Sample records for nmr structural study

  1. Investigation of Local Structures in Cation-ordered Microwave Dielectric A Solid-state NMR and First Principle Calculation Study

    NASA Astrophysics Data System (ADS)

    Kalfarisi, Rony G.

    Solid-state Nuclear Magnetic Resonance (ssNMR) spectroscopy has proven to be a powerful method to probe the local structure and dynamics of a system. In powdered solids, the nuclear spins experience various anisotropic interactions which depend on the molecular orientation. These anisotropic interactions make ssNMR very useful as they give a specific appearance to the resonance lines of the spectra. The position and shape of these resonance lines can be related to local structure and dynamics of the system under study. My research interest has focused around studying local structures and dynamics of quadrupolar nuclei in materials using ssNMR spectroscopy. 7Li and 93Nb ssNMR magic angle spinning (MAS) spectra, acquired at 17.6 and 7.06 T, have been used to evaluate the structural and dynamical properties of cation-ordered microwave dielectric materials. Microwave dielectric materials are essential in the application of wireless telecommunication, biomedical engineering, and other scientific and industrial implementations that use radio and microwave signals. The study of the local environment with respect to average structure, such as X-ray diffraction study, is essential for the better understanding of the correlations between structures and properties of these materials. The investigation for short and medium range can be performed with the use of ssNMR techniques. Even though XRD results show cationic ordering at the B-site (third coordination sphere), NMR spectra show a presence of disorder materials. This was indicated by the observation of a distribution in NMR parameters derived from experimental . {93}Nb NMR spectraand supported by theoretical calculations.

  2. NMR contributions to structural dynamics studies of intrinsically disordered proteins☆

    PubMed Central

    Konrat, Robert

    2014-01-01

    Intrinsically disordered proteins (IDPs) are characterized by substantial conformational plasticity. Given their inherent structural flexibility X-ray crystallography is not applicable to study these proteins. In contrast, NMR spectroscopy offers unique opportunities for structural and dynamic studies of IDPs. The past two decades have witnessed significant development of NMR spectroscopy that couples advances in spin physics and chemistry with a broad range of applications. This article will summarize key advances in basic physical-chemistry and NMR methodology, outline their limitations and envision future R&D directions. PMID:24656082

  3. NMR studies of protein-nucleic acid interactions.

    PubMed

    Varani, Gabriele; Chen, Yu; Leeper, Thomas C

    2004-01-01

    Protein-DNA and protein-RNA complexes play key functional roles in every living organism. Therefore, the elucidation of their structure and dynamics is an important goal of structural and molecular biology. Nuclear magnetic resonance (NMR) studies of protein and nucleic acid complexes have common features with studies of protein-protein complexes: the interaction surfaces between the molecules must be carefully delineated, the relative orientation of the two species needs to be accurately and precisely determined, and close intermolecular contacts defined by nuclear Overhauser effects (NOEs) must be obtained. However, differences in NMR properties (e.g., chemical shifts) and biosynthetic pathways for sample productions generate important differences. Chemical shift differences between the protein and nucleic acid resonances can aid the NMR structure determination process; however, the relatively limited dispersion of the RNA ribose resonances makes the process of assigning intermolecular NOEs more difficult. The analysis of the resulting structures requires computational tools unique to nucleic acid interactions. This chapter summarizes the most important elements of the structure determination by NMR of protein-nucleic acid complexes and their analysis. The main emphasis is on recent developments (e.g., residual dipolar couplings and new Web-based analysis tools) that have facilitated NMR studies of these complexes and expanded the type of biological problems to which NMR techniques of structural elucidation can now be applied.

  4. Refinement of NMR structures using implicit solvent and advanced sampling techniques.

    PubMed

    Chen, Jianhan; Im, Wonpil; Brooks, Charles L

    2004-12-15

    NMR biomolecular structure calculations exploit simulated annealing methods for conformational sampling and require a relatively high level of redundancy in the experimental restraints to determine quality three-dimensional structures. Recent advances in generalized Born (GB) implicit solvent models should make it possible to combine information from both experimental measurements and accurate empirical force fields to improve the quality of NMR-derived structures. In this paper, we study the influence of implicit solvent on the refinement of protein NMR structures and identify an optimal protocol of utilizing these improved force fields. To do so, we carry out structure refinement experiments for model proteins with published NMR structures using full NMR restraints and subsets of them. We also investigate the application of advanced sampling techniques to NMR structure refinement. Similar to the observations of Xia et al. (J.Biomol. NMR 2002, 22, 317-331), we find that the impact of implicit solvent is rather small when there is a sufficient number of experimental restraints (such as in the final stage of NMR structure determination), whether implicit solvent is used throughout the calculation or only in the final refinement step. The application of advanced sampling techniques also seems to have minimal impact in this case. However, when the experimental data are limited, we demonstrate that refinement with implicit solvent can substantially improve the quality of the structures. In particular, when combined with an advanced sampling technique, the replica exchange (REX) method, near-native structures can be rapidly moved toward the native basin. The REX method provides both enhanced sampling and automatic selection of the most native-like (lowest energy) structures. An optimal protocol based on our studies first generates an ensemble of initial structures that maximally satisfy the available experimental data with conventional NMR software using a simplified force field and then refines these structures with implicit solvent using the REX method. We systematically examine the reliability and efficacy of this protocol using four proteins of various sizes ranging from the 56-residue B1 domain of Streptococcal protein G to the 370-residue Maltose-binding protein. Significant improvement in the structures was observed in all cases when refinement was based on low-redundancy restraint data. The proposed protocol is anticipated to be particularly useful in early stages of NMR structure determination where a reliable estimate of the native fold from limited data can significantly expedite the overall process. This refinement procedure is also expected to be useful when redundant experimental data are not readily available, such as for large multidomain biomolecules and in solid-state NMR structure determination.

  5. NMRe: a web server for NMR protein structure refinement with high-quality structure validation scores.

    PubMed

    Ryu, Hyojung; Lim, GyuTae; Sung, Bong Hyun; Lee, Jinhyuk

    2016-02-15

    Protein structure refinement is a necessary step for the study of protein function. In particular, some nuclear magnetic resonance (NMR) structures are of lower quality than X-ray crystallographic structures. Here, we present NMRe, a web-based server for NMR structure refinement. The previously developed knowledge-based energy function STAP (Statistical Torsion Angle Potential) was used for NMRe refinement. With STAP, NMRe provides two refinement protocols using two types of distance restraints. If a user provides NOE (Nuclear Overhauser Effect) data, the refinement is performed with the NOE distance restraints as a conventional NMR structure refinement. Additionally, NMRe generates NOE-like distance restraints based on the inter-hydrogen distances derived from the input structure. The efficiency of NMRe refinement was validated on 20 NMR structures. Most of the quality assessment scores of the refined NMR structures were better than those of the original structures. The refinement results are provided as a three-dimensional structure view, a secondary structure scheme, and numerical and graphical structure validation scores. NMRe is available at http://psb.kobic.re.kr/nmre/. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. 27Al-NMR studies of the structural phase transition in LaPd2Al2

    NASA Astrophysics Data System (ADS)

    Aoyama, Taisuke; Kobayashi, Fumiaki; Kotegawa, Hisashi; Tou, Hideki; Doležal, Petr; Kriegner, Dominik; Javorský, Pavel; Uhlířová, Klára

    2018-05-01

    We performed 27Al-NMR measurements for the CaBe2Ge2 type single crystalline LaPd2Al2 in the temperature range from 100 K to 5 K to investigate the origin of the structural phase transition. We found that the line profile of the 27Al-NMR spectrum does not change entirely on passing through the structural phase transition at Tst. Meanwhile, the peak position of the central line slightly change (≈ 30 ppm) below 70 K, suggesting the orbital shift changes below Tst. The present 27Al-NMR studies evidence that the local electronic state at Al site is hardly affected by the structural phase transition.

  7. Studying the Structure and Dynamics of Biomolecules by Using Soluble Paramagnetic Probes

    PubMed Central

    Hocking, Henry G; Zangger, Klaus; Madl, Tobias

    2013-01-01

    Characterisation of the structure and dynamics of large biomolecules and biomolecular complexes by NMR spectroscopy is hampered by increasing overlap and severe broadening of NMR signals. As a consequence, the number of available NMR spectroscopy data is often sparse and new approaches to provide complementary NMR spectroscopy data are needed. Paramagnetic relaxation enhancements (PREs) obtained from inert and soluble paramagnetic probes (solvent PREs) provide detailed quantitative information about the solvent accessibility of NMR-active nuclei. Solvent PREs can be easily measured without modification of the biomolecule; are sensitive to molecular structure and dynamics; and are therefore becoming increasingly powerful for the study of biomolecules, such as proteins, nucleic acids, ligands and their complexes in solution. In this Minireview, we give an overview of the available solvent PRE probes and discuss their applications for structural and dynamic characterisation of biomolecules and biomolecular complexes. PMID:23836693

  8. Joint experimental and computational 17O solid state NMR study of Brownmillerite Ba2In2O5.

    PubMed

    Dervişoğlu, Rıza; Middlemiss, Derek S; Blanc, Frédéric; Holmes, Lesley A; Lee, Yueh-Lin; Morgan, Dane; Grey, Clare P

    2014-02-14

    Structural characterization of Brownmillerite Ba2In2O5 was achieved by an approach combining experimental solid-state NMR spectroscopy, density functional theory (DFT) energetics, and GIPAW NMR calculations. While in the previous study of Ba2In2O5 by Adler et al. (S. B. Adler, J. A. Reimer, J. Baltisberger and U. Werner, J. Am. Chem. Soc., 1994, 116, 675-681), three oxygen resonances were observed in the (17)O NMR spectra and assigned to the three crystallographically unique O sites, the present high resolution (17)O NMR measurements under magic angle spinning (MAS) find only two resonances. The resonances have been assigned using first principles (17)O GIPAW NMR calculations to the combination of the O ions connecting the InO4 tetrahedra and the O ions in equatorial sites in octahedral InO6 coordination, and to the axial O ions linking the four- and six-fold coordinated In(3+) ions. Possible structural disorder was investigated in two ways: firstly, by inclusion of the high-energy structure also previously studied by Mohn et al. (C. E. Mohn, N. L. Allan, C. L. Freeman, P. Ravindran and S. Stølen, J. Solid State Chem., 2005, 178, 346-355), where the structural O vacancies are stacked rather than staggered as in Brownmillerite and, secondly, by exploring structures derived from the ground-state structure but with randomly perturbed atomic positions. There is no noticeable NMR evidence for any substantial occupancy of the high-energy structure at room temperature.

  9. An Introduction to Biological NMR Spectroscopy*

    PubMed Central

    Marion, Dominique

    2013-01-01

    NMR spectroscopy is a powerful tool for biologists interested in the structure, dynamics, and interactions of biological macromolecules. This review aims at presenting in an accessible manner the requirements and limitations of this technique. As an introduction, the history of NMR will highlight how the method evolved from physics to chemistry and finally to biology over several decades. We then introduce the NMR spectral parameters used in structural biology, namely the chemical shift, the J-coupling, nuclear Overhauser effects, and residual dipolar couplings. Resonance assignment, the required step for any further NMR study, bears a resemblance to jigsaw puzzle strategy. The NMR spectral parameters are then converted into angle and distances and used as input using restrained molecular dynamics to compute a bundle of structures. When interpreting a NMR-derived structure, the biologist has to judge its quality on the basis of the statistics provided. When the 3D structure is a priori known by other means, the molecular interaction with a partner can be mapped by NMR: information on the binding interface as well as on kinetic and thermodynamic constants can be gathered. NMR is suitable to monitor, over a wide range of frequencies, protein fluctuations that play a crucial role in their biological function. In the last section of this review, intrinsically disordered proteins, which have escaped the attention of classical structural biology, are discussed in the perspective of NMR, one of the rare available techniques able to describe structural ensembles. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 16 MCP). PMID:23831612

  10. NMR structure of biosynthetic engineered human insulin monomer B31(Lys)-B32(Arg) in water/acetonitrile solution. Comparison with the solution structure of native human insulin monomer.

    PubMed

    Bocian, Wojciech; Borowicz, Piotr; Mikołajczyk, Jerzy; Sitkowski, Jerzy; Tarnowska, Anna; Bednarek, Elzbieta; Głabski, Tadeusz; Tejchman-Małecka, Bozena; Bogiel, Monika; Kozerski, Lech

    2008-10-01

    A solution NMR-derived structure of a new long -acting, B31(Lys)-B32(Arg) (LysArg), engineered human insulin monomer, in H(2)O/CD(3)CN, 65/35 vol %, pH 3.6, is presented and compared with the available X-ray structure of a monomer that forms part of a hexamer (Smith, et al., Acta Crystallogr D 2003, 59, 474) and with NMR structure of human insulin in the same solvent (Bocian, et al., J Biomol NMR 2008, 40, 55-64). Detailed analysis using PFGSE NMR (Pulsed Field Gradient Spin Echo NMR) in dilution experiments and CSI analysis prove that the structure is monomeric in the concentration range 0.1-3 mM. The presence of long-range interstrand NOEs in a studied structure, relevant to the distances found in the crystal structure of the monomer, provides the evidence for conservation of the tertiary structure. Therefore the results suggest that this solvent system is a suitable medium for studying the native conformation of the protein, especially in situations (as found for insulins) in which extensive aggregation renders structure elucidations in water difficult or impossible. Starting from the structures calculated by the program CYANA, two different molecular dynamics (MD) simulated annealing refinement protocols were applied, either using the program AMBER in vacuum (AMBER_VC), or including a generalized Born solvent model (AMBER_GB). Here we present another independent evidence to the one presented recently by us (Bocian et al., J Biomol NMR 2008, 40, 55-64), that in water/acetonitrile solvent detailed structural and dynamic information can be obtained for important proteins that are naturally present as oligomers under native conditions. (c) 2008 Wiley Periodicals, Inc.

  11. 17alpha/H/ hopane identified in oil shale of the Green River formation /Eocene/ by carbon-13 NMR.

    NASA Technical Reports Server (NTRS)

    Balogh, B.; Wilson, D. M.; Christiansen, P.; Burlingame, A. L.

    1973-01-01

    During an investigation of C-13 NMR shifts and the structural correspondence of pentacyclic triterpenes a C-13 NMR study was conducted on one of the most abundant components of the hexane soluble fraction of oil shale bitumen of the Green River formation. A rigorous proof was derived exclusively from C-13 NMR data for the structure of the important triterpenoid fossil molecule. It was established that the structure of the isolated triterpane was 17alpha(H) hopane.

  12. Investigation of Rhodopsin Dynamics in its Signaling State by Solid-State Deuterium NMR Spectroscopy

    PubMed Central

    Struts, Andrey V.; Chawla, Udeep; Perera, Suchithranga M.D.C.; Brown, Michael F.

    2017-01-01

    Site-directed deuterium NMR spectroscopy is a valuable tool to study the structural dynamics of biomolecules in cases where solution NMR is inapplicable. Solid-state 2H NMR spectral studies of aligned membrane samples of rhodopsin with selectively labeled retinal provide information on structural changes of the chromophore in different protein states. In addition, solid-state 2H NMR relaxation time measurements allow one to study the dynamics of the ligand during the transition from the inactive to the active state. Here we describe the methodological aspects of solid-state 2H NMR spectroscopy for functional studies of rhodopsin, with an emphasis on the dynamics of the retinal cofactor. We provide complete protocols for the preparation of NMR samples of rhodopsin with 11-cis-retinal selectively deuterated at the methyl groups in aligned membranes. In addition, we review optimized conditions for trapping the rhodopsin photointermediates; and lastly we address the challenging problem of trapping the signaling state of rhodopsin in aligned membrane films. PMID:25697522

  13. Solid-State NMR Studies Reveal Native-like β-Sheet Structures in Transthyretin Amyloid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Kwang Hun; Dasari, Anvesh K. R.; Hung, Ivan

    Structural characterization of amyloid rich in cross-β structures is crucial for unraveling the molecular basis of protein misfolding and amyloid formation associated with a wide range of human disorders. Elucidation of the β-sheet structure in noncrystalline amyloid has, however, remained an enormous challenge. Here we report structural analyses of the β-sheet structure in a full-length transthyretin amyloid using solid-state NMR spectroscopy. Magic-angle-spinning (MAS) solid-state NMR was employed to investigate native-like β-sheet structures in the amyloid state using selective labeling schemes for more efficient solid-state NMR studies. Analyses of extensive long-range 13 C- 13 C correlation MAS spectra obtained with selectivelymore » 13 CO- and 13 Cα-labeled TTR reveal that the two main β-structures in the native state, the CBEF and DAGH β-sheets, remain intact after amyloid formation. The tertiary structural information would be of great use for examining the quaternary structure of TTR amyloid.« less

  14. Solid-State NMR Studies Reveal Native-like β-Sheet Structures in Transthyretin Amyloid

    DOE PAGES

    Lim, Kwang Hun; Dasari, Anvesh K. R.; Hung, Ivan; ...

    2016-09-02

    Structural characterization of amyloid rich in cross-β structures is crucial for unraveling the molecular basis of protein misfolding and amyloid formation associated with a wide range of human disorders. Elucidation of the β-sheet structure in noncrystalline amyloid has, however, remained an enormous challenge. Here we report structural analyses of the β-sheet structure in a full-length transthyretin amyloid using solid-state NMR spectroscopy. Magic-angle-spinning (MAS) solid-state NMR was employed to investigate native-like β-sheet structures in the amyloid state using selective labeling schemes for more efficient solid-state NMR studies. Analyses of extensive long-range 13 C- 13 C correlation MAS spectra obtained with selectivelymore » 13 CO- and 13 Cα-labeled TTR reveal that the two main β-structures in the native state, the CBEF and DAGH β-sheets, remain intact after amyloid formation. The tertiary structural information would be of great use for examining the quaternary structure of TTR amyloid.« less

  15. Solid-state NMR and computational studies of 4-methyl-2-nitroacetanilide.

    PubMed

    Harris, Robin K; Ghi, Phuong Y; Hammond, Robert B; Ma, Cai Yun; Roberts, Kevin J; Yates, Jonathan R; Pickard, Chris J

    2006-03-01

    Studies on the solid-state structure of two polymorphs of 4-methyl-2-nitroacetanilide (MNA) were conducted using magic-angle spinning (13)C, (15)N and (1)H NMR spectroscopy, together with first-principles computations of NMR shielding (including use of a program that takes explicit account of the translational symmetry inherent in crystalline structures). The effects on (13)C chemical shifts of side-chain rotations have been explored. Information derived from these studies was then incorporated within a systematic space-search methodology for elucidation of trial crystallographic structures from powder XRD.

  16. Compatible topologies and parameters for NMR structure determination of carbohydrates by simulated annealing.

    PubMed

    Feng, Yingang

    2017-01-01

    The use of NMR methods to determine the three-dimensional structures of carbohydrates and glycoproteins is still challenging, in part because of the lack of standard protocols. In order to increase the convenience of structure determination, the topology and parameter files for carbohydrates in the program Crystallography & NMR System (CNS) were investigated and new files were developed to be compatible with the standard simulated annealing protocols for proteins and nucleic acids. Recalculating the published structures of protein-carbohydrate complexes and glycosylated proteins demonstrates that the results are comparable to the published structures which employed more complex procedures for structure calculation. Integrating the new carbohydrate parameters into the standard structure calculation protocol will facilitate three-dimensional structural study of carbohydrates and glycosylated proteins by NMR spectroscopy.

  17. Compatible topologies and parameters for NMR structure determination of carbohydrates by simulated annealing

    PubMed Central

    2017-01-01

    The use of NMR methods to determine the three-dimensional structures of carbohydrates and glycoproteins is still challenging, in part because of the lack of standard protocols. In order to increase the convenience of structure determination, the topology and parameter files for carbohydrates in the program Crystallography & NMR System (CNS) were investigated and new files were developed to be compatible with the standard simulated annealing protocols for proteins and nucleic acids. Recalculating the published structures of protein-carbohydrate complexes and glycosylated proteins demonstrates that the results are comparable to the published structures which employed more complex procedures for structure calculation. Integrating the new carbohydrate parameters into the standard structure calculation protocol will facilitate three-dimensional structural study of carbohydrates and glycosylated proteins by NMR spectroscopy. PMID:29232406

  18. Mechanisms of amyloid formation revealed by solution NMR

    PubMed Central

    Karamanos, Theodoros K.; Kalverda, Arnout P.; Thompson, Gary S.; Radford, Sheena E.

    2015-01-01

    Amyloid fibrils are proteinaceous elongated aggregates involved in more than fifty human diseases. Recent advances in electron microscopy and solid state NMR have allowed the characterization of fibril structures to different extents of refinement. However, structural details about the mechanism of fibril formation remain relatively poorly defined. This is mainly due to the complex, heterogeneous and transient nature of the species responsible for assembly; properties that make them difficult to detect and characterize in structural detail using biophysical techniques. The ability of solution NMR spectroscopy to investigate exchange between multiple protein states, to characterize transient and low-population species, and to study high molecular weight assemblies, render NMR an invaluable technique for studies of amyloid assembly. In this article we review state-of-the-art solution NMR methods for investigations of: (a) protein dynamics that lead to the formation of aggregation-prone species; (b) amyloidogenic intrinsically disordered proteins; and (c) protein–protein interactions on pathway to fibril formation. Together, these topics highlight the power and potential of NMR to provide atomic level information about the molecular mechanisms of one of the most fascinating problems in structural biology. PMID:26282197

  19. Novel aldehyde and thiosemicarbazone derivatives: Synthesis, spectroscopic characterization, structural studies and molecular docking studies

    NASA Astrophysics Data System (ADS)

    Karakurt, Tuncay; Tahtaci, Hakan; Subasi, Nuriye Tuna; Er, Mustafa; Ağar, Erbil

    2016-12-01

    In this study our purpose is that, synthesis and characterization of compounds containing the aldehyde and thiosemicarbazone groups and comparison of the theoretical results with the experimental results. The structures of all synthesized compounds were elucidated by IR, 1H NMR, 13C NMR, elemental analyses techniques. The structure of compound (4) (C9H8N4O2S) was also elucidated by X-ray diffraction analysis. In addition, the theoretical IR spectrum, 1H NMR and 13C NMR chemical shift values, frontier molecular orbital values (FMO) of these molecules were analyzed by using Becke-3- Lee-Yang-Parr (B3LYP) method with LanL2DZ basis set. Finally, molecular docking studies were performed on synthesized compounds using the 4DKI beta-lactam protein structure to determine the potential binding mode of inhibitors.

  20. Fourier Analysis and Structure Determination. Part II: Pulse NMR and NMR Imaging.

    ERIC Educational Resources Information Center

    Chesick, John P.

    1989-01-01

    Uses simple pulse NMR experiments to discuss Fourier transforms. Studies the generation of spin echoes used in the imaging procedure. Shows that pulse NMR experiments give signals that are additions of sinusoids of differing amplitudes, frequencies, and phases. (MVL)

  1. Solution NMR Refinement of a Metal Ion Bound Protein Using Metal Ion Inclusive Restrained Molecular Dynamics Methods

    PubMed Central

    Chakravorty, Dhruva K.; Wang, Bing; Lee, Chul Won; Guerra, Alfredo J.; Giedroc, David P.; Merz, Kenneth M.

    2013-01-01

    Correctly calculating the structure of metal coordination sites in a protein during the process of nuclear magnetic resonance (NMR) structure determination and refinement continues to be a challenging task. In this study, we present an accurate and convenient means by which to include metal ions in the NMR structure determination process using molecular dynamics (MD) constrained by NMR-derived data to obtain a realistic and physically viable description of the metal binding site(s). This method provides the framework to accurately portray the metal ions and its binding residues in a pseudo-bond or dummy-cation like approach, and is validated by quantum mechanical/molecular mechanical (QM/MM) MD calculations constrained by NMR-derived data. To illustrate this approach, we refine the zinc coordination complex structure of the zinc sensing transcriptional repressor protein Staphylococcus aureus CzrA, generating over 130 ns of MD and QM/MM MD NMR-data compliant sampling. In addition to refining the first coordination shell structure of the Zn(II) ion, this protocol benefits from being performed in a periodically replicated solvation environment including long-range electrostatics. We determine that unrestrained (not based on NMR data) MD simulations correlated to the NMR data in a time-averaged ensemble. The accurate solution structure ensemble of the metal-bound protein accurately describes the role of conformational dynamics in allosteric regulation of DNA binding by zinc and serves to validate our previous unrestrained MD simulations of CzrA. This methodology has potentially broad applicability in the structure determination of metal ion bound proteins, protein folding and metal template protein-design studies. PMID:23609042

  2. Recommendations of the wwPDB NMR Validation Task Force

    PubMed Central

    Montelione, Gaetano T.; Nilges, Michael; Bax, Ad; Güntert, Peter; Herrmann, Torsten; Richardson, Jane S.; Schwieters, Charles; Vranken, Wim F.; Vuister, Geerten W.; Wishart, David S.; Berman, Helen M.; Kleywegt, Gerard J.; Markley, John L.

    2013-01-01

    As methods for analysis of biomolecular structure and dynamics using nuclear magnetic resonance spectroscopy (NMR) continue to advance, the resulting 3D structures, chemical shifts, and other NMR data are broadly impacting biology, chemistry, and medicine. Structure model assessment is a critical area of NMR methods development, and is an essential component of the process of making these structures accessible and useful to the wider scientific community. For these reasons, the Worldwide Protein Data Bank (wwPDB) has convened an NMR Validation Task Force (NMR-VTF) to work with the wwPDB partners in developing metrics and policies for biomolecular NMR data harvesting, structure representation, and structure quality assessment. This paper summarizes the recommendations of the NMR-VTF, and lays the groundwork for future work in developing standards and metrics for biomolecular NMR structure quality assessment. PMID:24010715

  3. NMR Spectroscopy in Glass Science: A Review of the Elements

    PubMed Central

    2018-01-01

    The study of inorganic glass structure is critically important for basic glass science and especially the commercial development of glasses for a variety of technological uses. One of the best means by which to achieve this understanding is through application of solid-state nuclear magnetic resonance (NMR) spectroscopy, which has a long and interesting history. This technique is element specific, but highly complex, and thus, one of the many inquiries made by non-NMR specialists working in glass science is what type of information and which elements can be studied by this method. This review presents a summary of the different elements that are amenable to the study of glasses by NMR spectroscopy and provides examples of the type of atomic level structural information that can be achieved. It serves to inform the non-specialist working in glass science and technology about some of the benefits and challenges involved in the study of inorganic glass structure using modern, readily-available NMR methods. PMID:29565328

  4. Mixing and Matching Detergents for Membrane Protein NMR Structure Determination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Columbus, Linda; Lipfert, Jan; Jambunathan, Kalyani

    2009-10-21

    One major obstacle to membrane protein structure determination is the selection of a detergent micelle that mimics the native lipid bilayer. Currently, detergents are selected by exhaustive screening because the effects of protein-detergent interactions on protein structure are poorly understood. In this study, the structure and dynamics of an integral membrane protein in different detergents is investigated by nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopy and small-angle X-ray scattering (SAXS). The results suggest that matching of the micelle dimensions to the protein's hydrophobic surface avoids exchange processes that reduce the completeness of the NMR observations. Based onmore » these dimensions, several mixed micelles were designed that improved the completeness of NMR observations. These findings provide a basis for the rational design of mixed micelles that may advance membrane protein structure determination by NMR.« less

  5. Preparation of Protein Samples for NMR Structure, Function, and Small Molecule Screening Studies

    PubMed Central

    Acton, Thomas B.; Xiao, Rong; Anderson, Stephen; Aramini, James; Buchwald, William A.; Ciccosanti, Colleen; Conover, Ken; Everett, John; Hamilton, Keith; Huang, Yuanpeng Janet; Janjua, Haleema; Kornhaber, Gregory; Lau, Jessica; Lee, Dong Yup; Liu, Gaohua; Maglaqui, Melissa; Ma, Lichung; Mao, Lei; Patel, Dayaban; Rossi, Paolo; Sahdev, Seema; Shastry, Ritu; Swapna, G.V.T.; Tang, Yeufeng; Tong, Saichiu; Wang, Dongyan; Wang, Huang; Zhao, Li; Montelione, Gaetano T.

    2014-01-01

    In this chapter, we concentrate on the production of high quality protein samples for NMR studies. In particular, we provide an in-depth description of recent advances in the production of NMR samples and their synergistic use with recent advancements in NMR hardware. We describe the protein production platform of the Northeast Structural Genomics Consortium, and outline our high-throughput strategies for producing high quality protein samples for nuclear magnetic resonance (NMR) studies. Our strategy is based on the cloning, expression and purification of 6X-His-tagged proteins using T7-based Escherichia coli systems and isotope enrichment in minimal media. We describe 96-well ligation-independent cloning and analytical expression systems, parallel preparative scale fermentation, and high-throughput purification protocols. The 6X-His affinity tag allows for a similar two-step purification procedure implemented in a parallel high-throughput fashion that routinely results in purity levels sufficient for NMR studies (> 97% homogeneity). Using this platform, the protein open reading frames of over 17,500 different targeted proteins (or domains) have been cloned as over 28,000 constructs. Nearly 5,000 of these proteins have been purified to homogeneity in tens of milligram quantities (see Summary Statistics, http://nesg.org/statistics.html), resulting in more than 950 new protein structures, including more than 400 NMR structures, deposited in the Protein Data Bank. The Northeast Structural Genomics Consortium pipeline has been effective in producing protein samples of both prokaryotic and eukaryotic origin. Although this paper describes our entire pipeline for producing isotope-enriched protein samples, it focuses on the major updates introduced during the last 5 years (Phase 2 of the National Institute of General Medical Sciences Protein Structure Initiative). Our advanced automated and/or parallel cloning, expression, purification, and biophysical screening technologies are suitable for implementation in a large individual laboratory or by a small group of collaborating investigators for structural biology, functional proteomics, ligand screening and structural genomics research. PMID:21371586

  6. Solution NMR Spectroscopy in Target-Based Drug Discovery.

    PubMed

    Li, Yan; Kang, Congbao

    2017-08-23

    Solution NMR spectroscopy is a powerful tool to study protein structures and dynamics under physiological conditions. This technique is particularly useful in target-based drug discovery projects as it provides protein-ligand binding information in solution. Accumulated studies have shown that NMR will play more and more important roles in multiple steps of the drug discovery process. In a fragment-based drug discovery process, ligand-observed and protein-observed NMR spectroscopy can be applied to screen fragments with low binding affinities. The screened fragments can be further optimized into drug-like molecules. In combination with other biophysical techniques, NMR will guide structure-based drug discovery. In this review, we describe the possible roles of NMR spectroscopy in drug discovery. We also illustrate the challenges encountered in the drug discovery process. We include several examples demonstrating the roles of NMR in target-based drug discoveries such as hit identification, ranking ligand binding affinities, and mapping the ligand binding site. We also speculate the possible roles of NMR in target engagement based on recent processes in in-cell NMR spectroscopy.

  7. Requirements on paramagnetic relaxation enhancement data for membrane protein structure determination by NMR.

    PubMed

    Gottstein, Daniel; Reckel, Sina; Dötsch, Volker; Güntert, Peter

    2012-06-06

    Nuclear magnetic resonance (NMR) structure calculations of the α-helical integral membrane proteins DsbB, GlpG, and halorhodopsin show that distance restraints from paramagnetic relaxation enhancement (PRE) can provide sufficient structural information to determine their structure with an accuracy of about 1.5 Å in the absence of other long-range conformational restraints. Our systematic study with simulated NMR data shows that about one spin label per transmembrane helix is necessary for obtaining enough PRE distance restraints to exclude wrong topologies, such as pseudo mirror images, if only limited other NMR restraints are available. Consequently, an experimentally realistic amount of PRE data enables α-helical membrane protein structure determinations that would not be feasible with the very limited amount of conventional NOESY data normally available for these systems. These findings are in line with our recent first de novo NMR structure determination of a heptahelical integral membrane protein, proteorhodopsin, that relied extensively on PRE data. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Conformational Aspects of the O-acetylation of C-tetra(phenyl)calixpyrogallol[4]arene.

    PubMed

    Casas-Hinestroza, José Luis; Maldonado, Mauricio

    2018-05-20

    Reaction between pyrogallol and benzaldehyde results in a conformational mixture of C- tetra(phenyl)pyrogallol[4]arene (crown and chair). The conformer mixture was separated using crystallization procedures and the structures were determined using FTIR, ¹H-NMR, and 13 C-NMR. O -acetylation of C- tetra(phenyl)pyrogallol[4]arene (chair) with acetic anhydride, in pyridine results in the formation of dodecaacetyl-tetra(phenyl)pyrogallol[4]arene. The structure was determined using ¹H-NMR and 13 C-NMR finding that the product maintains the conformation of the starting conformer. On the other hand, the O -acetylation reaction of C- tetra(phenyl)pirogallol[4]arene (crown) under same conditions proceeded efficiently, and its structure was determined using ¹H-NMR and 13 C-NMR. Dynamic ¹H-NMR of acetylated pyrogallolarene was studied by means of variable temperature in DMSO- d ₆ solution, and it revealed that two conformers are formed in the solution. Boat conformations for acetylated pyrogallolarene showed a slow interconversion at room temperature.

  9. Structure Elucidation of Unknown Metabolites in Metabolomics by Combined NMR and MS/MS Prediction

    DOE PAGES

    Boiteau, Rene M.; Hoyt, David W.; Nicora, Carrie D.; ...

    2018-01-17

    Here, we introduce a cheminformatics approach that combines highly selective and orthogonal structure elucidation parameters; accurate mass, MS/MS (MS 2), and NMR in a single analysis platform to accurately identify unknown metabolites in untargeted studies. The approach starts with an unknown LC-MS feature, and then combines the experimental MS/MS and NMR information of the unknown to effectively filter the false positive candidate structures based on their predicted MS/MS and NMR spectra. We demonstrate the approach on a model mixture and then we identify an uncatalogued secondary metabolite in Arabidopsis thaliana. The NMR/MS 2 approach is well suited for discovery ofmore » new metabolites in plant extracts, microbes, soils, dissolved organic matter, food extracts, biofuels, and biomedical samples, facilitating the identification of metabolites that are not present in experimental NMR and MS metabolomics databases.« less

  10. Structure Elucidation of Unknown Metabolites in Metabolomics by Combined NMR and MS/MS Prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boiteau, Rene M.; Hoyt, David W.; Nicora, Carrie D.

    Here, we introduce a cheminformatics approach that combines highly selective and orthogonal structure elucidation parameters; accurate mass, MS/MS (MS 2), and NMR in a single analysis platform to accurately identify unknown metabolites in untargeted studies. The approach starts with an unknown LC-MS feature, and then combines the experimental MS/MS and NMR information of the unknown to effectively filter the false positive candidate structures based on their predicted MS/MS and NMR spectra. We demonstrate the approach on a model mixture and then we identify an uncatalogued secondary metabolite in Arabidopsis thaliana. The NMR/MS 2 approach is well suited for discovery ofmore » new metabolites in plant extracts, microbes, soils, dissolved organic matter, food extracts, biofuels, and biomedical samples, facilitating the identification of metabolites that are not present in experimental NMR and MS metabolomics databases.« less

  11. Structure Elucidation of Unknown Metabolites in Metabolomics by Combined NMR and MS/MS Prediction

    PubMed Central

    Hoyt, David W.; Nicora, Carrie D.; Kinmonth-Schultz, Hannah A.; Ward, Joy K.

    2018-01-01

    We introduce a cheminformatics approach that combines highly selective and orthogonal structure elucidation parameters; accurate mass, MS/MS (MS2), and NMR into a single analysis platform to accurately identify unknown metabolites in untargeted studies. The approach starts with an unknown LC-MS feature, and then combines the experimental MS/MS and NMR information of the unknown to effectively filter out the false positive candidate structures based on their predicted MS/MS and NMR spectra. We demonstrate the approach on a model mixture, and then we identify an uncatalogued secondary metabolite in Arabidopsis thaliana. The NMR/MS2 approach is well suited to the discovery of new metabolites in plant extracts, microbes, soils, dissolved organic matter, food extracts, biofuels, and biomedical samples, facilitating the identification of metabolites that are not present in experimental NMR and MS metabolomics databases. PMID:29342073

  12. Sensitivity of ab Initio vs Empirical Methods in Computing Structural Effects on NMR Chemical Shifts for the Example of Peptides.

    PubMed

    Sumowski, Chris Vanessa; Hanni, Matti; Schweizer, Sabine; Ochsenfeld, Christian

    2014-01-14

    The structural sensitivity of NMR chemical shifts as computed by quantum chemical methods is compared to a variety of empirical approaches for the example of a prototypical peptide, the 38-residue kaliotoxin KTX comprising 573 atoms. Despite the simplicity of empirical chemical shift prediction programs, the agreement with experimental results is rather good, underlining their usefulness. However, we show in our present work that they are highly insensitive to structural changes, which renders their use for validating predicted structures questionable. In contrast, quantum chemical methods show the expected high sensitivity to structural and electronic changes. This appears to be independent of the quantum chemical approach or the inclusion of solvent effects. For the latter, explicit solvent simulations with increasing number of snapshots were performed for two conformers of an eight amino acid sequence. In conclusion, the empirical approaches neither provide the expected magnitude nor the patterns of NMR chemical shifts determined by the clearly more costly ab initio methods upon structural changes. This restricts the use of empirical prediction programs in studies where peptide and protein structures are utilized for the NMR chemical shift evaluation such as in NMR refinement processes, structural model verifications, or calculations of NMR nuclear spin relaxation rates.

  13. Bayesian Peak Picking for NMR Spectra

    PubMed Central

    Cheng, Yichen; Gao, Xin; Liang, Faming

    2013-01-01

    Protein structure determination is a very important topic in structural genomics, which helps people to understand varieties of biological functions such as protein-protein interactions, protein–DNA interactions and so on. Nowadays, nuclear magnetic resonance (NMR) has often been used to determine the three-dimensional structures of protein in vivo. This study aims to automate the peak picking step, the most important and tricky step in NMR structure determination. We propose to model the NMR spectrum by a mixture of bivariate Gaussian densities and use the stochastic approximation Monte Carlo algorithm as the computational tool to solve the problem. Under the Bayesian framework, the peak picking problem is casted as a variable selection problem. The proposed method can automatically distinguish true peaks from false ones without preprocessing the data. To the best of our knowledge, this is the first effort in the literature that tackles the peak picking problem for NMR spectrum data using Bayesian method. PMID:24184964

  14. NMR Analysis of Unknowns: An Introduction to 2D NMR Spectroscopy

    ERIC Educational Resources Information Center

    Alonso, David E.; Warren, Steven E.

    2005-01-01

    A study combined 1D (one-dimensional) and 2D (two-dimensional) NMR spectroscopy to solve structural organic problems of three unknowns, which include 2-, 3-, and 4-heptanone. Results showed [to the first power]H NMR and [to the thirteenth power]C NMR signal assignments for 2- and 3-heptanone were more challenging than for 4-heptanone owing to the…

  15. A strategy for co-translational folding studies of ribosome-bound nascent chain complexes using NMR spectroscopy.

    PubMed

    Cassaignau, Anaïs M E; Launay, Hélène M M; Karyadi, Maria-Evangelia; Wang, Xiaolin; Waudby, Christopher A; Deckert, Annika; Robertson, Amy L; Christodoulou, John; Cabrita, Lisa D

    2016-08-01

    During biosynthesis on the ribosome, an elongating nascent polypeptide chain can begin to fold, in a process that is central to all living systems. Detailed structural studies of co-translational protein folding are now beginning to emerge; such studies were previously limited, at least in part, by the inherently dynamic nature of emerging nascent chains, which precluded most structural techniques. NMR spectroscopy is able to provide atomic-resolution information for ribosome-nascent chain complexes (RNCs), but it requires large quantities (≥10 mg) of homogeneous, isotopically labeled RNCs. Further challenges include limited sample working concentration and stability of the RNC sample (which contribute to weak NMR signals) and resonance broadening caused by attachment to the large (2.4-MDa) ribosomal complex. Here, we present a strategy to generate isotopically labeled RNCs in Escherichia coli that are suitable for NMR studies. Uniform translational arrest of the nascent chains is achieved using a stalling motif, and isotopically labeled RNCs are produced at high yield using high-cell-density E. coli growth conditions. Homogeneous RNCs are isolated by combining metal affinity chromatography (to isolate ribosome-bound species) with sucrose density centrifugation (to recover intact 70S monosomes). Sensitivity-optimized NMR spectroscopy is then applied to the RNCs, combined with a suite of parallel NMR and biochemical analyses to cross-validate their integrity, including RNC-optimized NMR diffusion measurements to report on ribosome attachment in situ. Comparative NMR studies of RNCs with the analogous isolated proteins permit a high-resolution description of the structure and dynamics of a nascent chain during its progressive biosynthesis on the ribosome.

  16. Deuterium and lithium-6 MAS NMR studies of manganese oxide electrode materials

    NASA Astrophysics Data System (ADS)

    Paik, Younkee

    Electrolytic manganese dioxide (EMD) is used world wide as the cathode materials in both lithium and alkaline primary (non-rechargeable) batteries. We have developed deuterium and lithium MAS NMR techniques to study EMD and related manganese oxides and hydroxides, where diffraction techniques are of limited value due to a highly defective nature of the structures. Deuterons in EMD, manganite, groutite, and deuterium-intercalated pyrolusite and ramsdellite were detected by NMR, for the first time, and their locations and motions in the structures were analyzed by applying variable temperature NMR techniques. Discharge mechanisms of EMD in alkaline (aqueous) electrolytes were studied, in conjunction with step potential electrochemical spectroscopic (SPECS) method, and five distinctive discharge processes were proposed. EMD is usually heat-treated at about 300--400°C to remove water to be used in lithium batteries. Details of the effects of heat-treatment, such as structural and compositional changes as a function of heat-treatment temperature, were studied by a combination of MAS NMR, XRD, and thermogravimetric analysis. Lithium local environments in heat-treated EMD (HEMD) that were discharged in lithium cells, were described in terms of related environments found in model compounds pyrolusite and ramsdellite where specific Li + sites were detected by MAS NMR and the hyperfine shift scale method of Grey et al. Acid-leaching of Li2MnO3 represents an approach for synthesizing new or modified manganese oxide electrode materials for lithium rechargeable batteries. Progressive removal of lithium from specific crystallographic sites, followed by a gradual change of the crystal structure, was monitored by a combination of NMR and XRD techniques.

  17. Clathrate Structure Determination by Combining Crystal Structure Prediction with Computational and Experimental 129Xe NMR Spectroscopy

    PubMed Central

    Selent, Marcin; Nyman, Jonas; Roukala, Juho; Ilczyszyn, Marek; Oilunkaniemi, Raija; Bygrave, Peter J.; Laitinen, Risto; Jokisaari, Jukka

    2017-01-01

    Abstract An approach is presented for the structure determination of clathrates using NMR spectroscopy of enclathrated xenon to select from a set of predicted crystal structures. Crystal structure prediction methods have been used to generate an ensemble of putative structures of o‐ and m‐fluorophenol, whose previously unknown clathrate structures have been studied by 129Xe NMR spectroscopy. The high sensitivity of the 129Xe chemical shift tensor to the chemical environment and shape of the crystalline cavity makes it ideal as a probe for porous materials. The experimental powder NMR spectra can be used to directly confirm or reject hypothetical crystal structures generated by computational prediction, whose chemical shift tensors have been simulated using density functional theory. For each fluorophenol isomer one predicted crystal structure was found, whose measured and computed chemical shift tensors agree within experimental and computational error margins and these are thus proposed as the true fluorophenol xenon clathrate structures. PMID:28111848

  18. Dynamic membrane interactions of antibacterial and antifungal biomolecules, and amyloid peptides, revealed by solid-state NMR spectroscopy.

    PubMed

    Naito, Akira; Matsumori, Nobuaki; Ramamoorthy, Ayyalusamy

    2018-02-01

    A variety of biomolecules acting on the cell membrane folds into a biologically active structure in the membrane environment. It is, therefore, important to determine the structures and dynamics of such biomolecules in a membrane environment. While several biophysical techniques are used to obtain low-resolution information, solid-state NMR spectroscopy is one of the most powerful means for determining the structure and dynamics of membrane bound biomolecules such as antibacterial biomolecules and amyloidogenic proteins; unlike X-ray crystallography and solution NMR spectroscopy, applications of solid-state NMR spectroscopy are not limited by non-crystalline, non-soluble nature or molecular size of membrane-associated biomolecules. This review article focuses on the applications of solid-state NMR techniques to study a few selected antibacterial and amyloid peptides. Solid-state NMR studies revealing the membrane inserted bent α-helical structure associated with the hemolytic activity of bee venom melittin and the chemical shift oscillation analysis used to determine the transmembrane structure (with α-helix and 3 10 -helix in the N- and C-termini, respectively) of antibiotic peptide alamethicin are discussed in detail. Oligomerization of an amyloidogenic islet amyloid polypeptide (IAPP, or also known as amylin) resulting from its aggregation in a membrane environment, molecular interactions of the antifungal natural product amphotericin B with ergosterol in lipid bilayers, and the mechanism of lipid raft formation by sphingomyelin studied using solid state NMR methods are also discussed in this review article. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Contact replacement for NMR resonance assignment.

    PubMed

    Xiong, Fei; Pandurangan, Gopal; Bailey-Kellogg, Chris

    2008-07-01

    Complementing its traditional role in structural studies of proteins, nuclear magnetic resonance (NMR) spectroscopy is playing an increasingly important role in functional studies. NMR dynamics experiments characterize motions involved in target recognition, ligand binding, etc., while NMR chemical shift perturbation experiments identify and localize protein-protein and protein-ligand interactions. The key bottleneck in these studies is to determine the backbone resonance assignment, which allows spectral peaks to be mapped to specific atoms. This article develops a novel approach to address that bottleneck, exploiting an available X-ray structure or homology model to assign the entire backbone from a set of relatively fast and cheap NMR experiments. We formulate contact replacement for resonance assignment as the problem of computing correspondences between a contact graph representing the structure and an NMR graph representing the data; the NMR graph is a significantly corrupted, ambiguous version of the contact graph. We first show that by combining connectivity and amino acid type information, and exploiting the random structure of the noise, one can provably determine unique correspondences in polynomial time with high probability, even in the presence of significant noise (a constant number of noisy edges per vertex). We then detail an efficient randomized algorithm and show that, over a variety of experimental and synthetic datasets, it is robust to typical levels of structural variation (1-2 AA), noise (250-600%) and missings (10-40%). Our algorithm achieves very good overall assignment accuracy, above 80% in alpha-helices, 70% in beta-sheets and 60% in loop regions. Our contact replacement algorithm is implemented in platform-independent Python code. The software can be freely obtained for academic use by request from the authors.

  20. Intermediate couplings: NMR at the solids-liquids interface

    NASA Astrophysics Data System (ADS)

    Spence, Megan

    2006-03-01

    Anisotropic interactions like dipolar couplings and chemical shift anisotropy have long offered solid-state NMR spectroscopists valuable structural information. Recently, solution-state NMR structural studies have begun to exploit residual dipolar couplings of biological molecules in weakly anisotropic solutions. These residual couplings are about 0.1% of the coupling magnitudes observed in the solid state, allowing simple, high-resolution NMR spectra to be retained. In this work, we examine the membrane-associated opioid, leucine enkephalin (lenk), in which the ordering is ten times larger than that for residual dipolar coupling experiments, requiring a combination of solution-state and solid-state NMR techniques. We adapted conventional solid-state NMR techniques like adiabatic cross- polarization and REDOR for use with such a system, and measured small amide bond dipolar couplings in order to determine the orientation of the amide bonds (and therefore the peptide) with respect to the membrane surface. However, the couplings measured indicate large structural rearrangements on the surface and contradict the published structures obtained by NOESY constraints, a reminder that such methods are of limited use in the presence of large-scale dynamics.

  1. Structural changes of starch during baking and staling of rye bread.

    PubMed

    Mihhalevski, Anna; Heinmaa, Ivo; Traksmaa, Rainer; Pehk, Tõnis; Mere, Arvo; Paalme, Toomas

    2012-08-29

    Rye sourdough breads go stale more slowly than wheat breads. To understand the peculiarities of bread staling, rye sourdough bread, wheat bread, and a number of starches were studied using wide-angle X-ray diffraction, nuclear magnetic resonance ((13)C CP MAS NMR, (1)H NMR, (31)P NMR), polarized light microscopy, rheological methods, microcalorimetry, and measurement of water activity. The degree of crystallinity of starch in breads decreased with hydration and baking to 3% and increased during 11 days of storage to 21% in rye sourdough bread and to 26% in wheat bread. (13)C NMR spectra show that the chemical structures of rye and wheat amylopectin and amylose contents are very similar; differences were found in the starch phospholipid fraction characterized by (31)P NMR. The (13)C CP MAS NMR spectra demonstrate that starch in rye sourdough breads crystallize in different forms than in wheat bread. It is proposed that different proportions of water incorporation into the crystalline structure of starch during staling and changes in starch fine structure cause the different rates of staling of rye and wheat bread.

  2. Structural and Nutritional Properties of Pasta from Triticum monococcum and Triticum durum Species. A Combined ¹H NMR, MRI, and Digestibility Study.

    PubMed

    Pasini, Gabriella; Greco, Fulvia; Cremonini, Mauro A; Brandolini, Andrea; Consonni, Roberto; Gussoni, Maristella

    2015-05-27

    The aim of the present study was to characterize the structure of two different types of pasta, namely Triticum turgidum ssp. durum (cv. Saragolla) and Triticum monococcum ssp. monococcum (cv. Monlis), under different processing conditions. MRI analysis and NMR spectroscopy (i.e., T1 and T2 NMR relaxation times and diffusion parameters) were conducted on pasta, and (1)H NMR spectroscopic analysis of the chemical compounds released by pasta samples during the cooking process was performed. In addition, starch digestibility (enzimatically determined) was also investigated. The NMR results indicated that Saragolla pasta has a more compact structure, ascribed to pasta network and in particular to different technological gluten properties, that mainly determine the lower ability of Monlis pasta in binding water. These results correlate well with the lower rate of starch hydrolysis measured for Monlis pasta compared to Saragolla when both are dried at high temperature.

  3. An improved 13C-tracer method for the study of lignin structure and reactions : differential 13C-NMR

    Treesearch

    Noritsugu Terashima; Dmitry Evtuguin; Carlos Pascoal Neto; Jim Parkas; Magnus Paulsson; Ulla Westermark; Sally Ralph; John Ralph

    2003-01-01

    The technique of selective 13C-enrichment of specific carbons in lignin combined with 13C-NMR differential spectrometry between spectra of 13C-enriched and unenriched lignins (Ä13C-NMR) provides definitive information on the structure of the lignin macromolecule. Improvements were made on, (1) specific 13C-enrichment of almost all carbons involved in inter-unit bonds...

  4. Interaction of lafutidine in binding to human serum albumin in gastric ulcer therapy: STD-NMR, WaterLOGSY-NMR, NMR relaxation times, Tr-NOESY, molecule docking, and spectroscopic studies.

    PubMed

    Yang, Hongqin; Huang, Yanmei; He, Jiawei; Li, Shanshan; Tang, Bin; Li, Hui

    2016-09-15

    In this study, lafutidine (LAF) was used as a model compound to investigate the binding mechanism between antiulcer drugs and human serum albumin (HSA) through various techniques, including STD-NMR, WaterLOGSY-NMR, (1)H NMR relaxation times, tr-NOESY, molecule docking calculation, FT-IR spectroscopy, and CD spectroscopy. The analyses of STD-NMR, which derived relative STD (%) intensities, and WaterLOGSY-NMR, determined that LAF bound to HSA. In particular, the pyridyl group of LAF was in close contact with HSA binding pocket, whereas furyl group had a secondary binding. Competitive STD-NMR and WaterLOGSY-NMR experiments, with warifarin and ibuprofen as site-selective probes, indicated that LAF preferentially bound to site II in the hydrophobic subdomains IIIA of HSA. The bound conformation of LAF at the HSA binding site was further elucidated by transferred NOE effect (tr-NOESY) experiment. Relaxation experiments provided quantitative information about the relationship between the affinity and structure of LAF. The molecule docking simulations conducted with AutoDock and the restraints derived from STD results led to three-dimensional models that were consistent with the NMR spectroscopic data. The presence of hydrophobic forces and hydrogen interactions was also determined. Additionally, FT-IR and CD spectroscopies showed that LAF induced secondary structure changes of HSA. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Structural study of the membrane protein MscL using cell-free expression and solid-state NMR

    NASA Astrophysics Data System (ADS)

    Abdine, Alaa; Verhoeven, Michiel A.; Park, Kyu-Ho; Ghazi, Alexandre; Guittet, Eric; Berrier, Catherine; Van Heijenoort, Carine; Warschawski, Dror E.

    2010-05-01

    High-resolution structures of membrane proteins have so far been obtained mostly by X-ray crystallography, on samples where the protein is surrounded by detergent. Recent developments of solid-state NMR have opened the way to a new approach for the study of integral membrane proteins inside a membrane. At the same time, the extension of cell-free expression to the production of membrane proteins allows for the production of proteins tailor made for NMR. We present here an in situ solid-state NMR study of a membrane protein selectively labeled through the use of cell-free expression. The sample consists of MscL (mechano-sensitive channel of large conductance), a 75 kDa pentameric α-helical ion channel from Escherichia coli, reconstituted in a hydrated lipid bilayer. Compared to a uniformly labeled protein sample, the spectral crowding is greatly reduced in the cell-free expressed protein sample. This approach may be a decisive step required for spectral assignment and structure determination of membrane proteins by solid-state NMR.

  6. Solid-state NMR studies of form I of atorvastatin calcium.

    PubMed

    Wang, Wei David; Gao, Xudong; Strohmeier, Mark; Wang, Wei; Bai, Shi; Dybowski, Cecil

    2012-03-22

    Solid-state (13)C, (19)F, and (15)N magic angle spinning NMR studies of Form I of atorvastatin calcium are reported, including chemical shift tensors of all resolvable carbon sites and fluorine sites. The complete (13)C and (19)F chemical shift assignments are given based on an extensive analysis of (13)C-(1)H HETCOR and (13)C-(19)F HETCOR results. The solid-state NMR data indicate that the asymmetric unit of this material contains two atorvastatin molecules. A possible structure of Form I of atorvastatin calcium (ATC-I), derived from solid-state NMR data and density functional theory calculations of various structures, is proposed for this important active pharmaceutical ingredient (API).

  7. Elucidating structural characteristics of biomass using solution-state 2 D NMR with a mixture of deuterated dimethylsulfoxide and hexamethylphosphoramide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pu, Yunqiao; Ragauskas, Arthur J.; Yoo, Chang Geun

    In recent developments of NMR methods for characterization of lignocellulosic biomass allow improved understanding of plant cell-wall structures with minimal deconstruction and modification of biomass. This study introduces a new NMR solvent system composed of dimethylsulfoxide (DMSO- d 6) and hexamethylphosphoramide (HMPA- d 18). HMPA as a co-solvent enhanced swelling and mobility of the biomass samples; thereby it allowed enhancing signals of NMR spectra. Moreover, the structural information of biomass was successfully analyzed by the proposed NMR solvent system (DMSO- d 6/HMPA-d 18; 4:1, v/v) with different biomass. The proposed bi-solvent system does not require derivatization or isolation of biomass,more » facilitating a facile sample preparation and involving with no signals overlapping with biomass peaks. Furthermore, it also allows analyzing biomass with a room-temperature NMR probe instead of cryo-probes, which are traditionally used for enhancing signal intensities.« less

  8. Elucidating structural characteristics of biomass using solution-state 2 D NMR with a mixture of deuterated dimethylsulfoxide and hexamethylphosphoramide

    DOE PAGES

    Pu, Yunqiao; Ragauskas, Arthur J.; Yoo, Chang Geun; ...

    2016-04-26

    In recent developments of NMR methods for characterization of lignocellulosic biomass allow improved understanding of plant cell-wall structures with minimal deconstruction and modification of biomass. This study introduces a new NMR solvent system composed of dimethylsulfoxide (DMSO- d 6) and hexamethylphosphoramide (HMPA- d 18). HMPA as a co-solvent enhanced swelling and mobility of the biomass samples; thereby it allowed enhancing signals of NMR spectra. Moreover, the structural information of biomass was successfully analyzed by the proposed NMR solvent system (DMSO- d 6/HMPA-d 18; 4:1, v/v) with different biomass. The proposed bi-solvent system does not require derivatization or isolation of biomass,more » facilitating a facile sample preparation and involving with no signals overlapping with biomass peaks. Furthermore, it also allows analyzing biomass with a room-temperature NMR probe instead of cryo-probes, which are traditionally used for enhancing signal intensities.« less

  9. Elucidating Structural Characteristics of Biomass using Solution-State 2 D NMR with a Mixture of Deuterated Dimethylsulfoxide and Hexamethylphosphoramide.

    PubMed

    Yoo, Chang Geun; Pu, Yunqiao; Li, Mi; Ragauskas, Arthur J

    2016-05-23

    Recent developments of NMR methods for characterization of lignocellulosic biomass allow improved understanding of plant cell-wall structures with minimal deconstruction and modification of biomass. This study introduces a new NMR solvent system composed of dimethylsulfoxide (DMSO-d6 ) and hexamethylphosphoramide (HMPA-d18 ). HMPA as a co-solvent enhanced swelling and mobility of the biomass samples; thereby it allowed enhancing signals of NMR spectra. The structural information of biomass was successfully analyzed by the proposed NMR solvent system (DMSO-d6 /HMPA-d18 ; 4:1, v/v) with different biomass. The proposed bi-solvent system does not require derivatization or isolation of biomass, facilitating a facile sample preparation and involving with no signals overlapping with biomass peaks. It also allows analyzing biomass with a room-temperature NMR probe instead of cryo-probes, which are traditionally used for enhancing signal intensities. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. MAS NMR of HIV-1 protein assemblies

    NASA Astrophysics Data System (ADS)

    Suiter, Christopher L.; Quinn, Caitlin M.; Lu, Manman; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2015-04-01

    The negative global impact of the AIDS pandemic is well known. In this perspective article, the utility of magic angle spinning (MAS) NMR spectroscopy to answer pressing questions related to the structure and dynamics of HIV-1 protein assemblies is examined. In recent years, MAS NMR has undergone major technological developments enabling studies of large viral assemblies. We discuss some of these evolving methods and technologies and provide a perspective on the current state of MAS NMR as applied to the investigations into structure and dynamics of HIV-1 assemblies of CA capsid protein and of Gag maturation intermediates.

  11. NMR approaches in structure-based lead discovery: Recent developments and new frontiers for targeting multi-protein complexes

    PubMed Central

    Dias, David M.; Ciulli, Alessio

    2014-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is a pivotal method for structure-based and fragment-based lead discovery because it is one of the most robust techniques to provide information on protein structure, dynamics and interaction at an atomic level in solution. Nowadays, in most ligand screening cascades, NMR-based methods are applied to identify and structurally validate small molecule binding. These can be high-throughput and are often used synergistically with other biophysical assays. Here, we describe current state-of-the-art in the portfolio of available NMR-based experiments that are used to aid early-stage lead discovery. We then focus on multi-protein complexes as targets and how NMR spectroscopy allows studying of interactions within the high molecular weight assemblies that make up a vast fraction of the yet untargeted proteome. Finally, we give our perspective on how currently available methods could build an improved strategy for drug discovery against such challenging targets. PMID:25175337

  12. Bayesian peak picking for NMR spectra.

    PubMed

    Cheng, Yichen; Gao, Xin; Liang, Faming

    2014-02-01

    Protein structure determination is a very important topic in structural genomics, which helps people to understand varieties of biological functions such as protein-protein interactions, protein-DNA interactions and so on. Nowadays, nuclear magnetic resonance (NMR) has often been used to determine the three-dimensional structures of protein in vivo. This study aims to automate the peak picking step, the most important and tricky step in NMR structure determination. We propose to model the NMR spectrum by a mixture of bivariate Gaussian densities and use the stochastic approximation Monte Carlo algorithm as the computational tool to solve the problem. Under the Bayesian framework, the peak picking problem is casted as a variable selection problem. The proposed method can automatically distinguish true peaks from false ones without preprocessing the data. To the best of our knowledge, this is the first effort in the literature that tackles the peak picking problem for NMR spectrum data using Bayesian method. Copyright © 2013. Production and hosting by Elsevier Ltd.

  13. Comparing pharmacophore models derived from crystallography and NMR ensembles

    NASA Astrophysics Data System (ADS)

    Ghanakota, Phani; Carlson, Heather A.

    2017-11-01

    NMR and X-ray crystallography are the two most widely used methods for determining protein structures. Our previous study examining NMR versus X-Ray sources of protein conformations showed improved performance with NMR structures when used in our Multiple Protein Structures (MPS) method for receptor-based pharmacophores (Damm, Carlson, J Am Chem Soc 129:8225-8235, 2007). However, that work was based on a single test case, HIV-1 protease, because of the rich data available for that system. New data for more systems are available now, which calls for further examination of the effect of different sources of protein conformations. The MPS technique was applied to Growth factor receptor bound protein 2 (Grb2), Src SH2 homology domain (Src-SH2), FK506-binding protein 1A (FKBP12), and Peroxisome proliferator-activated receptor-γ (PPAR-γ). Pharmacophore models from both crystal and NMR ensembles were able to discriminate between high-affinity, low-affinity, and decoy molecules. As we found in our original study, NMR models showed optimal performance when all elements were used. The crystal models had more pharmacophore elements compared to their NMR counterparts. The crystal-based models exhibited optimum performance only when pharmacophore elements were dropped. This supports our assertion that the higher flexibility in NMR ensembles helps focus the models on the most essential interactions with the protein. Our studies suggest that the "extra" pharmacophore elements seen at the periphery in X-ray models arise as a result of decreased protein flexibility and make very little contribution to model performance.

  14. Extended Czjzek model applied to NMR parameter distributions in sodium metaphosphate glass

    NASA Astrophysics Data System (ADS)

    Vasconcelos, Filipe; Cristol, Sylvain; Paul, Jean-François; Delevoye, Laurent; Mauri, Francesco; Charpentier, Thibault; Le Caër, Gérard

    2013-06-01

    The extended Czjzek model (ECM) is applied to the distribution of NMR parameters of a simple glass model (sodium metaphosphate, NaPO3) obtained by molecular dynamics (MD) simulations. Accurate NMR tensors, electric field gradient (EFG) and chemical shift anisotropy (CSA) are calculated from density functional theory (DFT) within the well-established PAW/GIPAW framework. The theoretical results are compared to experimental high-resolution solid-state NMR data and are used to validate the considered structural model. The distributions of the calculated coupling constant CQ ∝ |Vzz| and the asymmetry parameter ηQ that characterize the quadrupolar interaction are discussed in terms of structural considerations with the help of a simple point charge model. Finally, the ECM analysis is shown to be relevant for studying the distribution of CSA tensor parameters and gives new insight into the structural characterization of disordered systems by solid-state NMR.

  15. Extended Czjzek model applied to NMR parameter distributions in sodium metaphosphate glass.

    PubMed

    Vasconcelos, Filipe; Cristol, Sylvain; Paul, Jean-François; Delevoye, Laurent; Mauri, Francesco; Charpentier, Thibault; Le Caër, Gérard

    2013-06-26

    The extended Czjzek model (ECM) is applied to the distribution of NMR parameters of a simple glass model (sodium metaphosphate, NaPO3) obtained by molecular dynamics (MD) simulations. Accurate NMR tensors, electric field gradient (EFG) and chemical shift anisotropy (CSA) are calculated from density functional theory (DFT) within the well-established PAW/GIPAW framework. The theoretical results are compared to experimental high-resolution solid-state NMR data and are used to validate the considered structural model. The distributions of the calculated coupling constant C(Q) is proportional to |V(zz)| and the asymmetry parameter η(Q) that characterize the quadrupolar interaction are discussed in terms of structural considerations with the help of a simple point charge model. Finally, the ECM analysis is shown to be relevant for studying the distribution of CSA tensor parameters and gives new insight into the structural characterization of disordered systems by solid-state NMR.

  16. NMR crystallography: structure and properties of materials from solid-state nuclear magnetic resonance observables

    PubMed Central

    Bryce, David L.

    2017-01-01

    This topical review provides a brief overview of recent developments in NMR crystallography and related NMR approaches to studying the properties of molecular and ionic solids. Areas of complementarity with diffraction-based methods are underscored. These include the study of disordered systems, of dynamic systems, and other selected examples where NMR can provide unique insights. Highlights from the literature as well as recent work from my own group are discussed. PMID:28875022

  17. NMR crystallography of zeolites: How far can we go without diffraction data?

    PubMed

    Brouwer, Darren H; Van Huizen, Jared

    2018-05-10

    Nuclear magnetic resonance (NMR) crystallography-an approach to structure determination that seeks to integrate solid-state NMR spectroscopy, diffraction, and computation methods-has emerged as an effective strategy to determine structures of difficult-to-characterize materials, including zeolites and related network materials. This paper explores how far it is possible to go in determining the structure of a zeolite framework from a minimal amount of input information derived only from solid-state NMR spectroscopy. It is shown that the framework structure of the fluoride-containing and tetramethylammonium-templated octadecasil clathrasil material can be solved from the 1D 29 Si NMR spectrum and a single 2D 29 Si NMR correlation spectrum alone, without the space group and unit cell parameters normally obtained from diffraction data. The resulting NMR-solved structure is in excellent agreement with the structures determined previously by diffraction methods. It is anticipated that NMR crystallography strategies like this will be useful for structure determination of other materials, which cannot be solved from diffraction methods alone. Copyright © 2018 John Wiley & Sons, Ltd.

  18. Protein folding on the ribosome studied using NMR spectroscopy

    PubMed Central

    Waudby, Christopher A.; Launay, Hélène; Cabrita, Lisa D.; Christodoulou, John

    2013-01-01

    NMR spectroscopy is a powerful tool for the investigation of protein folding and misfolding, providing a characterization of molecular structure, dynamics and exchange processes, across a very wide range of timescales and with near atomic resolution. In recent years NMR methods have also been developed to study protein folding as it might occur within the cell, in a de novo manner, by observing the folding of nascent polypeptides in the process of emerging from the ribosome during synthesis. Despite the 2.3 MDa molecular weight of the bacterial 70S ribosome, many nascent polypeptides, and some ribosomal proteins, have sufficient local flexibility that sharp resonances may be observed in solution-state NMR spectra. In providing information on dynamic regions of the structure, NMR spectroscopy is therefore highly complementary to alternative methods such as X-ray crystallography and cryo-electron microscopy, which have successfully characterized the rigid core of the ribosome particle. However, the low working concentrations and limited sample stability associated with ribosome–nascent chain complexes means that such studies still present significant technical challenges to the NMR spectroscopist. This review will discuss the progress that has been made in this area, surveying all NMR studies that have been published to date, and with a particular focus on strategies for improving experimental sensitivity. PMID:24083462

  19. Synthesis, spectral, structural prediction and computational studies of octylcarbazole ornamented 3-phenothiazinal

    NASA Astrophysics Data System (ADS)

    Karuppasamy, Ayyanar; Udhaya kumar, Chandran; Karthikeyan, Subramanian; Velayutham Pillai, Muthiah Pillai; Ramalingan, Chennan

    2017-11-01

    A novel conjugated octylcarbazole ornamented 3-phenothiazinal, 10-(9-octyl-9H-carbazol-3-yl)-10H-phenothiazine-3-carbaldehyde (OCPTC) was synthesized and fully characterized by 1H-NMR, 13C-NMR, elemental and single crystal XRD analyses. The optimized geometrical structure, vibrational frequencies and NMR have been computed with M06-2X method using 6-31+G(d,p) basis set. Total electronic energies and HOMO-LUMO energy gaps in gas phase are discussed. The geometrical parameters of the title compound obtained from single crystal XRD studies have been found in accord with the calculated (DFT) values. The experimental and theoretical FT-IR and NMR results of the title molecule have been investigated. The experimentally observed vibrational frequencies have been compared with the calculated ones, which are in good agreement with each other. Single crystal X-ray structural analysis of OCPTC, evidences the ''butterfly conformation'' of phenothiazine ring with nearly perpendicular orientation of the carbazole structural motif to the phenothiazine moiety.

  20. NMR in the SPINE Structural Proteomics project.

    PubMed

    Ab, E; Atkinson, A R; Banci, L; Bertini, I; Ciofi-Baffoni, S; Brunner, K; Diercks, T; Dötsch, V; Engelke, F; Folkers, G E; Griesinger, C; Gronwald, W; Günther, U; Habeck, M; de Jong, R N; Kalbitzer, H R; Kieffer, B; Leeflang, B R; Loss, S; Luchinat, C; Marquardsen, T; Moskau, D; Neidig, K P; Nilges, M; Piccioli, M; Pierattelli, R; Rieping, W; Schippmann, T; Schwalbe, H; Travé, G; Trenner, J; Wöhnert, J; Zweckstetter, M; Kaptein, R

    2006-10-01

    This paper describes the developments, role and contributions of the NMR spectroscopy groups in the Structural Proteomics In Europe (SPINE) consortium. Focusing on the development of high-throughput (HTP) pipelines for NMR structure determinations of proteins, all aspects from sample preparation, data acquisition, data processing, data analysis to structure determination have been improved with respect to sensitivity, automation, speed, robustness and validation. Specific highlights are protonless (13)C-direct detection methods and inferential structure determinations (ISD). In addition to technological improvements, these methods have been applied to deliver over 60 NMR structures of proteins, among which are five that failed to crystallize. The inclusion of NMR spectroscopy in structural proteomics pipelines improves the success rate for protein structure determinations.

  1. Development of high resolution NMR spectroscopy as a structural tool

    NASA Astrophysics Data System (ADS)

    Feeney, James

    1992-06-01

    The discovery of the nuclear magnetic resonance (NMR) phenomenon and its development and exploitation as a scientific tool provide an excellent basis for a case-study for examining the factors which control the evolution of scientific techniques. Since the detection of the NMR phenomenon and the subsequent rapid discovery of all the important NMR spectral parameters in the late 1940s, the method has emerged as one of the most powerful techniques for determining structures of molecules in solution and for analysis of complex mixtures. The method has made a dramatic impact on the development of structural chemistry over the last 30 years and is now one of the key techniques in this area. Support for NMR instrumentation attracts a dominant slice of public funding in most scientifically developed countries. The technique is an excellent example of how instrumentation and technology have revolutionised structural chemistry and it is worth exploring how it has been developed so successfully. Clearly its wide range of application and the relatively direct connection between the NMR data and molecular structure has created a major market for the instrumentation. This has provided several competing manufacturers with the incentive to develop better and better instruments. Understanding the complexity of the basics of NMR spectroscopy has been an ongoing challenge attracting the attention of physicists. The well-organised specialist NMR literature and regular scientific meetings have ensured rapid exploitation of any theoretical advances that have a practical relevance. In parallel, the commercial development of the technology has allowed the fruits of such theoretical advances to be enjoyed by the wider scientific community.

  2. NMR data-driven structure determination using NMR-I-TASSER in the CASD-NMR experiment

    PubMed Central

    Jang, Richard; Wang, Yan

    2015-01-01

    NMR-I-TASSER, an adaption of the I-TASSER algorithm combining NMR data for protein structure determination, recently joined the second round of the CASD-NMR experiment. Unlike many molecular dynamics-based methods, NMR-I-TASSER takes a molecular replacement-like approach to the problem by first threading the target through the PDB to identify structural templates which are then used for iterative NOE assignments and fragment structure assembly refinements. The employment of multiple templates allows NMR-I-TASSER to sample different topologies while convergence to a single structure is not required. Retroactive and blind tests of the CASD-NMR targets from Rounds 1 and 2 demonstrate that even without using NOE peak lists I-TASSER can generate correct structure topology with 15 of 20 targets having a TM-score above 0.5. With the addition of NOE-based distance restraints, NMR-I-TASSER significantly improved the I-TASSER models with all models having the TM-score above 0.5. The average RMSD was reduced from 5.29 to 2.14 Å in Round 1 and 3.18 to 1.71 Å in Round 2. There is no obvious difference in the modeling results with using raw and refined peak lists, indicating robustness of the pipeline to the NOE assignment errors. Overall, despite the low-resolution modeling the current NMR-I-TASSER pipeline provides a coarse-grained structure folding approach complementary to traditional molecular dynamics simulations, which can produce fast near-native frameworks for atomic-level structural refinement. PMID:25737244

  3. Monoterpene Unknowns Identified Using IR, [to the first power]H-NMR, [to the thirteenth power]C-NMR, DEPT, COSY, and HETCOR

    ERIC Educational Resources Information Center

    Alty, Lisa T.

    2005-01-01

    A study identifies a compound from a set of monoterpenes using infrared (IR) and one-dimensional (1D) nuclear magnetic resonance (NMR) techniques. After identifying the unknown, each carbon and proton signal can be interpreted and assigned to the structure using the information in the two-dimensional (2D) NMR spectra, correlation spectroscopy…

  4. NVR-BIP: Nuclear Vector Replacement using Binary Integer Programming for NMR Structure-Based Assignments.

    PubMed

    Apaydin, Mehmet Serkan; Çatay, Bülent; Patrick, Nicholas; Donald, Bruce R

    2011-05-01

    Nuclear magnetic resonance (NMR) spectroscopy is an important experimental technique that allows one to study protein structure and dynamics in solution. An important bottleneck in NMR protein structure determination is the assignment of NMR peaks to the corresponding nuclei. Structure-based assignment (SBA) aims to solve this problem with the help of a template protein which is homologous to the target and has applications in the study of structure-activity relationship, protein-protein and protein-ligand interactions. We formulate SBA as a linear assignment problem with additional nuclear overhauser effect constraints, which can be solved within nuclear vector replacement's (NVR) framework (Langmead, C., Yan, A., Lilien, R., Wang, L. and Donald, B. (2003) A Polynomial-Time Nuclear Vector Replacement Algorithm for Automated NMR Resonance Assignments. Proc. the 7th Annual Int. Conf. Research in Computational Molecular Biology (RECOMB) , Berlin, Germany, April 10-13, pp. 176-187. ACM Press, New York, NY. J. Comp. Bio. , (2004), 11, pp. 277-298; Langmead, C. and Donald, B. (2004) An expectation/maximization nuclear vector replacement algorithm for automated NMR resonance assignments. J. Biomol. NMR , 29, 111-138). Our approach uses NVR's scoring function and data types and also gives the option of using CH and NH residual dipolar coupling (RDCs), instead of NH RDCs which NVR requires. We test our technique on NVR's data set as well as on four new proteins. Our results are comparable to NVR's assignment accuracy on NVR's test set, but higher on novel proteins. Our approach allows partial assignments. It is also complete and can return the optimum as well as near-optimum assignments. Furthermore, it allows us to analyze the information content of each data type and is easily extendable to accept new forms of input data, such as additional RDCs.

  5. PDBStat: a universal restraint converter and restraint analysis software package for protein NMR.

    PubMed

    Tejero, Roberto; Snyder, David; Mao, Binchen; Aramini, James M; Montelione, Gaetano T

    2013-08-01

    The heterogeneous array of software tools used in the process of protein NMR structure determination presents organizational challenges in the structure determination and validation processes, and creates a learning curve that limits the broader use of protein NMR in biology. These challenges, including accurate use of data in different data formats required by software carrying out similar tasks, continue to confound the efforts of novices and experts alike. These important issues need to be addressed robustly in order to standardize protein NMR structure determination and validation. PDBStat is a C/C++ computer program originally developed as a universal coordinate and protein NMR restraint converter. Its primary function is to provide a user-friendly tool for interconverting between protein coordinate and protein NMR restraint data formats. It also provides an integrated set of computational methods for protein NMR restraint analysis and structure quality assessment, relabeling of prochiral atoms with correct IUPAC names, as well as multiple methods for analysis of the consistency of atomic positions indicated by their convergence across a protein NMR ensemble. In this paper we provide a detailed description of the PDBStat software, and highlight some of its valuable computational capabilities. As an example, we demonstrate the use of the PDBStat restraint converter for restrained CS-Rosetta structure generation calculations, and compare the resulting protein NMR structure models with those generated from the same NMR restraint data using more traditional structure determination methods. These results demonstrate the value of a universal restraint converter in allowing the use of multiple structure generation methods with the same restraint data for consensus analysis of protein NMR structures and the underlying restraint data.

  6. PDBStat: A Universal Restraint Converter and Restraint Analysis Software Package for Protein NMR

    PubMed Central

    Tejero, Roberto; Snyder, David; Mao, Binchen; Aramini, James M.; Montelione, Gaetano T

    2013-01-01

    The heterogeneous array of software tools used in the process of protein NMR structure determination presents organizational challenges in the structure determination and validation processes, and creates a learning curve that limits the broader use of protein NMR in biology. These challenges, including accurate use of data in different data formats required by software carrying out similar tasks, continue to confound the efforts of novices and experts alike. These important issues need to be addressed robustly in order to standardize protein NMR structure determination and validation. PDBStat is a C/C++ computer program originally developed as a universal coordinate and protein NMR restraint converter. Its primary function is to provide a user-friendly tool for interconverting between protein coordinate and protein NMR restraint data formats. It also provides an integrated set of computational methods for protein NMR restraint analysis and structure quality assessment, relabeling of prochiral atoms with correct IUPAC names, as well as multiple methods for analysis of the consistency of atomic positions indicated by their convergence across a protein NMR ensemble. In this paper we provide a detailed description of the PDBStat software, and highlight some of its valuable computational capabilities. As an example, we demonstrate the use of the PDBStat restraint converter for restrained CS-Rosetta structure generation calculations, and compare the resulting protein NMR structure models with those generated from the same NMR restraint data using more traditional structure determination methods. These results demonstrate the value of a universal restraint converter in allowing the use of multiple structure generation methods with the same restraint data for consensus analysis of protein NMR structures and the underlying restraint data. PMID:23897031

  7. Sum frequency generation and solid-state NMR study of the structure, orientation, and dynamics of polystyrene-adsorbed peptides

    PubMed Central

    Weidner, Tobias; Breen, Nicholas F.; Li, Kun; Drobny, Gary P.; Castner, David G.

    2010-01-01

    The power of combining sum frequency generation (SFG) vibrational spectroscopy and solid-state nuclear magnetic resonance (ssNMR) spectroscopy to quantify, with site specificity and atomic resolution, the orientation and dynamics of side chains in synthetic model peptides adsorbed onto polystyrene (PS) surfaces is demonstrated in this study. Although isotopic labeling has long been used in ssNMR studies to site-specifically probe the structure and dynamics of biomolecules, the potential of SFG to probe side chain orientation in isotopically labeled surface-adsorbed peptides and proteins remains largely unexplored. The 14 amino acid leucine-lysine peptide studied in this work is known to form an α-helical secondary structure at liquid-solid interfaces. Selective, individual deuteration of the isopropyl group in each leucine residue was used to probe the orientation and dynamics of each individual leucine side chain of LKα14 adsorbed onto PS. The selective isotopic labeling methods allowed SFG analysis to determine the orientations of individual side chains in adsorbed peptides. Side chain dynamics were obtained by fitting the deuterium ssNMR line shape to specific motional models. Through the combined use of SFG and ssNMR, the dynamic trends observed for individual side chains by ssNMR have been correlated with side chain orientation relative to the PS surface as determined by SFG. This combination provides a more complete and quantitative picture of the structure, orientation, and dynamics of these surface-adsorbed peptides than could be obtained if either technique were used separately. PMID:20628016

  8. Deformation and Failure of Protein Materials in Physiologically Extreme Conditions and Disease

    DTIC Science & Technology

    2009-03-01

    resonance (NMR) spectroscopy and X- ray crystallography have advanced our ability to identify 3D protein structures57. Site-specific studies using NMR, a... ray crystallography, providing structural and temporal information about mechanisms of deformation and assembly (for example in intermediate...tens of thousands of 3D atomistic protein structures, identifying the structure of numerous proteins from varying species sources60. X- ray

  9. Segmental Isotopic Labeling of Proteins for Nuclear Magnetic Resonance

    PubMed Central

    Dongsheng, Liu; Xu, Rong; Cowburn, David

    2009-01-01

    Nuclear Magnetic Resonance (NMR) spectroscopy has emerged as one of the principle techniques of structural biology. It is not only a powerful method for elucidating the 3D structures under near physiological conditions, but also a convenient method for studying protein-ligand interactions and protein dynamics. A major drawback of macromolecular NMR is its size limitation caused by slower tumbling rates and greater complexity of the spectra as size increases. Segmental isotopic labeling allows specific segment(s) within a protein to be selectively examined by NMR thus significantly reducing the spectral complexity for large proteins and allowing a variety of solution-based NMR strategies to be applied. Two related approaches are generally used in the segmental isotopic labeling of proteins: expressed protein ligation and protein trans-splicing. Here we describe the methodology and recent application of expressed protein ligation and protein trans-splicing for NMR structural studies of proteins and protein complexes. We also describe the protocol used in our lab for the segmental isotopic labeling of a 50 kDa protein Csk (C-terminal Src Kinase) using expressed protein ligation methods. PMID:19632474

  10. Effects of structural differences on the NMR chemical shifts in cinnamic acid derivatives: Comparison of GIAO and GIPAW calculations

    NASA Astrophysics Data System (ADS)

    Szeleszczuk, Łukasz; Pisklak, Dariusz Maciej; Zielińska-Pisklak, Monika; Wawer, Iwona

    2016-06-01

    In this article we report the results of combined theoretical and experimental structural studies on cinnamic acid derivatives (CADs), one of the main groups of secondary metabolites present in various medicinal plant species and food products of plant origin. The effects of structural differences in CADs on their spectroscopic properties were studied in detail by both: solid-state NMR and GIAO/GIPAW calculations. Theoretical computations were used in order to perform signal assignment in 13C CP/MAS NMR spectra of the cinnamic, o-coumaric, m-coumaric, p-coumaric, caffeic, ferulic, sinapic and 3,4-dimethoxycinnamic acids, and to evaluate the accuracy of GIPAW and GIAO methodology.

  11. Heteronuclear Multidimensional Protein NMR in a Teaching Laboratory

    ERIC Educational Resources Information Center

    Wright, Nathan T.

    2016-01-01

    Heteronuclear multidimensional NMR techniques are commonly used to study protein structure, function, and dynamics, yet they are rarely taught at the undergraduate level. Here, we describe a senior undergraduate laboratory where students collect, process, and analyze heteronuclear multidimensional NMR experiments using an unstudied Ig domain (Ig2…

  12. Detergent/Nanodisc Screening for High-Resolution NMR Studies of an Integral Membrane Protein Containing a Cytoplasmic Domain

    PubMed Central

    Maslennikov, Innokentiy; Choe, Senyon; Riek, Roland

    2013-01-01

    Because membrane proteins need to be extracted from their natural environment and reconstituted in artificial milieus for the 3D structure determination by X-ray crystallography or NMR, the search for membrane mimetic that conserve the native structure and functional activities remains challenging. We demonstrate here a detergent/nanodisc screening study by NMR of the bacterial α-helical membrane protein YgaP containing a cytoplasmic rhodanese domain. The analysis of 2D [15N,1H]-TROSY spectra shows that only a careful usage of low amounts of mixed detergents did not perturb the cytoplasmic domain while solubilizing in parallel the transmembrane segments with good spectral quality. In contrast, the incorporation of YgaP into nanodiscs appeared to be straightforward and yielded a surprisingly high quality [15N,1H]-TROSY spectrum opening an avenue for the structural studies of a helical membrane protein in a bilayer system by solution state NMR. PMID:23349867

  13. Challenges in NMR-based structural genomics

    NASA Astrophysics Data System (ADS)

    Sue, Shih-Che; Chang, Chi-Fon; Huang, Yao-Te; Chou, Ching-Yu; Huang, Tai-huang

    2005-05-01

    Understanding the functions of the vast number of proteins encoded in many genomes that have been completely sequenced recently is the main challenge for biologists in the post-genomics era. Since the function of a protein is determined by its exact three-dimensional structure it is paramount to determine the 3D structures of all proteins. This need has driven structural biologists to undertake the structural genomics project aimed at determining the structures of all known proteins. Several centers for structural genomics studies have been established throughout the world. Nuclear magnetic resonance (NMR) spectroscopy has played a major role in determining protein structures in atomic details and in a physiologically relevant solution state. Since the number of new genes being discovered daily far exceeds the number of structures determined by both NMR and X-ray crystallography, a high-throughput method for speeding up the process of protein structure determination is essential for the success of the structural genomics effort. In this article we will describe NMR methods currently being employed for protein structure determination. We will also describe methods under development which may drastically increase the throughput, as well as point out areas where opportunities exist for biophysicists to make significant contribution in this important field.

  14. Synergy between NMR measurements and MD simulations of protein/RNA complexes: application to the RRMs, the most common RNA recognition motifs

    PubMed Central

    Krepl, Miroslav; Cléry, Antoine; Blatter, Markus; Allain, Frederic H.T.; Sponer, Jiri

    2016-01-01

    RNA recognition motif (RRM) proteins represent an abundant class of proteins playing key roles in RNA biology. We present a joint atomistic molecular dynamics (MD) and experimental study of two RRM-containing proteins bound with their single-stranded target RNAs, namely the Fox-1 and SRSF1 complexes. The simulations are used in conjunction with NMR spectroscopy to interpret and expand the available structural data. We accumulate more than 50 μs of simulations and show that the MD method is robust enough to reliably describe the structural dynamics of the RRM–RNA complexes. The simulations predict unanticipated specific participation of Arg142 at the protein–RNA interface of the SRFS1 complex, which is subsequently confirmed by NMR and ITC measurements. Several segments of the protein–RNA interface may involve competition between dynamical local substates rather than firmly formed interactions, which is indirectly consistent with the primary NMR data. We demonstrate that the simulations can be used to interpret the NMR atomistic models and can provide qualified predictions. Finally, we propose a protocol for ‘MD-adapted structure ensemble’ as a way to integrate the simulation predictions and expand upon the deposited NMR structures. Unbiased μs-scale atomistic MD could become a technique routinely complementing the NMR measurements of protein–RNA complexes. PMID:27193998

  15. Theoretical and experimental NMR studies on muscimol from fly agaric mushroom (Amanita muscaria)

    NASA Astrophysics Data System (ADS)

    Kupka, Teobald; Wieczorek, Piotr P.

    2016-01-01

    In this article we report results of combined theoretical and experimental NMR studies on muscimol, the bioactive alkaloid from fly agaric mushroom (Amanita muscaria). The assignment of 1H and 13C NMR spectra of muscimol in DMSO-d6 was supported by additional two-dimensional heteronuclear correlated spectra (2D NMR) and gauge independent atomic orbital (GIAO) NMR calculations using density functional theory (DFT). The effect of solvent in theoretical calculations was included via polarized continuum model (PCM) and the hybrid three-parameter B3LYP density functional in combination with 6-311++G(3df,2pd) basis set enabled calculation of reliable structures of non-ionized (neutral) molecule and its NH and zwitterionic forms in the gas phase, chloroform, DMSO and water. GIAO NMR calculations, using equilibrium and rovibrationally averaged geometry, at B3LYP/6-31G* and B3LYP/aug-cc-pVTZ-J levels of theory provided muscimol nuclear magnetic shieldings. The theoretical proton and carbon chemical shifts were critically compared with experimental NMR spectra measured in DMSO. Our results provide useful information on its structure in solution. We believe that such data could improve the understanding of basic features of muscimol at atomistic level and provide another tool in studies related to GABA analogs.

  16. NMR crystallography of 2-acylamino-6-[1 H]-pyridones: Solid-state NMR, GIPAW computational, and single crystal X-ray diffraction studies

    NASA Astrophysics Data System (ADS)

    Ośmiałowski, Borys; Kolehmainen, Erkki; Ikonen, Satu; Ahonen, Kari; Löfman, Miika

    2011-12-01

    2-Acylamino-6-[1 H]-pyridones [acyl = RCO, where R = methyl ( 1), ethyl ( 2), iso-propyl ( 3), tert-butyl ( 4), and 1-adamantyl ( 5)] have been synthesized and characterized by NMR spectroscopy. From three congeners, 2, 3 and 5, also single crystal X-ray structures have been solved. For these derivatives GIPAW calculations acts as a "bridge" between solid-state NMR data and calculated chemical shifts based on X-ray determined geometry. In crystals all three compounds exist as pyridone tautomers possessing similar six-membered ring structure stabilized by intramolecular C dbnd O⋯HN hydrogen bond. Theoretical GIPAW calculated and experimental 13C and 15N CPMAS NMR shifts are in excellent agreement with each other.

  17. Modification and intercalation of layered zirconium phosphates: a solid-state NMR monitoring.

    PubMed

    Bakhmutov, Vladimir I; Kan, Yuwei; Sheikh, Javeed Ahmad; González-Villegas, Julissa; Colón, Jorge L; Clearfield, Abraham

    2017-07-01

    Several layered zirconium phosphates treated with Zr(IV) ions, modified by monomethoxy-polyethyleneglycol-monophosphate and intercalated with doxorubicin hydrochloride have been studied by solid-state MAS NMR techniques. The organic components of the phosphates have been characterized by the 13 C{ 1 H} CP MAS NMR spectra compared with those of initial compounds. The multinuclear NMR monitoring has provided to establish structure and covalent attachment of organic/inorganic moieties to the surface and interlayer spaces of the phosphates. The MAS NMR experiments including kinetics of proton-phosphorus cross polarization have resulted in an unusual structure of zirconium phosphate 6 combining decoration of the phosphate surface by polymer units and their partial intercalation into the interlayer space. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Introducing NMR to a General Chemistry Audience: A Structural-Based Instrumental Laboratory Relating Lewis Structures, Molecular Models, and [superscript 13]C NMR Data

    ERIC Educational Resources Information Center

    Pulliam, Curtis R.; Pfeiffer, William F.; Thomas, Alyssa C.

    2015-01-01

    This paper describes a first-year general chemistry laboratory that uses NMR spectroscopy and model building to emphasize molecular shape and structure. It is appropriate for either a traditional or an atoms-first curriculum. Students learn the basis of structure and the use of NMR data through a cooperative learning hands-on laboratory…

  19. NMR-based automated protein structure determination.

    PubMed

    Würz, Julia M; Kazemi, Sina; Schmidt, Elena; Bagaria, Anurag; Güntert, Peter

    2017-08-15

    NMR spectra analysis for protein structure determination can now in many cases be performed by automated computational methods. This overview of the computational methods for NMR protein structure analysis presents recent automated methods for signal identification in multidimensional NMR spectra, sequence-specific resonance assignment, collection of conformational restraints, and structure calculation, as implemented in the CYANA software package. These algorithms are sufficiently reliable and integrated into one software package to enable the fully automated structure determination of proteins starting from NMR spectra without manual interventions or corrections at intermediate steps, with an accuracy of 1-2 Å backbone RMSD in comparison with manually solved reference structures. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. NMR approaches in structure-based lead discovery: recent developments and new frontiers for targeting multi-protein complexes.

    PubMed

    Dias, David M; Ciulli, Alessio

    2014-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is a pivotal method for structure-based and fragment-based lead discovery because it is one of the most robust techniques to provide information on protein structure, dynamics and interaction at an atomic level in solution. Nowadays, in most ligand screening cascades, NMR-based methods are applied to identify and structurally validate small molecule binding. These can be high-throughput and are often used synergistically with other biophysical assays. Here, we describe current state-of-the-art in the portfolio of available NMR-based experiments that are used to aid early-stage lead discovery. We then focus on multi-protein complexes as targets and how NMR spectroscopy allows studying of interactions within the high molecular weight assemblies that make up a vast fraction of the yet untargeted proteome. Finally, we give our perspective on how currently available methods could build an improved strategy for drug discovery against such challenging targets. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Isotope Labeling for Solution and Solid-State NMR Spectroscopy of Membrane Proteins

    PubMed Central

    Verardi, Raffaello; Traaseth, Nathaniel J.; Masterson, Larry R.; Vostrikov, Vitaly V.; Veglia, Gianluigi

    2013-01-01

    In this chapter, we summarize the isotopic labeling strategies used to obtain high-quality solution and solid-state NMR spectra of biological samples, with emphasis on integral membrane proteins (IMPs). While solution NMR is used to study IMPs under fast tumbling conditions, such as in the presence of detergent micelles or isotropic bicelles, solid-state NMR is used to study the structure and orientation of IMPs in lipid vesicles and bilayers. In spite of the tremendous progress in biomolecular NMR spectroscopy, the homogeneity and overall quality of the sample is still a substantial obstacle to overcome. Isotopic labeling is a major avenue to simplify overlapped spectra by either diluting the NMR active nuclei or allowing the resonances to be separated in multiple dimensions. In the following we will discuss isotopic labeling approaches that have been successfully used in the study of IMPs by solution and solid-state NMR spectroscopy. PMID:23076578

  2. Characterization of D-glucaric acid using NMR, x-ray crystal structure, and MM3 molecular modeling analyses

    USDA-ARS?s Scientific Manuscript database

    D-glucaric acid was characterized in solution by comparing NMR spectra from the isotopically unlabeled molecule with those from D-glucaric acid labeled with deuterium or carbon-13 atoms. The NMR studies provided unequivocal assignments for all carbon atoms and non-hydroxyl protons of the molecule. ...

  3. RNA unrestrained molecular dynamics ensemble improves agreement with experimental NMR data compared to single static structure: a test case

    NASA Astrophysics Data System (ADS)

    Beckman, Robert A.; Moreland, David; Louise-May, Shirley; Humblet, Christine

    2006-05-01

    Nuclear magnetic resonance (NMR) provides structural and dynamic information reflecting an average, often non-linear, of multiple solution-state conformations. Therefore, a single optimized structure derived from NMR refinement may be misleading if the NMR data actually result from averaging of distinct conformers. It is hypothesized that a conformational ensemble generated by a valid molecular dynamics (MD) simulation should be able to improve agreement with the NMR data set compared with the single optimized starting structure. Using a model system consisting of two sequence-related self-complementary ribonucleotide octamers for which NMR data was available, 0.3 ns particle mesh Ewald MD simulations were performed in the AMBER force field in the presence of explicit water and counterions. Agreement of the averaged properties of the molecular dynamics ensembles with NMR data such as homonuclear proton nuclear Overhauser effect (NOE)-based distance constraints, homonuclear proton and heteronuclear 1H-31P coupling constant ( J) data, and qualitative NMR information on hydrogen bond occupancy, was systematically assessed. Despite the short length of the simulation, the ensemble generated from it agreed with the NMR experimental constraints more completely than the single optimized NMR structure. This suggests that short unrestrained MD simulations may be of utility in interpreting NMR results. As expected, a 0.5 ns simulation utilizing a distance dependent dielectric did not improve agreement with the NMR data, consistent with its inferior exploration of conformational space as assessed by 2-D RMSD plots. Thus, ability to rapidly improve agreement with NMR constraints may be a sensitive diagnostic of the MD methods themselves.

  4. A new Schiff base compound N,N'-(2,2-dimetylpropane)-bis(dihydroxylacetophenone): synthesis, experimental and theoretical studies on its crystal structure, FTIR, UV-visible, 1H NMR and 13C NMR spectra.

    PubMed

    Saheb, Vahid; Sheikhshoaie, Iran

    2011-10-15

    The Schiff base compound, N,N'-(2,2-dimetylpropane)-bis(dihydroxylacetophenone) (NDHA) is synthesized through the condensation of 2-hydroxylacetophenone and 2,2-dimethyl 1,3-amino propane in methanol at ambient temperature. The yellow crystalline precipitate is used for X-ray single-crystal determination and measuring Fourier transform infrared (FTIR), UV-visible, (1)H NMR and (13)C NMR spectra. Electronic structure calculations at the B3LYP, PBEPBE and PW91PW91 levels of theory are performed to optimize the molecular geometry and to calculate the FTIR, (1)H NMR and (13)C NMR spectra of the compound. Time-dependent density functional theory (TDDFT) method is used to calculate the UV-visible spectrum of NDHA. Vibrational frequencies are determined experimentally and compared with those obtained theoretically. Vibrational assignments and analysis of the fundamental modes of the compound are also performed. All theoretical methods can well reproduce the structure of the compound. The (1)H NMR and (13)C NMR chemical shifts calculated by all DFT methods are consistent with the experimental data. However, the NMR shielding tensors computed at the B3LYP/6-31+G(d,p) level of theory are in better agreement with experimental (1)H NMR and (13)C NMR spectra. The electronic absorption spectrum calculated at the B3LYP/6-31+G(d,p) level by using TD-DFT method is in accordance with the observed UV-visible spectrum of NDHA. In addition, some quantum descriptors of the molecule are calculated and conformational analysis is performed and the results were compared with the crystallographic data. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. The chemical structure of highly aromatic humic acids in three volcanic ash soils as determined by dipolar dephasing NMR studies

    USGS Publications Warehouse

    Hatcher, P.G.; Schnitzer, M.; Vassallo, A.M.; Wilson, M.A.

    1989-01-01

    Dipolar dephasing 13C NMR studies of three highly aromatic humic acids, one from a modern soil and two from paleosols, have permitted the determination of the degree of aromatic substitution. From these data and the normal solid-state 13C NMR data we have been able to develop a model for the average chemical structure of these humic acids that generally correlates well with permanganate oxidation data. The models depict these humic acids as benzene di- and tricarboxylic acids interconnected by biphenyl linkages. An increasing degree of substitution is observed with increasing geologic age. These structures may be characteristic of the resistant aromatic part of the "core" of humic substances that survives degradation. ?? 1989.

  6. NMR conformational properties of an Anthrax Lethal Factor domain studied by multiple amino acid-selective labeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vourtsis, Dionysios J.; Chasapis, Christos T.; Pairas, George

    2014-07-18

    Highlights: • A polypeptide, N-ALF{sub 233}, was overexpressed in E. coli and successfully isolated. • We produced {sup 2}H/{sup 15}N/{sup 13}C labeled protein samples. • Amino acid selective approaches were applied. • We acquired several heteronuclear NMR spectra, to complete the backbone assignment. • Prediction of the secondary structure was performed. - Abstract: NMR-based structural biology urgently needs cost- and time-effective methods to assist both in the process of acquiring high-resolution NMR spectra and their subsequent analysis. Especially for bigger proteins (>20 kDa) selective labeling is a frequently used means of sequence-specific assignment. In this work we present the successfulmore » overexpression of a polypeptide of 233 residues, corresponding to the structured part of the N-terminal domain of Anthrax Lethal Factor, using Escherichia coli expression system. The polypeptide was subsequently isolated in pure, soluble form and analyzed structurally by solution NMR spectroscopy. Due to the non-satisfying quality and resolution of the spectra of this 27 kDa protein, an almost complete backbone assignment became feasible only by the combination of uniform and novel amino acid-selective labeling schemes. Moreover, amino acid-type selective triple-resonance NMR experiments proved to be very helpful.« less

  7. High-resolution solution-state NMR of unfractionated plant cell walls

    Treesearch

    John Ralph; Fachuang Lu; Hoon Kim; Dino Ress; Daniel J. Yelle; Kenneth E. Hammel; Sally A. Ralph; Bernadette Nanayakkara; Armin Wagner; Takuya Akiyama; Paul F. Schatz; Shawn D. Mansfield; Noritsugu Terashima; Wout Boerjan; Bjorn Sundberg; Mattias Hedenstrom

    2009-01-01

    Detailed structural studies on the plant cell wall have traditionally been difficult. NMR is one of the preeminent structural tools, but obtaining high-resolution solution-state spectra has typically required fractionation and isolation of components of interest. With recent methods for dissolution of, admittedly, finely divided plant cell wall material, the wall can...

  8. Dipolar-dephasing 13C NMR studies of decomposed wood and coalified xylem tissue: Evidence for chemical structural changes associated with defunctionalization of lignin structural units during coalification

    USGS Publications Warehouse

    Hatcher, P.G.

    1988-01-01

    A series of decomposed and coalified gymnosperm woods was examined by conventional solid-state 13C nuclear magnetic resonance (NMR) and by dipolar-dephasing NMR techniques. The results of these NMR studies for a histologically related series of samples provide clues as to the nature of codification reactions that lead to the defunctionalization of lignin-derived aromatic structures. These reactions sequentially involve the following: (1) loss of methoxyl carbons from guaiacyl structural units with replacement by hydroxyls and increased condensation; (2) loss of hydroxyls or aryl ethers with replacement by hydrogen as rank increases from lignin to high-volatile bituminous coal; (3) loss of alkyl groups with continued replacement by hydrogen. The dipolar-dephasing data show that the early stages of coalification in samples examined (lignin to lignite) involve a decreasing degree of protonation on aromatic rings and suggest that condensation is significant during coalification at this early stage. An increasing degree of protonation on aromatic rings is observed as the rank of the sample increases from lignite to anthracite.

  9. Structural investigation of the capsular polysaccharide produced by a novel Klebsiella serotype (SK1). Location of O-acetyl substituents using NMR and MS techniques.

    PubMed

    Cescutti, P; Ravenscroft, N; Ng, S; Lam, Z; Dutton, G G

    1993-06-21

    The capsular polysaccharide of Klebsiella SK1 was investigated by methylation analysis, Smith degradation, and 1H NMR spectroscopy. The oligosaccharides (P1 and P2) obtained by bacteriophage phi SK1 degradation of the polymer were studied by methylation analysis, and 1D- and 2D-NMR spectroscopy. The resulting data showed that the parent repeating unit is a branched pentasaccharide having a structure identical to the revised structure recently proposed for Klebsiella serotype K8 capsular polysaccharide. [Formula: see text] The 2D-NMR data showed that one third of the glucuronic acid residues in the SK1 polymer are acetylated at O-2, O-3, or O-4. FABMS studies confirmed the presence of monoacetylated glucuronic acid residues. Thus, the relationship between the Klebsiella K8 and SK1 polymers is akin to that found for Klebsiella polysaccharides K30 and K33, which have been typed as serologically distinct yet their structures differ only in the degree of acetylation.

  10. The structure investigations of dehydroacetic acid and 1,8-diaminonaphthalene condensation product by NMR, MS, and X-ray measurements

    NASA Astrophysics Data System (ADS)

    Kołodziej, B.; Morawiak, M.; Kamieński, B.; Schilf, W.

    2016-05-01

    A new unexpected product of condensation reaction of 1,8-diaminonaphthalene (DAN) and carbonyl compound (here: dehydroacetic acid (dha)) was synthesized. Discussion about the molecular structure of possible products of this reaction was done on the base of NMR studies. The structure of the titled product in both DMSO solution and in the solid state was resolved by analysis of its spectral data (X-ray structure analysis, multinuclear NMR in solution and solid state spectra) and MS measurements. The presented studies provided clear evidence that the titled product exists in diluted DMSO solution as the mixture of two kinetic free ionic species whereas in concentrated DMSO solution as well as in the solid state this system forms associated ionic pairs bonded together by hydrogen bonds.

  11. Proton transfer and hydrogen bonding in the organic solid state: a combined XRD/XPS/ssNMR study of 17 organic acid-base complexes.

    PubMed

    Stevens, Joanna S; Byard, Stephen J; Seaton, Colin C; Sadiq, Ghazala; Davey, Roger J; Schroeder, Sven L M

    2014-01-21

    The properties of nitrogen centres acting either as hydrogen-bond or Brønsted acceptors in solid molecular acid-base complexes have been probed by N 1s X-ray photoelectron spectroscopy (XPS) as well as (15)N solid-state nuclear magnetic resonance (ssNMR) spectroscopy and are interpreted with reference to local crystallographic structure information provided by X-ray diffraction (XRD). We have previously shown that the strong chemical shift of the N 1s binding energy associated with the protonation of nitrogen centres unequivocally distinguishes protonated (salt) from hydrogen-bonded (co-crystal) nitrogen species. This result is further supported by significant ssNMR shifts to low frequency, which occur with proton transfer from the acid to the base component. Generally, only minor chemical shifts occur upon co-crystal formation, unless a strong hydrogen bond is formed. CASTEP density functional theory (DFT) calculations of (15)N ssNMR isotropic chemical shifts correlate well with the experimental data, confirming that computational predictions of H-bond strengths and associated ssNMR chemical shifts allow the identification of salt and co-crystal structures (NMR crystallography). The excellent agreement between the conclusions drawn by XPS and the combined CASTEP/ssNMR investigations opens up a reliable avenue for local structure characterization in molecular systems even in the absence of crystal structure information, for example for non-crystalline or amorphous matter. The range of 17 different systems investigated in this study demonstrates the generic nature of this approach, which will be applicable to many other molecular materials in organic, physical, and materials chemistry.

  12. Magic Angle Spinning NMR of Viruses

    PubMed Central

    Quinn, Caitlin; Lu, Manman; Suiter, Christopher L.; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2015-01-01

    Viruses, relatively simple pathogens, are able to replicate in many living organisms and to adapt to various environments. Conventional atomic-resolution structural biology techniques, X-ray crystallography and solution NMR spectroscopy provided abundant information on the structures of individual proteins and nucleic acids comprising viruses; however, viral assemblies are not amenable to analysis by these techniques because of their large size, insolubility, and inherent lack of long-range order. In this article, we review the recent advances in magic angle spinning NMR spectroscopy that enabled atomic-resolution analysis of structure and dynamics of large viral systems and give examples of several exciting case studies. PMID:25919197

  13. The application of tailor-made force fields and molecular dynamics for NMR crystallography: a case study of free base cocaine

    PubMed Central

    Neumann, Marcus A.

    2017-01-01

    Motional averaging has been proven to be significant in predicting the chemical shifts in ab initio solid-state NMR calculations, and the applicability of motional averaging with molecular dynamics has been shown to depend on the accuracy of the molecular mechanical force field. The performance of a fully automatically generated tailor-made force field (TMFF) for the dynamic aspects of NMR crystallography is evaluated and compared with existing benchmarks, including static dispersion-corrected density functional theory calculations and the COMPASS force field. The crystal structure of free base cocaine is used as an example. The results reveal that, even though the TMFF outperforms the COMPASS force field for representing the energies and conformations of predicted structures, it does not give significant improvement in the accuracy of NMR calculations. Further studies should direct more attention to anisotropic chemical shifts and development of the method of solid-state NMR calculations. PMID:28250956

  14. Structure determination of helical filaments by solid-state NMR spectroscopy

    PubMed Central

    Ahmed, Mumdooh; Spehr, Johannes; König, Renate; Lünsdorf, Heinrich; Rand, Ulfert; Lührs, Thorsten; Ritter, Christiane

    2016-01-01

    The controlled formation of filamentous protein complexes plays a crucial role in many biological systems and represents an emerging paradigm in signal transduction. The mitochondrial antiviral signaling protein (MAVS) is a central signal transduction hub in innate immunity that is activated by a receptor-induced conversion into helical superstructures (filaments) assembled from its globular caspase activation and recruitment domain. Solid-state NMR (ssNMR) spectroscopy has become one of the most powerful techniques for atomic resolution structures of protein fibrils. However, for helical filaments, the determination of the correct symmetry parameters has remained a significant hurdle for any structural technique and could thus far not be precisely derived from ssNMR data. Here, we solved the atomic resolution structure of helical MAVSCARD filaments exclusively from ssNMR data. We present a generally applicable approach that systematically explores the helical symmetry space by efficient modeling of the helical structure restrained by interprotomer ssNMR distance restraints. Together with classical automated NMR structure calculation, this allowed us to faithfully determine the symmetry that defines the entire assembly. To validate our structure, we probed the protomer arrangement by solvent paramagnetic resonance enhancement, analysis of chemical shift differences relative to the solution NMR structure of the monomer, and mutagenesis. We provide detailed information on the atomic contacts that determine filament stability and describe mechanistic details on the formation of signaling-competent MAVS filaments from inactive monomers. PMID:26733681

  15. Solution NMR structure of a designed metalloprotein and complementary molecular dynamics refinement.

    PubMed

    Calhoun, Jennifer R; Liu, Weixia; Spiegel, Katrin; Dal Peraro, Matteo; Klein, Michael L; Valentine, Kathleen G; Wand, A Joshua; DeGrado, William F

    2008-02-01

    We report the solution NMR structure of a designed dimetal-binding protein, di-Zn(II) DFsc, along with a secondary refinement step employing molecular dynamics techniques. Calculation of the initial NMR structural ensemble by standard methods led to distortions in the metal-ligand geometries at the active site. Unrestrained molecular dynamics using a nonbonded force field for the metal shell, followed by quantum mechanical/molecular mechanical dynamics of DFsc, were used to relax local frustrations at the dimetal site that were apparent in the initial NMR structure and provide a more realistic description of the structure. The MD model is consistent with NMR restraints, and in good agreement with the structural and functional properties expected for DF proteins. This work demonstrates that NMR structures of metalloproteins can be further refined using classical and first-principles molecular dynamics methods in the presence of explicit solvent to provide otherwise unavailable insight into the geometry of the metal center.

  16. Toward a structure determination method for biomineral-associated protein using combined solid- state NMR and computational structure prediction.

    PubMed

    Masica, David L; Ash, Jason T; Ndao, Moise; Drobny, Gary P; Gray, Jeffrey J

    2010-12-08

    Protein-biomineral interactions are paramount to materials production in biology, including the mineral phase of hard tissue. Unfortunately, the structure of biomineral-associated proteins cannot be determined by X-ray crystallography or solution nuclear magnetic resonance (NMR). Here we report a method for determining the structure of biomineral-associated proteins. The method combines solid-state NMR (ssNMR) and ssNMR-biased computational structure prediction. In addition, the algorithm is able to identify lattice geometries most compatible with ssNMR constraints, representing a quantitative, novel method for investigating crystal-face binding specificity. We use this method to determine most of the structure of human salivary statherin interacting with the mineral phase of tooth enamel. Computation and experiment converge on an ensemble of related structures and identify preferential binding at three crystal surfaces. The work represents a significant advance toward determining structure of biomineral-adsorbed protein using experimentally biased structure prediction. This method is generally applicable to proteins that can be chemically synthesized. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. C-13 nuclear magnetic resonance in organic geochemistry.

    NASA Technical Reports Server (NTRS)

    Balogh, B.; Wilson, D. M.; Burlingame, A. L.

    1972-01-01

    Study of C-13 nuclear magnetic resonance (NMR) spectra of polycyclic fused systems. The fingerprint qualities of the natural abundance in C-13 NMR spectra permitting unequivocal identification of these compounds is discussed. The principle of structural additivity of C-13 NMR information is exemplified on alpha and beta androstanes, alpha and beta cholestanes, ergostanes, sitostanes, and isodecanes.

  18. Synthesis of 24-phenyl-24-oxo steroids derived from bile acids by palladium-catalyzed cross coupling with phenylboronic acid. NMR characterization and X-ray structures.

    PubMed

    Mayorquín-Torres, Martha C; Romero-Ávila, Margarita; Flores-Álamo, Marcos; Iglesias-Arteaga, Martin A

    2013-11-01

    Palladium-catalyzed cross coupling of phenyboronic acid with acetylated bile acids in which the carboxyl functions have been activated by formation of a mixed anhydride with pivalic anhydride afforded moderate to good yield of 24-phenyl-24-oxo-steroids. Unambiguous assignments of the NMR signals were made with the aid of combined 1D and 2D NMR techniques. X-ray diffraction studies confirmed the obtained structures. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Isolation and structure elucidation of the nucleoside antibiotic strepturidin from Streptomyces albus DSM 40763.

    PubMed

    Pesic, Alexander; Steinhaus, Britta; Kemper, Sebastian; Nachtigall, Jonny; Kutzner, Hans Jürgen; Höfle, Gerhard; Süssmuth, Roderich D

    2014-06-01

    The antibiotic strepturidin (1) was isolated from the microorganism Streptomyces albus DSM 40763, and its structure elucidated by spectroscopic methods and chemical degradation studies. The determination of the relative and absolute stereocenters was partially achieved using chiral GC/EI-MS analysis and microderivatization by acetal ring formation and subsequent 2D-NMR analysis of key (1)H,(1)H-NOESY NMR correlations and extraction of (1)H,(13)C coupling constants from (1)H,(13)C-HMBC NMR spectra. Based on these results, a biosynthesis model was proposed.

  20. The potential for the indirect crystal structure verification of methyl glycosides based on acetates' parent structures: GIPAW and solid-state NMR approaches

    NASA Astrophysics Data System (ADS)

    Szeleszczuk, Łukasz; Gubica, Tomasz; Zimniak, Andrzej; Pisklak, Dariusz M.; Dąbrowska, Kinga; Cyrański, Michał K.; Kańska, Marianna

    2017-10-01

    A convenient method for the indirect crystal structure verification of methyl glycosides was demonstrated. Single-crystal X-ray diffraction structures for methyl glycoside acetates were deacetylated and subsequently subjected to DFT calculations under periodic boundary conditions. Solid-state NMR spectroscopy served as a guide for calculations. A high level of accuracy of the modelled crystal structures of methyl glycosides was confirmed by comparison with published results of neutron diffraction study using RMSD method.

  1. Chemical shift and electric field gradient tensors for the amide and carboxyl hydrogens in the model peptide N-acetyl-D,L-valine. Single-crystal deuterium NMR study.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerald, R. E., II; Bernhard, T.; Haeberlen, U.

    1993-01-01

    Solid-state NMR spectroscopy is well established as a method for describing molecular structure with resolution on the atomic scale. Many of the NMR observables result from anisotropic interactions between the nuclear spin and its environment. These observables can be described by second-rank tensors. For example, the eigenvalues of the traceless symmetric part of the hydrogen chemical shift (CS) tensor provide information about the strength of inter- or intramolecular hydrogen bonding. On the other hand, the eigenvectors of the deuterium electric field gradient (EFG) tensor give deuteron/proton bond directions with an accuracy rivalled only by neutron diffraction. In this paper themore » authors report structural information of this type for the amide and carboxyl hydrogen sites in a single crystal of the model peptide N-acetyl-D,L-valine (NAV). They use deuterium NMR to infer both the EFG and CS tensors at the amide and carboxyl hydrogen sites in NAV. Advantages of this technique over multiple-pulse proton NMR are that it works in the presence of {sup 14}N spins which are very hard to decouple from protons and that additional information in form of the EFG tensors can be derived. The change in the CS and EFG tensors upon exchange of a deuteron for a proton (the isotope effect) is anticipated to be very small; the effect on the CS tensors is certainly smaller than the experimental errors. NAV has served as a model peptide before in a variety of NMR studies, including those concerned with developing solid-state NMR spectroscopy as a method for determining the structure of proteins. NMR experiments on peptide or protein samples which are oriented in at least one dimension can provide important information about the three-dimensional structure of the peptide or the protein. In order to interpret the NMR data in terms of the structure of the polypeptide, the relationship of the CS and EFG tensors to the local symmetry elements of an amino acide, e.g., the peptide plane, is essential. The main purpose of this work is to investigate this relationship for the amide hydrogen CS tensor. The amide hydrogen CS tensor will also provide orientational information for peptide bonds in proteins complementary to that from the nitrogen CS and EFG tensors and the nitrogen-hydrogen heteronuclear dipole-dipole coupling which have been used previously to determine protein structures by solid-state NMR spectroscopy. This information will be particularly valuable because the amide hydrogen CS tensor is not axially symmetric. In addition, the use of the amide hydrogen CS interaction in high-field solid-state NMR experiments will increase the available resolution among peptide sites.« less

  2. Customizing model membranes and samples for NMR spectroscopic studies of complex membrane proteins.

    PubMed

    Sanders, C R; Oxenoid, K

    2000-11-23

    Both solution and solid state nuclear magnetic resonance (NMR) techniques for structural determination are advancing rapidly such that it is possible to contemplate bringing these techniques to bear upon integral membrane proteins having multiple transmembrane segments. This review outlines existing and emerging options for model membrane media for use in such studies and surveys the special considerations which must be taken into account when preparing larger membrane proteins for NMR spectroscopic studies.

  3. NMR studies of a channel protein without membranes: structure and dynamics of water-solubilized KcsA.

    PubMed

    Ma, Dejian; Tillman, Tommy S; Tang, Pei; Meirovitch, Eva; Eckenhoff, Roderic; Carnini, Anna; Xu, Yan

    2008-10-28

    Structural studies of polytopic membrane proteins are often hampered by the vagaries of these proteins in membrane mimetic environments and by the difficulties in handling them with conventional techniques. Designing and creating water-soluble analogues with preserved native structures offer an attractive alternative. We report here solution NMR studies of WSK3, a water-soluble analogue of the potassium channel KcsA. The WSK3 NMR structure (PDB ID code 2K1E) resembles the KcsA crystal structures, validating the approach. By more stringent comparison criteria, however, the introduction of several charged residues aimed at improving water solubility seems to have led to the possible formations of a few salt bridges and hydrogen bonds not present in the native structure, resulting in slight differences in the structure of WSK3 relative to KcsA. NMR dynamics measurements show that WSK3 is highly flexible in the absence of a lipid environment. Reduced spectral density mapping and model-free analyses reveal dynamic characteristics consistent with an isotropically tumbling tetramer experiencing slow (nanosecond) motions with unusually low local ordering. An altered hydrogen-bond network near the selectivity filter and the pore helix, and the intrinsically dynamic nature of the selectivity filter, support the notion that this region is crucial for slow inactivation. Our results have implications not only for the design of water-soluble analogues of membrane proteins but also for our understanding of the basic determinants of intrinsic protein structure and dynamics.

  4. Vivaldi: visualization and validation of biomacromolecular NMR structures from the PDB.

    PubMed

    Hendrickx, Pieter M S; Gutmanas, Aleksandras; Kleywegt, Gerard J

    2013-04-01

    We describe Vivaldi (VIsualization and VALidation DIsplay; http://pdbe.org/vivaldi), a web-based service for the analysis, visualization, and validation of NMR structures in the Protein Data Bank (PDB). Vivaldi provides access to model coordinates and several types of experimental NMR data using interactive visualization tools, augmented with structural annotations and model-validation information. The service presents information about the modeled NMR ensemble, validation of experimental chemical shifts, residual dipolar couplings, distance and dihedral angle constraints, as well as validation scores based on empirical knowledge and databases. Vivaldi was designed for both expert NMR spectroscopists and casual non-expert users who wish to obtain a better grasp of the information content and quality of NMR structures in the public archive. Copyright © 2013 Wiley Periodicals, Inc.

  5. NMR signature of evolution of ductile-to-brittle transition in bulk metallic glasses.

    PubMed

    Yuan, C C; Xiang, J F; Xi, X K; Wang, W H

    2011-12-02

    The mechanical properties of monolithic metallic glasses depend on the structures at atomic or subnanometer scales, while a clear correlation between mechanical behavior and structures has not been well established in such amorphous materials. In this work, we find a clear correlation of (27)Al NMR isotropic shifts with a microalloying induced ductile-to-brittle transition at ambient temperature in bulk metallic glasses, which indicates that the (27)Al NMR isotropic shift can be regarded as a structural signature to characterize plasticity for this metallic glass system. The study provides a compelling approach for investigating and understanding the mechanical properties of metallic glasses from the point of view of electronic structure. © 2011 American Physical Society

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pease, J.H.

    The three dimensional structures of several small peptides were determined using a combination of {sup 1}H nuclear magnetic resonance (NMR) and distance geometry calculations. These techniques were found to be particularly helpful for analyzing structural differences between related peptides since all of the peptides' {sup 1}H NMR spectra are very similar. The structures of peptides from two separate classes are presented. Peptides in the first class are related to apamin, an 18 amino acid peptide toxin from honey bee venom. The {sup 1}H NMR assignments and secondary structure determination of apamin were done previously. Quantitative NMR measurements and distance geometrymore » calculations were done to calculate apamin's three dimensional structure. Peptides in the second class are 48 amino acid toxins from the sea anemone Radianthus paumotensis. The {sup 1}H NMR assignments of toxin II were done previously. The {sup 1}H NMR assignments of toxin III and the distance geometry calculations for both peptides are presented.« less

  7. Fine refinement of solid state structure of racemic form of phospho-tyrosine employing NMR Crystallography approach.

    PubMed

    Paluch, Piotr; Pawlak, Tomasz; Oszajca, Marcin; Lasocha, Wieslaw; Potrzebowski, Marek J

    2015-02-01

    We present step by step facets important in NMR Crystallography strategy employing O-phospho-dl-tyrosine as model sample. The significance of three major techniques being components of this approach: solid state NMR (SS NMR), X-ray diffraction of powdered sample (PXRD) and theoretical calculations (Gauge Invariant Projector Augmented Wave; GIPAW) is discussed. Each experimental technique provides different set of structural constraints. From the PXRD measurement the size of the unit cell, space group and roughly refined molecular structure are established. SS NMR provides information about content of crystallographic asymmetric unit, local geometry, molecular motion in the crystal lattice and hydrogen bonding pattern. GIPAW calculations are employed for validation of quality of elucidation and fine refinement of structure. Crystal and molecular structure of O-phospho-dl-tyrosine solved by NMR Crystallography is deposited at Cambridge Crystallographic Data Center under number CCDC 1005924. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Sensitivity enhancement by chromatographic peak concentration with ultra-high performance liquid chromatography-nuclear magnetic resonance spectroscopy for minor impurity analysis.

    PubMed

    Tokunaga, Takashi; Akagi, Ken-Ichi; Okamoto, Masahiko

    2017-07-28

    High performance liquid chromatography can be coupled with nuclear magnetic resonance (NMR) spectroscopy to give a powerful analytical method known as liquid chromatography-nuclear magnetic resonance (LC-NMR) spectroscopy, which can be used to determine the chemical structures of the components of complex mixtures. However, intrinsic limitations in the sensitivity of NMR spectroscopy have restricted the scope of this procedure, and resolving these limitations remains a critical problem for analysis. In this study, we coupled ultra-high performance liquid chromatography (UHPLC) with NMR to give a simple and versatile analytical method with higher sensitivity than conventional LC-NMR. UHPLC separation enabled the concentration of individual peaks to give a volume similar to that of the NMR flow cell, thereby maximizing the sensitivity to the theoretical upper limit. The UHPLC concentration of compound peaks present at typical impurity levels (5.0-13.1 nmol) in a mixture led to at most three-fold increase in the signal-to-noise ratio compared with LC-NMR. Furthermore, we demonstrated the use of UHPLC-NMR for obtaining structural information of a minor impurity in a reaction mixture in actual laboratory-scale development of a synthetic process. Using UHPLC-NMR, the experimental run times for chromatography and NMR were greatly reduced compared with LC-NMR. UHPLC-NMR successfully overcomes the difficulties associated with analyses of minor components in a complex mixture by LC-NMR, which are problematic even when an ultra-high field magnet and cryogenic probe are used. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A (1)H-NMR study on the effect of high pressures on beta-lactoglobulin.

    PubMed

    Belloque, J; López-Fandiño, R; Smith, G M

    2000-09-01

    1H NMR was used to study the effect of high pressure on changes in the structure of beta-lactoglobulin (beta-Lg), particularly the strongly bonded regions, the "core". beta-Lg was exposed to pressures ranging from 100 to 400 MPa at neutral pH. After depressurization and acidification to pH 2.0, (1)H NMR spectra were taken. Pressure-induced unfolding was studied by deuterium exchange. Refolding was also evaluated. Our results showed that the core was unaltered at 100 MPa but increased its conformational flexibility at >/=200 MPa. Even though the core was highly flexible at 400 MPa, its structure was found to be identical to the native structure after equilibration back to atmospheric pressure. It is suggested that pressure-induced aggregates are formed by beta-Lg molecules maintaining most of their structure, and the intermolecular -SS- bonds, formed by -SH/-SS- exchange reaction, are likely to involve C(66)-C(160) rather than C(106)-C(119). In addition, the beta-Lg variants A and B could be distinguished in a (1)H NMR spectrum from a solution made with the AB mixed variant, by the differences in chemical shifts of M(107) and C(106); structural implications are discussed. Under pressure, the core of beta-Lg A seemed to unfold faster than that of beta-LgB. The structural recovery of the core was full for both variants.

  10. A novel tridentate Schiff base dioxo-molybdenum(VI) complex: synthesis, experimental and theoretical studies on its crystal structure, FTIR, UV-visible, ¹H NMR and ¹³C NMR spectra.

    PubMed

    Saheb, Vahid; Sheikhshoaie, Iran; Stoeckli-Evans, Helen

    2012-09-01

    A new dioxo-molybdenum(VI) complex [MoO(2)(L)(H(2)O)] has been synthesized, using 5-methoxy 2-[(2-hydroxypropylimino)methyl]phenol as tridentate ONO donor Schiff base ligand (H(2)L) and MoO(2)(acac)(2). The yellow crystals of the compound are used for single-crystal X-ray analysis and measuring Fourier Transform Infrared (FTIR), UV-visible, (1)H NMR and (13)C NMR spectra. Electronic structure calculations at the B3LYP and PW91PW91 levels of theory are performed to optimize the molecular geometry and to calculate the UV-visible, FTIR, (1)H NMR and (13)C NMR spectra of the compound. Vibrational assignments and analysis of the fundamental modes of the compound are performed. Time-dependent density functional theory (TDDFT) method is used to calculate the electronic transitions of the complex. All theoretical methods can well reproduce the structure of the compound. The (1)H NMR shielding tensors computed at the B3LYP/DGDZVP level of theory is in agreement with experimental (1)H NMR spectra. However, the (13)C NMR shielding tensors computed at the B3LYP level, employing a combined basis set of DGDZVP for Mo and 6-31+G(2df,p) for other atoms, are in better agreement with experimental (13)C NMR spectra. The electronic transitions calculated at the B3LYP/DGDZVP level by using TD-DFT method is in accordance with the observed UV-visible spectrum of the compound. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Novel nuclear magnetic resonance techniques for studying biological molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laws, David Douglas

    2000-06-01

    Over the fifty-five year history of Nuclear Magnetic Resonance (NMR), considerable progress has been made in the development of techniques for studying the structure, function, and dynamics of biological molecules. The majority of this research has involved the development of multi-dimensional NMR experiments for studying molecules in solution, although in recent years a number of groups have begun to explore NMR methods for studying biological systems in the solid-state. Despite this new effort, a need still exists for the development of techniques that improve sensitivity, maximize information, and take advantage of all the NMR interactions available in biological molecules. Inmore » this dissertation, a variety of novel NMR techniques for studying biomolecules are discussed. A method for determining backbone (Φ/Ψ) dihedral angles by comparing experimentally determined 13C a, chemical-shift anisotropies with theoretical calculations is presented, along with a brief description of the theory behind chemical-shift computation in proteins and peptides. The utility of the Spin-Polarization Induced Nuclear Overhauser Effect (SPINOE) to selectively enhance NMR signals in solution is examined in a variety of systems, as are methods for extracting structural information from cross-relaxation rates that can be measured in SPINOE experiments. Techniques for the production of supercritical and liquid laser-polarized xenon are discussed, as well as the prospects for using optically pumped xenon as a polarizing solvent. In addition, a detailed study of the structure of PrP 89-143 is presented. PrP 89-143 is a 54 residue fragment of the prion proteins which, upon mutation and aggregation, can induce prion diseases in transgenic mice. Whereas the structure of the wild-type PrP 89-143 is a generally unstructured mixture of α-helical and β-sheet conformers in the solid state, the aggregates formed from the PrP 89-143 mutants appear to be mostly β-sheet.« less

  12. Combined Approach for the Structural Characterization of Alkali Fluoroscandates: Solid-State NMR, Powder X-ray Diffraction, and Density Functional Theory Calculations.

    PubMed

    Rakhmatullin, Aydar; Polovov, Ilya B; Maltsev, Dmitry; Allix, Mathieu; Volkovich, Vladimir; Chukin, Andrey V; Boča, Miroslav; Bessada, Catherine

    2018-02-05

    The structures of several fluoroscandate compounds are presented here using a characterization approach combining powder X-ray diffraction and solid-state NMR. The structure of K 5 Sc 3 F 14 was fully determined from Rietveld refinement performed on powder X-ray diffraction data. Moreover, the local structures of NaScF 4 , Li 3 ScF 6 , KSc 2 F 7 , and Na 3 ScF 6 compounds were studied in detail from solid-state 19 F and 45 Sc NMR experiments. The 45 Sc chemical shift ranges for six- and seven-coordinated scandium environments were defined. The 19 F chemical shift ranges for bridging and terminal fluorine atoms were also determined. First-principles calculations of the 19 F and 45 Sc NMR parameters were carried out using plane-wave basis sets and periodic boundary conditions (CASTEP), and the results were compared with the experimental data. A good agreement between the calculated shielding constants and experimental chemical shifts was obtained. This demonstrates the good potential of computational methods in spectroscopic assignments of solid-state 45 Sc NMR spectroscopy.

  13. Structure simulation with calculated NMR parameters - integrating COSMOS into the CCPN framework.

    PubMed

    Schneider, Olaf; Fogh, Rasmus H; Sternberg, Ulrich; Klenin, Konstantin; Kondov, Ivan

    2012-01-01

    The Collaborative Computing Project for NMR (CCPN) has build a software framework consisting of the CCPN data model (with APIs) for NMR related data, the CcpNmr Analysis program and additional tools like CcpNmr FormatConverter. The open architecture allows for the integration of external software to extend the abilities of the CCPN framework with additional calculation methods. Recently, we have carried out the first steps for integrating our software Computer Simulation of Molecular Structures (COSMOS) into the CCPN framework. The COSMOS-NMR force field unites quantum chemical routines for the calculation of molecular properties with a molecular mechanics force field yielding the relative molecular energies. COSMOS-NMR allows introducing NMR parameters as constraints into molecular mechanics calculations. The resulting infrastructure will be made available for the NMR community. As a first application we have tested the evaluation of calculated protein structures using COSMOS-derived 13C Cα and Cβ chemical shifts. In this paper we give an overview of the methodology and a roadmap for future developments and applications.

  14. Solution and Solid State Nuclear Magnetic Resonance Spectroscopic Characterization of Efavirenz.

    PubMed

    Sousa, Eduardo Gomes Rodrigues de; Carvalho, Erika Martins de; San Gil, Rosane Aguiar da Silva; Santos, Tereza Cristina Dos; Borré, Leandro Bandeira; Santos-Filho, Osvaldo Andrade; Ellena, Javier

    2016-09-01

    Samples of efavirenz (EFZ) were evaluated to investigate the influence of the micronization process on EFZ stability. A combination of X-ray diffraction, thermal analysis, FTIR, observations of isotropic chemical shifts of (1)H in distinct solvents, their temperature dependence and spin-lattice relaxation time constants (T1), solution (1D and 2D) (13)C nuclear magnetic resonance (NMR), and solid-state (13)C NMR (CPMAS NMR) provides valuable structural information and structural elucidation of micronized EFZ and heptane-recrystallized polymorphs (EFZ/HEPT). This study revealed that the micronization process did not affect the EFZ crystalline structure. It was observed that the structure of EFZ/HEPT is in the same form as that obtained from ethyl acetate/hexane, as shown in the literature. A comparison of the solid-state NMR spectra revealed discrepancies regarding the assignments of some carbons published in the literature that have been resolved. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  15. Comparative Study of the Structure of Hydroproducts Derived from Loblolly Pine and Straw Grass

    DOE PAGES

    Wu, Qiong; Huang, Lang; Yu, Shitao; ...

    2017-05-26

    We investigated the structural characteristics of products derived from the hydrothermal carbonization (HTC) of loblolly pine (LP) and straw grass (SG) via solid-state cross-polarization/magic angle spinning nuclear magnetic resonance (CP/MAS 13C NMR), heteronuclear single-quantum correlation nuclear magnetic resonance (HSQC-NMR), and solution 13C NMR and 31P NMR techniques. Our results revealed that after HTC, hydrochars from both LP and SG mainly consisted of a combination of lignin, furfural, and condensed polyaromatic structures with a high level of fixed carbon content and higher heating value (HHV). Hydrochar from LP exhibited a higher aryl to furan ratio, and those from SG contained moremore » aliphatic functional groups. Solution 13C NMR and HSQC revealed that both liquid chemicals were condensed polyphenolic structures with aliphatic groups that exist mainly in the form of side chains. Although the LP products exhibited a higher proportion of aromatic structures, the types of polyphenol and aliphatic C–H were more diverse in the SG products. Results also indicated that reactions such as chain scission and condensation occurred during hydrothermal carbonization processes. Overall, HTC was found to be an effective refinery treatment for converting different waste biomass into valuable energy materials and chemicals.« less

  16. Ab Initio Molecular Dynamics Simulations and GIPAW NMR Calculations of a Lithium Borate Glass Melt.

    PubMed

    Ohkubo, Takahiro; Tsuchida, Eiji; Takahashi, Takafumi; Iwadate, Yasuhiko

    2016-04-14

    The atomic structure of a molten 0.3Li2O-0.7B2O3 glass at 1250 K was investigated using ab initio molecular dynamics (AIMD) simulations. The gauge including projector augmented wave (GIPAW) method was then employed for computing the chemical shift and quadrupolar coupling constant of (11)B, (17)O, and (7)Li from 764 AIMD derived structures. The chemical shift and quadrupolar coupling constant distributions were directly estimated from the dynamical structure of the molten glass. (11)B NMR parameters of well-known structural units such as the three-coordinated ring, nonring, and four-coordinated tetrahedron were found to be in good agreement with the experimental results. In this study, more detailed classification of B units was presented based on the number of O species bonded to the B atoms. This highlights the limitations of (11)B NMR sensitivity for resolving (11)B local environment using the experimentally obtained spectra only. The (17)O NMR parameter distributions can theoretically resolve the bridging and nonbridging O atoms with different structural units such as nonring, single boroxol ring, and double boroxol ring. Slight but clear differences in the number of bridging O atoms surrounding Li that have not been reported experimentally were observed in the theoretically obtained (7)Li NMR parameters.

  17. Comparative Study of the Structure of Hydroproducts Derived from Loblolly Pine and Straw Grass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Qiong; Huang, Lang; Yu, Shitao

    We investigated the structural characteristics of products derived from the hydrothermal carbonization (HTC) of loblolly pine (LP) and straw grass (SG) via solid-state cross-polarization/magic angle spinning nuclear magnetic resonance (CP/MAS 13C NMR), heteronuclear single-quantum correlation nuclear magnetic resonance (HSQC-NMR), and solution 13C NMR and 31P NMR techniques. Our results revealed that after HTC, hydrochars from both LP and SG mainly consisted of a combination of lignin, furfural, and condensed polyaromatic structures with a high level of fixed carbon content and higher heating value (HHV). Hydrochar from LP exhibited a higher aryl to furan ratio, and those from SG contained moremore » aliphatic functional groups. Solution 13C NMR and HSQC revealed that both liquid chemicals were condensed polyphenolic structures with aliphatic groups that exist mainly in the form of side chains. Although the LP products exhibited a higher proportion of aromatic structures, the types of polyphenol and aliphatic C–H were more diverse in the SG products. Results also indicated that reactions such as chain scission and condensation occurred during hydrothermal carbonization processes. Overall, HTC was found to be an effective refinery treatment for converting different waste biomass into valuable energy materials and chemicals.« less

  18. [Non-invasive analysis of proteins in living cells using NMR spectroscopy].

    PubMed

    Tochio, Hidehito; Murayama, Shuhei; Inomata, Kohsuke; Morimoto, Daichi; Ohno, Ayako; Shirakawa, Masahiro

    2015-01-01

    NMR spectroscopy enables structural analyses of proteins and has been widely used in the structural biology field in recent decades. NMR spectroscopy can be applied to proteins inside living cells, allowing characterization of their structures and dynamics in intracellular environments. The simplest "in-cell NMR" approach employs bacterial cells; in this approach, live Escherichia coli cells overexpressing a specific protein are subjected to NMR. The cells are grown in an NMR active isotope-enriched medium to ensure that the overexpressed proteins are labeled with the stable isotopes. Thus the obtained NMR spectra, which are derived from labeled proteins, contain atomic-level information about the structure and dynamics of the proteins. Recent progress enables us to work with higher eukaryotic cells such as HeLa and HEK293 cells, for which a number of techniques have been developed to achieve isotope labeling of the specific target protein. In this review, we describe successful use of electroporation for in-cell NMR. In addition, (19)F-NMR to characterize protein-ligand interactions in cells is presented. Because (19)F nuclei rarely exist in natural cells, when (19)F-labeled proteins are delivered into cells and (19)F-NMR signals are observed, one can safely ascertain that these signals originate from the delivered proteins and not other molecules.

  19. Mechanistic insight into formation and changes of nanoparticles in MgF2 sols evidenced by liquid and solid state NMR.

    PubMed

    Karg, M; Scholz, G; König, R; Kemnitz, E

    2012-02-28

    The fluorolytic sol-gel reaction of magnesium methoxide with HF in methanol was studied by (19)F, (1)H and (13)C liquid and solid state NMR. In (19)F NMR five different species were identified, three of which belong to magnesium fluoride nanoparticles, i.e. NMR gave access to local structures of solid particles in suspensions. The long-term evolution of (19)F signals was followed and along with (19)F MAS NMR experiments of sols rotating at 13 kHz mechanistic insights into the ageing processes were obtained.

  20. Solid state NMR: The essential technology for helical membrane protein structural characterization

    PubMed Central

    Cross, Timothy A.; Ekanayake, Vindana; Paulino, Joana; Wright, Anna

    2014-01-01

    NMR spectroscopy of helical membrane proteins has been very challenging on multiple fronts. The expression and purification of these proteins while maintaining functionality has consumed countless graduate student hours. Sample preparations have depended on whether solution or solid-state NMR spectroscopy was to be performed – neither have been easy. In recent years it has become increasingly apparent that membrane mimic environments influence the structural result. Indeed, in these recent years we have rediscovered that Nobel laureate, Christian Anfinsen, did not say that protein structure was exclusively dictated by the amino acid sequence, but rather by the sequence in a given environment (Anfinsen, 1973) [106]. The environment matters, molecular interactions with the membrane environment are significant and many examples of distorted, non-native membrane protein structures have recently been documented in the literature. However, solid-state NMR structures of helical membrane proteins in proteoliposomes and bilayers are proving to be native structures that permit a high resolution characterization of their functional states. Indeed, solid-state NMR is uniquely able to characterize helical membrane protein structures in lipid environments without detergents. Recent progress in expression, purification, reconstitution, sample preparation and in the solid-state NMR spectroscopy of both oriented samples and magic angle spinning samples has demonstrated that helical membrane protein structures can be achieved in a timely fashion. Indeed, this is a spectacular opportunity for the NMR community to have a major impact on biomedical research through the solid-state NMR spectroscopy of these proteins. PMID:24412099

  1. Solid state NMR: The essential technology for helical membrane protein structural characterization

    NASA Astrophysics Data System (ADS)

    Cross, Timothy A.; Ekanayake, Vindana; Paulino, Joana; Wright, Anna

    2014-02-01

    NMR spectroscopy of helical membrane proteins has been very challenging on multiple fronts. The expression and purification of these proteins while maintaining functionality has consumed countless graduate student hours. Sample preparations have depended on whether solution or solid-state NMR spectroscopy was to be performed - neither have been easy. In recent years it has become increasingly apparent that membrane mimic environments influence the structural result. Indeed, in these recent years we have rediscovered that Nobel laureate, Christian Anfinsen, did not say that protein structure was exclusively dictated by the amino acid sequence, but rather by the sequence in a given environment (Anfinsen, 1973) [106]. The environment matters, molecular interactions with the membrane environment are significant and many examples of distorted, non-native membrane protein structures have recently been documented in the literature. However, solid-state NMR structures of helical membrane proteins in proteoliposomes and bilayers are proving to be native structures that permit a high resolution characterization of their functional states. Indeed, solid-state NMR is uniquely able to characterize helical membrane protein structures in lipid environments without detergents. Recent progress in expression, purification, reconstitution, sample preparation and in the solid-state NMR spectroscopy of both oriented samples and magic angle spinning samples has demonstrated that helical membrane protein structures can be achieved in a timely fashion. Indeed, this is a spectacular opportunity for the NMR community to have a major impact on biomedical research through the solid-state NMR spectroscopy of these proteins.

  2. A Solid-State NMR Experiment: Analysis of Local Structural Environments in Phosphate Glasses

    ERIC Educational Resources Information Center

    Anderson, Stanley E.; Saiki, David; Eckert, Hellmut; Meise-Gresch, Karin

    2004-01-01

    An experiment that can be used to directly study the local chemical environments of phosphorus in solid amorphous materials is demonstrated. The experiment aims at familiarizing the students of chemistry with the principles of solid-state NMR, by having them synthesize a simple phosphate glass, and making them observe the (super 31)P NMR spectrum,…

  3. STD-NMR-Based Protein Engineering of the Unique Arylpropionate-Racemase AMDase G74C.

    PubMed

    Gaßmeyer, Sarah Katharina; Yoshikawa, Hiroyuki; Enoki, Junichi; Hülsemann, Nadine; Stoll, Raphael; Miyamoto, Kenji; Kourist, Robert

    2015-06-23

    Structure-guided protein engineering achieved a variant of the unique racemase AMDase G74C, with 40-fold increased activity in the racemisation of several arylaliphatic carboxylic acids. Substrate binding during catalysis was investigated by saturation-transfer-difference NMR (STD-NMR) spectroscopy. All atoms of the substrate showed interactions with the enzyme. STD-NMR measurements revealed distinct nuclear Overhauser effects in experiments with and without molecular conversion. The spectroscopic analysis led to the identification of several amino acid residues whose substitutions increased the activity of G74C. Single amino acid exchanges increased the activity moderately; structure-guided saturation mutagenesis yielded a quadruple mutant with a 40 times higher reaction rate. This study presents STD-NMR as versatile tool for the analysis of enzyme-substrate interactions in catalytically competent systems and for the guidance of protein engineering. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Fiber Diffraction Data Indicate a Hollow Core for the Alzheimer’s Aβ Three-fold Symmetric Fibril

    PubMed Central

    McDonald, Michele; Box, Hayden; Bian, Wen; Kendall, Amy; Tycko, Robert; Stubbs, Gerald

    2012-01-01

    Amyloid β protein (Aβ), the principal component of the extracellular plaques found in the brains of Alzheimer’s disease patients, forms fibrils well suited to structural study by X-ray fiber diffraction. Fiber diffraction patterns from the 40-residue form Aβ(1–40) confirm a number of features of a three-fold symmetric Aβ model from solid state NMR, but suggest that the fibrils have a hollow core, not present in the original ssNMR models. Diffraction patterns calculated from a revised hollow three-fold model with a more regular β-sheet structure are in much better agreement with the observed diffraction data than patterns calculated from the original ssNMR model. Refinement of a hollow-core model against ssNMR data led to a revised ssNMR model, similar to the fiber diffraction model. PMID:22903058

  5. NMR studies of the incommensurate helical antiferromagnet EuCo 2 P 2 : Determination of antiferromagnetic propagation vector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higa, Nonoka; Ding, Qing -Ping; Yogi, Mamoru

    Recently, Q.-P. Ding et al. reported that their nuclear magnetic resonance (NMR) study on EuCo 2As 2 successfully characterized the antiferromagnetic (AFM) propagation vector of the incommensurate helix AFM state, showing that NMR is a unique tool for determination of the spin structures in incommensurate helical AFMs. Motivated by this work, we have carried out 153Eu, 31P, and 59Co NMR measurements on the helical antiferromagnet EuCo 2P 2 with an AFM ordering temperature T N = 66.5 K. An incommensurate helical AFM structure was clearly confirmed by 153Eu and 31P NMR spectra on single-crystalline EuCo 2P 2 in zero magneticmore » field at 1.6 K and its external magnetic field dependence. Furthermore, based on 59Co NMR data in both the paramagnetic and incommensurate AFM states, we have determined the model-independent value of the AFM propagation vector k = (0,0,0.73±0.09)2π/c, where c is the c-axis lattice parameter. As a result, the temperature dependence of k is also discussed.« less

  6. NMR studies of the incommensurate helical antiferromagnet EuCo 2 P 2 : Determination of antiferromagnetic propagation vector

    DOE PAGES

    Higa, Nonoka; Ding, Qing -Ping; Yogi, Mamoru; ...

    2017-07-06

    Recently, Q.-P. Ding et al. reported that their nuclear magnetic resonance (NMR) study on EuCo 2As 2 successfully characterized the antiferromagnetic (AFM) propagation vector of the incommensurate helix AFM state, showing that NMR is a unique tool for determination of the spin structures in incommensurate helical AFMs. Motivated by this work, we have carried out 153Eu, 31P, and 59Co NMR measurements on the helical antiferromagnet EuCo 2P 2 with an AFM ordering temperature T N = 66.5 K. An incommensurate helical AFM structure was clearly confirmed by 153Eu and 31P NMR spectra on single-crystalline EuCo 2P 2 in zero magneticmore » field at 1.6 K and its external magnetic field dependence. Furthermore, based on 59Co NMR data in both the paramagnetic and incommensurate AFM states, we have determined the model-independent value of the AFM propagation vector k = (0,0,0.73±0.09)2π/c, where c is the c-axis lattice parameter. As a result, the temperature dependence of k is also discussed.« less

  7. Solution NMR views of dynamical ordering of biomacromolecules.

    PubMed

    Ikeya, Teppei; Ban, David; Lee, Donghan; Ito, Yutaka; Kato, Koichi; Griesinger, Christian

    2018-02-01

    To understand the mechanisms related to the 'dynamical ordering' of macromolecules and biological systems, it is crucial to monitor, in detail, molecular interactions and their dynamics across multiple timescales. Solution nuclear magnetic resonance (NMR) spectroscopy is an ideal tool that can investigate biophysical events at the atomic level, in near-physiological buffer solutions, or even inside cells. In the past several decades, progress in solution NMR has significantly contributed to the elucidation of three-dimensional structures, the understanding of conformational motions, and the underlying thermodynamic and kinetic properties of biomacromolecules. This review discusses recent methodological development of NMR, their applications and some of the remaining challenges. Although a major drawback of NMR is its difficulty in studying the dynamical ordering of larger biomolecular systems, current technologies have achieved considerable success in the structural analysis of substantially large proteins and biomolecular complexes over 1MDa and have characterised a wide range of timescales across which biomolecular motion exists. While NMR is well suited to obtain local structure information in detail, it contributes valuable and unique information within hybrid approaches that combine complementary methodologies, including solution scattering and microscopic techniques. For living systems, the dynamic assembly and disassembly of macromolecular complexes is of utmost importance for cellular homeostasis and, if dysregulated, implied in human disease. It is thus instructive for the advancement of the study of the dynamical ordering to discuss the potential possibilities of solution NMR spectroscopy and its applications. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. NMR Structural Studies of Antimicrobial Peptides: LPcin Analogs.

    PubMed

    Jeong, Ji-Ho; Kim, Ji-Sun; Choi, Sung-Sub; Kim, Yongae

    2016-01-19

    Lactophoricin (LPcin), a component of proteose peptone (113-135) isolated from bovine milk, is a cationic amphipathic antimicrobial peptide consisting of 23 amino acids. We designed a series of N- or C-terminal truncated variants, mutated analogs, and truncated mutated analogs using peptide-engineering techniques. Then, we selected three LPcin analogs of LPcin-C8 (LPcin-YK1), LPcin-T2WT6W (LPcin-YK2), and LPcin-T2WT6W-C8 (LPcin-YK3), which may have better antimicrobial activities than LPcin, and successfully expressed them in E. coli with high yield. We elucidated the 3D structures and topologies of the three LPcin analogs in membrane environments by conducting NMR structural studies. We investigated the purity of the LPcin analogs and the α-helical secondary structures by performing (1)H-(15)N 2D HSQC and HMQC-NOESY liquid-state NMR spectroscopy using protein-containing micelle samples. We measured the 3D structures and tilt angles in membranes by conducting (15)N 1D and 2D (1)H-(15)N SAMMY type solid-state NMR spectroscopy with an 800 MHz in-house-built (1)H-(15)N double-resonance solid-state NMR probe with a strip-shield coil, using protein-containing large bicelle samples aligned and confirmed by molecular-dynamics simulations. The three LPcin analogs were found to be curved α-helical structures, with tilt angles of 55-75° for normal membrane bilayers, and their enhanced activities may be correlated with these topologies. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. High-Resolution NMR Reveals Secondary Structure and Folding of Amino Acid Transporter from Outer Chloroplast Membrane

    PubMed Central

    Zook, James D.; Molugu, Trivikram R.; Jacobsen, Neil E.; Lin, Guangxin; Soll, Jürgen; Cherry, Brian R.; Brown, Michael F.; Fromme, Petra

    2013-01-01

    Solving high-resolution structures for membrane proteins continues to be a daunting challenge in the structural biology community. In this study we report our high-resolution NMR results for a transmembrane protein, outer envelope protein of molar mass 16 kDa (OEP16), an amino acid transporter from the outer membrane of chloroplasts. Three-dimensional, high-resolution NMR experiments on the 13C, 15N, 2H-triply-labeled protein were used to assign protein backbone resonances and to obtain secondary structure information. The results yield over 95% assignment of N, HN, CO, Cα, and Cβ chemical shifts, which is essential for obtaining a high resolution structure from NMR data. Chemical shift analysis from the assignment data reveals experimental evidence for the first time on the location of the secondary structure elements on a per residue basis. In addition T 1Z and T2 relaxation experiments were performed in order to better understand the protein dynamics. Arginine titration experiments yield an insight into the amino acid residues responsible for protein transporter function. The results provide the necessary basis for high-resolution structural determination of this important plant membrane protein. PMID:24205117

  10. Persistence of urban organic aerosols composition: Decoding their structural complexity and seasonal variability.

    PubMed

    Matos, João T V; Duarte, Regina M B O; Lopes, Sónia P; Silva, Artur M S; Duarte, Armando C

    2017-12-01

    Organic Aerosols (OAs) are typically defined as highly complex matrices whose composition changes in time and space. Focusing on time vector, this work uses two-dimensional nuclear magnetic resonance (2D NMR) techniques to examine the structural features of water-soluble (WSOM) and alkaline-soluble organic matter (ASOM) sequentially extracted from fine atmospheric aerosols collected in an urban setting during cold and warm seasons. This study reveals molecular signatures not previously decoded in NMR-related studies of OAs as meaningful source markers. Although the ASOM is less hydrophilic and structurally diverse than its WSOM counterpart, both fractions feature a core with heteroatom-rich branched aliphatics from both primary (natural and anthropogenic) and secondary origin, aromatic secondary organics originated from anthropogenic aromatic precursors, as well as primary saccharides and amino sugar derivatives from biogenic emissions. These common structures represent those 2D NMR spectral signatures that are present in both seasons and can thus be seen as an "annual background" profile of the structural composition of OAs at the urban location. Lignin-derived structures, nitroaromatics, disaccharides, and anhydrosaccharides signatures were also identified in the WSOM samples only from periods identified as smoke impacted, which reflects the influence of biomass-burning sources. The NMR dataset on the H-C molecules backbone was also used to propose a semi-quantitative structural model of urban WSOM, which will aid efforts for more realistic studies relating the chemical properties of OAs with their atmospheric behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Application of the AMPLE cluster-and-truncate approach to NMR structures for molecular replacement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bibby, Jaclyn; Keegan, Ronan M.; Mayans, Olga

    2013-11-01

    Processing of NMR structures for molecular replacement by AMPLE works well. AMPLE is a program developed for clustering and truncating ab initio protein structure predictions into search models for molecular replacement. Here, it is shown that its core cluster-and-truncate methods also work well for processing NMR ensembles into search models. Rosetta remodelling helps to extend success to NMR structures bearing low sequence identity or high structural divergence from the target protein. Potential future routes to improved performance are considered and practical, general guidelines on using AMPLE are provided.

  12. Non-Uniform Sampling and J-UNIO Automation for Efficient Protein NMR Structure Determination.

    PubMed

    Didenko, Tatiana; Proudfoot, Andrew; Dutta, Samit Kumar; Serrano, Pedro; Wüthrich, Kurt

    2015-08-24

    High-resolution structure determination of small proteins in solution is one of the big assets of NMR spectroscopy in structural biology. Improvements in the efficiency of NMR structure determination by advances in NMR experiments and automation of data handling therefore attracts continued interest. Here, non-uniform sampling (NUS) of 3D heteronuclear-resolved [(1)H,(1)H]-NOESY data yielded two- to three-fold savings of instrument time for structure determinations of soluble proteins. With the 152-residue protein NP_372339.1 from Staphylococcus aureus and the 71-residue protein NP_346341.1 from Streptococcus pneumonia we show that high-quality structures can be obtained with NUS NMR data, which are equally well amenable to robust automated analysis as the corresponding uniformly sampled data. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The NMR contribution to protein-protein networking in Fe-S protein maturation.

    PubMed

    Banci, Lucia; Camponeschi, Francesca; Ciofi-Baffoni, Simone; Piccioli, Mario

    2018-03-22

    Iron-sulfur proteins were among the first class of metalloproteins that were actively studied using NMR spectroscopy tailored to paramagnetic systems. The hyperfine shifts, their temperature dependencies and the relaxation rates of nuclei of cluster-bound residues are an efficient fingerprint of the nature and the oxidation state of the Fe-S cluster. NMR significantly contributed to the analysis of the magnetic coupling patterns and to the understanding of the electronic structure occurring in [2Fe-2S], [3Fe-4S] and [4Fe-4S] clusters bound to proteins. After the first NMR structure of a paramagnetic protein was obtained for the reduced E. halophila HiPIP I, many NMR structures were determined for several Fe-S proteins in different oxidation states. It was found that differences in chemical shifts, in patterns of unobserved residues, in internal mobility and in thermodynamic stability are suitable data to map subtle changes between the two different oxidation states of the protein. Recently, the interaction networks responsible for maturing human mitochondrial and cytosolic Fe-S proteins have been largely characterized by combining solution NMR standard experiments with those tailored to paramagnetic systems. We show here the contribution of solution NMR in providing a detailed molecular view of "Fe-S interactomics". This contribution was particularly effective when protein-protein interactions are weak and transient, and thus difficult to be characterized at high resolution with other methodologies.

  14. The structure elucidation of mequindox and 1,4-bisdesoxymequindox: NMR analyses, FT-IR spectra, DFT calculations and thermochemical studies

    NASA Astrophysics Data System (ADS)

    Zhang, Jiaheng; He, Xin; Gao, Haixiang

    2011-10-01

    In the current work, we report a combined experimental and theoretical study on the molecular conformation, vibrational spectra, and nuclear magnetic resonance (NMR) spectra of mequindox (MEQ) and 1,4-bisdesoxymequindox (1,4-BDM). The geometric structure and vibrational frequencies of MEQ and 1,4-BDM have been calculated by density functional theory employing the B3LYP functional and 6-311++G(d,p) basis set. The 1H and 13C NMR chemical shifts have been calculated by gauge-including atomic orbital method with B3LYP 6-311++G(2df,2pd) approach. The calculation results have been applied to simulate the infrared and NMR spectra of the compounds. The theoretical results agree well with the observed spectra. The bond dissociation enthalpy of MEQ and the heat of formation of MEQ and 1,4-BDM have also been computed.

  15. Recent Advances in Characterization of Lignin Polymer by Solution-State Nuclear Magnetic Resonance (NMR) Methodology

    PubMed Central

    Wen, Jia-Long; Sun, Shao-Long; Xue, Bai-Liang; Sun, Run-Cang

    2013-01-01

    The demand for efficient utilization of biomass induces a detailed analysis of the fundamental chemical structures of biomass, especially the complex structures of lignin polymers, which have long been recognized for their negative impact on biorefinery. Traditionally, it has been attempted to reveal the complicated and heterogeneous structure of lignin by a series of chemical analyses, such as thioacidolysis (TA), nitrobenzene oxidation (NBO), and derivatization followed by reductive cleavage (DFRC). Recent advances in nuclear magnetic resonance (NMR) technology undoubtedly have made solution-state NMR become the most widely used technique in structural characterization of lignin due to its versatility in illustrating structural features and structural transformations of lignin polymers. As one of the most promising diagnostic tools, NMR provides unambiguous evidence for specific structures as well as quantitative structural information. The recent advances in two-dimensional solution-state NMR techniques for structural analysis of lignin in isolated and whole cell wall states (in situ), as well as their applications are reviewed. PMID:28809313

  16. Ab initio NMR Confirmed Evolutionary Structure Prediction for Organic Molecular Crystals

    NASA Astrophysics Data System (ADS)

    Pham, Cong-Huy; Kucukbenli, Emine; de Gironcoli, Stefano

    2015-03-01

    Ab initio crystal structure prediction of even small organic compounds is extremely challenging due to polymorphism, molecular flexibility and difficulties in addressing the dispersion interaction from first principles. We recently implemented vdW-aware density functionals and demonstrated their success in energy ordering of aminoacid crystals. In this work we combine this development with the evolutionary structure prediction method to study cholesterol polymorphs. Cholesterol crystals have paramount importance in various diseases, from cancer to atherosclerosis. The structure of some polymorphs (e.g. ChM, ChAl, ChAh) have already been resolved while some others, which display distinct NMR spectra and are involved in disease formation, are yet to be determined. Here we thoroughly assess the applicability of evolutionary structure prediction to address such real world problems. We validate the newly predicted structures with ab initio NMR chemical shift data using secondary referencing for an improved comparison with experiments.

  17. Can enzyme engineering benefit from the modulation of protein motions? Lessons learned from NMR relaxation dispersion experiments.

    PubMed

    Doucet, Nicolas

    2011-04-01

    Despite impressive progress in protein engineering and design, our ability to create new and efficient enzyme activities remains a laborious and time-consuming endeavor. In the past few years, intricate combinations of rational mutagenesis, directed evolution and computational methods have paved the way to exciting engineering examples and are now offering a new perspective on the structural requirements of enzyme activity. However, these structure-function analyses are usually guided by the time-averaged static models offered by enzyme crystal structures, which often fail to describe the functionally relevant 'invisible states' adopted by proteins in space and time. To alleviate such limitations, NMR relaxation dispersion experiments coupled to mutagenesis studies have recently been applied to the study of enzyme catalysis, effectively complementing 'structure-function' analyses with 'flexibility-function' investigations. In addition to offering quantitative, site-specific information to help characterize residue motion, these NMR methods are now being applied to enzyme engineering purposes, providing a powerful tool to help characterize the effects of controlling long-range networks of flexible residues affecting enzyme function. Recent advancements in this emerging field are presented here, with particular attention to mutagenesis reports highlighting the relevance of NMR relaxation dispersion tools in enzyme engineering.

  18. Dissociation behavior of methane--ethane mixed gas hydrate coexisting structures I and II.

    PubMed

    Kida, Masato; Jin, Yusuke; Takahashi, Nobuo; Nagao, Jiro; Narita, Hideo

    2010-09-09

    Dissociation behavior of methane-ethane mixed gas hydrate coexisting structures I and II at constant temperatures less than 223 K was studied with use of powder X-ray diffraction and solid-state (13)C NMR techniques. The diffraction patterns at temperatures less than 203 K showed both structures I and II simultaneously convert to Ih during the dissociation, but the diffraction pattern at temperatures greater than 208 K showed different dissociation behavior between structures I and II. Although the diffraction peaks from structure II decreased during measurement at constant temperatures greater than 208 K, those from structure I increased at the initial step of dissociation and then disappeared. This anomalous behavior of the methane-ethane mixed gas hydrate coexisting structures I and II was examined by using the (13)C NMR technique. The (13)C NMR spectra revealed that the anomalous behavior results from the formation of ethane-rich structure I. The structure I hydrate formation was associated with the dissociation rate of the initial methane-ethane mixed gas hydrate.

  19. Investigations of the local environment and macroscopic alignment behavior of novel polymerizeable lyotropic liquid crystals using nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Juang, Elizabeth

    In this dissertation, a variety of NMR techniques were used to explore the local environment of novel polymerizeable lyotropic liquid crystals (LLC). The LLC monomers examined in this study self-assemble in the presence of a small amount of water to form uniform, nanometer-scale tubes with aqueous interiors. The phase architecture is retained upon photopolymerization to yield the resulting nanoporous material. By dissolving reactive precursors into the aqueous phase, well- structured nancomposite materials have also been formed. Proposed uses for these novel polymerizeable LLCs are as porous water filtration membranes, as heterogeneous organic catalysts, and as nanocomposite materials for load bearing and optical applications. In order to better exploit these polymerizeable LLCs for materials development, the local environment must be examined. In addition, the macroscopic orientation of these materials remains an important step in their advancement. Various NMR studies were conducted on these novel LLCs. NMR T1 relaxation measurements were conducted to elucidate the local environment and dynamics of the 23Na counterions located inside the aqueous channels. 2H NMR line shape analyses were used to characterize the local structure and dynamics near the hydrophilic headgroup. 29 Si NMR studies were performed on silica nanocomposites formed with these LLC structures. Finally, the macroscopic alignment behavior of these novel LLCs using shear and magnetic fields was examined.

  20. Inhibition of 53BP1: Potential for Restoring Homologous Recombination In Ovarian Cancer Cells

    DTIC Science & Technology

    2017-08-01

    crystallography ; NMR spectroscopy; Calorimetry 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE...ray crystallography ; NMR spectroscopy; Calorimetry 3. ACCOMPLISHMENTS: The PI is reminded that the recipient organization is required to obtain...originally planned. Each aim combines structural studies using X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy and functional

  1. An overview of tools for the validation of protein NMR structures.

    PubMed

    Vuister, Geerten W; Fogh, Rasmus H; Hendrickx, Pieter M S; Doreleijers, Jurgen F; Gutmanas, Aleksandras

    2014-04-01

    Biomolecular structures at atomic resolution present a valuable resource for the understanding of biology. NMR spectroscopy accounts for 11% of all structures in the PDB repository. In response to serious problems with the accuracy of some of the NMR-derived structures and in order to facilitate proper analysis of the experimental models, a number of program suites are available. We discuss nine of these tools in this review: PROCHECK-NMR, PSVS, GLM-RMSD, CING, Molprobity, Vivaldi, ResProx, NMR constraints analyzer and QMEAN. We evaluate these programs for their ability to assess the structural quality, restraints and their violations, chemical shifts, peaks and the handling of multi-model NMR ensembles. We document both the input required by the programs and output they generate. To discuss their relative merits we have applied the tools to two representative examples from the PDB: a small, globular monomeric protein (Staphylococcal nuclease from S. aureus, PDB entry 2kq3) and a small, symmetric homodimeric protein (a region of human myosin-X, PDB entry 2lw9).

  2. Ammonia fixation by humic substances: A nitrogen-15 and carbon-13 NMR study

    USGS Publications Warehouse

    Thorn, K.A.; Mikita, M.A.

    1992-01-01

    The process of ammonia fixation has been studied in three well characterized and structurally diverse fulvic and humic acid samples. The Suwannee River fulvic acid, and the IHSS peat and leonardite humic acids, were reacted with 15N-labelled ammonium hydroxide, and analyzed by liquid phase 15N NMR spectrometry. Elemental analyses and liquid phase 13C NMR spectra also were recorded on the samples before and after reaction with ammonium hydroxide. The largest increase in percent nitrogen occurred with the Suwannee River fulvic acid, which had a nitrogen content of 0.88% before fixation and 3.17% after fixation. The 15N NMR spectra revealed that ammonia reacted similarly with all three samples, indicating that the functional groups which react with ammonia exist in structural configurations common to all three samples. The majority of nitrogcn incorporated into the samples appears to be in the form of indole and pyrrole nitrogen, followed by pyridine, pyrazine, amide and aminohydroquinone nitrogen. Chemical changes in the individual samples upon fixation could not be discerned from the 13C NMR spectra.

  3. Micro-scale NMR Screening of New Detergents for Membrane Protein Structural Biology

    PubMed Central

    Zhang, Qinghai; Horst, Reto; Geralt, Michael; Ma, Xingquan; Hong, Wen-Xu; Finn, M. G.; Stevens, Raymond C.; Wüthrich, Kurt

    2008-01-01

    The rate limiting step in biophysical characterization of membrane proteins is often the availability of suitable amounts of protein material. It was therefore of interest to demonstrate that micro-coil nuclear magnetic resonance (NMR) technology can be used to screen microscale quantities of membrane proteins for proper folding in samples destined for structural studies. Micoscale NMR was then used to screen a series of newly designed zwitterionic phosphocholine detergents for their ability to reconstitute membrane proteins, using the previously well characterized β-barrel E.coli outer membrane protein OmpX as a test case. Fold screening was thus achieved with μg-amounts of uniformly 2H,15N-labeld OmpX and affordable amounts of the detergents, and prescreening with SDS-gel electrophoresis ensured efficient selection of the targets for NMR studies. A systematic approach to optimize the phosphocholine motif for membrane protein refolding led to the identification of two new detergents, 138-Fos and 179-Fos, that yield 2D [15N,1H]-TROSY correlation NMR spectra of natively folded reconstituted OmpX. PMID:18479092

  4. Solution NMR Structures of Oxidized and Reduced Ehrlichia chaffeensis thioredoxin: NMR-Invisible Structure Owing to Backbone Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchko, Garry W.; Hewitt, Stephen N.; Van Voorhis, Wesley C.

    Thioredoxins (Trxs) are small ubiquitous proteins that participate in a diverse variety of redox reactions via the reversible oxidation of two cysteine thiol groups in a structurally conserved active site, CGPC. Here, we describe the NMR solution structures of a Trx from Ehrlichia chaffeensis (Ec-Trx, ECH_0218), the etiological agent responsible for human monocytic ehrlichiosis, in both the oxidized and reduced states. The overall topology of the calculated structures is similar in both redox states and similar to other Trx structures, a five-strand, mixed -sheet (1:3:2:4:5) surrounded by four -helices. Unlike other Trxs studied by NMR in both redox states, themore » 1H-15N HSQC spectra of reduced Ec-Trx was missing eight amide cross peaks relative to the spectra of oxidized Ec-Trx. These missing amides correspond to residues C32-E39 in the active site containing helix (2) and S72-I75 in a loop near the active site and suggest a substantial change in the backbone dynamics associated with the formation of an intramolecular C32-C35 disulfide bond.« less

  5. Applications of NMR and computational methodologies to study protein dynamics.

    PubMed

    Narayanan, Chitra; Bafna, Khushboo; Roux, Louise D; Agarwal, Pratul K; Doucet, Nicolas

    2017-08-15

    Overwhelming evidence now illustrates the defining role of atomic-scale protein flexibility in biological events such as allostery, cell signaling, and enzyme catalysis. Over the years, spin relaxation nuclear magnetic resonance (NMR) has provided significant insights on the structural motions occurring on multiple time frames over the course of a protein life span. The present review article aims to illustrate to the broader community how this technique continues to shape many areas of protein science and engineering, in addition to being an indispensable tool for studying atomic-scale motions and functional characterization. Continuing developments in underlying NMR technology alongside software and hardware developments for complementary computational approaches now enable methodologies to routinely provide spatial directionality and structural representations traditionally harder to achieve solely using NMR spectroscopy. In addition to its well-established role in structural elucidation, we present recent examples that illustrate the combined power of selective isotope labeling, relaxation dispersion experiments, chemical shift analyses, and computational approaches for the characterization of conformational sub-states in proteins and enzymes. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Correction of erroneously packed protein's side chains in the NMR structure based on ab initio chemical shift calculations.

    PubMed

    Zhu, Tong; Zhang, John Z H; He, Xiao

    2014-09-14

    In this work, protein side chain (1)H chemical shifts are used as probes to detect and correct side-chain packing errors in protein's NMR structures through structural refinement. By applying the automated fragmentation quantum mechanics/molecular mechanics (AF-QM/MM) method for ab initio calculation of chemical shifts, incorrect side chain packing was detected in the NMR structures of the Pin1 WW domain. The NMR structure is then refined by using molecular dynamics simulation and the polarized protein-specific charge (PPC) model. The computationally refined structure of the Pin1 WW domain is in excellent agreement with the corresponding X-ray structure. In particular, the use of the PPC model yields a more accurate structure than that using the standard (nonpolarizable) force field. For comparison, some of the widely used empirical models for chemical shift calculations are unable to correctly describe the relationship between the particular proton chemical shift and protein structures. The AF-QM/MM method can be used as a powerful tool for protein NMR structure validation and structural flaw detection.

  7. The structure of poly(carbonsuboxide) on the atomic scale: a solid-state NMR study.

    PubMed

    Schmedt auf der Günne, Jörn; Beck, Johannes; Hoffbauer, Wilfried; Krieger-Beck, Petra

    2005-07-18

    In this contribution we present a study of the structure of amorphous poly(carbonsuboxide) (C3O2)x by 13C solid-state NMR spectroscopy supported by infrared spectroscopy and chemical analysis. Poly(carbonsuboxide) was obtained by polymerization of carbonsuboxide C3O2, which in turn was synthesized from malonic acid bis(trimethylsilylester). Two different 13C labeling schemes were applied to probe inter- and intramonomeric bonds in the polymer by dipolar solid-state NMR methods and also to allow quantitative 13C MAS NMR spectra. Four types of carbon environments can be distinguished in the NMR spectra. Double-quantum and triple-quantum 2D correlation experiments were used to assign the observed peaks using the through-space and through-bond dipolar coupling. In order to obtain distance constraints for the intermonomeric bonds, double-quantum constant-time experiments were performed. In these experiments an additional filter step was applied to suppress contributions from not directly bonded 13C,13C spin pairs. The 13C NMR intensities, chemical shifts, connectivities and distances gave constraints for both the polymerization mechanism and the short-range order of the polymer. The experimental results were complemented by bond lengths predicted by density functional theory methods for several previously suggested models. Based on the presented evidence we can unambiguously exclude models based on gamma-pyronic units and support models based on alpha-pyronic units. The possibility of planar ladder- and bracelet-like alpha-pyronic structures is discussed.

  8. A structural study of epoxidized natural rubber (ENR-50) and its cyclic dithiocarbonate derivative using NMR spectroscopy techniques.

    PubMed

    Hamzah, Rosniza; Bakar, Mohamad Abu; Khairuddean, Melati; Mohammed, Issam Ahmed; Adnan, Rohana

    2012-09-12

    A structural study of epoxidized natural rubber (ENR-50) and its cyclic dithiocarbonate derivative was carried out using NMR spectroscopy techniques. The overlapping (1)H-NMR signals of ENR-50 at δ 1.56, 1.68-1.70, 2.06, 2.15-2.17 ppm were successfully assigned. In this work, the <(13)C-NMR chemical shift assignments of ENR-50 were consistent to the previously reported work. A cyclic dithiocarbonate derivative of ENR-50 was synthesized from the reaction of purified ENR-50 with carbon disulfide (CS(2)), in the presence of 4-dimethylaminopyridine (DMAP) as catalyst at reflux temperature. The cyclic dithiocarbonate formation involved the epoxide ring opening of the ENR-50. This was followed by insertion of the C-S moiety of CS(2) at the oxygen attached to the quaternary carbon and methine carbon of epoxidized isoprene unit, respectively. The bands due to the C=S and C-O were clearly observed in the FTIR spectrum while the (1)H-NMR spectrum of the derivative revealed the peak attributed to the methylene protons had split. The (13)C-NMR spectrum of the derivative further indicates two new carbon peaks arising from the >C=S and quaternary carbon of cyclic dithiocarbonate. All other (1)H- and (13)C-NMR chemical shifts of the derivative remain unchanged with respect to the ENR-50.

  9. Isolation, NMR studies, and biological activities of onopordopicrin from Centaurea sonchifolia.

    PubMed

    Lonergan, G; Routsi, E; Georgiadis, T; Agelis, G; Hondrelis, J; Matsoukas, J; Larsen, L K; Caplan, F R

    1992-02-01

    A sesquiterpene lactone, onopordopicrin [1], has been isolated from Centaurea sonchifolia. Its structure was established by 2D nmr (1H-1H and 13C-1H correlations), and the conformation in CHCl3 was examined by nOe studies. Cytotoxic, antibacterial, and antifungal activities are reported.

  10. Advances in solid-state NMR of cellulose.

    PubMed

    Foston, Marcus

    2014-06-01

    Nuclear magnetic resonance (NMR) spectroscopy is a well-established analytical and enabling technology in biofuel research. Over the past few decades, lignocellulosic biomass and its conversion to supplement or displace non-renewable feedstocks has attracted increasing interest. The application of solid-state NMR spectroscopy has long been seen as an important tool in the study of cellulose and lignocellulose structure, biosynthesis, and deconstruction, especially considering the limited number of effective solvent systems and the significance of plant cell wall three-dimensional microstructure and component interaction to conversion yield and rate profiles. This article reviews common and recent applications of solid-state NMR spectroscopy methods that provide insight into the structural and dynamic processes of cellulose that control bulk properties and biofuel conversion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Workshop on High-Field NMR and Biological Applications

    NASA Astrophysics Data System (ADS)

    Scientists at the Pacific Northwest Laboratory have been working toward the establishment of a new Molecular Science Research Center (MSRC). The primary scientific thrust of this new research center is in the areas of theoretical chemistry, chemical dynamics, surface and interfacial science, and studies on the structure and interactions of biological macromolecules. The MSRC will provide important new capabilities for studies on the structure of biological macromolecules. The MSRC program includes several types of advanced spectroscopic techniques for molecular structure analysis, and a theory and modeling laboratory for molecular mechanics/dynamics calculations and graphics. It is the goal to closely integrate experimental and theoretical studies on macromolecular structure, and to join these research efforts with those of the molecular biological programs to provide new insights into the structure/function relationships of biological macromolecules. One of the areas of structural biology on which initial efforts in the MSRC will be focused is the application of high field, 2-D NMR to the study of biological macromolecules. First, there is interest in obtaining 3-D structural information on large proteins and oligonucleotides. Second, one of the primary objectives is to closely link theoretical approaches to molecular structure analysis with the results obtained in experimental research using NMR and other spectroscopies.

  12. Investigation of structure, vibrational and NMR spectra of oxycodone and naltrexone: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Tavakol, Hossein; Esfandyari, Maryam; Taheri, Salman; Heydari, Akbar

    2011-08-01

    In this work, two important opioid antagonists, naltrexone and oxycodone, were prepared from thebaine and were characterized by IR, 1H NMR and 13C NMR spectroscopy. Moreover, computational NMR and IR parameters were obtained using density functional theory (DFT) at B3LYP/6-311++G** level of theory. Complete NMR and vibrational assignment were carried out using the observed and calculated spectra. The IR frequencies and NMR chemical shifts, determined experimentally, were compared with those obtained theoretically from DFT calculations, showed good agreements. The RMS errors observed between experimental and calculated data for the IR absorptions are 85 and 105 cm -1, for the 1H NMR peaks are 0.87 and 0.17 ppm and for those of 13C NMR are 5.6 and 5.3 ppm, respectively for naltrexone and oxycodone.

  13. DFT calculations in the assignment of solid-state NMR and crystal structure elucidation of a lanthanum(iii) complex with dithiocarbamate and phenanthroline.

    PubMed

    Gowda, Vasantha; Laitinen, Risto S; Telkki, Ville-Veikko; Larsson, Anna-Carin; Antzutkin, Oleg N; Lantto, Perttu

    2016-12-06

    The molecular, crystal, and electronic structures as well as spectroscopic properties of a mononuclear heteroleptic lanthanum(iii) complex with diethyldithiocarbamate and 1,10-phenanthroline ligands (3 : 1) were studied by solid-state 13 C and 15 N cross-polarisation (CP) magic-angle-spinning (MAS) NMR, X-ray diffraction (XRD), and first principles density functional theory (DFT) calculations. A substantially different powder XRD pattern and 13 C and 15 N CP-MAS NMR spectra indicated that the title compound is not isostructural to the previously reported analogous rare earth complexes with the space group P2 1 /n. Both 13 C and 15 N CP-MAS NMR revealed the presence of six structurally different dithiocarbamate groups in the asymmetric unit cell, implying a non-centrosymmetric packing arrangement of molecules. This was supported by single-crystal X-ray crystallography showing that the title compound crystallised in the triclinic space group P1[combining macron]. In addition, the crystal structure also revealed that one of the dithiocarbamate ligands has a conformational disorder. NMR chemical shift calculations employing the periodic gauge including projector augmented wave (GIPAW) approach supported the assignment of the experimental 13 C and 15 N NMR spectra. However, the best correspondences were obtained with the structure where the atomic positions in the X-ray unit cell were optimised at the DFT level. The roles of the scalar and spin-orbit relativistic effects on NMR shielding were investigated using the zeroth-order regular approximation (ZORA) method with the outcome that already the scalar relativistic level qualitatively reproduces the experimental chemical shifts. The electronic properties of the complex were evaluated based on the results of the natural bond orbital (NBO) and topology of the electron density analyses. Overall, we apply a multidisciplinary approach acquiring comprehensive information about the solid-state structure and the metal-ligand bonding of the heteroleptic lanthanum complex.

  14. A Bayesian Approach for Determining Protein Side-Chain Rotamer Conformations Using Unassigned NOE Data

    PubMed Central

    Zeng, Jianyang; Roberts, Kyle E.; Zhou, Pei

    2011-01-01

    Abstract A major bottleneck in protein structure determination via nuclear magnetic resonance (NMR) is the lengthy and laborious process of assigning resonances and nuclear Overhauser effect (NOE) cross peaks. Recent studies have shown that accurate backbone folds can be determined using sparse NMR data, such as residual dipolar couplings (RDCs) or backbone chemical shifts. This opens a question of whether we can also determine the accurate protein side-chain conformations using sparse or unassigned NMR data. We attack this question by using unassigned nuclear Overhauser effect spectroscopy (NOESY) data, which records the through-space dipolar interactions between protons nearby in three-dimensional (3D) space. We propose a Bayesian approach with a Markov random field (MRF) model to integrate the likelihood function derived from observed experimental data, with prior information (i.e., empirical molecular mechanics energies) about the protein structures. We unify the side-chain structure prediction problem with the side-chain structure determination problem using unassigned NMR data, and apply the deterministic dead-end elimination (DEE) and A* search algorithms to provably find the global optimum solution that maximizes the posterior probability. We employ a Hausdorff-based measure to derive the likelihood of a rotamer or a pairwise rotamer interaction from unassigned NOESY data. In addition, we apply a systematic and rigorous approach to estimate the experimental noise in NMR data, which also determines the weighting factor of the data term in the scoring function derived from the Bayesian framework. We tested our approach on real NMR data of three proteins: the FF Domain 2 of human transcription elongation factor CA150 (FF2), the B1 domain of Protein G (GB1), and human ubiquitin. The promising results indicate that our algorithm can be applied in high-resolution protein structure determination. Since our approach does not require any NOE assignment, it can accelerate the NMR structure determination process. PMID:21970619

  15. Molecular structures of amyloid and prion fibrils: consensus versus controversy.

    PubMed

    Tycko, Robert; Wickner, Reed B

    2013-07-16

    Many peptides and proteins self-assemble into amyloid fibrils. Examples include mammalian and fungal prion proteins, polypeptides associated with human amyloid diseases, and proteins that may have biologically functional amyloid states. To understand the propensity for polypeptides to form amyloid fibrils and to facilitate rational design of amyloid inhibitors and imaging agents, it is necessary to elucidate the molecular structures of these fibrils. Although fibril structures were largely mysterious 15 years ago, a considerable body of reliable structural information about amyloid fibril structures now exists, with essential contributions from solid state nuclear magnetic resonance (NMR) measurements. This Account reviews results from our laboratories and discusses several structural issues that have been controversial. In many cases, the amino acid sequences of amyloid fibrils do not uniquely determine their molecular structures. Self-propagating, molecular-level polymorphism complicates the structure determination problem and can lead to apparent disagreements between results from different laboratories, particularly when different laboratories study different polymorphs. For 40-residue β-amyloid (Aβ₁₋₄₀) fibrils associated with Alzheimer's disease, we have developed detailed structural models from solid state NMR and electron microscopy data for two polymorphs. These polymorphs have similar peptide conformations, identical in-register parallel β-sheet organizations, but different overall symmetry. Other polymorphs have also been partially characterized by solid state NMR and appear to have similar structures. In contrast, cryo-electron microscopy studies that use significantly different fibril growth conditions have identified structures that appear (at low resolution) to be different from those examined by solid state NMR. Based on solid state NMR and electron paramagnetic resonance (EPR) measurements, the in-register parallel β-sheet organization found in β-amyloid fibrils also occurs in many other fibril-forming systems. We attribute this common structural motif to the stabilization of amyloid structures by intermolecular interactions among like amino acids, including hydrophobic interactions and polar zippers. Surprisingly, we have recently identified and characterized antiparallel β-sheets in certain fibrils that are formed by the D23N mutant of Aβ₁₋₄₀, a mutant that is associated with early-onset, familial neurodegenerative disease. Antiparallel D23N-Aβ₁₋₄₀ fibrils are metastable with respect to parallel structures and, therefore, represent an off-pathway intermediate in the amyloid fibril formation process. Other methods have recently produced additional evidence for antiparallel β-sheets in other amyloid-formation intermediates. As an alternative to simple parallel and antiparallel β-sheet structures, researchers have proposed β-helical structural models for some fibrils, especially those formed by mammalian and fungal prion proteins. Solid state NMR and EPR data show that fibrils formed in vitro by recombinant PrP have in-register parallel β-sheet structures. However, the structure of infectious PrP aggregates is not yet known. The fungal HET-s prion protein has been shown to contain a β-helical structure. However, all yeast prions studied by solid state NMR (Sup35p, Ure2p, and Rnq1p) have in-register parallel β-sheet structures, with their Gln- and Asn-rich N-terminal segments forming the fibril core.

  16. Ab initio/GIAO-CCSD(T) study of structures, energies, and 13C NMR chemical shifts of C4H7(+) and C5H9(+) ions: relative stability and dynamic aspects of the cyclopropylcarbinyl vs bicyclobutonium ions.

    PubMed

    Olah, George A; Surya Prakash, G K; Rasul, Golam

    2008-07-16

    The structures and energies of the carbocations C 4H 7 (+) and C 5H 9 (+) were calculated using the ab initio method. The (13)C NMR chemical shifts of the carbocations were calculated using the GIAO-CCSD(T) method. The pisigma-delocalized bisected cyclopropylcarbinyl cation, 1 and nonclassical bicyclobutonium ion, 2 were found to be the minima for C 4H 7 (+) at the MP2/cc-pVTZ level. At the MP4(SDTQ)/cc-pVTZ//MP2/cc-pVTZ + ZPE level the structure 2 is 0.4 kcal/mol more stable than the structure 1. The (13)C NMR chemical shifts of 1 and 2 were calculated by the GIAO-CCSD(T) method. Based on relative energies and (13)C NMR chemical shift calculations, an equilibrium involving the 1 and 2 in superacid solutions is most likely responsible for the experimentally observed (13)C NMR chemical shifts, with the latter as the predominant equilibrating species. The alpha-methylcyclopropylcarbinyl cation, 4, and nonclassical bicyclobutonium ion, 5, were found to be the minima for C 5H 9 (+) at the MP2/cc-pVTZ level. At the MP4(SDTQ)/cc-pVTZ//MP2/cc-pVTZ + ZPE level ion 5 is 5.9 kcal/mol more stable than the structure 4. The calculated (13)C NMR chemical shifts of 5 agree rather well with the experimental values of C 5H 9 (+).

  17. Coal liquefaction process streams characterization and evaluation: Analysis of Black Thunder coal and liquefaction products from HRI Bench Unit Run CC-15

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pugmire, R.J.; Solum, M.S.

    This study was designed to apply {sup 13}C-nuclear magnetic resonance (NMR) spectrometry to the analysis of direct coal liquefaction process-stream materials. {sup 13}C-NMR was shown to have a high potential for application to direct coal liquefaction-derived samples in Phase II of this program. In this Phase III project, {sup 13}C-NMR was applied to a set of samples derived from the HRI Inc. bench-scale liquefaction Run CC-15. The samples include the feed coal, net products and intermediate streams from three operating periods of the run. High-resolution {sup 13}C-NMR data were obtained for the liquid samples and solid-state CP/MAS {sup 13}C-NMR datamore » were obtained for the coal and filter-cake samples. The {sup 1}C-NMR technique is used to derive a set of twelve carbon structural parameters for each sample (CONSOL Table A). Average molecular structural descriptors can then be derived from these parameters (CONSOL Table B).« less

  18. Determination of Structural Topology of a Membrane Protein in Lipid -Bilayers using Polarization Optimized Experiments (POE) for Static and MAS Solid State NMR Spectroscopy

    PubMed Central

    Mote, Kaustubh R.; Gopinath, T.; Veglia, Gianluigi

    2013-01-01

    The low sensitivity inherent to both the static and magic angle spinning techniques of solid-state NMR (ssNMR) spectroscopy has thus far limited the routine application of multidimensional experiments to determine the structure of membrane proteins in lipid bilayers. Here, we demonstrate the advantage of using a recently developed class of experiments, polarization optimized experiments (POE), for both static and MAS spectroscopy to achieve higher sensitivity and substantial time-savings for 2D and 3D experiments. We used sarcolipin, a single pass membrane protein, reconstituted in oriented bicelles (for oriented ssNMR) and multilamellar vesicles (for MAS ssNMR) as a benchmark. The restraints derived by these experiments are then combined into a hybrid energy function to allow simultaneous determination of structure and topology. The resulting structural ensemble converged to a helical conformation with a backbone RMSD ∼ 0.44 Å, a tilt angle of 24° ± 1°, and an azimuthal angle of 55° ± 6°. This work represents a crucial first step toward obtaining high-resolution structures of large membrane proteins using combined multidimensional O-ssNMR and MAS-ssNMR. PMID:23963722

  19. A combined solid-state NMR and X-ray crystallography study of the bromide ion environments in triphenylphosphonium bromides.

    PubMed

    Burgess, Kevin M N; Korobkov, Ilia; Bryce, David L

    2012-04-27

    Multinuclear ((31)P and (79/81)Br), multifield (9.4, 11.75, and 21.1 T) solid-state nuclear magnetic resonance experiments are performed for seven phosphonium bromides bearing the triphenylphosphonium cation, a molecular scaffold found in many applications in chemistry. This is undertaken to fully characterise their bromine electric field gradient (EFG) tensors, as well as the chemical shift (CS) tensors of both the halogen and the phosphorus nuclei, providing a rare and novel insight into the local electronic environments surrounding them. New crystal structures, obtained from single-crystal X-ray diffraction, are reported for six compounds to aid in the interpretation of the NMR data. Among them is a new structure of BrPPh(4), because the previously reported one was inconsistent with our magnetic resonance data, thereby demonstrating how NMR data of non-standard nuclei can correct or improve X-ray diffraction data. Our results indicate that, despite sizable quadrupolar interactions, (79/81)Br magnetic resonance spectroscopy is a powerful characterisation tool that allows for the differentiation between chemically similar bromine sites, as shown through the range in the characteristic NMR parameters. (35/37)Cl solid-state NMR data, obtained for an analogous phosphonium chloride sample, provide insight into the relationship between unit cell volume, nuclear quadrupolar coupling constants, and Sternheimer antishielding factors. The experimental findings are complemented by gauge-including projector-augmented wave (GIPAW) DFT calculations, which substantiate our experimentally determined strong dependence of the largest component of the bromine CS tensor, δ(11), on the shortest Br-P distance in the crystal structure, a finding that has possible application in the field of NMR crystallography. This trend is explained in terms of Ramsey's theory on paramagnetic shielding. Overall, this work demonstrates how careful NMR studies of underexploited exotic nuclides, such as (79/81)Br, can afford insights into structure and bonding environments in the solid state. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Probing the calcium and sodium local environment in bones and teeth using multinuclear solid state NMR and X-ray absorption spectroscopy.

    PubMed

    Laurencin, Danielle; Wong, Alan; Chrzanowski, Wojciech; Knowles, Jonathan C; Qiu, Dong; Pickup, David M; Newport, Robert J; Gan, Zhehong; Duer, Melinda J; Smith, Mark E

    2010-02-07

    Despite the numerous studies of bone mineral, there are still many questions regarding the exact structure and composition of the mineral phase, and how the mineral crystals become organised with respect to each other and the collagen matrix. Bone mineral is commonly formulated as hydroxyapatite, albeit with numerous substitutions, and has previously been studied by (31)P and (1)H NMR, which has given considerable insight into the complexity of the mineral structure. However, to date, there has been no report of an NMR investigation of the other major component of bone mineral, calcium, nor of common minority cations like sodium. Here, direct analysis of the local environment of calcium in two biological apatites, equine bone (HB) and bovine tooth (CT), was carried out using both (43)Ca solid state NMR and Ca K-edge X-ray absorption spectroscopy, revealing important structural information about the calcium coordination shell. The (43)Ca delta(iso) in HB and CT is found to correlate with the average Ca-O bond distance measured by Ca K-edge EXAFS, and the (43)Ca NMR linewidths show that there is a greater distribution in chemical bonding around calcium in HB and CT, compared to synthetic apatites. In the case of sodium, (23)Na MAS NMR, high resolution 3Q-MAS NMR, as well as (23)Na{(31)P} REDOR and (1)H{(23)Na} R(3)-HMQC correlation experiments give the first direct evidence that some sodium is located inside the apatite phase in HB and CT, but with a greater distribution of environments compared to a synthetic sodium substituted apatite (Na-HA).

  1. Micro-scale NMR Experiments for Monitoring the Optimization of Membrane Protein Solutions for Structural Biology.

    PubMed

    Horst, Reto; Wüthrich, Kurt

    2015-07-20

    Reconstitution of integral membrane proteins (IMP) in aqueous solutions of detergent micelles has been extensively used in structural biology, using either X-ray crystallography or NMR in solution. Further progress could be achieved by establishing a rational basis for the selection of detergent and buffer conditions, since the stringent bottleneck that slows down the structural biology of IMPs is the preparation of diffracting crystals or concentrated solutions of stable isotope labeled IMPs. Here, we describe procedures to monitor the quality of aqueous solutions of [ 2 H, 15 N]-labeled IMPs reconstituted in detergent micelles. This approach has been developed for studies of β-barrel IMPs, where it was successfully applied for numerous NMR structure determinations, and it has also been adapted for use with α-helical IMPs, in particular GPCRs, in guiding crystallization trials and optimizing samples for NMR studies (Horst et al ., 2013). 2D [ 15 N, 1 H]-correlation maps are used as "fingerprints" to assess the foldedness of the IMP in solution. For promising samples, these "inexpensive" data are then supplemented with measurements of the translational and rotational diffusion coefficients, which give information on the shape and size of the IMP/detergent mixed micelles. Using microcoil equipment for these NMR experiments enables data collection with only micrograms of protein and detergent. This makes serial screens of variable solution conditions viable, enabling the optimization of parameters such as the detergent concentration, sample temperature, pH and the composition of the buffer.

  2. NMR solution structure of the N-terminal domain of hERG and its interaction with the S4-S5 linker

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Qingxin; Gayen, Shovanlal; Chen, Angela Shuyi

    Research highlights: {yields} The N-terminal domain (NTD, eag domain) containing 135 residues of hERG was expressed and purified from E. coli cells. {yields} Solution structure of NTD was determined with NMR spectroscopy. {yields} The alpha-helical region (residues 13-23) was demonstrated to possess the characteristics of an amphipathic helix. {yields} NMR titration confirmed the interaction between NTD and the peptide from the S4-S5 linker. -- Abstract: The human Ether-a-go-go Related Gene (hERG) potassium channel mediates the rapid delayed rectifier current (IKr) in the cardiac action potential. Mutations in the 135 amino acid residue N-terminal domain (NTD) cause channel dysfunction or mis-translocation.more » To study the structure of NTD, it was overexpressed and purified from Escherichia coli cells using affinity purification and gel filtration chromatography. The purified protein behaved as a monomer under purification conditions. Far- and near-UV, circular dichroism (CD) and solution nuclear magnetic resonance (NMR) studies showed that the purified protein was well-folded. The solution structure of NTD was obtained and the N-terminal residues 13-23 forming an amphipathic helix which may be important for the protein-protein or protein-membrane interactions. NMR titration experiment also demonstrated that residues from 88 to 94 in NTD are important for the molecular interaction with the peptide derived from the S4-S5 linker.« less

  3. A Solid-State NMR Study of Selenium Substitution into Nanocrystalline Hydroxyapatite

    PubMed Central

    Kolmas, Joanna; Kuras, Marzena; Oledzka, Ewa; Sobczak, Marcin

    2015-01-01

    The substitution of selenium oxyanions in the hydroxyapatite structure was examined using multinuclear solid-state resonance spectroscopy (ssNMR). The study was supported by powder X-ray diffractometry (PXRD) and wavelength dispersion X-ray fluorescence (WD-XRF). Samples of pure hydroxyapatite (HA300) and selenate (HA300-1.2SeO4) or selenite (HA300-1.2SeO3) substituted hydroxyapatites were synthesized using the standard wet method and heated at 300 °C to remove loosely bonded water. PXRD data showed that all samples are single-phase, nanocrystalline hydroxyapatite. The incorporation of selenite and selenate ions affected the lattice constants. In selenium-containing samples the concentration of Se was very similar and amounted to 9.55% and 9.64%, for HA300-1.2SeO4 and HA300-1.2SeO3, respectively. PXRD and ssNMR data showed that the selenite doping significantly decreases the crystallite size and crystallinity degree. 31P and 1H NMR experiments demonstrated the developed surface hydrated layer in all samples, especially in HA300-1.2SeO3. 1H NMR studies showed the dehydroxylation of HA during the selenium oxyanions substitution and the existence of hydrogen bonding in structural hydroxyl group channels. 1H→77Se cross polarization NMR experiments indicated that selenites and selenates are located in the crystal lattice and on the crystal surface. PMID:25997001

  4. NMR crystallography of α-poly(L-lactide).

    PubMed

    Pawlak, Tomasz; Jaworska, Magdalena; Potrzebowski, Marek J

    2013-03-07

    A complementary approach that combines NMR measurements, analysis of X-ray and neutron powder diffraction data and advanced quantum mechanical calculations was employed to study the α-polymorph of L-polylactide. Such a strategy, which is known as NMR crystallography, to the best of our knowledge, is used here for the first time for the fine refinement of the crystal structure of a synthetic polymer. The GIPAW method was used to compute the NMR shielding parameters for the different models, which included the α-PLLA structure obtained by 2-dimensional wide-angle X-ray diffraction (WAXD) at -150 °C (model M1) and at 25 °C (model M2), neutron diffraction (WAND) measurements (model M3) and the fully optimized geometry of the PLLA chains in the unit cell with defined size (model M4). The influence of changes in the chain conformation on the (13)C σ(ii) NMR shielding parameters is shown. The correlation between the σ(ii) and δ(ii) values for the M1-M4 models revealed that the M4 model provided the best fit. Moreover, a comparison of the experimental (13)C NMR spectra with the spectra calculated using the M1-M4 models strongly supports the data for the M4 model. The GIPAW method, via verification using NMR measurements, was shown to be capable of the fine refinement of the crystal structures of polymers when coarse X-ray diffraction data for powdered samples are available.

  5. Structural analysis of the recognition of the negative regulator NmrA and DNA by the zinc finger from the GATA-type transcription factor AreA.

    PubMed

    Kotaka, Masayo; Johnson, Christopher; Lamb, Heather K; Hawkins, Alastair R; Ren, Jingshan; Stammers, David K

    2008-08-29

    Amongst the most common protein motifs in eukaryotes are zinc fingers (ZFs), which, although largely known as DNA binding modules, also can have additional important regulatory roles in forming protein:protein interactions. AreA is a transcriptional activator central to nitrogen metabolism in Aspergillus nidulans. AreA contains a GATA-type ZF that has a competing dual recognition function, binding either DNA or the negative regulator NmrA. We report the crystal structures of three AreA ZF-NmrA complexes including two with bound NAD(+) or NADP(+). The molecular recognition of AreA ZF-NmrA involves binding of the ZF to NmrA via hydrophobic and hydrogen bonding interactions through helices alpha1, alpha6 and alpha11. Comparison with an earlier NMR solution structure of AreA ZF-DNA complex by overlap of the AreA ZFs shows that parts of helices alpha6 and alpha11 of NmrA are positioned close to the GATA motif of the DNA, mimicking the major groove of DNA. The extensive overlap of DNA with NmrA explains their mutually exclusive binding to the AreA ZF. The presence of bound NAD(+)/NADP(+) in the NmrA-AreaA ZF complex, however, causes minimal structural changes. Thus, any regulatory effects on AreA function mediated by the binding of oxidised nicotinamide dinucleotides to NmrA in the NmrA-AreA ZF complex appear not to be modulated via protein conformational rearrangements.

  6. Synthesis, characterization of (3E)-1-(6-chloro-2-methyl-4-phenyl quinolin-3-Yl)-3-aryl prop-2-en-1-ones through IR, NMR, single crystal X-ray diffraction and insights into their electronic structure using DFT calculations

    NASA Astrophysics Data System (ADS)

    Sarveswari, S.; Srikanth, A.; Arul Murugan, N.; Vijayakumar, V.; Jasinski, Jerry P.; Beauchesne, Hanna C.; Jarvis, Ethan E.

    2015-02-01

    3E-1-(6-Chloro-2-methyl-4-phenylquinolin-3-yl)-3-arylprop-2-en-1-ones were synthesized and characterized by FTIR, 1H NMR, 13C NMR, HSQC, DEPT-135. In addition the compound 3E-1-(6-chloro-2-methyl-4-phenylquinolin-3-yl)-3-(2,5-dimethoxyphenyl)prop-2-en-1-one was subjected to the single crystal X-ray diffraction studies. Density functional theory calculations were carried out for this chalcone and its derivatives to investigate into their electronic structure, chemical reactivity, linear and non-linear optical properties. The structure predicted from DFT for chalcone is in good agreement with the structure from XRD measurement.

  7. Exploiting periodic first-principles calculations in NMR spectroscopy of disordered solids.

    PubMed

    Ashbrook, Sharon E; Dawson, Daniel M

    2013-09-17

    Much of the information contained within solid-state nuclear magnetic resonance (NMR) spectra remains unexploited because of the challenges in obtaining high-resolution spectra and the difficulty in assigning those spectra. Recent advances that enable researchers to accurately and efficiently determine NMR parameters in periodic systems have revolutionized the application of density functional theory (DFT) calculations in solid-state NMR spectroscopy. These advances are particularly useful for experimentalists. The use of first-principles calculations aids in both the interpretation and assignment of the complex spectral line shapes observed for solids. Furthermore, calculations provide a method for evaluating potential structural models against experimental data for materials with poorly characterized structures. Determining the structure of well-ordered, periodic crystalline solids can be straightforward using methods that exploit Bragg diffraction. However, the deviations from periodicity, such as compositional, positional, or temporal disorder, often produce the physical properties (such as ferroelectricity or ionic conductivity) that may be of commercial interest. With its sensitivity to the atomic-scale environment, NMR provides a potentially useful tool for studying disordered materials, and the combination of experiment with first-principles calculations offers a particularly attractive approach. In this Account, we discuss some of the issues associated with the practical implementation of first-principles calculations of NMR parameters in solids. We then use two key examples to illustrate the structural insights that researchers can obtain when applying such calculations to disordered inorganic materials. First, we describe an investigation of cation disorder in Y2Ti(2-x)Sn(x)O7 pyrochlore ceramics using (89)Y and (119)Sn NMR. Researchers have proposed that these materials could serve as host phases for the encapsulation of lanthanide- and actinide-bearing radioactive waste. In a second example, we discuss how (17)O NMR can be used to probe the dynamic disorder of H in hydroxyl-humite minerals (nMg2SiO4·Mg(OH)2), and how (19)F NMR can be used to understand F substitution in these systems. The combination of first-principles calculations and multinuclear NMR spectroscopy facilitates the investigation of local structure, disorder, and dynamics in solids. We expect that applications will undoubtedly become more widespread with further advances in computational and experimental methods. Insight into the atomic-scale environment is a crucial first step in understanding the structure-property relationships in solids, and it enables the efficient design of future materials for a range of end uses.

  8. Improved in-cell structure determination of proteins at near-physiological concentration

    PubMed Central

    Ikeya, Teppei; Hanashima, Tomomi; Hosoya, Saori; Shimazaki, Manato; Ikeda, Shiro; Mishima, Masaki; Güntert, Peter; Ito, Yutaka

    2016-01-01

    Investigating three-dimensional (3D) structures of proteins in living cells by in-cell nuclear magnetic resonance (NMR) spectroscopy opens an avenue towards understanding the structural basis of their functions and physical properties under physiological conditions inside cells. In-cell NMR provides data at atomic resolution non-invasively, and has been used to detect protein-protein interactions, thermodynamics of protein stability, the behavior of intrinsically disordered proteins, etc. in cells. However, so far only a single de novo 3D protein structure could be determined based on data derived only from in-cell NMR. Here we introduce methods that enable in-cell NMR protein structure determination for a larger number of proteins at concentrations that approach physiological ones. The new methods comprise (1) advances in the processing of non-uniformly sampled NMR data, which reduces the measurement time for the intrinsically short-lived in-cell NMR samples, (2) automatic chemical shift assignment for obtaining an optimal resonance assignment, and (3) structure refinement with Bayesian inference, which makes it possible to calculate accurate 3D protein structures from sparse data sets of conformational restraints. As an example application we determined the structure of the B1 domain of protein G at about 250 μM concentration in living E. coli cells. PMID:27910948

  9. 17O NMR Investigation of Water Structure and Dynamics

    PubMed Central

    Keeler, Eric G.; Michaelis, Vladimir K.; Griffin, Robert G.

    2017-01-01

    The structure and dynamics of the bound water in barium chlorate monohydrate were studied with 17O nuclear magnetic resonance (NMR) spectroscopy in samples that are stationary and spinning at the magic-angle in magnetic fields ranging from 14.1 to 21.1 T. 17O NMR parameters of the water were determined, and the effects of torsional oscillations of the water molecule on the 17O quadrupolar coupling constant (CQ) were delineated with variable temperature MAS NMR. With decreasing temperature and reduction of the librational motion, we observe an increase in the experimentally measured CQ explaining the discrepancy between experiments and predictions from density functional theory. In addition, at low temperatures and in the absence of 1H decoupling, we observe a well-resolved 1H–17O dipole splitting in the spectra, which provides information on the structure of the H2O molecule. The splitting arises because of the homogeneous nature of the coupling between the two 1H–17O dipoles and the 1H–1H dipole. PMID:27454747

  10. Functional dynamics of cell surface membrane proteins

    NASA Astrophysics Data System (ADS)

    Nishida, Noritaka; Osawa, Masanori; Takeuchi, Koh; Imai, Shunsuke; Stampoulis, Pavlos; Kofuku, Yutaka; Ueda, Takumi; Shimada, Ichio

    2014-04-01

    Cell surface receptors are integral membrane proteins that receive external stimuli, and transmit signals across plasma membranes. In the conventional view of receptor activation, ligand binding to the extracellular side of the receptor induces conformational changes, which convert the structure of the receptor into an active conformation. However, recent NMR studies of cell surface membrane proteins have revealed that their structures are more dynamic than previously envisioned, and they fluctuate between multiple conformations in an equilibrium on various timescales. In addition, NMR analyses, along with biochemical and cell biological experiments indicated that such dynamical properties are critical for the proper functions of the receptors. In this review, we will describe several NMR studies that revealed direct linkage between the structural dynamics and the functions of the cell surface membrane proteins, such as G-protein coupled receptors (GPCRs), ion channels, membrane transporters, and cell adhesion molecules.

  11. Comparative structural analysis of cytidine, ethenocytidine and their protonated salts III. 1H, 13C and 15N NMR studies at natural isotope abundance.

    PubMed Central

    Kozerski, L; Sierzputowska-Gracz, H; Krzyzosiak, W; Bratek-Wiewiórowska, M; Jaskólski, M; Wiewiórowski, M

    1984-01-01

    The 1H, 13C, 15N NMR spectra of cytidine /Cyd/, ethenocytidine /epsilon Cyd/ and their hydrochlorides /Cyd X HC1/ and /epsilon Cyd X HC1/ have been analysed to compare structural differences observed in solution with those existing in the crystalline state. The effects of ethenobridging and protonation of the hertero-aromatic base on the intramolecular stereochemistry, intermolecular interactions and electronic structure of the whole molecule are discussed on the basis of the NMR studies in DMSO solutions. Particular interest is devoted to the discussion of the conformation of the ribose ring, the presence of the intramolecular C-5'-0...H-6-C hydrogen bond, unambiguous assignment of the site of protonation, the mechanism of the 5C-H deuterium exchange in Cyd X HC1, and the intermolecular interactions in solution. PMID:6701098

  12. Functional dynamics of cell surface membrane proteins.

    PubMed

    Nishida, Noritaka; Osawa, Masanori; Takeuchi, Koh; Imai, Shunsuke; Stampoulis, Pavlos; Kofuku, Yutaka; Ueda, Takumi; Shimada, Ichio

    2014-04-01

    Cell surface receptors are integral membrane proteins that receive external stimuli, and transmit signals across plasma membranes. In the conventional view of receptor activation, ligand binding to the extracellular side of the receptor induces conformational changes, which convert the structure of the receptor into an active conformation. However, recent NMR studies of cell surface membrane proteins have revealed that their structures are more dynamic than previously envisioned, and they fluctuate between multiple conformations in an equilibrium on various timescales. In addition, NMR analyses, along with biochemical and cell biological experiments indicated that such dynamical properties are critical for the proper functions of the receptors. In this review, we will describe several NMR studies that revealed direct linkage between the structural dynamics and the functions of the cell surface membrane proteins, such as G-protein coupled receptors (GPCRs), ion channels, membrane transporters, and cell adhesion molecules. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR

    NASA Astrophysics Data System (ADS)

    Lange, Adam; Giller, Karin; Hornig, Sönke; Martin-Eauclaire, Marie-France; Pongs, Olaf; Becker, Stefan; Baldus, Marc

    2006-04-01

    The active site of potassium (K+) channels catalyses the transport of K+ ions across the plasma membrane-similar to the catalytic function of the active site of an enzyme-and is inhibited by toxins from scorpion venom. On the basis of the conserved structures of K+ pore regions and scorpion toxins, detailed structures for the K+ channel-scorpion toxin binding interface have been proposed. In these models and in previous solution-state nuclear magnetic resonance (NMR) studies using detergent-solubilized membrane proteins, scorpion toxins were docked to the extracellular entrance of the K+ channel pore assuming rigid, preformed binding sites. Using high-resolution solid-state NMR spectroscopy, here we show that high-affinity binding of the scorpion toxin kaliotoxin to a chimaeric K+ channel (KcsA-Kv1.3) is associated with significant structural rearrangements in both molecules. Our approach involves a combined analysis of chemical shifts and proton-proton distances and demonstrates that solid-state NMR is a sensitive method for analysing the structure of a membrane protein-inhibitor complex. We propose that structural flexibility of the K+ channel and the toxin represents an important determinant for the high specificity of toxin-K+ channel interactions.

  14. Humic acids from particulate organic matter in the Saguenay Fjord and the St. Lawrence Estuary investigated by advanced solid-state NMR

    NASA Astrophysics Data System (ADS)

    Mao, J.-D.; Tremblay, L.; Gagné, J.-P.; Kohl, S.; Rice, J.; Schmidt-Rohr, K.

    2007-11-01

    Detailed structural information on two humic acids extracted from two sinking particulate matter samples at a water depth of 20 m in the Saguenay Fjord (F-20-HA) and the St. Lawrence Estuary (E-20-HA) (Canada), was obtained by advanced solid-state NMR. Spectral-editing analyses provided numerous structural details rarely reported in geochemical studies. The NMR data account almost quantitatively for the elemental compositions. The two humic acids were found to be quite similar, consisting of four main structural components: peptides (ca. 39 ± 3% vs. 34 ± 3% of all C for E-20-HA and F-20-HA, respectively); aliphatic chains, 14-20 carbons long (ca. 25 ± 5% vs. 17 ± 5% of all C); aromatic structures (ca. 17 ± 2% vs. 26 ± 2% of all C); and sugar rings (14 ± 2% vs. 15 ± 2% of all C). Peptides were identified by 13C{ 14N} SPIDER NMR, which selects signals of carbons bonded to nitrogen, and by dipolar DEPT, which selects CH-group signals, in particular the NCH band of peptides. The SPIDER spectra also indicate that heterocycles constitute a significant fraction of the aromatic structures. The aliphatic (CH 2) n chains, which are highly mobile, contain at least one double bond per two chains and end in methyl groups. 1H spin diffusion NMR experiments showed that these mobile aliphatic chains are in close (<10 nm) proximity to the other structural components. A major bacterial contribution to these two samples could explain why the samples, which have different dominant organic matter sources (terrestrial vs. marine), are similar to each other as well as to degraded algae and particles from other waters. The NMR data suggest structures containing mobile lipids in close proximity to peptides and carbohydrates (e.g., peptidoglycan) as found in bacterial cell walls. Measured yields of muramic acid and D-amino acids confirmed the presence of bacterial cell wall components in the studied samples.

  15. NMReDATA, a standard to report the NMR assignment and parameters of organic compounds.

    PubMed

    Pupier, Marion; Nuzillard, Jean-Marc; Wist, Julien; Schlörer, Nils E; Kuhn, Stefan; Erdelyi, Mate; Steinbeck, Christoph; Williams, Antony J; Butts, Craig; Claridge, Tim D W; Mikhova, Bozhana; Robien, Wolfgang; Dashti, Hesam; Eghbalnia, Hamid R; Farès, Christophe; Adam, Christian; Kessler, Pavel; Moriaud, Fabrice; Elyashberg, Mikhail; Argyropoulos, Dimitris; Pérez, Manuel; Giraudeau, Patrick; Gil, Roberto R; Trevorrow, Paul; Jeannerat, Damien

    2018-04-14

    Even though NMR has found countless applications in the field of small molecule characterization, there is no standard file format available for the NMR data relevant to structure characterization of small molecules. A new format is therefore introduced to associate the NMR parameters extracted from 1D and 2D spectra of organic compounds to the proposed chemical structure. These NMR parameters, which we shall call NMReDATA (for nuclear magnetic resonance extracted data), include chemical shift values, signal integrals, intensities, multiplicities, scalar coupling constants, lists of 2D correlations, relaxation times, and diffusion rates. The file format is an extension of the existing Structure Data Format, which is compatible with the commonly used MOL format. The association of an NMReDATA file with the raw and spectral data from which it originates constitutes an NMR record. This format is easily readable by humans and computers and provides a simple and efficient way for disseminating results of structural chemistry investigations, allowing automatic verification of published results, and for assisting the constitution of highly needed open-source structural databases. Copyright © 2018 John Wiley & Sons, Ltd.

  16. Modeling an in-register, parallel "iowa" aβ fibril structure using solid-state NMR data from labeled samples with rosetta.

    PubMed

    Sgourakis, Nikolaos G; Yau, Wai-Ming; Qiang, Wei

    2015-01-06

    Determining the structures of amyloid fibrils is an important first step toward understanding the molecular basis of neurodegenerative diseases. For β-amyloid (Aβ) fibrils, conventional solid-state NMR structure determination using uniform labeling is limited by extensive peak overlap. We describe the characterization of a distinct structural polymorph of Aβ using solid-state NMR, transmission electron microscopy (TEM), and Rosetta model building. First, the overall fibril arrangement is established using mass-per-length measurements from TEM. Then, the fibril backbone arrangement, stacking registry, and "steric zipper" core interactions are determined using a number of solid-state NMR techniques on sparsely (13)C-labeled samples. Finally, we perform Rosetta structure calculations with an explicitly symmetric representation of the system. We demonstrate the power of the hybrid Rosetta/NMR approach by modeling the in-register, parallel "Iowa" mutant (D23N) at high resolution (1.2Å backbone rmsd). The final models are validated using an independent set of NMR experiments that confirm key features. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Observations using Phosphorus-31 nuclear magnetic resonance (31P-NMR) of structural changes in freeze-thawed hen egg yolk.

    PubMed

    Wakamatsu, Hiroki; Handa, Akihiro; Chiba, Kazuhiro

    2018-04-01

    Hen egg yolk (EY) has a complicated structure consisting of lipids and proteins, and its structure is deeply related with its functional properties. 31 P-NMR is an efficient technique to non-destructively detect the dynamic behaviour of phospholipids, the main component of bio-membranes. We determined conditions for measuring the 31 P NMR spectra of EY and identified the components. 31 P-NMR was used to detect phosvitin, inorganic phosphate, and lipoprotein as well as structural changes such as granule collapse and freeze-thaw denaturation as signal changes. Freeze-thaw denaturation generated a new denaturation peak. We separated aggregates of LDL from freeze-thawed plasma using centrifugation. TEM and 31 P-NMR observations revealed that the denaturation peak corresponded to LDL aggregates. The 31 P-NMR spectra suggested the formation of multiple forms of LDL aggregates in which the head groups of phospholipid molecules adopt a face-to-face orientation, similar to that observed following the flocculation of lipoproteins or in the lamellar-like structures of phospholipids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Solid state nuclear magnetic resonance studies of prion peptides and proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heller, Jonathan

    1997-08-01

    High-resolution structural studies using x-ray diffraction and solution nuclear magnetic resonance (NMR) are not feasible for proteins of low volubility and high tendency to aggregate. Solid state NMR (SSNMR) is in principle capable of providing structural information in such systems, however to do this efficiently and accurately, further SSNMR tools must be developed This dissertation describes the development of three new methods and their application to a biological system of interest, the priori protein (PrP).

  19. Revisiting the NMR structure of the ultrafast downhill folding protein gpW from bacteriophage λ.

    PubMed

    Sborgi, Lorenzo; Verma, Abhinav; Muñoz, Victor; de Alba, Eva

    2011-01-01

    GpW is a 68-residue protein from bacteriophage λ that participates in virus head morphogenesis. Previous NMR studies revealed a novel α+β fold for this protein. Recent experiments have shown that gpW folds in microseconds by crossing a marginal free energy barrier (i.e., downhill folding). These features make gpW a highly desirable target for further experimental and computational folding studies. As a step in that direction, we have re-determined the high-resolution structure of gpW by multidimensional NMR on a construct that eliminates the purification tags and unstructured C-terminal tail present in the prior study. In contrast to the previous work, we have obtained a full manual assignment and calculated the structure using only unambiguous distance restraints. This new structure confirms the α+β topology, but reveals important differences in tertiary packing. Namely, the two α-helices are rotated along their main axis to form a leucine zipper. The β-hairpin is orthogonal to the helical interface rather than parallel, displaying most tertiary contacts through strand 1. There also are differences in secondary structure: longer and less curved helices and a hairpin that now shows the typical right-hand twist. Molecular dynamics simulations starting from both gpW structures, and calculations with CS-Rosetta, all converge to our gpW structure. This confirms that the original structure has strange tertiary packing and strained secondary structure. A comparison of NMR datasets suggests that the problems were mainly caused by incomplete chemical shift assignments, mistakes in NOE assignment and the inclusion of ambiguous distance restraints during the automated procedure used in the original study. The new gpW corrects these problems, providing the appropriate structural reference for future work. Furthermore, our results are a cautionary tale against the inclusion of ambiguous experimental information in the determination of protein structures.

  20. An introduction to NMR-based approaches for measuring protein dynamics

    PubMed Central

    Kleckner, Ian R; Foster, Mark P

    2010-01-01

    Proteins are inherently flexible at ambient temperature. At equilibrium, they are characterized by a set of conformations that undergo continuous exchange within a hierarchy of spatial and temporal scales ranging from nanometers to micrometers and femtoseconds to hours. Dynamic properties of proteins are essential for describing the structural bases of their biological functions including catalysis, binding, regulation and cellular structure. Nuclear magnetic resonance (NMR) spectroscopy represents a powerful technique for measuring these essential features of proteins. Here we provide an introduction to NMR-based approaches for studying protein dynamics, highlighting eight distinct methods with recent examples, contextualized within a common experimental and analytical framework. The selected methods are (1) Real-time NMR, (2) Exchange spectroscopy, (3) Lineshape analysis, (4) CPMG relaxation dispersion, (5) Rotating frame relaxation dispersion, (6) Nuclear spin relaxation, (7) Residual dipolar coupling, (8) Paramagnetic relaxation enhancement. PMID:21059410

  1. NMR structural study of the prototropic equilibrium in solution of Schiff bases as model compounds.

    PubMed

    Ortegón-Reyna, David; Garcías-Morales, Cesar; Padilla-Martínez, Itzia; García-Báez, Efren; Aríza-Castolo, Armando; Peraza-Campos, Ana; Martínez-Martínez, Francisco

    2013-12-31

    An NMR titration method has been used to simultaneously measure the acid dissociation constant (pKa) and the intramolecular NHO prototropic constant ΔKNHO on a set of Schiff bases. The model compounds were synthesized from benzylamine and substituted ortho-hydroxyaldehydes, appropriately substituted with electron-donating and electron-withdrawing groups to modulate the acidity of the intramolecular NHO hydrogen bond. The structure in solution was established by 1H-, 13C- and 15N-NMR spectroscopy. The physicochemical parameters of the intramolecular NHO hydrogen bond (pKa, ΔKNHO and ΔΔG°) were obtained from 1H-NMR titration data and pH measurements. The Henderson-Hasselbalch data analysis indicated that the systems are weakly acidic, and the predominant NHO equilibrium was established using Polster-Lachmann δ-diagram analysis and Perrin model data linearization.

  2. Does the choice of the crystal structure influence the results of the periodic DFT calculations? A case of glycine alpha polymorph GIPAW NMR parameters computations.

    PubMed

    Szeleszczuk, Łukasz; Pisklak, Dariusz Maciej; Zielińska-Pisklak, Monika

    2018-05-30

    Glycine is a common amino acid with relatively complex chemistry in solid state. Although several polymorphs (α, β, δ, γ, ε) of crystalline glycine are known, for NMR spectroscopy the most important is a polymorph, which is used as a standard for calibration of spectrometer performance and therefore it is intensively studied by both experimental methods and theoretical computation. The great scientific interest in a glycine results in a large number of crystallographic information files (CIFs) deposited in Cambridge Structural Database (CSD). The aim of this study was to evaluate the influence of the chosen crystal structure of α glycine obtained in different crystallographic experimental conditions (temperature, pressure and source of radiation of α glycine) on the results of periodic DFT calculation. For this purpose the total of 136 GIPAW calculations of α glycine NMR parameters were performed, preceded by the four approaches ("SP", "only H", "full", "full+cell") of structure preparation. The analysis of the results of those computations performed on the representative group of 34 structures obtained at various experimental conditions revealed that though the structures were generally characterized by good accuracy (R < 0.05 for most of them) the results of the periodic DFT calculations performed using the unoptimized structures differed significantly. The values of the standard deviations of the studied NMR parameters were in most cases decreasing with the number of optimized parameters. The most accurate results (of the calculations) were in most cases obtained using the structures with solely hydrogen atoms positions optimized. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  3. Structural studies of an arabinan from the stems of Ephedra sinica by methylation analysis and 1D and 2D NMR spectroscopy.

    PubMed

    Xia, Yong-Gang; Liang, Jun; Yang, Bing-You; Wang, Qiu-Hong; Kuang, Hai-Xue

    2015-05-05

    Plant arabinan has important biological activity. In this study, a water-soluble arabinan (Mw∼6.15kDa) isolated from the stems of Ephedra sinica was found to consist of (1→5)-Araƒ, (1→3,5)-Araƒ, T-Araƒ, (1→3)-Araƒ and (1→2,5)-Araƒ residues at proportions of 10:2:3:2:1. A tentative structure was proposed by methylation analysis, nuclear magnetic resonance (NMR) spectroscopy ((1)H NMR, (13)C NMR, DEPT-135, (1)H-(1)H COSY, HSQC, HMBC and ROESY) and literature. The structure proposed includes a branched (1→5)-α-Araf backbone where branching occurs at the O-2 and O-3 positions of the residues with 7.7% and 15.4% of the 1,5-linked α-Araf substituted at the O-2 and O-3 positions. The presence of a branched structure was further observed by atomic force microscopy. This polymer was characterized as having a much longer linear (1→5)-α-Araf backbone as a repeating unit. In particular, the presence of α-Araf→3)-α-Araf-(1→3)-α-Araf-(1→ attached at the O-2 is a new finding. This study may facilitate a deeper understanding of structure-activity relationships of biological polysaccharides from the stems of E. sinica. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. NMR spectroscopy of Group 13 metal ions: biologically relevant aspects.

    PubMed

    André, J P; Mäcke, H R

    2003-12-01

    In spite of the fact that Group 13 metal ions (Al(3+), Ga(3+), In(3+) and Tl(+/3+)) show no main biological role, they are NMR-active nuclides which can be used in magnetic resonance spectroscopy of biologically relevant systems. The fact that these metal ions are quadrupolar (with the exception of thallium) means that they are particularly sensitive to ligand type and coordination geometry. The line width of the NMR signals of their complexes shows a strong dependence on the symmetry of coordination, which constitutes an effective tool in the elucidation of structures. Here we report published NMR studies of this family of elements, applied to systems of biological importance. Special emphasis is given to binding studies of these cations to biological molecules, such as proteins, and to chelating agents of radiopharmaceutical interest. The possibility of in vivo NMR studies is also stressed, with extension to (27)Al-based MRI (magnetic resonance imaging) experiments.

  5. High-field 95 Mo and 183 W static and MAS NMR study of polyoxometalates.

    PubMed

    Haouas, Mohamed; Trébosc, Julien; Roch-Marchal, Catherine; Cadot, Emmanuel; Taulelle, Francis; Martineau-Corcos, Charlotte

    2017-10-01

    The potential of high-field NMR to measure solid-state 95 Mo and 183 W NMR in polyoxometalates (POMs) is explored using some archetypical structures like Lindqvist, Keggin and Dawson as model compounds that are well characterized in solution. NMR spectra in static and under magic angle spinning (MAS) were obtained, and their analysis allowed extraction of the NMR parameters, including chemical shift anisotropy and quadrupolar coupling parameters. Despite the inherent difficulties of measurement in solid state of these low-gamma NMR nuclei, due mainly to the low spectral resolution and poor signal-to-noise ratio, the observed global trends compare well with the solution-state NMR data. This would open an avenue for application of solid-state NMR to POMs, especially when liquid-state NMR is not possible, e.g., for poorly soluble or unstable compounds in solution, and for giant molecules with slow tumbling motion. This is the case of Keplerate where we provide here the first NMR characterization of this class of POMs in the solid state. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Effect of the magnetic field on the supramolecular structure of chiral smectic C phases: (2)H NMR studies.

    PubMed

    Domenici, Valentina; Marini, Alberto; Veracini, Carlo Alberto; Zhang, Jing; Dong, Ronald Y

    2007-12-21

    We present a theoretical and experimental (2)H NMR study of the effect of external magnetic fields on the supramolecular organization of chiral smectic liquid-crystalline mesophases, such as SmC* and re-entrant SmC*. Three experimental cases in which the supramolecular helical structure of the smectic C* phase is unwound by a magnetic field (H), parallel to the helical axes of this phase, are discussed in detail. Unwinding of the helical structure is described by using a theoretical model based on the Landau-de Gennes theory, which allows us to explain the transition temperatures among the SmA, SmC*, and uSmC* phases. The energy-density behavior in the vicinity of the transitions and the value of the critical magnetic field H(C) for unwinding the helical structure are discussed by applying this model to three ferroelectric smectogens (MBHB, 11EB1M7, ZLL7/*), which are studied by (2)H NMR spectroscopy at different magnetic fields (from 2.4 to 9.4 Tesla). Furthermore, the tilt angle of the three smectogens in the SmC* phase has been directly evaluated, for the first time, by comparing the quadrupolar splittings at different magnetic fields. In one case, (2)H NMR angular measurements are used to obtain the tilt angle in the re-entrant smectic C phase.

  7. Homonuclear 1H NMR and circular dichroism study of the HIV-1 Tat Eli variant.

    PubMed

    Watkins, Jennifer D; Campbell, Grant R; Halimi, Hubert; Loret, Erwann P

    2008-09-22

    The HIV-1 Tat protein is a promising target to develop AIDS therapies, particularly vaccines, due to its extracellular role that protects HIV-1-infected cells from the immune system. Tat exists in two different lengths, 86 or 87 residues and 99 or 101 residues, with the long form being predominant in clinical isolates. We report here a structural study of the 99 residue Tat Eli variant using 2D liquid-state NMR, molecular modeling and circular dichroism. Tat Eli was obtained from solid-phase peptide synthesis and the purified protein was proven biologically active in a trans-activation assay. Circular dichroism spectra at different temperatures up to 70 degrees C showed that Tat Eli is not a random coil at 20 degrees C. Homonuclear 1H NMR spectra allowed us to identify 1639 NMR distance constraints out of which 264 were interresidual. Molecular modeling satisfying at least 1474 NMR constraints revealed the same folding for different model structures. The Tat Eli model has a core region composed of a part of the N-terminus including the highly conserved Trp 11. The extra residues in the Tat Eli C-terminus protrude from a groove between the basic region and the cysteine-rich region and are well exposed to the solvent. We show that active Tat variants share a similar folding pattern whatever their size, but mutations induce local structural changes.

  8. A one- and two-dimensional NMR study of the B to Z transition of (m5dC-dG)3 in methanolic solution.

    PubMed Central

    Feigon, J; Wang, A H; van der Marel, G A; Van Boom, J H; Rich, A

    1984-01-01

    The deoxyribose hexanucleoside pentaphosphate (m5dC-dG)3 has been studied by 500 MHz 1H NMR in D2O (0.1 M NaCl) and in D2O/deuterated methanol mixtures. Two conformations, in slow equilibrium on the NMR time scale, were detected in methanolic solution. Two-dimensional nuclear Overhauser effect (NOE) experiments were used to assign the base and many of the sugar resonances as well as to determine structural features for both conformations. The results were consistent with the an equilibrium in solution between B-DNA and Z-DNA. The majority of the molecules have a B-DNA structure in low-salt D2O and a Z-DNA structure at high methanol concentrations. A cross-strand NOE between methyl groups on adjacent cytosines is observed for Z-DNA but not B-DNA. The B-DNA conformation predominates at low methanol concentrations and is stabilized by increasing temperature, while the Z-DNA conformation predominates at high methanol concentrations and low temperatures. 31P NMR spectra gave results consistent with those obtained by 1H NMR. Comparison of the 31P spectra with those obtained on poly(dG-m5dC) allow assignment of the lower field resonances to GpC in the Z conformation. PMID:6694910

  9. Solid-state NMR studies of theophylline co-crystals with dicarboxylic acids.

    PubMed

    Pindelska, Edyta; Sokal, Agnieszka; Szeleszczuk, Lukasz; Pisklak, Dariusz Maciej; Kolodziejski, Waclaw

    2014-11-01

    In this work, three polycrystalline materials containing co-crystals of theophylline with malonic, maleic, and glutaric acids were studied using (13)C, (15)N and (1)H solid-state NMR and FT-IR spectroscopy. The NMR assignments were supported by gauge including projector augmented waves (GIPAW) calculations of chemical shielding, performed using X-ray determined geometry. The experimental (13)C cross polarization/magic angle spinning (CP/MAS) NMR results and the calculated isotropic chemical shifts were in excellent agreement. A rapid and convenient method for theophylline co-crystals crystal structure analysis has been proposed for co-crystals, which are potentially new APIs. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Hyperpolarized 13C NMR lifetimes in the liquid-state: relating structures and T1 relaxation times

    NASA Astrophysics Data System (ADS)

    Parish, Christopher; Niedbalski, Peter; Hashami, Zohreh; Fidelino, Leila; Kovacs, Zoltan; Lumata, Lloyd

    Among the various attempts to solve the insensitivity problem in nuclear magnetic resonance (NMR), the physics-based technique dissolution dynamic nuclear polarization (DNP) is probably the most successful method of hyperpolarization or amplifying NMR signals. Using this technique, liquid-state NMR signal enhancements of several thousand-fold are expected for low-gamma nuclei such as carbon-13. The lifetimes of these hyperpolarized 13C NMR signals are directly related to their 13C spin-lattice relaxation times T1. Depending upon the 13C isotopic location, the lifetimes of hyperpolarized 13C compounds can range from a few seconds to minutes. In this study, we have investigated the hyperpolarized 13C NMR lifetimes of several 13C compounds with various chemical structures from glucose, acetate, citric acid, naphthalene to tetramethylallene and their deuterated analogs at 9.4 T and 25 deg C. Our results show that the 13C T1s of these compounds can range from a few seconds to more than 60 s at this field. Correlations between the chemical structures and T1 relaxation times will be discussed and corresponding implications of these results on 13C DNP experiments will be revealed. US Dept of Defense Award No. W81XWH-14-1-0048 and Robert A. Welch Foundation Grant No. AT-1877.

  11. Molecular structure in the solid state by X-ray crystallography and SSNMR and in solution by NMR of two 1,4-diazepines

    NASA Astrophysics Data System (ADS)

    Nieto, Carla I.; Sanz, Dionisia; Claramunt, Rosa M.; Torralba, M. Carmen; Torres, M. Rosario; Alkorta, Ibon; Elguero, José

    2018-03-01

    The crystals of two 1,4-diazepines prepared from curcuminoid β-diketones and ethylenediamine were studied by X-ray crystallography and NMR. Their tautomerism, intramolecular hydrogen bonds and conformation were determined.

  12. Structural Biology of Supramolecular Assemblies by Magic Angle Spinning NMR Spectroscopy

    PubMed Central

    Quinn, Caitlin M.; Polenova, Tatyana

    2017-01-01

    In recent years, exciting developments in instrument technology and experimental methodology have advanced the field of magic angle spinning (MAS) NMR to new heights. Contemporary MAS NMR yields atomic-level insights into structure and dynamics of an astounding range of biological systems, many of which cannot be studied by other methods. With the advent of fast magic angle spinning, proton detection, and novel pulse sequences, large supramolecular assemblies, such as cytoskeletal proteins and intact viruses, are now accessible for detailed analysis. In this review, we will discuss the current MAS NMR methodologies that enable characterization of complex biomolecular systems and will present examples of applications to several classes of assemblies comprising bacterial and mammalian cytoskeleton as well as HIV-1 and bacteriophage viruses. The body of work reviewed herein is representative of the recent advancements in the field, with respect to the complexity of the systems studied, the quality of the data, and the significance to the biology. PMID:28093096

  13. Protein Structural Information Derived from NMR Chemical Shift with the Neural Network Program TALOS-N

    PubMed Central

    Shen, Yang; Bax, Ad

    2015-01-01

    Summary Chemical shifts are obtained at the first stage of any protein structural study by NMR spectroscopy. Chemical shifts are known to be impacted by a wide range of structural factors and the artificial neural network based TALOS-N program has been trained to extract backbone and sidechain torsion angles from 1H, 15N and 13C shifts. The program is quite robust, and typically yields backbone torsion angles for more than 90% of the residues, and sidechain χ1 rotamer information for about half of these, in addition to reliably predicting secondary structure. The use of TALOS-N is illustrated for the protein DinI, and torsion angles obtained by TALOS-N analysis from the measured chemical shifts of its backbone and 13Cβ nuclei are compared to those seen in a prior, experimentally determined structure. The program is also particularly useful for generating torsion angle restraints, which then can be used during standard NMR protein structure calculations. PMID:25502373

  14. Theory and Applications of Solid-State NMR Spectroscopy to Biomembrane Structure and Dynamics

    NASA Astrophysics Data System (ADS)

    Xu, Xiaolin

    Solid-state Nuclear Magnetic Resonance (NMR) is one of the premiere biophysical methods that can be applied for addressing the structure and dynamics of biomolecules, including proteins, lipids, and nucleic acids. It illustrates the general problem of determining the average biomolecular structure, including the motional mean-square amplitudes and rates of the fluctuations. Lineshape and relaxtion studies give us a view into the molecular properties under different environments. To help the understanding of NMR theory, both lineshape and relaxation experiments are conducted with hexamethylbezene (HMB). This chemical compound with a simple structure serves as a perfect test molecule. Because of its highly symmetric structure, its motions are not very difficult to understand. The results for HMB set benchmarks for other more complicated systems like membrane proteins. After accumulating a large data set on HMB, we also proceed to develop a completely new method of data analysis, which yields the spectral densities in a body-fixed frame revealing internal motions of the system. Among the possible applications of solid-state NMR spectroscopy, we study the light activation mechanism of visual rhodopsin in lipid membranes. As a prototype of G-protein-coupled receptors, which are a large class of membrane proteins, the cofactor isomerization is triggered by photon absorption, and the local structural change is then propagated to a large-scale conformational change of the protein. Facilitation of the binding of transducin then passes along the visual signal to downstream effector proteins like transducin. To study this process, we introduce 2H labels into the rhodopsin chromophore retinal and the C-terminal peptide of transducin to probe the local structure and dynamics of these two hotspots of the rhodopsin activation process. In addition to the examination of local sites with solid-state 2H NMR spectroscopy, wide angle X-ray scattering (WAXS) provides us the chance of looking at the overall conformational changes through difference scattering profiles. Although the resolution of this method is not as high as NMR spectroscopy, which gives information on atomic scale, the early activation probing is possible because of the short duration of the optical pump and X-ray probe lasers. We can thus visualize the energy dissipation process by observing and comparing the difference scattering profiles at different times after the light activation moments.

  15. Spectroscopic and structural studies of the first complex formed between salinomycin and organic amine

    NASA Astrophysics Data System (ADS)

    Antoszczak, Michał; Janczak, Jan; Brzezinski, Bogumił; Huczyński, Adam

    2017-02-01

    For the first time, the crystalline complex of salinomycin with benzylamine was obtained and its molecular structure was studied using single crystal X-ray diffraction, FT-IR, 1H NMR, 13C NMR, 2D NMR and ESI MS methods. These studies provided evidence that the proton from the carboxylic group of salinomycin (SAL) is transferred to the amine group of benzylamine (BnA) forming the host-guest complex (SAL-BnA). It was shown that the SAL-BnA complex both in solid state and in chloroform solution is stabilized by the intramolecular O-H⋯O hydrogen bonds and also by the intermolecular hydrogen bonding interactions of the carboxylate, ketone and/or hydroxyl groups of SAL with water molecules present in the investigated system. The solvated acetonitrile molecules are additionally located in the voids between the SAL-BnA complex molecules in the crystal structure, while water molecules involved in the dihydrated crystalline SAL-BnA complex partially move into the solvent upon dissolution in chloroform.

  16. Improving the analysis of NMR spectra tracking pH-induced conformational changes: removing artefacts of the electric field on the NMR chemical shift.

    PubMed

    Kukić, Predrag; Farrell, Damien; Søndergaard, Chresten R; Bjarnadottir, Una; Bradley, John; Pollastri, Gianluca; Nielsen, Jens Erik

    2010-03-01

    pH-induced chemical shift perturbations (CSPs) can be used to study pH-dependent conformational transitions in proteins. Recently, an elegant principal component analysis (PCA) algorithm was developed and used to study the pH-dependent structural transitions in bovine beta-lactoglobulin (betaLG) by analyzing its NMR pH-titration spectra. Here, we augment this analysis method by filtering out changes in the NMR chemical shift that stem from effects that are electrostatic in nature. Specifically, we examine how many CSPs can be explained by purely electrostatic effects arising from titrational events in betaLG. The results show that around 20% of the amide nuclei CSPs in betaLG originate exclusively from "through-space" electric field effects. A PCA of NMR data where electric field artefacts have been removed gives a different picture of the pH-dependent structural transitions in betaLG. The method implemented here is well suited to be applied on a whole range of proteins, which experience at least one pH-dependent conformational change. Proteins 2010. (c) 2009 Wiley-Liss, Inc.

  17. Complete 13C NMR chemical shifts assignment for cholesterol crystals by combined CP-MAS spectral editing and ab initio GIPAW calculations with dispersion forces.

    PubMed

    Küçükbenli, Emine; Sonkar, Kanchan; Sinha, Neeraj; de Gironcoli, Stefano

    2012-04-12

    We report here the first fully ab initio determination of (13)C NMR spectra for several crystal structures of cholesterol, observed in various biomaterials. We combine Gauge-Including Projector Augmented Waves (GIPAW) calculations at relaxed structures, fully including dispersion forces, with Magic Angle Spinning Solid State NMR experiments and spectral editing to achieve a detailed interpretation of the complex NMR spectra of cholesterol crystals. By introducing an environment-dependent secondary referencing scheme in our calculations, not only do we reproduce the characteristic spectral features of the different crystalline polymorphs, thus clearly discriminating among them, but also closely represent the spectrum in the region of several highly overlapping peaks. This, in combination with spectral editing, allows us to provide a complete peak assignment for monohydrate (ChM) and low-temperature anhydrous (ChAl) crystal polymorphs. Our results show that the synergy between ab initio calculations and refined experimental techniques can be exploited for an accurate and efficient NMR crystallography of complex systems of great interest for biomaterial studies. The method is general in nature and can be applied for studies of various complex biomaterials.

  18. One new and six known triterpene xylosides from Cimicifuga racemosa: FT-IR, Raman and NMR studies and DFT calculations

    NASA Astrophysics Data System (ADS)

    Jamróz, Marta K.; Jamróz, Michał H.; Cz. Dobrowolski, Jan; Gliński, Jan A.; Gleńsk, Michał

    One new and six known triterpene xylosides were isolated from Cimicifuga racemosa (black cohosh, Actaea racemosa). The structure of a new compound, designated as isocimipodocarpaside (1), was established to be (24S)-3β-hydroxy-24,25-oxiirane-16,23-dione-9,10-seco-9,19-cyclolanost-1(10),7(8),9(11)-trien 3-O-β-D-xylopyranoside, by means of 1H and 13C NMR, IR and Raman spectroscopies and Mass Spectrometry. The six known compounds are: 23-epi-26-deoxycimicifugoside (2), 23-epi-26-deoxyactein (3), 25-anhydrocimigenol xyloside (4), 23-O-acetylshengmanol xyloside (5), 25-O-acetylcimigenol xyloside (6) and 3'-O-acetylcimicifugoside H-1 (7). On the basis of NMR data supported by DFT calculations of NMR shielding constants of (2), its structure, previously described as 26-deoxycimicifugoside was corrected and determined as 23-epi-26-deoxycimicifugoside. The 13C CPMAS NMR spectra of the studied compounds (1)-(7) provided data on their solid-state interactions. The IR and Raman spectra in the Cdbnd O, Cdbnd C, and Csbnd H stretching vibration regions clearly discriminate different triterpenes found in C. racemosa.

  19. One new and six known triterpene xylosides from Cimicifuga racemosa: FT-IR, Raman and NMR studies and DFT calculations.

    PubMed

    Jamróz, Marta K; Jamróz, Michał H; Cz Dobrowolski, Jan; Gliński, Jan A; Gleńsk, Michał

    2012-07-01

    One new and six known triterpene xylosides were isolated from Cimicifuga racemosa (black cohosh, Actaea racemosa). The structure of a new compound, designated as isocimipodocarpaside (1), was established to be (24S)-3β-hydroxy-24,25-oxiirane-16,23-dione-9,10-seco-9,19-cyclolanost-1(10),7(8),9(11)-trien 3-O-β-d-xylopyranoside, by means of (1)H and (13)C NMR, IR and Raman spectroscopies and Mass Spectrometry. The six known compounds are: 23-epi-26-deoxycimicifugoside (2), 23-epi-26-deoxyactein (3), 25-anhydrocimigenol xyloside (4), 23-O-acetylshengmanol xyloside (5), 25-O-acetylcimigenol xyloside (6) and 3'-O-acetylcimicifugoside H-1 (7). On the basis of NMR data supported by DFT calculations of NMR shielding constants of (2), its structure, previously described as 26-deoxycimicifugoside was corrected and determined as 23-epi-26-deoxycimicifugoside. The (13)C CPMAS NMR spectra of the studied compounds (1)-(7) provided data on their solid-state interactions. The IR and Raman spectra in the CO, CC, and CH stretching vibration regions clearly discriminate different triterpenes found in C. racemosa. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Residue-level global and local ensemble-ensemble comparisons of protein domains.

    PubMed

    Clark, Sarah A; Tronrud, Dale E; Karplus, P Andrew

    2015-09-01

    Many methods of protein structure generation such as NMR-based solution structure determination and template-based modeling do not produce a single model, but an ensemble of models consistent with the available information. Current strategies for comparing ensembles lose information because they use only a single representative structure. Here, we describe the ENSEMBLATOR and its novel strategy to directly compare two ensembles containing the same atoms to identify significant global and local backbone differences between them on per-atom and per-residue levels, respectively. The ENSEMBLATOR has four components: eePREP (ee for ensemble-ensemble), which selects atoms common to all models; eeCORE, which identifies atoms belonging to a cutoff-distance dependent common core; eeGLOBAL, which globally superimposes all models using the defined core atoms and calculates for each atom the two intraensemble variations, the interensemble variation, and the closest approach of members of the two ensembles; and eeLOCAL, which performs a local overlay of each dipeptide and, using a novel measure of local backbone similarity, reports the same four variations as eeGLOBAL. The combination of eeGLOBAL and eeLOCAL analyses identifies the most significant differences between ensembles. We illustrate the ENSEMBLATOR's capabilities by showing how using it to analyze NMR ensembles and to compare NMR ensembles with crystal structures provides novel insights compared to published studies. One of these studies leads us to suggest that a "consistency check" of NMR-derived ensembles may be a useful analysis step for NMR-based structure determinations in general. The ENSEMBLATOR 1.0 is available as a first generation tool to carry out ensemble-ensemble comparisons. © 2015 The Protein Society.

  1. Residue-level global and local ensemble-ensemble comparisons of protein domains

    PubMed Central

    Clark, Sarah A; Tronrud, Dale E; Andrew Karplus, P

    2015-01-01

    Many methods of protein structure generation such as NMR-based solution structure determination and template-based modeling do not produce a single model, but an ensemble of models consistent with the available information. Current strategies for comparing ensembles lose information because they use only a single representative structure. Here, we describe the ENSEMBLATOR and its novel strategy to directly compare two ensembles containing the same atoms to identify significant global and local backbone differences between them on per-atom and per-residue levels, respectively. The ENSEMBLATOR has four components: eePREP (ee for ensemble-ensemble), which selects atoms common to all models; eeCORE, which identifies atoms belonging to a cutoff-distance dependent common core; eeGLOBAL, which globally superimposes all models using the defined core atoms and calculates for each atom the two intraensemble variations, the interensemble variation, and the closest approach of members of the two ensembles; and eeLOCAL, which performs a local overlay of each dipeptide and, using a novel measure of local backbone similarity, reports the same four variations as eeGLOBAL. The combination of eeGLOBAL and eeLOCAL analyses identifies the most significant differences between ensembles. We illustrate the ENSEMBLATOR's capabilities by showing how using it to analyze NMR ensembles and to compare NMR ensembles with crystal structures provides novel insights compared to published studies. One of these studies leads us to suggest that a “consistency check” of NMR-derived ensembles may be a useful analysis step for NMR-based structure determinations in general. The ENSEMBLATOR 1.0 is available as a first generation tool to carry out ensemble-ensemble comparisons. PMID:26032515

  2. High field 27Al MAS NMR and TPD studies of active sites in ethanol dehydration using thermally treated transitional aluminas as catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Jian Zhi; Xu, Suochang; Kwak, Ja Hun

    Gamma-, sigma- and theta-Al2O3 are well known metastable “transitional” alumina structural polymorphs. Upon heating, Al2O3 transitions to the so-called and Al2O3 polymorphs and finally forms the thermally stable Al2O3. The poorly developed crystallinity and co-existence of the , , and Al2O3 prior to forming all Al2O3, making it difficult to characterize the structures as well as to quantify the various phases of the transition alumina. As a result, there are significant controversies in the literatures. In this work, a detailed NMR analysis was carried out at high magnetic field on three special aluminum oxide samples where the, , , Al2O3more » phases are made dominant, respectively, by controlling the synthesis conditions. The goal is to simplify, including making unambiguous, spectral assignments in 27Al MAS NMR spectra of transition alumina that have not yet been commonly agreed previously. Specifically, quantitative 1D 27Al MAS NMR was used to quantify the ratios of the different alumina structural units, 2D MQMAS 27Al MAS was used for obtaining the highest spectral resolution to guide the analysis of the 1D spectrum, and a saturation pulse sequence was integrated into the 1D NMR to select the amorphous structures, including obtain spectra where the penta-coordinate sites are observed with enhanced relative intensity. Collectively, this study uniquely assigns Al-peaks (both octahedral and tetrahedral) to the Al2O3 and the Al2O3 phases and offers a new way of understanding, including quantifying, the different structural units and sites in transition alumina samples.« less

  3. A pilot study of NMR-based sensory prediction of roasted coffee bean extracts.

    PubMed

    Wei, Feifei; Furihata, Kazuo; Miyakawa, Takuya; Tanokura, Masaru

    2014-01-01

    Nuclear magnetic resonance (NMR) spectroscopy can be considered a kind of "magnetic tongue" for the characterisation and prediction of the tastes of foods, since it provides a wealth of information in a nondestructive and nontargeted manner. In the present study, the chemical substances in roasted coffee bean extracts that could distinguish and predict the different sensations of coffee taste were identified by the combination of NMR-based metabolomics and human sensory test and the application of the multivariate projection method of orthogonal projection to latent structures (OPLS). In addition, the tastes of commercial coffee beans were successfully predicted based on their NMR metabolite profiles using our OPLS model, suggesting that NMR-based metabolomics accompanied with multiple statistical models is convenient, fast and accurate for the sensory evaluation of coffee. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Quantitative analysis of NMR spectra with chemometrics

    NASA Astrophysics Data System (ADS)

    Winning, H.; Larsen, F. H.; Bro, R.; Engelsen, S. B.

    2008-01-01

    The number of applications of chemometrics to series of NMR spectra is rapidly increasing due to an emerging interest for quantitative NMR spectroscopy e.g. in the pharmaceutical and food industries. This paper gives an analysis of advantages and limitations of applying the two most common chemometric procedures, Principal Component Analysis (PCA) and Multivariate Curve Resolution (MCR), to a designed set of 231 simple alcohol mixture (propanol, butanol and pentanol) 1H 400 MHz spectra. The study clearly demonstrates that the major advantage of chemometrics is the visualisation of larger data structures which adds a new exploratory dimension to NMR research. While robustness and powerful data visualisation and exploration are the main qualities of the PCA method, the study demonstrates that the bilinear MCR method is an even more powerful method for resolving pure component NMR spectra from mixtures when certain conditions are met.

  5. Isotope labeling for studying RNA by solid-state NMR spectroscopy.

    PubMed

    Marchanka, Alexander; Kreutz, Christoph; Carlomagno, Teresa

    2018-04-12

    Nucleic acids play key roles in most biological processes, either in isolation or in complex with proteins. Often they are difficult targets for structural studies, due to their dynamic behavior and high molecular weight. Solid-state nuclear magnetic resonance spectroscopy (ssNMR) provides a unique opportunity to study large biomolecules in a non-crystalline state at atomic resolution. Application of ssNMR to RNA, however, is still at an early stage of development and presents considerable challenges due to broad resonances and poor dispersion. Isotope labeling, either as nucleotide-specific, atom-specific or segmental labeling, can resolve resonance overlaps and reduce the line width, thus allowing ssNMR studies of RNA domains as part of large biomolecules or complexes. In this review we discuss the methods for RNA production and purification as well as numerous approaches for isotope labeling of RNA. Furthermore, we give a few examples that emphasize the instrumental role of isotope labeling and ssNMR for studying RNA as part of large ribonucleoprotein complexes.

  6. NMR spectroscopy and molecular modelling studies of nitrosylcobalamin: further evidence that the deprotonated, base-off form is important for nitrosylcobalamin in solution†

    PubMed Central

    Hassanin, Hanaa A.; Hannibal, Luciana; Jacobsen, Donald W.; Brown, Kenneth L.

    2009-01-01

    The structure of nitrosylcobalamin (NOCbl) in solution has been studied by NMR spectroscopy and the 1H and 13C NMR spectra have been assigned. 13C and 31P NMR chemical shifts, the UV-vis spectrum of NOCbl and the observed pK base-off value of ~5.1 for NOCbl provide evidence that a significant fraction of NOCbl is present in the base-off, 5,6-dimethylbenzimidazole (DMB) deprotonated, form in solution. NOE-restrained molecular mechanics modelling of base-on NOCbl gave annealed structures with minor conformational differences in the flexible side chains and the nucleotide loop position compared with the X-ray structure. A molecular dynamics simulation at 300 K showed that DMB remains in close proximity to the α face of the corrin in the base-off form of NOCbl. Simulated annealing calculations produced two major conformations of base-off NOCbl. In the first, the DMB is perpendicular to the corrin and its B3 nitrogen is about 3.1 Å away from and pointing directly at the metal ion; in the second the DMB is parallel to and tucked beneath the D ring of the corrin. PMID:19122899

  7. Structure solution of network materials by solid-state NMR without knowledge of the crystallographic space group.

    PubMed

    Brouwer, Darren H

    2013-01-01

    An algorithm is presented for solving the structures of silicate network materials such as zeolites or layered silicates from solid-state (29)Si double-quantum NMR data for situations in which the crystallographic space group is not known. The algorithm is explained and illustrated in detail using a hypothetical two-dimensional network structure as a working example. The algorithm involves an atom-by-atom structure building process in which candidate partial structures are evaluated according to their agreement with Si-O-Si connectivity information, symmetry restraints, and fits to (29)Si double quantum NMR curves followed by minimization of a cost function that incorporates connectivity, symmetry, and quality of fit to the double quantum curves. The two-dimensional network material is successfully reconstructed from hypothetical NMR data that can be reasonably expected to be obtained for real samples. This advance in "NMR crystallography" is expected to be important for structure determination of partially ordered silicate materials for which diffraction provides very limited structural information. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. NMR and mass spectrometric characterization of vinblastine, vincristine and some new related impurities - part I.

    PubMed

    Dubrovay, Zsófia; Háda, Viktor; Béni, Zoltán; Szántay, Csaba

    2013-10-01

    In the course of exploring the possibilities of developing a new, improved process at Gedeon Richter for the production of the "bisindole" alkaloids vinblastine (VLB) and vincristine (VCR), some novel VLB/VCR-related trace impurities were detected by analytical HPLC. Following isolation by preparative HPLC, a combination of 1D and 2D ultra high-field NMR and high-resolution (HR) (LC-)MS/MS studies allowed the structural identification and complete spectral characterization of several hitherto unpublished VLB/VCR-analogue impurities. Since the impurities could not be isolated in entirely pure forms and were available only in minute, mass-limited quantities, accessing the spectral information needed for their ab initio structure determination was met with various practical difficulties. Successful structure determination therefore relied heavily on the availability and use of detailed and definitive spectral data for both VLB and VCR. In particular, the utilization of detailed (1)H, (13)C, and (15)N NMR assignments as well as (1)H-(1)H, (1)H-(13)C and (1)H-(15)N spin-spin connectivities pertaining to different solvents for VLB/VCR base and sulphate salt was required. Although NMR studies on VLB base and other bisindoles were reported earlier in the literature, an NMR characterization of VLB and VCR under the above-mentioned circumstances and using ultra-high field instrumentation is either scarcely available or entirely lacking, therefore the necessary data had to be obtained in-house. Likewise, a modern tandem HR-ESI-MS/MS(n) fragmentation study of VLB and VCR has not been published yet. In the present paper we therefore give a thorough NMR and MS characterization of VLB and VCR specifically with a view to filling this void and to provide sufficiently extensive and solid reference data for the structural investigation of the aforementioned VLB/VCR impurities. Besides being scientifically relevant in its own right, the disclosed data should be useful for anyone interested in VLB/VCR-related molecules at a structural level. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Use of proline mutants to help solve the NMR solution structure of type III antifreeze protein.

    PubMed Central

    Chao, H.; Davies, P. L.; Sykes, B. D.; Sönnichsen, F. D.

    1993-01-01

    To help understand the structure/function relationships in antifreeze proteins (AFP), and to define the motifs required for ice binding, a Type III AFP suitable for two-dimensional (2D) NMR studies was produced in Escherichia coli. A synthetic gene for one of the Type III AFP isoforms was assembled in a T7 polymerase-directed expression vector. The 67-amino acid-long gene product differed from the natural AFP by inclusion of an N-terminal methionine but was indistinguishable in activity. The NMR spectra of this AFP were complicated by cis-trans proline isomerization from the C-terminal sequence YPPA. Substitution of this sequence by YAA eliminated isomer signals without altering the activity or structure of the mutant AFP. This variant (rQAE m1.1) was selected for sequential assignment and the secondary structure determination using 2D 1H NMR spectroscopy. Nine beta-strands are paired to form two triple-stranded antiparallel sheets and one double-stranded antiparallel sheet. Two further proline replacements, P29A and P33A, were made to delineate the role of conserved prolines in Type III AFP. These mutants were valuable in clarifying ambiguous NMR spectral assignments amongst the remaining six prolines of rQAE m1.1. In contrast to the replacement of the C-terminal prolyl residues, the exchange of P29 and P33 caused some structural changes and significantly decreased protein solubility and antifreeze activity. PMID:8401227

  10. Membrane solid-state NMR in Canada: A historical perspective.

    PubMed

    Auger, Michèle

    2017-11-01

    This manuscript presents an overview of more than 40years of membrane solid-state nuclear magnetic resonance (NMR) research in Canada. This technique is a method of choice for the study of the structure and dynamics of lipid bilayers; bilayer interactions with a variety of molecules such as membrane peptides, membrane proteins and drugs; and to investigate membrane peptide and protein structure, dynamics, and topology. Canada has a long tradition in this field of research, starting with pioneering work on natural and model membranes in the 1970s in a context of emergence of biophysics in the country. The 1980s and 1990s saw an emphasis on studying lipid structures and dynamics, and peptide-lipid and protein-lipid interactions. The study of bicelles began in the 1990s, and in the 2000s there was a rise in the study of membrane protein structures. Novel perspectives include using dynamic nuclear polarization (DNP) for membrane studies and using NMR in live cells. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Two-dimensional sup 1 H NMR studies on HPr protein from Staphylococcus aureus: Complete sequential assignments and secondary structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalbitzer, H.R.; Neidig, K.P.; Hengstenberg, W.

    1991-11-19

    Complete sequence-specific assignments of the {sup 1}H NMR spectrum of HPr protein from Staphylococcus aureus were obtained by two-dimensional NMR methods. Important secondary structure elements that can be derived from the observed nuclear Overhauser effects are a large antiparallel {beta}-pleated sheet consisting of four strands, A, B, C, D, a segment S{sub AB} consisting of an extended region around the active-center histidine (His-15) and an {alpha}-helix, a half-turn between strands B and C, a segment S{sub CD} which shows no typical secondary structure, and the {alpha}-helical, C-terminal segment S{sub term}. These general structural features are similar to those found earliermore » in HPr proteins from different microorganisms such as Escherichia coli, Bacillus subtilis, and Streptococcus faecalis.« less

  12. Automated NMR structure determination of stereo-array isotope labeled ubiquitin from minimal sets of spectra using the SAIL-FLYA system.

    PubMed

    Ikeya, Teppei; Takeda, Mitsuhiro; Yoshida, Hitoshi; Terauchi, Tsutomu; Jee, Jun-Goo; Kainosho, Masatsune; Güntert, Peter

    2009-08-01

    Stereo-array isotope labeling (SAIL) has been combined with the fully automated NMR structure determination algorithm FLYA to determine the three-dimensional structure of the protein ubiquitin from different sets of input NMR spectra. SAIL provides a complete stereo- and regio-specific pattern of stable isotopes that results in sharper resonance lines and reduced signal overlap, without information loss. Here we show that as a result of the superior quality of the SAIL NMR spectra, reliable, fully automated analyses of the NMR spectra and structure calculations are possible using fewer input spectra than with conventional uniformly 13C/15N-labeled proteins. FLYA calculations with SAIL ubiquitin, using a single three-dimensional "through-bond" spectrum (and 2D HSQC spectra) in addition to the 13C-edited and 15N-edited NOESY spectra for conformational restraints, yielded structures with an accuracy of 0.83-1.15 A for the backbone RMSD to the conventionally determined solution structure of SAIL ubiquitin. NMR structures can thus be determined almost exclusively from the NOESY spectra that yield the conformational restraints, without the need to record many spectra only for determining intermediate, auxiliary data of the chemical shift assignments. The FLYA calculations for this report resulted in 252 ubiquitin structure bundles, obtained with different input data but identical structure calculation and refinement methods. These structures cover the entire range from highly accurate structures to seriously, but not trivially, wrong structures, and thus constitute a valuable database for the substantiation of structure validation methods.

  13. Understanding the NMR properties and conformational behavior of indole vs. azaindole group in protoberberines: NICS and NCS analysis

    NASA Astrophysics Data System (ADS)

    Kadam, Shivaji S.; Toušek, Jaromír; Maier, Lukáš; Pipíška, Matej; Sklenář, Vladimír; Marek, Radek

    2012-11-01

    We report here the preparation and the structural investigation into a series of 8-(indol-1-yl)-7,8-dihydroprotoberberine derivatives derived from berberine, palmatine, and coptisine. Structures of these new compounds were characterized mainly by 2D NMR spectroscopy and the conformational behavior was investigated by using methods of density-functional theory (DFT). PBE0/6-311+G** calculated NMR chemical shifts for selected derivatives correlate excellently with the experimental NMR data and support the structural conclusions drawn from the NMR experiments. An interesting role of the nitrogen atom in position N7' of the indole moiety in 8-(7-azaindol-1-yl)-7,8-dihydroprotoberberines as compared to other 8-indolyl derivatives is investigated in detail. The experimentally observed trends in NMR chemical shifts are rationalized by DFT calculations and analysis based on the nucleus-independent chemical shifts (NICS) and natural localized molecular orbitals (NLMOs).

  14. Solution state NMR of lignins

    Treesearch

    John Ralph; Jane M. Marita; Sally A. Ralph; Ronald D. Hatfield; Fachuang Lu; Richard M. Ede; Junpeng Peng; Larry L. Landucci

    1999-01-01

    Despite the rather random and heterogeneous nature of isolated lignins, many of their intimate structural details are revealed by diagnostic NMR experiments. 13C-NMR was recognized early-on as a high-resolution method for detailed structural characterization, aided by the almost exact agreement between chemical shifts of carbons in good low-molecular...

  15. Exploiting the Synergy of Powder X-ray Diffraction and Solid-State NMR Spectroscopy in Structure Determination of Organic Molecular Solids

    PubMed Central

    2013-01-01

    We report a strategy for structure determination of organic materials in which complete solid-state nuclear magnetic resonance (NMR) spectral data is utilized within the context of structure determination from powder X-ray diffraction (XRD) data. Following determination of the crystal structure from powder XRD data, first-principles density functional theory-based techniques within the GIPAW approach are exploited to calculate the solid-state NMR data for the structure, followed by careful scrutiny of the agreement with experimental solid-state NMR data. The successful application of this approach is demonstrated by structure determination of the 1:1 cocrystal of indomethacin and nicotinamide. The 1H and 13C chemical shifts calculated for the crystal structure determined from the powder XRD data are in excellent agreement with those measured experimentally, notably including the two-dimensional correlation of 1H and 13C chemical shifts for directly bonded 13C–1H moieties. The key feature of this combined approach is that the quality of the structure determined is assessed both against experimental powder XRD data and against experimental solid-state NMR data, thus providing a very robust validation of the veracity of the structure. PMID:24386493

  16. Exploiting the Synergy of Powder X-ray Diffraction and Solid-State NMR Spectroscopy in Structure Determination of Organic Molecular Solids.

    PubMed

    Dudenko, Dmytro V; Williams, P Andrew; Hughes, Colan E; Antzutkin, Oleg N; Velaga, Sitaram P; Brown, Steven P; Harris, Kenneth D M

    2013-06-13

    We report a strategy for structure determination of organic materials in which complete solid-state nuclear magnetic resonance (NMR) spectral data is utilized within the context of structure determination from powder X-ray diffraction (XRD) data. Following determination of the crystal structure from powder XRD data, first-principles density functional theory-based techniques within the GIPAW approach are exploited to calculate the solid-state NMR data for the structure, followed by careful scrutiny of the agreement with experimental solid-state NMR data. The successful application of this approach is demonstrated by structure determination of the 1:1 cocrystal of indomethacin and nicotinamide. The 1 H and 13 C chemical shifts calculated for the crystal structure determined from the powder XRD data are in excellent agreement with those measured experimentally, notably including the two-dimensional correlation of 1 H and 13 C chemical shifts for directly bonded 13 C- 1 H moieties. The key feature of this combined approach is that the quality of the structure determined is assessed both against experimental powder XRD data and against experimental solid-state NMR data, thus providing a very robust validation of the veracity of the structure.

  17. Analysis of Functional Dynamics of Modular Multidomain Proteins by SAXS and NMR.

    PubMed

    Thompson, Matthew K; Ehlinger, Aaron C; Chazin, Walter J

    2017-01-01

    Multiprotein machines drive virtually all primary cellular processes. Modular multidomain proteins are widely distributed within these dynamic complexes because they provide the flexibility needed to remodel structure as well as rapidly assemble and disassemble components of the machinery. Understanding the functional dynamics of modular multidomain proteins is a major challenge confronting structural biology today because their structure is not fixed in time. Small-angle X-ray scattering (SAXS) and nuclear magnetic resonance (NMR) spectroscopy have proven particularly useful for the analysis of the structural dynamics of modular multidomain proteins because they provide highly complementary information for characterizing the architectural landscape accessible to these proteins. SAXS provides a global snapshot of all architectural space sampled by a molecule in solution. Furthermore, SAXS is sensitive to conformational changes, organization and oligomeric states of protein assemblies, and the existence of flexibility between globular domains in multiprotein complexes. The power of NMR to characterize dynamics provides uniquely complementary information to the global snapshot of the architectural ensemble provided by SAXS because it can directly measure domain motion. In particular, NMR parameters can be used to define the diffusion of domains within modular multidomain proteins, connecting the amplitude of interdomain motion to the architectural ensemble derived from SAXS. Our laboratory has been studying the roles of modular multidomain proteins involved in human DNA replication using SAXS and NMR. Here, we present the procedure for acquiring and analyzing SAXS and NMR data, using DNA primase and replication protein A as examples. © 2017 Elsevier Inc. All rights reserved.

  18. Visualising substrate-fingermark interactions: Solid-state NMR spectroscopy of amino acid reagent development on cellulose substrates.

    PubMed

    Spindler, Xanthe; Shimmon, Ronald; Roux, Claude; Lennard, Chris

    2015-05-01

    Most spectroscopic studies of the reaction products formed by ninhydrin, 1,2-indanedione-zinc (Ind-Zn) and 1,8-diazafluoren-9-one (DFO) when reacted with amino acids or latent fingermarks on paper substrates are focused on visible absorption or luminescence spectroscopy. In addition, structural elucidation studies are typically limited to solution-based mass spectrometry or liquid nuclear magnetic resonance (NMR) spectroscopy, which does not provide an accurate representation of the fingermark development process on common paper substrates. The research presented in this article demonstrates that solid-state carbon-13 magic angle spinning NMR ((13)C-MAS-NMR) is a technique that can not only be utilised for structural studies of fingermark enhancement reagents, but is a promising technique for characterising the effect of paper chemistry on fingermark deposition and enhancement. The latter opens up a research area that has been under-explored to date but has the potential to improve our understanding of how fingermark secretions and enhancement reagents interact with paper substrates. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. PICKY: a novel SVD-based NMR spectra peak picking method.

    PubMed

    Alipanahi, Babak; Gao, Xin; Karakoc, Emre; Donaldson, Logan; Li, Ming

    2009-06-15

    Picking peaks from experimental NMR spectra is a key unsolved problem for automated NMR protein structure determination. Such a process is a prerequisite for resonance assignment, nuclear overhauser enhancement (NOE) distance restraint assignment, and structure calculation tasks. Manual or semi-automatic peak picking, which is currently the prominent way used in NMR labs, is tedious, time consuming and costly. We introduce new ideas, including noise-level estimation, component forming and sub-division, singular value decomposition (SVD)-based peak picking and peak pruning and refinement. PICKY is developed as an automated peak picking method. Different from the previous research on peak picking, we provide a systematic study of the proposed method. PICKY is tested on 32 real 2D and 3D spectra of eight target proteins, and achieves an average of 88% recall and 74% precision. PICKY is efficient. It takes PICKY on average 15.7 s to process an NMR spectrum. More important than these numbers, PICKY actually works in practice. We feed peak lists generated by PICKY to IPASS for resonance assignment, feed IPASS assignment to SPARTA for fragments generation, and feed SPARTA fragments to FALCON for structure calculation. This results in high-resolution structures of several proteins, for example, TM1112, at 1.25 A. PICKY is available upon request. The peak lists of PICKY can be easily loaded by SPARKY to enable a better interactive strategy for rapid peak picking.

  20. MAS-NMR studies of lithium aluminum silicate (LAS) glasses and glass-ceramics having different Li 2O/Al 2O 3 ratio

    NASA Astrophysics Data System (ADS)

    Ananthanarayanan, A.; Kothiyal, G. P.; Montagne, L.; Revel, B.

    2010-01-01

    Emergence of phases in lithium aluminum silicate (LAS) glasses of composition (wt%) xLi 2O-71.7SiO 2-(17.7- x)Al 2O 3-4.9K 2O-3.2B 2O 3-2.5P 2O 5 (5.1≤ x≤12.6) upon heat treatment were studied. 29Si, 27Al, 31P and 11B MAS-NMR were employed for structural characterization of both LAS glasses and glass-ceramics. In glass samples, Al is found in tetrahedral coordination, while P exists mainly in the form of orthophosphate units. B exists as BO 3 and BO 4 units. 27Al NMR spectra show no change with crystallization, ruling out the presence of any Al containing phase. Contrary to X-ray diffraction studies carried out, 11B (high field 18.8 T) and 29Si NMR spectra clearly indicate the unexpected crystallization of a borosilicate phase (Li,K)BSi 2O 6, whose structure is similar to the aluminosilicate virgilite. Also, lithium disilicate (Li 2Si 2O 5), lithium metasilicate (Li 2SiO 3) and quartz (SiO 2) were identified in the 29Si NMR spectra of the glass-ceramics. 31P NMR spectra of the glass-ceramics revealed the presence of Li 3PO 4 and a mixed phase (Li,K) 3PO 4 at low alkali concentrations.

  1. Increased reliability of nuclear magnetic resonance protein structures by consensus structure bundles.

    PubMed

    Buchner, Lena; Güntert, Peter

    2015-02-03

    Nuclear magnetic resonance (NMR) structures are represented by bundles of conformers calculated from different randomized initial structures using identical experimental input data. The spread among these conformers indicates the precision of the atomic coordinates. However, there is as yet no reliable measure of structural accuracy, i.e., how close NMR conformers are to the "true" structure. Instead, the precision of structure bundles is widely (mis)interpreted as a measure of structural quality. Attempts to increase precision often overestimate accuracy by tight bundles of high precision but much lower accuracy. To overcome this problem, we introduce a protocol for NMR structure determination with the software package CYANA, which produces, like the traditional method, bundles of conformers in agreement with a common set of conformational restraints but with a realistic precision that is, throughout a variety of proteins and NMR data sets, a much better estimate of structural accuracy than the precision of conventional structure bundles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. NMR Crystallography of Enzyme Active Sites: Probing Chemically-Detailed, Three-Dimensional Structure in Tryptophan Synthase

    PubMed Central

    Dunn, Michael F.

    2013-01-01

    Conspectus NMR crystallography – the synergistic combination of X-ray diffraction, solid-state NMR spectroscopy, and computational chemistry – offers unprecedented insight into three-dimensional, chemically-detailed structure. From its initial role in refining diffraction data of organic and inorganic solids, NMR crystallography is now being developed for application to active sites in biomolecules, where it reveals chemically-rich detail concerning the interactions between enzyme site residues and the reacting substrate that is not achievable when X-ray, NMR, or computational methodologies are applied in isolation. For example, typical X-ray crystal structures (1.5 to 2.5 Å resolution) of enzyme-bound intermediates identify possible hydrogen-bonding interactions between site residues and substrate, but do not directly identify the protonation state of either. Solid-state NMR can provide chemical shifts for selected atoms of enzyme-substrate complexes, but without a larger structural framework in which to interpret them, only empirical correlations with local chemical structure are possible. Ab initio calculations and molecular mechanics can build models for enzymatic processes, but rely on chemical details that must be specified. Together, however, X-ray diffraction, solid-state NMR spectroscopy, and computational chemistry can provide consistent and testable models for structure and function of enzyme active sites: X-ray crystallography provides a coarse framework upon which models of the active site can be developed using computational chemistry; these models can be distinguished by comparison of their calculated NMR chemical shifts with the results of solid-state NMR spectroscopy experiments. Conceptually, each technique is a puzzle piece offering a generous view of the big picture. Only when correctly pieced together, however, can they reveal the big picture at highest resolution. In this Account, we detail our first steps in the development of NMR crystallography for application to enzyme catalysis. We begin with a brief introduction to NMR crystallography and then define the process that we have employed to probe the active site in the β-subunit of tryptophan synthase with unprecedented atomic-level resolution. This approach has resulted in a novel structural hypothesis for the protonation state of the quinonoid intermediate in tryptophan synthase and its surprising role in directing the next step in the catalysis of L-Trp formation. PMID:23537227

  3. Structural Analysis of N- and O-glycans Using ZIC-HILIC/Dialysis Coupled to NMR Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, Yi; Feng, Ju; Deng, Shuang

    2014-11-19

    Protein glycosylation, an important and complex post-translational modification (PTM), is involved in various biological processes including the receptor-ligand and cell-cell interaction, and plays a crucial role in many biological functions. However, little is known about the glycan structures of important biological complex samples, and the conventional glycan enrichment strategy (i.e., size-exclusion column [SEC] separation,) prior to nuclear magnetic resonance (NMR) detection is time-consuming and tedious. In this study, we employed SEC, Zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC), and ZIC-HILIC coupled with dialysis strategies to enrich the glycopeptides from the pronase E digests of RNase B, followed by NMR analysis ofmore » the glycoconjugate. Our results suggest that the ZIC-HILIC enrichment coupled with dialysis is the most efficient, which was thus applied to the analysis of biological complex sample, the pronase E digest of the secreted proteins from the fungi Aspergillus niger. The NMR spectra revealed that the secreted proteins from A. niger contain both N-linked glycans with a high-mannose core and O-linked glycans bearing mannose and glucose with 1->3 and 1->6 linkages. In all, our study provides compelling evidence that ZIC-HILIC separation coupled to dialysis is superior to the commonly used SEC separation to prepare glycopeptides for the downstream NMR analysis, which could greatly facilitate the future NMR-based glycoproteomics research.« less

  4. Physicochemical properties of liposomes as potential anticancer drugs carriers. Interaction of etoposide and cytarabine with the membrane: Spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Pentak, Danuta

    2014-03-01

    The interactions between etoposide, cytarabine and 1,2-dihexadecanoyl-sn-glycerol-3-phosphocholine bilayers were studied using differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR). These techniques have proven to be a very powerful tool in studying the structure and dynamics of phospholipid bilayers. In particular, DSC can provide information on the phase transition temperature and cooperativity of the lipid molecules in the absence and presence of the drug. Vibrational spectroscopy is well suited to the study of drug-lipid interactions, since it allows for an investigation of the conformation of phospholipid molecules at different levels in lipid bilayers and follows structural changes that occur during the gel to liquid-crystalline phase transition. NMR supported the determination of the main phase transition temperatures (TC) of 1,2-dihexadecanoyl-sn-glycerol-3-phosphocholine (DPPC). The main phase transition temperature (TC) determined by 1H NMR is comparable with values obtained by DSC for all studied liposomes. The location of cytarabine and etoposide in liposomes was also determined by NMR. Atomic force microscopy (AFM) images, acquired immediately after sample deposition on a mica surface, revealed the spherical shape of lipid vesicles.

  5. Solid-phase extraction NMR studies of chromatographic fractions of saponins from Quillaja saponaria.

    PubMed

    Nyberg, Nils T; Baumann, Herbert; Kenne, Lennart

    2003-01-15

    The saponin mixture QH-B from the tree Quillaja saponaria var. Molina was fractionated by RP-HPLC in several steps. The fractions were analyzed by solid-phase extraction NMR (SPE-NMR), a technique combining the workup by solid-phase extraction with on-line coupling to an NMR flow probe. Together with MALDI-TOF mass spectrometry and comparison with chemical shifts of similar saponins, the structures of both major and minor components in QH-B could be obtained. The procedure described is a simple method to determine the structure of components in a complex mixture. The two major fractions of the mixture were found to contain at least 28 saponins, differing in the carbohydrate substructures. Eight of these have not previously been determined. The 28 saponins formed 14 equilibrium pairs by the migration of an O-acyl group between two adjacent positions on a fucosyl residue.

  6. Intercalation complex of proflavine with DNA: Structure and dynamics by solid-state NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Pei; Juang, Chilong; Harbison, G.S.

    1990-07-06

    The structure of the complex formed between the intercalating agent proflavine and fibrous native DNA was studied by one- and two-dimensional high-resolution solid-state nuclear magnetic resonance (NMR). Carbon-13-labeled proflavine was used to show that the drug is stacked with the aromatic ring plane perpendicular to the fiber axis and that it is essentially immobile. Natural abundance carbon-13 NMR of the DNA itself shows that proflavine binding does not change the puckering of the deoxyribose ring. However, phosphorus-31 NMR spectra show profound changes in the orientation of the phosphodiester grouping on proflavine binding, with some of the phosphodiesters tilting almost parallelmore » to the helix axis, and a second set almost perpendicular. The first group to the phosphodiesters probably spans the intercalation sites, whereas the tilting of the second set likely compensates for the unwinding of the DNA by the intercalator.« less

  7. Reassessment of MxiH subunit orientation and fold within native Shigella T3SS needles using surface labelling and solid-state NMR.

    PubMed

    Verasdonck, Joeri; Shen, Da-Kang; Treadgold, Alexander; Arthur, Christopher; Böckmann, Anja; Meier, Beat H; Blocker, Ariel J

    2015-12-01

    T3SSs are essential virulence determinants of many Gram-negative bacteria, used to inject bacterial effectors of virulence into eukaryotic host cells. Their major extracellular portion, a ∼50 nm hollow, needle-like structure, is essential to host cell sensing and the conduit for effector secretion. It is formed of a small, conserved subunit arranged as a helical polymer. The structure of the subunit has been studied by electron cryomicroscopy within native polymers and by solid-state NMR in recombinant polymers, yielding two incompatible atomic models. To resolve this controversy, we re-examined the native polymer used for electron cryomicroscopy via surface labelling and solid-state NMR. Our data show the orientation and overall fold of the subunit within this polymer is as established by solid-state NMR for recombinant polymers. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Experimental Protein Structure Verification by Scoring with a Single, Unassigned NMR Spectrum.

    PubMed

    Courtney, Joseph M; Ye, Qing; Nesbitt, Anna E; Tang, Ming; Tuttle, Marcus D; Watt, Eric D; Nuzzio, Kristin M; Sperling, Lindsay J; Comellas, Gemma; Peterson, Joseph R; Morrissey, James H; Rienstra, Chad M

    2015-10-06

    Standard methods for de novo protein structure determination by nuclear magnetic resonance (NMR) require time-consuming data collection and interpretation efforts. Here we present a qualitatively distinct and novel approach, called Comparative, Objective Measurement of Protein Architectures by Scoring Shifts (COMPASS), which identifies the best structures from a set of structural models by numerical comparison with a single, unassigned 2D (13)C-(13)C NMR spectrum containing backbone and side-chain aliphatic signals. COMPASS does not require resonance assignments. It is particularly well suited for interpretation of magic-angle spinning solid-state NMR spectra, but also applicable to solution NMR spectra. We demonstrate COMPASS with experimental data from four proteins--GB1, ubiquitin, DsbA, and the extracellular domain of human tissue factor--and with reconstructed spectra from 11 additional proteins. For all these proteins, with molecular mass up to 25 kDa, COMPASS distinguished the correct fold, most often within 1.5 Å root-mean-square deviation of the reference structure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Experimental Protein Structure Verification by Scoring with a Single, Unassigned NMR Spectrum

    PubMed Central

    Courtney, Joseph M.; Ye, Qing; Nesbitt, Anna E.; Tang, Ming; Tuttle, Marcus D.; Watt, Eric D.; Nuzzio, Kristin M.; Sperling, Lindsay J.; Comellas, Gemma; Peterson, Joseph R.; Morrissey, James H.; Rienstra, Chad M.

    2016-01-01

    Standard methods for de novo protein structure determination by nuclear magnetic resonance (NMR) require time-consuming data collection and interpretation efforts. Here we present a qualitatively distinct and novel approach, called Comparative, Objective Measurement of Protein Architectures by Scoring Shifts (COMPASS), which identifies the best structures from a set of structural models by numerical comparison with a single, unassigned 2D 13C-13C NMR spectrum containing backbone and side-chain aliphatic signals. COMPASS does not require resonance assignments. It is particularly well suited for interpretation of magic-angle spinning solid-state NMR spectra, but also applicable to solution NMR spectra. We demonstrate COMPASS with experimental data from four proteins—GB1, ubiquitin, DsbA, and the extracellular domain of human tissue factor—and with reconstructed spectra from 11 additional proteins. For all these proteins, with molecular mass up to 25 kDa, COMPASS distinguished the correct fold, most often within 1.5 Å root-mean-square deviation of the reference structure. PMID:26365800

  10. Arginine Kinase. Joint Crystallographic & NMR RDC Analyses link Substrate-Associated Motions to Intrinsic Flexibility

    PubMed Central

    Niu, Xiaogang; Brüschweiler-Li, Lei; Davulcu, Omar; Skalicky, Jack J.; Brüschweiler, Rafael; Chapman, Michael S.

    2010-01-01

    The phosphagen kinase family, including creatine and arginine kinases, catalyze the reversible transfer of a “high energy” phosphate between ATP and a phospho-guanidino substrate. They have become a model for the study of both substrate-induced conformational change and intrinsic protein dynamics. Prior crystallographic studies indicated large substrate-induced domain rotations, but differences among a recent set of arginine kinase structures was interpreted as a plastic deformation. Here, the structure of Limulus substrate-free arginine kinase is refined against high resolution crystallographic data and compared quantitatively with NMR chemical shifts and residual dipolar couplings (RDCs). This demonstrates the feasibility of this type of RDC analysis of proteins that are large by NMR standards (42 kDa), and illuminates the solution structure, free from crystal-packing constraints. Detailed comparison of the 1.7 Å resolution substrate-free crystal structure against the 1.2 Å transition state analog complex shows large substrate-induced domain motions which can be broken down into movements of smaller quasi-rigid bodies. The solution state structure of substrate-free arginine kinase is most consistent with an equilibrium of substrate-free and –bound structures, with the substrate-free form dominating, but with varying displacements of the quasi-rigid groups. Rigid-group rotations evident from the crystal structures are about axes previously associated with intrinsic millisecond dynamics using NMR relaxation dispersion. Thus, “substrate-induced” motions are along modes that are intrinsically flexible in the substrate-free enzyme, and likely involve some degree of conformational selection. PMID:21075117

  11. Protein folding by NMR.

    PubMed

    Zhuravleva, Anastasia; Korzhnev, Dmitry M

    2017-05-01

    Protein folding is a highly complex process proceeding through a number of disordered and partially folded nonnative states with various degrees of structural organization. These transiently and sparsely populated species on the protein folding energy landscape play crucial roles in driving folding toward the native conformation, yet some of these nonnative states may also serve as precursors for protein misfolding and aggregation associated with a range of devastating diseases, including neuro-degeneration, diabetes and cancer. Therefore, in vivo protein folding is often reshaped co- and post-translationally through interactions with the ribosome, molecular chaperones and/or other cellular components. Owing to developments in instrumentation and methodology, solution NMR spectroscopy has emerged as the central experimental approach for the detailed characterization of the complex protein folding processes in vitro and in vivo. NMR relaxation dispersion and saturation transfer methods provide the means for a detailed characterization of protein folding kinetics and thermodynamics under native-like conditions, as well as modeling high-resolution structures of weakly populated short-lived conformational states on the protein folding energy landscape. Continuing development of isotope labeling strategies and NMR methods to probe high molecular weight protein assemblies, along with advances of in-cell NMR, have recently allowed protein folding to be studied in the context of ribosome-nascent chain complexes and molecular chaperones, and even inside living cells. Here we review solution NMR approaches to investigate the protein folding energy landscape, and discuss selected applications of NMR methodology to studying protein folding in vitro and in vivo. Together, these examples highlight a vast potential of solution NMR in providing atomistic insights into molecular mechanisms of protein folding and homeostasis in health and disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. From crystalline to amorphous calcium pyrophosphates: A solid state Nuclear Magnetic Resonance perspective.

    PubMed

    Gras, Pierre; Baker, Annabelle; Combes, Christèle; Rey, Christian; Sarda, Stéphanie; Wright, Adrian J; Smith, Mark E; Hanna, John V; Gervais, Christel; Laurencin, Danielle; Bonhomme, Christian

    2016-02-01

    Hydrated calcium pyrophosphates (CPP, Ca2P2O7·nH2O) are a fundamental family of materials among osteoarticular pathologic calcifications. In this contribution, a comprehensive multinuclear NMR (Nuclear Magnetic Resonance) study of four crystalline and two amorphous phases of this family is presented. (1)H, (31)P and (43)Ca MAS (Magic Angle Spinning) NMR spectra were recorded, leading to informative fingerprints characterizing each compound. In particular, different (1)H and (43)Ca solid state NMR signatures were observed for the amorphous phases, depending on the synthetic procedure used. The NMR parameters of the crystalline phases were determined using the GIPAW (Gauge Including Projected Augmented Wave) DFT approach, based on first-principles calculations. In some cases, relaxed structures were found to improve the agreement between experimental and calculated values, demonstrating the importance of proton positions and pyrophosphate local geometry in this particular NMR crystallography approach. Such calculations serve as a basis for the future ab initio modeling of the amorphous CPP phases. The general concept of NMR crystallography is applied to the detailed study of calcium pyrophosphates (CPP), whether hydrated or not, and whether crystalline or amorphous. CPP are a fundamental family of materials among osteoarticular pathologic calcifications. Their prevalence increases with age, impacting on 17.5% of the population after the age of 80. They are frequently involved or associated with acute articular arthritis such as pseudogout. Current treatments are mainly directed at relieving the symptoms of joint inflammation but not at inhibiting CPP formation nor at dissolving these crystals. The combination of advanced NMR techniques, modeling and DFT based calculation of NMR parameters allows new original insights in the detailed structural description of this important class of biomaterials. Copyright © 2016. Published by Elsevier Ltd.

  13. Systematic Comparison of Crystal and NMR Protein Structures Deposited in the Protein Data Bank

    PubMed Central

    Sikic, Kresimir; Tomic, Sanja; Carugo, Oliviero

    2010-01-01

    Nearly all the macromolecular three-dimensional structures deposited in Protein Data Bank were determined by either crystallographic (X-ray) or Nuclear Magnetic Resonance (NMR) spectroscopic methods. This paper reports a systematic comparison of the crystallographic and NMR results deposited in the files of the Protein Data Bank, in order to find out to which extent these information can be aggregated in bioinformatics. A non-redundant data set containing 109 NMR – X-ray structure pairs of nearly identical proteins was derived from the Protein Data Bank. A series of comparisons were performed by focusing the attention towards both global features and local details. It was observed that: (1) the RMDS values between NMR and crystal structures range from about 1.5 Å to about 2.5 Å; (2) the correlation between conformational deviations and residue type reveals that hydrophobic amino acids are more similar in crystal and NMR structures than hydrophilic amino acids; (3) the correlation between solvent accessibility of the residues and their conformational variability in solid state and in solution is relatively modest (correlation coefficient = 0.462); (4) beta strands on average match better between NMR and crystal structures than helices and loops; (5) conformational differences between loops are independent of crystal packing interactions in the solid state; (6) very seldom, side chains buried in the protein interior are observed to adopt different orientations in the solid state and in solution. PMID:21293729

  14. Solution structure of the c-terminal dimerization domain of SARS coronavirus nucleocapsid protein solved by the SAIL-NMR method.

    PubMed

    Takeda, Mitsuhiro; Chang, Chung-ke; Ikeya, Teppei; Güntert, Peter; Chang, Yuan-hsiang; Hsu, Yen-lan; Huang, Tai-huang; Kainosho, Masatsune

    2008-07-18

    The C-terminal domain (CTD) of the severe acute respiratory syndrome coronavirus (SARS-CoV) nucleocapsid protein (NP) contains a potential RNA-binding region in its N-terminal portion and also serves as a dimerization domain by forming a homodimer with a molecular mass of 28 kDa. So far, the structure determination of the SARS-CoV NP CTD in solution has been impeded by the poor quality of NMR spectra, especially for aromatic resonances. We have recently developed the stereo-array isotope labeling (SAIL) method to overcome the size problem of NMR structure determination by utilizing a protein exclusively composed of stereo- and regio-specifically isotope-labeled amino acids. Here, we employed the SAIL method to determine the high-quality solution structure of the SARS-CoV NP CTD by NMR. The SAIL protein yielded less crowded and better resolved spectra than uniform (13)C and (15)N labeling, and enabled the homodimeric solution structure of this protein to be determined. The NMR structure is almost identical with the previously solved crystal structure, except for a disordered putative RNA-binding domain at the N-terminus. Studies of the chemical shift perturbations caused by the binding of single-stranded DNA and mutational analyses have identified the disordered region at the N-termini as the prime site for nucleic acid binding. In addition, residues in the beta-sheet region also showed significant perturbations. Mapping of the locations of these residues onto the helical model observed in the crystal revealed that these two regions are parts of the interior lining of the positively charged helical groove, supporting the hypothesis that the helical oligomer may form in solution.

  15. CSI 3.0: a web server for identifying secondary and super-secondary structure in proteins using NMR chemical shifts

    PubMed Central

    Hafsa, Noor E.; Arndt, David; Wishart, David S.

    2015-01-01

    The Chemical Shift Index or CSI 3.0 (http://csi3.wishartlab.com) is a web server designed to accurately identify the location of secondary and super-secondary structures in protein chains using only nuclear magnetic resonance (NMR) backbone chemical shifts and their corresponding protein sequence data. Unlike earlier versions of CSI, which only identified three types of secondary structure (helix, β-strand and coil), CSI 3.0 now identifies total of 11 types of secondary and super-secondary structures, including helices, β-strands, coil regions, five common β-turns (type I, II, I′, II′ and VIII), β hairpins as well as interior and edge β-strands. CSI 3.0 accepts experimental NMR chemical shift data in multiple formats (NMR Star 2.1, NMR Star 3.1 and SHIFTY) and generates colorful CSI plots (bar graphs) and secondary/super-secondary structure assignments. The output can be readily used as constraints for structure determination and refinement or the images may be used for presentations and publications. CSI 3.0 uses a pipeline of several well-tested, previously published programs to identify the secondary and super-secondary structures in protein chains. Comparisons with secondary and super-secondary structure assignments made via standard coordinate analysis programs such as DSSP, STRIDE and VADAR on high-resolution protein structures solved by X-ray and NMR show >90% agreement between those made with CSI 3.0. PMID:25979265

  16. A rapid NMR-based method for discrimination of strain-specific cell wall teichoic acid structures reveals a third backbone type in Lactobacillus plantarum.

    PubMed

    Tomita, Satoru; Tanaka, Naoto; Okada, Sanae

    2017-03-01

    The lactic acid bacterium Lactobacillus plantarum is capable of producing strain-specific structures of cell wall teichoic acid (WTA), an anionic polysaccharide found in the Gram-positive bacterial cell wall. In this study, we established a rapid, NMR-based procedure to discriminate WTA structures in this species, and applied it to 94 strains of L. plantarum. Six previously reported glycerol- and ribitol-containing WTA subtypes were successfully identified from 78 strains, suggesting that these were the dominant structures. However, the level of structural variety differed markedly among bacterial sources, possibly reflecting differences in strain-level microbial diversity. WTAs from eight strains were not identified based on NMR spectra and were classified into three groups. Structural analysis of a partial degradation product of an unidentified WTA produced by strain TUA 1496L revealed that the WTA was 1-O-β-d-glucosylglycerol. Two-dimensional NMR analysis of the polymer structure showed phosphodiester bonds between C-3 and C-6 of the glycerol and glucose residues, suggesting a polymer structure of 3,6΄-linked poly(1-O-β-d-glucosyl-sn-glycerol phosphate). This is the third WTA backbone structure in L. plantarum, following 3,6΄-linked poly(1-O-α-d-glucosyl-sn-glycerol phosphate) and 1,5-linked poly(ribitol phosphate). © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. NMR structural and kinetic assignment of fluoro-3H-naphthopyran photomerocyanines.

    PubMed

    Delbaere, S; Micheau, J C; Teral, Y; Bochu, C; Campredon, M; Vermeersch, G

    2001-11-01

    The kinetic and structural behavior of a photochromic compound, 3-(2-fluorophenyl)-3-phenyl-3H-naphtho[2,1-b]pyran (F-Py), was investigated using 1H and 19F nuclear magnetic resonance (NMR) spectroscopy. Upon irradiation, the four theoretically predicted photomerocyanines appear along with a fifth form X, whose final structure has not been elucidated. This last form and two of the photomerocyanines are thermally labile, whereas the other two do not show any signs of decay. The system has been analyzed by NMR spectroscopy. This led to the structural assignment of each photomerocyanine. The kinetics of the thermal bleaching were monitored by directly and separately measuring the concentrations of each species at regular time intervals using 19F NMR spectroscopy. We therefore propose a plausible reaction mechanism. On the basis of this mechanism, the mathematical treatment and the study of the effects of temperature led to the determination of the kinetic and thermodynamic parameters (rate coefficients, enthalpy and entropy of activation) of this photochromic system. The leading role of the labile intermediate X on the formation of trans-transoid-cis (TTC) and cis-transoid-cis (CTC) photomerocyanines is pointed out.

  18. The study on molecular structure and microbiological activity of alkali metal 3-hydroxyphenylycetates

    NASA Astrophysics Data System (ADS)

    Samsonowicz, M.; Regulska, E.; Kowczyk-Sadowy, M.; Butarewicz, A.; Lewandowski, W.

    2017-10-01

    The biological activity of chemical compounds depends on their molecular structure. In this paper molecular structure of 3-hydroxyphenylacetates in comparison to 3-hydroxyphenylacetic acid was studied. FT-IR, FT-Raman and NMR spectroscopy and density functional theory (DFT) calculations was used. The B3LYP/6-311++G(d,p) hybrid functional method was used to calculate optimized geometrical structures of studied compounds. The Mulliken, APT, MK, ChelpG and NBO atomic charges as well as dipole moment and energy values were calculated. Theoretical chemical shifts in NMR spectra and the wavenumbers and intensities of the bands in vibrational spectra were analyzed. Calculated parameters were compared to experimental characteristic of studied compounds. Microbiological analysis of studied compounds was performed relative to: Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli and Klebsiella oxytoca. The relationship between spectroscopic and structure parameters of studied compounds in regard to their activity was analyzed.

  19. On the Analytical Superiority of 1D NMR for Fingerprinting the Higher Order Structure of Protein Therapeutics Compared to Multidimensional NMR Methods.

    PubMed

    Poppe, Leszek; Jordan, John B; Rogers, Gary; Schnier, Paul D

    2015-06-02

    An important aspect in the analytical characterization of protein therapeutics is the comprehensive characterization of higher order structure (HOS). Nuclear magnetic resonance (NMR) is arguably the most sensitive method for fingerprinting HOS of a protein in solution. Traditionally, (1)H-(15)N or (1)H-(13)C correlation spectra are used as a "structural fingerprint" of HOS. Here, we demonstrate that protein fingerprint by line shape enhancement (PROFILE), a 1D (1)H NMR spectroscopy fingerprinting approach, is superior to traditional two-dimensional methods using monoclonal antibody samples and a heavily glycosylated protein therapeutic (Epoetin Alfa). PROFILE generates a high resolution structural fingerprint of a therapeutic protein in a fraction of the time required for a 2D NMR experiment. The cross-correlation analysis of PROFILE spectra allows one to distinguish contributions from HOS vs protein heterogeneity, which is difficult to accomplish by 2D NMR. We demonstrate that the major analytical limitation of two-dimensional methods is poor selectivity, which renders these approaches problematic for the purpose of fingerprinting large biological macromolecules.

  20. Two-dimensional NMR data of a water-soluble β-(1→3, 1→6)-glucan from Aureobasidium pullulans and schizophyllan from Schizophyllum commune.

    PubMed

    Kono, Hiroyuki; Kondo, Nobuhiro; Hirabayashi, Katsuki; Ogata, Makoto; Totani, Kazuhide; Ikematsu, Shinya; Osada, Mitsumasa

    2017-12-01

    This article contains two-dimensional (2D) NMR experimental data, obtained by the Bruker BioSpin 500 MHz NMR spectrometer (Germany) which can used for the determination of primary structures of schizophyllan from Schizophyllum commune (SPG) and a water-soluble β-(1→3, 1→6)-glucan from Aureobasidium pullulans . Data include analyzed the 2D NMR spectra of these β-glucans, which are related to the subject of an article in Carbohydrate Polymers , entitled "NMR spectroscopic structural characterization of a water-soluble β-(1→3, 1→6)-glucan from A. pullulans " (Kono et al., 2017) [1]. Data can help to assign the 1 H and 13 C chemical shifts of the structurally complex polysaccharides.

  1. Multinuclear solid film state NMR studies of metal oxide catalysts and minerals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, R.S.; Stec, D.F.; Ellis, P.D.

    1996-10-01

    Several of our investigations of heterogeneous process by novel NMR experiments and analyses are reviewed and the utility and limitations of NMR spectroscopy for these areas discussed. Out studies have included the following: dynamics and arrangements of proton-containing adsorbates, primarily Bronsted acid sites and water, on the surface of zirconia and alumina catalysts; hydrogen dynamics and coordinates in synthetic aluminum oxyhydroxides; phase separation and crystallinity of synthetic minerals. In combination with the complementary results obtained in our laboratory via infrared spectroscopy, thermal analysis (primarily TGA and DSC), and catalytic activity measurements, these NMR data provide unique and valuable information onmore » atomic and molecular dynamics, identities, and structures without requiring pristine, single crystal specimens.« less

  2. Gallium(III) chelates of mixed phosphonate-carboxylate triazamacrocyclic ligands relevant to nuclear medicine: Structural, stability and in vivo studies.

    PubMed

    Prata, Maria I M; André, João P; Kovács, Zoltán; Takács, Anett I; Tircsó, Gyula; Tóth, Imre; Geraldes, Carlos F G C

    2017-12-01

    Three triaza macrocyclic ligands, H 6 NOTP (1,4,7-triazacyclononane-N,N',N″-trimethylene phosphonic acid), H 4 NO2AP (1,4,7-triazacyclononane-N-methylenephosphonic acid-N',N″-dimethylenecarboxylic acid), and H 5 NOA2P (1,4,7-triazacyclononane-N,N'-bis(methylenephosphonic acid)-N″-methylene carboxylic acid), and their gallium(III) chelates were studied in view of their potential interest as scintigraphic and PET (Positron Emission Tomography) imaging agents. A 1 H, 31 P and 71 Ga multinuclear NMR study gave an insight on the structure, internal dynamics and stability of the chelates in aqueous solution. In particular, the analysis of 71 Ga NMR spectra gave information on the symmetry of the Ga 3+ coordination sphere and the stability of the chelates towards hydrolysis. The 31 P NMR spectra afforded information on the protonation of the non-coordinated oxygen atoms from the pendant phosphonate groups and on the number of species in solution. The 1 H NMR spectra allowed the analysis of the structure and the number of species in solution. 31 P and 1 H NMR titrations combined with potentiometry afforded the measurement of the protonation constants (log K Hi ) and the microscopic protonation scheme of the triaza macrocyclic ligands. The remarkably high thermodynamic stability constant (log K GaL =34.44 (0.04) and stepwise protonation constants of Ga(NOA2P) 2- were determined by potentiometry and 69 Ga and 31 P NMR titrations. Biodistribution and gamma imaging studies have been performed on Wistar rats using the radiolabeled 67 Ga(NO2AP) - and 67 Ga(NOA2P) 2- chelates, having both demonstrated to have renal excretion. The correlation of the molecular properties of the chelates with their pharmacokinetic properties has been analysed. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Spectral studies of 2-pyrazoline derivatives: structural elucidation through single crystal XRD and DFT calculations.

    PubMed

    Chinnaraja, D; Rajalakshmi, R; Srinivasan, T; Velmurugan, D; Jayabharathi, J

    2014-04-24

    A series of biologically active N-thiocarbamoyl pyrazoline derivatives have been synthesized using anhydrous potassium carbonate as the catalyst. All the synthesized compounds were characterized by FT-IR, (1)H NMR, (13)C NMR spectral studies, LCMS, CHN Analysis and X-ray diffraction analysis (compound 7). In order to supplement the XRD parameters, molecular modelling was carried out by Gaussian 03W. From the optimized structure, the energy, dipolemoment and HOMO-LUMO energies of all the systems were calculated. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. The relationship between crystal structure and methyl and t-butyl group dynamics in van der Waals organic solids

    NASA Astrophysics Data System (ADS)

    Beckmann, Peter A.; Paty, Carol; Allocco, Elizabeth; Herd, Maria; Kuranz, Carolyn; Rheingold, Arnold L.

    2004-03-01

    We report x-ray diffractometry in a single crystal of 2-t-butyl-4-methylphenol (TMP) and low-frequency solid state nuclear magnetic resonance (NMR) proton relaxometry in a polycrystalline sample of TMP. The x-ray data show TMP to have a monoclinic, P21/c, structure with eight molecules per unit cell and two crystallographically inequivalent t-butyl group (C(CH3)3) sites. The proton spin-lattice relaxation rates were measured between 90 and 310 K at NMR frequencies of 8.50, 22.5, and 53.0 MHz. The relaxometry data is fitted with two models characterizing the dynamics of the t-butyl groups and their constituent methyl groups, both of which are consistent with the determined x-ray structure. In addition to presenting results for TMP, we review previously reported x-ray diffractometry and low-frequency NMR relaxometry in two other van der Waals solids which have a simpler structure. In both cases, a unique model for the reorientational dynamics was found. Finally, we review a similar previously reported analysis in a van der Waals solid with a very complex structure in which case fitting the NMR relaxometry requires very many parameters and serves mainly as a flag for a careful x-ray diffraction study.

  5. Structure analysis and spectroscopic characterization of 2-Fluoro-3-Methylpyridine-5-Boronic Acid with experimental (FT-IR, Raman, NMR and XRD) techniques and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Alver, Özgür; Dikmen, Gökhan

    2016-03-01

    Possible stable conformers, geometrical molecular structures, vibrational properties as well as band assignments, nuclear magnetic shielding tensors of 2-Fluoro-3-Methylpyridine-5-Boronic Acid (2F3MP5BA) were studied experimentally and theoretically using FT-IR, Raman, (CP/MAS) NMR and XRD spectroscopic methods. FT-IR and Raman spectra were evaluated in the region of 3500-400 cm-1, and 3200-400 cm-1, respectively. The optimized geometric structures, vibrational wavenumbers and nuclear magnetic shielding tensors were examined using Becke-3-Lee-Yang-Parr (B3LYP) hybrid density functional theory method with 6-311++G(d, p) basis set. 1H, 13C NMR chemical shifts were calculated using the gauge invariant atomic orbital (GIAO) method. 1H, 13C, APT and HETCOR NMR experiments of title molecule were carried out in DMSO solution. 13C CP/MAS NMR measurement was done with 4 mm zirconium rotor and glycine was used as an external standard. Single crystal of 2F3MP5BA was also prepared for XRD measurements. Assignments of vibrational wavenumbers were also strengthened by calculating the total energy distribution (TED) values using scaled quantum mechanical (SQM) method.

  6. On the use of atomistic simulations to aid bulk metallic glasses structural elucidation with solid-state NMR.

    PubMed

    Ferreira, Ary R; Rino, José P

    2017-08-24

    Solid-state nuclear magnetic resonance (ssNMR) experimental 27 Al metallic shifts reported in the literature for bulk metallic glasses (BMGs) were revisited in the light of state-of-the-art atomistic simulations. In a consistent way, the Gauge-Including Projector Augmented-Wave (GIPAW) method was applied in conjunction with classical molecular dynamics (CMD). A series of Zr-Cu-Al alloys with low Al concentrations were selected as case study systems, for which realistic CMD derived structural models were used for a short- and medium-range order mining. That initial procedure allowed the detection of trends describing changes on the microstructure of the material upon Al alloying, which in turn were used to guide GIPAW calculations with a set of abstract systems in the context of ssNMR. With essential precision and accuracy, the ab initio simulations also yielded valuable trends from the electronic structure point of view, which enabled an overview of the bonding nature of Al-centered clusters as well as its influence on the experimental ssNMR outcomes. The approach described in this work might promote the use of ssNMR spectroscopy in research on glassy metals. Moreover, the results presented demonstrate the possibility to expand the applications of this technique, with deeper insight into nuclear interactions and less speculative assignments.

  7. NMR Structure of Francisella tularensis Virulence Determinant Reveals Structural Homology to Bet v1 Allergen Proteins.

    PubMed

    Zook, James; Mo, Gina; Sisco, Nicholas J; Craciunescu, Felicia M; Hansen, Debra T; Baravati, Bobby; Cherry, Brian R; Sykes, Kathryn; Wachter, Rebekka; Van Horn, Wade D; Fromme, Petra

    2015-06-02

    Tularemia is a potentially fatal bacterial infection caused by Francisella tularensis, and is endemic to North America and many parts of northern Europe and Asia. The outer membrane lipoprotein, Flpp3, has been identified as a virulence determinant as well as a potential subunit template for vaccine development. Here we present the first structure for the soluble domain of Flpp3 from the highly infectious Type A SCHU S4 strain, derived through high-resolution solution nuclear magnetic resonance (NMR) spectroscopy; the first structure of a lipoprotein from the genus Francisella. The Flpp3 structure demonstrates a globular protein with an electrostatically polarized surface containing an internal cavity-a putative binding site based on the structurally homologous Bet v1 protein family of allergens. NMR-based relaxation studies suggest loop regions that potentially modulate access to the internal cavity. The Flpp3 structure may add to the understanding of F. tularensis virulence and contribute to the development of effective vaccines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Structure of the 30 kDa HIV-1 RNA Dimerization Signal by a Hybrid Cryo-EM, NMR, and Molecular Dynamics Approach.

    PubMed

    Zhang, Kaiming; Keane, Sarah C; Su, Zhaoming; Irobalieva, Rossitza N; Chen, Muyuan; Van, Verna; Sciandra, Carly A; Marchant, Jan; Heng, Xiao; Schmid, Michael F; Case, David A; Ludtke, Steven J; Summers, Michael F; Chiu, Wah

    2018-03-06

    Cryoelectron microscopy (cryo-EM) and nuclear magnetic resonance (NMR) spectroscopy are routinely used to determine structures of macromolecules with molecular weights over 65 and under 25 kDa, respectively. We combined these techniques to study a 30 kDa HIV-1 dimer initiation site RNA ([DIS] 2 ; 47 nt/strand). A 9 Å cryo-EM map clearly shows major groove features of the double helix and a right-handed superhelical twist. Simulated cryo-EM maps generated from time-averaged molecular dynamics trajectories (10 ns) exhibited levels of detail similar to those in the experimental maps, suggesting internal structural flexibility limits the cryo-EM resolution. Simultaneous inclusion of the cryo-EM map and 2 H-edited NMR-derived distance restraints during structure refinement generates a structure consistent with both datasets and supporting a flipped-out base within a conserved purine-rich bulge. Our findings demonstrate the power of combining global and local structural information from these techniques for structure determination of modest-sized RNAs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Structures of glycans bound to receptors from saturation transfer difference (STD) NMR spectroscopy: quantitative analysis by using CORCEMA-ST.

    PubMed

    Enríquez-Navas, Pedro M; Guzzi, Cinzia; Muñoz-García, Juan C; Nieto, Pedro M; Angulo, Jesús

    2015-01-01

    Glycan-receptor interactions are of fundamental relevance for a large number of biological processes, and their kinetics properties (medium/weak binding affinities) make them appropriated to be studied by ligand observed NMR techniques, among which saturation transfer difference (STD) NMR spectroscopy has been shown to be a very robust and powerful approach. The quantitative analysis of the results from a STD NMR study of a glycan-receptor interaction is essential to be able to translate the resulting spectral intensities into a 3D molecular model of the complex. This chapter describes how to carry out such a quantitative analysis by means of the Complete Relaxation and Conformational Exchange Matrix Approach for STD NMR (CORCEMA-ST), in general terms, and an example of a previous work on an antibody-glycan interaction is also shown.

  10. Evaluating the quality of NMR structures by local density of protons.

    PubMed

    Ban, Yih-En Andrew; Rudolph, Johannes; Zhou, Pei; Edelsbrunner, Herbert

    2006-03-01

    Evaluating the quality of experimentally determined protein structural models is an essential step toward identifying potential errors and guiding further structural refinement. Herein, we report the use of proton local density as a sensitive measure to assess the quality of nuclear magnetic resonance (NMR) structures. Using 256 high-resolution crystal structures with protons added and optimized, we show that the local density of different proton types display distinct distributions. These distributions can be characterized by statistical moments and are used to establish local density Z-scores for evaluating both global and local packing for individual protons. Analysis of 546 crystal structures at various resolutions shows that the local density Z-scores increase as the structural resolution decreases and correlate well with the ClashScore (Word et al. J Mol Biol 1999;285(4):1711-1733) generated by all atom contact analysis. Local density Z-scores for NMR structures exhibit a significantly wider range of values than for X-ray structures and demonstrate a combination of potentially problematic inflation and compression. Water-refined NMR structures show improved packing quality. Our analysis of a high-quality structural ensemble of ubiquitin refined against order parameters shows proton density distributions that correlate nearly perfectly with our standards derived from crystal structures, further validating our approach. We present an automated analysis and visualization tool for proton packing to evaluate the quality of NMR structures. 2005 Wiley-Liss, Inc.

  11. An NMR database for simulations of membrane dynamics.

    PubMed

    Leftin, Avigdor; Brown, Michael F

    2011-03-01

    Computational methods are powerful in capturing the results of experimental studies in terms of force fields that both explain and predict biological structures. Validation of molecular simulations requires comparison with experimental data to test and confirm computational predictions. Here we report a comprehensive database of NMR results for membrane phospholipids with interpretations intended to be accessible by non-NMR specialists. Experimental ¹³C-¹H and ²H NMR segmental order parameters (S(CH) or S(CD)) and spin-lattice (Zeeman) relaxation times (T(1Z)) are summarized in convenient tabular form for various saturated, unsaturated, and biological membrane phospholipids. Segmental order parameters give direct information about bilayer structural properties, including the area per lipid and volumetric hydrocarbon thickness. In addition, relaxation rates provide complementary information about molecular dynamics. Particular attention is paid to the magnetic field dependence (frequency dispersion) of the NMR relaxation rates in terms of various simplified power laws. Model-free reduction of the T(1Z) studies in terms of a power-law formalism shows that the relaxation rates for saturated phosphatidylcholines follow a single frequency-dispersive trend within the MHz regime. We show how analytical models can guide the continued development of atomistic and coarse-grained force fields. Our interpretation suggests that lipid diffusion and collective order fluctuations are implicitly governed by the viscoelastic nature of the liquid-crystalline ensemble. Collective bilayer excitations are emergent over mesoscopic length scales that fall between the molecular and bilayer dimensions, and are important for lipid organization and lipid-protein interactions. Future conceptual advances and theoretical reductions will foster understanding of biomembrane structural dynamics through a synergy of NMR measurements and molecular simulations. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Dynamics of group II chaperonin and prefoldin probed by 13C NMR spectroscopy.

    PubMed

    Kurimoto, Eiji; Nishi, Yohei; Yamaguchi, Yoshiki; Zako, Tamotsu; Iizuka, Ryo; Ide, Naoki; Yohda, Masafumi; Kato, Koichi

    2008-03-01

    Group II chaperonin (CPN) cooperates with prefoldin (PFD), which forms a jellyfish-shaped heterohexameric complex with a molecular mass of 87 kDa. PFD captures an unfolded protein with the tentacles and transfers it to the cavity of CPN. Although X-ray crystal structures of CPN and PFD have been reported, no structural information has been so far available for the terminal regions of the PFD tentacles nor for the C-terminal segments of CPNs, which were regarded to be functionally significant in the previous studies. Here we report 13C NMR analyses on archaeal PFD, CPN, and their complex, focusing on those structurally uncharacterized regions. The PFD and CPN complexes selectively labeled with 13C at methionyl carbonyl carbons were separately and jointly subjected to NMR measurements. 13C NMR spectral data demonstrated that the N-terminal segment of the alpha and beta subunits of PFD as well as the C-terminal segments of the CPN hexadecamer retain significant degrees of freedom in internal motion even in the complex with a molecular mass of 1.1 MDa. 2007 Wiley-Liss, Inc.

  13. An NMR Study of Microvoids in Polymers

    NASA Technical Reports Server (NTRS)

    Toy, James; Mattrix, Larry

    1996-01-01

    An understanding of polymer defect structures, like microvoids in polymeric matrices, is most crucial to their fabrication and application potential. In this project guest atoms are introduced into the microvoids in PMR-15 and NMR is used to determine microvoid sizes and locations. Xenon is a relatively inert probe that would normally not be found naturally in polymer or in NMR probe materials. There are two NMR active Xenon isotopes, Xe-129 and Xe-131. The Xe atom has a very high polarizability, which makes it sensitive to the intracrystalline environment of polymers. Interactions between the Xe atoms and the host matrix perturb and Xe electron cloud, deshielding the nuclei, and thereby expanding the range of the observed NMR chemical shifts. This chemical shift range which may be as large as 5000 ppm, permits subtle structural and chemical effects to be studied with high sensitivity. The Xe-129-NMR line shape has been found to vary in response to changes in the pore symmetry of the framework hosts in Zeolites and Clathrasil compounds. Before exposure to Xe gas, the PMR-15 samples were dried in a vacuum oven at 150 C for 48 hours. The samples were then exposed to Xe gas at 30 psi for 72 hours and sealed in glass tubes with 1 atmosphere of Xenon gas. Xenon gas at 1 atmosphere was used to tune up the spectrometer and to set up the appropriate NMR parameters. A series of spectra were obtained interspersed with applications of vacuum and heating to drive out the adsorbed Xe and determine the role of Xe-Xe interactions in the observed chemical shift.

  14. Chemical behavior of methylpyranomalvidin-3-O-glucoside in aqueous solution studied by NMR and UV-visible spectroscopy.

    PubMed

    Oliveira, Joana; Petrov, Vesselin; Parola, A Jorge; Pina, Fernando; Azevedo, Joana; Teixeira, Natércia; Brás, Natércia F; Fernandes, Pedro A; Mateus, Nuno; Ramos, Maria João; de Freitas, Victor

    2011-02-17

    In the present work, the proton-transfer reactions of the methylpyranomalvidin-3-O-glucoside pigment in water with different pH values was studied by NMR and UV-visible spectroscopies. The results showed four equilibrium forms: the methylpyranomalvidin-3-O-glucoside cation, the neutral quinoidal base, the respective anionic quinoidal base, and a dianionic base unprotonated at the methyl group. According to the NMR data, it seems that for methylpyranomalvidin-3-O-glucoside besides the acid-base equilibrium between the pyranoflavylium cation and the neutral quinoidal base, a new species is formed at pD 4.88-6.10. This is corroborated by the appearance of a new set of signals in the NMR spectrum that may be assigned to the formation of hemiketal/cis-chalcone species to a small extent. The two ionization constants (pK(a1) and pK(a2)) obtained by both methods (NMR and UV-visible) for methylpyranomalvidin-3-O-glucoside are in agreement (pK(a1) = 5.17 ± 0.03; pK(a2) = 8.85 ± 0.08; and pK(a1) = 4.57 ± 0.07; pK(a2) = 8.23 ± 0.04 obtained by NMR and UV-visible spectroscopies, respectively). Moreover, the fully dianionic unprotonated form (at the methyl group) of the methylpyranomalvidin-3-O-glucoside is converted slowly into a new structure that displays a yellow color at basic pH. On the basis of the results obtained through LC-MS and NMR, the proposed structure was found to correspond to the flavonol syringetin-3-glucoside.

  15. Racemic crystals of trolox derivatives compared to their chiral counterparts: Structural studies using solid-state NMR, DFT calculations and X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Wałejko, P.; Paradowska, K.; Szeleszczuk, Ł.; Wojtulewski, S.; Baj, A.

    2018-03-01

    Trolox C (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) is a water-soluble vitamin E analogue that is available in enantiomeric forms R or S. Enantiomerically pure Trolox 1, its derivatives 2, 3 (R and S enantiomers) and racemic forms 1-3 were studied using solid-state 13C cross-polarisation (CP) magic angle spinning (MAS) NMR (13C CPMAS NMR). Gauge-including projector-augmented wave density functional theory (GIPAW DFT) calculations of the shielding constants supported the assignment of 13C resonances in the solid-state NMR spectra. For the 13C CPMAS NMR spectra of 1, resonances of pure enantiomers were significantly broader than those of the racemic R/S form. In order to explain these effects, five of the available crystal structures were analysed (1R/S, 3R/S, 2S and the newly measured 2R/S and 3S). Cyclic dimers with one R and one S enantiomer linked by two OHsbnd Odbnd C2b hydrogen bonds were formed in 1R/S. Similar hydrogen-bonded dimers were present in 3S but not in 3R/S, in which interactions are water-mediated. A comparison of X-ray diffraction, CPMAS NMR data and the DFT GIPAW calculations of racemic forms and pure enantiomers was conducted for the first time. Our results, particularly the solid-state NMR data, were discussed in relation to Wallach's rule, that the racemic crystal appears as more ordered than its chiral counterpart.

  16. Homonuclear 1H NMR and circular dichroism study of the HIV-1 Tat Eli variant

    PubMed Central

    Watkins, Jennifer D; Campbell, Grant R; Halimi, Hubert; Loret, Erwann P

    2008-01-01

    Background The HIV-1 Tat protein is a promising target to develop AIDS therapies, particularly vaccines, due to its extracellular role that protects HIV-1-infected cells from the immune system. Tat exists in two different lengths, 86 or 87 residues and 99 or 101 residues, with the long form being predominant in clinical isolates. We report here a structural study of the 99 residue Tat Eli variant using 2D liquid-state NMR, molecular modeling and circular dichroism. Results Tat Eli was obtained from solid-phase peptide synthesis and the purified protein was proven biologically active in a trans-activation assay. Circular dichroism spectra at different temperatures up to 70°C showed that Tat Eli is not a random coil at 20°C. Homonuclear 1H NMR spectra allowed us to identify 1639 NMR distance constraints out of which 264 were interresidual. Molecular modeling satisfying at least 1474 NMR constraints revealed the same folding for different model structures. The Tat Eli model has a core region composed of a part of the N-terminus including the highly conserved Trp 11. The extra residues in the Tat Eli C-terminus protrude from a groove between the basic region and the cysteine-rich region and are well exposed to the solvent. Conclusion We show that active Tat variants share a similar folding pattern whatever their size, but mutations induce local structural changes. PMID:18808674

  17. Complete NMR assignment of a bisecting hybrid-type oligosaccharide transferred by Mucor hiemalis endo-β-N-acetylglucosaminidase.

    PubMed

    Yamanoi, Takashi; Oda, Yoshiki; Katsuraya, Kaname; Inazu, Toshiyuki; Yamamoto, Kenji

    2016-06-02

    This study describes the complete nuclear magnetic resonance (NMR) spectral assignment of a bisecting hybrid-type oligosaccharide 1, transferred by Mucor hiemalis endo-β-N-acetylglucosaminidase (Endo-M). Through (1)H- and (13)C-NMR, DQF-COSY, HSQC, HMBC, TOCSY, and NOESY experiments, we determine the structure of the glycoside linkage formed by the Endo-M transglycosylation, i.e., the connection between GlcNAc and GlcNAc in oligosaccharide 1. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. NMR studies of field induced magnetism in CeCoIn5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graf, Matthias; Curro, Nicholas J; Young, Ben - Li

    2009-01-01

    Recent Nuclear Magnetic Resonance and elastic neutron scattering experiments have revealed conclusively the presence of static incommensurate magnetism in the field-induced B phase of CeCoIns, We analyze the NMR data assuming the hyperfine coupling to the 1n(2) nuclei is anisotropic and simulate the spectra for several different magnetic structures, The NMR data are consistent with ordered Ce moments along the [001] direction, but are relatively insensitive to the direction of the incommensurate wavevector.

  19. NMR spectra of androstane analogs of brassinosteroids

    NASA Astrophysics Data System (ADS)

    Baranovskii, A. V.; Litvinovskaya, R. P.; Aver'kova, M. A.; Khripach, N. B.; Khripach, V. A.

    2007-09-01

    We have used two-dimensional NMR spectroscopy to make a complete assignment of signals from the nuclei of hydrogen and carbon atoms in the spectra of brassinosteroids in the androstane series. We have confirmed the stereochemistry of the chiral centers and the structure of the molecules. We have studied the effect of the configuration of the 2,3-diol groups in the A ring of the steroids on the chemical shift of adjacent atoms in the 13C and 1H NMR spectra.

  20. Structural Changes Associated with Transthyretin Misfolding and Amyloid Formation Revealed by Solution and Solid-State NMR

    DOE PAGES

    Lim, Kwang Hun; Dasari, Anvesh K. R.; Hung, Ivan; ...

    2016-03-21

    Elucidation of structural changes involved in protein misfolding and amyloid formation is crucial for unraveling the molecular basis of amyloid formation. We report structural analyses of the amyloidogenic intermediate and amyloid aggregates of transthyretin using solution and solid-state nuclear magnetic resonance (NMR) spectroscopy. These NMR solution results show that one of the two main β-sheet structures (CBEF β-sheet) is maintained in the aggregation-competent intermediate, while the other DAGH β-sheet is more flexible on millisecond time scales. Magic-angle-spinning solid-state NMR revealed that AB loop regions interacting with strand A in the DAGH β-sheet undergo conformational changes, leading to the destabilized DAGHmore » β-sheet.« less

  1. The contribution of solid-state NMR spectroscopy to understanding biomineralization: Atomic and molecular structure of bone

    NASA Astrophysics Data System (ADS)

    Duer, Melinda J.

    2015-04-01

    Solid-state NMR spectroscopy has had a major impact on our understanding of the structure of mineralized tissues, in particular bone. Bone exemplifies the organic-inorganic composite structure inherent in mineralized tissues. The organic component of the extracellular matrix in bone is primarily composed of ordered fibrils of collagen triple-helical molecules, in which the inorganic component, calcium phosphate particles, composed of stacks of mineral platelets, are arranged around the fibrils. This perspective argues that key factors in our current structural model of bone mineral have come about through NMR spectroscopy and have yielded the primary information on how the mineral particles interface and bind with the underlying organic matrix. The structure of collagen within the organic matrix of bone or any other structural tissue has yet to be determined, but here too, this perspective shows there has been real progress made through application of solid-state NMR spectroscopy in conjunction with other techniques. In particular, NMR spectroscopy has highlighted the fact that even within these structural proteins, there is considerable dynamics, which suggests that one should be cautious when using inherently static structural models, such as those arising from X-ray diffraction analyses, to gain insight into molecular roles. It is clear that the NMR approach is still in its infancy in this area, and that we can expect many more developments in the future, particularly in understanding the molecular mechanisms of bone diseases and ageing.

  2. DFT calculations on spectroscopic and structural properties of a NLO chromophore

    NASA Astrophysics Data System (ADS)

    Altürk, Sümeyye; Avci, Davut; Tamer, Ömer; Atalay, Yusuf

    2016-03-01

    The molecular geometry optimization, vibrational frequencies and gauge including atomic orbital (GIAO) 1H and 13C NMR chemical shift values of 2-(1'-(4'''-Methoxyphenyl)-5'-(thien-2″-yl)pyrrol-2'-yl)-1,3-benzothiazole as potential nonlinear optical (NLO) material were calculated using density functional theory (DFT) HSEh1PBE method with 6-311G(d,p) basis set. The best of our knowledge, this study have not been reported to date. Additionally, a detailed vibrational study was performed on the basis of potential energy distribution (PED) using VEDA program. It is noteworthy that NMR chemical shifts are quite useful for understanding the relationship between the molecular structure and electronic properties of molecules. The computed IR and NMR spectra were used to determine the types of the experimental bands observed. Predicted values of structural and spectroscopic parameters of the chromophore were compared with each other so as to display the effects of the different substituents on the spectroscopic and structural properties. Obtained data showed that there is an agreement between the predicted and experimental data.

  3. Combined NMR and EPR Spectroscopy to Determine Structures of Viral Fusion Domains in Membranes

    PubMed Central

    Tamm, Lukas K.; Lai, Alex L.; Li, Yinling

    2008-01-01

    Methods are described to determine the structures of viral membrane fusion domains in detergent micelles by NMR and in lipid bilayers by site-directed spin labeling and EPR spectroscopy. Since in favorable cases, the lower-resolution spin label data obtained in lipid bilayers fully support the higher-resolution structures obtained by solution NMR, it is possible to graft the NMR structural coordinates into membranes using the EPR-derived distance restraints to the lipid bilayer. Electron paramagnetic dynamics and distance measurements in bilayers support conclusions drawn from NMR in detergent micelles. When these methods are applied to a structure determination of the influenza virus fusion domain and four point mutations with different functional phenotypes, it is evident that a fixed-angle boomerang structure with a glycine edge on the outside of the N-terminal arm is both necessary and sufficient to support membrane fusion. The human immunodeficiency virus fusion domain forms a straight helix with a flexible C-terminus. While EPR data for this fusion domain are not yet available, it is tentatively speculated that, because of its higher hydrophobicity, a critically tilted insertion may occur even in the absence of a kinked boomerang structure in this case. PMID:17963720

  4. Proton NMR studies of functionalized nanoparticles in aqueous environments

    NASA Astrophysics Data System (ADS)

    Tataurova, Yulia Nikolaevna

    Nanoscience is an emerging field that can provide potential routes towards addressing critical issues such as clean and sustainable energy, environmental remediation and human health. Specifically, porous nanomaterials, such as zeolites and mesoporous silica, are found in a wide range of applications including catalysis, drug delivery, imaging, environmental protection, and sensing. The characterization of the physical and chemical properties of nanocrystalline materials is essential to the realization of these innovative applications. The great advantage of porous nanocrystals is their increased external surface area that can control their biological, chemical and catalytic activities. Specific functional groups synthesized on the surface of nanoparticles are able to absorb heavy metals from the solution or target disease cells, such as cancer cells. In these studies, three main issues related to functionalized nanomaterials will be addressed through the application of nuclear magnetic resonance (NMR) techniques including: 1) surface composition and structure of functionalized nanocrystalline particles; 2) chemical properties of the guest molecules on the surface of nanomaterials, and 3) adsorption and reactivity of surface bound functional groups. Nuclear magnetic resonance (NMR) is one of the major spectroscopic techniques available for the characterization of molecular structure and conformational dynamics with atomic level detail. This thesis deals with the application of 1H solution state NMR to porous nanomaterial in an aqueous environment. Understanding the aqueous phase behavior of functionalized nanomaterials is a key factor in the design and development of safe nanomaterials because their interactions with living systems are always mediated through the aqueous phase. This is often due to a lack of fundamental knowledge in interfacial chemical and physical phenomena that occur on the surface of nanoparticles. The use of solution NMR spectroscopy results in high-resolution NMR spectra. This technique is selective for protons on the surface organic functional groups due to their motional averaging in solution. In this study, 1H solution NMR spectroscopy was used to investigate the interface of the organic functional groups in D2O. The pKa for these functional groups covalently bound to the surface of nanoparticles was determined using an NMR-pH titration method based on the variation in the proton chemical shift for the alkyl group protons closest to the amine group with pH. The adsorption of toxic contaminants (chromate and arsenate anions) on the surface of functionalized silicalite-1 and mesoporous silica nanoparticles has been studied by 1H solution NMR spectroscopy. With this method, the surface bound contaminants are detected. The analysis of the intensity and position of these peaks allows quantitative assessment of the relative amounts of functional groups with adsorbed metal ions. These results demonstrate the sensitivity of solution NMR spectroscopy to the electronic environment and structure of the surface functional groups on porous nanomaterials.

  5. Solid-state NMR/NQR and first-principles study of two niobium halide cluster compounds.

    PubMed

    Perić, Berislav; Gautier, Régis; Pickard, Chris J; Bosiočić, Marko; Grbić, Mihael S; Požek, Miroslav

    2014-01-01

    Two hexanuclear niobium halide cluster compounds with a [Nb6X12](2+) (X=Cl, Br) diamagnetic cluster core, have been studied by a combination of experimental solid-state NMR/NQR techniques and PAW/GIPAW calculations. For niobium sites the NMR parameters were determined by using variable Bo field static broadband NMR measurements and additional NQR measurements. It was found that they possess large positive chemical shifts, contrary to majority of niobium compounds studied so far by solid-state NMR, but in accordance with chemical shifts of (95)Mo nuclei in structurally related compounds containing [Mo6Br8](4+) cluster cores. Experimentally determined δiso((93)Nb) values are in the range from 2,400 to 3,000 ppm. A detailed analysis of geometrical relations between computed electric field gradient (EFG) and chemical shift (CS) tensors with respect to structural features of cluster units was carried out. These tensors on niobium sites are almost axially symmetric with parallel orientation of the largest EFG and the smallest CS principal axes (Vzz and δ33) coinciding with the molecular four-fold axis of the [Nb6X12](2+) unit. Bridging halogen sites are characterized by large asymmetry of EFG and CS tensors, the largest EFG principal axis (Vzz) is perpendicular to the X-Nb bonds, while intermediate EFG principal axis (Vyy) and the largest CS principal axis (δ11) are oriented in the radial direction with respect to the center of the cluster unit. For more symmetrical bromide compound the PAW predictions for EFG parameters are in better correspondence with the NMR/NQR measurements than in the less symmetrical chlorine compound. Theoretically predicted NMR parameters of bridging halogen sites were checked by (79/81)Br NQR and (35)Cl solid-state NMR measurements. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. NMR study on (1alpha, 2beta, 4beta, 5alpha, 7beta)-7-[(hydroxydi-2-thienylacetyl) oxy]-9,9-dimethyl-3-oxa-9-azoniatricyclo [3.3.1.0(2,4)] nonane bromide monohydrate.

    PubMed

    Lin, Zhenguang; Mu, Yingdi; Liu, Yihui; Ren, Yeming; Lin, Jimao

    2010-03-01

    The structure of (1alpha, 2beta, 4beta, 5alpha, 7beta)-7-[(hydroxydi-2-thienylacetyl) oxy]-9,9-dimethyl-3-oxa-9-azoniatricyclo [3.3.1.0(2,4)] nonane bromide monohydrate was studied using 1D and 2D NMR techniques. Complete NMR assignments of the compound were obtained using DEPT, H-H COSY, as well as HMQC and HMBC heteronuclear correlation techniques. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Lignin Composition and Structure in Young versus Adult Eucalyptus globulus Plants1

    PubMed Central

    Rencoret, Jorge; Gutiérrez, Ana; Nieto, Lidia; Jiménez-Barbero, J.; Faulds, Craig B.; Kim, Hoon; Ralph, John; Martínez, Ángel T.; del Río, José C.

    2011-01-01

    Lignin changes during plant growth were investigated in a selected Eucalyptus globulus clone. The lignin composition and structure were studied in situ by a new procedure enabling the acquisition of two-dimensional nuclear magnetic resonance (2D-NMR) spectra on wood gels formed in the NMR tube as well as by analytical pyrolysis-gas chromatography-mass spectrometry. In addition, milled-wood lignins were isolated and analyzed by 2D-NMR, pyrolysis-gas chromatography-mass spectrometry, and thioacidolysis. The data indicated that p-hydroxyphenyl and guaiacyl units are deposited at the earlier stages, whereas the woods are enriched in syringyl (S) lignin during late lignification. Wood 2D-NMR showed that β-O-4′ and resinol linkages were predominant in the eucalypt lignin, whereas other substructures were present in much lower amounts. Interestingly, open β-1′ structures could be detected in the isolated lignins. Phenylcoumarans and cinnamyl end groups were depleted with age, spirodienone abundance increased, and the main substructures (β-O-4′ and resinols) were scarcely modified. Thioacidolysis revealed a higher predominance of S units in the ether-linked lignin than in the total lignin and, in agreement with NMR, also indicated that resinols are the most important nonether linkages. Dimer analysis showed that most of the resinol-type structures comprised two S units (syringaresinol), the crossed guaiacyl-S resinol appearing as a minor substructure and pinoresinol being totally absent. Changes in hemicelluloses were also shown by the 2D-NMR spectra of the wood gels without polysaccharide isolation. These include decreases of methyl galacturonosyl, arabinosyl, and galactosyl (anomeric) signals, assigned to pectin and related neutral polysaccharides, and increases of xylosyl (which are approximately 50% acetylated) and 4-O-methylglucuronosyl signals. PMID:21098672

  8. Selective observation of charge storing ions in supercapacitor electrode materials.

    PubMed

    Forse, Alexander C; Griffin, John M; Grey, Clare P

    2018-02-01

    Nuclear magnetic resonance (NMR) spectroscopy has emerged as a useful technique for probing the structure and dynamics of the electrode-electrolyte interface in supercapacitors, as ions inside the pores of the carbon electrodes can be studied separately from bulk electrolyte. However, in some cases spectral resolution can limit the information that can be obtained. In this study we address this issue by showing how cross polarisation (CP) NMR experiments can be used to selectively observe the in-pore ions in supercapacitor electrode materials. We do this by transferring magnetisation from 13 C nuclei in porous carbons to nearby nuclei in the cations ( 1 H) or anions ( 19 F) of an ionic liquid. Two-dimensional NMR experiments and CP kinetics measurements confirm that in-pore ions are located within Ångströms of sp 2 -hybridised carbon surfaces. Multinuclear NMR experiments hold promise for future NMR studies of supercapacitor systems where spectral resolution is limited. Copyright © 2017 University of Cambridge. Published by Elsevier Inc. All rights reserved.

  9. The application of absolute quantitative (1)H NMR spectroscopy in drug discovery and development.

    PubMed

    Singh, Suruchi; Roy, Raja

    2016-07-01

    The identification of a drug candidate and its structural determination is the most important step in the process of the drug discovery and for this, nuclear magnetic resonance (NMR) is one of the most selective analytical techniques. The present review illustrates the various perspectives of absolute quantitative (1)H NMR spectroscopy in drug discovery and development. It deals with the fundamentals of quantitative NMR (qNMR), the physiochemical properties affecting qNMR, and the latest referencing techniques used for quantification. The precise application of qNMR during various stages of drug discovery and development, namely natural product research, drug quantitation in dosage forms, drug metabolism studies, impurity profiling and solubility measurements is elaborated. To achieve this, the authors explore the literature of NMR in drug discovery and development between 1963 and 2015. It also takes into account several other reviews on the subject. qNMR experiments are used for drug discovery and development processes as it is a non-destructive, versatile and robust technique with high intra and interpersonal variability. However, there are several limitations also. qNMR of complex biological samples is incorporated with peak overlap and a low limit of quantification and this can be overcome by using hyphenated chromatographic techniques in addition to NMR.

  10. NMR determination of an incommensurate helical antiferromagnetic structure in EuCo 2 As 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Q. -P.; Higa, N.; Sangeetha, N. S.

    In this paper, we report 153Eu, 75As, and 59Co nuclear magnetic resonance (NMR) results on EuCo 2As 2 single crystal. Observations of 153Eu and 75As NMR spectra in zero magnetic field at 4.3 K below an antiferromagnetic (AFM) ordering temperature T N = 45 K and its external magnetic field dependence clearly evidence an incommensurate helical AFM structure in EuCo 2As 2. Furthermore, based on 59Co NMR data in both the paramagnetic and the incommensurate AFM states, we have determined the model-independent value of the AFM propagation vector k = (0,0,0.73 ± 0.07)2π/c, where c is the c lattice parameter.more » Finally, the incommensurate helical AFM state was characterized by only NMR data with model-independent analyses, showing NMR to be a unique tool for determination of the spin structure in incommensurate helical AFMs.« less

  11. NMR determination of an incommensurate helical antiferromagnetic structure in EuCo 2 As 2

    DOE PAGES

    Ding, Q. -P.; Higa, N.; Sangeetha, N. S.; ...

    2017-05-05

    In this paper, we report 153Eu, 75As, and 59Co nuclear magnetic resonance (NMR) results on EuCo 2As 2 single crystal. Observations of 153Eu and 75As NMR spectra in zero magnetic field at 4.3 K below an antiferromagnetic (AFM) ordering temperature T N = 45 K and its external magnetic field dependence clearly evidence an incommensurate helical AFM structure in EuCo 2As 2. Furthermore, based on 59Co NMR data in both the paramagnetic and the incommensurate AFM states, we have determined the model-independent value of the AFM propagation vector k = (0,0,0.73 ± 0.07)2π/c, where c is the c lattice parameter.more » Finally, the incommensurate helical AFM state was characterized by only NMR data with model-independent analyses, showing NMR to be a unique tool for determination of the spin structure in incommensurate helical AFMs.« less

  12. Dissemination of original NMR data enhances reproducibility and integrity in chemical research.

    PubMed

    Bisson, Jonathan; Simmler, Charlotte; Chen, Shao-Nong; Friesen, J Brent; Lankin, David C; McAlpine, James B; Pauli, Guido F

    2016-08-25

    The notion of data transparency is gaining a strong awareness among the scientific community. The availability of raw data is actually regarded as a fundamental way to advance science by promoting both integrity and reproducibility of research outcomes. Particularly, in the field of natural product and chemical research, NMR spectroscopy is a fundamental tool for structural elucidation and quantification (qNMR). As such, the accessibility of original NMR data, i.e., Free Induction Decays (FIDs), fosters transparency in chemical research and optimizes both peer review and reproducibility of reports by offering the fundamental tools to perform efficient structural verification. Although original NMR data are known to contain a wealth of information, they are rarely accessible along with published data. This viewpoint discusses the relevance of the availability of original NMR data as part of good research practices not only to promote structural correctness, but also to enhance traceability and reproducibility of both chemical and biological results.

  13. 87Sr solid-state NMR as a structurally sensitive tool for the investigation of materials: antiosteoporotic pharmaceuticals and bioactive glasses.

    PubMed

    Bonhomme, Christian; Gervais, Christel; Folliet, Nicolas; Pourpoint, Frédérique; Diogo, Cristina Coelho; Lao, Jonathan; Jallot, Edouard; Lacroix, Joséphine; Nedelec, Jean-Marie; Iuga, Dinu; Hanna, John V; Smith, Mark E; Xiang, Ye; Du, Jincheng; Laurencin, Danielle

    2012-08-01

    Strontium is an element of fundamental importance in biomedical science. Indeed, it has been demonstrated that Sr(2+) ions can promote bone growth and inhibit bone resorption. Thus, the oral administration of Sr-containing medications has been used clinically to prevent osteoporosis, and Sr-containing biomaterials have been developed for implant and tissue engineering applications. The bioavailability of strontium metal cations in the body and their kinetics of release from materials will depend on their local environment. It is thus crucial to be able to characterize, in detail, strontium environments in disordered phases such as bioactive glasses, to understand their structure and rationalize their properties. In this paper, we demonstrate that (87)Sr NMR spectroscopy can serve as a valuable tool of investigation. First, the implementation of high-sensitivity (87)Sr solid-state NMR experiments is presented using (87)Sr-labeled strontium malonate (with DFS (double field sweep), QCPMG (quadrupolar Carr-Purcell-Meiboom-Gill), and WURST (wideband, uniform rate, and smooth truncation) excitation). Then, it is shown that GIPAW DFT (gauge including projector augmented wave density functional theory) calculations can accurately compute (87)Sr NMR parameters. Last and most importantly, (87)Sr NMR is used for the study of a (Ca,Sr)-silicate bioactive glass of limited Sr content (only ~9 wt %). The spectrum is interpreted using structural models of the glass, which are generated through molecular dynamics (MD) simulations and relaxed by DFT, before performing GIPAW calculations of (87)Sr NMR parameters. Finally, changes in the (87)Sr NMR spectrum after immersion of the glass in simulated body fluid (SBF) are reported and discussed.

  14. Proton-Based Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy.

    PubMed

    Zhang, Rongchun; Mroue, Kamal H; Ramamoorthy, Ayyalusamy

    2017-04-18

    Protons are vastly abundant in a wide range of exciting macromolecules and thus can be a powerful probe to investigate the structure and dynamics at atomic resolution using solid-state NMR (ssNMR) spectroscopy. Unfortunately, the high signal sensitivity, afforded by the high natural-abundance and high gyromagnetic ratio of protons, is greatly compromised by severe line broadening due to the very strong 1 H- 1 H dipolar couplings. As a result, protons are rarely used, in spite of the desperate need for enhancing the sensitivity of ssNMR to study a variety of systems that are not amenable for high resolution investigation using other techniques including X-ray crystallography, cryo-electron microscopy, and solution NMR spectroscopy. Thanks to the remarkable improvement in proton spectral resolution afforded by the significant advances in magic-angle-spinning (MAS) probe technology, 1 H ssNMR spectroscopy has recently attracted considerable attention in the structural and dynamics studies of various molecular systems. However, it still remains a challenge to obtain narrow 1 H spectral lines, especially from proteins, without resorting to deuteration. In this Account, we review recent proton-based ssNMR strategies that have been developed in our laboratory to further improve proton spectral resolution without resorting to chemical deuteration for the purposes of gaining atomistic-level insights into molecular structures of various crystalline solid systems, using small molecules and peptides as illustrative examples. The proton spectral resolution enhancement afforded by the ultrafast MAS frequencies up to 120 kHz is initially discussed, followed by a description of an ensemble of multidimensional NMR pulse sequences, all based on proton detection, that have been developed to obtain in-depth information from dipolar couplings and chemical shift anisotropy (CSA). Simple single channel multidimensional proton NMR experiments could be performed to probe the proximity of protons for structure determination using 1 H- 1 H dipolar couplings and to evaluate the changes in chemical environments as well as the relative orientation to the external magnetic field using proton CSA. Due to the boost in signal sensitivity enabled by proton detection under ultrafast MAS, by virtue of high proton natural abundance and gyromagnetic ratio, proton-detected multidimensional experiments involving low-γ nuclei can now be accomplished within a reasonable time, while the higher dimension also offers additional resolution enhancement. In addition, the application of proton-based ssNMR spectroscopy under ultrafast MAS in various challenging and crystalline systems is also presented. Finally, we briefly discuss the limitations and challenges pertaining to proton-based ssNMR spectroscopy under ultrafast MAS conditions, such as the presence of high-order dipolar couplings, friction-induced sample heating, and limited sample volume. Although there are still a number of challenges that must be circumvented by further developments in radio frequency pulse sequences, MAS probe technology and approaches to prepare NMR-friendly samples, proton-based ssNMR has already gained much popularity in various research domains, especially in proteins where uniform or site-selective deuteration can be relatively easily achieved. In addition, implementation of the recently developed fast data acquisition approaches would also enable further developments in the design and applications of proton-based ultrafast MAS multidimensional ssNMR techniques.

  15. 1H and 13C-NMR studies on phenol-formaldehyde prepolymers for tannin-based adhesives

    Treesearch

    Gerald W. McGraw; Lawerence L. Lanucci; Seiji Ohara; Richard W. Hemingway

    1989-01-01

    The number average structure and the molecular weight distribution of phenol-formaldehyde prepolymers for use in synthesis of tannin-based adhesive resins were determined with 1H and 13C-NMR spectroscopy and gel permeation chromatography of acetylated resins. These methods were used to determine differences in phenol-...

  16. High-resolution NMR study of light and heavy crude oils: “structure-property” analysis

    NASA Astrophysics Data System (ADS)

    Rakhmatullin, I.; Efimov, S.; Varfolomeev, M.; Klochkov, V.

    2018-05-01

    Measurements of three light and one heavy crude oil samples were carried out by high-resolution nuclear magnetic resonance (NMR) spectroscopy methods. Quantitative fractions of aromatic molecules and functional groups constituting oil hydrocarbons were determined, and comparative analysis of the oil samples of different viscosity and origin was done.

  17. New mechanistic insights regarding Pd/Cu catalysts for the Sonogashira reaction: HRMAS NMR studies of silica-immobilized systems.

    PubMed

    Posset, Tobias; Blümel, Janet

    2006-07-05

    The title technique, high-resolution magic angle spinning NMR of suspensions, constitutes a powerful new tool for investigating the structures and mobilities of immobilized species and, thus, for optimizing heterobimetallic catalyst systems, such as the Sonogashira coupling of terminal alkynes and aryl halides.

  18. Isolation, folding and structural investigations of the amino acid transporter OEP16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ni, Da Qun; Zook, James; Klewer, Douglas A.

    2011-12-01

    Membrane proteins compose more than 30% of all proteins in the living cell. However, many membrane proteins have low abundance in the cell and cannot be isolated from natural sources in concentrations suitable for structure analysis. The overexpression, reconstitution, and stabilization of membrane proteins are complex and remain a formidable challenge in membrane protein characterization. Here we describe a novel, in vitro folding procedure for a cation-selective channel protein, the outer envelope membrane protein 16 (OEP16) of pea chloroplast, overexpressed in Escherichia coli in the form of inclusion bodies. The protein is purified and then folded with detergent on amore » Ni-NTA affinity column. Final concentrations of reconstituted OEP16 of up to 24 mg/ml have been achieved, which provides samples that are sufficient for structural studies by NMR and crystallography. Reconstitution of OEP16 in detergent micelles was monitored by circular dichroism, fluorescence, and NMR spectroscopy. Tryptophan fluorescence spectra of heterologous expressed OEP16 in micelles are similar to spectra of functionally active OEP16 in liposomes, which indicates folding of the membrane protein in detergent micelles. CD spectroscopy studies demonstrate a folded protein consisting primarily of a-helices. 15N-HSQC NMR spectra also provide evidence for a folded protein. We present here a convenient, effective and quantitative method to screen large numbers of conditions for optimal protein stability by using microdialysis chambers in combination with fluorescence spectroscopy. Recent collection of multidimensional NMR data at 500, 600 and 800 MHz demonstrated that the protein is suitable for structure determination by NMR and stable for weeks during data collection.« less

  19. Isolation, folding and structural investigations of the amino acid transporter OEP16.

    PubMed

    Ni, Da Qun; Zook, James; Klewer, Douglas A; Nieman, Ronald A; Soll, J; Fromme, Petra

    2011-12-01

    Membrane proteins compose more than 30% of all proteins in the living cell. However, many membrane proteins have low abundance in the cell and cannot be isolated from natural sources in concentrations suitable for structure analysis. The overexpression, reconstitution, and stabilization of membrane proteins are complex and remain a formidable challenge in membrane protein characterization. Here we describe a novel, in vitro folding procedure for a cation-selective channel protein, the outer envelope membrane protein 16 (OEP16) of pea chloroplast, overexpressed in Escherichia coli in the form of inclusion bodies. The protein is purified and then folded with detergent on a Ni-NTA affinity column. Final concentrations of reconstituted OEP16 of up to 24 mg/ml have been achieved, which provides samples that are sufficient for structural studies by NMR and crystallography. Reconstitution of OEP16 in detergent micelles was monitored by circular dichroism, fluorescence, and NMR spectroscopy. Tryptophan fluorescence spectra of heterologous expressed OEP16 in micelles are similar to spectra of functionally active OEP16 in liposomes, which indicates folding of the membrane protein in detergent micelles. CD spectroscopy studies demonstrate a folded protein consisting primarily of α-helices. ¹⁵N-HSQC NMR spectra also provide evidence for a folded protein. We present here a convenient, effective and quantitative method to screen large numbers of conditions for optimal protein stability by using microdialysis chambers in combination with fluorescence spectroscopy. Recent collection of multidimensional NMR data at 500, 600 and 800 MHz demonstrated that the protein is suitable for structure determination by NMR and stable for weeks during data collection. Copyright © 2011. Published by Elsevier Inc.

  20. CSI 3.0: a web server for identifying secondary and super-secondary structure in proteins using NMR chemical shifts.

    PubMed

    Hafsa, Noor E; Arndt, David; Wishart, David S

    2015-07-01

    The Chemical Shift Index or CSI 3.0 (http://csi3.wishartlab.com) is a web server designed to accurately identify the location of secondary and super-secondary structures in protein chains using only nuclear magnetic resonance (NMR) backbone chemical shifts and their corresponding protein sequence data. Unlike earlier versions of CSI, which only identified three types of secondary structure (helix, β-strand and coil), CSI 3.0 now identifies total of 11 types of secondary and super-secondary structures, including helices, β-strands, coil regions, five common β-turns (type I, II, I', II' and VIII), β hairpins as well as interior and edge β-strands. CSI 3.0 accepts experimental NMR chemical shift data in multiple formats (NMR Star 2.1, NMR Star 3.1 and SHIFTY) and generates colorful CSI plots (bar graphs) and secondary/super-secondary structure assignments. The output can be readily used as constraints for structure determination and refinement or the images may be used for presentations and publications. CSI 3.0 uses a pipeline of several well-tested, previously published programs to identify the secondary and super-secondary structures in protein chains. Comparisons with secondary and super-secondary structure assignments made via standard coordinate analysis programs such as DSSP, STRIDE and VADAR on high-resolution protein structures solved by X-ray and NMR show >90% agreement between those made with CSI 3.0. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. The NMR-Rosetta capsid model of M13 bacteriophage reveals a quadrupled hydrophobic packing epitope.

    PubMed

    Morag, Omry; Sgourakis, Nikolaos G; Baker, David; Goldbourt, Amir

    2015-01-27

    Filamentous phage are elongated semiflexible ssDNA viruses that infect bacteria. The M13 phage, belonging to the family inoviridae, has a length of ∼1 μm and a diameter of ∼7 nm. Here we present a structural model for the capsid of intact M13 bacteriophage using Rosetta model building guided by structure restraints obtained from magic-angle spinning solid-state NMR experimental data. The C5 subunit symmetry observed in fiber diffraction studies was enforced during model building. The structure consists of stacked pentamers with largely alpha helical subunits containing an N-terminal type II β-turn; there is a rise of 16.6-16.7 Å and a tilt of 36.1-36.6° between consecutive pentamers. The packing of the subunits is stabilized by a repeating hydrophobic stacking pocket; each subunit participates in four pockets by contributing different hydrophobic residues, which are spread along the subunit sequence. Our study provides, to our knowledge, the first magic-angle spinning NMR structure of an intact filamentous virus capsid and further demonstrates the strength of this technique as a method of choice to study noncrystalline, high-molecular-weight molecular assemblies.

  2. Atomic site preferences and structural evolution in vanadium-doped ZrSiO4 from multinuclear solid-state NMR

    NASA Astrophysics Data System (ADS)

    Dajda, N.; Dixon, J. M.; Smith, M. E.; Carthey, N.; Bishop, P. T.

    2003-01-01

    Solid state NMR spectra of 29Si are reported from pure and vanadium-doped zircon (V-ZrSiO4) samples. The vanadium concentration is varied up to ˜1-mol % V4+ by using both conventional-firing and sol-gel routes, and 51V NMR data are also recorded. 17O NMR of 17O isotopically enriched samples shows that the initial gel is completely amorphous with the whole range of possible M-O-M' linkages detected, and that this structure evolves into a fully ordered ZrSiO4 structure with calcination. Static 91Zr NMR data is reported from a pure zircon sample. The NMR data are used to quantify the amount of vanadium entering the zircon structure, and to elucidate its site preference within the lattice. Two contact shifted peaks with very different T1 relaxation from the main zircon peak but attributable to the zircon lattice are observed in the 29Si NMR spectra for all samples. These spectra are consistent with vanadium substitution on both the tetrahedral and dodecahedral sites, with a slight preference for the silicon site. The data show that the relative occupation of these two sites is almost independent of the preparation method and vanadium concentration. At a higher vanadium concentration a third additional peak is observed which may indicate another substitution site. Variable temperature NMR and susceptibility measurements indicate the hyperfine nature of the interactions influencing silicon from V4+ ions in the different sites.

  3. Analysis of the interface variability in NMR structure ensembles of protein-protein complexes.

    PubMed

    Calvanese, Luisa; D'Auria, Gabriella; Vangone, Anna; Falcigno, Lucia; Oliva, Romina

    2016-06-01

    NMR structures consist in ensembles of conformers, all satisfying the experimental restraints, which exhibit a certain degree of structural variability. We analyzed here the interface in NMR ensembles of protein-protein heterodimeric complexes and found it to span a wide range of different conservations. The different exhibited conservations do not simply correlate with the size of the systems/interfaces, and are most probably the result of an interplay between different factors, including the quality of experimental data and the intrinsic complex flexibility. In any case, this information is not to be missed when NMR structures of protein-protein complexes are analyzed; especially considering that, as we also show here, the first NMR conformer is usually not the one which best reflects the overall interface. To quantify the interface conservation and to analyze it, we used an approach originally conceived for the analysis and ranking of ensembles of docking models, which has now been extended to directly deal with NMR ensembles. We propose this approach, based on the conservation of the inter-residue contacts at the interface, both for the analysis of the interface in whole ensembles of NMR complexes and for the possible selection of a single conformer as the best representative of the overall interface. In order to make the analyses automatic and fast, we made the protocol available as a web tool at: https://www.molnac.unisa.it/BioTools/consrank/consrank-nmr.html. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. PICKY: a novel SVD-based NMR spectra peak picking method

    PubMed Central

    Alipanahi, Babak; Gao, Xin; Karakoc, Emre; Donaldson, Logan; Li, Ming

    2009-01-01

    Motivation: Picking peaks from experimental NMR spectra is a key unsolved problem for automated NMR protein structure determination. Such a process is a prerequisite for resonance assignment, nuclear overhauser enhancement (NOE) distance restraint assignment, and structure calculation tasks. Manual or semi-automatic peak picking, which is currently the prominent way used in NMR labs, is tedious, time consuming and costly. Results: We introduce new ideas, including noise-level estimation, component forming and sub-division, singular value decomposition (SVD)-based peak picking and peak pruning and refinement. PICKY is developed as an automated peak picking method. Different from the previous research on peak picking, we provide a systematic study of the proposed method. PICKY is tested on 32 real 2D and 3D spectra of eight target proteins, and achieves an average of 88% recall and 74% precision. PICKY is efficient. It takes PICKY on average 15.7 s to process an NMR spectrum. More important than these numbers, PICKY actually works in practice. We feed peak lists generated by PICKY to IPASS for resonance assignment, feed IPASS assignment to SPARTA for fragments generation, and feed SPARTA fragments to FALCON for structure calculation. This results in high-resolution structures of several proteins, for example, TM1112, at 1.25 Å. Availability: PICKY is available upon request. The peak lists of PICKY can be easily loaded by SPARKY to enable a better interactive strategy for rapid peak picking. Contact: mli@uwaterloo.ca PMID:19477998

  5. Ab initio/GIAO-CCSD(T) (13)C NMR study of the rearrangement and dynamic aspects of rapidly equilibrating tertiary carbocations, C6H13(+) and C7H15(+).

    PubMed

    Olah, George A; Prakash, G K Surya; Rasul, Golam

    2016-01-05

    The rearrangement pathways of the equilibrating tertiary carbocations, 2,3-dimethyl-2-butyl cation (C6H13(+), 1), 2,3,3-trimethyl-2-butyl cation (C7H15(+), 5) and 2,3-dimethyl-2-pentyl cation (C7H15(+), 8 and 9) were investigated using the ab initio/GIAO-CCSD(T) (13)C NMR method. Comparing the calculated and experimental (13)C NMR chemical shifts of a series of carbocations indicates that excellent prediction of δ(13)C could be achieved through scaling. In the case of symmetrical equilibrating cations (1 and 5) the Wagner-Meerwein 1,2-hydride and 1,2-methide shifts, respectively, produce the same structure. This indicates that the overall (13)C NMR chemical shifts are conserved and independent of temperature. However, in the case of unsymmetrical equilibrating cations (8 and 9) the Wagner-Meerwein shift produces different tertiary structures, which have slightly different thermodynamic stabilities and, thus, different spectra. At the MP4(SDTQ)/cc-pVTZ//MP2/cc-pVTZ + ZPE level structure 8 is only 90 calories/mol more stable than structure 9. Based on computed (13)C NMR chemical shift calculations, mole fractions of these isomers were determined by assuming the observed chemical shifts are due to the weighted average of the chemical shifts of the static ions. © 2015 Wiley Periodicals, Inc.

  6. Metabolic studies with NMR spectroscopy of the alga Dunaliella salina trapped within agarose beads.

    PubMed

    Bental, M; Pick, U; Avron, M; Degani, H

    1990-02-22

    A technique for the entrapment of the unicellular algae Dunaliella salina in agarose beads and their perfusion during NMR measurements is presented. The trapped cells maintained their ability to proliferate under normal growth conditions, and remained viable and stable under steady-state conditions for long periods during NMR measurements. Following osmotic shock in the dark, prominent changes were observed in the intracellular level of ATP and polyphosphates, but little to no changes in the intracellular pH or orthoposphate content. When cells were subjected to hyperosmotic shock, the ATP level decreased. The content of NMR-visible polyphosphates decreased as well, presumably due to the production of longer, NMR-invisible structures. Following hypoosmotic shock, the ATP content increased and longer polyphosphates were broken down to shorter, more mobile polymers.

  7. Theoretical NMR correlations based Structure Discussion.

    PubMed

    Junker, Jochen

    2011-07-28

    The constitutional assignment of natural products by NMR spectroscopy is usually based on 2D NMR experiments like COSY, HSQC, and HMBC. The actual difficulty of the structure elucidation problem depends more on the type of the investigated molecule than on its size. The moment HMBC data is involved in the process or a large number of heteroatoms is present, a possibility of multiple solutions fitting the same data set exists. A structure elucidation software can be used to find such alternative constitutional assignments and help in the discussion in order to find the correct solution. But this is rarely done. This article describes the use of theoretical NMR correlation data in the structure elucidation process with WEBCOCON, not for the initial constitutional assignments, but to define how well a suggested molecule could have been described by NMR correlation data. The results of this analysis can be used to decide on further steps needed to assure the correctness of the structural assignment. As first step the analysis of the deviation of carbon chemical shifts is performed, comparing chemical shifts predicted for each possible solution with the experimental data. The application of this technique to three well known compounds is shown. Using NMR correlation data alone for the description of the constitutions is not always enough, even when including 13C chemical shift prediction.

  8. Accurate Identification of Unknown and Known Metabolic Mixture Components by Combining 3D NMR with Fourier Transform Ion Cyclotron Resonance Tandem Mass Spectrometry.

    PubMed

    Wang, Cheng; He, Lidong; Li, Da-Wei; Bruschweiler-Li, Lei; Marshall, Alan G; Brüschweiler, Rafael

    2017-10-06

    Metabolite identification in metabolomics samples is a key step that critically impacts downstream analysis. We recently introduced the SUMMIT NMR/mass spectrometry (MS) hybrid approach for the identification of the molecular structure of unknown metabolites based on the combination of NMR, MS, and combinatorial cheminformatics. Here, we demonstrate the feasibility of the approach for an untargeted analysis of both a model mixture and E. coli cell lysate based on 2D/3D NMR experiments in combination with Fourier transform ion cyclotron resonance MS and MS/MS data. For 19 of the 25 model metabolites, SUMMIT yielded complete structures that matched those in the mixture independent of database information. Of those, seven top-ranked structures matched those in the mixture, and four of those were further validated by positive ion MS/MS. For five metabolites, not part of the 19 metabolites, correct molecular structural motifs could be identified. For E. coli, SUMMIT MS/NMR identified 20 previously known metabolites with three or more 1 H spins independent of database information. Moreover, for 15 unknown metabolites, molecular structural fragments were determined consistent with their spin systems and chemical shifts. By providing structural information for entire metabolites or molecular fragments, SUMMIT MS/NMR greatly assists the targeted or untargeted analysis of complex mixtures of unknown compounds.

  9. NMR Investigations of Structure and Dynamics in Polymers for Energy Storage Applications

    NASA Astrophysics Data System (ADS)

    Greenbaum, Steven

    Materials innovation is needed to realize major progress in energy storage capacity for lithium batteries and capacitors. Polymers hold considerable promise as ion conducting media in batteries and electrochemical capacitors and as dielectrics in thin film capacitors. Structural studies of materials utilized in lithium battery technology are hampered by the lack of long-range order found in well-defined crystalline phases. Powder x-ray diffraction yields structural parameters that have been averaged over hundreds of lattice sites, and is unable to provide structural information about amorphous phases. Our laboratory uses solid state nuclear magnetic resonance (NMR) methods to investigate structural and chemical aspects of lithium ion cathodes, anodes, electrolytes, interfaces and interphases. NMR is element- (nuclear-) specific and sensitive to small variations in the immediate environment of the ions being probed, for example Li+, and in most cases is a reliably quantitative spectroscopy in that the integrated intensity of a particular spectral component is directly proportional to the number of nuclei in the corresponding material phase. NMR is also a powerful tool for probing ionic and molecular motion in lithium battery electrolytes with a dynamic range spanning some ten orders of magnitude through spin-lattice relaxation and self-diffusion measurements. Broadband relaxometry based on Fast Field Cycling NMR (FFCNMR) methods can span three to four of these orders of magnitude in a single set of measurements. Results of several recent NMR investigations performed on our lab will be presented. We explore the ion transport mechanism in polyether-based and lithium polymer electrolytes and those based on other base polymers, in particular, the extent to which ionic motion is coupled to polymer segmental motion. Polycarbonates are being considered as a possible replacement for polypropylene in high power thin film capacitors due to their favorable dielectric properties. We investigate the effects of incorporation of two types of additives in the polymer film on the ring-flip motions corresponding to the γ relaxation: (i) high dielectric constant ceramic particles; (ii) polar organic diluent molecules, The low frequency realm of broadband relaxometry allows meaningful comparison with dielectric relaxation studies of these samples performed by collaborators. Work Supported in part by the U.S. Office of Naval Research.

  10. NMR spectroscopic study of organic phosphate esters coprecipitated with calcite

    NASA Astrophysics Data System (ADS)

    Phillips, Brian L.; Zhang, Zelong; Kubista, Laura; Frisia, Silvia; Borsato, Andrea

    2016-06-01

    Organic phosphorus incorporated in calcite during laboratory precipitation experiments and in natural cave deposits was investigated by solid-state NMR spectroscopy. For calcite precipitated in the presence of organic phosphoesters of varying size and functionality, solid-state 31P{1H} CP/MAS NMR shows that the phosphoesters were incorporated intact into the solid. Systematic changes in the 31P NMR chemical shift of the phosphate group were observed between the solid phosphoester and that incorporated in the solid precipitate, yielding 31P NMR chemical shifts of the coprecipitates in the range of +1.8 to -2.2 ppm. These chemical shifts are distinct from that of similarly prepared calcite coprecipitated with inorganic phosphate, 3.5 ppm. Only minor changes were noted in the phosphoester 31P chemical shift anisotropy (CSA) which suggests no significant change in the local structure of the phosphate group, which is dominated by C-O-P bonding. Close spatial proximity of the organic phosphate group to calcite structural components was revealed by 31P/13C rotational echo double resonance (REDOR) experiments for coprecipitates prepared with 13C-labeled carbonate. All coprecipitates showed significant 31P dephasing effects upon 13C-irradiation, signaling atomic-scale proximity to carbonate carbon. The dephasing rate for smaller organophosphate molecules is similar to that observed for inorganic phosphate, whereas much slower dephasing was observed for larger molecules having long and/or bulky side-chains. This result suggests that small organic molecules can be tightly enclosed within the calcite structure, whereas significant structural disruption required to accommodate the larger organic molecules leads to longer phosphate-carbonate distances. Comparison of 31P NMR spectroscopic data from the synthetic coprecipitates with those from calcite moonmilk speleothems indicates that phosphorus occurs mainly as inorganic orthophosphate in the natural deposits, although small signals occur with characteristics consistent with phosphate monoesters. The results of this study indicate that trace- to minor concentrations of dissolved organic molecules can be effectively taken up during calcite precipitation and incorporated in the structure, leaving a resilient record of materials present during crystallization.

  11. NMR and rotational angles in solution conformation of polypeptides

    NASA Astrophysics Data System (ADS)

    Bystrov, V. F.

    1985-01-01

    Professor San-Ichiro Mizushima and Professor Yonezo Morino's classical contributions provided unique means and firm basis for understanding of conformational states and internal rotation in polypeptide molecules. Now the NMR spectroscopy is the best choice to study molecular conformation, mechanism of action and structure-functional relationships of peptide and proteins in solution under conditions approaching those of their physiological environments. Crucial details of spatial structure and interactions of these molecules in solution are revealed by using proton-proton and carbon-proton vicinal coupling constants, proton nuclear Overhauser effect and spectral perturbation techniques. The results of NMR conformational analysis are presented for valinomycin "bracelet", gramicidin A double helices, honey-bee neurotoxin apamin, scorpion insectotoxins and snake neurotoxins of long and short types.

  12. NMR solution structure study of one saturated sulphur-containing amides from Glycosmis lucida.

    PubMed

    Geng, Zhu-Feng; Yang, Kai; Li, Yin-Ping; Guo, Shan-Shan; You, Chun-Xue; Zhang, Wen-Juan; Zhang, Zhe; Du, Shu-Shan

    2017-04-01

    One sulphur-containing amide (N-[2-(4-Hydroxyphenyl)-ethyl]-3-methanesulfonyl-N-methyl-propionamide) which was isolated from Glycosmis lucida Wall ex Huang had a different NMR profile with this kind of compounds' normal case. Based on the information obtained by nuclear magnetic resonance pectroscopy (NMR) and mass spectrometry (MS), its configurations in solution were investigated. The results indicated that the compound would have two stable configurations in solution as the double bond switched between C-N and C-O in an appropriate rate. This phenomenon was clearly exposed by the one dimension selective NOE (1D-NOE) experiments. This conclusion would play an active role in the structure analysis work of this kind of compounds.

  13. Human SLC26A4/Pendrin STAS domain is a nucleotide-binding protein: Refolding and characterization for structural studies.

    PubMed

    Sharma, Alok K; Krieger, Tobias; Rigby, Alan C; Zelikovic, Israel; Alper, Seth L

    2016-12-01

    Mutations in the human SLC26A4/Pendrin polypeptide (hPDS) cause Pendred Syndrome /DFNB4, syndromic deafness with enlargement of the vestibular aqueduct and low-penetrance goiter. Here we present data on cloning, protein overexpression and purification, refolding, and biophysical characterization of the recombinant hPDS STAS domain lacking its intrinsic variable sequence (STAS-ΔIVS). We report a reproducible protein refolding protocol enabling milligram scale expression and purification of uniformly 15 N- and 13 C /15 N-enriched hPDS STAS-ΔIVS domain suitable for structural characterization by solution NMR. Circular dichroism, one-dimensional 1 H, two-dimensional 1 H- 15 N HSQC, and 1 H- 13 C HSQC NMR spectra confirmed the well-folded state of purified hPDS STAS-ΔIVS in solution. Heteronuclear NMR chemical shift perturbation of select STAS-ΔIVS residues by GDP was observed at fast-to-intermediate NMR time scales. Intrinsic tryptophan fluorescence quench experiments demonstrated GDP binding to hPDS STAS-ΔIVS with K d of 178 μM. These results are useful for structure/function characterization of hPDS STAS, the cytoplasmic subdomain of the congenital deafness protein, pendrin, as well as for studies of other mammalian STAS domains.

  14. First principles NMR study of fluorapatite under pressure.

    PubMed

    Pavan, Barbara; Ceresoli, Davide; Tecklenburg, Mary M J; Fornari, Marco

    2012-01-01

    NMR is the technique of election to probe the local properties of materials. Herein we present the results of density functional theory (DFT) ab initio calculations of the NMR parameters for fluorapatite (FAp), a calcium orthophosphate mineral belonging to the apatite family, by using the GIPAW method (Pickard and Mauri, 2001). Understanding the local effects of pressure on apatites is particularly relevant because of their important role in many solid state and biomedical applications. Apatites are open structures, which can undergo complex anisotropic deformations, and the response of NMR can elucidate the microscopic changes induced by an applied pressure. The computed NMR parameters proved to be in good agreement with the available experimental data. The structural evaluation of the material behavior under hydrostatic pressure (from -5 to +100 kbar) indicated a shrinkage of the diameter of the apatitic channel, and a strong correlation between NMR shielding and pressure, proving the sensitivity of this technique to even small changes in the chemical environment around the nuclei. This theoretical approach allows the exploration of all the different nuclei composing the material, thus providing a very useful guidance in the interpretation of experimental results, particularly valuable for the more challenging nuclei such as (43)Ca and (17)O. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. First Principles NMR Study of Fluorapatite under Pressure

    PubMed Central

    Pavan, Barbara; Ceresoli, Davide; Tecklenburg, Mary M. J.; Fornari, Marco

    2012-01-01

    NMR is the technique of election to probe the local properties of materials. Herein we present the results of density functional theory (DFT) ab initio calculations of the NMR parameters for fluorapatite (FAp), a calcium orthophosphate mineral belonging to the apatite family, by using the GIPAW method [Pickard and Mauri, 2001]. Understanding the local effects of pressure on apatites is particularly relevant because of their important role in many solid state and biomedical applications. Apatites are open structures, which can undergo complex anisotropic deformations, and the response of NMR can elucidate the microscopic changes induced by an applied pressure. The computed NMR parameters proved to be in good agreement with the available experimental data. The structural evaluation of the material behavior under hydrostatic pressure (from −5 to +100 kbar) indicated a shrinkage of the diameter of the apatitic channel, and a strong correlation between NMR shielding and pressure, proving the sensitivity of this technique to even small changes in the chemical environment around the nuclei. This theoretical approach allows the exploration of all the different nuclei composing the material, thus providing a very useful guidance in the interpretation of experimental results, particularly valuable for the more challenging nuclei such as 43Ca and 17O. PMID:22770669

  16. Publication of nuclear magnetic resonance experimental data with semantic web technology and the application thereof to biomedical research of proteins.

    PubMed

    Yokochi, Masashi; Kobayashi, Naohiro; Ulrich, Eldon L; Kinjo, Akira R; Iwata, Takeshi; Ioannidis, Yannis E; Livny, Miron; Markley, John L; Nakamura, Haruki; Kojima, Chojiro; Fujiwara, Toshimichi

    2016-05-05

    The nuclear magnetic resonance (NMR) spectroscopic data for biological macromolecules archived at the BioMagResBank (BMRB) provide a rich resource of biophysical information at atomic resolution. The NMR data archived in NMR-STAR ASCII format have been implemented in a relational database. However, it is still fairly difficult for users to retrieve data from the NMR-STAR files or the relational database in association with data from other biological databases. To enhance the interoperability of the BMRB database, we present a full conversion of BMRB entries to two standard structured data formats, XML and RDF, as common open representations of the NMR-STAR data. Moreover, a SPARQL endpoint has been deployed. The described case study demonstrates that a simple query of the SPARQL endpoints of the BMRB, UniProt, and Online Mendelian Inheritance in Man (OMIM), can be used in NMR and structure-based analysis of proteins combined with information of single nucleotide polymorphisms (SNPs) and their phenotypes. We have developed BMRB/XML and BMRB/RDF and demonstrate their use in performing a federated SPARQL query linking the BMRB to other databases through standard semantic web technologies. This will facilitate data exchange across diverse information resources.

  17. Characterizing RNA Dynamics at Atomic Resolution Using Solution-state NMR Spectroscopy

    PubMed Central

    Bothe, Jameson R.; Nikolova, Evgenia N.; Eichhorn, Catherine D.; Chugh, Jeetender; Hansen, Alexandar L.; Al-Hashimi, Hashim M.

    2012-01-01

    Many recently discovered non-coding RNAs do not fold into a single native conformation, but rather, sample many different conformations along their free energy landscape to carry out their biological function. Unprecedented insights into the RNA dynamic structure landscape are provided by solution-state NMR techniques that measure the structural, kinetic, and thermodynamic characteristics of motions spanning picosecond to second timescales at atomic resolution. From these studies a basic description of the RNA dynamic structure landscape is emerging, bringing new insights into how RNA structures change to carry out their function as well as applications in RNA-targeted drug discovery and RNA bioengineering. PMID:22036746

  18. Advanced solid-state NMR spectroscopy of natural organic matter.

    PubMed

    Mao, Jingdong; Cao, Xiaoyan; Olk, Dan C; Chu, Wenying; Schmidt-Rohr, Klaus

    2017-05-01

    Solid-state NMR is essential for the characterization of natural organic matter (NOM) and is gaining importance in geosciences and environmental sciences. This review is intended to highlight advanced solid-state NMR techniques, especially a systematic approach to NOM characterization, and their applications to the study of NOM. We discuss some basics of how to acquire high-quality and quantitative solid-state 13 C NMR spectra, and address some common technical mistakes that lead to unreliable spectra of NOM. The identification of specific functional groups in NOM, primarily based on 13 C spectral-editing techniques, is described and the theoretical background of some recently-developed spectral-editing techniques is provided. Applications of solid-state NMR to investigating nitrogen (N) in NOM are described, focusing on limitations of the widely used 15 N CP/MAS experiment and the potential of improved advanced NMR techniques for characterizing N forms in NOM. Then techniques used for identifying proximities, heterogeneities and domains are reviewed, and some examples provided. In addition, NMR techniques for studying segmental dynamics in NOM are reviewed. We also briefly discuss applications of solid-state NMR to NOM from various sources, including soil organic matter, aquatic organic matter, organic matter in atmospheric particulate matter, carbonaceous meteoritic organic matter, and fossil fuels. Finally, examples of NMR-based structural models and an outlook are provided. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Structural and dynamical studies of molecular and network forming chalcogenide glasses and supercooled liquids with NMR and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Gjersing, Erica Lee

    The techniques of Nuclear Magnetic Resonance (NMR) and Raman spectroscopy have been employed to study structure and dynamics in Ge-Se, Ge/As-Te, and As-S binary and complex Ge-As-Te and P-As-S ternary chalcogenide glasses. Structural studies were conducted on Ge-Se glasses and on binary Ge/As-Te and ternary Ge-As-Te systems. The structure of the GexSe100-x glass series, with 5≤x≤33, is investigated with 77Se Magic Angle Spinning (MAS) NMR and then compared with three different proposed structural models. For the binary Ge-Te and As-Te and ternary Ge-As-Te glass systems the structure is studied using Raman spectroscopy and correlated with physical properties such as molar volume, viscosity, optical band gap and thermophysical properties. Studies on glass transition dynamics were conducted on systems with a range of structural features including an As4S3 inorganic molecular glass former, an As-P-S system where molecules are bonded to the As-S network, and network glasses in the Ge-Se system. Timescales of the rotational dynamics of As4S3 cage molecules in the molecular As-sulfide glass and supercooled liquid show remarkably large decoupling from the timescales of viscous flow and shear relaxation at temperatures below and near Tg (312K). Next, the dynamic behavior of a (As 2S3)90(P2S5)10 glass, which is proposed to consist of As2P2S8 molecular structures which are connected to an As-S network, is investigated with 31P NMR. The rotational dynamics of selenium chains in network forming GexSe100-x glasses and supercooled liquids with 5≤x≤23 are investigated with variable temperature 77Se NMR spectroscopy to determine the relationship between rigidity percolation and dynamic behavior. The timescale of the motion of the Se atoms is observed to be nearly identical for x≤17 and ≤2.36. However, for the x=20 and 23 compositions where ≤2.4, above the rigidity percolation threshold, the timescale slows down abruptly. Finally, the Ge20Se 80 glass and supercooled liquid have been the focus of a variable temperature Raman spectroscopy study to investigate the vibrational mode softening behavior and the importance of vibrational entropy in glass transition.

  20. Zinc ascorbate: a combined experimental and computational study for structure elucidation

    NASA Astrophysics Data System (ADS)

    Ünaleroǧlu, C.; Zümreoǧlu-Karan, B.; Mert, Y.

    2002-03-01

    The structure of Zn(HA)2·4H2O (HA=ascorbate) has been examined by a number of techniques (13C NMR, 1H NMR, IR, EI/MS and TGA) and also modeled by the semi-empirical PM3 method. The experimental and computational results agreed on a five-fold coordination around Zn(II) where one ascorbate binds monodentately, the other bidentately and two water molecules occupy the remaining sites of a distorted square pyramid.

  1. Bacterial Expression and Purification of the Amyloidogenic Peptide PAPf39 for Multidimensional NMR Spectroscopy

    PubMed Central

    Shanmuganathan, Aranganathan; Bishop, Anthony C.; French, Kinsley C.; McCallum, Scott A.; Makhatadze, George I.

    2013-01-01

    PAPf39 is a 39 residue peptide fragment from human prostatic acidic phosphatase that forms amyloid fibrils in semen. These fibrils have been implicated in facilitating HIV transmission. To enable structural studies of PAPf39 by NMR spectroscopy, efficient methods allowing the production of milligram quantities of isotopically labeled peptide are essential. Here, we report the high-yield expression, as a fusion to ubiquitin at the N-terminus and an intein at the C-terminus, and purification of uniformly labeled 13C- and 15N-labeled PAPf39 peptide. This allows the study of the PAPf39 monomer conformational ensemble by NMR spectroscopy. To this end, we performed the NMR chemical shift assignment of the PAPf39 peptide in the monomeric state at low pH. PMID:23314347

  2. Human- and computer-accessible 2D correlation data for a more reliable structure determination of organic compounds. Future roles of researchers, software developers, spectrometer managers, journal editors, reviewers, publisher and database managers toward artificial-intelligence analysis of NMR spectra.

    PubMed

    Jeannerat, Damien

    2017-01-01

    The introduction of a universal data format to report the correlation data of 2D NMR spectra such as COSY, HSQC and HMBC spectra will have a large impact on the reliability of structure determination of small organic molecules. These lists of assigned cross peaks will bridge signals found in NMR 1D and 2D spectra and the assigned chemical structure. The record could be very compact, human and computer readable so that it can be included in the supplementary material of publications and easily transferred into databases of scientific literature and chemical compounds. The records will allow authors, reviewers and future users to test the consistency and, in favorable situations, the uniqueness of the assignment of the correlation data to the associated chemical structures. Ideally, the data format of the correlation data should include direct links to the NMR spectra to make it possible to validate their reliability and allow direct comparison of spectra. In order to take the full benefits of their potential, the correlation data and the NMR spectra should therefore follow any manuscript in the review process and be stored in open-access database after publication. Keeping all NMR spectra, correlation data and assigned structures together at all time will allow the future development of validation tools increasing the reliability of past and future NMR data. This will facilitate the development of artificial intelligence analysis of NMR spectra by providing a source of data than can be used efficiently because they have been validated or can be validated by future users. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Combining 27Al Solid-State NMR and First-Principles Simulations To Explore Crystal Structure in Disordered Aluminum Oxynitride.

    PubMed

    Tu, Bingtian; Liu, Xin; Wang, Hao; Wang, Weimin; Zhai, Pengcheng; Fu, Zhengyi

    2016-12-19

    The nuclear magnetic resonance (NMR) technique gives insight into the local information in a crystal structure, while Rietveld refinement of powder X-ray diffraction (PXRD) sketches out the framework of a crystal lattice. In this work, first-principles calculations were combined with the solid-state NMR technique and Rietveld refinement to explore the crystal structure of a disordered aluminum oxynitride (γ-alon). The theoretical NMR parameters (chemical shift, δ iso , quadrupolar coupling constants, C Q , and asymmetry parameter, η) of Al 22.5 O 28.5 N 3.5 , predicted by the gauge-including projector augmented wave (GIPAW) algorithm, were used to facilitate the analytical investigation of the 27 Al magic-angle spinning (MAS) NMR spectra of the as-prepared sample, whose formula was confirmed to be Al 2.811 O 3.565 N 0.435 by quantitative analysis. The experimental δ iso , C Q , and η of 27 Al showed a small discrepancy compared with theoretical models. The ratio of aluminum located at the 8a to 16d sites was calculated to be 0.531 from the relative integration of peaks in the 27 Al NMR spectra. The occupancies of aluminum at the 8a and 16d positions were determined through NMR investigations to be 0.9755 and 0.9178, respectively, and were used in the Rietveld refinement to obtain the lattice parameter and anion parameter of Al 2.811 O 3.565 N 0.435 . The results from 27 Al NMR investigations and PXRD structural refinement complemented each other. This work provides a powerful and accessible strategy to precisely understand the crystal structure of novel oxynitride materials with multiple disorder.

  4. Organic Spectroscopy Laboratory: Utilizing IR and NMR in the Identification of an Unknown Substance

    ERIC Educational Resources Information Center

    Glagovich, Neil M.; Shine, Timothy D.

    2005-01-01

    A laboratory experiment that emphasizes the interpretation of both infrared (IR) and nuclear magnetic resonance (NMR) spectra in the elucidation of the structure of an unknown compound was developed. The method helps students determine [to the first power]H- and [to the thirteenth power]C-NMR spectra from the structures of compounds and to…

  5. A Markov Random Field Framework for Protein Side-Chain Resonance Assignment

    NASA Astrophysics Data System (ADS)

    Zeng, Jianyang; Zhou, Pei; Donald, Bruce Randall

    Nuclear magnetic resonance (NMR) spectroscopy plays a critical role in structural genomics, and serves as a primary tool for determining protein structures, dynamics and interactions in physiologically-relevant solution conditions. The current speed of protein structure determination via NMR is limited by the lengthy time required in resonance assignment, which maps spectral peaks to specific atoms and residues in the primary sequence. Although numerous algorithms have been developed to address the backbone resonance assignment problem [68,2,10,37,14,64,1,31,60], little work has been done to automate side-chain resonance assignment [43, 48, 5]. Most previous attempts in assigning side-chain resonances depend on a set of NMR experiments that record through-bond interactions with side-chain protons for each residue. Unfortunately, these NMR experiments have low sensitivity and limited performance on large proteins, which makes it difficult to obtain enough side-chain resonance assignments. On the other hand, it is essential to obtain almost all of the side-chain resonance assignments as a prerequisite for high-resolution structure determination. To overcome this deficiency, we present a novel side-chain resonance assignment algorithm based on alternative NMR experiments measuring through-space interactions between protons in the protein, which also provide crucial distance restraints and are normally required in high-resolution structure determination. We cast the side-chain resonance assignment problem into a Markov Random Field (MRF) framework, and extend and apply combinatorial protein design algorithms to compute the optimal solution that best interprets the NMR data. Our MRF framework captures the contact map information of the protein derived from NMR spectra, and exploits the structural information available from the backbone conformations determined by orientational restraints and a set of discretized side-chain conformations (i.e., rotamers). A Hausdorff-based computation is employed in the scoring function to evaluate the probability of side-chain resonance assignments to generate the observed NMR spectra. The complexity of the assignment problem is first reduced by using a dead-end elimination (DEE) algorithm, which prunes side-chain resonance assignments that are provably not part of the optimal solution. Then an A* search algorithm is used to find a set of optimal side-chain resonance assignments that best fit the NMR data. We have tested our algorithm on NMR data for five proteins, including the FF Domain 2 of human transcription elongation factor CA150 (FF2), the B1 domain of Protein G (GB1), human ubiquitin, the ubiquitin-binding zinc finger domain of the human Y-family DNA polymerase Eta (pol η UBZ), and the human Set2-Rpb1 interacting domain (hSRI). Our algorithm assigns resonances for more than 90% of the protons in the proteins, and achieves about 80% correct side-chain resonance assignments. The final structures computed using distance restraints resulting from the set of assigned side-chain resonances have backbone RMSD 0.5 - 1.4 Å and all-heavy-atom RMSD 1.0 - 2.2 Å from the reference structures that were determined by X-ray crystallography or traditional NMR approaches. These results demonstrate that our algorithm can be successfully applied to automate side-chain resonance assignment and high-quality protein structure determination. Since our algorithm does not require any specific NMR experiments for measuring the through-bond interactions with side-chain protons, it can save a significant amount of both experimental cost and spectrometer time, and hence accelerate the NMR structure determination process.

  6. Tunable Thermosetting Epoxies Based on Fractionated and Well-Characterized Lignins.

    PubMed

    Gioia, Claudio; Lo Re, Giada; Lawoko, Martin; Berglund, Lars

    2018-03-21

    Here we report the synthesis of thermosetting resins from low molar mass Kraft lignin fractions of high functionality, refined by solvent extraction. Such fractions were fully characterized by 31 P NMR, 2D-HSQC NMR, SEC, and DSC in order to obtain a detailed description of the structures. Reactive oxirane moieties were introduced on the lignin backbone under mild reaction conditions and quantified by simple 1 H NMR analysis. The modified fractions were chemically cross-linked with a flexible polyether diamine ( M n ≈ 2000), in order to obtain epoxy thermosets. Epoxies from different lignin fractions, studied by DSC, DMA, tensile tests, and SEM, demonstrated substantial differences in terms of thermo-mechanical properties. For the first time, strong relationships between lignin structures and epoxy properties could be demonstrated. The suggested approach provides unprecedented possibilities to tune network structure and properties of thermosets based on real lignin fractions, rather than model compounds.

  7. Comprehensive multiphase NMR spectroscopy: Basic experimental approaches to differentiate phases in heterogeneous samples

    NASA Astrophysics Data System (ADS)

    Courtier-Murias, Denis; Farooq, Hashim; Masoom, Hussain; Botana, Adolfo; Soong, Ronald; Longstaffe, James G.; Simpson, Myrna J.; Maas, Werner E.; Fey, Michael; Andrew, Brian; Struppe, Jochem; Hutchins, Howard; Krishnamurthy, Sridevi; Kumar, Rajeev; Monette, Martine; Stronks, Henry J.; Hume, Alan; Simpson, André J.

    2012-04-01

    Heterogeneous samples, such as soils, sediments, plants, tissues, foods and organisms, often contain liquid-, gel- and solid-like phases and it is the synergism between these phases that determine their environmental and biological properties. Studying each phase separately can perturb the sample, removing important structural information such as chemical interactions at the gel-solid interface, kinetics across boundaries and conformation in the natural state. In order to overcome these limitations a Comprehensive Multiphase-Nuclear Magnetic Resonance (CMP-NMR) probe has been developed, and is introduced here, that permits all bonds in all phases to be studied and differentiated in whole unaltered natural samples. The CMP-NMR probe is built with high power circuitry, Magic Angle Spinning (MAS), is fitted with a lock channel, pulse field gradients, and is fully susceptibility matched. Consequently, this novel NMR probe has to cover all HR-MAS aspects without compromising power handling to permit the full range of solution-, gel- and solid-state experiments available today. Using this technology, both structures and interactions can be studied independently in each phase as well as transfer/interactions between phases within a heterogeneous sample. This paper outlines some basic experimental approaches using a model heterogeneous multiphase sample containing liquid-, gel- and solid-like components in water, yielding separate 1H and 13C spectra for the different phases. In addition, 19F performance is also addressed. To illustrate the capability of 19F NMR soil samples, containing two different contaminants, are used, demonstrating a preliminary, but real-world application of this technology. This novel NMR approach possesses a great potential for the in situ study of natural samples in their native state.

  8. Comprehensive multiphase NMR spectroscopy: basic experimental approaches to differentiate phases in heterogeneous samples.

    PubMed

    Courtier-Murias, Denis; Farooq, Hashim; Masoom, Hussain; Botana, Adolfo; Soong, Ronald; Longstaffe, James G; Simpson, Myrna J; Maas, Werner E; Fey, Michael; Andrew, Brian; Struppe, Jochem; Hutchins, Howard; Krishnamurthy, Sridevi; Kumar, Rajeev; Monette, Martine; Stronks, Henry J; Hume, Alan; Simpson, André J

    2012-04-01

    Heterogeneous samples, such as soils, sediments, plants, tissues, foods and organisms, often contain liquid-, gel- and solid-like phases and it is the synergism between these phases that determine their environmental and biological properties. Studying each phase separately can perturb the sample, removing important structural information such as chemical interactions at the gel-solid interface, kinetics across boundaries and conformation in the natural state. In order to overcome these limitations a Comprehensive Multiphase-Nuclear Magnetic Resonance (CMP-NMR) probe has been developed, and is introduced here, that permits all bonds in all phases to be studied and differentiated in whole unaltered natural samples. The CMP-NMR probe is built with high power circuitry, Magic Angle Spinning (MAS), is fitted with a lock channel, pulse field gradients, and is fully susceptibility matched. Consequently, this novel NMR probe has to cover all HR-MAS aspects without compromising power handling to permit the full range of solution-, gel- and solid-state experiments available today. Using this technology, both structures and interactions can be studied independently in each phase as well as transfer/interactions between phases within a heterogeneous sample. This paper outlines some basic experimental approaches using a model heterogeneous multiphase sample containing liquid-, gel- and solid-like components in water, yielding separate (1)H and (13)C spectra for the different phases. In addition, (19)F performance is also addressed. To illustrate the capability of (19)F NMR soil samples, containing two different contaminants, are used, demonstrating a preliminary, but real-world application of this technology. This novel NMR approach possesses a great potential for the in situ study of natural samples in their native state. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Structure of Ancient Glass by 29 Si Magic Angle Spinning NMR Spectroscopy.

    PubMed

    Bradford, Henry; Ryder, Amy; Henderson, Julian; Titman, Jeremy J

    2018-05-23

    29 Si magic angle spinning (MAS) NMR spectroscopy has been applied for the first time to the structural analysis of ancient glass samples obtained from archaeological excavations. The results show that it is possible to establish the distribution of Si environments in ancient glass by 29 Si MAS NMR, so long as the concentrations of magnetic impurities, such as Mn and Fe oxides, are low. In general, good agreement has been obtained with compositions determined by means of electron probe microanalysis. In addition, the 29 Si MAS NMR data reveal structural differences between glasses manufactured at separate ancient sites. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Automated protein NMR structure determination using wavelet de-noised NOESY spectra.

    PubMed

    Dancea, Felician; Günther, Ulrich

    2005-11-01

    A major time-consuming step of protein NMR structure determination is the generation of reliable NOESY cross peak lists which usually requires a significant amount of manual interaction. Here we present a new algorithm for automated peak picking involving wavelet de-noised NOESY spectra in a process where the identification of peaks is coupled to automated structure determination. The core of this method is the generation of incremental peak lists by applying different wavelet de-noising procedures which yield peak lists of a different noise content. In combination with additional filters which probe the consistency of the peak lists, good convergence of the NOESY-based automated structure determination could be achieved. These algorithms were implemented in the context of the ARIA software for automated NOE assignment and structure determination and were validated for a polysulfide-sulfur transferase protein of known structure. The procedures presented here should be commonly applicable for efficient protein NMR structure determination and automated NMR peak picking.

  11. Automated Solid Phase Extraction (SPE) LC/NMR Applied to the Structural Analysis of Extractable Compounds from a Pharmaceutical Packaging Material of Construction.

    PubMed

    Norwood, Daniel L; Mullis, James O; Davis, Mark; Pennino, Scott; Egert, Thomas; Gonnella, Nina C

    2013-01-01

    The structural analysis (i.e., identification) of organic chemical entities leached into drug product formulations has traditionally been accomplished with techniques involving the combination of chromatography with mass spectrometry. These include gas chromatography/mass spectrometry (GC/MS) for volatile and semi-volatile compounds, and various forms of liquid chromatography/mass spectrometry (LC/MS or HPLC/MS) for semi-volatile and relatively non-volatile compounds. GC/MS and LC/MS techniques are complementary for structural analysis of leachables and potentially leachable organic compounds produced via laboratory extraction of pharmaceutical container closure/delivery system components and corresponding materials of construction. Both hyphenated analytical techniques possess the separating capability, compound specific detection attributes, and sensitivity required to effectively analyze complex mixtures of trace level organic compounds. However, hyphenated techniques based on mass spectrometry are limited by the inability to determine complete bond connectivity, the inability to distinguish between many types of structural isomers, and the inability to unambiguously determine aromatic substitution patterns. Nuclear magnetic resonance spectroscopy (NMR) does not have these limitations; hence it can serve as a complement to mass spectrometry. However, NMR technology is inherently insensitive and its ability to interface with chromatography has been historically challenging. This article describes the application of NMR coupled with liquid chromatography and automated solid phase extraction (SPE-LC/NMR) to the structural analysis of extractable organic compounds from a pharmaceutical packaging material of construction. The SPE-LC/NMR technology combined with micro-cryoprobe technology afforded the sensitivity and sample mass required for full structure elucidation. Optimization of the SPE-LC/NMR analytical method was achieved using a series of model compounds representing the chemical diversity of extractables. This study demonstrates the complementary nature of SPE-LC/NMR with LC/MS for this particular pharmaceutical application. The identification of impurities leached into drugs from the components and materials associated with pharmaceutical containers, packaging components, and materials has historically been done using laboratory techniques based on the combination of chromatography with mass spectrometry. Such analytical techniques are widely recognized as having the selectivity and sensitivity required to separate the complex mixtures of impurities often encountered in such identification studies, including both the identification of leachable impurities as well as potential leachable impurities produced by laboratory extraction of packaging components and materials. However, while mass spectrometry-based analytical techniques have limitations for this application, newer analytical techniques based on the combination of chromatography with nuclear magnetic resonance spectroscopy provide an added dimension of structural definition. This article describes the development, optimization, and application of an analytical technique based on the combination of chromatography and nuclear magnetic resonance spectroscopy to the identification of potential leachable impurities from a pharmaceutical packaging material. The complementary nature of the analytical techniques for this particular pharmaceutical application is demonstrated.

  12. Structure elucidation of a novel oligosaccharide (Medalose) from camel milk

    NASA Astrophysics Data System (ADS)

    Gangwar, Lata; Singh, Rinku; Deepak, Desh

    2018-02-01

    Free oligosaccharides are the third most abundant solid component in milk after lactose and lipids. The study of milk oligosaccharides indicate that nutrients are not only benefits the infant's gut but also perform a number of other functions which include stimulation of growth, receptor analogues to inhibit binding of pathogens and substances that promote postnatal brain development. Surveys reveal that camel milk oligosaccharides possess varied biological activities that help in the treatment of diabetes, asthma, anaemia, piles and also a food supplement to milking mothers. In this research, camel milk was selected for its oligosaccharide contents, which was then processed by Kobata and Ginsburg method followed by the HPLC and CC techniques. Structure elucidation of isolated compound was done by the chemical degradation, chemical transformation and comparison of chemical shift of NMR data of natural and acetylated oligosaccharide structure reporter group theory, the 1H, 13C NMR, 2D-NMR (COSY, TOCSY and HSQC) techniques, and mass spectrometry. The structure was elucidated as under: MEDALOSE

  13. Parsimony and goodness-of-fit in multi-dimensional NMR inversion

    NASA Astrophysics Data System (ADS)

    Babak, Petro; Kryuchkov, Sergey; Kantzas, Apostolos

    2017-01-01

    Multi-dimensional nuclear magnetic resonance (NMR) experiments are often used for study of molecular structure and dynamics of matter in core analysis and reservoir evaluation. Industrial applications of multi-dimensional NMR involve a high-dimensional measurement dataset with complicated correlation structure and require rapid and stable inversion algorithms from the time domain to the relaxation rate and/or diffusion domains. In practice, applying existing inverse algorithms with a large number of parameter values leads to an infinite number of solutions with a reasonable fit to the NMR data. The interpretation of such variability of multiple solutions and selection of the most appropriate solution could be a very complex problem. In most cases the characteristics of materials have sparse signatures, and investigators would like to distinguish the most significant relaxation and diffusion values of the materials. To produce an easy to interpret and unique NMR distribution with the finite number of the principal parameter values, we introduce a new method for NMR inversion. The method is constructed based on the trade-off between the conventional goodness-of-fit approach to multivariate data and the principle of parsimony guaranteeing inversion with the least number of parameter values. We suggest performing the inversion of NMR data using the forward stepwise regression selection algorithm. To account for the trade-off between goodness-of-fit and parsimony, the objective function is selected based on Akaike Information Criterion (AIC). The performance of the developed multi-dimensional NMR inversion method and its comparison with conventional methods are illustrated using real data for samples with bitumen, water and clay.

  14. 13C CP MAS NMR and GIAO-CHF calculations of coumarins.

    PubMed

    Zolek, Teresa; Paradowska, Katarzyna; Wawer, Iwona

    2003-01-01

    13C cross-polarization magic-angle spinning NMR spectra were recorded for a series of solid coumarins. Ab initio calculations of shielding constants were performed with the use of GIAO-CHF method. The combined CPMAS NMR and theoretical approach was successful in characterizing solid-state conformations of coumarins; a relationship sigma (ppm) = -1.032 xdelta + 205.28 (R(2) = 0.9845) can be used to obtain structural information for coumarins, for which solid-state NMR or crystal structure data are not available. Copyright 2002 Elsevier Science (USA)

  15. Quantitative structure parameters from the NMR spectroscopy of quadrupolar nuclei

    DOE PAGES

    Perras, Frederic A.

    2015-12-15

    Here, nuclear magnetic resonance (NMR) spectroscopy is one of the most important characterization tools in chemistry, however, 3/4 of the NMR active nuclei are underutilized due to their quadrupolar nature. This short review centers on the development of methods that use solid-state NMR of quadrupolar nuclei for obtaining quantitative structural information. Namely, techniques using dipolar recoupling as well as the resolution afforded by double-rotation are presented for the measurement of spin–spin coupling between quadrupoles, enabling the measurement of internuclear distances and connectivities.

  16. Structural confirmation of regioisomers of Lopinavir impurities using MS and gradient COSY (1H and 13C NMR assignment of Lopinavir impurities).

    PubMed

    Siva Lakshmi Devi, A; Srinivasa Rao, Y; Suresh, Y; Yogeswar Reddy, M; Jyothi, G; Rajababu, B; Prasad, V S R; Umamaheswar Rao, V

    2007-05-01

    We report the complete (1)H and (13)C NMR assignment of impurities of six Lopinavir (2S)-N-[(2S, 4S, 5S)-5-{[2-(2,6-dimethylphenoxy)acetyl]amino}-4-hydroxy-1,6-diphenyl hexan-2-yl]-3-methyl-2-(2-oxo-1,3-diazinan-1-yl)butan- amide. Two of the impurities are regioisomers and GCOSY used to differentiate the two structures. The spectral assignments for all six impurities were achieved by concerted application of one and two-dimensional NMR techniques ((1)H NMR, (13)C NMR, DEPT, GCOSY, GHSQC and GHMBC). Copyright (c) 2007 John Wiley & Sons, Ltd.

  17. Determination of the structural changes by Raman and {sup 13}C CP/MAS NMR spectroscopy on native corn starch with plasticizers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cozar, O.; Filip, C.; Tripon, C.

    The plasticizing - antiplasticizing effect of water and glycerol contents on native corn starch samples is investigated by FT-Raman and {sup 13}C CP/MAS NMR spectroscopy. The presence of both amorphous and crystalline structural phases was evidenced in pure native corn starch and also in the samples containing plasticizers. Among the crystalline starch structures, the A- and V- types were suggested by CP/MAS NMR spectra.

  18. On the structure of amorphous calcium carbonate--a detailed study by solid-state NMR spectroscopy.

    PubMed

    Nebel, Holger; Neumann, Markus; Mayer, Christian; Epple, Matthias

    2008-09-01

    The calcium carbonate phases calcite, aragonite, vaterite, monohydrocalcite (calcium carbonate monohydrate), and ikaite (calcium carbonate hexahydrate) were studied by solid-state NMR spectroscopy ( (1)H and (13)C). Further model compounds were sodium hydrogencarbonate, potassium hydrogencarbonate, and calcium hydroxide. With the help of these data, the structure of synthetically prepared additive-free amorphous calcium carbonate (ACC) was analyzed. ACC contains molecular water (as H 2O), a small amount of mobile hydroxide, and no hydrogencarbonate. This supports the concept of ACC as a transient precursor in the formation of calcium carbonate biominerals.

  19. Reduced dimensionality (3,2)D NMR experiments and their automated analysis: implications to high-throughput structural studies on proteins.

    PubMed

    Reddy, Jithender G; Kumar, Dinesh; Hosur, Ramakrishna V

    2015-02-01

    Protein NMR spectroscopy has expanded dramatically over the last decade into a powerful tool for the study of their structure, dynamics, and interactions. The primary requirement for all such investigations is sequence-specific resonance assignment. The demand now is to obtain this information as rapidly as possible and in all types of protein systems, stable/unstable, soluble/insoluble, small/big, structured/unstructured, and so on. In this context, we introduce here two reduced dimensionality experiments – (3,2)D-hNCOcanH and (3,2)D-hNcoCAnH – which enhance the previously described 2D NMR-based assignment methods quite significantly. Both the experiments can be recorded in just about 2-3 h each and hence would be of immense value for high-throughput structural proteomics and drug discovery research. The applicability of the method has been demonstrated using alpha-helical bovine apo calbindin-D9k P43M mutant (75 aa) protein. Automated assignment of this data using AUTOBA has been presented, which enhances the utility of these experiments. The backbone resonance assignments so derived are utilized to estimate secondary structures and the backbone fold using Web-based algorithms. Taken together, we believe that the method and the protocol proposed here can be used for routine high-throughput structural studies of proteins. Copyright © 2014 John Wiley & Sons, Ltd.

  20. Protein Delivery into Plant Cells: Toward In vivo Structural Biology

    PubMed Central

    Cedeño, Cesyen; Pauwels, Kris; Tompa, Peter

    2017-01-01

    Understanding the biologically relevant structural and functional behavior of proteins inside living plant cells is only possible through the combination of structural biology and cell biology. The state-of-the-art structural biology techniques are typically applied to molecules that are isolated from their native context. Although most experimental conditions can be easily controlled while dealing with an isolated, purified protein, a serious shortcoming of such in vitro work is that we cannot mimic the extremely complex intracellular environment in which the protein exists and functions. Therefore, it is highly desirable to investigate proteins in their natural habitat, i.e., within live cells. This is the major ambition of in-cell NMR, which aims to approach structure-function relationship under true in vivo conditions following delivery of labeled proteins into cells under physiological conditions. With a multidisciplinary approach that includes recombinant protein production, confocal fluorescence microscopy, nuclear magnetic resonance (NMR) spectroscopy and different intracellular protein delivery strategies, we explore the possibility to develop in-cell NMR studies in living plant cells. While we provide a comprehensive framework to set-up in-cell NMR, we identified the efficient intracellular introduction of isotope-labeled proteins as the major bottleneck. Based on experiments with the paradigmatic intrinsically disordered proteins (IDPs) Early Response to Dehydration protein 10 and 14, we also established the subcellular localization of ERD14 under abiotic stress. PMID:28469623

  1. Enantiodiscrimination of flexible cyclic solutes using NMR spectroscopy in polypeptide chiral mesophases: investigation of cis-decalin and THF.

    PubMed

    Aroulanda, Christie; Lafon, Olivier; Lesot, Philippe

    2009-08-06

    The conformational dynamics and orientational behavior of two model cyclic molecules, cis-decalin (cis-dec) and tetrahydrofurane (THF), dissolved in weakly ordering, polypeptidic chiral liquid crystals (CLCs) are theoretically discussed and experimentally investigated using deuterium and carbon-13 NMR spectroscopies. The analysis of enantiomeric and enantiotopic discriminations in these compounds is shown to depend on the rate of conformational exchange regime, slow or fast. The slow exchange regime is illustrated through the case of cis-dec at low temperature (243 K). We show that the deuterium NMR spectra in this regime can be qualitatively and quantitatively interpreted by restricting the conformational pathway of cis-dec to two enantiomeric conformers of C(2)-symmetry. The orientational order parameters of these interconverting enantiomers are calculated by matching the (2)H quadrupolar splittings with calculated conformer structures. The fast exchange regime is investigated through the examples of cis-dec at high temperature (356 K) and THF at room temperature (300 K). The (2)H NMR spectra above the coalescence temperature are analyzed by introducing the concept of "average molecular structure". This fictitious structure allows easily identifying NMR equivalences of solutes dissolved in CLC. However, it cannot be applied to determine consistent orientational order parameters. This study emphasizes that enantiotopic discriminations observed for flexible molecules in the fast exchange regime can be quantitatively interpreted only by considering the orientational order of each conformer.

  2. Purifying Properly Folded Cysteine-rich, Zinc Finger Containing Recombinant Proteins for Structural Drug Targeting Studies: the CH1 Domain of p300 as a Case Example

    PubMed Central

    Kim, Yong Joon; Kaluz, Stefan; Mehta, Anil; Weinert, Emily; Rivera, Shannon; Van Meir, Erwin G.

    2017-01-01

    The transcription factor Hypoxia-Inducible Factor (HIF) complexes with the coactivator p300, activating the hypoxia response pathway and allowing tumors to grow. The CH1 and CAD domains of each respective protein form the interface between p300 and HIF. Small molecule compounds are in development that target and inhibit HIF/p300 complex formation, with the goal of reducing tumor growth. High resolution NMR spectroscopy is necessary to study ligand interaction with p300-CH1, and purifying high quantities of properly folded p300-CH1 is needed for pursuing structural and biophysical studies. p300-CH1 has 3 zinc fingers and 9 cysteine residues, posing challenges associated with reagent compatibility and protein oxidation. A protocol has been developed to overcome such issues by incorporating zinc during expression and streamlining the purification time, resulting in a high yield of optimally folded protein (120 mg per 4 L expression media) that is suitable for structural NMR studies. The structural integrity of the final recombinant p300-CH1 has been verified to be optimal using onedimensional 1H NMR spectroscopy and circular dichroism. This protocol is applicable for the purification of other zinc finger containing proteins. PMID:28966947

  3. Sequence-specific sup 1 H NMR resonance assignments of Bacillus subtilis HPr: Use of spectra obtained from mutants to resolve spectral overlap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wittekind, M.; Klevit, R.E.; Reizer, J.

    1990-08-07

    On the basis of an analysis of two-dimensional {sup 1}H NMR spectra, the complete sequence-specific {sup 1}H NMR assignments are presented for the phosphocarrier protein HPr from the Gram-positive bacterium Bacillus subtilis. During the assignment procedure, extensive use was made of spectra obtained from point mutants of HPr in order to resolve spectral overlap and to provide verification of assignments. Regions of regular secondary structure were identified by characteristic patterns of sequential backbone proton NOEs and slowly exchanging amide protons. B subtilis HPr contains four {beta}-strands that form a single antiparallel {beta}-sheet and two well-defined {alpha}-helices. There are two stretchesmore » of extended backbone structure, one of which contains the active site His{sub 15}. The overall fold of the protein is very similar to that of Escherichia coli HPr determined by NMR studies.« less

  4. Solid-State NMR Spectroscopy of Metal–Organic Framework Compounds (MOFs)

    PubMed Central

    Hoffmann, Herbert C.; Debowski, Marta; Müller, Philipp; Paasch, Silvia; Senkovska, Irena; Kaskel, Stefan; Brunner, Eike

    2012-01-01

    Nuclear Magnetic Resonance (NMR) spectroscopy is a well-established method for the investigation of various types of porous materials. During the past decade, metal–organic frameworks have attracted increasing research interest. Solid-state NMR spectroscopy has rapidly evolved into an important tool for the study of the structure, dynamics and flexibility of these materials, as well as for the characterization of host–guest interactions with adsorbed species such as xenon, carbon dioxide, water, and many others. The present review introduces and highlights recent developments in this rapidly growing field.

  5. Enzyme Active Site Interactions by Raman/FTIR, NMR, and Ab Initio Calculations

    PubMed Central

    Deng, Hua

    2017-01-01

    Characterization of enzyme active site structure and interactions at high resolution is important for the understanding of the enzyme catalysis. Vibrational frequency and NMR chemical shift measurements of enzyme-bound ligands are often used for such purpose when X-ray structures are not available or when higher resolution active site structures are desired. This review is focused on how ab initio calculations may be integrated with vibrational and NMR chemical shift measurements to quantitatively determine high-resolution ligand structures (up to 0.001 Å for bond length and 0.01 Å for hydrogen bonding distance) and how interaction energies between bound ligand and its surroundings at the active site may be determined. Quantitative characterization of substrate ionic states, bond polarizations, tautomeric forms, conformational changes and its interactions with surroundings in enzyme complexes that mimic ground state or transition state can provide snapshots for visualizing the substrate structural evolution along enzyme-catalyzed reaction pathway. Our results have shown that the integration of spectroscopic studies with theoretical computation greatly enhances our ability to interpret experimental data and significantly increases the reliability of the theoretical analysis. PMID:24018325

  6. LC-UV-solid-phase extraction-NMR-MS combined with a cryogenic flow probe and its application to the identification of compounds present in Greek oregano.

    PubMed

    Exarchou, Vassiliki; Godejohann, Markus; van Beek, Teris A; Gerothanassis, Ioannis P; Vervoort, Jacques

    2003-11-15

    Structure elucidation of natural products usually relies on a combination of NMR spectroscopy with mass spectrometry whereby NMR trails MS in terms of the minimum sample amount required. In the present study, the usefulness of on-line solid-phase extraction (SPE) in LC-NMR for peak storage after the LC separation prior to NMR analysis is demonstrated. The SPE unit allows the use of normal protonated solvents for the LC separation and fully deuterated solvents for flushing the trapped compounds to the NMR probe. Thus, solvent suppression is no longer necessary. Multiple trapping of the same analyte from repeated LC injections was utilized to solve the problem of low concentration and to obtain 2D heteronuclear NMR spectra. In addition, a combination of the SPE unit with a recently developed cryoflow NMR probe and an MS was evaluated. This on-line LC-UV-SPE-NMR-MS system was used for the automated analysis of a Greek oregano extract. Combining the data provided by the UV, MS, and NMR spectra, the flavonoids taxifolin, aromadendrin, eriodictyol, naringenin, and apigenin, the phenolic acid rosmarinic acid, and the monoterpene carvacrol were identified. This automated technique is very useful for natural product analysis, and the large sensitivity improvement leads to significantly reduced NMR acquisition times.

  7. Solution NMR Spectroscopy for the Study of Enzyme Allostery

    PubMed Central

    Lisi, George P.; Loria, J. Patrick

    2016-01-01

    Allostery is a ubiquitous biological regulatory process in which distant binding sites within a protein or enzyme are functionally and thermodynamically coupled. Allosteric interactions play essential roles in many enzymological mechanisms, often facilitating formation of enzyme-substrate complexes and/or product release. Thus, elucidating the forces that drive allostery is critical to understanding the complex transformations of biomolecules. Currently, a number of models exist to describe allosteric behavior, taking into account energetics as well as conformational rearrangements and fluctuations. In the following review, we discuss the use of solution NMR techniques designed to probe allosteric mechanisms in enzymes. NMR spectroscopy is unequaled in its ability to detect structural and dynamical changes in biomolecules, and the case studies presented herein demonstrate the range of insights to be gained from this valuable method. We also provide a detailed technical discussion of several specialized NMR experiments that are ideally suited for the study of enzymatic allostery. PMID:26734986

  8. Synthesis, NMR data and theoretical study of semi-synthetic derivatives from trans-dehydrocrotonin

    NASA Astrophysics Data System (ADS)

    Soares, Breno Almeida; Medeiros Maciel, Maria Aparecida; Castro, Rosane Nora; Kaiser, Carlos R.; Firme, Caio Lima

    2016-03-01

    In this work, the 19-nor-diterpenoid clerodane-type dehydrocrotonin (t-DCTN) was a primary source for a two-step synthetic procedure. The catalytic hydrogenation of t-DCTN afforded the semi-synthetic trans-crotonin (t-CTN) in a highly stereospecific reaction confirmed by DFT calculations. The unsaturated carbonyl group of t-DCTN was reduced by NaBH4/EtOH providing an epimeric α-OH and β-OH mixture named t-CTN-OL. Both epimeric compound structures t-CTN-α-OL and t-CTN-β-OL were elucidated by 1D and 2D NMR spectral data. Comparison of NMR data from natural source of t-CTN was done to confirm the stereochemical authenticity of semi-synthetic t-CTN. Calculated NMR data for all described derivatives (semi-synthetic t-CTN and its t-CTN-OL epimeric mixture) were performed using B3LYP/6-311G++(d,p) level of theory which validated our previously developed NMR theoretical protocol for structural analyses of organic molecules. Topological data using Quantum Theory of Atoms in Molecules (QTAIM) of t-CTN quantified and qualified intramolecular interactions of its most stable conformer.

  9. Recombinant expression of Ixolaris, a Kunitz-type inhibitor from the tick salivary gland, for NMR studies.

    PubMed

    De Paula, V S; Silva, F H S; Francischetti, I M B; Monteiro, R Q; Valente, A P

    2017-11-01

    Ixolaris is an anticoagulant protein identified in the tick saliva of Ixodes scapularis. Ixolaris contains 2 Kunitz like domains and binds to Factor Xa or Factor X as a scaffold for inhibition of the Tissue Factor (TF)/Factor VIIa (FVIIa). In contrast to tissue factor pathway inhibitor (TFPI), however, Ixolaris does not bind to the active site cleft of FXa. Instead, complex formation is mediated by the FXa heparin-binding exosite. Due to its potent and long-lasting antithrombotic activity, Ixolaris is a promising agent for anticoagulant therapy. Although numerous functional studies of Ixolaris exist, three-dimensional structure of Ixolaris has not been obtained at atomic resolution. Using the pET32 vector, we successfully expressed a TRX-His 6 -Ixolaris fusion protein. By combining Ni-NTA chromatography, enterokinase protease cleavage, and reverse phase HPLC (RP-HPLC), we purified isotopically labeled Ixolaris for NMR studies. 1D 1 H and 2D 15 N- 1 H NMR analysis yielded high quality 2D 15 N- 1 H HSQC spectra revealing that the recombinant protein is folded. These studies represent the first steps in obtaining high-resolution structural information by NMR for Ixolaris enabling the investigation of the molecular basis for Ixolaris-coagulation factors interactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Interplay between membrane curvature and protein conformational equilibrium investigated by solid-state NMR.

    PubMed

    Liao, Shu Y; Lee, Myungwoon; Hong, Mei

    2018-03-01

    Many membrane proteins sense and induce membrane curvature for function, but structural information about how proteins modulate their structures to cause membrane curvature is sparse. We review our recent solid-state NMR studies of two virus membrane proteins whose conformational equilibrium is tightly coupled to membrane curvature. The influenza M2 proton channel has a drug-binding site in the transmembrane (TM) pore. Previous chemical shift data indicated that this pore-binding site is lost in an M2 construct that contains the TM domain and a curvature-inducing amphipathic helix. We have now obtained chemical shift perturbation, protein-drug proximity, and drug orientation data that indicate that the pore-binding site is restored when the full cytoplasmic domain is present. This finding indicates that the curvature-inducing amphipathic helix distorts the TM structure to interfere with drug binding, while the cytoplasmic tail attenuates this effect. In the second example, we review our studies of a parainfluenza virus fusion protein that merges the cell membrane and the virus envelope during virus entry. Chemical shifts of two hydrophobic domains of the protein indicate that both domains have membrane-dependent backbone conformations, with the β-strand structure dominating in negative-curvature phosphatidylethanolamine (PE) membranes. 31 P NMR spectra and 1 H- 31 P correlation spectra indicate that the β-strand-rich conformation induces saddle-splay curvature to PE membranes and dehydrates them, thus stabilizing the hemifusion state. These results highlight the indispensable role of solid-state NMR to simultaneously determine membrane protein structures and characterize the membrane curvature in which these protein structures exist. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Reliable resonance assignments of selected residues of proteins with known structure based on empirical NMR chemical shift prediction

    NASA Astrophysics Data System (ADS)

    Li, Da-Wei; Meng, Dan; Brüschweiler, Rafael

    2015-05-01

    A robust NMR resonance assignment method is introduced for proteins whose 3D structure has previously been determined by X-ray crystallography. The goal of the method is to obtain a subset of correct assignments from a parsimonious set of 3D NMR experiments of 15N, 13C labeled proteins. Chemical shifts of sequential residue pairs are predicted from static protein structures using PPM_One, which are then compared with the corresponding experimental shifts. Globally optimized weighted matching identifies the assignments that are robust with respect to small changes in NMR cross-peak positions. The method, termed PASSPORT, is demonstrated for 4 proteins with 100-250 amino acids using 3D NHCA and a 3D CBCA(CO)NH experiments as input producing correct assignments with high reliability for 22% of the residues. The method, which works best for Gly, Ala, Ser, and Thr residues, provides assignments that serve as anchor points for additional assignments by both manual and semi-automated methods or they can be directly used for further studies, e.g. on ligand binding, protein dynamics, or post-translational modification, such as phosphorylation.

  12. Reliable Resonance Assignments of Selected Residues of Proteins with Known Structure Based on Empirical NMR Chemical Shift Prediction

    PubMed Central

    Li, Da-Wei; Meng, Dan; Brüschweiler, Rafael

    2015-01-01

    A robust NMR resonance assignment method is introduced for proteins whose 3D structure has previously been determined by X-ray crystallography. The goal of the method is to obtain a subset of correct assignments from a parsimonious set of 3D NMR experiments of 15N, 13C labeled proteins. Chemical shifts of sequential residue pairs are predicted from static protein structures using PPM_One, which are then compared with the corresponding experimental shifts. Globally optimized weighted matching identifies the assignments that are robust with respect to small changes in NMR cross-peak positions. The method, termed PASSPORT, is demonstrated for 4 proteins with 100 – 250 amino acids using 3D NHCA and a 3D CBCA(CO)NH experiments as input producing correct assignments with high reliability for 22% of the residues. The method, which works best for Gly, Ala, Ser, and Thr residues, provides assignments that serve as anchor points for additional assignments by both manual and semi-automated methods or they can be directly used for further studies, e.g. on ligand binding, protein dynamics, or post-translational modification, such as phosphorylation. PMID:25863893

  13. Structure and electronic properties of azadirachtin.

    PubMed

    de Castro, Elton A S; de Oliveira, Daniel A B; Farias, Sergio A S; Gargano, Ricardo; Martins, João B L

    2014-02-01

    We performed a combined DFT and Monte Carlo (13)C NMR chemical-shift study of azadirachtin A, a triterpenoid that acts as a natural insect antifeedant. A conformational search using a Monte Carlo technique based on the RM1 semiempirical method was carried out in order to establish its preferred structure. The B3LYP/6-311++G(d,p), wB97XD/6-311++G(d,p), M06/6-311++G(d,p), M06-2X/6-311++G(d,p), and CAM-B3LYP/6-311++G(d,p) levels of theory were used to predict NMR chemical shifts. A Monte Carlo population-weighted average spectrum was produced based on the predicted Boltzmann contributions. In general, good agreement between experimental and theoretical data was obtained using both methods, and the (13)C NMR chemical shifts were predicted highly accurately. The geometry was optimized at the semiempirical level and used to calculate the NMR chemical shifts at the DFT level, and these shifts showed only minor deviations from those obtained following structural optimization at the DFT level, and incurred a much lower computational cost. The theoretical ultraviolet spectrum showed a maximum absorption peak that was mainly contributed by the tiglate group.

  14. Automation of NMR structure determination of proteins.

    PubMed

    Altieri, Amanda S; Byrd, R Andrew

    2004-10-01

    The automation of protein structure determination using NMR is coming of age. The tedious processes of resonance assignment, followed by assignment of NOE (nuclear Overhauser enhancement) interactions (now intertwined with structure calculation), assembly of input files for structure calculation, intermediate analyses of incorrect assignments and bad input data, and finally structure validation are all being automated with sophisticated software tools. The robustness of the different approaches continues to deal with problems of completeness and uniqueness; nevertheless, the future is very bright for automation of NMR structure generation to approach the levels found in X-ray crystallography. Currently, near completely automated structure determination is possible for small proteins, and the prospect for medium-sized and large proteins is good. Copyright 2004 Elsevier Ltd.

  15. Structural insights into a StART-like domain in Lam4 and its interaction with sterol ligands.

    PubMed

    Gatta, Alberto T; Sauerwein, Andrea C; Zhuravleva, Anastasia; Levine, Tim P; Matthews, Stephen

    2018-01-15

    Sterols are essential components of cellular membranes and shape their biophysical properties. The recently discovered family of Lipid transfer proteins Anchored at Membrane contact sites (LAMs) has been suggested to carry out intracellular sterol traffic using StART-like domains. Here, we studied the second StART-like domain of Lam4p from S. cerevisiae by NMR. We show that NMR data are consistent with the StART-like domain structure, and that several functionally important regions within the domain exhibit significant conformational dynamics. NMR titration experiments confirm sterol binding to the canonical sterol-binding site and suggest a role of membrane interactions on the thermodynamics and kinetics of sterol binding. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Possible 6-qubit NMR quantum computer device material; simulator of the NMR line width

    NASA Astrophysics Data System (ADS)

    Hashi, K.; Kitazawa, H.; Shimizu, T.; Goto, A.; Eguchi, S.; Ohki, S.

    2002-12-01

    For an NMR quantum computer, splitting of an NMR spectrum must be larger than a line width. In order to find a best device material for a solid-state NMR quantum computer, we have made a simulation program to calculate the NMR line width due to the nuclear dipole field by the 2nd moment method. The program utilizes the lattice information prepared by commercial software to draw a crystal structure. By applying this program, we can estimate the NMR line width due to the nuclear dipole field without measurements and find a candidate material for a 6-qubit solid-state NMR quantum computer device.

  17. Crystal structures of tiotropium bromide and its monohydrate in view of combined solid-state nuclear magnetic resonance and gauge-including projector-augmented wave studies.

    PubMed

    Pindelska, Edyta; Szeleszczuk, Lukasz; Pisklak, Dariusz Maciej; Majka, Zbigniew; Kolodziejski, Waclaw

    2015-07-01

    Tiotropium bromide is an anticholinergic bronchodilator used in the management of chronic obstructive pulmonary disease. The crystal structures of this compound and its monohydrate have been previously solved and published. However, in this paper, we showed that those structures contain some major errors. Our methodology based on combination of the solid-state nuclear magnetic resonance (NMR) spectroscopy and quantum mechanical gauge-including projector-augmented wave (GIPAW) calculations of NMR shielding constants enabled us to correct those errors and obtain reliable structures of the studied compounds. It has been proved that such approach can be used not only to perform the structural analysis of a drug substance and to identify its polymorphs, but also to verify and optimize already existing crystal structures. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  18. Investigations on the Crystal-Chemical Behavior of Transition-Metal-Bearing Aluminosilicate Garnet Solid Solutions Using 27Al and 29Si NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Palke, A. C.; Geiger, C. A.; Stebbins, J. F.

    2015-12-01

    The petrological importance of silicate garnet is derived from the presence of three distinct cation sites of varying size and coordination number. This allows for a wide range of trace, minor, and major element substitutions. However, a full and precise crystal-chemical understanding of the nature of transition metals in garnet is not at hand. Possible mechanisms of various charge-balanced substitutions (e.g. octahedral Ti4+ or tetrahedral Al3+) and the structural state of solid solutions (i.e. short- to long-range ordering) need study. We report on ongoing efforts in these directions using 27Al and 29Si Magic-Angle Spinning Nuclear Magnetic Resonance (MAS-NMR) spectroscopy. Early work on synthetic and natural Fe- and Mn-bearing pyrope- and grossular-rich garnets focused on the effect these paramagnetic transition metals have in measuring and interpreting NMR spectra. These results have been expanded with NMR measurements on synthetic pyrope-rich garnets containing other paramagnetic transition metals including Cr3+, V3+, Co2+, and Ni2+ as well as diamagnetic Ti4+. NMR peaks are severely broadened in the presence of even small concentrations of Cr3+, Mn2+, and Fe3+ leading to a loss of spectral resolution. On the other hand, the spectra of garnet containing V3+, Fe2+, Co2+, and Ni2+ have better resolution and show separate paramagnetically shifted NMR peaks. In some cases, crystal-chemical information can be obtained because of the large frequency separations between the NMR peaks that can be assigned to various local atomic configurations around Al and Si. Furthermore, the 27Al NMR spectrum of a synthetic pyrope garnet with about 2% diamagnetic Ti4+ on the octahedral site showed the absence of any tetrahedral Al3+, which rules out the substitution mechanism VITi + IVAl = VIAl + IVSi in the solid solution. Our NMR investigations on garnet are now being made at the exploratory level. We think that NMR spectra of diamagnetic garnet can provide information on a number of crystal-chemical properties. Spectra of garnet containing various paramagnetic transition elements can also, in some cases, give local structural information. With a better understanding of paramagnetic effects in NMR spectroscopy, this type of study can possibly be expanded to other geologically important paramagnetic minerals and phases.

  19. On the track to silica-supported tungsten oxo metathesis catalysts: input from 17O solid-state NMR.

    PubMed

    Merle, Nicolas; Girard, Guillaume; Popoff, Nicolas; De Mallmann, Aimery; Bouhoute, Yassine; Trébosc, Julien; Berrier, Elise; Paul, Jean-François; Nicholas, Christopher P; Del Rosal, Iker; Maron, Laurent; Gauvin, Régis M; Delevoye, Laurent; Taoufik, Mostafa

    2013-09-03

    The grafting of an oxo chloro trisalkyl tungsten derivative on silica dehydroxylated at 700 °C was studied by several techniques that showed reaction via W-Cl cleavage, to afford a well-defined precatalyst for alkene metathesis. This was further confirmed by DFT calculations on the grafting process. (17)O labeling of the oxo moiety of a series of related molecular and supported tungsten oxo derivatives was achieved, and the corresponding (17)O MAS NMR spectra were recorded. Combined experimental and theoretical NMR studies yielded information on the local structure of the surface species. Assessment of the (17)O NMR parameters also confirmed the nature of the grafting pathway by ruling out other possible grafting schemes, thanks to highly characteristic anisotropic features arising from the quadrupolar and chemical shift interactions.

  20. NMR Spectroscopy and Molecular Dynamics Simulation of r(CCGCUGCGG)2 Reveal a Dynamic UU Internal Loop Found in Myotonic Dystrophy Type 1†

    PubMed Central

    Parkesh, Raman; Fountain, Matthew; Disney, Matthew D.

    2011-01-01

    The NMR structure of an RNA with a copy of the 5′CUG/3′GUC motif found in the triplet repeating disorder myotonic dystrophy type 1 (DM1) is disclosed. The lowest energy conformation of the UU pair is a single hydrogen bonded structure; however, the UU protons undergo exchange indicating structural dynamics. Molecular dynamics simulations show that the single hydrogen bonded structure is the most populated one but the UU pair interconverts between 0, 1, and 2 hydrogen bonded pairs. These studies have implications for the recognition of the DM1 RNA by small molecules and proteins. PMID:21204525

  1. Isolation and structure elucidation of tetrameric procyanidins from unripe apples (Malus pumila cv. Fuji) by NMR spectroscopy.

    PubMed

    Nakashima, Shohei; Oda, Chihiro; Masuda, Susumu; Tagashira, Motoyuki; Kanda, Tomomasa

    2012-11-01

    Procyanidins are plant secondary metabolites widely consumed and known to have various physiological functions, but their bioavailability and mechanism of action are still unclear especially for larger oligomers. One of the reasons is scarce information about the detailed structure of oligomeric procyanidins. As for apple, structures of procyanidin components larger than trimers are scarcely known. In this study, 11 tetrameric procyanidins including two known compounds were isolated from unripe apples (Malus pumila cv. Fuji) and identified by NMR spectroscopic analysis and phloroglucinol degradation. As a result, the detailed structural diversity of tetrameric procyanidins in apple was established. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Characterizing Covalently Sidewall-Functionalized SWCNTs by using 1H NMR Spectroscopy

    PubMed Central

    Nelson, Donna J.; Kumar, Ravi

    2013-01-01

    Unambiguous evidence for covalent sidewall functionalization of single-walled carbon nanotubes (SWCNTs) has been a difficult task, especially for nanomaterials in which slight differences in functionality structure produce significant changes in molecular characteristics. Nuclear magnetic resonance (NMR) spectroscopy provides clear information about the structural skeleton of molecules attached to SWCNTs. In order to establish the generality of proton NMR as an analytical technique for characterizing covalently functionalized SWCNTs, we have obtained and analyzed proton NMR data of SWCNT-substituted benzenes across a variety of para substituents. Trends obtained for differences in proton NMR chemical shifts and the impact of o-, p-, and m-directing effects of electrophilic aromatic substituents on phenyl groups covalently bonded to SWCNTs are discussed. PMID:24009779

  3. A review of whole cell wall NMR by the direct-dissolution of biomass

    DOE PAGES

    Foston, Marcus B.; Samuel, Reichel; He, Jian; ...

    2016-01-19

    To fully realize the potential of lignocellulosic biomass as a renewable resource for the production of fuels, chemicals, and materials, an improved understanding of the chemical and molecular structures within biomass and how those structures are formed during biosynthesis and transformed during (thermochemical and biological) conversion must be developed. This effort will require analytical techniques which are not only in-depth, rapid, and cost-effective, but also leave native cell wall features intact. Whole plant cell wall nuclear magnetic resonance (NMR) analysis facilitates unparalleled structural characterization of lignocellulosic biomass without causing (or with minimal) structural modification. The objective of this review ismore » to summarize research pertaining to solution- or gel-state whole plant cell wall NMR analysis of biomass, demonstrating the capability of NMR to delineate the structural features and transformations of biomass. In particular, this review will focus on the application of a two-dimensional solution-state NMR technique and perdeuterated ionic liquid based organic electrolyte solvents for the direct dissolution and analysis of biomass. Furthermore, we believe this type of analysis will be critical to advancing biofuel research, improving bioprocessing methodology, and enhancing plant bioengineering efforts.« less

  4. A review of whole cell wall NMR by the direct-dissolution of biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foston, Marcus B.; Samuel, Reichel; He, Jian

    To fully realize the potential of lignocellulosic biomass as a renewable resource for the production of fuels, chemicals, and materials, an improved understanding of the chemical and molecular structures within biomass and how those structures are formed during biosynthesis and transformed during (thermochemical and biological) conversion must be developed. This effort will require analytical techniques which are not only in-depth, rapid, and cost-effective, but also leave native cell wall features intact. Whole plant cell wall nuclear magnetic resonance (NMR) analysis facilitates unparalleled structural characterization of lignocellulosic biomass without causing (or with minimal) structural modification. The objective of this review ismore » to summarize research pertaining to solution- or gel-state whole plant cell wall NMR analysis of biomass, demonstrating the capability of NMR to delineate the structural features and transformations of biomass. In particular, this review will focus on the application of a two-dimensional solution-state NMR technique and perdeuterated ionic liquid based organic electrolyte solvents for the direct dissolution and analysis of biomass. Furthermore, we believe this type of analysis will be critical to advancing biofuel research, improving bioprocessing methodology, and enhancing plant bioengineering efforts.« less

  5. Bonding structure in amorphous carbon nitride: A spectroscopic and nuclear magnetic resonance study

    NASA Astrophysics Data System (ADS)

    Sánchez-López, J. C.; Donnet, C.; Lefèbvre, F.; Fernández-Ramos, C.; Fernández, A.

    2001-07-01

    Since the prediction of Liu and Cohen [Science 245, 841 (1989)] of the potential extraordinary mechanical properties of crystalline β-C3N4, many authors have attempted its synthesis. However, in most cases, the obtained materials are amorphous phases with a complex bonding structure. Their characterization is complicated due to the absence of a reference compound, the lack of long-range order, and the poor knowledge about their bonding structure. In this article, we present 1H, 13C, and 15N solid-state nuclear magnetic resonance (NMR) measurements for the determination of the bonding types in amorphous CNx films. NMR measurements do not require long-range order and are able to clearly identify the signals from the sp2- and sp3-bonded phases. The analysis of the data obtained by other characterization techniques, such as infrared spectroscopy, x-ray photoelectron spectroscopy, electron energy-loss spectroscopy, and x-ray absorption near-edge spectroscopy on the same sample, based on the information acquired by NMR, enables the description of a structure model for the studied amorphous-CNx phase prepared by dc-magnetron sputtering and to revise the interpretation found in the literature.

  6. Ab initio random structure searching of organic molecular solids: assessment and validation against experimental data† †Electronic supplementary information (ESI) available: Results of similarity analysis between the 11 structures of lowest energy obtained in the AIRSS calculations and the reported structures of form III and form IV of m-ABA; unit cell parameters and volumes for all structures considered; comparison of 2θ values derived from the unit cell parameters of different structural models representing form III of m-ABA; Le Bail fitting of the experimental powder XRD pattern of form IV of m-ABA recorded at 70 K using, as the initial structural model, the reported crystal structure following geometry optimization; table of calculated (GIPAW) absolute isotropic NMR shieldings; simulated powder XRD data for the considered structures after precise geometry optimization; experimental 1H MAS NMR spectra of forms III and IV. (pdf) The calculated and experimental data for this study are provided as a supporting dataset from WRAP, the Warwick Research Archive Portal at http://wrap.warwick.ac.uk/91884. See DOI: 10.1039/c7cp04186a

    PubMed Central

    Zilka, Miri; Dudenko, Dmytro V.; Hughes, Colan E.; Williams, P. Andrew; Sturniolo, Simone; Franks, W. Trent; Pickard, Chris J.

    2017-01-01

    This paper explores the capability of using the DFT-D ab initio random structure searching (AIRSS) method to generate crystal structures of organic molecular materials, focusing on a system (m-aminobenzoic acid; m-ABA) that is known from experimental studies to exhibit abundant polymorphism. Within the structural constraints selected for the AIRSS calculations (specifically, centrosymmetric structures with Z = 4 for zwitterionic m-ABA molecules), the method is shown to successfully generate the two known polymorphs of m-ABA (form III and form IV) that have these structural features. We highlight various issues that are encountered in comparing crystal structures generated by AIRSS to experimental powder X-ray diffraction (XRD) data and solid-state magic-angle spinning (MAS) NMR data, demonstrating successful fitting for some of the lowest energy structures from the AIRSS calculations against experimental low-temperature powder XRD data for known polymorphs of m-ABA, and showing that comparison of computed and experimental solid-state NMR parameters allows different hydrogen-bonding motifs to be discriminated. PMID:28944393

  7. Solution conformation of carbohydrates: a view by using NMR assisted by modeling.

    PubMed

    Díaz, Dolores; Canales-Mayordomo, Angeles; Cañada, F Javier; Jiménez-Barbero, Jesús

    2015-01-01

    Structural elucidation of complex carbohydrates in solution is not a trivial task. From the NMR view point, the limited chemical shift dispersion of sugar NMR spectra demands the combination of a variety of NMR techniques as well as the employment of molecular modeling methods. Herein, a general protocol for assignment of resonances and determination of inter-proton distances within the saccharides by homonuclear and heteronuclear experiments (i.e., (1)H and (13)C) is described. In addition, several computational tools and procedures for getting a final ensemble of geometries that represent the structure in solution are presented.

  8. Solution structure of lysine-free (K0) ubiquitin

    PubMed Central

    Huang, Tao; Li, Jess; Byrd, R Andrew

    2014-01-01

    Lysine-free ubiquitin (K0-Ub) is commonly used to study the ubiquitin-signaling pathway, where it is assumed to have the same structure and function as wild-type ubiquitin (wt-Ub). However, the K0-Ub 15N heteronuclear single quantum correlation NMR spectrum differs significantly from wt-Ub and the melting temperature is depressed by 19°C, raising the question of the structural integrity and equivalence to wt-Ub. The three-dimensional structure of K0-Ub was determined by solution NMR, using chemical shift and residual dipolar coupling data. K0-Ub adopts the same backbone structure as wt-Ub, and all significant chemical shifts can be related to interactions impacted by the K to R mutations. PMID:24591328

  9. Water-Solubilized, Cap-Stabilized, Helical Polyalanines: Calibration Standards for NMR and CD Analyses

    PubMed Central

    Heitmann, Björn; Job, Gabriel E.; Kennedy, Robert J.; Walker, Sharon M.; Kemp, Daniel S.

    2006-01-01

    NMR and CD studies are reported for two length series of solubilized, spaced, highly helical polyalanines that are N-capped by the optimal helix stabilizer βAsp-Hel and C-capped by β-aminoalanine beta and that are studied in water at 2 °C, pH 1–8. NMR analysis yields a structural characterization of the peptide AcβAspHelAla8betaNH2 and selected members of one βAspHelAlanbeta series. At pH > 4.5 the βAspHel cap provides a preorganized triad of carboxylate anion and two amide residues that is complementary to the helical polyalanine N-terminus. The C-terminal β-aminoalanine assumes a helix-stabilizing conformation consistent with literature precedents. H(N)CO NMR experiments applied to capped, uniformly 13C- and 15N-labeled Ala8 and Ala12 peptides define Alan hydrogen bonding signatures as α-helical without detectable 310 character. Relative NH→ND exchange rates yield site protection factors PFi that define uniquely high fractional helicities FH for the peptide Alan regions. These Alan calibration series, studied in water and lacking helix-stabilizing tertiary structure, yield the first 13C NMR chemical shifts, 3JHNHα coupling constants, and CD ellipticities [θMolar]λ,n characteristic of a fully helical alanine within an Alan context. CD data are used to assign parameters X and [θ]λ,∞, required for rigorous calculation of FH values from CD ellipticities. PMID:15701003

  10. Nanodisc-Targeted STD NMR Spectroscopy Reveals Atomic Details of Ligand Binding to Lipid Environments.

    PubMed

    Muñoz-García, Juan C; Inacio Dos Reis, Rosana; Taylor, Richard J; Henry, Alistair J; Watts, Anthony

    2018-05-18

    Saturation transfer difference (STD) NMR spectroscopy is one of the most popular ligand-based NMR techniques for the study of protein-ligand interactions. This is due to its robustness and the fact that it is focused on the signals of the ligand, without any need for NMR information on the macromolecular target. This technique is most commonly applied to systems involving different types of ligands (e.g., small organic molecules, carbohydrates or lipids) and a protein as the target, in which the latter is selectively saturated. However, only a few examples have been reported where membrane mimetics are the macromolecular binding partners. Here, we have employed STD NMR spectroscopy to investigate the interactions of the neurotransmitter dopamine with mimetics of lipid bilayers, such as nanodiscs, by saturation of the latter. In particular, the interactions between dopamine and model lipid nanodiscs formed either from charged or zwitterionic lipids have been resolved at the atomic level. The results, in agreement with previous isothermal titration calorimetry studies, show that dopamine preferentially binds to negatively charged model membranes, but also provide detailed atomic insights into the mode of interaction of dopamine with membrane mimetics. Our findings provide relevant structural information for the design of lipid-based drug carriers of dopamine and its structural analogues and are of general applicability to other systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. AssignFit: a program for simultaneous assignment and structure refinement from solid-state NMR spectra

    PubMed Central

    Tian, Ye; Schwieters, Charles D.; Opella, Stanley J.; Marassi, Francesca M.

    2011-01-01

    AssignFit is a computer program developed within the XPLOR-NIH package for the assignment of dipolar coupling (DC) and chemical shift anisotropy (CSA) restraints derived from the solid-state NMR spectra of protein samples with uniaxial order. The method is based on minimizing the difference between experimentally observed solid-state NMR spectra and the frequencies back calculated from a structural model. Starting with a structural model and a set of DC and CSA restraints grouped only by amino acid type, as would be obtained by selective isotopic labeling, AssignFit generates all of the possible assignment permutations and calculates the corresponding atomic coordinates oriented in the alignment frame, together with the associated set of NMR frequencies, which are then compared with the experimental data for best fit. Incorporation of AssignFit in a simulated annealing refinement cycle provides an approach for simultaneous assignment and structure refinement (SASR) of proteins from solid-state NMR orientation restraints. The methods are demonstrated with data from two integral membrane proteins, one α-helical and one β-barrel, embedded in phospholipid bilayer membranes. PMID:22036904

  12. Modern analytics for synthetically derived complex drug substances: NMR, AFFF-MALS, and MS tests for glatiramer acetate.

    PubMed

    Rogstad, Sarah; Pang, Eric; Sommers, Cynthia; Hu, Meng; Jiang, Xiaohui; Keire, David A; Boyne, Michael T

    2015-11-01

    Glatiramer acetate (GA) is a mixture of synthetic copolymers consisting of four amino acids (glutamic acid, lysine, alanine, and tyrosine) with a labeled molecular weight range of 5000 to 9000 Da. GA is marketed as Copaxone™ by Teva for the treatment of multiple sclerosis. Here, the agency has evaluated the structure and composition of GA and a commercially available comparator, Copolymer-1. Modern analytical technologies which can characterize these complex mixtures are desirable for analysis of their comparability and structural "sameness." In the studies herein, a molecular fingerprinting approach is taken using mass-accurate mass spectrometry (MS) analysis, nuclear magnetic resonance (NMR) (1D-(1)H-NMR, 1D-(13)C-NMR, and 2D NMR), and asymmetric field flow fractionation (AFFF) coupled with multi-angle light scattering (MALS) for an in-depth characterization of three lots of the marketplace drug and a formulated sample of the comparator. Statistical analyses were applied to the MS and AFFF-MALS data to assess these methods' ability to detect analytical differences in the mixtures. The combination of multiple orthogonal measurements by liquid chromatography coupled with MS (LC-MS), AFFF-MALS, and NMR on the same sample set was found to be fit for the intended purpose of distinguishing analytical differences between these complex mixtures of peptide chains.

  13. A fast and efficient python library for interfacing with the Biological Magnetic Resonance Data Bank.

    PubMed

    Smelter, Andrey; Astra, Morgan; Moseley, Hunter N B

    2017-03-17

    The Biological Magnetic Resonance Data Bank (BMRB) is a public repository of Nuclear Magnetic Resonance (NMR) spectroscopic data of biological macromolecules. It is an important resource for many researchers using NMR to study structural, biophysical, and biochemical properties of biological macromolecules. It is primarily maintained and accessed in a flat file ASCII format known as NMR-STAR. While the format is human readable, the size of most BMRB entries makes computer readability and explicit representation a practical requirement for almost any rigorous systematic analysis. To aid in the use of this public resource, we have developed a package called nmrstarlib in the popular open-source programming language Python. The nmrstarlib's implementation is very efficient, both in design and execution. The library has facilities for reading and writing both NMR-STAR version 2.1 and 3.1 formatted files, parsing them into usable Python dictionary- and list-based data structures, making access and manipulation of the experimental data very natural within Python programs (i.e. "saveframe" and "loop" records represented as individual Python dictionary data structures). Another major advantage of this design is that data stored in original NMR-STAR can be easily converted into its equivalent JavaScript Object Notation (JSON) format, a lightweight data interchange format, facilitating data access and manipulation using Python and any other programming language that implements a JSON parser/generator (i.e., all popular programming languages). We have also developed tools to visualize assigned chemical shift values and to convert between NMR-STAR and JSONized NMR-STAR formatted files. Full API Reference Documentation, User Guide and Tutorial with code examples are also available. We have tested this new library on all current BMRB entries: 100% of all entries are parsed without any errors for both NMR-STAR version 2.1 and version 3.1 formatted files. We also compared our software to three currently available Python libraries for parsing NMR-STAR formatted files: PyStarLib, NMRPyStar, and PyNMRSTAR. The nmrstarlib package is a simple, fast, and efficient library for accessing data from the BMRB. The library provides an intuitive dictionary-based interface with which Python programs can read, edit, and write NMR-STAR formatted files and their equivalent JSONized NMR-STAR files. The nmrstarlib package can be used as a library for accessing and manipulating data stored in NMR-STAR files and as a command-line tool to convert from NMR-STAR file format into its equivalent JSON file format and vice versa, and to visualize chemical shift values. Furthermore, the nmrstarlib implementation provides a guide for effectively JSONizing other older scientific formats, improving the FAIRness of data in these formats.

  14. Developments in μSR and β NMR: Beyond a Muon Lifetime

    NASA Astrophysics Data System (ADS)

    Kiefl, Robert F.

    Advances in the use of μSR and β-NMR are driven by technical developments. New methods were developed which allowed us to learn surprising things about muonium in semiconductors, its electronic structure, its relationship to hydrogen, its ability to diffuse via quantum tunneling, and its metastability. Similarly in the area of high Tc superconductors new capabilities in spectrometer design led to new information on the properties of superconducting vortices and how they interact. The development of low energy β-NMR at TRIUMF and LE-μSR at PSI has made it possible to study electronic and magnetic properties of thin films and interfaces where conventional NMR lacks the required sensitivity. Low energy β-NMR is almost identical to μSR in principle, but the longer lifetime of 8Li allows one to probe the system on a very different time scale. In this sense β-NMR can be viewed as a complement or extension of μSR.

  15. Natural abundance (25)Mg solid-state NMR of mg oxyanion systems: a combined experimental and computational study.

    PubMed

    Cahill, Lindsay S; Hanna, John V; Wong, Alan; Freitas, Jair C C; Yates, Jonathan R; Harris, Robin K; Smith, Mark E

    2009-09-28

    Solid-state (25)Mg magic angle spinning nuclear magnetic resonance (MAS NMR) data are reported from a range of organic and inorganic magnesium-oxyanion compounds at natural abundance. To constrain the determination of the NMR interaction parameters (delta(iso), chi(Q), eta(Q)) data have been collected at three external magnetic fields (11.7, 14.1 and 18.8 T). Corresponding NMR parameters have also been calculated by using density functional theory (DFT) methods using the GIPAW approach, with good correlations being established between experimental and calculated values of both chi(Q) and delta(iso). These correlations demonstrate that the (25)Mg NMR parameters are very sensitive to the structure, with small changes in the local Mg(2+) environment and the overall hydration state profoundly affecting the observed spectra. The observations suggest that (25)Mg NMR spectroscopy is a potentially potent probe for addressing some key problems in inorganic materials and of metal centres in biologically relevant molecules.

  16. Assessment of higher order structure comparability in therapeutic proteins using nuclear magnetic resonance spectroscopy.

    PubMed

    Amezcua, Carlos A; Szabo, Christina M

    2013-06-01

    In this work, we applied nuclear magnetic resonance (NMR) spectroscopy to rapidly assess higher order structure (HOS) comparability in protein samples. Using a variation of the NMR fingerprinting approach described by Panjwani et al. [2010. J Pharm Sci 99(8):3334-3342], three nonglycosylated proteins spanning a molecular weight range of 6.5-67 kDa were analyzed. A simple statistical method termed easy comparability of HOS by NMR (ECHOS-NMR) was developed. In this method, HOS similarity between two samples is measured via the correlation coefficient derived from linear regression analysis of binned NMR spectra. Applications of this method include HOS comparability assessment during new product development, manufacturing process changes, supplier changes, next-generation products, and the development of biosimilars to name just a few. We foresee ECHOS-NMR becoming a routine technique applied to comparability exercises used to complement data from other analytical techniques. Copyright © 2013 Wiley Periodicals, Inc.

  17. Theoretical study of NMR, infrared and Raman spectra on triple-decker phthalocyanines

    NASA Astrophysics Data System (ADS)

    Suzuki, Atsushi; Oku, Takeo

    2016-02-01

    Electronic structures and magnetic properties of multi-decker phthalocyanines were studied by theoretical calculation. Electronic structures, excited processes at multi-states, isotropic chemical shifts of 13C, 14N and 1H-nuclear magnetic resonance (NMR), principle V-tensor in electronic field gradient (EFG) tensor and asymmetry parameters (η), vibration mode in infrared (IR) and Raman spectra of triple-decker phthalocyanines were calculated by density functional theory (DFT) and time-dependent DFT using B3LYP as basis function. Electron density distribution was delocalized on the phthalocyanine rings with electron static potential. Considerable separation of chemical shifts in 13C, 14N and 1H-NMR was originated from nuclear spin interaction between nitrogen and carbon atoms, nuclear quadrupole interaction based on EFG and η of central metal under crystal field. Calculated optical absorption at multi-excited process was derived from overlapping π-orbital on the phthalocyanine rings. The vibration modes in IR and Raman spectra were based on in-plane deformation and stretching vibrations of metal-ligand coordination bond on the deformed structure.

  18. Chaperone-client complexes: A dynamic liaison

    NASA Astrophysics Data System (ADS)

    Hiller, Sebastian; Burmann, Björn M.

    2018-04-01

    Living cells contain molecular chaperones that are organized in intricate networks to surveil protein homeostasis by avoiding polypeptide misfolding, aggregation, and the generation of toxic species. In addition, cellular chaperones also fulfill a multitude of alternative functionalities: transport of clients towards a target location, help them fold, unfold misfolded species, resolve aggregates, or deliver clients towards proteolysis machineries. Until recently, the only available source of atomic resolution information for virtually all chaperones were crystal structures of their client-free, apo-forms. These structures were unable to explain details of the functional mechanisms underlying chaperone-client interactions. The difficulties to crystallize chaperones in complexes with clients arise from their highly dynamic nature, making solution NMR spectroscopy the method of choice for their study. With the advent of advanced solution NMR techniques, in the past few years a substantial number of structural and functional studies on chaperone-client complexes have been resolved, allowing unique insight into the chaperone-client interaction. This review summarizes the recent insights provided by advanced high-resolution NMR-spectroscopy to understand chaperone-client interaction mechanisms at the atomic scale.

  19. Solid-state 11B and 13C NMR, IR, and X-ray crystallographic characterization of selected arylboronic acids and their catechol cyclic esters.

    PubMed

    Oh, Se-Woung; Weiss, Joseph W E; Kerneghan, Phillip A; Korobkov, Ilia; Maly, Kenneth E; Bryce, David L

    2012-05-01

    Nine arylboronic acids, seven arylboronic catechol cyclic esters, and two trimeric arylboronic anhydrides (boroxines) are investigated using (11)B solid-state NMR spectroscopy at three different magnetic field strengths (9.4, 11.7, and 21.1 T). Through the analysis of spectra of static and magic-angle spinning samples, the (11)B electric field gradient and chemical shift tensors are determined. The effects of relaxation anisotropy and nutation field strength on the (11)B NMR line shapes are investigated. Infrared spectroscopy was also used to help identify peaks in the NMR spectra as being due to the anhydride form in some of the arylboronic acid samples. Seven new X-ray crystallographic structures are reported. Calculations of the (11)B NMR parameters are performed using cluster model and periodic gauge-including projector-augmented wave (GIPAW) density functional theory (DFT) approaches, and the results are compared with the experimental values. Carbon-13 solid-state NMR experiments and spectral simulations are applied to determine the chemical shifts of the ipso carbons of the samples. One bond indirect (13)C-(11)B spin-spin (J) coupling constants are also measured experimentally and compared with calculated values. The (11)B/(10)B isotope effect on the (13)C chemical shift of the ipso carbons of arylboronic acids and their catechol esters, as well as residual dipolar coupling, is discussed. Overall, this combined X-ray, NMR, IR, and computational study provides valuable new insights into the relationship between NMR parameters and the structure of boronic acids and esters. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Solution conformation of a peptide fragment representing a proposed RNA-binding site of a viral coat protein studied by two-dimensional NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van der Graaf, M.; van Mierlo, C.P.M.; Hemminga, M.A.

    1991-06-11

    The first 25 amino acids of the coat protein of cowpea chlorotic mottle virus are essential for binding the encapsidated RNA. Although an {alpha}-helical conformation has been predicted for this highly positively charged N-terminal region. No experimental evidence for this conformation has been presented so far. In this study, two-dimensional proton NMR experiments were performed on a chemically synthesized pentacosapeptide containing the first 25 amino acids of this coat protein. All resonances could be assigned by a combined use of two-dimensional correlated spectroscopy and nuclear Overhauser enhancement spectroscopy carried out at four different temperatures. Various NMR parameters indicate the presencemore » of a conformational ensemble consisting of helical structures rapidly converting into more extended states. Differences in chemical shifts and nuclear Overhauser effects indicate that lowering the temperature induces a shift of the dynamic equilibrium toward more helical structures. At 10{degrees}C, a perceptible fraction of the conformational ensemble consists of structures with an {alpha}-helical conformation between residues 9 and 17, likely starting with a turnlike structure around Thr9 and Arg10. Both the conformation and the position of this helical region agree well with the secondary structure predictions mentioned above.« less

  1. The role of solid state 13 C NMR spectroscopy in studies of the nature of native celluloses

    Treesearch

    R.H. Atalla; D.L. VanderHart

    1999-01-01

    Published spectroscopic observations pertaining to the crystal structure of native celluloses are reviewed for the purpose of defining our current level of understanding about crystalline polymorphism in these materials. Emphasis is placed on observations from solid state 13 C nuclear magnetic resonance (NMR), which first led to the postulate that most native,...

  2. Study of a structural phase transition by two dimensional Fourier transform NMR method

    NASA Astrophysics Data System (ADS)

    Trokiner, A.; Man, P. P.; Théveneau, H.; Papon, P.

    1985-09-01

    The fluoroperovskite RbCaF 3 undergoes a structural phase transition at 195.5 K, from a cubic phase where the 87Rb nuclei have no quadrupolar interaction ( ωQ= 0) to a tetragonal phase where ω Q ≠ O. The transition is weakly first-order. A two-dimensional FT NMR experiment has been performed on 87Rb ( I = {3}/{2}) in a single crystal in both phases and in the vicinity of the phase transition. Our results show the coexistence of the two phases at the phase transition.

  3. Synthesis, spectroscopic investigations (X-ray, NMR and TD-DFT), antimicrobial activity and molecular docking of 2,6-bis(hydroxy(phenyl)methyl)cyclohexanone.

    PubMed

    Barakat, Assem; Ghabbour, Hazem A; Al-Majid, Abdullah Mohammed; Soliman, Saied M; Ali, M; Mabkhot, Yahia Nasser; Shaik, Mohammed Rafi; Fun, Hoong-Kun

    2015-07-21

    The synthesis of 2,6-bis(hydroxy(phenyl)methyl)cyclohexanone 1 is described. The molecular structure of the title compound 1 was confirmed by NMR, FT-IR, MS, CHN microanalysis, and X-ray crystallography. The molecular structure was also investigated by a set of computational studies and found to be in good agreement with the experimental data obtained from the various spectrophotometric techniques. The antimicrobial activity and molecular docking of the synthesized compound was investigated.

  4. Structure and dynamics of [3.3]paracyclophane as studied by nuclear magnetic resonance and density functional theory calculations.

    PubMed

    Dodziuk, Helena; Szymański, Sławomir; Jaźwiński, Jarosław; Marchwiany, Maciej E; Hopf, Henning

    2010-09-30

    Strained cyclophanes with small (-CH(2)-)(n) bridges connecting two benzene rings are interesting objects of basic research, mostly because of the nonplanarity of the rings and of interference of π-electrons of the latter. For title [3.3]paracyclophane, in solutions occurring in two interconverting cis and trans conformers, the published nuclear magnetic resonance (NMR) data are incomplete and involve its partially deuterated isotopomers. In this paper, variable-temperature NMR studies of its perprotio isotopomer combined with DFT quantum chemical calculations provide a complete characterization of the solution structure, NMR parameters, and interconversion of the cis and trans isomers of the title compound. Using advanced methods of spectral analysis, total quantitative interpretation of its proton NMR spectra in both the static and dynamic regimes is conducted. In particular, not only the geminal but also all of the vicinal J(HH) values for the bridge protons are determined, and for the first time, complete Arrhenius data for the interconversion process are reported. The experimental proton and carbon chemical shifts and the (n)J(HH), (1)J(CH), and (1)J(CC) coupling constants are satisfactorily reproduced theoretically by the values obtained from the density functional theory calculations.

  5. High-resolution structure of the Shigella type-III secretion needle by solid-state NMR and cryo-electron microscopy

    NASA Astrophysics Data System (ADS)

    Demers, Jean-Philippe; Habenstein, Birgit; Loquet, Antoine; Kumar Vasa, Suresh; Giller, Karin; Becker, Stefan; Baker, David; Lange, Adam; Sgourakis, Nikolaos G.

    2014-09-01

    We introduce a general hybrid approach for determining the structures of supramolecular assemblies. Cryo-electron microscopy (cryo-EM) data define the overall envelope of the assembly and rigid-body orientation of the subunits while solid-state nuclear magnetic resonance (ssNMR) chemical shifts and distance constraints define the local secondary structure, protein fold and inter-subunit interactions. Finally, Rosetta structure calculations provide a general framework to integrate the different sources of structural information. Combining a 7.7-Å cryo-EM density map and 996 ssNMR distance constraints, the structure of the type-III secretion system needle of Shigella flexneri is determined to a precision of 0.4 Å. The calculated structures are cross-validated using an independent data set of 691 ssNMR constraints and scanning transmission electron microscopy measurements. The hybrid model resolves the conformation of the non-conserved N terminus, which occupies a protrusion in the cryo-EM density, and reveals conserved pore residues forming a continuous pattern of electrostatic interactions, thereby suggesting a mechanism for effector protein translocation.

  6. Xenon NMR of liquid crystals confined to cylindrical nanocavities: a simulation study.

    PubMed

    Karjalainen, Jouni; Vaara, Juha; Straka, Michal; Lantto, Perttu

    2015-03-21

    Applications of liquid crystals (LCs), such as smart windows and the ubiquitous display devices, are based on controlling the orientational and translational order in a small volume of LC medium. Hence, understanding the effects of confinement to the liquid crystal phase behaviour is essential. The NMR shielding of (129)Xe atoms dissolved in LCs constitutes a very sensitive probe to the details of LC environment. Linking the experimental results to microscopic phenomena calls for molecular simulations. In this work, the NMR shielding of atomic (129)Xe dissolved in a uniaxial thermotropic LC confined to nanosized cylindrical cavities is computed from coarse-grained (CG) isobaric Monte Carlo (MC) simulations with a quantum-chemically (QC) pre-parameterised pairwise-additive model for the Xe nuclear shielding tensor. We report the results for the (129)Xe nuclear shielding and its connection to the structure and order of the LC appropriate to two different cavity sizes, as well as a comparison to the results of bulk (non-confined) simulations. We find that the confinement changes the LC phase structure dramatically and gives rise to the coexistence of varying degrees of LC order, which is reflected in the Xe shielding. Furthermore, we qualitatively reproduce the behaviour of the mean (129)Xe chemical shift with respect to temperature for atomic Xe dissolved in LC confined to controlled-pore glass materials. In the small-radius cavity the nematic - paranematic phase transition is revealed only by the anisotropic component of the (129)Xe nuclear shielding. In the larger cavity, the nematic - paranematic - isotropic transition is clearly seen in the Xe shielding. The simulated (129)Xe NMR shielding is insensitive to the smectic-A - nematic transition, since in the smectic-A phase, the Xe atoms largely occupy the imperfect layer structure near the cavity walls. The direct contribution of the cavity wall to (129)Xe nuclear shielding is dependent on the cavity size but independent of temperature. Our results show that the combination of CG simulations and a QC pre-parameterised (129)Xe NMR shielding allows efficient studies of the phase behaviour and structure of complex systems containing thousands of molecules, and brings us closer to the simulation of NMR experiments.

  7. Toll-Like Receptor-9-Mediated Invasion in Breast Cancer

    DTIC Science & Technology

    2011-07-01

    Molecular Dynamics Simulations. Theoretical structural models were obtained from molecular dynamics simulations using explicit solvation by...with AMBER by MARDIGRAS. The solution structure was then derived by coupling the resulting NMR distance restraints with a molecular dynamic ...Overlay of NMR restrained structure (red) with theoretical molecular dynamic simulated annealing structure (blue). Energetic stability of the 9-mer

  8. Structure Determination of Unknown Organic Liquids Using NMR and IR Spectroscopy: A General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Pavel, John T.; Hyde, Erin C.; Bruch, Martha D.

    2012-01-01

    This experiment introduced general chemistry students to the basic concepts of organic structures and to the power of spectroscopic methods for structure determination. Students employed a combination of IR and NMR spectroscopy to perform de novo structure determination of unknown alcohols, without being provided with a list of possible…

  9. High-Sensitivity Nuclear Magnetic Resonance at Giga-Pascal Pressures: A New Tool for Probing Electronic and Chemical Properties of Condensed Matter under Extreme Conditions

    PubMed Central

    Meier, Thomas; Haase, Jürgen

    2014-01-01

    Nuclear Magnetic Resonance (NMR) is one of the most important techniques for the study of condensed matter systems, their chemical structure, and their electronic properties. The application of high pressure enables one to synthesize new materials, but the response of known materials to high pressure is a very useful tool for studying their electronic structure and developing theories. For example, high-pressure synthesis might be at the origin of life; and understanding the behavior of small molecules under extreme pressure will tell us more about fundamental processes in our universe. It is no wonder that there has always been great interest in having NMR available at high pressures. Unfortunately, the desired pressures are often well into the Giga-Pascal (GPa) range and require special anvil cell devices where only very small, secluded volumes are available. This has restricted the use of NMR almost entirely in the past, and only recently, a new approach to high-sensitivity GPa NMR, which has a resonating micro-coil inside the sample chamber, was put forward. This approach enables us to achieve high sensitivity with experiments that bring the power of NMR to Giga-Pascal pressure condensed matter research. First applications, the detection of a topological electronic transition in ordinary aluminum metal and the closing of the pseudo-gap in high-temperature superconductivity, show the power of such an approach. Meanwhile, the range of achievable pressures was increased tremendously with a new generation of anvil cells (up to 10.1 GPa), that fit standard-bore NMR magnets. This approach might become a new, important tool for the investigation of many condensed matter systems, in chemistry, geochemistry, and in physics, since we can now watch structural changes with the eyes of a very versatile probe. PMID:25350694

  10. High-sensitivity nuclear magnetic resonance at Giga-Pascal pressures: a new tool for probing electronic and chemical properties of condensed matter under extreme conditions.

    PubMed

    Meier, Thomas; Haase, Jürgen

    2014-10-10

    Nuclear Magnetic Resonance (NMR) is one of the most important techniques for the study of condensed matter systems, their chemical structure, and their electronic properties. The application of high pressure enables one to synthesize new materials, but the response of known materials to high pressure is a very useful tool for studying their electronic structure and developing theories. For example, high-pressure synthesis might be at the origin of life; and understanding the behavior of small molecules under extreme pressure will tell us more about fundamental processes in our universe. It is no wonder that there has always been great interest in having NMR available at high pressures. Unfortunately, the desired pressures are often well into the Giga-Pascal (GPa) range and require special anvil cell devices where only very small, secluded volumes are available. This has restricted the use of NMR almost entirely in the past, and only recently, a new approach to high-sensitivity GPa NMR, which has a resonating micro-coil inside the sample chamber, was put forward. This approach enables us to achieve high sensitivity with experiments that bring the power of NMR to Giga-Pascal pressure condensed matter research. First applications, the detection of a topological electronic transition in ordinary aluminum metal and the closing of the pseudo-gap in high-temperature superconductivity, show the power of such an approach. Meanwhile, the range of achievable pressures was increased tremendously with a new generation of anvil cells (up to 10.1 GPa), that fit standard-bore NMR magnets. This approach might become a new, important tool for the investigation of many condensed matter systems, in chemistry, geochemistry, and in physics, since we can now watch structural changes with the eyes of a very versatile probe.

  11. Two-dimensional nuclear magnetic resonance structure determination module for introductory biochemistry: synthesis and structural characterization of lyso-glycerophospholipids.

    PubMed

    Garrett, Teresa A; Rose, Rebecca L; Bell, Sidney M

    2013-01-01

    In this laboratory module, introductory biochemistry students are exposed to two-dimensional (1) H-nuclear magnetic resonance of glycerophospholipids (GPLs). Working in groups of three, students enzymatically synthesized and purified a variety of 2-acyl lyso GPLs. The structure of the 2-acyl lyso GPL was verified using (1) H-correlation spectroscopy. Students scored significantly higher on an assessment of NMR knowledge after having participated in this lab module and in comparison to a similar cohort who did not participate. Inaddition, student confidence in their NMR knowledge and abilities increased 62% following the module and correlated with their ability to apply their NMR knowledge. Based on these results, the laboratory module was very effective at providing students with a more extensive understanding of the underlying concepts of NMR as a tool for structural determination. Copyright © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  12. Unraveling the meaning of chemical shifts in protein NMR.

    PubMed

    Berjanskii, Mark V; Wishart, David S

    2017-11-01

    Chemical shifts are among the most informative parameters in protein NMR. They provide wealth of information about protein secondary and tertiary structure, protein flexibility, and protein-ligand binding. In this report, we review the progress in interpreting and utilizing protein chemical shifts that has occurred over the past 25years, with a particular focus on the large body of work arising from our group and other Canadian NMR laboratories. More specifically, this review focuses on describing, assessing, and providing some historical context for various chemical shift-based methods to: (1) determine protein secondary and super-secondary structure; (2) derive protein torsion angles; (3) assess protein flexibility; (4) predict residue accessible surface area; (5) refine 3D protein structures; (6) determine 3D protein structures and (7) characterize intrinsically disordered proteins. This review also briefly covers some of the methods that we previously developed to predict chemical shifts from 3D protein structures and/or protein sequence data. It is hoped that this review will help to increase awareness of the considerable utility of NMR chemical shifts in structural biology and facilitate more widespread adoption of chemical-shift based methods by the NMR spectroscopists, structural biologists, protein biophysicists, and biochemists worldwide. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Perspective: next generation isotope-aided methods for protein NMR spectroscopy.

    PubMed

    Kainosho, Masatsune; Miyanoiri, Yohei; Terauchi, Tsutomu; Takeda, Mitsuhiro

    2018-06-22

    In this perspective, we describe our efforts to innovate the current isotope-aided NMR methodology to investigate biologically important large proteins and protein complexes, for which only limited structural information could be obtained by conventional NMR approaches. At the present time, it is widely believed that only backbone amide and methyl signals are amenable for investigating such difficult targets. Therefore, our primary mission is to disseminate our novel knowledge within the biological NMR community; specifically, that any type of NMR signals other than methyl and amide groups can be obtained, even for quite large proteins, by optimizing the transverse relaxation properties by isotope labeling methods. The idea of "TROSY by isotope labeling" has been cultivated through our endeavors aiming to improve the original stereo-array isotope labeling (SAIL) method (Kainosho et al., Nature 440:52-57, 2006). The SAIL TROSY methods subsequently culminated in the successful observations of individual NMR signals for the side-chain aliphatic and aromatic 13 CH groups in large proteins, as exemplified by the 82 kDa single domain protein, malate synthase G. Meanwhile, the expected role of NMR spectroscopy in the emerging integrative structural biology has been rapidly shifting, from structure determination to the acquisition of biologically relevant structural dynamics, which are poorly accessible by X-ray crystallography or cryo-electron microscopy. Therefore, the newly accessible NMR probes, in addition to the methyl and amide signals, will open up a new horizon for investigating difficult protein targets, such as membrane proteins and supramolecular complexes, by NMR spectroscopy. We briefly introduce our latest results, showing that the protons attached to 12 C-atoms give profoundly narrow 1 H-NMR signals even for large proteins, by isolating them from the other protons using the selective deuteration. The direct 1 H observation methods exhibit the highest sensitivities, as compared to heteronuclear multidimensional spectroscopy, in which the 1 H-signals are acquired via the spin-coupled 13 C- and/or 15 N-nuclei. Although the selective deuteration method was launched a half century ago, as the first milestone in the following prosperous history of isotope-aided NMR methods, our results strongly imply that the low-dimensional 1 H-direct observation NMR methods should be revitalized in the coming era, featuring ultrahigh-field spectrometers beyond 1 GHz.

  14. Solution structure of leptospiral LigA4 Big domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, Song; Zhang, Jiahai; Zhang, Xuecheng

    Pathogenic Leptospiraspecies express immunoglobulin-like proteins which serve as adhesins to bind to the extracellular matrices of host cells. Leptospiral immunoglobulin-like protein A (LigA), a surface exposed protein containing tandem repeats of bacterial immunoglobulin-like (Big) domains, has been proved to be involved in the interaction of pathogenic Leptospira with mammalian host. In this study, the solution structure of the fourth Big domain of LigA (LigA4 Big domain) from Leptospira interrogans was solved by nuclear magnetic resonance (NMR). The structure of LigA4 Big domain displays a similar bacterial immunoglobulin-like fold compared with other Big domains, implying some common structural aspects of Bigmore » domain family. On the other hand, it displays some structural characteristics significantly different from classic Ig-like domain. Furthermore, Stains-all assay and NMR chemical shift perturbation revealed the Ca{sup 2+} binding property of LigA4 Big domain. - Highlights: • Determining the solution structure of a bacterial immunoglobulin-like domain from a surface protein of Leptospira. • The solution structure shows some structural characteristics significantly different from the classic Ig-like domains. • A potential Ca{sup 2+}-binding site was identified by strains-all and NMR chemical shift perturbation.« less

  15. Quantum memory enhanced nuclear magnetic resonance of nanometer-scale samples with a single spin in diamond

    NASA Astrophysics Data System (ADS)

    Aslam, Nabeel; Pfender, Matthias; Zaiser, Sebastian; Favaro de Oliveira, Felipe; Momenzadeh, S. Ali; Denisenko, Andrej; Isoya, Junichi; Neumann, Philipp; Wrachtrup, Joerg

    Recently nuclear magnetic resonance (NMR) of nanoscale samples at ambient conditions has been achieved with nitrogen-vacancy (NV) centers in diamond. So far the spectral resolution in the NV NMR experiments was limited by the sensor's coherence time, which in turn prohibited revealing the chemical composition and dynamics of the system under investigation. By entangling the NV electron spin sensor with a long-lived memory spin qubit we increase the spectral resolution of NMR measurement sequences for the detection of external nuclear spins. Applying the latter sensor-memory-couple it is particularly easy to track diffusion processes, to identify the molecules under study and to deduce the actual NV center depth inside the diamond. We performed nanoscale NMR on several liquid and solid samples exhibiting unique NMR response. Our method paves the way for nanoscale identification of molecule and protein structures and dynamics of conformational changes.

  16. Antiferromagnetic Ordering in Quasi-Triangular Localized Spin System, β'-Et2Me2P[Pd(dmit)2]2, Studied by 13C NMR

    NASA Astrophysics Data System (ADS)

    Otsuka, Kei; Iikubo, Hideaki; Kogure, Takayuki; Takano, Yoshiki; Hiraki, Ko-ichi; Takahashi, Toshihiro; Cui, Hengbo; Kato, Reizo

    2014-05-01

    We performed 13C NMR measurements of a selectively 13C isotope-labeled single-crystal sample of a frustrated spin system, β'-Et2Me2P[Pd(dmit)2]2. A long-range antiferromagnetic (AF) ordering below 17 K was confirmed by the observation of NMR spectrum broadening and well split resonance lines at lower temperatures. NMR spectra in the AF state can be well explained by a two sublattice model. From the analysis of the angular dependence of the NMR spectrum, we clarified the magnetic structure in the AF state, where the easy and hard axes are the crystallographic c*- and b-axes, respectively, and the effective localized moments are quite small, ˜0.28 μB/dimer. This suggests a strong quantum fluctuation effect due to magnetic frustrations in a quasi-triangular spin-1/2 system.

  17. First X-ray crystal structure and internal reference diffusion-ordered NMR spectroscopy study of the prototypical Posner reagent, MeCu(SPh)Li(THF)3.

    PubMed

    Bertz, Steven H; Hardin, Richard A; Heavey, Thomas J; Jones, Daniel S; Monroe, T Blake; Murphy, Michael D; Ogle, Craig A; Whaley, Tara N

    2013-07-29

    Grow slow: The usual direct treatment of MeLi and CuSPh did not yield X-ray quality crystals of MeCu(SPh)Li. An indirect method starting from Me2CuLi⋅LiSPh and chalcone afforded the desired crystals by the slow reaction of the intermediate π-complex (see scheme). This strategy produced the first X-ray crystal structure of a Posner cuprate. A complementary NMR study showed that the contact ion pair was also the main species in solution. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Spectral and quantum chemical studies on 1,3-bis(N(1)-4-amino-6-methoxypyrimidinebenzenesulfonamide-2,2,4,4-ethane-1,2-dithiol)-2,4-dichlorocyclodiphosph(V)azane and its erbium complex.

    PubMed

    Al-Mogren, Muneerah M; Alaghaz, Abdel-Nasser M A; El-Gogary, Tarek M

    2014-01-24

    Novel 1,3-bis(N(1)-4-amino-6-methoxypyrimidine-benzenesulfonamide-2,2,4,4-ethane-1,2-dithiol)-2,4-dichlorocyclodiphosph(V)azane (L), was prepared and their coordinating behavior towards the lanthanide ion Er(III) was studied. The structures of the isolated products are proposed based on elemental analyses, IR, UV-VIS., (1)H NMR, (13)C NMR, (31)P NMR, SEM, XRD, mass spectra, effective magnetic susceptibility measurements and thermogravimetric analysis (TGA). Computational studies have been carried out at the DFT-B3LYP/6-31G(d) level of theory on the structural and spectroscopic properties of L and its binuclear Er(III) complex. Different tautomers of the ligand were optimized at the ab initio DFT level. Keto-form structure is about 17.7 kcal/mol more stable than the enol form (taking zpe correction into account). Simulated IR frequencies were scaled and compared with that experimentally measured. TD-DFT method was used to compute the UV-VIS spectra which compared by the measured electronic spectra. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Synthesis, spectroscopic and computational characterization of the tautomerism of pyrazoline derivatives from chalcones

    NASA Astrophysics Data System (ADS)

    Miguel, Fábio Balbino; Dantas, Juliana Arantes; Amorim, Stefany; Andrade, Gustavo F. S.; Costa, Luiz Antônio Sodré; Couri, Mara Rubia Costa

    2016-01-01

    In the present study a series of novel pyrazolines derivatives has been synthesized, and their structures assigned on the basis of FT-Raman, 1H and 13C NMR spectral data and computational DFT calculations. A joint computational study using B3LYP/6-311G(2d,2p) density functional theory and FT-Raman investigation on the tautomerism of 3-(4-substituted-phenyl)-4,5-dihydro-5-(4-substituted-phenyl)pyrazole-1-carbothioamide and 3-(4-substituted-phenyl)-4,5-dihydro-5-(4-substituted-phenyl)pyrazole-1-carboxamide are presented. The structures were characterized as a minimum in the potential energy surface using DFT. The calculated Raman and NMR spectra were of such remarkable agreement to the experimental results that the equilibrium between tautomeric forms has been discussed in detail. Our study suggests the existence of tautomers, the carboxamide/carbothioamide group may tautomerize, in the solid state or in solution. Thermodynamic data calculated suggests that the R(Cdbnd S)NH2 and R(Cdbnd O)NH2 species are more stable than the R(Cdbnd NH)SH and R(Cdbnd NH)OH species. Additionally, results found for the 1H NMR shifting, pointed out to which structure is present.

  20. Combining biophysical methods to analyze the disulfide bond in SH2 domain of C-terminal Src kinase.

    PubMed

    Liu, Dongsheng; Cowburn, David

    2016-01-01

    The Src Homology 2 (SH2) domain is a structurally conserved protein domain that typically binds to a phosphorylated tyrosine in a peptide motif from the target protein. The SH2 domain of C-terminal Src kinase (Csk) contains a single disulfide bond, which is unusual for most SH2 domains. Although the global motion of SH2 domain regulates Csk function, little is known about the relationship between the disulfide bond and binding of the ligand. In this study, we combined X-ray crystallography, solution NMR, and other biophysical methods to reveal the interaction network in Csk. Denaturation studies have shown that disulfide bond contributes significantly to the stability of SH2 domain, and crystal structures of the oxidized and C122S mutant showed minor conformational changes. We further investigated the binding of SH2 domain to a phosphorylated peptide from Csk-binding protein upon reduction and oxidation using both NMR and fluorescence approaches. This work employed NMR, X-ray cryptography, and other biophysical methods to study a disulfide bond in Csk SH2 domain. In addition, this work provides in-depth understanding of the structural dynamics of Csk SH2 domain.

  1. Studying Dynamics by Magic-Angle Spinning Solid-State NMR Spectroscopy: Principles and Applications to Biomolecules

    PubMed Central

    Schanda, Paul; Ernst, Matthias

    2016-01-01

    Magic-angle spinning solid-state NMR spectroscopy is an important technique to study molecular structure, dynamics and interactions, and is rapidly gaining importance in biomolecular sciences. Here we provide an overview of experimental approaches to study molecular dynamics by MAS solid-state NMR, with an emphasis on the underlying theoretical concepts and differences of MAS solid-state NMR compared to solution-state NMR. The theoretical foundations of nuclear spin relaxation are revisited, focusing on the particularities of spin relaxation in solid samples under magic-angle spinning. We discuss the range of validity of Redfield theory, as well as the inherent multi-exponential behavior of relaxation in solids. Experimental challenges for measuring relaxation parameters in MAS solid-state NMR and a few recently proposed relaxation approaches are discussed, which provide information about time scales and amplitudes of motions ranging from picoseconds to milliseconds. We also discuss the theoretical basis and experimental measurements of anisotropic interactions (chemical-shift anisotropies, dipolar and quadrupolar couplings), which give direct information about the amplitude of motions. The potential of combining relaxation data with such measurements of dynamically-averaged anisotropic interactions is discussed. Although the focus of this review is on the theoretical foundations of dynamics studies rather than their application, we close by discussing a small number of recent dynamics studies, where the dynamic properties of proteins in crystals are compared to those in solution. PMID:27110043

  2. Chemical and nanometer-scale structure of kerogen and its change during thermal maturation investigated by advanced solid-state 13C NMR spectroscopy

    USGS Publications Warehouse

    Mao, J.; Fang, X.; Lan, Y.; Schimmelmann, A.; Mastalerz, Maria; Xu, L.; Schmidt-Rohr, K.

    2010-01-01

    We have used advanced and quantitative solid-state nuclear magnetic resonance (NMR) techniques to investigate structural changes in a series of type II kerogen samples from the New Albany Shale across a range of maturity (vitrinite reflectance R0 from 0.29% to 1.27%). Specific functional groups such as CH3, CH2, alkyl CH, aromatic CH, aromatic C-O, and other nonprotonated aromatics, as well as "oil prone" and "gas prone" carbons, have been quantified by 13C NMR; atomic H/C and O/C ratios calculated from the NMR data agree with elemental analysis. Relationships between NMR structural parameters and vitrinite reflectance, a proxy for thermal maturity, were evaluated. The aromatic cluster size is probed in terms of the fraction of aromatic carbons that are protonated (???30%) and the average distance of aromatic C from the nearest protons in long-range H-C dephasing, both of which do not increase much with maturation, in spite of a great increase in aromaticity. The aromatic clusters in the most mature sample consist of ???30 carbons, and of ???20 carbons in the least mature samples. Proof of many links between alkyl chains and aromatic rings is provided by short-range and long-range 1H-13C correlation NMR. The alkyl segments provide most H in the samples; even at a carbon aromaticity of 83%, the fraction of aromatic H is only 38%. While aromaticity increases with thermal maturity, most other NMR structural parameters, including the aromatic C-O fractions, decrease. Aromaticity is confirmed as an excellent NMR structural parameter for assessing thermal maturity. In this series of samples, thermal maturation mostly increases aromaticity by reducing the length of the alkyl chains attached to the aromatic cores, not by pronounced growth of the size of the fused aromatic ring clusters. ?? 2010 Elsevier Ltd. All rights reserved.

  3. Defects in doped LaGaO3 anionic conductors: linking NMR spectral features, local environments, and defect thermodynamics.

    PubMed

    Blanc, Frédéric; Middlemiss, Derek S; Gan, Zhehong; Grey, Clare P

    2011-11-09

    Doped lanthanum gallate perovskites (LaGaO(3)) constitute some of the most promising electrolyte materials for solid oxide fuel cells operating in the intermediate temperature regime. Here, an approach combining experimental multinuclear NMR spectroscopy with density functional theory total energy and GIPAW NMR calculations yields a comprehensive understanding of the structural and defect chemistries of Sr- and Mg-doped LaGaO(3) anionic conductors. The DFT energetics demonstrate that Ga-V(O)-Ga (V(O) = oxygen vacancy) environments are favored (vs Ga-V(O)-Mg, Mg-V(O)-Mg and Mg-O-Mg-V(O)-Ga) across a range y = 0.0625, 0.125, and 0.25 of fractional Mg contents in LaGa(1-y)Mg(y)O(3-y/2). The results are interpreted in terms of doping and mean phase formation energies (relative to binary oxides) and are compared with previous calculations and experimental calorimetry data. Experimental multinuclear NMR data reveal that while Mg sites remain six-fold coordinated across the range of phase stoichiometries, albeit with significant structural disorder, a stoichiometry-dependent minority of the Ga sites resonate at a shift consistent with Ga(V) coordination, demonstrating that O vacancies preferentially locate in the first anion coordination shell of Ga. The strong Mg-V(O) binding inferred by previous studies is not observed here. The (17)O NMR spectra reveal distinct resonances that can be assigned by using the GIPAW NMR calculations to anions occupying equatorial and axial positions with respect to the Ga(V)-V(O) axis. The disparate shifts displayed by these sites are due to the nature and extent of the structural distortions caused by the O vacancies.

  4. NMR studies of the helical antiferromagnetic compound EuCo2P2

    NASA Astrophysics Data System (ADS)

    Higa, N.; Ding, Q.-P.; Kubota, F.; Uehara, H.; Yogi, M.; Furukawa, Y.; Sangeetha, N. S.; Johnston, D. C.; Nakamura, A.; Hedo, M.; Nakama, T.; Ōnuki, Y.

    2018-05-01

    In EuCo2P2, 4f electron spins of Eu2+ ions order antiferromagnetically below a Néel temperature TN = 66.5 K . The magnetic structure below TN was reported to be helical with the helix axis along the c-axis from the neutron diffraction study. We report the results of 153Eu, 59Co and 31P nuclear magnetic resonance (NMR) measurements on EuCo2P2 using a single crystal and a powdered sample. In the antiferromagnetic (AFM) state, we succeeded in observing 153Eu, 59Co and 31P NMR spectra in zero magnetic field. The sharp 153Eu zero field NMR (ZF NMR) lines indicate homogeneous Eu ordered moment. The 59Co and 31P ZF NMR spectra showed an asymmetric spectral shape, indicating a distribution of the internal magnetic induction at each nuclear position. The AFM propagation vector k characterizing the helical AFM state can be determined from the internal magnetic induction at Co site. We have determined the model-independent value of the AFM propagation vector k distributed from (0, 0, 0.86)2π/c to (0, 0, 0.73)2π/c, where c is the lattice parameter.

  5. Novel NMR tools to study structure and dynamics of biomembranes.

    PubMed

    Gawrisch, Klaus; Eldho, Nadukkudy V; Polozov, Ivan V

    2002-06-01

    Nuclear magnetic resonance (NMR) studies on biomembranes have benefited greatly from introduction of magic angle spinning (MAS) NMR techniques. Improvements in MAS probe technology, combined with the higher magnetic field strength of modern instruments, enables almost liquid-like resolution of lipid resonances. The cross-relaxation rates measured by nuclear Overhauser enhancement spectroscopy (NOESY) provide new insights into conformation and dynamics of lipids with atomic-scale resolution. The data reflect the tremendous motional disorder in the lipid matrix. Transfer of magnetization by spin diffusion along the proton network of lipids is of secondary relevance, even at a long NOESY mixing time of 300 ms. MAS experiments with re-coupling of anisotropic interactions, like the 13C-(1)H dipolar couplings, benefit from the excellent resolution of 13C shifts that enables assignment of the couplings to specific carbon atoms. The traditional 2H NMR experiments on deuterated lipids have higher sensitivity when conducted on oriented samples at higher magnetic field strength. A very large number of NMR parameters from lipid bilayers is now accessible, providing information about conformation and dynamics for every lipid segment. The NMR methods have the sensitivity and resolution to study lipid-protein interaction, lateral lipid organization, and the location of solvents and drugs in the lipid matrix.

  6. Obtaining aluminas from the thermal decomposition of their different precursors: An {sup 27}Al MAS NMR and X-ray powder diffraction studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chagas, L.H.; De Carvalho, G.S.G.; San Gil, R.A.S.

    2014-01-01

    Graphical abstract: - Highlights: • We synthesized three precursors of alumina from different methods. • The calcination of the precursors generated several alumina polymorphs. • XRD and NMR were used for structural investigation of the polymorphs. • The synthesis route determines the structural and textural properties of the solids. - Abstract: A commercial sample of Boehmite was used as precursor of alumina polymorphs. For comparison, three other precursors were synthesized from different methods. Particularly, the use of excess of urea promoted a very crystalline form of basic aluminum carbonate. The characteristics of the four precursors were investigated by thermal, vibrationalmore » and X-ray powder diffraction (XRD) analysis. Additionally, the nuclear magnetic resonance, with magic angle spinning ({sup 27}Al MAS NMR), was used to verify the coordination of aluminum cations. Each precursor was calcined at various temperatures generating alumina polymorphs, which were structurally analyzed by XRD and {sup 27}Al MAS NMR. Due to interest in catalysis supports, special attention was given to the γ-Al{sub 2}O{sub 3} phase, which in addition to structural investigation was subjected to textural analysis. The results showed that, from different synthesis procedures and common route of calcination, one can obtain materials with the same composition but with different structural and textural properties, which in turn can significantly influence the performance of a supported catalyst.« less

  7. Structure of an LiKSO 4 single crystal studied by 7Li and 39K NMR at low temperature

    NASA Astrophysics Data System (ADS)

    Lim, A. R.; Jeong, S.-Y.

    2000-09-01

    The 7Li and 39K nuclear magnetic resonances in an LiKSO 4 single crystal grown by the slow evaporation method have been investigated using a Bruker FT nuclear magnetic resonance (NMR) spectrometer. From the experimental data, the quadrapole coupling constant and asymmetry parameter were determined at room temperature and low temperature, respectively. Unlike the case at 300 K, the 7Li NMR line consists of three sets at 180 K, while 39K nucleus exhibits six sets for the rotation around the three crystallographic axes. The three resonance lines of 7Li and 39K at low temperature can be explained by the existence of three kinds of twin domain, rotated with respect to each other by 120° around the c-axis. The three resonance lines are also related to the crystallographic mirror plane. Structure of ferroelastic LiKSO 4 crystals at 180 K can be directly inferred from the domain pattern obtained by 7Li and 39K NMR. The above results show that the equations of the twin boundaries belong to the mm2 F6 mm ferroelastic species. Therefore, the symmetry of phases III and II is given by orthorhombic structure with Cmc2 1 ( mm2) and hexagonal structural with P6 3mc (6 mm), respectively.

  8. Dithallium(III)-Containing 30-Tungsto-4-phosphate, [Tl2Na2(H2O)2(P2W15O56)2]16-: Synthesis, Structural Characterization, and Biological Studies.

    PubMed

    Ayass, Wassim W; Fodor, Tamás; Farkas, Edit; Lin, Zhengguo; Qasim, Hafiz M; Bhattacharya, Saurav; Mougharbel, Ali S; Abdallah, Khaled; Ullrich, Matthias S; Zaib, Sumera; Iqbal, Jamshed; Harangi, Sándor; Szalontai, Gábor; Bányai, István; Zékány, László; Tóth, Imre; Kortz, Ulrich

    2018-06-18

    Here we report on the synthesis and structural characterization of the dithallium(III)-containing 30-tungsto -4-phosphate [Tl 2 Na 2 (H 2 O) 2 {P 2 W 15 O 56 } 2 ] 16- (1) by a multitude of solid-state and solution techniques. Polyanion 1 comprises two octahedrally coordinated Tl 3+ ions sandwiched between two trilacunary {P 2 W 15 } Wells-Dawson fragments and represents only the second structurally characterized, discrete thallium-containing polyoxometalate to date. The two outer positions of the central rhombus are occupied by sodium ions. The title polyanion is solution-stable as shown by 31 P and 203/205 Tl NMR. This was also supported by Tl NMR spectra simulations including several spin systems of isotopologues with half-spin nuclei ( 203 Tl, 205 Tl, 31 P, 183 W). 23 Na NMR showed a time-averaged signal of the Na + counter cations and the structurally bonded Na + ions. 203/205 Tl NMR spectra also showed a minor signal tentatively attributed to the trithallium-containing derivative [Tl 3 Na(H 2 O) 2 (P 2 W 15 O 56 ) 2 ] 14- , which could also be identified in the solid state by single-crystal X-ray diffraction. The bioactivity of polyanion 1 was also tested against bacteria and Leishmania.

  9. Multinuclear NMR of CaSiO(3) glass: simulation from first-principles.

    PubMed

    Pedone, Alfonso; Charpentier, Thibault; Menziani, Maria Cristina

    2010-06-21

    An integrated computational method which couples classical molecular dynamics simulations with density functional theory calculations is used to simulate the solid-state NMR spectra of amorphous CaSiO(3). Two CaSiO(3) glass models are obtained by shell-model molecular dynamics simulations, successively relaxed at the GGA-PBE level of theory. The calculation of the NMR parameters (chemical shielding and quadrupolar parameters), which are then used to simulate solid-state 1D and 2D-NMR spectra of silicon-29, oxygen-17 and calcium-43, is achieved by the gauge including projector augmented-wave (GIPAW) and the projector augmented-wave (PAW) methods. It is shown that the limitations due to the finite size of the MD models can be overcome using a Kernel Estimation Density (KDE) approach to simulate the spectra since it better accounts for the disorder effects on the NMR parameter distribution. KDE allows reconstructing a smoothed NMR parameter distribution from the MD/GIPAW data. Simulated NMR spectra calculated with the present approach are found to be in excellent agreement with the experimental data. This further validates the CaSiO(3) structural model obtained by MD simulations allowing the inference of relationships between structural data and NMR response. The methods used to simulate 1D and 2D-NMR spectra from MD GIPAW data have been integrated in a package (called fpNMR) freely available on request.

  10. Performance of the WeNMR CS-Rosetta3 web server in CASD-NMR.

    PubMed

    van der Schot, Gijs; Bonvin, Alexandre M J J

    2015-08-01

    We present here the performance of the WeNMR CS-Rosetta3 web server in CASD-NMR, the critical assessment of automated structure determination by NMR. The CS-Rosetta server uses only chemical shifts for structure prediction, in combination, when available, with a post-scoring procedure based on unassigned NOE lists (Huang et al. in J Am Chem Soc 127:1665-1674, 2005b, doi: 10.1021/ja047109h). We compare the original submissions using a previous version of the server based on Rosetta version 2.6 with recalculated targets using the new R3FP fragment picker for fragment selection and implementing a new annotation of prediction reliability (van der Schot et al. in J Biomol NMR 57:27-35, 2013, doi: 10.1007/s10858-013-9762-6), both implemented in the CS-Rosetta3 WeNMR server. In this second round of CASD-NMR, the WeNMR CS-Rosetta server has demonstrated a much better performance than in the first round since only converged targets were submitted. Further, recalculation of all CASD-NMR targets using the new version of the server demonstrates that our new annotation of prediction quality is giving reliable results. Predictions annotated as weak are often found to provide useful models, but only for a fraction of the sequence, and should therefore only be used with caution.

  11. Study of the interactions between a proline-rich protein and a flavan-3-ol by NMR: residual structures in the natively unfolded protein provides anchorage points for the ligands.

    PubMed

    Pascal, Christine; Paté, Franck; Cheynier, Véronique; Delsuc, Marc-André

    2009-09-01

    Astringency is one of the major organoleptic properties of food and beverages that are made from plants, such as tea, chocolate, beer, or red wine. This sensation is thought to be due to interactions between tannins and salivary proline-rich proteins, which are natively unfolded proteins. A human salivary proline-rich protein, namely IB-5, was produced by the recombinant method. Its interactions with a model tannin, epigallocatechin gallate (EGCG), the major flavan-3-ol in green tea, were studied here. Circular dichroism experiments showed that IB-5 presents residual structures (PPII helices) when the ionic strength is close to that in saliva. In the presence of these residual structures, IB-5 undergoes an increase in structural content upon binding to EGCG. NMR data corroborated the presence of preformed structural elements within the protein prior to binding and a partial assignment was proposed, showing partial structuration. TOCSY experiments showed that amino acids that are involved in PPII helices are more likely to interact with EGCG than those in random coil regions, as if they were anchorage points for the ligand. The signal from IB-5 in the DOSY NMR spectrum revealed an increase in polydispersity upon addition of EGCG while the mean hydrodynamic radius remained unchanged. This strongly suggests the formation of IB-5/EGCG aggregates.

  12. Induced secondary structure and polymorphism in an intrinsically disordered structural linker of the CNS: solid-state NMR and FTIR spectroscopy of myelin basic protein bound to actin.

    PubMed

    Ahmed, Mumdooh A M; Bamm, Vladimir V; Shi, Lichi; Steiner-Mosonyi, Marta; Dawson, John F; Brown, Leonid; Harauz, George; Ladizhansky, Vladimir

    2009-01-01

    The 18.5 kDa isoform of myelin basic protein (MBP) is a peripheral membrane protein that maintains the structural integrity of the myelin sheath of the central nervous system by conjoining the cytoplasmic leaflets of oligodendrocytes and by linking the myelin membrane to the underlying cytoskeleton whose assembly it strongly promotes. It is a multifunctional, intrinsically disordered protein that behaves primarily as a structural stabilizer, but with elements of a transient or induced secondary structure that represent binding sites for calmodulin or SH3-domain-containing proteins, inter alia. In this study we used solid-state NMR (SSNMR) and Fourier transform infrared (FTIR) spectroscopy to study the conformation of 18.5 kDa MBP in association with actin microfilaments and bundles. FTIR spectroscopy of fully (13)C,(15)N-labeled MBP complexed with unlabeled F-actin showed induced folding of both protein partners, viz., some increase in beta-sheet content in actin, and increases in both alpha-helix and beta-sheet content in MBP, albeit with considerable extended structure remaining. Solid-state NMR spectroscopy revealed that MBP in MBP-actin assemblies is structurally heterogeneous but gains ordered secondary structure elements (both alpha-helical and beta-sheet), particularly in the terminal fragments and in a central immunodominant epitope. The overall conformational polymorphism of MBP is consistent with its in vivo roles as both a linker (membranes and cytoskeleton) and a putative signaling hub.

  13. Engineering Encodable Lanthanide-Binding Tags (LBTs) into Loop Regions of Proteins

    PubMed Central

    Barthelmes, Katja; Reynolds, Anne M.; Peisach, Ezra; Jonker, Hendrik R. A.; DeNunzio, Nicholas J.; Allen, Karen N.; Imperiali, Barbara; Schwalbe, Harald

    2011-01-01

    Lanthanide-binding-tags (LBTs) are valuable tools for investigation of protein structure, function, and dynamics by NMR spectroscopy, X-ray crystallography and luminescence studies. We have inserted LBTs into three different loop positions (denoted L, R, and S) of the model protein interleukin-1β and varied the length of the spacer between the LBT and the protein (denoted 1-3). Luminescence studies demonstrate that all nine constructs bind Tb3+ tightly in the low nanomolar range. No significant change in the fusion protein occurs from insertion of the LBT, as shown by two X-ray crystallographic structures of the IL1β-S1 and IL1β-L3 constructs and for the remaining constructs by comparing 1H-15N-HSQC NMR spectra with wild-type IL1β. Additionally, binding of LBT-loop IL1β proteins to their native binding partner in vitro remains unaltered. X-ray crystallographic phasing was successful using only the signal from the bound lanthanide. Large residual dipolar couplings (RDCs) could be determined by NMR spectroscopy for all LBT-loop-constructs and revealed that the LBT-2 series were rigidly incorporated into the interleukin-1β structure. The paramagnetic NMR spectra of loop-LBT mutant IL1β-R2 were assigned and the Δχ tensor components were calculated based on RDCs and pseudocontact shifts (PCSs). A structural model of the IL1β-R2 construct was calculated using the paramagnetic restraints. The current data provide support that encodable LBTs serve as versatile biophysical tags when inserted into loop regions of proteins of known structure or predicted via homology modelling. PMID:21182275

  14. Characterisation of different polymorphs of tris(8-hydroxyquinolinato)aluminium(III) using solid-state NMR and DFT calculations

    PubMed Central

    Goswami, Mithun; Nayak, Pabitra K; Periasamy, N; Madhu, PK

    2009-01-01

    Background Organic light emitting devices (OLED) are becoming important and characterisation of them, in terms of structure, charge distribution, and intermolecular interactions, is important. Tris(8-hydroxyquinolinato)-aluminium(III), known as Alq3, an organomettalic complex has become a reference material of great importance in OLED. It is important to elucidate the structural details of Alq3 in its various isomeric and solvated forms. Solid-state nuclear magnetic resonance (NMR) is a useful tool for this which can also complement the information obtained with X-ray diffraction studies. Results We report here 27Al one-dimensional (1D) and two-dimensional (2D) multiple-quantum magic-angle spinning (MQMAS) NMR studies of the meridional (α-phase) and the facial (δ-phase) isomeric forms of Alq3. Quadrupolar parameters are estimated from the 1D spectra under MAS and anisotropic slices of the 2D spectra and also calculated using DFT (density functional theory) quantum-chemical calculations. We have also studied solvated phase of Alq3 containing ethanol in its lattice. We show that both the XRD patterns and the quadrupolar parameters of the solvated phase are different from both the α-phase and the δ-phase, although the fluorescence emission shows no substantial difference between the α-phase and the solvated phase. Moreover, we have shown that after the removal of ethanol from the matrix the solvated Alq3 has similar XRD patterns and quadrupolar parameters to that of the α-phase. Conclusion The 2D MQMAS experiments have shown that all the different modifications of Alq3 have 27Al in single unique crystallographic site. The quadrupolar parameters predicted using the DFT calculation under the isodensity polarisable continuum model resemble closely the experimentally obtained values. The solvated phase of Alq3 containing ethanol has structural difference from the α-phase of Alq3 (containing meridional isomer) from the solid-state NMR studies. Solid-state NMR can hence be used as an effective complementary tool to XRD for characterisation and structural elucidation. PMID:19900275

  15. Characterisation of different polymorphs of tris(8-hydroxyquinolinato)aluminium(III) using solid-state NMR and DFT calculations.

    PubMed

    Goswami, Mithun; Nayak, Pabitra K; Periasamy, N; Madhu, P K

    2009-11-09

    Organic light emitting devices (OLED) are becoming important and characterisation of them, in terms of structure, charge distribution, and intermolecular interactions, is important. Tris(8-hydroxyquinolinato)-aluminium(III), known as Alq3, an organomettalic complex has become a reference material of great importance in OLED. It is important to elucidate the structural details of Alq3 in its various isomeric and solvated forms. Solid-state nuclear magnetic resonance (NMR) is a useful tool for this which can also complement the information obtained with X-ray diffraction studies. We report here 27Al one-dimensional (1D) and two-dimensional (2D) multiple-quantum magic-angle spinning (MQMAS) NMR studies of the meridional (alpha-phase) and the facial (delta-phase) isomeric forms of Alq3. Quadrupolar parameters are estimated from the 1D spectra under MAS and anisotropic slices of the 2D spectra and also calculated using DFT (density functional theory) quantum-chemical calculations. We have also studied solvated phase of Alq3 containing ethanol in its lattice. We show that both the XRD patterns and the quadrupolar parameters of the solvated phase are different from both the alpha-phase and the delta-phase, although the fluorescence emission shows no substantial difference between the alpha-phase and the solvated phase. Moreover, we have shown that after the removal of ethanol from the matrix the solvated Alq3 has similar XRD patterns and quadrupolar parameters to that of the alpha-phase. The 2D MQMAS experiments have shown that all the different modifications of Alq3 have 27Al in single unique crystallographic site. The quadrupolar parameters predicted using the DFT calculation under the isodensity polarisable continuum model resemble closely the experimentally obtained values. The solvated phase of Alq3 containing ethanol has structural difference from the alpha-phase of Alq3 (containing meridional isomer) from the solid-state NMR studies. Solid-state NMR can hence be used as an effective complementary tool to XRD for characterisation and structural elucidation.

  16. Knowledge-based versus experimentally acquired distance and angle constraints for NMR structure refinement.

    PubMed

    Cui, Feng; Jernigan, Robert; Wu, Zhijun

    2008-04-01

    Nuclear Overhauser effects (NOE) distance constraints and torsion angle constraints are major conformational constraints for nuclear magnetic resonance (NMR) structure refinement. In particular, the number of NOE constraints has been considered as an important determinant for the quality of NMR structures. Of course, the availability of torsion angle constraints is also critical for the formation of correct local conformations. In our recent work, we have shown how a set of knowledge-based short-range distance constraints can also be utilized for NMR structure refinement, as a complementary set of conformational constraints to the NOE and torsion angle constraints. In this paper, we show the results from a series of structure refinement experiments by using different types of conformational constraints--NOE, torsion angle, or knowledge-based constraints--or their combinations, and make a quantitative assessment on how the experimentally acquired constraints contribute to the quality of structural models and whether or not they can be combined with or substituted by the knowledge-based constraints. We have carried out the experiments on a small set of NMR structures. Our preliminary calculations have revealed that the torsion angle constraints contribute substantially to the quality of the structures, but require to be combined with the NOE constraints to be fully effective. The knowledge-based constraints can be functionally as crucial as the torsion angle constraints, although they are statistical constraints after all and are not meant to be able to replace the latter.

  17. Fine refinement of solid-state molecular structures of Leu- and Met-enkephalins by NMR crystallography.

    PubMed

    Pawlak, Tomasz; Potrzebowski, Marek J

    2014-03-27

    This paper presents a methodology that allows the fine refinement of the crystal and molecular structure for compounds for which the data deposited in the crystallographic bases are of poor quality. Such species belong to the group of samples with molecular disorder. In the Cambridge Crystallographic Data Center (CCDC), there are approximately 22,000 deposited structures with an R-factor over 10. The powerful methodology we present employs crystal data for Leu-enkephalin (two crystallographic forms) with R-factor values of 14.0 and 8.9 and for Met-enkephalin (one form) with an R-factor of 10.5. NMR crystallography was employed in testing the X-ray data and the quality of the structure refinement. The GIPAW (gauge invariant projector augmented wave) method was used to optimize the coordinates of the enkephalins and to compute NMR parameters. As we reveal, this complementary approach makes it possible to generate a reasonable set of new coordinates that better correlate to real samples. This methodology is general and can be employed in the study of each compound possessing magnetically active nuclei.

  18. A model of the complex between human {beta}-microseminoprotein and CRISP-3 based on NMR data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghasriani, Houman; Fernlund, Per; Udby, Lene

    2009-01-09

    {beta}-Microseminoprotein (MSP), a 10 kDa seminal plasma protein, forms a tight complex with cysteine-rich secretory protein 3 (CRISP-3) from granulocytes. The 3D structure of human MSP has been determined but there is as yet no 3D structure for CRISP-3. We have now studied the complex between human MSP and CRISP-3 with multidimensional NMR. {sup 15}N-HSQC spectra show substantial differences between free and complexed hMSP. Using several 3D-NMR spectra of triply labeled hMSP in complex with a recombinant N-terminal domain of CRISP-3, most of the backbone of hMSP could be assigned. The data show that only one side of hMSP, comprisingmore » {beta}-strands 1, 4, 5, and 8 are affected by the complex formation, indicating that {beta}-strands 1 and 8 form the main binding surface. Based on this we present a tentative structure for the hMSP-CRISP-3 complex using the known crystal structure of triflin as a model of CRISP-3.« less

  19. Structural investigations of Pu{sup III} phosphate by X-ray diffraction, MAS-NMR and XANES spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popa, Karin; Raison, Philippe E., E-mail: philippe.raison@ec.europa.eu; Martel, Laura

    2015-10-15

    PuPO{sub 4} was prepared by a solid state reaction method and its crystal structure at room temperature was solved by powder X-ray diffraction combined with Rietveld refinement. High resolution XANES measurements confirm the +III valence state of plutonium, in agreement with valence bond derivation. The presence of the americium (as β{sup −} decay product of plutonium) in the +III oxidation state was determined based on XANES spectroscopy. High resolution solid state {sup 31}P NMR agrees with the XANES results and the presence of a solid-solution. - Graphical abstract: A full structural analysis of PuPO{sub 4} based on Rietveld analysis ofmore » room temperature X-ray diffraction data, XANES and MAS NMR measurements was performed. - Highlights: • The crystal structure of PuPO{sub 4} monazite is solved. • In PuPO{sub 4} plutonium is strictly trivalent. • The presence of a minute amount of Am{sup III} is highlighted. • We propose PuPO{sub 4} as a potential reference material for spectroscopic and microscopic studies.« less

  20. Dammarane-type triterpenes from the Brazilian medicinal plant Cordia multispicata.

    PubMed

    Kuroyanagi, Masanori; Kawahara, Nobuo; Sekita, Setsuko; Satake, Motoyoshi; Hayashi, Tatsuo; Takase, Yoichi; Masuda, Kazuo

    2003-10-01

    From the Brazilian medicinal plant Carucaá (Cordia multispicata), oleanane- and ursane-type triterpenoids were previously reported as anti-androgenic constituents of the plant. In this study, purification of the polar elements of the EtOAc-soluble fraction of the plant revealed nine novel dammarane-type triterpenes, named cordianols A-I (1-9) along with the known compound cordialin A (10). The structures of these new compounds were elucidated by means of spectral methods including HRFABMS, (1)H NMR, (13)C NMR, and 2D NMR (HMQC, HMBC, NOESY). Absolute configuration at C-23 of compound 7 was determined by an excitone chirality method. Some of these new compounds revealed a hemiketal structure on the A ring and a hydroxylated or epoxidated 20(22)-(E)-ene side chain and showed weak anti-androgenic activity.

  1. Computational and Spectroscopic Investigations of the Molecular Scale Structure and Dynamics of Geologically Important Fluids and Mineral-Fluid Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. James Kirkpatrick; Andrey G. Kalinichev

    2008-11-25

    Research supported by this grant focuses on molecular scale understanding of central issues related to the structure and dynamics of geochemically important fluids, fluid-mineral interfaces, and confined fluids using computational modeling and experimental methods. Molecular scale knowledge about fluid structure and dynamics, how these are affected by mineral surfaces and molecular-scale (nano-) confinement, and how water molecules and dissolved species interact with surfaces is essential to understanding the fundamental chemistry of a wide range of low-temperature geochemical processes, including sorption and geochemical transport. Our principal efforts are devoted to continued development of relevant computational approaches, application of these approaches tomore » important geochemical questions, relevant NMR and other experimental studies, and application of computational modeling methods to understanding the experimental results. The combination of computational modeling and experimental approaches is proving highly effective in addressing otherwise intractable problems. In 2006-2007 we have significantly advanced in new, highly promising research directions along with completion of on-going projects and final publication of work completed in previous years. New computational directions are focusing on modeling proton exchange reactions in aqueous solutions using ab initio molecular dynamics (AIMD), metadynamics (MTD), and empirical valence bond (EVB) approaches. Proton exchange is critical to understanding the structure, dynamics, and reactivity at mineral-water interfaces and for oxy-ions in solution, but has traditionally been difficult to model with molecular dynamics (MD). Our ultimate objective is to develop this capability, because MD is much less computationally demanding than quantum-chemical approaches. We have also extended our previous MD simulations of metal binding to natural organic matter (NOM) to a much longer time scale (up to 10 ns) for significantly larger systems. These calculations have allowed us, for the first time, to study the effects of metal cations with different charges and charge density on the NOM aggregation in aqueous solutions. Other computational work has looked at the longer-time-scale dynamical behavior of aqueous species at mineral-water interfaces investigated simultaneously by NMR spectroscopy. Our experimental NMR studies have focused on understanding the structure and dynamics of water and dissolved species at mineral-water interfaces and in two-dimensional nano-confinement within clay interlayers. Combined NMR and MD study of H2O, Na+, and Cl- interactions with the surface of quartz has direct implications regarding interpretation of sum frequency vibrational spectroscopic experiments for this phase and will be an important reference for future studies. We also used NMR to examine the behavior of K+ and H2O in the interlayer and at the surfaces of the clay minerals hectorite and illite-rich illite-smectite. This the first time K+ dynamics has been characterized spectroscopically in geochemical systems. Preliminary experiments were also performed to evaluate the potential of 75As NMR as a probe of arsenic geochemical behavior. The 75As NMR study used advanced signal enhancement methods, introduced a new data acquisition approach to minimize the time investment in ultra-wide-line NMR experiments, and provides the first evidence of a strong relationship between the chemical shift and structural parameters for this experimentally challenging nucleus. We have also initiated a series of inelastic and quasi-elastic neutron scattering measurements of water dynamics in the interlayers of clays and layered double hydroxides. The objective of these experiments is to probe the correlations of water molecular motions in confined spaces over the scale of times and distances most directly comparable to our MD simulations and on a time scale different than that probed by NMR. This work is being done in collaboration with Drs. C.-K. Loong, N. de Souza, and A.I. Kolesnikov at the Intense Pulsed Neutron Source facility of the Argonne National Lab, and Dr. A. Faraone at the NIST Center for Neutron Research. A manuscript reporting the first results of these experiments, which are highly complimentary to our previous NMR, X-ray, and infra-red results for these phases, is currently in preparation. In total, in 2006-2007 our work has resulted in the publication of 14 peer-reviewed research papers. We also devoted considerable effort to making our work known to a wide range of researchers, as indicated by the 24 contributed abstracts and 14 invited presentations.« less

  2. NMR study on the network structure of a mixed gel of kappa and iota carrageenans.

    PubMed

    Hu, Bingjie; Du, Lei; Matsukawa, Shingo

    2016-10-05

    The temperature dependencies of the (1)H T2 and diffusion coefficient (D) of a mixed solution of kappa-carrageenan and iota-carrageenan were measured by NMR. Rheological and NMR measurements suggested an exponential formation of rigid aggregates of kappa-carrageenan and a gradual formation of fine aggregates of iota-carrageenan during two step increases of G'. The results also suggested that longer carrageenan chains are preferentially involved in aggregation, thus resulting in a decrease in the average Mw of solute carrageenans. The results of diffusion measurements for poly(ethylene oxide) (PEO) suggested that kappa-carrageenan formed thick aggregates that decreased hindrance to PEO diffusion by decreasing the solute kappa-carrageenan concentration in the voids of the aggregated chains, and that iota-carrageenan formed fine aggregates that decreased the solute iota-carrageenan concentration less. DPEO in a mixed solution of kappa-carrageenan and iota-carrageenan suggested two possibilities for the microscopic network structure: an interpenetrating network structure, or micro-phase separation. Copyright © 2016. Published by Elsevier Ltd.

  3. NMR Studies of Peroxidases.

    NASA Astrophysics Data System (ADS)

    Veitch, Nigel Charles

    Available from UMI in association with The British Library. Requires signed TDF. Peroxidases are a haem-containing group of enzymes with a wide diversity of function within biological systems. While a common characteristic is the ability to catalyse the conversion of hydrogen peroxide to water, it is the accompanying processes of hormone synthesis and degradation which have generated such a high level of interest. However, information at the molecular level is limited to a single well-resolved crystal structure, that of yeast cytochrome c peroxidase. This thesis presents a strategy for the investigation of peroxidase structure and function based on proton nuclear magnetic resonance spectroscopy, a technique which has the ability to address aspects of both protein structure and protein dynamics in solution. The application of one- and two-dimensional NMR techniques has been developed in the context of plant peroxidases, notably the isoenzyme HRP-C derived from the horseradish root. Characterisation of the proton NMR spectra of HRP -C in resting and ligated states provided new information enabling the structure of the binding site for aromatic donor molecules, such as indole-3-propionic, ferulic and benzhydroxamic acids, to be resolved. In order to overcome difficulties encountered with a protein of the complexity of peroxidase, additional information was obtained from chemical shift parameters and the use of peroxidase variants produced by site-directed mutagenesis. A comparative study using NMR spectroscopy was undertaken for wild-type recombinant HRP-C expressed in Escherichia coli, and two protein variants with substitutions made to residues located on the distal side of the haem pocket, Phe41 to Val and Arg38 to Lys. NMR analyses of a plant peroxidase from barley grains and the fungal peroxidase from Coprinus cinereus were also successful using methods conceived with HRP-C. Examination of three specifically constructed recombinant protein variants of C. cinereus peroxidase was essential in confirming the identity of residues participating in the aromatic donor molecule binding site of peroxidases.

  4. Differential Epitope Mapping by STD NMR Spectroscopy To Reveal the Nature of Protein-Ligand Contacts.

    PubMed

    Monaco, Serena; Tailford, Louise E; Juge, Nathalie; Angulo, Jesus

    2017-11-27

    Saturation transfer difference (STD) NMR spectroscopy is extensively used to obtain epitope maps of ligands binding to protein receptors, thereby revealing structural details of the interaction, which is key to direct lead optimization efforts in drug discovery. However, it does not give information about the nature of the amino acids surrounding the ligand in the binding pocket. Herein, we report the development of the novel method differential epitope mapping by STD NMR (DEEP-STD NMR) for identifying the type of protein residues contacting the ligand. The method produces differential epitope maps through 1) differential frequency STD NMR and/or 2) differential solvent (D 2 O/H 2 O) STD NMR experiments. The two approaches provide different complementary information on the binding pocket. We demonstrate that DEEP-STD NMR can be used to readily obtain pharmacophore information on the protein. Furthermore, if the 3D structure of the protein is known, this information also helps in orienting the ligand in the binding pocket. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  5. Accessibility of selenomethionine proteins by total chemical synthesis: structural studies of human herpesvirus-8 MIP-II.

    PubMed

    Shao, W; Fernandez, E; Wilken, J; Thompson, D A; Siani, M A; West, J; Lolis, E; Schweitzer, B I

    1998-12-11

    The determination of high resolution three-dimensional structures by X-ray crystallography or nuclear magnetic resonance (NMR) is a time-consuming process. Here we describe an approach to circumvent the cloning and expression of a recombinant protein as well as screening for heavy atom derivatives. The selenomethionine-modified chemokine macrophage inflammatory protein-II (MIP-II) from human herpesvirus-8 has been produced by total chemical synthesis, crystallized, and characterized by NMR. The protein has a secondary structure typical of other chemokines and forms a monomer in solution. These results indicate that total chemical synthesis can be used to accelerate the determination of three-dimensional structures of new proteins identified in genome programs.

  6. Clay Minerals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Karl T.; Sanders, Rebecca L.; Washton, Nancy M.

    2014-03-14

    Clay minerals are important components of the environment and are involved or implicated in processes such as the uptake of pollutants and the release of nutrients and as potential platforms for a number of chemical reactions. Owing to their small particle sizes (typically, on the order of microns or smaller) and mixing with a variety of other minerals and soil components, advanced characterization methods are needed to study their structures, dynamics, and reactivities. In this article, we describe the use of solid-state NMR methods to characterize the structures and chemistries of clay minerals. Early one-pulse magic-angle spinning (MAS) NMR studiesmore » of 27Al and 29Si have now been enhanced and extended with new studies utilizing advanced methodologies (such as Multiple Quantum MAS) as well as studies of less-sensitive nuclei. In additional work, the issue of reactivity of clay minerals has been addressed, including studies of reactive surface area in the environment. Utilizations of NMR-sensitive nuclides within the clay minerals themselves, and in molecules that react with specific sites on the clay mineral surfaces, have aided in understanding the reactivity of these complex aluminosilicate systems.« less

  7. C terminal retroviral-type zinc finger domain from the HIV-1 nucleocapsid protein is structurally similar to the N-terminal zinc finger domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    South, T.L.; Blake, P.R.; Hare, D.R.

    Two-dimensional NMR spectroscopic and computational methods were employed for the structure determination of an 18-residue peptide with the amino acid sequence of the C-terminal retriviral-type (r.t.) zinc finger domain from the nucleocapsid protein (NCP) of HIV-1 (Zn(HIV1-F2)). Unlike results obtained for the first retroviral-type zinc finger peptide, Zn (HIV1-F1) broad signals indicative of confomational lability were observed in the {sup 1}H NMR spectrum of An(HIV1-F2) at 25 C. The NMR signals narrowed upon cooling to {minus}2 C, enabling complete {sup 1}H NMR signal assignment via standard two-dimensional (2D) NMR methods. Distance restraints obtained from qualitative analysis of 2D nuclear Overhausermore » effect (NOESY) data were sued to generate 30 distance geometry (DG) structures with penalties in the range 0.02-0.03 {angstrom}{sup 2}. All structures were qualitatively consistent with the experimental NOESY spectrum based on comparisons with 2D NOESY back-calculated spectra. These results indicate that the r.t. zinc finger sequences observed in retroviral NCPs, simple plant virus coat proteins, and in a human single-stranded nucleic acid binding protein share a common structural motif.« less

  8. Major Variations in HIV-1 Capsid Assembly Morphologies Involve Minor Variations in Molecular Structures of Structurally Ordered Protein Segments*

    PubMed Central

    Lu, Jun-Xia; Bayro, Marvin J.; Tycko, Robert

    2016-01-01

    We present the results of solid state nuclear magnetic resonance (NMR) experiments on HIV-1 capsid protein (CA) assemblies with three different morphologies, namely wild-type CA (WT-CA) tubes with 35–60 nm diameters, planar sheets formed by the Arg18-Leu mutant (R18L-CA), and R18L-CA spheres with 20–100 nm diameters. The experiments are intended to elucidate molecular structural variations that underlie these variations in CA assembly morphology. We find that multidimensional solid state NMR spectra of 15N,13C-labeled CA assemblies are remarkably similar for the three morphologies, with only small differences in 15N and 13C chemical shifts, no significant differences in NMR line widths, and few differences in the number of detectable NMR cross-peaks. Thus, the pronounced differences in morphology do not involve major differences in the conformations and identities of structurally ordered protein segments. Instead, morphological variations are attributable to variations in conformational distributions within disordered segments, which do not contribute to the solid state NMR spectra. Variations in solid state NMR signals from certain amino acid side chains are also observed, suggesting differences in the intermolecular dimerization interface between curved and planar CA lattices, as well as possible differences in intramolecular helix-helix packing. PMID:27129282

  9. Structural characterization of lignin from grape stalks (Vitis vinifera L.).

    PubMed

    Prozil, Sónia O; Evtuguin, Dmitry V; Silva, Artur M S; Lopes, Luísa P C

    2014-06-18

    The chemical structure of lignin from grape stalks, an abundant waste of winemaking, has been studied. The dioxane lignin was isolated from extractive- and protein-free grape stalks (Vitis vinifera L.) by modified acidolytic procedure and submitted to a structural analysis by wet chemistry (nitrobenzene and permanganate oxidation (PO)) and spectroscopic techniques. The results obtained suggest that grape stalk lignin is an HGS type with molar proportions of p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) units of 3:71:26. Structural analysis by (1)H and (13)C NMR spectroscopy and PO indicates the predominance of β-O-4' structures (39% mol) in grape stalk lignin together with moderate amounts of β-5', β-β, β-1', 5-5', and 4-O-5' structures. NMR studies also revealed that grape lignin should be structurally associated with tannins. The condensation degree of grape stalks lignin is higher than that of conventional wood lignins and lignins from other agricultural residues.

  10. 29 Si NMR and SAXS investigation of the hybrid organic–inorganic glasses obtained by consolidation of the melting gels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jitianu, Andrei; Cadars, Sylvian; Zhang, Fan

    This study is focused on structural characterization of hybrid glasses obtained by consolidation of melting gels. The melting gels were prepared in molar ratios of methyltriethoxysilane (MTES) and dimethyldiethoxysilane (DMDES) of 75%MTES-25%DMDES and 65%MTES-35%DMDES. Following consolidation, the hybrid glasses were characterized using Raman, 29Si and 13C Nuclear Magnetic Resonance (NMR) spectroscopies, synchrotron Small Angle X-Ray Scattering (SAXS) and scanning electron microscopy (SEM). Raman spectroscopy revealed the presence of Si–C bonds in the hybrid glasses and 8-membered ring structures in the Si–O–Si network. Qualitative NMR spectroscopy identified the main molecular species, while quantitative NMR data showed that the ratio of trimersmore » (T) to dimers (D) varied between 4.6 and 3.8. Two-dimensional 29Si NMR data were used to identify two distinct types of T3 environments. SAXS data showed that the glasses are homogeneous across the nm to micrometer length scales. The scattering cross section was one thousand times lower than what is expected when phase separation occurs. The SEM images show a uniform surface without defects, in agreement with the SAXS results, which further supports that the hybrid glasses are nonporous.« less

  11. 29Si NMR and SAXS investigation of the hybrid organic-inorganic glasses obtained by consolidation of the melting gels

    PubMed Central

    Jitianu, Andrei; Cadars, Sylvian; Zhang, Fan; Rodriguez, Gabriela; Picard, Quentin; Aparicio, Mario; Mosa, Jadra; Klein, Lisa C.

    2017-01-01

    This study is focused on structural characterization of hybrid glasses obtained by consolidation of melting gels. The melting gels were prepared in molar ratios of methyltriethoxysilane (MTES) and dimethyldiethoxysilane (DMDES) of 75%MTES-25%DMDES and 65%MTES-35%DMDES. Following consolidation, the hybrid glasses were characterized using Raman, 29Si and 13C Nuclear Magnetic Resonance (NMR) spectroscopies, synchrotron Small Angle X-Ray Scattering (SAXS) and scanning electron microscopy (SEM). Raman spectroscopy revealed the presence of Si-C bonds in the hybrid glasses and 8-membered ring structures in the Si-O-Si network. Qualitative NMR spectroscopy identified the main molecular species, while quantitative NMR data showed that the ratio of trimers (T) to dimers (D) varied between 4.6 and 3.8. Two-dimensional 29Si NMR data were used to identify two distinct types of T3 environments. SAXS data showed that the glasses are homogeneous across the nm to micrometer length scales. The scattering cross section was one thousand times lower than what is expected when phase separation occurs. The SEM images show a uniform surface without defects, in agreement with the SAXS results, which further supports that the hybrid glasses are nonporous. PMID:28262904

  12. Finding the Right Candidate for the Right Position: A Fast NMR-Assisted Combinatorial Method for Optimizing Nucleic Acids Binders.

    PubMed

    Jiménez-Moreno, Ester; Montalvillo-Jiménez, Laura; Santana, Andrés G; Gómez, Ana M; Jiménez-Osés, Gonzalo; Corzana, Francisco; Bastida, Agatha; Jiménez-Barbero, Jesús; Cañada, Francisco Javier; Gómez-Pinto, Irene; González, Carlos; Asensio, Juan Luis

    2016-05-25

    Development of strong and selective binders from promiscuous lead compounds represents one of the most expensive and time-consuming tasks in drug discovery. We herein present a novel fragment-based combinatorial strategy for the optimization of multivalent polyamine scaffolds as DNA/RNA ligands. Our protocol provides a quick access to a large variety of regioisomer libraries that can be tested for selective recognition by combining microdialysis assays with simple isotope labeling and NMR experiments. To illustrate our approach, 20 small libraries comprising 100 novel kanamycin-B derivatives have been prepared and evaluated for selective binding to the ribosomal decoding A-Site sequence. Contrary to the common view of NMR as a low-throughput technique, we demonstrate that our NMR methodology represents a valuable alternative for the detection and quantification of complex mixtures, even integrated by highly similar or structurally related derivatives, a common situation in the context of a lead optimization process. Furthermore, this study provides valuable clues about the structural requirements for selective A-site recognition.

  13. Automatic Assignment of Methyl-NMR Spectra of Supramolecular Machines Using Graph Theory.

    PubMed

    Pritišanac, Iva; Degiacomi, Matteo T; Alderson, T Reid; Carneiro, Marta G; Ab, Eiso; Siegal, Gregg; Baldwin, Andrew J

    2017-07-19

    Methyl groups are powerful probes for the analysis of structure, dynamics and function of supramolecular assemblies, using both solution- and solid-state NMR. Widespread application of the methodology has been limited due to the challenges associated with assigning spectral resonances to specific locations within a biomolecule. Here, we present Methyl Assignment by Graph Matching (MAGMA), for the automatic assignment of methyl resonances. A graph matching protocol examines all possibilities for each resonance in order to determine an exact assignment that includes a complete description of any ambiguity. MAGMA gives 100% accuracy in confident assignments when tested against both synthetic data, and 9 cross-validated examples using both solution- and solid-state NMR data. We show that this remarkable accuracy enables a user to distinguish between alternative protein structures. In a drug discovery application on HSP90, we show the method can rapidly and efficiently distinguish between possible ligand binding modes. By providing an exact and robust solution to methyl resonance assignment, MAGMA can facilitate significantly accelerated studies of supramolecular machines using methyl-based NMR spectroscopy.

  14. Spectroscopic studies of the intramolecular hydrogen bonding in o-hydroxy Schiff bases, derived from diaminomaleonitrile, and their deprotonation reaction products

    NASA Astrophysics Data System (ADS)

    Szady-Chełmieniecka, Anna; Kołodziej, Beata; Morawiak, Maja; Kamieński, Bohdan; Schilf, Wojciech

    2018-01-01

    The structural study of five Schiff bases derived from diaminomaleonitrile (DAMN) and 2-hydroxy carbonyl compounds was performed using 1H, 13C and 15N NMR methods in solution and in the solid state as well. ATR-FTIR and X-Ray spectroscopies were used for confirmation of the results obtained by NMR method. The imine obtained from DAMN and benzaldehyde was synthesized as a model compound which lacks intramolecular hydrogen bond. Deprotonation of all synthesized compounds was done by treating with tetramethylguanidine (TMG). NMR data revealed that salicylidene Schiff bases in DMSO solution exist as OH forms without intramolecular hydrogen bonds and independent on the substituents in aromatic ring. In the case of 2-hydroxy naphthyl derivative, the OH proton is engaged into weak intramolecular hydrogen bond. Two of imines (salDAMN and 5-BrsalDAMN) exist in DMSO solution as equilibrium mixtures of two isomers (A and B). The structures of equilibrium mixture in the solid state have been studied by NMR, ATR-FTIR and X-Ray methods. The deprotonation of three studied compounds (salDAMN, 5-BrsalDAMN, and 5-CH3salDAMN) proceeded in two different ways: deprotonation of oxygen atom (X form) or of nitrogen atom of free primary amine group of DAMN moiety (Y form). For 5-NO2salDAMN and naphDAMN only one form (X) was observed.

  15. Multivariate Analysis of Two-Dimensional 1H, 13C Methyl NMR Spectra of Monoclonal Antibody Therapeutics To Facilitate Assessment of Higher Order Structure.

    PubMed

    Arbogast, Luke W; Delaglio, Frank; Schiel, John E; Marino, John P

    2017-11-07

    Two-dimensional (2D) 1 H- 13 C methyl NMR provides a powerful tool to probe the higher order structure (HOS) of monoclonal antibodies (mAbs), since spectra can readily be acquired on intact mAbs at natural isotopic abundance, and small changes in chemical environment and structure give rise to observable changes in corresponding spectra, which can be interpreted at atomic resolution. This makes it possible to apply 2D NMR spectral fingerprinting approaches directly to drug products in order to systematically characterize structure and excipient effects. Systematic collections of NMR spectra are often analyzed in terms of the changes in specifically identified peak positions, as well as changes in peak height and line widths. A complementary approach is to apply principal component analysis (PCA) directly to the matrix of spectral data, correlating spectra according to similarities and differences in their overall shapes, rather than according to parameters of individually identified peaks. This is particularly well-suited for spectra of mAbs, where some of the individual peaks might not be well resolved. Here we demonstrate the performance of the PCA method for discriminating structural variation among systematic sets of 2D NMR fingerprint spectra using the NISTmAb and illustrate how spectral variability identified by PCA may be correlated to structure.

  16. Influence of phosphocholine alkyl chain length on peptide-micelle interactions and micellar size and shape.

    PubMed

    Göbl, Christoph; Dulle, Martin; Hohlweg, Walter; Grossauer, Jörg; Falsone, S Fabio; Glatter, Otto; Zangger, Klaus

    2010-04-08

    The interaction with biological membranes is of functional importance for many peptides and proteins. Structural studies on such membrane-bound biomacromolecules are often carried out in solutions containing small membrane-mimetic assemblies of detergent molecules. To investigate the influence of the hydrophobic chain length on the structure, diffusional and dynamical behavior of a peptide bound to micelles, we studied the binding of three peptides to n-phosphocholines with n ranging from 8 to 16. The peptides studied are the 15 residue antimicrobial peptide CM15, the 25-residue transmembrane helix 7 of yeast V-ATPase (TM7), and the 35-residue bacterial toxin LdrD. To keep the dimension of the peptide-membrane-mimetic assembly small, micelles are typically used when studying membrane-bound peptides and proteins, for example, by solution NMR spectroscopy. Since they are readily available in deuterated form most often sodium-dodecylsulfate (SDS) and dodecylphosphocholine (DPC) are used as the micelle-forming detergent. Using NMR, CD, and SAXS, we found that all phosphocholines studied form spherical micelles in the presence and absence of small bound peptides and the diameters of the micelles are basically unchanged upon peptide binding. The size of the peptide relative to the micelle determines to what extent the secondary structure can form. For small peptides (up to approximately 25 residues) the use of shorter chain phosphocholines is recommended for solution NMR studies due to the favorable spectral quality and since they are as well-structured as in DPC. In contrast, larger peptides are better structured in micelles formed by detergents with chain lengths longer than DPC.

  17. Ammonia Vapor Removal by Cu(3)(BTC)(2) and Its Characterization by MAS NMR.

    PubMed

    Peterson, Gregory W; Wagner, George W; Balboa, Alex; Mahle, John; Sewell, Tara; Karwacki, Christopher J

    2009-07-01

    Adsorption equilibria and NMR experiments were performed to study the adsorption and interactions of ammonia with metal-organic framework (MOF) HKUST-1, or Cu(3)(BTC)(2) (BTC = 1,3,5-benzenetricarboxylate). Ammonia capacities determined from chemical breakthrough measurements show significantly higher uptake capacities than from adsorption alone, suggesting a stronger interaction involving a potential reaction with the Cu(3)(BTC)(2) framework. Indeed, (1)H MAS NMR reveals that a major disruption of the relatively simple spectrum of Cu(3)(BTC)(2) occurs to generate a composite spectrum consistent with Cu(OH)(2) and (NH(4))(3)BTC species under humid conditions-the anticipated products of a copper(II) carboxylate reacted with limited ammonia. These species are not detected under dry conditions; however, reaction stoichiometry combined with XRD results suggests the partial formation of an indeterminate diammine copper (II) complex with some residual Cu(3)(BTC)(2) structure retained. Cu(II)-induced paramagnetic shifts exhibited by various species in (1)H and (13)C MAS NMR spectra are consistent with model compounds and previous literature. Although results show extensive ammonia capacity of Cu(3)(BTC)(2), much of the capacity is due to reaction with the structure itself, causing a permanent loss in porosity and structural integrity.

  18. Ammonia Vapor Removal by Cu3(BTC)2 and Its Characterization by MAS NMR

    PubMed Central

    Peterson, Gregory W.; Wagner, George W.; Balboa, Alex; Mahle, John; Sewell, Tara; Karwacki, Christopher J.

    2009-01-01

    Adsorption equilibria and NMR experiments were performed to study the adsorption and interactions of ammonia with metal-organic framework (MOF) HKUST-1, or Cu3(BTC)2 (BTC = 1,3,5-benzenetricarboxylate). Ammonia capacities determined from chemical breakthrough measurements show significantly higher uptake capacities than from adsorption alone, suggesting a stronger interaction involving a potential reaction with the Cu3(BTC)2 framework. Indeed, 1H MAS NMR reveals that a major disruption of the relatively simple spectrum of Cu3(BTC)2 occurs to generate a composite spectrum consistent with Cu(OH)2 and (NH4)3BTC species under humid conditions—the anticipated products of a copper(II) carboxylate reacted with limited ammonia. These species are not detected under dry conditions; however, reaction stoichiometry combined with XRD results suggests the partial formation of an indeterminate diammine copper (II) complex with some residual Cu3(BTC)2 structure retained. Cu(II)-induced paramagnetic shifts exhibited by various species in 1H and 13C MAS NMR spectra are consistent with model compounds and previous literature. Although results show extensive ammonia capacity of Cu3(BTC)2, much of the capacity is due to reaction with the structure itself, causing a permanent loss in porosity and structural integrity. PMID:20161144

  19. Insight into the local environment of magnesium and calcium in low-coordination-number organo-complexes using 25Mg and 43Ca solid-state NMR: a DFT study.

    PubMed

    Gervais, Christel; Jones, Cameron; Bonhomme, Christian; Laurencin, Danielle

    2017-03-01

    With the increasing number of organocalcium and organomagnesium complexes under development, there is a real need to be able to characterize in detail their local environment in order to fully rationalize their reactivity. For crystalline structures, in cases when diffraction techniques are insufficient, additional local spectroscopies like 25 Mg and 43 Ca solid-state NMR may provide valuable information to help fully establish the local environment of the metal ions. In this current work, a prospective DFT investigation on crystalline magnesium and calcium complexes involving low-coordination numbers and N-bearing organic ligands was carried out, in which the 25 Mg and 43 Ca NMR parameters [isotropic chemical shift, chemical shift anisotropy (CSA) and quadrupolar parameters] were calculated for each structure. The analysis of the calculated parameters in relation to the local environment of the metal ions revealed that they are highly sensitive to very small changes in geometry/distances, and hence that they could be used to assist in the refinement of crystal structures. Moreover, such calculations provide a guideline as to how the NMR measurements will need to be performed, revealing that these will be very challenging.

  20. Direct detection and characterization of bioinorganic peroxo moieties in a vanadium complex by 17O solid-state NMR and density functional theory.

    PubMed

    Gupta, Rupal; Stringer, John; Struppe, Jochem; Rehder, Dieter; Polenova, Tatyana

    2018-07-01

    Electronic and structural properties of short-lived metal-peroxido complexes, which are key intermediates in many enzymatic reactions, are not fully understood. While detected in various enzymes, their catalytic properties remain elusive because of their transient nature, making them difficult to study spectroscopically. We integrated 17 O solid-state NMR and density functional theory (DFT) to directly detect and characterize the peroxido ligand in a bioinorganic V(V) complex mimicking intermediates non-heme vanadium haloperoxidases. 17 O chemical shift and quadrupolar tensors, measured by solid-state NMR spectroscopy, probe the electronic structure of the peroxido ligand and its interaction with the metal. DFT analysis reveals the unusually large chemical shift anisotropy arising from the metal orbitals contributing towards the magnetic shielding of the ligand. The results illustrate the power of an integrated approach for studies of oxygen centers in enzyme reaction intermediates. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Cell-free expressed bacteriorhodopsin in different soluble membrane mimetics: biophysical properties and NMR accessibility.

    PubMed

    Etzkorn, Manuel; Raschle, Thomas; Hagn, Franz; Gelev, Vladimir; Rice, Amanda J; Walz, Thomas; Wagner, Gerhard

    2013-03-05

    Selecting a suitable membrane-mimicking environment is of fundamental importance for the investigation of membrane proteins. Nonconventional surfactants, such as amphipathic polymers (amphipols) and lipid bilayer nanodiscs, have been introduced as promising environments that may overcome intrinsic disadvantages of detergent micelle systems. However, structural insights into the effects of different environments on the embedded protein are limited. Here, we present a comparative study of the heptahelical membrane protein bacteriorhodopsin in detergent micelles, amphipols, and nanodiscs. Our results confirm that nonconventional environments can increase stability of functional bacteriorhodopsin, and demonstrate that well-folded heptahelical membrane proteins are, in principle, accessible by solution-NMR methods in amphipols and phospholipid nanodiscs. Our data distinguish regions of bacteriorhodopsin that mediate membrane/solvent contacts in the tested environments, whereas the protein's functional inner core remains almost unperturbed. The presented data allow comparing the investigated membrane mimetics in terms of NMR spectral quality and thermal stability required for structural studies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. The plane-wave DFT investigations into the structure and the 11B solid-state NMR parameters of lithium fluorooxoborates

    NASA Astrophysics Data System (ADS)

    Czernek, Jiří; Brus, Jiří

    2016-12-01

    The strategy for an application of the first-principles calculations on crystalline systems to predict the 11B solid-state NMR powder-patterns is described, and its efficacy is demonstrated for two novel lithium-containing fluorooxborates, Li2B3O4F3 and Li2B6O9F2. This strategy involves the plane-wave DFT computations of the NMR parameters, whose values are then scaled and used in the spectral simulations, and are supposed to be directly applicable in the NMR crystallography studies of boron-containing systems. In particular, the GIPAW method and the PBE, PW91, and RPBE functionals are applied. Issues specific to the signal-assignment of the two compounds are also discussed.

  3. Enhanced detection of aldehydes in Extra-Virgin Olive Oil by means of band selective NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Dugo, Giacomo; Rotondo, Archimede; Mallamace, Domenico; Cicero, Nicola; Salvo, Andrea; Rotondo, Enrico; Corsaro, Carmelo

    2015-02-01

    High resolution Nuclear Magnetic Resonance (NMR) spectroscopy is a very powerful tool for comprehensive food analyses and especially for Extra-Virgin Olive Oils (EVOOs). We use the NMR technique to study the spectral region of aldehydes (8-10 ppm) for EVOOs coming from the south part of Italy. We perform novel experiments by using mono and bidimensional band selective spin-echo pulse sequences and identify four structural classes of aldehydes in EVOOs. For the first time such species are identified in EVOOs without any chemical treatment; only dilution with CDCl3 is employed. This would allow the discrimination of different EVOOs for the aldehydes content increasing the potentiality of the NMR technique in the screening of metabolites for geographical characterization of EVOOs.

  4. Continuous hyperpolarization with parahydrogen in a membrane reactor

    NASA Astrophysics Data System (ADS)

    Lehmkuhl, Sören; Wiese, Martin; Schubert, Lukas; Held, Mathias; Küppers, Markus; Wessling, Matthias; Blümich, Bernhard

    2018-06-01

    Hyperpolarization methods entail a high potential to boost the sensitivity of NMR. Even though the "Signal Amplification by Reversible Exchange" (SABRE) approach uses para-enriched hydrogen, p-H2, to repeatedly achieve high polarization levels on target molecules without altering their chemical structure, such studies are often limited to batch experiments in NMR tubes. Alternatively, this work introduces a continuous flow setup including a membrane reactor for the p-H2, supply and consecutive detection in a 1 T NMR spectrometer. Two SABRE substrates pyridine and nicotinamide were hyperpolarized, and more than 1000-fold signal enhancement was found. Our strategy combines low-field NMR spectrometry and a membrane flow reactor. This enables precise control of the experimental conditions such as liquid and gas pressures, and volume flow for ensuring repeatable maximum polarization.

  5. Multinuclear NMR study of silica fiberglass modified with zirconia.

    PubMed

    Lapina, O B; Khabibulin, D F; Terskikh, V V

    2011-01-01

    Silica fiberglass textiles are emerging as uniquely suited supports in catalysis, which offer unprecedented flexibility in designing advanced catalytic systems for chemical and auto industries. During manufacturing fiberglass materials are often modified with additives of various nature to improve glass properties. Glass network formers, such as zirconia and alumina, are known to provide the glass fibers with higher strength and to slow down undesirable devitrification processes. In this work multinuclear (1)H, (23)Na, (29)Si, and (91)Zr NMR spectroscopy was used to characterize the effect of zirconia on the molecular-level fiberglass structure. (29)Si NMR results help in understanding why zirconia-modified fiberglass is more stable towards devitrification comparing with pure silica glass. Internal void spaces formed in zirconia-silica glass fibers after acidic leaching correlate with sodium and water distributions in the starting bulk glass as probed by (23)Na and (1)H NMR. These voids spaces are important for stabilization of catalytically active species in the supported catalysts. Potentials of high-field (91)Zr NMR spectroscopy to study zirconia-containing glasses and similarly disordered systems are illustrated. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. High-pressure autoclave for multipurpose nuclear magnetic resonance measurements up to 10 MPa

    NASA Astrophysics Data System (ADS)

    Behr, W.; Haase, A.; Reichenauer, G.; Fricke, J.

    1999-05-01

    High-pressure nuclear magnetic resonance (NMR) is an established method in NMR spectroscopy: on-line coupling of high-performance liquid chromatography with NMR, for example, reveals structural information which cannot be obtained with any other method. However, applications has been focused solely on high-pressure NMR spectroscopy, even though high-pressure NMR imaging allows in situ studies of processes such as the fluid exchange in porous media. A versatile high-pressure autoclave for NMR imaging is described in this article. The autoclave allows measurements in any horizontal NMR imager using magnetic field coil systems with an inside diameter of more than 70 mm. Any sample with a diameter up to 28 mm and a length of about 200 mm can be investigated. The autoclave is constructed for operating pressures up to 10 MPa and is temperature controlled between 10 and 60 °C. The materials of the high-pressure cell which are the thermoplastic polyetheretherketon (PEEK) for the pressure tube and brass (63% Cu, 37% Zn) for the caps also permit investigations with aggressive fluids such as supercritical carbon dioxide. Inlet and outlet valves allow replacement of fluids and pressure variations in the autoclave during the NMR measurement. FLASH NMR images of the fluid exchange of methanol for liquid carbon dioxide in silica alcogels at 6.5 MPa are presented in order to demonstrate possible applications.

  7. Structural Changes in Senescing Oilseed Rape Leaves at Tissue and Subcellular Levels Monitored by Nuclear Magnetic Resonance Relaxometry through Water Status

    PubMed Central

    Musse, Maja; De Franceschi, Loriane; Cambert, Mireille; Sorin, Clément; Le Caherec, Françoise; Burel, Agnès; Bouchereau, Alain; Mariette, François; Leport, Laurent

    2013-01-01

    Nitrogen use efficiency is relatively low in oilseed rape (Brassica napus) due to weak nitrogen remobilization during leaf senescence. Monitoring the kinetics of water distribution associated with the reorganization of cell structures, therefore, would be valuable to improve the characterization of nutrient recycling in leaf tissues and the associated senescence processes. In this study, nuclear magnetic resonance (NMR) relaxometry was used to describe water distribution and status at the cellular level in different leaf ranks of well-watered plants. It was shown to be able to detect slight variations in the evolution of senescence. The NMR results were linked to physiological characterization of the leaves and to light and electron micrographs. A relationship between cell hydration and leaf senescence was revealed and associated with changes in the NMR signal. The relative intensities and the transverse relaxation times of the NMR signal components associated with vacuole water were positively correlated with senescence, describing water uptake and vacuole and cell enlargement. Moreover, the relative intensity of the NMR signal that we assigned to the chloroplast water decreased during the senescence process, in agreement with the decrease in relative chloroplast volume estimated from micrographs. The results are discussed on the basis of water flux occurring at the cellular level during senescence. One of the main applications of this study would be for plant phenotyping, especially for plants under environmental stress such as nitrogen starvation. PMID:23903438

  8. Glycerin-Induced Conformational Changes in Bombyx mori Silk Fibroin Film Monitored by (13)C CP/MAS NMR and ¹H DQMAS NMR.

    PubMed

    Asakura, Tetsuo; Endo, Masanori; Hirayama, Misaki; Arai, Hiroki; Aoki, Akihiro; Tasei, Yugo

    2016-09-09

    In order to improve the stiff and brittle characteristics of pure Bombyx mori (B. mori) silk fibroin (SF) film in the dry state, glycerin (Glyc) has been used as a plasticizer. However, there have been very limited studies on the structural characterization of the Glyc-blended SF film. In this study, (13)C Cross Polarization/Magic Angle Spinning nuclear magnetic resonance (CP/MAS NMR) was used to monitor the conformational changes in the films by changing the Glyc concentration. The presence of only 5 wt % Glyc in the film induced a significant conformational change in SF where Silk I* (repeated type II β-turn and no α-helix) newly appeared. Upon further increase in Glyc concentration, the percentage of Silk I* increased linearly up to 9 wt % Glyc and then tended to be almost constant (30%). This value (30%) was the same as the fraction of Ala residue within the Silk I* form out of all Ala residues of SF present in B. mori mature silkworm. The ¹H DQMAS NMR spectra of Glyc-blended SF films confirmed the appearance of Silk I* in the Glyc-blended SF film. A structural model of Glyc-SF complex including the Silk I* form was proposed with the guidance of the Molecular Dynamics (MD) simulation using ¹H-¹H distance constraints obtained from the ¹H Double-Quantum Magic Angle Spinning (DQMAS) NMR spectra.

  9. Synthesis, structural, conformational and pharmacological study of some amides derived from 3 -methyl-2,4-diphenyl-3-azabicyclo[3.3.1]nonan-9α-amine

    NASA Astrophysics Data System (ADS)

    Iriepa, I.; Bellanato, J.; Gálvez, E.; Gil-Alberdi, B.

    2010-07-01

    Some mono-substituted amides ( 2- 5) derived from 3-methyl-2,4-diphenyl-3-azabicyclo[3.3.1]nonan-9α-amine were synthesized and studied by IR, 1H and 13C NMR spectroscopy. The crystal structure of 3-methyl-2,4-diphenyl-9α-(3,5-dichlorobenzamido)-3-azabicyclo[3.3.1]nonane ( 3) was determined by X-ray diffraction. NMR data showed that all compounds adopt in CDCl 3 a preferred flattened chair-chair conformation with the N-CH 3 group in equatorial disposition. X-ray data agreed with this conformation in the case of compound 3. IR data revealed that compounds 2 and 3 present a C dbnd O⋯HN intermolecular bond in the solid state. This conclusion was also confirmed by X-ray data of compound 3. In the case of compound 5, IR results suggested intermolecular NH⋯N-heterocyclic bonding. On the contrary, in the pyrazine derivative ( 4), IR, 1H and 13C NMR data showed the presence of an intramolecular NH⋯N1″-heterocyclic hydrogen bond in the solid state and solution. Moreover, NMR and IR data showed a preferred trans disposition for the NH-C dbnd O group. NMR also revealed free rotation of the -NH-CO-R group around C9-NH bond. Pharmacological assays on mice were drawn to evaluate analgesic activity.

  10. Determination of NMR chemical shifts for cholesterol crystals from first-principles

    NASA Astrophysics Data System (ADS)

    Kucukbenli, Emine; de Gironcoli, Stefano

    2011-03-01

    Solid State Nuclear Magnetic Resonance (NMR) is a powerful tool in crystallography when combined with theoretical predictions. So far, empirical calculations of spectra have been employed for an unambiguous identification. However, many complex systems are outside the scope of these methods. Our implementation of ultrasoft and projector augmented wave pseudopotentials within ab initio gauge including projector augmented plane wave (GIPAW) method in Quantum Espresso simulation package allows affordable calculations of NMR spectra for systems of thousands of electrons. We report here the first ab initio determination of NMR spectra for several crystal structures of cholesterol. Cholesterol crystals, the main component of human gallstones, are of interest to medical research as their structural properties can shed light on the pathologies of gallbladder. With our application we show that ab initio calculations can be employed to aid NMR crystallography.

  11. Applications of solid-state NMR to membrane proteins.

    PubMed

    Ladizhansky, Vladimir

    2017-11-01

    Membrane proteins mediate flow of molecules, signals, and energy between cells and intracellular compartments. Understanding membrane protein function requires a detailed understanding of the structural and dynamic properties involved. Lipid bilayers provide a native-like environment for structure-function investigations of membrane proteins. In this review we give a general discourse on the recent progress in the field of solid-state NMR of membrane proteins. Solid-state NMR is a variation of NMR spectroscopy that is applicable to molecular systems with restricted mobility, such as high molecular weight proteins and protein complexes, supramolecular assemblies, or membrane proteins in a phospholipid environment. We highlight recent advances in applications of solid-state NMR to membrane proteins, specifically focusing on the recent developments in the field of Dynamic Nuclear Polarization, proton detection, and solid-state NMR applications in situ (in cell membranes). This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. NMR in structural genomics to increase structural coverage of the protein universe: Delivered by Prof. Kurt Wüthrich on 7 July 2013 at the 38th FEBS Congress in St. Petersburg, Russia.

    PubMed

    Serrano, Pedro; Dutta, Samit K; Proudfoot, Andrew; Mohanty, Biswaranjan; Susac, Lukas; Martin, Bryan; Geralt, Michael; Jaroszewski, Lukasz; Godzik, Adam; Elsliger, Marc; Wilson, Ian A; Wüthrich, Kurt

    2016-11-01

    For more than a decade, the Joint Center for Structural Genomics (JCSG; www.jcsg.org) worked toward increased three-dimensional structure coverage of the protein universe. This coordinated quest was one of the main goals of the four high-throughput (HT) structure determination centers of the Protein Structure Initiative (PSI; www.nigms.nih.gov/Research/specificareas/PSI). To achieve the goals of the PSI, the JCSG made use of the complementarity of structure determination by X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy to increase and diversify the range of targets entering the HT structure determination pipeline. The overall strategy, for both techniques, was to determine atomic resolution structures for representatives of large protein families, as defined by the Pfam database, which had no structural coverage and could make significant contributions to biological and biomedical research. Furthermore, the experimental structures could be leveraged by homology modeling to further expand the structural coverage of the protein universe and increase biological insights. Here, we describe what could be achieved by this structural genomics approach, using as an illustration the contributions from 20 NMR structure determinations out of a total of 98 JCSG NMR structures, which were selected because they are the first three-dimensional structure representations of the respective Pfam protein families. The information from this small sample is representative for the overall results from crystal and NMR structure determination in the JCSG. There are five new folds, which were classified as domains of unknown functions (DUF), three of the proteins could be functionally annotated based on three-dimensional structure similarity with previously characterized proteins, and 12 proteins showed only limited similarity with previous deposits in the Protein Data Bank (PDB) and were classified as DUFs. © 2016 Federation of European Biochemical Societies.

  13. Solution NMR studies of the plant peptide hormone CEP inform function.

    PubMed

    Bobay, Benjamin G; DiGennaro, Peter; Scholl, Elizabeth; Imin, Nijat; Djordjevic, Michael A; Mck Bird, David

    2013-12-11

    The C-terminally Encoded Peptide (CEP) family of regulatory peptides controls root development in vascular plants. Here, we present the first NMR structures of CEP. We show that root-knot nematode (RKN: Meloidogyne spp.) also encodes CEP, presumably to mimic plant CEP as part of their stereotypic, parasitic interaction with vascular plants. Molecular dynamics simulations of plant- and nematode-encoded CEP displaying known posttranslational modifications (PTM) provided insight into the structural effects of PTM and the conformational plasticity and rigidity of CEP. Potential mechanisms of action are discussed with respect to the structure and sampling of conformational space. © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  14. Effect of particle size on phase transition among metastable alumina nanoparticles: A view from high resolution 2D solid-state 27Al NMR study

    NASA Astrophysics Data System (ADS)

    Kim, H.; Lee, S.

    2012-12-01

    The detailed knowledge of atomic structures of diverse metastable/stable polymorphs in alumina nanoparticles is essential to understand their macroscopic properties. Alumina undergoes successive phase transitions from metastable γ-, δ-, and θ-alumina to stable α-alumina depending on types of precursors, annealing duration, and temperature. As large surface area of nanoparticles plays an important role in controlling their phase transitions, it is also necessary to explore the effect of particle size on nature of phase transition. Solid-state ^{27}Al NMR allows us to determine the atomic structure of Al sites in diverse amorphous/disordered silicates including alumina. However, generally, the crystallographically distinct Al sites among alumina polymorphs were not fully resolved in ^{27}Al magic angle spinning (MAS) NMR spectrum without performing a simulation of overlapped peaks for Al sites of metastable alumina in the spectra. Unfortunately, the simulation of 27Al MAS NMR spectra for alumina nanoparticles cannot be achieved well due to unconfirmed NMR parameters for Al sites of γ- and δ-alumina. The recent progress in triple-quantum (3Q) MAS can provide the much higher resolution for crystallographically distinct Al sites in amorphous alumina (Lee et al., 2009, Phys. Rev. Lett., 103, 095501; Lee et al., 2010, J. Phys. Chem. C, 114, 13890-13894) and aluminosilicate glasses (Lee, 2011, Proc. Natl. Acad. Sci., 108, 6847-6852) as well as crystalline layer silicates (Lee and Weiss, 2008, Am. Mineral. 93, 1066-1071). In this study, we report the ^{27}Al 2D 3QMAS and 1D MAS NMR spectra for alumina nanoparticles with varying particle size (e.g., 15, 19, and 27 nm) and temperature with an aim to explore the atomic structure of alumina polymorphs and nature of their phase transition sequence. The ^{27}Al 2D 3QMAS spectra show the resolved crystallographically distinct ^{[6]}Al and ^{[4]}Al sites in (γ, δ)-, θ-, and α-alumina in nanoparticles consisting of random mixtures of γ-, δ-, and θ-alumina phases. The fraction of θ-alumina gradually increases up to 1473 K at the expense of decrease in (γ, δ)-alumina. Onset of formation of α-alumina from metastable alumina is observed above 1493 K. The successive simulation of ^{27}Al MAS NMR spectra also can be achieved by using the NMR parameters for the Al sites of (γ, δ)-alumina in following Czjzek model, which is applicable to a wide range of disordered materials including γ-alumina. The simulation result shows the phase transition of γ, δ → θ phase is more gradual with that of θ → α phase transitions. This can be attributed to the different structural disorder between metastable (i.e., γ, δ, θ) phases and α-alumina. The transition temperature for θ → α phases apparently increases with increasing size of nanoparticles, indicating a larger energy penalty for phase transition of alumina nanoparticles with a larger particle size. The structural information of alumina polymorphs and mechanistic details shown in the current study provide insights into nature of phase transition mechanisms for other nanoparticles ubiquitous in the earth.

  15. Characterization of Two Distinct Amorphous Forms of Valsartan by Solid-State NMR.

    PubMed

    Skotnicki, Marcin; Apperley, David C; Aguilar, Juan A; Milanowski, Bartłomiej; Pyda, Marek; Hodgkinson, Paul

    2016-01-04

    Valsartan (VAL) is an antihypertensive drug marketed in an amorphous form. Amorphous materials can have different physicochemical properties depending on preparation method, thermal history, etc., but the nature of such materials is difficult to study by diffraction techniques. This study characterizes two different amorphous forms of valsartan (AR and AM) using solid-state NMR (SSNMR) as a primary investigation tool, supported by solution-state NMR, FT-IR, TMDSC, and dissolution tests. The two forms are found to be clearly distinct, with a significantly higher level of structural arrangement in the AR form, as observed in (13)C, (15)N, and (1)H SSNMR. (13)C and (15)N NMR indicates that the fully amorphous material (AM) contains an approximately equal ratio of cis-trans conformers about the amide bond, whereas the AR form exists mainly as one conformer, with minor conformational "defects". (1)H ultrafast MAS NMR shows significant differences in the hydrogen bonding involving the tetrazole and acid hydrogens between the two materials, while (15)N NMR shows that both forms exist as a 1,2,3,4-tetrazole tautomer. NMR relaxation times show subtle differences in local and bulk molecular mobility, which can be connected with the glass transition, the stability of the glassy material, and its response to aging. Counterintuitively the fully amorphous material is found to have a significantly lower dissolution rate than the apparently more ordered AR material.

  16. NMR Relaxometry to Characterize the Drug Structural Phase in a Porous Construct.

    PubMed

    Thrane, Linn W; Berglund, Emily A; Wilking, James N; Vodak, David; Seymour, Joseph D

    2018-06-14

    Nuclear magnetic resonance (NMR) frequency spectra and T 2 relaxation time measurements, using a high-power radio frequency probe, are shown to characterize the presence of an amorphous drug in a porous silica construct. The results indicate the ability of non-solid-state NMR methods to characterize crystalline and amorphous solid structural phases in drugs. Two-dimensional T 1 - T 2 magnetic relaxation time correlation experiments are shown to monitor the impact of relative humidity on the drug in a porous silica tablet.

  17. Studies of the Binding of Modest Modulators of the Human Enzyme, Sirtuin 6, by STD NMR.

    PubMed

    Bolívar, Beatriz E; Welch, John T

    2017-05-18

    Pyrazinamide (PZA), an essential constituent of short-course tuberculosis chemotherapy, binds weakly but selectively to Sirtuin 6 (SIRT6). Despite the structural similarities between nicotinamide (NAM), PZA, and pyrazinoic acid (POA), these inhibitors modulate SIRT6 by different mechanisms and through different binding sites, as suggested by saturation transfer difference (STD) NMR. Available experimental evidence, such as that derived from crystal structures and kinetic experiments, has been of only limited utility in elucidation of the mechanistic details of sirtuin inhibition by NAM or other inhibitors. For instance, crystallographic structural analysis of sirtuin binding sites does not help us understand important differences in binding affinities among sirtuins or capture details of such dynamic process. Hence, STD NMR was utilized throughout this study. Our results not only agreed with the binding kinetics experiments but also gave a qualitative insight into the binding process. The data presented herein suggested some details about the geometry of the binding epitopes of the ligands in solution with the apo- and holoenzyme. Recognition that SIRT6 is affected selectively by PZA, an established clinical agent, suggests that the rational development of more potent and selective NAM surrogates might be possible. These derivatives might be accessible by employing the malleability of this scaffold to assist in the identification by STD NMR of the motifs that interact with the apo- and holoenzymes in solution. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A Two-Tailed Phosphopeptide Crystallizes to Form a Lamellar Structure.

    PubMed

    Pellach, Michal; Mondal, Sudipta; Harlos, Karl; Mance, Deni; Baldus, Marc; Gazit, Ehud; Shimon, Linda J W

    2017-03-13

    The crystal structure of a designed phospholipid-inspired amphiphilic phosphopeptide at 0.8 Å resolution is presented. The phosphorylated β-hairpin peptide crystallizes to form a lamellar structure that is stabilized by intra- and intermolecular hydrogen bonding, including an extended β-sheet structure, as well as aromatic interactions. This first reported crystal structure of a two-tailed peptidic bilayer reveals similarities in thickness to a typical phospholipid bilayer. However, water molecules interact with the phosphopeptide in the hydrophilic region of the lattice. Additionally, solid-state NMR was used to demonstrate correlation between the crystal structure and supramolecular nanostructures. The phosphopeptide was shown to self-assemble into semi-elliptical nanosheets, and solid-state NMR provides insight into the self-assembly mechanisms. This work brings a new dimension to the structural study of biomimetic amphiphilic peptides with determination of molecular organization at the atomic level. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Flow-through lipid nanotube arrays for structure-function studies of membrane proteins by solid-state NMR spectroscopy.

    PubMed

    Chekmenev, Eduard Y; Gor'kov, Peter L; Cross, Timothy A; Alaouie, Ali M; Smirnov, Alex I

    2006-10-15

    A novel method for studying membrane proteins in a native lipid bilayer environment by solid-state NMR spectroscopy is described and tested. Anodic aluminum oxide (AAO) substrates with flow-through 175 nm wide and 60-mum-long nanopores were employed to form macroscopically aligned peptide-containing lipid bilayers that are fluid and highly hydrated. We demonstrate that the surfaces of both leaflets of such bilayers are fully accessible to aqueous solutes. Thus, high hydration levels as well as pH and desirable ion and/or drug concentrations could be easily maintained and modified as desired in a series of experiments with the same sample. The method allows for membrane protein NMR experiments in a broad pH range that could be extended to as low as 1 and as high as 12 units for a period of up to a few hours and temperatures as high as 70 degrees C without losing the lipid alignment or bilayers from the nanopores. We demonstrate the utility of this method by a solid-state 19.6 T (17)O NMR study of reversible binding effects of mono- and divalent ions on the chemical shift properties of the Leu(10) carbonyl oxygen of transmembrane pore-forming peptide gramicidin A (gA). We further compare the (17)O shifts induced by binding metal ions to the binding of protons in the pH range from 1 to 12 and find a significant difference. This unexpected result points to a difference in mechanisms for ion and proton conduction by the gA pore. We believe that a large number of solid-state NMR-based studies, including structure-function, drug screening, proton exchange, pH, and other titration experiments, will benefit significantly from the method described here.

  20. High quality NMR structures: a new force field with implicit water and membrane solvation for Xplor-NIH.

    PubMed

    Tian, Ye; Schwieters, Charles D; Opella, Stanley J; Marassi, Francesca M

    2017-01-01

    Structure determination of proteins by NMR is unique in its ability to measure restraints, very accurately, in environments and under conditions that closely mimic those encountered in vivo. For example, advances in solid-state NMR methods enable structure determination of membrane proteins in detergent-free lipid bilayers, and of large soluble proteins prepared by sedimentation, while parallel advances in solution NMR methods and optimization of detergent-free lipid nanodiscs are rapidly pushing the envelope of the size limit for both soluble and membrane proteins. These experimental advantages, however, are partially squandered during structure calculation, because the commonly used force fields are purely repulsive and neglect solvation, Van der Waals forces and electrostatic energy. Here we describe a new force field, and updated energy functions, for protein structure calculations with EEFx implicit solvation, electrostatics, and Van der Waals Lennard-Jones forces, in the widely used program Xplor-NIH. The new force field is based primarily on CHARMM22, facilitating calculations with a wider range of biomolecules. The new EEFx energy function has been rewritten to enable OpenMP parallelism, and optimized to enhance computation efficiency. It implements solvation, electrostatics, and Van der Waals energy terms together, thus ensuring more consistent and efficient computation of the complete nonbonded energy lists. Updates in the related python module allow detailed analysis of the interaction energies and associated parameters. The new force field and energy function work with both soluble proteins and membrane proteins, including those with cofactors or engineered tags, and are very effective in situations where there are sparse experimental restraints. Results obtained for NMR-restrained calculations with a set of five soluble proteins and five membrane proteins show that structures calculated with EEFx have significant improvements in accuracy, precision, and conformation, and that structure refinement can be obtained by short relaxation with EEFx to obtain improvements in these key metrics. These developments broaden the range of biomolecular structures that can be calculated with high fidelity from NMR restraints.

  1. Solution structures and backbone dynamics of Escherichia coli rhodanese PspE in its sulfur-free and persulfide-intermediate forms: implications for the catalytic mechanism of rhodanese.

    PubMed

    Li, Hongwei; Yang, Fan; Kang, Xue; Xia, Bin; Jin, Changwen

    2008-04-15

    Rhodanese catalyzes the sulfur-transfer reaction that transfers sulfur from thiosulfate to cyanide by a double-displacement mechanism, in which an active cysteine residue plays a central role. Previous studies indicated that the phage-shock protein E (PspE) from Escherichia coli is a rhodanese composed of a single active domain and is the only accessible rhodanese among the three single-domain rhodaneses in E. coli. To understand the catalytic mechanism of rhodanese at the molecular level, we determined the solution structures of the sulfur-free and persulfide-intermediate forms of PspE by nuclear magnetic resonance (NMR) spectroscopy and identified the active site by NMR titration experiments. To obtain further insights into the catalytic mechanism, we studied backbone dynamics by NMR relaxation experiments. Our results demonstrated that the overall structures in both sulfur-free and persulfide-intermediate forms are highly similar, suggesting that no significant conformational changes occurred during the catalytic reaction. However, the backbone dynamics revealed that the motional properties of PspE in its sulfur-free form are different from the persulfide-intermediate state. The conformational exchanges are largely enhanced in the persulfide-intermediate form of PspE, especially around the active site. The present structural and biochemical studies in combination with backbone dynamics provide further insights in understanding the catalytic mechanism of rhodanese.

  2. Solution NMR structures of homeodomains from human proteins ALX4, ZHX1, and CASP8AP2 contribute to the structural coverage of the Human Cancer Protein Interaction Network.

    PubMed

    Xu, Xianzhong; Pulavarti, Surya V S R K; Eletsky, Alexander; Huang, Yuanpeng Janet; Acton, Thomas B; Xiao, Rong; Everett, John K; Montelione, Gaetano T; Szyperski, Thomas

    2014-12-01

    High-quality solution NMR structures of three homeodomains from human proteins ALX4, ZHX1 and CASP8AP2 were solved. These domains were chosen as targets of a biomedical theme project pursued by the Northeast Structural Genomics Consortium. This project focuses on increasing the structural coverage of human proteins associated with cancer.

  3. Experimental (FT-IR, FT-Raman, 1H, 13C NMR) and theoretical study of alkali metal 2-aminobenzoates

    NASA Astrophysics Data System (ADS)

    Samsonowicz, M.; Świsłocka, R.; Regulska, E.; Lewandowski, W.

    2008-09-01

    The influence of lithium, sodium, potassium, rubidium and cesium on the electronic system of the 2-aminobenzoic acid was studied by the methods of molecular spectroscopy. The vibrational (FT-IR, FT-Raman) and NMR ( 1H and 13C) spectra for 2-aminobenzoic acid and its alkali metal salts were recorded. The assignment of vibrational spectra was done on the basis of literature data, theoretical calculations and our previous experience. Characteristic shifts of bands and changes in intensities of bands along the metal series were observed. The changes of chemical shifts of protons ( 1H NMR) and carbons ( 13C NMR) in the series of studied alkali metal 2-aminobenzoates were observed too. Optimized geometrical structures of studied compounds were calculated by B3LYP method using 6-311++G ∗∗ basis set. Geometric aromaticity indices, dipole moments and energies were also calculated. The theoretical wavenumbers and intensities of IR and Raman spectra were obtained. The calculated parameters were compared to experimental characteristic of studied compounds.

  4. Solution NMR and molecular dynamics reveal a persistent alpha helix within the dynamic region of PsbQ from photosystem II of higher plants.

    PubMed

    Rathner, Petr; Rathner, Adriana; Horničáková, Michaela; Wohlschlager, Christian; Chandra, Kousik; Kohoutová, Jaroslava; Ettrich, Rüdiger; Wimmer, Reinhard; Müller, Norbert

    2015-09-01

    The extrinsic proteins of photosystem II of higher plants and green algae PsbO, PsbP, PsbQ, and PsbR are essential for stable oxygen production in the oxygen evolving center. In the available X-ray crystallographic structure of higher plant PsbQ residues S14-Y33 are missing. Building on the backbone NMR assignment of PsbQ, which includes this "missing link", we report the extended resonance assignment including side chain atoms. Based on nuclear Overhauser effect spectra a high resolution solution structure of PsbQ with a backbone RMSD of 0.81 Å was obtained from torsion angle dynamics. Within the N-terminal residues 1-45 the solution structure deviates significantly from the X-ray crystallographic one, while the four-helix bundle core found previously is confirmed. A short α-helix is observed in the solution structure at the location where a β-strand had been proposed in the earlier crystallographic study. NMR relaxation data and unrestrained molecular dynamics simulations corroborate that the N-terminal region behaves as a flexible tail with a persistent short local helical secondary structure, while no indications of forming a β-strand are found. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.

  5. Structural studies of homoisoflavonoids: NMR spectroscopy, X-ray diffraction, and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Sievänen, Elina; Toušek, Jaromír; Lunerová, Kamila; Marek, Jaromír; Jankovská, Dagmar; Dvorská, Margita; Marek, Radek

    2010-08-01

    In this article we present a detailed structural investigation for five homoisoflavonoids, molecules important from the pharmacological point of view. For studying the electron distribution as well as its influence on the physicochemical properties, NMR spectroscopy, X-ray diffraction, and theoretical calculations have been used. Nuclear magnetic shieldings obtained by using DFT calculations for optimized molecular geometries are correlated with the experimentally determined chemical shifts. The theoretical data are well in agreement with the experimental values. The single crystal X-ray structures of homoisoflavonoid derivatives 1, 3, and 4 have been solved. The molecular geometries and crystal packing determined by X-ray diffraction are used for characterizing the intermolecular interactions. Electron distribution is crucial for the stability of radicals and hence the antioxidant efficiency of flavonoid structures. The hydrogen bonding governs the formation of complexes of homoisoflavonoids with biological targets.

  6. Mapping substrate interactions of the human membrane-associated neuraminidase, NEU3, using STD NMR.

    PubMed

    Albohy, Amgad; Richards, Michele R; Cairo, Christopher W

    2015-03-01

    Saturation transfer difference (STD) nuclear magnetic resonance (NMR) is a powerful technique which can be used to investigate interactions between proteins and their substrates. The method identifies specific sites of interaction found on a small molecule ligand when in complex with a protein. The ability of STD NMR to provide specific insight into binding interactions in the absence of other structural data is an attractive feature for its use with membrane proteins. We chose to employ STD NMR in our ongoing investigations of the human membrane-associated neuraminidase NEU3 and its interaction with glycolipid substrates (e.g., GM3). In order to identify critical substrate-enzyme interactions, we performed STD NMR with a catalytically inactive form of the enzyme, NEU3(Y370F), containing an N-terminal maltose-binding protein (MBP)-affinity tag. In the absence of crystallographic data on the enzyme, these data represent a critical experimental test of proposed homology models, as well as valuable new structural data. To aid interpretation of the STD NMR data, we compared the results with molecular dynamics (MD) simulations of the enzyme-substrate complexes. We find that the homology model is able to predict essential features of the experimental data, including close contact of the hydrophobic aglycone and the Neu5Ac residue with the enzyme. Additionally, the model and STD NMR data agree on the facial recognition of the galactose and glucose residues of the GM3-analog studied. We conclude that the homology model of NEU3 can be used to predict substrate recognition, but our data indicate that unstructured portions of the NEU3 model may require further refinement. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. High-field EPR on membrane proteins - crossing the gap to NMR.

    PubMed

    Möbius, Klaus; Lubitz, Wolfgang; Savitsky, Anton

    2013-11-01

    In this review on advanced EPR spectroscopy, which addresses both the EPR and NMR communities, considerable emphasis is put on delineating the complementarity of NMR and EPR concerning the measurement of molecular interactions in large biomolecules. From these interactions, detailed information can be revealed on structure and dynamics of macromolecules embedded in solution- or solid-state environments. New developments in pulsed microwave and sweepable cryomagnet technology as well as ultrafast electronics for signal data handling and processing have pushed to new horizons the limits of EPR spectroscopy and its multifrequency extensions concerning the sensitivity of detection, the selectivity with respect to interactions, and the resolution in frequency and time domains. One of the most important advances has been the extension of EPR to high magnetic fields and microwave frequencies, very much in analogy to what happens in NMR. This is exemplified by referring to ongoing efforts for signal enhancement in both NMR and EPR double-resonance techniques by exploiting dynamic nuclear or electron spin polarization via unpaired electron spins and their electron-nuclear or electron-electron interactions. Signal and resolution enhancements are particularly spectacular for double-resonance techniques such as ENDOR and PELDOR at high magnetic fields. They provide greatly improved orientational selection for disordered samples that approaches single-crystal resolution at canonical g-tensor orientations - even for molecules with small g-anisotropies. Exchange of experience between the EPR and NMR communities allows for handling polarization and resolution improvement strategies in an optimal manner. Consequently, a dramatic improvement of EPR detection sensitivity could be achieved, even for short-lived paramagnetic reaction intermediates. Unique structural and dynamic information is thus revealed that can hardly be obtained by any other analytical techniques. Micromolar quantities of sample molecules have become sufficient to characterize stable and transient reaction intermediates of complex molecular systems - offering highly interesting applications for chemists, biochemists and molecular biologists. In three case studies, representative examples of advanced EPR spectroscopy are reviewed: (I) High-field PELDOR and ENDOR structure determination of cation-anion radical pairs in reaction centers from photosynthetic purple bacteria and cyanobacteria (Photosystem I); (II) High-field ENDOR and ELDOR-detected NMR spectroscopy on the oxygen-evolving complex of Photosystem II; and (III) High-field electron dipolar spectroscopy on nitroxide spin-labelled bacteriorhodopsin for structure-function studies. An extended conclusion with an outlook to further developments and applications is also presented. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. NMR structural studies of the supramolecular adducts between a liver cytosolic bile acid binding protein and gadolinium(III)-chelates bearing bile acids residues: molecular determinants of the binding of a hepatospecific magnetic resonance imaging contrast agent.

    PubMed

    Assfalg, Michael; Gianolio, Eliana; Zanzoni, Serena; Tomaselli, Simona; Russo, Vito Lo; Cabella, Claudia; Ragona, Laura; Aime, Silvio; Molinari, Henriette

    2007-11-01

    The binding affinities of a selected series of Gd(III) chelates bearing bile acid residues, potential hepatospecific MRI contrast agents, to a liver cytosolic bile acid transporter, have been determined through relaxivity measurements. The Ln(III) complexes of compound 1 were selected for further NMR structural analysis aimed at assessing the molecular determinants of binding. A number of NMR experiments have been carried out on the bile acid-like adduct, using both diamagnetic Y(III) and paramagnetic Gd(III) complexes, bound to a liver bile acid binding protein. The identified protein "hot spots" defined a single binding site located at the protein portal region. The presented findings will serve in a medicinal chemistry approach for the design of hepatocytes-selective gadolinium chelates for liver malignancies detection.

  9. Spectroscopic studies and structure of 3-methoxy-2 -[(2,4,4,6,6-pentachloro-1,3,5,2{lambda}{sup 5},4{lambda}{sup 5},6{lambda}{sup 5}-triazatriphosphin-2-yl)oxy] benzaldehyde

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oezay, H.; Yildiz, M., E-mail: myildiz@comu.edu.tr; Uenver, H.

    2013-01-15

    The compound called 3-methoxy-2- [(2,4,4,6,6-pentachloro-1,3,5,2{lambda}{sup 5},4{lambda}{sup 5},6{lambda}{sup 5}-triazatriphosphin-2-yl)oxy] benzaldehyde has been synthesized from the reaction of 2-hydroxy-3-methoxybenzaldehyde with hexachlorocyclotriphosphazene. It has been characterized by elemental analysis, MS, IR, {sup 1}H NMR, {sup 13}C NMR, {sup 31}P NMR and UV-visible spectroscopic techniques. The structure of the title compound has been determind by X-ray analysis. Crystals are orthorhombic, space group P2{sub 1}2{sub 1}2{sub 1}, Z = 4, a = 7.705(1), b = 12.624(1), c = 17.825(2) A, R{sub 1} = 0.0390 and wR{sub 2} = 0.1074 [I > 2{sigma}(I)], respectively.

  10. An NMR study of microvoids in polymers

    NASA Technical Reports Server (NTRS)

    Toy, James; Mattix, Larry

    1995-01-01

    An understanding of polymer defect structures, like microvoids in polymeric matrices, is crucial to their fabrication and application potential. In this project guest atoms are introduced into the microvoids in PMR-15 and NMR is used to determine microvoid sizes and locations. Xenon is a relatively inert probe that would normally be found naturally in polymer or in NMR probe materials. There are two NMR active xenon isotopes, Xe-129 and Xe-131. The Xe atom has a very high polarizability, which makes it sensitive to the intracrystalline environment of polymers. Interactions between the Xe atoms and the host matrix perturb the Xe electron cloud, deshielding the nuclei, and thereby expanding the range of the observed NMR chemical shifts. This chemical shift range which may be as large as 5000 ppm, permits subtle structural and chemical effects to be studied with high sensitivity. The Xe(129)-NMR line shape has been found to vary in response to changes in the pore symmetry of the framework hosts line Zeolites and Clathrasil compounds. Before exposure to Xe gas, the PMR-15 samples were dried in a vacuum oven at 150 C for 48 hours. The samples were then exposed to Xe gas at 30 psi for 72 hours and sealed in glass tubes with 1 atmosphere of xenon gas. Xenon gas at 1 atmosphere was used to tune up the spectrometer and to set up the appropriate NMR parameters. A single Xe-129 line at 83.003498 Mhz (with protons at 300 Mhz) was observed for the gas. With the xenon charged PMR-15 samples, a second broader line is observed 190 ppm downfield from the gas line (also observed). The width of the NMR line from the Xe-129 absorbed in the polymer is at least partially due to the distribution of microvoid sizes. From the chemical shift (relative to the gas line) and the line width, we estimate the average void sizes to be 2.74 +/- 0.20 angstroms. Since Xe-129 has such a large chemical shift range (approximately 5000 ppm), we expect the chemical shift anisotropy to contribute to the line width (delta upsilon = 2.5 kHz).

  11. [Hyperfine structure analysis in magnetic resonance spectroscopy: from astrophysical measurements towards endogenous biosensors in human tissue].

    PubMed

    Schröder, Leif

    2007-01-01

    The hyperfine interaction of two spins is a well studied effect in atomic systems. Magnetic resonance experiments demonstrate that the detectable dipole transitions are determined by the magnetic moments of the constituents and the external magnetic field. Transferring the corresponding quantum mechanics to molecular bound nuclear spins allows for precise prediction of NMR spectra obtained from metabolites in human tissue. This molecular hyperfine structure has been neglected so far in in vivo NMR spectroscopy but contains useful information, especially when studying molecular dynamics. This contribution represents a review of the concept of applying the Breit-Rabi formalism to coupled nuclear spins and discusses the immobilization of different metabolites in anisotropic tissue revealed by 1H NMR spectra of carnosine, phosphocreatine and taurine. Comparison of atomic and molecular spin systems allows for statements on the biological constraints for direct spin-spin interactions. Moreover, the relevance of hyperfine effects on the line shapes of multiplets of indirectly-coupled spin systems with more than two constituents can be predicted by analyzing quantum mechanical parameters. As an example, the superposition of eigenstates of the A MX system of adenosine 5'-triphosphate and its application for better quantification of 31P-NMR spectra will be discussed.

  12. Investigating Protein-Ligand Interactions by Solution Nuclear Magnetic Resonance Spectroscopy.

    PubMed

    Becker, Walter; Bhattiprolu, Krishna Chaitanya; Gubensäk, Nina; Zangger, Klaus

    2018-04-17

    Protein-ligand interactions are of fundamental importance in almost all processes in living organisms. The ligands comprise small molecules, drugs or biological macromolecules and their interaction strength varies over several orders of magnitude. Solution NMR spectroscopy offers a large repertoire of techniques to study such complexes. Here, we give an overview of the different NMR approaches available. The information they provide ranges from the simple information about the presence of binding or epitope mapping to the complete 3 D structure of the complex. NMR spectroscopy is particularly useful for the study of weak interactions and for the screening of binding ligands with atomic resolution. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  13. DFT calculations and NMR measurements applied to the conformational analysis of cis and trans-3-phenylaminocyclohexyl N,N-dimethylcarbamates

    NASA Astrophysics Data System (ADS)

    Melo, Ulisses Zonta de; Yamazaki, Diego Alberto dos Santos; Cândido, Augusto de Araújo; Basso, Ernani Abicht; Gauze, Gisele de Freitas

    2018-07-01

    The three-dimensional structure of a potential drug molecule is of critical importance. Factors that determine its conformational stability and, consequently, corresponding biological/physicochemical properties of interest must therefore be carefully analyzed. Conformational properties and molecular structures of cis and trans-3-phenylaminocyclohexyl N,N-dimethylcarbamates were studied by low temperature 1H and 13C NMR spectroscopy and electronic structure calculations. B3LYP and M06-2X methods associated with the 6-311++G(2df,2p) basis set, and the integral-equation-formalism polarizable continuum model were used to study the conformational preferences in dichloromethane, acetone and methanol. NMR measurements indicated that for the cis isomer, the conformer with both substituents in equatorial position is the most stable, while for the trans isomer, the conformer with the carbamate group in the axial position and the arylamine in the equatorial position is favored in all solvents. B3LYP/6-311++G(2df,2p) theory level associated with IEF-PCM described properly the conformational preference in solution. NBO analyses were applied to determine the importance of hyperconjugative interactions in the conformational equilibrium.

  14. Protein structure estimation from NMR data by matrix completion.

    PubMed

    Li, Zhicheng; Li, Yang; Lei, Qiang; Zhao, Qing

    2017-09-01

    Knowledge of protein structures is very important to understand their corresponding physical and chemical properties. Nuclear Magnetic Resonance (NMR) spectroscopy is one of the main methods to measure protein structure. In this paper, we propose a two-stage approach to calculate the structure of a protein from a highly incomplete distance matrix, where most data are obtained from NMR. We first randomly "guess" a small part of unobservable distances by utilizing the triangle inequality, which is crucial for the second stage. Then we use matrix completion to calculate the protein structure from the obtained incomplete distance matrix. We apply the accelerated proximal gradient algorithm to solve the corresponding optimization problem. Furthermore, the recovery error of our method is analyzed, and its efficiency is demonstrated by several practical examples.

  15. [Studies on chemical constituents from roots of Mirabilis jalapa].

    PubMed

    Lai, Guo-Fang; Luo, Shi-De; Cao, Jian-Xin; Wang, Yi-Fen

    2008-01-01

    To investigate the anti-HIV constituents from the root of Mirabilis jalapa. The compounds were isolated by column chromatography on silica gel, Sephadex LH - 20, MCI-gel CHP-20P and RP-18. The structure were identified by means of NMR and MS analyses (1H-NMR, 13C-NMR, MS). Eleven compounds were isolated and identified as astragaloside II (1), astragaloside II (2), astragaloside IV (3), astragaloside VI (4), flazin (5), 4'-hydroxy-2, 3-dihydroflavone 7-beta-D-glucopyranoside (6), gingerglycolipid A (7), 3, 4-dihydroxybenzaldehyd (8), p-hydroxybenzaldehyde (9), beta-sitosterol (10) and daucosterol (11). Compounds 1-9 were obtained from this genus for the first time.

  16. A structural study of fentanyl by DFT calculations, NMR and IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Asadi, Zahra; Esrafili, Mehdi D.; Vessally, Esmail; Asnaashariisfahani, Manzarbanou; Yahyaei, Saeideh; Khani, Ali

    2017-01-01

    N-(1-(2-phenethyl)-4-piperidinyl-N-phenyl-propanamide (fentanyl) is synthesized and characterized by FT-IR, 1H NMR, 13C NMR, mass spectroscopy and elemental analyses. The geometry optimization is performed using the B3LYP and M06 density functionals with 6-311 + G(d) and 6-311++G(d,p) basis sets. The complete assignments are performed on the basis of the potential energy distribution (PED) of the all vibrational modes. Almost a nice correlation is found between the calculated 13C chemical shifts and experimental data. The frontier molecular orbitals and molecular electrostatic potential of fentanyl are also obtained.

  17. Apparatus for preparing a solution of a hyperpolarized noble gas for NMR and MRI analysis

    DOEpatents

    Pines, Alexander [Berkeley, CA; Budinger, Thomas [Berkeley, CA; Navon, Gil [Ramat Gan, IL; Song, Yi-Qiao [Berkeley, CA; Appelt, Stephan [Waiblingen, DE; Bifone, Angelo [Rome, IT; Taylor, Rebecca [Berkeley, CA; Goodson, Boyd [Berkeley, CA; Seydoux, Roberto [Berkeley, CA; Room, Toomas [Albany, CA; Pietrass, Tanja [Socorro, NM

    2008-06-10

    The present invention relates generally to nuclear magnetic resonance (NMR) techniques for both spectroscopy and imaging. More particularly, the present invention relates to methods in which hyperpolarized noble gases (e.g., Xe and He) are used to enhance and improve NMR and MRI. Additionally, the hyperpolarized gas solutions of the invention are useful both in vitro and in vivo to study the dynamics or structure of a system. When used with biological systems, either in vivo or in vitro, it is within the scope of the invention to target the hyperpolarized gas and deliver it to specific regions within the system.

  18. Enhancement of NMR and MRI in the presence of hyperpolarized noble gases

    DOEpatents

    Pines, Alexander; Budinger, Thomas; Navon, Gil; Song, Yi-Qiao; Appelt, Stephan; Bifone, Angelo; Taylor, Rebecca; Goodson, Boyd; Seydoux, Roberto; Room, Toomas; Pietrass, Tanja

    2004-11-16

    The present invention relates generally to nuclear magnetic resonance (NMR) techniques for both spectroscopy and imaging. More particularly, the present invention relates to methods in which hyperpolarized noble gases (e.g., Xe and He) are used to enhance and improve NMR and MRI. Additionally, the hyperpolarized gas solutions of the invention are useful both in vitro and in vivo to study the dynamics or structure of a system. When used with biological systems, either in vivo or in vitro, it is within the scope of the invention to target the hyperpolarized gas and deliver it to specific regions within the system.

  19. Spin Choreography: Basic Steps in High Resolution NMR (by Ray Freeman)

    NASA Astrophysics Data System (ADS)

    Minch, Michael J.

    1998-02-01

    There are three orientations that NMR courses may take. The traditional molecular structure course focuses on the interpretation of spectra and the use of chemical shifts, coupling constants, and nuclear Overhauser effects (NOE) to sort out subtle details of structure and stereochemistry. Courses can also focus on the fundamental quantum mechanics of observable NMR parameters and processes such a spin-spin splitting and relaxation. More recently there are courses devoted to the manipulation of nuclear spins and the basic steps of one- and two-dimensional NMR experiments. Freeman's book is directed towards the latter audience. Modern NMR methods offer a myriad ways to extract information about molecular structure and motion by observing the behavior of nuclear spins under a variety of conditions. In Freeman's words: "We can lead the spins through an intricate dance, carefully programmed in advance, to enhance, simplify, correlate, decouple, edit or assign NMR spectra." This is a carefully written, well-illustrated account of how this dance is choreographed by pulse programming, double resonance, and gradient effects. Although well written, this book is not an easy read; every word counts. It is recommended for graduate courses that emphasize the fundamentals of magnetic resonance. It is not a text on interpretation of spectra.

  20. Optimized multi-step NMR-crystallography approach for structural characterization of a stable quercetin solvate.

    PubMed

    Filip, Xenia; Miclaus, Maria; Martin, Flavia; Filip, Claudiu; Grosu, Ioana Georgeta

    2017-05-10

    Herein we report the preparation and solid state structural investigation of the 1,4-dioxane-quercetin solvate. NMR crystallography methods were employed for crystal structure determination of the solvate from microcrystalline powder. The stability of the compound relative to other reported quercetin solvates is discussed and found to be in perfect agreement with the hydrogen bonding networks/supra-molecular architectures formed in each case. It is also clearly shown that NMR crystallography represents an ideal analytical tool in such cases when hydrogen-bonding networks are required to be constrained at a high accuracy level. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Structural comparison of Gilsonite and Trinidad Lake Asphalt using 13C-NMR technique

    NASA Astrophysics Data System (ADS)

    Nciri, Nader; Cho, Namjun

    2017-04-01

    The recent increased importance of natural asphalt as an alternative binder for sustainable road pavement has dictated that more knowledge should be acquired about its structure and properties. Earlier, Carbon-13 NMR spectroscopy has been applied to very few natural bituminous materials. In this work, two types of raw binders namely Gilsonite and Trinidad Lake asphalt (TLA) have been subjected to an extensive investigation by using 13C-NMR technique. Results have shown that valuable chemical data can be readily withdrawn on aromatic ring structures and ring substituents in natural asphalts derived from different sources. The chemical significance of these findings will be discussed.

  2. Theoretical predictions of the spectroscopic parameters in noble-gas molecules: HXeOH and its complex with water.

    PubMed

    Cukras, Janusz; Sadlej, Joanna

    2011-09-14

    We employ state-of-the-art methods and basis sets to study the effect of inserting the Xe atom into the water molecule and the water dimer on their NMR parameters. Our aim is to obtain predictions for the future experimental investigation of novel xenon complexes by NMR spectroscopy. Properties such as molecular structure and energetics have been studied by supermolecular approaches using HF, MP2, CCSD, CCSD(T) and MP4 methods. The bonding in HXeOH···H(2)O complexes has been analyzed by Symmetry-Adapted Perturbation Theory to provide the intricate insight into the nature of the interaction. We focus on vibrational spectra, NMR shielding and spin-spin coupling constants-experimental signals that reflect the electronic structures of the compounds. The parameters have been calculated at electron-correlated and Dirac-Hartree-Fock relativistic levels. This study has elucidated that the insertion of the Xe atom greatly modifies the NMR properties, including both the electron correlation and relativistic effects, the (129)Xe shielding constants decrease in HXeOH and HXeOH···H(2)O in comparison to Xe atom; the (17)O, as a neighbour of Xe, is deshielded too. The HXeOH···H(2)O complex in its most stable form is stabilized mainly by induction and dispersion energies. This journal is © the Owner Societies 2011

  3. Coupling XRD, EXAFS, and 13C NMR to study the effect of the carbon stoichiometry on the local structure of UC(1±x).

    PubMed

    Carvajal Nuñez, U; Martel, L; Prieur, D; Lopez Honorato, E; Eloirdi, R; Farnan, I; Vitova, T; Somers, J

    2013-10-07

    A series of uranium carbide samples, prepared by arc melting with a C/U ratio ranging from 0.96 to 1.04, has been studied by X-ray diffraction (XRD), (13)C nuclear magnetic resonance (NMR), and extended X-ray absorption fine structure (EXAFS). XRD determines phase uniqueness and the increase of the lattice parameter versus the carbon content. In contrast, (13)C NMR detects the different carbon environments in the lattice and in this study, clearly identifies the presence of discrete peaks for carbon in the octahedral lattice site in UC and an additional peak associated with excess carbon in hyperstoichiometric samples. Two peaks associated with different levels of carbon deficiency are detected for all hypostoichiometric compositions. More than one carbon environment is always detected by (13)C NMR. This exemplifies the difficulty in obtaining a perfect stoichiometric uranium monocarbide UC(1.00). The (13)C MAS spectra of uranium carbides exhibit the effects resulting from the carbon content on both the broadening of the peaks and on the Knight shift. An abrupt spectral change occurs between hypo- and hyperstoichiometric samples. The results obtained by EXAFS highlight subtle differences between the different stoichiometries, and in the hyperstoichiometric samples, the EXAFS results are consistent with the excess carbon atoms being in the tetrahedral interstitial position.

  4. NMR structure and action on nicotinic acetylcholine receptors of water-soluble domain of human LYNX1.

    PubMed

    Lyukmanova, Ekaterina N; Shenkarev, Zakhar O; Shulepko, Mikhail A; Mineev, Konstantin S; D'Hoedt, Dieter; Kasheverov, Igor E; Filkin, Sergey Yu; Krivolapova, Alexandra P; Janickova, Helena; Dolezal, Vladimir; Dolgikh, Dmitry A; Arseniev, Alexander S; Bertrand, Daniel; Tsetlin, Victor I; Kirpichnikov, Mikhail P

    2011-03-25

    Discovery of proteins expressed in the central nervous system sharing the three-finger structure with snake α-neurotoxins provoked much interest to their role in brain functions. Prototoxin LYNX1, having homology both to Ly6 proteins and three-finger neurotoxins, is the first identified member of this family membrane-tethered by a GPI anchor, which considerably complicates in vitro studies. We report for the first time the NMR spatial structure for the water-soluble domain of human LYNX1 lacking a GPI anchor (ws-LYNX1) and its concentration-dependent activity on nicotinic acetylcholine receptors (nAChRs). At 5-30 μM, ws-LYNX1 competed with (125)I-α-bungarotoxin for binding to the acetylcholine-binding proteins (AChBPs) and to Torpedo nAChR. Exposure of Xenopus oocytes expressing α7 nAChRs to 1 μM ws-LYNX1 enhanced the response to acetylcholine, but no effect was detected on α4β2 and α3β2 nAChRs. Increasing ws-LYNX1 concentration to 10 μM caused a modest inhibition of these three nAChR subtypes. A common feature for ws-LYNX1 and LYNX1 is a decrease of nAChR sensitivity to high concentrations of acetylcholine. NMR and functional analysis both demonstrate that ws-LYNX1 is an appropriate model to shed light on the mechanism of LYNX1 action. Computer modeling, based on ws-LYNX1 NMR structure and AChBP x-ray structure, revealed a possible mode of ws-LYNX1 binding.

  5. NMR studies of the helical antiferromagnetic compound EuCo 2P 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higa, N.; Ding, Q. -P.; Johnston, D. C.

    In EuCo 2P 2, 4 f electron spins of Eu 2+ ions order antiferromagnetically below a Neel temperature T N = 66.5K. The magnetic structure below T N was reported to be helical with the helix axis along the c-axis from the neutron diffraction study. We report the results of 153Eu, 59Co and 31P nuclear magnetic resonance (NMR) measurements on EuCo 2P 2 using a single crystal and a powdered sample. In the antiferromagnetic (AFM) state, we succeeded in observing 153Eu, 59Co and 31P NMR spectra in zero magnetic field. The sharp 153Eu zero field NMR (ZF NMR) lines indicatemore » homogeneous Eu ordered moment. The 59Co and 31P ZF NMR spectra showed an asymmetric spectral shape, indicating a distribution of the internal magnetic induction at each nuclear position. The AFM propagation vector k characterizing the helical AFM state can be determined from the internal magnetic induction at Co site. In conclusion, we have determined the model-independent value of the AFM propagation vector k distributed from (0, 0, 0.86)2π/c to (0, 0, 0.73)2π/c, where c is the lattice parameter.« less

  6. NMR studies of the helical antiferromagnetic compound EuCo 2P 2

    DOE PAGES

    Higa, N.; Ding, Q. -P.; Johnston, D. C.; ...

    2017-09-18

    In EuCo 2P 2, 4 f electron spins of Eu 2+ ions order antiferromagnetically below a Neel temperature T N = 66.5K. The magnetic structure below T N was reported to be helical with the helix axis along the c-axis from the neutron diffraction study. We report the results of 153Eu, 59Co and 31P nuclear magnetic resonance (NMR) measurements on EuCo 2P 2 using a single crystal and a powdered sample. In the antiferromagnetic (AFM) state, we succeeded in observing 153Eu, 59Co and 31P NMR spectra in zero magnetic field. The sharp 153Eu zero field NMR (ZF NMR) lines indicatemore » homogeneous Eu ordered moment. The 59Co and 31P ZF NMR spectra showed an asymmetric spectral shape, indicating a distribution of the internal magnetic induction at each nuclear position. The AFM propagation vector k characterizing the helical AFM state can be determined from the internal magnetic induction at Co site. In conclusion, we have determined the model-independent value of the AFM propagation vector k distributed from (0, 0, 0.86)2π/c to (0, 0, 0.73)2π/c, where c is the lattice parameter.« less

  7. Study of the ferroelastic phase transition in the tetraethylammonium compound [N(C{sub 2}H{sub 5}){sub 4}]{sub 2}ZnBr{sub 4} by magic-angle spinning and static NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Ae Ran, E-mail: aeranlim@hanmail.net, E-mail: arlim@jj.ac.kr

    The ferroelastic phase transition of tetraethylammonium compound [N(C{sub 2}H{sub 5}){sub 4}]{sub 2}ZnBr{sub 4} at the phase transition temperature (T{sub C}) = 283 K was characterized by magic-angle spinning (MAS) and static nuclear magnetic resonance (NMR), and confirmed by optical polarizing spectroscopy. The structural geometry near T{sub C} was studied in terms of the chemical shifts and the spin-lattice relaxation times T{sub 1ρ} in the rotating frame for {sup 1}H MAS NMR and {sup 13}C cross-polarization (CP)/MAS NMR. The two inequivalent ethyl groups were distinguishable in the {sup 13}C NMR spectrum, and the T{sub 1ρ} results indicate that they undergo tumblingmore » motion above T{sub C} in a coupled manner. From the {sup 14}N NMR results, the two nitrogen nuclei in the N(C{sub 2}H{sub 5}){sub 4}{sup +} ions were distinguishable above T{sub C}, and the splitting in the spectra below T{sub C} was related to the ferroelastic domains with different orientations.« less

  8. NMR Spectroscopy and Its Value: A Primer

    ERIC Educational Resources Information Center

    Veeraraghavan, Sudha

    2008-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is widely used by chemists. Furthermore, the use of NMR spectroscopy to solve structures of macromolecules or to examine protein-ligand interactions is popular. Yet, few students entering graduate education in biological sciences have been introduced to this method or its utility. Over the last six…

  9. How to tackle protein structural data from solution and solid state: An integrated approach.

    PubMed

    Carlon, Azzurra; Ravera, Enrico; Andrałojć, Witold; Parigi, Giacomo; Murshudov, Garib N; Luchinat, Claudio

    2016-02-01

    Long-range NMR restraints, such as diamagnetic residual dipolar couplings and paramagnetic data, can be used to determine 3D structures of macromolecules. They are also used to monitor, and potentially to improve, the accuracy of a macromolecular structure in solution by validating or "correcting" a crystal model. Since crystal structures suffer from crystal packing forces they may not be accurate models for the macromolecular structures in solution. However, the presence of real differences should be tested for by simultaneous refinement of the structure using both crystal and solution NMR data. To achieve this, the program REFMAC5 from CCP4 was modified to allow the simultaneous use of X-ray crystallographic and paramagnetic NMR data and/or diamagnetic residual dipolar couplings. Inconsistencies between crystal structures and solution NMR data, if any, may be due either to structural rearrangements occurring on passing from the solution to solid state, or to a greater degree of conformational heterogeneity in solution with respect to the crystal. In the case of multidomain proteins, paramagnetic restraints can provide the correct mutual orientations and positions of domains in solution, as well as information on the conformational variability experienced by the macromolecule. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. DESI-MS imaging and NMR spectroscopy to investigate the influence of biodiesel in the structure of commercial rubbers.

    PubMed

    Silva, Lorena M A; Alves Filho, Elenilson G; Simpson, André J; Monteiro, Marcos R; Cabral, Elaine; Ifa, Demian; Venâncio, Tiago

    2017-10-01

    Biodiesel has been introduced as an energetic matrix in several countries around the world. However, the affinity of biodiesel with the components of petrodiesel engines is a growing concern. In order to obtain information regarding the effect of biodiesel on the rubber structure, nuclear magnetic resonance technics under a new technology named as comprehensive multiphase (CMP NMR) and the imaging through desorption electrospray ionization mass spectrometry (DESI-MS imaging) were used. The 1 H CMP-DOSY NMR showed the entrapped fuel into the rubber cavities, which the higher constraint caused by the rubber structure is related to the smaller diffusion coefficient. The less affected type of rubber by biodiesel was ethylene-propylene-diene monomer (EPDM), and the most affected was synthetic rubber nitrile (NBR). The 13 C CMP MAS-SPE experiments also confirmed that the internal region of EPDM was less accessible to the biodiesel molecules (no fuels detected) while other rubbers were more susceptible to the penetration of the fuel. DESI-MS imaging revealed for the first time the topography of the rubbers exposed to fuels. The biodiesel molecules entrapped at the EPDM and NBR pores were in oxidized form, which might degrade the rubber structure at long exposure time. The employed technics enabled the study of dynamic and molecular structure of the mixing complex multiphase. The DOSY under CMP used in this study could prove helpful in assessing the interactions throughout all physical phases (liquid, solid, and gel or semi-solid) by observing swellability caused by the fuel in the rubber. In addition, the DESI-MS was especially valuable to detect the degradation products of biodiesel entangled at the rubber structure. In our knowledge, this was the first report in which chemical changes of commercial rubbers induced by biodiesel and petrodiesel were investigated by means of DESI-MS and DOSY NMR. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. 1H NMR spectra dataset and solid-state NMR data of cowpea (Vigna unguiculata).

    PubMed

    Alves Filho, Elenilson G; Silva, Lorena M A; Teofilo, Elizita M; Larsen, Flemming H; de Brito, Edy S

    2017-04-01

    In this article the NMR data from chemical shifts, coupling constants, and structures of all the characterized compounds were provided, beyond a complementary PCA evaluation for the corresponding manuscript (E.G. Alves Filho, L.M.A. Silva, E.M. Teofilo, F.H. Larsen, E.S. de Brito, 2017) [3]. In addition, a complementary assessment from solid-state NMR data was provided. For further chemometric analysis, numerical matrices from the raw 1 H NMR data were made available in Microsoft Excel workbook format (.xls).

  12. Novel dimeric metabolites from Alternaria tagetica.

    PubMed

    Gamboa-Angulo, M M; Alejos-González, F; Escalante-Erosa, F; García-Sosa, K; Delgado-Lamas, G; Peña-Rodríguez, L M

    2000-08-01

    Two novel polyketides, bis-7-O-8' '.8-O-7' '- and bis-7-O-7' '. 8-O-8' '-zinniol (2 and 3, respectively) were isolated from the organic crude extract of culture filtrates from Alternaria tagetica. Both structures were determined on the basis of their spectroscopic data (IR, MS, (1)H NMR, (13)C NMR, and 2D NMR experiments) and confirmed by chemical synthesis. Zinniol (1) was isolated as a major component, and its (13)C NMR data was correctly assigned after careful analysis of data from its 2D NMR experiments (HMQC and HMBC).

  13. Synthesis, spectroscopic, and molecular structure characterizations of some azo derivatives of 2-hydroxyacetophenone

    NASA Astrophysics Data System (ADS)

    Albayrak, Çiğdem; Gümrükçüoğlu, İsmail E.; Odabaşoğlu, Mustafa; İskeleli, Nazan Ocak; Ağar, Erbil

    2009-08-01

    Some novel azo compounds were prepared by the reaction of 2-hydroxyacetophenone with aniline and its substituted derivatives. The structures of synthesized azo compounds were determined by IR, UV-Vis, 1H NMR and 13C NMR spectroscopic techniques and the structures of some of these compounds were also determined by X-ray diffraction studies. Structural analysis using IR in solid state shows that the azo form is favoured in the azo compounds whereas UV-Vis analysis of the azo compounds in solution has shown that there is a azo and ionic form. The azo compounds in the basic solvents dimethylformamide (DMF) and dimethylsulfoxide (DMSO) are both azo and ionic form while these compounds in ethyl alcohol (EtOH) and chloroform (CHCl 3) are only azo form.

  14. NMR and X-ray structural characterization and conformational aspects of fluorinated (5Z)-3-benzil-5-arylidenofuran-2(5H)-ones

    NASA Astrophysics Data System (ADS)

    Teixeira, R. R.; Barbosa, L. C. A.; Kabeshov, M. A.; Maltha, C. R. A.; Corrêa, R. S.; Doriguetto, A. C.

    2014-10-01

    Herein we describe structural insights of (5Z)-3-benzyl-5-(2-fluorobenzylidene)furan-2(5H)-one (6) and (5Z)-3-benzyl-5-(pentafluorobenzylidene)furan-2(5H)-one (7), γ-alkylidenebutenolides analogues of the natural products nostoclides. Their structures were investigated by NMR spectroscopy and X-ray crystallography. The stereochemistry of the exocyclic double bond of these fluorinated compounds was determined to be Z by NMR analysis and confirmed by X-ray data. Compounds 6 and 7 crystallized in the monoclinic crystal system P21/c group. A comparison between structural features of (6) and (7) and nostoclide derivatives previously published by us is described.

  15. A 93Nb solid-state NMR and density functional theory study of four- and six-coordinate niobate systems.

    PubMed

    Hanna, John V; Pike, Kevin J; Charpentier, Thibault; Kemp, Thomas F; Smith, Mark E; Lucier, Bryan E G; Schurko, Robert W; Cahill, Lindsay S

    2010-03-08

    A variable B(0) field static (broadline) NMR study of a large suite of niobate materials has enabled the elucidation of high-precision measurement of (93)Nb NMR interaction parameters such as the isotropic chemical shift (delta(iso)), quadrupole coupling constant and asymmetry parameter (C(Q) and eta(Q)), chemical shift span/anisotropy and skew/asymmetry (Omega/Deltadelta and kappa/eta(delta)) and Euler angles (alpha, beta, gamma) describing the relative orientation of the quadrupolar and chemical shift tensorial frames. These measurements have been augmented with ab initio DFT calculations by using WIEN2k and NMR-CASTEP codes, which corroborate these reported values. Unlike previous assertions made about the inability to detect CSA (chemical shift anisotropy) contributions from Nb(V) in most oxo environments, this study emphasises that a thorough variable B(0) approach coupled with the VOCS (variable offset cumulative spectroscopy) technique for the acquisition of undistorted broad (-1/2<-->+1/2) central transition resonances facilitates the unambiguous observation of both quadrupolar and CSA contributions within these (93)Nb broadline data. These measurements reveal that the (93)Nb electric field gradient tensor is a particularly sensitive measure of the immediate and extended environments of the Nb(V) positions, with C(Q) values in the 0 to >80 MHz range being measured; similarly, the delta(iso) (covering an approximately 250 ppm range) and Omega values (covering a 0 to approximately 800 ppm range) characteristic of these niobate systems are also sensitive to structural disposition. However, their systematic rationalisation in terms of the Nb-O bond angles and distances defining the immediate Nb(V) oxo environment is complicated by longer-range influences that usually involve other heavy elements comprising the structure. It has also been established in this study that the best computational method(s) of analysis for the (93)Nb NMR interaction parameters generated here are the all-electron WIEN2k and the gauge included projector augmented wave (GIPAW) NMR-CASTEP DFT approaches, which account for the short- and long-range symmetries, periodicities and interaction-potential characteristics for all elements (and particularly the heavy elements) in comparison with Gaussian 03 methods, which focus on terminated portions of the total structure.

  16. Structure, equilibrium and ligand exchange dynamics in the binary and ternary dioxouranium(VI)-ethylenediamine-N,N'-diacetic acid-fluoride system: A potentiometric, NMR and X-ray crystallographic study.

    PubMed

    Palladino, Giuseppe; Szabó, Zoltán; Fischer, Andreas; Grenthe, Ingmar

    2006-11-21

    The structure, thermodynamics and kinetics of the binary and ternary uranium(VI)-ethylenediamine-N,N'-diacetate (in the following denoted EDDA) fluoride systems have been studied using potentiometry, 1H, 19F NMR spectroscopy and X-ray diffraction. The UO2(2+)-EDDA system could be studied up to -log[H3O+] = 3.4 where the formation of two binary complexes UO2(EDDA)(aq) and UO2(H3EDDA)3+ were identified, with equilibrium constants logbeta(UO2EDDA) = 11.63 +/- 0.02 and logbeta(UO2H3EDDA3+) = 1.77 +/- 0.04, respectively. In the ternary system the complexes UO2(EDDA)F-, UO2(EDDA)(OH)- and (UO2)2(mu-OH)2(HEDDA)2F2(aq) were identified; the latter through 19F NMR. 1H NMR spectra indicate that the EDDA ligand is chelate bonded in UO2(EDDA)(aq), UO2(EDDA)F- and UO2(EDDA)(OH)- while only one carboxylate group is coordinated in UO2(H3EDDA)3+. The rate and mechanism of the fluoride exchange between UO2(EDDA)F- and free fluoride was studied by 19F NMR spectroscopy. Three reactions contribute to the exchange; (i) site exchange between UO2(EDDA)F- and free fluoride without any net chemical exchange, (ii) replacement of the coordinated fluoride with OH- and (iii) the self dissociation of the coordinated fluoride forming UO2(EDDA)(aq); these reactions seem to follow associative mechanisms. (1)H NMR spectra show that the exchange between the free and chelate bonded EDDA is slow and consists of several steps, protonation/deprotonation and chelate ring opening/ring closure, the mechanism cannot be elucidated from the available data. The structure (UO2)2(EDDA)2(mu-H2EDDA) was determined by single crystal X-ray diffraction and contains two UO2(EDDA) units with tetracoordinated EDDA linked by H2EDDA in the "zwitterion" form, coordinated through a single carboxylate oxygen from each end to the two uranium atoms. The geometry of the complexes indicates that there is no geometric constraint for an associative ligand substitution mechanism.

  17. Synthesis, spectroscopic and computational characterization of the tautomerism of pyrazoline derivatives from chalcones.

    PubMed

    Miguel, Fábio Balbino; Dantas, Juliana Arantes; Amorim, Stefany; Andrade, Gustavo F S; Costa, Luiz Antônio Sodré; Couri, Mara Rubia Costa

    2016-01-05

    In the present study a series of novel pyrazolines derivatives has been synthesized, and their structures assigned on the basis of FT-Raman, (1)H and (13)C NMR spectral data and computational DFT calculations. A joint computational study using B3LYP/6-311G(2d,2p) density functional theory and FT-Raman investigation on the tautomerism of 3-(4-substituted-phenyl)-4,5-dihydro-5-(4-substituted-phenyl)pyrazole-1-carbothioamide and 3-(4-substituted-phenyl)-4,5-dihydro-5-(4-substituted-phenyl)pyrazole-1-carboxamide are presented. The structures were characterized as a minimum in the potential energy surface using DFT. The calculated Raman and NMR spectra were of such remarkable agreement to the experimental results that the equilibrium between tautomeric forms has been discussed in detail. Our study suggests the existence of tautomers, the carboxamide/carbothioamide group may tautomerize, in the solid state or in solution. Thermodynamic data calculated suggests that the R(CS)NH2 and R(CO)NH2 species are more stable than the R(CNH)SH and R(CNH)OH species. Additionally, results found for the (1)H NMR shifting, pointed out to which structure is present. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Ab initio crystal structure prediction of magnesium (poly)sulfides and calculation of their NMR parameters.

    PubMed

    Mali, Gregor

    2017-03-01

    Ab initio prediction of sensible crystal structures can be regarded as a crucial task in the quickly-developing methodology of NMR crystallography. In this contribution, an evolutionary algorithm was used for the prediction of magnesium (poly)sulfide crystal structures with various compositions. The employed approach successfully identified all three experimentally detected forms of MgS, i.e. the stable rocksalt form and the metastable wurtzite and zincblende forms. Among magnesium polysulfides with a higher content of sulfur, the most probable structure with the lowest formation energy was found to be MgS 2 , exhibiting a modified rocksalt structure, in which S 2- anions were replaced by S 2 2- dianions. Magnesium polysulfides with even larger fractions of sulfur were not predicted to be stable. For the lowest-energy structures, 25 Mg quadrupolar coupling constants and chemical shift parameters were calculated using the density functional theory approach. The calculated NMR parameters could be well rationalized by the symmetries of the local magnesium environments, by the coordination of magnesium cations and by the nature of the surrounding anions. In the future, these parameters could serve as a reference for the experimentally determined 25 Mg NMR parameters of magnesium sulfide species.

  19. Separation and analysis of trace degradants in a pharmaceutical formulation using on-line capillary isotachophoresis-NMR.

    PubMed

    Eldridge, Stacie L; Almeida, Valentino K; Korir, Albert K; Larive, Cynthia K

    2007-11-15

    NMR spectroscopy is widely used in the pharmaceutical industry for the structure elucidation of pharmaceutical impurities, especially when coupled to a separation method, such as HPLC. However, NMR has relatively poor sensitivity compared with other techniques such as mass spectrometry, limiting its applicability in impurity analyses. This limitation is addressed here through the on-line coupling of microcoil NMR with capillary isotachophoresis (cITP), a separation method that can concentrate dilute components by 2-3 orders of magnitude. With this approach, 1H NMR spectra can be acquired for microgram (nanomole) quantities of trace impurities in a complex sample matrix. cITP-NMR was used in this work to isolate and detect 4-aminophenol (PAP) in an acetaminophen sample spiked at the 0.1% level, with no interference from the parent compound. Analysis of an acetaminophen thermal degradation sample revealed resonances of several degradation products in addition to PAP, confirming the effectiveness of on-line cITP-NMR for trace analyses of pharmaceutical formulations. Subsequent LC-MS/MS analysis provided complementary information for the structure elucidation of the unknown degradation products, which were dimers formed during the degradation process.

  20. Solution structure of an artificial Fe8S8 ferredoxin: the D13C variant of Bacillus schlegelii Fe7S8 ferredoxin.

    PubMed

    Aono, S; Bentrop, D; Bertini, I; Cosenza, G; Luchinat, C

    1998-12-01

    The solution structure of the D13C variant of the thermostable Fe7S8 ferredoxin from Bacillus schlegelii has been determined by 1H-NMR spectroscopy in its oxidized form. In a variable-temperature NMR study the D13C variant was as thermostable (up to 90 degrees C) as the wild-type protein (WT). Seventy-five out of 77 amino acid residues and 81% of all theoretically expected proton resonances in the D13C Fe8S8 protein have been assigned. Its structure was determined through torsion angle dynamics calculations with the program DYANA, using 935 meaningful NOEs (from a total of 1251), hydrogen bond constraints, and NMR-derived dihedral angle constraints for the cluster-ligating cysteines. Afterwards, restrained energy minimization and restrained molecular dynamics were applied to each conformer of the family. The final family of 20 structures has RMSD values from the mean structure of 0.055 nm for the backbone atoms and of 0.099 nm for all heavy atoms. The overall folding of the WT is maintained in the mutant, except for the immediate vicinity of the new cysteine, which becomes much more similar to native Fe8S8 proteins. The two residues at positions 11 and 12, which constitute an insertion with respect to all known Fe8S8 proteins, assume a conformation that does not prevent the preceding and following residues from folding like in native Fe8S8 proteins. Clear evidence for the existence of two conformations involving almost half of the amino acid residues was found. The two conformations are structurally indistinguishable. Temperature-dependent NMR experiments show that one of them is thermodynamically more stable than the other.

  1. In-cell NMR of intrinsically disordered proteins in prokaryotic cells.

    PubMed

    Ito, Yutaka; Mikawa, Tsutomu; Smith, Brian O

    2012-01-01

    In-cell NMR, i.e., the acquisition of heteronuclear multidimensional NMR of biomacromolecules inside living cells, is, to our knowledge, the only method for investigating the three-dimensional structure and dynamics of proteins at atomic detail in the intracellular environment. Since the inception of the method, intrinsically disordered proteins have been regarded as particular targets for in-cell NMR, due to their expected sensitivity to the molecular crowding in the intracellular environment. While both prokaryotic and eukaryotic cells can be used as host cells for in-cell NMR, prokaryotic in-cell NMR, particularly employing commonly used protein overexpression systems in Escherichia coli cells, is the most accessible approach. In this chapter we describe general procedures for obtaining in-cell NMR spectra in E. coli cells.

  2. FT-IR, FT-Raman, UV-visible, and NMR spectroscopy and vibrational properties of the labdane-type diterpene 13-epi-sclareol.

    PubMed

    Chain, Fernando E; Leyton, Patricio; Paipa, Carolina; Fortuna, Mario; Brandán, Silvia A

    2015-03-05

    In this work, FT-IR, FT-Raman, UV-Visible and NMR spectroscopies and density functional theory (DFT) calculations were employed to study the structural and vibrational properties of the labdane-type diterpene 13-epi-sclareol using the hybrid B3LYP method together with the 6-31G(∗) basis set. Three stable structures with minimum energy found on the potential energy curves (PES) were optimized, and the corresponding molecular electrostatic potentials, atomic charges, bond orders, stabilization energies and topological properties were computed at the same approximation level. The complete assignment of the bands observed in the vibrational spectrum of 13-epi-sclareol was performed taking into account the internal symmetry coordinates for the three structures using the scaled quantum mechanical force field (SQMFF) methodology at the same level of theory. In addition, the force constants were calculated and compared with those reported in the literature for similar compounds. The predicted vibrational spectrum and the calculated (1)H NMR and (13)C NMR chemical shifts are in good agreement with the corresponding experimental results. The theoretical UV-Vis spectra for the most stable structure of 13-epi-sclareol demonstrate a better correlation with the corresponding experimental spectrum. The study of the three conformers by means of the theory of atoms in molecules (AIM) revealed different H bond interactions and a strong dependence of the interactions on the distance between the involved atoms. Furthermore, the natural bond orbital (NBO) calculations showed the characteristics of the electronic delocalization for the two six-membered rings with chair conformations. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Structural and conformational analysis of pentostatin (2'-deoxycoformycin), a potent inhibitor of adenosine deaminase.

    PubMed

    Cox, M B; Arjunan, P; Arora, S K

    1990-08-01

    X-ray, NMR and molecular mechanics studies on pentostatin (C11H16N4O4), a potent inhibitor of the enzyme adenosine deaminase, have been carried out to study the structure and conformation. The crystals belong to the monoclinic space group P21 with the cell dimensions of a = 4.960(1), b = 10.746(3), c = 11.279(4)A, beta = 101.18(2) degrees and Z = 2. The structure was solved by direct methods and difference Fourier methods and refined to an R value of 0.047 for 997 reflections. The trihydrodiazepine ring is nonplanar and adopts a distorted sofa conformation with C(7) deviated from the mean plane by 0.66A. The deoxyribose ring adopts a C3'-endo conformation, different from coformycin where the sugar has a C2'-endo conformation. The observed glycosidic torsion angle (chi = -119.5 degrees) is in the anti range. The conformation about the C(4')-C(5') bond is gauche+. The conformation of the molecule is compared with that of coformycin and 2-azacoformycin. 1 and 2D NMR studies have been carried out and the dihedral angles obtained from coupling constants have been compared with those obtained from the crystal structure. The conformation of deoxyribose in solution is approximately 70% S and 30% N. Molecular mechanics studies were performed to obtain the energy minimized conformation, which is compared with X-ray and NMR results.

  4. NMR of enzymatically synthesized uniformly 13C15N-labeled DNA oligonucleotides.

    PubMed Central

    Zimmer, D P; Crothers, D M

    1995-01-01

    A procedure for the enzymatic synthesis of uniformly 13C15N-labeled DNA oligonucleotides in milligram quantities for NMR studies is described. Deoxynucleotides obtained from microorganisms grown on 13C and 15N nutrient sources are enzymatically phosphorylated to dNTPs, and the dNTPs are incorporated into oligonucleotides using a 3'-5' exonuclease-deficient mutant of Klenow fragment of DNA polymerase I and an oligonucleotide template primer designed for efficient separation of labeled product DNA from unlabeled template. The labeling strategy has been used to uniformly label one or the other oligonucleotide strand in the DNA duplex dGGCAAAACGG.dCCGTTTTGCC in order to facilitate assignment and structure determination by NMR. Application of 15N and 13C heteronuclear NMR experiments to isotopically labeled DNA is presented. Images Fig. 2 Fig. 3 Fig. 4 PMID:7724521

  5. Synthesis and dynamic 1H NMR study of pyrazolo substituted pyrrolo[2,3-d]pyrimidines via a regioselective heterocyclization

    NASA Astrophysics Data System (ADS)

    Bayat, Mohammad; Nasri, Shima

    2018-02-01

    A new series of pyrrolo[2,3-d]pyrimidine derivatives substituted with pyrazolone were designed and prepared, by the three-component reaction of pyrazolone derivatives, arylglyoxal and 6-aminouracil derivatives in ethanol at reflux. The direction of heterocyclization has confirmed and the structure of final products were identified spectroscopically (IR, 1H- and 13C-NMR, and EI-MS). The significant advantages of this protocol include simplicity, regioselectivity, existence of numerous hydrogen bonding possibilities in product, good yields and catalyst-free approach. When the uracil is 6-amino-1,3-dimethyluracil, the product exists as two tautomers at room temperature. The dynamic NMR effects are observed in the 1H NMR spectra. The calculated free-energy of activation (ΔG≠) for prototropic tautomerism is about 68 ± 2 kJ mol-1.

  6. Rapid analysis of protein backbone resonance assignments using cryogenic probes, a distributed Linux-based computing architecture, and an integrated set of spectral analysis tools.

    PubMed

    Monleón, Daniel; Colson, Kimberly; Moseley, Hunter N B; Anklin, Clemens; Oswald, Robert; Szyperski, Thomas; Montelione, Gaetano T

    2002-01-01

    Rapid data collection, spectral referencing, processing by time domain deconvolution, peak picking and editing, and assignment of NMR spectra are necessary components of any efficient integrated system for protein NMR structure analysis. We have developed a set of software tools designated AutoProc, AutoPeak, and AutoAssign, which function together with the data processing and peak-picking programs NMRPipe and Sparky, to provide an integrated software system for rapid analysis of protein backbone resonance assignments. In this paper we demonstrate that these tools, together with high-sensitivity triple resonance NMR cryoprobes for data collection and a Linux-based computer cluster architecture, can be combined to provide nearly complete backbone resonance assignments and secondary structures (based on chemical shift data) for a 59-residue protein in less than 30 hours of data collection and processing time. In this optimum case of a small protein providing excellent spectra, extensive backbone resonance assignments could also be obtained using less than 6 hours of data collection and processing time. These results demonstrate the feasibility of high throughput triple resonance NMR for determining resonance assignments and secondary structures of small proteins, and the potential for applying NMR in large scale structural proteomics projects.

  7. Crystallographic structure refinement with quadrupolar nuclei: a combined solid-state NMR and GIPAW DFT example using MgBr(2).

    PubMed

    Widdifield, Cory M; Bryce, David L

    2009-09-07

    Solid-state NMR spectroscopy and GIPAW DFT calculations reveal the pronounced sensitivity of (79/81)Br and (25)Mg quadrupolar coupling constants to subtle aspects of solid state structure which were not previously detected by pXRD methods.

  8. A systematic study of 25Mg NMR in paramagnetic transition metal oxides: applications to Mg-ion battery materials.

    PubMed

    Lee, Jeongjae; Seymour, Ieuan D; Pell, Andrew J; Dutton, Siân E; Grey, Clare P

    2016-12-21

    Rechargeable battery systems based on Mg-ion chemistries are generating significant interest as potential alternatives to Li-ion batteries. Despite the wealth of local structural information that could potentially be gained from Nuclear Magnetic Resonance (NMR) experiments of Mg-ion battery materials, systematic 25 Mg solid-state NMR studies have been scarce due to the low natural abundance, low gyromagnetic ratio, and significant quadrupole moment of 25 Mg (I = 5/2). This work reports a combined experimental 25 Mg NMR and first principles density functional theory (DFT) study of paramagnetic Mg transition metal oxide systems Mg 6 MnO 8 and MgCr 2 O 4 that serve as model systems for Mg-ion battery cathode materials. Magnetic parameters, hyperfine shifts and quadrupolar parameters were calculated ab initio using hybrid DFT and compared to the experimental values obtained from NMR and magnetic measurements. We show that the rotor assisted population transfer (RAPT) pulse sequence can be used to enhance the signal-to-noise ratio in paramagnetic 25 Mg spectra without distortions in the spinning sideband manifold. In addition, the value of the predicted quadrupolar coupling constant of Mg 6 MnO 8 was confirmed using the RAPT pulse sequence. We further apply the same methodology to study the NMR spectra of spinel compounds MgV 2 O 4 and MgMn 2 O 4 , candidate cathode materials for Mg-ion batteries.

  9. Establishing resolution-improved NMR spectroscopy in high magnetic fields with unknown spatiotemporal variations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhiyong; Cai, Shuhui; Zheng, Zhenyao

    A half-century quest for higher magnetic fields has been an integral part of the progress undergone in the Nuclear Magnetic Resonance (NMR) study of materials’ structure and dynamics. Because 2D NMR relies on systematic changes in coherences’ phases as a function of an encoding time varied over a series of independent experiments, it generally cannot be applied in temporally unstable fields. This precludes most NMR methods from being used to characterize samples situated in hybrid or resistive magnets that are capable of achieving extremely high magnetic field strength. Recently, “ultrafast” NMR has been developed into an effective and widely applicablemore » methodology enabling the acquisition of a multidimensional NMR spectrum in a single scan; it can therefore be used to partially mitigate the effects of temporally varying magnetic fields. Nevertheless, the strong interference of fluctuating fields with the spatial encoding of ultrafast NMR still severely restricts measurement sensitivity and resolution. Here, we introduce a strategy for obtaining high resolution NMR spectra that exploits the immunity of intermolecular zero-quantum coherences (iZQCs) to field instabilities and inhomogeneities. The spatial encoding of iZQCs is combined with a J-modulated detection scheme that removes the influence of arbitrary field inhomogeneities during acquisition. This new method can acquire high-resolution one-dimensional NMR spectra in large inhomogeneous and fluctuating fields, and it is tested with fields experimentally modeled to mimic those of resistive and resistive-superconducting hybrid magnets.« less

  10. High-resolution magnetic resonance spectroscopy using a solid-state spin sensor

    NASA Astrophysics Data System (ADS)

    Glenn, David R.; Bucher, Dominik B.; Lee, Junghyun; Lukin, Mikhail D.; Park, Hongkun; Walsworth, Ronald L.

    2018-03-01

    Quantum systems that consist of solid-state electronic spins can be sensitive detectors of nuclear magnetic resonance (NMR) signals, particularly from very small samples. For example, nitrogen–vacancy centres in diamond have been used to record NMR signals from nanometre-scale samples, with sensitivity sufficient to detect the magnetic field produced by a single protein. However, the best reported spectral resolution for NMR of molecules using nitrogen–vacancy centres is about 100 hertz. This is insufficient to resolve the key spectral identifiers of molecular structure that are critical to NMR applications in chemistry, structural biology and materials research, such as scalar couplings (which require a resolution of less than ten hertz) and small chemical shifts (which require a resolution of around one part per million of the nuclear Larmor frequency). Conventional, inductively detected NMR can provide the necessary high spectral resolution, but its limited sensitivity typically requires millimetre-scale samples, precluding applications that involve smaller samples, such as picolitre-volume chemical analysis or correlated optical and NMR microscopy. Here we demonstrate a measurement technique that uses a solid-state spin sensor (a magnetometer) consisting of an ensemble of nitrogen–vacancy centres in combination with a narrowband synchronized readout protocol to obtain NMR spectral resolution of about one hertz. We use this technique to observe NMR scalar couplings in a micrometre-scale sample volume of approximately ten picolitres. We also use the ensemble of nitrogen–vacancy centres to apply NMR to thermally polarized nuclear spins and resolve chemical-shift spectra from small molecules. Our technique enables analytical NMR spectroscopy at the scale of single cells.

  11. Spectroscopic studies of the intramolecular hydrogen bonding in o-hydroxy Schiff bases, derived from diaminomaleonitrile, and their deprotonation reaction products.

    PubMed

    Szady-Chełmieniecka, Anna; Kołodziej, Beata; Morawiak, Maja; Kamieński, Bohdan; Schilf, Wojciech

    2018-01-15

    The structural study of five Schiff bases derived from diaminomaleonitrile (DAMN) and 2-hydroxy carbonyl compounds was performed using 1 H, 13 C and 15 N NMR methods in solution and in the solid state as well. ATR-FTIR and X-Ray spectroscopies were used for confirmation of the results obtained by NMR method. The imine obtained from DAMN and benzaldehyde was synthesized as a model compound which lacks intramolecular hydrogen bond. Deprotonation of all synthesized compounds was done by treating with tetramethylguanidine (TMG). NMR data revealed that salicylidene Schiff bases in DMSO solution exist as OH forms without intramolecular hydrogen bonds and independent on the substituents in aromatic ring. In the case of 2-hydroxy naphthyl derivative, the OH proton is engaged into weak intramolecular hydrogen bond. Two of imines (salDAMN and 5-BrsalDAMN) exist in DMSO solution as equilibrium mixtures of two isomers (A and B). The structures of equilibrium mixture in the solid state have been studied by NMR, ATR-FTIR and X-Ray methods. The deprotonation of three studied compounds (salDAMN, 5-BrsalDAMN, and 5-CH 3 salDAMN) proceeded in two different ways: deprotonation of oxygen atom (X form) or of nitrogen atom of free primary amine group of DAMN moiety (Y form). For 5-NO 2 salDAMN and naphDAMN only one form (X) was observed. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Nuclear magnetic and nuclear quadrupole resonance parameters of β-carboline derivatives calculated using density functional theory

    NASA Astrophysics Data System (ADS)

    Ahmadinejad, Neda; Tari, Mostafa Talebi

    2017-04-01

    A density functional theory (DFT) calculations using B3LYP/6-311++G( d,p) method were carried out to investigate the relative stability of the molecules of β-carboline derivatives such as harmaline, harmine, harmalol, harmane and norharmane. Calculated nuclear quadrupole resonance (NQR) parameters were used to determine the 14N nuclear quadrupole coupling constant χ, asymmetry parameter η and EFG tensor ( q zz ). For better understanding of the electronic structure of β-carboline derivatives, natural bond orbital (NBO) analysis, isotropic and anisotropic NMR chemical shieldings were calculated for 14N nuclei using GIAO method for the optimized structures. The NBO analysis shows that pyrrole ring nitrogen (N9) atom has greater tendency than pyridine ring nitrogen (N2) atom to participate in resonance interactions and aromaticity development in the all of these structures. The NMR and NQR parameters were studied in order to find the correlations between electronic structure and the structural stability of the studied molecules.

  13. Using NMR chemical shifts to calculate the propensity for structural order and disorder in proteins.

    PubMed

    Tamiola, Kamil; Mulder, Frans A A

    2012-10-01

    NMR spectroscopy offers the unique possibility to relate the structural propensities of disordered proteins and loop segments of folded peptides to biological function and aggregation behaviour. Backbone chemical shifts are ideally suited for this task, provided that appropriate reference data are available and idiosyncratic sensitivity of backbone chemical shifts to structural information is treated in a sensible manner. In the present paper, we describe methods to detect structural protein changes from chemical shifts, and present an online tool [ncSPC (neighbour-corrected Structural Propensity Calculator)], which unites aspects of several current approaches. Examples of structural propensity calculations are given for two well-characterized systems, namely the binding of α-synuclein to micelles and light activation of photoactive yellow protein. These examples spotlight the great power of NMR chemical shift analysis for the quantitative assessment of protein disorder at the atomic level, and further our understanding of biologically important problems.

  14. Analytical Chemistry of 2,4,6-Trinitrotoluene

    DTIC Science & Technology

    1980-10-01

    resonance absorption spectroscopy techniques involving NMR, electron spin resonance, and nuclear quadrupole resonance ( NQR ), were investigated for the...ref 135). The NQR was used for the determination of the chemical structure, crystalline states, and morphology of TNT (ref 136). The NMR was used...pp 898-902, (1970). ’ 136. R.A. Marino, D. Wade, and S.M. Klainer, "An NQR Study of the TNT Characteristics," US NTIS AD-A046729, p 68, (1977). 22

  15. X-ray and 1H-NMR spectroscopic studies of the structures and conformations of the new nootropic agents RU-35929, RU-47010 and RU-35965

    NASA Astrophysics Data System (ADS)

    Amato, Maria E.; Bandoli, Giuliano; Casellato, Umberto; Pappalardo, Giuseppe C.; Toja, Emilio

    1990-10-01

    The crystal and molecular structures of the nootropics (±)1-benzenesulphonyl-2-oxo-5-ethoxypyrrolidine ( 1), (±)1-(3-pyridinylsulphonyl)-2-oxo-5-ethoxypyrrolidine ( 2) and (±)1-benzenesulphonyl-2-oxo-5-isopropyloxypyrrolidine ( 3) have been determined by X-ray analysis. The solution conformation of 1, 2 and 3 has been investigated by 1H NMR spectroscopy. In the solid state, the main feature consists of the similar structural parameters and conformations, with the exception of the conformation adopted by the 5-ethoxy moiety which changes on passing from 1 to 2. The solid state overall enveloped conformation of the 2-pyrrolidinone ring for the three nootropics is found to be retained in solution on the basis of NMR evidence. Comparison between calculated and experimental coupling constant values shows that one of the two possible puckered opposite conformational isomers (half-chair shapes) occurs in solution. The relative pharmacological potencies of 1, 2 and 3 cannot therefore be interpreted in terms of the different conformation features presently detectable by available experimental methods.

  16. Structure and short time degradation studies of sodium zirconium phosphate ceramics loaded with simulated fast breeder (FBR) waste

    NASA Astrophysics Data System (ADS)

    Ananthanarayanan, A.; Ambashta, R. D.; Sudarsan, V.; Ajithkumar, T.; Sen, D.; Mazumder, S.; Wattal, P. K.

    2017-04-01

    Sodium zirconium phosphate (NZP) ceramics have been prepared using conventional sintering and hot isostatic pressing (HIP) routes. The structure of NZP ceramics, prepared using the HIP route, has been compared with conventionally sintered NZP using a combination of X-ray diffraction (XRD) and (31P and 23Na) nuclear magnetic resonance (NMR) spectroscopy techniques. It is observed that NZP with no waste loading is aggressive toward the steel HIP-can during hot isostatic compaction and significant fraction of cations from the steel enter the ceramic material. Waste loaded NZP samples (10 wt% simulated FBR waste) show significantly low can-interaction and primary NZP phase is evident in this material. Upon exposure of can-interacted and waste loaded NZP to boiling water and steam, 31P NMR does not detect any major modifications in the network structure. However, the 23Na NMR spectra indicate migration of Na+ ions from the surface and possible re-crystallization. This is corroborated by Small-Angle Neutron Scattering (SANS) data and Scanning Electron Microscopy (SEM) measurements carried out on these samples.

  17. Bacteriophage Tail-Tube Assembly Studied by Proton-Detected 4D Solid-State NMR

    DOE PAGES

    Zinke, Maximilian; Fricke, Pascal; Samson, Camille; ...

    2017-07-07

    Obtaining unambiguous resonance assignments remains a major bottleneck in solid-state NMR studies of protein structure and dynamics. Particularly for supramolecular assemblies with large subunits (>150 residues), the analysis of crowded spectral data presents a challenge, even if three-dimensional (3D) spectra are used. Here, we present a proton-detected 4D solid-state NMR assignment procedure that is tailored for large assemblies. The key to recording 4D spectra with three indirect carbon or nitrogen dimensions with their inherently large chemical shift dispersion lies in the use of sparse non-uniform sampling (as low as 2 %). As a proof of principle, we acquired 4D (H)COCANH,more » (H)CACONH, and (H)CBCANH spectra of the 20 kDa bacteriophage tail-tube protein gp17.1 in a total time of two and a half weeks. These spectra were sufficient to obtain complete resonance assignments in a straightforward manner without use of previous solution NMR data.« less

  18. Bacteriophage Tail-Tube Assembly Studied by Proton-Detected 4D Solid-State NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zinke, Maximilian; Fricke, Pascal; Samson, Camille

    Obtaining unambiguous resonance assignments remains a major bottleneck in solid-state NMR studies of protein structure and dynamics. Particularly for supramolecular assemblies with large subunits (>150 residues), the analysis of crowded spectral data presents a challenge, even if three-dimensional (3D) spectra are used. Here, we present a proton-detected 4D solid-state NMR assignment procedure that is tailored for large assemblies. The key to recording 4D spectra with three indirect carbon or nitrogen dimensions with their inherently large chemical shift dispersion lies in the use of sparse non-uniform sampling (as low as 2 %). As a proof of principle, we acquired 4D (H)COCANH,more » (H)CACONH, and (H)CBCANH spectra of the 20 kDa bacteriophage tail-tube protein gp17.1 in a total time of two and a half weeks. These spectra were sufficient to obtain complete resonance assignments in a straightforward manner without use of previous solution NMR data.« less

  19. Study of Damage and Recovery of Electron Irradiated Polyimide using EPR and NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Humagain, Sunita; Jhonson, Jessica; Stallworth, Phillip; Engelhart, Daniel; Plis, Elena; Ferguson, Dale; Cooper, Russell; Hoffmann, Ryan; Greenbaum, Steve

    The main objective of this research is to probe radical concentrations in electron irradiated polyimide (PI, Kapton®) and to examine the impact on the electrical properties using EPR and NMR spectroscopy. PI is an electrical insulator used in space missions as a thermal management blanketing material, it is therefore critical for spacecraft designers to understand the nature of electron transport (electrical conductivity) within the bulk of the material. The recovery mechanism (radical evolution) of PI in vacuum, argon and air after having been subjected to 90 KeV electron irradiation, was studied. The formation and subsequent exponential decay of the radical concentrations was recorded using EPR. This signal decay agrees well with the recovery mechanism being probed by electrical conductivity measurements and implies a strong relation between the two. To investigate the distribution of radicals in the polymer, 1H NMR relaxation time (T1) were measured at 300MHz. Additional NMR experiments, in particular 13C, were performed to search for direct evidence of structural defects.

  20. Isolation and Characterization of a Novel Rebaudioside M Isomer from a Bioconversion Reaction of Rebaudioside A and NMR Comparison Studies of Rebaudioside M Isolated from Stevia rebaudiana Bertoni and Stevia rebaudiana Morita

    PubMed Central

    Prakash, Indra; Bunders, Cynthia; Devkota, Krishna P.; Charan, Romila D.; Ramirez, Catherine; Priedemann, Christopher; Markosyan, Avetik

    2014-01-01

    A minor product, rebaudioside M2 (2), from the bioconversion reaction of rebaudioside A (4) to rebaudioside D (3), was isolated and the complete structure of the novel steviol glycoside was determined. Rebaudioside M2 (2) is considered an isomer of rebaudioside M (1) and contains a relatively rare 1→6 sugar linkage. It was isolated and characterized with NMR (1H, 13C, COSY, HSQC-DEPT, HMBC, 1D-TOCSY, and NOESY) and mass spectral data. Additionally, we emphasize the importance of 1D and 2D NMR techniques when identifying complex steviol glycosides. Numerous NMR spectroscopy studies of rebaudioside M (1), rebaudioside D (3), and mixture of 1 and 3 led to the discovery that SG17 which was previously reported in literature, is a mixture of rebaudioside D (3), rebaudioside M (1), and possibly other related steviol glycosides. PMID:24970220

Top