QSO Hosts'' (AJ, 131, 2763 [2006])

    NASA Astrophysics Data System (ADS)

    Carilli, C. L.; Wang, Ran

    2006-11-01

    It has been pointed out to us that in three dimensions the mean angle of randomly oriented disks with respect to the sky plane is <θ>=30deg, and not the 45° assumed in the original paper. This lower angle for the (assumed) random distribution of submillimeter galaxies, coupled with the factor of 2.3 lower mean CO line width for high-z, far-IR-luminous QSO host galaxies relative to the submillimeter galaxies, implies a mean angle with respect to the sky plane for the QSO host galaxies of <θ>QSO=13deg, as opposed to the 18° quoted in the original paper. We thank Pat Hall for bringing this to our attention.

  15. 79/81Br nuclear quadrupole resonance spectroscopic characterization of halogen bonds in supramolecular assemblies.

    PubMed

    Cerreia Vioglio, P; Szell, P M J; Chierotti, M R; Gobetto, R; Bryce, D L

    2018-05-28

    Despite the applicability of solid-state NMR to study the halogen bond, the direct NMR detection of 79/81 Br covalently bonded to carbon remains impractical due to extremely large spectral widths, even at ultra-high magnetic fields. In contrast, nuclear quadrupole resonance (NQR) offers comparatively sharp resonances. Here, we demonstrate the abilities of 79/81 Br NQR to characterize the electronic changes in the C-Br···N halogen bonding motifs found in supramolecular assemblies constructed from 1,4-dibromotetrafluorobenzene and nitrogen-containing heterocycles. An increase in the bromine quadrupolar coupling constant is observed, which correlates linearly with the halogen bond distance ( d Br···N ). Notably, 79/81 Br NQR is able to distinguish between two symmetry-independent halogen bonds in the same crystal structure. This approach offers a rapid and reliable indication for the occurrence of a halogen bond, with experimental times limited only by the observation of 79/81 Br NQR resonances.

  16. Proton-Based Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy.

    PubMed

    Zhang, Rongchun; Mroue, Kamal H; Ramamoorthy, Ayyalusamy

    2017-04-18

    Protons are vastly abundant in a wide range of exciting macromolecules and thus can be a powerful probe to investigate the structure and dynamics at atomic resolution using solid-state NMR (ssNMR) spectroscopy. Unfortunately, the high signal sensitivity, afforded by the high natural-abundance and high gyromagnetic ratio of protons, is greatly compromised by severe line broadening due to the very strong 1 H- 1 H dipolar couplings. As a result, protons are rarely used, in spite of the desperate need for enhancing the sensitivity of ssNMR to study a variety of systems that are not amenable for high resolution investigation using other techniques including X-ray crystallography, cryo-electron microscopy, and solution NMR spectroscopy. Thanks to the remarkable improvement in proton spectral resolution afforded by the significant advances in magic-angle-spinning (MAS) probe technology, 1 H ssNMR spectroscopy has recently attracted considerable attention in the structural and dynamics studies of various molecular systems. However, it still remains a challenge to obtain narrow 1 H spectral lines, especially from proteins, without resorting to deuteration. In this Account, we review recent proton-based ssNMR strategies that have been developed in our laboratory to further improve proton spectral resolution without resorting to chemical deuteration for the purposes of gaining atomistic-level insights into molecular structures of various crystalline solid systems, using small molecules and peptides as illustrative examples. The proton spectral resolution enhancement afforded by the ultrafast MAS frequencies up to 120 kHz is initially discussed, followed by a description of an ensemble of multidimensional NMR pulse sequences, all based on proton detection, that have been developed to obtain in-depth information from dipolar couplings and chemical shift anisotropy (CSA). Simple single channel multidimensional proton NMR experiments could be performed to probe the proximity of protons for structure determination using 1 H- 1 H dipolar couplings and to evaluate the changes in chemical environments as well as the relative orientation to the external magnetic field using proton CSA. Due to the boost in signal sensitivity enabled by proton detection under ultrafast MAS, by virtue of high proton natural abundance and gyromagnetic ratio, proton-detected multidimensional experiments involving low-γ nuclei can now be accomplished within a reasonable time, while the higher dimension also offers additional resolution enhancement. In addition, the application of proton-based ssNMR spectroscopy under ultrafast MAS in various challenging and crystalline systems is also presented. Finally, we briefly discuss the limitations and challenges pertaining to proton-based ssNMR spectroscopy under ultrafast MAS conditions, such as the presence of high-order dipolar couplings, friction-induced sample heating, and limited sample volume. Although there are still a number of challenges that must be circumvented by further developments in radio frequency pulse sequences, MAS probe technology and approaches to prepare NMR-friendly samples, proton-based ssNMR has already gained much popularity in various research domains, especially in proteins where uniform or site-selective deuteration can be relatively easily achieved. In addition, implementation of the recently developed fast data acquisition approaches would also enable further developments in the design and applications of proton-based ultrafast MAS multidimensional ssNMR techniques.

  17. No evidence for Lyman α emission in spectroscopy of z > 7 candidate galaxies

    NASA Astrophysics Data System (ADS)

    Caruana, Joseph; Bunker, Andrew J.; Wilkins, Stephen M.; Stanway, Elizabeth R.; Lacy, Mark; Jarvis, Matt J.; Lorenzoni, Silvio; Hickey, Samantha

    2012-12-01

    We present Gemini/Gemini Near Infrared Spectrograph (GNIRS) spectroscopic observations of four z-band (z ≈ 7) dropout galaxies and Very Large Telescope (VLT)/XSHOOTER observations of one z-band dropout and three Y-band (z ≈ 8-9) dropout galaxies in the Hubble Ultra Deep Field, which were selected with Wide Field Camera 3 imaging on the Hubble Space Telescope. We find no evidence of Lyman α emission with a typical 5σ sensitivity of 5 × 10-18 erg cm-2 s-1, and use the upper limits on Lyman α flux and the broad-band magnitudes to constrain the rest-frame equivalent widths for this line emission. Accounting for incomplete spectral coverage, we survey 3.0 z-band dropouts and 2.9 Y-band dropouts to a Lyman α rest-frame equivalent width limit >120 Å (for an unresolved emission line); for an equivalent width limit of 50 Å the effective numbers of drop-outs surveyed fall to 1.2 z-band drop-outs and 1.5 Y-band drop-outs. A simple model where the fraction of high rest-frame equivalent width emitters follows the trend seen at z = 3-6.5 is inconsistent with our non-detections at z = 7-9 at the ≈1σ level for spectrally unresolved lines, which may indicate that a significant neutral H I fraction in the intergalactic medium suppresses the Lyman α line in z-drop and Y-drop galaxies at z > 7. Based on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere, Chile, as part of programme 086.A-0968(B).

  18. Pinning of the Contact Line during Evaporation on Heterogeneous Surfaces: Slowdown or Temporary Immobilization? Insights from a Nanoscale Study.

    PubMed

    Zhang, Jianguo; Müller-Plathe, Florian; Leroy, Frédéric

    2015-07-14

    The question of the effect of surface heterogeneities on the evaporation of liquid droplets from solid surfaces is addressed through nonequilibrium molecular dynamics simulations. The mechanism behind contact line pinning which is still unclear is discussed in detail on the nanoscale. Model systems with the Lennard-Jones interaction potential were employed to study the evaporation of nanometer-sized cylindrical droplets from a flat surface. The heterogeneity of the surface was modeled through alternating stripes of equal width but two chemical types. The first type leads to a contact angle of 67°, and the other leads to a contact angle of 115°. The stripe width was varied between 2 and 20 liquid-particle diameters. On the surface with the narrowest stripes, evaporation occurred at constant contact angle as if the surface was homogeneous, with a value of the contact angle as predicted by the regular Cassie-Baxter equation. When the width was increased, the contact angle oscillated during evaporation between two boundaries whose values depend on the stripe width. The evaporation behavior was thus found to be a direct signature of the typical size of the surface heterogeneity domains. The contact angle both at equilibrium and during evaporation could be predicted from a local Cassie-Baxter equation in which the surface composition within a distance of seven fluid-particle diameters around the contact line was considered, confirming the local nature of the interactions that drive the wetting behavior of droplets. More importantly, we propose a nanoscale explanation of pinning during evaporation. Pinning should be interpreted as a drastic slowdown of the contact line dynamics rather than a complete immobilization of it during a transition between two contact angle boundaries.

  19. ALMA Observations of a Quiescent Molecular Cloud in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Wong, Tony; Hughes, Annie; Tokuda, Kazuki; Indebetouw, Rémy; Bernard, Jean-Philippe; Onishi, Toshikazu; Wojciechowski, Evan; Bandurski, Jeffrey B.; Kawamura, Akiko; Roman-Duval, Julia; Cao, Yixian; Chen, C.-H. Rosie; Chu, You-hua; Cui, Chaoyue; Fukui, Yasuo; Montier, Ludovic; Muller, Erik; Ott, Juergen; Paradis, Deborah; Pineda, Jorge L.; Rosolowsky, Erik; Sewiło, Marta

    2017-12-01

    We present high-resolution (subparsec) observations of a giant molecular cloud in the nearest star-forming galaxy, the Large Magellanic Cloud. ALMA Band 6 observations trace the bulk of the molecular gas in 12CO(2-1) and the high column density regions in 13CO(2-1). Our target is a quiescent cloud (PGCC G282.98-32.40, which we refer to as the “Planck cold cloud” or PCC) in the southern outskirts of the galaxy where star formation activity is very low and largely confined to one location. We decompose the cloud into structures using a dendrogram and apply an identical analysis to matched-resolution cubes of the 30 Doradus molecular cloud (located near intense star formation) for comparison. Structures in the PCC exhibit roughly 10 times lower surface density and five times lower velocity dispersion than comparably sized structures in 30 Dor, underscoring the non-universality of molecular cloud properties. In both clouds, structures with relatively higher surface density lie closer to simple virial equilibrium, whereas lower surface-density structures tend to exhibit supervirial line widths. In the PCC, relatively high line widths are found in the vicinity of an infrared source whose properties are consistent with a luminous young stellar object. More generally, we find that the smallest resolved structures (“leaves”) of the dendrogram span close to the full range of line widths observed across all scales. As a result, while the bulk of the kinetic energy is found on the largest scales, the small-scale energetics tend to be dominated by only a few structures, leading to substantial scatter in observed size-line-width relationships.

  20. Solar off-limb line widths: Alfvén waves, ion-cyclotron waves, and preferential heating

    NASA Astrophysics Data System (ADS)

    Dolla, L.; Solomon, J.

    2008-05-01

    Context: Alfvén waves and ion-cyclotron absorption of high-frequency waves are frequently brought into models devoted to coronal heating and fast solar-wind acceleration. Signatures of ion-cyclotron resonance have already been observed in situ in the solar wind (HELIOS spacecrafts) and, recently, in the upper corona (UVCS/SOHO remote-sensing results). Aims: We propose a method to constrain both the Alfvén wave amplitude and the preferential heating induced by ion-cyclotron resonance, above a partially developed polar coronal hole observed with the SUMER/SOHO spectrometer. Methods: The instrumental stray light contribution is first substracted from the spectra. By supposing that the non-thermal velocity is related to the Alfvén wave amplitude, it is constrained through a density diagnostic and the gradient of the width of the Mg X 625 Å line. The temperatures of several coronal ions, as functions of the distance above the limb, are then determined by substracting the non-thermal component to the observed line widths. Results: The effect of stray light explains the apparent decrease with height in the width of several spectral lines, this decrease usually starting about 0.1-0.2 R_⊙ above the limb. This result rules out any direct evidence of damping of the Alfvén waves, often suggested by other authors. We also find that the ions with the smallest charge-to-mass ratios are the hottest ones at a fixed altitude and that they are subject to a stronger heating, as compared to the others, between 57´´ and 102´´ above the limb. This constitutes a serious clue to ion-cyclotron preferential heating.

  1. Part-1: Design, synthesis and biological evaluation of novel bromo-pyrimidine analogs as tyrosine kinase inhibitors.

    PubMed

    Munikrishnappa, Chandrashekar Suradhenupura; Puranik, Sangamesh B; Kumar, G V Suresh; Prasad, Y Rajendra

    2016-08-25

    A novel series of 5-bromo-pyrimidine derivatives (5a-l, 6a-h, 9a-m and 10a-d) were synthesized through multi step reactions starting from 5-bromo-2,4-dichloro pyrimidine. The newly synthesized compounds were characterized using elemental analysis and spectral data (IR, (1)H NMR, (13)C NMR and LC-MS) analysis. The titled compounds were evaluated for their in vitro cytotoxic activity against tumor cell lines panel consisted of HCT116 (human colon cancer cell line), A549 (human lung cancer cell line), K562 (human chronic myeloid leukemia cell line), U937 (human acute monocytic myeloid leukemia cell line), and L02 (human normal cell line) by using MTT assay Mosmann's method. As most of the compounds are highly potent against K562 cells, all the synthesized compounds were evaluated for Bcr/Abl tyrosine kinase inhibitory activity by using well-established ADP-Glo assay method. Dasatinib was utilized as positive control to validate in both biological evaluations. The biological activity revealed that the compounds 5c, 5e, 6g, 9e, 9f and 10c were potent Bcr/Abl kinase inhibitors among the titled compounds. Thus these compounds may be promising lead compounds to be developed as an alternative for current Dasatinib therapy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Area Judgment from Width and Height Information: The Case of the Rectangle.

    ERIC Educational Resources Information Center

    Mullet, Etienne; Rulence-Paques, Patricia

    1998-01-01

    Adults, 9-year olds, and 5-year olds were shown horizontal and vertical lines of various sizes, presented on same wall or different walls, and asked to estimate corresponding area. Responses indicated that when width and height were separated, children gave same weight to both dimensions while adults gave greater weight to larger dimensions; when…

  3. Structural characterization of constituents with molecular diversity in fractions from Lysidice brevicalyx by liquid chromatography/diode-array detection/electrospray ionization tandem mass spectrometry and liquid chromatography/nuclear magnetic resonance.

    PubMed

    Qu, Jing; Hu, You-cai; Li, Jian-bei; Wang, Ying-hong; Zhang, Jin-lan; Abliz, Zeper; Yu, Shi-shan; Liu, Yun-bao

    2008-01-01

    A combination of electrospray ionization tandem mass spectrometry with high-performance liquid chromatography (HPLC/ESI-MSn), and hyphenation of liquid chromatography to nuclear magnetic resonance spectroscopy (HPLC/NMR), have been extensively utilized for on-line analysis of natural products, analyzing metabolite and drug impurity. In our last paper, we reported an on-line analytical method for structural identification of trace alkaloids in the same class. However, the structural types of the constituents in plants were various, such as flavanoids, terpenoids and steroids. It is important to establish an effective analytical method for on-line structural identification of constituents with molecular diversity in extracts of plants. So, in the present study, the fragmentation patterns of some isolated stilbenes, phloroglucinols and flavanoids from Lysidice rhodostegia were investigated by ESI-MSn. Their fragmentation rules and UV characteristics are summarized, and the relationship between the spectral characteristics, rules and the structures is described. According to the fragmentation rules, NMR and UV spectral characteristics, 24 constituents of different types in the fractions from L. brevicalyx of the same genus were structurally characterized on the basis of HPLC/HRMS, HPLC-UV/ESI-MSn, HPLC/1H NMR and HPLC/1H-1H COSY rapidly. Of these, six (10, 13, 14, 16, 17 and 23) are new compounds and all of them are reported from L. brevicalyx for the first time. The aim is to develop an effective analytical method for on-line structural identification of natural products with molecular diversity in plants, and to guide the rapid and direct isolation of novel compounds by chemical screening.

  4. Comparative theoretical and experimental study on novel tri-quinoline system and its anticancer studies

    NASA Astrophysics Data System (ADS)

    Gayathri, Kasirajan; Radhika, Ramachandran; Shankar, Ramasamy; Malathi, Mahalingam; Savithiri, Krishnaswamy; Sparkes, Hazel A.; Howard, Judith A. K.; Mohan, Palathurai Subramaniam

    2017-04-01

    A novel compound 2-chloro-3,6-bis-(quinolin-8-yloxymethyl)-quinoline 3 bearing a tri-quinoline moiety has been synthesized from 2-chloro-3,6-dimethyl quinoline 1 and 8-hydroxy quinoline 2 using dry acetone and K2CO3 as a base. 3 has been characterized by using FT-IR, FT-Raman, UV-Vis, 1H NMR, 13C NMR spectra and single crystal X-ray diffraction methods. We have also made a combined experimental and theoretical study on the molecular structure, vibrational spectra, NMR, FT-IR, FT-Raman and UV-Vis spectra of 2-chloro-3,6-bis-(quinolin-8-yloxymethyl)-quinoline. The theoretical studies of the title compound have been evaluated by using density functional theory calculations using B3LYP/6-31+G(d,p) and M06-2X/6-31+G(d,p) level of theories. The calculated theoretical values were found to be in good agreement with the experimental findings. The single crystal structure 3 crystallized in the orthorhombic space group Pna21. The compound 3 exhibits higher cytotoxicity in human cervical cancer cell lines (HeLa) than human breast cancer cell lines (MCF7).

  5. NMR studies of the helical antiferromagnetic compound EuCo 2P 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higa, N.; Ding, Q. -P.; Johnston, D. C.

    In EuCo 2P 2, 4 f electron spins of Eu 2+ ions order antiferromagnetically below a Neel temperature T N = 66.5K. The magnetic structure below T N was reported to be helical with the helix axis along the c-axis from the neutron diffraction study. We report the results of 153Eu, 59Co and 31P nuclear magnetic resonance (NMR) measurements on EuCo 2P 2 using a single crystal and a powdered sample. In the antiferromagnetic (AFM) state, we succeeded in observing 153Eu, 59Co and 31P NMR spectra in zero magnetic field. The sharp 153Eu zero field NMR (ZF NMR) lines indicatemore » homogeneous Eu ordered moment. The 59Co and 31P ZF NMR spectra showed an asymmetric spectral shape, indicating a distribution of the internal magnetic induction at each nuclear position. The AFM propagation vector k characterizing the helical AFM state can be determined from the internal magnetic induction at Co site. In conclusion, we have determined the model-independent value of the AFM propagation vector k distributed from (0, 0, 0.86)2π/c to (0, 0, 0.73)2π/c, where c is the lattice parameter.« less

  6. NMR studies of the helical antiferromagnetic compound EuCo 2P 2

    DOE PAGES

    Higa, N.; Ding, Q. -P.; Johnston, D. C.; ...

    2017-09-18

    In EuCo 2P 2, 4 f electron spins of Eu 2+ ions order antiferromagnetically below a Neel temperature T N = 66.5K. The magnetic structure below T N was reported to be helical with the helix axis along the c-axis from the neutron diffraction study. We report the results of 153Eu, 59Co and 31P nuclear magnetic resonance (NMR) measurements on EuCo 2P 2 using a single crystal and a powdered sample. In the antiferromagnetic (AFM) state, we succeeded in observing 153Eu, 59Co and 31P NMR spectra in zero magnetic field. The sharp 153Eu zero field NMR (ZF NMR) lines indicatemore » homogeneous Eu ordered moment. The 59Co and 31P ZF NMR spectra showed an asymmetric spectral shape, indicating a distribution of the internal magnetic induction at each nuclear position. The AFM propagation vector k characterizing the helical AFM state can be determined from the internal magnetic induction at Co site. In conclusion, we have determined the model-independent value of the AFM propagation vector k distributed from (0, 0, 0.86)2π/c to (0, 0, 0.73)2π/c, where c is the lattice parameter.« less

  7. Hydrolyzable tannins, the active constituents of three Greek Cytinus taxa against several tumor cell lines.

    PubMed

    Magiatis, P; Pratsinis, H; Kalpoutzakis, E; Konstantinidou, A; Davaris, P; Skaltsounis, A L

    2001-06-01

    Hydrolyzable tannins were found to be the active cytotoxic constituents of three Greek Cytinus taxa: Cytinus ruber, Cytinus hypocistis subsp. hypocistis and Cytinus hypocistis subsp. orientalis. The cytotoxic activity was evaluated against a broad spectrum of cancer cell lines. The structure of the active compounds was investigated with NMR and electrospray-MS/MS techniques.

  8. Reduced flavin: NMR investigation of N5-H exchange mechanism, estimation of ionisation constants and assessment of properties as biological catalyst.

    PubMed

    Macheroux, Peter; Ghisla, Sandro; Sanner, Christoph; Rüterjans, Heinz; Müller, Franz

    2005-11-25

    The flavin in its FMN and FAD forms is a versatile cofactor that is involved in catalysis of most disparate types of biological reactions. These include redox reactions such as dehydrogenations, activation of dioxygen, electron transfer, bioluminescence, blue light reception, photobiochemistry (as in photolyases), redox signaling etc. Recently, hitherto unrecognized types of biological reactions have been uncovered that do not involve redox shuffles, and might involve the reduced form of the flavin as a catalyst. The present work addresses properties of reduced flavin relevant in this context. N(5)-H exchange reactions of the flavin reduced form and its pH dependence were studied using the 15N-NMR-signals of 15N-enriched, reduced flavin in the pH range from 5 to 12. The chemical shifts of the N(3) and N(5) resonances are not affected to a relevant extent in this pH range. This contrasts with the multiplicity of the N(5)-resonance, which strongly depends on pH. It is a doublet between pH 8.45 and 10.25 that coalesces into a singlet at lower and higher pH values. From the line width of the 15N(5) signal the pH-dependent rate of hydrogen exchange was deduced. The multiplicity of the 15N(5) signal and the proton exchange rates are little dependent on the buffer system used. The exchange rates allow an estimation of the pKa value of N(5)-H deprotonation in reduced flavin to be >or= 20. This value imposes specific constraints for mechanisms of flavoprotein catalysis based on this process. On the other hand the pK asymptotically equal to 4 for N(5)-H protonation (to form N(5)+-H2) would be consistent with a role of N(5)-H as a base.

  9. Synthesis and Evaluation of Cytotoxic Activity of Some Pyrroles and Fused Pyrroles.

    PubMed

    Fatahala, Samar S; Mohamed, Mosaad S; Youns, Mahmoud; Abd-El Hameed, Rania H

    2017-01-01

    Pyrrole derivatives represent a very interesting class as biologically active compounds. The objective of our study was to investigate the cytotoxic and apoptotic effects and antioxidant activity of the newly synthesized pyrrole derivatives. A series of novel pyrroles and fused pyrroles (tetrahydroindoles, pyrrolopyrimidines, pyrrolopyridines and pyrrolotriazines) were synthesized and characterized using IR, 1H NMR, 13C NMR, MS and elemental analysis techniques. The antiproliferative activity of our synthesized compounds and their modulatory effect apoptotic pathway were investigated. The effect on cellular proliferation and viability was monitored by resazurin assay. Apoptotic effect was evaluated by caspase glo 3/7 assay. Synthesized compounds are then tested for their anticancer activities against three different cell lines representing three different tumor types, namely; the HepG-2 (Human hepatocellular liver carcinoma cell line), the human MCF-7 cell line (breast cancer) and the pancreatic resistant Panc-1 cells. Compounds Ia-e, IIe, and IXc, d showed a promising anti-cancer activity on all tested cell lines. Antioxidant and wound healing invasion assays were examined for promising anticancer candidate compounds. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Optimization of a Focusable and Rotatable Shear-Wave Periodic Permanent Magnet Electromagnetic Acoustic Transducers for Plates Inspection

    PubMed Central

    Qiu, Gongzhe

    2017-01-01

    Due to the symmetry of conventional periodic-permanent-magnet electromagnetic acoustic transducers (PPM EMATs), two shear (SH) waves can be generated and propagated simultaneously in opposite directions, which makes the signal recognition and interpretation complicatedly. Thus, this work presents a new SH wave PPM EMAT design, rotating the parallel line sources to realize the wave beam focusing in a single-direction. The theoretical model of distributed line sources was deduced firstly, and the effects of some parameters, such as the inner coil width, adjacent line sources spacing and the angle between parallel line sources, on SH wave focusing and directivity were studied mainly with the help of 3D FEM. Employing the proposed PPM EMATs, some experiments are carried out to verify the reliability of FEM simulation. The results indicate that rotating the parallel line sources can strength the wave on the closing side of line sources, decreasing the inner coil width and the adjacent line sources spacing can improve the amplitude and directivity of signals excited by transducers. Compared with traditional PPM EMATs, both the capacity of unidirectional excitation and directivity of the proposed PPM EMATs are improved significantly. PMID:29186790

  11. H-α profile of M-type red giant stars by using astronomical spectroscopy technique

    NASA Astrophysics Data System (ADS)

    Saadon, Mohd Hafiz Mohd; Zainuddin, Mohd Zambri

    2013-05-01

    The technique of spectroscopy in astronomy is a research or a method which uses spectrum lines emitted by a body that emit electromagnetic ray. These lines will be used to determine the characteristics of any celestial body and one of the most dominant lines is H-α line. The research has been using 20RC Carbon Truss Ritchey-Chrétien telescope, SBIG Self Guided Spectrograph (SGS) with high resolution camera Couple-Charged Device CCD ST-7E. Since H-α line is to be found at 6562.817 Å, neon lamp is being used as calibration because of the obvious lines of this element is in the higher range of visible wavelength, from 5800 to 7500 Å. The software: TheSky and CCDSoft are being used for collecting and analyzing observed data while IRAF which being installed on LINUX interface are used to process the collected data. The data were processed to measure the full width half maximum (FHWM) and equivalent width (EW) for H-α line for each star. Seven M-type red giants that have been chosen are HD 80493, HD 148478, HD 39801, HD 112300, HD 101153, HD 156014 and HD 148783.

  12. Optimization of a Focusable and Rotatable Shear-Wave Periodic Permanent Magnet Electromagnetic Acoustic Transducers for Plates Inspection.

    PubMed

    Song, Xiaochun; Qiu, Gongzhe

    2017-11-24

    Due to the symmetry of conventional periodic-permanent-magnet electromagnetic acoustic transducers (PPM EMATs), two shear (SH) waves can be generated and propagated simultaneously in opposite directions, which makes the signal recognition and interpretation complicatedly. Thus, this work presents a new SH wave PPM EMAT design, rotating the parallel line sources to realize the wave beam focusing in a single-direction. The theoretical model of distributed line sources was deduced firstly, and the effects of some parameters, such as the inner coil width, adjacent line sources spacing and the angle between parallel line sources, on SH wave focusing and directivity were studied mainly with the help of 3D FEM. Employing the proposed PPM EMATs, some experiments are carried out to verify the reliability of FEM simulation. The results indicate that rotating the parallel line sources can strength the wave on the closing side of line sources, decreasing the inner coil width and the adjacent line sources spacing can improve the amplitude and directivity of signals excited by transducers. Compared with traditional PPM EMATs, both the capacity of unidirectional excitation and directivity of the proposed PPM EMATs are improved significantly.

  13. VizieR Online Data Catalog: RPA Southern Pilot Search of 107 Stars (Hansen+, 2018)

    NASA Astrophysics Data System (ADS)

    Hansen, T. T.; Holmbeck, E. M.; Beers, T. C.; Placco, V. M.; Roederer, I. U.; Frebel, A.; Sakari, C. M.; Simon, J. D.; Thompson, I. B.

    2018-03-01

    Complete equivalent width measurements of FeI and FeII lines for all stars in our sample used to derive spectroscopic stellar parameters. Also included are the derived abundances for each line. (2 data files).

  14. On the Tuning of High-Resolution NMR Probes

    PubMed Central

    Pöschko, Maria Theresia; Schlagnitweit, Judith; Huber, Gaspard; Nausner, Martin; Horničáková, Michaela; Desvaux, Hervé; Müller, Norbert

    2014-01-01

    Three optimum conditions for the tuning of NMR probes are compared: the conventional tuning optimum, which is based on radio-frequency pulse efficiency, the spin noise tuning optimum based on the line shape of the spin noise signal, and the newly introduced frequency shift tuning optimum, which minimizes the frequency pushing effect on strong signals. The latter results if the radiation damping feedback field is not in perfect quadrature to the precessing magnetization. According to the conventional RLC (resistor–inductor–capacitor) resonant circuit model, the optima should be identical, but significant deviations are found experimentally at low temperatures, in particular on cryogenically cooled probes. The existence of different optima with respect to frequency pushing and spin noise line shape has important consequences on the nonlinearity of spin dynamics at high polarization levels and the implementation of experiments on cold probes. PMID:25210000

  15. Cytotoxic withanolides from Physalis angulata L.

    PubMed

    He, Qing-Ping; Ma, Lei; Luo, Jie-Ying; He, Fu-Yuan; Lou, Li-Guang; Hu, Li-Hong

    2007-03-01

    Four new withanolides, physagulins L-O (1-4), were isolated from the MeOH extract of the aerial parts of Physalis angulata L. (Solanaceae), together with seven known withanolides, compounds 5-11. Their structures were determined by spectroscopic techniques, including 1H-, 13C-NMR (DEPT), and 2D-NMR (HMBC, HMQC, 1H,1H-COSY, NOESY) experiments, as well as by HR-MS. All eleven compounds were tested for their antiproliferative activities towards human colorectal-carcinoma (HCT-116) and human non-small-cell lung-cancer (NCI-H460) cells. Compound 5 exhibited the highest anticancer activity against the HCT-116 cell line, with an IC50 value of 1.64+/-0.06 microM. Compound 9 exhibited the highest cytotoxicity towards the NCI-H460 cell line, with an IC50 value of 0.43+/-0.02 microM.

  16. NMR-driven identification of anti-amyloidogenic compounds in green and roasted coffee extracts.

    PubMed

    Ciaramelli, Carlotta; Palmioli, Alessandro; De Luigi, Ada; Colombo, Laura; Sala, Gessica; Riva, Chiara; Zoia, Chiara Paola; Salmona, Mario; Airoldi, Cristina

    2018-06-30

    To identify food and beverages that provide the regular intake of natural compounds capable of interfering with toxic amyloidogenic aggregates, we developed an experimental protocol that combines NMR spectroscopy and atomic force microscopy, in vitro biochemical and cell assays to detect anti-Aβ molecules in natural edible matrices. We applied this approach to investigate the potential anti-amyloidogenic properties of coffee and its molecular constituents. Our data showed that green and roasted coffee extracts and their main components, 5-O-caffeoylquinic acid and melanoidins, can hinder Aβ on-pathway aggregation and toxicity in a human neuroblastoma SH-SY5Y cell line. Coffee extracts and melanoidins also counteract hydrogen peroxide- and rotenone-induced cytotoxicity and modulate some autophagic pathways in the same cell line. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Second-order quadrupolar line shapes under molecular dynamics: An additional transition in the extremely fast regime.

    PubMed

    Hung, Ivan; Wu, Gang; Gan, Zhehong

    NMR spectroscopy is a powerful tool for probing molecular dynamics. For the classic case of two-site exchange, NMR spectra go through the transition from exchange broadening through coalescence and then motional narrowing as the exchange rate increases passing through the difference between the resonance frequencies of the two sites. For central-transition spectra of half-integer quadrupolar nuclei in solids, line shape change due to molecular dynamics occurs in two stages. The first stage occurs when the exchange rate is comparable to the second-order quadrupolar interaction. The second spectral transition comes at a faster exchange rate which approaches the Larmor frequency and generally reduces the isotropic quadrupolar shift. Such a two-stage transition phenomenon is unique to half-integer quadrupolar nuclei. A quantum mechanical formalism in full Liouville space is presented to explain the physical origin of the two-stage phenomenon and for use in spectral simulations. Variable-temperature 17 O NMR of solid NaNO 3 in which the NO 3 - ion undergoes 3-fold jumps confirms the two-stage transition process. The spectra of NaNO 3 acquired in the temperature range of 173-413K agree well with simulations using the quantum mechanical formalism. The rate constants for the 3-fold NO 3 - ion jumps span eight orders of magnitude (10 2 -10 10 s -1 ) covering both transitions of the dynamic 17 O line shape. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Optical pumping and xenon NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raftery, M. Daniel

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping 129Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to highmore » magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the 131Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.« less

  19. Optical pumping and xenon NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping [sup 129]Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas tomore » high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the [sup 131]Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.« less

  20. Study on profile measurement of extruding tire tread by laser

    NASA Astrophysics Data System (ADS)

    Wang, LiangCai; Zhang, Wanping; Zhu, Weihu

    1996-10-01

    This paper presents a new 2D measuring system-profile measurement of extruding tire tread by laser. It includes the thickness measurement of extruding tire tread by laser and the width measurement of extruding tire tread using Moire Fringe. The system has been applied to process line of extruding tire tread. Two measuring results have been obtained. One is a standard profile picture of extruding tire tread including seven measuring values. Another one is a series of thickness and width values. When the scanning speed < 100mm/sec and total width < 800mm. The measuring errors of width < +/- 0.5mm. While the thickness range is < 40mm. The measuring errors of thickness < +/- 0.1mm.

  1. Label-free quantitative 1H NMR spectroscopy to study low-affinity ligand–protein interactions in solution: A contribution to the mechanism of polyphenol-mediated astringency

    PubMed Central

    Delius, Judith; Frank, Oliver

    2017-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is well-established in assessing the binding affinity between low molecular weight ligands and proteins. However, conventional NMR-based binding assays are often limited to small proteins of high purity and may require elaborate isotopic labeling of one of the potential binding partners. As protein–polyphenol complexation is assumed to be a key event in polyphenol-mediated oral astringency, here we introduce a label-free, ligand-focused 1H NMR titration assay to estimate binding affinities and characterize soluble complex formation between proteins and low molecular weight polyphenols. The method makes use of the effects of NMR line broadening due to protein–ligand interactions and quantitation of the non-bound ligand at varying protein concentrations by quantitative 1H NMR spectroscopy (qHNMR) using electronic reference to access in vivo concentration (ERETIC 2). This technique is applied to assess the interaction kinetics of selected astringent tasting polyphenols and purified mucin, a major lubricating glycoprotein of human saliva, as well as human whole saliva. The protein affinity values (BC50) obtained are subsequently correlated with the intrinsic mouth-puckering, astringent oral sensation imparted by these compounds. The quantitative NMR method is further exploited to study the effect of carboxymethyl cellulose, a candidate “anti-astringent” protein binding antagonist, on the polyphenol–protein interaction. Consequently, the NMR approach presented here proves to be a versatile tool to study the interactions between proteins and low-affinity ligands in solution and may find promising applications in the discovery of bioactives. PMID:28886151

  2. Dynamic modeling of GMA fillet welding using cross-correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hellinga, M.; Huissoon, J.; Kerr, H.

    1996-12-31

    The feasibility of employing the cross-correlation system identification technique as a dynamic modeling method for the GMAW process was examined. This approach has the advantages of modeling speed, the ability to operate in low signal to noise environments, the ease of digital implementation, and the lack of model order assumption, making it ideal in a welding application. The width of the weld pool was the parameter investigated as a function of torch travel speed. Both on-line and off-line width measurements were used to identify the impulse response. Experimental results are presented and comparisons made with both step and ramp response.

  3. Correction Factor for Gaussian Deconvolution of Optically Thick Linewidths in Homogeneous Sources

    NASA Technical Reports Server (NTRS)

    Kastner, S. O.; Bhatia, A. K.

    1999-01-01

    Profiles of optically thick, non-Gaussian emission line profiles convoluted with Gaussian instrumental profiles are constructed, and are deconvoluted on the usual Gaussian basis to examine the departure from accuracy thereby caused in "measured" linewidths. It is found that "measured" linewidths underestimate the true linewidths of optically thick lines, by a factor which depends on the resolution factor r congruent to Doppler width/instrumental width and on the optical thickness tau(sub 0). An approximating expression is obtained for this factor, applicable in the range of at least 0 <= tau(sub 0) <= 10, which can provide estimates of the true linewidth and optical thickness.

  4. NbF{sub 5} and TaF{sub 5}: Assignment of {sup 19}F NMR resonances and chemical bond analysis from GIPAW calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswal, Mamata, E-mail: Mamata.Biswal-Susanta_Kumar_Nayak.Etu@univ-lemans.fr; Body, Monique, E-mail: monique.body@univ-lemans.fr; Legein, Christophe, E-mail: christophe.legein@univ-lemans.fr

    2013-11-15

    The {sup 19}F isotropic chemical shifts (δ{sub iso}) of two isomorphic compounds, NbF{sub 5} and TaF{sub 5}, which involve six nonequivalent fluorine sites, have been experimentally determined from the reconstruction of 1D {sup 19}F MAS NMR spectra. In parallel, the corresponding {sup 19}F chemical shielding tensors have been calculated using the GIPAW method for both experimental and DFT-optimized structures. Furthermore, the [M{sub 4}F{sub 20}] units of NbF{sub 5} and TaF{sub 5} being held together by van der Waals interactions, the relevance of Grimme corrections to the DFT optimization processes has been evaluated. However, the semi-empirical dispersion correction term introduced bymore » such a method does not show any significant improvement. Nonetheless, a complete and convincing assignment of the {sup 19}F NMR lines of NbF{sub 5} and TaF{sub 5} is obtained, ensured by the linearity between experimental {sup 19}F δ{sub iso} values and calculated {sup 19}F isotropic chemical shielding σ{sub iso} values. The effects of the geometry optimizations have been carefully analyzed, confirming among other matters, the inaccuracy of the experimental structure of NbF{sub 5}. The relationships between the fluorine chemical shifts, the nature of the fluorine atoms (bridging or terminal), the position of the terminal ones (opposite or perpendicular to the bridging ones), the fluorine charges, the ionicity and the length of the M–F bonds have been established. Additionally, for three of the {sup 19}F NMR lines of NbF{sub 5}, distorted multiplets, arising from {sup 1}J-coupling and residual dipolar coupling between the {sup 19}F and {sup 93}Nb nuclei, were simulated yielding to values of {sup 93}Nb–{sup 19}F {sup 1}J-coupling for the corresponding fluorine sites. - Graphical abstract: The complete assignment of the {sup 19}F NMR lines of NbF{sub 5} and TaF{sub 5} allow establishing relationships between the {sup 19}F δ{sub iso} values, the nature of the fluorine atoms (bridging or terminal), the position of the terminal ones (opposite or perpendicular to the bridging ones), the fluorine charges, the ionicity and the length of the M–F bonds. Display Omitted - Highlights: • The {sup 19}F δ{sub iso} values of NbF{sub 5} and TaF{sub 5} have been determined. • The {sup 19}F chemical shielding tensors have been calculated using the GIPAW method. • A confident assignment of the {sup 19}F NMR lines of NbF{sub 5} and TaF{sub 5} is obtained. • The relationships between the {sup 19}Fδ{sub iso} values and the M–F bonds features are established.« less

  5. Characterization of the frequency stability of an optical frequency standard at 1.39 µm based upon noise-immune cavity-enhanced optical heterodyne molecular spectroscopy.

    PubMed

    Dinesan, H; Fasci, E; D'Addio, A; Castrillo, A; Gianfrani, L

    2015-01-26

    Frequency fluctuations of an optical frequency standard at 1.39 µm have been measured by means of a highly-sensitive optical frequency discriminator based on the fringe-side transmission of a high finesse optical resonator. Built on a Zerodur spacer, the optical resonator exhibits a finesse of 5500 and a cavity-mode width of about 120 kHz. The optical frequency standard consists of an extended-cavity diode laser that is tightly stabilized against the center of a sub-Doppler H(2) (18)O line, this latter being detected by means of noise-immune cavity-enhanced optical heterodyne molecular spectroscopy. The emission linewidth has been carefully determined from the frequency-noise power spectral density by using a rather simple approximation, known as β-line approach, as well as the exact method based on the autocorrelation function of the laser light field. It turns out that the linewidth of the optical frequency standard amounts to about 7 kHz (full width at half maximum) for an observation time of 1 ms. Compared to the free-running laser, the measured width corresponds to a line narrowing by a factor of ~220.

  6. What is Driving the H I Velocity Dispersion?

    NASA Astrophysics Data System (ADS)

    Tamburro, D.; Rix, H.-W.; Leroy, A. K.; Mac Low, M.-M.; Walter, F.; Kennicutt, R. C.; Brinks, E.; de Blok, W. J. G.

    2009-05-01

    We explore what dominant physical mechanism sets the kinetic energy contained in neutral, atomic (H I) gas. Both supernova (SN) explosions and magnetorotational instability (MRI) have been proposed to drive turbulence in gas disks and we compare the H I line widths predicted from turbulence driven by these mechanisms to direct observations in 11 disk galaxies. We use high-quality maps of the H I mass surface density and line width, obtained by The H I Nearby Galaxy Survey. We show that all sample galaxies exhibit a systematic radial decline in the H I line width, which appears to be a generic property of H I disks and also implies a radial decline in kinetic energy density of H I. At a galactocentric radius of r 25—often comparable to the extent of significant star formation—there is a characteristic value of the H I velocity dispersion of 10 ± 2 km s-1. Inside this radius, galaxies show H I line widths well above the thermal value (corresponding to ~8 km s-1) expected from a warm H I component, implying that turbulence drivers must be responsible for maintaining this line width. Therefore, we compare maps of H I kinetic energy to maps of the star formation rate (SFR)—a proxy for the SN rate—and to predictions for energy generated by MRI. We find a positive correlation between kinetic energy of H I and SFR; this correlation also holds at fixed Σ_{H I}, as expected if SNe were driving turbulence. For a given turbulence dissipation timescale, we can estimate the energy input required to maintain the observed kinetic energy. The SN rate implied by the observed recent SFR is sufficient to maintain the observed velocity dispersion, if the SN feedback efficiency is at least epsilonSN sime 0.1 × (107 yr/τ D ), assuming τ D sime 107 yr for the turbulence dissipation timescale. Beyond r 25, this efficiency would have to increase to unrealistic values, epsilon gsim 1, suggesting that mechanical energy input from young stellar populations does not supply most kinetic energy in outer disks. On the other hand, both thermal broadening and turbulence driven by MRI can plausibly produce the velocity dispersions and kinetic energies that we observe in this regime (gsimr 25).

  7. Dynamic Nuclear Polarization-Enhanced Biomolecular NMR Spectroscopy at High Magnetic Field with Fast Magic-Angle Spinning.

    PubMed

    Jaudzems, Kristaps; Bertarello, Andrea; Chaudhari, Sachin R; Pica, Andrea; Cala-De Paepe, Diane; Barbet-Massin, Emeline; Pell, Andrew J; Akopjana, Inara; Kotelovica, Svetlana; Gajan, David; Ouari, Olivier; Tars, Kaspars; Pintacuda, Guido; Lesage, Anne

    2018-06-18

    Dynamic nuclear polarization (DNP) is a powerful way to overcome the sensitivity limitation of magic-angle-spinning (MAS) NMR experiments. However, the resolution of the DNP NMR spectra of proteins is compromised by severe line broadening associated with the necessity to perform experiments at cryogenic temperatures and in the presence of paramagnetic radicals. High-quality DNP-enhanced NMR spectra of the Acinetobacter phage 205 (AP205) nucleocapsid can be obtained by combining high magnetic field (800 MHz) and fast MAS (40 kHz). These conditions yield enhanced resolution and long coherence lifetimes allowing the acquisition of resolved 2D correlation spectra and of previously unfeasible scalar-based experiments. This enables the assignment of aromatic resonances of the AP205 coat protein and its packaged RNA, as well as the detection of long-range contacts, which are not observed at room temperature, opening new possibilities for structure determination. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Investigating the Dissolution Performance of Amorphous Solid Dispersions Using Magnetic Resonance Imaging and Proton NMR.

    PubMed

    Tres, Francesco; Coombes, Steven R; Phillips, Andrew R; Hughes, Leslie P; Wren, Stephen A C; Aylott, Jonathan W; Burley, Jonathan C

    2015-09-10

    We have investigated the dissolution performance of amorphous solid dispersions of poorly water-soluble bicalutamide in a Kollidon VA64 polymeric matrix as a function of the drug loading (5% vs. 30% bicalutamide). A combined suite of state-of-the-art analytical techniques were employed to obtain a clear picture of the drug release, including an integrated magnetic resonance imaging UV-Vis flow cell system and 1H-NMR. Off-line 1H-NMR was used for the first time to simultaneously measure the dissolution profiles and rates of both the drug and the polymer from a solid dispersion. MRI and 1H-NMR data showed that the 5% drug loading compact erodes linearly, and that bicalutamide and Kollidon VA64 are released at approximately the same rate from the molecular dispersion. For the 30% extrudate, data indicated a slower water ingress into the compact which corresponds to a slower dissolution rate of both bicalutamide and Kollidon VA64.

  9. Observation of Neutral Sodium Above Mercury During the Transit of November 8, 2006

    NASA Technical Reports Server (NTRS)

    Potter, A. E.; Killen, R. M.; Reardon, Kevin P.; Bida, T. A.

    2013-01-01

    We mapped the absorption of sunlight by sodium vapor in the exosphere of Mercury during the transit of Mercury on November 8, 2006, using the IBIS Interferometric BIdimensional Spectrometer at the Dunn Solar Telescope operated by the National Solar Observatory at Sunspot, New Mexico. The measurements were reduced to line-of-sight equivalent widths for absorption at the sodium D2 line around the shadow of Mercury. The sodium absorption fell off exponentially with altitude up to about 600 km. However there were regions around north and south polar-regions where relatively uniform sodium absorptions extended above 1000 km. We corrected the 0-600 km altitude profiles for seeing blur using the measured point spread function. Analysis of the corrected altitude distributions yielded surface densities, zenith column densities, temperatures and scale heights for sodium all around the planet. Sodium absorption on the dawn side equatorial terminator was less than on the dusk side, different from previous observations of the relative absorption levels. We also determined Earthward velocities for sodium atoms, and line widths for the absorptions. Earthward velocities resulting from radiation pressure on sodium averaged 0.8 km/s, smaller than a prediction of 1.5 km/s. Most line widths were in the range of 20 mA after correction for instrumental broadening, corresponding to temperatures in the range of 1000 K.

  10. Hα line measurements from ten diffuse galactic sources using the DEFPOS facility

    NASA Astrophysics Data System (ADS)

    Sahan, M.; Oflaz, F. M.; Yegingil, I.; Tel, E.

    2015-08-01

    The hydrogen Balmer-α emission line spectrum of ten diffuse ionization sources in the Milk Way - NGC 40 (WC8), NGC 2022, NGC 6210, NGC 6618 (M17, Sh2-45), NGC 6720 (M57), NGC 6781, NGC 6888 (Sh2-105), NGC 6992 (Sh2-103), NGC 7635 (Sh2-162,) and IC 1848 (Sh2-199) - has been investigated using a dual etalon Fabry-Pérot optical spectrometer (DEFPOS) aatached to the 150 cm RTT150 telescope at TUBITAK National Observatory (TUG, Antalya, Turkey: 36° 51' N; 30° 20' E; elevation: 2547 m). All of our galactic Hα observations discussed in this paper were carried out during the nights of 2013 June 21-24 with exposure time of 3600 s. As main results the intensity, the full width at half maximum, and the radial velocity with respect to the LSR have been determined for each data set. The intensities, the radial velocities, and the line widths of the Hα emission line vary from 59.15 to 8923.44 R, -46.72 to +54.07 km s-1, and 31.4 to 48.01 km s-1, respectively. The radial velocities and the half-widths of the H II regions and planetary nebulae determined from our measurements are found to be consistent with values given in literature, especially with those in Schneider et al. (1983) and Fich et al. (1990).

  11. Comparison of 5-year progression of retinitis pigmentosa involving the posterior pole among siblings by means of SD-OCT: a retrospective study.

    PubMed

    Colombo, Leonardo; Montesano, Giovanni; Sala, Barbara; Patelli, Fabio; Maltese, Paolo; Abeshi, Andi; Bertelli, Matteo; Rossetti, Luca

    2018-06-26

    The aim of this study is to analyze and compare the progression of photoreceptor atrophy among siblings affected by retinitis pigmentosa by means of spectral SD-OCT. Fifty three eyes of 27 patients belonging to 12 family clusters were analyzed. To assess the annual progression rate of photoreceptor atrophy, the ellipsoid zone (EZ) line was measured in OCT sections through the fovea. We used multivariate generalized mixed effects to model the rate of progression and its relation to the initial ellipsoid zone line width. During our 4.84 years (± 1.44) mean follow up time (range 3-7) 53 eyes were examined. The ellipsoid zone line width declined with a yearly average rate of 76.4 μm (4.16% / year) (p-value < 0.0001). Progression rates were poorly correlated within family clusters (p-value = 0.23) and showed statistical difference between affected siblings (p-value = 0.007). There was no correlation between inter-familiar progression rate and mode of inheritance (p-value = 0.98) as well as between age and ellipsoid zone line width among siblings (p-value = 0.91). RP could be extremely heterogeneous even among siblings: an accurate and sensitive method to follow the progression of the disease is fundamental for future development of clinical trials and therapy strategies.

  12. [Microsecond Pulsed Hollow Cathode Lamp as Enhanced Excitation Source of Hydride Generation Atomic Fluorescence Spectrometry].

    PubMed

    Zhang, Shuo

    2015-09-01

    The spectral, electrical and atomic fluorescence characteristics of As, Se, Sb and Pb hollow cathode lamps (HCLs) powered by a laboratory-built high current microsecond pulse (HCMP) power supply were studied, and the feasibility of using HCMP-HCLs as the excitation source of hydride generation atomic fluorescence spectrometry (HG-AFS) was evaluated. Under the HCMP power supply mode, the As, Se, Sb, Pb HCLs can maintain stable glow discharge at frequency of 100~1000 Hz, pulse width of 4.0~20 μs and pulse current up to 4.0 A. Relationship between the intensity of characteristic emission lines and HCMP power supply parameters, such as pulse current, power supply voltage, pulse width and frequency, was studied in detail. Compared with the conventional pulsed (CP) HCLs used in commercial AFS instruments, HCMP-HCLs have a narrower pulse width and much stronger pulse current. Under the optimized HCMP power supply parameters, the intensity of atomic emission lines of As, Se, Sb HCLs had sharp enhancement and that indicated their capacity of being a novel HG-AFS excitation source. However, the attenuation of atomic lines and enhancement of ionic lines negated such feasibility of HCMP-Pb HCL. Then the HG-AFS analytical capability of using the HCMP-As/Se/Sb HCLs excitation source was established and results showed that the HCMP-HCL is a promising excitation source for HG-AFS.

  13. SAIL--stereo-array isotope labeling.

    PubMed

    Kainosho, Masatsune; Güntert, Peter

    2009-11-01

    Optimal stereospecific and regiospecific labeling of proteins with stable isotopes enhances the nuclear magnetic resonance (NMR) method for the determination of the three-dimensional protein structures in solution. Stereo-array isotope labeling (SAIL) offers sharpened lines, spectral simplification without loss of information and the ability to rapidly collect and automatically evaluate the structural restraints required to solve a high-quality solution structure for proteins up to twice as large as before. This review gives an overview of stable isotope labeling methods for NMR spectroscopy with proteins and provides an in-depth treatment of the SAIL technology.

  14. Effect of chemoepitaxial guiding underlayer design on the pattern quality and shape of aligned lamellae for fabrication of line-space patterns

    NASA Astrophysics Data System (ADS)

    Nation, Benjamin D.; Peters, Andrew J.; Lawson, Richard A.; Ludovice, Peter J.; Henderson, Clifford L.

    2017-10-01

    Chemoepitaxial guidance of block copolymer directed self-assembly in thin films is explored using a coarse-grained molecular dynamics model. The underlayers studied are 2× density multiplying line-space patterns composed of repeating highly preferential pinning stripes of various widths separated by larger, more neutral, background regions of various compositions. Decreasing the pinning stripe width or making the background region more neutral is found to increase the line edge roughness (LER) of the lines, but these conditions are found to give the straightest sidewalls for the formed lines. Varying these underlayer properties is found to have minimal effect on linewidth roughness. A larger pinning stripe causes the pinned line (PL) to foot (expand near the substrate), and a preferential background region causes the unpinned line (UPL) to undercut (contract near the substrate). A simple model was developed to predict the optimal conditions to eliminate footing. Using this model, conditions are found that decrease footing of the PL, but these conditions increase undercutting in the UPL. Deformations in either the PL or UPL propagate to the other line. There exists a trade-off between LER and the footing/undercutting, that is, decreasing LER increases footing/undercutting and vice versa.

  15. --No Title--

    Science.gov Websites

    :#ccc;text-align:center;padding:5px}.upper_button{text-align:right;padding-bottom:5px}.side_button[type ;width:175px;text-align:left;font-weight:bold;overflow:hidden}.left_head_title_alt{float:left;width:175px ;text-align:left;font-weight:bold;line-height:16px;margin-top:3px;padding-top:0}.left_head_add

  16. DETECTION OF THE INTERMEDIATE-WIDTH EMISSION LINE REGION IN QUASAR OI 287 WITH THE BROAD EMISSION LINE REGION OBSCURED BY THE DUSTY TORUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhenzhen; Zhou, Hongyan; Wang, Huiyuan

    2015-10-20

    The existence of intermediate-width emission line regions (IELRs) in active galactic nuclei has been discussed for over two decades. A consensus, however, is yet to be arrived at due to the lack of convincing evidence for their detection. We present a detailed analysis of the broadband spectrophotometry of the partially obscured quasar OI 287. The ultraviolet intermediate-width emission lines (IELs) are very prominent, in high contrast to the corresponding broad emission lines (BELs) which are heavily suppressed by dust reddening. Assuming that the IELR is virialized, we estimated its distance to the central black hole to be ∼2.9 pc, similarmore » to the dust sublimation radius of ∼1.3 pc. Photo-ionization calculations suggest that the IELR has a hydrogen density of ∼10{sup 8.8}–10{sup 9.4} cm{sup −3}, within the range of values quoted for the dusty torus near the sublimation radius. Both its inferred location and physical conditions suggest that the IELR originates from the inner surface of the dusty torus. In the spectrum of this quasar, we identified only one narrow absorption-line system associated with the dusty material. With the aid of photo-ionization model calculations, we found that the obscuring material might originate from an outer region of the dusty torus. We speculate that the dusty torus, which is exposed to the central ionizing source, may produce IELs through photo-ionization processes, as well as obscure BELs as a natural “coronagraph.” Such a “coronagraph” could be found in a large number of partially obscured quasars and may be a useful tool to study IELRs.« less

  17. Three-dimensional stereoscopic analysis of a coronal mass ejection and comparison with UV spectroscopic data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susino, Roberto; Bemporad, Alessandro; Dolei, Sergio, E-mail: susino@oato.inaf.it, E-mail: sdo@oact.inaf.it

    2014-07-20

    A three-dimensional (3D) reconstruction of the 2007 May 20 partial-halo coronal mass ejection (CME) has been made using STEREO/EUVI and STEREO/COR1 coronagraphic images. The trajectory and kinematics of the erupting filament have been derived from Extreme Ultraviolet Imager (EUVI) image pairs with the 'tie-pointing' triangulation technique, while the polarization ratio technique has been applied to COR1 data to determine the average position and depth of the CME front along the line of sight. This 3D geometrical information has been combined for the first time with spectroscopic measurements of the O VI λλ1031.91, 1037.61 line profiles made with the Ultraviolet Coronagraphmore » Spectrometer (UVCS) on board the Solar and Heliospheric Observatory. Comparison between the prominence trajectory extrapolated at the altitude of UVCS observations and the core transit time measured from UVCS data made possible a firm identification of the CME core observed in white light and UV with the prominence plasma expelled during the CME. Results on the 3D structure of the CME front have been used to calculate synthetic spectral profiles of the O VI λ1031.91 line expected along the UVCS slit, in an attempt to reproduce the measured line widths. Observed line widths can be reproduced within the uncertainties only in the peripheral part of the CME front; at the front center, where the distance of the emitting plasma from the plane of the sky is greater, synthetic widths turn out to be ∼25% lower than the measured ones. This provides strong evidence of line broadening due to plasma heating mechanisms in addition to bulk expansion of the emitting volume.« less

  18. Strong optical and UV intermediate-width emission lines in the quasar SDSS J232444.80-094600.3: dust-free and intermediate-density gas at the skin of dusty torus?

    NASA Astrophysics Data System (ADS)

    Li, Zhen-Zhen; Zhou, Hong-Yan; Hao, Lei; Wang, Shu-Fen; Ji, Tuo; Liu, Bo

    2016-09-01

    Emission lines from the broad emission line region (BELR) and the narrow emission line region (NELR) of active galactic nuclei (AGNs) have been extensively studied. However, emission lines are rarely detected between these two regions. We present a detailed analysis of quasar SDSS J232444.80-094600.3 (SDSS J2324-0946), which is remarkable for its strong intermediate-width emission lines (IELs) with FWHM ≈ 1800 km s-1. The IEL component is present in different emission lines, including the permitted lines Lyα λ1216, CIV λ1549, semiforbidden line [CIII] λ1909, and forbidden lines [OIII] λλ4959, 5007. With the aid of photo-ionization models, we found that the IELs are produced by gas with a hydrogen density of nH ˜ 106.2 ˜ 106.3 cm-3, a distance from the central ionizing source of R ˜ 35 - 50 pc, a covering factor of ˜ 6%, and a dust-to-gas ratio of ≤ 4% that of the SMC. We suggest that the strong IELs of this quasar are produced by nearly dust-free and intermediate-density gas located at the skin of the dusty torus. Such strong IELs, which serve as a useful diagnostic, can provide an avenue to study the properties of gas between the BELR and the NELR.

  19. Defining genetic and chemical diversity in wheat grain by 1H-NMR spectroscopy of polar metabolites.

    PubMed

    Shewry, Peter R; Corol, Delia I; Jones, Huw D; Beale, Michael H; Ward, Jane L

    2017-07-01

    The application of high-throughput 1H nuclear magnetic resonance (1H-NMR) of unpurified extracts to determine genetic diversity and the contents of polar components in grain of wheat. Milled whole wheat grain was extracted with 80:20 D 2 O:CD 3 OD containing 0.05% d 4 -trimethylsilylpropionate. 1H-NMR spectra were acquired under automation at 300°K using an Avance Spectrometer operating at 600.0528 MHz. Regions for individual metabolites were identified by comparison to a library of known standards run under identical conditions. The individual 1H-NMR peaks or levels of known metabolites were then compared by Principal Component Analysis using SIMCA-P software. High-throughput 1H-NMR is an excellent tool to compare the extent of genetic diversity within and between wheat species, and to quantify specific components (including glycine betaine, choline, and asparagine) in individual genotypes. It can also be used to monitor changes in composition related to environmental factors and to support comparisons of the substantial equivalence of transgenic lines. © 2017 Rothamsted Research. Molecular Nutrition & Food Research Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Point of care assessment of melanoma tumor signaling and metastatic burden from μNMR analysis of tumor fine needle aspirates and peripheral blood.

    PubMed

    Gee, Michael S; Ghazani, Arezou A; Haq, Rizwan; Wargo, Jennifer A; Sebas, Matthew; Sullivan, Ryan J; Lee, Hakho; Weissleder, Ralph

    2017-04-01

    This study evaluates μNMR technology for molecular profiling of tumor fine needle aspirates and peripheral blood of melanoma patients. In vitro assessment of melanocyte (MART-1, HMB45) and MAP kinase signaling (pERK, pS6K) molecule expression was performed in human cell lines, while clinical validation was performed in an IRB-approved study of melanoma patients undergoing biopsy and blood sampling. Tumor FNA and blood specimens were compared with BRAF genetic analysis and cross-sectional imaging. μNMR in vitro analysis showed increased expression of melanocyte markers in melanoma cells as well as increased expression of phosphorylated MAP kinase targets in BRAF-mutant melanoma cells. Melanoma patient FNA samples showed increased pERK and pS6K levels in BRAF mutant compared with BRAF WT melanomas, with μNMR blood circulating tumor cell level increased with higher metastatic burden visible on imaging. These results indicate that μNMR technology provides minimally invasive point-of-care evaluation of tumor signaling and metastatic burden in melanoma patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Self-absorption characteristics of measured laser-induced plasma line shapes

    NASA Astrophysics Data System (ADS)

    Parigger, C. G.; Surmick, D. M.; Gautam, G.

    2017-02-01

    The determination of electron density and temperature is reported from line-of-sight measurements of laser-induced plasma. Experiments are conducted in standard ambient temperature and pressure air and in a cell containing ultra-high-pure hydrogen slightly above atmospheric pressure. Spectra of the hydrogen Balmer series lines can be measured in laboratory air due to residual moisture following optical breakdown generated with 13 to 14 nanosecond, pulsed Nd:YAG laser radiation. Comparisons with spectra obtained in hydrogen gas yields Abel-inverted line shape appearances that indicate occurrence of self-absorption. The electron density and temperature distributions along the line of sight show near-spherical rings, expanding at or near the speed of sound in the hydrogen gas experiments. The temperatures in the hydrogen studies are obtained using Balmer series alpha, beta, gamma profiles. Over and above the application of empirical formulae to derive the electron density from hydrogen alpha width and shift, and from hydrogen beta width and peak-separation, so-called escape factors and the use of a doubling mirror are discussed.

  2. Theoretical study of fabrication of line-and-space patterns with 7 nm quarter-pitch using electron beam lithography with chemically amplified resist process: III. Post exposure baking on quartz substrates

    NASA Astrophysics Data System (ADS)

    Kozawa, Takahiro

    2015-09-01

    Electron beam (EB) lithography is a key technology for the fabrication of photomasks for ArF immersion and extreme ultraviolet (EUV) lithography and molds for nanoimprint lithography. In this study, the temporal change in the chemical gradient of line-and-space patterns with a 7 nm quarter-pitch (7 nm space width and 21 nm line width) was calculated until it became constant, independently of postexposure baking (PEB) time, to clarify the feasibility of single nano patterning on quartz substrates using EB lithography with chemically amplified resist processes. When the quencher diffusion constant is the same as the acid diffusion constant, the maximum chemical gradient of the line-and-space pattern with a 7 nm quarter-pitch did not differ much from that with a 14 nm half-pitch under the condition described above. Also, from the viewpoint of process control, a low quencher diffusion constant is considered to be preferable for the fabrication of line-and-space patterns with a 7 nm quarter-pitch on quartz substrates.

  3. --No Title--

    Science.gov Websites

    , sortable.css, spinner.css, tabs.css, tooltip.css, theme.css * To view and modify this theme, visit http */ #container .ui-datepicker.ui-datepicker-multi { width: auto; } /* line 328, ../sass/main.scss */ #container .ui-datepicker-multi .ui-datepicker-group { float: left; } /* line 331, ../sass/main.scss

  4. NOSD-1000, the high-temperature nitrous oxide spectroscopic databank

    NASA Astrophysics Data System (ADS)

    Tashkun, S. A.; Perevalov, V. I.; Lavrentieva, N. N.

    2016-07-01

    We present a high-temperature version, NOSD-1000, of the nitrous oxide spectroscopic databank. The databank contains the line parameters (positions, intensities, air- and self-broadened half-widths and coefficients of temperature dependence of air- and self-broadened half-widths) of the most abundant isotopologue 14N216O of the nitrous oxide molecule. The reference temperature is Tref=1000 K and the intensity cutoff is Icut=10-25 cm-1/(molecule cm-2). More than 1.4 million lines covering the 260-8310 cm-1 spectral range are included in NOSD-1000. The databank has been generated within the framework of the method of effective operators and based on the global fittings of spectroscopic parameters (parameters of the effective Hamiltonian and effective dipole moment operators) to observed data collected from the literature. Line-by-line simulation of a medium-resolution high-temperature (T=873 K) spectrum has been performed in order to validate the databank. NOSD-1000 is freely accessible via the Internet.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirano, Teruyuki; Suto, Yasushi; Taruya, Atsushi

    We obtain analytical expressions for the velocity anomaly due to the Rossiter-McLaughlin (RM) effect, for the case when the anomalous radial velocity is obtained by cross-correlation with a stellar template spectrum. In the limit of vanishing width of the stellar absorption lines, our result reduces to the formula derived by Ohta et al., which is based on the first moment of distorted stellar lines. Our new formula contains a term dependent on the stellar line width, which becomes important when rotational line broadening is appreciable. We generate mock transit spectra for four existing exoplanetary systems (HD 17156, TrES-2, TrES-4, andmore » HD 209458) following the procedure of Winn et al., and find that the new formula is in better agreement with the velocity anomaly extracted from the mock data. Thus, our result provides a more reliable analytical description of the velocity anomaly due to the RM effect, and explains the previously observed dependence of the velocity anomaly on the stellar rotation velocity.« less

  6. Elemental abundance analyses with DAO spectrograms. VII - The late normal B stars Pi Ceti, 134 Tauri, 21 Aquilae, and Nu Capricorni and the use of RETICON spectra

    NASA Astrophysics Data System (ADS)

    Adelman, Saul J.

    1991-09-01

    This paper presents elemental abundance analyses of sharp-lined normal late B stars. These stars exhibit mostly near-solar abundances, but each star also shows a few abundances which are a factor of 2 less than solar. The coadded photographic spectrograms are supplemented with Reticon data. A comparison of 261 equivalent widths on 2.4 A/mm spectra of sharp-lined B and A stars shows that the Reticon equivalent widths are about 95 percent of the coadded equivalent mean. The H-gamma profiles of the coadded and Reticon spectra for eight sharp-lined stars show generally good agreement. The generally high quality of the coadded data produced from 10 or more spectrograms is confirmed using the REDUCE graphics-oriented computed reduction code. For five stars, metal lines which fall in the gap between the U and V plates are analyzed using Reticon data.

  7. A screen for constituents of motor control and decision making in Drosophila reveals visual distance-estimation neurons

    PubMed Central

    Triphan, Tilman; Nern, Aljoscha; Roberts, Sonia F.; Korff, Wyatt; Naiman, Daniel Q.; Strauss, Roland

    2016-01-01

    Climbing over chasms larger than step size is vital to fruit flies, since foraging and mating are achieved while walking. Flies avoid futile climbing attempts by processing parallax-motion vision to estimate gap width. To identify neuronal substrates of climbing control, we screened a large collection of fly lines with temporarily inactivated neuronal populations in a novel high-throughput assay described here. The observed climbing phenotypes were classified; lines in each group are reported. Selected lines were further analysed by high-resolution video cinematography. One striking class of flies attempts to climb chasms of unsurmountable width; expression analysis guided us to C2 optic-lobe interneurons. Inactivation of C2 or the closely related C3 neurons with highly specific intersectional driver lines consistently reproduced hyperactive climbing whereas strong or weak artificial depolarization of C2/C3 neurons strongly or mildly decreased climbing frequency. Contrast-manipulation experiments support our conclusion that C2/C3 neurons are part of the distance-evaluation system. PMID:27255169

  8. Elemental abundance analyses with DAO spectrograms. VII - The late normal B stars Pi Ceti, 134 Tauri, 21 Aquilae, and Nu Capricorni and the use of Reticon spectra

    NASA Technical Reports Server (NTRS)

    Adelman, Saul J.

    1991-01-01

    This paper presents elemental abundance analyses of sharp-lined normal late B stars. These stars exhibit mostly near-solar abundances, but each star also shows a few abundances which are a factor of 2 less than solar. The coadded photographic spectrograms are supplemented with Reticon data. A comparison of 261 equivalent widths on 2.4 A/mm spectra of sharp-lined B and A stars shows that the Reticon equivalent widths are about 95 percent of the coadded equivalent mean. The H-gamma profiles of the coadded and Reticon spectra for eight sharp-lined stars show generally good agreement. The generally high quality of the coadded data produced from 10 or more spectrograms is confirmed using the REDUCE graphics-oriented computed reduction code. For five stars, metal lines which fall in the gap between the U and V plates are analyzed using Reticon data.

  9. Analysis of the Effects of δ-Tocopherol on RAW264.7 and K562 Cells Based on 1H NMR Metabonomics.

    PubMed

    Lu, Yang; Li, Hui; Geng, Yue

    2018-01-31

    δ-Tocopherol (δ-TOH) is a form of vitamin E with higher bioactivity. In this study, we studied the bioactivity of δ-TOH using the IC 50 of δ-TOH on RAW264.7 (80 μM) and K562 (110 μM) cells. We compared the differential metabolites from the cell lines with and without δ-TOH treatment by 1 H NMR metabonomics analysis. It was found that δ-TOH affected the protein biosynthesis, betaine metabolism, and urea cycle in various ways in both cell lines. Metabolic levels of the cell lines were changed after treatment with δ-TOH as differential metabolites were produced. The betaine level in RAW264.7 cells was reduced significantly, while the l-lactic acid level in K562 cells was significantly enhanced. The metabolic changes might contribute to the switch of the respiration pattern from aerobic respiration to anaerobic respiration in K562 cells. These results are helpful in further understanding the subtoxicity of δ-TOH.

  10. Novel menadione hybrids: Synthesis, anticancer activity, and cell-based studies.

    PubMed

    Prasad, Chakka Vara; Nayak, Vadithe Lakshma; Ramakrishna, Sistla; Mallavadhani, Uppuluri Venkata

    2018-01-01

    A series of novel menadione-based triazole hybrids were designed and synthesized by employing copper-catalyzed azide-alkyne cycloaddition (CuAAC). All the synthesized hybrids were characterized by their spectral data ( 1 H NMR, 13 C NMR, IR, and HRMS). The synthesized compounds were evaluated for their anticancer activity against five selected cancer cell lines including lung (A549), prostate (DU-145), cervical (Hela), breast (MCF-7), and mouse melanoma (B-16) using MTT assay. The screening results showed that majority of the synthesized compounds displayed significant anticancer activity. Among the tested compounds, the triazoles 5 and 6 exhibited potent activity against all cell lines. In particular, compound 6 showed higher potency than the standard tamoxifen and parent menadione against MCF-7 cell line. Flow cytometric analysis revealed that compound 6 arrested cell cycle at G0/G1 phase and induced apoptotic cell death which was further confirmed by Hoechst staining, measurement of mitochondrial membrane potential (ΔΨm) and Annexin-V-FITC assay. Thus, compound 6 can be considered as lead molecule for further development as potent anticancer therapeutic agent. © 2017 John Wiley & Sons A/S.

  11. Enhancing the detection of edges and non-differentiable points in an NMR spectrum using delayed-acquisition.

    PubMed

    Gong, Zhaoyuan; Walls, Jamie D

    2018-02-01

    Delayed-acquisition, which is a common technique for improving spectral resolution in Fourier transform based spectroscopies, typically relies upon differences in T 2 relaxation rates that are often due to underlying differences in dynamics and/or complexities of the spin systems being studied. After an acquisition delay, the broad signals from fast T 2 -relaxing species are more suppressed relative to the sharp signals from slow T 2 -relaxing species. In this paper, an alternative source of differential "dephasing" under delayed-acquisition is demonstrated that is based solely upon the mathematical properties of the line shape and is independent of the underlying spin dynamics and/or complexity. Signals associated with frequencies where the line shape either changes sharply and/or is non-differentiable at some finite order dephase at a much slower rate than those signals associated with frequencies where the line shape is smooth. Experiments employing delayed-acquisition to study interfaces in biphasic samples, to measure spatially-dependent longitudinal relaxation, and to highlight sharp features in NMR spectra are presented. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Enhancing the detection of edges and non-differentiable points in an NMR spectrum using delayed-acquisition

    NASA Astrophysics Data System (ADS)

    Gong, Zhaoyuan; Walls, Jamie D.

    2018-02-01

    Delayed-acquisition, which is a common technique for improving spectral resolution in Fourier transform based spectroscopies, typically relies upon differences in T2 relaxation rates that are often due to underlying differences in dynamics and/or complexities of the spin systems being studied. After an acquisition delay, the broad signals from fast T2 -relaxing species are more suppressed relative to the sharp signals from slow T2 -relaxing species. In this paper, an alternative source of differential "dephasing" under delayed-acquisition is demonstrated that is based solely upon the mathematical properties of the line shape and is independent of the underlying spin dynamics and/or complexity. Signals associated with frequencies where the line shape either changes sharply and/or is non-differentiable at some finite order dephase at a much slower rate than those signals associated with frequencies where the line shape is smooth. Experiments employing delayed-acquisition to study interfaces in biphasic samples, to measure spatially-dependent longitudinal relaxation, and to highlight sharp features in NMR spectra are presented.

  13. Ceramide-1-Phosphate, in Contrast to Ceramide, Is Not Segregated into Lateral Lipid Domains in Phosphatidylcholine Bilayers

    PubMed Central

    Morrow, Michael R.; Helle, Anne; Perry, Joshua; Vattulainen, Ilpo; Wiedmer, Susanne K.; Holopainen, Juha M.

    2009-01-01

    Sphingolipids are key lipid regulators of cell viability: ceramide is one of the key molecules in inducing programmed cell death (apoptosis), whereas other sphingolipids, such as ceramide 1-phosphate, are mitogenic. The thermotropic and structural behavior of binary systems of N-hexadecanoyl-D-erythro-ceramide (C16-ceramide) or N-hexadecanoyl-D-erythro-ceramide-1-phosphate (C16-ceramide-1-phosphate; C16-C1P) with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) was studied with DSC and deuterium nuclear magnetic resonance (2H-NMR). Partial-phase diagrams (up to a mole fraction of sphingolipids X = 0.40) for both mixtures were constructed based on DSC and 2H-NMR observations. For C16-ceramide-containing bilayers DSC heating scans showed already at Xcer = 0.025 a complex structure of the main-phase transition peak suggestive of lateral-phase separation. The transition width increased significantly upon increasing Xcer, and the upper-phase boundary temperature of the mixture shifted to ∼65°C at Xcer = 0.40. The temperature range over which 2H-NMR spectra of C16-ceramide/DPPC-d62 mixtures displayed coexistence of gel and liquid crystalline domains increased from ∼10° for Xcer = 0.1 to ∼21° for Xcer = 0.4. For C16-C1P/DPPC mixtures, DSC and 2H-NMR observations indicated that two-phase coexistence was limited to significantly narrower temperature ranges for corresponding C1P concentrations. To complement these findings, C16-ceramide/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and C16-C1P/POPC mixtures were also studied by 2H-NMR and fluorescence techniques. These observations indicate that DPPC and POPC bilayers are significantly less perturbed by C16-C1P than by C16-ceramide and that C16-C1P is miscible within DPPC bilayers at least up to XC1P = 0.30. PMID:19289048

  14. Line shape parameters for the H2O-H2 collision system for application to exoplanet and planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Renaud, Candice L.; Cleghorn, Kara; Hartmann, Léna; Vispoel, Bastien; Gamache, Robert R.

    2018-05-01

    Water can be detected throughout the universe: in comets, asteroids, dwarf planets, the inner and outer planets in our solar system, cool stars, brown dwarfs, and on many exoplanets. Here the focus is on locations rich in hydrogen gas. To properly study these environments, there is a need for the line shape parameters for H2O transitions in collision with hydrogen. This work presents calculations of the half-width and line shift, made using the Modified Complex Robert-Bonamy (MCRB) formalism, at a number of temperatures. It is shown that this collision system is strongly off-resonance. For such conditions, the atom-atom part of the intermolecular potential dominates the interaction of the radiating and perturbing molecules. The atom-atom parameters were adjusted by fitting the H2O-H2 measurements of Brown and Plymate (1996). Several techniques were used to extract lines for which there is more confidence in the quality of the data. The final potential yields results that agree with the measurements with ∼0.3% difference and a 5.9% standard deviation. Using this potential, MCRB calculations were made for all transitions in the pure rotation, ν2, ν1, and ν3 bands. The structure of the line shape parameters and the temperature dependence of the half-width, as a function of the rotational and vibrational quantum numbers, are discussed. It is shown that the power law model of the T-dependence of the half-width is inadequate over large temperature ranges.

  15. Variation of the H-Beta Emission Lines of Yy-Geminorum - Part Two - Change of Sectorial Structures of Active Regions

    NASA Astrophysics Data System (ADS)

    Kodaira, K.; Ichimura, K.

    Sixty-three image-tube spectrograms of YY Gem (4 Å mm-1, λλ4820-4900 Å) are analyzed to yield the radial-velocity curves and the variations in the intensities and the widths of Hβ emission lines during the quiescent phase at epochs 1980 February 11-16, 1981 January 14-15, and 1981 March 11. The emission-line intensity of component A varied in a single-wave mode over an orbital period, with an apparent phase drift, -0.006019 fraction of the period per day from one epoch to another. The pattern of the intensity variation of component B changed within a few years. The ratio of the amplitudes of radial-velocity curves (KA/KB) of Hβ emission was found to be 0.91 in February 1980 but 1.01 in January 1981. This modulation in the ratio is interpreted as the results of the varying inhomogeneous distributions of emission intensities over the stellar surfaces which are inferred from the observed intensity variations under the assumption of synchronous rotation. A ratio KA/KB = 1.00±001 is proposed as the actual value which would be observed if the effects of inhomogeneities were negligible. The double-wave mode of the line-width variation over a period, which was found by Kodaira and Ichimura (1980), persisted for component A but changed into a single-wave mode for component B. No appreciable changes were detected in the average levels of both the intensity and width of Hβ emission lines within the last few years.

  16. Nitrogen-broadened lines of ethane at 150 K

    NASA Technical Reports Server (NTRS)

    Chudamani, S.; Varanasi, P.; Giver, L. P.; Valero, F. P. J.

    1985-01-01

    Spectral transmittance has been measured in the nu9 fundamental band of C2H6 at 150 K using a Fourier transform spectrometer with apodized spectral resolution of 0.06/cm. Comparison of observed spectral transmittance with a line-by-line computation using the spectral catalog of Atakan et al. (1983) has yielded N2-broadened half-widths at 150 K.

  17. A physical classification scheme for blazars

    NASA Astrophysics Data System (ADS)

    Landt, Hermine; Padovani, Paolo; Perlman, Eric S.; Giommi, Paolo

    2004-06-01

    Blazars are currently separated into BL Lacertae objects (BL Lacs) and flat spectrum radio quasars based on the strength of their emission lines. This is performed rather arbitrarily by defining a diagonal line in the Ca H&K break value-equivalent width plane, following Marchã et al. We readdress this problem and put the classification scheme for blazars on firm physical grounds. We study ~100 blazars and radio galaxies from the Deep X-ray Radio Blazar Survey (DXRBS) and 2-Jy radio survey and find a significant bimodality for the narrow emission line [OIII]λ5007. This suggests the presence of two physically distinct classes of radio-loud active galactic nuclei (AGN). We show that all radio-loud AGN, blazars and radio galaxies, can be effectively separated into weak- and strong-lined sources using the [OIII]λ5007-[OII]λ3727 equivalent width plane. This plane allows one to disentangle orientation effects from intrinsic variations in radio-loud AGN. Based on DXRBS, the strongly beamed sources of the new class of weak-lined radio-loud AGN are made up of BL Lacs at the ~75 per cent level, whereas those of the strong-lined radio-loud AGN include mostly (~97 per cent) quasars.

  18. Extending the Calibration of C IV-based Single-epoch Black Hole Mass Estimators for Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Park, Daeseong; Barth, Aaron J.; Woo, Jong-Hak; Malkan, Matthew A.; Treu, Tommaso; Bennert, Vardha N.; Assef, Roberto J.; Pancoast, Anna

    2017-04-01

    We provide an updated calibration of C IV λ 1549 broad emission line–based single-epoch (SE) black hole (BH) mass estimators for active galactic nuclei (AGNs) using new data for six reverberation-mapped AGNs at redshift z=0.005{--}0.028 with BH masses (bolometric luminosities) in the range {10}6.5{--}{10}7.5 {M}ȯ ({10}41.7{--}{10}43.8 erg s‑1). New rest-frame UV-to-optical spectra covering 1150–5700 Å for the six AGNs were obtained with the Hubble Space Telescope (HST). Multicomponent spectral decompositions of the HST spectra were used to measure SE emission-line widths for the C IV, Mg II, and Hβ lines, as well as continuum luminosities in the spectral region around each line. We combine the new data with similar measurements for a previous archival sample of 25 AGNs to derive the most consistent and accurate calibrations of the C IV-based SE BH mass estimators against the Hβ reverberation-based masses, using three different measures of broad-line width: full width at half maximum (FWHM), line dispersion ({σ }line}), and mean absolute deviation (MAD). The newly expanded sample at redshift z=0.005{--}0.234 covers a dynamic range in BH mass (bolometric luminosity) of {log}{M}BH}/{M}ȯ =6.5{--}9.1 ({log}{L}bol}/ erg s‑1 = 41.7{--}46.9), and we derive the new C IV-based mass estimators using a Bayesian linear regression analysis over this range. We generally recommend the use of {σ }line} or MAD rather than FWHM to obtain a less biased velocity measurement of the C IV emission line, because its narrow-line component contribution is difficult to decompose from the broad-line profile. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO-12922.

  19. Temperature dependence of the Raman spectrum of 1-(4-chlorophenyl)-3-(2-thienyl)prop-2-en-1-one

    NASA Astrophysics Data System (ADS)

    de Toledo, T. A.; da Costa, R. C.; Al-Maqtari, H. M.; Jamalis, J.; Pizani, P. S.

    2017-06-01

    The heterocyclic chalcone containing thiophene ring 1-(4-chlorophenyl)-3-(2-thienyl)prop-2-en-1-one, C13H9ClOS was synthesized and investigated using experimental techniques such as nuclear magnetic resonance (1H and 13C NMR), Fourier transform infrared spectroscopy (FTIR) at room temperature, differential scanning calorimeter (DSC) from room temperature to 500 K and Raman scattering at the temperature range 10-413 K in order to study its structure and vibrational properties as well as stability and possible phase transition. Density functional theory (DFT) calculations were performed to determine the vibrational spectrum viewing to improve the knowledge of the material properties. A reasonable agreement was observed between theoretical and experimental Raman spectrum taken at 10 K since anharmonic effects of the molecular motion is reduced at low temperatures, leading to a more comprehensive assignment of the vibrational modes. Increasing the temperature up to 393 K, was observed the typical phonon anharmonicity behavior associated to changes in the Raman line intensities, line-widths and red-shift, in special in the external mode region, whereas the internal modes region remains almost unchanged due its strong chemical bonds. Furthermore, C13H9ClOS goes to melting phase transition in the temperature range 393-403 K and then sublimates in the temperature range 403-413 K. This is denounced by the disappearance of the external modes and the absence of internal modes in the Raman spectra, in accordance with DSC curve. The enthalpy (ΔH) obtained from the integration of the endothermic peak in DSC curve centered at 397 K is founded to be 121.5 J/g.

  20. American Marten Respond to Seismic Lines in Northern Canada at Two Spatial Scales

    PubMed Central

    Tigner, Jesse; Bayne, Erin M.; Boutin, Stan

    2015-01-01

    Development of hydrocarbon resources across northwest Canada has spurred economic prosperity and generated concerns over impacts to biodiversity. To balance these interests, numerous jurisdictions have adopted management thresholds that allow for limited energy development but minimize undesirable impacts to wildlife. Used for exploration, seismic lines are the most abundant linear feature in the boreal forest and exist at a variety of widths and recovery states. We used American marten (Martes americana) as a model species to measure how line attributes influence species’ response to seismic lines, and asked whether responses to individual lines trigger population impacts. Marten response to seismic lines was strongly influenced by line width and recovery state. Compared to forest interiors, marten used open seismic lines ≥ 3 m wide less often, but used open lines ≤ 2 m wide and partially recovered lines ≥ 6 m wide similarly. Marten response to individual line types appeared to trigger population impacts. The probability of occurrence at the home range scale declined with increasing seismic line density, and the inclusion of behavioral response to line density calculations improved model fit. In our top performing model, we excluded seismic lines ≤ 2 m from our calculation of line density, and the probability of occurrence declined > 80% between home ranges with the lowest and highest line densities. Models that excluded seismic lines did not strongly explain occurrence. We show how wildlife-derived metrics can inform regulatory guidelines to increase the likelihood those guidelines meet intended management objectives. With respect to marten, not all seismic lines constitute disturbances, but avoidance of certain line types scales to population impacts. This approach provides the ecological context required to understand cause and effect relationships among socio-economic and ecological conservation goals. PMID:25768848

  1. Spatial variation of dosimetric leaf gap and its impact on dose delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumaraswamy, Lalith K., E-mail: Lalith.Kumaraswamy@roswellpark.org; Schmitt, Jonathan D.; Bailey, Daniel W.

    Purpose: During dose calculation, the Eclipse treatment planning system (TPS) retracts the multileaf collimator (MLC) leaf positions by half of the dosimetric leaf gap (DLG) value (measured at central axis) for all leaf positions in a dynamic MLC plan to accurately model the rounded leaf ends. The aim of this study is to map the variation of DLG along the travel path of each MLC leaf pair and quantify how this variation impacts delivered dose. Methods: 6 MV DLG values were measured for all MLC leaf pairs in increments of 1.0 cm (from the line intersecting the CAX and perpendicularmore » to MLC motion) to 13.0 cm off axis distance at dmax. The measurements were performed on two Varian linear accelerators, both employing the Millennium 120-leaf MLCs. The measurements were performed at several locations in the beam with both a Sun Nuclear MapCHECK device and a PTW pinpoint ion chamber. Results: The measured DLGs for the middle 40 MLC leaf pairs (each 0.5 cm width) at positions along a line through the CAX and perpendicular to MLC leaf travel direction were very similar, varying maximally by only 0.2 mm. The outer 20 MLC leaf pairs (each 1.0 cm width) have much lower DLG values, about 0.3–0.5 mm lower than the central MLC leaf pair, at their respective central line position. Overall, the mean and the maximum variation between the 0.5 cm width leaves and the 1.0 cm width leaf pairs are 0.32 and 0.65 mm, respectively. Conclusions: The spatial variation in DLG is caused by the variation of intraleaf transmission through MLC leaves. Fluences centered on the CAX would not be affected since DLG does not vary; but any fluences residing significantly off axis with narrow sweeping leaves may exhibit significant dose differences. This is due to the fact that there are differences in DLG between the true DLG exhibited by the 1.0 cm width outer leaves and the constant DLG value utilized by the TPS for dose calculation. Since there are large differences in DLG between the 0.5 cm width leaf pairs and 1.0 cm width leaf pairs, there is a need to correct the TPS plans, especially those with high modulation (narrow dynamic MLC gap), with 2D variation of DLG.« less

  2. On-line high-performance liquid chromatography-ultraviolet-nuclear magnetic resonance method of the markers of nerve agents for verification of the Chemical Weapons Convention.

    PubMed

    Mazumder, Avik; Gupta, Hemendra K; Garg, Prabhat; Jain, Rajeev; Dubey, Devendra K

    2009-07-03

    This paper details an on-flow liquid chromatography-ultraviolet-nuclear magnetic resonance (LC-UV-NMR) method for the retrospective detection and identification of alkyl alkylphosphonic acids (AAPAs) and alkylphosphonic acids (APAs), the markers of the toxic nerve agents for verification of the Chemical Weapons Convention (CWC). Initially, the LC-UV-NMR parameters were optimized for benzyl derivatives of the APAs and AAPAs. The optimized parameters include stationary phase C(18), mobile phase methanol:water 78:22 (v/v), UV detection at 268nm and (1)H NMR acquisition conditions. The protocol described herein allowed the detection of analytes through acquisition of high quality NMR spectra from the aqueous solution of the APAs and AAPAs with high concentrations of interfering background chemicals which have been removed by preceding sample preparation. The reported standard deviation for the quantification is related to the UV detector which showed relative standard deviations (RSDs) for quantification within +/-1.1%, while lower limit of detection upto 16mug (in mug absolute) for the NMR detector. Finally the developed LC-UV-NMR method was applied to identify the APAs and AAPAs in real water samples, consequent to solid phase extraction and derivatization. The method is fast (total experiment time approximately 2h), sensitive, rugged and efficient.

  3. Multiwavelength generation in a random distributed feedback fiber laser using an all fiber Lyot filter.

    PubMed

    Sugavanam, S; Yan, Z; Kamynin, V; Kurkov, A S; Zhang, L; Churkin, D V

    2014-02-10

    Multiwavelength lasing in the random distributed feedback fiber laser is demonstrated by employing an all fiber Lyot filter. Stable multiwavelength generation is obtained, with each line exhibiting sub-nanometer line-widths. A flat power distribution over multiple lines is obtained, which indicates that the power between lines is redistributed in nonlinear mixing processes. The multiwavelength generation is observed both in first and second Stokes waves.

  4. Biopolymer Chain Elasticity: a novel concept and a least deformation energy principle predicts backbone and overall folding of DNA TTT hairpins in agreement with NMR distances

    PubMed Central

    Pakleza, Christophe; Cognet, Jean A. H.

    2003-01-01

    A new molecular modelling methodology is presented and shown to apply to all published solution structures of DNA hairpins with TTT in the loop. It is based on the theory of elasticity of thin rods and on the assumption that single-stranded B-DNA behaves as a continuous, unshearable, unstretchable and flexible thin rod. It requires four construction steps: (i) computation of the tri-dimensional trajectory of the elastic line, (ii) global deformation of single-stranded helical DNA onto the elastic line, (iii) optimisation of the nucleoside rotations about the elastic line, (iv) energy minimisation to restore backbone bond lengths and bond angles. This theoretical approach called ‘Biopolymer Chain Elasticity’ (BCE) is capable of reproducing the tri-dimensional course of the sugar–phosphate chain and, using NMR-derived distances, of reproducing models close to published solution structures. This is shown by computing three different types of distance criteria. The natural description provided by the elastic line and by the new parameter, Ω, which corresponds to the rotation angles of nucleosides about the elastic line, offers a considerable simplification of molecular modelling of hairpin loops. They can be varied independently from each other, since the global shape of the hairpin loop is preserved in all cases. PMID:12560506

  5. Spectroscopic survey of southern hemisphere white dwarfs. II. Spectroscopic data for forty-one southern white dwarfs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wegner, G.

    New spectroscopic data on 41 southern white dwarfs are presented. Most of these stars have not teen previously observed spectroscopically. Spectral types, as well as equivalent widths and line profiles for a few selected lines, are given. (auth)

  6. Laboratory Measurements of SO2 and N2 Absorption Spectra for Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Stark, Glenn

    2003-01-01

    This laboratory project focuses on the following topics: 1) Measurement of SO2 ultraviolet absorption cross sections; and 2) N2 band and Line Oscillator Strengths and Line Widths in the 80 to 100 nm region. Accomplishments for these projects are summarized.

  7. Suppression of the Nonlinear Zeeman Effect and Heading Error in Earth-Field-Range Alkali-Vapor Magnetometers.

    PubMed

    Bao, Guzhi; Wickenbrock, Arne; Rochester, Simon; Zhang, Weiping; Budker, Dmitry

    2018-01-19

    The nonlinear Zeeman effect can induce splitting and asymmetries of magnetic-resonance lines in the geophysical magnetic-field range. This is a major source of "heading error" for scalar atomic magnetometers. We demonstrate a method to suppress the nonlinear Zeeman effect and heading error based on spin locking. In an all-optical synchronously pumped magnetometer with separate pump and probe beams, we apply a radio-frequency field which is in phase with the precessing magnetization. This results in the collapse of the multicomponent asymmetric magnetic-resonance line with ∼100  Hz width in the Earth-field range into a single peak with a width of 22 Hz, whose position is largely independent of the orientation of the sensor within a range of orientation angles. The technique is expected to be broadly applicable in practical magnetometry, potentially boosting the sensitivity and accuracy of Earth-surveying magnetometers by increasing the magnetic-resonance amplitude, decreasing its width, and removing the important and limiting heading-error systematic.

  8. VizieR Online Data Catalog: Chemical abundances of 8 metal-poor stars (Ishigaki+, 2014)

    NASA Astrophysics Data System (ADS)

    Ishigaki, M. N.; Aoki, W.; Arimoto, N.; Okamoto, S.

    2014-01-01

    Equivalent widths and chemical abundances of the six giant stars in Bootes I dwarf spheroidal galaxy (Boo-009, Boo-094, Boo-117, Boo-121, Boo-127, Boo-911) and the two Milky Way halo stars (HD216143, HD85773) are presented. For each spectral line, excitation potential, loggf values, measured equivalent widths and abundances are given. (2 data files).

  9. Solid-state 11B and 13C NMR, IR, and X-ray crystallographic characterization of selected arylboronic acids and their catechol cyclic esters.

    PubMed

    Oh, Se-Woung; Weiss, Joseph W E; Kerneghan, Phillip A; Korobkov, Ilia; Maly, Kenneth E; Bryce, David L

    2012-05-01

    Nine arylboronic acids, seven arylboronic catechol cyclic esters, and two trimeric arylboronic anhydrides (boroxines) are investigated using (11)B solid-state NMR spectroscopy at three different magnetic field strengths (9.4, 11.7, and 21.1 T). Through the analysis of spectra of static and magic-angle spinning samples, the (11)B electric field gradient and chemical shift tensors are determined. The effects of relaxation anisotropy and nutation field strength on the (11)B NMR line shapes are investigated. Infrared spectroscopy was also used to help identify peaks in the NMR spectra as being due to the anhydride form in some of the arylboronic acid samples. Seven new X-ray crystallographic structures are reported. Calculations of the (11)B NMR parameters are performed using cluster model and periodic gauge-including projector-augmented wave (GIPAW) density functional theory (DFT) approaches, and the results are compared with the experimental values. Carbon-13 solid-state NMR experiments and spectral simulations are applied to determine the chemical shifts of the ipso carbons of the samples. One bond indirect (13)C-(11)B spin-spin (J) coupling constants are also measured experimentally and compared with calculated values. The (11)B/(10)B isotope effect on the (13)C chemical shift of the ipso carbons of arylboronic acids and their catechol esters, as well as residual dipolar coupling, is discussed. Overall, this combined X-ray, NMR, IR, and computational study provides valuable new insights into the relationship between NMR parameters and the structure of boronic acids and esters. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Resolution modeling of dispersive imaging spectrometers

    NASA Astrophysics Data System (ADS)

    Silny, John F.

    2017-08-01

    This paper presents best practices for modeling the resolution of dispersive imaging spectrometers. The differences between sampling, width, and resolution are discussed. It is proposed that the spectral imaging community adopt a standard definition for resolution as the full-width at half maximum of the total line spread function. Resolution should be computed for each of the spectral, cross-scan spatial, and along-scan spatial/temporal dimensions separately. A physical optics resolution model is presented that incorporates the effects of slit diffraction and partial coherence, the result of which is a narrower slit image width and reduced radiometric throughput.

  11. PCF based high power narrow line width pulsed fiber laser

    NASA Astrophysics Data System (ADS)

    Chen, H.; Yan, P.; Xiao, Q.; Wang, Y.; Gong, M.

    2012-09-01

    Based on semiconductor diode seeded multi-stage cascaded fiber amplifiers, we have obtained 88-W average power of a 1063-nm laser with high repetition rate of up to 1.5 MHz and a constant 2-ns pulse duration. No stimulated Brillouin scattering pulse or optical damage occurred although the maximum pulse peak power has exceeded 112 kW. The output laser exhibits excellent beam quality (M2x = 1.24 and M2y = 1.18), associated with a spectral line width as narrow as 0.065 nm (FWHM). Additionally, we demonstrate high polarization extinction ratio of 18.4 dB and good pulse stabilities superior to 1.6 % (RMS).

  12. The broad-band X-ray spectral variability of Mrk 841

    NASA Technical Reports Server (NTRS)

    George, I. M.; Nandra, K.; Fabian, A. C.; Turner, T. J.; Done, C.; Day, C. S. R.

    1993-01-01

    A detailed spectral analysis of five X-ray observations of Mrk 841 with the EXOSAT, Ginga, and ROSAT satellites is reported. Variability is apparent in both the soft (0.1-1.0 keV) and medium (1-20 keV) energy bands. Above, 1 keV, the spectra are adequately modeled by a power law with a strong emission line of equivalent width 450 eV. The large equivalent width of the emission line indicates a strongly enhanced reflection component of the source compared with other Seyferts observed with Ginga. The implications of the results of the analysis for physical models of the emission regions in this and other X-ray bright Seyferts are briefly examined.

  13. Raman Scattering Signature of a Localized-to-Delocalized Transition at the Inception of a Dilute Abnormal GaAs1-xNx Alloy

    NASA Astrophysics Data System (ADS)

    Mialitsin, Aleksej V.; Mascarenhas, Angelo

    2013-05-01

    We identify the signature of a localized-to-delocalized transition in the resonant Raman scattering spectra from GaAs1-xNx. Our measurements in the ultradilute nitrogen doping concentrations demonstrate an energy shift in the line width resonance of the LO phonon. With decreasing nitrogen concentration, the EW line width resonance energy reduces abruptly by ca. 47 meV at x≈0.35%. This value corresponds to the concentration at which GaAs1-xNx has been recently shown to transition from an impurity regime to an alloy regime. Our study elucidates the evolution of dilute abnormal alloys and their Raman response.

  14. Optical waveguide device with an adiabatically-varying width

    DOEpatents

    Watts,; Michael R. , Nielson; Gregory, N [Albuquerque, NM

    2011-05-10

    Optical waveguide devices are disclosed which utilize an optical waveguide having a waveguide bend therein with a width that varies adiabatically between a minimum value and a maximum value of the width. One or more connecting members can be attached to the waveguide bend near the maximum value of the width thereof to support the waveguide bend or to supply electrical power to an impurity-doped region located within the waveguide bend near the maximum value of the width. The impurity-doped region can form an electrical heater or a semiconductor junction which can be activated with a voltage to provide a variable optical path length in the optical waveguide. The optical waveguide devices can be used to form a tunable interferometer (e.g. a Mach-Zehnder interferometer) which can be used for optical modulation or switching. The optical waveguide devices can also be used to form an optical delay line.

  15. Lithium ion dynamics in Li2S+GeS2+GeO2 glasses studied using (7)Li NMR field-cycling relaxometry and line-shape analysis.

    PubMed

    Gabriel, Jan; Petrov, Oleg V; Kim, Youngsik; Martin, Steve W; Vogel, Michael

    2015-09-01

    We use (7)Li NMR to study the ionic jump motion in ternary 0.5Li2S+0.5[(1-x)GeS2+xGeO2] glassy lithium ion conductors. Exploring the "mixed glass former effect" in this system led to the assumption of a homogeneous and random variation of diffusion barriers in this system. We exploit that combining traditional line-shape analysis with novel field-cycling relaxometry, it is possible to measure the spectral density of the ionic jump motion in broad frequency and temperature ranges and, thus, to determine the distribution of activation energies. Two models are employed to parameterize the (7)Li NMR data, namely, the multi-exponential autocorrelation function model and the power-law waiting times model. Careful evaluation of both of these models indicates a broadly inhomogeneous energy landscape for both the single (x=0.0) and the mixed (x=0.1) network former glasses. The multi-exponential autocorrelation function model can be well described by a Gaussian distribution of activation barriers. Applicability of the methods used and their sensitivity to microscopic details of ionic motion are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. NMR Spectra of Oriented Samples of Intercalated Fluorographite and 19F Chemical Shielding Anisotropy of the CIF 3 Molecule

    NASA Astrophysics Data System (ADS)

    Panich, A. M.

    The analysis of 19F NMR spectra of polycrystalline and partially oriented samples of fluorinated graphite (C 2F) n intercalated with chlorine trifluoride has been carried out. Molecular mobility results in almost complete averaging of the dipole-dipole interactions of nuclei, while the essential chemical shielding anisotropy (CSA) is manifested. There is suggested molecular rotation about its C2 axes, which in turn rotates about the normal to the graphite plane. The CSA (σ || - σ ⊥) is determined to be 510 and -640 ppm, respectively, for the two inequivalent fluorine atoms of the molecule. The effect of the "antiparamagnetic" shielding leading to inversion of the chemical shielding tenser [(σ || - σ ⊥) < 0] for the equatorial F atom and anomalous line disposition in the NMR spectrum is discussed.

  17. 1H and 2H NMR studies of benzene confined in porous solids: melting point depression and pore size distribution.

    PubMed

    Aksnes, D W; Kimtys, L

    2004-01-01

    The pore size distributions of four controlled pore glasses and three silica gels with nominal diameters in the range 4-24 nm were determined by measuring the 1H and 2H NMR signals from the non-frozen fraction of confined benzene and perdeuterated benzene as a function of temperature, in steps of ca. 0.1-1 K. The liquid and solid components of the adsorbate were distinguished, on the basis of the spin-spin relaxation time T2, by employing a spin-echo sequence. The experimental intensity curves of the liquid component are well represented by a sum of two error functions. The mean melting point depression of benzene and perdeuterated benzene confined in the four controlled pore glasses, with pore radius R, follows the simplified Gibbs-Thompson equation DeltaT=kp/R with a kp value of 44 K nm. As expected, the kp value mainly determines the position of the pore size distribution curve, i.e., the mean pore radius, while the transition width determines the shape of the pore size distribution curve. The excellent agreement between the results from the 1H and 2H measurements shows that the effect of the background absorption from protons in physisorbed water and silanol groups is negligible under the experimental conditions used. The overall pore size distributions determined by NMR are in reasonable agreement with the results specified by the manufacturer, or measured by us using the N2 sorption technique. The NMR method, which is complementary to the conventional gas sorption method, is particularly appropriate for studying pore sizes in the mesoporous range.

  18. Galactic Outflows and Their Correlation with Galaxy Properties at 0.8 < z < 1.6

    NASA Astrophysics Data System (ADS)

    Whiting, Lindsey M.

    Out. ows have been shown to be ubiquitous in galaxies between z = 1 and z=2, and many models and observations have attempted to correlate the absorption line. properties of these out. ows with morphological characteristics of their host galaxies. In this study, we examined the spectra of 71 galaxies with redshifts 1< z<2, paying. particular attention to the FeII and MgII absorption lines. We plotted the equivalent. width, velocity, and maximum velocity of the absorption features against various. physical properties of the galaxies, obtained from catalogues created by Skelton et. al., (2014) and van der Wel et al., (2012). We conrmed the presence of out. ows in. our galaxy sample, and found a signicant trend between the equivalent width and. star formation rate - out. owing gas has stronger absorption lines in galaxies with. higher star formation rates.

  19. Rapid variations of balmer line strengths in the spectra of Be stars. Ph.D. Thesis; [photoelectric spectrophotometric measurements

    NASA Technical Reports Server (NTRS)

    Mcbeath, K. B.

    1974-01-01

    Low resolution photoelectric spectrophotometric measurements of the first four members of the Balmer series in the spectra of one Be and five Be (shell) stars were obtained with the 92-cm telescope and image dissecting scanner. Equivalent widths were computed for each observation, and their standard deviations from the mean values were examined. Results indicate that in three of the program stars, at least one of the Balmer lines shows significant fluctuations in equivalent width. These fluctuations amount to a few per cent of total line strength and the time scales appear to be on the order of three to thirty minutes. The fluctuations are not always present in a given star, indicating that the mechanism producing them may not be continuous. The noncontinuous and nonperiodic nature of the variations, along with their short time scale suggest some form of flare-like or shock origin for the phenomenon.

  20. Detailed non-LTE calculations of the iron emission from NGC 1068

    NASA Technical Reports Server (NTRS)

    Band, David L.; Klein, Richard I.; Castor, John I.; Nash, J. K.

    1989-01-01

    The X-ray iron line emission from NGC 1068 observed by the Ginga satellite is modeled using the new multiline, multilevel, non-LTE radiative transport code ALTAIR and a detailed atomic model for Ne-like through stripped iron. The parameter space of the obscured type 1 Seyfert nucleus model for this object is studied. The equivalent width is greater than previously predicted. It is found that detailed radiative transfer can have a significant effect on the observed line flux both for the K alpha line and for the L-shell emission. The ionization of the iron increases with temperature. Therefore the K alpha equivalent width and energy is a function not only of the ionization parameter, but also of the column depth and temperature. For a likely model of NGC 1068 it is found that the iron abundance is about twice solar, but that modifications of this model may permit a smaller abundance.

  1. Theoretical study on effects of photodecomposable quenchers in line-and-space pattern fabrication with 7 nm quarter-pitch using chemically amplified electron beam resist process

    NASA Astrophysics Data System (ADS)

    Kozawa, Takahiro

    2017-04-01

    The line width roughness (LWR) is a significant issue in the development of chemically amplified resists. The increase in sensitizer concentration is inevitable for the suppression of LWR in the sub-10 nm fabrication. In this study, we investigated the effects of photodecomposable quenchers from the viewpoint of the excluded volume effect, assuming line-and-space patterns with 7 nm quarter-pitch (7 nm space width and 28 nm pitch). The pattern formation of chemically amplified electron beam resists with photodecomposable quenchers was calculated and compared with those with conventional quenchers. It was found that the sum of the concentrations of acid generators and quenchers (photodecomposable or conventional quenchers) can be reduced without decreasing the chemical gradient (an indicator of LWR) by using the photodecomposable quenchers. The photodecomposable quenchers are considered essential in the high-resolution fabrication.

  2. Effect of nearest-neighbor ions on excited ionic states, emission spectra, and line profiles in hot and dense plasmas

    NASA Technical Reports Server (NTRS)

    Salzmann, D.; Stein, J.; Goldberg, I. B.; Pratt, R. H.

    1991-01-01

    The effect of the cylindrical symmetry imposed by the nearest-neighbor ions on the ionic levels and the emission spectra of a Li-like Kr ion immersed in hot and dense plasmas is investigated using the Stein et al. (1989) two-centered model extended to include computations of the line profiles, shifts, and widths, as well as the energy-level mixing and the forbidden transition probabilities. It is shown that the cylindrical symmetry mixes states with different orbital quantum numbers l, particularly for highly excited states, and, thereby, gives rise to forbidden transitions in the emission spectrum. Results are obtained for the variation of the ionic level shifts and mixing coefficients with the distance to the nearest neighbor. Also obtained are representative computed spectra that show the density effects on the spectral line profiles, shifts, and widths, and the forbidden components in the spectrum.

  3. Glimpse of the highly obscured HMXB IGR J16318-4848 with Hitomi

    NASA Astrophysics Data System (ADS)

    Hitomi Collaboration; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steven W.; Angelini, Lorella; Audard, Marc; Awaki, Hisamitsu; Axelsson, Magnus; Bamba, Aya; Bautz, Marshall W.; Blandford, Roger; Brenneman, Laura W.; Brown, Gregory V.; Bulbul, Esra; Cackett, Edward M.; Chernyakova, Maria; Chiao, Meng P.; Coppi, Paolo S.; Costantini, Elisa; de Plaa, Jelle; de Vries, Cor P.; den Herder, Jan-Willem; Done, Chris; Dotani, Tadayasu; Ebisawa, Ken; Eckart, Megan E.; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew C.; Ferrigno, Carlo; Foster, Adam R.; Fujimoto, Ryuichi; Fukazawa, Yasushi; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi C.; Gandhi, Poshak; Giustini, Margherita; Goldwurm, Andrea; Gu, Liyi; Guainazzi, Matteo; Haba, Yoshito; Hagino, Kouichi; Hamaguchi, Kenji; Harrus, Ilana M.; Hatsukade, Isamu; Hayashi, Katsuhiro; Hayashi, Takayuki; Hayashida, Kiyoshi; Hiraga, Junko S.; Hornschemeier, Ann; Hoshino, Akio; Hughes, John P.; Ichinohe, Yuto; Iizuka, Ryo; Inoue, Hajime; Inoue, Yoshiyuki; Ishida, Manabu; Ishikawa, Kumi; Ishisaki, Yoshitaka; Iwai, Masachika; Kaastra, Jelle; Kallman, Tim; Kamae, Tsuneyoshi; Kataoka, Jun; Katsuda, Satoru; Kawai, Nobuyuki; Kelley, Richard L.; Kilbourne, Caroline A.; Kitaguchi, Takao; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Koyama, Katsuji; Koyama, Shu; Kretschmar, Peter; Krimm, Hans A.; Kubota, Aya; Kunieda, Hideyo; Laurent, Philippe; Lee, Shiu-Hang; Leutenegger, Maurice A.; Limousin, Olivier O.; Loewenstein, Michael; Long, Knox S.; Lumb, David; Madejski, Greg; Maeda, Yoshitomo; Maier, Daniel; Makishima, Kazuo; Markevitch, Maxim; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; McNamara, Brian R.; Mehdipour, Missagh; Miller, Eric D.; Miller, Jon M.; Mineshige, Shin; Mitsuda, Kazuhisa; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Hideyuki; Mori, Koji; Mukai, Koji; Murakami, Hiroshi; Mushotzky, Richard F.; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakashima, Shinya; Nakazawa, Kazuhiro; Nobukawa, Kumiko K.; Nobukawa, Masayoshi; Noda, Hirofumi; Odaka, Hirokazu; Ohashi, Takaya; Ohno, Masanori; Okajima, Takashi; Ota, Naomi; Ozaki, Masanobu; Paerels, Frits; Paltani, Stéphane; Petre, Robert; Pinto, Ciro; Porter, Frederick S.; Pottschmidt, Katja; Reynolds, Christopher S.; Safi-Harb, Samar; Saito, Shinya; Sakai, Kazuhiro; Sasaki, Toru; Sato, Goro; Sato, Kosuke; Sato, Rie; Sawada, Makoto; Schartel, Norbert; Serlemtsos, Peter J.; Seta, Hiromi; Shidatsu, Megumi; Simionescu, Aurora; Smith, Randall K.; Soong, Yang; Stawarz, Łukasz; Sugawara, Yasuharu; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shiníchiro; Takei, Yoh; Tamagawa, Toru; Tamura, Takayuki; Tanaka, Takaaki; Tanaka, Yasuo; Tanaka, Yasuyuki T.; Tashiro, Makoto S.; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yohko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi Go; Uchida, Hiroyuki; Uchiyama, Hideki; Uchiyama, Yasunobu; Ueda, Shutaro; Ueda, Yoshihiro; Uno, Shiníchiro; Urry, C. Megan; Ursino, Eugenio; Watanabe, Shin; Werner, Norbert; Wilkins, Dan R.; Williams, Brian J.; Yamada, Shinya; Yamaguchi, Hiroya; Yamaoka, Kazutaka; Yamasaki, Noriko Y.; Yamauchi, Makoto; Yamauchi, Shigeo; Yaqoob, Tahir; Yatsu, Yoichi; Yonetoku, Daisuke; Zhuravleva, Irina; Zoghbi, Abderahmen; Nakaniwa, Nozomi

    2018-03-01

    We report on a Hitomi observation of IGR J16318-4848, a high-mass X-ray binary system with an extremely strong absorption of NH ˜ 1024 cm-2. Previous X-ray studies revealed that its spectrum is dominated by strong fluorescence lines of Fe as well as continuum emission lines. For physical and geometrical insight into the nature of the reprocessing material, we utilized the high spectroscopic resolving power of the X-ray microcalorimeter (the soft X-ray spectrometer: SXS) and the wide-band sensitivity by the soft and hard X-ray imagers (SXI and HXI) aboard Hitomi. Even though the photon counts are limited due to unintended off-axis pointing, the SXS spectrum resolves Fe Kα1 and Kα2 lines and puts strong constraints on the line centroid and line width. The line width corresponds to a velocity of 160^{+300}_{-70} km s-1. This represents the most accurate, and smallest, width measurement of this line made so far from the any X-ray binary, much less than the Doppler broadening and Doppler shift expected from speeds that are characteristic of similar systems. Combined with the K-shell edge energy measured by the SXI and HXI spectra, the ionization state of Fe is estimated to be in the range of Fe I-IV. Considering the estimated ionization parameter and the distance between the X-ray source and the absorber, the density and thickness of the materials are estimated. The extraordinarily strong absorption and the absence of a Compton shoulder component have been confirmed. These characteristics suggest reprocessing materials that are distributed in a narrow solid angle or scattering, primarily by warm free electrons or neutral hydrogen. This measurement was achieved using the SXS detection of 19 photons. It provides strong motivation for follow-up observations of this and other X-ray binaries using the X-ray Astrophysics Recovery Mission and other comparable future instruments.

  4. MOLECULAR GAS VELOCITY DISPERSIONS IN THE ANDROMEDA GALAXY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caldú-Primo, Anahi; Schruba, Andreas, E-mail: caldu@mpia.de, E-mail: schruba@mpe.mpg.de

    In order to characterize the distribution of molecular gas in spiral galaxies, we study the line profiles of CO (1 – 0) emission in Andromeda, our nearest massive spiral galaxy. We compare observations performed with the IRAM 30 m single-dish telescope and with the CARMA interferometer at a common resolution of 23 arcsec ≈ 85 pc × 350 pc and 2.5 km s{sup −1}. When fitting a single Gaussian component to individual spectra, the line profile of the single dish data is a factor of 1.5 ± 0.4 larger than the interferometric data one. This ratio in line widths ismore » surprisingly similar to the ratios previously observed in two other nearby spirals, NGC 4736 and NGC 5055, but measured at ∼0.5–1 kpc spatial scale. In order to study the origin of the different line widths, we stack the individual spectra in five bins of increasing peak intensity and fit two Gaussian components to the stacked spectra. We find a unique narrow component of FWHM = 7.5 ± 0.4 km s{sup −1} visible in both the single dish and the interferometric data. In addition, a broad component with FWHM = 14.4 ± 1.5 km s{sup −1} is present in the single-dish data, but cannot be identified in the interferometric data. We interpret this additional broad line width component detected by the single dish as a low brightness molecular gas component that is extended on spatial scales >0.5 kpc, and thus filtered out by the interferometer. We search for evidence of line broadening by stellar feedback across a range of star formation rates but find no such evidence on ∼100 pc spatial scale when characterizing the line profile by a single Gaussian component.« less

  5. Metabolomic assessment of key maize resources: GC-MS and NMR profiling of grain from B73 hybrids of the nested association mapping (NAM) founders and of geographically diverse landraces

    USDA-ARS?s Scientific Manuscript database

    The present study expands metabolomic assessments of maize beyond commercial elite lines to include two sets of publicly available lines used extensively in the scientific community to investigate the genetic basis of complex plant traits or that may serve as a source of new alleles for improving mo...

  6. Isolation and characterization of an anticancer catechol compound from Semecarpus anacardium.

    PubMed

    Nair, P K Raveedran; Melnick, Steven J; Wnuk, Stanislaw F; Rapp, Magdalena; Escalon, Enrique; Ramachandran, Cheppail

    2009-04-21

    The fruits and seeds of Semecarpus anacardium are used widely for the treatment of human cancers and other diseases in the Ayurvedic and Sidda systems of medicine in India. The principal aim of this investigation was to isolate and characterize the anticancer compound from the kernel of Semecarpus anacardium nut. The bioactivity-tailored isolation and detailed chemical characterization were used to identify the active compound. Cytotoxicity, apoptosis, cell cycle arrest as well as synergism between the identified anticancer compound and doxorubicin in human tumor cell lines were analyzed. GC/MS, IR, proton NMR, carbon NMR and collisionally induced dissociation (CID) spectra analysis showed that the isolated active compound is 3-(8'(Z),11'(Z)-pentadecadienyl) catechol (SA-3C). SA-3C is cytotoxic to tumor cell lines with IC(50) values lower than doxorubicin and even multidrug resistant tumor cell lines were equally sensitive to SA-3C. SA-3C induced apoptosis in human leukemia cell lines in a dose-dependent manner and showed synergistic cytotoxicity with doxorubicin. The cell cycle arrest induced by SA-3C at S- and G(2)/M-phases correlated with inhibition of checkpoint kinases. SA-3C isolated from the kernel of Semecarpus anacardium can be developed as an important anticancer agent for single agent and/or multiagent cancer therapy.

  7. Development of sulfadiazine-decorated PLGA nanoparticles loaded with 5-fluorouracil and cell viability.

    PubMed

    Guimarães, Pedro Pires Goulart; Oliveira, Sheila Rodrigues; de Castro Rodrigues, Gabrielle; Gontijo, Savio Morato Lacerda; Lula, Ivana Silva; Cortés, Maria Esperanza; Denadai, Ângelo Márcio Leite; Sinisterra, Rubén Dario

    2015-01-08

    The aim of this work was to synthesize sulfadiazine-poly(lactide-co-glycolide) (SUL-PLGA) nanoparticles (NPs) for the efficient delivery of 5-fluorouracil to cancer cells. The SUL-PLGA conjugation was assessed using FTIR, 1H-NMR, 13C-NMR, elemental analysis and TG and DTA analysis. The SUL-PLGA NPs were characterized using transmission and scanning electron microscopy and dynamic light scattering. Additionally, the zeta potential, drug content, and in vitro 5-FU release were evaluated. We found that for the SUL-PLGA NPs, Dh = 114.0 nm, ZP = -32.1 mV and the encapsulation efficiency was 49%. The 5-FU was released for up to 7 days from the NPs. Cytotoxicity evaluations of 5-FU-loaded NPs (5-FU-SUL-PLGA and 5-FU-PLGA) on two cancer cell lines (Caco-2, A431) and two normal cell lines (fibroblast, osteoblast) were compared. Higher cytotoxicity of 5-FU-SUL-PLGA NPs were found to both cancer cell lines when compared to normal cell lines, demonstrating that the presence of SUL could significantly enhance the cytotoxicity of the 5-FU-SUL-PLGA NPs when compared with 5-FU-PLGA NPs. Thus, the development of 5-FU-SUL-PLGA NPs to cancer cells is a promising strategy for the 5-FU antitumor formulation in the future.

  8. 21 CFR 130.14 - General statements of substandard quality and substandard fill of container.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... pound, the type of the first line is 12-point, and of the second, 8-point. If such quantity is 1 pound or more, the type of the first line is 14-point, and of the second, 10-point. Such statement is enclosed within lines, not less than 6 points in width, forming a rectangle. Such statement, with enclosing...

  9. Magnetic fluorescent lamp

    DOEpatents

    Berman, S.M.; Richardson R.W.

    1983-12-29

    The radiant emission of a mercury-argon discharge in a fluorescent lamp assembly is enhanced by providing means for establishing a magnetic field with lines of force along the path of electron flow through the bulb of the lamp assembly, to provide Zeeman splitting of the ultraviolet spectral line. Optimum results are obtained when the magnetic field strength causes a Zeeman splitting of approximately 1.7 times the thermal line width.

  10. Beam maser measurements of CH3OH rotational transitions

    NASA Technical Reports Server (NTRS)

    Gaines, L.; Casleton, K. H.; Kukolich, S. G.

    1974-01-01

    Precise measurements of rotational transitions in methanol are reported that were made by means of beam maser spectrometers. No hyperfine structure was resolved at a resonance line width of 8 kHz. Accurate center frequencies for the transitions measured are useful for determining Doppler shifts for observed interstellar lines.

  11. Circumnuclear star formation in Mrk 42 mapped with Gemini Near-infrared Integral Field Spectrograph

    NASA Astrophysics Data System (ADS)

    Hennig, Moiré G.; Riffel, Rogemar A.; Dors, O. L.; Riffel, Rogerio; Storchi-Bergmann, Thaisa; Colina, Luis

    2018-06-01

    We present Gemini Near-infrared Integral Field Spectrograph (NIFS) observations of the inner 1.5 × 1.5 kpc2 of the narrow-line Seyfert 1 galaxy Mrk 42 at a spatial resolution of 60 pc and spectral resolution of 40 km s^{-1}. The emission-line flux and equivalent width maps clearly show a ring of circumnuclear star formation regions surrounding the nucleus with radius of ˜500 pc. The spectra of some of these regions show molecular absorption features which are probably of CN, TiO, or VO, indicating the presence of massive evolved stars in the thermally pulsing asymptotic giant branch phase. The gas kinematics of the ring is dominated by rotation in the plane of the galaxy, following the large-scale disc geometry, while at the nucleus an additional outflowing component is detected blueshifted by 300-500 km s^{-1}, relative to the systemic velocity of the galaxy. Based on the equivalent width of Br γ we find pieces of evidence of gradients in the age of H II regions along the ring of Mrk 42, favouring the pearls on a string scenario of star formation. The broad component of Pa β emission line presents a Full Width at Half Maximum of ˜1480 km s^{-1}, implying in a mass of ˜2.5 × 106 M⊙ for the central supermassive black hole. Based on emission-line ratios we conclude that besides the active galactic nucleus, Mrk 42 presents nuclear Starburst activity.

  12. A Coordinated X-Ray and Optical Campaign of the Nearby Massive Binary Sigma Orionis Aa. II; X-Ray Variability

    NASA Technical Reports Server (NTRS)

    Nichols, J.; Huenemoerder, D. P.; Corcoran, M. F.; Waldron, W.; Naze, Y; Pollock, A. M. T.; Moffat, A. F. J.; Lauer, J.; Shenar, T.; Russell, C. M. P.; hide

    2015-01-01

    We present time-resolved and phase-resolved variability studies of an extensive X-ray high-resolution gratings spectral dataset of the Sigma Ori Aa binary system. The four observations, obtained with Chandra ACIS HETGS, have a total exposure time of approximately 479 kiloseconds and provide nearly complete binary phase coverage. Variability of the total X-ray flux in the range 5-25 angstroms is confirmed, with maximum amplitude of about plus or minus 15 percent within a single approximately 125 kiloseconds observation. Periods of 4.76 days and 2.04 days are found in the total X-ray flux, as well as an apparent overall increase in flux level throughout the 9-day observational campaign. Using 40 kiloseconds contiguous spectra derived from the original observations, we investigate variability of emission line parameters and ratios. Several emission lines are shown to be variable, including S XV, Si XIII, and Ne IX. For the first time, variations of the X-ray emission line widths as a function of the binary phase are found in a binary system, with the smallest widths at phi equals 0.0 when the secondary Aa2 is at inferior conjunction. We use the results of an SPH radiative transfer code model, customized for this project, to relate the presence of a low density cavity in the primary stellar wind embedded shock that is associated with the secondary star to the emission line width variability.

  13. Eclipsing and density effects on the spectral behavior of Beta Lyrae binary system in the UV

    NASA Astrophysics Data System (ADS)

    Sanad, M. R.

    2010-01-01

    We analyze both long and short high resolution ultraviolet spectrum of Beta Lyrae eclipsing binary system observed with the International Ultraviolet Explorer (IUE) between 1980 and 1989. The main spectral features are P Cygni profiles originating from different environments of Beta Lyrae. A set of 23 Mg II k&h spectral lines at 2800 Å, originating from the extended envelope [Hack, M., 1980. IAUS, 88, 271H], have been identified and measured to determine their fluxes and widths. We found that there is spectral variability for these physical parameters with phase, similar to that found for the light curve [Kondo, Y., McCluskey, G.E., Jeffery, M.M.S., Ronald, S.P., Carolina, P.S. McCluskey, Joel, A.E., 1994. ApJ, 421, 787], which we attribute to the eclipse effects [Ak, H., Chadima, P., Harmanec, P., Demircan, O., Yang, S., Koubský, P., Škoda, P., Šlechta, M., Wolf, M., Božić, H., 2007. A&A, 463, 233], in addition to the changes of density and temperature of the region from which these lines are coming, as a result of the variability of mass loss from the primary star to the secondary [Hoffman, J.L., Nordsieck, K.H., Fox, G.K., 1998. AJ, 115, 1576; Linnell, A.P., Hubeny, I., Harmanec, P., 1998. ApJ, 509, 379]. Also we present a study of Fe II spectral line at 2600 Å, originating from the atmosphere of the primary star [Hack, M., 1980. IAUS, 88, 271H]. We found spectral variability of line fluxes and line widths with phase similar to that found for Mg II k&h lines. Finally we present a study of Si IV spectral line at 1394 Å, originating from the extended envelope [Hack, M., 1980. IAUS, 88, 271H]. A set of 52 Si IV spectral line at 1394 Å have been identified and measured to determine their fluxes and widths. Also we found spectral variability of these physical parameters with phase similar to that found for Mg II k&h and Fe II spectral lines.

  14. An NMR Study of Microvoids in Polymers

    NASA Technical Reports Server (NTRS)

    Toy, James; Mattrix, Larry

    1996-01-01

    An understanding of polymer defect structures, like microvoids in polymeric matrices, is most crucial to their fabrication and application potential. In this project guest atoms are introduced into the microvoids in PMR-15 and NMR is used to determine microvoid sizes and locations. Xenon is a relatively inert probe that would normally not be found naturally in polymer or in NMR probe materials. There are two NMR active Xenon isotopes, Xe-129 and Xe-131. The Xe atom has a very high polarizability, which makes it sensitive to the intracrystalline environment of polymers. Interactions between the Xe atoms and the host matrix perturb and Xe electron cloud, deshielding the nuclei, and thereby expanding the range of the observed NMR chemical shifts. This chemical shift range which may be as large as 5000 ppm, permits subtle structural and chemical effects to be studied with high sensitivity. The Xe-129-NMR line shape has been found to vary in response to changes in the pore symmetry of the framework hosts in Zeolites and Clathrasil compounds. Before exposure to Xe gas, the PMR-15 samples were dried in a vacuum oven at 150 C for 48 hours. The samples were then exposed to Xe gas at 30 psi for 72 hours and sealed in glass tubes with 1 atmosphere of Xenon gas. Xenon gas at 1 atmosphere was used to tune up the spectrometer and to set up the appropriate NMR parameters. A series of spectra were obtained interspersed with applications of vacuum and heating to drive out the adsorbed Xe and determine the role of Xe-Xe interactions in the observed chemical shift.

  15. WILSON-BAPPU EFFECT: EXTENDED TO SURFACE GRAVITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Sunkyung; Kang, Wonseok; Lee, Jeong-Eun

    2013-10-01

    In 1957, Wilson and Bappu found a tight correlation between the stellar absolute visual magnitude (M{sub V} ) and the width of the Ca II K emission line for late-type stars. Here, we revisit the Wilson-Bappu relationship (WBR) to claim that the WBR can be an excellent indicator of stellar surface gravity of late-type stars as well as a distance indicator. We have measured the width (W) of the Ca II K emission line in high-resolution spectra of 125 late-type stars obtained with the Bohyunsan Optical Echelle Spectrograph and adopted from the Ultraviolet and Visual Echelle Spectrograph archive. Based onmore » our measurement of the emission line width (W), we have obtained a WBR of M{sub V} = 33.76 - 18.08 log W. In order to extend the WBR to being a surface gravity indicator, stellar atmospheric parameters such as effective temperature (T{sub eff}), surface gravity (log g), metallicity ([Fe/H]), and micro-turbulence ({xi}{sub tur}) have been derived from self-consistent detailed analysis using the Kurucz stellar atmospheric model and the abundance analysis code, MOOG. Using these stellar parameters and log W, we found that log g = -5.85 log W+9.97 log T{sub eff} - 23.48 for late-type stars.« less

  16. Large-Scale CO Maps of the Lupus Molecular Cloud Complex

    NASA Astrophysics Data System (ADS)

    Tothill, N. F. H.; Löhr, A.; Parshley, S. C.; Stark, A. A.; Lane, A. P.; Harnett, J. I.; Wright, G. A.; Walker, C. K.; Bourke, T. L.; Myers, P. C.

    2009-11-01

    Fully sampled degree-scale maps of the 13CO 2-1 and CO 4-3 transitions toward three members of the Lupus Molecular Cloud Complex—Lupus I, III, and IV—trace the column density and temperature of the molecular gas. Comparison with IR extinction maps from the c2d project requires most of the gas to have a temperature of 8-10 K. Estimates of the cloud mass from 13CO emission are roughly consistent with most previous estimates, while the line widths are higher, around 2 km s-1. CO 4-3 emission is found throughout Lupus I, indicating widespread dense gas, and toward Lupus III and IV. Enhanced line widths at the NW end and along the edge of the B 228 ridge in Lupus I, and a coherent velocity gradient across the ridge, are consistent with interaction between the molecular cloud and an expanding H I shell from the Upper-Scorpius subgroup of the Sco-Cen OB Association. Lupus III is dominated by the effects of two HAe/Be stars, and shows no sign of external influence. Slightly warmer gas around the core of Lupus IV and a low line width suggest heating by the Upper-Centaurus-Lupus subgroup of Sco-Cen, without the effects of an H I shell.

  17. Line shape parameters of air-broadened water vapor transitions in the ν 1 and ν 3 spectral region

    DOE PAGES

    Malathy Devi, V.; Gamache, Robert R.; Vispoel, Bastien; ...

    2017-11-26

    A Bruker IFS-120HR Fourier transform spectrometer located at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington was used to record a series of spectra of pure H 2O and air-broadened H 2O in the regions of the ν 1 and ν 3 bands (3450–4000 cm -1) at different pressures, temperatures and volume mixing ratios of H 2O in air. Eighteen high-resolution, high signal-to-noise (S/N) ratio absorption spectra were recorded at T = 268, 296 and 353 K using two temperature-controlled absorption cells with path lengths of 9.906(1) and 19.95(1) cm. Furthermore, the resolution of the spectra recorded with themore » 9.906 cm and 19.95 cm absorption cells was 0.006 and 0.008 cm -1, respectively. A multispectrum nonlinear least squares fitting technique was employed to fit all the eighteen spectra simultaneously to retrieve 313 accurate line positions, 315 intensities, 229 Lorentz air-broadened half-width and 213 air-shift coefficients and their temperature dependences (136 for air-broadened width and 128 for air-shift coefficients, respectively). Room temperature self-broadened half-width coefficients for 209 transitions and self-shift coefficients for 106 transitions were also measured. Line mixing coefficients were experimentally determined for isolated sets of 10 transition pairs for H 2O-air and 8 transition pairs for H 2O-H 2O using the off-diagonal relaxation matrix element formalism, and 85 quadratic speed dependence parameters were measured. Modified Complex Robert-Bonamy (MCRB) calculations of self-, and air-broadened (from N 2- and O 2-broadening) half-width and air-shift coefficients, and temperature dependence exponents of air-broadened half-width coefficients are made. Finally, the measurements and calculations are compared with each other and with similar parameters reported in the literature.« less

  18. Line shape parameters of air-broadened water vapor transitions in the ν1 and ν3 spectral region

    NASA Astrophysics Data System (ADS)

    Malathy Devi, V.; Gamache, Robert R.; Vispoel, Bastien; Renaud, Candice L.; Chris Benner, D.; Smith, Mary Ann H.; Blake, Thomas A.; Sams, Robert L.

    2018-06-01

    A Bruker IFS-120HR Fourier transform spectrometer located at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington was used to record a series of spectra of pure H2O and air-broadened H2O in the regions of the ν1 and ν3 bands (3450-4000 cm-1) at different pressures, temperatures and volume mixing ratios of H2O in air. Eighteen high-resolution, high signal-to-noise (S/N) ratio absorption spectra were recorded at T = 268, 296 and 353 K using two temperature-controlled absorption cells with path lengths of 9.906(1) and 19.95(1) cm. The resolution of the spectra recorded with the 9.906 cm and 19.95 cm absorption cells was 0.006 and 0.008 cm-1, respectively. A multispectrum nonlinear least squares fitting technique was employed to fit all the eighteen spectra simultaneously to retrieve 313 accurate line positions, 315 intensities, 229 Lorentz air-broadened half-width and 213 air-shift coefficients and their temperature dependences (136 for air-broadened width and 128 for air-shift coefficients, respectively). Room temperature self-broadened half-width coefficients for 209 transitions and self-shift coefficients for 106 transitions were also measured. Line mixing coefficients were experimentally determined for isolated sets of 10 transition pairs for H2O-air and 8 transition pairs for H2O-H2O using the off-diagonal relaxation matrix element formalism, and 85 quadratic speed dependence parameters were measured. Modified Complex Robert-Bonamy (MCRB) calculations of self-, and air-broadened (from N2- and O2-broadening) half-width and air-shift coefficients, and temperature dependence exponents of air-broadened half-width coefficients are made. The measurements and calculations are compared with each other and with similar parameters reported in the literature.

  19. Line shape parameters of air-broadened water vapor transitions in the ν 1 and ν 3 spectral region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malathy Devi, V.; Gamache, Robert R.; Vispoel, Bastien

    A Bruker IFS-120HR Fourier transform spectrometer located at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington was used to record a series of spectra of pure H 2O and air-broadened H 2O in the regions of the ν 1 and ν 3 bands (3450–4000 cm -1) at different pressures, temperatures and volume mixing ratios of H 2O in air. Eighteen high-resolution, high signal-to-noise (S/N) ratio absorption spectra were recorded at T = 268, 296 and 353 K using two temperature-controlled absorption cells with path lengths of 9.906(1) and 19.95(1) cm. Furthermore, the resolution of the spectra recorded with themore » 9.906 cm and 19.95 cm absorption cells was 0.006 and 0.008 cm -1, respectively. A multispectrum nonlinear least squares fitting technique was employed to fit all the eighteen spectra simultaneously to retrieve 313 accurate line positions, 315 intensities, 229 Lorentz air-broadened half-width and 213 air-shift coefficients and their temperature dependences (136 for air-broadened width and 128 for air-shift coefficients, respectively). Room temperature self-broadened half-width coefficients for 209 transitions and self-shift coefficients for 106 transitions were also measured. Line mixing coefficients were experimentally determined for isolated sets of 10 transition pairs for H 2O-air and 8 transition pairs for H 2O-H 2O using the off-diagonal relaxation matrix element formalism, and 85 quadratic speed dependence parameters were measured. Modified Complex Robert-Bonamy (MCRB) calculations of self-, and air-broadened (from N 2- and O 2-broadening) half-width and air-shift coefficients, and temperature dependence exponents of air-broadened half-width coefficients are made. Finally, the measurements and calculations are compared with each other and with similar parameters reported in the literature.« less

  20. Geocoronal Balmer α line profile observations and forward-model analysis

    NASA Astrophysics Data System (ADS)

    Mierkiewicz, E. J.; Bishop, J.; Roesler, F. L.; Nossal, S. M.

    2006-05-01

    High spectral resolution geocoronal Balmer α line profile observations from Pine Bluff Observatory (PBO) are presented in the context of forward-model analysis. Because Balmer series column emissions depend significantly on multiple scattering, retrieval of hydrogen parameters of general aeronomic interest from these observations (e.g., the hydrogen column abundance) currently requires a forward modeling approach. This capability is provided by the resonance radiative transfer code LYAO_RT. We have recently developed a parametric data-model comparison search procedure employing an extensive grid of radiative transport model input parameters (defining a 6-dimensional parameter space) to map-out bounds for feasible forward model retrieved atomic hydrogen density distributions. We applied this technique to same-night (March, 2000) ground-based Balmer α data from PBO and geocoronal Lyman β measurements from the Espectrógrafo Ultravioleta extremo para la Radiación Difusa (EURD) instrument on the Spanish satellite MINISAT-1 (provided by J.F. Gómez and C. Morales of the Laboratorio de Astrofisica Espacial y Física Fundamental, INTA, Madrid, Spain) in order to investigate the modeling constraints imposed by two sets of independent geocoronal intensity measurements, both of which rely on astronomical calibration methods. In this poster we explore extending this analysis to the line profile information also contained in the March 2000 PBO Balmer α data set. In general, a decrease in the Doppler width of the Balmer α emission with shadow altitude is a persistent feature in every night of PBO observations in which a wide range of shadow altitudes are observed. Preliminary applications of the LYAO_RT code, which includes the ability to output Doppler line profiles for both the singly and multiply scattered contributions to the Balmer α emission line, displays good qualitative agreement with regard to geocoronal Doppler width trends observed from PBO. Model-data Balmer α Doppler width comparisons, using the best-fit model parameters obtained during the March 2000 PBO/EURD forward-model study, will be presented and discussed, including the feasibility of using Balmer α observed Doppler widths as an additional model constraint in our forward-model search procedure.

  1. Anticancer activity of ferrocenylthiosemicarbazones.

    PubMed

    Sandra, Cortez-Maya; Elena, Klimova; Marcos, Flores-Alamo; Elena, Martínez-Klimova; Arturo, Ramírez-Ramírez; Teresa, Ramírez Apan; Marcos, Martínez-García

    2014-03-01

    Aliphatic and aromatic ferrocenylthiosemicarbazones were synthesized. The characterization of the new ferrocenylthiosemicarbazones was done by IR, (1)H-NMR and (13)C-NMR spectroscopy, elemental analysis and X-ray diffraction studies. The biological activity of the obtained compounds was assessed in terms of anticancer activity. Their activity against U251 (human glyoblastoma), PC-3 (human prostatic adenocarcinoma), K562 (human chronic myelogenous leukemia), HCT-15 (human colorectal adenocarcinoma), MCF-7 (human mammary adenocarcinoma) and SKLU-1 (human lung adenocarcinoma) cell lines was studied and compared with cisplatin. All tested compounds showed good activity and the aryl-chloro substituted ferrocenylthiosemicarbazones showed the best anticancer activity.

  2. Magnetic and transport properties of layered LixCoO2 single crystals

    NASA Astrophysics Data System (ADS)

    Miyoshi, Kiyotaka; Kondo, Hiroaki; Miura, Motonobu; Iwai, Chika; Fujiwara, Kenji; Takeuchi, Jun

    2009-03-01

    Electrical resistivity (ρ) and DC magnetization (M) have been measured as a function of temperature (T) for layered LixCoO2 (x = 0.92, 0.47 and 0.42) single crystals, which are obtained by deintercalating Li from single crystals grown in a floating-zone furnace through immersion in NO2BF4/CH3CN solution. The ρ—T curve for x = 0.92 is found to be insulating but a metallic behavior is observed for x = 0.47 and 0.42. The M—T curve both for x = 0.47 and 0.42 exhibits a sudden decrease below Ts~170 K. Also, the ρ—T curve both for x = 0.47 and 0.42 shows a jump-like anomaly at Ts~170 K with thermal hysteresis, indicating a first-order phase transition. These behaviors of the M—T and ρ—T curve suggest an occurrence of spin state transition of Co+4 at ~170 K. Furthermore, the M—T curve after rapid cooling becomes different from that after slow cooling below TF. TF depends on x and appears to correspond to the temperature at which the motional narrowing of the 7Li NMR line width is observed, suggesting that the Li ions are released from the regular site of the rigid lattice and begin to diffuse above TF.

  3. Medium-chain versus long-chain triacylglycerol emulsion hydrolysis by lipoprotein lipase and hepatic lipase: Implications for the mechanisms of lipase action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deckelbaum, R.J.; Hamilton, J.A.; Butbul, E.

    1990-02-06

    To explore how enzyme affinities and enzyme activities regulate hydrolysis of water-insoluble substrates, the authors compared hydrolysis of phospholipid-stabilized emulsions of medium-chain (MCT) versus long-chain triacylglycerols (LCT). Because substrate solubility at the emulsion surface might modulate rates of hydrolysis, the ability of egg yolk phosphatidylcholine to solubilize MCT was examined by NMR spectroscopy. Chemical shift measurements showed that 11 mol % of ({sup 13}C)carbonyl enriched trioctanoin was incorporated into phospholipid vesicles as a surface component. Line widths of trioctanoin surface peaks were half that of LCT, and relaxation times, T{sub 1}, were also shorter for trioctanoin, showing greater mobility formore » MCT in phospholipid. In assessing the effects of these differences in solubility on lipolysis, they found that both purified bovine milk lipoprotein lipase and human hepatic lipase hydrolyzed MCT at rates at least 2-fold higher than for LCT. Differences in affinity were also demonstrated in mixed incubations where increasing amounts of LCT emulsion resulted in decreased hydrolysis of MCT emulsions. These results suggest that despite lower enzyme affinity for MCT emulsions, shorter chain triacylglycerols are more readily hydrolyzed by lipoprotein and hepatic lipases than long-chain triacylglycerols because of greater MCT solubility and mobility at the emulsion-water interface.« less

  4. Sub-0.1 μm optical track width measurement

    NASA Astrophysics Data System (ADS)

    Smith, Richard J.; See, Chung W.; Somekh, Mike G.; Yacoot, Andrew

    2005-08-01

    In this paper, we will describe a technique that combines a common path scanning optical interferometer with artificial neural networks (ANN), to perform track width measurements that are significantly beyond the capability of conventional optical systems. Artificial neural networks have been used for many different applications. In the present case, ANNs are trained using profiles of known samples obtained from the scanning interferometer. They are then applied to tracks that have not previously been exposed to the networks. This paper will discuss the impacts of various ANN configurations, and the processing of the input signal on the training of the network. The profiles of the samples, which are used as the inputs to the ANNs, are obtained with a common path scanning optical interferometer. It provides extremely repeatable measurements, with very high signal to noise ratio, both are essential for the working of the ANNs. The characteristics of the system will be described. A number of samples with line widths ranging from 60nm-3μm have been measured to test the system. The system can measure line widths down to 60nm with a standard deviation of 3nm using optical wavelength of 633nm and a system numerical aperture of 0.3. These results will be presented in detail along with a discussion of the potential of this technique.

  5. Orientational alignment in solids from bidimensional isotropic-anisotropic nuclear magnetic resonance spectroscopy: applications to the analysis of aramide fibers.

    PubMed

    Sachleben, J R; Frydman, L

    1997-02-01

    The use of two-dimensional isotropic-anisotropic correlation spectroscopy for the analysis of orientational alignment in solids is presented. The theoretical background and advantages of this natural-abundance 13C NMR method of measurement are discussed, and demonstrated with a series of powder and single-crystal variable-angle correlation spectroscopy (VACSY) experiments on model systems. The technique is subsequently employed to analyze the orientational distributions of three polymer fibers: Kevlar 29, Kevlar 49 and Kevlar 149. Using complementary two-dimensional NMR data recorded on synthetic samples of poly(p-phenyleneterephthalamide), the precursor of Kevlar, it was found that these commercial fibers possess molecules distributed over a very narrow orientational range with respect to the macroscopic director. The widths measured for these director distribution arrangements were (12 +/- 1.5) degrees for Kevlar 29, (15 +/- 1.5) degrees for Kevlar 49, and (8 +/- 1.5) degrees for Kevlar 149. These figures compare well with previous results obtained for non-commercial fiber samples derived from the same polymer.

  6. k and q Dedicated to Paul Callaghan

    NASA Astrophysics Data System (ADS)

    Blümich, Bernhard

    2016-06-01

    The symbols k and q denote wave numbers in scattering experiments as well as in NMR imaging. Their exploration in NMR is intimately linked to the legacy of Paul Callaghan with his books Magnetic Resonance Microscopy and Translational Dynamics & Magnetic Resonance (Oxford University Press, Oxford 1991 and 2011) placing their focus with their titles on k and q, respectively. Some aspects of k and q have been revisited in the Paul Callaghan lecture of the author at the ISMAR Conference in Shanghai in 2015, which are reviewed here. In particular, there are two definitions of q, one relating to diffusive displacement (q) and the other to coherent flow (qv). Concerning the latter, it turns out, that in the short gradient pulse limit, the common anti-phase pulsed field-gradient scheme can be replaced with schemes employing three and more gradient pulses, which derive from differentiation rules in numerical analysis. Practical gradient modulation schemes with finite gradient pulse widths follow from these to measure velocity with improved accuracy. This approach can be expanded to acceleration and higher order transport coefficients with applications to measurements of flow and potentially also restricted diffusion.

  7. 79/81Br nuclear quadrupole resonance spectroscopic characterization of halogen bonds in supramolecular assemblies† †Electronic supplementary information (ESI) available: 13C SSNMR spectra, powder X-ray diffractograms. See DOI: 10.1039/c8sc01094c

    PubMed Central

    Cerreia Vioglio, P.; Szell, P. M. J.; Chierotti, M. R.; Gobetto, R.

    2018-01-01

    Despite the applicability of solid-state NMR to study the halogen bond, the direct NMR detection of 79/81Br covalently bonded to carbon remains impractical due to extremely large spectral widths, even at ultra-high magnetic fields. In contrast, nuclear quadrupole resonance (NQR) offers comparatively sharp resonances. Here, we demonstrate the abilities of 79/81Br NQR to characterize the electronic changes in the C–Br···N halogen bonding motifs found in supramolecular assemblies constructed from 1,4-dibromotetrafluorobenzene and nitrogen-containing heterocycles. An increase in the bromine quadrupolar coupling constant is observed, which correlates linearly with the halogen bond distance (dBr···N). Notably, 79/81Br NQR is able to distinguish between two symmetry-independent halogen bonds in the same crystal structure. This approach offers a rapid and reliable indication for the occurrence of a halogen bond, with experimental times limited only by the observation of 79/81Br NQR resonances. PMID:29899948

  8. Natural abundance 17O DNP two-dimensional and surface-enhanced NMR spectroscopy

    DOE PAGES

    Perras, Frédéric A.; Kobayashi, Takeshi; Pruski, Marek

    2015-06-22

    Due to its extremely low natural abundance and quadrupolar nature, the 17O nuclide is very rarely used for spectroscopic investigation of solids by NMR without isotope enrichment. Additionally, the applicability of dynamic nuclear polarization (DNP), which leads to sensitivity enhancements of 2 orders of magnitude, to 17O is wrought with challenges due to the lack of spin diffusion and low polarization transfer efficiency from 1H. Here, we demonstrate new DNP-based measurements that extend 17O solid-state NMR beyond its current capabilities. The use of the PRESTO technique instead of conventional 1H– 17O cross-polarization greatly improves the sensitivity and enables the facilemore » measurement of undistorted line shapes and two-dimensional 1H– 17O HETCOR NMR spectra as well as accurate internuclear distance measurements at natural abundance. This was applied for distinguishing hydrogen-bonded and lone 17O sites on the surface of silica gel; the one-dimensional spectrum of which could not be used to extract such detail. As a result, this greatly enhanced sensitivity has enabled, for the first time, the detection of surface hydroxyl sites on mesoporous silica at natural abundance, thereby extending the concept of DNP surface-enhanced NMR spectroscopy to the 17O nuclide.« less

  9. Thermal heterogeneity within aqueous materials quantified by 1H NMR spectroscopy: Multiparametric validation in silico and in vitro

    NASA Astrophysics Data System (ADS)

    Lutz, Norbert W.; Bernard, Monique

    2018-02-01

    We recently suggested a new paradigm for statistical analysis of thermal heterogeneity in (semi-)aqueous materials by 1H NMR spectroscopy, using water as a temperature probe. Here, we present a comprehensive in silico and in vitro validation that demonstrates the ability of this new technique to provide accurate quantitative parameters characterizing the statistical distribution of temperature values in a volume of (semi-)aqueous matter. First, line shape parameters of numerically simulated water 1H NMR spectra are systematically varied to study a range of mathematically well-defined temperature distributions. Then, corresponding models based on measured 1H NMR spectra of agarose gel are analyzed. In addition, dedicated samples based on hydrogels or biological tissue are designed to produce temperature gradients changing over time, and dynamic NMR spectroscopy is employed to analyze the resulting temperature profiles at sub-second temporal resolution. Accuracy and consistency of the previously introduced statistical descriptors of temperature heterogeneity are determined: weighted median and mean temperature, standard deviation, temperature range, temperature mode(s), kurtosis, skewness, entropy, and relative areas under temperature curves. Potential and limitations of this method for quantitative analysis of thermal heterogeneity in (semi-)aqueous materials are discussed in view of prospective applications in materials science as well as biology and medicine.

  10. Three-dimensional analysis of the change in the curvature of the smiling line following orthodontic treatment in incisor class II division 1 malocclusion.

    PubMed

    Mah, Michael; Tan, Wei Chuan; Ong, Sim Heng; Chan, Yiong Huak; Foong, Kelvin

    2014-12-01

    To investigate the different effects of changes in the occlusal plane, incisors inclination, and maxillary intercanine width on the curvature of the smiling line. Records of 46 subjects (28 females and 18 males, mean age 16.6 ± 4.2 years) with incisor class II division 1 malocclusions were selected. All subjects had four premolar extractions and were treated with preadjusted edgewise appliances. Pre- and post-treatment maxillary dental digital models were virtually aligned via corresponding landmarks to the respective lateral cephalograms. Subsequent two-dimensional superimposition of the aligned cephalograms facilitated the three-dimensional superimposition of the pre- and post-treatment models. This process allowed the quantification of the curvature from a frontal perspective of the models. The change in curvature was then correlated with changes in the cephalometric inclination of the anterior occlusal plane (AOP), functional occlusal plane (FOP), maxillary central incisor (U1), and the intercanine width. Orthodontic correction in this sample resulted in the clockwise rotation of the anterior occlusal plane (5.84 degrees), reduction in proclination of the incisors (-14.39 degrees), increase in intercanine width (2.48mm), and a corresponding increase in the curvature of the smiling line (6.83 degrees). The change in curvature of the smiling line in these subjects was found to be related more significantly to the magnitude of difference in the inclination between the pre-treatment AOP and FOP than to the change in the inclination of the maxillary incisors. With orthodontic treatment, the smiling line can be correlated with cephalometric data to improve or maintain the curvature. © The Author 2013. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Line Shape Parameters of Water Vapor Transitions in the 3645-3975 cm^{-1} Region

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy; Benner, D. Chris; Gamache, Robert R.; Vispoel, Bastien; Renaud, Candice L.; Smith, Mary Ann H.; Sams, Robert L.; Blake, Thomas A.

    2017-06-01

    A Bruker IFS 120HR Fourier transform spectrometer (FTS) at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington was used to record a series of spectra in the regions of the ν_1 and ν_3 bands of H_2O. The samples included low pressures of pure H_2O as well as H_2O broadened by air at different pressures, temperatures and volume mixing ratios. We fit simultaneously 16 high-resolution (0.008 cm^{-1}), high S/N ratio absorption spectra recorded at 268, 296 and 353 K (L=19.95 cm), employing a multispectrum fitting technique to retrieve accurate line positions, relative intensities, Lorentz air-broadened half-width and pressure-shift coefficients and their temperature dependences for more than 220 H_2O transitions. Self-broadened half-width and self-shift coefficients were measured for over 100 transitions. For select sets of transition pairs for the H_2O-air system we determined collisional line mixing coefficients via the off-diagonal relaxation matrix element formalism, and we also measured speed dependence parameters for 85 transitions. Modified Complex Robert Bonamy (MCRB) calculations of the half-widths, line shifts, and temperature dependences were made for self-, N_2-, O_2-, and air-broadening. The measurements and calculations are compared with each other and with similar parameters reported in the literature. D. C. Benner, C. P. Rinsland, V. Malathy Devi, M. A. H. Smith, D. Atkins, JQSRT 53 (1995) 705-721. A. Levy, N. Lacome, C. Chackerian, Collisional line mixing, in Spectroscopy of the Earth's Atmosphere and Interstellar Medium, Academic Press, Inc., Boston (1992) 261-337.

  12. Insights into quasar UV spectra using unsupervised clustering analysis

    NASA Astrophysics Data System (ADS)

    Tammour, A.; Gallagher, S. C.; Daley, M.; Richards, G. T.

    2016-06-01

    Machine learning techniques can provide powerful tools to detect patterns in multidimensional parameter space. We use K-means - a simple yet powerful unsupervised clustering algorithm which picks out structure in unlabelled data - to study a sample of quasar UV spectra from the Quasar Catalog of the 10th Data Release of the Sloan Digital Sky Survey (SDSS-DR10) of Paris et al. Detecting patterns in large data sets helps us gain insights into the physical conditions and processes giving rise to the observed properties of quasars. We use K-means to find clusters in the parameter space of the equivalent width (EW), the blue- and red-half-width at half-maximum (HWHM) of the Mg II 2800 Å line, the C IV 1549 Å line, and the C III] 1908 Å blend in samples of broad absorption line (BAL) and non-BAL quasars at redshift 1.6-2.1. Using this method, we successfully recover correlations well-known in the UV regime such as the anti-correlation between the EW and blueshift of the C IV emission line and the shape of the ionizing spectra energy distribution (SED) probed by the strength of He II and the Si III]/C III] ratio. We find this to be particularly evident when the properties of C III] are used to find the clusters, while those of Mg II proved to be less strongly correlated with the properties of the other lines in the spectra such as the width of C IV or the Si III]/C III] ratio. We conclude that unsupervised clustering methods (such as K-means) are powerful methods for finding `natural' binning boundaries in multidimensional data sets and discuss caveats and future work.

  13. Signatures of Alfvén waves in the polar coronal holes as seen by EIS/Hinode

    NASA Astrophysics Data System (ADS)

    Banerjee, D.; Pérez-Suárez, D.; Doyle, J. G.

    2009-07-01

    Context: We diagnose the properties of the plume and interplume regions in a polar coronal hole and the role of waves in the acceleration of the solar wind. Aims: We attempt to detect whether Alfvén waves are present in the polar coronal holes through variations in EUV line widths. Methods: Using spectral observations performed over a polar coronal hole region with the EIS spectrometer on Hinode, we study the variation in the line width and electron density as a function of height. We use the density sensitive line pairs of Fe xii 186.88 Å and 195.119 Å and Fe xiii 203.82 Å and 202.04 Å. Results: For the polar region, the line width data show that the nonthermal line-of-sight velocity increases from 26~km s-1 at 10´´ above the limb to 42~km s-1 some 150´´ (i.e. ~110 000 km) above the limb. The electron density shows a decrease from 3.3 × 10^9~cm-3 to 1.9 × 10^8~cm-3 over the same distance. Conclusions: These results imply that the nonthermal velocity is inversely proportional to the quadratic root of the electron density, in excellent agreement with what is predicted for undamped radially propagating linear Alfvén waves. Our data provide signatures of Alfvén waves in the polar coronal hole regions, which could be important for the acceleration of the solar wind. Table [see full textsee full textsee full text] and Fig. [see full textsee full textsee full text] are only available in electronic form at http://www.aanda.org

  14. Automatic Tuning Matching Cycler (ATMC) in situ NMR spectroscopy as a novel approach for real-time investigations of Li- and Na-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pecher, Oliver; Bayley, Paul M.; Liu, Hao

    We have developed and explored the use of a new Automatic Tuning Matching Cycler (ATMC) in situ NMR probe system to track the formation of intermediate phases and investigate electrolyte decomposition during electrochemical cycling of Li- and Na-ion batteries (LIBs and NIBs). The new approach addresses many of the issues arising during in situ NMR, e.g., significantly different shifts of the multi-component samples, changing sample conditions (such as the magnetic susceptibility and conductivity) during cycling, signal broadening due to paramagnetism as well as interferences between the NMR and external cycler circuit that might impair the experiments. We provide practical insightmore » into how to conduct ATMC in situ NMR experiments and discuss applications of the methodology to LiFePO4 (LFP) and Na3V2(PO4)2F3 cathodes as well as Na metal anodes. Automatic frequency sweep 7Li in situ NMR reveals significant changes of the strongly paramagnetic broadened LFP line shape in agreement with the structural changes due to delithiation. Additionally, 31P in situ NMR shows a full separation of the electrolyte and cathode NMR signals and is a key feature for a deeper understanding of the processes occurring during charge/discharge on the local atomic scale of NMR. 31P in situ NMR with “on-the-fly” re-calibrated, varying carrier frequencies on Na3V2(PO4)2F3 as a cathode in a NIB enabled the detection of different P signals within a huge frequency range of 4000 ppm. The experiments show a significant shift and changes in the number as well as intensities of 31P signals during desodiation/sodiation of the cathode. The in situ experiments reveal changes of local P environments that in part have not been seen in ex situ NMR investigations. Furthermore, we applied ATMC 23Na in situ NMR on symmetrical Na–Na cells during galvanostatic plating. An automatic adjustment of the NMR carrier frequency during the in situ experiment ensured on-resonance conditions for the Na metal and electrolyte peak, respectively. Thus, interleaved measurements with different optimal NMR set-ups for the metal and electrolyte, respectively, became possible. This allowed the formation of different Na metal species as well as a quantification of electrolyte consumption during the electrochemical experiment to be monitored. The new approach is likely to benefit a further understanding of Na-ion battery chemistries.« less

  15. Automatic Tuning Matching Cycler (ATMC) in situ NMR spectroscopy as a novel approach for real-time investigations of Li- and Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Pecher, Oliver; Bayley, Paul M.; Liu, Hao; Liu, Zigeng; Trease, Nicole M.; Grey, Clare P.

    2016-04-01

    We have developed and explored the use of a new Automatic Tuning Matching Cycler (ATMC) in situ NMR probe system to track the formation of intermediate phases and investigate electrolyte decomposition during electrochemical cycling of Li- and Na-ion batteries (LIBs and NIBs). The new approach addresses many of the issues arising during in situ NMR, e.g., significantly different shifts of the multi-component samples, changing sample conditions (such as the magnetic susceptibility and conductivity) during cycling, signal broadening due to paramagnetism as well as interferences between the NMR and external cycler circuit that might impair the experiments. We provide practical insight into how to conduct ATMC in situ NMR experiments and discuss applications of the methodology to LiFePO4 (LFP) and Na3V2(PO4)2F3 cathodes as well as Na metal anodes. Automatic frequency sweep 7Li in situ NMR reveals significant changes of the strongly paramagnetic broadened LFP line shape in agreement with the structural changes due to delithiation. Additionally, 31P in situ NMR shows a full separation of the electrolyte and cathode NMR signals and is a key feature for a deeper understanding of the processes occurring during charge/discharge on the local atomic scale of NMR. 31P in situ NMR with "on-the-fly" re-calibrated, varying carrier frequencies on Na3V2(PO4)2F3 as a cathode in a NIB enabled the detection of different P signals within a huge frequency range of 4000 ppm. The experiments show a significant shift and changes in the number as well as intensities of 31P signals during desodiation/sodiation of the cathode. The in situ experiments reveal changes of local P environments that in part have not been seen in ex situ NMR investigations. Furthermore, we applied ATMC 23Na in situ NMR on symmetrical Na-Na cells during galvanostatic plating. An automatic adjustment of the NMR carrier frequency during the in situ experiment ensured on-resonance conditions for the Na metal and electrolyte peak, respectively. Thus, interleaved measurements with different optimal NMR set-ups for the metal and electrolyte, respectively, became possible. This allowed the formation of different Na metal species as well as a quantification of electrolyte consumption during the electrochemical experiment to be monitored. The new approach is likely to benefit a further understanding of Na-ion battery chemistries.

  16. Simultaneous 19F-1H medium resolution NMR spectroscopy for online reaction monitoring

    NASA Astrophysics Data System (ADS)

    Zientek, Nicolai; Laurain, Clément; Meyer, Klas; Kraume, Matthias; Guthausen, Gisela; Maiwald, Michael

    2014-12-01

    Medium resolution nuclear magnetic resonance (MR-NMR) spectroscopy is currently a fast developing field, which has an enormous potential to become an important analytical tool for reaction monitoring, in hyphenated techniques, and for systematic investigations of complex mixtures. The recent developments of innovative MR-NMR spectrometers are therefore remarkable due to their possible applications in quality control, education, and process monitoring. MR-NMR spectroscopy can beneficially be applied for fast, non-invasive, and volume integrating analyses under rough environmental conditions. Within this study, a simple 1/16″ fluorinated ethylene propylene (FEP) tube with an ID of 0.04″ (1.02 mm) was used as a flow cell in combination with a 5 mm glass Dewar tube inserted into a benchtop MR-NMR spectrometer with a 1H Larmor frequency of 43.32 MHz and 40.68 MHz for 19F. For the first time, quasi-simultaneous proton and fluorine NMR spectra were recorded with a series of alternating 19F and 1H single scan spectra along the reaction time coordinate of a homogeneously catalysed esterification model reaction containing fluorinated compounds. The results were compared to quantitative NMR spectra from a hyphenated 500 MHz online NMR instrument for validation. Automation of handling, pre-processing, and analysis of NMR data becomes increasingly important for process monitoring applications of online NMR spectroscopy and for its technical and practical acceptance. Thus, NMR spectra were automatically baseline corrected and phased using the minimum entropy method. Data analysis schemes were designed such that they are based on simple direct integration or first principle line fitting, with the aim that the analysis directly revealed molar concentrations from the spectra. Finally, the performance of 1/16″ FEP tube set-up with an ID of 1.02 mm was characterised regarding the limit of detection (LOQ (1H) = 0.335 mol L-1 and LOQ (19F) = 0.130 mol L-1 for trifluoroethanol in D2O (single scan)) and maximum quantitative flow rates up to 0.3 mL min-1. Thus, a series of single scan 19F and 1H NMR spectra acquired with this simple set-up already presents a valuable basis for quantitative reaction monitoring.

  17. On the discovery of K I 7699 Å line strength variation during the 1982-1984 eclipse of ε Aurigae

    NASA Astrophysics Data System (ADS)

    Parthasarathy, M.

    2017-02-01

    The discovery of K I 7699 Å line strength variations during the 1982-1984 eclipse of ε Aurigae is described. The equivalent widths and radial velocities of the K I 7699 Å line derived from spectra obtained during 1981 November-1983 July with the 2.1 m Otto Struve reflector telescope of the McDonald observatory are presented.

  18. Characteristics of Upper Quadrant Posture of Young Women with Temporomandibular Disorders

    PubMed Central

    Uritani, Daisuke; Kawakami, Tetsuji; Inoue, Tomohiro; Kirita, Tadaaki

    2014-01-01

    [Purpose] This study aimed to investigate the characteristics of upper quadrant posture of young women with temporomandibular disorders. [Subjects] The participants were 19 female patients with temporomandibular disorders (patient group: mean age, 30.1 years) and 14 controls (control group: mean age, 24.6 years). [Methods] Outcome measures were the neck inclination angle (formed by a line connecting C7 and the ear tragus with a horizontal line), the angle of the shoulder (formed by a line connecting C7 and the acromial angle with a horizontal line), the cranial rotation angle (formed by a line connecting the ear tragus and the corner of the eye with a horizontal line), and the neck-length/shoulder-width ratio [the ratio of the neck length (from C7 to the tragus) to the width of the shoulder between the acromial angle]. The maximum range of mouth opening was measured using a scale. [Results] The neck inclination angle and maximum range of mouth opening were significantly smaller in the patient group than in the control group. No significant differences were observed in the other outcome measures between the two groups. [Conclusion] Temporomandibular disorders with limited mouth opening in young females are associated with the head position relative to the trunk. PMID:25276038

  19. The Homotopic Probability Distribution and the Partition Function for the Entangled System Around a Ribbon Segment Chain

    NASA Astrophysics Data System (ADS)

    Qian, Shang-Wu; Gu, Zhi-Yu

    2001-12-01

    Using the Feynman's path integral with topological constraints arising from the presence of one singular line, we find the homotopic probability distribution P_L^n for the winding number n and the partition function P_L of the entangled system around a ribbon segment chain. We find that when the width of the ribbon segment chain 2a increases,the partition function exponentially decreases, whereas the free energy increases an amount, which is proportional to the square of the width. When the width tends to zero we obtain the same results as those of a single chain with one singular point.

  20. Laser plasma x-ray line spectra fitted using the Pearson VII function

    NASA Astrophysics Data System (ADS)

    Michette, A. G.; Pfauntsch, S. J.

    2000-05-01

    The Pearson VII function, which is more general than the Gaussian, Lorentzian and other profiles, is used to fit the x-ray spectral lines produced in a laser-generated plasma, instead of the more usual, but computationally expensive, Voigt function. The mean full-width half-maximum of the fitted lines is 0.102+/-0.014 nm, entirely consistent with the value expected from geometrical considerations, and the fitted line profiles are generally inconsistent with being either Lorentzian or Gaussian.

Top