Sample records for nmr techniques 1h

  1. The application of absolute quantitative (1)H NMR spectroscopy in drug discovery and development.

    PubMed

    Singh, Suruchi; Roy, Raja

    2016-07-01

    The identification of a drug candidate and its structural determination is the most important step in the process of the drug discovery and for this, nuclear magnetic resonance (NMR) is one of the most selective analytical techniques. The present review illustrates the various perspectives of absolute quantitative (1)H NMR spectroscopy in drug discovery and development. It deals with the fundamentals of quantitative NMR (qNMR), the physiochemical properties affecting qNMR, and the latest referencing techniques used for quantification. The precise application of qNMR during various stages of drug discovery and development, namely natural product research, drug quantitation in dosage forms, drug metabolism studies, impurity profiling and solubility measurements is elaborated. To achieve this, the authors explore the literature of NMR in drug discovery and development between 1963 and 2015. It also takes into account several other reviews on the subject. qNMR experiments are used for drug discovery and development processes as it is a non-destructive, versatile and robust technique with high intra and interpersonal variability. However, there are several limitations also. qNMR of complex biological samples is incorporated with peak overlap and a low limit of quantification and this can be overcome by using hyphenated chromatographic techniques in addition to NMR.

  2. Structural confirmation of regioisomers of Lopinavir impurities using MS and gradient COSY (1H and 13C NMR assignment of Lopinavir impurities).

    PubMed

    Siva Lakshmi Devi, A; Srinivasa Rao, Y; Suresh, Y; Yogeswar Reddy, M; Jyothi, G; Rajababu, B; Prasad, V S R; Umamaheswar Rao, V

    2007-05-01

    We report the complete (1)H and (13)C NMR assignment of impurities of six Lopinavir (2S)-N-[(2S, 4S, 5S)-5-{[2-(2,6-dimethylphenoxy)acetyl]amino}-4-hydroxy-1,6-diphenyl hexan-2-yl]-3-methyl-2-(2-oxo-1,3-diazinan-1-yl)butan- amide. Two of the impurities are regioisomers and GCOSY used to differentiate the two structures. The spectral assignments for all six impurities were achieved by concerted application of one and two-dimensional NMR techniques ((1)H NMR, (13)C NMR, DEPT, GCOSY, GHSQC and GHMBC). Copyright (c) 2007 John Wiley & Sons, Ltd.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pease, J.H.

    The three dimensional structures of several small peptides were determined using a combination of {sup 1}H nuclear magnetic resonance (NMR) and distance geometry calculations. These techniques were found to be particularly helpful for analyzing structural differences between related peptides since all of the peptides' {sup 1}H NMR spectra are very similar. The structures of peptides from two separate classes are presented. Peptides in the first class are related to apamin, an 18 amino acid peptide toxin from honey bee venom. The {sup 1}H NMR assignments and secondary structure determination of apamin were done previously. Quantitative NMR measurements and distance geometrymore » calculations were done to calculate apamin's three dimensional structure. Peptides in the second class are 48 amino acid toxins from the sea anemone Radianthus paumotensis. The {sup 1}H NMR assignments of toxin II were done previously. The {sup 1}H NMR assignments of toxin III and the distance geometry calculations for both peptides are presented.« less

  4. NMR study on (1alpha, 2beta, 4beta, 5alpha, 7beta)-7-[(hydroxydi-2-thienylacetyl) oxy]-9,9-dimethyl-3-oxa-9-azoniatricyclo [3.3.1.0(2,4)] nonane bromide monohydrate.

    PubMed

    Lin, Zhenguang; Mu, Yingdi; Liu, Yihui; Ren, Yeming; Lin, Jimao

    2010-03-01

    The structure of (1alpha, 2beta, 4beta, 5alpha, 7beta)-7-[(hydroxydi-2-thienylacetyl) oxy]-9,9-dimethyl-3-oxa-9-azoniatricyclo [3.3.1.0(2,4)] nonane bromide monohydrate was studied using 1D and 2D NMR techniques. Complete NMR assignments of the compound were obtained using DEPT, H-H COSY, as well as HMQC and HMBC heteronuclear correlation techniques. Copyright 2010 Elsevier B.V. All rights reserved.

  5. 1H MAS NMR (magic-angle spinning nuclear magnetic resonance) techniques for the quantitative determination of hydrogen types in solid catalysts and supports.

    PubMed

    Kennedy, Gordon J; Afeworki, Mobae; Calabro, David C; Chase, Clarence E; Smiley, Randolph J

    2004-06-01

    Distinct hydrogen species are present in important inorganic solids such as zeolites, silicoaluminophosphates (SAPOs), mesoporous materials, amorphous silicas, and aluminas. These H species include hydrogens associated with acidic sites such as Al(OH)Si, non-framework aluminum sites, silanols, and surface functionalities. Direct and quantitative methodology to identify, measure, and monitor these hydrogen species are key to monitoring catalyst activity, optimizing synthesis conditions, tracking post-synthesis structural modifications, and in the preparation of novel catalytic materials. Many workers have developed several techniques to address these issues, including 1H MAS NMR (magic-angle spinning nuclear magnetic resonance). 1H MAS NMR offers many potential advantages over other techniques, but care is needed in recognizing experimental limitations and developing sample handling and NMR methodology to obtain quantitatively reliable data. A simplified approach is described that permits vacuum dehydration of multiple samples simultaneously and directly in the MAS rotor without the need for epoxy, flame sealing, or extensive glovebox use. We have found that careful optimization of important NMR conditions, such as magnetic field homogeneity and magic angle setting are necessary to acquire quantitative, high-resolution spectra that accurately measure the concentrations of the different hydrogen species present. Details of this 1H MAS NMR methodology with representative applications to zeolites, SAPOs, M41S, and silicas as a function of synthesis conditions and post-synthesis treatments (i.e., steaming, thermal dehydroxylation, and functionalization) are presented.

  6. 1H NMR investigation of thermally triggered insulin release from poly(N-isopropylacrylamide) microgels.

    PubMed

    Nolan, Christine M; Gelbaum, Leslie T; Lyon, L Andrew

    2006-10-01

    We describe investigations of insulin release from thermoresponsive microgels using variable temperature (1)H NMR. Microgel particles composed of poly(N-isopropylacrylamide) were loaded with the peptide via a swelling technique, and this method was compared to simple equilibrium partitioning. Variable temperature (1)H NMR studies suggest that the swelling loading method results in enhanced entrapment of the peptide versus equilibrium partitioning. A centrifugation-loading assay supports this finding. Pseudo-temperature jump (1)H NMR measurements suggest that the insulin release rate is partially decoupled from microgel collapse. These types of direct release investigations could prove to be useful methods in the future design of controlled macromolecule drug delivery devices.

  7. High-resolution NMR characterization of low abundance oligomers of amyloid-β without purification

    NASA Astrophysics Data System (ADS)

    Kotler, Samuel A.; Brender, Jeffrey R.; Vivekanandan, Subramanian; Suzuki, Yuta; Yamamoto, Kazutoshi; Monette, Martine; Krishnamoorthy, Janarthanan; Walsh, Patrick; Cauble, Meagan; Holl, Mark M. Banaszak; Marsh, E. Neil. G.; Ramamoorthy, Ayyalusamy

    2015-07-01

    Alzheimer’s disease is characterized by the misfolding and self-assembly of the amyloidogenic protein amyloid-β (Aβ). The aggregation of Aβ leads to diverse oligomeric states, each of which may be potential targets for intervention. Obtaining insight into Aβ oligomers at the atomic level has been a major challenge to most techniques. Here, we use magic angle spinning recoupling 1H-1H NMR experiments to overcome many of these limitations. Using 1H-1H dipolar couplings as a NMR spectral filter to remove both high and low molecular weight species, we provide atomic-level characterization of a non-fibrillar aggregation product of the Aβ1-40 peptide using non-frozen samples without isotopic labeling. Importantly, this spectral filter allows the detection of the specific oligomer signal without a separate purification procedure. In comparison to other solid-state NMR techniques, the experiment is extraordinarily selective and sensitive. A resolved 2D spectra could be acquired of a small population of oligomers (6 micrograms, 7% of the total) amongst a much larger population of monomers and fibers (93% of the total). By coupling real-time 1H-1H NMR experiments with other biophysical measurements, we show that a stable, primarily disordered Aβ1-40 oligomer 5-15 nm in diameter can form and coexist in parallel with the well-known cross-β-sheet fibrils.

  8. High-resolution NMR characterization of low abundance oligomers of amyloid-β without purification

    PubMed Central

    Kotler, Samuel A.; Brender, Jeffrey R.; Vivekanandan, Subramanian; Suzuki, Yuta; Yamamoto, Kazutoshi; Monette, Martine; Krishnamoorthy, Janarthanan; Walsh, Patrick; Cauble, Meagan; Holl, Mark M. Banaszak; Marsh, E. Neil. G.; Ramamoorthy, Ayyalusamy

    2015-01-01

    Alzheimer’s disease is characterized by the misfolding and self-assembly of the amyloidogenic protein amyloid-β (Aβ). The aggregation of Aβ leads to diverse oligomeric states, each of which may be potential targets for intervention. Obtaining insight into Aβ oligomers at the atomic level has been a major challenge to most techniques. Here, we use magic angle spinning recoupling 1H-1H NMR experiments to overcome many of these limitations. Using 1H-1H dipolar couplings as a NMR spectral filter to remove both high and low molecular weight species, we provide atomic-level characterization of a non-fibrillar aggregation product of the Aβ1-40 peptide using non-frozen samples without isotopic labeling. Importantly, this spectral filter allows the detection of the specific oligomer signal without a separate purification procedure. In comparison to other solid-state NMR techniques, the experiment is extraordinarily selective and sensitive. A resolved 2D spectra could be acquired of a small population of oligomers (6 micrograms, 7% of the total) amongst a much larger population of monomers and fibers (93% of the total). By coupling real-time 1H-1H NMR experiments with other biophysical measurements, we show that a stable, primarily disordered Aβ1-40 oligomer 5–15 nm in diameter can form and coexist in parallel with the well-known cross-β-sheet fibrils. PMID:26138908

  9. High-resolution NMR characterization of low abundance oligomers of amyloid-β without purification.

    PubMed

    Kotler, Samuel A; Brender, Jeffrey R; Vivekanandan, Subramanian; Suzuki, Yuta; Yamamoto, Kazutoshi; Monette, Martine; Krishnamoorthy, Janarthanan; Walsh, Patrick; Cauble, Meagan; Holl, Mark M Banaszak; Marsh, E Neil G; Ramamoorthy, Ayyalusamy

    2015-07-03

    Alzheimer's disease is characterized by the misfolding and self-assembly of the amyloidogenic protein amyloid-β (Aβ). The aggregation of Aβ leads to diverse oligomeric states, each of which may be potential targets for intervention. Obtaining insight into Aβ oligomers at the atomic level has been a major challenge to most techniques. Here, we use magic angle spinning recoupling (1)H-(1)H NMR experiments to overcome many of these limitations. Using (1)H-(1)H dipolar couplings as a NMR spectral filter to remove both high and low molecular weight species, we provide atomic-level characterization of a non-fibrillar aggregation product of the Aβ1-40 peptide using non-frozen samples without isotopic labeling. Importantly, this spectral filter allows the detection of the specific oligomer signal without a separate purification procedure. In comparison to other solid-state NMR techniques, the experiment is extraordinarily selective and sensitive. A resolved 2D spectra could be acquired of a small population of oligomers (6 micrograms, 7% of the total) amongst a much larger population of monomers and fibers (93% of the total). By coupling real-time (1)H-(1)H NMR experiments with other biophysical measurements, we show that a stable, primarily disordered Aβ1-40 oligomer 5-15 nm in diameter can form and coexist in parallel with the well-known cross-β-sheet fibrils.

  10. Shear rheology and 1H TD-NMR combined to low-field RheoNMR: Set-up and application to quiescent and flow-induced crystallization of polymers

    NASA Astrophysics Data System (ADS)

    Räntzsch, Volker; Özen, Mürüvvet Begüm; Ratzsch, Karl-Friedrich; Guthausen, Gisela; Wilhelm, Manfred

    2017-05-01

    Rheology provides access to the flow properties of soft matter, while 1H TD-NMR is a useful technique for the characterization of molecular dynamics. To achieve greater insight into the interplay of these domains, especially under flow, it is desirable to combine these two methods in one set-up. We present a low-field RheoNMR set-up based on a portable 30 MHz 1H NMR unit that was integrated into a commercial strain-controlled shear rheometer. This unique combination can simultaneously conduct a full rheological characterization (G', G", |η*|, FT-Rheology: I3/1, Q0) while monitoring molecular dynamics in-situ via 1H TD-NMR for temperatures from -15 to +210 °C. Possible applications include the quantitative measurement of the composition in multiphase systems (fats, polymers, etc.) and soft matter during the application of flow, e.g. measurements on the flow-induced crystallization of polymers.

  11. Interlaboratory Comparison Test as an Evaluation of Applicability of an Alternative Edible Oil Analysis by 1H NMR Spectroscopy.

    PubMed

    Zailer, Elina; Holzgrabe, Ulrike; Diehl, Bernd W K

    2017-11-01

    A proton (1H) NMR spectroscopic method was established for the quality assessment of vegetable oils. To date, several research studies have been published demonstrating the high potential of the NMR technique in lipid analysis. An interlaboratory comparison was organized with the following main objectives: (1) to evaluate an alternative analysis of edible oils by using 1H NMR spectroscopy; and (2) to determine the robustness and reproducibility of the method. Five different edible oil samples were analyzed by evaluating 15 signals (free fatty acids, peroxides, aldehydes, double bonds, and linoleic and linolenic acids) in each spectrum. A total of 21 NMR data sets were obtained from 17 international participant laboratories. The performance of each laboratory was assessed by their z-scores. The test was successfully passed by 90.5% of the participants. Results showed that NMR spectroscopy is a robust alternative method for edible oil analysis.

  12. A structural study of epoxidized natural rubber (ENR-50) and its cyclic dithiocarbonate derivative using NMR spectroscopy techniques.

    PubMed

    Hamzah, Rosniza; Bakar, Mohamad Abu; Khairuddean, Melati; Mohammed, Issam Ahmed; Adnan, Rohana

    2012-09-12

    A structural study of epoxidized natural rubber (ENR-50) and its cyclic dithiocarbonate derivative was carried out using NMR spectroscopy techniques. The overlapping (1)H-NMR signals of ENR-50 at δ 1.56, 1.68-1.70, 2.06, 2.15-2.17 ppm were successfully assigned. In this work, the <(13)C-NMR chemical shift assignments of ENR-50 were consistent to the previously reported work. A cyclic dithiocarbonate derivative of ENR-50 was synthesized from the reaction of purified ENR-50 with carbon disulfide (CS(2)), in the presence of 4-dimethylaminopyridine (DMAP) as catalyst at reflux temperature. The cyclic dithiocarbonate formation involved the epoxide ring opening of the ENR-50. This was followed by insertion of the C-S moiety of CS(2) at the oxygen attached to the quaternary carbon and methine carbon of epoxidized isoprene unit, respectively. The bands due to the C=S and C-O were clearly observed in the FTIR spectrum while the (1)H-NMR spectrum of the derivative revealed the peak attributed to the methylene protons had split. The (13)C-NMR spectrum of the derivative further indicates two new carbon peaks arising from the >C=S and quaternary carbon of cyclic dithiocarbonate. All other (1)H- and (13)C-NMR chemical shifts of the derivative remain unchanged with respect to the ENR-50.

  13. Characterization of wet aggregate stability of soils by ¹H-NMR relaxometry.

    PubMed

    Buchmann, C; Meyer, M; Schaumann, G E

    2015-09-01

    For the assessment of soil structural stability against hydraulic stress, wet sieving or constant head permeability tests are typically used but rather limited in their intrinsic information value. The multiple applications of several tests is the only possibility to assess important processes and mechanisms during soil aggregate breakdown, e.g. the influences of soil fragment release or differential swelling on the porous systems of soils or soil aggregate columns. Consequently, the development of new techniques for a faster and more detailed wet aggregate stability assessment is required. (1)H nuclear magnetic resonance relaxometry ((1)H-NMR relaxometry) might provide these requirements because it has already been successfully applied on soils. We evaluated the potential of (1)H-NMR relaxometry for the assessment of wet aggregate stability of soils, with more detailed information on occurring mechanisms at the same time. Therefore, we conducted single wet sieving and constant head permeability tests on untreated and 1% polyacrylic acid-treated soil aggregates of different textures and organic matter contents, subsequently measured by (1)H-NMR relaxometry after percolation. The stability of the soil aggregates were mainly depending on their organic matter contents and the type of aggregate stabilization, whereby additional effects of clay swelling on the measured wet aggregate stability were identified by the transverse relaxation time (T2) distributions. Regression analyses showed that only the percentage of water stable aggregates could be determined accurately from percolated soil aggregate columns by (1)H-NMR relaxometry measurements. (1)H-NMR relaxometry seems a promising technique for wet aggregate stability measurements but should be further developed for nonpercolated aggregate columns and real soil samples. Copyright © 2014 John Wiley & Sons, Ltd.

  14. Comparison of Attenuated Total Reflectance Mid-Infrared, Near Infrared, and 1H-Nuclear Magnetic Resonance Spectroscopies for the Determination of Coffee's Geographical Origin.

    PubMed

    Medina, Jessica; Caro Rodríguez, Diana; Arana, Victoria A; Bernal, Andrés; Esseiva, Pierre; Wist, Julien

    2017-01-01

    The sensorial properties of Colombian coffee are renowned worldwide, which is reflected in its market value. This raises the threat of fraud by adulteration using coffee grains from other countries, thus creating a demand for robust and cost-effective methods for the determination of geographical origin of coffee samples. Spectroscopic techniques such as Nuclear Magnetic Resonance (NMR), near infrared (NIR), and mid-infrared (mIR) have arisen as strong candidates for the task. Although a body of work exists that reports on their individual performances, a faithful comparison has not been established yet. We evaluated the performance of 1 H-NMR, Attenuated Total Reflectance mIR (ATR-mIR), and NIR applied to fraud detection in Colombian coffee. For each technique, we built classification models for discrimination by species ( C. arabica versus C. canephora (or robusta )) and by origin (Colombia versus other C. arabica ) using a common set of coffee samples. All techniques successfully discriminated samples by species, as expected. Regarding origin determination, ATR-mIR and 1 H-NMR showed comparable capacity to discriminate Colombian coffee samples, while NIR fell short by comparison. In conclusion, ATR-mIR, a less common technique in the field of coffee adulteration and fraud detection, emerges as a strong candidate, faster and with lower cost compared to 1 H-NMR and more discriminating compared to NIR.

  15. Staging research of human lung cancer tissues by high-resolution magic angle spinning proton nuclear magnetic resonance spectroscopy (HRMAS 1 H NMR) and multivariate data analysis.

    PubMed

    Chen, Wenxue; Lu, Shaohua; Wang, Guifang; Chen, Fener; Bai, Chunxue

    2017-10-01

    High-resolution magic-angle spinning proton nuclear magnetic resonance (HRMAS 1 H NMR) spectroscopy technique was employed to analyze the metabonomic characterizations of lung cancer tissues in hope to identify potential diagnostic biomarkers for malignancy detection and staging research of lung tissues. HRMAS 1 H NMR spectroscopy technique can rapidly provide important information for accurate diagnosis and staging of cancer tissues owing to its noninvasive nature and limited requirement for the samples, and thus has been acknowledged as an excellent tool to investigate tissue metabolism and provide a more realistic insight into the metabonomics of tissues when combined with multivariate data analysis (MVDA) such as component analysis and orthogonal partial least squares-discriminant analysis in particular. HRMAS 1 H NMR spectra displayed the metabonomic differences of 32 lung cancer tissues at the different stages from 32 patients. The significant changes (P < 0.05) of some important metabolites such as lipids, aspartate and choline-containing compounds in cancer tissues at the different stages had been identified. Furthermore, the combination of HRMAS 1 H NMR spectroscopy and MVDA might potentially and precisely provided for a high sensitivity, specificity, prediction accuracy in the positive identification of the staging for the cancer tissues in contrast with the pathological data in clinic. This study highlighted the potential of metabonomics in clinical settings so that the techniques might be further exploited for the diagnosis and staging prediction of lung cancer in future. © 2016 John Wiley & Sons Australia, Ltd.

  16. Using a Problem Solving-Cooperative Learning Approach to Improve Students' Skills for Interpreting [Superscript 1]H NMR Spectra of Unknown Compounds in an Organic Spectroscopy Course

    ERIC Educational Resources Information Center

    Angawi, Rihab F.

    2014-01-01

    To address third- and fourth-year chemistry students' difficulties with the challenge of interpreting [superscript 1]H NMR spectra, a problem solving-cooperative learning technique was incorporated in a Spectra of Organic Compounds course. Using this approach helped students deepen their understanding of the basics of [superscript 1]H NMR…

  17. Dynamics and conformations of PEO chains chemically bonded on silica: comparison between 1H and 2H NMR.

    PubMed

    Tajouri, T; Hommel, H

    2007-06-01

    1H NMR was used to study the motion of monomer units in a layer of poly(ethylene oxide) chains grafted on silica. First, the dependence of the relaxation times on the grafting ratios is discussed qualitatively from a phenomenological point of view. Next, the NMR line narrowing effect by high-speed rotation is observed in the same samples with different grafting ratios. The magic angle spinning technique permits determination of two correlation times for each grafting ratio: tau(c) characteristic of an environment with a fast motion and tau(l) characteristic of an environment with a slow motion. In addition, the dynamics of these grafted chains are investigated by deuterium NMR (2H NMR), which is sensitive to the anisotropy of molecular motion. The evolution has been studied for two extreme grafting ratios and each time as a function of temperature. The anisotropy is more marked at low temperatures and for a low grafting ratio. The results are consistent with the 1H NMR relaxation times measured as a function of temperature. Copyright 2007 John Wiley & Sons, Ltd.

  18. Combining multinuclear high-resolution solid-state MAS NMR and computational methods for resonance assignment of glutathione tripeptide.

    PubMed

    Sardo, Mariana; Siegel, Renée; Santos, Sérgio M; Rocha, João; Gomes, José R B; Mafra, Luis

    2012-06-28

    We present a complete set of experimental approaches for the NMR assignment of powdered tripeptide glutathione at natural isotopic abundance, based on J-coupling and dipolar NMR techniques combined with (1)H CRAMPS decoupling. To fully assign the spectra, two-dimensional (2D) high-resolution methods, such as (1)H-(13)C INEPT-HSQC/PRESTO heteronuclear correlations (HETCOR), (1)H-(1)H double-quantum (DQ), and (1)H-(14)N D-HMQC correlation experiments, have been used. To support the interpretation of the experimental data, periodic density functional theory calculations together with the GIPAW approach have been used to calculate the (1)H and (13)C chemical shifts. It is found that the shifts calculated with two popular plane wave codes (CASTEP and Quantum ESPRESSO) are in excellent agreement with the experimental results.

  19. Comparison of Attenuated Total Reflectance Mid-Infrared, Near Infrared, and 1H-Nuclear Magnetic Resonance Spectroscopies for the Determination of Coffee's Geographical Origin

    PubMed Central

    Caro Rodríguez, Diana; Arana, Victoria A.; Bernal, Andrés; Esseiva, Pierre

    2017-01-01

    The sensorial properties of Colombian coffee are renowned worldwide, which is reflected in its market value. This raises the threat of fraud by adulteration using coffee grains from other countries, thus creating a demand for robust and cost-effective methods for the determination of geographical origin of coffee samples. Spectroscopic techniques such as Nuclear Magnetic Resonance (NMR), near infrared (NIR), and mid-infrared (mIR) have arisen as strong candidates for the task. Although a body of work exists that reports on their individual performances, a faithful comparison has not been established yet. We evaluated the performance of 1H-NMR, Attenuated Total Reflectance mIR (ATR-mIR), and NIR applied to fraud detection in Colombian coffee. For each technique, we built classification models for discrimination by species (C. arabica versus C. canephora (or robusta)) and by origin (Colombia versus other C. arabica) using a common set of coffee samples. All techniques successfully discriminated samples by species, as expected. Regarding origin determination, ATR-mIR and 1H-NMR showed comparable capacity to discriminate Colombian coffee samples, while NIR fell short by comparison. In conclusion, ATR-mIR, a less common technique in the field of coffee adulteration and fraud detection, emerges as a strong candidate, faster and with lower cost compared to 1H-NMR and more discriminating compared to NIR. PMID:29201055

  20. Liquid- and solid-state high-resolution NMR methods for the investigation of aging processes of silicone breast implants.

    PubMed

    Birkefeld, Anja Britta; Bertermann, Rüdiger; Eckert, Hellmut; Pfleiderer, Bettina

    2003-01-01

    To investigate aging processes of silicone gel breast implants, which may include migration of free unreacted material from the gel and rubber to local (e.g. connective tissue capsule) or distant sites in the body, chemical alteration of the polymer and infiltration of body compounds, various approaches of multinuclear nuclear magnetic resonance (NMR) experiments (29Si, 13C, 1H) were evaluated. While 29Si, 13C, and 1H solid-state magic angle spinning (MAS) NMR techniques performed on virgin and explanted envelopes of silicone prostheses provided only limited information, high-resolution liquid-state NMR techniques of CDCl(3) extracts were highly sensitive analytical tools for the detection of aging related changes in the materials. Using 2D 1H, 1H correlation spectroscopy (COSY) and 29Si, 1H heteronuclear multiple bond coherence (HMBC) experiments with gradient selection, it was possible to detect lipids (mainly phospholipids) as well as silicone oligomer species in explanted envelopes and gels. Silicone oligomers were also found in connective tissue capsules, indicating that cyclic polysiloxanes can migrate from intact implants to adjacent and distant sites. Furthermore, lipids can permeate the implant and modify its chemical composition. Copyright 2002 Elsevier Science Ltd.

  1. SABRE hyperpolarization enables high-sensitivity 1H and 13C benchtop NMR spectroscopy.

    PubMed

    Richardson, Peter M; Parrott, Andrew J; Semenova, Olga; Nordon, Alison; Duckett, Simon B; Halse, Meghan E

    2018-06-19

    Benchtop NMR spectrometers operating with low magnetic fields of 1-2 T at sub-ppm resolution show great promise as analytical platforms that can be used outside the traditional laboratory environment for industrial process monitoring. One current limitation that reduces the uptake of benchtop NMR is associated with the detection fields' reduced sensitivity. Here we demonstrate how para-hydrogen (p-H2) based signal amplification by reversible exchange (SABRE), a simple to achieve hyperpolarization technique, enhances agent detectability within the environment of a benchtop (1 T) NMR spectrometer so that informative 1H and 13C NMR spectra can be readily recorded for low-concentration analytes. SABRE-derived 1H NMR signal enhancements of up to 17 000-fold, corresponding to 1H polarization levels of P = 5.9%, were achieved for 26 mM pyridine in d4-methanol in a matter of seconds. Comparable enhancement levels can be achieved in both deuterated and protio solvents but now the SABRE-enhanced analyte signals dominate due to the comparatively weak thermally-polarized solvent response. The SABRE approach also enables the acquisition of 13C NMR spectra of analytes at natural isotopic abundance in a single scan as evidenced by hyperpolarized 13C NMR spectra of tens of millimolar concentrations of 4-methylpyridine. Now the associated signal enhancement factors are up to 45 500 fold (P = 4.0%) and achieved in just 15 s. Integration of an automated SABRE polarization system with the benchtop NMR spectrometer framework produces renewable and reproducible NMR signal enhancements that can be exploited for the collection of multi-dimensional NMR spectra, exemplified here by a SABRE-enhanced 2D COSY NMR spectrum.

  2. Determination of the overall migration from silicone baking moulds into simulants and food using 1H-NMR techniques.

    PubMed

    Helling, Ruediger; Mieth, Anja; Altmann, Stefan; Simat, Thomas Joachim

    2009-03-01

    Different silicone baking moulds (37 samples) were characterized with respect to potential migrating substances using 1H-NMR, RP-HPLC-UV/ELSD and GC techniques. In all cases cyclic organosiloxane oligomers with the formula [Si(CH3)2-O]n were identified (n = 6 ... 50). Additionally, linear, partly hydroxyl-terminated organosiloxanes HO-[Si(CH3)2-O]n-H (n = 7 ... 20) were found in 13 samples. No substances other than siloxanes could be detected, meaning the migrants mainly consist of organopolysiloxanes. Based on this knowledge, a 1H-NMR quantification method for siloxanes was established for the analysis of both simulants and foodstuffs. Validation of the 1H-NMR method gave suitable performance characteristics: limit of detection 8.7 mg kg(-1) oil, coefficient of variation 7.8% (at a level of 1.0 mg kg(-1) food). Migration studies were carried out with simulants (olive oil, isooctane, ethanol (95%), Tenax) as well as preparation of different cakes. From the 1st to 10th experiment, siloxane migration into cakes only slightly decreased, with a significant dependence on fat content. Migration never exceeded a level of 21 mg kg(-1) (3 mg dm(-2)) and was, therefore, well below the overall migration limit of 60 mg kg(-1) (10 mg dm(-2)). However, migration behaviour into simulants differed completely from these results.

  3. Implementation of picoSpin Benchtop NMR Instruments into Organic Chemistry Teaching Laboratories through Spectral Analysis of Fischer Esterification Products

    ERIC Educational Resources Information Center

    Yearty, Kasey L.; Sharp, Joseph T.; Meehan, Emma K.; Wallace, Doyle R.; Jackson, Douglas M.; Morrison, Richard W.

    2017-01-01

    [Superscript 1]H NMR analysis is an important analytical technique presented in introductory organic chemistry courses. NMR instrument access is limited for undergraduate organic chemistry students due to the size of the instrument, price of NMR solvents, and the maintenance level required for instrument upkeep. The University of Georgia Chemistry…

  4. Determination of Diethyl Phthalate and Polyhexamethylene Guanidine in Surrogate Alcohol from Russia

    PubMed Central

    Monakhova, Yulia B.; Kuballa, Thomas; Leitz, Jenny; Lachenmeier, Dirk W.

    2011-01-01

    Analytical methods based on spectroscopic techniques were developed and validated for the determination of diethyl phthalate (DEP) and polyhexamethylene guanidine (PHMG), which may occur in unrecorded alcohol. Analysis for PHMG was based on UV-VIS spectrophotometry after derivatization with Eosin Y and 1H NMR spectroscopy of the DMSO extract. Analysis of DEP was performed with direct UV-VIS and 1H NMR methods. Multivariate curve resolution and spectra computation methods were used to confirm the presence of PHMG and DEP in the investigated beverages. Of 22 analysed alcohol samples, two contained DEP or PHMG. 1H NMR analysis also revealed the presence of signals of hawthorn extract in three medicinal alcohols used as surrogate alcohol. The simple and cheap UV-VIS methods can be used for rapid screening of surrogate alcohol samples for impurities, while 1H NMR is recommended for specific confirmatory analysis if required. PMID:21647285

  5. Determination of diethyl phthalate and polyhexamethylene guanidine in surrogate alcohol from Russia.

    PubMed

    Monakhova, Yulia B; Kuballa, Thomas; Leitz, Jenny; Lachenmeier, Dirk W

    2011-01-01

    Analytical methods based on spectroscopic techniques were developed and validated for the determination of diethyl phthalate (DEP) and polyhexamethylene guanidine (PHMG), which may occur in unrecorded alcohol. Analysis for PHMG was based on UV-VIS spectrophotometry after derivatization with Eosin Y and (1)H NMR spectroscopy of the DMSO extract. Analysis of DEP was performed with direct UV-VIS and (1)H NMR methods. Multivariate curve resolution and spectra computation methods were used to confirm the presence of PHMG and DEP in the investigated beverages. Of 22 analysed alcohol samples, two contained DEP or PHMG. (1)H NMR analysis also revealed the presence of signals of hawthorn extract in three medicinal alcohols used as surrogate alcohol. The simple and cheap UV-VIS methods can be used for rapid screening of surrogate alcohol samples for impurities, while (1)H NMR is recommended for specific confirmatory analysis if required.

  6. Magic Angle Spinning NMR Metabolomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhi Hu, Jian

    Nuclear Magnetic Resonance (NMR) spectroscopy is a non-destructive, quantitative, reproducible, untargeted and unbiased method that requires no or minimal sample preparation, and is one of the leading analytical tools for metabonomics research [1-3]. The easy quantification and the no need of prior knowledge about compounds present in a sample associated with NMR are advantageous over other techniques [1,4]. 1H NMR is especially attractive because protons are present in virtually all metabolites and its NMR sensitivity is high, enabling the simultaneous identification and monitoring of a wide range of low molecular weight metabolites.

  7. The influence of sulfur configuration in 1 H NMR chemical shifts of diasteromeric five-membered cyclic sulfites.

    PubMed

    Obregón-Mendoza, Marco A; Sánchez-Castellanos, Mariano; Cuevas, Gabriel; Gnecco, Dino; Cassani, Julia; Poveda-Jaramillo, Juan C; Reynolds, William F; Enríquez, Raúl G

    2017-03-01

    The effect of the stereochemistry of the sulfur atom on 1 H chemical shifts of the diasteromeric pair of cyclic sulfites of 4-[methoxy(4-nitrophenyl)methyl]-5-phenyl-1,3,2-dioxathiolan-2-oxide was investigated. The complete 1 H and 13 C NMR spectral assignment was achieved by the use of one-dimensional and two-dimensional NMR techniques in combination with X-ray data. A correlation of experimental data with theoretical calculations of chemical shift tensors using density functional theory and topological theory of atoms in molecules was made. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Monoterpene Unknowns Identified Using IR, [to the first power]H-NMR, [to the thirteenth power]C-NMR, DEPT, COSY, and HETCOR

    ERIC Educational Resources Information Center

    Alty, Lisa T.

    2005-01-01

    A study identifies a compound from a set of monoterpenes using infrared (IR) and one-dimensional (1D) nuclear magnetic resonance (NMR) techniques. After identifying the unknown, each carbon and proton signal can be interpreted and assigned to the structure using the information in the two-dimensional (2D) NMR spectra, correlation spectroscopy…

  9. 7-epi-griffonilide, a new lactone from Bauhinia pentandra: complete 1H and 13C chemical shift assignments.

    PubMed

    Almeida, Macia C S DE; Souza, Luciana G S; Ferreira, Daniele A; Pinto, Francisco C L; Oliveira, Débora R DE; Santiago, Gilvandete M P; Monte, Francisco J Q; Braz-Filho, Raimundo; Lemos, Telma L G DE

    2017-01-01

    A new lactone, 7-epi-griffonilide (1), and six known compounds, 2, 3a - 3c, 4a and 4b, were isolated from the leaves of Bauhinia pentandra (Fabaceae). The structures elucidation of 1 and 2 were based on detailed 2D NMR techniques and spectral comparison with related compounds, leading to complete assignment of the 1H and 13C NMR spectra.

  10. The use of 1H NMR microscopy to study proton-exchange membrane fuel cells.

    PubMed

    Feindel, Kirk W; Bergens, Steven H; Wasylishen, Roderick E

    2006-01-16

    To understand proton-exchange membrane fuel cells (PEMFCs) better, researchers have used several techniques to visualize their internal operation. This Concept outlines the advantages of using 1H NMR microscopy, that is, magnetic resonance imaging, to monitor the distribution of water in a working PEMFC. We describe what a PEMFC is, how it operates, and why monitoring water distribution in a fuel cell is important. We will focus on our experience in constructing PEMFCs, and demonstrate how 1H NMR microscopy is used to observe the water distribution throughout an operating hydrogen PEMFC. Research in this area is briefly reviewed, followed by some comments regarding challenges and anticipated future developments.

  11. Profiling planktonic biomass using element-specific, multicomponent nuclear magnetic resonance spectroscopy.

    PubMed

    Komatsu, Takanori; Kobayashi, Toshiya; Hatanaka, Minoru; Kikuchi, Jun

    2015-06-02

    Planktonic metabolism plays crucial roles in Earth's elemental cycles. Chemical speciation as well as elemental stoichiometry is important for advancing our understanding of planktonic roles in biogeochemical cycles. In this study, a multicomponent solid-state nuclear magnetic resonance (NMR) approach is proposed for chemical speciation of cellular components, using several advanced NMR techniques. Measurements by ssNMR were performed on (13)C and (15)N-labeled Euglena gracilis, a flagellated protist. 3D dipolar-assisted rotational resonance, double-cross-polarization (1)H-(13)C correlation spectroscopy, and (1)H-(13)C solid-state heteronuclear single quantum correlation spectroscopy successively allowed characterization of cellular components. These techniques were then applied to E. gracilis cultured in high and low ammonium media to demonstrate the power of this method for profiling and comparing cellular components. Cellular NMR spectra indicated that ammonium induced both paramylon degradation and amination. Arginine was stored as a nitrogen reserve and ammonium replaced by arginine catabolism via the arginine dihydrolase pathway. (15)N and (31)P cellular ssNMR indicated arginine and polyphosphate accumulation in E. gracilis, respectively. This chemical speciation technique will contribute to environmental research by providing detailed information on environmental chemical properties.

  12. 1H- 14N HSQC detection of choline-containing compounds in solutions

    NASA Astrophysics Data System (ADS)

    Mao, Jiezhen; Jiang, Ling; Jiang, Bin; Liu, Maili; Mao, Xi-an

    2010-09-01

    Choline nitrogen ( 14N) has a long relaxation time (seconds) which is due to the highly symmetric chemical environments. 14N in choline also has coupling constants with protons (0.6 Hz to methyl protons, 2.7 Hz to CH 2O protons and 0.2 Hz to NCH 2 protons). Based on these properties, we introduce a two-dimensional NMR method to detect choline and its derivatives in solutions. This method is the 1H- 14N hetero-nuclear single-quantum correlation (HSQC) experiment which has been developed in solid-state NMR in recent years. Experiments have demonstrated that the 1H- 14N HSQC technique is a sensitive method for detection of choline-containing compounds in solutions. From 1 mM choline solution in 16 min on a 500 MHz NMR spectrometer, a 1H- 14N HSQC spectrum has been recorded with a signal-to-noise ratio of 1700. Free choline, phosphocholine and glycerophosphocholine in milk can be well separated in 1H- 14N HSQC spectra. This technique would become a promising analytical approach to mixture analyses where choline-containing compounds are of interest, such as tissue extracts, body fluids and food solutions.

  13. Structural features of a bituminous coal and their changes during low-temperature oxidation and loss of volatiles investigated by advanced solid-state NMR spectroscopy

    USGS Publications Warehouse

    Mao, J.-D.; Schimmelmann, A.; Mastalerz, Maria; Hatcher, P.G.; Li, Y.

    2010-01-01

    Quantitative and advanced 13C solid-state NMR techniques were employed to investigate (i) the chemical structure of a high volatile bituminous coal, as well as (ii) chemical structural changes of this coal after evacuation of adsorbed gases, (iii) during oxidative air exposure at room temperature, and (iv) after oxidative heating in air at 75 ??C. The solid-state NMR techniques employed in this study included quantitative direct polarization/magic angle spinning (DP/MAS) at a high spinning speed of 14 kHz, cross polarization/total sideband suppression (CP/TOSS), dipolar dephasing, CH, CH2, and CHn selection, 13C chemical shift anisotropy (CSA) filtering, two-dimensional (2D) 1H-13C heteronuclear correlation NMR (HETCOR), and 2D HETCOR with 1H spin diffusion. With spectral editing techniques, we identified methyl CCH 3, rigid and mobile methylene CCH2C, methine CCH, quaternary Cq, aromatic CH, aromatic carbons bonded to alkyls, small-sized condensed aromatic moieties, and aromatic C-O groups. With direct polarization combined with spectral-editing techniques, we quantified 11 different types of functional groups. 1H-13C 2D HETCOR NMR experiments indicated spatial proximity of aromatic and alkyl moieties in cross-linked structures. The proton spin diffusion experiments indicated that the magnetization was not equilibrated at a 1H spin diffusion time of 5 ms. Therefore, the heterogeneity in spatial distribution of different functional groups should be above 2 nm. Recoupled C-H long-range dipolar dephasing showed that the fraction of large charcoal-like clusters of polycondensed aromatic rings was relatively small. The exposure of this coal to atmospheric oxygen at room temperature for 6 months did not result in obvious chemical structural changes of the coal, whereas heating at 75 ??C in air for 10 days led to oxidation of coal and generated some COO groups. Evacuation removed most volatiles and caused a significant reduction in aliphatic signals in its DP/MAS spectrum. DP/MAS, but not CP/MAS, allowed us to detect the changes during low-temperature oxidation and loss of volatiles. These results demonstrate the applicability of advanced solid-state NMR techniques in chemical characterization of coal. ?? 2010 American Chemical Society.

  14. Characterization of two minor saponins from Cordia piauhiensis by 1H and 13C NMR spectroscopy.

    PubMed

    Santos, Renata P; Silveira, Edilberto R; Lemos, Telma Leda G; Viana, Francisco Arnaldo; Braz-Filho, Raimundo; Pessoa, Otília Deusdênia L

    2005-06-01

    A careful NMR analysis with full assignment of the 1H and 13C spectral data for two minor saponins isolated from stems of Cordia piauhiensis is reported. These saponins were isolated by high-performance liquid chromatography and characterized as 3beta-O-[alpha-L-rhamnopyranosyl-(1 --> 2)-beta-D-glucopyranosyl]pomolic acid 28-O-[beta-D-glucopyranosyl-(1 --> 6)-beta-D-glucopyranosyl] ester (1) and 3beta-O-[alpha-L-rhamnopyranosyl-(1 --> 2)-beta-D-glucopyranosyl]oleanolic acid 28-O-[beta-D-xylopyranosyl-(1 --> 2)-beta-D-glucopyranosyl-(1 --> 6)-beta-D-glucopyranosyl] ester (2). Their structures were established using a combination of 1D and 2D (1H, 1H-COSY, TOCSY, NOESY, gs-HMQC and gs-HMBC) NMR techniques, electrospray ionization mass spectrometry and chemical evidence. Copyright 2005 John Wiley & Sons, Ltd.

  15. Enhancing NMR of insensitive nuclei by transfer of SABRE spin hyperpolarization

    NASA Astrophysics Data System (ADS)

    Pravdivtsev, Andrey N.; Yurkovskaya, Alexandra V.; Zimmermann, Herbert; Vieth, Hans-Martin; Ivanov, Konstantin L.

    2016-09-01

    We describe the performance of methods for enhancing NMR (Nuclear Magnetic Resonance) signals of "insensitive", but important NMR nuclei, which are based on the SABRE (Signal Amplification By Reversible Exchange) technique, i.e., on spin order transfer from parahydrogen (H2 molecule in its nuclear singlet spin state) to a substrate in a transient organometallic complex. Here such transfer is performed at high magnetic fields by INEPT-type NMR pulse sequences, modified for SABRE. Signal enhancements up to three orders of magnitude are obtained for 15N nuclei; the possibility of sensitive detection of 2D-NMR 1H-15N spectra of SABRE complexes and substrates is demonstrated.

  16. Metabolite profiling of Clinacanthus nutans leaves extracts obtained from different drying methods by 1H NMR-based metabolomics

    NASA Astrophysics Data System (ADS)

    Hashim, Noor Haslinda Noor; Latip, Jalifah; Khatib, Alfi

    2016-11-01

    The metabolites of Clinacanthus nutans leaves extracts and their dependence on drying process were systematically characterized using 1H nuclear magnetic resonance spectroscopy (NMR) multivariate data analysis. Principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA) were able to distinguish the leaves extracts obtained from different drying methods. The identified metabolites were carbohydrates, amino acid, flavonoids and sulfur glucoside compounds. The major metabolites responsible for the separation in PLS-DA loading plots were lupeol, cycloclinacosides, betulin, cerebrosides and choline. The results showed that the combination of 1H NMR spectroscopy and multivariate data analyses could act as an efficient technique to understand the C. nutans composition and its variation.

  17. Pore size distribution calculation from 1H NMR signal and N2 adsorption-desorption techniques

    NASA Astrophysics Data System (ADS)

    Hassan, Jamal

    2012-09-01

    The pore size distribution (PSD) of nano-material MCM-41 is determined using two different approaches: N2 adsorption-desorption and 1H NMR signal of water confined in silica nano-pores of MCM-41. The first approach is based on the recently modified Kelvin equation [J.V. Rocha, D. Barrera, K. Sapag, Top. Catal. 54(2011) 121-134] which deals with the known underestimation in pore size distribution for the mesoporous materials such as MCM-41 by introducing a correction factor to the classical Kelvin equation. The second method employs the Gibbs-Thompson equation, using NMR, for melting point depression of liquid in confined geometries. The result shows that both approaches give similar pore size distribution to some extent, and also the NMR technique can be considered as an alternative direct method to obtain quantitative results especially for mesoporous materials. The pore diameter estimated for the nano-material used in this study was about 35 and 38 Å for the modified Kelvin and NMR methods respectively. A comparison between these methods and the classical Kelvin equation is also presented.

  18. Direct assignment of the cysteinyl, the slowly exchangeable, and the aromatic ring H nuclear magnetic resonances in clostridial-type ferredoxins. [Clostridium acidi-urici, C. pasteurianum, C. perfringens, Peptococcus aerogenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Packer, E.L.; Sweeney, W.V.; Rabinowitz, J.C.

    1977-04-10

    We have directly assigned the /sup 1/H NMR corresponding to the cysteinyl protons, the slowly exchangeable protons, and the aromatic ring protons in the /sup 1/H NMR spectrum of Clostridium acidi-urici ferredoxin by isotopic labeling and /sup 13/C NMR decoupling techniques. We also show that the resonance pattern in the 8- to 20-ppM (from 2,2-dimethyl-2-sialapentanesulfonic acid) region of the /sup 1/H NMR spectra of oxidized Clostridium acidi-urici, Clostridium pasteurianum, Clostridium perfringens, and Peptococcus aerogenes ferredoxins are very similar, and we assign the resonances in this region by analogy with the spectrum of C. acidi-urici ferredoxin. The /sup 1/H NMR spectramore » of the ..beta.. protons of the cysteinyl residues of these ferredoxins differ, however, from the /sup 1/H NMR spectra of equivalent ..beta.. protons of the methylene carbon atoms bonded via a sulfur atom to (4Fe-4S) clusters in synthetic inorganic analogues. In the spectra of the synthetic compounds, the ..beta.. protons appear as a single resonance shifted 10 ppM from its unbonded reference position. In the spectra of oxidized clostridial ferredoxins, the cysteinyl ..beta.. protons appear as a series of at least eight resolved resonances with shifts that range from 6 to 14 ppM, relative to the free amino acid resonance position.« less

  19. Proton NMR studies of functionalized nanoparticles in aqueous environments

    NASA Astrophysics Data System (ADS)

    Tataurova, Yulia Nikolaevna

    Nanoscience is an emerging field that can provide potential routes towards addressing critical issues such as clean and sustainable energy, environmental remediation and human health. Specifically, porous nanomaterials, such as zeolites and mesoporous silica, are found in a wide range of applications including catalysis, drug delivery, imaging, environmental protection, and sensing. The characterization of the physical and chemical properties of nanocrystalline materials is essential to the realization of these innovative applications. The great advantage of porous nanocrystals is their increased external surface area that can control their biological, chemical and catalytic activities. Specific functional groups synthesized on the surface of nanoparticles are able to absorb heavy metals from the solution or target disease cells, such as cancer cells. In these studies, three main issues related to functionalized nanomaterials will be addressed through the application of nuclear magnetic resonance (NMR) techniques including: 1) surface composition and structure of functionalized nanocrystalline particles; 2) chemical properties of the guest molecules on the surface of nanomaterials, and 3) adsorption and reactivity of surface bound functional groups. Nuclear magnetic resonance (NMR) is one of the major spectroscopic techniques available for the characterization of molecular structure and conformational dynamics with atomic level detail. This thesis deals with the application of 1H solution state NMR to porous nanomaterial in an aqueous environment. Understanding the aqueous phase behavior of functionalized nanomaterials is a key factor in the design and development of safe nanomaterials because their interactions with living systems are always mediated through the aqueous phase. This is often due to a lack of fundamental knowledge in interfacial chemical and physical phenomena that occur on the surface of nanoparticles. The use of solution NMR spectroscopy results in high-resolution NMR spectra. This technique is selective for protons on the surface organic functional groups due to their motional averaging in solution. In this study, 1H solution NMR spectroscopy was used to investigate the interface of the organic functional groups in D2O. The pKa for these functional groups covalently bound to the surface of nanoparticles was determined using an NMR-pH titration method based on the variation in the proton chemical shift for the alkyl group protons closest to the amine group with pH. The adsorption of toxic contaminants (chromate and arsenate anions) on the surface of functionalized silicalite-1 and mesoporous silica nanoparticles has been studied by 1H solution NMR spectroscopy. With this method, the surface bound contaminants are detected. The analysis of the intensity and position of these peaks allows quantitative assessment of the relative amounts of functional groups with adsorbed metal ions. These results demonstrate the sensitivity of solution NMR spectroscopy to the electronic environment and structure of the surface functional groups on porous nanomaterials.

  20. De novo design of chiral organotin cancer drug candidates: validation of enantiopreferential binding to molecular target DNA and 5'-GMP by UV-visible, fluorescence, (1)H and (31)P NMR.

    PubMed

    Arjmand, Farukh; Sharma, Girish Chandra; Sayeed, Fatima; Muddassir, Mohd; Tabassum, Sartaj

    2011-12-02

    N,N-bis[(R-/S-)-1-benzyl-2-ethoxyethane] tin (IV) complexes were synthesized by applying de novo design strategy by the condensation reaction of (R-/S-)2-amino-2-phenylethanol and dibromoethane in presence of dimethyltin dichloride and thoroughly characterized by elemental analysis, conductivity measurements, IR, ESI-MS, (1)H, (13)C and (119)Sn, multinuclear NMR spectroscopy and XRD study. Enantioselective and specific binding profile of R-enantiomer 1 in comparison to S-enantiomer 2 with ultimate molecular target CT-DNA was validated by UV-visible, fluorescence, circular dichroism, (1)H and (31)P NMR techniques. This was further corroborated well by interaction of 1 and 2 with 5'-GMP. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Toward nanomolar detection by NMR through SABRE hyperpolarization.

    PubMed

    Eshuis, Nan; Hermkens, Niels; van Weerdenburg, Bram J A; Feiters, Martin C; Rutjes, Floris P J T; Wijmenga, Sybren S; Tessari, Marco

    2014-02-19

    SABRE is a nuclear spin hyperpolarization technique based on the reversible association of a substrate molecule and para-hydrogen (p-H2) to a metal complex. During the lifetime of such a complex, generally fractions of a second, the spin order of p-H2 is transferred to the nuclear spins of the substrate molecule via a transient scalar coupling network, resulting in strongly enhanced NMR signals. This technique is generally applied at relatively high concentrations (mM), in large excess of substrate with respect to metal complex. Dilution of substrate ligands below stoichiometry results in progressive decrease of signal enhancement, which precludes the direct application of SABRE to the NMR analysis of low concentration (μM) solutions. Here, we show that the efficiency of SABRE at low substrate concentrations can be restored by addition of a suitable coordinating ligand to the solution. The proposed method allowed NMR detection below 1 μM in a single scan.

  2. Prospects for sub-micron solid state nuclear magnetic resonance imaging with low-temperature dynamic nuclear polarization.

    PubMed

    Thurber, Kent R; Tycko, Robert

    2010-06-14

    We evaluate the feasibility of (1)H nuclear magnetic resonance (NMR) imaging with sub-micron voxel dimensions using a combination of low temperatures and dynamic nuclear polarization (DNP). Experiments are performed on nitroxide-doped glycerol-water at 9.4 T and temperatures below 40 K, using a 30 mW tunable microwave source for DNP. With DNP at 7 K, a 0.5 microL sample yields a (1)H NMR signal-to-noise ratio of 770 in two scans with pulsed spin-lock detection and after 80 db signal attenuation. With reasonable extrapolations, we infer that (1)H NMR signals from 1 microm(3) voxel volumes should be readily detectable, and voxels as small as 0.03 microm(3) may eventually be detectable. Through homonuclear decoupling with a frequency-switched Lee-Goldburg spin echo technique, we obtain 830 Hz (1)H NMR linewidths at low temperatures, implying that pulsed field gradients equal to 0.4 G/d or less would be required during spatial encoding dimensions of an imaging sequence, where d is the resolution in each dimension.

  3. Prospects for Sub-Micron Solid State Nuclear Magnetic Resonance Imaging with Low-Temperature Dynamic Nuclear Polarization

    PubMed Central

    Thurber, Kent R.; Tycko, Robert

    2010-01-01

    Summary We evaluate the feasibility of 1H nuclear magnetic resonance (NMR) imaging with sub-micron voxel dimensions using a combination of low temperatures and dynamic nuclear polarization (DNP). Experiments are performed on nitroxide-doped glycerol/water at 9.4 T and temperatures below 40 K, using a 30 mW tunable microwave source for DNP. With DNP at 7 K, a 0.5 µl sample yields a 1H NMR signal-to-noise ratio of 770 in two scans with pulsed spin-lock detection and after 80 db signal attenuation. With reasonable extrapolations, we infer that 1H NMR signals from 1 µm3 voxel volumes should be readily detectable, and voxels as small as 0.03 µm3 may eventually be detectable. Through homonuclear decoupling with a frequency-switched Lee-Goldburg spin echo technique, we obtain 830 Hz 1H NMR linewidths at low temperatures, implying that pulsed field gradients equal to 0.4 G/d or less would be required during spatial encoding dimensions of an imaging sequence, where d is the resolution in each dimension. PMID:20458431

  4. Tautomerism in o-hydroxyanilino-1,4-naphthoquinone derivatives: Structure, NMR, HPLC and density functional theoretic investigations

    NASA Astrophysics Data System (ADS)

    Bhand, Sujit; Patil, Rishikesh; Shinde, Yogesh; Lande, Dipali N.; Rao, Soniya S.; Kathawate, Laxmi; Gejji, Shridhar P.; Weyhermüller, Thomas; Salunke-Gawali, Sunita

    2016-11-01

    Structure and spectral characteristics of 'Ortho' ((E)-4-hydroxy-2-(2‧-(4‧-R)-hydroxyphenyl)-imino)-naphthalen-1(2H)-one) and 'para' (2-(2‧-(4‧-R)-hydroxyphenyl)-amino)-1,4-naphthoquinone) tautomers of o-hydroxyanilino-1,4-naphthoquinone derivatives (Rdbnd H, 1A; sbnd CH3, 2A; and -Cl, 3A) are investigated using the 1H, 13C, DEPT, gDQCOSY, gHSQCAD NMR, HPLC, cyclic voltammetry techniques combined with the density functional theory. The compound 2A crystallizes in monoclinic space group P21/c. wherein the polymer chain is facilitated via Osbnd H⋯O and Csbnd H⋯O intermolecular hydrogen bonding. Marginal variations in bond distances in quinonoid and aminophenol moieties render structural flexibility to these compounds those in solution exist as exist in 'ortho - para' tautomers. 1H and 13C NMR spectra in DMSO-d6 showed two sets of peaks in all compounds; whereas only the para tautomer of for 1A and 2A, the para tautomer is predominant in CD3CN solution. Further the ortho-para interconversion is accompanied by a large up-field signals for C(3)sbnd H(3) in their 1H and 13C NMR spectra. These inferences are corroborated by the density functional theoretic calculations.

  5. Novel aldehyde and thiosemicarbazone derivatives: Synthesis, spectroscopic characterization, structural studies and molecular docking studies

    NASA Astrophysics Data System (ADS)

    Karakurt, Tuncay; Tahtaci, Hakan; Subasi, Nuriye Tuna; Er, Mustafa; Ağar, Erbil

    2016-12-01

    In this study our purpose is that, synthesis and characterization of compounds containing the aldehyde and thiosemicarbazone groups and comparison of the theoretical results with the experimental results. The structures of all synthesized compounds were elucidated by IR, 1H NMR, 13C NMR, elemental analyses techniques. The structure of compound (4) (C9H8N4O2S) was also elucidated by X-ray diffraction analysis. In addition, the theoretical IR spectrum, 1H NMR and 13C NMR chemical shift values, frontier molecular orbital values (FMO) of these molecules were analyzed by using Becke-3- Lee-Yang-Parr (B3LYP) method with LanL2DZ basis set. Finally, molecular docking studies were performed on synthesized compounds using the 4DKI beta-lactam protein structure to determine the potential binding mode of inhibitors.

  6. New one-pot synthesis of spiro[furo[2,3-d]pyrimidine-6,5'-pyrimidine]pentaones and their sulfur analogues.

    PubMed

    Jalilzadeh, Mohammad; Noroozi Pesyan, Nader; Rezaee, Fereshteh; Rastgar, Saeed; Hosseini, Yaser; Sahin, Ertan

    2011-08-01

    Reaction of barbituric acid (BA), 1,3-dimethyl barbituric acid (DMBA) and 2-thiobarbituric acid (TBA) with cyanogen bromide and various aldehydes in presence of triethylamine afforded a new class of heterocyclic stable 5-alkyl and/or 5-aryl-1H, 1'H-spiro[furo[2,3-d]pyrimidine-6,5'-pyrimidine]2,2',4,4',6'(3H,3'H,5H)-pentaones which are dimeric forms of barbiturate (uracil and thiouracil derivatives) at 0 °C to ambient temperatures. Structure elucidation is proved by X-ray crystallography, (1)H NMR, (13)C NMR, FT-IR, CHN and mass analyses techniques. Mechanisms of the formations are discussed.

  7. Application of 1H NMR for the characterisation of cocoa beans of different geographical origins and fermentation levels.

    PubMed

    Caligiani, Augusta; Palla, Luigi; Acquotti, Domenico; Marseglia, Angela; Palla, Gerardo

    2014-08-15

    This study reports for the first time the use of (1)H NMR technique combined with chemometrics to study the metabolic profile of cocoa (Theobroma cacao L.) beans of different varieties, origin and fermentation levels. Results of PCA applied to cocoa bean (1)H NMR dataset showed that the main factor influencing the cocoa bean metabolic profile is the fermentation level. In fact well fermented brown beans form a group clearly separated from unfermented, slaty, and underfermented, violet, beans, independently of the variety or geographical origin. Considering only well fermented beans, the metabolic profile obtained by (1)H NMR permitted to discriminate between some classes of samples. The National cocoa of Ecuador, known as Arriba, showed the most peculiar characteristics, while the samples coming from the African region showed some similar traits. The dataset obtained, representative of all the classes of soluble compounds of cocoa, was therefore useful to characterise fermented cocoa beans as a function of their origin and fermentation level. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Determination of chemical purity and isotopic composition of natural and carbon-13-labeled arsenobetaine bromide standards by quantitative(1)H-NMR.

    PubMed

    Le, Phuong-Mai; Ding, Jianfu; Leek, Donald M; Mester, Zoltan; Robertson, Gilles; Windust, Anthony; Meija, Juris

    2016-10-01

    In this study, we report the characterization of three arsenobetaine-certified reference materials by quantitative NMR. We have synthesized an arsenobetaine bromide high-purity standard of natural isotopic composition (ABET-1) and two carbon-13-labeled isotopic standards (BBET-1 and CBET-1). Assignments of the chemical purity and isotopic composition are not trivial in the case of arsenobetaine, and in this study we utilized quantitative(1)H-NMR techniques for the determination of the mass fractions (chemical purity). The isotopic purity of all three standards was also assessed by NMR from the carbon-13 satellite signals. The standards are non-hygroscopic, high-purity (ca. 0.99 g/g), and the carbon-13 enrichment for both isotopic standards is x((13)C)≈0.99. These standards are designed for use as primary calibrators for mass spectrometric determination of arsenobetaine in environmental samples.

  9. Understanding Unimer Exchange Processes in Block Copolymer Micelles using NMR Diffusometry, Time-Resolved NMR, and SANS

    NASA Astrophysics Data System (ADS)

    Madsen, Louis; Kidd, Bryce; Li, Xiuli; Miller, Katherine; Cooksey, Tyler; Robertson, Megan

    Our team seeks to understand dynamic behaviors of block copolymer micelles and their interplay with encapsulated cargo molecules. Quantifying unimer and cargo exchange rates micelles can provide critical information for determining mechanisms of unimer exchange as well as designing systems for specific cargo release dynamics. We are exploring the utility of NMR spectroscopy and diffusometry techniques as complements to existing SANS and fluorescence methods. One promising new method involves time-resolved NMR spin relaxation measurements, wherein mixing of fully protonated and 2H-labeled PEO-b-PCL micelles solutions shows an increase in spin-lattice relaxation time (T1) with time after mixing. This is due to a weakening in magnetic environment surrounding 1H spins as 2H-bearing unimers join fully protonated micelles. We are measuring time constants for unimer exchange of minutes to hours, and we expect to resolve times of <1 min. This method can work on any solution NMR spectrometer and with minimal perturbation to chemical structure (as in dye-labelled fluorescence methods). Multimodal NMR can complement existing characterization tools, expanding and accelerating dynamics measurements for polymer micelle, nanogel, and nanoparticle developers.

  10. Solid State NMR Studies of the Aluminum Hydride Phases

    NASA Technical Reports Server (NTRS)

    Hwang, Son-Jong; Bowman, R. C., Jr.; Graetz, Jason; Reilly, J. J.

    2006-01-01

    Several solid state NMR techniques including magic-angle-spinning (MAS) and multiple-quantum (MQ) MAS experiments have been used to characterize various AlH3 samples. MAS-NMR spectra for the 1H and 27Al nuclei have been obtained on a variety of AlH3 samples that include the (beta)- and (gamma)- phases as well as the most stable (alpha)-phase. While the dominant components in these NMR spectra correspond to the aluminum hydride phases, other species were found that include Al metal, molecular hydrogen (H2), as well as peaks that can be assigned to Al-O species in different configurations. The occurrence and concentration of these extraneous components are dependent upon the initial AlH3 phase composition and preparation procedures. Both the (beta)-AlH3 and (gamma)-AlH3 phases were found to generate substantial amounts of Al metal when the materials were stored at room temperature while the (alpha)-phase materials do not exhibit these changes.

  11. Establishing ¹H nuclear magnetic resonance based metabonomics fingerprinting profile for spinal cord injury: a pilot study.

    PubMed

    Jiang, Hua; Peng, Jin; Zhou, Zhi-yuan; Duan, Yu; Chen, Wei; Cai, Bin; Yang, Hao; Zhang, Wei

    2010-09-01

    Spinal cord injury (SCI) is a complex trauma that consists of multiple pathological mechanisms involving cytotoxic, oxidation stress and immune-endocrine. This study aimed to establish plasma metabonomics fingerprinting atlas for SCI using (1)H nuclear magnetic resonance (NMR) based metabonomics methodology and principal component analysis techniques. Nine Sprague-Dawley (SD) male rats were randomly divided into SCI, normal and sham-operation control groups. Plasma samples were collected for (1)H NMR spectroscopy 3 days after operation. The NMR data were analyzed using principal component analysis technique with Matlab software. Metabonomics analysis was able to distinguish the three groups (SCI, normal control, sham-operation). The fingerprinting atlas indicated that, compared with those without SCI, the SCI group demonstrated the following characteristics with regard to second principal component: it is made up of fatty acids, myc-inositol, arginine, very low-density lipoprotein (VLDL), low-density lipoprotein (LDL), triglyceride (TG), glucose, and 3-methyl-histamine. The data indicated that SCI results in several significant changes in plasma metabolism early on and that a metabonomics approach based on (1)H NMR spectroscopy can provide a metabolic profile comprising several metabolite classes and allow for relative quantification of such changes. The results also provided support for further development and application of metabonomics technologies for studying SCI and for the utilization of multivariate models for classifying the extent of trauma within an individual.

  12. Synthesis and spectroscopic properties of novel asymmetric Schiff bases.

    PubMed

    Güngör, Ozlem; Gürkan, Perihan

    2010-09-15

    Three novel diimine Schiff bases including two asymmetric imines (2-OH)R-CHN-C(6)H(4)-CHN-R'(2-OH) type [where R=R'=phenyl for H(2)L(1); R=naphthyl, R'=phenyl for H(2)L(2) and R=R'=naphthyl for H(2)L(3)] have been synthesized with a new two step method. For this purpose, the starting Schiff bases 4-nitrobenzylidene-2-hydroxyaniline (SB(1)-NO(2)) and 4-nitrobenzylidene-2-hydroxy-3-naphthylamine (SB(2)-NO(2)) have been synthesized, previously. Nitro groups of them have been reduced into their amino derivatives (SB(1)-NH(2) and SB(2)-NH(2)) with sodium dithionite as selective reductant and the other imino groups have been formed by adding salicylaldehyde or 2-hydroxy-1-naphthaldehyde to the same solutions. The structures of the diimine Schiff bases were confirmed by elemental analyses, ESI-MS, FT-IR, (1)H NMR and (13)C NMR spectroscopy. The phenol-imine and keto-amine tautomerism of the Schiff bases were investigated by FT-IR, (1)H NMR, (13)C NMR techniques and UV-vis spectra in different solvents (DMSO, methanol, chloroform, toluene and cyclohexane). The effects of acidic and basic media on the tautomeric equilibria were discussed. Copyright 2010 Elsevier B.V. All rights reserved.

  13. {sup 1}H NMR spectroscopic studies establish that heparanase is a retaining glycosidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Jennifer C., E-mail: jennifer.wilson@griffith.edu.au; Laloo, Andrew Elohim; Singh, Sanjesh

    2014-01-03

    Highlights: •{sup 1}H and {sup 13}C NMR chemical shifts of fondaparinux were fully assigned by 1D and 2D NMR techniques. •Hydrolysis of fondaparinux by heparanase was monitored by {sup 1}H NMR spectroscopy. •Heparanase is established to be a retaining glycosidase. -- Abstract: Heparanase is an endo-β-glucuronidase that cleaves heparan sulfate side chains of proteoglycans in basement membranes and the extracellular matrix (ECM). Heparanase is implicated in several diverse pathological processes associated with ECM degradation such as metastasis, inflammation and angiogenesis and is thus an important target for anti-cancer and anti-inflammatory drug discovery. Heparanase has been classed as belonging to themore » clan A glycoside hydrolase family 79 based on sequence analysis, secondary structure predictions and mutagenic analysis, and thus it has been inferred that it is a retaining glycosidase. However, there has been no direct experimental evidence to support this conclusion. Herein we describe {sup 1}H NMR spectroscopic studies of the hydrolysis of the pentasaccharide substrate fondaparinux by heparanase, and provide conclusive evidence that heparanase hydrolyses its substrate with retention of configuration and is thus established as a retaining glycosidase. Knowledge of the mechanism of hydrolysis may have implications for future design of inhibitors for this important drug target.« less

  14. Simultaneous 19F-1H medium resolution NMR spectroscopy for online reaction monitoring

    NASA Astrophysics Data System (ADS)

    Zientek, Nicolai; Laurain, Clément; Meyer, Klas; Kraume, Matthias; Guthausen, Gisela; Maiwald, Michael

    2014-12-01

    Medium resolution nuclear magnetic resonance (MR-NMR) spectroscopy is currently a fast developing field, which has an enormous potential to become an important analytical tool for reaction monitoring, in hyphenated techniques, and for systematic investigations of complex mixtures. The recent developments of innovative MR-NMR spectrometers are therefore remarkable due to their possible applications in quality control, education, and process monitoring. MR-NMR spectroscopy can beneficially be applied for fast, non-invasive, and volume integrating analyses under rough environmental conditions. Within this study, a simple 1/16″ fluorinated ethylene propylene (FEP) tube with an ID of 0.04″ (1.02 mm) was used as a flow cell in combination with a 5 mm glass Dewar tube inserted into a benchtop MR-NMR spectrometer with a 1H Larmor frequency of 43.32 MHz and 40.68 MHz for 19F. For the first time, quasi-simultaneous proton and fluorine NMR spectra were recorded with a series of alternating 19F and 1H single scan spectra along the reaction time coordinate of a homogeneously catalysed esterification model reaction containing fluorinated compounds. The results were compared to quantitative NMR spectra from a hyphenated 500 MHz online NMR instrument for validation. Automation of handling, pre-processing, and analysis of NMR data becomes increasingly important for process monitoring applications of online NMR spectroscopy and for its technical and practical acceptance. Thus, NMR spectra were automatically baseline corrected and phased using the minimum entropy method. Data analysis schemes were designed such that they are based on simple direct integration or first principle line fitting, with the aim that the analysis directly revealed molar concentrations from the spectra. Finally, the performance of 1/16″ FEP tube set-up with an ID of 1.02 mm was characterised regarding the limit of detection (LOQ (1H) = 0.335 mol L-1 and LOQ (19F) = 0.130 mol L-1 for trifluoroethanol in D2O (single scan)) and maximum quantitative flow rates up to 0.3 mL min-1. Thus, a series of single scan 19F and 1H NMR spectra acquired with this simple set-up already presents a valuable basis for quantitative reaction monitoring.

  15. Exploiting the Synergy of Powder X-ray Diffraction and Solid-State NMR Spectroscopy in Structure Determination of Organic Molecular Solids

    PubMed Central

    2013-01-01

    We report a strategy for structure determination of organic materials in which complete solid-state nuclear magnetic resonance (NMR) spectral data is utilized within the context of structure determination from powder X-ray diffraction (XRD) data. Following determination of the crystal structure from powder XRD data, first-principles density functional theory-based techniques within the GIPAW approach are exploited to calculate the solid-state NMR data for the structure, followed by careful scrutiny of the agreement with experimental solid-state NMR data. The successful application of this approach is demonstrated by structure determination of the 1:1 cocrystal of indomethacin and nicotinamide. The 1H and 13C chemical shifts calculated for the crystal structure determined from the powder XRD data are in excellent agreement with those measured experimentally, notably including the two-dimensional correlation of 1H and 13C chemical shifts for directly bonded 13C–1H moieties. The key feature of this combined approach is that the quality of the structure determined is assessed both against experimental powder XRD data and against experimental solid-state NMR data, thus providing a very robust validation of the veracity of the structure. PMID:24386493

  16. Exploiting the Synergy of Powder X-ray Diffraction and Solid-State NMR Spectroscopy in Structure Determination of Organic Molecular Solids.

    PubMed

    Dudenko, Dmytro V; Williams, P Andrew; Hughes, Colan E; Antzutkin, Oleg N; Velaga, Sitaram P; Brown, Steven P; Harris, Kenneth D M

    2013-06-13

    We report a strategy for structure determination of organic materials in which complete solid-state nuclear magnetic resonance (NMR) spectral data is utilized within the context of structure determination from powder X-ray diffraction (XRD) data. Following determination of the crystal structure from powder XRD data, first-principles density functional theory-based techniques within the GIPAW approach are exploited to calculate the solid-state NMR data for the structure, followed by careful scrutiny of the agreement with experimental solid-state NMR data. The successful application of this approach is demonstrated by structure determination of the 1:1 cocrystal of indomethacin and nicotinamide. The 1 H and 13 C chemical shifts calculated for the crystal structure determined from the powder XRD data are in excellent agreement with those measured experimentally, notably including the two-dimensional correlation of 1 H and 13 C chemical shifts for directly bonded 13 C- 1 H moieties. The key feature of this combined approach is that the quality of the structure determined is assessed both against experimental powder XRD data and against experimental solid-state NMR data, thus providing a very robust validation of the veracity of the structure.

  17. Structural, spectral, DFT and biological studies on macrocyclic mononuclear ruthenium (II) complexes

    NASA Astrophysics Data System (ADS)

    Muthukkumar, M.; Kamal, C.; Venkatesh, G.; Kaya, C.; Kaya, S.; Enoch, Israel V. M. V.; Vennila, P.; Rajavel, R.

    2017-11-01

    Macrocyclic mononuclear ruthenium (II) complexes have been synthesized by condensation method [Ru (L1, L2, L3) Cl2] L1 = (C36 H31 N9), L2= (C42H36N8), L3= (C32H32 N8)]. These ruthenium complexes have been established by elemental analyses and spectroscopic techniques (Fourier transform infrared spectroscopy (FT-IR), 1H- nuclear magnetic resonance (NMR), 13C- NMR and Electrospray ionization mass spectrometry (ESI-MS)). The coordination mode of the ligand has been confirmed and the octahedral geometry around the ruthenium ion has been revealed. Binding affinity and binding mode of ruthenium (II) complexes with Bovine serum Albumin (BSA) have been characterized by Emission spectra analysis. UV-Visible and fluorescence spectroscopic techniques have also been utilized to examine the interaction between ligand and its complexes L1, L2, & L3 with BSA. Chemical parameters and molecular structure of Ru (II) complexes L1H, L2H, & L3H have been determined by DFT coupled with B3LYP/6-311G** functional in both the gaseous and aqueous phases.

  18. Investigating the Dissolution Performance of Amorphous Solid Dispersions Using Magnetic Resonance Imaging and Proton NMR.

    PubMed

    Tres, Francesco; Coombes, Steven R; Phillips, Andrew R; Hughes, Leslie P; Wren, Stephen A C; Aylott, Jonathan W; Burley, Jonathan C

    2015-09-10

    We have investigated the dissolution performance of amorphous solid dispersions of poorly water-soluble bicalutamide in a Kollidon VA64 polymeric matrix as a function of the drug loading (5% vs. 30% bicalutamide). A combined suite of state-of-the-art analytical techniques were employed to obtain a clear picture of the drug release, including an integrated magnetic resonance imaging UV-Vis flow cell system and 1H-NMR. Off-line 1H-NMR was used for the first time to simultaneously measure the dissolution profiles and rates of both the drug and the polymer from a solid dispersion. MRI and 1H-NMR data showed that the 5% drug loading compact erodes linearly, and that bicalutamide and Kollidon VA64 are released at approximately the same rate from the molecular dispersion. For the 30% extrudate, data indicated a slower water ingress into the compact which corresponds to a slower dissolution rate of both bicalutamide and Kollidon VA64.

  19. Puupehenol, a potent antioxidant antimicrobial meroterpenoid from a Hawaiian deep-water Dactylospongia sp. sponge.

    PubMed

    Hagiwara, Kehau; Garcia Hernandez, Jaaziel E; Harper, Mary Kay; Carroll, Anthony; Motti, Cherie A; Awaya, Jonathan; Nguyen, Hoang-Yen; Wright, Anthony D

    2015-02-27

    From the organic extract of a deep-water Hawaiian sponge Dactylospongia sp., a new potent antioxidant and antimicrobial meroterpenoid, puupehenol (1), was isolated. The structure of 1 was determined using spectroscopic techniques ((1)H and (13)C NMR, MS, IR, UV, [α]D). The known compound puupehenone (2) was also isolated and suggested as a probable artifact of the isolation procedures. Complete unambiguous (1)H and (13)C NMR data are provided for compounds 1 and 2. Bioassays performed with 1 and 2 showed them both to be very effective antioxidants and to have antimicrobial properties.

  20. Solid-state NMR adiabatic TOBSY sequences provide enhanced sensitivity for multidimensional high-resolution magic-angle-spinning 1H MR spectroscopy

    NASA Astrophysics Data System (ADS)

    Andronesi, Ovidiu C.; Mintzopoulos, Dionyssios; Struppe, Jochem; Black, Peter M.; Tzika, A. Aria

    2008-08-01

    We propose a solid-state NMR method that maximizes the advantages of high-resolution magic-angle-spinning (HRMAS) applied to intact biopsies when compared to more conventional liquid-state NMR approaches. Theoretical treatment, numerical simulations and experimental results on intact human brain biopsies are presented. Experimentally, it is proven that an optimized adiabatic TOBSY (TOtal through Bond correlation SpectroscopY) solid-state NMR pulse sequence for two-dimensional 1H- 1H homonuclear scalar-coupling longitudinal isotropic mixing provides a 20%-50% improvement in signal-to-noise ratio relative to its liquid-state analogue TOCSY (TOtal Correlation SpectroscopY). For this purpose we have refined the C9151 symmetry-based 13C TOBSY pulse sequence for 1H MRS use and compared it to MLEV-16 TOCSY sequence. Both sequences were rotor-synchronized and implemented using WURST-8 adiabatic inversion pulses. As discussed theoretically and shown in simulations, the improved magnetization-transfer comes from actively removing residual dipolar couplings from the average Hamiltonian. Importantly, the solid-state NMR techniques are tailored to perform measurements at low temperatures where sample degradation is reduced. This is the first demonstration of such a concept for HRMAS metabolic profiling of disease processes, including cancer, from biopsies requiring reduced sample degradation for further genomic analysis.

  1. Thermal heterogeneity within aqueous materials quantified by 1H NMR spectroscopy: Multiparametric validation in silico and in vitro

    NASA Astrophysics Data System (ADS)

    Lutz, Norbert W.; Bernard, Monique

    2018-02-01

    We recently suggested a new paradigm for statistical analysis of thermal heterogeneity in (semi-)aqueous materials by 1H NMR spectroscopy, using water as a temperature probe. Here, we present a comprehensive in silico and in vitro validation that demonstrates the ability of this new technique to provide accurate quantitative parameters characterizing the statistical distribution of temperature values in a volume of (semi-)aqueous matter. First, line shape parameters of numerically simulated water 1H NMR spectra are systematically varied to study a range of mathematically well-defined temperature distributions. Then, corresponding models based on measured 1H NMR spectra of agarose gel are analyzed. In addition, dedicated samples based on hydrogels or biological tissue are designed to produce temperature gradients changing over time, and dynamic NMR spectroscopy is employed to analyze the resulting temperature profiles at sub-second temporal resolution. Accuracy and consistency of the previously introduced statistical descriptors of temperature heterogeneity are determined: weighted median and mean temperature, standard deviation, temperature range, temperature mode(s), kurtosis, skewness, entropy, and relative areas under temperature curves. Potential and limitations of this method for quantitative analysis of thermal heterogeneity in (semi-)aqueous materials are discussed in view of prospective applications in materials science as well as biology and medicine.

  2. Application of high-resolution, two-dimensional 1H and 13C nuclear magnetic resonance techniques to the characterization of lipid oxidation products in autoxidized linoleoyl/linolenoylglycerols.

    PubMed

    Silwood, C J; Grootveld, M

    1999-07-01

    Subjection of polyunsaturated fatty acid (PUFA)-rich culinary oils to standard frying episodes generates a range of lipid oxidation products (LOP), including saturated and alpha,beta-unsaturated aldehydes which arise from the thermally induced fragmentation of conjugated hydroperoxydiene precursors. Since such LOP are damaging to human health, we have employed high-resolution, two-dimensional 1H-1H relayed coherence transfer, 1H-1H total correlation, 1H-13C heteronuclear multiple quantum correlation, and 1H-1H J-resolved nuclear magnetic resonance (NMR) spectroscopic techniques to further elucidate the molecular structures of these components present in (i) a model linoleoylglycerol compound (1,3-dilinolein) allowed to autoxidize at ambient temperature and (ii) PUFA-rich culinary oils subjected to repeated frying episodes. The above techniques readily facilitate the resolution of selected vinylic and aldehydic resonances of LOP which appear as complex overlapping patterns in conventional one-dimensional spectra, particularly when employed in combination with solvent-induced spectral shift modifications. Hence, much useful multi-component information regarding the identity and/or classification of glycerol-bound conjugated hydroperoxydiene and hydroxydiene adducts, and saturated and alpha,beta-unsaturated aldehydes, present in autoxidized PUFA matrices is provided by these NMR methods. Such molecular information is of much value to researchers investigating the deleterious health effects of LOP available in the diet.

  3. Spectroscopy 101: A Practical Introduction to Spectroscopy and Analysis for Undergraduate Organic Chemistry Laboratories

    ERIC Educational Resources Information Center

    Morrill, Lucas A.; Kammeyer, Jacquelin K.; Garg, Neil K.

    2017-01-01

    An undergraduate organic chemistry laboratory that provides an introduction to various spectroscopic techniques is reported. Whereas organic spectroscopy is most often learned and practiced in the context of reaction analyses, this laboratory experiment allows students to become comfortable with [superscript 1]H NMR, [superscript 13]C NMR, and IR…

  4. Photochemical Degradation of the Anticancer Drug Bortezomib by V-UV/UV (185/254 nm) Investigated by (1)H NMR Fingerprinting: A Way to Follow Aromaticity Evolution.

    PubMed

    Martignac, Marion; Balayssac, Stéphane; Gilard, Véronique; Benoit-Marquié, Florence

    2015-06-18

    We have investigated the removal of bortezomib, an anticancer drug prescribed in multiple myeloma, using the photochemical advanced oxidation process of V-UV/UV (185/254 nm). We used two complementary analytical techniques to follow the removal rate of bortezomib. Nuclear magnetic resonance (NMR) is a nonselective method requiring no prior knowledge of the structures of the byproducts and permits us to provide a spectral signature (fingerprinting approach). This untargeted method provides clues to the molecular structure changes and information on the degradation of the parent drug during the irradiation process. This holistic NMR approach could provide information for monitoring aromaticity evolution. We use liquid chromatography, coupled with high-resolution mass spectrometry (LC-MS), to correlate results obtained by (1)H NMR and for accurate identification of the byproducts, in order to understand the mechanistic degradation pathways of bortezomib. The results show that primary byproducts come from photoassisted deboronation of bortezomib at 254 nm. A secondary byproduct of pyrazinecarboxamide was also identified. We obtained a reliable correlation between these two analytical techniques.

  5. A coumarin-pyrazolone based fluorescent probe for selective colorimetric and fluorimetric fluoride detection: Synthesis, spectroscopic properties and DFT calculations

    NASA Astrophysics Data System (ADS)

    Babür, Banu; Seferoğlu, Nurgül; Seferoğlu, Zeynel

    2018-06-01

    A novel coumarin based fluorescence anion chemosensor (P-1) bearing pyrazolone as a receptoric part was synthesized and characterized by using FT-IR, 1H/13C NMR and HRMS for the purpose of recognition of anions in DMSO. P-1 has four tautomeric structures and the most stable tautomeric form of P-1 was determined experimentally and theoretically. The chemosensor P-1 consists two receptoric parts as free amide Nsbnd H and enamine Nsbnd H which is stabilized intramolecular H-bonding with coumarin carbonyl oxygen. P-1 interacts selectively with fluoride anion via amide Nsbnd H. The selectivity and sensitivity of probe to various anions were determined with spectrophotometric and 1H NMR titration techniques as experimentally and all results were also explained by theoretical calculations.

  6. Improved classification accuracy in 1- and 2-dimensional NMR metabolomics data using the variance stabilising generalised logarithm transformation

    PubMed Central

    Parsons, Helen M; Ludwig, Christian; Günther, Ulrich L; Viant, Mark R

    2007-01-01

    Background Classifying nuclear magnetic resonance (NMR) spectra is a crucial step in many metabolomics experiments. Since several multivariate classification techniques depend upon the variance of the data, it is important to first minimise any contribution from unwanted technical variance arising from sample preparation and analytical measurements, and thereby maximise any contribution from wanted biological variance between different classes. The generalised logarithm (glog) transform was developed to stabilise the variance in DNA microarray datasets, but has rarely been applied to metabolomics data. In particular, it has not been rigorously evaluated against other scaling techniques used in metabolomics, nor tested on all forms of NMR spectra including 1-dimensional (1D) 1H, projections of 2D 1H, 1H J-resolved (pJRES), and intact 2D J-resolved (JRES). Results Here, the effects of the glog transform are compared against two commonly used variance stabilising techniques, autoscaling and Pareto scaling, as well as unscaled data. The four methods are evaluated in terms of the effects on the variance of NMR metabolomics data and on the classification accuracy following multivariate analysis, the latter achieved using principal component analysis followed by linear discriminant analysis. For two of three datasets analysed, classification accuracies were highest following glog transformation: 100% accuracy for discriminating 1D NMR spectra of hypoxic and normoxic invertebrate muscle, and 100% accuracy for discriminating 2D JRES spectra of fish livers sampled from two rivers. For the third dataset, pJRES spectra of urine from two breeds of dog, the glog transform and autoscaling achieved equal highest accuracies. Additionally we extended the glog algorithm to effectively suppress noise, which proved critical for the analysis of 2D JRES spectra. Conclusion We have demonstrated that the glog and extended glog transforms stabilise the technical variance in NMR metabolomics datasets. This significantly improves the discrimination between sample classes and has resulted in higher classification accuracies compared to unscaled, autoscaled or Pareto scaled data. Additionally we have confirmed the broad applicability of the glog approach using three disparate datasets from different biological samples using 1D NMR spectra, 1D projections of 2D JRES spectra, and intact 2D JRES spectra. PMID:17605789

  7. Structure elucidation of organic compounds from natural sources using 1D and 2D NMR techniques

    NASA Astrophysics Data System (ADS)

    Topcu, Gulacti; Ulubelen, Ayhan

    2007-05-01

    In our continuing studies on Lamiaceae family plants including Salvia, Teucrium, Ajuga, Sideritis, Nepeta and Lavandula growing in Anatolia, many terpenoids, consisting of over 50 distinct triterpenoids and steroids, and over 200 diterpenoids, several sesterterpenoids and sesquiterpenoids along with many flavonoids and other phenolic compounds have been isolated. For Salvia species abietanes, for Teucrium and Ajuga species neo-clerodanes for Sideritis species ent-kaurane diterpenes are characteristic while nepetalactones are specific for Nepeta species. In this review article, only some interesting and different type of skeleton having constituents, namely rearranged, nor- or rare diterpenes, isolated from these species will be presented. For structure elucidation of these natural diterpenoids intensive one- and two-dimensional NMR techniques ( 1H, 13C, APT, DEPT, NOE/NOESY, 1H- 1H COSY, HETCOR, COLOC, HMQC/HSQC, HMBC, SINEPT) were used besides mass and some other spectroscopic methods.

  8. Assessment of 1H NMR-based metabolomics analysis for normalization of urinary metals against creatinine.

    PubMed

    Cassiède, Marc; Nair, Sindhu; Dueck, Meghan; Mino, James; McKay, Ryan; Mercier, Pascal; Quémerais, Bernadette; Lacy, Paige

    2017-01-01

    Proton nuclear magnetic resonance ( 1 H NMR, or NMR) spectroscopy and inductively coupled plasma-mass spectrometry (ICP-MS) are commonly used for metabolomics and metal analysis in urine samples. However, creatinine quantification by NMR for the purpose of normalization of urinary metals has not been validated. We assessed the validity of using NMR analysis for creatinine quantification in human urine samples in order to allow normalization of urinary metal concentrations. NMR and ICP-MS techniques were used to measure metabolite and metal concentrations in urine samples from 10 healthy subjects. For metabolite analysis, two magnetic field strengths (600 and 700MHz) were utilized. In addition, creatinine concentrations were determined by using the Jaffe method. Creatinine levels were strongly correlated (R 2 =0.99) between NMR and Jaffe methods. The NMR spectra were deconvoluted with a target database containing 151 metabolites that are present in urine. A total of 50 metabolites showed good correlation (R 2 =0.7-1.0) at 600 and 700MHz. Metal concentrations determined after NMR-measured creatinine normalization were comparable to previous reports. NMR analysis provided robust urinary creatinine quantification, and was sufficient for normalization of urinary metal concentrations. We found that NMR-measured creatinine-normalized urinary metal concentrations in our control subjects were similar to general population levels in Canada and the United Kingdom. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Application of diffusion-edited and solvent suppression ¹H-NMR to the direct analysis of markers in valerian-hop liquid herbal products.

    PubMed

    Prieto, Jose M; Mellinas-Gomez, Maria; Zloh, Mire

    2016-01-01

    The rising trend to consume herbal products for the treatment and/or prevention of minor ailments together with their chemical and pharmacological complexity means there is an urgent need to develop new approaches to their quality and stability. This work looks at the application of one-dimensional diffusion-edited (1)H-NMR spectroscopy (1D DOSY) and (1)H-NMR with suppression of the ethanol and water signals to the characterisation of quality and stability markers in multi-component herbal medicines/food supplements. The experiments were performed with commercial tinctures of Valeriana officinalis L. (valerian), expired and non-expired, as well as its combination with Hummulus lupulus L. (hops), which is one of the most popular blends of relaxant herbs. These techniques did not require purification or evaporation of components for the qualitative analysis of the mixture, but only the addition of D2 O and TSP. The best diagnostic signals were found at δ 7 ppm (H-11, valerenic acid), δ 4.2 ppm (H-1, hydroxyvalerenic acid) and δ 1.5-1.8 ppm (methyl groups in prenylated moieties, α-acids/prenylated flavones). This work concludes on the potential value of 1D DOSY (1)H-NMR to provide additional assurance of quality in complex natural mixtures. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Solid-state NMR spectroscopy and first-principles calculations: a powerful combination of tools for the investigation of polymorphism of indomethacin.

    PubMed

    Ukmar, Tina; Kaučič, Venčeslav; Mali, Gregor

    2011-09-01

    Two polymorphs of indomethacin were investigated by 1H MAS and CRAMPS, and 1H-13C CPMAS and HETCOR NMR techniques. The obtained spectra clearly elucidated the structural differences between the polymorphs, especially the different numbers of indomethacin molecules within the crystallographic asymmetric units and the different schemes of hydrogen bonding among the molecules. Known structure of indomethacin gamma was used in first-principles DFT/GIPAW calculations of 1H and 13C isotropic chemical shifts. Two packages, freely available Quantum Espresso and commercially available CASTEP, were employed. They both provided values that excellently agreed with the measured values, and thus allowed unambiguous assignment of 1H and 13C spectral lines.

  11. A discrete three-layer stack aggregate of a linear porphyrin tetramer: solution-phase structure elucidation by NMR and X-ray scattering.

    PubMed

    Hutin, Marie; Sprafke, Johannes K; Odell, Barbara; Anderson, Harry L; Claridge, Tim D W

    2013-08-28

    Formation of stacked aggregates can dramatically alter the properties of aromatic π-systems, yet the solution-phase structure elucidation of these aggregates is often impossible because broad distributions of species are formed, giving uninformative spectroscopic data. Here, we show that a butadiyne-linked zinc porphyrin tetramer forms a remarkably well-defined aggregate, consisting of exactly three molecules, in a parallel stacked arrangement (in chloroform at room temperature; concentration 1 mM-0.1 μM). The aggregate has a mass of 14.7 kDa. Unlike most previously reported aggregates, it gives sharp NMR resonances and aggregation is in slow exchange on the NMR time scale. The structure was elucidated using a range of NMR techniques, including diffusion-editing, (1)H-(29)Si HMBC, (1)H-(1)H COSY, TOCSY and NOESY, and (1)H-(13)C edited HSQC spectroscopy. Surprisingly, the (1)H-(1)H COSY spectrum revealed many long-range residual dipolar couplings (RDCs), and detailed analysis of magnetic field-induced (1)H-(13)C RDCs provided further evidence for the structural model. The size and shape of the aggregate is supported by small-angle X-ray scattering (SAXS) data. It adopts a geometry that maximizes van der Waals contact between the porphyrins, while avoiding clashes between side chains. The need for interdigitation of the side chains prevents formation of stacks consisting of more than three layers. Although a detailed analysis has only been carried out for one compound (the tetramer), comparison with the NMR spectra of other oligomers indicates that they form similar three-layer stacks. In all cases, aggregation can be prevented by addition of pyridine, although at low pyridine concentrations, disaggregation takes many hours to reach equilibrium.

  12. Synthesis, characterization stereochemistry and anti-bacterial evaluation of certain N-acyl-c-3,t-3-dimethyl-r-2,c-6-diphenylpiperidin-4-ones

    NASA Astrophysics Data System (ADS)

    Ponnuswamy, S.; Kayalvizhi, R.; Jamesh, M.; Uma Maheswari, J.; Thenmozhi, M.; Ponnuswamy, M. N.

    2016-09-01

    A new series of N-acyl-c-3,t-3-dimethyl-r-2,c-6-diphenylpiperidin-4-ones 2-6 has been synthesized and characterized using IR, mass, 1H, 13C, DEPT and 2D (COSY and HSQC) NMR spectral techniques. The NMR spectral data indicate that the N-acylpiperidin-4-ones 2-6 prefer to exist in a distorted boat conformation B1 with coplanar orientation of N-C=O moiety. The stereodynamics of these systems have been studied by recording the dynamic 1H NMR spectra of compound 4, and the energy barrier for N-CO rotation is determined to be 52.75 kJ/mol. Furthermore the compounds 1-5 show significant antibacterial activity.

  13. Metabolic profiling and predicting the free radical scavenging activity of guava (Psidium guajava L.) leaves according to harvest time by 1H-nuclear magnetic resonance spectroscopy.

    PubMed

    Kim, So-Hyun; Cho, Somi K; Hyun, Sun-Hee; Park, Hae-Eun; Kim, Young-Suk; Choi, Hyung-Kyoon

    2011-01-01

    Guava leaves were classified and the free radical scavenging activity (FRSA) evaluated according to different harvest times by using the (1)H-NMR-based metabolomic technique. A principal component analysis (PCA) of (1)H-NMR data from the guava leaves provided clear clusters according to the harvesting time. A partial least squares (PLS) analysis indicated a correlation between the metabolic profile and FRSA. FRSA levels of the guava leaves harvested during May and August were high, and those leaves contained higher amounts of 3-hydroxybutyric acid, acetic acid, glutamic acid, asparagine, citric acid, malonic acid, trans-aconitic acid, ascorbic acid, maleic acid, cis-aconitic acid, epicatechin, protocatechuic acid, and xanthine than the leaves harvested during October and December. Epicatechin and protocatechuic acid among those compounds seem to have enhanced FRSA of the guava leaf samples harvested in May and August. A PLS regression model was established to predict guava leaf FRSA at different harvesting times by using a (1)H-NMR data set. The predictability of the PLS model was then tested by internal and external validation. The results of this study indicate that (1)H-NMR-based metabolomic data could usefully characterize guava leaves according to their time of harvesting.

  14. Holistic Analysis Enhances the Description of Metabolic Complexity in Dietary Natural Products1234

    PubMed Central

    Kulakowski, Daniel; Lankin, David C; McAlpine, James B; Chen, Shao-Nong

    2016-01-01

    In the field of food and nutrition, complex natural products (NPs) are typically obtained from cells/tissues of diverse organisms such as plants, mushrooms, and animals. Among them, edible fruits, grains, and vegetables represent most of the human diet. Because of an important dietary dependence, the comprehensive metabolomic analysis of dietary NPs, performed holistically via the assessment of as many metabolites as possible, constitutes a fundamental building block for understanding the human diet. Both mass spectrometry (MS) and nuclear magnetic resonance (NMR) are important complementary analytic techniques, covering a wide range of metabolites at different concentrations. Particularly, 1-dimensional 1H-NMR offers an unbiased overview of all metabolites present in a sample without prior knowledge of its composition, thereby leading to an untargeted analysis. In the past decade, NMR-based metabolomics in plant and food analyses has evolved considerably. The scope of the present review, covering literature of the past 5 y, is to address the relevance of 1H-NMR–based metabolomics in food plant studies, including a comparison with MS-based techniques. Major applications of NMR-based metabolomics for the quality control of dietary NPs and assessment of their nutritional values are presented. PMID:27180381

  15. PSYCHE Pure Shift NMR Spectroscopy.

    PubMed

    Foroozandeh, Mohammadali; Morris, Gareth; Nilsson, Mathias

    2018-03-13

    Broadband homodecoupling techniques in NMR, also known as "pure shift" methods, aim to enhance spectral resolution by suppressing the effects of homonuclear coupling interactions to turn multiplet signals into singlets. Such techniques typically work by selecting a subset of "active" nuclear spins to observe, and selectively inverting the remaining, "passive", spins to reverse the effects of coupling. Pure Shift Yielded by Chirp Excitation (PSYCHE) is one such method; it is relatively recent, but has already been successfully implemented in a range of different NMR experiments. Paradoxically, PSYCHE is one of the trickiest of pure shift NMR techniques to understand but one of the easiest to use. Here we offer some insights into theoretical and practical aspects of the method, and into the effects and importance of the experimental parameters. Some recent improvements that enhance the spectral purity of PSYCHE spectra will be presented, and some experimental frameworks including examples in 1D and 2D NMR spectroscopy, for the implementation of PSYCHE will be introduced. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Is Low-field NMR a Complementary Tool to GC-MS in Quality Control of Essential Oils? A Case Study: Patchouli Essential Oil.

    PubMed

    Krause, Andre; Wu, Yu; Tian, Runtao; van Beek, Teris A

    2018-04-24

    High-field NMR is an expensive and important quality control technique. In recent years, cheaper and simpler low-field NMR has become available as a new quality control technique. In this study, 60 MHz 1 H-NMR was compared with GC-MS and refractometry for the detection of adulteration of essential oils, taking patchouli essential oil as a test case. Patchouli essential oil is frequently adulterated, even today. In total, 75 genuine patchouli essential oils, 10 commercial patchouli essential oils, 10 other essential oils, 17 adulterants, and 1 patchouli essential oil, spiked at 20% with those adulterants, were measured. Visual inspection of the NMR spectra allowed for easy detection of 14 adulterants, while gurjun and copaiba balsams proved difficult and one adulterant could not be detected. NMR spectra of 10 random essential oils differed not only strongly from patchouli essential oil but also from one another, suggesting that fingerprinting by low-field NMR is not limited to patchouli essential oil. Automated chemometric evaluation of NMR spectra was possible by similarity analysis (Mahalanobis distance) based on the integration from 0.1 - 8.1 ppm in 0.01 ppm increments. Good quality patchouli essential oils were recognised as well as 15 of 17 deliberate adulterations. Visual qualitative inspection by GC-MS allowed for the detection of all volatile adulterants. Nonvolatile adulterants, and all but one volatile adulterant, could be detected by semiquantitation. Different chemometric approaches showed satisfactory results. Similarity analyses were difficult with nonvolatile adulterants. Refractive index measurements could detect only 8 of 17 adulterants. Due to advantages such as simplicity, rapidity, reproducibility, and ability to detect nonvolatile adulterants, 60 MHz 1 H-NMR is complimentary to GC-MS for quality control of essential oils. Georg Thieme Verlag KG Stuttgart · New York.

  17. Molecular structure, NMR, UV-Visible, vibrational spectroscopic and HOMO, LUMO analysis of (E)-1-(2, 6-bis (4-methoxyphenyl)-3, 3-dimethylpiperidine-4-ylidene)-2-(3-(3, 5-dimethyl-1H-pyrazol-1-yl) pyrazin-2-yl) hydrazine by DFT method

    NASA Astrophysics Data System (ADS)

    Alphonsa, A. Therasa; Loganathan, C.; Anand, S. Athavan Alias; Kabilan, S.

    2016-02-01

    We have synthesized (E)-1-(2, 6-bis (4-methoxyphenyl)-3, 3-dimethylpiperidine-4-ylidene)-2-(3-(3, 5-dimethyl-1H-pyrazol-1-yl) pyrazin-2-yl) hydrazine (PM6). It was characterized using FT-IR, FT-Raman, 1H NMR, 13C NMR techniques. To interpret the experimental data, ab initio computations of the vibrational frequencies were carried out using the Gaussian 09 program followed by the full optimizations done using Density Functional Theory (DFT) at B3LYP/6-311 G(d,p) level. The combined use of experiments and computations allowed a firm assignment of the majority of observed bands for the compound. The calculated stretching frequencies have been found to be in good agreement with the experimental frequencies. The electronic and charge transfer properties have been explained on the basis of highest occupied molecular orbitals (HOMOs), lowest unoccupied molecular orbitals (LUMOs) and density of states (DOS). The absorption spectra have been computed by using time dependent density functional theory (TD-DFT). 1H and 13C NMR spectra were recorded and 1H and 13C NMR chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method. From the optimized geometry of the molecule, molecular electrostatic potential (MEP) distribution, frontier molecular orbitals (FMOs) of the title compound have been calculated in the ground state theoretically. The theoretical results showed good agreement with the experimental values.

  18. Proton-Based Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy.

    PubMed

    Zhang, Rongchun; Mroue, Kamal H; Ramamoorthy, Ayyalusamy

    2017-04-18

    Protons are vastly abundant in a wide range of exciting macromolecules and thus can be a powerful probe to investigate the structure and dynamics at atomic resolution using solid-state NMR (ssNMR) spectroscopy. Unfortunately, the high signal sensitivity, afforded by the high natural-abundance and high gyromagnetic ratio of protons, is greatly compromised by severe line broadening due to the very strong 1 H- 1 H dipolar couplings. As a result, protons are rarely used, in spite of the desperate need for enhancing the sensitivity of ssNMR to study a variety of systems that are not amenable for high resolution investigation using other techniques including X-ray crystallography, cryo-electron microscopy, and solution NMR spectroscopy. Thanks to the remarkable improvement in proton spectral resolution afforded by the significant advances in magic-angle-spinning (MAS) probe technology, 1 H ssNMR spectroscopy has recently attracted considerable attention in the structural and dynamics studies of various molecular systems. However, it still remains a challenge to obtain narrow 1 H spectral lines, especially from proteins, without resorting to deuteration. In this Account, we review recent proton-based ssNMR strategies that have been developed in our laboratory to further improve proton spectral resolution without resorting to chemical deuteration for the purposes of gaining atomistic-level insights into molecular structures of various crystalline solid systems, using small molecules and peptides as illustrative examples. The proton spectral resolution enhancement afforded by the ultrafast MAS frequencies up to 120 kHz is initially discussed, followed by a description of an ensemble of multidimensional NMR pulse sequences, all based on proton detection, that have been developed to obtain in-depth information from dipolar couplings and chemical shift anisotropy (CSA). Simple single channel multidimensional proton NMR experiments could be performed to probe the proximity of protons for structure determination using 1 H- 1 H dipolar couplings and to evaluate the changes in chemical environments as well as the relative orientation to the external magnetic field using proton CSA. Due to the boost in signal sensitivity enabled by proton detection under ultrafast MAS, by virtue of high proton natural abundance and gyromagnetic ratio, proton-detected multidimensional experiments involving low-γ nuclei can now be accomplished within a reasonable time, while the higher dimension also offers additional resolution enhancement. In addition, the application of proton-based ssNMR spectroscopy under ultrafast MAS in various challenging and crystalline systems is also presented. Finally, we briefly discuss the limitations and challenges pertaining to proton-based ssNMR spectroscopy under ultrafast MAS conditions, such as the presence of high-order dipolar couplings, friction-induced sample heating, and limited sample volume. Although there are still a number of challenges that must be circumvented by further developments in radio frequency pulse sequences, MAS probe technology and approaches to prepare NMR-friendly samples, proton-based ssNMR has already gained much popularity in various research domains, especially in proteins where uniform or site-selective deuteration can be relatively easily achieved. In addition, implementation of the recently developed fast data acquisition approaches would also enable further developments in the design and applications of proton-based ultrafast MAS multidimensional ssNMR techniques.

  19. NMR Techniques in Metabolomic Studies: A Quick Overview on Examples of Utilization.

    PubMed

    Kruk, Joanna; Doskocz, Marek; Jodłowska, Elżbieta; Zacharzewska, Anna; Łakomiec, Joanna; Czaja, Kornelia; Kujawski, Jacek

    2017-01-01

    Metabolomics is a rapidly developing branch of science that concentrates on identifying biologically active molecules with potential biomarker properties. To define the best biomarkers for diseases, metabolomics uses both models (in vitro, animals) and human, as well as, various techniques such as mass spectroscopy, gas chromatography, liquid chromatography, infrared and UV-VIS spectroscopy and nuclear magnetic resonance. The last one takes advantage of the magnetic properties of certain nuclei, such as 1 H, 13 C, 31 P, 19 F, especially their ability to absorb and emit energy, what is crucial for analyzing samples. Among many spectroscopic NMR techniques not only one-dimensional (1D) techniques are known, but for many years two-dimensional (2D, for example, COSY, DOSY, JRES, HETCORE, HMQS), three-dimensional (3D, DART-MS, HRMAS, HSQC, HMBC) and solid-state NMR have been used. In this paper, authors taking apart fundamental division of nuclear magnetic resonance techniques intend to shown their wide application in metabolomic studies, especially in identifying biomarkers.

  20. Band selective small flip angle COSY: a simple experiment for the analyses of 1H NMR spectra of small chiral molecules.

    PubMed

    Prabhu, Uday Ramesh; Suryaprakash, N

    2008-12-01

    The NMR spectroscopic discrimination of enantiomers in the chiral liquid crystalline solvent is more often carried out using (2)H detection in its natural abundance. The employment of (1)H detection for such a purpose is severely hampered due to significant loss of resolution in addition to indistinguishable overlap of the spectra from the two enantiomers. This study demonstrates that the band selected small flip angle homonuclear correlation experiment is a simple and robust technique that provides unambiguous discrimination, very high spectral resolution, reduced multiplicity of transitions, relative signs of the couplings and enormous saving of instrument time.

  1. Automatic 1H-NMR Screening of Fatty Acid Composition in Edible Oils

    PubMed Central

    Castejón, David; Fricke, Pascal; Cambero, María Isabel; Herrera, Antonio

    2016-01-01

    In this work, we introduce an NMR-based screening method for the fatty acid composition analysis of edible oils. We describe the evaluation and optimization needed for the automated analysis of vegetable oils by low-field NMR to obtain the fatty acid composition (FAC). To achieve this, two scripts, which automatically analyze and interpret the spectral data, were developed. The objective of this work was to drive forward the automated analysis of the FAC by NMR. Due to the fact that this protocol can be carried out at low field and that the complete process from sample preparation to printing the report only takes about 3 min, this approach is promising to become a fundamental technique for high-throughput screening. To demonstrate the applicability of this method, the fatty acid composition of extra virgin olive oils from various Spanish olive varieties (arbequina, cornicabra, hojiblanca, manzanilla, and picual) was determined by 1H-NMR spectroscopy according to this protocol. PMID:26891323

  2. Cytotoxic withanolides from Physalis angulata L.

    PubMed

    He, Qing-Ping; Ma, Lei; Luo, Jie-Ying; He, Fu-Yuan; Lou, Li-Guang; Hu, Li-Hong

    2007-03-01

    Four new withanolides, physagulins L-O (1-4), were isolated from the MeOH extract of the aerial parts of Physalis angulata L. (Solanaceae), together with seven known withanolides, compounds 5-11. Their structures were determined by spectroscopic techniques, including 1H-, 13C-NMR (DEPT), and 2D-NMR (HMBC, HMQC, 1H,1H-COSY, NOESY) experiments, as well as by HR-MS. All eleven compounds were tested for their antiproliferative activities towards human colorectal-carcinoma (HCT-116) and human non-small-cell lung-cancer (NCI-H460) cells. Compound 5 exhibited the highest anticancer activity against the HCT-116 cell line, with an IC50 value of 1.64+/-0.06 microM. Compound 9 exhibited the highest cytotoxicity towards the NCI-H460 cell line, with an IC50 value of 0.43+/-0.02 microM.

  3. Zinc ascorbate: a combined experimental and computational study for structure elucidation

    NASA Astrophysics Data System (ADS)

    Ünaleroǧlu, C.; Zümreoǧlu-Karan, B.; Mert, Y.

    2002-03-01

    The structure of Zn(HA)2·4H2O (HA=ascorbate) has been examined by a number of techniques (13C NMR, 1H NMR, IR, EI/MS and TGA) and also modeled by the semi-empirical PM3 method. The experimental and computational results agreed on a five-fold coordination around Zn(II) where one ascorbate binds monodentately, the other bidentately and two water molecules occupy the remaining sites of a distorted square pyramid.

  4. Directly and indirectly detected through-bond heteronuclear correlation solid-state NMR spectroscopy under fast MAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Kanmi; Pruski, Marek

    Two-dimensional through-bond {sup 1}H({sup 13}C) solid-state NMR experiments utilizing fast magic angle spinning (MAS) and homonuclear multipulse {sup 1}H decoupling are presented. Remarkable efficiency of polarization transfer can be achieved at MAS rates exceeding 40 kHz, which is instrumental in these measurements. Schemes utilizing direct and indirect detection of heteronuclei are compared in terms of resolution and sensitivity. A simple procedure for optimization of {sup 1}H homonuclear decoupling sequences under these conditions is proposed. The capabilities of these techniques were confirmed on two naturally abundant solids, tripeptide N-formyl-l-methionyl-l-leucyl-l-phenylalanine (f-MLF-OH) and brown coal.

  5. Directly and indirectly detected through-bond heteronuclear correlation solid-state NMR spectroscopy under fast MAS

    NASA Astrophysics Data System (ADS)

    Mao, Kanmi; Pruski, Marek

    2009-12-01

    Two-dimensional through-bond 1H{ 13C} solid-state NMR experiments utilizing fast magic angle spinning (MAS) and homonuclear multipulse 1H decoupling are presented. Remarkable efficiency of polarization transfer can be achieved at MAS rates exceeding 40 kHz, which is instrumental in these measurements. Schemes utilizing direct and indirect detection of heteronuclei are compared in terms of resolution and sensitivity. A simple procedure for optimization of 1H homonuclear decoupling sequences under these conditions is proposed. The capabilities of these techniques were confirmed on two naturally abundant solids, tripeptide N- formyl- L-methionyl- L-leucyl- L-phenylalanine (f-MLF-OH) and brown coal.

  6. Comprehensive non-targeted analysis of contaminated groundwater of a former ammunition destruction site using 1H-NMR and HPLC-SPE-NMR/TOF-MS.

    PubMed

    Godejohann, Markus; Heintz, Lea; Daolio, Cristina; Berset, Jean-Daniel; Muff, Daniel

    2009-09-15

    The aim of the present study was to explore the capabilities of the combination of 1H NMR (proton nuclear magnetic resonance) mixture analysis and HPLC-SPE-NMR/TOF-MS (high-performance liquid chromatography coupled to solid-phase extraction and nuclear magnetic resonance and time-of-flight mass spectrometry) for the characterization of xenobiotic contaminants in groundwater samples. As an example, solid-phase extracts of two groundwater samples taken from a former ammunition destruction site in Switzerland were investigated. 1H NMR spectra of postcolumn SPE enriched compounds, together with accurate mass measurements, allowed the structural elucidation of unknowns. This untargeted approach allowed us to identify expected residues of explosives such as 2,4,6-trinitrotoluene (2,4,6-TNT), Hexogen (RDX) and Octogen (HMX), degradation products of TNT (1,3,5-trinitrobenzene (1,3,5-TNB), 2-amino-4,6-dinitrotoluene (2-A-4,6-DNT), 3,5-dinitrophenol (3,5-DNP), 3,5-dinitroaniline (3,5-DNA), 2,6-dinitroanthranite, and 2-Hydroxy-4,6-dinitrobenzonitrile), benzoic acid, Bisphenol A (a known endocrine disruptor compound), and some toxicologically relevant additives for propelling charges: Centralite I (1,3-diethyl-1,3-diphenylurea), DPU (N,N-diphenylurethane), N,N-diphenylcarbamate (Acardite II), and N-methyl-N-phenylurethane. To our knowledge, this is the first report of the presence of these additives in environmental samples. Extraction recoveries for Centralite I and DPU have been determined. Contaminants identified by our techniques were quantified based on HPLC-UV (HPLC-ultraviolet detection) and 1H NMR mixture analysis. The concentrations of the contaminants ranged between 0.1 and 48 microg/L assuming 100% recovery for the SPE step.

  7. Application of unsymmetrical indirect covariance NMR methods to the computation of the (13)C <--> (15)N HSQC-IMPEACH and (13)C <--> (15)N HMBC-IMPEACH correlation spectra.

    PubMed

    Martin, Gary E; Hilton, Bruce D; Irish, Patrick A; Blinov, Kirill A; Williams, Antony J

    2007-10-01

    Utilization of long-range (1)H--(15)N heteronuclear chemical shift correlation has continually grown in importance since the first applications were reported in 1995. More recently, indirect covariance NMR methods have been introduced followed by the development of unsymmetrical indirect covariance processing methods. The latter technique has been shown to allow the calculation of hyphenated 2D NMR data matrices from more readily acquired nonhyphenated 2D NMR spectra. We recently reported the use of unsymmetrical indirect covariance processing to combine (1)H--(13)C GHSQC and (1)H--(15)N GHMBC long-range spectra to yield a (13)C--(15)N HSQC-HMBC chemical shift correlation spectrum that could not be acquired in a reasonable period of time without resorting to (15)N-labeled molecules. We now report the unsymmetrical indirect covariance processing of (1)H--(13)C GHMBC and (1)H--(15)N IMPEACH spectra to afford a (13)C--(15)N HMBC-IMPEACH spectrum that has the potential to span as many as six to eight bonds. Correlations for carbon resonances long-range coupled to a protonated carbon in the (1)H--(13)C HMBC spectrum are transferred via the long-range (1)H--(15)N coupling pathway in the (1)H--(15)N IMPEACH spectrum to afford a much broader range of correlation possibilities in the (13)C--(15)N HMBC-IMPEACH correlation spectrum. The indole alkaloid vincamine is used as a model compound to illustrate the application of the method. (c) 2007 John Wiley & Sons, Ltd.

  8. 1H NMR based pharmacometabolomics analysis of urine identifies metabolic phenotype of clopidogrel high on treatment platelets reactivity in coronary artery disease patients.

    PubMed

    Amin, Arwa M; Sheau Chin, Lim; Teh, Chin-Hoe; Mostafa, Hamza; Mohamed Noor, Dzul Azri; Sk Abdul Kader, Muhamad Ali; Kah Hay, Yuen; Ibrahim, Baharudin

    2017-11-30

    Clopidogrel high on treatment platelets reactivity (HTPR) has burdened achieving optimum therapeutic outcome. Although there are known genetic and non-genetic factors associated with clopidogrel HTPR, which explain in part clopidogrel HTPR, yet, great portion remains unknown, often hindering personalizing antiplatelet therapy. Nuclear magnetic resonance ( 1 H NMR) pharmacometabolomics analysis is useful technique to phenotype drug response. We investigated using 1 H NMR analysis to phenotype clopidogrel HTPR in urine. Urine samples were collected from 71 coronary artery disease (CAD) patients who were planned for interventional angiographic procedure prior to taking 600mg clopidogrel loading dose (LD) and 6h post LD. Patients' platelets function testing was assessed with the VerifyNow ® P2Y12 assay at 6h after LD. Urine samples were analysed using 1 H NMR. Multivariate statistical analysis was used to identify metabolites associated with clopidogrel HTPR. In pre-dose samples, 16 metabolites were associated with clopidogrel HTPR. However, 18 metabolites were associated with clopidogrel HTPR in post-dose samples. The pathway analysis of the identified biomarkers reflected that multifactorial conditions are associated with clopidogrel HTPR. It also revealed the implicated role of gut microbiota in clopidogrel HTPR. Pharmacometabolomics not only discovered novel biomarkers of clopidogrel HTPR but also revealed implicated pathways and conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Application of Natural Isotopic Abundance ¹H-¹³C- and ¹H-¹⁵N-Correlated Two-Dimensional NMR for Evaluation of the Structure of Protein Therapeutics.

    PubMed

    Arbogast, Luke W; Brinson, Robert G; Marino, John P

    2016-01-01

    Methods for characterizing the higher-order structure of protein therapeutics are in great demand for establishing consistency in drug manufacturing, for detecting drug product variations resulting from modifications in the manufacturing process, and for comparing a biosimilar to an innovator reference product. In principle, solution NMR can provide a robust approach for characterization of the conformation(s) of protein therapeutics in formulation at atomic resolution. However, molecular weight limitations and the perceived need for stable isotope labeling have to date limited its practical applications in the biopharmaceutical industry. Advances in NMR magnet and console technologies, cryogenically cooled probes, and new rapid acquisition methodologies, particularly selective optimized flip-angle short transient pulse schemes and nonuniform sampling, have greatly ameliorated these limitations. Here, we describe experimental methods for the collection and analysis of 2D (1)H(N)-(15)N-amide- and (1)H-(13)C-methyl-correlated spectra applied to protein drug products at natural isotopic abundance, including representatives from the rapidly growing class of monoclonal antibody (mAb) therapeutics. Practical aspects of experimental setup and data acquisition for both standard and rapid acquisition NMR techniques are described. Furthermore, strategies for the statistical comparison of 2D (1)H(N)-(15)N-amide- and (1)H-(13)C-methyl-correlated spectra are detailed. 2016 Published by Elsevier Inc.

  10. Solution conformation of carbohydrates: a view by using NMR assisted by modeling.

    PubMed

    Díaz, Dolores; Canales-Mayordomo, Angeles; Cañada, F Javier; Jiménez-Barbero, Jesús

    2015-01-01

    Structural elucidation of complex carbohydrates in solution is not a trivial task. From the NMR view point, the limited chemical shift dispersion of sugar NMR spectra demands the combination of a variety of NMR techniques as well as the employment of molecular modeling methods. Herein, a general protocol for assignment of resonances and determination of inter-proton distances within the saccharides by homonuclear and heteronuclear experiments (i.e., (1)H and (13)C) is described. In addition, several computational tools and procedures for getting a final ensemble of geometries that represent the structure in solution are presented.

  11. Didanosine polymorphism in a supercritical antisolvent process.

    PubMed

    Bettini, R; Menabeni, R; Tozzi, R; Pranzo, M B; Pasquali, I; Chierotti, M R; Gobetto, R; Pellegrino, L

    2010-04-01

    Solid-state properties of active ingredients are crucial in pharmaceutical development owing to their significant clinical and economical implications. In the present work we investigated the solid-state properties and the solubility in water of didanosine, DDI, re-crystallized from a dimethylsulfoxide solution using supercritical CO(2) as an antisolvent (SAS process) for comparison with the commercially available drug product. We also applied modern solid-state NMR (SS NMR) techniques, namely 2D (1)H DQ CRAMPS (Combined Rotation And Multiple Pulse Spectroscopy) and (1)H-(13)C on- and off-resonance CP (cross polarization) FSLG-HETCOR experiments, known for providing reliable information about (1)H-(1)H and (1)H-(13)C intra- and intermolecular proximities, in order to address polymorphism issues arising from the crystallization of a new form in the supercritical process. A new polymorph of didanosine was obtained from the supercritical antisolvent process and characterized by means of 1D and 2D multinuclear ((1)H, (13)C, (15)N) SS NMR. The particle size of the new crystal phase was reduced by varying the antisolvent density through a pressure increase. The structural differences between the commercial product and the SAS re-crystallized DDI are highlighted by X-ray diffractometry and well described by solid-state NMR. The carbon C6 (13)C chemical shift suggests that both commercial and re-crystallized didanosine samples are in the enol form. The analysis of homo- and heteronuclear proximities obtained by means of 2D NMR experiments shows that commercial and SAS re-crystallized DDI possess very similar molecular conformation and hydrogen bond network, but different packing. The new polymorph proved to be a metastable form at ambient conditions, showing higher solubility in water and lower stability to mechanical stress. 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  12. A dimeric ArC2 compound from Peperomia pellucida.

    PubMed

    Bayma, J D; Arruda, M S; Müller, A H; Arruda, A C; Canto, W C

    2000-12-01

    Pellucidin A, a novel dimeric ArC2 compound, together with dill-apiol have been isolated from the aerial parts of Peperomia pellucida. The structure of pellucidin A was established by 1D and 2D NMR spectroscopy (1H-1H COSY; 1H-13C COSY; DEPT; NOESY and double irradiation) and other spectroscopic techniques. The biogenesis of pellucidin A is also briefly discussed.

  13. Triprotic site-specific acid-base equilibria and related properties of fluoroquinolone antibacterials.

    PubMed

    Rusu, Aura; Tóth, Gergő; Szőcs, Levente; Kökösi, József; Kraszni, Márta; Gyéresi, Árpád; Noszál, Béla

    2012-07-01

    The complete macro- and microequilibrium analyses of six fluoroquinolone drugs - ciprofloxacin, enrofloxacin, norfloxacin, pefloxacin, ofloxacin and moxifloxacin - are presented. Previous controversial literature data are straightened up, the protonation centers are unambiguously identified, and the protonation macro- and microconstant values are reported. The macroconstants were determined by (1)H NMR-pH titrations while the microconstants were determined by a multi-modal spectroscopic-deductive methodology, in which methyl ester derivatives were synthesized and their NMR-pH titration data contributed to the evaluation of all the microconstants. The full (1)H, (13)C and (15)N NMR assignments, NMR-pH profiles, macro- and microprotonation schemes and species-specific diagrams are included. Our studies show that the fluoroquinolones have three protonation centers: the carboxylate group, the N-1' and N-4' piperazine nitrogens and concentration of the uncharged microspecies is way below the values published earlier. The results could be well interpreted in terms of structural properties. The protonation macro- and microconstant values allow the pre-planned method development in techniques such as capillary zone electrophoresis and also, the interpretation of fluoroquinolone mechanism of biological action, including the pharmacokinetic properties, and antibacterial activities that are all heavily influenced by the states of protonation. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Spectroscopic characterizations of a mixed surfactant mesophase and its application in materials synthesis

    NASA Astrophysics Data System (ADS)

    Liu, Limin

    A viscous lyotropic crystalline mesophase containing bis (2-ethylhexyl) sodium sulfosuccinate (AOT), alpha-phosphatidylcholine (lecithin), with comparable volume fractions of isooctane and water was characterized by Fourier-transform 31P and 1H nuclear magnetic resonance (NMR) spectroscopy. Shear alignment on the reverse hexagonal mesophase was reflected through both 31P NMR and 1H NMR spectra. A complicated 31P spectrum was observed as a result of superposition of chemical shifts according to the distribution of crystalline domains prior to shear. The initially disordered samples with polydomain structures became macroscopically aligned after Couette shear and the alignment retained for a long period of time. 31P NMR chemical shift anisotropy characteristics were used to elucidate orientation of the hexagonal phase. Interestingly, 1H NMR of the water, methyl and methylene groups exhibited spectral changes upon shear alignment closely corresponding with that of 31P NMR spectra. A reverse hexagonal to lamellar phase transition was manifested as an expanding of the expressed 31P NMR chemical shift anisotropy and an apparent reversal of the powder pattern with increasing water content and/or temperature. Correspondingly, 1H NMR spectra also experienced a spectral pattern transition as the water content or temperature was increased. These observations complement the findings of mesophase alignment obtained using small angle neutron scattering (SANS) and imply that 31P and 1H NMR spectroscopy can be used as probes to define microstructure and monitor orientation changes in this binary surfactant system. This is especially beneficial if these mesophases are used as templates for materials synthesis. The mesophase retains its alignment for extended periods allowing materials synthesis to be decoupled from the application of shear. Highly aligned string-like silica nanostructures were obtained through templated synthesis in the columnar hexagonal structure of the viscous lyotropic crystalline mesophase. A two-step procedure was used to first shear-align the surfactant mesophase, and then conduct synthesis under quiescent conditions in the mesophase. Polystyrene was post-grafted to the silica surface without disturbing its nanostring morphology. The coupling of materials synthesis in surfactant mesophases with processing techniques (e.g. extrusion) may result in functional materials, such as new catalyst support and membrane nanoarchitectures.

  15. A novel coumarin-pyrazole-triazine based fluorescence chemosensor for fluoride detection via deprotonation process: Experimental and theoretical studies

    NASA Astrophysics Data System (ADS)

    Yalçın, Ergin; Alkış, Meltem; Seferoğlu, Nurgül; Seferoğlu, Zeynel

    2018-03-01

    A novel fluorescence coumarin-pyrazole-triazine based chemosensor (CPT) bearing 5-hydroxypyrazole as a receptoric part was synthesized and characterized by using IR, 1H/13C NMR and HRMS for the purpose of recognition of anions in DMSO. The most stable tautomeric form of CPT was determined by experimental techniques and theoretical calculations. The selectivity and sensitivity of CPT towards anions (CN-, F-, Cl-, Br-, I-, AcO-, HSO4-, H2PO4- and ClO4-) were determined using spectrophotometric and 1H NMR titration techniques as the experimental approach, and the results were explained by employing theoretical calculations. It was found to be suitable for the selective detection of F- in the presence of CN- and AcO- as competing anions. In addition, CPT exhibits significant "light-up" effect after interaction with TFA in CH2Cl2.

  16. 'Naked-eye' detection of biologically important anions in aqueous media by colorimetric receptor and its real life applications

    NASA Astrophysics Data System (ADS)

    Singh, Archana; Trivedi, Darshak R.

    2017-05-01

    A colorimetric receptor R 2-[(2-Hydroxy-naphthalen-1-ylmethylene)-hydrazonomethyl]-quinolin-8-ol has been designed and synthesized with good yield and characterized by the standard spectroscopic techniques such as FT-IR, UV-Visible, 1H NMR, 13C NMR and ESI-MS. The receptor R showed naked-eye detection and spectral change in the presence of F-, AcO- and H2PO4- over other anions. Interestingly, receptor R displaying high selective recognition towards F-, AcO- ion with a drastic color change from pale yellow to red in dry DMSO solvent and orange in mixed solvent DMSO/H2O (9:1, v/v). The behavior of receptor R towards F-, AcO- ion was investigated using UV-Vis and 1H NMR experiment. The detailed 1H NMR experiment result revealed that the receptor R is forming the hydrogen bonding between imine nitrogen and phenolic sbnd OH proton towards anions. The receptor R is able to detect sodium salts of flouride (NaF) and acetate (NaAcO) in aqueous medium and it exhibited dramatic color change from pale yellow to red. The receptor R demonstrated itself to be useful for real life application by detecting flouride and acetate ion in sea-water and commercially available product such as toothpaste, mouthwash and vinegar solution.

  17. NMR approach for monitoring post-mortem changes in Atlantic salmon fillets stored at 0 and 4°C.

    PubMed

    Shumilina, Elena; Ciampa, Alessandra; Capozzi, Francesco; Rustad, Turid; Dikiy, Alexander

    2015-10-01

    High resolution NMR technique has been used to monitor post-mortem changes in salmon (Salmo salar) fillets upon storage at 4 and 0°C. Thirty-one different fish metabolites influencing freshness and taste properties have been unequivocally assigned by NMR using either available standard compounds or ad hoc acquired 2D (1)H-(1)H TOCSY and (1)H-(13)С HSQC spectra. The monitored fish metabolites include amino acids, dipeptides, sugars, vitamins, biogenic amines, as well as different products of the ATP degradation. The detection and monitoring of biogenic amines by NMR, upon fish storage, is information of interest for consumers, since some of these compounds are toxic. The data from this study shows that NMR spectroscopy also provides the amount of all metabolites necessary for the calculation of the K-index used to express fish freshness. A good correlation was found between the K-index increase and the formation of the undesired biogenic amines. The metabolite concentrations and the K-index found in this work were compared and found coherent with literature data. The performed study reveals the strengths and the suitability of the NMR approach to monitor different biochemical processes occurring during fish storage and qualitatively and quantitatively characterise fish metabolites determining fish quality. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Label-free quantitative 1H NMR spectroscopy to study low-affinity ligand–protein interactions in solution: A contribution to the mechanism of polyphenol-mediated astringency

    PubMed Central

    Delius, Judith; Frank, Oliver

    2017-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is well-established in assessing the binding affinity between low molecular weight ligands and proteins. However, conventional NMR-based binding assays are often limited to small proteins of high purity and may require elaborate isotopic labeling of one of the potential binding partners. As protein–polyphenol complexation is assumed to be a key event in polyphenol-mediated oral astringency, here we introduce a label-free, ligand-focused 1H NMR titration assay to estimate binding affinities and characterize soluble complex formation between proteins and low molecular weight polyphenols. The method makes use of the effects of NMR line broadening due to protein–ligand interactions and quantitation of the non-bound ligand at varying protein concentrations by quantitative 1H NMR spectroscopy (qHNMR) using electronic reference to access in vivo concentration (ERETIC 2). This technique is applied to assess the interaction kinetics of selected astringent tasting polyphenols and purified mucin, a major lubricating glycoprotein of human saliva, as well as human whole saliva. The protein affinity values (BC50) obtained are subsequently correlated with the intrinsic mouth-puckering, astringent oral sensation imparted by these compounds. The quantitative NMR method is further exploited to study the effect of carboxymethyl cellulose, a candidate “anti-astringent” protein binding antagonist, on the polyphenol–protein interaction. Consequently, the NMR approach presented here proves to be a versatile tool to study the interactions between proteins and low-affinity ligands in solution and may find promising applications in the discovery of bioactives. PMID:28886151

  19. An integrated analysis for determining the geographical origin of medicinal herbs using ICP-AES/ICP-MS and (1)H NMR analysis.

    PubMed

    Kwon, Yong-Kook; Bong, Yeon-Sik; Lee, Kwang-Sik; Hwang, Geum-Sook

    2014-10-15

    ICP-MS and (1)H NMR are commonly used to determine the geographical origin of food and crops. In this study, data from multielemental analysis performed by ICP-AES/ICP-MS and metabolomic data obtained from (1)H NMR were integrated to improve the reliability of determining the geographical origin of medicinal herbs. Astragalus membranaceus and Paeonia albiflora with different origins in Korea and China were analysed by (1)H NMR and ICP-AES/ICP-MS, and an integrated multivariate analysis was performed to characterise the differences between their origins. Four classification methods were applied: linear discriminant analysis (LDA), k-nearest neighbour classification (KNN), support vector machines (SVM), and partial least squares-discriminant analysis (PLS-DA). Results were compared using leave-one-out cross-validation and external validation. The integration of multielemental and metabolomic data was more suitable for determining geographical origin than the use of each individual data set alone. The integration of the two analytical techniques allowed diverse environmental factors such as climate and geology, to be considered. Our study suggests that an appropriate integration of different types of analytical data is useful for determining the geographical origin of food and crops with a high degree of reliability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Synthesis, spectroscopic characterization and pH dependent photometric and electrochemical fate of Schiff bases.

    PubMed

    Rauf, Abdur; Shah, Afzal; Abbas, Saghir; Rana, Usman Ali; Khan, Salah Ud-Din; Ali, Saqib; Zia-Ur-Rehman; Qureshi, Rumana; Kraatz, Heinz-Bernhard; Belanger-Gariepy, Francine

    2015-03-05

    A new Schiff base, 1-((4-bromophenylimino) methyl) naphthalen-2-ol (BPIMN) was successfully synthesized and characterized by (1)H NMR, (13)C NMR, FTIR and UV-Vis spectroscopy. The results were compared with a structurally related Schiff base, 1-((4-chlorophenylimino) methyl) naphthalen-2-ol (CPIMN). The photometric and electrochemical fate of BPIMN and CPIMN was investigated in a wide pH range. The experimental findings were supported by quantum mechanical approach. The redox mechanistic pathways were proposed on the basis of results obtained electrochemical techniques. Moreover, pH dependent UV-Vis spectroscopy of BPIMN and CPIMN was carried out and the appearance of isosbestic points indicated the existence of these compounds in different tautomeric forms. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Synthesis, characterization and theoretical studies of 5-(benzylthio)-1-cylopentyl-1H-tetrazole

    NASA Astrophysics Data System (ADS)

    Saglam, S.; Disli, A.; Erdogdu, Y.; Marchewka, M. K.; Kanagathara, N.; Bay, B.; Güllüoğlu, M. T.

    2015-01-01

    In this study, 5-(benzylthio)-1-cylopentyl-1H-tetrazole (5B1C1HT) have been synthesized. Boiling points of the obtained compound have been determined and it has been characterized by FT-IR, 1H NMR, 13C-APT and LC-MS spectroscopy techniques. The FT-IR, 1H NMR and 13C-APT spectral measurements of the 5B1C1HT compound and complete assignment of the vibrational bands observed in spectra has been discussed. The spectra were interpreted with the aid of normal coordinate analysis following full structure optimization and force field calculations based on Density Functional Theory (DFT) at 6-311++G**, cc-pVDZ and cc-pVTZ basis sets. The optimized geometry with 6-311++G** basis sets were used to determine the total energy distribution, harmonic vibrational frequencies, IR intensities.

  2. Synthesis, characterization and theoretical studies of 5-(benzylthio)-1-cylopentyl-1H-tetrazole.

    PubMed

    Saglam, S; Disli, A; Erdogdu, Y; Marchewka, M K; Kanagathara, N; Bay, B; Güllüoğlu, M T

    2015-01-25

    In this study, 5-(benzylthio)-1-cylopentyl-1H-tetrazole (5B1C1HT) have been synthesized. Boiling points of the obtained compound have been determined and it has been characterized by FT-IR, (1)H NMR, (13)C-APT and LC-MS spectroscopy techniques. The FT-IR, (1)H NMR and (13)C-APT spectral measurements of the 5B1C1HT compound and complete assignment of the vibrational bands observed in spectra has been discussed. The spectra were interpreted with the aid of normal coordinate analysis following full structure optimization and force field calculations based on Density Functional Theory (DFT) at 6-311++G(**), cc-pVDZ and cc-pVTZ basis sets. The optimized geometry with 6-311++G(**) basis sets were used to determine the total energy distribution, harmonic vibrational frequencies, IR intensities. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. NMR structure of navel orangeworm moth pheromone-binding protein (AtraPBP1): implications for pH-sensitive pheromone detection.

    PubMed

    Xu, Xianzhong; Xu, Wei; Rayo, Josep; Ishida, Yuko; Leal, Walter S; Ames, James B

    2010-02-23

    The navel orangeworm, Amyelois transitella (Walker), is an agricultural insect pest that can be controlled by disrupting male-female communication with sex pheromones, a technique known as mating disruption. Insect pheromone-binding proteins (PBPs) provide fast transport of hydrophobic pheromones through the aqueous sensillar lymph and promote sensitive delivery of pheromones to receptors. Here we present the three-dimensional structure of a PBP from A. transitella (AtraPBP1) in solution at pH 4.5 determined by nuclear magnetic resonance (NMR) spectroscopy. Pulsed-field gradient NMR diffusion experiments, multiangle light scattering, and (15)N NMR relaxation analysis indicate that AtraPBP1 forms a stable monomer in solution at pH 4.5 in contrast to forming mostly dimers at pH 7. The NMR structure of AtraPBP1 at pH 4.5 contains seven alpha-helices (alpha1, L8-L23; alpha2, D27-F36; alpha3, R46-V62; alpha4, A73-M78; alpha5, D84-S100; alpha6, R107-L125; alpha7, M131-E141) that adopt an overall main-chain fold similar to that of PBPs found in Antheraea polyphemus and Bombyx mori. The AtraPBP1 structure is stabilized by three disulfide bonds formed by C19/C54, C50/C108, and C97/C117 and salt bridges formed by H69/E60, H70/E57, H80/E132, H95/E141, and H123/D40. All five His residues are cationic at pH 4.5, whereas H80 and H95 become neutral at pH 7.0. The C-terminal helix (alpha7) contains hydrophobic residues (M131, V133, V134, V135, V138, L139, and A140) that contact conserved residues (W37, L59, A73, F76, A77, I94, V111, and V115) suggested to interact with bound pheromone. Our NMR studies reveal that acid-induced formation of the C-terminal helix at pH 4.5 is triggered by a histidine protonation switch that promotes rapid release of bound pheromone under acidic conditions.

  4. Probing hydrogen bonding in cocrystals and amorphous dispersions using (14)N-(1)H HMQC solid-state NMR.

    PubMed

    Tatton, Andrew S; Pham, Tran N; Vogt, Frederick G; Iuga, Dinu; Edwards, Andrew J; Brown, Steven P

    2013-03-04

    Cocrystals and amorphous solid dispersions have generated interest in the pharmaceutical industry as an alternative to more established solid delivery forms. The identification of intermolecular hydrogen bonding interactions in a nicotinamide palmitic acid cocrystal and a 50% w/w acetaminophen-polyvinylpyrrolidone solid dispersion are reported using advanced solid-state magic-angle spinning (MAS) NMR methods. The application of a novel (14)N-(1)H HMQC experiment, where coherence transfer is achieved via through-space couplings, is shown to identify specific hydrogen bonding motifs. Additionally, (1)H isotropic chemical shifts and (14)N electric field gradient (EFG) parameters, both accessible from (14)N-(1)H HMQC experiments, are shown to be sensitive to changes in hydrogen bonding geometry. Numerous indicators of molecular association are accessible from this experiment, including NH cross-peaks occurring from intermolecular hydrogen bonds and changes in proton chemical shifts or electric field gradient parameters. First-principles calculations using the GIPAW approach that yield accurate estimates of isotropic chemical shifts, and EFG parameters were used to assist in assignment. It is envisaged that (14)N-(1)H HMQC solid state NMR experiments could become a valuable screening technique of solid delivery forms in the pharmaceutical industry.

  5. 31P-edited diffusion-ordered 1H NMR spectroscopy for the spectral isolation and identification of organophosphorus compounds related to chemical weapons agents and their degradation products.

    PubMed

    Mayer, Brian P; Valdez, Carlos A; Hok, Saphon; Chinn, Sarah C; Hart, Bradley R

    2012-12-04

    Organophosphorus compounds represent a large class of molecules that include pesticides, flame-retardants, biologically relevant molecules, and chemical weapons agents (CWAs). The detection and identification of organophosphorus molecules, particularly in the cases of pesticides and CWAs, are paramount to the verification of international treaties by various organizations. To that end, novel analytical methodologies that can provide additional support to traditional analyses are important for unambiguous identification of these compounds. We have developed an NMR method that selectively edits for organophosphorus compounds via (31)P-(1)H heteronuclear single quantum correlation (HSQC) and provides an additional chromatographic-like separation based on self-diffusivities of the individual species via (1)H diffusion-ordered spectroscopy (DOSY): (1)H-(31)P HSQC-DOSY. The technique is first validated using the CWA VX (O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate) by traditional two-dimensional DOSY spectra. We then extend this technique to a complex mixture of VX degradation products and identify all the main phosphorus-containing byproducts generated after exposure to a zinc-cyclen organometallic homogeneous catalyst.

  6. H2BC: a new technique for NMR analysis of complex carbohydrates.

    PubMed

    Petersen, Bent O; Vinogradov, Evguenii; Kay, William; Würtz, Peter; Nyberg, Nils T; Duus, Jens Ø; Sørensen, Ole W

    2006-03-20

    It is demonstrated that the H2BC NMR pulse sequence (J. Am. Chem. Soc.2005, 127, 6154, Magn. Reson. Chem.2005, 43, 971-974) offers unambiguous assignments and significant simplification of NMR spectra of large and complex carbohydrates compared to other techniques for the establishment of correlations over more than one bond. H2BC almost exclusively correlates protons and proton-bearing carbon spins separated by two covalent bonds and is independent of occasionally vanishing (2)J(CH) coupling constants, which alleviates the problem of missing two-bond correlations in HMBC spectra. H2BC also solves the problem of distinguishing two- and three-bond correlations in HSQC-TOCSY or HMBC. It is a further asset of H2BC that the experiment is significantly shorter than HMBC and HSQC-TOCSY, and hence less sensitive to transverse relaxation. The H2BC experiment is demonstrated on an approximately 30-residue oligosaccharide from Francisella victoria.

  7. Ameliorating effects of Mango (Mangifera indica L.) fruit on plasma ethanol level in a mouse model assessed with 1H-NMR based metabolic profiling

    PubMed Central

    Kim, So-Hyun; K. Cho, Somi; Min, Tae-Sun; Kim, Yujin; Yang, Seung-Ok; Kim, Hee-Su; Hyun, Sun-Hee; Kim, Hana; Kim, Young-Suk; Choi, Hyung-Kyoon

    2011-01-01

    The ameliorating effects of Mango (Mangifera indica L.) flesh and peel samples on plasma ethanol level were investigated using a mouse model. Mango fruit samples remarkably decreased mouse plasma ethanol levels and increased the activities of alcohol dehydrogenase and acetaldehyde dehydrogenase. The 1H-NMR-based metabolomic technique was employed to investigate the differences in metabolic profiles of mango fruits, and mouse plasma samples fed with mango fruit samples. The partial least squares-discriminate analysis of 1H-NMR spectral data of mouse plasma demonstrated that there were clear separations among plasma samples from mice fed with buffer, mango flesh and peel. A loading plot demonstrated that metabolites from mango fruit, such as fructose and aspartate, might stimulate alcohol degradation enzymes. This study suggests that mango flesh and peel could be used as resources for functional foods intended to decrease plasma ethanol level after ethanol uptake. PMID:21562641

  8. Surface characterization of hydrophobic core-shell QDs using NMR techniques

    NASA Astrophysics Data System (ADS)

    Zhang, Chengqi; Zeng, Birong; Palui, Goutam; Mattoussi, Hedi

    2018-02-01

    Using a few solution phase NMR spectroscopy techniques, including 1H NMR and 31P NMR, we have characterized the organic shell on CdSe-ZnS core-shell quantum dots and tracked changes in its composition when the QD dispersions are subjected to varying degrees of purification. Combining solution phase NMR with diffusion ordered spectroscopy (DOSY), we were able to distinguish between freely diffusing ligands in the sample from those bound on the surfaces. Additionally, matrix assisted laser desorption ionization (MALDI) and FTIR measurements were used to provide complementary and supporting information on the organic ligand coating for these nanocrystals. We found that the organic shell is dominated by monomeric or oligomeric n-hexylphosphonic acid (HPA), along with small portion of 1-hexadecyl amine (HDA). The presence of TOP/TOPO (tri-n-octylphosphine / tri-noctylphosphine oxide) molecules is much smaller, even though large excess of TOP/TOPO were used during the QD growth. These results indicate that HPA (alkyl phosphonate) exhibits the strongest coordination affinity to ZnS-rich QD surfaces grown using the high temperature injection route.

  9. HPLC & NMR-based forced degradation studies of ifosfamide: The potential of NMR in stability studies.

    PubMed

    Salman, D; Peron, J-M R; Goronga, T; Barton, S; Swinden, J; Nabhani-Gebara, S

    2016-03-01

    The aim of this study is to conduct a forced degradation study on ifosfamide under several stress conditions to investigate the robustness of the developed HPLC method. It also aims to provide further insight into the stability of ifosfamide and its degradation profile using both HPLC and NMR. Ifosfamide solutions (20mg/mL; n=15, 20mL) were stressed in triplicate by heating (70°C), under acidic (pH 1 & 4) and alkaline (pH 10 & 12) conditions. Samples were analysed periodically using HPLC and FT-NMR. Ifosfamide was most stable under weakly acidic conditions (pH 4). NMR results suggested that the mechanism of ifosfamide degradation involves the cleavage of the PN bond. For all stress conditions, HPLC was not able to detect ifosfamide degradation products that were detected by NMR. These results suggest that the developed HPLC method for ifosfamide did not detect the degradation products shown by NMR. It is possible that degradation products co-elute with ifosfamide, do not elute altogether or are not amenable to the detection method employed. Therefore, investigation of ifosfamide stability requires additional techniques that do not suffer from the aforementioned shortcomings. Copyright © 2015 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.

  10. Solid-state NMR characterization of cross-linking in EPDM/PP blends from 1H-13C polarization transfer dynamics.

    PubMed

    Aluas, Mihaela; Filip, Claudiu

    2005-05-01

    A novel approach for solid-state NMR characterization of cross-linking in polymer blends from the analysis of (1)H-(13)C polarization transfer dynamics is introduced. It extends the model of residual dipolar couplings under permanent cross-linking, typically used to describe (1)H transverse relaxation techniques, by considering a more realistic distribution of the order parameter along a polymer chain in rubbers. Based on a systematic numerical analysis, the extended model was shown to accurately reproduce all the characteristic features of the cross-polarization curves measured on such materials. This is particularly important for investigating blends of great technological potential, like thermoplastic elastomers, where (13)C high-resolution techniques, such as CP-MAS, are indispensable to selectively investigate structural and dynamical properties of the desired component. The validity of the new approach was demonstrated using the example of the CP build-up curves measured on a well resolved EPDM resonance line in a series of EPDM/PP blends.

  11. LEGO-NMR spectroscopy: a method to visualize individual subunits in large heteromeric complexes.

    PubMed

    Mund, Markus; Overbeck, Jan H; Ullmann, Janina; Sprangers, Remco

    2013-10-18

    Seeing the big picture: Asymmetric macromolecular complexes that are NMR active in only a subset of their subunits can be prepared, thus decreasing NMR spectral complexity. For the hetero heptameric LSm1-7 and LSm2-8 rings NMR spectra of the individual subunits of the complete complex are obtained, showing a conserved RNA binding site. This LEGO-NMR technique makes large asymmetric complexes accessible to detailed NMR spectroscopic studies. © 2013 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of Creative Commons the Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

  12. Characterization of oils and fats by 1H NMR and GC/MS fingerprinting: classification, prediction and detection of adulteration.

    PubMed

    Fang, Guihua; Goh, Jing Yeen; Tay, Manjun; Lau, Hiu Fung; Li, Sam Fong Yau

    2013-06-01

    The correct identification of oils and fats is important to consumers from both commercial and health perspectives. Proton nuclear magnetic resonance ((1)H NMR) spectroscopy, gas chromatography-mass spectrometry (GC/MS) fingerprinting and chemometrics were employed successfully for the quality control of oils and fats. Principal component analysis (PCA) of both techniques showed group clustering of 14 types of oils and fats. Partial least squares discriminant analysis (PLS-DA) and orthogonal projections to latent structures discriminant analysis (OPLS-DA) using GC/MS data had excellent classification sensitivity and specificity compared to models using NMR data. Depending on the availability of the instruments, data from either technique can effectively be applied for the establishment of an oils and fats database to identify unknown samples. Partial least squares (PLS) models were successfully established for the detection of as low as 5% of lard and beef tallow spiked into canola oil, thus illustrating possible applications in Islamic and Jewish countries. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Solubilization of flurbiprofen within non-ionic Tween 20 surfactant micelles: a 19F and 1H NMR study.

    PubMed

    Saveyn, Pieter; Cocquyt, Ellen; Zhu, Wuxin; Sinnaeve, Davy; Haustraete, Katrien; Martins, José C; Van der Meeren, Paul

    2009-07-14

    The solubilization of the poorly water soluble anti-inflammatory drug flurbiprofen in non-ionic Tween 20 surfactant micellar solutions was studied by both (19)F and (1)H NMR spectroscopy in an acidic environment. These non-destructive techniques allowed us to investigate the effect of temperature cycling in situ. Using (19)F NMR, an increased solubilisation capacity was observed as the temperature increased. This effect became more pronounced above the cloud point, which was reduced by more than 30 degrees C in the presence of an excess of flurbiprofen. Upon clouding, peak splitting was observed in the (19)F spectrum, which indicates that two pools of solubilised flurbiprofen exist that are in slow exchange on the NMR frequency timescale. The clouding and solubilization processes were found to be reversible, albeit with slow kinetics. Based on chemical shift differences of both Tween 20 and flurbiprofen, as well as NOESY experiments, the flurbiprofen was found to be accumulated within the palisade layer of the Tween 20 micelles.

  14. FTIR and 1H MAS NMR investigations on the correlation between the frequency of stretching vibration and the chemical shift of surface OH groups of solids

    NASA Astrophysics Data System (ADS)

    Brunner, Eike; Karge, H. G.; Pfeifer, H.

    1992-03-01

    The study of surface hydroxyl groups of solids, especially of zeolites, belongs to the 'classical' topics of IR spectroscopy since physico-chemical information may be derived from the wavenumber (nu) OH of the stretching vibration of the different hydroxyls. On the other hand, the last decade has seen the development of high resolution solid-state NMR spectroscopy and through the use of the so-called magic-angle-spinning technique (MAS) the signals of different hydroxyl species can be resolved in the 1H NMR spectra of solids. The chemical shift (delta) H describing the position of these lines may be used as well as (nu) OH to characterize quantitatively the strength of acidity of surface OH groups of solids. In a first comparison of (nu) OH with (delta) H for several types of surface OH groups, a linear correlation between them could be found. The aim of this paper was to prove the validity of this correlation for a wide variety of hydroxyls. The IR measurements were carried out on a Perkin-Elmer FTIR spectrometer 1800 at the Fritz Haber Institute of the Max Planck Society, Berlin, and the 1H MAS NMR spectra were recorded on a Bruker MSL- 300 at the University of Leipzig.

  15. Synthesis, NMR characterization, and a simple application of lithium borotritide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Than, Chit; Morimoto, Hiromi; Andres, H.

    1996-12-13

    LiBH{sub 4} is a powerful and selective reagent for regiospecific reduction reactions. A simple synthesis of LiB{sup 3}H{sub 4} at near theoretical specific radioactivity is reported. The authors have treated Li{sup 3}H synthesized from tritium gas ({sup 3}H{sub 2}, {approximately}98%) with BBr{sub 3} to produce LiB{sup 3}H{sub 4} (specific activity = 4120 GBq/mmol = 110 Ci/mmol. The maximum theoretical specific activity of LiB{sup 3}H{sub 4} is 4252 GBq/mmol = 115.04 Ci/mmol; 1 matom of {sup 3}H = 1063 GBq = 28.76 Ci.) The tritium labeling performance of the reagent was tested by an exemplary reduction of 2-naphthaldehyde to 2-naphthalenemethanol. LiB{supmore » 3}H{sub 4} and the reduction products were characterized by a combination of {sup 1}H, {sup 3}H, and {sup 11}B NMR techniques, as appropriate. 35 refs., 1 fig.« less

  16. Utility of magnetic resonance imaging and nuclear magnetic resonance-based metabolomics for quantification of inflammatory lung injury

    PubMed Central

    Serkova, Natalie J.; Van Rheen, Zachary; Tobias, Meghan; Pitzer, Joshua E.; Wilkinson, J. Erby; Stringer, Kathleen A.

    2008-01-01

    Magnetic resonance imaging (MRI) and metabolic nuclear magnetic resonance (NMR) spectroscopy are clinically available but have had little application in the quantification of experimental lung injury. There is a growing and unfulfilled need for predictive animal models that can improve our understanding of disease pathogenesis and therapeutic intervention. Integration of MRI and NMR could extend the application of experimental data into the clinical setting. This study investigated the ability of MRI and metabolic NMR to detect and quantify inflammation-mediated lung injury. Pulmonary inflammation was induced in male B6C3F1 mice by intratracheal administration of IL-1β and TNF-α under isoflurane anesthesia. Mice underwent MRI at 2, 4, 6, and 24 h after dosing. At 6 and 24 h lungs were harvested for metabolic NMR analysis. Data acquired from IL-1β+TNF-α-treated animals were compared with saline-treated control mice. The hyperintense-to-total lung volume (HTLV) ratio derived from MRI was higher in IL-1β+TNF-α-treated mice compared with control at 2, 4, and 6 h but returned to control levels by 24 h. The ability of MRI to detect pulmonary inflammation was confirmed by the association between HTLV ratio and histological and pathological end points. Principal component analysis of NMR-detectable metabolites also showed a temporal pattern for which energy metabolism-based biomarkers were identified. These data demonstrate that both MRI and metabolic NMR have utility in the detection and quantification of inflammation-mediated lung injury. Integration of these clinically available techniques into experimental models of lung injury could improve the translation of basic science knowledge and information to the clinic. PMID:18441091

  17. Synthesis and characterization β-ketoamine ligands

    NASA Astrophysics Data System (ADS)

    Zaid, Nurzati Amani Mohamed; Hassan, Nur Hasyareeda; Karim, Nurul Huda Abd

    2018-04-01

    β-ketoamine ligands are important members of heterodonor ligand because of their ease of preparation and modification of both steric and/or electronic effects. Complexes with β-ketoamine has received much less attention and there has been no study about this complex with β-ketoamine in ionic liquid reported. Two type of β-ketoamine ligands which are 4-amino-3-pentene-2-onato (A) and 3-amino-2-butenoic acid methyl ester (B) have been synthesized in this work. The resulting compound formed was characterized using standard spectroscopic and structural techniques which includes 1H and 13C, NMR spectroscopy and FTIR spectroscopy. The 1H and 13C NMR spectrum displayed all the expected signals with correct integration and multiplicity. And it is proved that there are some differences between two ligands as observed in NMR and FTIR spectrum.

  18. Development of solid-state NMR techniques for the characterisation of pharmaceutical compounds

    NASA Astrophysics Data System (ADS)

    Tatton, Andrew S.

    Structural characterisation in the solid state is an important step in understanding the physical and chemical properties of a material. Solid-state NMR techniques applied to solid delivery forms are presented as an alternative to more established structural characterisation methods. The effect of homonuclear decoupling upon heteronuclear couplings is investigated using a combination of experimental and density-matrix simulation results acquired from a 13C-1H spinecho pulse sequence, modulated by scalar couplings. It is found that third-order cross terms under MAS and homonuclear decoupling contribute to strong dephasing effects in the NMR signal. Density-matrix simulations allow access to parameters currently unattainable in experiment, and demonstrate that higher homonuclear decoupling rf nutation frequencies reduce the magnitude of third-order cross terms. 15N-1H spinecho experiments were applied to pharmaceutically relevant samples to differentiate between the number of directly attached protons. Using this method, proton transfer in an acid-base reaction is proven in pharmaceutical salts. The indirect detection of 14N lineshapes via protons obtained using 2D 14N-1H HMQC experiments is presented, where coherence transfer is achieved via heteronuclear through-space dipolar couplings. The importance of fast MAS frequencies is demonstrated, and it is found that increasing the recoupling duration reveals longer range NH proximities. The 2D 14N-1H HMQC method is used to demonstrate the presence of specific hydrogen bonding interactions, and thus aid in identifying molecular association in a cocrystal and an amorphous dispersion. In addition, hydrogen bonding motifs were identified by observing the changes in the 14N quadrupolar parameters between individual molecular components relative to the respective solid delivery form. First-principles calculations of NMR chemical shifts and quadrupolar parameters using the GIPAW method were combined with 14N-1H experimental results to assist with spectral assignment and the identification of the hydrogen bonding interactions.

  19. 1H NMR study of fermented cocoa (Theobroma cacao L.) beans.

    PubMed

    Caligiani, Augusta; Acquotti, Domenico; Cirlini, Martina; Palla, Gerardo

    2010-12-08

    This study reports for the first time the metabolic profile of cocoa (Theobroma cacao L.) beans using the (1)H NMR technique applied to polar extracts of fermented cocoa beans. The simultaneous detection and quantification of amino acids, polyalcohols, organic acids, sugars, methylxanthines, catechins, and phenols were obtained by assigning the major signals of the spectra for different varieties of cocoa beans (Forastero, Criollo, and Trinitario) from different countries (Ecuador, Ghana, Grenada, and Trinidad). The data set obtained, representative of all classes of soluble compounds of cocoa, was useful to characterize the fermented cocoa beans as a function of the variety and geographic origin.

  20. Inclusion compound of vitamin B6 in β-CD. Physico-chemical and structural investigations

    NASA Astrophysics Data System (ADS)

    Borodi, Gheorghe; Kacso, Irina; Farcaş, Sorin I.; Bratu, Ioan

    2009-08-01

    Structural and physico-chemical characterization of supramolecular assembly of vitamin B6 with β-cyclodextrin (β-CD) prepared by different methods (kneading, co-precipitation and freeze-drying) has been performed by using several spectroscopic techniques (FTIR, 1H NMR, UV-Vis), powder X-ray diffraction and DSC in order to evidence the inclusion compound formation. An analysis of the chemical shifts observed in the 1H-NMR spectra and of the vibrational frequency shifts led to the tentative conclusion that the vitamin B6 probably enters the cyclodextrin torus when forming the β-CD-vitamin B6 inclusion complex.

  1. Characterizing Covalently Sidewall-Functionalized SWCNTs by using 1H NMR Spectroscopy

    PubMed Central

    Nelson, Donna J.; Kumar, Ravi

    2013-01-01

    Unambiguous evidence for covalent sidewall functionalization of single-walled carbon nanotubes (SWCNTs) has been a difficult task, especially for nanomaterials in which slight differences in functionality structure produce significant changes in molecular characteristics. Nuclear magnetic resonance (NMR) spectroscopy provides clear information about the structural skeleton of molecules attached to SWCNTs. In order to establish the generality of proton NMR as an analytical technique for characterizing covalently functionalized SWCNTs, we have obtained and analyzed proton NMR data of SWCNT-substituted benzenes across a variety of para substituents. Trends obtained for differences in proton NMR chemical shifts and the impact of o-, p-, and m-directing effects of electrophilic aromatic substituents on phenyl groups covalently bonded to SWCNTs are discussed. PMID:24009779

  2. Compositional and surface characterization of HULIS by UV-Vis, FTIR, NMR and XPS: Wintertime study in Northern India

    NASA Astrophysics Data System (ADS)

    Kumar, Varun; Goel, Anubha; Rajput, Prashant

    2017-09-01

    This study (first attempt) characterizes HULIS (Humic Like Substances) in wintertime aerosols (n = 12 during day and nighttime each) from Indo-Gangetic Plain (IGP, at Kanpur) by using various state-of-the art techniques such as UV-VIS, FTIR, 1H NMR and XPS. Based on UV-Vis analysis the absorption coefficient at 365 nm (babs-365) of HULIS was found to average at 13.6 and 28.8 Mm-1 during day and nighttime, respectively. Relatively high babs-365 of HULIS during the nighttime is attributed to influence of fog-processing. However, the power fit of UV-Vis spectrum provided near similar AAE (absorption Angstrom exponent) value of HULIS centering at 4.9 ± 1.4 and 5.1 ± 1.3 during daytime and nighttime, respectively. FTIR spectra and its double derivative revealed the presence of various functional groups viz. alcohols, ketones aldehydes, carboxylic acids as well as unsaturated and saturated carbon bonds. 1H NMR spectroscopy was applied to quantify relative percentage of various types of hydrogen atoms contained in HULIS, whereas XPS technique provided information on surface composition and oxidation states of various elements present. A significantly high abundance of H‒C‒O group has been observed in HULIS (based on 1H NMR); 41.4± 2.7% and 30.9± 2.4% in day and nighttime, respectively. However, aromatic protons (Ar-H) were higher in nighttime samples (19.3± 1.8%) as compared to that in daytime samples (7.5 ± 1.9). XPS studies revealed presence of various species on the surface of HULIS samples. Carbon existed in 7 different chemical states while total nitrogen and sulfur exhibited 3 and 2 different oxidation states (respectively) on the surface of HULIS. This study reports structural information and absorption properties of HULIS which has implications to their role as cloud condensation nuclei and atmospheric direct radiative forcing.

  3. Applications of high-resolution 1H solid-state NMR.

    PubMed

    Brown, Steven P

    2012-02-01

    This article reviews the large increase in applications of high-resolution (1)H magic-angle spinning (MAS) solid-state NMR, in particular two-dimensional heteronuclear and homonuclear (double-quantum and spin-diffusion NOESY-like exchange) experiments, in the last five years. These applications benefit from faster MAS frequencies (up to 80 kHz), higher magnetic fields (up to 1 GHz) and pulse sequence developments (e.g., homonuclear decoupling sequences applicable under moderate and fast MAS). (1)H solid-state NMR techniques are shown to provide unique structural insight for a diverse range of systems including pharmaceuticals, self-assembled supramolecular structures and silica-based inorganic-organic materials, such as microporous and mesoporous materials and heterogeneous organometallic catalysts, for which single-crystal diffraction structures cannot be obtained. The power of NMR crystallography approaches that combine experiment with first-principles calculations of NMR parameters (notably using the GIPAW approach) are demonstrated, e.g., to yield quantitative insight into hydrogen-bonding and aromatic CH-π interactions, as well as to generate trial three-dimensional packing arrangements. It is shown how temperature-dependent changes in the (1)H chemical shift, linewidth and DQ-filtered signal intensity can be analysed to determine the thermodynamics and kinetics of molecular level processes, such as the making and breaking of hydrogen bonds, with particular application to proton-conducting materials. Other applications to polymers and biopolymers, inorganic compounds and bioinorganic systems, paramagnetic compounds and proteins are presented. The potential of new technological advances such as DNP methods and new microcoil designs is described. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Characterization of Two Distinct Amorphous Forms of Valsartan by Solid-State NMR.

    PubMed

    Skotnicki, Marcin; Apperley, David C; Aguilar, Juan A; Milanowski, Bartłomiej; Pyda, Marek; Hodgkinson, Paul

    2016-01-04

    Valsartan (VAL) is an antihypertensive drug marketed in an amorphous form. Amorphous materials can have different physicochemical properties depending on preparation method, thermal history, etc., but the nature of such materials is difficult to study by diffraction techniques. This study characterizes two different amorphous forms of valsartan (AR and AM) using solid-state NMR (SSNMR) as a primary investigation tool, supported by solution-state NMR, FT-IR, TMDSC, and dissolution tests. The two forms are found to be clearly distinct, with a significantly higher level of structural arrangement in the AR form, as observed in (13)C, (15)N, and (1)H SSNMR. (13)C and (15)N NMR indicates that the fully amorphous material (AM) contains an approximately equal ratio of cis-trans conformers about the amide bond, whereas the AR form exists mainly as one conformer, with minor conformational "defects". (1)H ultrafast MAS NMR shows significant differences in the hydrogen bonding involving the tetrazole and acid hydrogens between the two materials, while (15)N NMR shows that both forms exist as a 1,2,3,4-tetrazole tautomer. NMR relaxation times show subtle differences in local and bulk molecular mobility, which can be connected with the glass transition, the stability of the glassy material, and its response to aging. Counterintuitively the fully amorphous material is found to have a significantly lower dissolution rate than the apparently more ordered AR material.

  5. In vivo quantitative NMR imaging of fruit tissues during growth using Spoiled Gradient Echo sequence.

    PubMed

    Kenouche, S; Perrier, M; Bertin, N; Larionova, J; Ayadi, A; Zanca, M; Long, J; Bezzi, N; Stein, P C; Guari, Y; Cieslak, M; Godin, C; Goze-Bac, C

    2014-12-01

    Nondestructive studies of physiological processes in agronomic products require increasingly higher spatial and temporal resolutions. Nuclear Magnetic Resonance (NMR) imaging is a non-invasive technique providing physiological and morphological information on biological tissues. The aim of this study was to design a robust and accurate quantitative measurement method based on NMR imaging combined with contrast agent (CA) for mapping and quantifying water transport in growing cherry tomato fruits. A multiple flip-angle Spoiled Gradient Echo (SGE) imaging sequence was used to evaluate the intrinsic parameters maps M0 and T1 of the fruit tissues. Water transport and paths flow were monitored using Gd(3+)/[Fe(CN)6](3-)/D-mannitol nanoparticles as a tracer. This dynamic study was carried out using a compartmental modeling. The CA was preferentially accumulated in the surrounding tissues of columella and in the seed envelopes. The total quantities and the average volume flow of water estimated are: 198 mg, 1.76 mm(3)/h for the columella and 326 mg, 2.91 mm(3)/h for the seed envelopes. We demonstrate in this paper that the NMR imaging technique coupled with efficient and biocompatible CA in physiological medium has the potential to become a major tool in plant physiology research. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Indirectly detected chemical shift correlation NMR spectroscopy in solids under fast magic angle spinning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Kanmi

    The development of fast magic angle spinning (MAS) opened up an opportunity for the indirect detection of insensitive low-γ nuclei (e.g., 13C and 15N) via the sensitive high-{gamma} nuclei (e.g., 1H and 19F) in solid-state NMR, with advanced sensitivity and resolution. In this thesis, new methodology utilizing fast MAS is presented, including through-bond indirectly detected heteronuclear correlation (HETCOR) spectroscopy, which is assisted by multiple RF pulse sequences for 1H- 1H homonuclear decoupling. Also presented is a simple new strategy for optimization of 1H- 1H homonuclear decoupling. As applications, various classes of materials, such as catalytic nanoscale materials, biomolecules, and organic complexes, are studied by combining indirect detection and other one-dimensional (1D) and two-dimensional (2D) NMR techniques. Indirectly detected through-bond HETCOR spectroscopy utilizing refocused INEPT (INEPTR) mixing was developed under fast MAS (Chapter 2). The time performance of this approach in 1H detected 2D 1H{l_brace} 13C{r_brace} spectra was significantly improved, by a factor of almost 10, compared to the traditional 13C detected experiments, as demonstrated by measuring naturally abundant organic-inorganic mesoporous hybrid materials. The through-bond scheme was demonstrated as a new analytical tool, which provides complementary structural information in solid-state systems in addition to through-space correlation. To further benefit the sensitivity of the INEPT transfer in rigid solids, the combined rotation and multiple-pulse spectroscopy (CRAMPS) was implemented for homonuclear 1H decoupling under fast MAS (Chapter 3). Several decoupling schemes (PMLG5 m more » $$\\bar{x}$$, PMLG5 mm $$\\bar{x}$$x and SAM3) were analyzed to maximize the performance of through-bond transfer based on decoupling efficiency as well as scaling factors. Indirect detection with assistance of PMLG m $$\\bar{x}$$ during INEPTR transfer proved to offer the highest sensitivity gains of 3-10. In addition, the CRAMPS sequence was applied under fast MAS to increase the 1H resolution during t 1 evolution in the traditional, 13C detected HETCOR scheme. Two naturally abundant solids, tripeptide N-formyl-L-methionyl-L-leucyl-L-phenylalanine (f-MLF-OH) and brown coal, with well ordered and highly disordered structures, respectively, are studied to confirm the capabilities of these techniques. Concomitantly, a simple optimization of 1H homonuclear dipolar decoupling at MAS rates exceeding 10 kHz was developed (Chapter 4). The fine-tuned decoupling efficiency can be obtained by minimizing the signal loss due to transverse relaxation in a simple spin-echo experiment, using directly the sample of interest. The excellent agreement between observed decoupling pattern and earlier theoretical predictions confirmed the utility of this strategy. The properties of naturally abundant surface-bound fluorocarbon groups in mesoporous silica nanoparticles (MSNs) were investigated by the above-mentioned multidimensional solid-state NMR experiments and theoretical modeling (Chapter 5). Two conformations of (pentafluorophenyl)propyl groups (abbreviated as PFP) were determined as PFP-prone and PFP-upright, whose aromatic rings are located above the siloxane bridges and in roughly upright position, respectively. Several 1D and 2D NMR techniques were implemented in the characterizations, including indirectly detected 1H{l_brace} 13C{r_brace} and 19F{l_brace} 13C{r_brace} 2D HETCOR, Carr-Purcell-Meiboom-Gill (CPMG) assisted 29Si direct polarization and 29Si 19F 2D experiments, 2D double-quantum (DQ) 19F MAS NMR spectra and spin-echo measurements. Furthermore, conformational details of two types of PFP were confirmed by theoretical calculation, operated by Dr. Takeshi Kobayashi. Finally, the arrangement of two surfactants, cetyltrimetylammoium bromide (CTAB) and cetylpyridinium bromide (CPB), mixed inside the MSN pores, was studied by solid-state NMR (Chapter 6). By analyzing the 1H- 1H DQMAS and NOESY correlation spectra, the CTAB and CPB molecules were shown to co-exist inside the pores without forming significant monocomponent domains. A 'folded-over' conformation of CPB headgroups was proposed according to the results from 1H- 29Si 2D HETCOR.« less

  7. FT-IR, UV-vis, 1H and 13C NMR spectra and the equilibrium structure of organic dye molecule disperse red 1 acrylate: a combined experimental and theoretical analysis.

    PubMed

    Cinar, Mehmet; Coruh, Ali; Karabacak, Mehmet

    2011-12-01

    This study reports the characterization of disperse red 1 acrylate compound by spectral techniques and quantum chemical calculations. The spectroscopic properties were analyzed by FT-IR, UV-vis, (1)H NMR and (13)C NMR techniques. FT-IR spectrum in solid state was recorded in the region 4000-400 cm(-1). The UV-vis absorption spectrum of the compound that dissolved in methanol was recorded in the range of 200-800 nm. The (1)H and (13)C NMR spectra were recorded in CDCl(3) solution. The structural and spectroscopic data of the molecule in the ground state were calculated using density functional theory (DFT) employing B3LYP exchange correlation and the 6-311++G(d,p) basis set. The vibrational wavenumbers were calculated and scaled values were compared with experimental FT-IR spectrum. A satisfactory consistency between the experimental and theoretical spectra was obtained and it shows that the hybrid DFT method is very useful in predicting accurate vibrational structure, especially for high-frequency region. The complete assignments were performed on the basis of the experimental results and total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. Isotropic chemical shifts were calculated using the gauge-invariant atomic orbital (GIAO) method. A study on the electronic properties were performed by timedependent DFT (TD-DFT) and CIS(D) approach. To investigate non linear optical properties, the electric dipole moment μ, polarizability α, anisotropy of polarizability Δα and molecular first hyperpolarizability β were computed. The linear polarizabilities and first hyperpolarizabilities of the studied molecule indicate that the compound can be a good candidate of nonlinear optical materials. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Fractionation of technical octabromodiphenyl ether by countercurrent chromatography combined with gas chromatography/mass spectrometry and offline and online (1)H nuclear magnetic resonance spectroscopy.

    PubMed

    Hammann, Simon; Conrad, Jürgen; Vetter, Walter

    2015-06-12

    Countercurrent chromatography (CCC) is a technique, which uses two immiscible liquid phases for a separation process in a long and hollow tube. The technique allows the separation of high amounts of sample (50mg to several grams) with a low consumption of solvents. In this study, we fractionated 50mg technical octabromodiphenyl ether (DE-79) and analyzed the fractions by gas chromatography with mass spectrometry (GC/MS) and proton nuclear magnetic resonance ((1)H NMR) spectroscopy. CCC separations were performed with n-hexane/acetonitrile as solvent system in tail-to-head (i.e. the upper phase is mobile) mode. Twelve CCC fractions were studied for the PBDE composition. CCC elution of PBDE congeners was dependent both on the degree of bromination and substitution pattern. Higher brominated congeners eluted faster than lower brominated congeners and isomers with vicinal hydrogen atoms eluted last. In addition to several known PBDE congeners in DE-79, we were able to unequivocally identify BDE 195 in DE-79 and we could verify the presence of BDE 184. Finally, we also established the online hyphenation of CCC with (1)H NMR. The use of deuterated solvents could be avoided by using n-hexane/acetonitrile as two-phase system. By online CCC-(1)H NMR in stop-flow mode we were able to detect eight PBDE congeners in the mixture. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Antidepressent Effect of Two New Benzyl Derivatives from Wild Strawberry Fragaria vesca var. nubicola Lindl. ex Hook.f.

    PubMed

    Naz, Sadia; Farooq, Umar; Khan, Ajmal; Khan, Haroon; Karim, Nasiara; Sarwar, Rizwana; Hussain, Javid; Rauf, Abdur

    2017-01-01

    Two new benzyl derivatives were isolated from ethyl acetate fraction of wild strawberry, Fragaria vesca var. nubicola Lindl. ex Hook.f. The structures of these compounds were elucidated to be 5-(4-hydroxy-3-methoxyphenethyl)-7-methoxy-2H-chromen-3-ol ( 1 ) and 5-(4-hydroxy-3-methoxyphenethyl)-4,7-dimethoxy-2H-chromen-3-ol ( 2 ) based on spectroscopic data through IR, UV, 1 H-NMR, 13 C-NMR along with two dimensional (2D) techniques HMBC, HMQC, and COSY. Both compounds 1 and 2 were studied in tail suspension and forced swim tests for antidepressant like effects. A significant dose dependent antidepressant like effect was observed by causing spontaneous anti-immobility at various test doses upon intraperitoneal administration.

  10. NMR spectroscopy of filtered serum of prostate cancer: A new frontier in metabolomics.

    PubMed

    Kumar, Deepak; Gupta, Ashish; Mandhani, Anil; Sankhwar, Satya Narain

    2016-09-01

    To address the shortcomings of digital rectal examinations (DRE), serum prostate-specific antigen (PSA), and trans-rectal ultrasound (TRUS) for precise determination of prostate cancer (PC) and differentiation from benign prostatic hyperplasia (BPH), we applied (1) H-nuclear magnetic resonance (NMR) spectroscopy as a surrogate tactic for probing and prediction of PC and BPH. The study comprises 210 filtered sera from suspected PC, BPH, and a healthy subjects' cohort (HC). The filtered serum approach delineates to identify and quantify 52 metabolites using (1) H NMR spectroscopy. All subjects had undergone clinical evaluations (DRE, PSA, and TRUS) followed by biopsy for Gleason score, if needed. NMR-measured metabolites and clinical evaluation data were examined separately using linear multivariate discriminant function analysis (DFA) to probe the signature descriptors for each cohort. DFA indicated that glycine, sarcosine, alanine, creatine, xanthine, and hypoxanthine were able to determine abnormal prostate (BPH + PC). DFA-based classification presented high precision (86.2% by NMR and 68.1% by clinical laboratory method) in discriminating HC from BPH + PC. DFA reveals that alanine, sarcosine, creatinine, glycine, and citrate were able to discriminate PC from BPH. DFA-based categorization exhibited high accuracy (88.3% by NMR and 75.2% by clinical laboratory method) to differentiate PC from BPH. (1) H NMR-based metabolic profiling of filtered-serum sample appears to be assuring, swift, and least-invasive for probing and prediction of PC and BPH with its signature metabolic profile. This novel technique is not only on a par with histopathological evaluation of PC determination but is also comparable to liquid chromatography-based mass spectrometry to identify the metabolites. Prostate 76:1106-1119, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Chemical and nanometer-scale structure of kerogen and its change during thermal maturation investigated by advanced solid-state 13C NMR spectroscopy

    USGS Publications Warehouse

    Mao, J.; Fang, X.; Lan, Y.; Schimmelmann, A.; Mastalerz, Maria; Xu, L.; Schmidt-Rohr, K.

    2010-01-01

    We have used advanced and quantitative solid-state nuclear magnetic resonance (NMR) techniques to investigate structural changes in a series of type II kerogen samples from the New Albany Shale across a range of maturity (vitrinite reflectance R0 from 0.29% to 1.27%). Specific functional groups such as CH3, CH2, alkyl CH, aromatic CH, aromatic C-O, and other nonprotonated aromatics, as well as "oil prone" and "gas prone" carbons, have been quantified by 13C NMR; atomic H/C and O/C ratios calculated from the NMR data agree with elemental analysis. Relationships between NMR structural parameters and vitrinite reflectance, a proxy for thermal maturity, were evaluated. The aromatic cluster size is probed in terms of the fraction of aromatic carbons that are protonated (???30%) and the average distance of aromatic C from the nearest protons in long-range H-C dephasing, both of which do not increase much with maturation, in spite of a great increase in aromaticity. The aromatic clusters in the most mature sample consist of ???30 carbons, and of ???20 carbons in the least mature samples. Proof of many links between alkyl chains and aromatic rings is provided by short-range and long-range 1H-13C correlation NMR. The alkyl segments provide most H in the samples; even at a carbon aromaticity of 83%, the fraction of aromatic H is only 38%. While aromaticity increases with thermal maturity, most other NMR structural parameters, including the aromatic C-O fractions, decrease. Aromaticity is confirmed as an excellent NMR structural parameter for assessing thermal maturity. In this series of samples, thermal maturation mostly increases aromaticity by reducing the length of the alkyl chains attached to the aromatic cores, not by pronounced growth of the size of the fused aromatic ring clusters. ?? 2010 Elsevier Ltd. All rights reserved.

  12. Ceramide-1-Phosphate, in Contrast to Ceramide, Is Not Segregated into Lateral Lipid Domains in Phosphatidylcholine Bilayers

    PubMed Central

    Morrow, Michael R.; Helle, Anne; Perry, Joshua; Vattulainen, Ilpo; Wiedmer, Susanne K.; Holopainen, Juha M.

    2009-01-01

    Sphingolipids are key lipid regulators of cell viability: ceramide is one of the key molecules in inducing programmed cell death (apoptosis), whereas other sphingolipids, such as ceramide 1-phosphate, are mitogenic. The thermotropic and structural behavior of binary systems of N-hexadecanoyl-D-erythro-ceramide (C16-ceramide) or N-hexadecanoyl-D-erythro-ceramide-1-phosphate (C16-ceramide-1-phosphate; C16-C1P) with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) was studied with DSC and deuterium nuclear magnetic resonance (2H-NMR). Partial-phase diagrams (up to a mole fraction of sphingolipids X = 0.40) for both mixtures were constructed based on DSC and 2H-NMR observations. For C16-ceramide-containing bilayers DSC heating scans showed already at Xcer = 0.025 a complex structure of the main-phase transition peak suggestive of lateral-phase separation. The transition width increased significantly upon increasing Xcer, and the upper-phase boundary temperature of the mixture shifted to ∼65°C at Xcer = 0.40. The temperature range over which 2H-NMR spectra of C16-ceramide/DPPC-d62 mixtures displayed coexistence of gel and liquid crystalline domains increased from ∼10° for Xcer = 0.1 to ∼21° for Xcer = 0.4. For C16-C1P/DPPC mixtures, DSC and 2H-NMR observations indicated that two-phase coexistence was limited to significantly narrower temperature ranges for corresponding C1P concentrations. To complement these findings, C16-ceramide/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and C16-C1P/POPC mixtures were also studied by 2H-NMR and fluorescence techniques. These observations indicate that DPPC and POPC bilayers are significantly less perturbed by C16-C1P than by C16-ceramide and that C16-C1P is miscible within DPPC bilayers at least up to XC1P = 0.30. PMID:19289048

  13. A solid-phase extraction procedure coupled to 1H NMR, with chemometric analysis, to seek reliable markers of the botanical origin of honey.

    PubMed

    Beretta, Giangiacomo; Caneva, Enrico; Regazzoni, Luca; Bakhtyari, Nazanin Golbamaki; Maffei Facino, Roberto

    2008-07-14

    The aim of this work was to establish an analytical method for identifying the botanical origin of honey, as an alternative to conventional melissopalynological, organoleptic and instrumental methods (gas-chromatography coupled to mass spectrometry (GC-MS), high-performance liquid chromatography HPLC). The procedure is based on the (1)H nuclear magnetic resonance (NMR) profile coupled, when necessary, with electrospray ionisation-mass spectrometry (ESI-MS) and two-dimensional NMR analyses of solid-phase extraction (SPE)-purified honey samples, followed by chemometric analyses. Extracts of 44 commercial Italian honeys from 20 different botanical sources were analyzed. Honeydew, chestnut and linden honeys showed constant, specific, well-resolved resonances, suitable for use as markers of origin. Honeydew honey contained the typical resonances of an aliphatic component, very likely deriving from the plant phloem sap or excreted into it by sap-sucking aphids. Chestnut honey contained the typical signals of kynurenic acid and some structurally related metabolite. In linden honey the (1)H NMR profile gave strong signals attributable to the mono-terpene derivative cyclohexa-1,3-diene-1-carboxylic acid (CDCA) and to its 1-O-beta-gentiobiosyl ester (CDCA-GBE). These markers were not detectable in the other honeys, except for the less common nectar honey from rosa mosqueta. We compared and analyzed the data by multivariate techniques. Principal component analysis found different clusters of honeys based on the presence of these specific markers. The results, although obviously only preliminary, suggest that the (1)H NMR profile (with HPLC-MS analysis when necessary) can be used as a reference framework for identifying the botanical origin of honey.

  14. Interaction of Cesium Ions with Calix[4]arene-bis(t-octylbenzo-18-crown-6): NMR and Theoretical Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kriz, Jaroslav; Dybal, Jiri; Vanura, Petr

    2011-01-01

    Using 1H, 13C, and 133Cs NMR spectra, it is shown that calix[4]arene-bis (t-octylbenzo-18-crown-6) (L) forms complexes with one (L 3 Cs ) and two (L 3 2Cs ) Cs ions offered by cesium bis(1,2-dicarbollide) cobaltate (CsDCC) in nitrobenzene-d5. The ions interact with all six oxygen atoms in the crown-ether ring and the electrons of the calixarene aromatic moieties. According to extraction technique, the stability constant of the first complex is log nb(L 3 Cs ) = 8.8 ( 0.1. According to 133Cs NMR spectra, the value of the equilibrium constant of the second complex is log Knb (2)(L 3 2Csmore » ) = 6.3(0.2, i.e., its stabilization constant is log nb(L 3 2Cs ) = 15.1 ( 0.3. Self-diffusion measurements by 1H pulsed-field gradient (PFG) NMRcombined with density functional theory (DFT) calculations suggest that one DCC ion is tightly associated with L 3 Cs , decreasing its positive charge and consequently stabilizing the second complex, L 3 2Cs . Using a saturation-transfer 133Cs NMR technique, the correlation times ex of chemical exchange between L 3 Cs and L 3 2Cs as well as between L 3 2Cs and free Cs ions were determined as 33.6 and 29.2 ms, respectively.« less

  15. The structural and spectroscopic investigation of 2-chloro-3-methylquinoline by DFT method and UV-Vis, NMR and vibrational spectral techniques combined with molecular docking analysis

    NASA Astrophysics Data System (ADS)

    Kose, Etem; Atac, Ahmet; Bardak, Fehmi

    2018-07-01

    This study comprises the structural and spectroscopic evaluation of a quinoline derivative, 2-chloro-3-methylquinoline (2Cl3MQ), via UV-Vis, 1H and 13C NMR, FT-IR and FT-Raman techniques experimentally, theoretically with DFT and TD-DFT quantum chemical calculations at B3LYP/6-311++G (d, p) level of theory, and investigation of the in silico pharmaceutical potent of 2Cl3MQ in comparison to 2ClnMQ (n = 3,4,7,8,9,10) substituted quinolines. The experimental measurements were recorded as follows; UV-vis spectra were obtained in the range of 200-400 nm in the water and ethanol solvents. 1H and 13C NMR spectra were recorded in CDCl3. Vibrational spectra were obtained in the region of 4000-400 cm-1 and 3500-10 cm-1 for FT-IR and FT-Raman spectra, respectively. Structural and spectroscopic features obtained through theoretical evaluations include: electrostatic features, atomic charges and molecular electrostatic potential surface, the frontier molecular orbital characteristics, the density of states and their overlapping nature, the electronic transition properties, thermodynamical and nonlinear optical characteristics, and predicted UV-Vis, 1H and 13C NMR, FT-IR and FT-Raman spectra. Ligand-enzyme interactions of 2ClnMQ (n = 3,4,7,8,9,10) substituted quinolines with Malate Synthase from Mycobacterium Tuberculosis (MtbMS) were investigated via molecular docking. The role of position of methyl substitution on the inhibitor character of the ligands was discussed on the basis of noncovalent interaction profiles.

  16. The new Schiff base 4-[(4-Hydroxy-3-fluoro-5-methoxy-benzylidene)amino]-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one: Experimental, DFT calculational studies and in vitro antimicrobial activity

    NASA Astrophysics Data System (ADS)

    İskeleli, Nazan Ocak; Alpaslan, Yelda Bingöl; Direkel, Şahin; Ertürk, Aliye Gediz; Süleymanoğlu, Nevin; Ustabaş, Reşat

    2015-03-01

    The synthesized Schiff base, 4-[(4-Hydroxy-3-fluoro-5-methoxy-benzylidene)amino]-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one (I), has been characterized by 13C NMR, 1H NMR, 2D NMR (1H-1H COSY and 13C APT), FT-IR, UV-vis and X-ray single-crystal techniques. Molecular geometry of the compound I in the ground state, vibrational frequencies and chemical shift values have been calculated by using the density functional method (DFT) with 6-311++G(d,p) basis set. The obtained results indicate that optimized geometry can well reflect the crystal structural parameters. The differences between experimental and calculated results of FT-IR and NMR have supported the existence of intermolecular (O-H⋯O type) and intramolecular (C-H⋯O type) hydrogen bonds in the crystal structure. Molecular electrostatic potential (MEP), frontier molecular orbital analysis (HOMO-LUMO) and electronic absorption spectra were carried out at B3LYP/6-311G++(d,p). HOMO-LUMO electronic transition of 3.92 eV is due to contribution of the bands the n → π∗. The antimicrobial activity of the compound I was determined against the selected 11 bacteria and 8 fungi by microdilution broth assay with Alamar Blue. In vitro studies showed that the compound I has no antifungal effect for selected fungal isolates. However, the compound I shows remarkable antibacterial effect for the bacteria; Streptococcus pneumoniae, Haemophilus influenzae and Enterococcus faecalis.

  17. Identifying metabolites related to nitrogen mineralisation using 1H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    . T McDonald, Noeleen; Graham, Stewart; Watson, Catherine; Gordon, Alan; Lalor, Stan; Laughlin, Ronnie; Elliott, Chris; . P Wall, David

    2015-04-01

    Exploring new analysis techniques to enhance our knowledge of the various metabolites within our soil systems is imperative. Principally, this knowledge would allow us to link key metabolites with functional influences on critical nutrient processes, such as the nitrogen (N) mineralisation in soils. Currently there are few studies that utilize proton nuclear magnetic resonance spectroscopy (1H NMR) to characterize multiple metabolites within a soil sample. The aim of this research study was to examine the effectiveness of 1H NMR for isolating multiple metabolites that are related to the mineralizable N (MN) capacity across a range of 35 Irish grassland soils. Soils were measured for MN using the standard seven day anaerobic incubation (AI-7). Additionally, soils were also analysed for a range of physio-chemical properties [e.g. total N, total C, mineral N, texture and soil organic matter (SOM)]. Proton NMR analysis was carried on these soils by extracting with 40% methanol:water, lyophilizing and reconstituting in deuterium oxide and recording the NMR spectra on a 400MHz Bruker AVANCE III spectrometer. Once the NMR data were spectrally processed and analysed using multivariate statistical analysis, seven metabolites were identified as having significant relationships with MN (glucose, trimethylamine, glutamic acid, serine, aspartic acid, 4-aminohippuirc acid and citric acid). Following quantification, glucose was shown to explain the largest percentage variability in MN (72%). These outcomes suggest that sources of labile carbon are essential in regulating N mineralisation and the capacity of plant available N derived from SOM-N pools in these soils. Although, smaller in concentration, the amino acids; 4-aminohippuirc acid, glutamic acid and serine also significantly (P<0.05) explained 43%, 27% and 19% of the variability in MN, respectively. This novel study highlights the effectiveness of using 1H NMR as a practical approach to profile multiple metabolites in soils simultaneously, and increasing the potential to identify those related to various soil processes.

  18. Synthesis and anion recognition studies of novel bis (4-hydroxycoumarin) methane azo dyes

    NASA Astrophysics Data System (ADS)

    Panitsiri, Amorn; Tongkhan, Sukanya; Radchatawedchakoon, Widchaya; Sakee, Uthai

    2016-03-01

    Four new bis (4-hydroxycoumarin) methane azo dyes were synthesized by the condensation of 4-hydroxycoumarin with four different azo salicylaldehydes and their structures were characterized by FT-IR, 1H NMR, 13C NMR, HRMS. Anion binding ability in dimethyl sulfoxide (DMSO) solutions with tetrabutylammonium (TBA) salts (F-, Cl-, Br-, I-, AcO- and H2PO4-) was investigated by the naked eye, as well as UV-visible spectroscopy. The sensor shows selective recognition towards fluoride and acetate. The binding affinity of the sensors with fluoride and acetate was calculated using UV-visible spectroscopic technique.

  19. Monomeric and dimeric structures analysis and spectroscopic characterization of 3,5-difluorophenylboronic acid with experimental (FT-IR, FT-Raman, 1H and 13C NMR, UV) techniques and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Karabacak, Mehmet; Kose, Etem; Atac, Ahmet; Asiri, Abdullah M.; Kurt, Mustafa

    2014-01-01

    The spectroscopic properties of 3,5-difluorophenylboronic acid (3,5-DFPBA, C6H3F2B(OH)2) were investigated by FT-IR, FT-Raman UV-Vis, 1H and 13C NMR spectroscopic techniques. FT-IR (4000-400 cm-1) and FT-Raman spectra (3500-10 cm-1) in the solid phase and 1H and 13C NMR spectra in DMSO solution were recorded. The UV spectra that dissolved in ethanol and water were recorded in the range of 200-400 nm for each solution. The structural and spectroscopic data of the molecule have been obtained for possible three conformers from DFT (B3LYP) with 6-311++G(d,p) basis set calculations. The geometry of the molecule was fully optimized, vibrational spectra were calculated and fundamental vibrations were assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and PQS program. Hydrogen-bonded dimer of title molecule, optimized by counterpoise correction, was also studied B3LYP at the 6-311++G(d,p) level and the effects of molecular association through O-H⋯O hydrogen bonding have been discussed. 1H and 13C NMR chemical shifts were calculated by using the gauge-invariant atomic orbital (GIAO) method. The electronic properties, such as excitation energies, oscillator strength, wavelengths, HOMO and LUMO energies, were performed by time-dependent density functional theory (TD-DFT) results complements with the experimental findings. Total and partial density of state (TDOS and PDOS) and also overlap population density of state (OPDOS) diagrams analysis were presented. The effects due to the substitutions of boric acid group and halogen were investigated. The results of the calculations were applied to simulate spectra of the title compound, which show excellent agreement with observed spectra. Besides, frontier molecular orbitals (FMO), molecular electrostatic potential (MEP), nonlinear optical properties (NLO) and thermodynamic features were performed.

  20. Structure analysis and spectroscopic characterization of 2-Fluoro-3-Methylpyridine-5-Boronic Acid with experimental (FT-IR, Raman, NMR and XRD) techniques and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Alver, Özgür; Dikmen, Gökhan

    2016-03-01

    Possible stable conformers, geometrical molecular structures, vibrational properties as well as band assignments, nuclear magnetic shielding tensors of 2-Fluoro-3-Methylpyridine-5-Boronic Acid (2F3MP5BA) were studied experimentally and theoretically using FT-IR, Raman, (CP/MAS) NMR and XRD spectroscopic methods. FT-IR and Raman spectra were evaluated in the region of 3500-400 cm-1, and 3200-400 cm-1, respectively. The optimized geometric structures, vibrational wavenumbers and nuclear magnetic shielding tensors were examined using Becke-3-Lee-Yang-Parr (B3LYP) hybrid density functional theory method with 6-311++G(d, p) basis set. 1H, 13C NMR chemical shifts were calculated using the gauge invariant atomic orbital (GIAO) method. 1H, 13C, APT and HETCOR NMR experiments of title molecule were carried out in DMSO solution. 13C CP/MAS NMR measurement was done with 4 mm zirconium rotor and glycine was used as an external standard. Single crystal of 2F3MP5BA was also prepared for XRD measurements. Assignments of vibrational wavenumbers were also strengthened by calculating the total energy distribution (TED) values using scaled quantum mechanical (SQM) method.

  1. Hplc-nmr identification of the human urinary metabolites of (-)-cis-5-fluoro-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl] cytosine, a nucleoside analogue active against human immunodeficiency virus (HIV).

    PubMed

    Shockcor, J P; Wurm, R M; Frick, L W; Sanderson, P N; Farrant, R D; Sweatman, B C; Lindon, J C

    1996-02-01

    1. Human urine samples from a clinical trial of the anti-HIV compound (-)-cis-5-fluoro-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]-cyto sin e (BW524W91) have been analysed using 19F-nmr and 1H-hplc-nmr spectroscopy. 2. The identities and relative levels of the xenobiotic species in the urine have been determined by 470-MHz 19F-nmr spectroscopy and by directly coupled 600-MHz 1H-hplc-nmr in the stop-flow mode with confirmation of the metabolite identities being made by comparison with nmr spectra of synthetic standard compounds. 3. The principal urinary xenobiotic was the unchanged drug, but the glucuronide ether conjugate at the 5' position of BW524W91, one of the two diastereomeric sulphoxides and the deaminated metabolite were also characterized. 4. The detection limit of directly coupled hplc-600-MHz 1H-nmr spectroscopy was evaluated by measuring two-dimensional nmr spectra of the glucuronide conjugate of BW524W91 and shown to be approximately 1 microgram material for 1H-1H-TOCSY and 20 micrograms metabolite for 1H-13C-HMQC spectra for overnight (16 h) acquisition.

  2. Tautomeric equilibria in solutions of 1-methyl-2-phenacylbenzimidazoles

    NASA Astrophysics Data System (ADS)

    Skotnicka, Agnieszka; Czeleń, Przemysław; Gawinecki, Ryszard

    2017-04-01

    Until now the susceptibility of 1-methyl-2-phenacylbenzimidazoles to the proton transfer has not been carefully examined. There only have been selective trials to recognize tautomeric equilibrium of substituted compounds. Unfortunately, conclusions of these studies are often conflicting. Therefore, the aim of this work was to analyze the influence of the factors affecting the tautomeric processes of substituted 1-methyl-2-phenacylbenzimidazoles in solutions of chloroform by spectroscopic technique of 1H and 13C NMR. Complex equilibria may only take place when molecules of tautomeric species contain multiple basic and/or acidic centres. Analysis of NMR spectra show unequivocally that 1-methyl-2-phenacylbenzimidazoles (ketimine tautomeric form) are in equilibrium with (Z)-2-(1-methyl-1H-benzo[d]imidazol-2yl)-1-phenylethenols (enolimine).

  3. Characterization of Free Surface-Bound and Entrapped Water Environments in Poly(N-Isopropyl Acrylamide) Hydrogels via 1H HRMAS PFG NMR Spectroscopy

    DOE PAGES

    Alam, Todd Michael; Childress, Kimberly Kay; Pastoor, Kevin; ...

    2014-09-19

    We found that different water environments in poly(N-isopropyl acrylamide) (PNIPAAm) hydrogels are identified and characterized using 1H high resolution magic angle spinning (HRMAS) nuclear magnetic resonance (NMR). Local water environments corresponding to a “free” highly mobile species, along with waters showing restricted dynamics are resolved in these swollen hydro-gels. For photo-initiated polymerized PNIPAAm gels, an additional entrapped water species is observed. Spin–spin R 2 relaxation experiments support the argument of reduced mobility in the restricted and entrapped water species. Furthermore, by combining pulse field gradient techniques with HRMAS NMR it is possible to directly measure the self-diffusion rate for thesemore » different water environments. The behavior of the heterogeneous water environments through the lower critical solution temperature transition is described.« less

  4. Modification and intercalation of layered zirconium phosphates: a solid-state NMR monitoring.

    PubMed

    Bakhmutov, Vladimir I; Kan, Yuwei; Sheikh, Javeed Ahmad; González-Villegas, Julissa; Colón, Jorge L; Clearfield, Abraham

    2017-07-01

    Several layered zirconium phosphates treated with Zr(IV) ions, modified by monomethoxy-polyethyleneglycol-monophosphate and intercalated with doxorubicin hydrochloride have been studied by solid-state MAS NMR techniques. The organic components of the phosphates have been characterized by the 13 C{ 1 H} CP MAS NMR spectra compared with those of initial compounds. The multinuclear NMR monitoring has provided to establish structure and covalent attachment of organic/inorganic moieties to the surface and interlayer spaces of the phosphates. The MAS NMR experiments including kinetics of proton-phosphorus cross polarization have resulted in an unusual structure of zirconium phosphate 6 combining decoration of the phosphate surface by polymer units and their partial intercalation into the interlayer space. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Insight into hydrogen bonding of uranyl hydroxide layers and capsules by use of 1H magic-angle spinning NMR spectroscopy [Insight into the hydrogen bonding for uranyl hydroxides using 1H MAS NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, Todd M.; Liao, Zuolei; Nyman, May

    Solid-state 1H magic-angle spinning (MAS) NMR was used to investigate local proton environments in anhydrous [UO 2(OH) 2] (α-UOH) and hydrated uranyl hydroxide [(UO 2) 4O(OH) 6·5H 2O (metaschoepite). For the metaschoepite material, proton resonances of the μ 2-OH hydroxyl and interlayer waters were resolved, with two-dimensional (2D) double-quantum (DQ) 1H– 1H NMR correlation experiments revealing strong dipolar interactions between these different proton species. The experimental NMR results were combined with first-principles CASTEP GIPAW (gauge including projector-augmented wave) chemical shift calculations to develop correlations between hydrogen-bond strength and observed 1H NMR chemical shifts. Furthermore, these NMR correlations allowed characterization ofmore » local hydrogen-bond environments in uranyl U 24 capsules and of changes in hydrogen bonding that occurred during thermal dehydration of metaschoepite.« less

  6. Insight into hydrogen bonding of uranyl hydroxide layers and capsules by use of 1H magic-angle spinning NMR spectroscopy [Insight into the hydrogen bonding for uranyl hydroxides using 1H MAS NMR spectroscopy

    DOE PAGES

    Alam, Todd M.; Liao, Zuolei; Nyman, May; ...

    2016-04-27

    Solid-state 1H magic-angle spinning (MAS) NMR was used to investigate local proton environments in anhydrous [UO 2(OH) 2] (α-UOH) and hydrated uranyl hydroxide [(UO 2) 4O(OH) 6·5H 2O (metaschoepite). For the metaschoepite material, proton resonances of the μ 2-OH hydroxyl and interlayer waters were resolved, with two-dimensional (2D) double-quantum (DQ) 1H– 1H NMR correlation experiments revealing strong dipolar interactions between these different proton species. The experimental NMR results were combined with first-principles CASTEP GIPAW (gauge including projector-augmented wave) chemical shift calculations to develop correlations between hydrogen-bond strength and observed 1H NMR chemical shifts. Furthermore, these NMR correlations allowed characterization ofmore » local hydrogen-bond environments in uranyl U 24 capsules and of changes in hydrogen bonding that occurred during thermal dehydration of metaschoepite.« less

  7. Differentiation of Organically and Conventionally Grown Tomatoes by Chemometric Analysis of Combined Data from Proton Nuclear Magnetic Resonance and Mid-infrared Spectroscopy and Stable Isotope Analysis.

    PubMed

    Hohmann, Monika; Monakhova, Yulia; Erich, Sarah; Christoph, Norbert; Wachter, Helmut; Holzgrabe, Ulrike

    2015-11-04

    Because the basic suitability of proton nuclear magnetic resonance spectroscopy ((1)H NMR) to differentiate organic versus conventional tomatoes was recently proven, the approach to optimize (1)H NMR classification models (comprising overall 205 authentic tomato samples) by including additional data of isotope ratio mass spectrometry (IRMS, δ(13)C, δ(15)N, and δ(18)O) and mid-infrared (MIR) spectroscopy was assessed. Both individual and combined analytical methods ((1)H NMR + MIR, (1)H NMR + IRMS, MIR + IRMS, and (1)H NMR + MIR + IRMS) were examined using principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), linear discriminant analysis (LDA), and common components and specific weight analysis (ComDim). With regard to classification abilities, fused data of (1)H NMR + MIR + IRMS yielded better validation results (ranging between 95.0 and 100.0%) than individual methods ((1)H NMR, 91.3-100%; MIR, 75.6-91.7%), suggesting that the combined examination of analytical profiles enhances authentication of organically produced tomatoes.

  8. Liquid-State NMR Analysis of Nanocelluloses.

    PubMed

    King, Alistair W T; Mäkelä, Valtteri; Kedzior, Stephanie A; Laaksonen, Tiina; Partl, Gabriel J; Heikkinen, Sami; Koskela, Harri; Heikkinen, Harri A; Holding, Ashley J; Cranston, Emily D; Kilpeläinen, Ilkka

    2018-04-11

    Recent developments in ionic liquid electrolytes for cellulose or biomass dissolution has also allowed for high-resolution 1 H and 13 C NMR on very high molecular weight cellulose. This permits the development of advanced liquid-state quantitative NMR methods for characterization of unsubstituted and low degree of substitution celluloses, for example, surface-modified nanocelluloses, which are insoluble in all molecular solvents. As such, we present the use of the tetrabutylphosphonium acetate ([P 4444 ][OAc]):DMSO- d 6 electrolyte in the 1D and 2D NMR characterization of poly(methyl methacrylate) (PMMA)-grafted cellulose nanocrystals (CNCs). PMMA- g-CNCs was chosen as a difficult model to study, to illustrate the potential of the technique. The chemical shift range of [P 4444 ][OAc] is completely upfield of the cellulose backbone signals, avoiding signal overlap. In addition, application of diffusion-editing for 1 H and HSQC was shown to be effective in the discrimination between PMMA polymer graft resonances and those from low molecular weight components arising from the solvent system. The bulk ratio of methyl methacrylate monomer to anhydroglucose unit was determined using a combination of HSQC and quantitative 13 C NMR. After detachment and recovery of the PMMA grafts, through methanolysis, DOSY NMR was used to determine the average self-diffusion coefficient and, hence, molecular weight of the grafts compared to self-diffusion coefficients for PMMA GPC standards. This finally led to a calculation of both graft length and graft density using liquid-state NMR techniques. In addition, it was possible to discriminate between triads and tetrads, associated with PMMA tacticity, of the PMMA still attached to the CNCs (before methanolysis). CNC reducing end and sulfate half ester resonances, from sulfuric acid hydrolysis, were also assignable. Furthermore, other biopolymers, such as hemicelluloses and proteins (silk and wool), were found to be soluble in the electrolyte media, allowing for wider application of this method beyond just cellulose analytics.

  9. From crystalline to amorphous calcium pyrophosphates: A solid state Nuclear Magnetic Resonance perspective.

    PubMed

    Gras, Pierre; Baker, Annabelle; Combes, Christèle; Rey, Christian; Sarda, Stéphanie; Wright, Adrian J; Smith, Mark E; Hanna, John V; Gervais, Christel; Laurencin, Danielle; Bonhomme, Christian

    2016-02-01

    Hydrated calcium pyrophosphates (CPP, Ca2P2O7·nH2O) are a fundamental family of materials among osteoarticular pathologic calcifications. In this contribution, a comprehensive multinuclear NMR (Nuclear Magnetic Resonance) study of four crystalline and two amorphous phases of this family is presented. (1)H, (31)P and (43)Ca MAS (Magic Angle Spinning) NMR spectra were recorded, leading to informative fingerprints characterizing each compound. In particular, different (1)H and (43)Ca solid state NMR signatures were observed for the amorphous phases, depending on the synthetic procedure used. The NMR parameters of the crystalline phases were determined using the GIPAW (Gauge Including Projected Augmented Wave) DFT approach, based on first-principles calculations. In some cases, relaxed structures were found to improve the agreement between experimental and calculated values, demonstrating the importance of proton positions and pyrophosphate local geometry in this particular NMR crystallography approach. Such calculations serve as a basis for the future ab initio modeling of the amorphous CPP phases. The general concept of NMR crystallography is applied to the detailed study of calcium pyrophosphates (CPP), whether hydrated or not, and whether crystalline or amorphous. CPP are a fundamental family of materials among osteoarticular pathologic calcifications. Their prevalence increases with age, impacting on 17.5% of the population after the age of 80. They are frequently involved or associated with acute articular arthritis such as pseudogout. Current treatments are mainly directed at relieving the symptoms of joint inflammation but not at inhibiting CPP formation nor at dissolving these crystals. The combination of advanced NMR techniques, modeling and DFT based calculation of NMR parameters allows new original insights in the detailed structural description of this important class of biomaterials. Copyright © 2016. Published by Elsevier Ltd.

  10. A LOW-E MAGIC ANGLE SPINNING PROBE FOR BIOLOGICAL SOLID STATE NMR AT 750 MHz

    PubMed Central

    McNeill, Seth A.; Gor’kov, Peter L.; Shetty, Kiran; Brey, William W.; Long, Joanna R.

    2009-01-01

    Crossed-coil NMR probes are a useful tool for reducing sample heating for biological solid state NMR. In a crossed-coil probe, the higher frequency 1H field, which is the primary source of sample heating in conventional probes, is produced by a separate low-inductance resonator. Because a smaller driving voltage is required, the electric field across the sample and the resultant heating is reduced. In this work we describe the development of a magic angle spinning (MAS) solid state NMR probe utilizing a dual resonator. This dual resonator approach, referred to as “Low-E,” was originally developed to reduce heating in samples of mechanically aligned membranes. The study of inherently dilute systems, such as proteins in lipid bilayers, via MAS techniques requires large sample volumes at high field to obtain spectra with adequate signal-to-noise ratio under physiologically relevant conditions. With the Low-E approach, we are able to obtain homogeneous and sufficiently strong radiofrequency fields for both 1H and 13C frequencies in a 4 mm probe with a 1H frequency of 750 MHz. The performance of the probe using windowless dipolar recoupling sequences is demonstrated on model compounds as well as membrane embedded peptides. PMID:19138870

  11. The solution structure of a local anesthetic and phospholipids: Conformational analysis by one- and two-dimensional nuclear magnetic resonance spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basti, M.M.

    1988-01-01

    Both sections of this study include the use of several high-resolution nuclear magnetic resonance (NMR) techniques. The first part is concerned with the conformational analysis of dibucaine (a local anesthetic) by the use of the lanthanide shift reagent Yb(fod){sub 3} and by computer calculations. The second part of the dissertation is concerned with the study of dioctanoylphosphatidylcholine and dodecylphosphorylcholine and the sulfur analogues of these molecules in deuterated chloroform and chloroform/methanol (2:1 v/v). 2D COSY and {sup 1}H-{sup 13}C heteronuclear correlation experiments were used to make {sup 1}H and {sup 13}C assignments. In both analogues of the phosphatidylcholine molecule, themore » three-bond {sup 1}H-{sup 1}H, {sup 31}P-{sup 13}C, and {sup 31}P-{sup 1}H coupling constants were measured using {sup 1}H, {sup 13}C and {sup 31}P NMR spectroscopy. A number of these coupling constants were significantly different between the two analogues.« less

  12. A quasi-optical and corrugated waveguide microwave transmission system for simultaneous dynamic nuclear polarization NMR on two separate 14.1 T spectrometers

    PubMed Central

    Dubroca, Thierry; Smith, Adam N.; Pike, Kevin J.; Froud, Stuart; Wylde, Richard; Trociewitz, Bianca; McKay, Johannes; Mentink-Vigier, Frederic; van Tol, Johan; Wi, Sungsool; Brey, William; Long, Joanna R.; Frydman, Lucio; Hill, Stephen

    2018-01-01

    Nuclear magnetic resonance (NMR) is an intrinsically insensitive technique, with Boltzmann distributions of nuclear spin states on the order of parts per million in conventional magnetic fields. To overcome this limitation, dynamic nuclear polarization (DNP) can be used to gain up to three orders of magnitude in signal enhancement, which can decrease experimental time by up to six orders of magnitude. In DNP experiments, nuclear spin polarization is enhanced by transferring the relatively larger electron polarization to NMR active nuclei via microwave irradiation. Here, we describe the design and performance of a quasi-optical system enabling the use of a single 395 GHz gyrotron microwave source to simultaneously perform DNP experiments on two different 14.1 T (1H 600 MHz) NMR spectrometers: one configured for magic angle spinning (MAS) solid state NMR; the other configured for solution state NMR experiments. In particular, we describe how the high power microwave beam is split, transmitted, and manipulated between the two spectrometers. A 13C enhancement of 128 is achieved via the cross effect for alanine, using the nitroxide biradical AMUPol, under MAS-DNP conditions at 110 K, while a 31P enhancement of 160 is achieved via the Overhauser effect for triphenylphosphine using the monoradical BDPA under solution NMR conditions at room temperature. The latter result is the first demonstration of Overhauser DNP in the solution state at a field of 14.1 T (1H 600 MHz). Moreover these results have been produced with large sample volumes (~100 μL, i.e. 3 mm diameter NMR tubes). PMID:29459343

  13. A quasi-optical and corrugated waveguide microwave transmission system for simultaneous dynamic nuclear polarization NMR on two separate 14.1 T spectrometers

    NASA Astrophysics Data System (ADS)

    Dubroca, Thierry; Smith, Adam N.; Pike, Kevin J.; Froud, Stuart; Wylde, Richard; Trociewitz, Bianca; McKay, Johannes; Mentink-Vigier, Frederic; van Tol, Johan; Wi, Sungsool; Brey, William; Long, Joanna R.; Frydman, Lucio; Hill, Stephen

    2018-04-01

    Nuclear magnetic resonance (NMR) is an intrinsically insensitive technique, with Boltzmann distributions of nuclear spin states on the order of parts per million in conventional magnetic fields. To overcome this limitation, dynamic nuclear polarization (DNP) can be used to gain up to three orders of magnitude in signal enhancement, which can decrease experimental time by up to six orders of magnitude. In DNP experiments, nuclear spin polarization is enhanced by transferring the relatively larger electron polarization to NMR active nuclei via microwave irradiation. Here, we describe the design and performance of a quasi-optical system enabling the use of a single 395 GHz gyrotron microwave source to simultaneously perform DNP experiments on two different 14.1 T (1H 600 MHz) NMR spectrometers: one configured for magic angle spinning (MAS) solid state NMR; the other configured for solution state NMR experiments. In particular, we describe how the high power microwave beam is split, transmitted, and manipulated between the two spectrometers. A 13C enhancement of 128 is achieved via the cross effect for alanine, using the nitroxide biradical AMUPol, under MAS-DNP conditions at 110 K, while a 31P enhancement of 160 is achieved via the Overhauser effect for triphenylphosphine using the monoradical BDPA under solution NMR conditions at room temperature. The latter result is the first demonstration of Overhauser DNP in the solution state at a field of 14.1 T (1H 600 MHz). Moreover these results have been produced with large sample volumes (∼100 μL, i.e. 3 mm diameter NMR tubes).

  14. A quasi-optical and corrugated waveguide microwave transmission system for simultaneous dynamic nuclear polarization NMR on two separate 14.1 T spectrometers.

    PubMed

    Dubroca, Thierry; Smith, Adam N; Pike, Kevin J; Froud, Stuart; Wylde, Richard; Trociewitz, Bianca; McKay, Johannes; Mentink-Vigier, Frederic; van Tol, Johan; Wi, Sungsool; Brey, William; Long, Joanna R; Frydman, Lucio; Hill, Stephen

    2018-04-01

    Nuclear magnetic resonance (NMR) is an intrinsically insensitive technique, with Boltzmann distributions of nuclear spin states on the order of parts per million in conventional magnetic fields. To overcome this limitation, dynamic nuclear polarization (DNP) can be used to gain up to three orders of magnitude in signal enhancement, which can decrease experimental time by up to six orders of magnitude. In DNP experiments, nuclear spin polarization is enhanced by transferring the relatively larger electron polarization to NMR active nuclei via microwave irradiation. Here, we describe the design and performance of a quasi-optical system enabling the use of a single 395 GHz gyrotron microwave source to simultaneously perform DNP experiments on two different 14.1 T ( 1 H 600 MHz) NMR spectrometers: one configured for magic angle spinning (MAS) solid state NMR; the other configured for solution state NMR experiments. In particular, we describe how the high power microwave beam is split, transmitted, and manipulated between the two spectrometers. A 13 C enhancement of 128 is achieved via the cross effect for alanine, using the nitroxide biradical AMUPol, under MAS-DNP conditions at 110 K, while a 31 P enhancement of 160 is achieved via the Overhauser effect for triphenylphosphine using the monoradical BDPA under solution NMR conditions at room temperature. The latter result is the first demonstration of Overhauser DNP in the solution state at a field of 14.1 T ( 1 H 600 MHz). Moreover these results have been produced with large sample volumes (∼100 µL, i.e. 3 mm diameter NMR tubes). Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Fingerprinting analysis of Rhizoma chuanxiong of commercial types using 1H nuclear magnetic resonance spectroscopy and high performance liquid chromatography method.

    PubMed

    Qin, Hai-Lin; Deng, An-Jun; Du, Guan-Hua; Wang, Peng; Zhang, Jin-Lan; Li, Zhi-Hong

    2009-06-01

    The (1)H nuclear magnetic resonance ((1)H NMR) fingerprints of fractionated non-polar extracts (control substance for a plant drug (CSPD) A) from Rhizoma chuanxiong, the rhizomes of Ligusticum chuanxiong Hort., of seven specimens from different sources were measured on Fourier Transform (FT)-NMR spectrometer and assigned by comparing them with the (1)H NMR spectra of the isolated pure compounds. The (1)H NMR fingerprints showed exclusively characteristic resonance signals of the major special constituents of the plant. Although the differences in the relative intensity of the (1)H NMR signals due to a discrepancy in the ratio of the major constituents among these samples could be confirmed by high performance liquid chromatography analysis, the general features of the (1)H NMR fingerprint established for an authentic sample of the rhizomes of L. chuanxiong exhibited exclusive data from those special compounds and can be used for authenticating L. Chuanxiong species.

  16. Characterization and Performance of Melamine Enhanced Urea Formaldehyde Resin for Bonding Southern Pine Particleboard

    Treesearch

    Qi-Ning Sun; Chung-Yun Hse; Todd F. Shupe

    2011-01-01

    Urea-formaldehyde resins modified by melamine were synthesized by four catalysts (H2SO4, HCl, H3PO4, and NaOH/NH4OH) with a F/U/M molar ratio of 1.38/1/0.074. Resin structure and thermal behavior were studied by 13C-NMR and DSC techniques. For H2SO4, HCl, and H3PO4 catalysts, resins were prepared by two stage pH adjustment: the first pH stage was set at 1.25 (H3PO4 pH...

  17. Synthesis of Schiff base 24-membered trivalent transition metal derivatives with their anti-inflammation and antimicrobial evaluation

    NASA Astrophysics Data System (ADS)

    Kumar, Gajendra; Devi, Shoma; Kumar, Dharmendra

    2016-03-01

    The paper presents the synthesis of macrocyclic complexes [{M(C52H36N12O4)X}X2] of Cr(III), Mn(III) and Fe(III) with Schiff base ligand (C52H36N12O4) obtained through the condensation of 1,4-dicarbonyl phenyl dihydrazide with 1,2-di(1H-indol-1-yl)ethane-1,2-dione. The newly formed Schiff base and its complexes have been characterized with the help of elemental analysis, condensation measurements, magnetic measurements and their structure configuration have been determined by various spectroscopic (electronic, IR, 1H NMR, 13C NMR, GCMS) techniques. The electronic spectra of the complexes indicate a five coordinate square pyramidal geometry of the center metal ion. These metal complexes and ligand were tested for their anti-inflammation and antimicrobial inhibiting potential and compared with standard drugs Phenyl butazone (anti-inflammation), Imipenem (antibacterial) and Miconazole (antifungal).

  18. Characterization of active phosphorus surface sites at synthetic carbonate-free fluorapatite using single-pulse 1H, 31P, and 31P CP MAS NMR.

    PubMed

    Jarlbring, Mathias; Sandström, Dan E; Antzutkin, Oleg N; Forsling, Willis

    2006-05-09

    The chemically active phosphorus surface sites defined as PO(x), PO(x)H, and PO(x)H2, where x = 1, 2, or 3, and the bulk phosphorus groups of PO4(3-) at synthetic carbonate-free fluorapatite (Ca5(PO4)3F) have been studied by means of single-pulse 1H,31P, and 31P CP MAS NMR. The changes in composition and relative amounts of each surface species are evaluated as a function of pH. By combining spectra from single-pulse 1H and 31P MAS NMR and data from 31P CP MAS NMR experiments at varying contact times in the range 0.2-3.0 ms, it has been possible to distinguish between resonance lines in the NMR spectra originating from active surface sites and bulk phosphorus groups and also to assign the peaks in the NMR spectra to the specific phosphorus species. In the 31P CP MAS NMR experiments, the spinning frequency was set to 4.2 kHz; in the single-pulse 1H MAS NMR experiments, the spinning frequency was 10 kHz. The 31P CP MAS NMR spectrum of fluorapatite at pH 5.9 showed one dominating resonance line at 2.9 ppm assigned to originate from PO4(3-) groups and two weaker shoulder peaks at 5.4 and 0.8 ppm which were assigned to the unprotonated PO(x) (PO, PO2-, and PO3(2-)) and protonated PO(x)H (PO2H and PO3H-) surface sites. At pH 12.7, the intensity of the peak representing unprotonated PO(x) surface sites has increased 1.7% relative to the bulk peak, while the intensity of the peaks of the protonated species PO(x)H have decreased 1.4% relative to the bulk peak. At pH 3.5, a resonance peak at -4.5 ppm has appeared in the 31P CP MAS NMR spectrum assigned to the surface species PO(x)H2 (PO3H2). The results from the 1H MAS and 31P CP MAS NMR measurements indicated that H+, OH-, and physisorbed H2O at the surface were released during the drying process at 200 degrees C.

  19. Hyperpolarized NMR: d-DNP, PHIP, and SABRE.

    PubMed

    Kovtunov, Kirill Viktorovich; Pokochueva, Ekaterina; Salnikov, Oleg; Cousin, Samuel; Kurzbach, Dennis; Vuichoud, Basile; Jannin, Sami; Chekmenev, Eduard; Goodson, Boyd; Barskiy, Danila; Koptyug, Igor

    2018-05-23

    NMR signals intensities can be enhanced by several orders of magnitude via utilization of techniques for hyperpolarization of different molecules, and it allows one to overcome the main sensitivity challenge of modern NMR/MRI techniques. Hyperpolarized fluids can be successfully used in different applications of material science and biomedicine. This focus review covers the fundamentals of the preparation of hyperpolarized liquids and gases via dissolution dynamic nuclear polarization (d-DNP) and parahydrogen-based techniques such as signal amplification by reversible exchange (SABRE) and parahydrogen-induced polarization (PHIP) in both heterogeneous and homogeneous processes. The different novel aspects of hyperpolarized fluids formation and utilization along with the possibility of NMR signal enhancement observation are described. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Optimized slice-selective 1H NMR experiments combined with highly accurate quantitative 13C NMR using an internal reference method

    NASA Astrophysics Data System (ADS)

    Jézéquel, Tangi; Silvestre, Virginie; Dinis, Katy; Giraudeau, Patrick; Akoka, Serge

    2018-04-01

    Isotope ratio monitoring by 13C NMR spectrometry (irm-13C NMR) provides the complete 13C intramolecular position-specific composition at natural abundance. It represents a powerful tool to track the (bio)chemical pathway which has led to the synthesis of targeted molecules, since it allows Position-specific Isotope Analysis (PSIA). Due to the very small composition range (which represents the range of variation of the isotopic composition of a given nuclei) of 13C natural abundance values (50‰), irm-13C NMR requires a 1‰ accuracy and thus highly quantitative analysis by 13C NMR. Until now, the conventional strategy to determine the position-specific abundance xi relies on the combination of irm-MS (isotopic ratio monitoring Mass Spectrometry) and 13C quantitative NMR. However this approach presents a serious drawback since it relies on two different techniques and requires to measure separately the signal of all the carbons of the analyzed compound, which is not always possible. To circumvent this constraint, we recently proposed a new methodology to perform 13C isotopic analysis using an internal reference method and relying on NMR only. The method combines a highly quantitative 1H NMR pulse sequence (named DWET) with a 13C isotopic NMR measurement. However, the recently published DWET sequence is unsuited for samples with short T1, which forms a serious limitation for irm-13C NMR experiments where a relaxing agent is added. In this context, we suggest two variants of the DWET called Multi-WET and Profiled-WET, developed and optimized to reach the same accuracy of 1‰ with a better immunity towards T1 variations. Their performance is evaluated on the determination of the 13C isotopic profile of vanillin. Both pulse sequences show a 1‰ accuracy with an increased robustness to pulse miscalibrations compared to the initial DWET method. This constitutes a major advance in the context of irm-13C NMR since it is now possible to perform isotopic analysis with high relaxing agent concentrations, leading to a strong reduction of the overall experiment time.

  1. Correlations among experimental and theoretical NMR data to determine the absolute stereochemistry of darcyribeirine, a pentacyclic indole alkaloid isolated from Rauvolfia grandiflora

    NASA Astrophysics Data System (ADS)

    Cancelieri, Náuvia Maria; Ferreira, Thiago Resende; Vieira, Ivo José Curcino; Braz-Filho, Raimundo; Piló-Veloso, Dorila; Alcântara, Antônio Flávio de Carvalho

    2015-10-01

    Darcyribeirine (1) is a pentacyclic indole alkaloid isolated from Rauvolfia grandiflora. Stereochemistry of 1 was previously proposed based on 1D (coupling constant data) and 2D (NOESY correlations) NMR techniques, having been established a configuration 3R, 15S, and 20R (isomer 1a). Stereoisomers of 1 (i.e., 1a-1h) can be grouped into four sets of enantiomers. Carbon chemical shifts and hydrogen coupling constants were calculated using BLYP/6-31G* theory level for the eight isomers of 1. Calculated NMR data of 1a-1h were correlated with the corresponding experimental data of 1. The best correlations between theoretical and experimental carbon chemical shift data were obtained for the set of enantiomers 1e/1f to structures in the gaseous phase and considering solvent effects (using PCM and explicit models). Similar results were obtained when the same procedure was performed to correlations between theoretical and experimental coupling constant data. Finally, optical rotation calculations indicate 1e as its absolute stereochemistry. Orbital population analysis indicates that the hydrogen bonding between N-H of 1e and DMSO is due to contributions of its frontier unoccupied molecular orbitals, mainly LUMO+1, LUMO+2, and LUMO+3.

  2. 1H and 2H NMR studies of benzene confined in porous solids: melting point depression and pore size distribution.

    PubMed

    Aksnes, D W; Kimtys, L

    2004-01-01

    The pore size distributions of four controlled pore glasses and three silica gels with nominal diameters in the range 4-24 nm were determined by measuring the 1H and 2H NMR signals from the non-frozen fraction of confined benzene and perdeuterated benzene as a function of temperature, in steps of ca. 0.1-1 K. The liquid and solid components of the adsorbate were distinguished, on the basis of the spin-spin relaxation time T2, by employing a spin-echo sequence. The experimental intensity curves of the liquid component are well represented by a sum of two error functions. The mean melting point depression of benzene and perdeuterated benzene confined in the four controlled pore glasses, with pore radius R, follows the simplified Gibbs-Thompson equation DeltaT=kp/R with a kp value of 44 K nm. As expected, the kp value mainly determines the position of the pore size distribution curve, i.e., the mean pore radius, while the transition width determines the shape of the pore size distribution curve. The excellent agreement between the results from the 1H and 2H measurements shows that the effect of the background absorption from protons in physisorbed water and silanol groups is negligible under the experimental conditions used. The overall pore size distributions determined by NMR are in reasonable agreement with the results specified by the manufacturer, or measured by us using the N2 sorption technique. The NMR method, which is complementary to the conventional gas sorption method, is particularly appropriate for studying pore sizes in the mesoporous range.

  3. Isolation and Characterization of a Novel Rebaudioside M Isomer from a Bioconversion Reaction of Rebaudioside A and NMR Comparison Studies of Rebaudioside M Isolated from Stevia rebaudiana Bertoni and Stevia rebaudiana Morita

    PubMed Central

    Prakash, Indra; Bunders, Cynthia; Devkota, Krishna P.; Charan, Romila D.; Ramirez, Catherine; Priedemann, Christopher; Markosyan, Avetik

    2014-01-01

    A minor product, rebaudioside M2 (2), from the bioconversion reaction of rebaudioside A (4) to rebaudioside D (3), was isolated and the complete structure of the novel steviol glycoside was determined. Rebaudioside M2 (2) is considered an isomer of rebaudioside M (1) and contains a relatively rare 1→6 sugar linkage. It was isolated and characterized with NMR (1H, 13C, COSY, HSQC-DEPT, HMBC, 1D-TOCSY, and NOESY) and mass spectral data. Additionally, we emphasize the importance of 1D and 2D NMR techniques when identifying complex steviol glycosides. Numerous NMR spectroscopy studies of rebaudioside M (1), rebaudioside D (3), and mixture of 1 and 3 led to the discovery that SG17 which was previously reported in literature, is a mixture of rebaudioside D (3), rebaudioside M (1), and possibly other related steviol glycosides. PMID:24970220

  4. Oligomeric cationic polymethacrylates: a comparison of methods for determining molecular weight.

    PubMed

    Locock, Katherine E S; Meagher, Laurence; Haeussler, Matthias

    2014-02-18

    This study compares three common laboratory methods, size-exclusion chromatography (SEC), (1)H nuclear magnetic resonance (NMR), and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF), to determine the molecular weight of oligomeric cationic copolymers. The potential bias for each method was examined across a series of polymers that varied in molecular weight and cationic character (both choice of cation (amine versus guanidine) and relative proportion present). SEC was found to be the least accurate, overestimating Mn by an average of 140%, owing to the lack of appropriate cationic standards available, and the complexity involved in estimating the hydrodynamic volume of copolymers. MALDI-TOF approximated Mn well for the highly monodisperse (Đ < 1.1), low molecular weight (degree of polymerization (DP) <50) species but appeared unsuitable for the largest polymers in the series due to the mass bias associated with the technique. (1)H NMR was found to most accurately estimate Mn in this study, differing to theoretical values by only 5.2%. (1)H NMR end-group analysis is therefore an inexpensive and facile, primary quantitative method to estimate the molecular weight of oliogomeric cationic polymethacrylates if suitably distinct end-groups signals are present in the spectrum.

  5. NMR Structural Studies of Antimicrobial Peptides: LPcin Analogs.

    PubMed

    Jeong, Ji-Ho; Kim, Ji-Sun; Choi, Sung-Sub; Kim, Yongae

    2016-01-19

    Lactophoricin (LPcin), a component of proteose peptone (113-135) isolated from bovine milk, is a cationic amphipathic antimicrobial peptide consisting of 23 amino acids. We designed a series of N- or C-terminal truncated variants, mutated analogs, and truncated mutated analogs using peptide-engineering techniques. Then, we selected three LPcin analogs of LPcin-C8 (LPcin-YK1), LPcin-T2WT6W (LPcin-YK2), and LPcin-T2WT6W-C8 (LPcin-YK3), which may have better antimicrobial activities than LPcin, and successfully expressed them in E. coli with high yield. We elucidated the 3D structures and topologies of the three LPcin analogs in membrane environments by conducting NMR structural studies. We investigated the purity of the LPcin analogs and the α-helical secondary structures by performing (1)H-(15)N 2D HSQC and HMQC-NOESY liquid-state NMR spectroscopy using protein-containing micelle samples. We measured the 3D structures and tilt angles in membranes by conducting (15)N 1D and 2D (1)H-(15)N SAMMY type solid-state NMR spectroscopy with an 800 MHz in-house-built (1)H-(15)N double-resonance solid-state NMR probe with a strip-shield coil, using protein-containing large bicelle samples aligned and confirmed by molecular-dynamics simulations. The three LPcin analogs were found to be curved α-helical structures, with tilt angles of 55-75° for normal membrane bilayers, and their enhanced activities may be correlated with these topologies. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. High-resolution NMR spectroscopic trends and assignment rules of metal-free, metallated and substituted corroles.

    PubMed

    Balazs, Yael S; Saltsman, Irena; Mahammed, Atif; Tkachenko, Elena; Golubkov, Galina; Levine, Joshua; Gross, Zeev

    2004-07-01

    Major advances over the last few years have facilitated the synthesis of a large variety of meso-only substituted corroles that display interesting catalytic, therapeutic and photophysical properties. This work is the first to study extensively the NMR spectral characteristics of both metallated and non-metallated triarylcorroles in various organic solvents and provide guidelines for easy and reliable assignments of 1D 1H spectra from trends of J coupling constants and chemical shifts. An excellent correlation is found between C=C bond lengths derived from 3J(H,H) values and experimental lengths determined by x-ray crystallography of the same molecules. The nuclear Overhauser effect provides a robust 1D 1H NMR tool for determining the selectivity of electrophilic substitutions. Variable-temperature NMR and isotopic labelling reveal a single preferred tautomerization state and unsymmetric ring orientations at -70 degrees C. The beta-pyrrole protons demonstrate long-range heteronuclear couplings with the coordination core (15N) and with the ortho-19F nuclei of the meso-carbon aryl rings. In sum, application of multinuclear magnetic resonance to corroles and their metal complexes, through the compilation of chemical shifts and J couplings and the recognition of trends therein, provides basic information essential to reliable spectral assignments. Additionally, the conclusions drawn about the structures of corroles and the electron densities at various positions of the corrole macrocycle resulting from the application of high-resolution NMR techniques are of importance to an in-depth understanding of the molecular interactions and processes of this relatively new and rapidly expanding class of compounds. Copyright 2004 John Wiley & Sons, Ltd.

  7. Organic solute changes with acidification in Lake Skjervatjern as shown by 1H-NMR spectroscopy

    USGS Publications Warehouse

    Malcolm, R.L.; Hayes, T.

    1994-01-01

    1H-NMR spectroscopy has been found to be a useful tool to establish possible real differences and trends between all natural organic solute fractions (fulvic acids, humic acids, and XAD-4 acids) after acid-rain additions to the Lake Skjervatjern watershed. The proton NMR technique used in this study determined the spectral distribution of nonexchangeable protons among four peaks (aliphatic protons; aliphatic protons on carbon ?? or attached to electronegative groups; protons on carbons attached to O or N heteroatoms; and aromatic protons). Differences of 10% or more in the respective peak areas were considered to represent a real difference. After one year of acidification, fulvic acids decreased 13% (relative) in Peak 3 protons on carbon attached to N and O heteratoms and exhibited a decrease in aromatic protons between 27% and 31%. Humic acids also exhibited an 11% relative decrease in aromatic protons as a result of acidification. After one year of acidification, real changes were shown in three of the four proton assignments in XAD-4 acids. Peak 1 aliphatic protons increased by 14% (relative), Peak 3 protons on carbons attached to O and N heteroatoms decreased by 13% (relative), and aromatic protons (Peak 4) decreased by 35% (relative). Upon acidification, there was a trend in all solutes for aromatic protons to decrease and aliphatic protons to increase. The natural variation in organic solutes as shown in the Control Side B of the lake from 1990 to 1991 is perhaps a small limitation to the same data interpretations of acid rain changes at the Lake Skjervatjern site, but the proton NMR technique shows great promise as an independent scientific tool to detect and support other chemical techniques in establishing organic solute changes with different treatments (i.e., additions of acid rain).

  8. NMR Stratagems for the Study of Multiple Kinetic Hydrogen/Deuterium Isotope Effectsof Proton Exchange. Example: Di-p-fluorophenylformamidine/THF

    NASA Astrophysics Data System (ADS)

    Limbach, Hans-Heinrich; Meschede, Ludger; Scherer, Gerd

    1989-05-01

    Stratagems are presented for the determination of kinetic isotope effects of proton exchange reactions by dynamic NMR spectroscopy. In such experiments, lineshape analyses and/or polarization transfer experiments are performed on the exchanging protons or deuterons as well as on remote spins, as a function of the deuterium fraction in the mobile proton sites. These methods are NMR analogs of previous proton inventory techniques involving classical kinetic methods. A theory is developed in order to derive the kinetic isotope effects as well as the number of transferred protons from the experimental NMR spectra. The technique is then applied to the problem of proton exchange in the system 15N,15N'-di-p-fluorophenylibrmamidine, a nitrogen analog of formic acid, dissolved in tetrahydrofuran-d8 (THF). DFFA forms two conformers in THF to which s-trans and s-cis structures have been assigned. Only the s-trans conformer is able to dimerize and exchange protons. Lineshape simulations and magnetization transfer experiments were carried out at 189,2 K, at a concentration of 0.02 mol l-1, as a function of the deuterium fraction D in the 1H-15N sites. Using 1H NMR spectroscopy, a linear dependence of the inverse proton lifetimes on D was observed. From this it was concluded that two protons are transported in the rate limiting step of the proton exchange. This result is expected for a double proton transfer in an s-trans dimer with a cyclic structure. The full kinetic HH/HD/DD isotope effects of 233:11:1 at 189 K were determined through 19F NMR experiments on the same samples. The deviation from the rule of geometric mean, although substantial, is much smaller than found in previous studies of intramolecular HH transfer reactions. Possible causes of this effect are discussed.

  9. Unambiguous metabolite identification in high-throughput metabolomics by hybrid 1D 1 H NMR/ESI MS 1 approach: Hybrid 1D 1 H NMR/ESI MS 1 metabolomics method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Lawrence R.; Hoyt, David W.; Walker, S. Michael

    We present a novel approach to improve accuracy of metabolite identification by combining direct infusion ESI MS1 with 1D 1H NMR spectroscopy. The new approach first applies standard 1D 1H NMR metabolite identification protocol by matching the chemical shift, J-coupling and intensity information of experimental NMR signals against the NMR signals of standard metabolites in metabolomics library. This generates a list of candidate metabolites. The list contains false positive and ambiguous identifications. Next, we constrained the list with the chemical formulas derived from high-resolution direct infusion ESI MS1 spectrum of the same sample. Detection of the signals of a metabolitemore » both in NMR and MS significantly improves the confidence of identification and eliminates false positive identification. 1D 1H NMR and direct infusion ESI MS1 spectra of a sample can be acquired in parallel in several minutes. This is highly beneficial for rapid and accurate screening of hundreds of samples in high-throughput metabolomics studies. In order to make this approach practical, we developed a software tool, which is integrated to Chenomx NMR Suite. The approach is demonstrated on a model mixture, tomato and Arabidopsis thaliana metabolite extracts, and human urine.« less

  10. Complete structure of the cell surface polysaccharide of Streptococcus oralis ATCC 10557: A receptor for lectin-mediated interbacterial adherence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abeygunawardana, C.; Bush, C.A.; Cisar, J.O.

    1991-07-02

    Lectin-carbohydrate binding is known to play an important role in a number of different cell-cell interactions including those between certain species of oral streptococci and actinomyces that colonize teeth. The cell wall polysaccharides of Streptococcus oralis ATCC 10557, S. oralis 34, and Streptococcus mitis J22, although not identical antigenically, each function as a receptor molecule for the galactose and N-acetylgalactosamine reactive fimbrial lectins of Actinomyces viscosus and Actinomyces naeslundii. Carbohydrate analysis of the receptor polysaccharide isolated from S. oralis ATCC 10557 shows galactose (3 mol), glucose (1 mol), GalNAc (1 mol), and rhamnose (1 mol). {sup 1}H NMR spectra ofmore » the polysaccharide show that is partially O-acetylated. Analysis of the {sup 1}H NMR spectrum of the de-O-acetylated polysaccharide shows that it is composed of repeating subunits containing six monosaccharides and that the subunits are joined by a phosphodiester linkage. The {sup 1}H and {sup 13}C NMR spectra were completely assigned by two-dimensional homonuclear correlation methods and by {sup 1}H-detected heteronuclear multiple-quantum correlation ({sup 1}H({sup 13}C)HMQC). The complete {sup 1}H and {sup 13}C assignment of the native polysaccharide was carried out by the same techniques augmented by a {sup 13}C-coupled hybrid HMQC-COSY method, which is shown to be especially useful for carbohydrates in which strong coupling and overlapping peaks in the {sup 1}H spectrum pose difficulties.« less

  11. Application of metabonomics on an experimental model of fibrosis and cirrhosis induced by thioacetamide in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constantinou, Maria A.; Department of Forensic Medicine and Toxicology, Medical School, University of Athens, 75, Mikras Asias str., 11527 Athens; Theocharis, Stamatios E.

    2007-01-01

    Metabonomics has already been used to discriminate different pathological states in biological fields. The metabolic profiles of chronic experimental fibrosis and cirrhosis induction in rats were investigated using {sup 1}H NMR spectroscopy of liver extracts and serum combined with pattern recognition techniques. Rats were continuously administered with thioacetamide (TAA) in the drinking water (300 mg TAA/L), and sacrificed on 1st, 2nd, and 3rd month of treatment. {sup 1}H NMR spectra of aqueous and lipid liver extracts, together with serum were subjected to Principal Component Analysis (PCA). Liver portions were also subjected to histopathological examination and biochemical determination of malondialdehyde (MDA).more » Liver fibrosis and cirrhosis were progressively induced in TAA-treated rats, verified by the histopathological examination and the alterations of MDA levels. TAA administration revealed a number of changes in the {sup 1}H NMR spectra compared to control samples. The performance of PCA in liver extracts and serum, discriminated the control samples from the fibrotic and cirrhotic ones. Metabolic alterations revealed in NMR spectra during experimental liver fibrosis and cirrhosis induction, characterize the stage of fibrosis and could be illustrated by subsequent PCA of the spectra. Additionally, the PCA plots of the serum samples presented marked clustering during fibrosis progression and could be extended in clinical diagnosis for the management of cirrhotic patients.« less

  12. Single-crystal X-ray diffraction and NMR crystallography of a 1:1 cocrystal of dithianon and pyrimethanil.

    PubMed

    Pöppler, Ann Christin; Corlett, Emily K; Pearce, Harriet; Seymour, Mark P; Reid, Matthew; Montgomery, Mark G; Brown, Steven P

    2017-03-01

    A single-crystal X-ray diffraction structure of a 1:1 cocrystal of two fungicides, namely dithianon (DI) and pyrimethanil (PM), is reported [systematic name: 5,10-dioxo-5H,10H-naphtho[2,3-b][1,4]dithiine-2,3-dicarbonitrile-4,6-dimethyl-N-phenylpyrimidin-2-amine (1/1), C 14 H 4 N 2 O 2 S 2 ·C 12 H 13 N 2 ]. Following an NMR crystallography approach, experimental solid-state magic angle spinning (MAS) NMR spectra are presented together with GIPAW (gauge-including projector augmented wave) calculations of NMR chemical shieldings. Specifically, experimental 1 H and 13 C chemical shifts are determined from two-dimensional 1 H- 13 C MAS NMR correlation spectra recorded with short and longer contact times so as to probe one-bond C-H connectivities and longer-range C...H proximities, whereas H...H proximities are identified in a 1 H double-quantum (DQ) MAS NMR spectrum. The performing of separate GIPAW calculations for the full periodic crystal structure and for isolated molecules allows the determination of the change in chemical shift upon going from an isolated molecule to the full crystal structure. For the 1 H NMR chemical shifts, changes of 3.6 and 2.0 ppm correspond to intermolecular N-H...O and C-H...O hydrogen bonding, while changes of -2.7 and -1.5 ppm are due to ring current effects associated with C-H...π interactions. Even though there is a close intermolecular S...O distance of 3.10 Å, it is of note that the molecule-to-crystal chemical shifts for the involved sulfur or oxygen nuclei are small.

  13. Ionization behavior of polyphosphoinositides determined via the preparation of pH titration curves using solid-state 31P NMR.

    PubMed

    Graber, Zachary T; Kooijman, Edgar E

    2013-01-01

    Detailed knowledge of the degree of ionization of lipid titratable groups is important for the evaluation of protein-lipid and lipid-lipid interactions. The degree of ionization is commonly evaluated by acid-base titration, but for lipids localized in a multicomponent membrane interface this is not a suitable technique. For phosphomonoester-containing lipids such as the polyphosphoinositides, phosphatidic acid, and ceramide-1-phosphate, this is more conveniently accomplished by (31)P NMR. Here, we describe a solid-state (31)P NMR procedure to construct pH titration curves to determine the degree of ionization of phosphomonoester groups in polyphosphoinositides. This procedure can also be used, with suitable sample preparation conditions, for other important signaling lipids. Access to a solid-state, i.e., magic angle spinning, capable NMR spectrometer is assumed. The procedures described here are valid for a Bruker instrument, but can be adapted for other spectrometers as needed.

  14. Novel electrolytes for use in new and improved batteries: An NMR study

    NASA Astrophysics Data System (ADS)

    Berman, Marc B.

    This thesis focuses on the use of nuclear magnetic resonance (NMR) spectroscopy in order to study materials for use as electrolytes in batteries. The details of four projects are described in this thesis as well as a brief theoretical background of NMR. Structural and dynamics properties were determined using several NMR techniques such as static, MAS, PFG diffusion, and relaxation to understand microscopic and macroscopic properties of the materials described within. Nuclei investigate were 1H, 2H, 7Li, 13C, 19F, 23Na, and 27Al. The first project focuses on an exciting new material to be used as a solid electrolyte membrane. T. The second project focuses on the dynamics of ionic liquid-solvent mixtures and their comparison to molecular dynamics computer simulations. The third project involves a solvent-free film containing NaTFSI salt mixed in to PEO for use in sodium-ion batteries. This final project focuses on a composite electrolyte consisting of a ceramic and solid: LiI:PEO:LiAlO2.

  15. Ionic Liquid-Solute Interactions Studied by 2D NOE NMR Spectroscopy.

    PubMed

    Khatun, Sufia; Castner, Edward W

    2015-07-23

    Intermolecular interactions between a Ru(2+)(bpy)3 solute and the anions and cations of four different ionic liquids (ILs) are investigated by 2D NMR nuclear Overhauser effect (NOE) techniques, including {(1)H-(19)F} HOESY and {(1)H-(1)H} ROESY. Four ILs are studied, each having the same bis(trifluoromethylsulfonyl)amide anion in common. Two of the ILs have aliphatic 1-alkyl-1-methylpyrrolidinium cations, while the other two ILs have aromatic 1-alkyl-3-methylimidazolium cations. ILs with both shorter (butyl) and longer (octyl or decyl) cationic alkyl substituents are studied. NOE NMR results suggest that the local environment of IL anions and cations near the Ru(2+)(bpy)3 solute is rather different from the bulk IL structure. The solute-anion and solute-cation interactions are significantly different both for ILs with short vs long alkyl tails and for ILs with aliphatic vs aromatic cation polar head groups. In particular, the solute-anion interactions are observed to be about 3 times stronger for the cations with shorter alkyl tails relative to the ILs with longer alkyl tails. The Ru(2+)(bpy)3 solute interacts with both the polar head and the nonpolar tail groups of the 1-butyl-1-methylpyrrolidinium cation but only with the nonpolar tail groups of the 1-decyl-1-methylpyrrolidinium cation.

  16. Kinetics of methane hydrate replacement with carbon dioxide and nitrogen gas mixture using in situ NMR spectroscopy.

    PubMed

    Cha, Minjun; Shin, Kyuchul; Lee, Huen; Moudrakovski, Igor L; Ripmeester, John A; Seo, Yutaek

    2015-02-03

    In this study, the kinetics of methane replacement with carbon dioxide and nitrogen gas in methane gas hydrate prepared in porous silica gel matrices has been studied by in situ (1)H and (13)C NMR spectroscopy. The replacement process was monitored by in situ (1)H NMR spectra, where about 42 mol % of the methane in the hydrate cages was replaced in 65 h. Large amounts of free water were not observed during the replacement process, indicating a spontaneous replacement reaction upon exposing methane hydrate to carbon dioxide and nitrogen gas mixture. From in situ (13)C NMR spectra, we confirmed that the replacement ratio was slightly higher in small cages, but due to the composition of structure I hydrate, the amount of methane evolved from the large cages was larger than that of the small cages. Compositional analysis of vapor and hydrate phases was also carried out after the replacement reaction ceased. Notably, the composition changes in hydrate phases after the replacement reaction would be affected by the difference in the chemical potential between the vapor phase and hydrate surface rather than a pore size effect. These results suggest that the replacement technique provides methane recovery as well as stabilization of the resulting carbon dioxide hydrate phase without melting.

  17. New series of aromatic/ five-membered heteroaromatic butanesulfonyl hydrazones as potent biological agents: Synthesis, physicochemical and electronic properties

    NASA Astrophysics Data System (ADS)

    Hamurcu, Fatma; Mamaş, Serhat; Ozdemir, Ummuhan Ozmen; Gündüzalp, Ayla Balaban; Senturk, Ozan Sanlı

    2016-08-01

    The aromatic/five-membered heteroaromatic butanesulfonylhydrazone derivatives; 5-bromosalicylaldehydebutanesulfonylhydrazone(1), 2-hydroxy-1-naphthaldehydebutane sulfonylhydrazone(2), indole-3-carboxaldehydebutanesulfonylhydrazone (3), 2-acetylfuran- carboxyaldehydebutanesulfonylhydrazone(4), 2-acetylthiophenecarboxyaldehydebutane- sulfonylhydrazone(5) and 2-acetyl-5-chlorothiophenecarboxyaldehydebutanesulfonyl hydrazone (6) were synthesized by the reaction of butane sulfonic acid hydrazide with aldehydes/ketones and characterized by using elemental analysis, 1H NMR, 13C NMR and FT-IR technique. Their geometric parameters and electronic properties consist of global reactivity descriptors were also determined by theoretical methods. The electrochemical behavior of the butanesulfonylhydrazones were investigated by using cyclic voltammetry (CV), controlled potential electrolysis and chronoamperometry (CA) techniques. The number of electrons transferred (n), diffusion coefficient (D) and standard heterogeneous rate constants (ks) were determined by electrochemical methods.

  18. Enhancing the resolution of 1H and 13C solid-state NMR spectra by reduction of anisotropic bulk magnetic susceptibility broadening.

    PubMed

    Hanrahan, Michael P; Venkatesh, Amrit; Carnahan, Scott L; Calahan, Julie L; Lubach, Joseph W; Munson, Eric J; Rossini, Aaron J

    2017-10-25

    We demonstrate that natural isotopic abundance 2D heteronuclear correlation (HETCOR) solid-state NMR spectra can be used to significantly reduce or eliminate the broadening of 1 H and 13 C solid-state NMR spectra of organic solids due to anisotropic bulk magnetic susceptibility (ABMS). ABMS often manifests in solids with aromatic groups, such as active pharmaceutical ingredients (APIs), and inhomogeneously broadens the NMR peaks of all nuclei in the sample. Inhomogeneous peaks with full widths at half maximum (FWHM) of ∼1 ppm typically result from ABMS broadening and the low spectral resolution impedes the analysis of solid-state NMR spectra. ABMS broadening of solid-state NMR spectra has previously been eliminated using 2D multiple-quantum correlation experiments, or by performing NMR experiments on diluted materials or single crystals. However, these experiments are often infeasible due to their poor sensitivity and/or provide limited gains in resolution. 2D 1 H- 13 C HETCOR experiments have previously been applied to reduce susceptibility broadening in paramagnetic solids and we show that this strategy can significantly reduce ABMS broadening in diamagnetic organic solids. Comparisons of 1D solid-state NMR spectra and 1 H and 13 C solid-state NMR spectra obtained from 2D 1 H- 13 C HETCOR NMR spectra show that the HETCOR spectrum directly increases resolution by a factor of 1.5 to 8. The direct gain in resolution is determined by the ratio of the inhomogeneous 13 C/ 1 H linewidth to the homogeneous 1 H linewidth, with the former depending on the magnitude of the ABMS broadening and the strength of the applied field and the latter on the efficiency of homonuclear decoupling. The direct gains in resolution obtained using the 2D HETCOR experiments are better than that obtained by dilution. For solids with long proton longitudinal relaxation times, dynamic nuclear polarization (DNP) was applied to enhance sensitivity and enable the acquisition of 2D 1 H- 13 C HETCOR NMR spectra. 2D 1 H- 13 C HETCOR experiments were applied to resolve and partially assign the NMR signals of the form I and form II polymorphs of aspirin in a sample containing both forms. These findings have important implications for ultra-high field NMR experiments, optimization of decoupling schemes and assessment of the fundamental limits on the resolution of solid-state NMR spectra.

  19. Identification and quantitation of 3,4-methylenedioxy-N-methylamphetamine (MDMA, ecstasy) in human urine by 1H NMR spectroscopy. Application to five cases of intoxication.

    PubMed

    Liu, Jonathan; Decatur, John; Proni, Gloria; Champeil, Elise

    2010-01-30

    Identification of 3,4-methylenedioxy-N-methylamphetamine (MDMA, ecstasy) in five cases of intoxication using nuclear magnetic resonance (NMR) spectroscopy of human urine is reported. A new water suppression technique PURGE (Presaturation Utilizing Relaxation Gradients and Echoes) was used. A calibration curve was obtained using spiked samples. The method gave a linear response (correlation coefficient of 0.992) over the range 0.01-1mg/mL. Subsequently, quantitation of the amount of MDMA present in the samples was performed. The benefit and reliability of NMR investigations of human urine for cases of intoxication with MDMA are discussed. Published by Elsevier Ireland Ltd.

  20. Quantitative analysis of Earth's field NMR spectra of strongly-coupled heteronuclear systems.

    PubMed

    Halse, Meghan E; Callaghan, Paul T; Feland, Brett C; Wasylishen, Roderick E

    2009-09-01

    In the Earth's magnetic field, it is possible to observe spin systems consisting of unlike spins that exhibit strongly coupled second-order NMR spectra. Such spectra result when the J-coupling between two unlike spins is of the same order of magnitude as the difference in their Larmor precession frequencies. Although the analysis of second-order spectra involving only spin-(1/2) nuclei has been discussed since the early days of NMR spectroscopy, NMR spectra involving spin-(1/2) nuclei and quadrupolar (I>(1/2)) nuclei have rarely been treated. Two examples are presented here, the tetrahydroborate anion, BH4-, and the ammonium cation, NH4+. For the tetrahydroborate anion, (1)J((11)B,(1)H)=80.9Hz, and in an Earth's field of 53.3microT, nu((1)H)=2269Hz and nu((11)B)=728Hz. The (1)H NMR spectra exhibit features that both first- and second-order perturbation theory are unable to reproduce. On the other hand, second-order perturbation theory adequately describes (1)H NMR spectra of the ammonium anion, (14)NH4+, where (1)J((14)N,(1)H)=52.75Hz when nu((1)H)=2269Hz and nu((14)N)=164Hz. Contrary to an early report, we find that the (1)H NMR spectra are independent of the sign of (1)J((14)N,(1)H). Exact analysis of two-spin systems consisting of quadrupolar nuclei and spin-(1/2) nuclei are also discussed.

  1. Monitoring a simple hydrolysis process in an organic solid by observing methyl group rotation.

    PubMed

    Beckmann, Peter A; Bohen, Joseph M; Ford, Jamie; Malachowski, William P; Mallory, Clelia W; Mallory, Frank B; McGhie, Andrew R; Rheingold, Arnold L; Sloan, Gilbert J; Szewczyk, Steven T; Wang, Xianlong; Wheeler, Kraig A

    2017-09-01

    We report a variety of experiments and calculations and their interpretations regarding methyl group (CH 3 ) rotation in samples of pure 3-methylglutaric anhydride (1), pure 3-methylglutaric acid (2), and samples where the anhydride is slowly absorbing water from the air and converting to the acid [C 6 H 8 O 3 (1) + H 2 O → C 6 H 10 O 4 (2)]. The techniques are solid state 1 H nuclear magnetic resonance (NMR) spin-lattice relaxation, single-crystal X-ray diffraction, electronic structure calculations in both isolated molecules and in clusters of molecules that mimic the crystal structure, field emission scanning electron microscopy, differential scanning calorimetry, and high resolution 1 H NMR spectroscopy. The solid state 1 H spin-lattice relaxation experiments allow us to observe the temperature dependence of the parameters that characterize methyl group rotation in both compounds and in mixtures of the two compounds. In the mixtures, both types of methyl groups (that is, molecules of 1 and 2) can be observed independently and simultaneously at low temperatures because the solid state 1 H spin-lattice relaxation is appropriately described by a double exponential. We have followed the conversion 1 → 2 over periods of two years. The solid state 1 H spin-lattice relaxation experiments in pure samples of 1 and 2 indicate that there is a distribution of NMR activation energies for methyl group rotation in 1 but not in 2 and we are able to explain this in terms of the particle sizes seen in the field emission scanning electron microscopy images. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Phytochemical components and biological activities of Silene arenarioides Desf.

    PubMed

    Golea, Lynda; Benkhaled, Mohammed; Lavaud, Catherine; Long, Christophe; Haba, Hamada

    2017-12-01

    In this study, six known compounds 1-6 were isolated from the aerial parts of Silene arenarioides Desf. using different chromatographic methods. The structures of these compounds were identified as maltol glycoside (1), soyacerebroside I (2), chrysin (3), apigenin (4), quercetin (5) and stigmasterol glucoside (6). The compounds (1) and (2) are reported for the first time from this genus. The isolated compounds were determined using NMR techniques ( 1 H NMR, 13 C NMR, COSY, HSQC and HMBC) and mass spectroscopy (ESI-MS). The antibacterial and antioxidant activities of extracts and of compound (1) have been evaluated. The antioxidant activity was performed by DPPH radical scavenging method, which showed that methanol extract possesses a good antioxidant activity with value of IC 50  = 8.064 ± 0.005 μg/mL.

  3. Improving reliability of chemometric models for authentication of species origin of heparin by switching from 1D to 2D NMR experiments.

    PubMed

    Monakhova, Yulia B; Fareed, Jawed; Yao, Yiming; Diehl, Bernd W K

    2018-05-10

    Nuclear magnetic resonance (NMR) spectroscopy is regarded as one of the most powerful and versatile analytical approaches to assure the quality of heparin preparations. In particular, it was recently demonstrated that by using 1 H NMR coupled with chemometrics heparin and low molecular weight heparin (LMWH) samples derived from three major animal species (porcine, ovine and bovine) can be differentiated [Y.B. Monakhova et al. J. Pharm. Anal. 149 (2018) 114-119]. In this study, significant improvement of existing chemometric models was achieved by switching to 2D NMR experiments (heteronuclear multiple-quantum correlation (HMQC) and diffusion-ordered spectroscopy (DOSY)). Two representative data sets (sixty-nine heparin and twenty-two LMWH) belonged to different batches and distributed by different commercial companies were investigated. A trend for animal species differentiation was observed in the principal component analysis (PCA) score plot built based on the DOSY data. A superior model was constructed using HMQC experiments, where individual heparin (LMWH) clusters as well as their blends were clearly differentiated. The predictive power of different classification methods as well as unsupervised techniques (independent components analysis, ICA) clearly proved applicability of the model for routine heparin and LMWH analysis. The switch from 1D to 2D NMR techniques provides a wealth of additional information, which is beneficial for multivariate modeling of NMR spectroscopic data for heparin preparations. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. The Isolation of a New S-Methyl Benzothioate Compound from a Marine-Derived Streptomyces sp.

    PubMed Central

    Mahyudin, Nor Ainy; Blunt, John W.; Cole, Anthony L. J.; Munro, Murray H. G.

    2012-01-01

    The application of an HPLC bioactivity profiling/microtiter plate technique in conjunction with microprobe NMR instrumentation and access to the AntiMarin database has led to the isolation of a new 1. In this example, 1 was isolated from a cytotoxic fraction of an extract obtained from marine-derived Streptomyces sp. cultured on Starch Casein Agar (SCA) medium. The 1D and 2D 1H NMR and ESIMS data obtained from 20 μg of compound 1 fully defined the structure. The known 2 was also isolated and readily dereplicated using this approach. PMID:22291452

  5. NMR spectroscopic properties (1H at 500 MHz) of deuterated* ribonucleotide-dimers ApU*, GpC*, partially deuterated 2'-deoxyribonucleotide-dimers d(TpA*), d(ApT*), d(GpC*) and their comparison with natural counterparts (1H-NMR window).

    PubMed

    Földesi, A; Nilson, F P; Glemarec, C; Gioeli, C; Chattopadhyaya, J

    1993-02-01

    Pure 1'#,2',3',4'#,5',5''-2H6-ribonucleoside derivatives 10-14, 1'#,2',2'',3',4'#,5',5''-2H7-2'-deoxynucleoside blocks 15-18 and their natural-abundance counterparts were used to assemble partially deuterated ribonucleotide-dimers (* indicates deuteration at 1'#,2',3',4'#,5',5''(2H6)): ApU* 21, GpC* 22 and partially deuterated 2'-deoxyribonucleotide-dimers d(TpA*) 23, d(ApT*) 25, d(GpC*) 26 (* indicates deuteration at 1'#,2',2'',3',4'#,5',5''(2H7)) according to the procedure described by Földesi et al. (Tetrahedron, in press). These five partially deuterated oligonucleotides were subsequently compared with their corresponding natural-abundance counterparts by 500 MHz 1H-NMR spectroscopy to evaluate the actual NMR simplifications achieved in the non-deuterated part (1H-NMR window) as a result of specific deuterium incorporation. Detailed one-dimensional 1H-NMR (500 MHz), two-dimensional correlation spectra (DQF-COSY and TOCSY) and deuterium isotope effect on the chemical shifts of oligonucleotides have been presented.

  6. 1H magic-angle spinning NMR evolves as a powerful new tool for membrane proteins

    NASA Astrophysics Data System (ADS)

    Schubeis, Tobias; Le Marchand, Tanguy; Andreas, Loren B.; Pintacuda, Guido

    2018-02-01

    Building on a decade of continuous advances of the community, the recent development of very fast (60 kHz and above) magic-angle spinning (MAS) probes has revolutionised the field of solid-state NMR. This new spinning regime reduces the 1H-1H dipolar couplings, so that direct detection of the larger magnetic moment available from 1H is now possible at high resolution, not only in deuterated molecules but also in fully-protonated substrates. Such capabilities allow rapid "fingerprinting" of samples with a ten-fold reduction of the required sample amounts with respect to conventional approaches, and permit extensive, robust and expeditious assignment of small-to-medium sized proteins (up to ca. 300 residues), and the determination of inter-nuclear proximities, relative orientations of secondary structural elements, protein-cofactor interactions, local and global dynamics. Fast MAS and 1H detection techniques have nowadays been shown to be applicable to membrane-bound systems. This paper reviews the strategies underlying this recent leap forward in sensitivity and resolution, describing its potential for the detailed characterization of membrane proteins.

  7. NMR-based metabonomic analysis of the hepatotoxicity induced by combined exposure to PCBs and TCDD in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu Chunfeng; Department of Pharmacology, Basic Medical College, Jiamusi University, Jiamusi 154007; Wang Yimei

    2010-11-01

    A metabonomic approach using {sup 1}H NMR spectroscopy was adopted to investigate the metabonomic pattern of rat urine after oral administration of environmental endocrine disruptors (EDs) polychlorinated biphenyls (PCBs) and 2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD) alone or in combination and to explore the possible hepatotoxic mechanisms of combined exposure to PCBs and TCDD. {sup 1}H NMR spectra of urines collected 24 h before and after exposure were analyzed via pattern recognition by using principal component analysis (PCA). Serum biochemistry and liver histopathology indicated significant hepatotoxicity in the rats of the combined group. The PCA scores plots of urinary {sup 1}H NMR datamore » showed that all the treatment groups could be easily distinguished from the control group, so could the PCBs or TCDD group and the combined group. The loadings plots of the PCA revealed remarkable increases in the levels of lactate, glucose, taurine, creatine, and 2-hydroxy-isovaleric acid and reductions in the levels of 2-oxoglutarate, citrate, succinate, hippurate, and trimethylamine-N-oxide in rat urine after exposure. These changes were more striking in the combined group. The changed metabolites may be considered possible biomarker for the hepatotoxicity. The present study demonstrates that combined exposure to PCBs and TCDD induced significant hepatotoxicity in rats, and mitochondrial dysfunction and fatty acid metabolism perturbations might contribute to the hepatotoxicity. There was good conformity between changes in the urine metabonomic pattern and those in serum biochemistry and liver histopathology. These results showed that the NMR-based metabonomic approach may provide a promising technique for the evaluation of the combined toxicity of EDs.« less

  8. Spectroscopic studies and structure of 3-methoxy-2 -[(2,4,4,6,6-pentachloro-1,3,5,2{lambda}{sup 5},4{lambda}{sup 5},6{lambda}{sup 5}-triazatriphosphin-2-yl)oxy] benzaldehyde

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oezay, H.; Yildiz, M., E-mail: myildiz@comu.edu.tr; Uenver, H.

    2013-01-15

    The compound called 3-methoxy-2- [(2,4,4,6,6-pentachloro-1,3,5,2{lambda}{sup 5},4{lambda}{sup 5},6{lambda}{sup 5}-triazatriphosphin-2-yl)oxy] benzaldehyde has been synthesized from the reaction of 2-hydroxy-3-methoxybenzaldehyde with hexachlorocyclotriphosphazene. It has been characterized by elemental analysis, MS, IR, {sup 1}H NMR, {sup 13}C NMR, {sup 31}P NMR and UV-visible spectroscopic techniques. The structure of the title compound has been determind by X-ray analysis. Crystals are orthorhombic, space group P2{sub 1}2{sub 1}2{sub 1}, Z = 4, a = 7.705(1), b = 12.624(1), c = 17.825(2) A, R{sub 1} = 0.0390 and wR{sub 2} = 0.1074 [I > 2{sigma}(I)], respectively.

  9. Systematic Evaluation of Non-Uniform Sampling Parameters in the Targeted Analysis of Urine Metabolites by 1H,1H 2D NMR Spectroscopy.

    PubMed

    Schlippenbach, Trixi von; Oefner, Peter J; Gronwald, Wolfram

    2018-03-09

    Non-uniform sampling (NUS) allows the accelerated acquisition of multidimensional NMR spectra. The aim of this contribution was the systematic evaluation of the impact of various quantitative NUS parameters on the accuracy and precision of 2D NMR measurements of urinary metabolites. Urine aliquots spiked with varying concentrations (15.6-500.0 µM) of tryptophan, tyrosine, glutamine, glutamic acid, lactic acid, and threonine, which can only be resolved fully by 2D NMR, were used to assess the influence of the sampling scheme, reconstruction algorithm, amount of omitted data points, and seed value on the quantitative performance of NUS in 1 H, 1 H-TOCSY and 1 H, 1 H-COSY45 NMR spectroscopy. Sinusoidal Poisson-gap sampling and a compressed sensing approach employing the iterative re-weighted least squares method for spectral reconstruction allowed a 50% reduction in measurement time while maintaining sufficient quantitative accuracy and precision for both types of homonuclear 2D NMR spectroscopy. Together with other advances in instrument design, such as state-of-the-art cryogenic probes, use of 2D NMR spectroscopy in large biomedical cohort studies seems feasible.

  10. Induction of quinone reductase (QR) by withanolides isolated from Physalis angulata L. var. villosa Bonati (Solanaceae).

    PubMed

    Ding, Hui; Hu, Zhijuan; Yu, Liyan; Ma, Zhongjun; Ma, Xiaoqiong; Chen, Zhe; Wang, Dan; Zhao, Xiaofeng

    2014-08-01

    In the present study, the EtOAc extract of the persistent calyx of Physalis angulata L. var. villosa Bonati (PA) was tested for its potential quinone reductase (QR) inducing activity with glutathione (GSH) as the substrate using an UPLC-ESI-MS method. The result revealed that the PA had electrophiles that could induce quinone reductase (QR) activity, which might be attributed to the modification of the highly reactive cysteine residues in Keap1. Herein, three new withanolides, compounds 3, 6 and 7, together with four known withanolides, compounds 1, 2, 4 and 5 were isolated from PA extract. Their structures were determined by spectroscopic techniques, including (1)H-, (13)C NMR (DEPT), and 2D-NMR (HMBC, HMQC, (1)H, (1)H-COSY, NOESY) experiments, as well as by HR-MS. All the seven compounds were tested for their QR induction activities towards mouse hepa 1c1c7 cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. [Effect of Tween 80 on yuxingcao injection and volatile oils from Houttuynia cordata].

    PubMed

    Tan, Zhigao; Chao, Zhimao; Sui, Yu; Liu, Haiping; Wu, Xiaoyi; Sun, Jian; Yan, Han

    2011-01-01

    To research the effect of polysorbate 80 (Tween 80) on Yuxingcao injection and volatile oils from Houttuynia cordata. 1H-NMR spectra of aldehydic and new matter in Yuxingcao injection, volatile oils of H. cordata, and solutions of Tween 80 and volatile oil of H. cordata are determined and compared from various angles of growing origin, storage temperature, and storage time. Three aldehydic singlets in 1H-NMR spectra of every volatile oil from 4 aerial part of H. cordata were observed. These aldehydic peaks were basically disappeared and a new peak at delta 8.30 was found in 1H-NMR spectra of the volatile oil solutions in tween 80. Any obvious aldehydic peak in 1H-NMR spectra did not be observed in Yuxincao injection. A weak peak at 8 8.30 was found in 1H-NMR spectra in Yuxincao injection, and the peak high of delta 8.30 was remarked gone up when the injection was stored in 40 degrees C for 1 to 3 months. Tween 80 might cause the obvious reduce of aldehydic compounds contents and the production of a novel singal at delta 8.30 in 1H-NMR spectra when it was mixed with the volatile oil from the aerial part of H. cordata. The novel signal at delta 8.30 in 1H-NMR spectra existed in Yuxincao injection and was very small, but was increased remarkably when the Yuxincao injection was stored at 40 degrees C for 1 month at least.

  12. Dithallium(III)-Containing 30-Tungsto-4-phosphate, [Tl2Na2(H2O)2(P2W15O56)2]16-: Synthesis, Structural Characterization, and Biological Studies.

    PubMed

    Ayass, Wassim W; Fodor, Tamás; Farkas, Edit; Lin, Zhengguo; Qasim, Hafiz M; Bhattacharya, Saurav; Mougharbel, Ali S; Abdallah, Khaled; Ullrich, Matthias S; Zaib, Sumera; Iqbal, Jamshed; Harangi, Sándor; Szalontai, Gábor; Bányai, István; Zékány, László; Tóth, Imre; Kortz, Ulrich

    2018-06-18

    Here we report on the synthesis and structural characterization of the dithallium(III)-containing 30-tungsto -4-phosphate [Tl 2 Na 2 (H 2 O) 2 {P 2 W 15 O 56 } 2 ] 16- (1) by a multitude of solid-state and solution techniques. Polyanion 1 comprises two octahedrally coordinated Tl 3+ ions sandwiched between two trilacunary {P 2 W 15 } Wells-Dawson fragments and represents only the second structurally characterized, discrete thallium-containing polyoxometalate to date. The two outer positions of the central rhombus are occupied by sodium ions. The title polyanion is solution-stable as shown by 31 P and 203/205 Tl NMR. This was also supported by Tl NMR spectra simulations including several spin systems of isotopologues with half-spin nuclei ( 203 Tl, 205 Tl, 31 P, 183 W). 23 Na NMR showed a time-averaged signal of the Na + counter cations and the structurally bonded Na + ions. 203/205 Tl NMR spectra also showed a minor signal tentatively attributed to the trithallium-containing derivative [Tl 3 Na(H 2 O) 2 (P 2 W 15 O 56 ) 2 ] 14- , which could also be identified in the solid state by single-crystal X-ray diffraction. The bioactivity of polyanion 1 was also tested against bacteria and Leishmania.

  13. Classification of Coffee Beans by GC-C-IRMS, GC-MS, and (1)H-NMR.

    PubMed

    Arana, Victoria Andrea; Medina, Jessica; Esseiva, Pierre; Pazos, Diego; Wist, Julien

    2016-01-01

    In a previous work using (1)H-NMR we reported encouraging steps towards the construction of a robust expert system for the discrimination of coffees from Colombia versus nearby countries (Brazil and Peru), to assist the recent protected geographical indication granted to Colombian coffee in 2007. This system relies on fingerprints acquired on a 400 MHz magnet and is thus well suited for small scale random screening of samples obtained at resellers or coffee shops. However, this approach cannot easily be implemented at harbour's installations, due to the elevated operational costs of cryogenic magnets. This limitation implies shipping the samples to the NMR laboratory, making the overall approach slower and thereby more expensive and less attractive for large scale screening at harbours. In this work, we report on our attempt to obtain comparable classification results using alternative techniques that have been reported promising as an alternative to NMR: GC-MS and GC-C-IRMS. Although statistically significant information could be obtained by all three methods, the results show that the quality of the classifiers depends mainly on the number of variables included in the analysis; hence NMR provides an advantage since more molecules are detected to obtain a model with better predictions.

  14. Classification of Coffee Beans by GC-C-IRMS, GC-MS, and 1H-NMR

    PubMed Central

    Arana, Victoria Andrea; Esseiva, Pierre; Pazos, Diego

    2016-01-01

    In a previous work using 1H-NMR we reported encouraging steps towards the construction of a robust expert system for the discrimination of coffees from Colombia versus nearby countries (Brazil and Peru), to assist the recent protected geographical indication granted to Colombian coffee in 2007. This system relies on fingerprints acquired on a 400 MHz magnet and is thus well suited for small scale random screening of samples obtained at resellers or coffee shops. However, this approach cannot easily be implemented at harbour's installations, due to the elevated operational costs of cryogenic magnets. This limitation implies shipping the samples to the NMR laboratory, making the overall approach slower and thereby more expensive and less attractive for large scale screening at harbours. In this work, we report on our attempt to obtain comparable classification results using alternative techniques that have been reported promising as an alternative to NMR: GC-MS and GC-C-IRMS. Although statistically significant information could be obtained by all three methods, the results show that the quality of the classifiers depends mainly on the number of variables included in the analysis; hence NMR provides an advantage since more molecules are detected to obtain a model with better predictions. PMID:27516919

  15. The structure of the exopolysaccharide of Pseudomonas fluorescens strain H13.

    PubMed

    Osman, S F; Fett, W F; Irwin, P; Cescutti, P; Brouillette, J N; O'Connor, J V

    1997-05-19

    An acidic exopolysaccharide was isolated from P. fluorescens strain H13. The structure of the polysaccharide repeating unit was determined using chemical methods and 1D and 2D NMR techniques. The repeating unit was characterized as a trisaccharide composed of D-glucose, 2-acetamido-2-deoxy-D-glucose and 4-O-acetyl-2-acetamido-2-deoxy-D-mannuronic acid.

  16. Utilization of SABRE-derived hyperpolarization to detect low-concentration analytes via 1D and 2D NMR methods.

    PubMed

    Lloyd, Lyrelle S; Adams, Ralph W; Bernstein, Michael; Coombes, Steven; Duckett, Simon B; Green, Gary G R; Lewis, Richard J; Mewis, Ryan E; Sleigh, Christopher J

    2012-08-08

    The characterization of materials by the inherently insensitive method of NMR spectroscopy plays a vital role in chemistry. Increasingly, hyperpolarization is being used to address the sensitivity limitation. Here, by reference to quinoline, we illustrate that the SABRE hyperpolarization technique, which uses para-hydrogen as the source of polarization, enables the rapid completion of a range of NMR measurements. These include the collection of (13)C, (13)C{(1)H}, and NOE data in addition to more complex 2D COSY, ultrafast 2D COSY and 2D HMBC spectra. The observations are made possible by the use of a flow probe and external sample preparation cell to re-hyperpolarize the substrate between transients, allowing repeat measurements to be made within seconds. The potential benefit of the combination of SABRE and 2D NMR methods for rapid characterization of low-concentration analytes is therefore established.

  17. Complex Mixture Analysis of Organic Compounds in Yogurt by NMR Spectroscopy

    PubMed Central

    Lu, Yi; Hu, Fangyu; Miyakawa, Takuya; Tanokura, Masaru

    2016-01-01

    NMR measurements do not require separation and chemical modification of samples and therefore rapidly and directly provide non-targeted information on chemical components in complex mixtures. In this study, one-dimensional (1H, 13C, and 31P) and two-dimensional (1H-13C and 1H-31P) NMR spectroscopy were conducted to analyze yogurt without any pretreatment. 1H, 13C, and 31P NMR signals were assigned to 10 types of compounds. The signals of α/β-lactose and α/β-galactose were separately observed in the 1H NMR spectra. In addition, the signals from the acyl chains of milk fats were also successfully identified but overlapped with many other signals. Quantitative difference spectra were obtained by subtracting the diffusion ordered spectroscopy (DOSY) spectra from the quantitative 1H NMR spectra. This method allowed us to eliminate interference on the overlaps; therefore, the correct intensities of signals overlapped with those from the acyl chains of milk fat could be determined directly without separation. Moreover, the 1H-31P HMBC spectra revealed for the first time that N-acetyl-d-glucosamine-1-phosphate is contained in yogurt. PMID:27322339

  18. A combined experimental and DFT investigation of disazo dye having pyrazole skeleton

    NASA Astrophysics Data System (ADS)

    Şener, Nesrin; Bayrakdar, Alpaslan; Kart, Hasan Hüseyin; Şener, İzzet

    2017-02-01

    Disazo dye containing pyrazole skeleton has been synthesized. The structure of the dye has been confirmed by using FT-IR, 1H NMR, 13C NMR, HRMS spectral technique and elemental analysis. The molecular geometry and infrared spectrum are also calculated by the Density Functional Theory (DFT) employing B3LYP level with 6-311G (d,p) basis set. The chemical shifts calculation for 1H NMR of the title molecule is done by using by Gauge-Invariant Atomic Orbital (GIAO) method by utilizing the same basis sets. The total density of state, the partial density of state and the overlap population density of state diagram analysis are done via Gauss Sum 3.0 program. Frontier molecular orbitals such as highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) and molecular electrostatic potential surface on the title molecule are predicted for various intramolecular interactions that are responsible for the stabilization of the molecule. The experimental results and theoretical values have been compared.

  19. Isolation, spectroscopic and density functional theory studies of 7-(4-methoxyphenyl)-9H-furo[2,3-f]chromen-9-one: a new flavonoid from the bark of Millettia ovalifolia.

    PubMed

    Taj Ur Rahman; Arfan, Mohammad; Mahmood, Tariq; Liaqat, Wajiha; Gilani, Mazhar Amjad; Uddin, Ghias; Ludwig, Ralf; Zaman, Khair; Choudhary, M Iqbal; Khattak, Khanzadi Fatima; Ayub, Khurshid

    2015-07-05

    The phytochemical examination of chloroform soluble fraction (FX2) of methanolic extract of bark of Millettia ovalifolia yielded a new flavonoid; 7-(4-methoxyphenyl)-9H-furo [2,3-f]chromen-9-one (1). Compound 1 is characterized by spectroscopic analytical techniques such as UV, IR, 1D, 2D NMR spectroscopy, and mass spectrometry. A theoretical model is also developed for obtaining geometric, electronic and spectroscopic properties of 1. The geometry optimization and harmonic vibration simulations have been carried out at B3LYP/6-31G(d,p). The vibrational spectrum of compound 1 shows nice correlation with the experimental IR spectrum, through a scaling factor of 0.9613. (1)H and (13)C NMR chemical shifts are simulated using Cramer's re-parameterized function WP04 at 6-31G(d,p) basis set, and correlate nicely with the experimental chemical shifts. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Isolation, spectroscopic and density functional theory studies of 7-(4-methoxyphenyl)-9H-furo[2,3-f]chromen-9-one: A new flavonoid from the bark of Millettia ovalifolia

    NASA Astrophysics Data System (ADS)

    Rahman, Taj Ur; Arfan, Mohammad; Mahmood, Tariq; Liaqat, Wajiha; Gilani, Mazhar Amjad; Uddin, Ghias; Ludwig, Ralf; Zaman, Khair; Choudhary, M. Iqbal; Khattak, Khanzadi Fatima; Ayub, Khurshid

    2015-07-01

    The phytochemical examination of chloroform soluble fraction (FX2) of methanolic extract of bark of Millettia ovalifolia yielded a new flavonoid; 7-(4-methoxyphenyl)-9H-furo [2,3-f]chromen-9-one (1). Compound 1 is characterized by spectroscopic analytical techniques such as UV, IR, 1D, 2D NMR spectroscopy, and mass spectrometry. A theoretical model is also developed for obtaining geometric, electronic and spectroscopic properties of 1. The geometry optimization and harmonic vibration simulations have been carried out at B3LYP/6-31G(d,p). The vibrational spectrum of compound 1 shows nice correlation with the experimental IR spectrum, through a scaling factor of 0.9613. 1H and 13C NMR chemical shifts are simulated using Cramer's re-parameterized function WP04 at 6-31G(d,p) basis set, and correlate nicely with the experimental chemical shifts.

  1. Solution state nuclear magnetic resonance spectroscopy for biological metabolism and pathway intermediate analysis.

    PubMed

    Nealon, Gareth L; Howard, Mark J

    2016-12-15

    Using nuclear magnetic resonance (NMR) spectroscopy in the study of metabolism has been immensely popular in medical- and health-related research but has yet to be widely applied to more fundamental biological problems. This review provides some NMR background relevant to metabolism, describes why 1 H NMR spectra are complex as well as introducing relevant terminology and definitions. The applications and practical considerations of NMR metabolic profiling and 13 C NMR-based flux analyses are discussed together with the elegant 'enzyme trap' approach for identifying novel metabolic pathway intermediates. The importance of sample preparation and data analysis are also described and explained with reference to data precision and multivariate analysis to introduce researchers unfamiliar with NMR and metabolism to consider this technique for their research interests. Finally, a brief glance into the future suggests NMR-based metabolism has room to expand in the 21st century through new isotope labels, and NMR technologies and methodologies. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  2. 1H-NMR METABONOMICS ANALYSIS OF SERA DIFFERENTIATES BETWEEN MAMMARY TUMOR-BEARING MICE AND HEALTHY CONTROLS

    EPA Science Inventory

    Global analysis of 1H-NMR spectra of serum is an appealing approach for the rapid detection of cancer. To evaluate the usefulness of this method in distinguishing between mammary tumor-bearing mice and healthy controls, we conducted 1H-NMR metabonomic analyses on serum samples ob...

  3. Heterogeneous Coordination Environments in Lithium-Neutralized Ionomers Identified Using 1H and 7Li MAS NMR

    PubMed Central

    Alam, Todd M.; Jenkins, Janelle E.; Bolintineanu, Dan S.; Stevens, Mark J.; Frischknecht, Amalie L.; Buitrago, C. Francisco; Winey, Karen I.; Opper, Kathleen L.; Wagener, Kenneth B.

    2012-01-01

    The carboxylic acid proton and the lithium coordination environments for precise and random Li-neutralized polyethylene acrylic acid P(E-AA) ionomers were explored using high speed solid-state 1H and 7Li MAS NMR. While the 7Li NMR revealed only a single Li coordination environment, the chemical shift temperature variation was dependent on the precise or random nature of the P(E-AA) ionomer. The 1H MAS NMR revealed two different carboxylic acid proton environments in these materials. By utilizing 1H-7Li rotational echo double resonance (REDOR) MAS NMR experiments, it was demonstrated that the proton environments correspond to different average 1H-7Li distances, with the majority of the protonated carboxylic acids having a close through space contact with the Li. Molecular dynamics simulations suggest that the shortest 1H-7Li distance corresponds to un-neutralized carboxylic acids directly involved in the coordination environment of Li clusters. These solid-state NMR results show that heterogeneous structural motifs need to be included when developing descriptions of these ionomer materials.

  4. Online monitoring of fermentation processes via non-invasive low-field NMR.

    PubMed

    Kreyenschulte, Dirk; Paciok, Eva; Regestein, Lars; Blümich, Bernhard; Büchs, Jochen

    2015-09-01

    For the development of biotechnological processes in academia as well as in industry new techniques are required which enable online monitoring for process characterization and control. Nuclear magnetic resonance (NMR) spectroscopy is a promising analytical tool, which has already found broad applications in offline process analysis. The use of online monitoring, however, is oftentimes constrained by high complexity of custom-made NMR bioreactors and considerable costs for high-field NMR instruments (>US$200,000). Therefore, low-field (1) H NMR was investigated in this study in a bypass system for real-time observation of fermentation processes. The new technique was validated with two microbial systems. For the yeast Hansenula polymorpha glycerol consumption could accurately be assessed in spite of the presence of high amounts of complex constituents in the medium. During cultivation of the fungal strain Ustilago maydis, which is accompanied by the formation of several by-products, the concentrations of glucose, itaconic acid, and the relative amount of glycolipids could be quantified. While low-field spectra are characterized by reduced spectral resolution compared to high-field NMR, the compact design combined with the high temporal resolution (15 s-8 min) of spectra acquisition allowed online monitoring of the respective processes. Both applications clearly demonstrate that the investigated technique is well suited for reaction monitoring in opaque media while at the same time it is highly robust and chemically specific. It can thus be concluded that low-field NMR spectroscopy has a great potential for non-invasive online monitoring of biotechnological processes at the research and practical industrial scales. © 2015 Wiley Periodicals, Inc.

  5. Identification of polymethoxylated flavones from green tangerine peel (Pericarpium Citri Reticulatae Viride) by chromatographic and spectroscopic techniques.

    PubMed

    Wang, Dandan; Wang, Jian; Huang, Xuehui; Tu, Ying; Ni, Kunyi

    2007-05-09

    Polymethoxylated flavones (PMFs) were extracted from Pericarpium Citri Reticulatae Viride using a procedure that obtained a consistent mixture of PMFs both in identity and proportion. The mixture consisted of isosinensetin (0.2%) (1), sinensetin (1.7%) (4), tetramethyl-o-isoscutellarein (0.3%) (5), nobiletin (40.5%) (6), tetramethyl-o-scutellarein (1.2%) (7), tangeretin (45.6%) (10), 5-demethylnobiletin (8.7%) (12), 5-demethyl tangeretin (0.8%) (14) and other flavonoids including heptamethoxyflavone (1.0%) (9), among which, compounds 1, 4, 5, 7 and 9 were identified based on their UV spectra, MS data and elution order described in the literature while compounds 6, 10, 12 and 14 were isolated and identified by UV, IR, MS, (1)H NMR, (13)C NMR and 2D NMR spectral studies. In addition, compound 14 was isolated and identified for the first time from Citrus.

  6. Separation and analysis of trace degradants in a pharmaceutical formulation using on-line capillary isotachophoresis-NMR.

    PubMed

    Eldridge, Stacie L; Almeida, Valentino K; Korir, Albert K; Larive, Cynthia K

    2007-11-15

    NMR spectroscopy is widely used in the pharmaceutical industry for the structure elucidation of pharmaceutical impurities, especially when coupled to a separation method, such as HPLC. However, NMR has relatively poor sensitivity compared with other techniques such as mass spectrometry, limiting its applicability in impurity analyses. This limitation is addressed here through the on-line coupling of microcoil NMR with capillary isotachophoresis (cITP), a separation method that can concentrate dilute components by 2-3 orders of magnitude. With this approach, 1H NMR spectra can be acquired for microgram (nanomole) quantities of trace impurities in a complex sample matrix. cITP-NMR was used in this work to isolate and detect 4-aminophenol (PAP) in an acetaminophen sample spiked at the 0.1% level, with no interference from the parent compound. Analysis of an acetaminophen thermal degradation sample revealed resonances of several degradation products in addition to PAP, confirming the effectiveness of on-line cITP-NMR for trace analyses of pharmaceutical formulations. Subsequent LC-MS/MS analysis provided complementary information for the structure elucidation of the unknown degradation products, which were dimers formed during the degradation process.

  7. Low Temperature Fluorination of Aerosol and Condensed Phase Sol Suspensions of Hydrocarbons Utilizing Elemental Fluorine.

    DTIC Science & Technology

    1980-04-01

    subambient temperature capability of our design . The aerosol fluorination system designed to produce a controlled , con- tinuous stream of aerosol...F3 H8 , 117 (68.9) C6F2H7 CN: D I Mixture CO: D I’’ Difluorocyclohexane Isomer (two nonequivalent CFR groups ) 1 H NMR no integration given 1 9F NMR: d...two nonequivalent CFH groups ) 1H NMR no integration given 19F NMR d? at 193.5 ppm (J = 106.8 Rz ?) 32 TABLE 7 (CONTINUED) MS: CI: 119 (1.4) C6F2

  8. Optimized slice-selective 1H NMR experiments combined with highly accurate quantitative 13C NMR using an internal reference method.

    PubMed

    Jézéquel, Tangi; Silvestre, Virginie; Dinis, Katy; Giraudeau, Patrick; Akoka, Serge

    2018-04-01

    Isotope ratio monitoring by 13 C NMR spectrometry (irm- 13 C NMR) provides the complete 13 C intramolecular position-specific composition at natural abundance. It represents a powerful tool to track the (bio)chemical pathway which has led to the synthesis of targeted molecules, since it allows Position-specific Isotope Analysis (PSIA). Due to the very small composition range (which represents the range of variation of the isotopic composition of a given nuclei) of 13 C natural abundance values (50‰), irm- 13 C NMR requires a 1‰ accuracy and thus highly quantitative analysis by 13 C NMR. Until now, the conventional strategy to determine the position-specific abundance x i relies on the combination of irm-MS (isotopic ratio monitoring Mass Spectrometry) and 13 C quantitative NMR. However this approach presents a serious drawback since it relies on two different techniques and requires to measure separately the signal of all the carbons of the analyzed compound, which is not always possible. To circumvent this constraint, we recently proposed a new methodology to perform 13 C isotopic analysis using an internal reference method and relying on NMR only. The method combines a highly quantitative 1 H NMR pulse sequence (named DWET) with a 13 C isotopic NMR measurement. However, the recently published DWET sequence is unsuited for samples with short T 1 , which forms a serious limitation for irm- 13 C NMR experiments where a relaxing agent is added. In this context, we suggest two variants of the DWET called Multi-WET and Profiled-WET, developed and optimized to reach the same accuracy of 1‰ with a better immunity towards T 1 variations. Their performance is evaluated on the determination of the 13 C isotopic profile of vanillin. Both pulse sequences show a 1‰ accuracy with an increased robustness to pulse miscalibrations compared to the initial DWET method. This constitutes a major advance in the context of irm- 13 C NMR since it is now possible to perform isotopic analysis with high relaxing agent concentrations, leading to a strong reduction of the overall experiment time. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Dinoxin B, A Novel Withanolide from Datura innoxia Leaf with specific Anti-cancer Activities

    USDA-ARS?s Scientific Manuscript database

    A new withanolide, dinoxin B (12,21-dihydroxy-1-oxowitha-2,6,24-trienolide-27-O-'-D-glucopyranoside) (1), was isolated from a methanol extract of Datura innoxia Mill. leaves, using bioassay guided fractionation. The structure was determined by spectroscopic techniques, including 1H, 13C-NMR, and 2D...

  10. Novel NMR tools to study structure and dynamics of biomembranes.

    PubMed

    Gawrisch, Klaus; Eldho, Nadukkudy V; Polozov, Ivan V

    2002-06-01

    Nuclear magnetic resonance (NMR) studies on biomembranes have benefited greatly from introduction of magic angle spinning (MAS) NMR techniques. Improvements in MAS probe technology, combined with the higher magnetic field strength of modern instruments, enables almost liquid-like resolution of lipid resonances. The cross-relaxation rates measured by nuclear Overhauser enhancement spectroscopy (NOESY) provide new insights into conformation and dynamics of lipids with atomic-scale resolution. The data reflect the tremendous motional disorder in the lipid matrix. Transfer of magnetization by spin diffusion along the proton network of lipids is of secondary relevance, even at a long NOESY mixing time of 300 ms. MAS experiments with re-coupling of anisotropic interactions, like the 13C-(1)H dipolar couplings, benefit from the excellent resolution of 13C shifts that enables assignment of the couplings to specific carbon atoms. The traditional 2H NMR experiments on deuterated lipids have higher sensitivity when conducted on oriented samples at higher magnetic field strength. A very large number of NMR parameters from lipid bilayers is now accessible, providing information about conformation and dynamics for every lipid segment. The NMR methods have the sensitivity and resolution to study lipid-protein interaction, lateral lipid organization, and the location of solvents and drugs in the lipid matrix.

  11. Magnetic nanoparticle supported phosphotungstic acid: An efficient catalyst for the synthesis of xanthene derivatives

    NASA Astrophysics Data System (ADS)

    Patel, Nipun; Katheriya, Deepak; Dadhania, Harsh; Dadhania, Abhishek

    2018-05-01

    Magnetic nanoparticle supported phosphotungstic acid (Fe3O4@SiO2-HPW) was applied as a highly efficient catalyst for the synthesis of 14H-dibenzoxanthene derivatives via condensation reaction of 2-naphthol and aryl aldehydes. The catalyst was found highly efficient for the synthesis of xanthene derivatives under solvent free condition. The catalyst showed high activity and stability during the reaction and provided excellent yield of the corresponding products in short reaction time. All the synthesized compounds were characterized through FT-IR, 1H-NMR and 13C-NMR spectroscopic techniques. Furthermore, the catalyst is magnetically recoverable and can be reused several times without significant loss of its catalytic activity.

  12. Development and characterization of lysine-methotrexate conjugate for enhanced brain delivery.

    PubMed

    Singh, Vijay Kumar; Subudhi, Bharat Bhusan

    2016-09-01

    Methotrexate (MTX), an anticancer drug of choice, has poor permeability across blood-brain barrier (BBB) making it unsuitable for brain tumor application. Its brain availability and scope of application was improved by preparation of reversible conjugate with lysine by capitalizing the endogenous transport system of lysine at BBB. To enhance its delivery to brain, MTX was reversibly conjugated with l-Lysine by an amide linkage. It was characterized by advanced spectroscopy techniques including IR, NMR and MS. Furthermore, conjugate was assessed for stability, toxicity and drug release ability. In vivo distribution studies were done by radioscintigraphy study using 99m Tc radioisotope. The structure of prodrug was confirmed by 1 H-NMR, 13 C-NMR and Mass. The m/e (mass to charge ratio) fragment was found at [M + H] 711.32 in Mass spectra. Stability and metabolic studies suggested that conjugate was stable at physiological pH (in Phosphate buffer pH 7.4 t 1/2 is 70.25 ± 2.17 h and in plasma t 1/2 is 193.57 ± 2.03 min) and circulated adequately to release MTX slowly in brain. In vivo biodistribution study showed that prodrug significantly increased the level of MTX in brain when compared with pharmacokinetic parameter of parent drug. The brain permeability of MTX was enhanced significantly by this conjugate.

  13. Quantitative determination and validation of octreotide acetate using 1 H-NMR spectroscopy with internal standard method.

    PubMed

    Yu, Chen; Zhang, Qian; Xu, Peng-Yao; Bai, Yin; Shen, Wen-Bin; Di, Bin; Su, Meng-Xiang

    2018-01-01

    Quantitative nuclear magnetic resonance (qNMR) is a well-established technique in quantitative analysis. We presented a validated 1 H-qNMR method for assay of octreotide acetate, a kind of cyclic octopeptide. Deuterium oxide was used to remove the undesired exchangeable peaks, which was referred to as proton exchange, in order to make the quantitative signals isolated in the crowded spectrum of the peptide and ensure precise quantitative analysis. Gemcitabine hydrochloride was chosen as the suitable internal standard. Experimental conditions, including relaxation delay time, the numbers of scans, and pulse angle, were optimized first. Then method validation was carried out in terms of selectivity, stability, linearity, precision, and robustness. The assay result was compared with that by means of high performance liquid chromatography, which is provided by Chinese Pharmacopoeia. The statistical F test, Student's t test, and nonparametric test at 95% confidence level indicate that there was no significant difference between these two methods. qNMR is a simple and accurate quantitative tool with no need for specific corresponding reference standards. It has the potential of the quantitative analysis of other peptide drugs and standardization of the corresponding reference standards. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Structural investigation of the capsular polysaccharide produced by a novel Klebsiella serotype (SK1). Location of O-acetyl substituents using NMR and MS techniques.

    PubMed

    Cescutti, P; Ravenscroft, N; Ng, S; Lam, Z; Dutton, G G

    1993-06-21

    The capsular polysaccharide of Klebsiella SK1 was investigated by methylation analysis, Smith degradation, and 1H NMR spectroscopy. The oligosaccharides (P1 and P2) obtained by bacteriophage phi SK1 degradation of the polymer were studied by methylation analysis, and 1D- and 2D-NMR spectroscopy. The resulting data showed that the parent repeating unit is a branched pentasaccharide having a structure identical to the revised structure recently proposed for Klebsiella serotype K8 capsular polysaccharide. [Formula: see text] The 2D-NMR data showed that one third of the glucuronic acid residues in the SK1 polymer are acetylated at O-2, O-3, or O-4. FABMS studies confirmed the presence of monoacetylated glucuronic acid residues. Thus, the relationship between the Klebsiella K8 and SK1 polymers is akin to that found for Klebsiella polysaccharides K30 and K33, which have been typed as serologically distinct yet their structures differ only in the degree of acetylation.

  15. Water speciation in sodium silicate glasses (quenched melts): A comprehensive NMR study

    NASA Astrophysics Data System (ADS)

    Xue, X.; Kanzaki, M.; Eguchi, J.

    2012-12-01

    Dissolution mechanism of water is an important factor governing how the dissolved water affects the physical and thermodynamic properties of silicate melts and glasses. Our previous studies have demonstrated that 1H MAS NMR in combination with 29Si-1H and 27Al-1H double-resonance NMR experiments is an effective approach for unambiguously differentiating and quantifying different water species in quenched silicate melts (glasses). Several contrasting dissolution mechanisms have been revealed depending on the melt composition: for relatively polymerized melts, the formation of SiOH/AlOH species (plus molecular H2O) and depolymerization of the network structure dominate; whereas for depolymerized Ca-Mg silicate melts, free OH (e.g. MgOH) become increasingly important (cf. [1]). The proportion of free OH species has been shown to decrease with both increasing melt polymerization (silica content) and decreasing field strength of the network modifying cations (from Mg to Ca). Our previous 1H and 29Si MAS NMR results for hydrous Na silicate glasses of limited compositions (Na2Si4O9 and Na2Si2O5) were consistent with negligible free OH (NaOH) species and depolymerizing effect of water dissolution [2]. On the other hand, there were also other studies that proposed the presence of significant NaOH species in hydrous glasses near the Na2Si2O5 composition. The purpose of this study is apply the approach of combined 1H MAS NMR and double-resonance (29Si-1H and 23Na-1H) NMR to gain unambiguous evidence for the OH speciation in Na silicate glasses (melts) as a function of composition. Hydrous Na silicate glasses containing mostly ≤ 1 wt% H2O for a range of Na/Si ratios from 0.33 to 1.33 have been synthesized by rapidly quenching melts either at 0.2 GPa using an internally heated gas pressure vessel or at 1 GPa using a piston cylinder high-pressure apparatus. NMR spectra have been acquired using a 9.4 T Varian Unity-Inova spectrometer. The 29Si and 1H chemical shifts are reported relative to TMS. The 1H MAS NMR spectra show broad peaks covering a chemical shift range of 1 to 17 ppm, with peak maxima near 4 and 15 ppm for more Si-rich compositions and near 12 ppm for less Si-rich compositions. The 1H-29Si-1H and 23Na-1H cross-polarization (CP) MAS NMR spectra for all the hydrous Na silicate glasses suggest negligible NaOH species, which, if present, should show enhanced relative intensity with 23Na-1H CP and the opposite with 1H-29Si-1H CP. All the observed 1H NMR intensities can be attributed to SiOH species of a range of hydrogen-bonding distances, plus a small amount of molecular H2O for higher water-content samples that contribute to intensities around 6 ppm. In conclusion, our combined 1H MAS NMR and double-resonance (1H-29Si-1H and 23Na-1H CP) MAS NMR study on Na silicate glasses of a range of Na/Si ratios has confirmed that water dissolves predominantly as SiOH and molecular H2O species in Na silicate melts (glasses), consistent with the trend predicted from studies on the Ca-Mg silicate system [1,2]. References:[1] Xue, X. Y.; Kanzaki, M. J. Am. Ceram. Soc. 2009, 92, 2803-2830. [2] Xue, X. Y.; Kanzaki, M. Geochim. Cosmochim. Acta 2004, 68, 5027-5057.

  16. A novel Schiff-base as a Cu(II) ion fluorescent sensor in aqueous solution

    NASA Astrophysics Data System (ADS)

    Gündüz, Z. Yurtman; Gündüz, C.; Özpınar, C.; Urucu, O. Aydın

    2015-02-01

    A new fluorescent Cu(II) sensor (L) obtained from the Schiff base of 5,5‧-methylene-bis-salicylaldehyde with amidol (2,4-diaminophenol) was synthesized and characterized by FT-IR, MS, 1H NMR, 13C NMR techniques. In the presence of pH 6.5 (KHPO4-Na2HPO4) buffer solutions, copper reacted with L to form a stable 2:1 complex. Fluorescence spectroscopic study showed that Schiff base is highly sensitive towards Cu(II) over other metal ions (K+, Na+, Al3+, Ni2+, Co2+, Fe3+, Zn2+, Pb2+) in DMSO/H2O (30%, v/v). The sensor L was successfully applied to the determination of copper in standard reference material. The structural properties and molecular orbitals of the complex formed between L and Cu2+ ions were also investigated using quantum chemical computations.

  17. Synthesis and characterization of cellulose acetate from rice husk: eco-friendly condition.

    PubMed

    Das, Archana M; Ali, Abdul A; Hazarika, Manash P

    2014-11-04

    Cellulose acetate was synthesized from rice husk by using a simple, efficient, cost-effective and solvent-free method. Cellulose was isolated from rice husk (RH) using standard pretreatment method with dilute alkaline and acid solutions and bleaching with 2% H2O2. Cellulose acetate (CA) was synthesized successfully with the yield of 66% in presence of acetic anhydride and iodine as a catalyst in eco-friendly solvent-free conditions. The reaction parameters were standardized at 80 °C for 300 min and the optimum results were taken for further study. The extent of acetylation was evaluated from % yield and the degree of substitution (DS), which was determined by (1)H NMR and titrimetrically. The synthesized products were characterized with the help modern analytical techniques like FT-IR, (1)H NMR, XRD, etc. and the thermal behavior was evaluated by TGA and DSC thermograms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Reliability of ^1^H NMR analysis for assessment of lipid oxidation at frying temperatures

    USDA-ARS?s Scientific Manuscript database

    The reliability of a method using ^1^H NMR analysis for assessment of oil oxidation at a frying temperature was examined. During heating and frying at 180 °C, changes of soybean oil signals in the ^1^H NMR spectrum including olefinic (5.16-5.30 ppm), bisallylic (2.70-2.88 ppm), and allylic (1.94-2.1...

  19. [Phenolic acid derivatives from Bauhinia glauca subsp. pernervosa].

    PubMed

    Zhao, Qiao-Li; Wu, Zeng-Bao; Zheng, Zhi-Hui; Lu, Xin-Hua; Liang, Hong; Cheng, Wei; Zhang, Qing-Ying; Zhao, Yu-Ying

    2011-08-01

    To study the chemical constituents of Bauhinia glauca subsp. pernervosa, eleven phenolic acids were isolated from a 95% ethanol extract by using a combination of various chromatographic techniques including column chromatography over silica gel, ODS, MCI, Sephadex LH-20, and semi-preparative HPLC. By spectroscopic techniques including 1H NMR, 13C NMR, 2D NMR, and HR-ESI-MS, these compounds were identified as isopropyl O-beta-(6'-O-galloyl)-glucopyranoside (1), ethyl O-beta-(6'-O-galloyl)-glucopyranoside (2), 3, 4, 5-trimethoxyphenyl-(6'-O-galloyl)-O-beta-D-glucopyranoside (3), 3, 4, 5-trimethoxyphenyl-beta-D-glucopyranoside (4), gallic acid (5), methyl gallate (6), ethyl gallate (7), protocatechuic acid (8), 3, 5-dimethoxy-4-hydroxybenzoic acid (9), erigeside C (10) and glucosyringic acid (11). Among them, compound 1 is a new polyhydroxyl compound; compounds 2, 10, and 11 were isolated from the genus Bauhinia for the first time, and the other compounds were isolated from the plant for the first time. Compounds 6 and 8 showed significant protein tyrosine phosphatase1B (PTP1B) inhibitory activity in vitro with the IC50 values of 72.3 and 54.1 micromol x L(-1), respectively.

  20. Synthesis, characterization and antibacterial study of tripodal tris-(N-benzoylthioureido)ethylamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adan, Dalina; Yamin, Bohari; Leng, Ong Wei

    A new tripodal tris-(N-benzoylthiouredoethyl)amine has been successfully synthesized and characterized by spectroscopic technique such as FTIR, ESI MS, {sup 1}H and {sup 13}C NMR. The microanalysis data is in a good agreement with the expected molecular formula. The {sup 1}H NMR chemical shift for both amide and thioamide proton are at lower field than their normal value indicates the presence of the hydrogen bond between the carbonyl oxygen atom and thioamide hydrogen. This is possible when the benzoyl group adopt a trans configuration againts thione group along the C-N bond. The compound has been tested for antibacterial activity against threemore » selected bacteria namely Staphylococcus aureus, Proteus vulgaris and Pseudomanas aeroginosa but there is no significant activities observed.« less

  1. 1H NMR spectra dataset and solid-state NMR data of cowpea (Vigna unguiculata).

    PubMed

    Alves Filho, Elenilson G; Silva, Lorena M A; Teofilo, Elizita M; Larsen, Flemming H; de Brito, Edy S

    2017-04-01

    In this article the NMR data from chemical shifts, coupling constants, and structures of all the characterized compounds were provided, beyond a complementary PCA evaluation for the corresponding manuscript (E.G. Alves Filho, L.M.A. Silva, E.M. Teofilo, F.H. Larsen, E.S. de Brito, 2017) [3]. In addition, a complementary assessment from solid-state NMR data was provided. For further chemometric analysis, numerical matrices from the raw 1 H NMR data were made available in Microsoft Excel workbook format (.xls).

  2. Relaxometry in soil science

    NASA Astrophysics Data System (ADS)

    Schaumann, G. E.; Jaeger, F.; Bayer, J. V.

    2009-04-01

    NMR relaxometry is a sensitive, informative and promising method to study pore size distribution in soils as well as many kinds of soil physicochemical processes, among which are wetting, swelling or changes in the macromolecular status. Further, it is a very helpful method to study interactions between molecules in soil organic matter and it can serve to study the state of binding of water or organic chemicals to soil organic matter. The method of Relaxometry excite the nuclei of interest and their relaxation kinetics are observed. The relaxation time is the time constant of this first order relaxation process. Most applications of relaxometry concentrate on protons, addressing water molecules or H-containing organic molecules. In this context, 1H-NMR relaxometry may be used as an analysis method to determine water uptake characteristics of soils, thus gaining information about water distribution and mobility as well as pore size distribution in wet and moist samples. Additionally, it can also serve as a tool to study mobility of molecular segments in biopolymers. Principally, relaxometry is not restricted to protons. In soil science, relaxometry is also applied using deuterium, xenon and other nuclei to study pore size distribution and interactions. The relaxation time depends on numerous parameters like surface relaxivity, diffusion and interactions between nuclei as well as between nuclei and the environment. One- and two-dimensional methods address the relation between relaxation time and diffusion coefficients and can give information about the interconnectivity of pores. More specific information can be gained using field cycling techniques. Although proton NMR relaxometry is a very promising method in soil science, it has been applied scarcely up to now. It was used to assess changes in molecular rigidity of humic substances. A very recent study shows the potential of NMR relaxometry to assess the pore size distribution of soils in a fast and non-destructive way. Recent studies investigated wetting and swelling processes in soil samples, as well as the formation of microbial biofilms in soil the formation. This contribution gives an overview of current applications and the potential of NMR relaxometry in soil science with special emphasis on proton NMR relaxometry. References Bird, N.R.A., Preston, A.R., Randall, E.W., Whalley, W.R. & Whitmore, A.P. 2005. Measurement of the size distribution of water-filled pores at different matric potentials by stray field nuclear magnetic resonance. 56, 135-143. Bryar, T.R. & Knight, R.J. 2002. Sensitivity of Nuclear Magnetic Resonance Relaxation Measurements to Changing Soil Redox Conditions. Geophysical Research Letters, 29, 50/1-50/4. Conte, P., Spaccini, R. & Piccolo, A. 2006. Advanced CPMAS-13C NMR techniques for molecular characterization of size-separated fractions from a soil humic acid. Analytical and Bioanalytical Chemistry, 386, 382-390. Gunasekara, A.S., Simpson, M.I. & Xing, B. 2003. Identification and characterization of sorption domains in soil organic matter using strucuturally modified humic acids. Environmental Science & Technology, 37, 852-858. Jaeger, F., Grohmann, E., Boeckelmann, U. & Schaumann, G.E. 2006. Microbial effects on 1H NMR Relaxometry in soil samples and glass bead reactors. In Humic Substances - Linking Structure to Functions. Proceedings of the 13th Meeting of the International Humic Substances Societyin Karlsruhe eds. F.H. Frimmel & G. Abbt-Braun), pp. 929-932. Universität Karlsruhe, Karlsruhe. Hurraß, J. & Schaumann, G.E. 2007. Hydration kinetics of wettable and water repellent soil samples. Soil Science Society of America Journal, 71, 280-288. Jaeger, F., Grohmann, E. & Schaumann, G.E. 2006. 1H NMR Relaxometry in natural humous soil samples: Insights in microbial effects on relaxation time distributions. Plant and Soil, 280, 209-222. Jaeger, F., Rudolph, N., Lang, F. & Schaumann, G.E. 2008. Effects of soil solution's constituents on proton NMR relaxometry of soil samples. Soil Science Society of America Journal, 72, 1694-1707. Jaeger, F., Bowe, S. & Schaumann, G.E. in preparation. Evaluation of 1H NMR relaxometry for the assessment of pore size distribution in soil samples. European Journal of Soil Science. Jähnert, S., Vaca Chavez, F., Schaumann, G.E., Schreiber, A., Schönhoff, M. & Findenegg, G.H. 2008. Melting and freezing of water in cylindrical silica nanopores. Physical Chemistry Chemical Physics, 39, 6039-6051. Schaumann, G.E., Hurraß, J., Müller, M. & Rotard, W. 2004. Swelling of organic matter in soil and peat samples: insights from proton relaxation, water absorption and PAH extraction. In Humic Substances: Nature's Most Versatile Materials eds. E.A. Ghabbour & G. Davies), pp. 101-117. Taylor and Francis, Inc., New York. Schaumann, G.E., Hobley, E., Hurraß, J. & Rotard, W. 2005. H-NMR Relaxometry to monitor wetting and swelling kinetics in high organic matter soils. Plant and Soil, 275, 1-20. Schaumann, G.E. & Bertmer, M. 2008. Do water molecules bridge soil organic matter molecule segments? European Journal of Soil Science, 59, 423-429. Todoruk, T.R., Langford, C.H. & Kantzas, A. 2003. Pore-Scale Redistribution of Water during Wetting of Air-Dried Soils As Studied by Low-Field NMR Relaxometry. Environmental Science and Technology, 37, 2707-2713. Todoruk, T.R., Litvina, M., Kantzas, A. & Langford, C.H. 2003. Low-Field NMR Relaxometry: A Study of Interactions of Water with Water-Repellant Soils. Environmental Science and Technology, 37, 2878-2882. Van As, H. & van Dusschoten, D. 1997. NMR methods for imaging of transport processes in micro-porous systems. Geoderma, 80, 389-403. Van As, H. & Lens, P. 2001. Use of 1H NMR to study transport processes in porous biosystems. Journal of Industrial Microbiology & Biotechnology, 26, 43-52.

  3. Long-lived 1H singlet spin states originating from para-hydrogen in Cs-symmetric molecules stored for minutes in high magnetic fields.

    PubMed

    Franzoni, María Belén; Buljubasich, Lisandro; Spiess, Hans W; Münnemann, Kerstin

    2012-06-27

    Nuclear magnetic resonance (NMR) is a very powerful tool in physics, chemistry, and life sciences, although limited by low sensitivity. This problem can be overcome by hyperpolarization techniques dramatically enhancing the NMR signal. However, this approach is restricted to relatively short time scales depending on the nuclear spin-lattice relaxation time T(1) in the range of seconds. This makes long-lived singlet states very useful as a way to extend the hyperpolarization lifetimes. Para-hydrogen induced polarization (PHIP) is particularly suitable, because para-H(2) possesses singlet symmetry. Most PHIP experiments, however, are performed on asymmetric molecules, and the initial singlet state is directly converted to a NMR observable triplet state decaying with T(1), in the order of seconds. We demonstrate that in symmetric molecules, a long-lived singlet state created by PHIP can be stored for several minutes on protons in high magnetic fields. Subsequently, it is converted into observable high nonthermal magnetization by controlled singlet-triplet conversion via level anticrossing.

  4. Sepsis does not alter red blood cell glucose metabolism or Na+ concentration: A 2H-, 23Na-NMR study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hotchkiss, R.S.; Song, S.K.; Ling, C.S.

    The effects of sepsis on intracellular Na+ concentration ((Na+)i) and glucose metabolism were examined in rat red blood cells (RBCs) by using 23Na- and 2H-nuclear magnetic resonance (NMR) spectroscopy. Sepsis was induced in 15 halothane-anesthetized female Sprague-Dawley rats by using the cecal ligation and perforation technique; 14 control rats underwent cecal manipulation without ligation. The animals were fasted for 36 h, but allowed free access to water. At 36 h postsurgery, RBCs were examined by 23Na-NMR by using dysprosium tripolyphosphate as a chemical shift reagent. Human RBCs from 17 critically ill nonseptic patients and from 7 patients who were diagnosedmore » as septic were also examined for (Na+)i. Five rat RBC specimens had (Na+)i determined by both 23Na-NMR and inductively coupled plasma-atomic emission spectroscopy (ICP-AES). For glucose metabolism studies, RBCs from septic and control rats were suspended in modified Krebs-Henseleit buffer containing (6,6-2H2)glucose and examined by 2H-NMR. No significant differences in (Na+)i or glucose utilization were found in RBCs from control or septic rats. There were no differences in (Na+)i in the two groups of patients. The (Na+)i determined by NMR spectroscopy agreed closely with measurements using ICP-AES and establish that 100% of the (Na+)i of the RBC is visible by NMR. Glucose measurements determined by 2H-NMR correlated closely (correlation coefficient = 0.93) with enzymatic analysis. These studies showed no evidence that sepsis disturbed RBC membrane function or metabolism.« less

  5. NMR investigation and theoretical calculations of the solvent effect on the conformation of valsartan

    NASA Astrophysics Data System (ADS)

    Chashmniam, Saeed; Tafazzoli, Mohsen

    2017-11-01

    Structure and conformational properties of valsartan were studied by advanced NMR techniques and quantum calculation methods. Potential energy scanning using B3LYP/6-311++g** and B3LYP-D3/6-311++g** methods were performed and four conformers (V1-V4) at minimum points of PES diagram were observed. According to the NMR spectra in acetone-d6, there are two conformers (M and m) with m/M = 0.52 ratio simultaneously and energy barriers of the two conformers were predicted from chemical shifts and multiplicities. While, intramolecular hydrogen bond at tetrazole ring and carboxylic groups prevent the free rotation on N6sbnd C11 bond in M-conformer, this bond rotates freely in m-conformer. On the other hand, intramolecular hydrogen bond at carbonyl and carboxylic acid can be observed at m-conformer. So, different intramolecular hydrogen bond is the reason for the stability of both M and m structures. Quite interestingly, 1H NMR spectra in CDCl3 show two distinct conformers (N and n) with unequal ratio which are differ from M-m conformers. Also, intramolecular hydrogen bond seven-member ring involving five-membered tetrazole ring and carboxylic acid group observed in both N and n-conformers Solvent effect, by using a set of polar and non-polar solvents including DMSO-d6, methanol-d4, benzene-d6, THF-d8, nitromethane-d3, methylene chloride-d2 and acetonitrile-d3 were investigated. NMR parameters include chemical shifts and spin-spin coupling constants were obtained from a set of 2D NMR spectra (H-H COSY, HMQC and HMBC). For this purpose, several DFT functionals from LDA, GGA and hybrid categories were used which the hybrid method showed better agreement with experiment values.

  6. Robustness of NMR-based metabolomics to generate comparable data sets for olive oil cultivar classification. An inter-laboratory study on Apulian olive oils.

    PubMed

    Piccinonna, Sara; Ragone, Rosa; Stocchero, Matteo; Del Coco, Laura; De Pascali, Sandra Angelica; Schena, Francesco Paolo; Fanizzi, Francesco Paolo

    2016-05-15

    Nuclear Magnetic Resonance (NMR) spectroscopy is emerging as a powerful technique in olive oil fingerprinting, but its analytical robustness has to be proved. Here, we report a comparative study between two laboratories on olive oil (1)H NMR fingerprinting, aiming to demonstrate the robustness of NMR-based metabolomics in generating comparable data sets for cultivar classification. Sample preparation and data acquisition were performed independently in two laboratories, equipped with different resolution spectrometers (400 and 500 MHz), using two identical sets of mono-varietal olive oils. Partial Least Squares (PLS)-based techniques were applied to compare the data sets produced by the two laboratories. Despite differences in spectrum baseline, and in intensity and shape of peaks, the amount of shared information was significant (almost 70%) and related to cultivar (same metabolites discriminated between cultivars). In conclusion, regardless of the variability due to operator and machine, the data sets from the two participating units were comparable for the purpose of classification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Characterizing source fingerprints and ageing processes in laboratory-generated secondary organic aerosols using proton-nuclear magnetic resonance ( 1H-NMR) analysis and HPLC HULIS determination

    DOE PAGES

    Zanca, Nicola; Lambe, Andrew T.; Massoli, Paola; ...

    2017-09-06

    The study of secondary organic aerosol (SOA) in laboratory settings has greatly increased our knowledge of the diverse chemical processes and environmental conditions responsible for the formation of particulate matter starting from biogenic and anthropogenic volatile compounds. However, characteristics of the different experimental setups and the way they impact the composition and the timescale of formation of SOA are still subject to debate. In this study, SOA samples were generated using a potential aerosol mass (PAM) oxidation flow reactor using α-pinene, naphthalene and isoprene as precursors. The PAM reactor facilitated exploration of SOA composition over atmospherically relevant photochemical ageing timescalesmore » that are unattainable in environmental chambers. The SOA samples were analyzed using two state-of-the-art analytical techniques for SOA characterization – proton nuclear magnetic resonance ( 1H-NMR) spectroscopy and HPLC determination of humic-like substances (HULIS). Results were compared with previous Aerodyne aerosol mass spectrometer (AMS) measurements. The combined 1H-NMR, HPLC, and AMS datasets show that the composition of the studied SOA systems tend to converge to highly oxidized organic compounds upon prolonged OH exposures. Further, our 1H-NMR findings show that only α-pinene SOA acquires spectroscopic features comparable to those of ambient OA when exposed to at least 1×10 12 molec OH cm -3 × s OH exposure, or multiple days of equivalent atmospheric OH oxidation. Over multiple days of equivalent OH exposure, the formation of HULIS is observed in both α-pinene SOA and in naphthalene SOA (maximum yields: 16 and 30 %, respectively, of total analyzed water-soluble organic carbon, WSOC), providing evidence of the formation of humic-like polycarboxylic acids in unseeded SOA.« less

  8. DFT calculations and experimental FT-IR, FT-Raman, NMR, UV-Vis spectral studies of 3-fluorophenylboronic acid

    NASA Astrophysics Data System (ADS)

    Karabacak, M.; Kose, E.; Sas, E. B.; Kurt, M.; Asiri, A. M.; Atac, A.

    2015-02-01

    The spectroscopic (FT-IR, FT-Raman, 1H and 13C NMR, UV-Vis), structural, electronic and thermodynamical properties of 3-fluorophenylboronic acid (C6H4FB(OH)2), 3FPBA) were submitted by using both experimental techniques and theoretical methods (quantum chemical calculations) in this work. The experimental infrared and Raman spectra were obtained in the region 4000-400 cm-1 and 3500-10 cm-1, respectively. The equilibrium geometry and vibrational spectra were calculated by using DFT (B3LYP) with 6-311++G(d,p) basis set. The vibrational wavenumbers were also corrected with scale factor to take better results for the calculated data. The total energy distributions (TED) of the vibrational modes were performed for the assignments of the title molecule by using scaled quantum mechanics (SQM) method. The NMR chemical shifts (1H and 13C) were recorded in DMSO solution. The 1H and 13C NMR spectra were computed by using the gauge-invariant atomic orbital (GIAO) method, showing a good agreement with the experimental ones. The last one UV-Vis absorption spectra were analyzed in two solvents (ethanol and water), saved in the range of 200-400 nm. In addition these, HOMO and LUMO energies, the excitation energies, density of states (DOS) diagrams, thermodynamical properties and molecular electrostatic potential surface (MEPs) were presented. Nonlinear optical (NLO) properties and thermodynamic features were performed. The experimental results are combined with the theoretical calculations using DFT calculations to fortification of the paper. At the end of this work, the results were proved our paper had been indispensable for the literature backing.

  9. Characterizing source fingerprints and ageing processes in laboratory-generated secondary organic aerosols using proton-nuclear magnetic resonance ( 1H-NMR) analysis and HPLC HULIS determination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zanca, Nicola; Lambe, Andrew T.; Massoli, Paola

    The study of secondary organic aerosol (SOA) in laboratory settings has greatly increased our knowledge of the diverse chemical processes and environmental conditions responsible for the formation of particulate matter starting from biogenic and anthropogenic volatile compounds. However, characteristics of the different experimental setups and the way they impact the composition and the timescale of formation of SOA are still subject to debate. In this study, SOA samples were generated using a potential aerosol mass (PAM) oxidation flow reactor using α-pinene, naphthalene and isoprene as precursors. The PAM reactor facilitated exploration of SOA composition over atmospherically relevant photochemical ageing timescalesmore » that are unattainable in environmental chambers. The SOA samples were analyzed using two state-of-the-art analytical techniques for SOA characterization – proton nuclear magnetic resonance ( 1H-NMR) spectroscopy and HPLC determination of humic-like substances (HULIS). Results were compared with previous Aerodyne aerosol mass spectrometer (AMS) measurements. The combined 1H-NMR, HPLC, and AMS datasets show that the composition of the studied SOA systems tend to converge to highly oxidized organic compounds upon prolonged OH exposures. Further, our 1H-NMR findings show that only α-pinene SOA acquires spectroscopic features comparable to those of ambient OA when exposed to at least 1×10 12 molec OH cm -3 × s OH exposure, or multiple days of equivalent atmospheric OH oxidation. Over multiple days of equivalent OH exposure, the formation of HULIS is observed in both α-pinene SOA and in naphthalene SOA (maximum yields: 16 and 30 %, respectively, of total analyzed water-soluble organic carbon, WSOC), providing evidence of the formation of humic-like polycarboxylic acids in unseeded SOA.« less

  10. Characterizing source fingerprints and ageing processes in laboratory-generated secondary organic aerosols using proton-nuclear magnetic resonance (1H-NMR) analysis and HPLC HULIS determination

    NASA Astrophysics Data System (ADS)

    Zanca, Nicola; Lambe, Andrew T.; Massoli, Paola; Paglione, Marco; Croasdale, David R.; Parmar, Yatish; Tagliavini, Emilio; Gilardoni, Stefania; Decesari, Stefano

    2017-09-01

    The study of secondary organic aerosol (SOA) in laboratory settings has greatly increased our knowledge of the diverse chemical processes and environmental conditions responsible for the formation of particulate matter starting from biogenic and anthropogenic volatile compounds. However, characteristics of the different experimental setups and the way they impact the composition and the timescale of formation of SOA are still subject to debate. In this study, SOA samples were generated using a potential aerosol mass (PAM) oxidation flow reactor using α-pinene, naphthalene and isoprene as precursors. The PAM reactor facilitated exploration of SOA composition over atmospherically relevant photochemical ageing timescales that are unattainable in environmental chambers. The SOA samples were analyzed using two state-of-the-art analytical techniques for SOA characterization - proton nuclear magnetic resonance (1H-NMR) spectroscopy and HPLC determination of humic-like substances (HULIS). Results were compared with previous Aerodyne aerosol mass spectrometer (AMS) measurements. The combined 1H-NMR, HPLC, and AMS datasets show that the composition of the studied SOA systems tend to converge to highly oxidized organic compounds upon prolonged OH exposures. Further, our 1H-NMR findings show that only α-pinene SOA acquires spectroscopic features comparable to those of ambient OA when exposed to at least 1 × 1012 molec OH cm-3 × s OH exposure, or multiple days of equivalent atmospheric OH oxidation. Over multiple days of equivalent OH exposure, the formation of HULIS is observed in both α-pinene SOA and in naphthalene SOA (maximum yields: 16 and 30 %, respectively, of total analyzed water-soluble organic carbon, WSOC), providing evidence of the formation of humic-like polycarboxylic acids in unseeded SOA.

  11. DFT calculations and experimental FT-IR, FT-Raman, NMR, UV-Vis spectral studies of 3-fluorophenylboronic acid.

    PubMed

    Karabacak, M; Kose, E; Sas, E B; Kurt, M; Asiri, A M; Atac, A

    2015-02-05

    The spectroscopic (FT-IR, FT-Raman, (1)H and (13)C NMR, UV-Vis), structural, electronic and thermodynamical properties of 3-fluorophenylboronic acid (C6H4FB(OH)2), 3FPBA) were submitted by using both experimental techniques and theoretical methods (quantum chemical calculations) in this work. The experimental infrared and Raman spectra were obtained in the region 4000-400 cm(-1) and 3500-10 cm(-1), respectively. The equilibrium geometry and vibrational spectra were calculated by using DFT (B3LYP) with 6-311++G(d,p) basis set. The vibrational wavenumbers were also corrected with scale factor to take better results for the calculated data. The total energy distributions (TED) of the vibrational modes were performed for the assignments of the title molecule by using scaled quantum mechanics (SQM) method. The NMR chemical shifts ((1)H and (13)C) were recorded in DMSO solution. The (1)H and (13)C NMR spectra were computed by using the gauge-invariant atomic orbital (GIAO) method, showing a good agreement with the experimental ones. The last one UV-Vis absorption spectra were analyzed in two solvents (ethanol and water), saved in the range of 200-400 nm. In addition these, HOMO and LUMO energies, the excitation energies, density of states (DOS) diagrams, thermodynamical properties and molecular electrostatic potential surface (MEPs) were presented. Nonlinear optical (NLO) properties and thermodynamic features were performed. The experimental results are combined with the theoretical calculations using DFT calculations to fortification of the paper. At the end of this work, the results were proved our paper had been indispensable for the literature backing. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Unique occurrence of unusual fatty acids and their industrial utilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosamani, K.M.

    1996-01-01

    Ebenaceae plant family consists of 7 genera and more than 320 species. The present investigation describes the unique occurrence of hitherto unknown 9-keto-cis-13-octadecenoic acid (29.0%) and the cyclopropenoid fatty acids (malvalic acid 12.7% and sterculic acid 8.7%) in the seed oil of Diospyros melanoxylon as well as in the Ebenaceae plant family. Other normal fatty acids are also detected. The identification and characterization were based on FTIR, {sup 1}H NMR, {sup 13}C NMR, MS, and GLC techniques and chemical degradations.

  13. Internally stabilized selenocysteine derivatives: syntheses, 77Se NMR and biomimetic studies.

    PubMed

    Phadnis, Prasad P; Mugesh, G

    2005-07-07

    Selenocystine ([Sec]2) and aryl-substituted selenocysteine (Sec) derivatives are synthesized, starting from commercially available amino acid l-serine. These compounds are characterized by a number of analytical techniques such as NMR (1H, 13C and 77Se) and TOF mass spectroscopy. This study reveals that the introduction of amino/imino substituents capable of interacting with selenium may stabilize the Sec derivatives. This study further suggests that the oxidation-elimination reactions in Sec derivatives could be used for the generation of biologically active selenols having internally stabilizing substituents.

  14. Novel inclusion complex of ibuprofen tromethamine with cyclodextrins: physico-chemical characterization.

    PubMed

    Al Omari, Mahmoud M; Daraghmeh, Nidal H; El-Barghouthi, Musa I; Zughul, Mohammad B; Chowdhry, Babur Z; Leharne, Stephen A; Badwan, Adnan A

    2009-10-15

    Guest-host interactions of ibuprofen tromethamine salt (Ibu.T) with native and modified cyclodextrins (CyDs) have been investigated using several techniques, namely phase solubility diagrams (PSDs), proton nuclear magnetic resonance ((1)H NMR), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffractometry (XRPD), scanning-electron microscopy (SEM) and molecular mechanics (MM). From the analysis of PSD data (A(L)-type) it is concluded that the anionic tromethamine salt of ibuprofen (pK(a)=4.55) forms 1:1 soluble complexes with all CyDs investigated in buffered water at pH 7.0, while the neutral form of Ibu forms an insoluble complex with beta-CyD (B(S)-type) in buffered water at pH 2.0. Ibu.T has a lower tendency to complex with beta-CyD (K(11)=58 M(-1) at pH 7.0) compared with the neutral Ibu (K(11)=4200 M(-1)) in water. Complex formation of Ibu.T with beta-CyD (DeltaG(o)=-20.4 kJ/mol) is enthalpy driven (DeltaH(o)=-22.9 kJ/mol) and is accompanied by a small unfavorable entropy (DeltaS(o)=-8.4 J/mol K) change. (1)H NMR studies and MM computations revealed that, on complexation, the hydrophobic central benzene ring of Ibu.T and part of the isobutyl group reside within the beta-CyD cavity leaving the peripheral groups (carboxylate, tromethamine and methyl groups) located near the hydroxyl group networks at either rim of beta-CyD. PSD, (1)H NMR, DSC, FT-IR, XRPD, SEM and MM studies confirmed the formation of Ibu.T/beta-CyD inclusion complex in solution and the solid state.

  15. Isolation, characterization and mode of antimicrobial action against Vibrio cholerae of methyl gallate isolated from Acacia farnesiana.

    PubMed

    Sánchez, E; Heredia, N; Camacho-Corona, M Del R; García, S

    2013-12-01

    The antimicrobial activity of Acacia farnesiana against Vibrio cholerae has been demonstrated; however, no information regarding its active compound or its mechanism of action has been documented. The active compound was isolated from A. farnesiana by bioassay-guided fractionation and identified as methyl gallate by nuclear magnetic resonance (NMR) techniques ((1) H NMR and (13) C NMR). The minimum bactericidal concentration (MBC) of methyl gallate and its effect on membrane integrity, cytoplasmic pH, membrane potential, ATP synthesis and gene expression of cholera toxin (ctx) from V. cholerae were determined. The MBC of methyl gallate ranged from 30 ± 1 to 50 ± 1 μg ml(-1) . Methyl gallate affected cell membrane integrity, causing a decrease in cytoplasmic pH (pHin , from 7·3 to <3·0), and membrane hyperpolarization, and ATP was no longer produced by the treated cells. However, methyl gallate did not affect ctx gene expression. Methyl gallate is a major antimicrobial compound from A. farnesiana that disturbs the membrane activity of V. cholerae. The effects of methyl gallate validate several traditional antimicrobial uses of A. farnesiana, and it is an attractive alternative to control V. cholerae. © 2013 The Society for Applied Microbiology.

  16. Fingerprinting analysis of Saposhnikovia divaricata using 1H nuclear magnetic resonance spectroscopy and high performance liquid chromatography.

    PubMed

    Xin, Yue-Yang; Deng, An-Jun; Du, Guan-Hua; Zhang, Jin-Lan; Qin, Hai-Lin

    2010-09-01

    The (1)H nuclear magnetic resonance ((1)H NMR) fingerprints of fractionated non-polar and polar extracts (control substance for plant drug [CSPD] A and B) from the roots of 12 specimens of Saposhnikovia divaricata (Turcz.) Schischk were achieved with Fourier Transform (FT)-NMR spectrometer and assigned by comparison to each other and to the (1)H NMR spectra of the isolated individual compounds. These fingerprints were found to be uniform in terms of the specificity for the implication of all 12 specimens being systematically of the same origin. The uniformity was further affirmed by high performance liquid chromatography (HPLC), which also revealed exactly identical specificity for the identified S. divaricata species with the (1)H NMR appearances of corresponding CSPD on the part of the composition of characteristic constituents when comparing to corresponding individual compounds. This investigation unambiguously shows that the specific signals from the chemotaxonomically significant compounds of chromones and coumarins in S. divaricata are exhibited distinctively in the composite features of both (1)H NMR fingerprints and HPLC profiles. The (1)H NMR and HPLC profiles established can successfully be used as reference for the authentication of the origin of S. divaricata species as well as for chemotaxonomic studies.

  17. Review of NMR characterization of pyrolysis oils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Naijia; Ben, Haoxi; Yoo, Chang Geun

    Here, pyrolysis of renewable biomass has been developed as a method to produce green fuels and chemicals in response to energy security concerns as well as to alleviate environmental issues incurred with fossil fuel usage. However, pyrolysis oils still have limited commercial application, mainly because unprocessed oils cannot be readily blended with current petroleum-based transportation fuels. To better understand these challenges, researchers have applied diverse characterization techniques in the development of bio-oil studies. In particular, nuclear magnetic resonance (NMR) is a key spectroscopic characterization method through analysis of bio-oil components. This review highlights the NMR strategies for pyrolysis oil characterizationmore » and critically discusses the applications of 1H, 13C, 31P, 19F, and two-dimensional (2-D NMR) analyses such as heteronuclear single quantum correlation (HSQC) in representative pyrolysis oil studies.« less

  18. Review of NMR characterization of pyrolysis oils

    DOE PAGES

    Hao, Naijia; Ben, Haoxi; Yoo, Chang Geun; ...

    2016-08-24

    Here, pyrolysis of renewable biomass has been developed as a method to produce green fuels and chemicals in response to energy security concerns as well as to alleviate environmental issues incurred with fossil fuel usage. However, pyrolysis oils still have limited commercial application, mainly because unprocessed oils cannot be readily blended with current petroleum-based transportation fuels. To better understand these challenges, researchers have applied diverse characterization techniques in the development of bio-oil studies. In particular, nuclear magnetic resonance (NMR) is a key spectroscopic characterization method through analysis of bio-oil components. This review highlights the NMR strategies for pyrolysis oil characterizationmore » and critically discusses the applications of 1H, 13C, 31P, 19F, and two-dimensional (2-D NMR) analyses such as heteronuclear single quantum correlation (HSQC) in representative pyrolysis oil studies.« less

  19. Emerging New Strategies for Successful Metabolite Identification in Metabolomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bingol, Ahmet K.; Bruschweiler-Li, Lei; Li, Dawei

    2016-02-26

    NMR is a very powerful tool for the identification of known and unknown (or unnamed) metabolites in complex mixtures as encountered in metabolomics. Known compounds can be reliably identified using 2D NMR methods, such as 13C-1H HSQC, for which powerful web servers with databases are available for semi-automated analysis. For the identification of unknown compounds, new combinations of NMR with MS have been developed recently that make synergistic use of the mutual strengths of the two techniques. The use of chemical additives to the NMR tube, such as reactive agents, paramagnetic ions, or charged silica nanoparticles, permit the identification ofmore » metabolites with specific physical chemical properties. In the following sections, we give an overview of some of the recent advances in metabolite identification and discuss remaining challenges.« less

  20. A new Schiff base compound N,N'-(2,2-dimetylpropane)-bis(dihydroxylacetophenone): synthesis, experimental and theoretical studies on its crystal structure, FTIR, UV-visible, 1H NMR and 13C NMR spectra.

    PubMed

    Saheb, Vahid; Sheikhshoaie, Iran

    2011-10-15

    The Schiff base compound, N,N'-(2,2-dimetylpropane)-bis(dihydroxylacetophenone) (NDHA) is synthesized through the condensation of 2-hydroxylacetophenone and 2,2-dimethyl 1,3-amino propane in methanol at ambient temperature. The yellow crystalline precipitate is used for X-ray single-crystal determination and measuring Fourier transform infrared (FTIR), UV-visible, (1)H NMR and (13)C NMR spectra. Electronic structure calculations at the B3LYP, PBEPBE and PW91PW91 levels of theory are performed to optimize the molecular geometry and to calculate the FTIR, (1)H NMR and (13)C NMR spectra of the compound. Time-dependent density functional theory (TDDFT) method is used to calculate the UV-visible spectrum of NDHA. Vibrational frequencies are determined experimentally and compared with those obtained theoretically. Vibrational assignments and analysis of the fundamental modes of the compound are also performed. All theoretical methods can well reproduce the structure of the compound. The (1)H NMR and (13)C NMR chemical shifts calculated by all DFT methods are consistent with the experimental data. However, the NMR shielding tensors computed at the B3LYP/6-31+G(d,p) level of theory are in better agreement with experimental (1)H NMR and (13)C NMR spectra. The electronic absorption spectrum calculated at the B3LYP/6-31+G(d,p) level by using TD-DFT method is in accordance with the observed UV-visible spectrum of NDHA. In addition, some quantum descriptors of the molecule are calculated and conformational analysis is performed and the results were compared with the crystallographic data. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. A novel tridentate Schiff base dioxo-molybdenum(VI) complex: synthesis, experimental and theoretical studies on its crystal structure, FTIR, UV-visible, ¹H NMR and ¹³C NMR spectra.

    PubMed

    Saheb, Vahid; Sheikhshoaie, Iran; Stoeckli-Evans, Helen

    2012-09-01

    A new dioxo-molybdenum(VI) complex [MoO(2)(L)(H(2)O)] has been synthesized, using 5-methoxy 2-[(2-hydroxypropylimino)methyl]phenol as tridentate ONO donor Schiff base ligand (H(2)L) and MoO(2)(acac)(2). The yellow crystals of the compound are used for single-crystal X-ray analysis and measuring Fourier Transform Infrared (FTIR), UV-visible, (1)H NMR and (13)C NMR spectra. Electronic structure calculations at the B3LYP and PW91PW91 levels of theory are performed to optimize the molecular geometry and to calculate the UV-visible, FTIR, (1)H NMR and (13)C NMR spectra of the compound. Vibrational assignments and analysis of the fundamental modes of the compound are performed. Time-dependent density functional theory (TDDFT) method is used to calculate the electronic transitions of the complex. All theoretical methods can well reproduce the structure of the compound. The (1)H NMR shielding tensors computed at the B3LYP/DGDZVP level of theory is in agreement with experimental (1)H NMR spectra. However, the (13)C NMR shielding tensors computed at the B3LYP level, employing a combined basis set of DGDZVP for Mo and 6-31+G(2df,p) for other atoms, are in better agreement with experimental (13)C NMR spectra. The electronic transitions calculated at the B3LYP/DGDZVP level by using TD-DFT method is in accordance with the observed UV-visible spectrum of the compound. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. 2-Hydroxyethyl substituted NHC precursors: Synthesis, characterization, crystal structure and carbonic anhydrase, α-glycosidase, butyrylcholinesterase, and acetylcholinesterase inhibitory properties

    NASA Astrophysics Data System (ADS)

    Erdemir, Fatoş; Barut Celepci, Duygu; Aktaş, Aydın; Taslimi, Parham; Gök, Yetkin; Karabıyık, Hasan; Gülçin, İlhami

    2018-03-01

    This study contains novel a serie synthesis of N-heterocyclic carbene (NHC) precursors that 2-hydroxyethyl substituted. The NHC precursors have been prepared from 1-(2- hydroxyethyl)benzimidazole and alkyl halides. The novel NHC precursors have been characterized by using 1H NMR, 13C NMR, FTIR spectroscopy and elemental analysis techniques. Molecular and crystal structures of 2a, 2d, 2e, 2f and 2g were obtained with single-crystal X-ray diffraction studies. These novel NHC precursor's derivatives effectively inhibited the α-glycosidase, cytosolic carbonic anhydrase I and II isoforms (hCA I and II), butyrylcholinesterase (BChE) and acetylcholinesterase (AChE). Inhibition constant (Ki) were found in the range of 0.30-9.22 nM for α-glycosidase, 13.90-41.46 nM for hCA I, 12.82-49.95 nM for hCA II, 145.82-882.01 nM for BChE, and 280.92-1370.01 nM for AChE, respectively.

  3. Re-polarization of nuclear spins using selective SABRE-INEPT.

    PubMed

    Knecht, Stephan; Kiryutin, Alexey S; Yurkovskaya, Alexandra V; Ivanov, Konstantin L

    2018-02-01

    A method is proposed for significant improvement of NMR pulse sequences used in high-field SABRE (Signal Amplification By Reversible Exchange) experiments. SABRE makes use of spin order transfer from parahydrogen (pH 2 , the H 2 molecule in its singlet spin state) to a substrate in a transient organometallic Ir-based complex. The technique proposed here utilizes "re-polarization", i.e., multiple application of an NMR pulse sequence used for spin order transfer. During re-polarization only the form of the substrate, which is bound to the complex, is excited by selective NMR pulses and the resulting polarization is transferred to the free substrate via chemical exchange. Owing to the fact that (i) only a small fraction of the substrate molecules is in the bound form and (ii) spin relaxation of the free substrate is slow, the re-polarization scheme provides greatly improved NMR signal enhancement, ε. For instance, when pyridine is used as a substrate, single use of the SABRE-INEPT sequence provides ε≈260 for 15 N nuclei, whereas SABRE-INEPT with re-polarization yields ε>2000. We anticipate that the proposed method is useful for achieving maximal NMR enhancement with spin hyperpolarization techniques. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Re-polarization of nuclear spins using selective SABRE-INEPT

    NASA Astrophysics Data System (ADS)

    Knecht, Stephan; Kiryutin, Alexey S.; Yurkovskaya, Alexandra V.; Ivanov, Konstantin L.

    2018-02-01

    A method is proposed for significant improvement of NMR pulse sequences used in high-field SABRE (Signal Amplification By Reversible Exchange) experiments. SABRE makes use of spin order transfer from parahydrogen (pH2, the H2 molecule in its singlet spin state) to a substrate in a transient organometallic Ir-based complex. The technique proposed here utilizes "re-polarization", i.e., multiple application of an NMR pulse sequence used for spin order transfer. During re-polarization only the form of the substrate, which is bound to the complex, is excited by selective NMR pulses and the resulting polarization is transferred to the free substrate via chemical exchange. Owing to the fact that (i) only a small fraction of the substrate molecules is in the bound form and (ii) spin relaxation of the free substrate is slow, the re-polarization scheme provides greatly improved NMR signal enhancement, ε . For instance, when pyridine is used as a substrate, single use of the SABRE-INEPT sequence provides ε ≈ 260 for 15N nuclei, whereas SABRE-INEPT with re-polarization yields ε > 2000 . We anticipate that the proposed method is useful for achieving maximal NMR enhancement with spin hyperpolarization techniques.

  5. Ionic Liquid–Solute Interactions Studied by 2D NOE NMR Spectroscopy

    DOE PAGES

    Khatun, Sufia; Castner, Edward W.

    2014-11-26

    Intermolecular interactions between a Ru²⁺(bpy)₃ solute and the anions and cations of four different ionic liquids (ILs) are investigated by 2D NMR nuclear Overhauser effect (NOE) techniques, including {¹H-¹⁹F} HOESY and {¹H-¹H} ROESY. Four ILs are studied, each having the same bis(trifluoromethylsulfonyl)amide anion in common. Two of the ILs have aliphatic 1-alkyl-1-methylpyrrolidinium cations, while the other two ILs have aromatic 1-alkyl-3-methylimidazolium cations. ILs with both shorter (butyl) and longer (octyl or decyl) cationic alkyl substituents are studied. NOE NMR results suggest that the local environment of IL anions and cations near the Ru²⁺(bpy)₃ solute is rather different from the bulkmore » IL structure. The solute-anion and solute-cation interactions are significantly different both for ILs with short vs long alkyl tails and for ILs with aliphatic vs aromatic cation polar head groups. In particular, the solute-anion interactions are observed to be about 3 times stronger for the cations with shorter alkyl tails relative to the ILs with longer alkyl tails. The Ru²⁺(bpy)₃ solute interacts with both the polar head and the nonpolar tail groups of the 1- butyl-1-methylpyrrolidinium cation but only with the nonpolar tail groups of the 1-decyl-1-methylpyrrolidinium cation.« less

  6. Characterization of the Particle Size and Polydispersity of Dicumarol Using Solid-State NMR Spectroscopy.

    PubMed

    Dempah, Kassibla Elodie; Lubach, Joseph W; Munson, Eric J

    2017-03-06

    A variety of particle sizes of a model compound, dicumarol, were prepared and characterized in order to investigate the correlation between particle size and solid-state NMR (SSNMR) proton spin-lattice relaxation ( 1 H T 1 ) times. Conventional laser diffraction and scanning electron microscopy were used as particle size measurement techniques and showed crystalline dicumarol samples with sizes ranging from tens of micrometers to a few micrometers. Dicumarol samples were prepared using both bottom-up and top-down particle size control approaches, via antisolvent microprecipitation and cryogrinding. It was observed that smaller particles of dicumarol generally had shorter 1 H T 1 times than larger ones. Additionally, cryomilled particles had the shortest 1 H T 1 times encountered (8 s). SSNMR 1 H T 1 times of all the samples were measured and showed as-received dicumarol to have a T 1 of 1500 s, whereas the 1 H T 1 times of the precipitated samples ranged from 20 to 80 s, with no apparent change in the physical form of dicumarol. Physical mixtures of different sized particles were also analyzed to determine the effect of sample inhomogeneity on 1 H T 1 values. Mixtures of cryoground and as-received dicumarol were clearly inhomogeneous as they did not fit well to a one-component relaxation model, but could be fit much better to a two-component model with both fast-and slow-relaxing regimes. Results indicate that samples of crystalline dicumarol containing two significantly different particle size populations could be deconvoluted solely based on their differences in 1 H T 1 times. Relative populations of each particle size regime could also be approximated using two-component fitting models. Using NMR theory on spin diffusion as a reference, and taking into account the presence of crystal defects, a model for the correlation between the particle size of dicumarol and its 1 H T 1 time was proposed.

  7. Extended internal standard method for quantitative 1H NMR assisted by chromatography (EIC) for analyte overlapping impurity on 1H NMR spectra.

    PubMed

    Saito, Naoki; Kitamaki, Yuko; Otsuka, Satoko; Yamanaka, Noriko; Nishizaki, Yuzo; Sugimoto, Naoki; Imura, Hisanori; Ihara, Toshihide

    2018-07-01

    We devised a novel extended internal standard method of quantitative 1 H NMR (qNMR) assisted by chromatography (EIC) that accurately quantifies 1 H signal areas of analytes, even when the chemical shifts of the impurity and analyte signals overlap completely. When impurity and analyte signals overlap in the 1 H NMR spectrum but can be separated in a chromatogram, the response ratio of the impurity and an internal standard (IS) can be obtained from the chromatogram. If the response ratio can be converted into the 1 H signal area ratio of the impurity and the IS, the 1 H signal area of the analyte can be evaluated accurately by mathematically correcting the contributions of the 1 H signal area of the impurity overlapping the analyte in the 1 H NMR spectrum. In this study, gas chromatography and liquid chromatography were used. We used 2-chlorophenol and 4-chlorophenol containing phenol as an impurity as examples in which impurity and analyte signals overlap to validate and demonstrate the EIC, respectively. Because the 1 H signals of 2-chlorophenol and phenol can be separated in specific alkaline solutions, 2-chlorophenol is suitable to validate the EIC by comparing analytical value obtained by the EIC with that by only qNMR under the alkaline condition. By the EIC, the purity of 2-chlorophenol was obtained with a relative expanded uncertainty (k = 2) of 0.24%. The purity matched that obtained under the alkaline condition. Furthermore, the EIC was also validated by evaluating the phenol content with the absolute calibration curve method by gas chromatography. Finally, we demonstrated that the EIC was possible to evaluate the purity of 4-chlorophenol, with a relative expanded uncertainty (k = 2) of 0.22%, which was not able to be separated from the 1 H signal of phenol under any condition. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Combining Two-Dimensional Diffusion-Ordered Nuclear Magnetic Resonance Spectroscopy, Imaging Desorption Electrospray Ionization Mass Spectrometry, and Direct Analysis in Real-Time Mass Spectrometry for the Integral Investigation of Counterfeit Pharmaceuticals

    PubMed Central

    Nyadong, Leonard; Harris, Glenn A.; Balayssac, Stéphane; Galhena, Asiri S.; Malet-Martino, Myriam; Martino, Robert; Parry, R. Mitchell; Wang, May Dongmei; Fernández, Facundo M.; Gilard, Véronique

    2016-01-01

    During the past decade, there has been a marked increase in the number of reported cases involving counterfeit medicines in developing and developed countries. Particularly, artesunate-based antimalarial drugs have been targeted, because of their high demand and cost. Counterfeit antimalarials can cause death and can contribute to the growing problem of drug resistance, particularly in southeast Asia. In this study, the complementarity of two-dimensional diffusion-ordered 1H nuclear magnetic resonance spectroscopy (2D DOSY 1H NMR) with direct analysis in real-time mass spectrometry (DART MS) and desorption electrospray ionization mass spectrometry (DESI MS) was assessed for pharmaceutical forensic purposes. Fourteen different artesunate tablets, representative of what can be purchased from informal sources in southeast Asia, were investigated with these techniques. The expected active pharmaceutical ingredient was detected in only five formulations via both nuclear magnetic resonance (NMR) and mass spectrometry (MS) methods. Common organic excipients such as sucrose, lactose, stearate, dextrin, and starch were also detected. The graphical representation of DOSY 1H NMR results proved very useful for establishing similarities among groups of samples, enabling counterfeit drug “chemotyping”. In addition to bulk- and surface-average analyses, spatially resolved information on the surface composition of counterfeit and genuine antimalarial formulations was obtained using DESI MS that was performed in the imaging mode, which enabled one to visualize the homogeneity of both genuine and counterfeit drug samples. Overall, this study suggests that 2D DOSY 1H NMR, combined with ambient MS, comprises a powerful suite of instrumental analysis methodologies for the integral characterization of counterfeit antimalarials. PMID:19453162

  9. Combining two-dimensional diffusion-ordered nuclear magnetic resonance spectroscopy, imaging desorption electrospray ionization mass spectrometry, and direct analysis in real-time mass spectrometry for the integral investigation of counterfeit pharmaceuticals.

    PubMed

    Nyadong, Leonard; Harris, Glenn A; Balayssac, Stéphane; Galhena, Asiri S; Malet-Martino, Myriam; Martino, Robert; Parry, R Mitchell; Wang, May Dongmei; Fernández, Facundo M; Gilard, Véronique

    2009-06-15

    During the past decade, there has been a marked increase in the number of reported cases involving counterfeit medicines in developing and developed countries. Particularly, artesunate-based antimalarial drugs have been targeted, because of their high demand and cost. Counterfeit antimalarials can cause death and can contribute to the growing problem of drug resistance, particularly in southeast Asia. In this study, the complementarity of two-dimensional diffusion-ordered (1)H nuclear magnetic resonance spectroscopy (2D DOSY (1)H NMR) with direct analysis in real-time mass spectrometry (DART MS) and desorption electrospray ionization mass spectrometry (DESI MS) was assessed for pharmaceutical forensic purposes. Fourteen different artesunate tablets, representative of what can be purchased from informal sources in southeast Asia, were investigated with these techniques. The expected active pharmaceutical ingredient was detected in only five formulations via both nuclear magnetic resonance (NMR) and mass spectrometry (MS) methods. Common organic excipients such as sucrose, lactose, stearate, dextrin, and starch were also detected. The graphical representation of DOSY (1)H NMR results proved very useful for establishing similarities among groups of samples, enabling counterfeit drug "chemotyping". In addition to bulk- and surface-average analyses, spatially resolved information on the surface composition of counterfeit and genuine antimalarial formulations was obtained using DESI MS that was performed in the imaging mode, which enabled one to visualize the homogeneity of both genuine and counterfeit drug samples. Overall, this study suggests that 2D DOSY (1)H NMR, combined with ambient MS, comprises a powerful suite of instrumental analysis methodologies for the integral characterization of counterfeit antimalarials.

  10. Combined Application of UHPLC-QTOF/MS, HPLC-ELSD and 1 H-NMR Spectroscopy for Quality Assessment of DA-9801, A Standardised Dioscorea Extract.

    PubMed

    Kang, Kyo Bin; Ryu, Jayoung; Cho, Youngwoong; Choi, Sang-Zin; Son, Miwon; Sung, Sang Hyun

    2017-05-01

    DA-9801, a standardised 50% aqueous ethanolic extract of a mixture of Dioscorea japonica and D. nipponica, is a botanical drug candidate for the treatment of diabetic neuropathy, which finished its US phase II clinical trials recently. An advanced quality control method is needed for further development of DA-9801, considering its high contents of both primary and secondary metabolites. Development of a quality assessment strategy for DA-9801, based on the combination of UHPLC-QTOF/MS, HPLC-ELSD, and 1 H-NMR spectroscopy. The method was developed and tested with 15 batch products of DA-9801. The steroidal saponins of DA-9801 were tentatively identified by UHPLC-QTOF/MS and were quantified with the validated HPLC-ELSD method. Primary metabolites of DA-9801 were identified and profiled using 1 H-NMR spectrometry. The batch-to-batch equivalence of DA-9801 was tested with the 1 H-NMR spectra using spectral binning, correlation analysis, and principal component analysis. Six major saponins of DA-9801 were tentatively identified by UHPLC-QTOF/MS. Among them, protodioscin and dioscin were quantified by the validated HPLC-ELSD method. Twenty-six metabolites were identified in 1 H-NMR spectra. The similarity between DA-9801 batches could be evaluated with the NMR spectra of DA-9801. The 1 H-NMR method also revealed that two Dioscorea species contributed distinct amino acids to the contents of DA-9801. This study validates the effectiveness of UHPLC-QTOF/MS, HPLC-ELSD, and 1 H NMR-combined method for quality control of DA-9801 and its crude materials. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Surface modification of calcium fluoro and hydroxyapatite by 1-octylphosphonic dichloride

    NASA Astrophysics Data System (ADS)

    Aissa, Abdallah; Agougui, Hassen; Debbabi, Mongi

    2011-08-01

    The reactivity of the surface of calcium hydroxyapatite (CaHAp) and fluorapatite (CaFAp) was tested and compared by grafting the 1-octylphosphonic dichloride (C 8H 17OPCl 2) using a molar ratio x = 2 or 4, x = n(organic)/ n(apatite). Successful synthesis was confirmed by different characterisation techniques such as X-ray powder diffraction patterns, IR spectroscopy, MAS-NMR ( 1H and 31P) and chemical analysis. The difference between their specific surface area (SSA: 57.46 for HAp and 12.09 m 2/g for FAp), the percentage of carbon measured after treatment with (C 8H 17OPCl 2) and the intensities of IR bands attributed to the grafted moiety suggests that the surface of hydroxyapatite is more reactive than that of fluorapatite. The 31P CP-MAS-NMR spectra of treated fluorapatite show a significant change in isotropic signal due to the protonation and deprotonation of superficial phosphate group. This can be explained by the difference in the nature of inorganic material.

  12. Using [superscript 1]H NMR Spectra of Polymers and Polymer Products to Illustrate Concepts in Organic Chemistry

    ERIC Educational Resources Information Center

    Harrell, Mary L.; Bergbreiter, David E.

    2017-01-01

    The use of [superscript 1]H NMR spectroscopy to analyze the number-average molecular weight of a methoxy poly(ethylene glycol) (MPEG) and an acetate derivative of this MPEG is described. These analyses illustrate NMR principles associated with the chemical shift differences of protons in different environments, NMR integration, and the effect of…

  13. Spectral, optical, thermal, Hirshfeld, antimicrobial studies and computational calculations of a new organic crystal, 1H-benzo[d]imidazol-3-ium-3,5-dinitrobenzoate

    NASA Astrophysics Data System (ADS)

    Sathya, K.; Dhamodharan, P.; Dhandapani, M.

    2017-06-01

    Single crystals of 1H-benzo[d]imidazol-3-ium-3,5-dinitrobenzoate (BDNB) were grown by reacting 3,5-dinitrobenzoic acid and benzimidazole by slow evaporation method. UV-Vis-NIR spectral studies of the BDNB show that the crystal is excellently transparent in entire visible region. Chemically and magnetically equivalent protons in BDNB were identified by 1H NMR technique. The carbon frame work of the molecule was established by 13C NMR spectroscopy. Proton transfer mechanism was confirmed by the presence of N+H group in BDNB by FT-IR spectroscopic technique. TG/DTA analyses confirmed that the crystal is stable up to172 °C. Single crystal XRD analysis was carried out to ascertain the molecular structure and the crystal belongs to monoclinic system with space group P21/c. Computational studies that include optimization of molecular geometry, natural bond analysis, Mulliken population analysis and HOMO-LUMO analysis were performed using B3LYP method at 6-31 g level. The low HOMO-LUMO energy gap of BDNB confirms high reactivity of BDNB. Hirshfeld analysis expose that O⋯H/H⋯O interactions are the prominent interactions. Theoretical calculations indicate that first order hyperpolarizability is 16 times greater than urea. The results show that the BDNB may be used for opto-electronic applications. The antimicrobial and antioxidant analyses shows concentration of the compound increases inhibition activity also increases.

  14. Quantitative analysis of sitagliptin using the (19)F-NMR method: a universal technique for fluorinated compound detection.

    PubMed

    Zhang, Fen-Fen; Jiang, Meng-Hong; Sun, Lin-Lin; Zheng, Feng; Dong, Lei; Shah, Vishva; Shen, Wen-Bin; Ding, Ya

    2015-01-07

    To expand the application scope of nuclear magnetic resonance (NMR) technology in quantitative analysis of pharmaceutical ingredients, (19)F nuclear magnetic resonance ((19)F-NMR) spectroscopy has been employed as a simple, rapid, and reproducible approach for the detection of a fluorine-containing model drug, sitagliptin phosphate monohydrate (STG). ciprofloxacin (Cipro) has been used as the internal standard (IS). Influential factors, including the relaxation delay time (d1) and pulse angle, impacting the accuracy and precision of spectral data are systematically optimized. Method validation has been carried out in terms of precision and intermediate precision, linearity, limit of detection (LOD) and limit of quantification (LOQ), robustness, and stability. To validate the reliability and feasibility of the (19)F-NMR technology in quantitative analysis of pharmaceutical analytes, the assay result has been compared with that of (1)H-NMR. The statistical F-test and student t-test at 95% confidence level indicate that there is no significant difference between these two methods. Due to the advantages of (19)F-NMR, such as higher resolution and suitability for biological samples, it can be used as a universal technology for the quantitative analysis of other fluorine-containing pharmaceuticals and analytes.

  15. Towards the new heterocycle based molecule: Synthesis, characterization and reactivity study

    NASA Astrophysics Data System (ADS)

    Murthy, P. Krishna; Sheena Mary, Y.; Suneetha, V.; Panicker, C. Yohannan; Armaković, Stevan; Armaković, Sanja J.; Giri, L.; Suchetan, P. A.; Van Alsenoy, C.

    2017-06-01

    4-Chloro-2-(3-fluorophenyl)-2,3-dihydro-1H-pyrrolo[3,4-c]pyridin-1-one (CFPDPPO) have been synthesized by hydride transfer from Et3SiH to carbenium ions(reduction reaction), which is formed by reaction between 4-chloro-2-(3-fluorophenyl)-3-hydroxy-2,3-dihydro-1H-pyrrolo[3,4-c]pyridin-1-one with TFA, the single crystals were grown in acetonitrile by slow evaporation technique at room temperature and characterized by single crystal X-ray diffraction, FT-IR, FT-Raman, 1H NMR, 13C NMR and ESI-MS. The experimental vibrational spectra were compared with the calculated spectra and each vibrational wavenumber was assigned on the basis of potential energy distribution (PED). Gauge-including atomic orbital 1H NMR and 13C NMR chemical shifts calculations were carried out and compared with experimental data. The HOMO and LUMO analysis is used to determine the charge transfer within the molecule. The stability of the molecule arising from hyper-conjugative interactions and charge delocalization has been analysed using NBO analysis. First hyperpolarizability is calculated in order to find its role in non-linear optics. Besides molecular electrostatic potential (MEP), global reactivity descriptors, thermodynamic properties, and Mullikan charge analysis of the title compound were computed with the same method in gas phase, theoretically. Further, employing combination of DFT calculations and molecular dynamics (MD) simulations, we have investigated in detail reactive properties of the title molecule. Investigation of local reactive properties encompassed calculations of average local ionization energies (ALIE) and Fukui functions. Stability in water has been investigated by calculations of radial distribution functions (RDF), while sensitivity towards the mechanism of autoxidation has been investigated by calculations of bond dissociation energies (BDE). The docked ligand forms a stable complex with human alpha9 nicotinic acetylcholine receptor antagonist and can be a lead compound for developing new anti-cancerous drug.

  16. Single-crystal X-ray diffraction and NMR crystallography of a 1:1 cocrystal of di­thia­non and pyrimethanil

    PubMed Central

    Pöppler, Ann-Christin; Corlett, Emily K.; Pearce, Harriet; Seymour, Mark P.; Reid, Matthew; Montgomery, Mark G.

    2017-01-01

    A single-crystal X-ray diffraction structure of a 1:1 cocrystal of two fungicides, namely di­thia­non (DI) and pyrimethanil (PM), is reported [systematic name: 5,10-dioxo-5H,10H-naphtho­[2,3-b][1,4]dithiine-2,3-dicarbo­nitrile–4,6-dimethyl-N-phenyl­pyrimidin-2-amine (1/1), C14H4N2O2S2·C12H13N2]. Following an NMR crystallography approach, experimental solid-state magic angle spinning (MAS) NMR spectra are presented together with GIPAW (gauge-including projector augmented wave) calculations of NMR chemical shieldings. Specifically, experimental 1H and 13C chemical shifts are determined from two-dimensional 1H–13C MAS NMR correlation spectra recorded with short and longer contact times so as to probe one-bond C—H connectivities and longer-range C⋯H proximities, whereas H⋯H proximities are identified in a 1H double-quantum (DQ) MAS NMR spectrum. The performing of separate GIPAW calculations for the full periodic crystal structure and for isolated mol­ecules allows the determination of the change in chemical shift upon going from an isolated mol­ecule to the full crystal structure. For the 1H NMR chemical shifts, changes of 3.6 and 2.0 ppm correspond to inter­molecular N—H⋯O and C—H⋯O hydrogen bonding, while changes of −2.7 and −1.5 ppm are due to ring current effects associated with C—H⋯π inter­actions. Even though there is a close inter­molecular S⋯O distance of 3.10 Å, it is of note that the mol­ecule-to-crystal chemical shifts for the involved sulfur or oxygen nuclei are small. PMID:28257008

  17. 1H NMR spectroscopic analysis detects metabolic disturbances in rat urine on acute exposure to heavy metal tungsten alloy based metals salt.

    PubMed

    Tyagi, Ritu; Rana, Poonam; Gupta, Mamta; Bhatnagar, Deepak; Srivastava, Shatakshi; Roy, Raja; Khushu, Subash

    2014-03-25

    Heavy metal tungsten alloys (HMTAs) have been found to be safer alternatives for making military munitions. Recently, some studies demonstrating the toxic potential of HMTAs have raised concern over the safety issues, and further propose that HMTAs exposure may lead to physiological disturbances as well. To look for the systemic effect of acute toxicity of HMTA based metals salt, (1)H nuclear magnetic resonance ((1)H NMR) spectroscopic profiling of rat urine was carried out. Male Sprague Dawley rats were administered (intraperitoneal) low and high dose of mixture of HMTA based metals salt and NMR spectroscopy was carried out in urine samples collected at 8, 24, 72 and 120 h post dosing (p.d.). Serum biochemical parameters and liver histopathology were also conducted. The (1)H NMR spectra were analysed using multivariate analysis techniques to show the time- and dose-dependent biochemical variations in post HMTA based metals salt exposure. Urine metabolomic analysis showed changes associated with energy metabolism, amino acids, N-methyl nicotinamide, membrane and gut flora metabolites. Multivariate analysis showed maximum variation with best classification of control and treated groups at 24h p.d. At the end of the study, for the low dose group most of the changes at metabolite level reverted to control except for the energy metabolites; whereas, in the high dose group some of the changes still persisted. The observations were well correlated with histopathological and serum biochemical parameters. Further, metabolic pathway analysis clarified that amongst all the metabolic pathways analysed, tricarboxylic acid cycle was most affected at all the time points indicating a switchover in energy metabolism from aerobic to anaerobic. These results suggest that exposure of rats to acute doses of HMTA based metals salt disrupts physiological metabolism with moderate injury to the liver, which might indirectly result from heavy metals induced oxidative stress. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Validation of a low field Rheo-NMR instrument and application to shear-induced migration of suspended non-colloidal particles in Couette flow

    NASA Astrophysics Data System (ADS)

    Colbourne, A. A.; Blythe, T. W.; Barua, R.; Lovett, S.; Mitchell, J.; Sederman, A. J.; Gladden, L. F.

    2018-01-01

    Nuclear magnetic resonance rheology (Rheo-NMR) is a valuable tool for studying the transport of suspended non-colloidal particles, important in many commercial processes. The Rheo-NMR imaging technique directly and quantitatively measures fluid displacement as a function of radial position. However, the high field magnets typically used in these experiments are unsuitable for the industrial environment and significantly hinder the measurement of shear stress. We introduce a low field Rheo-NMR instrument (1 H resonance frequency of 10.7MHz), which is portable and suitable as a process monitoring tool. This system is applied to the measurement of steady-state velocity profiles of a Newtonian carrier fluid suspending neutrally-buoyant non-colloidal particles at a range of concentrations. The large particle size (diameter > 200 μm) in the system studied requires a wide-gap Couette geometry and the local rheology was expected to be controlled by shear-induced particle migration. The low-field results are validated against high field Rheo-NMR measurements of consistent samples at matched shear rates. Additionally, it is demonstrated that existing models for particle migration fail to adequately describe the solid volume fractions measured in these systems, highlighting the need for improvement. The low field implementation of Rheo-NMR is complementary to shear stress rheology, such that the two techniques could be combined in a single instrument.

  19. Nonlinear optical studies and structure-activity relationship of chalcone derivatives with in silico insights

    NASA Astrophysics Data System (ADS)

    Kar, Swayamsiddha; Adithya, K. S.; Shankar, Pruthvik; Jagadeesh Babu, N.; Srivastava, Sailesh; Nageswara Rao, G.

    2017-07-01

    Nine chalcones were prepared via Claisen-Schmidt condensation, and characterized by UV-vis, IR, 1H NMR, 13C NMR and mass spectrometry. One of the representative member 4-NDM-TC has been studied via single crystal XRD and the TGA/DTA technique. SHG efficiency and NLO susceptibilities of the chalcones have been evaluated by the Kurtz and Perry method and Degenerate Four Wave Mixing techniques respectively. 3-Cl-4‧-HC was noted to possess SHG efficiency 1.37 times that of urea while 4-NDM-TC returned the highest third order NLO susceptibilities with respect to CS2. In silico studies help evaluate various physical parameters, in correlating the observed activities. In conclusion, the structure-activity relationship was derived based on the in silico and experimental results for the third order NLO susceptibilities.

  20. Synthesis of metal complexes involving Schiff base ligand with methylenedioxy moiety: spectral, thermal, XRD and antimicrobial studies.

    PubMed

    Sundararajan, M L; Jeyakumar, T; Anandakumaran, J; Karpanai Selvan, B

    2014-10-15

    Metal complexes of Zn(II), Cd(II), Ni(II), Cu(II), Fe(III), Co(II), Mn(II) Hg(II), and Ag(I) have been synthesized from Schiff base ligand, prepared by the condensation of 3,4-(methylenedioxy)aniline and 5-bromo salicylaldehyde. All the compounds have been characterized by using elemental analysis, molar conductance, FT-IR, UV-Vis, (1)H NMR, (13)C NMR, mass spectra, powder XRD and thermal analysis (TG/DTA) technique. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). The FT-IR, (1)H NMR, (13)C NMR and UV-Vis spectral data suggest that the ligand coordinate to the metal atom by imino nitrogen and phenolic oxygen as bidentate manner. Mass spectral data further support the molecular mass of the compounds and their structure. Powder XRD indicates the crystalline state and morphology of the ligand and its metal complexes. The thermal behaviors of the complexes prove the presence of lattice as well as coordinated water molecules in the complexes. Melting point supports the thermal stability of all the compounds. The in vitro antimicrobial effects of the synthesized compounds were tested against five bacterial and three fungal species by well diffusion method. Antioxidant activities have also been performed for all the compounds. Metal complexes show more biological activity than the Schiff base. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Isolation and structure elucidation of the nucleoside antibiotic strepturidin from Streptomyces albus DSM 40763.

    PubMed

    Pesic, Alexander; Steinhaus, Britta; Kemper, Sebastian; Nachtigall, Jonny; Kutzner, Hans Jürgen; Höfle, Gerhard; Süssmuth, Roderich D

    2014-06-01

    The antibiotic strepturidin (1) was isolated from the microorganism Streptomyces albus DSM 40763, and its structure elucidated by spectroscopic methods and chemical degradation studies. The determination of the relative and absolute stereocenters was partially achieved using chiral GC/EI-MS analysis and microderivatization by acetal ring formation and subsequent 2D-NMR analysis of key (1)H,(1)H-NOESY NMR correlations and extraction of (1)H,(13)C coupling constants from (1)H,(13)C-HMBC NMR spectra. Based on these results, a biosynthesis model was proposed.

  2. Influence of pH on the cis- trans isomerization of Valine-Proline dipeptide: An integrated NMR and theoretical investigation

    NASA Astrophysics Data System (ADS)

    Ivanova, Galya; Yakimova, Boryana; Angelova, Silvia; Stoineva, Ivanka; Enchev, Venelin

    2010-06-01

    The pH influence on the cis- trans isomerization of the Valine-Proline dipeptide was investigated by means of NMR spectral techniques and quantum chemical calculations at different computational levels. It was found that the process of isomerization is strongly pH dependent. The trans-isomer of Val-Pro is the more abundant isomer when the amino group is protonated, while an approximately equal distribution between the cis and trans-isomers for the neutral and anion forms of the dipeptide was confirmed.

  3. Structure of the 30 kDa HIV-1 RNA Dimerization Signal by a Hybrid Cryo-EM, NMR, and Molecular Dynamics Approach.

    PubMed

    Zhang, Kaiming; Keane, Sarah C; Su, Zhaoming; Irobalieva, Rossitza N; Chen, Muyuan; Van, Verna; Sciandra, Carly A; Marchant, Jan; Heng, Xiao; Schmid, Michael F; Case, David A; Ludtke, Steven J; Summers, Michael F; Chiu, Wah

    2018-03-06

    Cryoelectron microscopy (cryo-EM) and nuclear magnetic resonance (NMR) spectroscopy are routinely used to determine structures of macromolecules with molecular weights over 65 and under 25 kDa, respectively. We combined these techniques to study a 30 kDa HIV-1 dimer initiation site RNA ([DIS] 2 ; 47 nt/strand). A 9 Å cryo-EM map clearly shows major groove features of the double helix and a right-handed superhelical twist. Simulated cryo-EM maps generated from time-averaged molecular dynamics trajectories (10 ns) exhibited levels of detail similar to those in the experimental maps, suggesting internal structural flexibility limits the cryo-EM resolution. Simultaneous inclusion of the cryo-EM map and 2 H-edited NMR-derived distance restraints during structure refinement generates a structure consistent with both datasets and supporting a flipped-out base within a conserved purine-rich bulge. Our findings demonstrate the power of combining global and local structural information from these techniques for structure determination of modest-sized RNAs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Syntheses of amide based anion receptors and investigation of their associations with anions and their molecular structures using proton NMR titration and DFT methods

    NASA Astrophysics Data System (ADS)

    Navakhun, Korakot; Sawangsri, Ranu; Ruangpornvisuti, Vithaya

    2014-03-01

    The synthesized disubstituted isophthalamide and pyridine-2,6dicarboxamide derivatives of nine compounds were prepared. Their association constants with tetrabutylammonium fluoride (TBA·F), tetrabutylammonium chloride (TBA·Cl), tetrabutylammonium bromide (TBA·Br), tetrabutylammonium dihydrogenphosphate (TBA·H2PO4), tetrabutylammonium hydrogensulphate (TBA·HSO4) and tetrabutylammonium nitrate (TBA·NO3) were obtained by 1H NMR titration technique. The optimized structures of compounds 1-9 and their association with F-, Cl-, Br-, HPO4-, HSO4- and NO3- were obtained using the B3LYP/6-31+G(d) method. The most favorable complex of compound 3 with Br- was found. The high association constants of complexes 1-6 with F- are expected. Associations of all receptors with anions are exothermic and spontaneous reactions. Thermodynamic properties of all associations obtained using B3LYP/6-31+G(d) method are reported.

  5. NMR-Metabolic Methodology in the Study of GM Foods

    USDA-ARS?s Scientific Manuscript database

    The 1H NMR methodology used in the study of genetically modified (GM) foodstuff is discussed. The study of transgenic lettuce (Lactuca sativa cv "Luxor") over-expressing the KNAT1 gene from Arabidopsis is presented as a novel study-case. The 1H NMR metabolic profiling was carried out. Twenty-two wat...

  6. Certified Reference Material for Use in 1H, 31P, and 19F Quantitative NMR, Ensuring Traceability to the International System of Units.

    PubMed

    Rigger, Romana; Rück, Alexander; Hellriegel, Christine; Sauermoser, Robert; Morf, Fabienne; Breitruck, KathrinBreitruck; Obkircher, Markus

    2017-09-01

    In recent years, quantitative NMR (qNMR) spectroscopy has become one of the most important tools for content determination of organic substances and quantitative evaluation of impurities. Using Certified Reference Materials (CRMs) as internal or external standards, the extensively used qNMR method can be applied for purity determination, including unbroken traceability to the International System of Units (SI). The implementation of qNMR toward new application fields, e.g., metabolomics, environmental analysis, and physiological pathway studies, brings along more complex molecules and systems, thus making use of 1H qNMR challenging. A smart workaround is possible by the use of other NMR active nuclei, namely 31P and 19F. This article presents the development of three classes of qNMR CRMs based on different NMR active nuclei (1H, 31P, and 19F), and the corresponding approaches to establish traceability to the SI through primary CRMs from the National Institute of Standards and Technology and the National Metrology Institute of Japan. These TraceCERT® qNMR CRMs are produced under ISO/IEC 17025 and ISO Guide 34 using high-performance qNMR.

  7. Selective observation of charge storing ions in supercapacitor electrode materials.

    PubMed

    Forse, Alexander C; Griffin, John M; Grey, Clare P

    2018-02-01

    Nuclear magnetic resonance (NMR) spectroscopy has emerged as a useful technique for probing the structure and dynamics of the electrode-electrolyte interface in supercapacitors, as ions inside the pores of the carbon electrodes can be studied separately from bulk electrolyte. However, in some cases spectral resolution can limit the information that can be obtained. In this study we address this issue by showing how cross polarisation (CP) NMR experiments can be used to selectively observe the in-pore ions in supercapacitor electrode materials. We do this by transferring magnetisation from 13 C nuclei in porous carbons to nearby nuclei in the cations ( 1 H) or anions ( 19 F) of an ionic liquid. Two-dimensional NMR experiments and CP kinetics measurements confirm that in-pore ions are located within Ångströms of sp 2 -hybridised carbon surfaces. Multinuclear NMR experiments hold promise for future NMR studies of supercapacitor systems where spectral resolution is limited. Copyright © 2017 University of Cambridge. Published by Elsevier Inc. All rights reserved.

  8. Prediction of carbonate rock type from NMR responses using data mining techniques

    NASA Astrophysics Data System (ADS)

    Gonçalves, Eduardo Corrêa; da Silva, Pablo Nascimento; Silveira, Carla Semiramis; Carneiro, Giovanna; Domingues, Ana Beatriz; Moss, Adam; Pritchard, Tim; Plastino, Alexandre; Azeredo, Rodrigo Bagueira de Vasconcellos

    2017-05-01

    Recent studies have indicated that the accurate identification of carbonate rock types in a reservoir can be employed as a preliminary step to enhance the effectiveness of petrophysical property modeling. Furthermore, rock typing activity has been shown to be of key importance in several steps of formation evaluation, such as the study of sedimentary series, reservoir zonation and well-to-well correlation. In this paper, a methodology based exclusively on the analysis of 1H-NMR (Nuclear Magnetic Resonance) relaxation responses - using data mining algorithms - is evaluated to perform the automatic classification of carbonate samples according to their rock type. We analyze the effectiveness of six different classification algorithms (k-NN, Naïve Bayes, C4.5, Random Forest, SMO and Multilayer Perceptron) and two data preprocessing strategies (discretization and feature selection). The dataset used in this evaluation is formed by 78 1H-NMR T2 distributions of fully brine-saturated rock samples from six different rock type classes. The experiments reveal that the combination of preprocessing strategies with classification algorithms is able to achieve a prediction accuracy of 97.4%.

  9. Discovering [superscript 13]C NMR, [superscript 1]H NMR, and IR Spectroscopy in the General Chemistry Laboratory through a Sequence of Guided-Inquiry Exercises

    ERIC Educational Resources Information Center

    Iler, H. Darrell; Justice, David; Brauer, Shari; Landis, Amanda

    2012-01-01

    This sequence of three guided-inquiry labs is designed for a second-semester general chemistry course and challenges students to discover basic theoretical principles associated with [superscript 13]C NMR, [superscript 1]H NMR, and IR spectroscopy. Students learn to identify and explain basic concepts of magnetic resonance and vibrational…

  10. Defining genetic and chemical diversity in wheat grain by 1H-NMR spectroscopy of polar metabolites.

    PubMed

    Shewry, Peter R; Corol, Delia I; Jones, Huw D; Beale, Michael H; Ward, Jane L

    2017-07-01

    The application of high-throughput 1H nuclear magnetic resonance (1H-NMR) of unpurified extracts to determine genetic diversity and the contents of polar components in grain of wheat. Milled whole wheat grain was extracted with 80:20 D 2 O:CD 3 OD containing 0.05% d 4 -trimethylsilylpropionate. 1H-NMR spectra were acquired under automation at 300°K using an Avance Spectrometer operating at 600.0528 MHz. Regions for individual metabolites were identified by comparison to a library of known standards run under identical conditions. The individual 1H-NMR peaks or levels of known metabolites were then compared by Principal Component Analysis using SIMCA-P software. High-throughput 1H-NMR is an excellent tool to compare the extent of genetic diversity within and between wheat species, and to quantify specific components (including glycine betaine, choline, and asparagine) in individual genotypes. It can also be used to monitor changes in composition related to environmental factors and to support comparisons of the substantial equivalence of transgenic lines. © 2017 Rothamsted Research. Molecular Nutrition & Food Research Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Classification of edible oils by employing 31P and 1H NMR spectroscopy in combination with multivariate statistical analysis. A proposal for the detection of seed oil adulteration in virgin olive oils.

    PubMed

    Vigli, Georgia; Philippidis, Angelos; Spyros, Apostolos; Dais, Photis

    2003-09-10

    A combination of (1)H NMR and (31)P NMR spectroscopy and multivariate statistical analysis was used to classify 192 samples from 13 types of vegetable oils, namely, hazelnut, sunflower, corn, soybean, sesame, walnut, rapeseed, almond, palm, groundnut, safflower, coconut, and virgin olive oils from various regions of Greece. 1,2-Diglycerides, 1,3-diglycerides, the ratio of 1,2-diglycerides to total diglycerides, acidity, iodine value, and fatty acid composition determined upon analysis of the respective (1)H NMR and (31)P NMR spectra were selected as variables to establish a classification/prediction model by employing discriminant analysis. This model, obtained from the training set of 128 samples, resulted in a significant discrimination among the different classes of oils, whereas 100% of correct validated assignments for 64 samples were obtained. Different artificial mixtures of olive-hazelnut, olive-corn, olive-sunflower, and olive-soybean oils were prepared and analyzed by (1)H NMR and (31)P NMR spectroscopy. Subsequent discriminant analysis of the data allowed detection of adulteration as low as 5% w/w, provided that fresh virgin olive oil samples were used, as reflected by their high 1,2-diglycerides to total diglycerides ratio (D > or = 0.90).

  12. Quantification of taurine in energy drinks using ¹H NMR.

    PubMed

    Hohmann, Monika; Felbinger, Christine; Christoph, Norbert; Wachter, Helmut; Wiest, Johannes; Holzgrabe, Ulrike

    2014-05-01

    The consumption of so called energy drinks is increasing, especially among adolescents. These beverages commonly contain considerable amounts of the amino sulfonic acid taurine, which is related to a magnitude of various physiological effects. The customary method to control the legal limit of taurine in energy drinks is LC-UV/vis with postcolumn derivatization using ninhydrin. In this paper we describe the quantification of taurine in energy drinks by (1)H NMR as an alternative to existing methods of quantification. Variation of pH values revealed the separation of a distinct taurine signal in (1)H NMR spectra, which was applied for integration and quantification. Quantification was performed using external calibration (R(2)>0.9999; linearity verified by Mandel's fitting test with a 95% confidence level) and PULCON. Taurine concentrations in 20 different energy drinks were analyzed by both using (1)H NMR and LC-UV/vis. The deviation between (1)H NMR and LC-UV/vis results was always below the expanded measurement uncertainty of 12.2% for the LC-UV/vis method (95% confidence level) and at worst 10.4%. Due to the high accordance to LC-UV/vis data and adequate recovery rates (ranging between 97.1% and 108.2%), (1)H NMR measurement presents a suitable method to quantify taurine in energy drinks. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. 1H and 31P benchtop NMR of liquids and solids used in and/or produced during the manufacture of methamphetamine by the HI reduction of pseudoephedrine/ephedrine.

    PubMed

    Bogun, Ben; Moore, Sarah

    2017-09-01

    In this study, the use of benchtop NMR spectroscopy in the analysis of solids and liquids used and/or produced during the HI reduction of pseudoephedrine was evaluated. The study focused on identifying organic precursors and phosphorus containing compounds used in and/or produced during the manufacturing process. Samples taken from clandestine laboratories, where this synthesis process was suspected of occurring, were also analysed and evaluated. Benchtop NMR was able to distinguish between ephedrine, pseudoephedrine and methamphetamine as the free base and hydrochloride salt. This technique was also effective at identifying and distinguishing between phosphorus containing compounds used and/or produced during the manufacture of methamphetamine. Benchtop NMR was also determined to be effective at analysing samples from suspected clandestine laboratories. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Heterogeneous Microtesla SABRE Enhancement of 15 N NMR Signals.

    PubMed

    Kovtunov, Kirill V; Kovtunova, Larisa M; Gemeinhardt, Max E; Bukhtiyarov, Andrey V; Gesiorski, Jonathan; Bukhtiyarov, Valerii I; Chekmenev, Eduard Y; Koptyug, Igor V; Goodson, Boyd M

    2017-08-21

    The hyperpolarization of heteronuclei via signal amplification by reversible exchange (SABRE) was investigated under conditions of heterogeneous catalysis and microtesla magnetic fields. Immobilization of [IrCl(COD)(IMes)], [IMes=1,3-bis(2,4,6-trimethylphenyl), imidazole-2-ylidene; COD=cyclooctadiene] catalyst onto silica particles modified with amine linkers engenders an effective heterogeneous SABRE (HET-SABRE) catalyst that was used to demonstrate a circa 100-fold enhancement of 15 N NMR signals in 15 N-pyridine at 9.4 T following parahydrogen bubbling within a magnetic shield. No 15 N NMR enhancement was observed from the supernatant liquid following catalyst separation, which along with XPS characterization supports the fact that the effects result from SABRE under heterogeneous catalytic conditions. The technique can be developed further for producing catalyst-free agents via SABRE with hyperpolarized heteronuclear spins, and thus is promising for biomedical NMR and MRI applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Antifungal activity and isomerization of octadecyl p-coumarates from Ipomoea carnea subsp. fistulosa.

    PubMed

    Nidiry, Eugene Sebastian J; Ganeshan, Girija; Lokesha, Ankanahalli N

    2011-12-01

    Bioassay monitored HPLC assisted isolation and purification of the chief antifungal fraction of the leaves of Ipomoea carnea subsp. fistulosa (Convulvulaceae) were achieved using Colletotrichum gloeosporioides and Cladosporium cucumerinum as test organisms. The activity of the purified fraction was further confirmed by the dose dependent inhibition of the spore germination of Alternaria alternata and A. porri. The active fraction was identified as a mixture of (E)-octadecyl p-coumarate and (Z)-octadecyl p-coumarate. The two isomers were detected on an HPLC column with substantially different retention times, but once eluted from the column, one form was partly converted to the other in daylight. Conclusive evidence for the structures and their isomerization were obtained from the HPLC behavior, IR, UV, HRESIMS, CIMS and and NMR spectral data. Important 1H NMR and 13C NMR signals could be separately assigned for the isomers using 2D NMR techniques.

  16. Chiral discrimination of sibutramine enantiomers by capillary electrophoresis and proton nuclear magnetic resonance spectroscopy.

    PubMed

    Lee, Yong-Jae; Choi, Seungho; Lee, Jinhoo; Nguyen, NgocVan Thi; Lee, Kyungran; Kang, Jong Seong; Mar, Woongchon; Kim, Kyeong Ho

    2012-03-01

    Capillary electrophoresis (CE) and proton nuclear magnetic resonance spectroscopy ((1)H-NMR) have been used to discriminate the enantiomers of sibutramine using cyclodextrin derivatives. Possible correlation between CE and (1)H-NMR was examined. Good correlation between the (1)H-NMR shift non-equivalence data for sibutramine and the degree of enantioseparation in CE was observed. In CE study, a method of enantiomeric separation and quantitation of sibutramine was developed using enantiomeric standards. The method was based on the use of 50 mM of phosphate buffer of pH 3.0 with 10 mM of methyl-beta-cyclodextrin (M-β-CD). 0.05% of LOD, 0.2% of LOQ for S-sibutramine enantiomer was achieved, and the method was validated and applied to the quantitative determination of sibutramine enantiomers in commercial drugs. On a 600 MHz (1)H-NMR analysis, enantiomer signal separation of sibutramine was obtained by fast diastereomeric interaction with a chiral selector M-β-CD. For chiral separation and quantification, N-methyl proton peaks (at 2.18 ppm) were selected because of its being singlet and simple for understanding of diastereomeric interaction. Effects of temperature and concentration of chiral selector on enantiomer signal separation were investigated. The optimum condition was 0.5 mg/mL of sibutramine and 10 mg/mL of M-β-CD at 10°C. Distinguishment of 0.5% of S-sibutramine in R-sibutramine was found to be possible by (1)H-NMR with M-β-CD as chiral selector. Host-guest interaction between sibutramine and M-β-CD was confirmed by (1)H-NMR studies and CE studies. A Structure of the inclusion complex was proposed considering (1)H-NMR and 2D ROESY studies.

  17. Structure elucidation of a novel oligosaccharide (Medalose) from camel milk

    NASA Astrophysics Data System (ADS)

    Gangwar, Lata; Singh, Rinku; Deepak, Desh

    2018-02-01

    Free oligosaccharides are the third most abundant solid component in milk after lactose and lipids. The study of milk oligosaccharides indicate that nutrients are not only benefits the infant's gut but also perform a number of other functions which include stimulation of growth, receptor analogues to inhibit binding of pathogens and substances that promote postnatal brain development. Surveys reveal that camel milk oligosaccharides possess varied biological activities that help in the treatment of diabetes, asthma, anaemia, piles and also a food supplement to milking mothers. In this research, camel milk was selected for its oligosaccharide contents, which was then processed by Kobata and Ginsburg method followed by the HPLC and CC techniques. Structure elucidation of isolated compound was done by the chemical degradation, chemical transformation and comparison of chemical shift of NMR data of natural and acetylated oligosaccharide structure reporter group theory, the 1H, 13C NMR, 2D-NMR (COSY, TOCSY and HSQC) techniques, and mass spectrometry. The structure was elucidated as under: MEDALOSE

  18. Diester-containing Zwitterionic Gemini Surfactants with Different Spacer and Its Impact on Micellization Properties and Viscosity of Aqueous Micellar Solution.

    PubMed

    Patil, Sachin Vasant; Patil, Sanyukta Arun; Pratap, Amit Prabhakar

    2016-09-01

    A series of diester containing zwitterionic gemini surfactants, N,N-dimethyl-N-alkyl-2-[[hydroxy (alkoxy) phosphinyl]oxy]-alkylammonium designated as C8(-)-S-Cn(+), S = 2 and 3, n = 12, 14 and 16, were synthesized and characterized by instrumental techniques namely FT-IR, (1)H NMR, (13)C NMR, (31)P NMR and Mass spectral studies. These new gemini surfactants further investigated for their various surfactant properties. The critical micelle concentration (cmc) and the effectiveness of surface tension reduction (Πcmc) were determined as a function of surfactant concentration by means of surface tension measurement. Micellization and viscosity properties were investigated by surface tension, electrical conductivity, dye micellization and rheology techniques. The findings of the aqueous surfactant system obtained were impacted by polarity, size and the nature of zwitterions as the surface. The thermodynamic and viscosity properties of these surfactants found to be based on the structures of gemini surfactants.

  19. Detection of poly(ethylene glycol) residues from nonionic surfactants in surface water by1h and13c nuclear magnetic resonance spectrometry

    USGS Publications Warehouse

    Leenheer, J.A.; Wershaw, R. L.; Brown, P.A.; Noyes, T.I.

    1991-01-01

    ??? Poly(ethylene glycol) (PEG) residues were detected in organic solute isolates from surface water by 1H nuclear magnetic resonance spectrometry (NMR), 13C NMR spectrometry, and colorimetric assay. PEG residues were separated from natural organic solutes in Clear Creek, CO, by a combination of methylation and chromatographic procedures. The isolated PEG residues, characterized by NMR spectrometry, were found to consist of neutral and acidic residues that also contained poly(propylene glycol) moieties. The 1H NMR and the colorimetric assays for poly(ethylene glycol) residues were done on samples collected in the lower Mississippi River and tributaries between St. Louis, MO, and New Orleans, LA, in July-August and November-December 1987. Aqueous concentrations for poly(ethylene glycol) residues based on colorimetric assay ranged from undetectable to ???28 ??g/L. Concentrations based on 1H NMR spectrometry ranged from undetectable to 145 ??g/L.

  20. Stereoselective synthesis, spectral and antimicrobial studies of some cyanoacetyl hydrazones of 3-alkyl-2,6-diarylpiperidin-4-ones

    NASA Astrophysics Data System (ADS)

    Velayutham Pillai, M.; Rajeswari, K.; Vidhyasagar, T.

    2014-11-01

    A series of novel cyanoacetyl hydrazones of 3-alkyl-2,6-diarylpiperidin-4-ones were synthesized stereoselectively and characterized by IR, Mass, 1H NMR, 13C NMR, 1H-1H COSY and 1H-13C COSY spectra. The stereochemistry of the synthesized compounds was established using NMR spectra. Antimicrobial screening of the synthesized compounds revealed their antibacterial and antifungal potencies. Growth inhibition of Enterobacter Aerogenes by compound 15 was found to be superior to the standard drug.

  1. Thermodynamics of Host–Guest Interactions between Fullerenes and a Buckycatcher

    PubMed Central

    2015-01-01

    1H NMR and isothermal titration calorimetry (ITC) experiments were employed to obtain reliable thermodynamic data for the formation of the 1:1 inclusion complexes of fullerenes C60 and C70 with the buckycatcher (C60H28). NMR measurements were done in toluene-d8 and chlorobenzene-d5 at 288, 298, and 308 K, while the ITC titrations were performed in toluene, chlorobenzene, o-dichlorobenzene, anisole, and 1,1,2,2-tetrachloroethane at temperatures from 278 to 323 K. The association constants, Ka, obtained with both techniques are in very good agreement. The thermodynamic data obtained by ITC indicate that generally the host–guest association is enthalpy-driven. Interestingly, the entropy contributions are, with rare exceptions, slightly stabilizing or close to zero. Neither ΔH nor ΔS is constant over the temperature range studied, and these thermodynamic functions exhibit classical enthalpy/entropy compensation. The ΔCp values calculated from the temperature dependence of the calorimetric ΔH values are negative for the association of both fullerenes with the buckycatcher in toluene. The negative ΔCp values are consistent with some desolvation of the host-cavity and the guest in the inclusion complexes, C60@C60H28 and C70@C60H28. PMID:25248285

  2. The ozonation of cholesterol: Separation and identification of 2,4-dinitrophenylhydrazine derivatization products of 3 beta-hydroxy-5-oxo-5,6-secocholestan-6-al

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, K.; Bermudez, E.; Pryor, W.A.

    1993-05-01

    The ozonation products of cholesterol, which are of interest as possible biomarkers of O3 exposure, were studied by derivatization with 2,4-dinitrophenylhydrazine (DNPH). The DNPH derivatization of 3 beta-hydroxy-5-oxo-5,6-secocholestan-6-al (2) produces the expected trans (3b) and cis (3c) derivatives of 3 beta-hydroxy-5-oxo-5,6-secocholestan-6-al, and the unexpected DNPH derivative of 3,5-dihydroxy-B-norcholestane-6-carboxaldehyde (3a). The structures of 3a, 3b, and 3c were identified with 1H nuclear magnetic resonance (NMR), 13C NMR, DEPT, COSY, and H-C correlation two-dimensional NMR techniques, and by comparison with the spectra of known compounds. A possible mechanism involving an enamine functionality is proposed for the formation of 3a. The ratio ofmore » 3a/(3b + 3c) depends on the concentration of acid used and the reaction time.« less

  3. Attempts To Catalyze the Electrochemical CO2-to-Methanol Conversion by Biomimetic 2e(-) + 2H(+) Transferring Molecules.

    PubMed

    Saveant, Jean-Michel; Tard, Cédric

    2016-01-27

    In the context of the electrochemical and photochemical conversion of CO2 to liquid fuels, one of the most important issues of contemporary energy and environmental issues, the possibility of pushing the reduction beyond the CO and formate level and catalytically generate products such as methanol is particularly attractive. Biomimetic 2e(-) + 2H(+) is often viewed as a potential hydride donor. This has been the object of a recent interesting attempt (J. Am. Chem. Soc. 2014, 136, 14007) in which 6,7-dimethyl-4-hydroxy-2-mercaptopteridine was reported as a catalyst of the electrochemical conversion of CO2 to methanol and formate, based on cyclic voltammetric, (13)C NMR, IR, and GC analyses. After checking electrolysis at the reported potential and at a more negative potential to speed up the reaction, it appears, on (1)H NMR and gas chromatographic grounds, that there is neither catalysis nor methanol and nor formate production. (1)H NMR (with H2O presaturation) brings about an unambiguous answer to the eventual production of methanol and formate, much more so than (13)C NMR, which can even be misleading when no internal standard is used as in the above-mentioned paper. IR analysis is even less conclusive. Use of a GC technique with sufficient sensitivity confirmed the lack of methanol formation. The direct or indirect hydride transfer electrochemical reduction of CO2 to formate and to methanol remains an open question. Original ideas and efforts such as those discussed here are certainly worth tempting. However, in view of the importance of the stakes, it appears necessary to carefully check reports in this area.

  4. Synthesis of stereospecifically deuterated desoxypodophyllotoxins and 1H-nmr assignment of desoxypodophyllotoxin

    NASA Technical Reports Server (NTRS)

    Pullockaran, A. J.; Kingston, D. G.; Lewis, N. G.

    1989-01-01

    [4 beta- 2H1]Desoxypodophyllotoxin [3], [4 alpha- 2H1]desoxypodophyllotoxin [4], and [4, 4- 2 H2]desoxypodophyllotoxin [9] were prepared from podophyllotoxin [1] via its chloride [5]. A complete assignment of the 1H-nmr spectrum of desoxypodophyllotoxin [2] was made on the basis of the spectra of the deuterated compounds [3] and [4].

  5. Interaction of lafutidine in binding to human serum albumin in gastric ulcer therapy: STD-NMR, WaterLOGSY-NMR, NMR relaxation times, Tr-NOESY, molecule docking, and spectroscopic studies.

    PubMed

    Yang, Hongqin; Huang, Yanmei; He, Jiawei; Li, Shanshan; Tang, Bin; Li, Hui

    2016-09-15

    In this study, lafutidine (LAF) was used as a model compound to investigate the binding mechanism between antiulcer drugs and human serum albumin (HSA) through various techniques, including STD-NMR, WaterLOGSY-NMR, (1)H NMR relaxation times, tr-NOESY, molecule docking calculation, FT-IR spectroscopy, and CD spectroscopy. The analyses of STD-NMR, which derived relative STD (%) intensities, and WaterLOGSY-NMR, determined that LAF bound to HSA. In particular, the pyridyl group of LAF was in close contact with HSA binding pocket, whereas furyl group had a secondary binding. Competitive STD-NMR and WaterLOGSY-NMR experiments, with warifarin and ibuprofen as site-selective probes, indicated that LAF preferentially bound to site II in the hydrophobic subdomains IIIA of HSA. The bound conformation of LAF at the HSA binding site was further elucidated by transferred NOE effect (tr-NOESY) experiment. Relaxation experiments provided quantitative information about the relationship between the affinity and structure of LAF. The molecule docking simulations conducted with AutoDock and the restraints derived from STD results led to three-dimensional models that were consistent with the NMR spectroscopic data. The presence of hydrophobic forces and hydrogen interactions was also determined. Additionally, FT-IR and CD spectroscopies showed that LAF induced secondary structure changes of HSA. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Contributions of nuclear magnetic resonance to renal biochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, B.; Freeman, D.; Chan, L.

    /sup 31/P NMR as a descriptive technique is of interest to nephrologists. Particular contributions of /sup 31/P NMR to our understanding of renal function may be enumerated.: Free metabolite levels are different from those classically accepted; in particular, ADP and Pi are low with implications for the control of renal metabolism and Pi transport, and, via the phosphorylation potential, for Na+ transport. Renal pH is heterogeneous; between cortex, outer medulla, and papilla, and between cell and lumen, a large pH gradient exists. Also, quantitation between cytosol and mitochondrion of the pH gradient is now feasible. In acute renal failure ofmore » either ischemic or nonischemic origin, both ATP depletion and acidification of the renal cell result in damage, with increasing evidence for the importance of the latter. Measurements of renal metabolic rate in vivo suggest the existence of a prodromal phase of acute renal failure, which could lead to its detection at an earlier and possibly reversible stage. Human renal cancers show a unique /sup 31/P NMR spectrum and a very acidic environment. Cancer chemotherapy may alter this and detection of such changes with NMR offers a method of therapeutic monitoring with significance beyond nephrology. Renal cortex and medulla have a different T1 relaxation time, possibly due to differences in lipid composition. It seems that NMR spectroscopy has much to offer to the future understanding of the relationship between renal biochemistry and function. 56 references.« less

  7. Chemoselective detection and discrimination of carbonyl-containing compounds in metabolite mixtures by 1H-detected 15N NMR

    PubMed Central

    Lane, Andrew N.; Arumugam, Sengodagounder; Lorkiewicz, Pawel K.; Higashi, Richard M.; Laulhé, Sébastien; Nantz, Michael H.; Moseley, Hunter N.B.; Fan, Teresa W.-M.

    2015-01-01

    NMR spectra of mixtures of metabolites extracted from cells or tissues are extremely complex, reflecting the large number of compounds that are present over a wide range of concentrations. Although multidimensional NMR can greatly improve resolution as well as improve reliability of compound assignments, lower abundance metabolites often remain hidden. We have developed a carbonyl selective aminooxy probe that specifically reacts with free keto and aldehyde functions, but not carboxylates. By incorporating 15N in the aminooxy functional group, 15N-edited NMR was used to select exclusively those metabolites that contain a free carbonyl function while all other metabolites are rejected. Here we demonstrate that the chemical shifts of the aminooxy adducts of ketones and aldehydes are very different, which can be used to discriminate between aldoses and ketoses for example. Utilizing the 2 or 3 bond 15N-1H couplings, the 15N-edited NMR analysis was optimized first with authentic standards and then applied to an extract of the lung adenocarcinoma cell line A549. More than 30 carbonyl containing compounds at NMR detectable levels, 6 of which we have assigned by reference to our database. As the aminooxy probe contains a permanently charged quaternary ammonium group, the adducts are also optimized for detection by mass spectrometry. Thus, this sample preparation technique provides a better link between the two structural determination tools, thereby paving the way to faster and more reliable identification of both known and unknown metabolites directly in crude biological extracts. PMID:25616249

  8. An overview of methods using (13)C for improved compound identification in metabolomics and natural products.

    PubMed

    Clendinen, Chaevien S; Stupp, Gregory S; Ajredini, Ramadan; Lee-McMullen, Brittany; Beecher, Chris; Edison, Arthur S

    2015-01-01

    Compound identification is a major bottleneck in metabolomics studies. In nuclear magnetic resonance (NMR) investigations, resonance overlap often hinders unambiguous database matching or de novo compound identification. In liquid chromatography-mass spectrometry (LC-MS), discriminating between biological signals and background artifacts and reliable determination of molecular formulae are not always straightforward. We have designed and implemented several NMR and LC-MS approaches that utilize (13)C, either enriched or at natural abundance, in metabolomics applications. For LC-MS applications, we describe a technique called isotopic ratio outlier analysis (IROA), which utilizes samples that are isotopically labeled with 5% (test) and 95% (control) (13)C. This labeling strategy leads to characteristic isotopic patterns that allow the differentiation of biological signals from artifacts and yield the exact number of carbons, significantly reducing possible molecular formulae. The relative abundance between the test and control samples for every IROA feature can be determined simply by integrating the peaks that arise from the 5 and 95% channels. For NMR applications, we describe two (13)C-based approaches. For samples at natural abundance, we have developed a workflow to obtain (13)C-(13)C and (13)C-(1)H statistical correlations using 1D (13)C and (1)H NMR spectra. For samples that can be isotopically labeled, we describe another NMR approach to obtain direct (13)C-(13)C spectroscopic correlations. These methods both provide extensive information about the carbon framework of compounds in the mixture for either database matching or de novo compound identification. We also discuss strategies in which (13)C NMR can be used to identify unknown compounds from IROA experiments. By combining technologies with the same samples, we can identify important biomarkers and corresponding metabolites of interest.

  9. Mixed ligand complexes of Cu(II)/Zn(II) ions containing (m-)/(p-) carboxylato phenyl azo pentane 2,4-dione and 2,2‧-bipyridine/1,10 phenanthroline: Synthesis, characterization, DNA binding, nuclease and topoisomerase I inhibitory activity

    NASA Astrophysics Data System (ADS)

    Hasan, Md. Amin; Kumari, Niraj; Singh, Kanhaiya; Singh, Kiran; Mishra, Lallan

    2016-01-01

    Metal complexes of type [Cu(L1H)2(bpy)] (1), [Zn(L1H)2(bpy)] (2), [Cu(L2H)2(bpy)] (3) and [Cu(L2H)2(Phen)] (4) (L1H2 = 3-[N‧-(1-acetyl-2-oxo-propylidene)-hydrazino]-benzoic acid, L2H2 = 4-[N‧-(1-acetyl-2-oxo-propylidene)-hydrazino]-benzoic acid, bpy = 2,2‧-bipyridine, Phen = 1,10 phenanthroline) are synthesized and characterized using spectroscopic techniques (FT-IR, 1H NMR, 13C NMR, electronic absorption and emission) and elemental analysis data. The assembly of the complexes involving intramolecular H-bonding is displayed using corresponding crystal structure. Binding of the complexes separately with Calf Thymus DNA is monitored using UV-vis spectral titrations. The displacement of ethidium bromide (EB) bound to DNA by the complexes, in phosphate buffer solution (pH ∼ 7.2) is monitored using fluorescence spectral titrations. Nuclease activity of the complexes follow the order 4 > 3 > 1 > 2. The gel electrophoretic mobility assay measurement in presence of minor groove binder 4‧,6-diamidino-2-phenylindole (DAPI), suggests that complexes preferably bind with the minor groove of DNA. Topoisomerase I inhibitory activity of the complexes 3 and 4 inhibit topoisomerase I activity with IC50 values of 112 and 87 μM respectively.

  10. Quantitative analysis of amygdalin and prunasin in Prunus serotina Ehrh. using (1) H-NMR spectroscopy.

    PubMed

    Santos Pimenta, Lúcia P; Schilthuizen, Menno; Verpoorte, Robert; Choi, Young Hae

    2014-01-01

    Prunus serotina is native to North America but has been invasively introduced in Europe since the seventeenth century. This plant contains cyanogenic glycosides that are believed to be related to its success as an invasive plant. For these compounds, chromatographic- or spectrometric-based (targeting on HCN hydrolysis) methods of analysis have been employed so far. However, the conventional methods require tedious preparation steps and a long measuring time. To develop a fast and simple method to quantify the cyanogenic glycosides, amygdalin and prunasin in dried Prunus serotina leaves without any pre-purification steps using (1) H-NMR spectroscopy. Extracts of Prunus serotina leaves using CH3 OH-d4 and KH2 PO4 buffer in D2 O (1:1) were quantitatively analysed for amygdalin and prunasin using (1) H-NMR spectroscopy. Different internal standards were evaluated for accuracy and stability. The purity of quantitated (1) H-NMR signals was evaluated using several two-dimensional NMR experiments. Trimethylsilylpropionic acid sodium salt-d4 proved most suitable as the internal standard for quantitative (1) H-NMR analysis. Two-dimensional J-resolved NMR was shown to be a useful tool to confirm the structures and to check for possible signal overlapping with the target signals for the quantitation. Twenty-two samples of P. serotina were subsequently quantitatively analysed for the cyanogenic glycosides prunasin and amygdalin. The NMR method offers a fast, high-throughput analysis of cyanogenic glycosides in dried leaves permitting simultaneous quantification and identification of prunasin and amygdalin in Prunus serotina. Copyright © 2013 John Wiley & Sons, Ltd.

  11. Evaluation of three different decontamination techniques on biofilm formation, and on physical and chemical properties of resin composites.

    PubMed

    André, Carolina Bosso; Dos Santos, Andressa; Pfeifer, Carmem Silvia; Giannini, Marcelo; Girotto, Emerson Marcelo; Ferracane, Jack Liborio

    2018-04-01

    This study evaluated three different sterilization/disinfection techniques for resin composites on bacterial growth and surface modification after decontamination. Two resin composites were sterilized/disinfected with three different techniques: UV light, 1% chloramine T, and 70% ethanol. Four different times were used for each technique to determine the shortest time that the solution or UV light was effective. The influence of sterilization/disinfection technique on bacterial growth was evaluated by analyzing the metabolic activity, using the AlamarBlue™ assay, bacterial viability, and SEM images from biofilms of Streptococcus mutans. The surface change, after the process, was analyzed with ATR/FTIR and SEM images. The solutions used for decontamination (1% chloramine-T and 70% ethanol) were analyzed with 1 H-NMR to identify any resin compounds leached during the process. One minute of decontamination was efficient for all three methods tested. Chloramine-T increased the surface porosity on resin composites, no changes were observed for UV light and 70% ethanol, however, 1 H-NMR identified leached monomers only when 70% ethanol was used. No chemical change of the materials was found under ATR/FTIR analyses after the decontamination process. Chloramine-T, with no previous wash, increased the bacterial viability for both resin composites and increased the bacterial metabolism for the resin composite without fluoride. UV light had no interference on the resin composites properties tested using 1 min of exposure compared to the other decontamination methods. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 945-953, 2018. © 2017 Wiley Periodicals, Inc.

  12. Fatty acyl chain order in lecithin model membranes determined from proton magnetic resonance.

    PubMed

    Bloom, M; Burnell, E E; MacKay, A L; Nichol, C P; Valic, M I; Weeks, G

    1978-12-26

    Proton magnetic resonance (1H NMR) has been used to compare the local orientational order of acyl chains in phospholipid bilayers of multilamellar and small sonicated vesicular membranes of dipalmitoyllecithin (DPL) at 50 degrees C and egg yolk lecithin (EYL) at 31 degrees C. The orientational order of the multilamellar systems was characterized using deuterium magnetic resonance order parameters and 1H NMR second moments. 1H NMR line shapes in the vesicle samples were calculated using vesicle size distributions, determined directly using electron microscopy, and a theory of motional narrowing, which takes into account the symmetry properties of the bilayer systems. The predicted non-Lorentzian line shapes and widths were found to be in good agreement with experimental results, indicating that the local orientational order (called "packing" by many workers) in the bilayers of small vesicles and in multilamellar membranes is substantially the same. This results was found to be true not only for the largest 1H NMR line associated with the nonterminal methylene protons but also for the resolved 1H NMR lines due to the alpha-CH2 and the terminal CH3 positions on the acyl chain. Analysis of the vesicle 1H NMR spectra of EYL taken with different medium viscosities yielded a value of approximately 4 X 10(-8) cm2 s-1 for the lateral diffusion constant of the phospholipid molecules at 31 degrees C.

  13. Synthesis, spectroscopic characterization, crystal structure, DNA interaction study and invitro biological screenings of 4-(5-chloro-2-hydroxyphenylamino)-4-oxobut-2-enoic acid

    NASA Astrophysics Data System (ADS)

    Sirajuddin, Muhammad; Nooruddin; Ali, Saqib; McKee, Vickie; Khan, Shahan Zeb; Malook, Khan

    2015-01-01

    The titled compound, 4-(5-chloro-2-hydroxyphenylamino)-4-oxobut-2-enoic acid was synthesized and characterized by various techniques like elemental analyses, FT-IR, NMR (1H, and 13C) and single crystal X-ray structural analysis. The appearance of the OH peak of the carboxylic acid in the FT-IR and NMR spectra conform the formation of the compound. A good agreement was found between the calculated values of C, H, N and found values in elemental analysis that show the purity of the compound. Protons H2 and H3 are in cis conformation with each other as conformed both from 1H NMR as well as from single crystal X-ray analysis. The molecular structure of the title compound, C10H10NO3Cl, is stabilized by short intramolecular Osbnd H- - -O hydrogen bonds within the molecule. In the crystal structure, intermolecular Nsbnd H- - -O hydrogen bonds link molecules into zigzag chains resulting in a dendrimer like structure. The title compound was screened for biological activities like interaction with DNA, cytotoxicity, antitumor and antioxidant activities. DNA interaction study reveals that the binding mode of interaction of the compound with SS-DNA is intercalative as it results in hypochromism along with significant red shift of 5 nm. It was also found to be effective antioxidant of 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and show almost comparable antioxidant activity to that of the standard and known antioxidant, ascorbic acid, at higher concentration. The antitumor activity data of the compound shows that it can be used as potent antitumor agent.

  14. Phosphorus NMR of isolated perfused morris hepatomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, R.A.; Meyer, R.A.; Brown, T.R.

    1986-03-05

    The authors are developing techniques for the study of perfused solid tumors by NMR. Tissue-isolated solid hepatomas were grown to 1-2 cm diameter as described previously. The arterial supply was isolated and the tumors perfused (0.5 - 1.0 ml/min) in vitro at 25 C with a 15% suspension of red blood cells in Krebs-Henseliet solution. /sup 31/P-NMR spectra were acquired at 162 MHz in a specially-designed NMR probe using a solenoidal coil. Intracellular pH (monitored from the chemical shift of inorganic phosphate) and ATP levels were stable for up to 6 hrs during perfusion. During 30 min of global ischemia,more » ATP decreased by 75% and pH fell from 7.0 to 6.7. These changes were reversed by 1 hr reperfusion. In addition to ATP and phosphate, the spectra included a large resonance due to phosphomonoesters, as well as peaks consistent with glycerylphosphocholine, glyceryl-phosphoethanolamine, phosphocreatine, NAD, and UDPG. However, the most novel feature of the spectra was the presence of an unidentified peak in the phosphonate region (+ 16.9 ppm). The peak was not present in spectra of muscle, liver, brain, kidney, or fat tissues excised from the same animals. They are presently attempting to identify the compound that gives rise to this peak and to establish its metabolic origin.« less

  15. Synthesis, X-ray diffraction method, spectroscopic characterization (FT-IR, 1H and 13C NMR), antimicrobial activity, Hirshfeld surface analysis and DFT computations of novel sulfonamide derivatives

    NASA Astrophysics Data System (ADS)

    Demircioğlu, Zeynep; Özdemir, Fethi Ahmet; Dayan, Osman; Şerbetçi, Zafer; Özdemir, Namık

    2018-06-01

    Synthesized compounds of N-(2-aminophenyl)benzenesulfonamide 1 and (Z)-N-(2-((2-nitrobenzylidene)amino)phenyl)benzenesulfonamide 2 were characterized by antimicrobial activity, FT-IR, 1H and 13C NMR. Two new Schiff base ligands containing aromatic sulfonamide fragment of (Z)-N-(2-((3-nitrobenzylidene)amino)phenyl)benzenesulfonamide 3 and (Z)-N-(2-((4-nitrobenzylidene)amino)phenyl)benzenesulfonamide 4 were synthesized and investigated by spectroscopic techniques including 1H and 13C NMR, FT-IR, single crystal X-ray diffraction, Hirshfeld surface, theoretical method analyses and by antimicrobial activity. The molecular geometry obtained from the X-ray structure determination was optimized Density Functional Theory (DFT/B3LYP) method with the 6-311++G(d,p) basis set in ground state. From the optimized geometry of the molecules of 3 and 4, the geometric parameters, vibrational wavenumbers and chemical shifts were computed. The optimized geometry results, which were well represented the X-ray data, were shown that the chosen of DFT/B3LYP 6-311G++(d,p) was a successful choice. After a successful optimization, frontier molecular orbitals, chemical activity, non-linear optical properties (NLO), molecular electrostatic mep (MEP), Mulliken population method, natural population analysis (NPA) and natural bond orbital analysis (NBO), which cannot be obtained experimentally, were calculated and investigated.

  16. A novel high performance nano chemosensor for copper (II) ion based on an ultrasound-assisted synthesized diphenylamine-based Schiff base: Design, fabrication and density functional theory calculations.

    PubMed

    Parsaee, Zohreh; Haratipour, Pouya; Lariche, Milad Janghorban; Vojood, Arash

    2018-03-01

    A novel high selective colorimetric chemosensor was introduced based on a nano diphenyl-based Schiff base (H 2 L), 2,2'-((1E,1'E)-(((hexylazanediyl)bis(4,1-phenylene))bis(methanylylidene))bis(azanylylidene))bis(4-methylphenol) that synthesized using sonochemical method. H 2 L was characterized by FT-IR, MS, TGA, 1 H NMR, 13 C NMR, SEM and elemental analysis techniques, then fabricated as the portable strips for sensing copper (II) ions in aqueous media. The binding interaction between H 2 L and various metal ions was investigated by UV-Vis spectroscopic that showed favorable coordination toward Cu 2+ ion. H 2 L exhibited binding-induced color changes from yellow to pink and practically no interference in the presence of other metal ions, i.e., Cr 2+ , Mn 2+ , Fe 2+ , Co 2+ , Ni 2+ , Zn 2+ , Cd 2+ , Hg 2+ , Pb 2+ , Mg 2+ and Ca 2+ . The chemsensor showd the color change from yellow to pink in presence of copper (II) ion in aqueous media due to binging of H 2 L and Cu (II). This sensor can determine the copper (II) at in the rang of 7.5 × 10 -8 -1.8 × 10 -5  mol L -1 with a correlation equation: Absorbance = 0.0450[Cu 2+ ] × 10 -6  + 0.71 and R 2  = 0.975 and low detection limit of 1.89 × 10 -8  mol L -1 . Density functional theory (DFT) calculations were carried out at the B3LYP levels of theory with B3LYP/6-311+G(d,p) and LANL2DZ/6-311+G(d,p) basis sets for chemosensor and its copper complex respectively. The optimized geometry, harmonic vibrational frequencies, 1 H NMR and 13 C NMR chemical, Molecular orbital (M.O.), Mulliken population analysis (MPA), contour of Electrostatic Potential (ESP) and Molecular Electrostatic Potential (MEP) map of H 2 L were calculated which show good agreement with behavior of sensor for detection of Cu 2+ ion. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Structure and equilibria of Ca 2+-complexes of glucose and sorbitol from multinuclear ( 1H, 13C and 43Ca) NMR measurements supplemented with molecular modelling calculations

    NASA Astrophysics Data System (ADS)

    Pallagi, A.; Dudás, Cs.; Csendes, Z.; Forgó, P.; Pálinkó, I.; Sipos, P.

    2011-05-01

    Ca 2+-complexation of D-glucose and D-sorbitol have been investigated with the aid of multinuclear ( 1H, 13C and 43Ca) NMR spectroscopy and ab initio quantum chemical calculations. Formation constants of the forming 1:1 complexes have been estimated from one-dimensional 13C NMR spectra obtained at constant ionic strength (1 M NaCl). Binding sites were identified from 2D 1H- 43Ca NMR spectra. 2D NMR measurements and ab initio calculations indicated that Ca 2+ ions were bound in a tridentate manner via the glycosidic OH, the ethereal oxygen in the ring and the OH on the terminal carbon for the α- and β-anomers of glucose and for sorbitol simultaneous binding of four hydroxide moieties (C1, C2, C4 and C6) was suggested.

  18. Untangle soil-water-mucilage interactions: 1H NMR Relaxometry is lifting the veil

    NASA Astrophysics Data System (ADS)

    Brax, Mathilde; Buchmann, Christian; Schaumann, Gabriele Ellen

    2017-04-01

    Mucilage is mainly produced at the root tips and has a high water holding capacity derived from highly hydrophilic gel-forming substances. The objective of the MUCILAGE project is to understand the mechanistic role of mucilage for the regulation of water supply for plants. Our subproject investigates the chemical and physical properties of mucilage as pure gel and mixed with soil. 1H-NMR Relaxometry and PFG NMR represent non-intrusive powerful methods for soil scientific research by allowing quantification of the water distribution as well as monitoring of the water mobility in soil pores and gel phases.Relaxation of gel water differs from the one of pure water due to additional interactions with the gel matrix. Mucilage in soil leads to a hierarchical pore structure, consisting of the polymeric biohydrogel network surrounded by the surface of soil particles. The two types of relaxation rates 1/T1 and 1/T2 measured with 1H-NMR relaxometry refer to different relaxation mechanisms of water, while PFG-NMR measures the water self-diffusion coefficient. The objective of our study is to distinguish in situ water in gel from pore water in a simplified soil system, and to determine how the "gel effect" affects both relaxation rates and the water self-diffusion coefficient in porous systems. We demonstrate how the mucilage concentration and the soil solution alter the properties of water in the respective gel phases and pore systems in model soils. To distinguish gel-inherent processes from classical processes, we investigated the variations of the water mobility in pure chia mucilage under different conditions by using 1H-NMR relaxometry and PFG NMR. Using model soils, the signals coming from pore water and gel water were differentiated. We combined the equations describing 1H-NMR relaxation in porous systems and our experimental results, to explain how the presence of gel in soil affects 1H-NMR relaxation. Out of this knowledge we propose a method, which determines in situ the presence of mucilage in soil and characterizes several gel-specific parameters of the mucilage. Based on these findings, we discussed the potential and limitations of 1H-NMR relaxometry for following natural swelling and shrinking processes of a natural biopolymer in soil.

  19. Proton Nuclear Magnetic Resonance-Spectroscopic Discrimination of Wines Reflects Genetic Homology of Several Different Grape (V. vinifera L.) Cultivars.

    PubMed

    Hu, Boran; Yue, Yaqing; Zhu, Yong; Wen, Wen; Zhang, Fengmin; Hardie, Jim W

    2015-01-01

    Proton nuclear magnetic resonance spectroscopy coupled multivariate analysis (1H NMR-PCA/PLS-DA) is an important tool for the discrimination of wine products. Although 1H NMR has been shown to discriminate wines of different cultivars, a grape genetic component of the discrimination has been inferred only from discrimination of cultivars of undefined genetic homology and in the presence of many confounding environmental factors. We aimed to confirm the influence of grape genotypes in the absence of those factors. We applied 1H NMR-PCA/PLS-DA and hierarchical cluster analysis (HCA) to wines from five, variously genetically-related grapevine (V. vinifera) cultivars; all grown similarly on the same site and vinified similarly. We also compared the semi-quantitative profiles of the discriminant metabolites of each cultivar with previously reported chemical analyses. The cultivars were clearly distinguishable and there was a general correlation between their grouping and their genetic homology as revealed by recent genomic studies. Between cultivars, the relative amounts of several of the cultivar-related discriminant metabolites conformed closely with reported chemical analyses. Differences in grape-derived metabolites associated with genetic differences alone are a major source of 1H NMR-based discrimination of wines and 1H NMR has the capacity to discriminate between very closely related cultivars. The study confirms that genetic variation among grape cultivars alone can account for the discrimination of wine by 1H NMR-PCA/PLS and indicates that 1H NMR spectra of wine of single grape cultivars may in future be used in tandem with hierarchical cluster analysis to elucidate genetic lineages and metabolomic relations of grapevine cultivars. In the absence of genetic information, for example, where predecessor varieties are no longer extant, this may be a particularly useful approach.

  20. Determination of free fatty acids in pharmaceutical lipids by ¹H NMR and comparison with the classical acid value.

    PubMed

    Skiera, Christina; Steliopoulos, Panagiotis; Kuballa, Thomas; Diehl, Bernd; Holzgrabe, Ulrike

    2014-05-01

    Indices like acid value, peroxide value, and saponification value play an important role in quality control and identification of lipids. Requirements on these parameters are given by the monographs of the European pharmacopeia. (1)H NMR spectroscopy provides a fast and simple alternative to these classical approaches. In the present work a new (1)H NMR approach to determine the acid value is described. The method was validated using a statistical approach based on a variance components model. The performance under repeatability and in-house reproducibility conditions was assessed. We applied this (1)H NMR assay to a wide range of different fatty oils. A total of 305 oil and fat samples were examined by both the classical and the NMR method. Except for hard fat, the data obtained by the two methods were in good agreement. The (1)H NMR method was adapted to analyse waxes and oleyloleat. Furthermore, the effect of solvent and in the case of castor oil the effect of the oil matrix on line broadening and chemical shift of the carboxyl group signal are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Establishing the synthetic origin of amphetamines by 2H NMR spectroscopy.

    PubMed

    Armellin, Silvia; Brenna, Elisabetta; Fronza, Giovanni; Fuganti, Claudio; Pinciroli, Matteo; Serra, Stefano

    2004-02-01

    Nine samples of N-acetyl-3,4-methylenedioxyamphetamine (N-acetyl-MDA), prepared according to the most common synthetic procedures, are submitted to (2)H NMR spectroscopy. The relative deuterium content at the various sites of the molecule is shown to depend on its synthetic history. The technique provides a chemical fingerprint of N-acetyl-MDAs and it can be used to trace back the precursor materials and the synthetic pathways employed in the preparation of the samples.

  2. Bridge over troubled proline: assignment of intrinsically disordered proteins using (HCA)CON(CAN)H and (HCA)N(CA)CO(N)H experiments concomitantly with HNCO and i(HCA)CO(CA)NH.

    PubMed

    Hellman, Maarit; Piirainen, Henni; Jaakola, Veli-Pekka; Permi, Perttu

    2014-01-01

    NMR spectroscopy is by far the most versatile and information rich technique to study intrinsically disordered proteins (IDPs). While NMR is able to offer residue level information on structure and dynamics, assignment of chemical shift resonances in IDPs is not a straightforward process. Consequently, numerous pulse sequences and assignment protocols have been developed during past several years, targeted especially for the assignment of IDPs, including experiments that employ H(N), H(α) or (13)C detection combined with two to six indirectly detected dimensions. Here we propose two new HN-detection based pulse sequences, (HCA)CON(CAN)H and (HCA)N(CA)CO(N)H, that provide correlations with (1)H(N)(i - 1), (13)C'(i - 1) and (15)N(i), and (1)H(N)(i + 1), (13)C'(i) and (15)N(i) frequencies, respectively. Most importantly, they offer sequential links across the proline bridges and enable filling the single proline gaps during the assignment. We show that the novel experiments can efficiently complement the information available from existing HNCO and intraresidual i(HCA)CO(CA)NH pulse sequences and their concomitant usage enabled >95 % assignment of backbone resonances in cytoplasmic tail of adenosine receptor A2A in comparison to 73 % complete assignment using the HNCO/i(HCA)CO(CA)NH data alone.

  3. 1H-NMR and Hyperpolarized 13C-NMR Assays of Pyruvate-Lactate Exhange: a comparative study

    PubMed Central

    Orton, Matthew R.; Tardif, Nicolas; Parkes, Harold G.; Robinson, Simon P.; Leach, Martin O.; Chung, Yuen-Li; Eykyn, Thomas R.

    2015-01-01

    Pyruvate-lactate exchange is mediated by the enzyme lactate dehydrogenase (LDH) and is central to the altered energy metabolism in cancer cells. Measurement of exchange kinetics using hyperpolarized 13C NMR has provided a biomarker of response to novel therapeutics. In this study we investigated an alternative in vitro 1H assay, using [3-13C]pyruvate, and compared the measured kinetics with a hyperpolarized 13C-NMR assay, using [1-13C]pyruvate, under the same conditions in human colorectal carcinoma SW1222 cells. The apparent forward reaction rate constants (kPL) derived from the two assays showed no significant difference, and both assays had similar reproducibility (kPL = 0.506 ± 0.054 and kPL = 0.441 ± 0.090 nmol/s/106 cells, (mean ± standard deviation, n = 3); 1H, 13C assays respectively). The apparent backward reaction rate constant (kLP) could only be measured with good reproducibility using the 1H-NMR assay (kLP = 0.376 ± 0.091 nmol/s/106 cells, (mean ± standard deviation, n = 3)). The 1H-NMR assay has adequate sensitivity to measure real-time pyruvate-lactate exchange kinetics in vitro, offering a complementary and accessible assay of apparent LDH activity. PMID:23712817

  4. Confirming the 3D Solution Structure of a Short Double-Stranded DNA Sequence Using NMR Spectroscopy

    ERIC Educational Resources Information Center

    Ruhayel, Rasha A.; Berners-Price, Susan J.

    2010-01-01

    2D [superscript 1]H NOESY NMR spectroscopy is routinely used to give information on the closeness of hydrogen atoms through space. This work is based on a 2D [superscript 1]H NOESY NMR spectrum of a 12 base-pair DNA duplex. This 6-h laboratory workshop aims to provide advanced-level chemistry students with a basic, yet solid, understanding of how…

  5. A newly synthesized thiazole derivative as a fluoride ion chemosensor: naked-eye, spectroscopic, electrochemical and NMR studies.

    PubMed

    Sarıgüney, Ahmet Burak; Saf, Ahmet Özgür; Coşkun, Ahmet

    2014-07-15

    2,3-Indoledione 3-thiosemicarbazone (TSCI) and a novel compound 3-(2-(4-(4-phenoxyphenyl)thiazol-2-yl)hydrazono)indolin-2-one (FTHI) were synthesized with high yield and characterized by spectroscopic techniques. The complexation behaviors of TSCI and FTHI for various anionic species (F(-), Cl(-), Br(-), I(-), NO2(-), NO3(-), BzO(-), HSO4(-), ClO4(-)) in CH3CN were investigated and compared by UV-vis spectroscopy, cyclic voltammetry and (1)H NMR titration techniques. FTHI showed high degree of selectivity for fluoride over other anions. This selectivity could be easily observed by the naked eye, indicating that FTHI is potential colorimetric sensor for fluoride anion. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Green synthesis of chalcones derivatives as intermediate of flavones and their antibacterial activities

    NASA Astrophysics Data System (ADS)

    VH, Elfi Susanti; Matsjeh, Sabirin; Wahyuningsih, Tutik Dwi; Mustofa, Redjeki, Tri

    2016-02-01

    Four chalcones derivatives have been synthesized from 3,4-dimethoxybenzaldehyde and acetophenone derivatives (2-hydroxy acetophenone, 2,4-dihydroxy acetophenone, 2,5-dihydroxy acetophenone and 2,6-dihydroxy acetophenone). The synthesis of these chalcones were conducted by Claisen-Schmidt condensation using grinding techniques at room temperature in the absence of solvents. The chalcones were prepared by grinding together equivalent amount of the approriate hydroxyacetophenone and 3,4-dimethoxybenzaldehyde in the presence of solid sodium hydroxide. Grinding techniques for synthesis of the chalcones derivatives is simple, efficient and environmentally benign compared to conventional methods. Then, the four chalcones derivatives undergo cyclization reactions to produce four flavones after reacted with iodine. The synthesized compounds were characterized by spectrometry (IR, 1H-NMR, 13C-NMR and MS).

  7. Determination of accurate 1H positions of an alanine tripeptide with anti-parallel and parallel β-sheet structures by high resolution 1H solid state NMR and GIPAW chemical shift calculation.

    PubMed

    Yazawa, Koji; Suzuki, Furitsu; Nishiyama, Yusuke; Ohata, Takuya; Aoki, Akihiro; Nishimura, Katsuyuki; Kaji, Hironori; Shimizu, Tadashi; Asakura, Tetsuo

    2012-11-25

    The accurate (1)H positions of alanine tripeptide, A(3), with anti-parallel and parallel β-sheet structures could be determined by highly resolved (1)H DQMAS solid-state NMR spectra and (1)H chemical shift calculation with gauge-including projector augmented wave calculations.

  8. Synthesis, characterization and cytotoxic activity of substituted benzyl iminoether Pt(II) complexes of the type cis- and trans-[PtCl2{E-N(H)=C(OMe)CH2-C6H4-p-R}2] (R=Me, OMe, F). X-ray structure of trans-[PtCl2{E-N(H)=C(OMe)CH2-C6H4-p-F}2].

    PubMed

    Mazzega Sbovata, Silvia; Bettio, Frazia; Marzano, Christine; Tassan, Augusto; Mozzon, Mirto; Bertani, Roberta; Benetollo, Franco; Michelin, Rino A

    2008-04-01

    New substituted benzyl iminoether derivatives of the type cis- and trans-[PtCl(2){E-N(H)C(OMe)CH(2)-C(6)H(4)-p-R}(2)] (R=Me (1a, 2a), OMe (3a, 4a), F (5a, 6a)) have been synthesized and characterized by elemental analyses, FT-IR spectroscopy and NMR techniques. The iminoether ligands are in the E configuration, which is stable in solution and in the solid state, as confirmed by the (1)H NMR data. Complex trans-[PtCl(2){E-N(H)C(OMe)CH(2)-C(6)H(4)-p-F}(2)] (6a) was also characterized by an X-ray diffraction study. Complexes 1a-6a have been tested against a panel of human tumor cell lines in order to evaluate their cytotoxic activity. cis-Isomers were significant more potent than the corresponding trans-isomers against all tumor cell lines tested; moreover, complexes 1a and 5a showed IC(50) values from about 2-fold to 6-fold lower than those exhibited by cisplatin, used as reference platinum anticancer drug.

  9. Pseudopeptide foldamers: the homo-oligomers of pyroglutamic acid.

    PubMed

    Bernardi, Fernando; Garavelli, Marco; Scatizzi, Marco; Tomasini, Claudia; Trigari, Valerio; Crisma, Marco; Formaggio, Fernando; Peggion, Cristina; Toniolo, Claudio

    2002-06-03

    As a part of a program evaluating substituted gamma-lactams as conformationally constrained building blocks of pseudopeptide foldamers, we synthesized the homo-oligomers of L-pyroglutamic acid up to the tetramer level by solution methods. The preferred conformation of this pseudopeptide series in structure-supporting solvents was assessed by FT-IR absorption, 1H NMR and CD techniques. In addition, the crystal structure of the N alpha-protected dimer was established by X-ray diffraction. A high-level DFT computational modeling was performed based on the crystallographic parameters. In this analysis, we demonstrated that an alpha C-H...O=C intramolecular hydrogen bond is responsible for the stabilization of the s-trans L-pGlu-L-pGlu conformation by 1.4 kcal mol-1. This effect can be easily detected by 1H NMR spectroscopy, owing to the anomalous chemical shifts of the alpha CH protons present in all of the oligomers. In summary, we have developed a new polyimide-based, foldameric structure that, if appropriately functionalized, has promise as a rigid scaffold for novel functions and applications.

  10. Single-Scan Multidimensional NMR Analysis of Mixtures at Sub-Millimolar Concentrations by using SABRE Hyperpolarization.

    PubMed

    Daniele, Valeria; Legrand, François-Xavier; Berthault, Patrick; Dumez, Jean-Nicolas; Huber, Gaspard

    2015-11-16

    Signal amplification by reversible exchange (SABRE) is a promising method to increase the sensitivity of nuclear magnetic resonance (NMR) experiments. However, SABRE-enhanced (1)H NMR signals are short lived, and SABRE is often used to record 1D NMR spectra only. When the sample of interest is a complex mixture, this results in severe overlaps for (1)H spectra. In addition, the use of a co-substrate, whose signals may obscure the (1) H spectra, is currently the most efficient way to lower the detection limit of SABRE experiments. Here, we describe an approach to obtain clean, SABRE-hyperpolarized 2D (1)H NMR spectra of mixtures of small molecules at sub-millimolar concentrations in a single scan. The method relies on the use of para-hydrogen together with a deuterated co-substrate for hyperpolarization and ultrafast 2D NMR for acquisition. It is applicable to all substrates that can be polarized with SABRE. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. NMR resonance splitting of urea in stretched hydrogels: proton exchange and (1)H/(2)H isotopologues.

    PubMed

    Kuchel, Philip W; Naumann, Christoph; Chapman, Bogdan E; Shishmarev, Dmitry; Håkansson, Pär; Bacskay, George; Hush, Noel S

    2014-10-01

    Urea at ∼12 M in concentrated gelatin gel, that was stretched, gave (1)H and (2)H NMR spectral splitting patterns that varied in a predictable way with changes in the relative proportions of (1)H2O and (2)H2O in the medium. This required consideration of the combinatorics of the two amide groups in urea that have a total of four protonation/deuteration sites giving rise to 16 different isotopologues, if all the atoms were separately identifiable. The rate constant that characterized the exchange of the protons with water was estimated by back-transformation analysis of 2D-EXSY spectra. There was no (1)H NMR spectral evidence that the chiral gelatin medium had caused in-equivalence in the protons bonded to each amide nitrogen atom. The spectral splitting patterns in (1)H and (2)H NMR spectra were accounted for by intra-molecular scalar and dipolar interactions, and quadrupolar interactions with the electric field gradients of the gelatin matrix, respectively. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Combined chemometric analysis of (1)H NMR, (13)C NMR and stable isotope data to differentiate organic and conventional milk.

    PubMed

    Erich, Sarah; Schill, Sandra; Annweiler, Eva; Waiblinger, Hans-Ulrich; Kuballa, Thomas; Lachenmeier, Dirk W; Monakhova, Yulia B

    2015-12-01

    The increased sales of organically produced food create a strong need for analytical methods, which could authenticate organic and conventional products. Combined chemometric analysis of (1)H NMR-, (13)C NMR-spectroscopy data, stable-isotope data (IRMS) and α-linolenic acid content (gas chromatography) was used to differentiate organic and conventional milk. In total 85 raw, pasteurized and ultra-heat treated (UHT) milk samples (52 organic and 33 conventional) were collected between August 2013 and May 2014. The carbon isotope ratios of milk protein and milk fat as well as the α-linolenic acid content of these samples were determined. Additionally, the milk fat was analyzed by (1)H and (13)C NMR spectroscopy. The chemometric analysis of combined data (IRMS, GC, NMR) resulted in more precise authentication of German raw and retail milk with a considerably increased classification rate of 95% compared to 81% for NMR and 90% for IRMS using linear discriminate analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. NMR analysis and chemical shift calculations of poly(lactic acid) dimer model compounds with different tacticities

    USDA-ARS?s Scientific Manuscript database

    In this work, PLA dimer model compounds with different tacticities were synthesized and studied in detail by 1H and 13C NMR in three solvents, CDCl3/CCl4 (20/80 v/v), CDCl3 and DMSO-d6. All the peaks in the 1H and 13C NMR spectra were assigned with the help of two-dimensional NMR. Although the solve...

  14. Isolation, NMR studies, and biological activities of onopordopicrin from Centaurea sonchifolia.

    PubMed

    Lonergan, G; Routsi, E; Georgiadis, T; Agelis, G; Hondrelis, J; Matsoukas, J; Larsen, L K; Caplan, F R

    1992-02-01

    A sesquiterpene lactone, onopordopicrin [1], has been isolated from Centaurea sonchifolia. Its structure was established by 2D nmr (1H-1H and 13C-1H correlations), and the conformation in CHCl3 was examined by nOe studies. Cytotoxic, antibacterial, and antifungal activities are reported.

  15. Natural abundance high-resolution solid state 2 H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Aliev, Abil E.; Harris, Kenneth D. M.; Apperley, David C.

    1994-08-01

    We report for the first time an approach for natural abundance solid state 2 H NMR spectroscopy involving magic angle sample spinning (MAS), high-power 1 H decoupling (HPPD) and 1 H- 2 H cross polarization (CP). Taking tetrakis(trimethylsilyl)silane (TTMSS), adamantane, 1-chloroadamantane, hexamethylbenzene (HMB), 2,2-dimethyl-1,3-propanediol (DMPD) and 2-hydroxymethyl-2-methyl-1,3-propanediol (HMPD) as examples, it has been shown that the combination of HPPD and MAS can be applied readily to study rotator phase solids, allowing isotropic peaks arising from chemically inequivalent 2 H nuclei to be resolved. For natural abundance samples of TTMSS and chloroadamantane, it has been shown that 2 H CP/HPPD/MAS NMR experiments, involving polarization transfer from 1 H to 2 H, may provide considerable sensitivity enhancement in comparison with single pulse experiments.

  16. Natural abundance high-resolution solid state 2 H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Aliev, Abil E.; Harris, Kenneth D. M.; Apperley, David C.

    1994-08-01

    We report for the first time an approach for natural abundance solid state 2H NMR spectroscopy involving magic angle sample spinning (MAS), high-power 1H decoupling (HPPD) and 1H- 2H cross polarization (CP). Taking tetrakis(trimethylsilyl)silane (TTMSS), adamantane, 1-chloroadamantane, hexamethylbenzene (HMB), 2,2-dimethyl-1,3-propanediol (DMPD) and 2-hydroxymethyl-2-methyl-1,3-propanediol (HMPD) as examples, it has been shown that the combination of HPPD and MAS can be applied readily to study rotator phase solids, allowing isotropic peaks arising from chemically inequivalent 2H nuclei to be resolved. For natural abundance samples of TTMSS and chloroadamantane, it has been shown that 2H CP/HPPD/MAS NMR experiments, involving polarization transfer from 1H to 2H, may provide considerable sensitivity enhancement in comparison with single pulse experiments.

  17. Inhibition of Mild Steel Corrosion in Hydrochloric Acid Solution by New Coumarin

    PubMed Central

    Kadhum, Abdul Amir H.; Mohamad, Abu Bakar; Hammed, Leiqaa A.; Al-Amiery, Ahmed A.; San, Ng Hooi; Musa, Ahmed Y.

    2014-01-01

    A new coumarin derivative, N,N′-((2E,2′E)-2,2′-(1,4-phenylenebis(methanylylidene))bis(hydrazinecarbonothioyl))bis(2-oxo-2H-chromene-3-carboxamide) PMBH, was synthesized and its chemical structure was elucidated and confirmed using spectroscopic techniques (Infrared spectroscopy IR, Proton nuclear magnetic resonance, 1H-NMR and carbon-13 nuclear magnetic resonance 13C-NMR). The corrosion inhibition effect of PMBH on mild steel in 1.0 M HCl was investigated using corrosion potential (ECORR), potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and electrochemical frequency modulation (EFM) measurements. The obtained results indicated that PMBH has promising inhibitive effects on the corrosion of mild steel in 1.0 M HCl across all of the conditions examined. Scanning electron microscopy (SEM) was used to investigate the morphology of the mild steel before and after immersion in 1.0 M HCl solution containing 0.5 mM of PMBH. Surface analysis revealed improvement of corrosion resistance in presence of PMBH. PMID:28788680

  18. Inhibition of Mild Steel Corrosion in Hydrochloric Acid Solution by New Coumarin.

    PubMed

    Kadhum, Abdul Amir H; Mohamad, Abu Bakar; Hammed, Leiqaa A; Al-Amiery, Ahmed A; San, Ng Hooi; Musa, Ahmed Y

    2014-06-05

    A new coumarin derivative, N , N '-((2E,2'E)-2,2'-(1,4-phenylenebis (methanylylidene))bis(hydrazinecarbonothioyl))bis(2-oxo-2H-chromene-3-carboxamide) PMBH, was synthesized and its chemical structure was elucidated and confirmed using spectroscopic techniques (Infrared spectroscopy IR, Proton nuclear magnetic resonance, 1 H-NMR and carbon-13 nuclear magnetic resonance 13 C-NMR). The corrosion inhibition effect of PMBH on mild steel in 1.0 M HCl was investigated using corrosion potential ( E CORR ), potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and electrochemical frequency modulation (EFM) measurements. The obtained results indicated that PMBH has promising inhibitive effects on the corrosion of mild steel in 1.0 M HCl across all of the conditions examined. Scanning electron microscopy (SEM) was used to investigate the morphology of the mild steel before and after immersion in 1.0 M HCl solution containing 0.5 mM of PMBH. Surface analysis revealed improvement of corrosion resistance in presence of PMBH.

  19. 73Ge-NMR study on magnetic fluctuations of ferromagnetic superconductor UGe2

    NASA Astrophysics Data System (ADS)

    Noma, Y.; Kotegawa, H.; Kubo, T.; Tou, H.; Harima, H.; Haga, Y.; Yamamoto, E.; Ōnuki, Y.; Itoh, K. M.; Haller, E. E.; Nakamura, A.; Homma, Y.; Honda, F.; Aoki, D.

    2018-05-01

    We report 73Ge-NMR measurement on the ferromagnetic superconductor UGe2 at ambient pressure. The observed NMR spectrum supports that the electric field gradient at three inequivalent Ge sites is correctly deduced by a LDA calculation. The temperature dependences of the nuclear spin lattice relaxation rate 1 /T1 for H0 ⊥ a (easy axis) and H0 ∥ a were obtained for the oriented sample. The contrasting behavior in 1 /T1 for H0 ⊥ a and H0 ∥ a reveals that the magnetic fluctuation of UGe2 is highly anisotropic.

  20. Proton NMR spectroscopic characterization of binary and ternary complexes of cobalt(II) carboxypeptidase A with inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertini, I.; Luchinat, C.; Messori, L.

    The binding of L- and D-phenylalanine and carboxylate inhibitors to cobalt(II)-substituted carboxypeptidase A, Co(II)CPD (E), in the presence and absence of pseudohalogens (X = N/sub 3//sup -/, NCO/sup -/, and NCS/sup -/) has been studied by /sup 1/H NMR spectroscopy. This technique monitors the proton signals of histidine residues bound to cobalt(II) and is therefore sensitive to the interactions of inhibitors that perturb the coordination sphere of the metal. Enzyme-inhibitor complexes, E/times/I, E/times/I/sub 2/, and E/times/I/times/X, each with characteristic NMR features, have been identified. The NMR data suggest that when the carboxylate group of a substrate of inhibitor binds atmore » the active site, a conformational change occurs that allows a second ligand molecule to bind to the metal ion, altering its coordination sphere and thereby attenuating the bidentate behavior of Glu-72. The /sup 1/H NMR signals also reflect alterations in the histidine interactions with the metal upon inhibitor binding. Isotropic shifts in the signals for the C-4 (c) and N protons (a) of one of the histidine ligands are readily observed in all of these complexes. These signals are relatively constant for all E/times/I and E/times/I/times/X complexes, indicating that this ligand is in a relatively fixed or buried conformation. However in the 2:1 carboxylate inhibitor (E/times/I/sub 2/) complexes, both signals are shifted upfield, suggesting a disturbance in the interaction of this histidine with the metal.« less

  1. Thermally induced hydrosilylation at deuterium-terminated silicon nanoparticles: an investigation of the radical chain propagation mechanism.

    PubMed

    Holm, Jason; Roberts, Jeffrey T

    2009-06-16

    Isotopic labeling techniques were employed to study alkene addition to hydrogen- and deuterium-terminated silicon nanoparticles. Deuterium-terminated silicon nanoparticle synthesis is described, as is the characterization of fresh deuterium-terminated particles by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and in situ Fourier transform infrared spectroscopy (FTIR). Particles were refluxed in pure 1-dodecene and subsequently characterized by FTIR and nuclear magnetic resonance (NMR) spectroscopy. (1)H NMR results showed features consistent with dodecyl-terminated nanoparticles. Infrared absorption spectra of refluxed particles showed strong evidence of new C-D bond formation, which is consistent with a radical chain mechanism for alkene addition by hydrosilylation.

  2. Proton Environments in Biomimetic Calcium Phosphates Formed from Mesoporous Bioactive CaO-SiO2-P2O5 Glasses in Vitro: Insights from Solid-State NMR.

    PubMed

    Mathew, Renny; Turdean-Ionescu, Claudia; Yu, Yang; Stevensson, Baltzar; Izquierdo-Barba, Isabel; García, Ana; Arcos, Daniel; Vallet-Regí, María; Edén, Mattias

    2017-06-22

    When exposed to body fluids, mesoporous bioactive glasses (MBGs) of the CaO-SiO 2 -P 2 O 5 system develop a bone-bonding surface layer that initially consists of amorphous calcium phosphate (ACP), which transforms into hydroxy-carbonate apatite (HCA) with a very similar composition as bone/dentin mineral. Information from various 1 H-based solid-state nuclear magnetic resonance (NMR) experiments was combined to elucidate the evolution of the proton speciations both at the MBG surface and within each ACP/HCA constituent of the biomimetic phosphate layer formed when each of three MBGs with distinct Ca, Si, and P contents was immersed in a simulated body fluid (SBF) for variable periods between 15 min and 30 days. Directly excited magic-angle-spinning (MAS) 1 H NMR spectra mainly reflect the MBG component, whose surface is rich in water and silanol (SiOH) moieties. Double-quantum-single-quantum correlation 1 H NMR experimentation at fast MAS revealed their interatomic proximities. The comparatively minor H species of each ACP and HCA component were probed selectively by heteronuclear 1 H- 31 P NMR experimentation. The initially prevailing ACP phase comprises H 2 O and "nonapatitic" HPO 4 2- /PO 4 3- groups, whereas for prolonged MBG soaking over days, a well-progressed ACP → HCA transformation was evidenced by a dominating O 1 H resonance from HCA. We show that 1 H-detected 1 H → 31 P cross-polarization NMR is markedly more sensitive than utilizing powder X-ray diffraction or 31 P NMR for detecting the onset of HCA formation, notably so for P-bearing (M)BGs. In relation to the long-standing controversy as to whether bone mineral comprises ACP and/or forms via an ACP precursor, we discuss a recently accepted structural core-shell picture of both synthetic and biological HCA, highlighting the close relationship between the disordered surface layer and ACP.

  3. UV-visible-DAD and 1H-NMR spectroscopy data fusion for studying the photodegradation process of azo-dyes using MCR-ALS.

    PubMed

    Fernández, Cristina; Pilar Callao, M; Larrechi, M Soledad

    2013-12-15

    The photodegradation process of three azo-dyes - Acid Orange 61, Acid Red 97 and Acid Brown 425 - was monitored simultaneously by ultraviolet-visible spectroscopy with diode array detector (UV-vis-DAD) and (1)H-nuclear magnetic resonance ((1)H-NMR). Multivariate curve resolution-alternating least squares (MCR-ALS) was applied to obtain the concentration and spectral profile of the chemical compounds involved in the process. The analysis of the H-NMR data suggests there are more intermediate compounds than those obtained with the UV-vis-DAD data. The fusion of UV-vis-DAD and the (1)H-NMR signal before the multivariate analysis provides better results than when only one of the two detector signals was used. It was concluded that three degradation products were present in the medium when the three azo-dyes had practically degraded. This study is the first application of UV-vis-DAD and (1)H-NMR spectroscopy data fusion in this field and illustrates its potential as a quick method for evaluating the evolution of the azo-dye photodegradation process. © 2013 Elsevier B.V. All rights reserved.

  4. Highly Accurate Quantitative Analysis Of Enantiomeric Mixtures from Spatially Frequency Encoded 1H NMR Spectra.

    PubMed

    Plainchont, Bertrand; Pitoux, Daisy; Cyrille, Mathieu; Giraud, Nicolas

    2018-02-06

    We propose an original concept to measure accurately enantiomeric excesses on proton NMR spectra, which combines high-resolution techniques based on a spatial encoding of the sample, with the use of optically active weakly orienting solvents. We show that it is possible to simulate accurately dipolar edited spectra of enantiomers dissolved in a chiral liquid crystalline phase, and to use these simulations to calibrate integrations that can be measured on experimental data, in order to perform a quantitative chiral analysis. This approach is demonstrated on a chemical intermediate for which optical purity is an essential criterion. We find that there is a very good correlation between the experimental and calculated integration ratios extracted from G-SERF spectra, which paves the way to a general method of determination of enantiomeric excesses based on the observation of 1 H nuclei.

  5. Vanadate complexes bearing an imidazolidine-bridged bis(aryloxido) ligand: synthesis and solid state and solution structure.

    PubMed

    Kober, Ewa; Nerkowski, Tomasz; Janas, Zofia; Jerzykiewicz, Lucjan B

    2012-05-07

    A new imidazolidine-bridged bis(aryloxido) ligand precursor (H(2)L) [H(2)L = 2,2'-(imidazolidine-1,3-diylbis(methylene))bis(4-(1,1,3,3-tetramethylbutyl-2-yl)phenol)] was prepared in a relatively high yield (∼60%) via a single-step Mannich condensation of 4-(1,1,3,3-tetramethylbutyl)phenol, ethylenediamine and paraformaldehyde at 2:1:3 molar ratio and characterized by chemical and physical techniques including X-ray crystallography. Reactions of H(2)L with [VO(OEt)(3)] at 1:1 and 1:2 molar ratios in toluene afforded [V(L-κ(3)O,N,N,O)(O)(OEt)] (1) and [V(2)(μ-L-κ(4)O,N,N,O)(μ-OEt)(2)(O)(2)(OEt)(2)] (2), respectively. Alcoholysis of 1 with EtOH enables elimination of one molecule of H(2)L and the formation of 2. Compounds 1 and 2 were characterized by IR and NMR spectroscopy as well as ES-MS experiments. The definitive molecular structure of 2 was provided by a single-crystal analysis and revealed its dinuclear nature, featuring two octahedral vanadium centres bridged by both OEt groups and the L ligand. The (51)V, (1)H and (13)C NMR spectra as well as ES-MS showed that 2 does not stay intact in solution and undergoes dissociation to give 1 and [VO(OEt)(3)].

  6. Non-Uniform Sampling and J-UNIO Automation for Efficient Protein NMR Structure Determination.

    PubMed

    Didenko, Tatiana; Proudfoot, Andrew; Dutta, Samit Kumar; Serrano, Pedro; Wüthrich, Kurt

    2015-08-24

    High-resolution structure determination of small proteins in solution is one of the big assets of NMR spectroscopy in structural biology. Improvements in the efficiency of NMR structure determination by advances in NMR experiments and automation of data handling therefore attracts continued interest. Here, non-uniform sampling (NUS) of 3D heteronuclear-resolved [(1)H,(1)H]-NOESY data yielded two- to three-fold savings of instrument time for structure determinations of soluble proteins. With the 152-residue protein NP_372339.1 from Staphylococcus aureus and the 71-residue protein NP_346341.1 from Streptococcus pneumonia we show that high-quality structures can be obtained with NUS NMR data, which are equally well amenable to robust automated analysis as the corresponding uniformly sampled data. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Eu(III) Complex with DO3A-amino-phosphonate Ligand as a Concentration-Independent pH-Responsive Contrast Agent for Magnetic Resonance Spectroscopy (MRS).

    PubMed

    Krchová, Tereza; Herynek, Vít; Gálisová, Andrea; Blahut, Jan; Hermann, Petr; Kotek, Jan

    2017-02-20

    A new DOTA-like ligand H 5 do3aNP with a 2-[amino(methylphosphonic acid)]ethyl-coordinating pendant arm was prepared, and its coordinating properties were studied by NMR spectroscopy and potentiometry. The study revealed a rare slow exchange (on the 1 H and 31 P NMR time scale) between protonated and unprotonated complex species with a corresponding acidity constant pK A ∼ 8.0. This unusually slow time scale associated with protonation is caused by a significant geometric change from square-antiprismatic (SA) arrangement observed for protonated complex SA-[Eu(Hdo3aNP)] - to twisted-square-antiprismatic (TSA) arrangement found for deprotonated complex TSA-[Eu(do3aNP)] 2- . This behavior results in simultaneous occurrence of the signals of both species in the 31 P NMR spectra at approximately -118 and +70 ppm, respectively. Such an unprecedented difference in the chemical shifts between species differing by a proton is caused by a significant movement of the principal magnetic axis and by a change of phosphorus atom position in the coordination sphere of the central Eu(III) ion (i.e., by relative movement of the phosphorus atom with respect to the principal magnetic axis). It changes the sign of the paramagnetic contribution to the 31 P NMR chemical shift. The properties discovered can be employed in the measurement of pH by MRS techniques as presented by proof-of-principle experiments on phantoms.

  8. MeRy-B: a web knowledgebase for the storage, visualization, analysis and annotation of plant NMR metabolomic profiles

    PubMed Central

    2011-01-01

    Background Improvements in the techniques for metabolomics analyses and growing interest in metabolomic approaches are resulting in the generation of increasing numbers of metabolomic profiles. Platforms are required for profile management, as a function of experimental design, and for metabolite identification, to facilitate the mining of the corresponding data. Various databases have been created, including organism-specific knowledgebases and analytical technique-specific spectral databases. However, there is currently no platform meeting the requirements for both profile management and metabolite identification for nuclear magnetic resonance (NMR) experiments. Description MeRy-B, the first platform for plant 1H-NMR metabolomic profiles, is designed (i) to provide a knowledgebase of curated plant profiles and metabolites obtained by NMR, together with the corresponding experimental and analytical metadata, (ii) for queries and visualization of the data, (iii) to discriminate between profiles with spectrum visualization tools and statistical analysis, (iv) to facilitate compound identification. It contains lists of plant metabolites and unknown compounds, with information about experimental conditions, the factors studied and metabolite concentrations for several plant species, compiled from more than one thousand annotated NMR profiles for various organs or tissues. Conclusion MeRy-B manages all the data generated by NMR-based plant metabolomics experiments, from description of the biological source to identification of the metabolites and determinations of their concentrations. It is the first database allowing the display and overlay of NMR metabolomic profiles selected through queries on data or metadata. MeRy-B is available from http://www.cbib.u-bordeaux2.fr/MERYB/index.php. PMID:21668943

  9. Synthesis of some 1,8-dioxoacridine carboxylic acid derivatives and the determination of their ionization constants in ethanol-water mixtures

    NASA Astrophysics Data System (ADS)

    Saygılı, Rukiye; Ulus, Ramazan; Yeşildağ, İbrahim; Kübra İnal, E.; Kaya, Muharrem; Murat Kalfa, O.; Zeybek, Bülent

    2015-03-01

    Four novel compounds of 1,8-dioxoacridine carboxylic acid derivatives (4-(3,3,6,6-tetramethyl-1,8-dioxo-9-phenyl-1,2,3,4,5,6,7,8-octahydroacridin-10(9H)-yl)benzoic acid, 4-(9-(4-cyanophenyl)-3,3,6,6-tetramethyl-1,8-dioxo-1,2,3,4,5,6,7,8-octahydroacridin-10(9H)-yl)benzoic acid, 4-(9-(4-hydroxyphenyl)-3,3,6,6-tetramethyl-1,8-dioxo-1,2,3,4,5,6,7,8-octahydroacridin-10(9H)-yl)benzoic acid, 4-(9-(2,4-dichlorophenyl)-3,3,6,6-tetramethyl-1,8-dioxo-1,2,3,4,5,6,7,8-octahydroacridin-10(9H)-yl)benzoic acid) were prepared by the reaction of the 4-substitute benzaldehyde (hydrogen, hydroxyl, cyano, and 2,4-dichloro), 4-aminobenzoic acid, and 5,5-dimethylcyclohexane-1,3-dione in the presence of p-dodecylbenzenesulfonic acid. They were characterized by using FT-IR, 1H-NMR, 13C-NMR, GC-MS spectroscopic techniques. The stoichiometric ionization constants of these compounds were determined in ethanol-water mixtures of 50%, 60% and 70% ethanol (v/v) by potentiometric titration method and the ionization constants were calculated with three different ways. The effects of solvent composition and substituent groups on ionization constants of 1,8-dioxoacridine carboxylic acids were also discussed.

  10. Synthesis of compounds related to the anti-migraine drug eletriptan hydrobromide.

    PubMed

    Madasu, Suri Babu; Vekariya, Nagaji Ambabhai; Kiran, M N V D Hari; Gupta, Badarinadh; Islam, Aminul; Douglas, Paul S; Babu, Korupolu Raghu

    2012-01-01

    Eletriptan hydrobromide (1) is a selective serotonin (5-HT(1)) agonist, used for the acute treatment of the headache phase of migraine attacks. During the manufacture of eletriptan hydrobromide the formation of various impurities were observed and identified by LC-MS. To control the formation of these impurities during the preparation of active pharmaceutical ingredients, the structure of the impurities must be known. Major impurities of the eletriptan hydrobromide synthesis were prepared and characterized by using various spectroscopic techniques, i.e., mass spectroscopy, FTIR , (1)H NMR, (13)C NMR/DEPT, and further confirmed by co-injection in HPLC. The present study will be of great help in the synthesis of highly pure eletriptan hydrobromide related compounds.

  11. Synthesis of compounds related to the anti-migraine drug eletriptan hydrobromide

    PubMed Central

    Madasu, Suri Babu; Kiran, M N V D Hari; Gupta, Badarinadh; Islam, Aminul; Douglas, Paul S; Babu, Korupolu Raghu

    2012-01-01

    Summary Eletriptan hydrobromide (1) is a selective serotonin (5-HT1) agonist, used for the acute treatment of the headache phase of migraine attacks. During the manufacture of eletriptan hydrobromide the formation of various impurities were observed and identified by LC–MS. To control the formation of these impurities during the preparation of active pharmaceutical ingredients, the structure of the impurities must be known. Major impurities of the eletriptan hydrobromide synthesis were prepared and characterized by using various spectroscopic techniques, i.e., mass spectroscopy, FTIR , 1H NMR, 13C NMR/DEPT, and further confirmed by co-injection in HPLC. The present study will be of great help in the synthesis of highly pure eletriptan hydrobromide related compounds. PMID:23019477

  12. Synthesis, spectral features and biological activity of some novel hetarylazo dyes derived from 6-amino-1,3-dimethyluracil

    NASA Astrophysics Data System (ADS)

    Yousefi, Hessamoddin; Yahyazadeh, Asieh; Yazdanbakhsh, Mohammad Reza; Rassa, Mehdi; Moradi-e-Rufchahi, Enayat O.'llah

    2012-05-01

    A series of hetarylazoaminouracil dyes were prepared by coupling of 6-amino-1,3-dimethyluracil with eight diazotized heterocyclic amines in nitrosyl sulphuric acid. The prepared azo dyes were characterized by UV-Vis, FT-IR, 13C NMR, 1H NMR spectroscopic techniques and elemental analysis. The solvatochromism of dyes was evaluated with respect to wavelength of maximum absorption (λmax) in seven solvents with different polarities: acetic acid, methanol, water, chloroform, acetonitrile, dimethyl sulfoxide and dimethyl formamide. The effects of acid, base and concentration of the dye on the visible absorption spectra were also reported. In addition, the antimicrobial activity of the synthesized dyes was evaluated on Escherichia coli, Bacillus subtilis, Micrococcus leuteus and Pseudomonas aeruginosa.

  13. 1H NMR Metabolic Fingerprinting to Probe Temporal Postharvest Changes on Qualitative Attributes and Phytochemical Profile of Sweet Cherry Fruit

    PubMed Central

    Goulas, Vlasios; Minas, Ioannis S.; Kourdoulas, Panayiotis M.; Lazaridou, Athina; Molassiotis, Athanassios N.; Gerothanassis, Ioannis P.; Manganaris, George A.

    2015-01-01

    Sweet cherry fruits (Prunus avium cvs. ‘Canada Giant’, ‘Ferrovia’) were harvested at commercial maturity stage and analyzed at harvest and after maintenance at room temperature (storage at ∼20°C, shelf life) for 1, 2, 4, 6, and 8 days, respectively. Fruit were initially analyzed for respiration rate, qualitative attributes and textural properties: ‘Canada Giant’ fruit were characterized by higher weight losses and stem browning index, being more intense over the late stages of shelf life period; meanwhile ‘Ferrovia’ possessed appreciably better performance even after extended shelf life period. A gradual decrease of respiration rate was monitored in both cultivars, culminated after 8 days at 20°C. The sweet cherry fruit nutraceutical profile was monitored using an array of instrumental techniques (spectrophotometric assays, HPLC, 1H-NMR). Fruit antioxidant capacity was enhanced with the progress of shelf life period, concomitant with the increased levels of total anthocyanin and of phenolic compounds. ‘Ferrovia’ fruit presented higher contents of neochlorogenic acid and p-coumaroylquinic acid throughout the shelf life period. We further developed an 1H-NMR method that allows the study of primary and secondary metabolites in a single running, without previous separation and isolation procedures. Diagnostic peaks were located in the aliphatic region for sugars and organic acids, in the aromatic region for phenolic compounds and at 8.2–8.6 ppm for anthocyanins. This NMR-based methodology provides a unifying tool for quantitative and qualitative characterization of metabolite changes of sweet cherry fruits; it is also expected to be further exploited for monitoring temporal changes in other fleshy fruits. PMID:26617616

  14. Characterization of Whole Porewater Dissolved Organic Matter by 1H NMR

    NASA Astrophysics Data System (ADS)

    Fox, C.; Lewicki, J. P.; Abdulla, H. A.; Burdige, D.; Magen, C.; Chanton, J.; Komada, T.

    2014-12-01

    Dissolved organic matter (DOM) is a key intermediate in microbial remineralization of organic matter, but only a small percentage of this complex pool has been fully characterized. We present the results of a novel approach to the characterization of DOM in whole porewater samples from the anoxic sediments of the Santa Barbara Basin, California Borderland, using solution state nuclear magnetic resonance (NMR) techniques. Profiles of porewater DOM were obtained by 1H NMR from 95 to 435 cm sediment depth. 1H NMR spectra of each whole porewater sample showed continuous, broad regions from ~0.5 to ~4.5 ppm, indicative of significant signal overlap inherent to complex mixtures, superimposed on a few highly resolved peaks. The individual samples consist of a broad range of chemical environments with varying relative abundances that show a near linear trend with depth. The normalized spectral data were analyzed by principal component analysis to resolve variations in chemical composition of DOM as a function of depth. In addition to detecting the major components such as carbohydrates, cyclic aliphatics and aromatics, our results demonstrate a negative correlation between carbohydrates concurrent with a relative increase in levels of aliphatics. Furthermore, we have identified a decrease in the abundance of alkenes coupled with an increase in a broad region from ~1.9 to ~3.2 ppm, likely corresponding to signals from carboxylic-rich alicyclic molecules. In both trends, the greatest variation occurs between 115 and 135 cm, which straddles the sulfate-methane transition zone (~125 cm), potentially highlighting a region of relatively high DOM transformation. Our work has also identified thiol species which are thought to be formed by dissolved (inorganic) sulfide incorporation into porewater DOM compounds. The implications of these results with respect to carbon cycling in anaerobic sediments will be discussed.

  15. (1)H NMR Metabolic Fingerprinting to Probe Temporal Postharvest Changes on Qualitative Attributes and Phytochemical Profile of Sweet Cherry Fruit.

    PubMed

    Goulas, Vlasios; Minas, Ioannis S; Kourdoulas, Panayiotis M; Lazaridou, Athina; Molassiotis, Athanassios N; Gerothanassis, Ioannis P; Manganaris, George A

    2015-01-01

    Sweet cherry fruits (Prunus avium cvs. 'Canada Giant', 'Ferrovia') were harvested at commercial maturity stage and analyzed at harvest and after maintenance at room temperature (storage at ∼20°C, shelf life) for 1, 2, 4, 6, and 8 days, respectively. Fruit were initially analyzed for respiration rate, qualitative attributes and textural properties: 'Canada Giant' fruit were characterized by higher weight losses and stem browning index, being more intense over the late stages of shelf life period; meanwhile 'Ferrovia' possessed appreciably better performance even after extended shelf life period. A gradual decrease of respiration rate was monitored in both cultivars, culminated after 8 days at 20°C. The sweet cherry fruit nutraceutical profile was monitored using an array of instrumental techniques (spectrophotometric assays, HPLC, (1)H-NMR). Fruit antioxidant capacity was enhanced with the progress of shelf life period, concomitant with the increased levels of total anthocyanin and of phenolic compounds. 'Ferrovia' fruit presented higher contents of neochlorogenic acid and p-coumaroylquinic acid throughout the shelf life period. We further developed an (1)H-NMR method that allows the study of primary and secondary metabolites in a single running, without previous separation and isolation procedures. Diagnostic peaks were located in the aliphatic region for sugars and organic acids, in the aromatic region for phenolic compounds and at 8.2-8.6 ppm for anthocyanins. This NMR-based methodology provides a unifying tool for quantitative and qualitative characterization of metabolite changes of sweet cherry fruits; it is also expected to be further exploited for monitoring temporal changes in other fleshy fruits.

  16. Unambiguous Metabolite Identification in High-Throughput Metabolomics by Hybrid 1H-NMR/ESI-MS1 Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The invention improves accuracy of metabolite identification by combining direct infusion ESI-MS with one-dimensional 1H-NMR spectroscopy. First, we apply a standard 1H-NMR metabolite identification protocol by matching the chemical shift, J-coupling and intensity information of experimental NMR signals against the NMR signals of standard metabolites in a metabolomics reference libraries. This generates a list of candidate metabolites. The list contains both false positive and ambiguous identifications. The software tool (the invention) takes the list of candidate metabolites, generated from NMRbased metabolite identification, and then calculates, for each of the candidate metabolites, the monoisotopic mass-tocharge (m/z) ratios for each commonly observedmore » ion, fragment and adduct feature. These are then used to assign m/z ratios in experimental ESI-MS spectra of the same sample. Detection of the signals of a given metabolite in both NMR and MS spectra resolves the ambiguities, and therefore, significantly improves the confidence of the identification.« less

  17. In vitro antifungal activity of coumarin extracted from Loeselia mexicana Brand.

    PubMed

    Navarro-García, Victor M; Rojas, Gabriela; Avilés, Margarita; Fuentes, Macrina; Zepeda, Gerardo

    2011-09-01

    The bis-coumarin daphnoretin and its monomeric precursors scopoletin and umbelliferone were isolated for the first time from the aerial part of Loeselia mexicana Brand (a vegetal species used in Mexican traditional medicine) using chromatographic techniques. The structures of these compounds were determined by (1) H and (13) C NMR analyses. These coumarins were evaluated for in vitro antifungal activity. The three compounds tested showed significant antifungal activity. © 2011 Blackwell Verlag GmbH.

  18. Efficient design of multituned transmission line NMR probes: the electrical engineering approach.

    PubMed

    Frydel, J A; Krzystyniak, M; Pienkowski, D; Pietrzak, M; de Sousa Amadeu, N; Ratajczyk, T; Idzik, K; Gutmann, T; Tietze, D; Voigt, S; Fenn, A; Limbach, H H; Buntkowsky, G

    2011-01-01

    Transmission line-based multi-channel solid state NMR probes have many advantages regarding the cost of construction, number of RF-channels, and achievable RF-power levels. Nevertheless, these probes are only rarely employed in solid state-NMR-labs, mainly owing to the difficult experimental determination of the necessary RF-parameters. Here, the efficient design of multi-channel solid state MAS-NMR probes employing transmission line theory and modern techniques of electrical engineering is presented. As technical realization a five-channel ((1)H, (31)P, (13)C, (2)H and (15)N) probe for operation at 7 Tesla is described. This very cost efficient design goal is a multi port single coil transmission line probe based on the design developed by Schaefer and McKay. The electrical performance of the probe is determined by measuring of Scattering matrix parameters (S-parameters) in particular input/output ports. These parameters are compared to the calculated parameters of the design employing the S-matrix formalism. It is shown that the S-matrix formalism provides an excellent tool for examination of transmission line probes and thus the tool for a rational design of these probes. On the other hand, the resulting design provides excellent electrical performance. From a point of view of Nuclear Magnetic Resonance (NMR), calibration spectra of particular ports (channels) are of great importance. The estimation of the π/2 pulses length for all five NMR channels is presented. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Heparin sodium compliance to USP monograph: structural elucidation of an atypical 2.18 ppm NMR signal.

    PubMed

    Mourier, Pierre A J; Guichard, Olivier Y; Herman, Fréderic; Viskov, Christian

    2012-01-01

    The ¹H nuclear magnetic resonance (NMR) acceptance criteria in the new heparin US Pharmacopeia (USP) monograph do not take into account potential structural modifications responsible for any extra signals observed in ¹H NMR spectra, some purified heparins may be non-compliant under the proposed new USP guidelines and incorrectly classified as unsuitable for pharmaceutical use. Heparins from the "ES" source, containing an extra signal at 2.18 ppm, were depolymerized under controlled conditions using heparinases I, II, and III. The oligosaccharides responsible for the 2.18 ppm signal were enriched using orthogonal chromatographic techniques. After multiple purification steps, we obtained an oligosaccharide mixture containing a highly enriched octasaccharide bearing the structural modification responsible for the extra signal. Following heparinase I depolymerization, a pure tetrasaccharide containing the fingerprint structural modification was isolated for full structural determination. Using 1D and 2D ¹H NMR spectroscopy, the structural moiety responsible for the extra signal at 2.18 ppm was identified as an acetyl group on the heparin backbone, most likely resulting from a very minor manufacturing process side reaction that esterifies the uronic acid at position 3. Such analytical peculiarity has always been present in this heparin source and it was used safety over the years. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Group type analysis of asphalt by column liquid chromatography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, C.; Yang, J.; Xue, Y.

    2008-07-01

    An improved analysis method for characterization of asphalt was established. The method is based on column chromatography technique. The asphalts were separated into four groups: saturates, aromatics, resins, and asphaltenes, quantitatively. About 0.1 g of sample was required in each analysis. About 20 mL of n-heptanes was used to separate out saturates first. Then about 35 mL of n-heptanes/dichloromethane (.5, v/v) mixture was used to separate out aromatics. About 30 mL of dichloromethane/tetrahydrofuran (1/3, v/v) mixture was used to separate out resin. The quality of the separation was confirmed by infrared spectra (IR) and {sup 1}H NMR analysis. The modelmore » compounds, tetracosan for saturates, dibenz(o)anthracen for aromatics, and acetanilide for resins were used for verification. The IR and {sup 1}H NMR analysis of the prepared fractions from the column liquid chromatography were in good agreement that of pure reagents.« less

  1. IR, 1H NMR, mass, XRD and TGA/DTA investigations on the ciprofloxacin/iodine charge-transfer complex.

    PubMed

    Refat, Moamen S; El-Hawary, W F; Moussa, Mohamed A A

    2011-05-01

    The charge-transfer complex (CTC) of ciprofloxacin drug (CIP) as a donor with iodine (I(2)) as a sigma acceptor has been studied spectrophotometrically in CHCl(3). At maximum absorption bands, the stoichiometry of CIP:iodine system was found to be 1:1 ratio according to molar ratio method. The essential spectroscopic data like formation constant (K(CT)), molar extinction coefficient (ɛ(CT)), standard free energy (ΔG°), oscillator strength (f), transition dipole moment (μ), resonance energy (R(N)) and ionization potential (I(D)) were estimated. The spectroscopic techniques such as IR, (1)H NMR, mass and UV-vis spectra and elemental analyses (CHN) as well as TG-DTG and DTA investigations were used to characterize the chelating behavior of CIP/iodine charge-transfer complex. The iodine CT interaction was associated with a presence of intermolecular hydrogen bond. The X-ray investigation was carried out to investigate the iodine doping in the synthetic CT complex. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. In vitro quantitative ((1))H and ((19))F nuclear magnetic resonance spectroscopy and imaging studies of fluvastatin™ in Lescol® XL tablets in a USP-IV dissolution cell.

    PubMed

    Zhang, Qilei; Gladden, Lynn; Avalle, Paolo; Mantle, Michael

    2011-12-20

    Swellable polymeric matrices are key systems in the controlled drug release area. Currently, the vast majority of research is still focused on polymer swelling dynamics. This study represents the first quantitative multi-nuclear (((1))H and ((19))F) fast magnetic resonance imaging study of the complete dissolution process of a commercial (Lescol® XL) tablet, whose formulation is based on the hydroxypropyl methylcellulose (HPMC) polymer under in vitro conditions in a standard USP-IV (United States Pharmacopeia apparatus IV) flow-through cell that is incorporated into high field superconducting magnetic resonance spectrometer. Quantitative RARE ((1))H magnetic resonance imaging (MRI) and ((19))F nuclear magnetic resonance (NMR) spectroscopy and imaging methods have been used to give information on: (i) dissolution media uptake and hydrodynamics; (ii) active pharmaceutical ingredient (API) mobilisation and dissolution; (iii) matrix swelling and dissolution and (iv) media activity within the swelling matrix. In order to better reflect the in vivo conditions, the bio-relevant media Simulated Gastric Fluid (SGF) and Fasted State Simulated Intestinal Fluid (FaSSIF) were used. A newly developed quantitative ultra-fast MRI technique was applied and the results clearly show the transport dynamics of media penetration and hydrodynamics along with the polymer swelling processes. The drug dissolution and mobility inside the gel matrix was characterised, in parallel to the ((1))H measurements, by ((19))F NMR spectroscopy and MRI, and the drug release profile in the bulk solution was recorded offline by UV spectrometer. We found that NMR spectroscopy and 1D-MRI can be uniquely used to monitor the drug dissolution/mobilisation process within the gel layer, and the results from ((19))F NMR spectra indicate that in the gel layer, the physical mobility of the drug changes from "dissolved immobilised drug" to "dissolved mobilised drug". Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Studies of Secondary Melanoma on C57BL/6J Mouse Liver Using 1H NMR Metabolomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Ju; Isern, Nancy G.; Burton, Sarah D.

    2013-10-31

    NMR metabolomics, consisting of solid state high resolution (hr) magic angle spinning (MAS) 1H NMR (1H hr-MAS), liquid state high resolution 1H-NMR, and principal components analysis (PCA) has been used to study secondary metastatic B16-F10 melanoma in C57BL/6J mouse liver . The melanoma group can be differentiated from its control group by PCA analysis of the absolute concentrations or by the absolute peak intensities of metabolites from either 1H hr-MAS NMR data on intact liver tissues or liquid state 1H-NMR spectra on liver tissue extracts. In particular, we found that the absolute concentrations of alanine, glutamate, creatine, creatinine, fumarate andmore » cholesterol are elevated in the melanoma group as compared to controls, while the absolute concentrations of succinate, glycine, glucose, and the family of linear lipids including long chain fatty acids, total choline and acylglycerol are decreased. The ratio of glycerophosphocholine to phosphocholine is increased by about 1.5 fold in the melanoma group, while the absolute concentration of total choline is actually lower in melanoma mice. These results suggest the following picture in secondary melanoma metastasis: Linear lipid levels are decreased by beta oxidation in the melanoma group, which contributes to an increase in the synthesis of cholesterol, and also provides an energy source input for TCA cycle. These findings suggest a link between lipid oxidation, the TCA cycle and the hypoxia-inducible factors (HIF) signal pathway in tumor metastases. Thus this study indicates that the metabolic profile derived from NMR analysis can provide a valuable bio-signature of malignancy and cell hypoxia in metastatic melanoma.« less

  4. Investigation of structure, vibrational and NMR spectra of oxycodone and naltrexone: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Tavakol, Hossein; Esfandyari, Maryam; Taheri, Salman; Heydari, Akbar

    2011-08-01

    In this work, two important opioid antagonists, naltrexone and oxycodone, were prepared from thebaine and were characterized by IR, 1H NMR and 13C NMR spectroscopy. Moreover, computational NMR and IR parameters were obtained using density functional theory (DFT) at B3LYP/6-311++G** level of theory. Complete NMR and vibrational assignment were carried out using the observed and calculated spectra. The IR frequencies and NMR chemical shifts, determined experimentally, were compared with those obtained theoretically from DFT calculations, showed good agreements. The RMS errors observed between experimental and calculated data for the IR absorptions are 85 and 105 cm -1, for the 1H NMR peaks are 0.87 and 0.17 ppm and for those of 13C NMR are 5.6 and 5.3 ppm, respectively for naltrexone and oxycodone.

  5. Review of NMR studies of nanoscale molecular magnets composed of geometrically frustrated antiferromagnetic triangles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furukawa, Yuji

    This paper presents a comprehensive review of nuclear magnetic resonance (NMR) studies performed on three nanoscale molecular magnets with different novel configurations of geometrically frustrated antiferromagnetic (AFM) triangles: (1) the isolated single AFM triangle K 6[V 15As 6O 42(H 2O)]·8H 2O (in short V15), (2) the spin ball [Mo 72Fe 30O 252(Mo 2O 7(H 2O)) 2(Mo 2O 8H 2(H 2O)) (CH 3COO) 12(H 2O) 91]·150H 2O (in short Fe30 spin ball), and (3) the twisted triangular spin tube [(CuCl 2tachH) 3Cl]Cl 2 (in short Cu3 spin tube). In V15t, from 51V NMR spectra, the local spin configurations were directly determinedmore » in both the nonfrustrated total spin S T = 3/2 state at higher magnetic fields (H ge; 2.7 T) and the two nearly degenerate S T = 1/2 ground states at lower magnetic fields (H ≤ 2.7 T). The dynamical magnetic properties of V15 were investigated by proton spin-lattice relaxation rate (1/T 1) measurements. In the S T = 3/2 state, 1/T 1 shows thermally activated behaviour as a function of temperature. On the other hand, the temperature independent behaviour of 1/T 1 at very low temperatures is observed in the frustrated S T = 1/2 ground state. Possible origins for the peculiar behaviour of 1/T 1 will be discussed in terms of magnetic fluctuations due to spin frustrations. In Fe30, static and dynamical properties of Fe 3+ (s = 5/2) have been investigated by proton NMR spectra and 1/T 1 measurements. From the temperature dependence of 1/T 1, the fluctuation frequency of the Fe 3+ spins is found to decrease with decreasing temperature, indicating spin freezing at low temperatures. The spin freezing is also evidenced by the observation of a sudden broadening of 1H NMR spectra below 0.6 K. Finally, 1H NMR data in Cu3 will be described. An observation of magnetic broadening of 1H NMR spectra at low temperatures below 1 K directly revealed a gapless ground state. The 1/T 1 measurements revealed a usual slow spin dynamics in the Cu3 spin tube.« less

  6. Review of NMR studies of nanoscale molecular magnets composed of geometrically frustrated antiferromagnetic triangles

    DOE PAGES

    Furukawa, Yuji

    2016-10-01

    This paper presents a comprehensive review of nuclear magnetic resonance (NMR) studies performed on three nanoscale molecular magnets with different novel configurations of geometrically frustrated antiferromagnetic (AFM) triangles: (1) the isolated single AFM triangle K 6[V 15As 6O 42(H 2O)]·8H 2O (in short V15), (2) the spin ball [Mo 72Fe 30O 252(Mo 2O 7(H 2O)) 2(Mo 2O 8H 2(H 2O)) (CH 3COO) 12(H 2O) 91]·150H 2O (in short Fe30 spin ball), and (3) the twisted triangular spin tube [(CuCl 2tachH) 3Cl]Cl 2 (in short Cu3 spin tube). In V15t, from 51V NMR spectra, the local spin configurations were directly determinedmore » in both the nonfrustrated total spin S T = 3/2 state at higher magnetic fields (H ge; 2.7 T) and the two nearly degenerate S T = 1/2 ground states at lower magnetic fields (H ≤ 2.7 T). The dynamical magnetic properties of V15 were investigated by proton spin-lattice relaxation rate (1/T 1) measurements. In the S T = 3/2 state, 1/T 1 shows thermally activated behaviour as a function of temperature. On the other hand, the temperature independent behaviour of 1/T 1 at very low temperatures is observed in the frustrated S T = 1/2 ground state. Possible origins for the peculiar behaviour of 1/T 1 will be discussed in terms of magnetic fluctuations due to spin frustrations. In Fe30, static and dynamical properties of Fe 3+ (s = 5/2) have been investigated by proton NMR spectra and 1/T 1 measurements. From the temperature dependence of 1/T 1, the fluctuation frequency of the Fe 3+ spins is found to decrease with decreasing temperature, indicating spin freezing at low temperatures. The spin freezing is also evidenced by the observation of a sudden broadening of 1H NMR spectra below 0.6 K. Finally, 1H NMR data in Cu3 will be described. An observation of magnetic broadening of 1H NMR spectra at low temperatures below 1 K directly revealed a gapless ground state. The 1/T 1 measurements revealed a usual slow spin dynamics in the Cu3 spin tube.« less

  7. Self-assembly of Metallamacrocycles Employing a New Benzil-based Organometallic Bisplatinum(II) Acceptor.

    PubMed

    Roy, Bijan; Shanmugaraju, Sankarasekaran; Saha, Rupak; Mukherjee, Partha Sarathi

    2015-01-01

    A benzil-based semi-rigid dinuclear-organometallic acceptor 4,4'-bis[trans-Pt(PEt(3))(2)(NO(3))(ethynyl)]benzil (bisPt-NO(3)) containing a Pt-ethynyl functionality was synthesized in good yield and characterized by multinuclear NMR ((1)H, (31)P, and (13)C), electrospray ionization mass spectrometry (ESI-MS), and single-crystal X-ray diffraction analysis of the iodide analogue bisPt-I. The stoichiometric (1:1) combination of the acceptor bisPt-NO(3) separately with four different ditopic donors (L(1)-L(4); L(1) = 9-ethyl-3,6-di(1H-imidazol-1-yl)-9H-carbazole, L(2) = 1,4-bis((1H-imidazol-1-yl)methyl)benzene, L(3) = 1,3-bis((1H-imidazol-1-yl)methyl)benzene and L(4) = 9,10-bis((1H-imidazol-1-yl) methyl)anthracene) yielded four [2 + 2] self-assembled metallacycles M(1)-M(4) in quantitative yields, respectively. All these newly synthesized assemblies were characterized by various spectroscopic techniques (NMR, IR, ESI-MS) and their sizes/shapes were predicted through geometry optimization employing the PM6 semi-empirical method. The benzil moiety was introduced in the backbone of the acceptor bisPt-NO(3) due to the interesting structural feature of long carbonyl C-C bond (∼1.54 Å), which enabled us to probe the role of conformational flexibility on size and shapes of the resulting coordination ensembles.

  8. Position-Specific Hydrogen and Carbon Isotope Fractionations of Light Hydrocarbons by Quantitative NMR

    NASA Astrophysics Data System (ADS)

    Liu, C.; Mcgovern, G. P.; Horita, J.

    2015-12-01

    Traditional isotope ratio mass spectrometry methods to measure 2H/1H and 13C/12C ratios of organic molecules only provide average isotopic values of whole molecules. During the measurement process, valuable information of position-specific isotope fractionations (PSIF) between non-equivalent H and C positions is lost, which can provide additional very useful information about the origins and history of organic molecules. Quantitative nuclear magnetic resonance (NMR) spectrometry can measure 2H and 13C PSIF of organic molecules without destruction. The 2H and 13C signals from different positions of a given molecule show up as distinctive peaks in an NMR spectrum, and their peak areas are proportional to the 2H and 13C populations at each position. Moreover, quantitative NMR can be applied to a wide variety of organic molecules. We have been developing quantitative NMR methods to determine 2H and 13C PSIF of light hydrocarbons (propane, butane and pentane), using J-Young and custom-made high-pressure NMR cells. With careful conditioning of the NMR spectrometer (e.g. tuning, shimming) and effective 1H -13C decoupling, precision of ± <10‰ (2H) and ± <1‰ (13C) can be readily attainable after several hours of acquisition. Measurement time depends on the relaxation time of interested nucleus and the total number of scans needed for high signal-to-noise ratios. Our data for commercial, pure hydrocarbon samples showed that 2H PSIF in the hydrocarbons can be larger than 60‰ and that 13C PSIF can be as large as 15‰. Comparison with theoretical calculations indicates that the PSIF patterns of some hydrocarbon samples reflect non-equilibrium processes in their productions.

  9. 1H and 13C NMR spectra of C-6 and C-9 substituted 3-azabicyclco[3.3.1]nonanes.

    PubMed

    Goodall, Kirsten; Brimble, Margaret; Barker, David

    2008-01-01

    The 1H and 13C NMR data for 3-azabicyclo[3.3.1]nonanes with OH and OMe substituents at C-6 and C-9 were measured using 1D (DEPT) and 2D (COSY, HSQC, HMBC, NOESY) experiments. Comparison of this NMR data illustrates the effects of stereochemistry and substitution at these positions. Copyright (c) 2007 John Wiley & Sons, Ltd.

  10. NMR spin-rotation relaxation and diffusion of methane

    NASA Astrophysics Data System (ADS)

    Singer, P. M.; Asthagiri, D.; Chapman, W. G.; Hirasaki, G. J.

    2018-05-01

    The translational diffusion-coefficient and the spin-rotation contribution to the 1H NMR relaxation rate for methane (CH4) are investigated using MD (molecular dynamics) simulations, over a wide range of densities and temperatures, spanning the liquid, supercritical, and gas phases. The simulated diffusion-coefficients agree well with measurements, without any adjustable parameters in the interpretation of the simulations. A minimization technique is developed to compute the angular velocity for non-rigid spherical molecules, which is used to simulate the autocorrelation function for spin-rotation interactions. With increasing diffusivity, the autocorrelation function shows increasing deviations from the single-exponential decay predicted by the Langevin theory for rigid spheres, and the deviations are quantified using inverse Laplace transforms. The 1H spin-rotation relaxation rate derived from the autocorrelation function using the "kinetic model" agrees well with measurements in the supercritical/gas phase, while the relaxation rate derived using the "diffusion model" agrees well with measurements in the liquid phase. 1H spin-rotation relaxation is shown to dominate over the MD-simulated 1H-1H dipole-dipole relaxation at high diffusivity, while the opposite is found at low diffusivity. At high diffusivity, the simulated spin-rotation correlation time agrees with the kinetic collision time for gases, which is used to derive a new expression for 1H spin-rotation relaxation, without any adjustable parameters.

  11. Characterization of Pharmaceutical Cocrystals and Salts by Dynamic Nuclear Polarization-Enhanced Solid-State NMR Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Li; Hanrahan, Michael P.; Chakravarty, Paroma

    Multicomponent solids such as cocrystals have emerged as a way to control and engineer the stability, solubility and manufacturability of solid active pharmaceutical ingredients (APIs). Cocrystals are typically formed by solution- or solid-phase reactions of APIs with suitable cocrystal coformers, which are often weak acids. One key structural question about a given multicomponent solid is whether it should be classified as a salt, where the basic API is protonated by the acid, or as a cocrystal, where the API and coformer remain neutral and engage in hydrogen bonding interactions. It has previously been demonstrated that solid-state NMR spectroscopy is amore » powerful probe of structure in cocrystals and salts of APIs, however, the poor sensitivity of solid-state NMR spectroscopy usually restricts the types of experiments that can be performed. Here relayed dynamic nuclear polarization (DNP) was applied to reduce solid-state NMR experiments by one to two orders of magnitude for salts and cocrystals of a complex API. The large sensitivity gains from DNP facilitates rapid acquisition of natural isotopic abundance 13C and 15N solid-state NMR spectra. Critically, DNP enables double resonance 1H-15N solid-state NMR experiments such as 2D 1H-15N HETCOR, 1H-15N CP-build up, 15N{1H} J-resolved/attached proton tests, 1H-15N DIPSHIFT and 1H-15N PRESTO. The latter two experiments allow 1H-15N dipolar coupling constants and H-N bond lengths to be accurately measured, providing an unambiguous assignment of nitrogen protonation state and definitive classification of the multi-component solids as cocrystals or salts. In conclusion, these types of measurements should also be extremely useful in the context of polymorph discrimination, NMR crystallography structure determination and for probing hydrogen bonding in a variety of organic materials.« less

  12. Characterization of Pharmaceutical Cocrystals and Salts by Dynamic Nuclear Polarization-Enhanced Solid-State NMR Spectroscopy

    DOE PAGES

    Zhao, Li; Hanrahan, Michael P.; Chakravarty, Paroma; ...

    2018-02-15

    Multicomponent solids such as cocrystals have emerged as a way to control and engineer the stability, solubility and manufacturability of solid active pharmaceutical ingredients (APIs). Cocrystals are typically formed by solution- or solid-phase reactions of APIs with suitable cocrystal coformers, which are often weak acids. One key structural question about a given multicomponent solid is whether it should be classified as a salt, where the basic API is protonated by the acid, or as a cocrystal, where the API and coformer remain neutral and engage in hydrogen bonding interactions. It has previously been demonstrated that solid-state NMR spectroscopy is amore » powerful probe of structure in cocrystals and salts of APIs, however, the poor sensitivity of solid-state NMR spectroscopy usually restricts the types of experiments that can be performed. Here relayed dynamic nuclear polarization (DNP) was applied to reduce solid-state NMR experiments by one to two orders of magnitude for salts and cocrystals of a complex API. The large sensitivity gains from DNP facilitates rapid acquisition of natural isotopic abundance 13C and 15N solid-state NMR spectra. Critically, DNP enables double resonance 1H-15N solid-state NMR experiments such as 2D 1H-15N HETCOR, 1H-15N CP-build up, 15N{1H} J-resolved/attached proton tests, 1H-15N DIPSHIFT and 1H-15N PRESTO. The latter two experiments allow 1H-15N dipolar coupling constants and H-N bond lengths to be accurately measured, providing an unambiguous assignment of nitrogen protonation state and definitive classification of the multi-component solids as cocrystals or salts. In conclusion, these types of measurements should also be extremely useful in the context of polymorph discrimination, NMR crystallography structure determination and for probing hydrogen bonding in a variety of organic materials.« less

  13. Chemical modifications of liquid natural rubber

    NASA Astrophysics Data System (ADS)

    Azhar, Nur Hanis Adila; Rasid, Hamizah Md; Yusoff, Siti Fairus M.

    2016-11-01

    Liquid natural rubber (LNR) was synthesized via photosentisized degradation of natural rubber (NR). LNR was modified into epoxidized liquid natural rubber (LENR) and hydroxylated liquid natural rubber (LNR-OH) using Na2WO4/CH3COOH/H2O2 catalytic system. Chemical structures of LNR and modified LNRs were characterized using Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) and 1H Nuclear Magnetic Resonance (NMR) spectroscopies. Integration of 1H NMR was used to calculate the epoxy content (%) of LENR. 1H NMR detected the formation of LNR-OH after prolonged heating and increased of catalyst in oxidation reaction.

  14. Morphology of Thermally Degraded PU and Irradiated PE

    NASA Astrophysics Data System (ADS)

    Harris, Douglas; Gillen, Kenneth; Celina, Mathias; Assink, Roger

    2001-03-01

    Several 1H and 13C NMR techniques have been applied to study the morphology and chemical structure of thermally degraded polyurethane rubber and irradiated polyethylene cable insulation. The combination of heat and presence of air results in oxidation of the hydroxyl-terminated polybutadiene/isophorone diisocyanate polyurethane and the gel content increases. The oxidation is inhomogeneous: pristine regions remain with a length scale of approximately 20 nm. The morphology and oxidation products were characterized by 1H spin diffusion with 13C detection. In addition, dynamics were probed with 1H and 2D WISE experiments. Radiation of cross-linked polyethylene cable insulation obeys anomalous aging behavior where lower temperature can result in a greater loss in ultimate tensile elongation. Annealing of the irradiated polyethylene allows significant recovery of mechanical properties. Analysis of 13C NMR data was used to study this "Lazarus effect" and the inverse temperature relationship. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL8500.

  15. Study on the interaction of triadimenol with calf thymus DNA by multispectroscopic methods and molecular modeling

    NASA Astrophysics Data System (ADS)

    Zhang, Yepeng; Zhang, Guowen; Fu, Peng; Ma, Yadi; Zhou, Jia

    2012-10-01

    The binding mechanism of triadimenol (NOL) to calf thymus DNA (ctDNA) in physiological buffer (pH 7.4) was investigated by multispectroscopic methods including UV-vis absorption, fluorescence, circular dichroism (CD), Fourier transform infrared (FT-IR), and nuclear magnetic resonance (1H NMR) spectroscopy, coupled with viscosity measurements and atomic force microscopy (AFM) technique. The results suggested that NOL interacted with ctDNA by intercalation mode. CD and AFM assays showed that NOL can damage the base stacking of ctDNA and result in regional cleavage of the two DNA strands. FT-IR and 1H NMR spectra coupled with molecular docking revealed that a specific binding mainly exists between NOL and G-C base pairs of the ctDNA where two hydrogen bonds form. Moreover, the association constants of NOL with DNA at three different temperatures were determined to be in the 103 L mol-1 range. The calculated thermodynamic parameters suggested that the binding of NOL to ctDNA was driven mainly by hydrogen bond and van der Waals.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Driscoll, P.C.; Clore, G.M.; Beress, L.

    The sequential resonance assignment of the {sup 1}H NMR spectrum of the antihypertensive and antiviral protein BDS-I from the sea anemone Anemonia sulcata is presented. This is carried out with two-dimensional NMR techniques to identify through-bond and through-space (< 5{angstrom}) connectivities. Added spectral complexity arises from the fact that the sample is an approximately 1:1 mixture of two BDS-I isoproteins, (Leu-18)-BDS-I and (Phe-18)-BDS-I. Complete assignments, however, are obtained, largely due to the increased resolution and sensitivity afforded at 600 MHz. In addition, the stereospecific assignment of a large number of {beta}-methylene protons is achieved from an analysis of the patternmore » of {sup 3}J{sub {alpha}{beta}} coupling constants and the relative magnitudes of intraresidue NOEs involving the NH, C{sup {alpha}}H, and C{sup {beta}}H protons. Regular secondary structure elements are deduced from a qualitative interpretation of the nuclear Overhauser enhancement, {sup 3}J{sub HN{alpha}} coupling constant, and amide NH exchange data. A triple-stranded antiparallel {beta}-sheet is found to be related to that found in partially homologous sea anemone polypeptide toxins.« less

  17. High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance of Intact Zebrafish Embryos Detects Metabolic Changes Following Exposure to Teratogenic Polymethoxyalkenes from Algae

    PubMed Central

    Roy, Upasana; Jaja-Chimedza, Asha; Sanchez, Kristel; Matysik, Joerg

    2016-01-01

    Abstract Techniques based on nuclear magnetic resonance (NMR) for imaging and chemical analyses of in vivo, or otherwise intact, biological systems are rapidly emerging and finding diverse applications within a wide range of fields. Very recently, several NMR-based techniques have been developed for the zebrafish as a model animal system. In the current study, the novel application of high-resolution magic angle spinning (HR-MAS) NMR is presented as a means of metabolic profiling of intact zebrafish embryos. Toward investigating the utility of HR-MAS NMR as a toxicological tool, these studies specifically examined metabolic changes of embryos exposed to polymethoxy-1-alkenes (PMAs)—a recently identified family of teratogenic compounds from freshwater algae—as emerging environmental contaminants. One-dimensional and two-dimensional HR-MAS NMR analyses were able to effectively identify and quantify diverse metabolites in early-stage (≤36 h postfertilization) embryos. Subsequent comparison of the metabolic profiles between PMA-exposed and control embryos identified several statistically significant metabolic changes associated with subacute exposure to the teratogen, including (1) elevated inositol as a recognized component of signaling pathways involved in embryo development; (2) increases in several metabolites, including inositol, phosphoryl choline, fatty acids, and cholesterol, which are associated with lipid composition of cell membranes; (3) concomitant increase in glucose and decrease in lactate; and (4) decreases in several biochemically related metabolites associated with central nervous system development and function, including γ-aminobutyric acid, glycine, glutamate, and glutamine. A potentially unifying model/hypothesis of PMA teratogenicity based on the data is presented. These findings, taken together, demonstrate that HR-MAS NMR is a promising tool for metabolic profiling in the zebrafish embryo, including toxicological applications. PMID:27348393

  18. Backbone dynamics of a model membrane protein: measurement of individual amide hydrogen-exchange rates in detergent-solubilized M13 coat protein using /sup 13/C NMR hydrogen/deuterium isotope shifts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, G.D.; Weiner, J.H.; Sykes, B.D.

    Hydrogen-exchange rates have been measured for individual assigned amide protons in M13 coat protein, a 50-residue integral membrane protein, using a /sup 13/C nuclear magnetic resonance (NMR) equilibrium isotope shift technique. The locations of the more rapidly exchanging amides have been determined. In D/sub 2/O solutions, a peptide carbonyl resonance undergoes a small upfield isotope shift (0.08-0.09 ppm) from its position in H/sub 2/O solutions; in 1:1 H/sub 2/O/D/sub 2/O mixtures, the carbonyl line shape is determined by the exchange rate at the adjacent nitrogen atom. M13 coat protein was labeled biosynthetically with /sup 13/C at the peptide carbonyls ofmore » alanine, glycine, phenylalanine, proline, and lysine, and the exchange rates of 12 assigned amide protons in the hydrophilic regions were measured as a function of pH by using the isotope shift method. This equilibrium technique is sensitive to the more rapidly exchanging protons which are difficult to measure by classical exchange-out experiments. In proteins, structural factors, notably H bonding, can decrease the exchange rate of an amide proton by many orders of magnitude from that observed in the freely exposed amides of model peptides such as poly(DL-alanine). With corrections for sequence-related inductive effects, the retardation of amide exchange in sodium dodecyl sulfate solubilized coat protein has been calculated with respect to poly(DL-alanine). The most rapidly exchanging protons, which are retarded very little or not at all, are shown to occur at the N- and C-termini of the molecule. A model of the detergent-solubilized coat protein is constructed from these H-exchange data which is consistent with circular dichroism and other NMR results.« less

  19. Chemical interaction mechanism of 10-MDP with zirconia

    PubMed Central

    Nagaoka, Noriyuki; Yoshihara, Kumiko; Feitosa, Victor Pinheiro; Tamada, Yoshiyuki; Irie, Masao; Yoshida, Yasuhiro; Van Meerbeek, Bart; Hayakawa, Satoshi

    2017-01-01

    Currently, the functional monomer 10-methacryloyloxy-decyl-dihydrogen-phosphate (10-MDP) was documented to chemically bond to zirconia ceramics. However, little research has been conducted to unravel the underlying mechanisms. This study aimed to assess the chemical interaction and to demonstrate the mechanisms of coordination between 10-MDP and zirconium oxide using 1H and 31P magic angle spinning (MAS) nuclear magnetic resonance (NMR) and two dimensional (2D) 1H → 31P heteronuclear correlation (HETCOR) NMR. In addition, shear bond-strength (SBS) tests were conducted to determine the effect of 10-MDP concentration on the bonding effectiveness to zirconia. These SBS tests revealed a 10-MDP concentration-dependent SBS with a minimum of 1-ppb 10-MDP needed. 31P-NMR revealed that one P-OH non-deprotonated of the PO3H2 group from 10-MDP chemically bonded strongly to zirconia. 1H-31P HETCOR NMR indicated that the 10-MDP monomer can be adsorbed onto the zirconia particles by hydrogen bonding between the P=O and Zr-OH groups or via ionic interactions between partially positive Zr and deprotonated 10-MDP (P-O−). The combination of 1H NMR and 2D 1H-31P HETCOR NMR enabled to describe the different chemical states of the 10-MDP bonds with zirconia; they not only revealed ionic but also hydrogen bonding between 10-MDP and zirconia. PMID:28358121

  20. Natural abundance 17O DNP two-dimensional and surface-enhanced NMR spectroscopy

    DOE PAGES

    Perras, Frédéric A.; Kobayashi, Takeshi; Pruski, Marek

    2015-06-22

    Due to its extremely low natural abundance and quadrupolar nature, the 17O nuclide is very rarely used for spectroscopic investigation of solids by NMR without isotope enrichment. Additionally, the applicability of dynamic nuclear polarization (DNP), which leads to sensitivity enhancements of 2 orders of magnitude, to 17O is wrought with challenges due to the lack of spin diffusion and low polarization transfer efficiency from 1H. Here, we demonstrate new DNP-based measurements that extend 17O solid-state NMR beyond its current capabilities. The use of the PRESTO technique instead of conventional 1H– 17O cross-polarization greatly improves the sensitivity and enables the facilemore » measurement of undistorted line shapes and two-dimensional 1H– 17O HETCOR NMR spectra as well as accurate internuclear distance measurements at natural abundance. This was applied for distinguishing hydrogen-bonded and lone 17O sites on the surface of silica gel; the one-dimensional spectrum of which could not be used to extract such detail. As a result, this greatly enhanced sensitivity has enabled, for the first time, the detection of surface hydroxyl sites on mesoporous silica at natural abundance, thereby extending the concept of DNP surface-enhanced NMR spectroscopy to the 17O nuclide.« less

  1. Extended hopane derivatives in sediments - Identification by H-1 NMR

    NASA Technical Reports Server (NTRS)

    Taylor, J.; Wardroper, A. M. K.; Maxwell, J. R.

    1980-01-01

    Sedimentary C32 hopanoic acid, one of the most abundant in nature and of probable bacterial origin, has been isolated for the first time as a single component and characterized by H-1 NMR. The 17 alpha H, 21 beta H configuration of the C31 alkane has been similarly confirmed.

  2. Multinuclear nanoliter one-dimensional and two-dimensional NMR spectroscopy with a single non-resonant microcoil

    NASA Astrophysics Data System (ADS)

    Fratila, Raluca M.; Gomez, M. Victoria; Sýkora, Stanislav; Velders, Aldrik H.

    2014-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is a powerful analytical technique, but its low sensitivity and highly sophisticated, costly, equipment severely constrain more widespread applications. Here we show that a non-resonant planar transceiver microcoil integrated in a microfluidic chip (detection volume 25 nl) can detect different nuclides in the full broad-band range of Larmor frequencies (at 9.4 T from 61 to 400 MHz). Routine one-dimensional (1D) and two-dimensional (2D), homo- and heteronuclear experiments can be carried out using the broad-band coil set-up. Noteworthy, heteronuclear 2D experiments can be performed in a straightforward manner on virtually any combination of nuclides (from classical 1H-13C to more exotic combinations like 19F-31P) both in coupled and decoupled mode. Importantly, the concept of a non-resonant system provides magnetic field-independent NMR probes; moreover, the small-volume alleviates problems related to field inhomogeneity, making the broad-band coil an attractive option for, for example, portable and table-top NMR systems.

  3. Manipulating and probing the polarisation of a methyl tunnelling system by field-cycling NMR

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Abu-Khumra, Sabah M. M.; Aibout, Abdellah; Horsewill, Anthony J.

    2017-02-01

    In NMR the polarisation of the Zeeman system may be routinely probed and manipulated by applying resonant rf pulses. As with spin-1/2 nuclei, at low temperature the quantum tunnelling states of a methyl rotor are characterised by two energy levels and it is interesting to consider how these tunnelling states might be probed and manipulated in an analogous way to nuclear spins in NMR. In this paper experimental procedures based on magnetic field-cycling NMR are described where, by irradiating methyl tunnelling sidebands, the polarisations of the methyl tunnelling systems are measured and manipulated in a prescribed fashion. At the heart of the technique is a phenomenon that is closely analogous to dynamic nuclear polarisation and the solid effect where forbidden transitions mediate polarisation transfer between 1H Zeeman and methyl tunnelling systems. Depending on the irradiated sideband, both positive and negative polarisations of the tunnelling system are achieved, the latter corresponding to population inversion and negative tunnelling temperatures. The transition mechanics are investigated through a series of experiments and a theoretical model is presented that provides good quantitative agreement.

  4. NMR-based urine analysis in rats: prediction of proximal tubule kidney toxicity and phospholipidosis.

    PubMed

    Lienemann, Kai; Plötz, Thomas; Pestel, Sabine

    2008-01-01

    The aim of safety pharmacology is early detection of compound-induced side-effects. NMR-based urine analysis followed by multivariate data analysis (metabonomics) identifies efficiently differences between toxic and non-toxic compounds; but in most cases multiple administrations of the test compound are necessary. We tested the feasibility of detecting proximal tubule kidney toxicity and phospholipidosis with metabonomics techniques after single compound administration as an early safety pharmacology approach. Rats were treated orally, intravenously, inhalatively or intraperitoneally with different test compounds. Urine was collected at 0-8 h and 8-24 h after compound administration, and (1)H NMR-patterns were recorded from the samples. Variation of post-processing and feature extraction methods led to different views on the data. Support Vector Machines were trained on these different data sets and then aggregated as experts in an Ensemble. Finally, validity was monitored with a cross-validation study using a training, validation, and test data set. Proximal tubule kidney toxicity could be predicted with reasonable total classification accuracy (85%), specificity (88%) and sensitivity (78%). In comparison to alternative histological studies, results were obtained quicker, compound need was reduced, and very importantly fewer animals were needed. In contrast, the induction of phospholipidosis by the test compounds could not be predicted using NMR-based urine analysis or the previously published biomarker PAG. NMR-based urine analysis was shown to effectively predict proximal tubule kidney toxicity after single compound administration in rats. Thus, this experimental design allows early detection of toxicity risks with relatively low amounts of compound in a reasonably short period of time.

  5. Metabolic discrimination of sea buckthorn from different Hippophaë species by 1H NMR based metabolomics.

    PubMed

    Liu, Yue; Fan, Gang; Zhang, Jing; Zhang, Yi; Li, Jingjian; Xiong, Chao; Zhang, Qi; Li, Xiaodong; Lai, Xianrong

    2017-05-08

    Sea buckthorn (Hippophaë; Elaeagnaceae) berries are widely consumed in traditional folk medicines, nutraceuticals, and as a source of food. The growing demand of sea buckthorn berries and morphological similarity of Hippophaë species leads to confusions, which might cause misidentification of plants used in natural products. Detailed information and comparison of the complete set of metabolites of different Hippophaë species are critical for their objective identification and quality control. Herein, the variation among seven species and seven subspecies of Hippophaë was studied using proton nuclear magnetic resonance ( 1 H NMR) metabolomics combined with multivariate data analysis, and the important metabolites were quantified by quantitative 1 H NMR (qNMR) method. The results showed that different Hippophaë species can be clearly discriminated and the important interspecific discriminators, including organic acids, L-quebrachitol, and carbohydrates were identified. Statistical differences were found among most of the Hippophaë species and subspecies at the content levels of the aforementioned interspecific discriminators via qNMR and one-way analysis of variance (ANOVA) test. These findings demonstrated that 1 H NMR-based metabolomics is an applicable and effective approach for simultaneous metabolic profiling, species differentiation and quality assessment.

  6. Synthesis, characterization, spectroscopic and antioxidation studies of Cu(II)-morin complex

    NASA Astrophysics Data System (ADS)

    Panhwar, Qadeer Khan; Memon, Shahabuddin; Bhanger, M. I.

    2010-04-01

    Complex formation between copper (II) sulfate and morin (3,5,7,2',4'-pentahydroxyflavone) have been studied in methanol. Structure of the complex was determined through various analytical techniques including UV-vis, IR, 1H NMR, thermal, gravimetric and elemental analyses. The stoichiometric ratio for the reaction between the flavonoid and the metal ion in methanol has been determined by Job's method and elemental analysis for metal content of complex by titration with EDTA, which confirm that morin forms a 1:1 metal:ligand complex. 1H NMR study reveals that, 3OH and 4CO groups of morin take part in complexation with a copper ion. Individual stress was given to the site of central ion and composition of the complex. Antioxidant activity of the complex was evaluated by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging method, which showed that the antioxidant activity of complexed morin has higher value as compared to the free morin. Moreover, it was observed that the metal complex is sufficiently stable as well as the data indicates the spontaneous formation of complex (-Δ G) that is exothermic in nature (-Δ H) and entropically unfavourable (-Δ S).

  7. Dynamic Nuclear Polarization and other magnetic ideas at EPFL.

    PubMed

    Bornet, Aurélien; Milani, Jonas; Wang, Shutao; Mammoli, Daniele; Buratto, Roberto; Salvi, Nicola; Segaw, Takuya F; Vitzthum, Veronika; Miéville, Pascal; Chinthalapalli, Srinivas; Perez-Linde, Angel J; Carnevale, Diego; Jannin, Sami; Caporinia, Marc; Ulzega, Simone; Rey, Martial; Bodenhausen, Geoffrey

    2012-01-01

    Although nuclear magnetic resonance (NMR) can provide a wealth of information, it often suffers from a lack of sensitivity. Dynamic Nuclear Polarization (DNP) provides a way to increase the polarization and hence the signal intensities in NMR spectra by transferring the favourable electron spin polarization of paramagnetic centres to the surrounding nuclear spins through appropriate microwave irradiation. In our group at EPFL, two complementary DNP techniques are under investigation: the combination of DNP with magic angle spinning at temperatures near 100 K ('MAS-DNP'), and the combination of DNP at 1.2 K with rapid heating followed by the transfer of the sample to a high-resolution magnet ('dissolution DNP'). Recent applications of MAS-DNP to surfaces, as well as new developments of magnetization transfer of (1)H to (13)C at 1.2 K prior to dissolution will illustrate the work performed in our group. A second part of the paper will give an overview of some 'non-enhanced' activities of our laboratory in liquid- and solid-state NMR.

  8. Synthesis and characterization of 3-acetoxy-2-methyl-N-(phenyl)benzamide and 3-acetoxy-2-methyl-N-(4- methylphenyl)benzamide

    NASA Astrophysics Data System (ADS)

    Kırca, Başak Koşar; Çakmak, Şükriye; Kütük, Halil; Odabaşoğlu, Mustafa; Büyükgüngör, Orhan

    2018-01-01

    This study treats about two successfully synthesized secondary amide compounds 3-Acetoxy-2-methyl-N-(phenyl)benzamide, I and 3-Acetoxy-2-methyl-N-(4-methylphenyl)benzamide, II. Compounds were characterized by FTIR, 1H NMR, 13C NMR and X-ray single crystal diffraction analysis techniques. Single crystal X-ray diffraction analyses show that while I crystallized in the orthorhombic system with space group Pbca, II crystallized in the triclinic system with space group P-1 and the asymmetric unit of II consists of two crystallographically independent molecules. Lattice constants are a = 7.9713 (3) Å, b = 9.5059 (3) Å, c = 37.1762 (2) Å, Z = 8 for I and a = 7.5579 (8) Å, b = 8.8601 (8) Å, c = 23.363 (3) Å, α = 97.011 (9) °, β = 96.932 (9)°, γ = 90.051 (8)°, Z = 4 for II. Crystallographic studies also show that the supramolecular structures were stabilized by intramolecular, intermolecular hydrogen bonds and Csbnd H … π interactions for both compounds. Characteristic amide bonds were observed in IR and NMR spectra.

  9. Teaching 1H NMR Spectrometry Using Computer Modeling.

    ERIC Educational Resources Information Center

    Habata, Yoichi; Akabori, Sadatoshi

    2001-01-01

    Molecular modeling by computer is used to display stereochemistry, molecular orbitals, structure of transition states, and progress of reactions. Describes new ideas for teaching 1H NMR spectroscopy using computer modeling. (Contains 12 references.) (ASK)

  10. Complete (1)H resonance assignment of beta-maltose from (1)H-(1)H DQ-SQ CRAMPS and (1)H (DQ-DUMBO)-(13)C SQ refocused INEPT 2D solid-state NMR spectra and first principles GIPAW calculations.

    PubMed

    Webber, Amy L; Elena, Bénédicte; Griffin, John M; Yates, Jonathan R; Pham, Tran N; Mauri, Francesco; Pickard, Chris J; Gil, Ana M; Stein, Robin; Lesage, Anne; Emsley, Lyndon; Brown, Steven P

    2010-07-14

    A disaccharide is a challenging case for high-resolution (1)H solid-state NMR because of the 24 distinct protons (14 aliphatic and 10 OH) having (1)H chemical shifts that all fall within a narrow range of approximately 3 to 7 ppm. High-resolution (1)H (500 MHz) double-quantum (DQ) combined rotation and multiple pulse sequence (CRAMPS) solid-state NMR spectra of beta-maltose monohydrate are presented. (1)H-(1)H DQ-SQ CRAMPS spectra are presented together with (1)H (DQ)-(13)C correlation spectra obtained with a new pulse sequence that correlates a high-resolution (1)H DQ dimension with a (13)C single quantum (SQ) dimension using the refocused INEPT pulse-sequence element to transfer magnetization via one-bond (13)C-(1)H J couplings. Compared to the observation of only a single broad peak in a (1)H DQ spectrum recorded at 30 kHz magic-angle spinning (MAS), the use of DUMBO (1)H homonuclear decoupling in the (1)H DQ CRAMPS experiment allows the resolution of distinct DQ correlation peaks which, in combination with first-principles chemical shift calculations based on the GIPAW (Gauge Including Projector Augmented Waves) plane-wave pseudopotential approach, enables the assignment of the (1)H resonances to the 24 distinct protons. We believe this to be the first experimental solid-state NMR determination of the hydroxyl OH (1)H chemical shifts for a simple sugar. Variable-temperature (1)H-(1)H DQ CRAMPS spectra reveal small increases in the (1)H chemical shifts of the OH resonances upon decreasing the temperature from 348 K to 248 K.

  11. On the Analytical Superiority of 1D NMR for Fingerprinting the Higher Order Structure of Protein Therapeutics Compared to Multidimensional NMR Methods.

    PubMed

    Poppe, Leszek; Jordan, John B; Rogers, Gary; Schnier, Paul D

    2015-06-02

    An important aspect in the analytical characterization of protein therapeutics is the comprehensive characterization of higher order structure (HOS). Nuclear magnetic resonance (NMR) is arguably the most sensitive method for fingerprinting HOS of a protein in solution. Traditionally, (1)H-(15)N or (1)H-(13)C correlation spectra are used as a "structural fingerprint" of HOS. Here, we demonstrate that protein fingerprint by line shape enhancement (PROFILE), a 1D (1)H NMR spectroscopy fingerprinting approach, is superior to traditional two-dimensional methods using monoclonal antibody samples and a heavily glycosylated protein therapeutic (Epoetin Alfa). PROFILE generates a high resolution structural fingerprint of a therapeutic protein in a fraction of the time required for a 2D NMR experiment. The cross-correlation analysis of PROFILE spectra allows one to distinguish contributions from HOS vs protein heterogeneity, which is difficult to accomplish by 2D NMR. We demonstrate that the major analytical limitation of two-dimensional methods is poor selectivity, which renders these approaches problematic for the purpose of fingerprinting large biological macromolecules.

  12. Kinetics of hydrogen isotope exchange in β-phase Pd-H-D

    DOE PAGES

    Luo, Weifang; Cowgill, Donald F.

    2015-07-22

    Hydrogen isotope gas exchange within palladium powders is examined using a batch-type reactor coupled to a residual gas analyzer (RGA). Furthermore, the exchange rates in both directions (H 2 + PdD and D 2 + PdH) are measured in the temperature range 178–323 K for the samples with different particle sizes. The results show this batch-type exchange is closely approximated as a first-order kinetic process with a rate directly proportional to the surface area of the powder particles. An exchange rate constant of 1.40 ± 0.24 μmol H 2/atm cm 2 s is found for H 2 + PdD atmore » 298 K, 1.4 times higher than that for D 2 + PdH, with an activation energy of 25.0 ± 3.2 kJ/mol H for both exchange directions. Finally, a comparison of exchange measurement techniques shows these coefficients, and the fundamental exchange probabilities are in good agreement with those obtained by NMR and flow techniques.« less

  13. Modelling the acid/base 1H NMR chemical shift limits of metabolites in human urine.

    PubMed

    Tredwell, Gregory D; Bundy, Jacob G; De Iorio, Maria; Ebbels, Timothy M D

    2016-01-01

    Despite the use of buffering agents the 1 H NMR spectra of biofluid samples in metabolic profiling investigations typically suffer from extensive peak frequency shifting between spectra. These chemical shift changes are mainly due to differences in pH and divalent metal ion concentrations between the samples. This frequency shifting results in a correspondence problem: it can be hard to register the same peak as belonging to the same molecule across multiple samples. The problem is especially acute for urine, which can have a wide range of ionic concentrations between different samples. To investigate the acid, base and metal ion dependent 1 H NMR chemical shift variations and limits of the main metabolites in a complex biological mixture. Urine samples from five different individuals were collected and pooled, and pre-treated with Chelex-100 ion exchange resin. Urine samples were either treated with either HCl or NaOH, or were supplemented with various concentrations of CaCl 2 , MgCl 2 , NaCl or KCl, and their 1 H NMR spectra were acquired. Nonlinear fitting was used to derive acid dissociation constants and acid and base chemical shift limits for peaks from 33 identified metabolites. Peak pH titration curves for a further 65 unidentified peaks were also obtained for future reference. Furthermore, the peak variations induced by the main metal ions present in urine, Na + , K + , Ca 2+ and Mg 2+ , were also measured. These data will be a valuable resource for 1 H NMR metabolite profiling experiments and for the development of automated metabolite alignment and identification algorithms for 1 H NMR spectra.

  14. Developing SABRE as an analytical tool in NMR

    NASA Astrophysics Data System (ADS)

    Lloyd, Lyrelle Stacey

    Work presented in this thesis centres around the application of the new hyperpolarisation technique, SABRE, within nuclear magnetic resonance spectroscopy, focusing on optimisation of the technique to characterise small organic molecules. While pyridine was employed as a model substrate, studies on a range of molecules are investigated including substituted pyridines, quinolines, thiazoles and indoles are detailed. Initial investigations explored how the properties of the SABRE catalyst effect the extent of polarisation transfer exhibited. The most important of these properties proved to be the rate constants for loss of pyridine and hydrides as these define the contact time of pyridine with the parahydrogen derived hydride ligands in the metal template. The effect of changing the temperature, solvent or concentration of substrate or catalyst are rationalised. For instance, the catalyst ICy(a) exhibits relatively slow ligand exchange rates and increasing the temperature during hyperpolarisation increases the observed signal enhancements. These studies have revealed a second polarisation transfer template can be used with SABRE in which two substrate molecules are bound. This allows the possibility of investigation of larger substrates which might otherwise be too sterically encumbered to bind. Another significant advance relates to the first demonstration that SABRE can be used in conjunction with an automated system designed with Bruker allowing the acquisition of scan averaged, phase cycled and traditional 2D spectra. The system also allowed investigations into the effect of the polarisation transfer field and application of that knowledge to collect single-scan 13C data for characterisation. The successful acquisition of 1H NOESY, 1H-1H COSY, 1H-13C 2D and ultrafast 1H-1H COSY NMR sequences is detailed for a 10 mM concentration sample, with 1H data collected for a 1 mM sample. A range of studies which aim to demonstrate the applicability of SABRE to the characterisation of small molecules and pharmaceuticals have been conducted.

  15. Green synthesis of chalcones derivatives as intermediate of flavones and their antibacterial activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VH, Elfi Susanti, E-mail: elsantivh@yahoo.com; Redjeki, Tri, E-mail: tri-redjeki@yahoo.com; Matsjeh, Sabirin, E-mail: sabirin-mara@yahoo.com

    Four chalcones derivatives have been synthesized from 3,4-dimethoxybenzaldehyde and acetophenone derivatives (2-hydroxy acetophenone, 2,4-dihydroxy acetophenone, 2,5-dihydroxy acetophenone and 2,6-dihydroxy acetophenone). The synthesis of these chalcones were conducted by Claisen-Schmidt condensation using grinding techniques at room temperature in the absence of solvents. The chalcones were prepared by grinding together equivalent amount of the approriate hydroxyacetophenone and 3,4-dimethoxybenzaldehyde in the presence of solid sodium hydroxide. Grinding techniques for synthesis of the chalcones derivatives is simple, efficient and environmentally benign compared to conventional methods. Then, the four chalcones derivatives undergo cyclization reactions to produce four flavones after reacted with iodine. The synthesized compoundsmore » were characterized by spectrometry (IR, {sup 1}H-NMR, {sup 13}C-NMR and MS)« less

  16. A One-Pot Synthesis of m-Terphenyls: A Guided Exploration of Reaction Chemistry, Chromatography, and Spectroscopy. A Miniproject for the Advanced Organic Chemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Anam, Kishorekumar T.; Curtis, Michael P.; Irfan, Muhammad J.; Johnson, Michael P.; Royer, Andrew P.; Shahmohammadi, Kianor; Vinod, Thottumkara K.

    2002-05-01

    This four-week project-based laboratory exercise, developed for advanced organic chemistry students, involves a one-pot synthesis of m-terphenyls. Chemistry of aryl diazonium salts and Grignard reagents and reactivity of aryne intermediates toward nucleophilic reagents form the reaction chemistry basis for the project. The project exposes students to a number of important laboratory techniques (thin-layer chromatography, gas chromatography-mass spectrometry, and column chromatography) for monitoring reaction progress and product isolation. A variety of spectroscopic techniques, including IR, 1H NMR, 13C NMR, and attached proton test are used for product characterization. Students are also introduced to a useful empirical relationship to help predict (with considerable accuracy) the 13C chemical shift values of carbon atoms of substituted benzenes.

  17. A chiral aluminum solvating agent (CASA) for 1H NMR chiral analysis of alcohols at low temperature.

    PubMed

    Seo, Min-Seob; Jang, Sumin; Kim, Hyunwoo

    2018-03-16

    A chiral aluminum solvating agent (CASA) was demonstrated to be a general and efficient reagent for 1H NMR chiral analysis of alcohols. The sodium salt of the CASA (CASA-Na) showed a complete baseline peak separation of the hydroxyl group for various chiral alcohols including primary, secondary, and tertiary alcohols with alkyl and aryl substituents in CD3CN. Due to the weak intermolecular interaction, 1H NMR measurement at low temperature (-40 to 10 °C) was required.

  18. Application of 1H NMR spectroscopy-based metabonomics to feces of cervical cancer patients with radiation-induced acute intestinal symptoms.

    PubMed

    Chai, Yanlan; Wang, Juan; Wang, Tao; Yang, Yunyi; Su, Jin; Shi, Fan; Wang, Jiquan; Zhou, Xi; He, Bin; Ma, Hailin; Liu, Zi

    2015-11-01

    Radiation-induced acute intestinal symptoms (RIAISs) are a common complication of radiotherapy for cervical cancer. The aim of this study was to use (1)H nuclear magnetic resonance ((1)H NMR) combined with chemometric analysis to develop a metabolic profile of patients with RIAISs. Fecal samples were collected from 66 patients with cervical cancer before and after pelvic radiotherapy. After radiotherapy, RIAISs occurred in eleven patients. We selected another 11 patients from participants without RIAISs whose age, stage, histological type and treatment methods are matched with RIAIS patients as the control group. (1)H NMR spectroscopy combined with multivariate pattern recognition analysis was used to generate metabolic profile data, as well as to establish a RIAIS-specific metabolic phenotype. Orthogonal partial least-squares discriminant analysis was used to distinguish samples between the pre- and post-radiotherapy RIAIS patients and between RIAIS patients and controls. Fecal samples from RIAIS patients after pelvic radiotherapy were characterized by increased concentrations of α-ketobutyrate, valine, uracil, tyrosine, trimethylamine N-oxide, phenylalanine, lysine, isoleucine, glutamine, creatinine, creatine, bile acids, aminohippurate, and alanine, accompanied by reduced concentrations of α-glucose, n-butyrate, methylamine, and ethanol relative to samples from RIAIS patients before pelvic radiotherapy, while in RIAIS patients relative to controls, trimethylamine, n-butyrate, fumarate and acetate were down-regulated and valine, TMAO, taurine, phenylalanine, lactate, isoleucine and creatinine were up-regulated. We obtained the metabolic profile of RIAIS patients from fecal samples using NMR-based metabonomics. This profile has the potential to be developed into a novel clinical tool for RIAIS diagnosis or therapeutic monitoring, and could contribute to an improved understanding of the disease mechanism. However, because of the limitations of methods, technique, bacterial contamination of feces and small sample size, further research and verification are needed. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  19. In situ NMR spectroscopy: inulin biomass conversion in ZnCl₂ molten salt hydrate medium-SnCl₄ addition controls product distribution.

    PubMed

    Wang, Yingxiong; Pedersen, Christian Marcus; Qiao, Yan; Deng, Tiansheng; Shi, Jing; Hou, Xianglin

    2015-01-22

    The dehydration of inulin biomass to the platform chemicals, 5-hydroxymethylfurfural (5-HMF) and levulinic acid (LA), in ZnCl2 molten salt hydrate medium was investigated. The influence of the Lewis acid catalyst, SnCl4, on the product distribution was examined. An in situ(1)H NMR technique was employed to follow the reaction at the molecular level. The experimental results revealed that only 5-HMF was obtained from degradation of inulin biomass in ZnCl2 molten salt hydrate medium, while the LA was gradually becoming the main product when the reaction temperature was increased in the presence of the Lewis acid catalyst SnCl4. In situ NMR spectroscopy could monitor the reaction and give valuable insight. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Volatile-Compound Fingerprinting by Headspace-Gas-Chromatography Ion-Mobility Spectrometry (HS-GC-IMS) as a Benchtop Alternative to 1H NMR Profiling for Assessment of the Authenticity of Honey.

    PubMed

    Gerhardt, Natalie; Birkenmeier, Markus; Schwolow, Sebastian; Rohn, Sascha; Weller, Philipp

    2018-02-06

    This work describes a simple approach for the untargeted profiling of volatile compounds for the authentication of the botanical origins of honey based on resolution-optimized HS-GC-IMS combined with optimized chemometric techniques, namely PCA, LDA, and kNN. A direct comparison of the PCA-LDA models between the HS-GC-IMS and 1 H NMR data demonstrated that HS-GC-IMS profiling could be used as a complementary tool to NMR-based profiling of honey samples. Whereas NMR profiling still requires comparatively precise sample preparation, pH adjustment in particular, HS-GC-IMS fingerprinting may be considered an alternative approach for a truly fully automatable, cost-efficient, and in particular highly sensitive method. It was demonstrated that all tested honey samples could be distinguished on the basis of their botanical origins. Loading plots revealed the volatile compounds responsible for the differences among the monofloral honeys. The HS-GC-IMS-based PCA-LDA model was composed of two linear functions of discrimination and 10 selected PCs that discriminated canola, acacia, and honeydew honeys with a predictive accuracy of 98.6%. Application of the LDA model to an external test set of 10 authentic honeys clearly proved the high predictive ability of the model by correctly classifying them into three variety groups with 100% correct classifications. The constructed model presents a simple and efficient method of analysis and may serve as a basis for the authentication of other food types.

  1. Quantum, characterization and spectroscopic studies on Cu(II), Pd(II) and Pt(II) complexes of 1-(benzo[d]thiazol-2-yl)-3-phenylthiourea and its biological application as antimicrobial and antioxidant

    NASA Astrophysics Data System (ADS)

    Jambi, M. S.

    2017-09-01

    Divalent platinum, palladium and copper chelates of H2PhT have been isolated and identified. Their structures have been elucidated by partial elemental analyses, magnetic susceptibilities and spectroscopic estimations and additionally mass spectra. The FTIR and 1H NMR studies illustrated that H2PhT performs as mono-negative bi-dentate in Cu(II) and Pd(II) complexes while it behaves as neutral bi-dentate in both Pt(II) complexes. Both magnetic moments and spectral studies suggests a tetrahedral coordination geometry for [Cu(HPhT)(H2O)Cl] complex, a square planar geometry for both [Pd(HPhT)2] and [Pt(H2PhT)2Cl2] complexes and octahedral geometry for [Pt(H2PhT)2Cl2] complex. The molecular modeling are drawn and demonstrated both bond lengths and angles, chemical reactivity, MEP, NLO, Mulliken atomic charges, and binding energy (kcal/mol) for the investigated compounds. Theoretical infrared intensities and 1H NMR of H2PhT was computed utilizing DFT technique. An examination of the experimental and hypothetical spectra can be extremely valuable in making right assignments and analyzing the main chemical shift. DNA bioassay, antibacterial and antifungal activities of the investigated compounds have been determined.

  2. Direct metabolic fingerprinting of commercial herbal tinctures by nuclear magnetic resonance spectroscopy and mass spectrometry.

    PubMed

    Politi, Matteo; Zloh, Mire; Pintado, Manuela E; Castro, Paula M L; Heinrich, Michael; Prieto, Jose M

    2009-01-01

    Tinctures are widely used liquid pharmaceutical preparations traditionally obtained by maceration of one or more medicinal plants in ethanol-water solutions. Such a process results in the extraction of virtually hundreds of structurally diverse compounds with different polarities. Owing to the large chemical diversity of the constituents present in the herbal tinctures, the analytical tools used for the quality control of tinctures are usually optimised only for the detection of single chemical entities or specific class of compounds. In order to overcome the major limitations of the current methods used for analysis of tinctures, a new methodological approach based on NMR spectroscopy and MS spectrometry has been tested with different commercial tinctures. Diffusion-edited 1H-NMR (1D DOSY) and 1H-NMR with suppression of the ethanol and water signals have been applied here for the first time to the direct analysis of commercial herbal tinctures derived from Echinacea purpurea, Hypericum perforatum, Ginkgo biloba and Valeriana officinalis. The direct injection of the tinctures in the MS detector in order to obtain the corresponding metabolic profiles was also performed. Using both NMR and MS methods it was possible, without evaporation or separation steps, to obtain a metabolic fingerprint able to distinguish between tinctures prepared with different plants. Batch-to-batch homogeneity, as well as degradation after the expiry date of a batch, was also investigated. The techniques proposed here represent fast and convenient direct analyses of medicinal herbal tinctures.

  3. Polymer mobilization and drug release during tablet swelling. A 1H NMR and NMR microimaging study.

    PubMed

    Dahlberg, Carina; Fureby, Anna; Schuleit, Michael; Dvinskikh, Sergey V; Furó, István

    2007-09-26

    The objective of this study was to investigate the swelling characteristics of a hydroxypropyl methylcellulose (HPMC) matrix incorporating the hydrophilic drug antipyrine. We have used this matrix to introduce a novel analytical method, which allows us to obtain within one experimental setup information about the molecular processes of the polymer carrier and its impact on drug release. Nuclear magnetic resonance (NMR) imaging revealed in situ the swelling behavior of tablets when exposed to water. By using deuterated water, the spatial distribution and molecular dynamics of HPMC and their kinetics during swelling could be observed selectively. In parallel, NMR spectroscopy provided the concentration of the drug released into the aqueous phase. We find that both swelling and release are diffusion controlled. The ability of monitoring those two processes using the same experimental setup enables mapping their interconnection, which points on the importance and potential of this analytical technique for further application in other drug delivery forms.

  4. Communication: molecular dynamics and (1)H NMR of n-hexane in liquid crystals.

    PubMed

    Weber, Adrian C J; Burnell, E Elliott; Meerts, W Leo; de Lange, Cornelis A; Dong, Ronald Y; Muccioli, Luca; Pizzirusso, Antonio; Zannoni, Claudio

    2015-07-07

    The NMR spectrum of n-hexane orientationally ordered in the nematic liquid crystal ZLI-1132 is analysed using covariance matrix adaptation evolution strategy (CMA-ES). The spectrum contains over 150 000 transitions, with many sharp features appearing above a broad, underlying background signal that results from the plethora of overlapping transitions from the n-hexane as well as from the liquid crystal. The CMA-ES requires initial search ranges for NMR spectral parameters, notably the direct dipolar couplings. Several sets of such ranges were utilized, including three from MD simulations and others from the modified chord model that is specifically designed to predict hydrocarbon-chain dipolar couplings. In the end, only inaccurate dipolar couplings from an earlier study utilizing proton-proton double quantum 2D-NMR techniques on partially deuterated n-hexane provided the necessary estimates. The precise set of dipolar couplings obtained can now be used to investigate conformational averaging of n-hexane in a nematic environment.

  5. Communication: Molecular dynamics and {sup 1}H NMR of n-hexane in liquid crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Adrian C. J., E-mail: WeberA@BrandonU.CA; Burnell, E. Elliott, E-mail: elliott.burnell@ubc.ca; Meerts, W. Leo, E-mail: leo.meerts@science.ru.nl

    The NMR spectrum of n-hexane orientationally ordered in the nematic liquid crystal ZLI-1132 is analysed using covariance matrix adaptation evolution strategy (CMA-ES). The spectrum contains over 150 000 transitions, with many sharp features appearing above a broad, underlying background signal that results from the plethora of overlapping transitions from the n-hexane as well as from the liquid crystal. The CMA-ES requires initial search ranges for NMR spectral parameters, notably the direct dipolar couplings. Several sets of such ranges were utilized, including three from MD simulations and others from the modified chord model that is specifically designed to predict hydrocarbon-chain dipolar couplings.more » In the end, only inaccurate dipolar couplings from an earlier study utilizing proton-proton double quantum 2D-NMR techniques on partially deuterated n-hexane provided the necessary estimates. The precise set of dipolar couplings obtained can now be used to investigate conformational averaging of n-hexane in a nematic environment.« less

  6. Proton Nuclear Magnetic Resonance-Spectroscopic Discrimination of Wines Reflects Genetic Homology of Several Different Grape (V. vinifera L.) Cultivars

    PubMed Central

    Zhu, Yong; Wen, Wen; Zhang, Fengmin; Hardie, Jim W.

    2015-01-01

    Background and Aims Proton nuclear magnetic resonance spectroscopy coupled multivariate analysis (1H NMR-PCA/PLS-DA) is an important tool for the discrimination of wine products. Although 1H NMR has been shown to discriminate wines of different cultivars, a grape genetic component of the discrimination has been inferred only from discrimination of cultivars of undefined genetic homology and in the presence of many confounding environmental factors. We aimed to confirm the influence of grape genotypes in the absence of those factors. Methods and Results We applied 1H NMR-PCA/PLS-DA and hierarchical cluster analysis (HCA) to wines from five, variously genetically-related grapevine (V. vinifera) cultivars; all grown similarly on the same site and vinified similarly. We also compared the semi-quantitative profiles of the discriminant metabolites of each cultivar with previously reported chemical analyses. The cultivars were clearly distinguishable and there was a general correlation between their grouping and their genetic homology as revealed by recent genomic studies. Between cultivars, the relative amounts of several of the cultivar-related discriminant metabolites conformed closely with reported chemical analyses. Conclusions Differences in grape-derived metabolites associated with genetic differences alone are a major source of 1H NMR-based discrimination of wines and 1H NMR has the capacity to discriminate between very closely related cultivars. Significance of the Study The study confirms that genetic variation among grape cultivars alone can account for the discrimination of wine by 1H NMR-PCA/PLS and indicates that 1H NMR spectra of wine of single grape cultivars may in future be used in tandem with hierarchical cluster analysis to elucidate genetic lineages and metabolomic relations of grapevine cultivars. In the absence of genetic information, for example, where predecessor varieties are no longer extant, this may be a particularly useful approach. PMID:26658757

  7. (1)H NMR-based metabonomics revealed protective effect of Naodesheng bioactive extract on ischemic stroke rats.

    PubMed

    Luo, Lan; Zhen, Lifeng; Xu, Yatao; Yang, Yongxia; Feng, Suxiang; Wang, Shumei; Liang, Shengwang

    2016-06-20

    Stroke is a leading cause of death and disability in the world. However, current therapies are limited. Naodesheng, a widely used traditional Chinese medicine prescription, has shown a good clinical curative effect on ischemic stroke. Also, Naodesheng has been suggested to have neuroprotective effect on focal cerebral ischemia rats, but the underlying molecular mechanism remains unclear. The present study was designed to evaluate the effect of Naodesheng bioactive extract on the metabolic changes in brain tissue, plasma and urine induced by cerebral ischemia perfusion injury, and explore the possible metabolic mechanisms by using a (1)H NMR-based metabonomics approach. A middle cerebral artery occlusion rat model was established and confirmed by the experiments of neurobehavioral abnormality evaluation, brain tissue TTC staining and pathological examination. The metabolic changes in brain tissue, plasma and urine were then assessed by a (1)H NMR technique combined with multivariate statistical analysis method. These NMR data showed that cerebral ischemia reperfusion induced great metabolic disorders in brain tissue, plasma and urine metabolisms. However, Naodesheng bioactive extract could reverse most of the imbalanced metabolites. Meanwhile, it was found that both the medium and high dosages of Naodesheng bioactive extract were more effective on the metabolic changes than the low dosage, consistent with histopathological assessments. These results revealed that Naodesheng had protective effect on ischemic stroke rats and the underlying mechanisms involved multiple metabolic pathways, including energy metabolism, amino acid metabolism, oxidative stress and inflammatory injury. The present study could provide evidence that metabonomics revealed its capacity to evaluate the holistic efficacy of traditional Chinese medicine and explore the underlying mechanisms. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. 4-hydroxyphenylacetic acid derivatives of inositol from dandelion (Taraxacum officinale) root characterised using LC-SPE-NMR and LC-MS techniques.

    PubMed

    Kenny, O; Smyth, T J; Hewage, C M; Brunton, N P; McLoughlin, P

    2014-02-01

    The combination of hyphenated techniques, LC-SPE-NMR and LC-MS, to isolate and identify minor isomeric compounds from an ethyl acetate fraction of Taraxacum officinale root was employed in this study. Two distinct fractions of 4-hydroxyphenylacetic acid derivatives of inositol were isolated and characterised by spectroscopic methods. The (1)H NMR spectra and MS data revealed two groups of compounds, one of which were derivatives of the di-4-hydroxyphenylacetic acid derivative of the inositol compound tetrahydroxy-5-[2-(4-hydroxyphenyl)acetyl] oxycyclohexyl-2-(4-hydroxyphenyl) acetate, while the other group consisted of similar tri-substituted inositol derivatives. For both fractions the derivatives of inositols vary in the number of 4-hydroxyphenylacetic acid groups present and their position and geometry on the inositol ring. In total, three di-substituted and three tri-substituted 4-hydroxyphenylacetic acid inositol derivates were identified for the first time along with a further two previously reported di-substituted inositol derivatives. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Dereplication of antioxidant compounds in Bene (Pistacia atlantica subsp. mutica) hull using a multiplex approach of HPLC-DAD, LC-MS and (1)H NMR techniques.

    PubMed

    Rezaie, Mitra; Farhoosh, Reza; Pham, Ngoc; Quinn, Ronald J; Iranshahi, Mehrdad

    2016-01-05

    Bene is an edible fruit from the tree Pistacia atlantica subsp. mutica, and is of steadily growing interest in recent years due to its significant antioxidant properties and potential health benefits. An antioxidant activity-guided fractionation of the methanol extract from Bene hull together with an integrated approach of HPLC-DAD, LC-MS and (1)H NMR techniques led to the identification of main antioxidant phenolic compounds for the first time. Radical scavenging activity of each fraction/compound was tested using DPPH and FRAP assays. The phenolic content of the fractions was also determined by Folin-Ciocalteu's method. The main identified antioxidant compounds were luteolin (46.53% w/w of total extract), gallic acid (9.84% w/w), 2″-O-galloylisoquercitrin (0.53% w/w), quercetin 3-rutinoside (0.34% w/w) and 2″-O-cis-caffeoylquercitrin (0.26% w/w). The minor antioxidant compounds were also identified by liquid chromatography-positive/negative electrospray ionization tandem mass spectrometry. The structure-antioxidant activity relationship of identified phenolics are also discussed in this paper. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Structural investigation, spectroscopic and energy level studies of Schiff base: 2-[(3‧-N-salicylidenephenyl)benzimidazole] using experimental and DFT methods

    NASA Astrophysics Data System (ADS)

    Suman, G. R.; Bubbly, S. G.; Gudennavar, S. B.; Muthu, S.; Roopashree, B.; Gayatri, V.; Nanje Gowda, N. M.

    2017-07-01

    The Schiff base 2-[(3‧-N-salicylidenephenyl)benzimidazole] (Spbzl) was characterized by FT-Raman, 1H NMR, 13C NMR and single crystal X-ray diffraction technique. Crystallographic studies reveal the presence of two water molecules in the asymmetry unit which aid the intermolecular hydrogen bonding with imidazole ring, and the trans-conformation of the azomethine bond. Theoretical computations conducted using density functional theory (DFT) analysis support the experimental facts. Energy levels estimated by DFT studies are in good agreement with the values obtained from cyclic voltammetry technique. Frontier molecular orbital analysis shows that charge transfer has taken place from donor to acceptor moiety, which is also supported by the high hyperpolarizability values in both gaseous and solution phases, indicating high charge transfer capability of the molecule. A comparative theoretical study of Spbzl with derivative 4-((3-(1H-benzimidazol-2-yl)phenylimino)methyl)-3-hydroxybenzoic acid (Pbzlb) having an added anchor group COOH substituted at para position in the acceptor ring has been made. The result shows the feasibility of charge transfer to the semiconductor surface in dye sensitized solar cell (DSSC) applications for Pbzlb.

  11. High-resolution proton NMR studies of intracellular metabolites in yeast using 13C decoupling

    NASA Astrophysics Data System (ADS)

    Sillerud, Laurel O.; Alger, Jeffry R.; Shulman, Robert G.

    The resolution and specificity of 1H NMR in studies of yeast cellular metabolism were increased by feeding a 13C-labeled substrate and observing 1H difference spectra in the presence and absence of 13C decoupling fields. [2- 13C]Acetate was utilized as a respiratory substrate in an aerobic suspension of Saccharomyces cerevisiae. The broad cellular background proton resonances are removed by the technique, leaving only signals from the protons of the substrate, or its metabolites, that are coupled to 13C. Spectra of the yeast suspension after acetate feeding show the disappearance of label from the acetate pool and the subsequent appearance of 13C in glutamate C 3 and C 4 and in aspartate C 3. These results are in accord with the known fluxes of metabolites. Selective single-frequency 13C decoupling was used to provide assignments for the difference signals. The limitations on single-frequency decoupling coming from finite decoupling fields are investigated. The technique shows a potential for application in a wide variety of systems where the resolution of the 13C spectrum may be combined with the sensitivity for proton detection to observe metabolites that have been previously unobservable.

  12. DOSY Analysis of Micromolar Analytes: Resolving Dilute Mixtures by SABRE Hyperpolarization.

    PubMed

    Reile, Indrek; Aspers, Ruud L E G; Tyburn, Jean-Max; Kempf, James G; Feiters, Martin C; Rutjes, Floris P J T; Tessari, Marco

    2017-07-24

    DOSY is an NMR spectroscopy technique that resolves resonances according to the analytes' diffusion coefficients. It has found use in correlating NMR signals and estimating the number of components in mixtures. Applications of DOSY in dilute mixtures are, however, held back by excessively long measurement times. We demonstrate herein, how the enhanced NMR sensitivity provided by SABRE hyperpolarization allows DOSY analysis of low-micromolar mixtures, thus reducing the concentration requirements by at least 100-fold. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. 1H NMR determination of beta-N-methylamino-L-alanine (L-BMAA) in environmental and biological samples.

    PubMed

    Moura, Sidnei; Ultramari, Mariah de Almeida; de Paula, Daniela Mendes Louzada; Yonamine, Mauricio; Pinto, Ernani

    2009-04-01

    A nuclear magnetic resonance (1H NMR) method for the determination of beta-N-methylamino-L-alanine (L-BMAA) in environmental aqueous samples was developed and validated. L-BMAA is a neurotoxic modified amino acid that can be produced by cyanobacteria in aqueous environments. This toxin was extracted from samples by means of solid-phase extraction (SPE) and identified and quantified by 1H NMR without further derivatization steps. The lower limit of quantification (LLOQ) was 5 microg/mL. Good inter and intra-assay precision was also observed (relative standard deviation <8.5%) with the use of 4-nitro-DL-phenylalanine as an internal standard (IS). This method of 1H NMR analysis is not time consuming and can be readily utilized to monitor L-BMAA and confirm its presence in environmental and biological samples.

  14. Unusual open chain quinolinyl peroxol and its alcohol counterpart obtained through a modified Skraup-Doebner-Von Miller quinoline synthesis: theoretical studies and complete (1) H- and (13) C-NMR assignments.

    PubMed

    Fotie, Jean; Kemami Wangun, Hilaire V; Dreux, Katelyn; Sommerfeld, Thomas; Pittman, Jacob

    2012-01-01

    Because of their extreme instability, it is generally difficult to synthesize and fully characterize open chain peroxides, also known as peroxols. In our attempt to investigate the mechanism of the Skraup-Doebner-Von Miller quinoline synthesis, we were able to obtain an unusual open chain peroxy-quinoline, namely, 4-(8-ethoxy-2,3-dihydro-1H-cyclopenta[c]quinolin-4-yl)butane-1-peroxol (1), and its alcohol counterpart, namely 4-(8-ethoxy-2,3-dihydro-1H-cyclopenta[c]quinolin-4-yl)butan-1-ol (2) obtained as a side product during the same reaction. Although structurally similar, these two compounds appeared to display some very distinct physical and spectroscopic characteristics. This work reports detailed NMR studies and full (1) H and (13)  C NMR assignments for these two compounds. These assignments are based upon the analysis of the NMR spectra of these compounds including (1) H, (13)  C, COSY, gHSQC and gHMBC. The effect of the peroxide functional group on the chemical shift of neighboring carbons and protons was also investigated by comparing the NMR data of these two compounds. Furthermore, the effects of potential hydrogen bondings in 1, 2, and possible 1-1 dimer, 2-2 dimer and in prototypical model systems, as well as the stability of these compounds, were investigated computationally. The computed dissociation energies and NMR data support the interpretation of the experimental data. Copyright © 2012 John Wiley & Sons, Ltd.

  15. Physicochemical properties of liposomes as potential anticancer drugs carriers. Interaction of etoposide and cytarabine with the membrane: Spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Pentak, Danuta

    2014-03-01

    The interactions between etoposide, cytarabine and 1,2-dihexadecanoyl-sn-glycerol-3-phosphocholine bilayers were studied using differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR). These techniques have proven to be a very powerful tool in studying the structure and dynamics of phospholipid bilayers. In particular, DSC can provide information on the phase transition temperature and cooperativity of the lipid molecules in the absence and presence of the drug. Vibrational spectroscopy is well suited to the study of drug-lipid interactions, since it allows for an investigation of the conformation of phospholipid molecules at different levels in lipid bilayers and follows structural changes that occur during the gel to liquid-crystalline phase transition. NMR supported the determination of the main phase transition temperatures (TC) of 1,2-dihexadecanoyl-sn-glycerol-3-phosphocholine (DPPC). The main phase transition temperature (TC) determined by 1H NMR is comparable with values obtained by DSC for all studied liposomes. The location of cytarabine and etoposide in liposomes was also determined by NMR. Atomic force microscopy (AFM) images, acquired immediately after sample deposition on a mica surface, revealed the spherical shape of lipid vesicles.

  16. Solid and solution NMR studies of the complexation of Ag + with the trans isomer of captopril: Biological activities of this high blood pressure drug along with its Ag + complex

    NASA Astrophysics Data System (ADS)

    Isab, Anvarhusein A.; Wazeer, Mohamed I. M.

    2006-09-01

    Complexation of Ag + with captopril, 1-[(2 S)-3-mercapto-2-methylpropionyl]- L-proline, has been studied by 1H and 13C-NMR spectroscopy. The equilibrium constants for the trans to cis isomers of captopril bound to Ag + were measured by 1H NMR spectroscopy. It is observed that the trans isomer of the drug binds more strongly to Ag + between pH 5 and 8, as shown by the broadening of the trans isomer's resonances in 13C NMR spectra on complexation. A monodentate complexation of the trans captopril with Ag + via the thiol site is proposed based on the solid-state NMR and IR data. A superior antimicrobial activity is exhibited by the Cap-Ag(I) complex compared to captopril ligand itself against Heterotrotropic Plate Counts (HPC), Pseudomonas aeruginosa and Fecal streptococcus bacteria.

  17. Transformations of the chemical compositions of high molecular weight DOM along a salinity transect: Using two dimensional correlation spectroscopy and principal component analysis approaches

    NASA Astrophysics Data System (ADS)

    Abdulla, Hussain A. N.; Minor, Elizabeth C.; Dias, Robert F.; Hatcher, Patrick G.

    2013-10-01

    In a study of chemical transformations of estuarine high-molecular-weight (HMW, >1000 Da) dissolved organic matter (DOM) collected over a period of two years along a transect through the Elizabeth River/Chesapeake Bay system to the coastal Atlantic Ocean off Virginia, USA, δ13C values, N/C ratios, and principal component analysis (PCA) of the solid-state 13C NMR (nuclear magnetic resonance) spectra of HMW-DOM show an abrupt change in both its sources and chemical structural composition occurring around salinity 20. HMW-DOM in the lower salinity region had lighter isotopic values, higher aromatic and lower carbohydrate contents relative to that in the higher salinity region. These changes around a salinity of 20 are possibly due to introduction of a significant amount of new carbon (autotrophic DOM) to the transect. PC-1 loadings plot shows that spatially differing DOM components are similar to previously reported 13C NMR spectra of heteropolysaccharides (HPS) and carboxyl-rich alicyclic molecules (CRAM). Applying two dimensional correlation spectroscopy techniques to 1H NMR spectra from the same samples reveals increases in the contribution of N-acetyl amino sugars, 6-deoxy sugars, and sulfated polysaccharides to HPS components along the salinity transect, which suggests a transition from plant derived carbohydrates to marine produced carbohydrates within the HMW-DOM pool. In contrast to what has been suggested previously, our combined results from 13C NMR, 1H NMR, and FTIR indicate that CRAM consists of at least two different classes of compounds (aliphatic polycarboxyl compounds and lignin-like compounds).

  18. 1H-NMR, 1H-NMR T2-edited, and 2D-NMR in bipolar disorder metabolic profiling.

    PubMed

    Sethi, Sumit; Pedrini, Mariana; Rizzo, Lucas B; Zeni-Graiff, Maiara; Mas, Caroline Dal; Cassinelli, Ana Cláudia; Noto, Mariane N; Asevedo, Elson; Cordeiro, Quirino; Pontes, João G M; Brasil, Antonio J M; Lacerda, Acioly; Hayashi, Mirian A F; Poppi, Ronei; Tasic, Ljubica; Brietzke, Elisa

    2017-12-01

    The objective of this study was to identify molecular alterations in the human blood serum related to bipolar disorder, using nuclear magnetic resonance (NMR) spectroscopy and chemometrics. Metabolomic profiling, employing 1 H-NMR, 1 H-NMR T 2 -edited, and 2D-NMR spectroscopy and chemometrics of human blood serum samples from patients with bipolar disorder (n = 26) compared with healthy volunteers (n = 50) was performed. The investigated groups presented distinct metabolic profiles, in which the main differential metabolites found in the serum sample of bipolar disorder patients compared with those from controls were lipids, lipid metabolism-related molecules (choline, myo-inositol), and some amino acids (N-acetyl-L-phenyl alanine, N-acetyl-L-aspartyl-L-glutamic acid, L-glutamine). In addition, amygdalin, α-ketoglutaric acid, and lipoamide, among other compounds, were also present or were significantly altered in the serum of bipolar disorder patients. The data presented herein suggest that some of these metabolites differentially distributed between the groups studied may be directly related to the bipolar disorder pathophysiology. The strategy employed here showed significant potential for exploring pathophysiological features and molecular pathways involved in bipolar disorder. Thus, our findings may contribute to pave the way for future studies aiming at identifying important potential biomarkers for bipolar disorder diagnosis or progression follow-up.

  19. A Novel MHC-I Surface Targeted for Binding by the MCMV m06 Immunoevasin Revealed by Solution NMR.

    PubMed

    Sgourakis, Nikolaos G; May, Nathan A; Boyd, Lisa F; Ying, Jinfa; Bax, Ad; Margulies, David H

    2015-11-27

    As part of its strategy to evade detection by the host immune system, murine cytomegalovirus (MCMV) encodes three proteins that modulate cell surface expression of major histocompatibility complex class I (MHC-I) molecules: the MHC-I homolog m152/gp40 as well as the m02-m16 family members m04/gp34 and m06/gp48. Previous studies of the m04 protein revealed a divergent Ig-like fold that is unique to immunoevasins of the m02-m16 family. Here, we engineer and characterize recombinant m06 and investigate its interactions with full-length and truncated forms of the MHC-I molecule H2-L(d) by several techniques. Furthermore, we employ solution NMR to map the interaction footprint of the m06 protein on MHC-I, taking advantage of a truncated H2-L(d), "mini-H2-L(d)," consisting of only the α1α2 platform domain. Mini-H2-L(d) refolded in vitro with a high affinity peptide yields a molecule that shows outstanding NMR spectral features, permitting complete backbone assignments. These NMR-based studies reveal that m06 binds tightly to a discrete site located under the peptide-binding platform that partially overlaps with the β2-microglobulin interface on the MHC-I heavy chain, consistent with in vitro binding experiments showing significantly reduced complex formation between m06 and β2-microglobulin-associated MHC-I. Moreover, we carry out NMR relaxation experiments to characterize the picosecond-nanosecond dynamics of the free mini-H2-L(d) MHC-I molecule, revealing that the site of interaction is highly ordered. This study provides insight into the mechanism of the interaction of m06 with MHC-I, suggesting a structural manipulation of the target MHC-I molecule at an early stage of the peptide-loading pathway. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Nuclear magnetic resonance, vibrational spectroscopic studies, physico-chemical properties and computational calculations on (nitrophenyl) octahydroquinolindiones by DFT method.

    PubMed

    Pasha, M A; Siddekha, Aisha; Mishra, Soni; Azzam, Sadeq Hamood Saleh; Umapathy, S

    2015-02-05

    In the present study, 2'-nitrophenyloctahydroquinolinedione and its 3'-nitrophenyl isomer were synthesized and characterized by FT-IR, FT-Raman, (1)H NMR and (13)C NMR spectroscopy. The molecular geometry, vibrational frequencies, (1)H and (13)C NMR chemical shift values of the synthesized compounds in the ground state have been calculated by using the density functional theory (DFT) method with the 6-311++G (d,p) basis set and compared with the experimental data. The complete vibrational assignments of wave numbers were made on the basis of potential energy distribution using GAR2PED programme. Isotropic chemical shifts for (1)H and (13)C NMR were calculated using gauge-invariant atomic orbital (GIAO) method. The experimental vibrational frequencies, (1)H and (13)C NMR chemical shift values were found to be in good agreement with the theoretical values. On the basis of vibrational analysis, molecular electrostatic potential and the standard thermodynamic functions have been investigated. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. (13)C NMR substituent-induced chemical shifts in 4-(substituted phenyl)-3-phenyl-1,2,4-oxadiazol-5(4H)-ones (thiones).

    PubMed

    Kara, Yesim Saniye

    2015-01-01

    In the present, study mostly novel ten 4-(substituted phenyl)-3-phenyl-1,2,4-oxadiazol-5(4H)-ones and ten 4-(substituted phenyl)-3-phenyl-1,2,4-oxadiazol-5(4H)-thiones were synthesized. These oxadiazole derivatives were characterized by IR, (1)H NMR, (13)C NMR and elemental analyses. Their (13)C NMR spectra were measured in Deuterochloroform (CDCl3). The correlation analysis for the substituent-induced chemical shift (SCS) with Hammett substituent constants (σ), Brown Okamoto substituent constants (σ(+), σ(-)), inductive substituent constants (σI) and different of resonance substituent constants (σR, σR(o)) were performed using SSP (single substituent parameter), DSP (dual substituent parameter) and DSP-NLR (dual substituent parameter-non-linear resonance) methods, as well as single and multiple regression analysis. Negative ρ values were found for all correlations (reverse substituent effect). The results of all statistical analyses, (13)C NMR chemical shift of CN, CO and CS carbon of oxadiazole rings have shown satisfactory correlation. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Synthesis, characterization, and pharmacological studies of ferrocene-1H-1,2,3-triazole hybrids

    NASA Astrophysics Data System (ADS)

    Haque, Ashanul; Hsieh, Ming-Fa; Hassan, Syed Imran; Haque Faizi, Md. Serajul; Saha, Anannya; Dege, Necmi; Rather, Jahangir Ahmad; Khan, Muhammad S.

    2017-10-01

    A series of ferrocene-1H-1,2,3-triazole hybrids namely 1-(4-nitrophenyl)-4-ferrocenyl-1H-1,2,3-triazole (1), 1-(4,4‧-dinitro-2-biphenyl)-4-ferrocenyl-1H-1,2,3-triazole (2), 1-(3-chloro-4-fluorophenyl)-4-ferrocenyl-1H-1,2,3-triazole (3), 1-(4-bromophenyl)-4-ferrocenyl-1H-1,2,3-triazole (4) and 1-(2-nitrophenyl)-4-ferrocenyl-1H-1,2,3-triazole (5) were designed and synthesized by copper-catalyzed azide alkyne cycloaddition (CuAAC) reaction. All the new hybrids were characterized by microanalyses, NMR (1H and 13C), UV-vis, IR, ESI-MS and electrochemical techniques. Crystal structure of the compound (3) was solved by single crystal X-ray diffraction method. The structural (single crystal) and spectroscopic (UV-Vis. and IR) properties of the compound 3 have been analyzed and compared by complementary quantum modeling. Hybrids 1-5 exhibited low toxicity and demonstrated neuroprotective effect.

  3. Operation of a 500 MHz high temperature superconducting NMR: towards an NMR spectrometer operating beyond 1 GHz.

    PubMed

    Yanagisawa, Y; Nakagome, H; Tennmei, K; Hamada, M; Yoshikawa, M; Otsuka, A; Hosono, M; Kiyoshi, T; Takahashi, M; Yamazaki, T; Maeda, H

    2010-04-01

    We have begun a project to develop an NMR spectrometer that operates at frequencies beyond 1 GHz (magnetic field strength in excess of 23.5 T) using a high temperature superconductor (HTS) innermost coil. As the first step, we developed a 500 MHz NMR with a Bi-2223 HTS innermost coil, which was operated in external current mode. The temporal magnetic field change of the NMR magnet after the coil charge was dominated by (i) the field fluctuation due to a DC power supply and (ii) relaxation in the screening current in the HTS tape conductor; effect (i) was stabilized by the 2H field-frequency lock system, while effect (ii) decreased with time due to relaxation of the screening current induced in the HTS coil and reached 10(-8)(0.01 ppm)/h on the 20th day after the coil charge, which was as small as the persistent current mode of the NMR magnet. The 1D (1)H NMR spectra obtained by the 500 MHz LTS/HTS magnet were nearly equivalent to those obtained by the LTS NMR magnet. The 2D-NOESY, 3D-HNCO and 3D-HNCACB spectra were achieved for ubiquitin by the 500 MHz LTS/HTS magnet; their quality was closely equivalent to that achieved by a conventional LTS NMR. Based on the results of numerical simulation, the effects of screening current-induced magnetic field changes are predicted to be harmless for the 1.03 GHz NMR magnet system. 2010 Elsevier Inc. All rights reserved.

  4. Elucidating proline dynamics in spider dragline silk fibre using 2H-13C HETCOR MAS NMR.

    PubMed

    Shi, Xiangyan; Yarger, Jeffery L; Holland, Gregory P

    2014-05-14

    (2)H-(13)C HETCOR MAS NMR is performed on (2)H/(13)C/(15)N-Pro enriched A. aurantia dragline silk. Proline dynamics are extracted from (2)H NMR line shapes and T1 in a site-specific manner to elucidate the backbone and side chain molecular dynamics for the MaSp2 GPGXX β-turn regions for spider dragline silk in the dry and wet, supercontracted states.

  5. In situ observations of water production and distribution in an operating H2/O2 PEM fuel cell assembly using 1H NMR microscopy.

    PubMed

    Feindel, Kirk W; LaRocque, Logan P-A; Starke, Dieter; Bergens, Steven H; Wasylishen, Roderick E

    2004-09-22

    Proton NMR imaging was used to investigate in situ the distribution of water in a polymer electrolyte membrane fuel cell operating on H2 and O2. In a single experiment, water was monitored in the gas flow channels, the membrane electrode assembly, and in the membrane surrounding the catalysts. Radial gradient diffusion removes water from the catalysts into the surrounding membrane. This research demonstrates the strength of 1H NMR microscopy as an aid for designing fuel cells to optimize water management.

  6. Comparison of the substituent effects on the (13) C NMR with the (1) H NMR chemical shifts of CH=N in substituted benzylideneanilines.

    PubMed

    Wang, Linyan; Cao, Chaotun; Cao, Chenzhong

    2015-07-01

    Fifty-two samples of substituted benzylideneanilines XPhCH=NPhYs (XBAYs) were synthesized, and their NMR spectra were determined in this paper. Together with the NMR data of other 77 samples of XBAYs quoted from literatures, the (1) H NMR chemical shifts (δH (CH=N)) and (13) C NMR chemical shifts (δC (CH=N)) of the CH=N bridging group were investigated for total of 129 samples of XBAYs. The result shows that the δH (CH=N) and δC (CH=N) have no distinctive linear relationship, which is contrary to the theoretical thought that declared the δH (CH=N) values would increase as the δC (CH=N) values increase. With the in-depth analysis, we found that the effects of σF and σR of X/Y group on the δH (CH=N) and the δC (CH=N) are opposite; the effects of the substituent specific cross-interaction effect between X and Y (Δσ(2) ) on the δH (CH=N) and the δC (CH=N) are different; the contributions of parameters in the regression equations of the δH (CH=N) and the δC (CH=N) [Eqns and 7), respectively] also have an obvious difference. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Synthesis and dynamic 1H NMR study of pyrazolo substituted pyrrolo[2,3-d]pyrimidines via a regioselective heterocyclization

    NASA Astrophysics Data System (ADS)

    Bayat, Mohammad; Nasri, Shima

    2018-02-01

    A new series of pyrrolo[2,3-d]pyrimidine derivatives substituted with pyrazolone were designed and prepared, by the three-component reaction of pyrazolone derivatives, arylglyoxal and 6-aminouracil derivatives in ethanol at reflux. The direction of heterocyclization has confirmed and the structure of final products were identified spectroscopically (IR, 1H- and 13C-NMR, and EI-MS). The significant advantages of this protocol include simplicity, regioselectivity, existence of numerous hydrogen bonding possibilities in product, good yields and catalyst-free approach. When the uracil is 6-amino-1,3-dimethyluracil, the product exists as two tautomers at room temperature. The dynamic NMR effects are observed in the 1H NMR spectra. The calculated free-energy of activation (ΔG≠) for prototropic tautomerism is about 68 ± 2 kJ mol-1.

  8. Oxidative degradation of silica-supported polyethylenimine for CO2 adsorption: insights into the nature of deactivated species.

    PubMed

    Ahmadalinezhad, Asieh; Sayari, Abdelhamid

    2014-01-28

    The oxidative degradation of polyethylenimine-impregnated mesoporous SBA-15 silica for CO2 capture was investigated at the molecular level. The adsorbents were exposed to flowing air at different temperatures, and their degree of deactivation was evaluated through the measurement of CO2 adsorption capacity prior and subsequent to air exposure. A solvent-extraction method was employed to isolate the deactivated species from the silica support. The extracted species were investigated by a variety of 1D and 2D NMR techniques such as (13)C, (1)H, (1)H-(15)N HMBC, (1)H-(13)C HMQC, and (1)H-(13)C HMBC. This in-depth investigation showed that they contain predominantly fragments involving imine and carbonyl groups. Several structural units were conclusively established.

  9. Ab initio/GIAO-CCSD(T) study of structures, energies, and 13C NMR chemical shifts of C4H7(+) and C5H9(+) ions: relative stability and dynamic aspects of the cyclopropylcarbinyl vs bicyclobutonium ions.

    PubMed

    Olah, George A; Surya Prakash, G K; Rasul, Golam

    2008-07-16

    The structures and energies of the carbocations C 4H 7 (+) and C 5H 9 (+) were calculated using the ab initio method. The (13)C NMR chemical shifts of the carbocations were calculated using the GIAO-CCSD(T) method. The pisigma-delocalized bisected cyclopropylcarbinyl cation, 1 and nonclassical bicyclobutonium ion, 2 were found to be the minima for C 4H 7 (+) at the MP2/cc-pVTZ level. At the MP4(SDTQ)/cc-pVTZ//MP2/cc-pVTZ + ZPE level the structure 2 is 0.4 kcal/mol more stable than the structure 1. The (13)C NMR chemical shifts of 1 and 2 were calculated by the GIAO-CCSD(T) method. Based on relative energies and (13)C NMR chemical shift calculations, an equilibrium involving the 1 and 2 in superacid solutions is most likely responsible for the experimentally observed (13)C NMR chemical shifts, with the latter as the predominant equilibrating species. The alpha-methylcyclopropylcarbinyl cation, 4, and nonclassical bicyclobutonium ion, 5, were found to be the minima for C 5H 9 (+) at the MP2/cc-pVTZ level. At the MP4(SDTQ)/cc-pVTZ//MP2/cc-pVTZ + ZPE level ion 5 is 5.9 kcal/mol more stable than the structure 4. The calculated (13)C NMR chemical shifts of 5 agree rather well with the experimental values of C 5H 9 (+).

  10. Synthesis of hetero annulated isoxazolo-, pyrido- and pyrimido carbazoles: Screened for in vitro antitumor activity and structure activity relationships, a novel 2-amino-4-(3'-bromo-4'-methoxyphenyl)-8-chloro-11H-pyrimido[4,5-a]carbazole as an antitumor agent.

    PubMed

    Murali, Karunanidhi; Sparkes, Hazel A; Rajendra Prasad, Karnam Jayarampillai

    2017-03-10

    Claisen-Schmidt condensation of 2,3,4,9-tetrahydro-1H-carbazol-1-one with 3-bromo-4-methoxy benzaldehyde afforded the 2-(3'-bromo-4'-methoxybenzylidene)-2,3,4,9-tetrahydro-1H-carbazol-1-one 3. Compound 3 was allowed to react with different organic reactants, hydroxylamine hydrochloride, malononitrile and guanidine nitrate through condensation cum cycloaddition reactions to afford a series of the respective novel hetero annulated carbazoles such as isoxazolo-, pyrido- and pyrimido carbazoles. The structures of the compounds were established by FT-IR, 1 H NMR, 13 C NMR, X-ray diffraction and elemental analysis. The compounds have been screened for in vitro anti-tumor activity by MTT assay and displayed enviable selective growth inhibition on MCF-7 cell line compared to A-549 cell line. Apoptotic morphological changes in MCF-7 and A-549 cells were visualized using fluorescent microscopic technique. The preliminary structure activity relationships were also carried out. Data pointed out that among pyrimido carbazole compounds, 2-amino-4-(3'-bromo-4'-methoxyphenyl)-8-chloro-11H-pyrimido [4,5-a]carbazole could be exploited as an excellent therapeutic drug against cancer cell proliferation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Unraveling the polymorphism of [(p-cymene)Ru(κN-INA)Cl₂] through dispersion-corrected DFT and NMR GIPAW calculations.

    PubMed

    Presti, Davide; Pedone, Alfonso; Menziani, Maria Cristina

    2014-08-04

    The structural and (13)C/(1)H NMR parameters of the four crystal forms (1α, 1·H2O, 1β, and 1γ) of the solid wheel-and-axle (WAA) metal-organic compound [(p-cymene)Ru(κN-INA)Cl2] have been studied by means of periodic DFT calculations. The quality of the results obtained strongly depends on a correct description of long-range interactions; thus, in the geometry refinement protocol used, the pure DFT functionals need to be coupled with a dispersion-correction term (B3LYP-D2, B3LYP-D*). The solid-state (13)C/(1)H NMR δ(iso) parameters and (13)C MAS NMR spectra, calculated by means of the PBE-GIPAW method, agree well with the experimental data for the four crystal forms (mean absolute deviations of the (13)C and (1)H δ(iso) data values lie in the ranges 1.3-2.9 and 0.3-1.0 ppm, respectively). In this context, some revisions in the experimental assignment of the (13)C/(1)H NMR δ(iso) parameters of the 1·H2O, 1β, and 1γ crystal forms can be suggested. The mismatch in the assignment seems to be due to the rotation of the -COOH moiety, which occurs at the 1α-1·H2O transition and was not considered in the experiments. Finally, the results obtained suggest the presence of two COOH···Cl hydrogen bonds of comparable strength established by the two molecules in the asymmetric unit of the 1γ polymorph, in partial disagreement with previous findings.

  12. NMR crystallography of 2-acylamino-6-[1 H]-pyridones: Solid-state NMR, GIPAW computational, and single crystal X-ray diffraction studies

    NASA Astrophysics Data System (ADS)

    Ośmiałowski, Borys; Kolehmainen, Erkki; Ikonen, Satu; Ahonen, Kari; Löfman, Miika

    2011-12-01

    2-Acylamino-6-[1 H]-pyridones [acyl = RCO, where R = methyl ( 1), ethyl ( 2), iso-propyl ( 3), tert-butyl ( 4), and 1-adamantyl ( 5)] have been synthesized and characterized by NMR spectroscopy. From three congeners, 2, 3 and 5, also single crystal X-ray structures have been solved. For these derivatives GIPAW calculations acts as a "bridge" between solid-state NMR data and calculated chemical shifts based on X-ray determined geometry. In crystals all three compounds exist as pyridone tautomers possessing similar six-membered ring structure stabilized by intramolecular C dbnd O⋯HN hydrogen bond. Theoretical GIPAW calculated and experimental 13C and 15N CPMAS NMR shifts are in excellent agreement with each other.

  13. Towards Single Biomolecule Imaging via Optical Nanoscale Magnetic Resonance Imaging.

    PubMed

    Boretti, Alberto; Rosa, Lorenzo; Castelletto, Stefania

    2015-09-09

    Nuclear magnetic resonance (NMR) spectroscopy is a physical marvel in which electromagnetic radiation is charged and discharged by nuclei in a magnetic field. In conventional NMR, the specific nuclei resonance frequency depends on the strength of the magnetic field and the magnetic properties of the isotope of the atoms. NMR is routinely utilized in clinical tests by converting nuclear spectroscopy in magnetic resonance imaging (MRI) and providing 3D, noninvasive biological imaging. While this technique has revolutionized biomedical science, measuring the magnetic resonance spectrum of single biomolecules is still an intangible aspiration, due to MRI resolution being limited to tens of micrometers. MRI and NMR have, however, recently greatly advanced, with many breakthroughs in nano-NMR and nano-MRI spurred by using spin sensors based on an atomic impurities in diamond. These techniques rely on magnetic dipole-dipole interactions rather than inductive detection. Here, novel nano-MRI methods based on nitrogen vacancy centers in diamond are highlighted, that provide a solution to the imaging of single biomolecules with nanoscale resolution in-vivo and in ambient conditions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Proton Environments in Biomimetic Calcium Phosphates Formed from Mesoporous Bioactive CaO–SiO2–P2O5 Glasses in Vitro: Insights from Solid-State NMR

    PubMed Central

    2017-01-01

    When exposed to body fluids, mesoporous bioactive glasses (MBGs) of the CaO–SiO2–P2O5 system develop a bone-bonding surface layer that initially consists of amorphous calcium phosphate (ACP), which transforms into hydroxy-carbonate apatite (HCA) with a very similar composition as bone/dentin mineral. Information from various 1H-based solid-state nuclear magnetic resonance (NMR) experiments was combined to elucidate the evolution of the proton speciations both at the MBG surface and within each ACP/HCA constituent of the biomimetic phosphate layer formed when each of three MBGs with distinct Ca, Si, and P contents was immersed in a simulated body fluid (SBF) for variable periods between 15 min and 30 days. Directly excited magic-angle-spinning (MAS) 1H NMR spectra mainly reflect the MBG component, whose surface is rich in water and silanol (SiOH) moieties. Double-quantum–single-quantum correlation 1H NMR experimentation at fast MAS revealed their interatomic proximities. The comparatively minor H species of each ACP and HCA component were probed selectively by heteronuclear 1H–31P NMR experimentation. The initially prevailing ACP phase comprises H2O and “nonapatitic” HPO42–/PO43– groups, whereas for prolonged MBG soaking over days, a well-progressed ACP → HCA transformation was evidenced by a dominating O1H resonance from HCA. We show that 1H-detected 1H → 31P cross-polarization NMR is markedly more sensitive than utilizing powder X-ray diffraction or 31P NMR for detecting the onset of HCA formation, notably so for P-bearing (M)BGs. In relation to the long-standing controversy as to whether bone mineral comprises ACP and/or forms via an ACP precursor, we discuss a recently accepted structural core–shell picture of both synthetic and biological HCA, highlighting the close relationship between the disordered surface layer and ACP. PMID:28663772

  15. Metabolic studies with NMR spectroscopy of the alga Dunaliella salina trapped within agarose beads.

    PubMed

    Bental, M; Pick, U; Avron, M; Degani, H

    1990-02-22

    A technique for the entrapment of the unicellular algae Dunaliella salina in agarose beads and their perfusion during NMR measurements is presented. The trapped cells maintained their ability to proliferate under normal growth conditions, and remained viable and stable under steady-state conditions for long periods during NMR measurements. Following osmotic shock in the dark, prominent changes were observed in the intracellular level of ATP and polyphosphates, but little to no changes in the intracellular pH or orthoposphate content. When cells were subjected to hyperosmotic shock, the ATP level decreased. The content of NMR-visible polyphosphates decreased as well, presumably due to the production of longer, NMR-invisible structures. Following hypoosmotic shock, the ATP content increased and longer polyphosphates were broken down to shorter, more mobile polymers.

  16. An Enzyme Kinetics Experiment for the Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Olsen, Robert J.; Olsen, Julie A.; Giles, Greta A.

    2010-01-01

    An experiment using [superscript 1]H NMR spectroscopy to observe the kinetics of the acylase 1-catalyzed hydrolysis of "N"-acetyl-DL-methionine has been developed for the organic laboratory. The L-enantiomer of the reactant is hydrolyzed completely in less than 2 h, and [superscript 1]H NMR spectroscopic data from a single sample can be worked up…

  17. A complete 1H and 13C NMR data assignment for the diterpene methyl (-)-zanzibarate by 2D spectroscopy and NOE experiments.

    PubMed

    Imamura, P M; Miranda, P C M L; Giacomini, R A

    2004-06-01

    The 1H and 13C NMR spectra of methyl (-)-zanzibarate (1), an ent-labdanic diterpene isolated from the epicarp of Hymenaea courbaril var. altissima (Leguminosaea, Cesalpinoideae, Detariae), was fully assigned by COSY experiments, 13C/1H shift correlation diagrams and NOE experiments. Copyright 2004 John Wiley & Sons, Ltd.

  18. Use of NMR-Based Metabolomics To Chemically Characterize the Roasting Process of Chicory Root.

    PubMed

    Wei, Feifei; Furihata, Kazuo; Zhang, Mimin; Miyakawa, Takuya; Tanokura, Masaru

    2016-08-16

    Roasted chicory root (Cichorium intybus) has been widely accepted as the most important coffee substitute. In this study, a nuclear magnetic resonance (NMR)-based comprehensive analysis was performed to monitor the substantial changes in the composition of chicory root during the roasting process. A detailed signal assignment of dried raw and roasted chicory roots was carried out using 1 H, 13 C, 1 H- 1 H DQF-COSY, 1 H- 13 C edited-HSQC, 1 H- 13 C CT-HMBC, and 1 H- 13 C HSQC-TOCSY NMR spectra. On the basis of the signal assignments, 36 NMR-visible components were monitored simultaneously during roasting. Inulins, sucrose, and most of the amino acids were largely degraded during the roasting process, whereas monosaccharides decreased at the beginning and then increased until the dark roasting stage. Acetamide, 5-hydroxymethylfurfural, di-d-fructose dianhydride, and norfuraneol were newly formed during roasting. Furthermore, a principal component analysis score plot indicated that similar chemical composition profiles could be achieved by roasting the chicory root either at a higher firepower for a shorter time or at a lower firepower for a longer time.

  19. NMR imaging of density distributions in tablets.

    PubMed

    Djemai, A; Sinka, I C

    2006-08-17

    This paper describes the use of (1)H nuclear magnetic resonance (NMR) for 3D mapping of the relative density distribution in pharmaceutical tablets manufactured under controlled conditions. The tablets are impregnated with a compatible liquid. The technique involves imaging of the presence of liquid which occupies the open pore space. The method does not require special calibration as the signal is directly proportional to the porosity for the imaging conditions used. The NMR imaging method is validated using uniform density flat faced tablets and also by direct comparison with X-ray computed tomography. The results illustrate (1) the effect of die wall friction on density distribution by compressing round, curved faced tablets using clean and pre-lubricated tooling, (2) the evolution of density distribution during compaction for both clean and pre-lubricated die wall conditions, by imaging tablets compressed to different compaction forces, and (3) the effect of tablet image on density distribution by compressing two complex shape tablets in identical dies to the same average density using punches with different geometries.

  20. Facilitated Visual Interpretation of Scores in Principal Component Analysis by Bioactivity-Labeling of 1H-NMR Spectra-Metabolomics Investigation and Identification of a New α-Glucosidase Inhibitor in Radix Astragali.

    PubMed

    Liu, Yueqiu; Nyberg, Nils T; Jäger, Anna K; Staerk, Dan

    2017-03-06

    Radix Astragali is a component of several traditional medicines used for the treatment of type 2 diabetes in China. Radix Astragali is known to contain isoflavones, which inhibit α-glucosidase in the small intestines, and thus lowers the blood glucose levels. In this study, 21 samples obtained from different regions of China were extracted with ethyl acetate, then the IC50-values were determined, and the crude extracts were analyzed by 1H-NMR spectroscopy. A principal component analysis of the 1H-NMR spectra labeled with their IC50-values, that is, bioactivity-labeled 1H-NMR spectra, showed a clear correlation between spectral profiles and the α-glucosidase inhibitory activity. The loading plot and LC-HRMS/NMR of microfractions indicated that previously unknown long chain ferulates could be partly responsible for the observed antidiabetic activity of Radix Astragali. Subsequent preparative scale isolation revealed a compound not previously reported, linoleyl ferulate (1), showing α-glucosidase inhibitory activity (IC50 0.5 mM) at a level comparable to the previously studied isoflavones. A closely related analogue, hexadecyl ferulate (2), did not show significant inhibitory activity, and the double bonds in the alcohol part of 1 seem to be important structural features for the α-glucosidase inhibitory activity. This proof of concept study demonstrates that bioactivity-labeling of the 1H-NMR spectral data of crude extracts allows global and nonselective identification of individual constituents contributing to the crude extract's bioactivity.

  1. Study on 1H-NMR fingerprinting of Rhodiolae Crenulatae Radix et Rhizoma.

    PubMed

    Wen, Shi-yuan; Zhou, Jiang-tao; Chen, Yan-yan; Ding, Li-qin; Jiang, Miao-miao

    2015-07-01

    Nuclear magnetic resonance (1H-NMR) fingerprint of Rhodiola rosea medicinal materials was established, and used to distinguish the quality of raw materials from different sources. Pulse sequence for water peak inhibition was employed to acquire 1H-NMR spectra with the temperature at 298 K and spectrometer frequency of 400.13 MHz. Through subsection integral method, the obtained NMR data was subjected to similarity analysis and principal component analysis (PCA). 10 batches raw materials of Rhodiola rosea from different origins were successfully distinguished by PCA. The statistical results indicated that rhodiola glucoside, butyl alcohol, maleic acid and alanine were the main differential ingredients. This method provides an auxiliary method of Chinese quality approach to evaluate the quality of Rhodiola crenulata without using natural reference substances.

  2. FTIR, magnetic, 1H NMR spectral and thermal studies of some chelates of caproic acid: inhibitory effect on different kinds of bacteria.

    PubMed

    Refat, Moamen S; El-Korashy, Sabry A; Kumar, Deo Nandan; Ahmed, Ahmed S

    2008-06-01

    A convenient method for the preparation of complexes of the Cr3+, Mn2+, Fe3+, Co2+, Ni2+, Zn2+, ZrO2+, UO2(2+), Zr4+ and Th4+ ions with caproic acid (Hcap) is reported and this has enabled 10 complexes of caproate anion to be formulated: [Cr(cap)3].5H2O, [Mn(cap)2(H2O)2], [Fe(cap)3].12H2O, [Co(cap)2(H2O)2].4H2O, [Ni(cap)2(H2O)2].3H2O, [Zn(cap)2], [ZrO(cap)2].3H2O, [UO2(cap)(NO3)], [Zr(cap)2(Cl)2] and [Th(cap)4]. These new complexes were synthesized and characterized by elemental analysis, molar conductivity, magnetic measurements, spectral methods (mid infrared, 1H NMR and UV-vis spectra) and simultaneous thermal analysis (TG and DTG) techniques. It has been found from the elemental analysis as well as thermal studies that the caproate ligand behaves as bidentate ligand and forming chelates with 1:1 (metal:ligand) stoichiometry for UO2(2+), 1:2 for (Mn2+, Co2+, Ni2+, Zn2+, ZrO2+ and Zr4+), 1:3 stoichiometry for (Cr3+ and Fe3+) and 1:4 for Th4+ caproate complexes, respectively, as bidentate chelating. The molar conductance measurements proved that the caproate complexes are non-electrolytes. The kinetic thermodynamic parameters such as: E*, DeltaH*, DeltaS* and DeltaG* are estimated from the DTG curves. The antibacterial activity of the caproic acid and their complexes was evaluated against some gram positive/negative bacteria.

  3. Facilitating Students' Review of the Chemistry of Nitrogen-Containing Heterocyclic Compounds and Their Characterization through Multistep Synthesis of Thieno[2,3-"b"]Pyridine Derivatives

    ERIC Educational Resources Information Center

    Liu, Hanlin; Zaplishnyy, Vladimir; Mikhaylichenko, Lana

    2016-01-01

    A multistep synthesis of thieno[2,3-"b"]pyridine derivatives is described that is suitable for the upper-level undergraduate organic laboratory. This experiment exposes students to various hands-on experimental techniques as well as methods of product characterization such as IR and [superscript 1]H NMR spectroscopy, and…

  4. NMR hyperpolarization techniques for biomedicine.

    PubMed

    Nikolaou, Panayiotis; Goodson, Boyd M; Chekmenev, Eduard Y

    2015-02-16

    Recent developments in NMR hyperpolarization have enabled a wide array of new in vivo molecular imaging modalities, ranging from functional imaging of the lungs to metabolic imaging of cancer. This Concept article explores selected advances in methods for the preparation and use of hyperpolarized contrast agents, many of which are already at or near the phase of their clinical validation in patients. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. On the Observation of Discrete Fluorine NMR Spectra for Uridine 5′-β,γ-Fluoromethylenetriphosphate Diastereomers at Basic pH

    PubMed Central

    2015-01-01

    Jakeman et al. recently reported the inability to distinguish the diastereomers of uridine 5′-β,γ-fluoromethylenetriphosphate (β,γ-CHF-UTP, 1) by 19F NMR under conditions we previously prescribed for the resolution of the corresponding β,γ-CHF-dGTP spectra, stating further that 1 decomposed under these basic conditions. Here we show that the 19F NMR spectra of 1 (∼1:1 diastereomer mixture prepared by coupling of UMP-morpholidate with fluoromethylenebis(phosphonic acid)) in D2O at pH 10 are indeed readily distinguishable. 1 in this solution was stable for 24 h at rt. PMID:24819695

  6. Rapid acquisition of data dense solid-state CPMG NMR spectral sets using multi-dimensional statistical analysis

    DOE PAGES

    Mason, H. E.; Uribe, E. C.; Shusterman, J. A.

    2018-01-01

    Tensor-rank decomposition methods have been applied to variable contact time 29 Si{ 1 H} CP/CPMG NMR data sets to extract NMR dynamics information and dramatically decrease conventional NMR acquisition times.

  7. Rapid acquisition of data dense solid-state CPMG NMR spectral sets using multi-dimensional statistical analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mason, H. E.; Uribe, E. C.; Shusterman, J. A.

    Tensor-rank decomposition methods have been applied to variable contact time 29 Si{ 1 H} CP/CPMG NMR data sets to extract NMR dynamics information and dramatically decrease conventional NMR acquisition times.

  8. Synthesis and reactions of C-phosphanylated thiazol-2-thiones.

    PubMed

    Begum, I; Schnakenburg, G; Streubel, R

    2016-02-21

    The facile regioselective synthesis of the P(iii) substituted thiazol-2-thione 2 is presented. Reaction of 2 with hydrogenperoxide-urea, elemental sulfur and selenium resulted in P(v) chalcogenide thiazol-2-thiones 3-5. All compounds were characterized using (31)P, (1)H, (13)C NMR, IR and elemental analyses and, additionally, by the single-crystal X-ray diffraction technique. Oxidative desulfurization of the 5-phosphinoylated thiazol-2-thione 3 using hydrogenperoxide led to the first C-phosphanoyl substituted thiazolium salt (6). Deprotonation of 6 and in situ reaction with the cyclooctadiene rhodium(i) chloride dimer yielded thiazol-2-ylidene rhodium(i) complex 7 which was confirmed by NMR spectroscopy and ESI-MS spectrometry.

  9. Ap4A is not an efficient Zn(II) binding agent. A concerted potentiometric, calorimetric and NMR study.

    PubMed

    Wszelaka-Rylik, Małgorzata; Witkiewicz-Kucharczyk, Aleksandra; Wójcik, Jacek; Bal, Wojciech

    2007-05-01

    Diadenosine 5',5''-P(1)P(4) tetraphosphate (Ap(4)A) has been considered as an intracellular partner for Zn(II). We applied potentiometry, ITC and NMR to study protonation equilibria of Ap(4)A and Zn(II) complexation by this dinucleotide. The values of binding constants obtained by these three techniques under various experimental conditions coherently demonstrated that Ap(4)A binds Zn(II) weakly, with an apparent binding constant of ca. 10(4) at neutral pH. Such a low stability of Zn(II) complexes with Ap(4)A excludes a possibility for interactions between these two agents in vivo.

  10. Phase solubility, 1H NMR and molecular modelling studies of bupivacaine hydrochloride complexation with different cyclodextrin derivates

    NASA Astrophysics Data System (ADS)

    Jug, Mario; Mennini, Natascia; Melani, Fabrizio; Maestrelli, Francesca; Mura, Paola

    2010-11-01

    A novel method, which simultaneously exploits experimental (NMR) and theoretically calculated data obtained by a molecular modelling technique, was proposed, to obtain deeper insight into inclusion geometry and possible stereoselective binding of bupivacaine hydrochloride with selected cyclodextrin derivatives. Sulphobuthylether-β-cyclodextrin and water soluble polymeric β-cyclodextrin demonstrated to be the best complexing agents for the drug, resulting in formation of the most stable inclusion complexes with the highest increase in aqueous drug solubility. The drug-carrier binding modes with these cyclodextrins and phenomena which may be directly related to the higher stability and better aqueous solubility of complexes formed were discussed in details.

  11. Synthesis, spectroscopic characterization and antimicrobial studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes with Schiff bases derived from 5-bromo-salicylaldehyde

    NASA Astrophysics Data System (ADS)

    Kursunlu, Ahmed Nuri; Guler, Ersin; Sevgi, Fatih; Ozkalp, Birol

    2013-09-01

    In this study, the new Schiff base ligands derived from condensation of amine and 5-bromo-salicylaldehyde were characterized. All compounds, the Schiff bases and the metal complexes, were characterized by elemental analyzes, FT-IR, 1H NMR, 13C NMR and magnetic susceptibility measurements. The synthesized ligands, along with their metal (II) complexes, were screened for their in vitro antibacterial activity against four Gram-negative (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Salmonella enteritidis) and four Gram-positive (Streptococcus pyogones, Bacillus cereus, Staphylococcus aureus and Methicillin-resistant S. aureus) bacterial strains by using disc diffusion and broth microdilution techniques.

  12. Structure and transport properties of a plastic crystal ion conductor: diethyl(methyl)(isobutyl)phosphonium hexafluorophosphate.

    PubMed

    Jin, Liyu; Nairn, Kate M; Forsyth, Craig M; Seeber, Aaron J; MacFarlane, Douglas R; Howlett, Patrick C; Forsyth, Maria; Pringle, Jennifer M

    2012-06-13

    Understanding the ion transport behavior of organic ionic plastic crystals (OIPCs) is crucial for their potential application as solid electrolytes in various electrochemical devices such as lithium batteries. In the present work, the ion transport mechanism is elucidated by analyzing experimental data (single-crystal XRD, multinuclear solid-state NMR, DSC, ionic conductivity, and SEM) as well as the theoretical simulations (second moment-based solid static NMR line width simulations) for the OIPC diethyl(methyl)(isobutyl)phosphonium hexafluorophosphate ([P(1,2,2,4)][PF(6)]). This material displays rich phase behavior and advantageous ionic conductivities, with three solid-solid phase transitions and a highly "plastic" and conductive final solid phase in which the conductivity reaches 10(-3) S cm(-1). The crystal structure shows unique channel-like packing of the cations, which may allow the anions to diffuse more easily than the cations at lower temperatures. The strongly phase-dependent static NMR line widths of the (1)H, (19)F, and (31)P nuclei in this material have been well simulated by different levels of molecular motions in different phases. Thus, drawing together of the analytical and computational techniques has allowed the construction of a transport mechanism for [P(1,2,2,4)][PF(6)]. It is also anticipated that utilization of these techniques will allow a more detailed understanding of the transport mechanisms of other plastic crystal electrolyte materials.

  13. Probing intermolecular interactions in a diethylcarbamazine citrate salt by fast MAS 1H solid-state NMR spectroscopy and GIPAW calculations.

    PubMed

    Venâncio, Tiago; Oliveira, Lyege Magalhaes; Ellena, Javier; Boechat, Nubia; Brown, Steven P

    2017-10-01

    Fast magic-angle spinning (MAS) NMR is used to probe intermolecular interactions in a diethylcarbamazine salt, that is widely used as a treatment against adult worms of Wuchereria bancrofti which cause a common disease in tropical countries named filariasis. Specifically, a dihydrogen citrate salt that has improved thermal stability and solubility as compared to the free form is studied. One-dimensional 1 H, 13 C and 15 N and two-dimensional 1 H- 13 C and 14 N- 1 H heteronuclear correlation NMR experiments under moderate and fast MAS together with GIPAW (CASTEP) calculations enable the assignment of the 1 H, 13 C and 14 N/ 15 N resonances. A two-dimensional 1 H- 1 H double-quantum (DQ) -single-quantum (SQ) MAS spectrum recorded with BaBa recoupling at 60kHz MAS identifies specific proton-proton proximities associated with citrate-citrate and citrate-diethylcarbamazine intermolecular interactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Application and Reliability of Solid-State NMR in Environmental Sciences

    NASA Astrophysics Data System (ADS)

    Knicker, Heike

    2010-05-01

    For the characterization of soil organic matter, a suite of analytical approaches are available. Chemical degradative methods involve an extraction scheme with which the soluble part of the mixture is isolated and analyzed by colorimetrical or chromatographic means. Macromolecular structures can be subjected to thermolytic or combined thermochemolytic degradation. Because secondary reactions (rearrangement, cracking, hydrogenation and polymerization) in a heterogeneous mixture cannot be excluded, it is obvious that conclusions regarding the original structure in the macromolecular phase have to be drawn with caution. A powerful alternative represents solid-state nuclear magnetic resonance (NMR) spectroscopy, allowing the examination of the bulk sample without major pre-treatment In environmental sciences, this technique mostly involves the isotope 13C to study the chemical composition of organic matter in soils, sediments or compost to study the temporal development of humic material or chemical alterations due to variation in environmental parameters. Due to its low sensibility solid-state 15N NMR studies on such samples are only found occasionally. The emphasis of solid-state NMR spectroscopy is not only to determine the gross chemical composition of the material under study via a chemical shift assignment but also a quantitative correlation between the different signal intensities and the relative contribution of the respective C or N types to the total organic C or N content. However, despite increasing popularity, this approach is still viewed as mysterious techniques, in particular with respect to quantification. Accordingly, the purpose of this review is to give a short overview on the possibilities and limitations of this technique in environmental science and in particular for the study of soil organic matter. In general, solid-state 13C NMR spectra of soil organic matter are obtained with the cross polarization magic angle spinning (CPMAS) technique. This technique increases the sensitivity of 13C by magnetization transfer from the 1H to the 13C spin system during a contact time tc. However, one has to bear in mind that some molecular properties may obscure quantification. Thus, for carbons with large C-H internuclear distances (bigger than four bonds, i.e in graphite structures) and for C in groups with high molecular mobility (i.e. gas) the proton-dipolar interactions are weakened and the polarization transfer may be incomplete. The observed intensity can also be affected by interactions of the protons with paramagnetic compounds. To circumvent this problem, the samples are often demineralized with hydrofluoric acid. Alternatively, the Bloch decay, a technique in which the 13C is directly excited is used. Here, on the other hand, one has to consider long relaxation times which may lead to saturation effects. Nevertheless, as it will be discussed within the presentation those quantification problems can be solved for most soil samples and then solid-state NMR spectroscopy represents a powerful tool for qualitative and quantitative analysis. Special techniques, such as dipolar dephasing or the proton spin relaxation editing can be used to extract additional information about chemical properties or mobility. A more detailed examination of the cross polarization behavior can be used to analyze the interaction of organic matter and paramagnetics but also for obtaining revealing properties on a molecular level. Applications involving isotopic labeling combined with both 13C and/or 15N NMR allows to follow the fate of a specific compound i.e. in a natural matrix and- if the enrichment is high enough - the use of 2D solid-state NMR techniques. In particular with respect to environmental chemistry, this combination of isotopic labeling with the use of corresponding NMR spectroscopy shows great potential for a better understanding of the kind of interaction between pollutants and natural organic matter.

  15. Computer Code for Interpreting 13C NMR Relaxation Measurements with Specific Models of Molecular Motion: The Rigid Isotropic and Symmetric Top Rotor Models and the Flexible Symmetric Top Rotor Model

    DTIC Science & Technology

    2017-01-01

    unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT: Carbon-13 nuclear magnetic resonance (13C NMR) spectroscopy is a powerful technique for...FLEXIBLE SYMMETRIC TOP ROTOR MODEL 1. INTRODUCTION Nuclear magnetic resonance (NMR) spectroscopy is a tremendously powerful technique for...application of NMR spectroscopy concerns the property of molecular motion, which is related to many physical, and even biological, functions of molecules in

  16. Diazole-based powdered cocrystal featuring a helical hydrogen-bonded network: structure determination from PXRD, solid-state NMR and computer modeling.

    PubMed

    Sardo, Mariana; Santos, Sérgio M; Babaryk, Artem A; López, Concepción; Alkorta, Ibon; Elguero, José; Claramunt, Rosa M; Mafra, Luís

    2015-02-01

    We present the structure of a new equimolar 1:1 cocrystal formed by 3,5-dimethyl-1H-pyrazole (dmpz) and 4,5-dimethyl-1H-imidazole (dmim), determined by means of powder X-ray diffraction data combined with solid-state NMR that provided insight into topological details of hydrogen bonding connectivities and weak interactions such as CH···π contacts. The use of various 1D/2D (13)C, (15)N and (1)H high-resolution solid-state NMR techniques provided structural insight on local length scales revealing internuclear proximities and relative orientations between the dmim and dmpz molecular building blocks of the studied cocrystal. Molecular modeling and DFT calculations were also employed to generate meaningful structures. DFT refinement was able to decrease the figure of merit R(F(2)) from ~11% (PXRD only) to 5.4%. An attempt was made to rationalize the role of NH···N and CH···π contacts in stabilizing the reported cocrystal. For this purpose four imidazole derivatives with distinct placement of methyl substituents were reacted with dmpz to understand the effect of methylation in blocking or enabling certain intermolecular contacts. Only one imidazole derivative (dmim) was able to incorporate into the dmpz trimeric motif thus resulting in a cocrystal, which contains both hydrophobic (methyl groups) and hydrophilic components that self-assemble to form an atypical 1D network of helicoidal hydrogen bonded pattern, featuring structural similarities with alpha-helix arrangements in proteins. The 1:1 dmpz···dmim compound I is the first example of a cocrystal formed by two different azoles. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Stability of hydrophilic vitamins mixtures in the presence of electrolytes and trace elements for parenteral nutrition: a nuclear magnetic resonance spectroscopy investigation.

    PubMed

    Uccello-Barretta, Gloria; Balzano, Federica; Aiello, Federica; Falugiani, Niccolò; Desideri, Ielizza

    2015-03-25

    In total parenteral nutrition (TPN), especially in the case of preterm infants, simultaneous administration of vitamins and trace elements is still a problematic issue: guidelines put in evidence the lack of specific documentation. In this work NMR spectroscopy was applied to the study of vitamins (pyridoxine hydrochloride, thiamine nitrate, riboflavin-5'-phosphate and nicotinamide) stability in presence of salts and trace elements. Vitamins in D2O were first analyzed by (1)H NMR spectroscopy in absence of salts and trace elements; changes in chemical shifts or in diffusion coefficients, measured by NMR DOSY technique, were analyzed. The effects of salts and trace elements on single vitamins and on their admixtures were then investigated by performing quantitative analyses during 48h. Selected vitamins are subject to intermolecular interactions. No degradative effects were observed in presence of salts and trace elements. Only riboflavin-5'-phosphate is subject to precipitation in presence of divalent cations; however, at low concentration and in presence of other vitamins this effect was not observed. Solutions analyzed, in the condition of this study, are stable for at least 48h and vitamins and trace elements can be administered together in TPN. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. [Ag115S34(SCH2C6H4 t Bu)47(dpph)6]: synthesis, crystal structure and NMR investigations of a soluble silver chalcogenide nanocluster.

    PubMed

    Bestgen, Sebastian; Fuhr, Olaf; Breitung, Ben; Kiran Chakravadhanula, Venkata Sei; Guthausen, Gisela; Hennrich, Frank; Yu, Wen; Kappes, Manfred M; Roesky, Peter W; Fenske, Dieter

    2017-03-01

    With the aim to synthesize soluble cluster molecules, the silver salt of (4-( tert -butyl)phenyl)methanethiol [AgSCH 2 C 6 H 4 t Bu] was applied as a suitable precursor for the formation of a nanoscale silver sulfide cluster. In the presence of 1,6-(diphenylphosphino)hexane (dpph), the 115 nuclear silver cluster [Ag 115 S 34 (SCH 2 C 6 H 4 t Bu) 47 (dpph) 6 ] was obtained. The molecular structure of this compound was elucidated by single crystal X-ray analysis and fully characterized by spectroscopic techniques. In contrast to most of the previously published cluster compounds with more than a hundred heavy atoms, this nanoscale inorganic molecule is soluble in organic solvents, which allowed a comprehensive investigation in solution by UV-Vis spectroscopy and one- and two-dimensional NMR spectroscopy including 31 P/ 109 Ag-HSQC and DOSY experiments. These are the first heteronuclear NMR investigations on coinage metal chalcogenides. They give some first insight into the behavior of nanoscale silver sulfide clusters in solution. Additionally, molecular weight determinations were performed by 2D analytical ultracentrifugation and HR-TEM investigations confirm the presence of size-homogeneous nanoparticles present in solution.

  19. Structural characterization of lignin from grape stalks (Vitis vinifera L.).

    PubMed

    Prozil, Sónia O; Evtuguin, Dmitry V; Silva, Artur M S; Lopes, Luísa P C

    2014-06-18

    The chemical structure of lignin from grape stalks, an abundant waste of winemaking, has been studied. The dioxane lignin was isolated from extractive- and protein-free grape stalks (Vitis vinifera L.) by modified acidolytic procedure and submitted to a structural analysis by wet chemistry (nitrobenzene and permanganate oxidation (PO)) and spectroscopic techniques. The results obtained suggest that grape stalk lignin is an HGS type with molar proportions of p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) units of 3:71:26. Structural analysis by (1)H and (13)C NMR spectroscopy and PO indicates the predominance of β-O-4' structures (39% mol) in grape stalk lignin together with moderate amounts of β-5', β-β, β-1', 5-5', and 4-O-5' structures. NMR studies also revealed that grape lignin should be structurally associated with tannins. The condensation degree of grape stalks lignin is higher than that of conventional wood lignins and lignins from other agricultural residues.

  20. 1H NMR-based metabolomic fingerprinting to determine metabolite levels in serrano peppers (Capsicum annum L.) grown in two different regions.

    PubMed

    Becerra-Martínez, Elvia; Florentino-Ramos, Elideth; Pérez-Hernández, Nury; Gerardo Zepeda-Vallejo, L; Villa-Ruano, Nemesio; Velázquez-Ponce, Manuel; García-Mendoza, Felipe; Bañuelos-Hernández, Angel E

    2017-12-01

    Chili pepper (Capsicum annuum) is the most important and emblematic condiment in Mexican food. Serrano pepper is a variety of C. annuum that is traditionally cultivated in Mexico and commercialized in local markets. The aim of this study was to describe the 1 H NMR metabolomic profiling of the aqueous phase of serrano peppers harvested from two distinct regions, in the states of Veracruz and Oaxaca, Mexico. According to the current results, aspartate citrate, lactate, leucine and sucrose were found at higher amount in the serrano peppers from Veracruz. On the other hand, acetate, formate, fumarate, malonate, phosphocholine, pyruvate and succinate showed the highest abundance in this product from Oaxaca. These are the main metabolites that distinguish one group from the other. The spectrometric method reported presently is characterized by great simplicity, robustness and reproducibility. Thus, this technique can be used for establishing reliable metabolomic fingerprints of serrano peppers grown under different environmental conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. CFA-1: the first chiral metal-organic framework containing Kuratowski-type secondary building units.

    PubMed

    Schmieder, Phillip; Denysenko, Dmytro; Grzywa, Maciej; Baumgärtner, Benjamin; Senkovska, Irena; Kaskel, Stefan; Sastre, German; van Wüllen, Leo; Volkmer, Dirk

    2013-08-14

    The novel homochiral metal-organic framework CFA-1 (Coordination Framework Augsburg-1), [Zn5(OAc)4(bibta)3], containing the achiral linker {H2-bibta = 1H,1'H-5,5'-bibenzo[d][1,2,3]triazole}, has been synthesised. The reaction of H2-bibta and Zn(OAc)2·2H2O in N-methylformamide (NMF) (90 °C, 3 d) yields CFA-1 as trigonal prismatic single crystals. CFA-1 serves as a convenient precursor for the synthesis of isostructural frameworks with redox-active metal centres, which is demonstrated by the postsynthetic exchange of Zn(2+) by Co(2+) ions. The framework is robust to solvent removal and has been structurally characterized by synchrotron single-crystal X-ray diffraction and solid state NMR measurements ((13)C MAS- and (1)H MAS-NMR at 10 kHz). Results from MAS-NMR and IR spectroscopy studies are corroborated by cluster and periodic DFT calculations performed on CFA-1 cluster fragments.

  2. Spin dynamics in the modulation frame: application to homonuclear recoupling in magic angle spinning solid-state NMR.

    PubMed

    De Paëpe, Gaël; Lewandowski, Józef R; Griffin, Robert G

    2008-03-28

    We introduce a family of solid-state NMR pulse sequences that generalizes the concept of second averaging in the modulation frame and therefore provides a new approach to perform magic angle spinning dipolar recoupling experiments. Here, we focus on two particular recoupling mechanisms-cosine modulated rotary resonance (CMpRR) and cosine modulated recoupling with isotropic chemical shift reintroduction (COMICS). The first technique, CMpRR, is based on a cosine modulation of the rf phase and yields broadband double-quantum (DQ) (13)C recoupling using >70 kHz omega(1,C)/2pi rf field for the spinning frequency omega(r)/2=10-30 kHz and (1)H Larmor frequency omega(0,H)/2pi up to 900 MHz. Importantly, for p>or=5, CMpRR recouples efficiently in the absence of (1)H decoupling. Extension to lower p values (3.5

  3. Effects of varying water adsorption on a Cu3(BTC)2 metal-organic framework (MOF) as studied by 1H and 13C solid-state NMR spectroscopy.

    PubMed

    Gul-E-Noor, Farhana; Jee, Bettina; Pöppl, Andreas; Hartmann, Martin; Himsl, Dieter; Bertmer, Marko

    2011-05-07

    The process of water adsorption on a dehydrated Cu(3)(BTC)(2) (copper (II) benzene 1,3,5-tricarboxylate) metal-organic framework (MOF) was studied with (1)H and (13)C solid-state NMR. Different relative amounts of water (0.5, 0.75, 1, 1.5, 2, and 5 mole equivalents with respect to copper) were adsorbed via the gas phase. (1)H and (13)C MAS NMR spectra of dehydrated and water-loaded Cu(3)(BTC)(2) samples gave evidence on the structural changes due to water adsorption within the MOF material as well as information on water dynamics. The analysis of (1)H spinning sideband intensities reveals differences in the (1)H-(63/65)Cu hyperfine coupling between dehydrated and water-loaded samples. The investigation was continued for 60 days to follow the stability of the Cu(3)(BTC)(2) network under humid conditions. NMR data reveal that Cu(3)(BTC)(2) decomposes quite fast with the decomposition being different for different water contents. This journal is © the Owner Societies 2011

  4. In Vivo Use of 1D and 2D 1H NMR to Examine the Glycosylation of Scopoletin in Duboisia myoporoides Cell Suspensions.

    PubMed

    Fliniaux, Ophélie; Roscher, Albrecht; Cailleu, Dominique; Mesnard, François

    2018-06-14

    Cell suspensions initiated from Duboisia myoporoides -a shrub belonging to the Solanaceae family and being a rich source of tropane alkaloids-previously showed their ability to glycosylate scopoletin into scopolin, which represent coumarins showing health benefits. To investigate the time course of this glycosylation reaction, an in vivo NMR approach was developed using a perfusion system in an 8-mm NMR tube and 1 H NMR with 1D and 2D (TOCSY and NOESY) experiments. The time course of metabolic changes could therefore be followed without any labeling. Georg Thieme Verlag KG Stuttgart · New York.

  5. NMR Metabolic profiling of green tea (Camellia sinensis L.) leaves grown at Kemuning, Indonesia

    NASA Astrophysics Data System (ADS)

    Wahyuni, D. S. C.; Kristanti, M. W.; Putri, R. K.; Rinanto, Y.

    2017-01-01

    Green tea (Camellia sinensis L.) has been famous as a beverage and natural medicine. It contains a broad range of primary and secondary metabolites i.e. polyphenols. Nuclear Magnetic Resonance (NMR) has been widely used for metabolic profiling in medicinal plants. It provides a very fast and detailed analysis of the biomolecular composition of crude extracts. Moreover, an NMR spectrum is a physical characteristic of a compound and thus highly reproducible. Therefore, this study aims to profile metabolites of three different varieties of green tea C. Sinensis grown in Kemuning, Middle Java. Three varieties of green tea collected on Kemuning (TR1 2025, Gambung 4/5, and Chiaruan 143) were used in this study. 1H-NMR spectra were recorded at 230C on a 400 MHz Agilent WB (Widebore). The analysis was performed on dried green tea leaves and analyzed by 1H-NMR, 2D-J-resolved and 1H-1H correlated spectroscopy (COSY). MestRenova version 11.0.0 applied to identify metabolites in samples. A 1H-NMR spectrum of tea showed amino acids and organic acids signal at the area δ 0.8-4.0. These were theanine, alanine, threonine, succinic acid, aspartic acid, lactic acid. Anomeric protons of carbohydrate were shown by the region of β-glucose, α-glucose, fructose and sucrose. The phenolic region was depicted at area δ 5.5-8.5. Epigallocatechin derivates and caffeine were detected in the tea leaves. The detail compound identification was observed and discussed in the text.

  6. Enantiodifferentiation through frequency-selective pure-shift (1)H nuclear magnetic resonance spectroscopy.

    PubMed

    Castañar, Laura; Pérez-Trujillo, Míriam; Nolis, Pau; Monteagudo, Eva; Virgili, Albert; Parella, Teodor

    2014-04-04

    A frequency-selective 1D (1) H nuclear magnetic resonance (NMR) experiment for the fast and sensitive determination of chemical-shift differences between overlapped resonances is proposed. The resulting fully homodecoupled (1) H NMR resonances appear as resolved 1D singlets without their typical J(HH) coupling constant multiplet structures. The high signal dispersion that is achieved is then exploited in enantiodiscrimination studies by using chiral solvating agents. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Chiral discrimination of α-hydroxy acids and N-Ts-α-amino acids induced by tetraaza macrocyclic chiral solvating agents by using 1H NMR spectroscopy.

    PubMed

    Lv, Caixia; Feng, Lei; Zhao, Hongmei; Wang, Guo; Stavropoulos, Pericles; Ai, Lin

    2017-02-21

    In the field of chiral recognition, reported chiral discrimination by 1 H NMR spectroscopy has mainly focused on various chiral analytes with a single chiral center, regarded as standard chiral substrates to evaluate the chiral discriminating abilities of a chiral auxiliary. Among them, chiral α-hydroxy acids, α-amino acids and their derivatives are chiral organic molecules involved in a wide variety of biological processes, and also play an important role in the area of preparation of pharmaceuticals, as they are part of the synthetic process in the production of chiral drug intermediates and protein-based drugs. In this paper, several α-hydroxy acids and N-Ts-α-amino acids were used to evaluate the chiral discriminating abilities of tetraaza macrocyclic chiral solvating agents (TAMCSAs) 1a-1d by 1 H NMR spectroscopy. The results indicate that α-hydroxy acids and N-Ts-α-amino acids were successfully discriminated in the presence of TAMCSAs 1a-1d by 1 H NMR spectroscopy in most cases. The enantiomers of the α-hydroxy acids and N-Ts-α-amino acids were assigned based on the change of integration of the 1 H NMR signals of the corresponding protons. The enantiomeric excesses (ee) of N-Ts-α-amino acids 11 with different optical compositions were calculated based on the integration of the 1 H NMR signals of the CH 3 protons (Ts group) of the enantiomers of (R)- and (S)-11 in the presence of TAMCSA 1b. At the same time, the possible chiral discriminating behaviors have been discussed by means of the Job plots of (±)-2 with TAMCSAs 1b and proposed theoretical models of the enantiomers of 2 and 6 with TAMCSA 1a, respectively.

  8. Vicinal 1H-1H NMR coupling constants from density functional theory as reliable tools for stereochemical analysis of highly flexible multichiral center molecules.

    PubMed

    López-Vallejo, Fabian; Fragoso-Serrano, Mabel; Suárez-Ortiz, Gloria Alejandra; Hernández-Rojas, Adriana C; Cerda-García-Rojas, Carlos M; Pereda-Miranda, Rogelio

    2011-08-05

    A protocol for stereochemical analysis, based on the systematic comparison between theoretical and experimental vicinal (1)H-(1)H NMR coupling constants, was developed and applied to a series of flexible compounds (1-8) derived from the 6-heptenyl-5,6-dihydro-2H-pyran-2-one framework. The method included a broad conformational search, followed by geometry optimization at the DFT B3LYP/DGDZVP level, calculation of the vibrational frequencies, thermochemical parameters, magnetic shielding tensors, and the total NMR spin-spin coupling constants. Three scaling factors, depending on the carbon atom hybridizations, were found for the (1)H-C-C-(1)H vicinal coupling constants: f((sp3)-(sp3)) = 0.910, f((sp3)-(sp2)) = 0.929, and f((sp2)-(sp2))= 0.977. A remarkable correlation between the theoretical (J(pre)) and experimental (1)H-(1)H NMR (J(exp)) coupling constants for spicigerolide (1), a cytotoxic natural product, and some of its synthetic stereoisomers (2-4) demonstrated the predictive value of this approach for the stereochemical assignment of highly flexible compounds containing multiple chiral centers. The stereochemistry of two natural 6-heptenyl-5,6-dihydro-2H-pyran-2-ones (14 and 15) containing diverse functional groups in the heptenyl side chain was also analyzed by application of this combined theoretical and experimental approach, confirming its reliability. Additionally, a geometrical analysis for the conformations of 1-8 revealed that weak hydrogen bonds substantially guide the conformational behavior of the tetraacyloxy-6-heptenyl-2H-pyran-2-ones.

  9. Using liquid and solid state NMR and photoluminescence to study the synthesis and solubility properties of amine capped silicon nanoparticles.

    PubMed

    Giuliani, J R; Harley, S J; Carter, R S; Power, P P; Augustine, M P

    2007-08-01

    Water soluble silicon nanoparticles were prepared by the reaction of bromine terminated silicon nanoparticles with 3-(dimethylamino)propyl lithium and characterized with liquid and solid state nuclear magnetic resonance (NMR) and photoluminescence (PL) spectroscopies. The surface site dependent 29Si chemical shifts and the nuclear spin relaxation rates from an assortment of 1H-29Si heteronuclear solid state NMR experiments for the amine coated reaction product are consistent with both the 1H and 13C liquid state NMR results and routine transmission electron microscopy, ultra-violet/visible, and Fourier transform infrared measurements. PL was used to demonstrate the pH dependent solubility properties of the amine passivated silicon nanoparticles.

  10. Investigation of the interface in silica-encapsulated liposomes by combining solid state NMR and first principles calculations.

    PubMed

    Folliet, Nicolas; Roiland, Claire; Bégu, Sylvie; Aubert, Anne; Mineva, Tzonka; Goursot, Annick; Selvaraj, Kaliaperumal; Duma, Luminita; Tielens, Frederik; Mauri, Francesco; Laurent, Guillaume; Bonhomme, Christian; Gervais, Christel; Babonneau, Florence; Azaïs, Thierry

    2011-10-26

    In the context of nanomedicine, liposils (liposomes and silica) have a strong potential for drug storage and release schemes: such materials combine the intrinsic properties of liposome (encapsulation) and silica (increased rigidity, protective coating, pH degradability). In this work, an original approach combining solid state NMR, molecular dynamics, first principles geometry optimization, and NMR parameters calculation allows the building of a precise representation of the organic/inorganic interface in liposils. {(1)H-(29)Si}(1)H and {(1)H-(31)P}(1)H Double Cross-Polarization (CP) MAS NMR experiments were implemented in order to explore the proton chemical environments around the silica and the phospholipids, respectively. Using VASP (Vienna Ab Initio Simulation Package), DFT calculations including molecular dynamics, and geometry optimization lead to the determination of energetically favorable configurations of a DPPC (dipalmitoylphosphatidylcholine) headgroup adsorbed onto a hydroxylated silica surface that corresponds to a realistic model of an amorphous silica slab. These data combined with first principles NMR parameters calculations by GIPAW (Gauge Included Projected Augmented Wave) show that the phosphate moieties are not directly interacting with silanols. The stabilization of the interface is achieved through the presence of water molecules located in-between the head groups of the phospholipids and the silica surface forming an interfacial H-bonded water layer. A detailed study of the (31)P chemical shift anisotropy (CSA) parameters allows us to interpret the local dynamics of DPPC in liposils. Finally, the VASP/solid state NMR/GIPAW combined approach can be extended to a large variety of organic-inorganic hybrid interfaces.

  11. Spontaneous 15N Nuclear Spin Hyperpolarization in Metal-Free Activation of Parahydrogen by Molecular Tweezers

    PubMed Central

    2018-01-01

    The ability of frustrated Lewis pairs (FLPs) to activate H2 is of significant interest for metal-free catalysis. The activation of H2 is also the key element of parahydrogen-induced polarization (PHIP), one of the nuclear spin hyperpolarization techniques. It is demonstrated that o-phenylene-based ansa-aminoboranes (AABs) can produce 1H nuclear spin hyperpolarization through a reversible interaction with parahydrogen at ambient temperatures. Heteronuclei are useful in NMR and MRI as well because they have a broad chemical shift range and long relaxation times and may act as background-free labels. We report spontaneous formation of 15N hyperpolarization of the N–H site for a family of AABs. The process is efficient at the high magnetic field of an NMR magnet (7 T), and it provides up to 350-fold 15N signal enhancements. Different hyperpolarization effects are observed with various AAB structures and in a broad temperature range. Spontaneous hyperpolarization, albeit an order of magnitude weaker than that for 15N, was also observed for 11B nuclei. PMID:29401399

  12. Indirect detection of infinite-speed MAS solid-state NMR spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perras, Frédéric A.; Venkatesh, Amrit; Hanrahan, Michael P.

    Heavy spin-1/2 nuclides are known to possess very large chemical shift anisotropies that can challenge even the most advanced magic-angle-spinning (MAS) techniques. Wide manifolds of overlapping spinning sidebands and insufficient excitation bandwidths often obfuscate meaningful spectral information and force the use of static, low-resolution solid-state (SS)NMR methods for the characterization of materials. In order to address these issues, we have merged fast-magic-angle-turning (MAT) and dipolar heteronuclear multiple-quantum coherence (D-HMQC) experiments to obtain D-HMQC-MAT pulse sequences which enable the rapid acquisition of 2D SSNMR spectra that correlate isotropic 1H chemical shifts to the indirectly detected isotropic “infinite-MAS” spectra of heavy spin-1/2more » nuclides. Furthermore, for these nuclides, the combination of fast MAS and 1H detection provides a high sensitivity, which rivals the DNP-enhanced ultra-wideline SSNMR. The new pulse sequences were used to determine the Pt coordination environments in a complex mixture of decomposition products of transplatin and in a metal-organic framework with Pt ions coordinated to the linker ligands.« less

  13. Indirect detection of infinite-speed MAS solid-state NMR spectra

    DOE PAGES

    Perras, Frédéric A.; Venkatesh, Amrit; Hanrahan, Michael P.; ...

    2017-01-18

    Heavy spin-1/2 nuclides are known to possess very large chemical shift anisotropies that can challenge even the most advanced magic-angle-spinning (MAS) techniques. Wide manifolds of overlapping spinning sidebands and insufficient excitation bandwidths often obfuscate meaningful spectral information and force the use of static, low-resolution solid-state (SS)NMR methods for the characterization of materials. In order to address these issues, we have merged fast-magic-angle-turning (MAT) and dipolar heteronuclear multiple-quantum coherence (D-HMQC) experiments to obtain D-HMQC-MAT pulse sequences which enable the rapid acquisition of 2D SSNMR spectra that correlate isotropic 1H chemical shifts to the indirectly detected isotropic “infinite-MAS” spectra of heavy spin-1/2more » nuclides. Furthermore, for these nuclides, the combination of fast MAS and 1H detection provides a high sensitivity, which rivals the DNP-enhanced ultra-wideline SSNMR. The new pulse sequences were used to determine the Pt coordination environments in a complex mixture of decomposition products of transplatin and in a metal-organic framework with Pt ions coordinated to the linker ligands.« less

  14. Indirect detection of infinite-speed MAS solid-state NMR spectra

    NASA Astrophysics Data System (ADS)

    Perras, Frédéric A.; Venkatesh, Amrit; Hanrahan, Michael P.; Goh, Tian Wei; Huang, Wenyu; Rossini, Aaron J.; Pruski, Marek

    2017-03-01

    Heavy spin-1/2 nuclides are known to possess very large chemical shift anisotropies that can challenge even the most advanced magic-angle-spinning (MAS) techniques. Wide manifolds of overlapping spinning sidebands and insufficient excitation bandwidths often obfuscate meaningful spectral information and force the use of static, low-resolution solid-state (SS)NMR methods for the characterization of materials. To address these issues, we have merged fast-magic-angle-turning (MAT) and dipolar heteronuclear multiple-quantum coherence (D-HMQC) experiments to obtain D-HMQC-MAT pulse sequences which enable the rapid acquisition of 2D SSNMR spectra that correlate isotropic 1H chemical shifts to the indirectly detected isotropic "infinite-MAS" spectra of heavy spin-1/2 nuclides. For these nuclides, the combination of fast MAS and 1H detection provides a high sensitivity, which rivals the DNP-enhanced ultra-wideline SSNMR. The new pulse sequences were used to determine the Pt coordination environments in a complex mixture of decomposition products of transplatin and in a metal-organic framework with Pt ions coordinated to the linker ligands.

  15. Novel recombinant insulin analogue with flexible C-terminus in B chain. NMR structure of biosynthetic engineered A22G-B31K-B32R human insulin monomer in water/acetonitrile solution.

    PubMed

    Borowicz, Piotr; Bocian, Wojciech; Sitkowski, Jerzy; Bednarek, Elżbieta; Mikiewicz-Syguła, Diana; Błażej-Sosnowska, Sylwia; Bogiel, Monika; Rusek, Dorota; Kurzynoga, Dariusz; Kozerski, Lech

    2011-11-01

    A tertiary structure of recombinant A22(G)-B31(K)-B32(R)-human insulin monomer (insulin GKR) has been characterized by (1)H, (13)C NMR at natural isotopic abundance using NOESY, TOCSY, (1)H/(13)C-GHSQC, and (1)H/(13)C-GHSQC-TOCSY spectra. Translational diffusion studies indicate the monomer structure in water/acetonitrile (65/35vol.%). CSI analysis confirms existence of secondary structure motifs present in human insulin standard (HIS). Both techniques allow to establish that in this solvent recombinant insulin GKR exists as a monomer. Starting from structures calculated by the program CYANA, two different refinement protocols used molecular dynamics simulated annealing with the program AMBER; in vacuum (AMBER_VC), and including a generalized Born solvent model (AMBER_GB). From these calculations an ensemble of 20 structures of lowest energy was chosen which represents the tertiary structure of studied insulin. Here we present novel insulin with added A22(G) amino acid which interacts with β-turn environment resulting in high flexibility of B chain C-terminus. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Unraveling the active hypoglycemic agent trigonelline in Balanites aegyptiaca date fruit using metabolite fingerprinting by NMR.

    PubMed

    Farag, Mohamed A; Porzel, Andrea; Wessjohann, Ludger A

    2015-11-10

    Trigonelline (3-carboxy-1-methyl pyridinium) was identified as a relevant bioactivity and taste imparting component in Balanites aegyptiaca fruit, using (1)H NMR of crude extracts without any fractionation or isolation step. The structural integrity of trigonelline was established within the extract matrix via(1)H NMR, (1)H-(1)H COSY, HMQC and HMBC and by comparison with authentic standard. A quantitative (1)H NMR method (qHNMR) was used to determine trigonelline concentrations in the peel and pulp of B. aegyptiaca fruit of 8 and 13mgg(-1), respectively. Trigonelline so far has not been reported from B. aegyptiaca or its genus as it easily escapes LC-MS based detection. Its discovery provides novel insight into the balanite fruits antidiabetic properties as the compound is known for a pronounced hypoglycemic effect. In addition, it is likely to impart the perceptible bitter taste portion to balanites sweet bitter taste. UPLC-MS of the crude extract additionally revealed the fruit flavonoid pattern showing quercetin/isorhamnetin flavonol conjugates in addition to epicatechin, the latter being present at much lower levels. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Host-guest chemistry of dendrimer-drug complexes. 6. Fully acetylated dendrimers as biocompatible drug vehicles using dexamethasone 21-phosphate as a model drug.

    PubMed

    Yang, Kun; Weng, Liang; Cheng, Yiyun; Zhang, Hongfeng; Zhang, Jiahai; Wu, Qinglin; Xu, Tongwen

    2011-03-17

    Fully acetylated poly(amidoamine) (PAMAM) dendrimer was proposed as a biocompatible drug vehicle using dexamethasone 21-phosphate (Dp21) as a model drug. NMR techniques including (1)H NMR and 2D NOE NMR were used to characterize the host-guest chemistry of acetylated dendrimer/Dp21 and cationic dendrimer/Dp21 complexes. The pH-dependent micellization, complexation, and inclusion behaviors of Dp21 were observed in the presence of acetylated and cationic PAMAM dendrimers. Acetylated dendrimer only encapsulates Dp21 at acidic conditions, while cationic dendrimer can host Dp21 at both acidic and neutral conditions. The orientation of Dp21 molecules in the dendrimer cavities depends on the quaternization degree of tertiary amine groups of dendrimer and the protonation ratio of phosphate group of Dp21. A distinctive pH-dependent release behavior of Dp21 from the acetylated and nonacetylated dendritic matrix was observed: Dp21 exhibits a much slower release rate from acetylated dendrimer at lower pH conditions and a much faster release rate from nonacetylated dendrimer with decreasing pH values. Cytotoxicity studies further confirmed the biocompatibility of acetylated dendrimers, which are much safer in the delivery of therapeutics for the treatment of various diseases than nonacetylated dendrimers. The dendrimer-drug binding and release mechanisms provide a new insight for the design and optimization of biocompatible dendrimer-based drug delivery systems. © 2011 American Chemical Society

  18. Resolution Improvements in in Vivo1H NMR Spectra with Increased Magnetic Field Strength

    NASA Astrophysics Data System (ADS)

    Gruetter, Rolf; Weisdorf, Sally A.; Rajanayagan, Vasantham; Terpstra, Melissa; Merkle, Hellmut; Truwit, Charles L.; Garwood, Michael; Nyberg, Scott L.; Ugurbil, Kâmil

    1998-11-01

    The measurement of cerebral metabolites using highly homologous localization techniques and similar shimming methods was performed in the human brain at 1.5 and 4 T as well as in the dog and rat brain at 9.4 T. In rat brain, improved resolution was achieved by shimming all first- and second-order shim coils using a fully adiabatic FASTMAP sequence. The spectra showed a clear improvement in spectral resolution for all metabolite resonances with increased field strength. Changes in cerebral glutamine content were clearly observed at 4 T compared to 1.5 T in patients with hepatic encephalopathy. At 9.4 T, glutamine H4 at 2.46 ppm was fully resolved from glutamate H4 at 2.37 ppm, as was the potential resonance from γ-amino-butyric acid at 2.30 ppm and N-acetyl-aspartyl-glutamate at 2.05 ppm. Singlet linewidths were found to be as low as 6 Hz (0.015 ppm) at 9.4 T, indicating a substantial decrease in ppm linewidth with field strength. Furthermore, the methylene peak of creatine was partially resolved from phosphocreatine, indicating a close to 1:1 relationship in gray matter. We conclude that increasing the magnetic field strength increases spectral resolution also for1H NMR, which can lead to more than linear sensitivity gains.

  19. Study of the ferroelastic phase transition in the tetraethylammonium compound [N(C{sub 2}H{sub 5}){sub 4}]{sub 2}ZnBr{sub 4} by magic-angle spinning and static NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Ae Ran, E-mail: aeranlim@hanmail.net, E-mail: arlim@jj.ac.kr

    The ferroelastic phase transition of tetraethylammonium compound [N(C{sub 2}H{sub 5}){sub 4}]{sub 2}ZnBr{sub 4} at the phase transition temperature (T{sub C}) = 283 K was characterized by magic-angle spinning (MAS) and static nuclear magnetic resonance (NMR), and confirmed by optical polarizing spectroscopy. The structural geometry near T{sub C} was studied in terms of the chemical shifts and the spin-lattice relaxation times T{sub 1ρ} in the rotating frame for {sup 1}H MAS NMR and {sup 13}C cross-polarization (CP)/MAS NMR. The two inequivalent ethyl groups were distinguishable in the {sup 13}C NMR spectrum, and the T{sub 1ρ} results indicate that they undergo tumblingmore » motion above T{sub C} in a coupled manner. From the {sup 14}N NMR results, the two nitrogen nuclei in the N(C{sub 2}H{sub 5}){sub 4}{sup +} ions were distinguishable above T{sub C}, and the splitting in the spectra below T{sub C} was related to the ferroelastic domains with different orientations.« less

  20. Polyphenolic compounds with antioxidant potential and neuro-protective effect from Cimicifuga dahurica (Turcz.) Maxim.

    PubMed

    Qin, Rulan; Zhao, Ying; Zhao, Yudan; Zhou, Wanrong; Lv, Chongning; Lu, Jincai

    2016-12-01

    Three new phenolic compounds (1-3), along with five known compounds (4-8) were isolated from the rhizome of Cimicifuga dahurica (Turcz.) Maxim. Their structures were elucidated by spectroscopic methods including 1D-NMR, 2D-NMR and HR-MS techniques. DPPH method and protective effect on PC12 cells against H 2 O 2 -induced oxidative damage model were carried to evaluate the antioxidant capability of these compounds. Compound 5 showed significant antioxidant activity with IC 50 values 9.33μM in DPPH assay and compound 2 displayed marked neuro-protective effect with 87.65% cell viability at the concentration of 10μM. Additionally, the possible structure-activity relationships of these phenolic compounds were tentatively discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Synthesis and radical scavenging activity of 6-hydroxyl-4-methylcoumarin and its derivatives

    NASA Astrophysics Data System (ADS)

    Jumal, Juliana; Ayomide, Adetunji Fridaos

    2018-06-01

    Four compounds of coumarin derivatives namely 6-hydroxyl-4-methylcoumarin (I), 6-hydroxyl-4-methyl-5-(p-nitrophenyl azocoumarin) (II), 6-hydroxyl-4-methyl-5,7-(bis-p-nitrophenyl azocoumarin) (III) and 6-hydroxyl-4-methyl-5,7-(bis-p-chlorophenyl azocoumarin) (IV) were successfully synthesized. These compounds were prepared by reacting hydroquinone with ethylacetoacetate and selected anilines which are chloro and nitro aniline. All synthesized compounds were characterized by CHN micro-elemental analysis, 1H Nuclear Magnetic Resonance (NMR) and Fourier Transform Infrared (FTIR) spectroscopic methods. The infrared spectra of these compounds exhibited five important stretching vibrations: ʋ(-OH), ʋ(C=O), ʋ(C=C), ʋ(C-O) and ʋ(C-N) at 3441-3359 cm-1, 1604-1632 cm-1, 1581-1496 cm-1, 1331-1225 cm-1, 1251-1109 cm-1, respectively. 1H NMR spectra of these compounds show the presence of proton aromatic, proton methyl and proton pyrone ring with the chemical shift at δH 7.00-8.70 ppm, δH 2.20-2.50 ppm and δH 6.10-6.90 ppm, respectively. CHN analysis results of all compounds are in good agreement with the calculated values. All the synthesized compounds were evaluated for their antioxidant activity using DPPH method and ascorbic acid used as the standard. UV-Vis spectroscopic technique was used to investigate the absorbance of these compounds. Compound (II) shows high antioxidant activities compared to compound (I), (III) and (IV) which show moderate to low activities.

  2. UV-vis, IR and 1H NMR spectroscopic studies and characterization of ionic-pair crystal violet-oxytetracycline

    NASA Astrophysics Data System (ADS)

    Orellana, Sandra; Soto, César; Toral, M. Inés

    2010-01-01

    The present study shows the formation and characterization of the ionic-pair between the antibiotic oxytetracycline and the dye crystal violet in ammonia solution pH 9.0 ± 0.2 extracted into chloroform. The characterization was demonstrated using UV-vis spectrophotometry, 1H NMR, measurement of relaxation times T1 and IR spectroscopy, using a comparison between the signals of individual pure compounds with the signals with the mixture CV-OTC in different alkaline media. The formation of ionic-pair was also corroborated by new signals and chemical shifts. (2D) NMR spectroscopy experiments show that the interaction is electrostatic.

  3. A novel diarylheptanoid-bearing sesquiterpene moiety from the rhizomes of Alpinia officinarum.

    PubMed

    Wei, Na; Zhou, Zhonglin; Wei, Qing; Wang, Yong; Jiang, Jun; Zhang, Junqing; Wu, Lixiang; Dai, Shuiping; Li, Youbin

    2016-10-01

    A new diarylheptanoid analogue-bearing sesquiterpene moiety, named Alpinisin A, was isolated from the rhizomes of Alpinia officinarum Hance. The new structure was determined by various spectroscopic techniques (1)H-nuclear magnetic resonance ((1)H NMR), (13)C-attached proton test ((13)C-APT), heteronuclear single quantum coherence (HSQC), heteronuclear multiple bond correlation (HMBC), (1)H-(1)H correlation spectroscopy ((1)H-(1)HCOSY), nuclear overhauser effect spectroscopy (NOESY) and high resolution electrospray ionization mass spectrometry (HR-ESI-MS). The compound was tested for cytotoxic activity in vitro against human tumour cell lines (gastric carcinoma cell -7901 (SGC-7901), Michigan Cancer Foundation-7 (MCF-7) and Caski), which showed significant inhibitory effects with IC50 levels of 11.42, 15.14 and 14.78 μM, respectively. The novel chemical structure characterised with a diarylheptanoid linked to a chain-like sesquiterpenoid should be highlighted.

  4. Experimental (FT-IR, NMR and UV) and theoretical (M06-2X and DFT) investigation, and frequency estimation analyses on (E)-3-(4-bromo-5-methylthiophen-2-yl)acrylonitrile

    NASA Astrophysics Data System (ADS)

    Sert, Yusuf; Balakit, Asim A.; Öztürk, Nuri; Ucun, Fatih; El-Hiti, Gamal A.

    2014-10-01

    The spectroscopic properties of (E)-3-(4-bromo-5-methylthiophen-2-yl)acrylonitrile have been investigated by FT-IR, UV, 1H and 13C NMR techniques. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and angles) have been calculated using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and DFT/M06-2X (the highly parameterized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set by Gaussian 03 software, for the first time. The assignments of the vibrational frequencies have been carried out by potential energy distribution (PED) analysis by using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies were in good agreement with the corresponding experimental data, and with the results in the literature. 1H and 13C NMR chemical shifts were calculated by using the gauge-invariant atomic orbital (GIAO) method. The electronic properties, such as excitation energies, oscillator strength wavelengths were performed by B3LYP methods. In addition, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies and the other related molecular energy values have been calculated and depicted.

  5. Target-specific NMR detection of protein-ligand interactions with antibody-relayed 15N-group selective STD.

    PubMed

    Hetényi, Anasztázia; Hegedűs, Zsófia; Fajka-Boja, Roberta; Monostori, Éva; Kövér, Katalin E; Martinek, Tamás A

    2016-12-01

    Fragment-based drug design has been successfully applied to challenging targets where the detection of the weak protein-ligand interactions is a key element. 1 H saturation transfer difference (STD) NMR spectroscopy is a powerful technique for this work but it requires pure homogeneous proteins as targets. Monoclonal antibody (mAb)-relayed 15 N-GS STD spectroscopy has been developed to resolve the problem of protein mixtures and impure proteins. A 15 N-labelled target-specific mAb is selectively irradiated and the saturation is relayed through the target to the ligand. Tests on the anti-Gal-1 mAb/Gal-1/lactose system showed that the approach is experimentally feasible in a reasonable time frame. This method allows detection and identification of binding molecules directly from a protein mixture in a multicomponent system.

  6. Preparation, crystal structure, vibrational spectral and density functional studies of bis (4-nitrophenol)-2,4,6-triamino-1,3,5-triazine monohydrate

    NASA Astrophysics Data System (ADS)

    Kanagathara, N.; Marchewka, M. K.; Drozd, M.; Renganathan, N. G.; Gunasekaran, S.; Anbalagan, G.

    2013-10-01

    An organic-organic salt, bis (4-nitrophenol) 2,4,6-triamino 1,3,5-triazine monohydrate (BNPM) has been prepared by slow evaporation technique at room temperature. Single crystal X-ray diffraction analysis reveals that the compound crystallizes in triclinic system with centrosymmetric space group P-1. IR and Raman spectra of BNPM have been recorded and analyzed. The study has been extended to confocal Raman spectral analysis. Band assignments have been made for the melamine and p-nitrophenol molecules. Vibrational spectra have also been discussed on the basis of quantum chemical density functional theory calculations using Firefly (PC GAMESS) Version 7.1 G. Vibrational frequencies are calculated and scaled values are compared with the experimental one. The Mulliken charges, HOMO-LUMO orbital energies are calculated and analyzed. The chemical structure of the compound was established by 1H NMR and 13C NMR spectra.

  7. Metabolic profiling of human lung cancer blood plasma using 1H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kokova, Daria; Dementeva, Natalia; Kotelnikov, Oleg; Ponomaryova, Anastasia; Cherdyntseva, Nadezhda; Kzhyshkowska, Juliya

    2017-11-01

    Lung cancer (both small cell and non-small cell) is the second most common cancer in both men and women. The article represents results of evaluating of the plasma metabolic profiles of 100 lung cancer patients and 100 controls to investigate significant metabolites using 400 MHz 1H NMR spectrometer. The results of multivariate statistical analysis show that a medium-field NMR spectrometer can obtain the data which are already sufficient for clinical metabolomics.

  8. Insights into the distribution of water in a self-humidifying H2/O2 proton-exchange membrane fuel cell using 1H NMR microscopy.

    PubMed

    Feindel, Kirk W; Bergens, Steven H; Wasylishen, Roderick E

    2006-11-01

    Proton ((1)H) NMR microscopy is used to investigate in-situ the distribution of water throughout a self-humidifying proton-exchange membrane fuel cell, PEMFC, operating at ambient temperature and pressure on dry H(2)(g) and O(2)(g). The results provide the first experimental images of the in-plane distribution of water within the PEM of a membrane electrode assembly in an operating fuel cell. The effect of gas flow configuration on the distribution of water in the PEM and cathode flow field is investigated, revealing that the counter-flow configurations yield a more uniform distribution of water throughout the PEM. The maximum power output from the PEMFC, while operating under conditions of constant external load, occurs when H(2)O(l) is first visible in the (1)H NMR image of the cathode flow field, and subsequently declines as this H(2)O(l) continues to accumulate. The (1)H NMR microscopy experiments are in qualitative agreement with predictions from several theoretical modeling studies (e.g., Pasaogullari, U.; Wang, C. Y. J. Electrochem. Soc. 2005, 152, A380-A390), suggesting that combined theoretical and experimental approaches will constitute a powerful tool for PEMFC design, diagnosis, and optimization.

  9. An NMR crystallography study of the hemihydrate of 2', 3'-O-isopropylidineguanosine.

    PubMed

    Reddy, G N Manjunatha; Cook, Daniel S; Iuga, Dinu; Walton, Richard I; Marsh, Andrew; Brown, Steven P

    2015-02-01

    An NMR crystallography study of the hemihydrate of 2', 3'-O-isopropylidineguanosine (Gace) is presented, together with powder X-ray diffraction and thermogravimetric analysis. (1)H double-quantum and (14)N-(1)H HMQC spectra recorded at 850MHz and 75kHz MAS (using a JEOL 1mm probe) are presented together with a (1)H-(13)C refocused INEPT spectrum recorded at 500MHz and 12.5kHz MAS using eDUMBO-122(1)H homonuclear decoupling. NMR chemical shieldings are calculated using the GIPAW (gauge-including projector augmented wave) method; good two-dimensional agreement between calculation and experiment is observed for (13)C and (1)H chemical shifts for directly bonded CH and CH3 peaks. There are two Gace molecules in the asymmetric unit cell: differences in specific (1)H chemical shifts are rationalised in terms of the strength of CH-π and intermolecular hydrogen bonding interactions. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  10. A perspective on the primary and three-dimensional structures of carbohydrates.

    PubMed

    Widmalm, Göran

    2013-08-30

    Carbohydrates, in more biologically oriented areas referred to as glycans, constitute one of the four groups of biomolecules. The glycans, often present as glycoproteins or glycolipids, form highly complex structures. In mammals ten monosaccharides are utilized in building glycoconjugates in the form of oligo- (up to about a dozen monomers) and polysaccharides. Subsequent modifications and additions create a large number of different compounds. In bacteria, more than a hundred monosaccharides have been reported to be constituents of lipopolysaccharides, capsular polysaccharides, and exopolysaccharides. Thus, the number of polysaccharide structures possible to create is huge. NMR spectroscopy plays an essential part in elucidating the primary structure, that is, monosaccharide identity and ring size, anomeric configuration, linkage position, and sequence, of the sugar residues. The structural studies may also employ computational approaches for NMR chemical shift predictions (CASPER program). Once the components and sequence of sugar residues have been unraveled, the three-dimensional arrangement of the sugar residues relative to each other (conformation), their flexibility (transitions between and populations of conformational states), together with the dynamics (timescales) should be addressed. To shed light on these aspects we have utilized a combination of experimental liquid state NMR techniques together with molecular dynamics simulations. For the latter a molecular mechanics force field such as our CHARMM-based PARM22/SU01 has been used. The experimental NMR parameters acquired are typically (1)H,(1)H cross-relaxation rates (related to NOEs), (3)JCH and (3)JCCtrans-glycosidic coupling constants and (1)H,(13)C- and (1)H,(1)H-residual dipolar couplings. At a glycosidic linkage two torsion angles ϕ and ψ are defined and for 6-substituted residues also the ω torsion angle is required. Major conformers can be identified for which highly populated states are present. Thus, in many cases a well-defined albeit not rigid structure can be identified. However, on longer timescales, oligosaccharides must be considered as highly flexible molecules since also anti-conformations have been shown to exist with H-C-O-C torsion angles of ∼180°, compared to syn-conformations in which the protons at the carbon atoms forming the glycosidic linkage are in close proximity. The accessible conformational space governs possible interactions with proteins and both minor changes and significant alterations occur for the oligosaccharides in these interaction processes. Transferred NOE NMR experiments give information on the conformation of the glycan ligand when bound to the proteins whereas saturation transfer difference NMR experiments report on the carbohydrate part in contact with the protein. It is anticipated that the subtle differences in conformational preferences for glycan structures facilitate a means to regulate biochemical processes in different environments. Further developments in the analysis of glycan structure and in particular its role in interactions with other molecules, will lead to clarifications of the importance of structure in biochemical regulation processes essential to health and disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Metabolomics by Proton High-Resolution Magic-Angle-Spinning Nuclear Magnetic Resonance of Tomato Plants Treated with Two Secondary Metabolites Isolated from Trichoderma.

    PubMed

    Mazzei, Pierluigi; Vinale, Francesco; Woo, Sheridan Lois; Pascale, Alberto; Lorito, Matteo; Piccolo, Alessandro

    2016-05-11

    Trichoderma fungi release 6-pentyl-2H-pyran-2-one (1) and harzianic acid (2) secondary metabolites to improve plant growth and health protection. We isolated metabolites 1 and 2 from Trichoderma strains, whose different concentrations were used to treat seeds of Solanum lycopersicum. The metabolic profile in the resulting 15 day old tomato leaves was studied by high-resolution magic-angle-spinning nuclear magnetic resonance (HRMAS NMR) spectroscopy directly on the whole samples without any preliminary extraction. Principal component analysis (PCA) of HRMAS NMR showed significantly enhanced acetylcholine and γ-aminobutyric acid (GABA) content accompanied by variable amount of amino acids in samples treated with both Trichoderma secondary metabolites. Seed germination rates, seedling fresh weight, and the metabolome of tomato leaves were also dependent upon doses of metabolites 1 and 2 treatments. HRMAS NMR spectroscopy was proven to represent a rapid and reliable technique for evaluating specific changes in the metabolome of plant leaves and calibrating the best concentration of bioactive compounds required to stimulate plant growth.

  12. Structural analysis and characterization of dextran produced by wild and mutant strains of Leuconostoc mesenteroides.

    PubMed

    Siddiqui, Nadir Naveed; Aman, Afsheen; Silipo, Alba; Qader, Shah Ali Ul; Molinaro, Antonio

    2014-01-01

    An exopolysaccharide known as dextran was produced by Leuconostoc mesenteroides KIBGE-IB22 (wild) and L. mesenteroides KIBGE-IB22M20 (mutant). The structure was characterized using FTIR, (1)H NMR, (13)C NMR and 2D NMR spectroscopic techniques, whereas surface morphology was analyzed using SEM. A clear difference in the spectral chemical shift patterns was observed in both samples. All the spectral data indicated that the exopolysaccharide produced by KIBGE-IB22 is a mixture of two biopolymers. One was dextran in α-(1 → 6) configuration with a small proportion of α-(1 → 3) branching and the other was levan containing β-(2 → 6) fructan fructofuranosyl linkages. However, remarkably the mutant only produced dextran without any concomitant production of levan. Study suggested that the property of KIBGE-IB22M20, regarding improved production of high molecular weight dextran in a shorter period of fermentation time without any contamination of other exopolysaccharide, could be employed to make the downstream process more feasible and cost effective on large scale. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Characterization of the fluid and solid components of cyanogel systems during the gelation process

    NASA Astrophysics Data System (ADS)

    Fortmeyer, Ivy Camille

    The work in this thesis concerns the sol-gel transformation in cyanogel systems comprised of d8 square planar chlorometalates (M=Pd(II), Pt(II)) and d6 octahedral hexacyanometalates (M=Fe(II), Co(III), Ru(II)). The body of this thesis is split into two chapters. The first chapter examines the physical changes in the solvent phase of the sol-gel network, and the second focuses on the polymer backbone of the gel. Studies on the water component of cyanogel systems during the gelation process were carried out with a variety of in situ spectroscopic techniques. The use of high resolution-magic angle spinning nuclear magnetic resonance (HR-MAS NMR) to identify and characterize different water environments was explored, but was ultimately found to disrupt gelation. Standard solution-phase 1H NMR proved sufficient for calculation and qualitative modeling of spin-spin and spin-lattice relaxations, providing distinct spectral markers of the gelation point and subsequent aging process. Vibrational spectroscopy was used to explore the hydrogen bonding environment of the water during gelation. The kinetics of polymerization of the cyanogel backbone was explored using both in situ and ex situ techniques. Data collected by 13C NMR and 195Pt NMR primarily demonstrated first order kinetics, implying a dissociative substitution mechanism at the chlorometalate center. Rate constants for gelation in the presence of various added monopotassium and nitrate salts were calculated. Added chloride was found to significantly slow gelation and was further explored using NMR and vibrational spectroscopy. A mechanism was proposed for the polymerization taking into account the dissociative substitution and the bridging geometries implied by 13C NMR.

  14. Coordination-organometallic hybrid materials based on the trinuclear M(II)-Ru(II) (M=Ni and Zn) complexes: Synthesis, structural characterization, luminescence and electrochemical properties

    NASA Astrophysics Data System (ADS)

    Pawal, S. B.; Lolage, S. R.; Chavan, S. S.

    2018-02-01

    A new series of trinuclear complexes of the type Ni[R-C6H4Ndbnd CH(O)C6H3Ctbnd CRu(dppe)2Cl]2 (1a-c) and Zn[Rsbnd C6H4Ndbnd CH(O)C6H3Ctbnd CRu(dppe)2Cl]2 (2a-c) have been prepared from the reaction of trans-[RuCl(dppe)2Ctbnd Csbnd C6H3(OH)(CHO)] (1) with aniline, 4-nitroaniline and 4-methoxyaniline (R1-3) in presence of nickel acetate and zinc acetate in CH2Cl2/MeOH (1:1) mixture. The structural properties of the complexes have been characterized by elemental analyses and spectroscopic techniques viz. FTIR, UV-Visible, 1H NMR and 31P NMR spectral studies. The crystal structure and morphology of the hybrid complexes was investigated with the help of X-ray powder diffraction (XRPD), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The thermal properties of 1a-c and 2a-c were studied by thermogravimetric (TG) analysis. The electrochemical behaviour of the complexes reveals that all complexes displayed a quasireversible redox behaviour corresponding to Ru(II)/Ru(III) and Ni(II)/Ni(III) couples for 1a-c and only Ru(II)/Ru(III) couple for 2a-c. All complexes are emissive in solution at room temperature revealing the influence of substituents and solvent polarity on emission properties of the complexes.

  15. Synthesis and characterization of crystalline structures based on phenylboronate ligands bound to alkaline earth cations.

    PubMed

    Reinholdt, Marc; Croissant, Jonas; Di Carlo, Lidia; Granier, Dominique; Gaveau, Philippe; Bégu, Sylvie; Devoisselle, Jean-Marie; Mutin, P Hubert; Smith, Mark E; Bonhomme, Christian; Gervais, Christel; van der Lee, Arie; Laurencin, Danielle

    2011-08-15

    We describe the preparation of the first crystalline compounds based on arylboronate ligands PhB(OH)(3)(-) coordinated to metal cations: [Ca(PhB(OH)(3))(2)], [Sr(PhB(OH)(3))(2)]·H(2)O, and [Ba(PhB(OH)(3))(2)]. The calcium and strontium structures were solved using powder and single-crystal X-ray diffraction, respectively. In both cases, the structures are composed of chains of cations connected through phenylboronate ligands, which interact one with each other to form a 2D lamellar structure. The temperature and pH conditions necessary for the formation of phase-pure compounds were investigated: changes in temperature were found to mainly affect the morphology of the crystallites, whereas strong variations in pH were found to affect the formation of pure phases. All three compounds were characterized using a wide range of analytical techniques (TGA, IR, Raman, XRD, and high resolution (1)H, (11)B, and (13)C solid-state NMR), and the different coordination modes of phenylboronate ligands were analyzed. Two different kinds of hydroxyl groups were identified in the structures: those involved in hydrogen bonds, and those that are effectively "free" and not involved in hydrogen bonds of any significant strength. To position precisely the OH protons within the structures, an NMR-crystallography approach was used: the comparison of experimental and calculated NMR parameters (determined using the Gauge Including Projector Augmented Wave method, GIPAW) allowed the most accurate positions to be identified. In the case of the calcium compound, it was found that it is the (43)Ca NMR data that are critical to help identify the best model of the structure. © 2011 American Chemical Society

  16. 17O NMR Investigation of Water Structure and Dynamics

    PubMed Central

    Keeler, Eric G.; Michaelis, Vladimir K.; Griffin, Robert G.

    2017-01-01

    The structure and dynamics of the bound water in barium chlorate monohydrate were studied with 17O nuclear magnetic resonance (NMR) spectroscopy in samples that are stationary and spinning at the magic-angle in magnetic fields ranging from 14.1 to 21.1 T. 17O NMR parameters of the water were determined, and the effects of torsional oscillations of the water molecule on the 17O quadrupolar coupling constant (CQ) were delineated with variable temperature MAS NMR. With decreasing temperature and reduction of the librational motion, we observe an increase in the experimentally measured CQ explaining the discrepancy between experiments and predictions from density functional theory. In addition, at low temperatures and in the absence of 1H decoupling, we observe a well-resolved 1H–17O dipole splitting in the spectra, which provides information on the structure of the H2O molecule. The splitting arises because of the homogeneous nature of the coupling between the two 1H–17O dipoles and the 1H–1H dipole. PMID:27454747

  17. FT-IR, FT-Raman, UV, NMR spectra and molecular structure investigation of (E)-2-(3-chloropyrazin-2-yl)-1-(3-ethyl-2, 6-diphenyl piperidin-4-ylidene) hydrazine: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Therasa Alphonsa, A.; Loganathan, C.; Athavan Alias Anand, S.; Kabilan, S.

    2015-11-01

    This work presents the characterization of (E)-2-(3-chloropyrazin-2-yl)-1-(3-ethyl-2, 6-diphenyl piperidin-4-ylidene) hydrazine (HDE) by quantum chemical calculations and spectral techniques. The structure was investigated by FT-IR, FT-Raman, UV-vis and NMR techniques. The geometrical parameters and energies have been obtained from Density functional theory (DFT) B3LYP (6-31G (d, p)) basis set calculations. The geometry of the molecule was fully optimized, vibrational spectra were calculated and fundamental vibrations were assigned on the basis of total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. 1H and 13C NMR chemical shifts of the molecule were calculated using Gauge-independent atomic orbital method (GIAO). The electronic properties such as excitation energies, wavelength, HOMO, LUMO energies performed by Time dependent density functional theory (TD-DFT) results complements with the experimental findings. NBO analysis has been performed for analyzing charge delocalization throughout the molecule. The calculation results were applied to simulate spectra of the title compound, which show excellent agreement with observed spectra. To provide information about the interactions between human cytochrome protein and the novel compound theoretically, docking studies were carried out using Schrödinger software.

  18. 2H and 27Al solid-state NMR study of the local environments in Al-doped 2-line ferrihydrite, goethite, and lepidocrocite

    DOE PAGES

    Kim, Jongsik; Ilott, Andrew J.; Middlemiss, Derek S.; ...

    2015-05-13

    Although substitution of aluminum into iron oxides and oxyhydroxides has been extensively studied, it is difficult to obtain accurate incorporation levels. Assessing the distribution of dopants within these materials has proven especially challenging because bulk analytical techniques cannot typically determine whether dopants are substituted directly into the bulk iron oxide or oxyhydroxide phase or if they form separate, minor phase impurities. These differences have important implications for the chemistry of these iron-containing materials, which are ubiquitous in the environment. In this work, 27Al and 2H NMR experiments are performed on series of Al-substituted goethite, lepidocrocite, and 2-line ferrihydrite in ordermore » to develop an NMR method to track Al substitution. The extent of Al substitution into the structural frameworks of each compound is quantified by comparing quantitative 27Al MAS NMR results with those from elemental analysis. Magnetic measurements are performed for the goethite series to compare with NMR measurements. Static 27Al spin–echo mapping experiments are used to probe the local environments around the Al substituents, providing clear evidence that they are incorporated into the bulk iron phases. As a result, predictions of the 2H and 27Al NMR hyperfine contact shifts in Al-doped goethite and lepidocrocite, obtained from a combined first-principles and empirical magnetic scaling approach, give further insight into the distribution of the dopants within these phases.« less

  19. LC-MS and 1H NMR as an improved dereplication tool to identify antifungal diterpenoids from Sagittaria latifolia

    USDA-ARS?s Scientific Manuscript database

    A dereplication strategy using a combination of liquid chromatography-mass spectrometry (LC-MS) and proton nuclear magnetic resonance spectroscopy (1H NMR) to facilitate compound identification towards antifungal natural product discovery is presented. This analytical approach takes advantage of th...

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sohn, H.; Camacho-Bunquin, J.; Langeslay, R. R.

    Well-defined, isolated, single-site organovanadium(III) catalyst on SiO 2 [(SiO 2)V(Mes)(THF)] were synthesized via surface organometallic chemistry, and fully characterized using a combination of analytical and spectroscopic techniques (EA, ICP, 1H NMR, TGA-MS, EPR, XPS, DR-UV/Vis, UV-Raman, DRIFTS, XAS). The catalysts exhibit unprecedented reactivity in liquid- and gas-phase alkene/alkyne hydrogenation. Catalyst poisoning experiments revealed that 100% of the V sites are active for hydrogenation.

  1. Microscale determination of the spectral characteristics and carbon-isotopic compositions of porphyrins

    NASA Technical Reports Server (NTRS)

    Popp, B. N.; Hayes, J. M.; Boreham, C. J.

    1993-01-01

    Molar extinction coefficients for band III of Ni porphyrins are calculated from results of spectrophotometric and manometric analyses of individual etioporphyrins, DPEP, cyclic, and diDPEP porphyrins known to initially be pure from mass spectrometry, 1H NMR, and analytical HPLC studies. A method for determining carbon-isotopic compositions and purity of micromolar quantities of individual porphyrins using combined spectrophotometric and manometric techniques is presented.

  2. Synthesis, growth, crystal structure, optical and third order nonlinear optical properties of quinolinium derivative single crystal: PNQI

    NASA Astrophysics Data System (ADS)

    Karthigha, S.; Krishnamoorthi, C.

    2018-03-01

    An organic quinolinium derivative nonlinear optical (NLO) crystal, 1-ethyl-2-[2-(4-nitro-phenyl)-vinyl]-quinolinium iodide (PNQI) was synthesized and successfully grown by slow evaporation solution growth technique. Formation of a crystalline compound was confirmed by single crystal X-ray diffraction. The quinolinium compound PNQI crystallizes in the triclinic crystal system with a centrosymmetric space group of P-1 symmetry. The molecular structure of PNQI was confirmed by 1H NMR and 13C NMR spectral studies. The thermal properties of the crystal have been investigated by thermogravimetric (TG) and differential scanning calorimetry (DSC) studies. The optical characteristics obtained from UV-Vis-NIR spectral data were described and the cut-off wavelength observed at 506 nm. The etching study was performed to analyse the growth features of PNQI single crystal. The third order NLO properties such as nonlinear refractive index (n2), nonlinear absorption coefficient (β) and nonlinear susceptibility (χ (3)) of the crystal were investigated using Z-scan technique at 632.8 nm of Hesbnd Ne laser.

  3. Non-targeted 1H NMR fingerprinting and multivariate statistical analyses for the characterisation of the geographical origin of Italian sweet cherries.

    PubMed

    Longobardi, F; Ventrella, A; Bianco, A; Catucci, L; Cafagna, I; Gallo, V; Mastrorilli, P; Agostiano, A

    2013-12-01

    In this study, non-targeted (1)H NMR fingerprinting was used in combination with multivariate statistical techniques for the classification of Italian sweet cherries based on their different geographical origins (Emilia Romagna and Puglia). As classification techniques, Soft Independent Modelling of Class Analogy (SIMCA), Partial Least Squares Discriminant Analysis (PLS-DA), and Linear Discriminant Analysis (LDA) were carried out and the results were compared. For LDA, before performing a refined selection of the number/combination of variables, two different strategies for a preliminary reduction of the variable number were tested. The best average recognition and CV prediction abilities (both 100.0%) were obtained for all the LDA models, although PLS-DA also showed remarkable performances (94.6%). All the statistical models were validated by observing the prediction abilities with respect to an external set of cherry samples. The best result (94.9%) was obtained with LDA by performing a best subset selection procedure on a set of 30 principal components previously selected by a stepwise decorrelation. The metabolites that mostly contributed to the classification performances of such LDA model, were found to be malate, glucose, fructose, glutamine and succinate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. NMR studies of preimplantation embryo metabolism in human assisted reproductive techniques: a new biomarker for assessment of embryo implantation potential.

    PubMed

    Pudakalakatti, Shivanand M; Uppangala, Shubhashree; D'Souza, Fiona; Kalthur, Guruprasad; Kumar, Pratap; Adiga, Satish Kumar; Atreya, Hanudatta S

    2013-01-01

    There has been growing interest in understanding energy metabolism in human embryos generated using assisted reproductive techniques (ART) for improving the overall success rate of the method. Using NMR spectroscopy as a noninvasive tool, we studied human embryo metabolism to identify specific biomarkers to assess the quality of embryos for their implantation potential. The study was based on estimation of pyruvate, lactate and alanine levels in the growth medium, ISM1, used in the culture of embryos. An NMR study involving 127 embryos from 48 couples revealed that embryos transferred on Day 3 (after 72 h in vitro culture) with successful implantation (pregnancy) exhibited significantly (p < 10(-5) ) lower pyruvate/alanine ratios compared to those that failed to implant. Lactate levels in media were similar for all embryos. This implies that in addition to lactate production, successfully implanted embryos use pyruvate to produce alanine and other cellular functions. While pyruvate and alanine individually have been used as biomarkers, the present study highlights the potential of combining them to provide a single parameter that correlates strongly with implantation potential. Copyright © 2012 John Wiley & Sons, Ltd.

  5. [Study of hydrogen bonds in the "catalytic triad" of trypsin by NMR spectra at 1H, 13C, and 15N nuclei].

    PubMed

    Golubeb, N S; Gindin, V A; Ligaĭ, S S; Smirnov, S N

    1994-05-01

    The 1H and 13C NMR of trypsin stabilized by chemical modification with a hydrophilic polymer have been obtained in a wide range of pH (1.0-11.0). The spectral features referred to some nuclei of the "catalytic triad" have been identified using different NMR techniques as well as chemical modification with selective reagents. It was found that the monoprotonation of this system results in a quasi-symmetrical hydrogen bond formed between the basic groups which provided explanation for the discrepancies between the experimental findings obtained by different authors concerning the protonation site in this catalytic system. Simulation of the catalytic triad by a 15N-labelled low molecular model suggests that an increase in the OH-group acidity is unaccompanied by a discrete double proton transfer; however, a smooth shift of the bridging protons from one basic atom to another occurs with quasi-symmetrical hydrogen bonds formed in intermediate cases. On the basis of experimental data a new concept has been proposed for the mechanism of acid-base catalysis performed by pains of weak basic groups, such as His-Im and Asp(Glu)-COO- (pKa = 3-7) which are not capable of proton abstraction from alcoholic or water OH-groups (pKa > 13). The catalysis may consist in changing the charge densities on the reacting groups due to strong H-bonding and, on the other hand, in facilitating the free movement of a proton in the field of several basic atoms when going along the reaction coordinate. The energy of very strong hydrogen bonds thus formed diminishes the activation energy of the reaction.

  6. New findings on the in vivo antioxidant activity of Curcuma longa extract by an integrated (1)H NMR and HPLC-MS metabolomic approach.

    PubMed

    Dall'Acqua, Stefano; Stocchero, Matteo; Boschiero, Irene; Schiavon, Mariano; Golob, Samuel; Uddin, Jalal; Voinovich, Dario; Mammi, Stefano; Schievano, Elisabetta

    2016-03-01

    Curcuminoids possess powerful antioxidant activity as demonstrated in many chemical in vitro tests and in several in vivo trials. Nevertheless, the mechanism of this activity is not completely elucidated and studies on the in vivo antioxidant effects are still needed. Metabolomics may be used as an attractive approach for such studies and in this paper, we describe the effects of oral administration of a Curcuma longa L. extract (150 mg/kg of total curcuminoids) to 12 healthy rats with particular attention to urinary markers of oxidative stress. The experiment was carried out over 33 days and changes in the 24-h urine samples metabolome were evaluated by (1)H NMR and HPLC-MS. Both techniques produced similar representations for the collected samples confirming our previous study. Modifications of the urinary metabolome lead to the observation of different variables proving the complementarity of (1)H NMR and HPLC-MS for metabolomic purposes. The urinary levels of allantoin, m-tyrosine, 8-hydroxy-2'-deoxyguanosine, and nitrotyrosine were decreased in the treated group thus supporting an in vivo antioxidant effect of the oral administration of Curcuma extract to healthy rats. On the other hand, urinary TMAO levels were higher in the treated compared to the control group suggesting a role of curcumin supplementation on microbiota or on TMAO urinary excretion. Furthermore, the urinary levels of the sulphur containing compounds taurine and cystine were also changed suggesting a role for such constituents in the biochemical pathways involved in Curcuma extract bioactivity and indicating the need for further investigation on the complex role of antioxidant curcumin effects. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Human SLC26A4/Pendrin STAS domain is a nucleotide-binding protein: Refolding and characterization for structural studies.

    PubMed

    Sharma, Alok K; Krieger, Tobias; Rigby, Alan C; Zelikovic, Israel; Alper, Seth L

    2016-12-01

    Mutations in the human SLC26A4/Pendrin polypeptide (hPDS) cause Pendred Syndrome /DFNB4, syndromic deafness with enlargement of the vestibular aqueduct and low-penetrance goiter. Here we present data on cloning, protein overexpression and purification, refolding, and biophysical characterization of the recombinant hPDS STAS domain lacking its intrinsic variable sequence (STAS-ΔIVS). We report a reproducible protein refolding protocol enabling milligram scale expression and purification of uniformly 15 N- and 13 C /15 N-enriched hPDS STAS-ΔIVS domain suitable for structural characterization by solution NMR. Circular dichroism, one-dimensional 1 H, two-dimensional 1 H- 15 N HSQC, and 1 H- 13 C HSQC NMR spectra confirmed the well-folded state of purified hPDS STAS-ΔIVS in solution. Heteronuclear NMR chemical shift perturbation of select STAS-ΔIVS residues by GDP was observed at fast-to-intermediate NMR time scales. Intrinsic tryptophan fluorescence quench experiments demonstrated GDP binding to hPDS STAS-ΔIVS with K d of 178 μM. These results are useful for structure/function characterization of hPDS STAS, the cytoplasmic subdomain of the congenital deafness protein, pendrin, as well as for studies of other mammalian STAS domains.

  8. Determination of 13C/12C Isotope Ratio in Alcohols of Different Origin by 1н Nuclei NMR-Spectroscopy

    NASA Astrophysics Data System (ADS)

    Dzhimak, S. S.; Basov, A. A.; Buzko, V. Yu.; Kopytov, G. F.; Kashaev, D. V.; Shashkov, D. I.; Shlapakov, M. S.; Baryshev, M. G.

    2017-02-01

    A new express method of indirect assessment of 13C/12C isotope ratio on 1H nuclei is developed to verify the authenticity of ethanol origin in alcohol-water-based fluids and assess the facts of various alcoholic beverages falsification. It is established that in water-based alcohol-containing systems, side satellites for the signals of ethanol methyl and methylene protons in the NMR spectra on 1H nuclei, correspond to the protons associated with 13C nuclei. There is a direct correlation between the intensities of the signals of ethanol methyl and methylene protons' 1H- NMR and their side satellites, therefore, the data obtained can be used to assess 13C/12C isotope ratio in water-based alcohol-containing systems. The analysis of integrated intensities of main and satellite signals of methyl and methylene protons of ethanol obtained by NMR on 1H nuclei makes it possible to differentiate between ethanol of synthetic and natural origin. Furthermore, the method proposed made it possible to differentiate between wheat and corn ethanol.

  9. NMR characterization of weak interactions between RhoGDI2 and fragment screening hits.

    PubMed

    Liu, Jiuyang; Gao, Jia; Li, Fudong; Ma, Rongsheng; Wei, Qingtao; Wang, Aidong; Wu, Jihui; Ruan, Ke

    2017-01-01

    The delineation of intrinsically weak interactions between novel targets and fragment screening hits has long limited the pace of hit-to-lead evolution. Rho guanine-nucleotide dissociation inhibitor 2 (RhoGDI2) is a novel target that lacks any chemical probes for the treatment of tumor metastasis. Protein-observed and ligand-observed NMR spectroscopy was used to characterize the weak interactions between RhoGDI2 and fragment screening hits. We identified three hits of RhoGDI2 using streamlined NMR fragment-based screening. The binding site residues were assigned using non-uniformly sampled C α - and H α -based three dimensional NMR spectra. The molecular docking to the proposed geranylgeranyl binding pocket of RhoGDI2 was guided by NMR restraints of chemical shift perturbations and ligand-observed transferred paramagnetic relaxation enhancement. We further validated the weak RhoGDI2-hit interactions using mutagenesis and structure-affinity analysis. Weak interactions between RhoGDI2 and fragment screening hits were delineated using an integrated NMR approach. Binders to RhoGDI2 as a potential anti-cancer target have been first reported, and their weak interactions were depicted using NMR spectroscopy. Our work highlights the powerfulness and the versatility of the integrative NMR techniques to provide valuable structural insight into the intrinsically weak interactions between RhoGDI2 and the fragment screening hits, which could hardly be conceived using other biochemical techniques. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Human metabolic profiles are stably controlled by genetic and environmental variation

    PubMed Central

    Nicholson, George; Rantalainen, Mattias; Maher, Anthony D; Li, Jia V; Malmodin, Daniel; Ahmadi, Kourosh R; Faber, Johan H; Hallgrímsdóttir, Ingileif B; Barrett, Amy; Toft, Henrik; Krestyaninova, Maria; Viksna, Juris; Neogi, Sudeshna Guha; Dumas, Marc-Emmanuel; Sarkans, Ugis; The MolPAGE Consortium; Silverman, Bernard W; Donnelly, Peter; Nicholson, Jeremy K; Allen, Maxine; Zondervan, Krina T; Lindon, John C; Spector, Tim D; McCarthy, Mark I; Holmes, Elaine; Baunsgaard, Dorrit; Holmes, Chris C

    2011-01-01

    1H Nuclear Magnetic Resonance spectroscopy (1H NMR) is increasingly used to measure metabolite concentrations in sets of biological samples for top-down systems biology and molecular epidemiology. For such purposes, knowledge of the sources of human variation in metabolite concentrations is valuable, but currently sparse. We conducted and analysed a study to create such a resource. In our unique design, identical and non-identical twin pairs donated plasma and urine samples longitudinally. We acquired 1H NMR spectra on the samples, and statistically decomposed variation in metabolite concentration into familial (genetic and common-environmental), individual-environmental, and longitudinally unstable components. We estimate that stable variation, comprising familial and individual-environmental factors, accounts on average for 60% (plasma) and 47% (urine) of biological variation in 1H NMR-detectable metabolite concentrations. Clinically predictive metabolic variation is likely nested within this stable component, so our results have implications for the effective design of biomarker-discovery studies. We provide a power-calculation method which reveals that sample sizes of a few thousand should offer sufficient statistical precision to detect 1H NMR-based biomarkers quantifying predisposition to disease. PMID:21878913

  11. Inclusion complex of benzocaine and β-cyclodextrin: 1H NMR and isothermal titration calorimetry studies

    NASA Astrophysics Data System (ADS)

    Mic, Mihaela; Pırnǎu, Adrian; Bogdan, Mircea; Turcu, Ioan

    2013-11-01

    The supramolecular structure of the inclusion complex of β-cyclodextrin with benzocaine in aqueous solution has been investigated by 1H NMR spectroscopy and isothermal titration nanocalorimetry (ITC). Analysis of 1H NMR data by continuous variation method indicates that the benzocaine: β-cyclodextrin inclusion complex occurs and has a 1:1 stoichiometry. Rotating frame NOE spectroscopy (ROESY) was used to ascertain the solution geometry of the host-guest complex which indicates that the benzocaine molecule was included with the aromatic ring into the cyclodextrin cavity. Although the affinity of benzocaine for cyclodextrin is relatively high, the association constant cannot be measured using ITC due to the low solubility of benzocaine in water.

  12. Perspective: next generation isotope-aided methods for protein NMR spectroscopy.

    PubMed

    Kainosho, Masatsune; Miyanoiri, Yohei; Terauchi, Tsutomu; Takeda, Mitsuhiro

    2018-06-22

    In this perspective, we describe our efforts to innovate the current isotope-aided NMR methodology to investigate biologically important large proteins and protein complexes, for which only limited structural information could be obtained by conventional NMR approaches. At the present time, it is widely believed that only backbone amide and methyl signals are amenable for investigating such difficult targets. Therefore, our primary mission is to disseminate our novel knowledge within the biological NMR community; specifically, that any type of NMR signals other than methyl and amide groups can be obtained, even for quite large proteins, by optimizing the transverse relaxation properties by isotope labeling methods. The idea of "TROSY by isotope labeling" has been cultivated through our endeavors aiming to improve the original stereo-array isotope labeling (SAIL) method (Kainosho et al., Nature 440:52-57, 2006). The SAIL TROSY methods subsequently culminated in the successful observations of individual NMR signals for the side-chain aliphatic and aromatic 13 CH groups in large proteins, as exemplified by the 82 kDa single domain protein, malate synthase G. Meanwhile, the expected role of NMR spectroscopy in the emerging integrative structural biology has been rapidly shifting, from structure determination to the acquisition of biologically relevant structural dynamics, which are poorly accessible by X-ray crystallography or cryo-electron microscopy. Therefore, the newly accessible NMR probes, in addition to the methyl and amide signals, will open up a new horizon for investigating difficult protein targets, such as membrane proteins and supramolecular complexes, by NMR spectroscopy. We briefly introduce our latest results, showing that the protons attached to 12 C-atoms give profoundly narrow 1 H-NMR signals even for large proteins, by isolating them from the other protons using the selective deuteration. The direct 1 H observation methods exhibit the highest sensitivities, as compared to heteronuclear multidimensional spectroscopy, in which the 1 H-signals are acquired via the spin-coupled 13 C- and/or 15 N-nuclei. Although the selective deuteration method was launched a half century ago, as the first milestone in the following prosperous history of isotope-aided NMR methods, our results strongly imply that the low-dimensional 1 H-direct observation NMR methods should be revitalized in the coming era, featuring ultrahigh-field spectrometers beyond 1 GHz.

  13. A new anthraquinone and eight constituents from Hedyotis caudatifolia Merr. et Metcalf: isolation, purification and structural identification.

    PubMed

    Luo, Peng; Su, Jiale; Zhu, Yilin; Wei, Jianhua; Wei, Wanxing; Pan, Weigao

    2016-10-01

    Hedyotis caudatifolia Merr. et Metcalf. (HC), a folk medicine in Yao nationalities areas in China, was used to investigate the chemical constituents. Through silica gel and Sephadex LH-20 column chromatography, nine compounds were isolated and purified. By physical and chemical properties, IR, MS (EI-MS, high resolution EI-MS), 1D NMR ((1)H NMR, (13)C NMR) and 2D NMR (HSQC, (1)H-(1)H COSY, HMBC), their structures were identified as β-sitosterol (1), stigmasterol (2), scopolin (3), 2-hydroxy-1,7,8-trimethoxyanthracene-9,10-dione (4), oleanolic acid (5), ursolic acid (6), methyl barbinervate (7), β-daucosterol (8) and p-Hydroxybenzoic acid (9). These compounds were isolated from HC for the first time, and 4 a new anthraquinone whose biological activities are worth to be investigated in future. These compounds may contribute to the HC's pharmacological effects on treating diseases, and may be used as candidates for control index in establishing the quality control standard of HC.

  14. Synthesis and in silico studies of novel sulfonamides having oxadiazole ring: As β-glucuronidase inhibitors.

    PubMed

    Taha, Muhammad; Baharudin, Mohd Syukri; Ismail, Nor Hadiani; Selvaraj, Manikandan; Salar, Uzma; Alkadi, Khaled A A; Khan, Khalid Mohammed

    2017-04-01

    Novel sulfonamides having oxadiazole ring were synthesized by multistep reaction and evaluated to check in vitro β-glucuronidase inhibitory activity. Luckily, except compound 13, all compounds were found to demonstrate good inhibitory activity in the range of IC 50 =2.40±0.01-58.06±1.60μM when compared to the standard d-saccharic acid 1,4-lactone (IC 50 =48.4±1.25μM). Structure activity relationship was also presented. However, in order to ensure the SAR as well as the molecular interactions of compounds with the active site of enzyme, molecular docking studies on most active compounds 19, 16, 4 and 6 was carried out. All derivatives were fully characterized by 1 H NMR, 13 C NMR and EI-MS spectroscopic techniques. CHN analysis was also presented. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Novel spin dynamics in ferrimagnetic molecular chains from 1H NMR and μSR spin-lattice relaxation measurements

    NASA Astrophysics Data System (ADS)

    Micotti, E.; Lascialfari, A.; Rigamonti, A.; Aldrovandi, S.; Caneschi, A.; Gatteschi, D.; Bogani, L.

    2004-05-01

    The spin dynamics in the helical chain Co(hfac) 2NITPhOMe has been investigated by 1H NMR and μSR relaxation. In the temperature range 15

  16. Delamination mechanism study of large size waste printed circuit boards by using dimethylacetamide.

    PubMed

    Verma, Himanshu Ranjan; Singh, Kamalesh K; Mankhand, Tilak Raj

    2017-07-01

    Present work investigates the recycling of waste printed circuit boards (PCBs) by cracking of its multi-layered structure by using dimethylacetamide (DMA). The study shows that cracking and separation of layers of PCBs increases as the temperature increases; and decreases as the surface area of PCBs increases. After separation of layers, the used solvent was analyzed by proton and carbon nuclear magnetic resonance spectroscopy (NMR) to understand the dissolution phenomenon of resin. Further, NMR and Fourier transform infrared spectroscopy analysis of DMA sample after 1h, 2h, 3h, 4h and 8h of reaction with PCBs at 433K and PCB:DMA ratio (wt/vol) of 3:10 has been carried out to investigate the mechanism of dissolution of resin. These studies revealed that hydroxyl group of PCBs polymeric chain participates in hydrogen bonding with parent carbonyl group of DMA molecule that results in the solvation of resin. Possible chemical reaction based on the above finding has been discussed. Using this technique, separation of the metallic fraction without application of any energy intensive mechanical pre-processing is possible. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Automatic NMR-Based Identification of Chemical Reaction Types in Mixtures of Co-Occurring Reactions

    PubMed Central

    Latino, Diogo A. R. S.; Aires-de-Sousa, João

    2014-01-01

    The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the resolution of problems far beyond the original application of NMR in structure elucidation/verification. The diversity of applications can range from process monitoring, metabolic profiling, authentication of products, to quality control. An application related to the automatic analysis of complex mixtures concerns mixtures of chemical reactions. We encoded mixtures of chemical reactions with the difference between the 1H NMR spectra of the products and the reactants. All the signals arising from all the reactants of the co-occurring reactions were taken together (a simulated spectrum of the mixture of reactants) and the same was done for products. The difference spectrum is taken as the representation of the mixture of chemical reactions. A data set of 181 chemical reactions was used, each reaction manually assigned to one of 6 types. From this dataset, we simulated mixtures where two reactions of different types would occur simultaneously. Automatic learning methods were trained to classify the reactions occurring in a mixture from the 1H NMR-based descriptor of the mixture. Unsupervised learning methods (self-organizing maps) produced a reasonable clustering of the mixtures by reaction type, and allowed the correct classification of 80% and 63% of the mixtures in two independent test sets of different similarity to the training set. With random forests (RF), the percentage of correct classifications was increased to 99% and 80% for the same test sets. The RF probability associated to the predictions yielded a robust indication of their reliability. This study demonstrates the possibility of applying machine learning methods to automatically identify types of co-occurring chemical reactions from NMR data. Using no explicit structural information about the reactions participants, reaction elucidation is performed without structure elucidation of the molecules in the mixtures. PMID:24551112

  18. Automatic NMR-based identification of chemical reaction types in mixtures of co-occurring reactions.

    PubMed

    Latino, Diogo A R S; Aires-de-Sousa, João

    2014-01-01

    The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the resolution of problems far beyond the original application of NMR in structure elucidation/verification. The diversity of applications can range from process monitoring, metabolic profiling, authentication of products, to quality control. An application related to the automatic analysis of complex mixtures concerns mixtures of chemical reactions. We encoded mixtures of chemical reactions with the difference between the (1)H NMR spectra of the products and the reactants. All the signals arising from all the reactants of the co-occurring reactions were taken together (a simulated spectrum of the mixture of reactants) and the same was done for products. The difference spectrum is taken as the representation of the mixture of chemical reactions. A data set of 181 chemical reactions was used, each reaction manually assigned to one of 6 types. From this dataset, we simulated mixtures where two reactions of different types would occur simultaneously. Automatic learning methods were trained to classify the reactions occurring in a mixture from the (1)H NMR-based descriptor of the mixture. Unsupervised learning methods (self-organizing maps) produced a reasonable clustering of the mixtures by reaction type, and allowed the correct classification of 80% and 63% of the mixtures in two independent test sets of different similarity to the training set. With random forests (RF), the percentage of correct classifications was increased to 99% and 80% for the same test sets. The RF probability associated to the predictions yielded a robust indication of their reliability. This study demonstrates the possibility of applying machine learning methods to automatically identify types of co-occurring chemical reactions from NMR data. Using no explicit structural information about the reactions participants, reaction elucidation is performed without structure elucidation of the molecules in the mixtures.

  19. Designing dipolar recoupling and decoupling experiments for biological solid-state NMR using interleaved continuous wave and RF pulse irradiation.

    PubMed

    Bjerring, Morten; Jain, Sheetal; Paaske, Berit; Vinther, Joachim M; Nielsen, Niels Chr

    2013-09-17

    Rapid developments in solid-state NMR methodology have boosted this technique into a highly versatile tool for structural biology. The invention of increasingly advanced rf pulse sequences that take advantage of better hardware and sample preparation have played an important part in these advances. In the development of these new pulse sequences, researchers have taken advantage of analytical tools, such as average Hamiltonian theory or lately numerical methods based on optimal control theory. In this Account, we focus on the interplay between these strategies in the systematic development of simple pulse sequences that combines continuous wave (CW) irradiation with short pulses to obtain improved rf pulse, recoupling, sampling, and decoupling performance. Our initial work on this problem focused on the challenges associated with the increasing use of fully or partly deuterated proteins to obtain high-resolution, liquid-state-like solid-state NMR spectra. Here we exploit the overwhelming presence of (2)H in such samples as a source of polarization and to gain structural information. The (2)H nuclei possess dominant quadrupolar couplings which complicate even the simplest operations, such as rf pulses and polarization transfer to surrounding nuclei. Using optimal control and easy analytical adaptations, we demonstrate that a series of rotor synchronized short pulses may form the basis for essentially ideal rf pulse performance. Using similar approaches, we design (2)H to (13)C polarization transfer experiments that increase the efficiency by one order of magnitude over standard cross polarization experiments. We demonstrate how we can translate advanced optimal control waveforms into simple interleaved CW and rf pulse methods that form a new cross polarization experiment. This experiment significantly improves (1)H-(15)N and (15)N-(13)C transfers, which are key elements in the vast majority of biological solid-state NMR experiments. In addition, we demonstrate how interleaved sampling of spectra exploiting polarization from (1)H and (2)H nuclei can substantially enhance the sensitivity of such experiments. Finally, we present systematic development of (1)H decoupling methods where CW irradiation of moderate amplitude is interleaved with strong rotor-synchronized refocusing pulses. We show that these sequences remove residual cross terms between dipolar coupling and chemical shielding anisotropy more effectively and improve the spectral resolution over that observed in current state-of-the-art methods.

  20. NMR analysis of biodiesel

    USDA-ARS?s Scientific Manuscript database

    Biodiesel is usually analyzed by the various methods called for in standards such as ASTM D6751 and EN 14214. Nuclear magnetic resonance (NMR) is not one of these methods. However, NMR, with 1H-NMR commonly applied, can be useful in a variety of applications related to biodiesel. These include monit...

Top