Science.gov

Sample records for nmr-compatible bioreactor system

  1. NASA Bioreactor Demonstration System

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Leland W. K. Chung (left), Director, Molecular Urology Therapeutics Program at the Winship Cancer Institute at Emory University, is principal investigator for the NASA bioreactor demonstration system (BDS-05). With him is Dr. Jun Shu, an assistant professor of Orthopedics Surgery from Kuming Medical University China. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: Emory University.

  2. Chemical proteomic tool for ligand mapping of CYP antitargets: an NMR-compatible 3D QSAR descriptor in the Heme-Based Coordinate System.

    PubMed

    Yao, Huili; Costache, Aurora D; Sem, Daniel S

    2004-01-01

    Chemical proteomic strategies strive to probe and understand protein-ligand interactions across gene families. One gene family of particular interest in drug and xenobiotic metabolism are the cytochromes P450 (CYPs), the topic of this article. Although numerous tools exist to probe affinity of CYP-ligand interactions, fewer exist for the rapid experimental characterization of the structural nature of these interactions. As a complement to recent advances in X-ray crystallography, NMR methods are being developed that allow for fairly high throughput characterization of protein-ligand interactions. One especially promising NMR approach involves the use of paramagnetic induced relaxation effects to measure distances of ligand atoms from the heme iron in CYP enzymes. Distances obtained from these T(1) relaxation measurements can be used as a direct source of 1-dimensional structural information or to restrain a ligand docking to generate a 3-dimensional data set. To facilitate such studies, we introduce the concept of the Heme-Based Coordinate System and present how it can be used in combination with NMR T(1) relaxation data to derive 3D QSAR descriptors directly or in combination with in silico docking. These descriptors should have application in defining the binding preferences of CYP binding sites using 3D QSAR models. They are especially well-suited for the biasing of fragment assembly and combinatorial chemistry drug design strategies, to avoid fragment or reagent combinations with enhanced affinity for CYP antitargets.

  3. Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues currently being cultured in rotating bioreactors by investigators

  4. Advanced microscale bioreactor system: a representative scale-down model for bench-top bioreactors.

    PubMed

    Hsu, Wei-Ting; Aulakh, Rigzen P S; Traul, Donald L; Yuk, Inn H

    2012-12-01

    In recent years, several automated scale-down bioreactor systems have been developed to increase efficiency in cell culture process development. ambr™ is an automated workstation that provides individual monitoring and control of culture dissolved oxygen and pH in single-use, stirred-tank bioreactors at a working volume of 10-15 mL. To evaluate the ambr™ system, we compared the performance of four recombinant Chinese hamster ovary cell lines in a fed-batch process in parallel ambr™, 2-L bench-top bioreactors, and shake flasks. Cultures in ambr™ matched 2-L bioreactors in controlling the environment (temperature, dissolved oxygen, and pH) and in culture performance (growth, viability, glucose, lactate, Na(+), osmolality, titer, and product quality). However, cultures in shake flasks did not show comparable performance to the ambr™ and 2-L bioreactors.

  5. Replaceable Sensor System for Bioreactor Monitoring

    NASA Technical Reports Server (NTRS)

    Mayo, Mike; Savoy, Steve; Bruno, John

    2006-01-01

    A sensor system was proposed that would monitor spaceflight bioreactor parameters. Not only will this technology be invaluable in the space program for which it was developed, it will find applications in medical science and industrial laboratories as well. Using frequency-domain-based fluorescence lifetime technology, the sensor system will be able to detect changes in fluorescence lifetime quenching that results from displacement of fluorophorelabeled receptors bound to target ligands. This device will be used to monitor and regulate bioreactor parameters including glucose, pH, oxygen pressure (pO2), and carbon dioxide pressure (pCO2). Moreover, these biosensor fluorophore receptor-quenching complexes can be designed to further detect and monitor for potential biohazards, bioproducts, or bioimpurities. Biosensors used to detect biological fluid constituents have already been developed that employ a number of strategies, including invasive microelectrodes (e.g., dark electrodes), optical techniques including fluorescence, and membrane permeable systems based on osmotic pressure. Yet the longevity of any of these sensors does not meet the demands of extended use in spacecraft habitat or bioreactor monitoring. It was therefore necessary to develop a sensor platform that could determine not only fluid variables such as glucose concentration, pO2, pCO2, and pH but can also regulate these fluid variables with controlled feedback loop.

  6. Cardiac tissue engineering using perfusion bioreactor systems

    PubMed Central

    Radisic, Milica; Marsano, Anna; Maidhof, Robert; Wang, Yadong; Vunjak-Novakovic, Gordana

    2009-01-01

    This protocol describes tissue engineering of synchronously contractile cardiac constructs by culturing cardiac cell populations on porous scaffolds (in some cases with an array of channels) and bioreactors with perfusion of culture medium (in some cases supplemented with an oxygen carrier). The overall approach is ‘biomimetic’ in nature as it tends to provide in vivo-like oxygen supply to cultured cells and thereby overcome inherent limitations of diffusional transport in conventional culture systems. In order to mimic the capillary network, cells are cultured on channeled elastomer scaffolds that are perfused with culture medium that can contain oxygen carriers. The overall protocol takes 2–4 weeks, including assembly of the perfusion systems, preparation of scaffolds, cell seeding and cultivation, and on-line and end-point assessment methods. This model is well suited for a wide range of cardiac tissue engineering applications, including the use of human stem cells, and high-fidelity models for biological research. PMID:18388955

  7. EMERGING TECHNOLOGY BULLETIN - METHANOTROPHIC BIOREACTOR SYSTEM - BIOTROL, INC.

    EPA Science Inventory

    BioTrol's Methanotrophic Bioreactor is an above-ground remedial system for water contaminated with halogenated volatile organic compounds, including trichloroethylene (ICE) and related chemicals. Its design features circumvent problems peculiar to treatment of this unique class o...

  8. Oxygen Transfer Characteristics of Miniaturized Bioreactor Systems

    PubMed Central

    Kirk, Timothy V; Szita, Nicolas

    2013-01-01

    Since their introduction in 2001 miniaturized bioreactor systems have made great advances in function and performance. In this article the dissolved oxygen (DO) transfer performance of submilliliter microbioreactors, and 1–10 mL minibioreactors was examined. Microbioreactors have reached kLa values of 460 h-1, and are offering instrumentation and some functionality comparable to production systems, but at high throughput screening volumes. Minibioreactors, aside from one 1,440 h-1 kLa system, have not offered as high rates of DO transfer, but have demonstrated superior integration with automated fluid handling systems. Microbioreactors have been typically limited to studies with E. coli, while minibioreactors have offered greater versatility in this regard. Further, mathematical relationships confirming the applicability of kLa measurements across all scales have been derived, and alternatives to fluorescence lifetime DO sensors have been evaluated. Finally, the influence on reactor performance of oxygen uptake rate (OUR), and the possibility of its real-time measurement have been explored. Biotechnol. Bioeng. 2013; 110: 1005–1019. © 2012 Wiley Periodicals, Inc. PMID:23280578

  9. Sunlight supply and gas exchange systems in microalgal bioreactor

    NASA Technical Reports Server (NTRS)

    Mori, K.; Ohya, H.; Matsumoto, K.; Furune, H.

    1987-01-01

    The bioreactor with sunlight supply system and gas exchange systems presented has proved feasible in ground tests and shows much promise for space use as a closed ecological life support system device. The chief conclusions concerning the specification of total system needed for a life support system for a man in a space station are the following: (1) Sunlight supply system - compactness and low electrical consumption; (2) Bioreactor system - high density and growth rate of chlorella; and (3) Gas exchange system - enough for O2 production and CO2 assimilation.

  10. Miniature Bioreactor System for Long-Term Cell Culture

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Kleis, Stanley J.; Geffert, Sandara K.

    2010-01-01

    A prototype miniature bioreactor system is designed to serve as a laboratory benchtop cell-culturing system that minimizes the need for relatively expensive equipment and reagents and can be operated under computer control, thereby reducing the time and effort required of human investigators and reducing uncertainty in results. The system includes a bioreactor, a fluid-handling subsystem, a chamber wherein the bioreactor is maintained in a controlled atmosphere at a controlled temperature, and associated control subsystems. The system can be used to culture both anchorage-dependent and suspension cells, which can be either prokaryotic or eukaryotic. Cells can be cultured for extended periods of time in this system, and samples of cells can be extracted and analyzed at specified intervals. By integrating this system with one or more microanalytical instrument(s), one can construct a complete automated analytical system that can be tailored to perform one or more of a large variety of assays.

  11. An expert system based intelligent control scheme for space bioreactors

    NASA Technical Reports Server (NTRS)

    San, Ka-Yiu

    1988-01-01

    An expert system based intelligent control scheme is being developed for the effective control and full automation of bioreactor systems in space. The scheme developed will have the capability to capture information from various resources including heuristic information from process researchers and operators. The knowledge base of the expert system should contain enough expertise to perform on-line system identification and thus be able to adapt the controllers accordingly with minimal human supervision.

  12. Denitrification 'Woodchip' Bioreactors for Productive and Sustainable Agricultural Systems

    NASA Astrophysics Data System (ADS)

    Christianson, L. E.; Summerfelt, S.; Sharrer, K.; Lepine, C.; Helmers, M. J.

    2014-12-01

    Growing alarm about negative cascading effects of reactive nitrogen in the environment has led to multifaceted efforts to address elevated nitrate-nitrogen levels in water bodies worldwide. The best way to mitigate N-related impacts, such as hypoxic zones and human health concerns, is to convert nitrate to stable, non-reactive dinitrogen gas through the natural process of denitrification. This means denitrification technologies need to be one of our major strategies for tackling the grand challenge of managing human-induced changes to our global nitrogen cycle. While denitrification technologies have historically been focused on wastewater treatment, there is great interest in new lower-tech options for treating effluent and drainage water from one of our largest reactive nitrogen emitters -- agriculture. Denitrification 'woodchip' bioreactors are able to enhance this natural N-conversion via addition of a solid carbon source (e.g., woodchips) and through designs that facilitate development of anoxic conditions required for denitrification. Wood-based denitrification technologies such as woodchip bioreactors and 'sawdust' walls for groundwater have been shown to be effective at reducing nitrate loads in agricultural settings around the world. Designing these systems to be low-maintenance and to avoid removing land from agricultural production has been a primary focus of this "farmer-friendly" technology. This presentation provides a background on woodchip bioreactors including design considerations, N-removal performance, and current research worldwide. Woodchip bioreactors for the agricultural sector are an accessible new option to address society's interest in improving water quality while simultaneously allowing highly productive agricultural systems to continue to provide food in the face of increasing demand, changing global diets, and fluctuating weather.

  13. Hepatocyte function within a stacked double sandwich culture plate cylindrical bioreactor for bioartificial liver system.

    PubMed

    Xia, Lei; Arooz, Talha; Zhang, Shufang; Tuo, Xiaoye; Xiao, Guangfa; Susanto, Thomas Adi Kurnia; Sundararajan, Janani; Cheng, Tianming; Kang, Yuzhan; Poh, Hee Joo; Leo, Hwa Liang; Yu, Hanry

    2012-11-01

    Bioartificial liver (BAL) system is promising as an alternative treatment for liver failure. We have developed a bioreactor with stacked sandwich culture plates for the application of BAL. This bioreactor design addresses some of the persistent problems in flat-bed bioreactors through increasing cell packing capacity, eliminating dead flow, regulating shear stress, and facilitating the scalability of the bioreactor unit. The bioreactor contained a stack of twelve double-sandwich-culture plates, allowing 100 million hepatocytes to be housed in a single cylindrical bioreactor unit (7 cm of height and 5.5 cm of inner diameter). The serial flow perfusion through the bioreactor increased cell-fluid contact area for effective mass exchange. With the optimal perfusion flow rate, shear stress was minimized to achieve high and uniform cell viabilities across different plates in the bioreactor. Our results demonstrated that hepatocytes cultured in the bioreactor could re-establish cell polarity and maintain liver-specific functions (e.g. albumin and urea synthesis, phase I&II metabolism functions) for seven days. The single bioreactor unit can be readily scaled up to house adequate number of functional hepatocytes for BAL development.

  14. Fixed-bed bioreactor system for the microbial solubilization of coal

    DOEpatents

    Scott, C.D.; Strandberg, G.W.

    1987-09-14

    A fixed-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fixed-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the large scale production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fixed-bed bioreactor. 1 fig., 1 tab.

  15. Fluidized-bed bioreactor system for the microbial solubilization of coal

    DOEpatents

    Scott, C.D.; Strandberg, G.W.

    1987-09-14

    A fluidized-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fluidized-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fluidized-bed bioreactor. 2 figs.

  16. Cultivation of mammalian cells using a single-use pneumatic bioreactor system.

    PubMed

    Obom, Kristina M; Cummings, Patrick J; Ciafardoni, Janelle A; Hashimura, Yasunori; Giroux, Daniel

    2014-10-10

    Recent advances in mammalian, insect, and stem cell cultivation and scale-up have created tremendous opportunities for new therapeutics and personalized medicine innovations. However, translating these advances into therapeutic applications will require in vitro systems that allow for robust, flexible, and cost effective bioreactor systems. There are several bioreactor systems currently utilized in research and commercial settings; however, many of these systems are not optimal for establishing, expanding, and monitoring the growth of different cell types. The culture parameters most challenging to control in these systems include, minimizing hydrodynamic shear, preventing nutrient gradient formation, establishing uniform culture medium aeration, preventing microbial contamination, and monitoring and adjusting culture conditions in real-time. Using a pneumatic single-use bioreactor system, we demonstrate the assembly and operation of this novel bioreactor for mammalian cells grown on micro-carriers. This bioreactor system eliminates many of the challenges associated with currently available systems by minimizing hydrodynamic shear and nutrient gradient formation, and allowing for uniform culture medium aeration. Moreover, the bioreactor's software allows for remote real-time monitoring and adjusting of the bioreactor run parameters. This bioreactor system also has tremendous potential for scale-up of adherent and suspension mammalian cells for production of a variety therapeutic proteins, monoclonal antibodies, stem cells, biosimilars, and vaccines.

  17. A Good Neighborhood for Cells: Bioreactor Demonstration System (BDS-05)

    NASA Technical Reports Server (NTRS)

    Chung, Leland W. K.; Goodwin, Thomas J. (Technical Monitor)

    2002-01-01

    Good neighborhoods help you grow. As with a city, the lives of a cell are governed by its neighborhood connections Connections that do not work are implicated in a range of diseases. One of those connections - between prostate cancer and bone cells - will be studied on STS-107 using the Bioreactor Demonstration System (BDS-05). To improve the prospects for finding novel therapies, and to identify biomarkers that predict disease progression, scientists need tissue models that behave the same as metastatic or spreading cancer. This is one of several NASA-sponsored lines of cell science research that use the microgravity environment of orbit in an attempt to grow lifelike tissue models for health research. As cells replicate, they "self associate" to form a complex matrix of collagens, proteins, fibers, and other structures. This highly evolved microenvironment tells each cell who is next door, how it should grow arid into what shapes, and how to respond to bacteria, wounds, and other stimuli. Studying these mechanisms outside the body is difficult because cells do not easily self-associate outside a natural environment. Most cell cultures produce thin, flat specimens that offer limited insight into how cells work together. Ironically, growing cell cultures in the microgravity of space produces cell assemblies that more closely resemble what is found in bodies on Earth. NASA's Bioreactor comprises a miniature life support system and a rotating vessel containing cell specimens in a nutrient medium. Orbital BDS experiments that cultured colon and prostate cancers have been highly promising.

  18. Sustainable bioreactor systems for producing hydrogen

    SciTech Connect

    Zaborsky, O.R.; Radway, J.C.; Yoza, B.A.; Benemann, J.R.; Tredici, M.R.

    1998-08-01

    The overall goal of Hawaii`s BioHydrogen Program is to generate hydrogen from water using solar energy and microalgae under sustainable conditions. Specific bioprocess engineering objectives include the design, construction, testing and validation of a sustainable photobioreactor system. Specific objectives relating to biology include investigating and optimizing key physiological parameters of cyanobacteria of the genus Arthrospira (Spirulina), the organism selected for initial process development. Another objective is to disseminate the Mitsui-Miami cyanobacteria cultures, now part of the Hawaii Culture Collection (HCC), to other research groups. The approach is to use a single organisms for producing hydrogen gas from water. Key stages are the growth of the biomass, the dark induction of hydrogenase, and the subsequent generation of hydrogen in the light. The biomass production stage involves producing dense cultures of filamentous, non-heterocystous cyanobacteria and optimizing biomass productivity in innovative tubular photobioreactors. The hydrogen generation stages entail inducing the enzymes and metabolic pathways that enable both dark and light-driven hydrogen production. The focus of Year 1 has been on the construction and operation of the outdoor photobioreactor for the production of high-density mass cultures of Arthrospira. The strains in the Mitsui-Miami collection have been organized and distributed to other researchers who are beginning to report interesting results. The project is part of the International Energy Agency`s biohydrogen program.

  19. Optimizing hydraulic retention times in denitrifying woodchip bioreactors treating recirculating aquaculture system wastewater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The performance of wood-based denitrifying bioreactors to treat high-nitrate wastewaters from aquaculture systems has not previously been demonstrated. Four pilot-scale woodchip bioreactors (approximately 1:10 scale) were constructed and operated for 268 d to determine the optimal range of design hy...

  20. A novel membrane distillation-thermophilic bioreactor system: biological stability and trace organic compound removal.

    PubMed

    Wijekoon, Kaushalya C; Hai, Faisal I; Kang, Jinguo; Price, William E; Guo, Wenshan; Ngo, Hao H; Cath, Tzahi Y; Nghiem, Long D

    2014-05-01

    The removal of trace organic compounds (TrOCs) by a novel membrane distillation-thermophilic bioreactor (MDBR) system was examined. Salinity build-up and the thermophilic conditions to some extent adversely impacted the performance of the bioreactor, particularly the removal of total nitrogen and recalcitrant TrOCs. While most TrOCs were well removed by the thermophilic bioreactor, compounds containing electron withdrawing functional groups in their molecular structure were recalcitrant to biological treatment and their removal efficiency by the thermophilic bioreactor was low (0-53%). However, the overall performance of the novel MDBR system with respect to the removal of total organic carbon, total nitrogen, and TrOCs was high and was not significantly affected by the conditions of the bioreactor. All TrOCs investigated here were highly removed (>95%) by the MDBR system. Biodegradation, sludge adsorption, and rejection by MD contribute to the removal of TrOCs by MDBR treatment.

  1. A novel membrane distillation-thermophilic bioreactor system: biological stability and trace organic compound removal.

    PubMed

    Wijekoon, Kaushalya C; Hai, Faisal I; Kang, Jinguo; Price, William E; Guo, Wenshan; Ngo, Hao H; Cath, Tzahi Y; Nghiem, Long D

    2014-05-01

    The removal of trace organic compounds (TrOCs) by a novel membrane distillation-thermophilic bioreactor (MDBR) system was examined. Salinity build-up and the thermophilic conditions to some extent adversely impacted the performance of the bioreactor, particularly the removal of total nitrogen and recalcitrant TrOCs. While most TrOCs were well removed by the thermophilic bioreactor, compounds containing electron withdrawing functional groups in their molecular structure were recalcitrant to biological treatment and their removal efficiency by the thermophilic bioreactor was low (0-53%). However, the overall performance of the novel MDBR system with respect to the removal of total organic carbon, total nitrogen, and TrOCs was high and was not significantly affected by the conditions of the bioreactor. All TrOCs investigated here were highly removed (>95%) by the MDBR system. Biodegradation, sludge adsorption, and rejection by MD contribute to the removal of TrOCs by MDBR treatment. PMID:24658107

  2. [Development of rotating perfusion bioreactor system and application for bone tissue engineering].

    PubMed

    Li, Xiang; Li, Dichen; Wang, Lin; Wang, Zhen; Lu, Bingheng

    2007-02-01

    A rotating perfusion bioreactor system has recently been developed in our laboratory to produce 3D dynamic culture condition, and the critical-sized scaffolds with interconnected microchennels were fabricated. Gas exchange occurs by semipermeable membrane covered on each side of bioreactor and gas-permeable peristaltic pump tube. Rotation and perfusion of culture media through large scaffolds enhance well mixing and mass transport of oxygen and nutrients in the bioreactor. Osteoblastic cells attached to microchennels are exposed to a low fluid flow-induced shear stress level. This bioreactor system overcomes several defects exited in static culture condition, improves the culture environment, facilitates osteoblast proliferation, differntiation, significant matrix production and mineralization, and the controllability of culture process is enhanced. Large scaffolds/osteoblast constructs were cultured in the bioreactor system for 14 days. Osteoblastic cells attached to microchannels of scaffolds were observed under scanning electron microscope (SEM). The results indicated that cells grew extensively in the microchennels of large scaffolds. PMID:17333894

  3. Comparison between moving bed-membrane bioreactor (MB-MBR) and membrane bioreactor (MBR) systems: influence of wastewater salinity variation.

    PubMed

    Di Trapani, Daniele; Di Bella, Gaetano; Mannina, Giorgio; Torregrossa, Michele; Viviani, Gaspare

    2014-06-01

    Two pilot plant systems were investigated for the treatment of wastewater subject to a gradual increase of salinity. In particular, a membrane bioreactor (MBR) and a moving bed biofilm membrane bioreactor (MB-MBR) were analyzed. Carbon and ammonium removal, kinetic constants and membranes fouling rates have been assessed. Both plants showed very high efficiency in terms of carbon and ammonium removal and the gradual salinity increase led to a good acclimation of the biomass, as confirmed by the respirometric tests. Significant biofilm detachments from carriers were experienced, which contributed to increase the irreversible superficial cake deposition. However, this aspect prevented the pore fouling tendency in the membrane module of MB-MBR system. On the contrary, the MBR pilot, even showing a lower irreversible cake deposition, was characterized by a higher pore fouling tendency. PMID:24747383

  4. Non-disruptive measurement system of cell viability in bioreactors

    NASA Astrophysics Data System (ADS)

    Rudek, F.; Nelsen, B. L.; Baselt, T.; Berger, T.; Wiele, M.; Prade, I.; Hartmann, P.

    2016-04-01

    Nutrient and oxygen transport, as well as the removal of metabolic waste are essential processes to support and maintain viable tissue. Current bioreactor technology used to grow tissue cultures in vitro has a fundamental limit to the thickness of tissues. Based on the low diffusion limit of oxygen a maximum tissue thickness of 200 μm is possible. The efficiency of those systems is currently under investigation. During the cultivation process of the artificial tissue in bioreactors, which lasts 28 days or longer, there are no possibilities to investigate the viability of cells. This work is designed to determine the influence of a non-disruptive cell viability measuring system on cellular activity. The measuring system uses a natural cellular marker produced during normal metabolic activity. Nicotinamide adenine dinucleotide (NADH) is a coenzyme naturally consumed and produced during cellular metabolic processes and has thoroughly been studied to determine the metabolic state of a cell. Measuring the fluorescence of NADH within the cell represents a non-disruptive marker for cell viability. Since the measurement process is optical in nature, NADH fluorescence also provides a pathway for sampling at different measurement depths within a given tissue sample. The measurement system we are using utilizes a special UV light source, to excite the NADH fluorescence state. However, the high energy potentially alters or harms the cells. To investigate the influence of the excitation signal, the cells were irradiated with a laser operating at a wavelength of 355 nm and examined for cytotoxic effects. The aim of this study was to develop a non-cytotoxic system that is applicable for large-scale operations during drug-tissue interaction testing.

  5. Tissue engineering bioreactor systems for applying physical and electrical stimulations to cells.

    PubMed

    Jin, GyuHyun; Yang, Gi-Hoon; Kim, GeunHyung

    2015-05-01

    Bioreactor systems in tissue engineering applications provide various types of stimulation to mimic the tissues in vitro and in vivo. Various bioreactors have been designed to induce high cellular activities, including initial cell attachment, cell growth, and differentiation. Although cell-stimulation processes exert mostly positive effects on cellular responses, in some cases such stimulation can also have a negative effect on cultured cells. In this review, we discuss various types of bioreactor and the positive and negative effects of stimulation (physical, chemical, and electrical) on various cultured cell types.

  6. Application of wireless sensor network based on ZigBee technology in photo-bioreactors system

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Chen, Ming; Chi, Tao

    2013-03-01

    A photo-bioreactor is a bioreactor that incorporates some types of light source to provide photonic energy input into the reactor[1][2]. In the situation of Large-scale industrialization production of micro-algae, hundreds of photo-bioreactors will be deployed in a factory, thus the design of entire system is based on the distribution theory and the remote monitoring must be deployed. So the communication in the entire photo-bioreactors system is very important. However, the recent solution of communication is based on RS-485 data bus, and the twisted-pair cable is used as the communication medium, so the flexibility and scalability of entire system reduce. In this paper, the wireless sensor network (WSN) based on ZigBee technology is applied to this photo-bioreactors system, and the related key problems include the architecture of entire system and the design of wireless sensor network nodes[3]~[6]. The application of this technology will also reduce the cost and effectively raise the intelligence level of the large-scale industrialization photo-bioreactors system.

  7. Fate of endocrine disrupting compounds in membrane bioreactor systems.

    PubMed

    Hu, J Y; Chen, X; Tao, G; Kekred, K

    2007-06-01

    Yeast estrogen screen (YES) bioassay and liquid chromatography-mass spectrum-mass spectrum (LC-MS-MS) analysis were performed to investigate the fate of active and potential endocrine disrupting compounds in 3 pilot-scale and 2 lab-scale membrane bioreactor (MBR) systems. Compared with the overall estrogenicities of sewage treatment plant (STP) effluents from references, the MBR systems studied have relatively good performance in the removal of estrogenicity. Estrone (E1) was removed with relatively high efficiency (80.2-91.4%), but 17beta-estradiol (E2) was removed with moderate efficiency (49.3-66.5%) by the MBRs. However, the experimental results indicated that after the treatment by MBR, substantial amounts of E1, estrone-3-sulfate (E1-3S), estrone-3-glucuronide (E1-3G), and 17beta-estradiol-glucuronides (E2-G) passed through treatment systems and entered into the aquatic environment. The reduction in the levels of overall equivalent E1 (68.4%) and that of overall equivalent E2 (80.8%) was demonstrated for the pilot-scale MBR-B. For alkylphenol compounds, bisphenol A (BPA) was removed well with a removal efficiency of 68.9 -90.1%, but 4-nonylphenol (4-NP) concentration was amplified (removal efficiency of -439.5 to -161.1%) after MBR treatment which could be caused by the transformation of its parent compounds, nonylphenol polyethoxylates (NPnEOs). The amounts of adsorbed estrogens per kg dry mass was relatively low, due to short hydraulic retention time and high mixed liquor suspended solids in MBRs, compared to that in STPs. PMID:17612196

  8. Intelligent Bioreactor Management Information System (IBM-IS) for Mitigation of Greenhouse Gas Emissions

    SciTech Connect

    Paul Imhoff; Ramin Yazdani; Don Augenstein; Harold Bentley; Pei Chiu

    2010-04-30

    Methane is an important contributor to global warming with a total climate forcing estimated to be close to 20% that of carbon dioxide (CO2) over the past two decades. The largest anthropogenic source of methane in the US is 'conventional' landfills, which account for over 30% of anthropogenic emissions. While controlling greenhouse gas emissions must necessarily focus on large CO2 sources, attention to reducing CH4 emissions from landfills can result in significant reductions in greenhouse gas emissions at low cost. For example, the use of 'controlled' or bioreactor landfilling has been estimated to reduce annual US greenhouse emissions by about 15-30 million tons of CO2 carbon (equivalent) at costs between $3-13/ton carbon. In this project we developed or advanced new management approaches, landfill designs, and landfill operating procedures for bioreactor landfills. These advances are needed to address lingering concerns about bioreactor landfills (e.g., efficient collection of increased CH4 generation) in the waste management industry, concerns that hamper bioreactor implementation and the consequent reductions in CH4 emissions. Collectively, the advances described in this report should result in better control of bioreactor landfills and reductions in CH4 emissions. Several advances are important components of an Intelligent Bioreactor Management Information System (IBM-IS).

  9. Biogeochemistry of the compost bioreactor components of a composite acid mine drainage passive remediation system.

    PubMed

    Johnson, D Barrie; Hallberg, Kevin B

    2005-02-01

    The compost bioreactor ("anaerobic cell") components of three composite passive remediation systems constructed to treat acid mine drainage (AMD) at the former Wheal Jane tin mine, Cornwall, UK were studied over a period of 16 months. While there was some amelioration of the preprocessed AMD in each of the three compost bioreactors, as evidenced by pH increase and decrease in metal concentrations, only one of the cells showed effective removal of the two dominant heavy metals (iron and zinc) present. With two of the compost bioreactors, concentrations of soluble (ferrous) iron draining the cells were significantly greater than those entering the reactors, indicating that there was net mobilisation (by reductive dissolution) of colloidal and/or solid-phase ferric iron compounds within the cells. Soluble sulfide was also detected in waters draining all three compost bioreactors which was rapidly oxidised, in contrast to ferrous iron. Oxidation and hydrolysis of iron, together with sulfide oxidation, resulted in reacidification of processed AMD downstream of the compost bioreactors in two of the passive treatment systems. The dominant cultivatable microorganism in waters draining the compost bioreactors was identified, via analysis of its 16S rRNA gene, as a Thiomonas sp. and was capable of accelerating the dissimilatory oxidation of both ferrous iron and reduced sulfur compounds. Sulfate-reducing bacteria (SRB) were also detected, although only in the bioreactor that was performing well were these present in significant numbers. This particular compost bioreactor had been shut down for 10 months prior to the monitoring period due to operational problems. This unforeseen event appears to have allowed more successful development of AMD-tolerant and other microbial populations with critical roles in AMD bioremediation, including neutrophilic SRB (nSRB), in this compost bioreactor than in the other two, where the throughput of AMD was not interrupted. This study has

  10. A New Fluidized Bed Bioreactor Based on Diversion-Type Microcapsule Suspension for Bioartificial Liver Systems

    PubMed Central

    Li, Jianzhou; Yu, Liang; Chen, Ermei; Zhu, Danhua; Zhang, Yimin; Li, LanJuan

    2016-01-01

    A fluidized bed bioreactor containing encapsulated hepatocytes may be a valuable alternative to a hollow fiber bioreactor for achieving the improved mass transfer and scale-up potential necessary for clinical use. However, a conventional fluidized bed bioreactor (FBB) operating under high perfusion velocity is incapable of providing the desired performance due to the resulting damage to cell-containing microcapsules and large void volume. In this study, we developed a novel diversion-type microcapsule-suspension fluidized bed bioreactor (DMFBB). The void volume in the bioreactor and stability of alginate/chitosan microcapsules were investigated under different flow rates. Cell viability, synthesis and metabolism functions, and expression of metabolizing enzymes at transcriptional levels in an encapsulated hepatocyte line (C3A cells) were determined. The void volume was significantly less in the novel bioreactor than in the conventional FBB. In addition, the microcapsules were less damaged in the DMFBB during the fluidization process as reflected by the results for microcapsule retention rates, swelling, and breakage. Encapsulated C3A cells exhibited greater viability and CYP1A2 and CYP3A4 activity in the DMFBB than in the FBB, although the increases in albumin and urea synthesis were less prominent. The transcription levels of several CYP450-related genes and an albumin-related gene were dramatically greater in cells in the DMFBB than in those in the FBB. Taken together, our results suggest that the DMFBB is a promising alternative for the design of a bioartificial liver system based on a fluidized bed bioreactor with encapsulated hepatocytes for treating patients with acute hepatic failure or other severe liver diseases. PMID:26840840

  11. A New Fluidized Bed Bioreactor Based on Diversion-Type Microcapsule Suspension for Bioartificial Liver Systems.

    PubMed

    Lu, Juan; Zhang, Xiaoqian; Li, Jianzhou; Yu, Liang; Chen, Ermei; Zhu, Danhua; Zhang, Yimin; Li, LanJuan

    2016-01-01

    A fluidized bed bioreactor containing encapsulated hepatocytes may be a valuable alternative to a hollow fiber bioreactor for achieving the improved mass transfer and scale-up potential necessary for clinical use. However, a conventional fluidized bed bioreactor (FBB) operating under high perfusion velocity is incapable of providing the desired performance due to the resulting damage to cell-containing microcapsules and large void volume. In this study, we developed a novel diversion-type microcapsule-suspension fluidized bed bioreactor (DMFBB). The void volume in the bioreactor and stability of alginate/chitosan microcapsules were investigated under different flow rates. Cell viability, synthesis and metabolism functions, and expression of metabolizing enzymes at transcriptional levels in an encapsulated hepatocyte line (C3A cells) were determined. The void volume was significantly less in the novel bioreactor than in the conventional FBB. In addition, the microcapsules were less damaged in the DMFBB during the fluidization process as reflected by the results for microcapsule retention rates, swelling, and breakage. Encapsulated C3A cells exhibited greater viability and CYP1A2 and CYP3A4 activity in the DMFBB than in the FBB, although the increases in albumin and urea synthesis were less prominent. The transcription levels of several CYP450-related genes and an albumin-related gene were dramatically greater in cells in the DMFBB than in those in the FBB. Taken together, our results suggest that the DMFBB is a promising alternative for the design of a bioartificial liver system based on a fluidized bed bioreactor with encapsulated hepatocytes for treating patients with acute hepatic failure or other severe liver diseases.

  12. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Bioreactor Demonstration System (BDS) comprises an electronics module, a gas supply module, and the incubator module housing the rotating wall vessel and its support systems. Nutrient media are pumped through an oxygenator and the culture vessel. The shell rotates at 0.5 rpm while the irner filter typically rotates at 11.5 rpm to produce a gentle flow that ensures removal of waste products as fresh media are infused. Periodically, some spent media are pumped into a waste bag and replaced by fresh media. When the waste bag is filled, an astronaut drains the waste bag and refills the supply bag through ports on the face of the incubator. Pinch valves and a perfusion pump ensure that no media are exposed to moving parts. An Experiment Control Computer controls the Bioreactor, records conditions, and alerts the crew when problems occur. The crew operates the system through a laptop computer displaying graphics designed for easy crew training and operation. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. See No. 0101824 for a version with labels, and No. 0103180 for an operational schematic.

  13. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Bioreactor Demonstration System (BDS) comprises an electronics module, a gas supply module, and the incubator module housing the rotating wall vessel and its support systems. Nutrient media are pumped through an oxygenator and the culture vessel. The shell rotates at 0.5 rpm while the irner filter typically rotates at 11.5 rpm to produce a gentle flow that ensures removal of waste products as fresh media are infused. Periodically, some spent media are pumped into a waste bag and replaced by fresh media. When the waste bag is filled, an astronaut drains the waste bag and refills the supply bag through ports on the face of the incubator. Pinch valves and a perfusion pump ensure that no media are exposed to moving parts. An Experiment Control Computer controls the Bioreactor, records conditions, and alerts the crew when problems occur. The crew operates the system through a laptop computer displaying graphics designed for easy crew training and operation. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. See No. 0101816 for a version without labels, and No. 0103180 for an operational schematic.

  14. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Bioreactor Demonstration System (BDS) comprises an electronics module, a gas supply module, and the incubator module housing the rotating wall vessel and its support systems. Nutrient media are pumped through an oxygenator and the culture vessel. The shell rotates at 0.5 rpm while the irner filter typically rotates at 11.5 rpm to produce a gentle flow that ensures removal of waste products as fresh media are infused. Periodically, some spent media are pumped into a waste bag and replaced by fresh media. When the waste bag is filled, an astronaut drains the waste bag and refills the supply bag through ports on the face of the incubator. Pinch valves and a perfusion pump ensure that no media are exposed to moving parts. An Experiment Control Computer controls the Bioreactor, records conditions, and alerts the crew when problems occur. The crew operates the system through a laptop computer displaying graphics designed for easy crew training and operation. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. See No. 0101823 for a version without labels, and No. 0103180 for an operational schematic.

  15. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Bioreactor Demonstration System (BDS) comprises an electronics module, a gas supply module, and the incubator module housing the rotating wall vessel and its support systems. Nutrient media are pumped through an oxygenator and the culture vessel. The shell rotates at 0.5 rpm while the irner filter typically rotates at 11.5 rpm to produce a gentle flow that ensures removal of waste products as fresh media are infused. Periodically, some spent media are pumped into a waste bag and replaced by fresh media. When the waste bag is filled, an astronaut drains the waste bag and refills the supply bag through ports on the face of the incubator. Pinch valves and a perfusion pump ensure that no media are exposed to moving parts. An Experiment Control Computer controls the Bioreactor, records conditions, and alerts the crew when problems occur. The crew operates the system through a laptop computer displaying graphics designed for easy crew training and operation. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. See No. 0101825 for a version with major elements labeled, and No. 0103180 for an operational schematic. 0101816

  16. The stress response system of proteins: Implications for bioreactor scaleup

    NASA Technical Reports Server (NTRS)

    Goochee, Charles F.

    1988-01-01

    Animal cells face a variety of environmental stresses in large scale bioreactors, including periodic variations in shear stress and dissolved oxygen concentration. Diagnostic techniques were developed for identifying the particular sources of environmental stresses for animal cells in a given bioreactor configuration. The mechanisms by which cells cope with such stresses was examined. The individual concentrations and synthesis rates of hundreds of intracellular proteins are affected by the extracellular environment (medium composition, dissolved oxygen concentration, ph, and level of surface shear stress). Techniques are currently being developed for quantifying the synthesis rates and concentrations of the intracellular proteins which are most sensitive to environmental stress. Previous research has demonstrated that a particular set of stress response proteins are synthesized by mammalian cells in response to temperature fluctuations, dissolved oxygen deprivation, and glucose deprivation. Recently, it was demonstrated that exposure of human kidney cells to high shear stress results in expression of a completely distinct set of intracellular proteins.

  17. Air purification from TCE and PCE contamination in a hybrid bioreactors and biofilter integrated system.

    PubMed

    Tabernacka, Agnieszka; Zborowska, Ewa; Lebkowska, Maria; Borawski, Maciej

    2014-01-15

    A two-stage waste air treatment system, consisting of hybrid bioreactors (modified bioscrubbers) and a biofilter, was used to treat waste air containing chlorinated ethenes - trichloroethylene (TCE) and tetrachloroethylene (PCE). The bioreactor was operated with loadings in the range 0.46-5.50gm(-3)h(-1) for TCE and 2.16-9.02gm(-3)h(-1) for PCE. The biofilter loadings were in the range 0.1-0.97gm(-3)h(-1) for TCE and 0.2-2.12gm(-3)h(-1) for PCE. Under low pollutant loadings, the efficiency of TCE elimination was 23-25% in the bioreactor and 54-70% in the biofilter. The efficiency of PCE elimination was 44-60% in the bioreactor and 50-75% in the biofilter. The best results for the bioreactor were observed one week after the pollutant loading was increased. However, the process did not stabilize. In the next seven days contaminant removal efficiency, enzymatic activity and biomass content were all diminished.

  18. Microbial Activity In The Peerless Jenny King Sulfate Reducing Bioreactor System (Presentation)

    EPA Science Inventory

    The Peerless Jenny King treatment system is a series of four sulfate reducing bioreactor cells installed to treat acid mine drainage in the Upper Tenmile Creek Superfund Site located in the Rimini Mining District, near Helena MT. The system consists of a wetland pretreatment fol...

  19. Microbial Activity In The Peerless Jenny King Sulfate Reducing Bioreactors System

    EPA Science Inventory

    The Peerless Jenny King treatment system is a series of four sulfate reducing bioreactor cells installed to treat acid mine drainage in the Upper Tenmile Creek Superfund Site located in the Rimini Mining District, near Helena, MT. The system consists of a wetland pretreatment fo...

  20. In vivo bone regeneration using tubular perfusion system bioreactor cultured nanofibrous scaffolds.

    PubMed

    Yeatts, Andrew B; Both, Sanne K; Yang, Wanxun; Alghamdi, Hamdan S; Yang, Fang; Fisher, John P; Jansen, John A

    2014-01-01

    The use of bioreactors for the in vitro culture of constructs for bone tissue engineering has become prevalent as these systems may improve the growth and differentiation of a cultured cell population. Here we utilize a tubular perfusion system (TPS) bioreactor for the in vitro culture of human mesenchymal stem cells (hMSCs) and implant the cultured constructs into rat femoral condyle defects. Using nanofibrous electrospun poly(lactic-co-glycolic acid)/poly(ε-caprolactone) scaffolds, hMSCs were cultured for 10 days in vitro in the TPS bioreactor with cellular and acellular scaffolds cultured statically for 10 days as a control. After 3 and 6 weeks of in vivo culture, explants were removed and subjected to histomorphometric analysis. Results indicated more rapid bone regeneration in defects implanted with bioreactor cultured scaffolds with a new bone area of 1.23 ± 0.35 mm(2) at 21 days compared to 0.99 ± 0.43 mm(2) and 0.50 ± 0.29 mm(2) in defects implanted with statically cultured scaffolds and acellular scaffolds, respectively. At the 21 day timepoint, statistical differences (p<0.05) were only observed between defects implanted with cell containing scaffolds and the acellular control. After 42 days, however, defects implanted with TPS cultured scaffolds had the greatest new bone area with 1.72 ± 0.40 mm(2). Defects implanted with statically cultured and acellular scaffolds had a new bone area of 1.26 ± 0.43 mm(2) and 1.19 ± 0.33 mm(2), respectively. The increase in bone growth observed in defects implanted with TPS cultured scaffolds was statistically significant (p<0.05) when compared to both the static and acellular groups at this timepoint. This study demonstrates the efficacy of the TPS bioreactor to improve bone tissue regeneration and highlights the benefits of utilizing perfusion bioreactor systems to culture MSCs for bone tissue engineering.

  1. Studies of Cell-Mediated Immunity Against Immune Disorders Using Synthetic Peptides and Rotating Bioreactor System

    NASA Technical Reports Server (NTRS)

    Sastry, Jagannadha K.

    1998-01-01

    We conducted a series of experiments using mouse immune-precursor cells, and observed that bioreactor culturing results in the loss of antigen-specific cytotoxic T lymphocyte (CTL) function. The reason for the abrogation of CTL function is microgravity conditions in the bioreactor, but not the antigen per se or its MHC restriction. Similarly, we observed that allostimulation of human PBMC in the bioreactor, but not in the T flask, resulted in the blunting of both allo-CTL function and the NK activity, indicating that the microgravity-associated functional defects are not unique to the mouse system. These results provide further confirmation to the microgravity-associated immune dysfunction, and constitute ground-based confirmatory data for those related to space-travel.

  2. Characterization of a novel bioreactor system for 3D cellular mechanobiology studies.

    PubMed

    Cook, Colin A; Huri, Pinar Y; Ginn, Brian P; Gilbert-Honick, Jordana; Somers, Sarah M; Temple, Joshua P; Mao, Hai-Quan; Grayson, Warren L

    2016-08-01

    In vitro engineering systems can be powerful tools for studying tissue development in response to biophysical stimuli as well as for evaluating the functionality of engineered tissue grafts. It has been challenging, however, to develop systems that adequately integrate the application of biomimetic mechanical strain to engineered tissue with the ability to assess functional outcomes in real time. The aim of this study was to design a bioreactor system capable of real-time conditioning (dynamic, uniaxial strain, and electrical stimulation) of centimeter-long 3D tissue engineered constructs simultaneously with the capacity to monitor local strains. The system addresses key limitations of uniform sample loading and real-time imaging capabilities. Our system features an electrospun fibrin scaffold, which exhibits physiologically relevant stiffness and uniaxial alignment that facilitates cell adhesion, alignment, and proliferation. We have demonstrated the capacity for directly incorporating human adipose-derived stromal/stem cells into the fibers during the electrospinning process and subsequent culture of the cell-seeded constructs in the bioreactor. The bioreactor facilitates accurate pre-straining of the 3D constructs as well as the application of dynamic and static uniaxial strains while monitoring bulk construct tensions. The incorporation of fluorescent nanoparticles throughout the scaffolds enables in situ monitoring of local strain fields using fluorescent digital image correlation techniques, since the bioreactor is imaging compatible, and allows the assessment of local sample stiffness and stresses when coupled with force sensor measurements. In addition, the system is capable of measuring the electromechanical coupling of skeletal muscle explants by applying an electrical stimulus and simultaneously measuring the force of contraction. The packaging of these technologies, biomaterials, and analytical methods into a single bioreactor system has produced a

  3. The role of forward osmosis and microfiltration in an integrated osmotic-microfiltration membrane bioreactor system.

    PubMed

    Luo, Wenhai; Hai, Faisal I; Kang, Jinguo; Price, William E; Nghiem, Long D; Elimelech, Menachem

    2015-10-01

    This study investigates the performance of an integrated osmotic and microfiltration membrane bioreactor (O/MF-MBR) system for wastewater treatment and reclamation. The O/MF-MBR system simultaneously used microfiltration (MF) and forward osmosis (FO) membranes to extract water from the mixed liquor of an aerobic bioreactor. The MF membrane facilitated the bleeding of dissolved inorganic salts and thus prevented the build-up of salinity in the bioreactor. As a result, sludge production and microbial activity were relatively stable over 60 days of operation. Compared to MF, the FO process produced a better permeate quality in terms of nutrients, total organic carbon, as well as hydrophilic and biologically persistent trace organic chemicals (TrOCs). The high rejection by the FO membrane also led to accumulation of hydrophilic and biologically persistent TrOCs in the bioreactor, consequently increasing their concentration in the MF permeate. On the other hand, hydrophobic and readily biodegradable TrOCs were minimally detected in both MF and FO permeates, with no clear difference in the removal efficiencies between two processes.

  4. The role of forward osmosis and microfiltration in an integrated osmotic-microfiltration membrane bioreactor system.

    PubMed

    Luo, Wenhai; Hai, Faisal I; Kang, Jinguo; Price, William E; Nghiem, Long D; Elimelech, Menachem

    2015-10-01

    This study investigates the performance of an integrated osmotic and microfiltration membrane bioreactor (O/MF-MBR) system for wastewater treatment and reclamation. The O/MF-MBR system simultaneously used microfiltration (MF) and forward osmosis (FO) membranes to extract water from the mixed liquor of an aerobic bioreactor. The MF membrane facilitated the bleeding of dissolved inorganic salts and thus prevented the build-up of salinity in the bioreactor. As a result, sludge production and microbial activity were relatively stable over 60 days of operation. Compared to MF, the FO process produced a better permeate quality in terms of nutrients, total organic carbon, as well as hydrophilic and biologically persistent trace organic chemicals (TrOCs). The high rejection by the FO membrane also led to accumulation of hydrophilic and biologically persistent TrOCs in the bioreactor, consequently increasing their concentration in the MF permeate. On the other hand, hydrophobic and readily biodegradable TrOCs were minimally detected in both MF and FO permeates, with no clear difference in the removal efficiencies between two processes. PMID:25966331

  5. Phase separated membrane bioreactor - Results from model system studies

    NASA Technical Reports Server (NTRS)

    Petersen, G. R.; Seshan, P. K.; Dunlop, E. H.

    1989-01-01

    The operation and evaluation of a bioreactor designed for high intensity oxygen transfer in a microgravity environment is described. The reactor itself consists of a zero headspace liquid phase separated from the air supply by a long length of silicone rubber tubing through which the oxygen diffuses in and the carbon dioxide diffuses out. Mass transfer studies show that the oxygen is film diffusion controlled both externally and internally to the tubing and not by diffusion across the tube walls. Methods of upgrading the design to eliminate these resistances are proposed. Cell growth was obtained in the fermenter using Saccharomyces cerevisiae showing that this concept is capable of sustaining cell growth in the terrestrial simulation.

  6. Model system studies with a phase separated membrane bioreactor

    NASA Technical Reports Server (NTRS)

    Petersen, G. R.; Seshan, P. K.; Dunlop, Eric H.

    1989-01-01

    The operation and evaluation of a bioreactor designed for high intensity oxygen transfer in a microgravity environment is described. The reactor itself consists of a zero headspace liquid phase separated from the air supply by a long length of silicone rubber tubing through which the oxygen diffuses in and the carbon dioxide diffuses out. Mass transfer studies show that the oxygen is film diffusion controlled both externally and internally to the tubing and not by diffusion across the tube walls. Methods of upgrading the design to eliminate these resistances are proposed. Cell growth was obtained in the fermenter using Saccharomyces cerevisiae showing that this concept is capable of sustaining cell growth in the terrestial simulation.

  7. Phase separated membrane bioreactor: Results from model system studies

    NASA Astrophysics Data System (ADS)

    Petersen, G. R.; Seshan, P. K.; Dunlop, E. H.

    The operation and evaluation of a bioreactor designed for high intensity oxygen transfer in a microgravity environment is described. The reactor itself consists of a zero headspace liquid phase separated from the air supply by a long length of silicone rubber tubing through which the oxygen diffuses in and the carbon dioxide diffuses out. Mass transfer studies show that the oxygen is film diffusion controlled both externally and internally to the tubing and not by diffusion across the tube walls. Methods of upgrading the design to eliminate these resistances are proposed. Cell growth was obtained in the fermenter using Saccharomyces cerevisiae showing that this concept is capable of sustaining cell growth in the terrestial simulation.

  8. A bioreactor system for the nitrogen loop in a controlled ecological life support system

    NASA Astrophysics Data System (ADS)

    Saulmon, M. M.; Reardon, K. F.; Sadeh, W. Z.

    1996-01-01

    As space missions become longer in duration, the need to recycle waste into useful compounds rises dramatically. This problem can be addressed by the development of Controlled Ecological Life Support Systems (CELSS) (i.e., Engineered Closed/ Controlled Eco-Systems (ECCES)), consisting of human and plant modules. One of the waste streams leaving the human module is urine. In addition to the reclamation of water from urine, recovery of the nitrogen is important because it is an esssential nutrient for the plant module. A 3-step biological process for the recycling of nitrogenous waste (urea) is proposed. A packed-bed bioreactor system for this purpose was modeled, and the issues of reaction step segregation, reactor type and volume, support particle size, and pressure drop were addressed. Based on minimization of volume, a bioreactor system consisting of a plug flow immobilized urease reactor, a completely mixed flow immobilized cell reactor to convert ammonia to nitrite, and a plug flow immobilized cell reactor to produce nitrate from nitrite is recommended. It is apparent that this 3-step bioprocess meets the requirements for space applications.

  9. A bioreactor system for the nitrogen loop in a Controlled Ecological Life Support System

    NASA Technical Reports Server (NTRS)

    Saulmon, M. M.; Reardon, K. F.; Sadeh, W. Z.

    1996-01-01

    As space missions become longer in duration, the need to recycle waste into useful compounds rises dramatically. This problem can be addressed by the development of Controlled Ecological Life Support Systems (CELSS) (i.e., Engineered Closed/Controlled Eco-Systems (ECCES)), consisting of human and plant modules. One of the waste streams leaving the human module is urine. In addition to the reclamation of water from urine, recovery of the nitrogen is important because it is an essential nutrient for the plant module. A 3-step biological process for the recycling of nitrogenous waste (urea) is proposed. A packed-bed bioreactor system for this purpose was modeled, and the issues of reaction step segregation, reactor type and volume, support particle size, and pressure drop were addressed. Based on minimization of volume, a bioreactor system consisting of a plug flow immobilized urease reactor, a completely mixed flow immobilized cell reactor to convert ammonia to nitrite, and a plug flow immobilized cell reactor to produce nitrate from nitrite is recommended. It is apparent that this 3-step bioprocess meets the requirements for space applications.

  10. BIOREACTOR LANDFILL DESIGN

    EPA Science Inventory

    Modern landfill design entails many elements including foundations, liner systems, leachate collection systems, stormwater control systems, slope stability considerations, leachate management systems, gas extraction systems, and capping and closure. The use of bioreactor technolo...

  11. Bioreactors for tissue engineering.

    PubMed

    Chen, Huang-Chi; Hu, Yu-Chen

    2006-09-01

    Bioreactors are essential in tissue engineering, not only because they provide an in vitro environment mimicking in vivo conditions for the growth of tissue substitutes, but also because they enable systematic studies of the responses of living tissues to various mechanical and biochemical cues. The basic principles of bioreactor design are reviewed, the bioreactors commonly used for the tissue engineering of cartilage, bone and cardiovascular systems are assessed in terms of their performance and usefulness. Several novel bioreactor types are also reviewed. PMID:16955350

  12. Pentachlorophenol contaminated groundwater bioremediation using immobilized Sphingomonas cells inoculation in the bioreactor system.

    PubMed

    Yang, Chu-Fang; Lee, Chi-Mei

    2008-03-21

    Pentachlorophenol (PCP) has been used as a wood preservative for more than 100 years. The extensive use of PCP has widely contaminated soil and groundwater. PCP is toxic to living organisms. The main objective of this research was to inoculate the pure PCP-degrading bacterium strain Sphingomonas chlorophenolica PCP-1, isolated from PCP-contaminated soils, into PCP-contaminated groundwater for remediation purposes. The factors that influenced the bioremediation were explored with batch experiments using the inoculated immobilized and suspended cells as inoculation. A biological treatment system inoculated with immobilized cells was set up to estimate the microbial capability to degrade PCP. The results indicated that the suspended and immobilized cells could be inoculated into PCP-contaminated groundwater without adding other supplementary nitrogen and phosphate sources in batch conditions. Moreover, PCP decomposition was accompanied with released Cl- and decreasing pH value. The optimum HRT in the bioreactor system was 12.6h. PCP removal in the bioreactor remained stable and PCP removal efficiency was higher than 92% at this phase. Furthermore, PCP concentration in the biotreatment system effluent remained undetectable. It is possible to bioremediate PCP-contaminated groundwater using immobilized S. chlorophenolica PCP-1 cells in a bioreactor system. The proposed biological treatment system could be maintained for at least for 2 months.

  13. In Vivo Bone Regeneration Using Tubular Perfusion System Bioreactor Cultured Nanofibrous Scaffolds

    PubMed Central

    Yeatts, Andrew B.; Both, Sanne K.; Yang, Wanxun; Alghamdi, Hamdan S.; Yang, Fang; Jansen, John A.

    2014-01-01

    The use of bioreactors for the in vitro culture of constructs for bone tissue engineering has become prevalent as these systems may improve the growth and differentiation of a cultured cell population. Here we utilize a tubular perfusion system (TPS) bioreactor for the in vitro culture of human mesenchymal stem cells (hMSCs) and implant the cultured constructs into rat femoral condyle defects. Using nanofibrous electrospun poly(lactic-co-glycolic acid)/poly(ɛ-caprolactone) scaffolds, hMSCs were cultured for 10 days in vitro in the TPS bioreactor with cellular and acellular scaffolds cultured statically for 10 days as a control. After 3 and 6 weeks of in vivo culture, explants were removed and subjected to histomorphometric analysis. Results indicated more rapid bone regeneration in defects implanted with bioreactor cultured scaffolds with a new bone area of 1.23±0.35 mm2 at 21 days compared to 0.99±0.43 mm2 and 0.50±0.29 mm2 in defects implanted with statically cultured scaffolds and acellular scaffolds, respectively. At the 21 day timepoint, statistical differences (p<0.05) were only observed between defects implanted with cell containing scaffolds and the acellular control. After 42 days, however, defects implanted with TPS cultured scaffolds had the greatest new bone area with 1.72±0.40 mm2. Defects implanted with statically cultured and acellular scaffolds had a new bone area of 1.26±0.43 mm2 and 1.19±0.33 mm2, respectively. The increase in bone growth observed in defects implanted with TPS cultured scaffolds was statistically significant (p<0.05) when compared to both the static and acellular groups at this timepoint. This study demonstrates the efficacy of the TPS bioreactor to improve bone tissue regeneration and highlights the benefits of utilizing perfusion bioreactor systems to culture MSCs for bone tissue engineering. PMID:23865551

  14. Design and Fabrication of Anatomical Bioreactor Systems Containing Alginate Scaffolds for Cartilage Tissue Engineering

    PubMed Central

    Gharravi, Anneh Mohammad; Orazizadeh, Mahmoud; Ansari-Asl, Karim; Banoni, Salem; Izadi, Sina; Hashemitabar, Mahmoud

    2012-01-01

    The aim of the present study was to develop a tissue-engineering approach through alginate gel molding to mimic cartilage tissue in a three-dimensional culture system. The perfusion biomimetic bioreactor was designed to mimic natural joint. The shear stresses exerting on the bioreactor chamber were calculated by Computational Fluid Dynamic (CFD). Several alginate/bovine chondrocyte constructs were prepared, and were cultured in the bioreactor. Histochemical and immunohistochemical staining methods for the presence of glycosaminoglycan(GAG), overall matrix production and type II collagen protein were performed, respectively. The dynamic mechanical device applied a linear mechanical displacement of 2 mm to 10 mm. The CFD modeling indicated peak velocity and maximum wall shear stress were 1.706×10−3 m/s and 0.02407 dyne/cm 2, respectively. Histochemical and immunohistochemical analysis revealed evidence of cartilage-like tissue with lacunas similar to those of natural cartilage and the production of sulfated GAG of matrix by the chondrons, metachromatic territorial matrix-surrounded cells and accumulation of type II collagen around the cells. The present study indicated that when chondrocytes were seeded in alginate hydrogel and cultured in biomimetic cell culture system, cells survived well and secreted newly synthesized matrix led to improvement of chondrogenesis. PMID:23408660

  15. Phosphorus and water recovery by a novel osmotic membrane bioreactor-reverse osmosis system.

    PubMed

    Luo, Wenhai; Hai, Faisal I; Price, William E; Guo, Wenshan; Ngo, Hao H; Yamamoto, Kazuo; Nghiem, Long D

    2016-01-01

    An osmotic membrane bioreactor-reverse osmosis (OMBR-RO) hybrid system integrated with periodic microfiltration (MF) extraction was evaluated for simultaneous phosphorus and clean water recovery from raw sewage. In this hybrid system, the forward osmosis membrane effectively retained inorganic salts and phosphate in the bioreactor, while the MF membrane periodically bled them out for phosphorus recovery with pH adjustment. The RO process was used for draw solute recovery and clean water production. Results show that phosphorus recuperation from the MF permeate was most effective when the solution pH was adjusted to 10, whereby the recovered precipitate contained 15-20% (wt/wt) of phosphorus. Periodic MF extraction also limited salinity build-up in the bioreactor, resulting in a stable biological performance and an increase in water flux during OMBR operation. Despite the build-up of organic matter and ammonia in the draw solution, OMBR-RO allowed for the recovery of high quality reused water. PMID:26499404

  16. Experimental investigation on feasible bioreactor using mechanism of hydrogen oxidation of natural soil for detritiation system.

    PubMed

    Edao, Yuki; Iwai, Yasunori; Sato, Katsumi; Hayashi, Takumi

    2016-08-01

    A passive reactor for tritium oxidation at room temperature has been widely studied in nuclear engineering especially for a detritiation system (DS) of a tritium process facility taking possible extraordinary situation severely into consideration. We have focused on bacterial oxidation of tritium by hydrogen-oxidizing bacteria in natural soil to realize the passive oxidation reactor. The purpose of this study was to examine the feasibility of a bioreactor with hydrogen-oxidizing bacteria in soil from a point of view of engineering. The efficiency of the bioreactor was evaluated by kinetics. The bioreactor packed with natural soil shows a relative high conversion rate of tritium under the saturated moisture condition at room temperature, which is obviously superior to that of a Pt/Al2O3 catalyst generally used for tritium oxidation in the existing tritium handling facilities. The order of reaction for tritium oxidation with soil was the pseudo-first order as assessed with Michaelis-Menten kinetics model. Our engineering suggestion to increase the reaction rate is the intentional addition of hydrogen at a small concentration in the feed gas on condition that the oxidation of tritium with soil is expressed by the Michaelis-Menten kinetics model.

  17. Perfusion circuit concepts for hollow-fiber bioreactors used as in vitro cell production systems or ex vivo bioartificial organs.

    PubMed

    Balmert, Stephen C; McKeel, Daniel; Triolo, Fabio; Gridelli, Bruno; Zeilinger, Katrin; Bornemann, Reiner; Gerlach, Jörg C

    2011-05-01

    For the development and implementation of primary human cell- and stem cell-based applications in regenerative medicine, large amounts of cells with well-defined characteristics are needed. Such cell quantities can be obtained with the use of hollow fiber-based bioreactors. While the use of such bioreactors generally requires a perfusion circuit, the configuration and complexity of such circuits is still in debate. We evaluated various circuit configurations to investigate potential perfusate volume shifts in the arterial and venous sides of the perfusion circuit, as well as in the feed and waste lines. Volume shifts with changes in flow conditions were measured with graduated bubble traps in the circuit, and perfusion pressures were measured at three points in the circuits. The results of this study demonstrate that the bioreactor perfusion circuit configuration has an effect on system pressures and volume shifts in the circuit. During operation, spikes in post-bioreactor pressures caused detrimental, potentially dangerous volume shifts in the feed and waste lines for configurations that lacked feed pumps and/or waste line check valves. Our results indicate that a more complex tubing circuit adds to safety of operation and avoids technical challenges associated with the use of large-scale hollow fiber bioreactors (e.g., for extracorporeal liver support or erythrocyte production from hematopoietic stem cells), including volume shifts and the need for a large reservoir. Finally, to ensure safe use of bioreactors, measuring pre-, intra-, and post-bioreactor pressures, and pump operation control is also advisable, which suggests the use of specifically developed bioreactor perfusion devices. PMID:21623585

  18. Process for whole cell saccharification of lignocelluloses to sugars using a dual bioreactor system

    DOEpatents

    Lu, Jue; Okeke, Benedict

    2012-03-27

    The present invention describes a process for saccharification of lignocelluloses to sugars using whole microbial cells, which are enriched from cultures inoculated with paper mill waste water, wood processing waste and soil. A three-member bacterial consortium is selected as a potent microbial inocula and immobilized on inedible plant fibers for biomass saccharification. The present invention further relates the design of a dual bioreactor system, with various biocarriers for enzyme immobilization and repeated use. Sugars are continuously removed eliminating end-product inhibition and consumption by cell.

  19. Two-phase bioreactor system for cell-laden hydrogel assembly.

    PubMed

    Gulfam, Muhammad; Lee, Jong Min; Chung, Bong Geun

    2011-01-01

    Bottom-up approach is a potentially useful tool for hydrogel assembly of cell-laden individual building blocks. In this article, we assembled individual building blocks of photocrosslinkable microgels in a rapid and controlled manner. Individual building blocks of poly(ethylene glycol) (PEG) microgels with square and hexagonal shapes were fabricated by using a photolithography technique. Individual building blocks of PEG microgels were assembled on a hydrophobic mineral oil phase in a bioreactor with a magnetic stirrer. The hydrophobic mineral oil minimized the surface free energy to assemble hydrophilic PEG microgels on a two-phase oil-aqueous solution interface. We used the hydrophobic effect as a driving force for the hydrogel assembly. Various types of the hydrogel assembly were generated by controlling the stirring rate. As stirring speed increased, the percentage of linear, branched, and closely packed hydrogel assembly was increased. However, the percentage of random assembly was reduced by increasing stirring rate. The stirring time also played an important role in controlling the types of hydrogel assembly. The percentage of linear, branched, and closely packed hydrogel assembly was improved by increasing stirring time. Therefore, we performed directed cell-laden hydrogel assembly using a two-phase bioreactor system and optimized the stirring rate and time to regulate the desired types of hydrogel assembly. Furthermore, we analyzed cell viability of hydrogel linear assembly with square shapes, showing highly viable even after secondary photocrosslinking reaction. This bioreactor system-based hydrogel assembly could be a potentially powerful approach for creating tissue microarchitectures in a three-dimensional manner.

  20. Large-scale production of lentiviral vector in a closed system hollow fiber bioreactor

    PubMed Central

    Sheu, Jonathan; Beltzer, Jim; Fury, Brian; Wilczek, Katarzyna; Tobin, Steve; Falconer, Danny; Nolta, Jan; Bauer, Gerhard

    2015-01-01

    Lentiviral vectors are widely used in the field of gene therapy as an effective method for permanent gene delivery. While current methods of producing small scale vector batches for research purposes depend largely on culture flasks, the emergence and popularity of lentiviral vectors in translational, preclinical and clinical research has demanded their production on a much larger scale, a task that can be difficult to manage with the numbers of producer cell culture flasks required for large volumes of vector. To generate a large scale, partially closed system method for the manufacturing of clinical grade lentiviral vector suitable for the generation of induced pluripotent stem cells (iPSCs), we developed a method employing a hollow fiber bioreactor traditionally used for cell expansion. We have demonstrated the growth, transfection, and vector-producing capability of 293T producer cells in this system. Vector particle RNA titers after subsequent vector concentration yielded values comparable to lentiviral iPSC induction vector batches produced using traditional culture methods in 225 cm2 flasks (T225s) and in 10-layer cell factories (CF10s), while yielding a volume nearly 145 times larger than the yield from a T225 flask and nearly three times larger than the yield from a CF10. Employing a closed system hollow fiber bioreactor for vector production offers the possibility of manufacturing large quantities of gene therapy vector while minimizing reagent usage, equipment footprint, and open system manipulation. PMID:26151065

  1. Bioreactor design concepts

    NASA Technical Reports Server (NTRS)

    Bowie, William

    1987-01-01

    Two parallel lines of work are underway in the bioreactor laboratory. One of the efforts is devoted to the continued development and utilization of a laboratory research system. That system's design is intended to be fluid and dynamic. The sole purpose of such a device is to allow testing and development of equipment concepts and procedures. Some of the results of those processes are discussed. A second effort is designed to produce a flight-like bioreactor contained in a double middeck locker. The result of that effort has been to freeze a particular bioreactor design in order to allow fabrication of the custom parts. The system is expected to be ready for flight in early 1988. However, continued use of the laboratory system will lead to improvements in the space bioreactor. Those improvements can only be integrated after the initial flight series.

  2. A novel milliliter-scale chemostat system for parallel cultivation of microorganisms in stirred-tank bioreactors.

    PubMed

    Schmideder, Andreas; Severin, Timm Steffen; Cremer, Johannes Heinrich; Weuster-Botz, Dirk

    2015-09-20

    A pH-controlled parallel stirred-tank bioreactor system was modified for parallel continuous cultivation on a 10 mL-scale by connecting multichannel peristaltic pumps for feeding and medium removal with micro-pipes (250 μm inner diameter). Parallel chemostat processes with Escherichia coli as an example showed high reproducibility with regard to culture volume and flow rates as well as dry cell weight, dissolved oxygen concentration and pH control at steady states (n=8, coefficient of variation <5%). Reliable estimation of kinetic growth parameters of E. coli was easily achieved within one parallel experiment by preselecting ten different steady states. Scalability of milliliter-scale steady state results was demonstrated by chemostat studies with a stirred-tank bioreactor on a liter-scale. Thus, parallel and continuously operated stirred-tank bioreactors on a milliliter-scale facilitate timesaving and cost reducing steady state studies with microorganisms. The applied continuous bioreactor system overcomes the drawbacks of existing miniaturized bioreactors, like poor mass transfer and insufficient process control.

  3. Configuration of bioreactors.

    PubMed

    Martens, Dirk E; van den End, Evert J; Streefland, Mathieu

    2014-01-01

    Lab-scale stirred-tank bioreactors (0.2-20 l) are used for fundamental research on animal cells and in process development and troubleshooting for large-scale production. In this chapter, different configurations of bioreactor systems are shortly discussed and setting up these different configurations is described. In addition, online measurement and control of bioreactor parameters is described, with special attention to controller settings (PID) and online measurement of oxygen consumption and carbon dioxide production. Finally, methods for determining the oxygen transfer coefficient are described.

  4. Lactose autoinduction with enzymatic glucose release: characterization of the cultivation system in bioreactor.

    PubMed

    Mayer, Sonja; Junne, Stefan; Ukkonen, Kaisa; Glazyrina, Julia; Glauche, Florian; Neubauer, Peter; Vasala, Antti

    2014-02-01

    The lactose autoinduction system for recombinant protein production was combined with enzymatic glucose release as a method to provide a constant feed of glucose instead of using glycerol as a carbon substrate. Bioreactor cultivation confirmed that the slow glucose feed does not prevent the induction by lactose. HPLC studies showed that with successful recombinant protein production only a very low amount of lactose was metabolized during glucose-limited fed-batch conditions by the Escherichia coli strain BL21(DE3)pLysS in well-aerated conditions, which are problematic for glycerol-based autoinduction systems. We propose that slow enzymatic glucose feed does not cause a full activation of the lactose operon. However recombinant PDI-A protein (A-domain of human disulfide isomerase) was steadily produced until the end of the cultivation. The results of the cultivations confirmed our earlier observations with shaken cultures showing that lactose autoinduction cultures based on enzymatic glucose feed have good scalability, and that this system can be applied also to bioreactor cultivations. PMID:24215862

  5. In Vitro Model for Hepatotoxicity Studies Based on Primary Human Hepatocyte Cultivation in a Perfused 3D Bioreactor System

    PubMed Central

    Knöspel, Fanny; Jacobs, Frank; Freyer, Nora; Damm, Georg; De Bondt, An; van den Wyngaert, Ilse; Snoeys, Jan; Monshouwer, Mario; Richter, Marco; Strahl, Nadja; Seehofer, Daniel; Zeilinger, Katrin

    2016-01-01

    Accurate prediction of the potential hepatotoxic nature of new pharmaceuticals remains highly challenging. Therefore, novel in vitro models with improved external validity are needed to investigate hepatic metabolism and timely identify any toxicity of drugs in humans. In this study, we examined the effects of diclofenac, as a model substance with a known risk of hepatotoxicity in vivo, in a dynamic multi-compartment bioreactor using primary human liver cells. Biotransformation pathways of the drug and possible effects on metabolic activities, morphology and cell transcriptome were evaluated. Formation rates of diclofenac metabolites were relatively stable over the application period of seven days in bioreactors exposed to 300 µM diclofenac (300 µM bioreactors (300 µM BR)), while in bioreactors exposed to 1000 µM diclofenac (1000 µM BR) metabolite concentrations declined drastically. The biochemical data showed a significant decrease in lactate production and for the higher dose a significant increase in ammonia secretion, indicating a dose-dependent effect of diclofenac application. The microarray analyses performed revealed a stable hepatic phenotype of the cells over time and the observed transcriptional changes were in line with functional readouts of the system. In conclusion, the data highlight the suitability of the bioreactor technology for studying the hepatotoxicity of drugs in vitro. PMID:27092500

  6. Bioreactor-based engineering of osteochondral grafts: from model systems to tissue manufacturing.

    PubMed

    Wendt, David; Jakob, Marcel; Martin, Ivan

    2005-11-01

    Osteochondral defects (i.e., those that affect both the articular cartilage and underlying subchondral bone) are often associated with mechanical instability of the joint, and therefore with the risk of inducing osteoarthritic degenerative changes. The in vitro fabrication of osteochondral grafts of predefined size and shape, starting from autologous cells combined with three-dimensional porous biomaterials, is a promising approach for the treatment of osteochondral defects. However, the quality of ex vivo generated cartilage and bone-like tissues is currently restricted by a limited understanding of the regulatory role of physicochemical culture parameters on tissue development. By allowing reproducible and controlled changes in specific biochemical and biomechanical factors, bioreactor systems provide the technological means to reveal fundamental mechanisms of cell function in a three-dimensional environment and the potential to improve the quality of engineered tissues. In addition, by automating and standardizing the manufacturing process in controlled closed systems, bioreactors could reduce production costs and thus facilitate broader clinical impact of engineered osteochondral grafts.

  7. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Laptop computer sits atop the Experiment Control Computer for a NASA Bioreactor. The flight crew can change operating conditions in the Bioreactor by using the graphical interface on the laptop. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  8. Impact of Bioreactor Environment and Recovery Method on the Profile of Bacterial Populations from Water Distribution Systems

    PubMed Central

    Luo, Xia; Jellison, Kristen L.; Huynh, Kevin; Widmer, Giovanni

    2015-01-01

    Multiple rotating annular reactors were seeded with biofilms flushed from water distribution systems to assess (1) whether biofilms grown in bioreactors are representative of biofilms flushed from the water distribution system in terms of bacterial composition and diversity, and (2) whether the biofilm sampling method affects the population profile of the attached bacterial community. Biofilms were grown in bioreactors until thickness stabilized (9 to 11 weeks) and harvested from reactor coupons by sonication, stomaching, bead-beating, and manual scraping. High-throughput sequencing of 16S rRNA amplicons was used to profile bacterial populations from flushed biofilms seeded into bioreactors as well as biofilms recovered from bioreactor coupons by different methods. β diversity between flushed and reactor biofilms was compared to β diversity between (i) biofilms harvested from different reactors and (ii) biofilms harvested by different methods from the same reactor. These analyses showed that average diversity between flushed and bioreactor biofilms was double the diversity between biofilms from different reactors operated in parallel. The diversity between bioreactors was larger than the diversity associated with different biofilm recovery methods. Compared to other experimental variables, the method used to recover biofilms had a negligible impact on the outcome of water biofilm analyses based on 16S amplicon sequencing. Results from this study show that biofilms grown in reactors over 9 to 11 weeks are not representative models of the microbial populations flushed from a distribution system. Furthermore, the bacterial population profile of biofilms grown in replicate reactors from the same flushed water are likely to diverge. However, four common sampling protocols, which differ with respect to disruption of bacterial cells, provide similar information with respect to the 16S rRNA population profile of the biofilm community. PMID:26196282

  9. Impact of Bioreactor Environment and Recovery Method on the Profile of Bacterial Populations from Water Distribution Systems.

    PubMed

    Luo, Xia; Jellison, Kristen L; Huynh, Kevin; Widmer, Giovanni

    2015-01-01

    Multiple rotating annular reactors were seeded with biofilms flushed from water distribution systems to assess (1) whether biofilms grown in bioreactors are representative of biofilms flushed from the water distribution system in terms of bacterial composition and diversity, and (2) whether the biofilm sampling method affects the population profile of the attached bacterial community. Biofilms were grown in bioreactors until thickness stabilized (9 to 11 weeks) and harvested from reactor coupons by sonication, stomaching, bead-beating, and manual scraping. High-throughput sequencing of 16S rRNA amplicons was used to profile bacterial populations from flushed biofilms seeded into bioreactors as well as biofilms recovered from bioreactor coupons by different methods. β diversity between flushed and reactor biofilms was compared to β diversity between (i) biofilms harvested from different reactors and (ii) biofilms harvested by different methods from the same reactor. These analyses showed that average diversity between flushed and bioreactor biofilms was double the diversity between biofilms from different reactors operated in parallel. The diversity between bioreactors was larger than the diversity associated with different biofilm recovery methods. Compared to other experimental variables, the method used to recover biofilms had a negligible impact on the outcome of water biofilm analyses based on 16S amplicon sequencing. Results from this study show that biofilms grown in reactors over 9 to 11 weeks are not representative models of the microbial populations flushed from a distribution system. Furthermore, the bacterial population profile of biofilms grown in replicate reactors from the same flushed water are likely to diverge. However, four common sampling protocols, which differ with respect to disruption of bacterial cells, provide similar information with respect to the 16S rRNA population profile of the biofilm community.

  10. Space Bioreactor Science Workshop

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Editor)

    1987-01-01

    The first space bioreactor has been designed for microprocessor control, no gaseous headspace, circulation and resupply of culture medium, and a slow mixing in very low shear regimes. Various ground based bioreactors are being used to test reactor vessel design, on-line sensors, effects of shear, nutrient supply, and waste removal from continuous culture of human cells attached to microcarriers. The small (500 ml) bioreactor is being constructed for flight experiments in the Shuttle middeck to verify systems operation under microgravity conditions and to measure the efficiencies of mass transport, gas transfer, oxygen consumption, and control of low shear stress on cells. Applications of microcarrier cultures, development of the first space bioreactor flight system, shear and mixing effects on cells, process control, and methods to monitor cell metabolism and nutrient requirements are among the topics covered.

  11. Automatic control systems for submerged membrane bioreactors: a state-of-the-art review.

    PubMed

    Ferrero, Giuliana; Rodríguez-Roda, Ignasi; Comas, Joaquim

    2012-07-01

    Membrane bioreactor (MBR) technology has become relatively widespread as an advanced treatment for both industrial and municipal wastewater, especially in areas prone to water scarcity. Although operational cost is a key issue in MBRs, currently only a few crucial papers and inventions aimed to optimise and enhance MBR efficiency have been published. The present review summarises the available solutions in the area of automatic control systems and widely explores the advances in automation and control for MBRs. In this review of state of the art, different control systems are evaluated comparatively, distinguishing between control systems used for the filtration process and those used for the biological process of MBRs and describing the challenge faced by integrated control systems. The existing knowledge is classified according to the manipulated variables, the operational mode (open-loop or closed-loop) and the controlled variables used.

  12. The importance of bicarbonate and nonbicarbonate buffer systems in batch and continuous flow bioreactors for articular cartilage tissue engineering.

    PubMed

    Khan, Aasma A; Surrao, Denver C

    2012-05-01

    In cartilage tissue engineering an optimized culture system, maintaining an appropriate extracellular environment (e.g., pH of media), can increase cell proliferation and extracellular matrix (ECM) accumulation. We have previously reported on a continuous-flow bioreactor that improves tissue growth by supplying the cells with a near infinite supply of medium. Previous studies have observed that acidic environments reduce ECM synthesis and chondrocyte proliferation. Hence, in this study we investigated the combined effects of a continuous culture system (bioreactor) together with additional buffering agents (e.g., sodium bicarbonate [NaHCO₃]) on cartilaginous tissue growth in vitro. Isolated bovine chondrocytes were grown in three-dimensional cultures, either in static conditions or in a continuous-flow bioreactor, in media with or without NaHCO₃. Tissue constructs cultivated in the bioreactor with NaHCO₃-supplemented media were characterized with significantly increased (p<0.05) ECM accumulation (glycosaminoglycans a 98-fold increase; collagen a 25-fold increase) and a 13-fold increase in cell proliferation, in comparison with static cultures. Additionally, constructs grown in the bioreactor with NaHCO₃-supplemented media were significantly thicker than all other constructs (p<0.05). Further, the chondrocytes from the primary construct expanded and synthesized ECM, forming a secondary construct without a separate expansion phase, with a diameter and thickness of 4 mm and 0.72 mm respectively. Tissue outgrowth was negligible in all other culturing conditions. Thus this study demonstrates the advantage of employing a continuous flow bioreactor coupled with NaHCO₃ supplemented media for articular cartilage tissue engineering.

  13. Bioreactor perfusion system for the long-term maintenance of tissue-engineered skeletal muscle organoids

    NASA Technical Reports Server (NTRS)

    Chromiak, J. A.; Shansky, J.; Perrone, C.; Vandenburgh, H. H.

    1998-01-01

    Three-dimensional skeletal muscle organ-like structures (organoids) formed in tissue culture by fusion of proliferating myoblasts into parallel networks of long, unbranched myofibers provide an in vivo-like model for examining the effects of growth factors, tension, and space flight on muscle cell growth and metabolism. To determine the feasibility of maintaining either avian or mammalian muscle organoids in a commercial perfusion bioreactor system, we measured metabolism, protein turnover. and autocrine/paracrine growth factor release rates. Medium glucose was metabolized at a constant rate in both low-serum- and serum-free media for up to 30 d. Total organoid noncollagenous protein and DNA content decreased approximately 22-28% (P < 0.05) over a 13-d period. Total protein synthesis rates could be determined accurately in the bioreactors for up to 30 h and total protein degradation rates could be measured for up to 3 wk. Special fixation and storage conditions necessary for space flight studies were validated as part of the studies. For example, the anabolic autocrine/paracrine skeletal muscle growth factors prostaglandin F2alpha (PGF2alpha) and insulin-like growth factor-1 (IGF-1) could be measured accurately in collected media fractions, even after storage at 37 degrees C for up to 10 d. In contrast, creatine kinase activity (a marker of cell damage) in collected media fractions was unreliable. These results provide initial benchmarks for long-term ex vivo studies of tissue-engineered skeletal muscle.

  14. Cyclic mechanical stimulation rescues achilles tendon from degeneration in a bioreactor system.

    PubMed

    Wang, Tao; Lin, Zhen; Ni, Ming; Thien, Christine; Day, Robert E; Gardiner, Bruce; Rubenson, Jonas; Kirk, Thomas B; Smith, David W; Wang, Allan; Lloyd, David G; Wang, Yan; Zheng, Qiujian; Zheng, Ming H

    2015-12-01

    Physiotherapy is one of the effective treatments for tendinopathy, whereby symptoms are relieved by changing the biomechanical environment of the pathological tendon. However, the underlying mechanism remains unclear. In this study, we first established a model of progressive tendinopathy-like degeneration in the rabbit Achilles. Following ex vivo loading deprivation culture in a bioreactor system for 6 and 12 days, tendons exhibited progressive degenerative changes, abnormal collagen type III production, increased cell apoptosis, and weakened mechanical properties. When intervention was applied at day 7 for another 6 days by using cyclic tensile mechanical stimulation (6% strain, 0.25 Hz, 8 h/day) in a bioreactor, the pathological changes and mechanical properties were almost restored to levels seen in healthy tendon. Our results indicated that a proper biomechanical environment was able to rescue early-stage pathological changes by increased collagen type I production, decreased collagen degradation and cell apoptosis. The ex vivo model developed in this study allows systematic study on the effect of mechanical stimulation on tendon biology.

  15. Full-scale validation of an air scour control system for energy savings in membrane bioreactors.

    PubMed

    Monclús, Hèctor; Dalmau, Montserrat; Gabarrón, Sara; Ferrero, Giuliana; Rodríguez-Roda, Ignasi; Comas, Joaquim

    2015-08-01

    Membrane aeration represents between 35 and 50% of the operational cost of membrane bioreactors (MBR). New automatic control systems and/or module configurations have been developed for aeration optimization. In this paper, we briefly describe an innovative MBR air scour control system based on permeability evolution and present the results of a full-scale validation that lasted over a 1-year period. An average reduction in the air scour flow rate of 13% was achieved, limiting the maximum reduction to 20%. This averaged reduction corresponded to a decrease in energy consumption for membrane aeration of 14% (0.025 kWh m(-3)) with maximum saving rates of 22% (0.04 kWh m(-3)). Permeability and fouling rate evolution were not affected by the air scour control system, as very similar behavior was observed for these variables for both filtration lines throughout the entire experimental evaluation period of 1 year.

  16. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Close-up view of the interior of a NASA Bioreactor shows the plastic plumbing and valves (cylinders at center) to control fluid flow. A fresh nutrient bag is installed at top; a flattened waste bag behind it will fill as the nutrients are consumed during the course of operation. The drive chain and gears for the rotating wall vessel are visible at bottom center center. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  17. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Interior view of the gas supply for the NASA Bioreactor. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  18. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Biotechnology Refrigerator that preserves samples for use in (or after culturing in) the NASA Bioreactor. The unit is shown extracted from a middeck locker shell. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  19. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Exterior view of the NASA Bioreactor Engineering Development Unit flown on Mir. The rotating wall vessel is behind the window on the face of the large module. Control electronics are in the module at left; gas supply and cooling fans are in the module at back. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  20. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Electronics control module for the NASA Bioreactor. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  1. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Interior of a Biotechnology Refrigerator that preserves samples for use in (or after culturing in) the NASA Bioreactor. The unit is shown extracted from a middeck locker shell. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  2. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Biotechnology Refrigerator that preserves samples for use in (or after culturing in) the NASA Bioreactor. The unit is shown extracted from a middeck locker shell and with thermal blankets partially removed. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  3. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Close-up view of the interior of a NASA Bioreactor shows the plastic plumbing and valves (cylinders at right center) to control fluid flow. The rotating wall vessel is at top center. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  4. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Biotechnology Refrigerator (BTR) holds fixed tissue culture bags at 4 degrees C to preserve them for return to Earth and postflight analysis. The cultures are used in research with the NASA Bioreactor cell science program. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC).

  5. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The heart of the bioreactor is the rotating wall vessel, shown without its support equipment. Volume is about 125 mL. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  6. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Astronaut John Blaha replaces an exhausted media bag and filled waste bag with fresh bags to continue a bioreactor experiment aboard space station Mir in 1996. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. This image is from a video downlink. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC).

  7. Treatment of coal gasification wastewater by membrane bioreactor hybrid powdered activated carbon (MBR–PAC) system.

    PubMed

    Jia, Shengyong; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng; Fang, Fang; Zhao, Qian

    2014-12-01

    A laboratory-scale membrane bioreactor hybrid powdered activated carbon (MBR–PAC) system was developed to treat coal gasification wastewater to enhance the COD, total phenols (TPh), NH4+ removals and migrate the membrane fouling. Since the MBR–PAC system operated with PAC dosage of 4 g L−1, the maximum removal efficiencies of COD, TPh and NH4+ reached 93%, 99% and 63%, respectively with the corresponding influent concentrations of 2.27 g L−1, 497 mg L−1 and 164 mg N L−1; the PAC extraction efficiencies of COD, TPh and NH4+ were 6%, 3% and 13%, respectively; the transmembrane pressure decreased 34% with PAC after 50 d operation. The results demonstrate that PAC played a key role in the enhancement of biodegradability and mitigation of membrane fouling. PMID:25461944

  8. Advances in biotreatment of acid mine drainage and biorecovery of metals: 2. Membrane bioreactor system for sulfate reduction.

    PubMed

    Tabak, Henry H; Govind, Rakesh

    2003-12-01

    Several biotreatmemt techniques for sulfate conversion by the sulfate reducing bacteria (SRB) have been proposed in the past, however few of them have been practically applied to treat sulfate containing acid mine drainage (AMD). This research deals with development of an innovative polypropylene hollow fiber membrane bioreactor system for the treatment of acid mine water from the Berkeley Pit, Butte, MT, using hydrogen consuming SRB biofilms. The advantages of using the membrane bioreactor over the conventional tall liquid phase sparged gas bioreactor systems are: large microporous membrane surface to the liquid phase; formation of hydrogen sulfide outside the membrane, preventing the mixing with the pressurized hydrogen gas inside the membrane; no requirement of gas recycle compressor; membrane surface is suitable for immobilization of active SRB, resulting in the formation of biofilms, thus preventing washout problems associated with suspended culture reactors; and lower operating costs in membrane bioreactors, eliminating gas recompression and gas recycle costs. Information is provided on sulfate reduction rate studies and on biokinetic tests with suspended SRB in anaerobic digester sludge and sediment master culture reactors and with SRB biofilms in bench-scale SRB membrane bioreactors. Biokinetic parameters have been determined using biokinetic models for the master culture and membrane bioreactor systems. Data are presented on the effect of acid mine water sulfate loading at 25, 50, 75 and 100 ml/min in scale-up SRB membrane units, under varied temperatures (25, 35 and 40 degrees C) to determine and optimize sulfate conversions for an effective AMD biotreatment. Pilot-scale studies have generated data on the effect of flow rates of acid mine water (MGD) and varied inlet sulfate concentrations in the influents on the resultant outlet sulfate concentration in the effluents and on the number of SRB membrane modules needed for the desired sulfate conversion in

  9. Advances in biotreatment of acid mine drainage and biorecovery of metals: 2. Membrane bioreactor system for sulfate reduction.

    PubMed

    Tabak, Henry H; Govind, Rakesh

    2003-12-01

    Several biotreatmemt techniques for sulfate conversion by the sulfate reducing bacteria (SRB) have been proposed in the past, however few of them have been practically applied to treat sulfate containing acid mine drainage (AMD). This research deals with development of an innovative polypropylene hollow fiber membrane bioreactor system for the treatment of acid mine water from the Berkeley Pit, Butte, MT, using hydrogen consuming SRB biofilms. The advantages of using the membrane bioreactor over the conventional tall liquid phase sparged gas bioreactor systems are: large microporous membrane surface to the liquid phase; formation of hydrogen sulfide outside the membrane, preventing the mixing with the pressurized hydrogen gas inside the membrane; no requirement of gas recycle compressor; membrane surface is suitable for immobilization of active SRB, resulting in the formation of biofilms, thus preventing washout problems associated with suspended culture reactors; and lower operating costs in membrane bioreactors, eliminating gas recompression and gas recycle costs. Information is provided on sulfate reduction rate studies and on biokinetic tests with suspended SRB in anaerobic digester sludge and sediment master culture reactors and with SRB biofilms in bench-scale SRB membrane bioreactors. Biokinetic parameters have been determined using biokinetic models for the master culture and membrane bioreactor systems. Data are presented on the effect of acid mine water sulfate loading at 25, 50, 75 and 100 ml/min in scale-up SRB membrane units, under varied temperatures (25, 35 and 40 degrees C) to determine and optimize sulfate conversions for an effective AMD biotreatment. Pilot-scale studies have generated data on the effect of flow rates of acid mine water (MGD) and varied inlet sulfate concentrations in the influents on the resultant outlet sulfate concentration in the effluents and on the number of SRB membrane modules needed for the desired sulfate conversion in

  10. Treatment of Produced Waters Using a Surfactant Modified Zeolite/Vapor Phase Bioreactor System

    SciTech Connect

    Lynn E. Katz; Kerry A. Kinney; R. S. Bowman; E. J. Sullivan

    2004-03-11

    This report summarizes work of this project from October 2003 through March 2004. The major focus of the research was to further investigate BTEX removal from produced water, to quantify metal ion removal from produced water, and to evaluate a lab-scale vapor phase bioreactor (VPB) for BTEX destruction in off-gases produced during SMZ regeneration. Batch equilibrium sorption studies were conducted to evaluate the effect of semi-volatile organic compounds commonly found in produced water on the sorption of benzene, toluene, ethylbenzene, and xylene (BTEX) onto surfactant-modified zeolite (SMZ) and to examine selected metal ion sorption onto SMZ. The sorption of polar semi-volatile organic compounds and metals commonly found in produced water onto SMZ was also investigated. Batch experiments were performed in a synthetic saline solution that mimicked water from a produced water collection facility in Wyoming. Results indicated that increasing concentrations of semi-volatile organic compounds increased BTEX sorption. The sorption of phenol compounds could be described by linear isotherms, but the linear partitioning coefficients decreased with increasing pH, especially above the pKa's of the compounds. Linear correlations relating partitioning coefficients of phenol compounds with their respective solubilities and octanol-water partitioning coefficients were developed for data collected at pH 7.2. The sorption of chromate, selenate, and barium in synthetic produced water were also described by Langmuir isotherms. Experiments conducted with a lab-scale vapor phase bioreactor (VPB) packed with foam indicated that this system could achieve high BTEX removal efficiencies once the nutrient delivery system was optimized. The xylene isomers and benzene were found to require the greatest biofilter bed depth for removal. This result suggested that these VOCs would ultimately control the size of the biofilter required for the produced water application. The biofilter recovered

  11. Bioreactor principles

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Cells cultured on Earth (left) typically settle quickly on the bottom of culture vessels due to gravity. In microgravity (right), cells remain suspended and aggregate to form three-dimensional tissue. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  12. Oxygen Limited Bioreactors System For Nitrogen Removal Using Immobilized Mix Culture

    NASA Astrophysics Data System (ADS)

    Pathak, B. K.; Sumino, T.; Saiki, Y.; Kazama, F.

    2005-12-01

    Recently nutrients concentrations especially nitrogen in natural water is alarming in the world wide. Most of the effort is being done on the removal of high concentration of nitrogen especially from the wastewater treatment plants. The removal efficiency is targeted in all considering the effluent discharge standard set by the national environment agency. In many cases, it does not meet the required standard and receiving water is being polluted. Eutrophication in natural water bodies has been reported even if the nitrogen concentration is low and self purification of natural systems itself is not sufficient to remove the nitrogen due to complex phenomenon. In order to recover the pristine water environment, it is very essential to explore bioreactor systems for natural water systems using immobilized mix culture. Microorganism were entrapped in Polyethylene glycol (PEG) prepolymer gel and cut into 3mm cubic immobilized pellets. Four laboratory scale micro bio-reactors having 0.1 L volumes were packed with immobilized pellets with 50% compact ratio. RUN1, RUN2, RUN3 and RUN4 were packed with immobilized pellets from reservoirs sediments, activated sludge (AS), mixed of AS, AG and biodegradable plastic and anaerobic granules (AG) respectively. Water from Shiokawa Reservoirs was feed to all reactors with supplemental ammonia and nitrite nitrogen as specified in the results and discussions. The reactors were operated dark incubated room in continuous flow mode with hydraulic retention time of 12 hours under oxygen limiting condition. Ammonium, nitrate nitrite nitrogen and total organic carbon (TOC) concentrations were measured as described in APWA and AWWA (1998). Laboratory scale four bioreactors containing different combination of immobilized cell were monitored for 218 days. Influent NH4+-N and NO2--N concentration were 2.27±0.43 and 2.05±0.41 mg/l respectively. Average dissolved oxygen concentration and pH in the reactors were 0.40-2.5 mg/l and pH 6

  13. Bioreactor system using noninvasive imaging and mechanical stretch for biomaterial screening.

    PubMed

    Kluge, Jonathan A; Leisk, Gary G; Cardwell, Robyn D; Fernandes, Alexander P; House, Michael; Ward, Andrew; Dorfmann, A Luis; Kaplan, David L

    2011-05-01

    Screening of biomaterial and tissue systems in vitro, for guidance of performance in vivo, remains a major requirement in the field of tissue engineering. It is critical to understand how culture stimulation affects both tissue construct maturation and function, with the goal of eliminating resource-intensive trial-and-error screening and better matching specifications for various in vivo needs. In this article a multifunctional and robust bioreactor design that addresses this need is presented. The design enables a range of mechanical inputs, durations, and frequencies to be applied in coordination with noninvasive optical assessments. A variety of biomaterial systems, including micro- and nano-fiber and porous sponge biomaterials, as well as cell-laden tissue engineering constructs were used in validation studies to demonstrate the versatility and utility of this new bioreactor design. The silk-based biomaterials highlighted in these studies offered several unique optical signatures for use in label-free nondestructive imaging that allowed for sequential profiling. Both short- and long-term culture studies were conducted to evaluate several practical scenarios of usage: on a short-term basis, the authors demonstrate that construct cellularity can be monitored by usage of nonpermanent dyes; on a more long-term basis, the authors show that cell ingrowth can be monitored by green-fluorescent protein (GFP)-labeling, and construct integrity probed with concurrent load/displacement data. The ability to nondestructively track cells, biomaterials, and new matrix formation without harvesting designated samples at each time point will lead to less resource-intensive studies and should enhance our understanding and the discovery of biomaterial designs related to functional tissue engineering.

  14. NASA Bioreactor Schematic

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The schematic depicts the major elements and flow patterns inside the NASA Bioreactor system. Waste and fresh medium are contained in plastic bags placed side-by-side so the waste bag fills as the fresh medium bag is depleted. The compliance vessel contains a bladder to accommodate pressure transients that might damage the system. A peristolic pump moves fluid by squeezing the plastic tubing, thus avoiding potential contamination. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  15. Bioreactors and bioseparation.

    PubMed

    Zhang, Siliang; Cao, Xuejun; Chu, Ju; Qian, Jiangchao; Zhuang, Yingping

    2010-01-01

    Along with the rapid development of life science, great attention has been increasingly given to the biotechnological products of cell cultivation technology. In the course of industrialization, bioreactor and bioproduct separation techniques are the two essential technical platforms. In this chapter, the current situation and development prospects of bioreactor techniques in China are systematically discussed, starting with the elucidation of bioreactor processes and the principle of process optimization. Separation technology for biological products is also briefly introduced.At present, a series of bioreactors made by Chinese enterprises have been widely used for laboratory microbial cultivation, process optimization studies, and large-scale production. In the course of bioprocess optimization studies, the complicated bioprocesses in a bioreactor could be resolved into different reaction processes on three scales, namely genetic, cellular, and bioreactor scales. The structural varieties and nonlinear features of various scales of bioprocess systems was discussed through considering the mutual effects of different scale events, namely material flux, energy flux, and information flux, and the optimization approach for bioprocesses was proposed by taking the analysis of metabolic flux and multiscale consideration as a core strategy.In order to realize such an optimization approach, a bioreactor system based on association analysis of multiscale parameters was elaborated, and process optimization of many biological products were materialized, which resulted in great improvement in production efficiency. In designing and manufacturing large-scale bioreactors, the principle of scaling up a process incorporated with flow field study and physiological features in a bioreactor was suggested according to the criterion for the scale-up of cellular physiological and metabolic traits. The flow field features of a bioreactor were investigated through computational fluid

  16. Bioreactors and bioseparation.

    PubMed

    Zhang, Siliang; Cao, Xuejun; Chu, Ju; Qian, Jiangchao; Zhuang, Yingping

    2010-01-01

    Along with the rapid development of life science, great attention has been increasingly given to the biotechnological products of cell cultivation technology. In the course of industrialization, bioreactor and bioproduct separation techniques are the two essential technical platforms. In this chapter, the current situation and development prospects of bioreactor techniques in China are systematically discussed, starting with the elucidation of bioreactor processes and the principle of process optimization. Separation technology for biological products is also briefly introduced.At present, a series of bioreactors made by Chinese enterprises have been widely used for laboratory microbial cultivation, process optimization studies, and large-scale production. In the course of bioprocess optimization studies, the complicated bioprocesses in a bioreactor could be resolved into different reaction processes on three scales, namely genetic, cellular, and bioreactor scales. The structural varieties and nonlinear features of various scales of bioprocess systems was discussed through considering the mutual effects of different scale events, namely material flux, energy flux, and information flux, and the optimization approach for bioprocesses was proposed by taking the analysis of metabolic flux and multiscale consideration as a core strategy.In order to realize such an optimization approach, a bioreactor system based on association analysis of multiscale parameters was elaborated, and process optimization of many biological products were materialized, which resulted in great improvement in production efficiency. In designing and manufacturing large-scale bioreactors, the principle of scaling up a process incorporated with flow field study and physiological features in a bioreactor was suggested according to the criterion for the scale-up of cellular physiological and metabolic traits. The flow field features of a bioreactor were investigated through computational fluid

  17. Method and Apparatus for a Miniature Bioreactor System for Long-Term Cell Culture

    NASA Technical Reports Server (NTRS)

    Kleis, Stanley J. (Inventor); Geffert, Sandra K. (Inventor); Gonda, Steve R. (Inventor)

    2015-01-01

    A bioreactor and method that permits continuous and simultaneous short, moderate, or long term cell culturing of one or more cell types or tissue in a laminar flow configuration is disclosed, where the bioreactor supports at least two laminar flow zones, which are isolated by laminar flow without the need for physical barriers between the zones. The bioreactors of this invention are ideally suited for studying short, moderate and long term studies of cell cultures and the response of cell cultures to one or more stressors such as pharmaceuticals, hypoxia, pathogens, or any other stressor. The bioreactors of this invention are also ideally suited for short, moderate or long term cell culturing with periodic cell harvesting and/or medium processing for secreted cellular components.

  18. Effective enrichment of cholangiocarcinoma secretomes using the hollow fiber bioreactor culture system.

    PubMed

    Weeraphan, Churat; Diskul-Na-Ayudthaya, Penchatr; Chiablaem, Khajeelak; Khongmanee, Amnart; Chokchaichamnankit, Daranee; Subhasitanont, Pantipa; Svasti, Jisnuson; Srisomsap, Chantragan

    2012-09-15

    The Northeastern region of Thailand is well known to have high incidence of bile duct cancer known as cholangiocarcinoma. So there is a continued need to improve diagnosis and treatment, and discovery of biomarkers for early detection of bile duct cancer should greatly improve treatment outcome for these patients. The secretome, a collection of proteins secreted from cells, is a useful source for identifying circulating biomarkers in blood secreted from cancer cells. Here a Hollow Fiber Bioreactor culture system was used for enrichment of cholangiocarcinoma secretomes, since this culture system mimics the dense three-dimensional microenvironment of the tumor found in vivo. Two-dimensional fluorescence difference gel electrophoresis using a sensitive Fluor saturation dye staining, followed by LC/MS/MS, was used to compare protein expression in the secretomes of cells cultured in the Hollow Fiber system and cells cultured in the monolayer culture system. For the first time, the 2D-patterns of cholangiocarcinoma secretomes from the two culture systems could be compared. The Hollow Fiber system improved the quality and quantity of cholangiocarcinoma secreted proteins compared to conventional monolayer system, showing less interference by cytoplasmic proteins and yielding more secreted proteins. Overall, 75 spots were analyzed by LC/MS/MS and 106 secreted proteins were identified. Two novel secreted proteins (C19orf10 and cystatin B) were found only in the Hollow Fiber system and were absent from the traditional monolayer culture system. Among the highly expressed proteins, 22 secreted soluble proteins were enriched by 5 fold in Hollow Fiber system compared to monolayer culture system. The Hollow Fiber system is therefore useful for preparing a wide range of proteins from low-abundance cell secretomes.

  19. Ten years of industrial and municipal membrane bioreactor (MBR) systems - lessons from the field.

    PubMed

    Larrea, Asun; Rambor, Andre; Fabiyi, Malcolm

    2014-01-01

    The use of membrane bioreactors (MBRs) in activated sludge wastewater treatment has grown significantly in the last decade. While there is growing awareness and knowledge about the application of MBR technology in municipal wastewater treatment, not much information is available on the application of MBRs in industrial wastewater treatment. A comparative study of design data, operating conditions and the major challenges associated with MBR operations in 24 MBR plants treating both municipal and industrial wastewater, built by and/or operated by Praxair, Inc., is presented. Of the 24 MBR systems described, 12 of the plants used high purity oxygen (HPO). By enabling a wide range of food/microorganism ratios and loading conditions in the same system, HPO MBR systems can extend the options available to industrial plant operators to meet the challenges of wide fluctuations in organic loading and footprint limitations. While fouling in industrial MBR systems can be an issue, adequate flux and permeability values can be reliably maintained by the use of good maintenance strategies and effective process controls (pretreatment, cleaning and membrane autopsies).

  20. A novel osmosis membrane bioreactor-membrane distillation hybrid system for wastewater treatment and reuse.

    PubMed

    Nguyen, Nguyen Cong; Nguyen, Hau Thi; Chen, Shiao-Shing; Ngo, Huu Hao; Guo, Wenshan; Chan, Wen Hao; Ray, Saikat Sinha; Li, Chi-Wang; Hsu, Hung-Te

    2016-06-01

    A novel approach was designed to simultaneously enhance nutrient removal and reduce membrane fouling for wastewater treatment using an attached growth biofilm (AGB) integrated with an osmosis membrane bioreactor (OsMBR) system for the first time. In this study, a highly charged organic compound (HEDTA(3-)) was employed as a novel draw solution in the AGB-OsMBR system to obtain a low reverse salt flux, maintain a healthy environment for the microorganisms. The AGB-OsMBR system achieved a stable water flux of 3.62L/m(2)h, high nutrient removal of 99% and less fouling during a 60-day operation. Furthermore, the high salinity of diluted draw solution could be effectively recovered by membrane distillation (MD) process with salt rejection of 99.7%. The diluted draw solution was re-concentrated to its initial status (56.1mS/cm) at recovery of 9.8% after 6h. The work demonstrated that novel multi-barrier systems could produce high quality potable water from impaired streams. PMID:26946435

  1. A novel osmosis membrane bioreactor-membrane distillation hybrid system for wastewater treatment and reuse.

    PubMed

    Nguyen, Nguyen Cong; Nguyen, Hau Thi; Chen, Shiao-Shing; Ngo, Huu Hao; Guo, Wenshan; Chan, Wen Hao; Ray, Saikat Sinha; Li, Chi-Wang; Hsu, Hung-Te

    2016-06-01

    A novel approach was designed to simultaneously enhance nutrient removal and reduce membrane fouling for wastewater treatment using an attached growth biofilm (AGB) integrated with an osmosis membrane bioreactor (OsMBR) system for the first time. In this study, a highly charged organic compound (HEDTA(3-)) was employed as a novel draw solution in the AGB-OsMBR system to obtain a low reverse salt flux, maintain a healthy environment for the microorganisms. The AGB-OsMBR system achieved a stable water flux of 3.62L/m(2)h, high nutrient removal of 99% and less fouling during a 60-day operation. Furthermore, the high salinity of diluted draw solution could be effectively recovered by membrane distillation (MD) process with salt rejection of 99.7%. The diluted draw solution was re-concentrated to its initial status (56.1mS/cm) at recovery of 9.8% after 6h. The work demonstrated that novel multi-barrier systems could produce high quality potable water from impaired streams.

  2. Osmotic membrane bioreactor for wastewater treatment and the effect of salt accumulation on system performance and microbial community dynamics.

    PubMed

    Qiu, Guanglei; Ting, Yen-Peng

    2013-12-01

    An osmotic membrane bioreactor was developed for wastewater treatment. The effects of salt accumulation on system performance and microbial community dynamics were investigated. Evident deterioration of biological activity, especially nitrification, was observed, which resulted in significant accumulation of organic matter and NH4(+)-N within the bioreactor. Arising from the elevation of salinity, almost all the dominant species was taken over by high salt-tolerant species. Significant succession among different species of Nitromonas was observed for ammonia-oxidizing bacteria. For nitrite-oxidizing bacteria, Nitrospira was not evidently affected, whereas Nitrobacter was eliminated from the system. Salt accumulation also caused significant shifts in denitrifying bacterial community from α- to γ-Proteobacteria members. Overall, the microbial community adapted to the elevated salinity conditions and brought about a rapid recovery of the biological activity. Membrane fouling occurred but was insignificant. Biofouling and inorganic scaling coexisted, with magnesium/calcium phosphate/carbonate compounds identified as the inorganic foulants.

  3. Batch control system vaccines: BCSV : A new man machine interface for bioreactors.

    PubMed

    Wieten, G; Dorresteijn, R C; Philippi, M C; Habben-Jansen, M; De Clercq, G; Beuvery, E C

    1995-01-01

    The Batch Control System for Vaccines (BCSV), a new Man Machine Interface (MMI) for the control of cultivations in bioreactors, was developed according to SP-88. SP-88 is the ISA standard for Batch Control Systems. Among others, SP-88 supplied the concept of recipes, which organize and specify the monitoring and control requirements for manufacturing. Process optimisation and compliance to GMP rules and regulations were the main objectives for this development.The most important features of the BCSV interface include: - implementation at production, pilot and R & D scale to assure easy transfer of knowledge and experience at the various stage of process development; - independency of underlying hardware to ensure similar "look and feel" for different pieces of equipment; - in-house development and maintenance of recipes to have maximum control over applications; - interactive communication between operator and BCSV during recipe execution. GMP compliance was assured not only by considering governing sets of GMP regulations, but also by taking up the interface in a overall Information & Automation strategy and by setting up a QA strategy for the entire life cycle of the system. PMID:22358637

  4. Removal of copper in an integrated sulfate reducing bioreactor-crystallization reactor system.

    PubMed

    Sierra-Alvarez, Reyes; Hollingsworth, Jeremy; Zhou, Michael S

    2007-02-15

    Removal of copper was investigated using an innovative water treatment system integrating a sulfidogenic bioreactor with a fluidized-bed crystallization reactor containing fine sand to facilitate the recovery of copper as a purified copper-sulfide mineral. The performance of the system was tested using a simulated semiconductor manufacturing wastewater containing high levels of Cu2+ (4-66 mg/L), sulfate, and a mixture of citrate, isopropanol, and polyethylene glycol (Mn 300). Soluble copper removal efficiencies exceeding 99% and effluent copper concentrations averaging 89 micog/L were demonstrated in the two-stage system, with near complete metal removal occurring in the crystallizer. Copper crystals deposited on sand grains were identified as covellite (CuS). The removal of organic constituents did not exceed 70% of the initial chemical oxygen demand due to incomplete degradation of isopropanol and its breakdown product (acetone). Taken as a whole, these results indicate the potential of this novel reactor configuration for the simultaneous removal of heavy metals and organic constituents. The ability of this process to recover heavy metals in a purified form makes it particularly attractive for the treatment of contaminated aqueous streams, including industrial wastewaters and acid mine drainage. PMID:17593752

  5. Design challenges for space bioreactors

    NASA Technical Reports Server (NTRS)

    Seshan, P. K.; Petersen, G. R.

    1989-01-01

    The design of bioreactors for operation under conditions of microgravity presents problems and challenges. Absence of a significant body force such as gravity can have profound consequences for interfacial phenomena. Marangoni convection can no longer be overlooked. Many speculations on the advantages and benefits of microgravity can be found in the literature. Initial bioreactor research considerations for space applications had little regard for the suitability of the designs for conditions of microgravity. Bioreactors can be classified in terms of their function and type of operation. The complex interaction of parameters leading to optimal design and operation of a bioreactor is illustrated by the JSC mammalian cell culture system. The design of a bioreactor is strongly dependent upon its intended use as a production unit for cell mass and/or biologicals or as a research reactor for the study of cell growth and function. Therefore a variety of bioreactor configurations are presented in rapid summary. Following this, a rationale is presented for not attempting to derive key design parameters such as the oxygen transfer coefficient from ground-based data. A set of themes/objectives for flight experiments to develop the expertise for design of space bioreactors is then proposed for discussion. These experiments, carried out systematically, will provide a database from which engineering tools for space bioreactor design will be derived.

  6. Anaerobic treatment of municipal wastewater with a staged anaerobic fluidized membrane bioreactor (SAF-MBR) system.

    PubMed

    Yoo, Rihye; Kim, Jeonghwan; McCarty, Perry L; Bae, Jaeho

    2012-09-01

    A laboratory-scale staged anaerobic fluidized membrane bioreactor (SAF-MBR) system was used to treat a municipal wastewater primary-clarifier effluent. It was operated continuously for 192 days at 6-11 L/m(2)/h flux and trans-membrane pressure generally of 0.1 bar or less with no fouling control except the scouring effect of the fluidized granular activated carbon on membrane surfaces. With a total hydraulic retention time of 2.3h at 25°C, the average effluent chemical oxygen demand and biochemical oxygen demand concentrations of 25 and 7 mg/L yielded corresponding removals of 84% and 92%, respectively. Also, near complete removal of suspended solids was obtained. Biosolids production, representing 5% of the COD removed, equaled 0.049 g VSS/g BOD(5) removed, far less than the case with comparable aerobic processes. The electrical energy required for the operation of the SAF-MBR system, 0.047 kW h/m(3), could be more than satisfied by using the methane produced. PMID:22784964

  7. A Flow Perfusion Bioreactor System for Vocal Fold Tissue Engineering Applications.

    PubMed

    Latifi, Neda; Heris, Hossein K; Thomson, Scott L; Taher, Rani; Kazemirad, Siavash; Sheibani, Sara; Li-Jessen, Nicole Y K; Vali, Hojatollah; Mongeau, Luc

    2016-09-01

    The human vocal folds (VFs) undergo complex biomechanical stimulation during phonation. The aim of the present study was to develop and validate a phono-mimetic VF flow perfusion bioreactor, which mimics the mechanical microenvironment of the human VFs in vitro. The bioreactor uses airflow-induced self-oscillations, which have been shown to produce mechanical loading and contact forces that are representative of human phonation. The bioreactor consisted of two synthetic VF replicas within a silicone body. A cell-scaffold mixture (CSM) consisting of human VF fibroblasts, hyaluronic acid, gelatin, and a polyethylene glycol cross-linker was injected into cavities within the replicas. Cell culture medium (CCM) was perfused through the scaffold by using a customized secondary flow loop. After the injection, the bioreactor was operated with no stimulation over a 3-day period to allow for cell adaptation. Phonation was subsequently induced by using a variable speed centrifugal blower for 2 h each day over a period of 4 days. A similar bioreactor without biomechanical stimulation was used as the nonphonatory control. The CSM was harvested from both VF replicas 7 days after the injection. The results confirmed that the phono-mimetic bioreactor supports cell viability and extracellular matrix proteins synthesis, as expected. Many scaffold materials were found to degrade because of challenges from phonation-induced biomechanical stimulation as well as due to biochemical reactions with the CCM. The bioreactor concept enables future investigations of the effects of different phonatory characteristics, that is, voice regimes, on the behavior of the human VF cells. It will also help study the long-term functional outcomes of the VF-specific biomaterials before animal and clinical studies. PMID:27537192

  8. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Biotechnology Specimen Temperature Controller (BSTC) will cultivate cells until their turn in the bioreactor; it can also be used in culturing experiments that do not require the bioreactor. The BSTC comprises four incubation/refrigeration chambers individually set at 4 to 50 deg. C (near-freezing to above body temperature). Each chamber holds three rugged tissue chamber modules (12 total), clear Teflon bags holding 30 ml of growth media, all positioned by a metal frame. Every 7 to 21 days (depending on growth rates), an astronaut uses a shrouded syringe and the bags' needleless injection ports to transfer a few cells to a fresh media bag, and to introduce a fixative so that the cells may be studied after flight. The design also lets the crew sample the media to measure glucose, gas, and pH levels, and to inspect cells with a microscope. The controller is monitored by the flight crew through a 23-cm (9-inch) color computer display on the face of the BSTC. This view shows the BTSC with the front panel open. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  9. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Biotechnology Specimen Temperature Controller (BSTC) will cultivate cells until their turn in the bioreactor; it can also be used in culturing experiments that do not require the bioreactor. The BSTC comprises four incubation/refrigeration chambers individually set at 4 to 50 degreesC (near-freezing to above body temperature). Each chamber holds three rugged tissue chamber modules (12 total), clear Teflon bags holding 30 ml of growth media, all positioned by a metal frame. Every 7 to 21 days (depending on growth rates), an astronaut uses a shrouded syringe and the bags' needleless injection ports to transfer a few cells to a fresh media bag, and to introduce a fixative so that the cells may be studied after flight. The design also lets the crew sample the media to measure glucose, gas, and pH levels, and to inspect cells with a microscope. The controller is monitored by the flight crew through a 23-cm (9-inch) color computer display on the face of the BSTC. This view shows the BTSC with the front panel open. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  10. A perfusion bioreactor system efficiently generates cell‐loaded bone substitute materials for addressing critical size bone defects

    PubMed Central

    Kleinhans, Claudia; Mohan, Ramkumar Ramani; Vacun, Gabriele; Schwarz, Thomas; Haller, Barbara; Sun, Yang; Kahlig, Alexander; Kluger, Petra; Finne‐Wistrand, Anna; Walles, Heike

    2015-01-01

    Abstract Critical size bone defects and non‐union fractions are still challenging to treat. Cell‐loaded bone substitutes have shown improved bone ingrowth and bone formation. However, a lack of methods for homogenously colonizing scaffolds limits the maximum volume of bone grafts. Additionally, therapy robustness is impaired by heterogeneous cell populations after graft generation. Our aim was to establish a technology for generating grafts with a size of 10.5 mm in diameter and 25 mm of height, and thus for grafts suited for treatment of critical size bone defects. Therefore, a novel tailor‐made bioreactor system was developed, allowing standardized flow conditions in a porous poly(L‐lactide‐co‐caprolactone) material. Scaffolds were seeded with primary human mesenchymal stem cells derived from four different donors. In contrast to static experimental conditions, homogenous cell distributions were accomplished under dynamic culture. Additionally, culture in the bioreactor system allowed the induction of osteogenic lineage commitment after one week of culture without addition of soluble factors. This was demonstrated by quantitative analysis of calcification and gene expression markers related to osteogenic lineage. In conclusion, the novel bioreactor technology allows efficient and standardized conditions for generating bone substitutes that are suitable for the treatment of critical size defects in humans. PMID:26011163

  11. A perfusion bioreactor system efficiently generates cell-loaded bone substitute materials for addressing critical size bone defects.

    PubMed

    Kleinhans, Claudia; Mohan, Ramkumar Ramani; Vacun, Gabriele; Schwarz, Thomas; Haller, Barbara; Sun, Yang; Kahlig, Alexander; Kluger, Petra; Finne-Wistrand, Anna; Walles, Heike; Hansmann, Jan

    2015-09-01

    Critical size bone defects and non-union fractions are still challenging to treat. Cell-loaded bone substitutes have shown improved bone ingrowth and bone formation. However, a lack of methods for homogenously colonizing scaffolds limits the maximum volume of bone grafts. Additionally, therapy robustness is impaired by heterogeneous cell populations after graft generation. Our aim was to establish a technology for generating grafts with a size of 10.5 mm in diameter and 25 mm of height, and thus for grafts suited for treatment of critical size bone defects. Therefore, a novel tailor-made bioreactor system was developed, allowing standardized flow conditions in a porous poly(L-lactide-co-caprolactone) material. Scaffolds were seeded with primary human mesenchymal stem cells derived from four different donors. In contrast to static experimental conditions, homogenous cell distributions were accomplished under dynamic culture. Additionally, culture in the bioreactor system allowed the induction of osteogenic lineage commitment after one week of culture without addition of soluble factors. This was demonstrated by quantitative analysis of calcification and gene expression markers related to osteogenic lineage. In conclusion, the novel bioreactor technology allows efficient and standardized conditions for generating bone substitutes that are suitable for the treatment of critical size defects in humans.

  12. A perfusion bioreactor system efficiently generates cell-loaded bone substitute materials for addressing critical size bone defects.

    PubMed

    Kleinhans, Claudia; Mohan, Ramkumar Ramani; Vacun, Gabriele; Schwarz, Thomas; Haller, Barbara; Sun, Yang; Kahlig, Alexander; Kluger, Petra; Finne-Wistrand, Anna; Walles, Heike; Hansmann, Jan

    2015-09-01

    Critical size bone defects and non-union fractions are still challenging to treat. Cell-loaded bone substitutes have shown improved bone ingrowth and bone formation. However, a lack of methods for homogenously colonizing scaffolds limits the maximum volume of bone grafts. Additionally, therapy robustness is impaired by heterogeneous cell populations after graft generation. Our aim was to establish a technology for generating grafts with a size of 10.5 mm in diameter and 25 mm of height, and thus for grafts suited for treatment of critical size bone defects. Therefore, a novel tailor-made bioreactor system was developed, allowing standardized flow conditions in a porous poly(L-lactide-co-caprolactone) material. Scaffolds were seeded with primary human mesenchymal stem cells derived from four different donors. In contrast to static experimental conditions, homogenous cell distributions were accomplished under dynamic culture. Additionally, culture in the bioreactor system allowed the induction of osteogenic lineage commitment after one week of culture without addition of soluble factors. This was demonstrated by quantitative analysis of calcification and gene expression markers related to osteogenic lineage. In conclusion, the novel bioreactor technology allows efficient and standardized conditions for generating bone substitutes that are suitable for the treatment of critical size defects in humans. PMID:26011163

  13. Novel Perfused Compression Bioreactor System as an in vitro Model to Investigate Fracture Healing

    PubMed Central

    Hoffmann, Waldemar; Feliciano, Sandra; Martin, Ivan; de Wild, Michael; Wendt, David

    2015-01-01

    Secondary bone fracture healing is a physiological process that leads to functional tissue regeneration via endochondral bone formation. In vivo studies have demonstrated that early mobilization and the application of mechanical loads enhances the process of fracture healing. However, the influence of specific mechanical stimuli and particular effects during specific phases of fracture healing remain to be elucidated. In this work, we have developed and provided proof-of-concept of an in vitro human organotypic model of physiological loading of a cartilage callus, based on a novel perfused compression bioreactor (PCB) system. We then used the fracture callus model to investigate the regulatory role of dynamic mechanical loading. Our findings provide a proof-of-principle that dynamic mechanical loading applied by the PCB can enhance the maturation process of mesenchymal stromal cells toward late hypertrophic chondrocytes and the mineralization of the deposited extracellular matrix. The PCB provides a promising tool to study fracture healing and for the in vitro assessment of alternative fracture treatments based on engineered tissue grafts or pharmaceutical compounds, allowing for the reduction of animal experiments. PMID:25699254

  14. A knowledge-based control system for air-scour optimisation in membrane bioreactors.

    PubMed

    Ferrero, G; Monclús, H; Sancho, L; Garrido, J M; Comas, J; Rodríguez-Roda, I

    2011-01-01

    Although membrane bioreactors (MBRs) technology is still a growing sector, its progressive implementation all over the world, together with great technical achievements, has allowed it to reach a mature degree, just comparable to other more conventional wastewater treatment technologies. With current energy requirements around 0.6-1.1 kWh/m3 of treated wastewater and investment costs similar to conventional treatment plants, main market niche for MBRs can be areas with very high restrictive discharge limits, where treatment plants have to be compact or where water reuse is necessary. Operational costs are higher than for conventional treatments; consequently there is still a need and possibilities for energy saving and optimisation. This paper presents the development of a knowledge-based decision support system (DSS) for the integrated operation and remote control of the biological and physical (filtration and backwashing or relaxation) processes in MBRs. The core of the DSS is a knowledge-based control module for air-scour consumption automation and energy consumption minimisation.

  15. Tubular Compressed Collagen Scaffolds for Ureteral Tissue Engineering in a Flow Bioreactor System.

    PubMed

    Vardar, Elif; Engelhardt, Eva-Maria; Larsson, Hans M; Mouloungui, Elodie; Pinnagoda, Kalitha; Hubbell, Jeffrey A; Frey, Peter

    2015-09-01

    Ureteral replacement by tissue engineering might become necessary following tissue loss after excessive ureteral trauma, after retroperitoneal cancer, or even after failed reconstructive surgery. This need has driven innovation in the design of novel scaffolds and specific cell culture techniques for urinary tract reconstruction. In this study, compressed tubular collagen scaffolds were evaluated, addressing the physical and biological characterization of acellular and cellular collagen tubes in a new flow bioreactor system, imitating the physiological pressure, peristalsis, and flow conditions of the human ureter. Collagen tubes, containing primary human smooth muscle and urothelial cells, were evaluated regarding their change in gene and protein expression under dynamic culture conditions. A maximum intraluminal pressure of 22.43 ± 0.2 cm H2O was observed in acellular tubes, resulting in a mean wall shear stress of 4 dynes/cm(2) in the tubular constructs. Dynamic conditions directed the differentiation of both cell types into their mature forms. This was confirmed by their gene expression of smooth muscle alpha-actin, smoothelin, collagen type I and III, elastin, laminin type 1 and 5, cytokeratin 8, and uroplakin 2. In addition, smooth muscle cell alignment predominantly perpendicular to the flow direction was observed, comparable to the cell orientation in native ureteral tissue. These results revealed that coculturing human smooth muscle and urothelial cells in compressed collagen tubes under human ureteral flow-mimicking conditions could lead to cell-engineered biomaterials that might ultimately be translated into clinical applications.

  16. Design for a bioreactor with sunlight supply and operations systems for use in the space environment

    NASA Astrophysics Data System (ADS)

    Mori, Kei; Ohya, Haruhiko; Matsumoto, Kanji; Furuune, Hiroyuki; Isozaki, Kyôko; Siekmeier, Peter

    An experiment was carried out to determine the characteristics of an operations system that can support fast cultivation of algae at high densities in the weightlessness of space. The experiment was conducted in glass bioreactor tanks, in which light was supplied by radiator rods connected to optical fiber cables. The illumination areas of the tanks were 2600 cm2, 6000 cm2, and 9200 cm2 per liter of solution. The characteristics of O2-CO2 gas exchange, concentration and separation of chlorella in the growth medium, dialysis of ionic salts in the growth medium, etc. were examined. Chlorella ellipsoidea was used in the experiment, yielding the following results: o (1)By increasing the ratio of illumination area to volume, growth rates of up to approximately 0.6 g/L.h could be obtained in a highly concentrated solution (one that contains 20 g/L or more of algae). (2)The most suitable proportions of carbon dioxide and oxygen gases for growing algae quickly at high concentrations were found to be 10% CO2 and 10% O2 (by volume). (3)There was a high optimum concentration for fast cultivation, and the data obtained resembled the theoretical curve postulated by P. Behrens et al. (4)It was possible to exchange carbon dioxide and oxygen using gas-permeable membrane modules. (5)It was possible to separare the chlorella from the growth medium and recycle the medium.

  17. Multimembrane Bioreactor

    NASA Technical Reports Server (NTRS)

    Cho, Toohyon; Shuler, Michael L.

    1989-01-01

    Set of hydrophilic and hydrophobic membranes in bioreactor allows product of reaction to be separated, while nutrients fed to reacting cells and byproducts removed from them. Separation process requires no externally supplied energy; free energy of reaction sufficient. Membranes greatly increase productivity of metabolizing cells by continuously removing product and byproducts, which might otherwise inhibit reaction, and by continuously adding oxygen and organic nutrients.

  18. Production of oncolytic adenovirus and human mesenchymal stem cells in a single-use, Vertical-Wheel bioreactor system: Impact of bioreactor design on performance of microcarrier-based cell culture processes.

    PubMed

    Sousa, Marcos F Q; Silva, Marta M; Giroux, Daniel; Hashimura, Yas; Wesselschmidt, Robin; Lee, Brian; Roldão, António; Carrondo, Manuel J T; Alves, Paula M; Serra, Margarida

    2015-01-01

    Anchorage-dependent cell cultures are used for the production of viruses, viral vectors, and vaccines, as well as for various cell therapies and tissue engineering applications. Most of these applications currently rely on planar technologies for the generation of biological products. However, as new cell therapy product candidates move from clinical trials towards potential commercialization, planar platforms have proven to be inadequate to meet large-scale manufacturing demand. Therefore, a new scalable platform for culturing anchorage-dependent cells at high cell volumetric concentrations is urgently needed. One promising solution is to grow cells on microcarriers suspended in single-use bioreactors. Toward this goal, a novel bioreactor system utilizing an innovative Vertical-Wheel™ technology was evaluated for its potential to support scalable cell culture process development. Two anchorage-dependent human cell types were used: human lung carcinoma cells (A549 cell line) and human bone marrow-derived mesenchymal stem cells (hMSC). Key hydrodynamic parameters such as power input, mixing time, Kolmogorov length scale, and shear stress were estimated. The performance of Vertical-Wheel bioreactors (PBS-VW) was then evaluated for A549 cell growth and oncolytic adenovirus type 5 production as well as for hMSC expansion. Regarding the first cell model, higher cell growth and number of infectious viruses per cell were achieved when compared with stirred tank (ST) bioreactors. For the hMSC model, although higher percentages of proliferative cells could be reached in the PBS-VW compared with ST bioreactors, no significant differences in the cell volumetric concentration and expansion factor were observed. Noteworthy, the hMSC population generated in the PBS-VW showed a significantly lower percentage of apoptotic cells as well as reduced levels of HLA-DR positive cells. Overall, these results showed that process transfer from ST bioreactor to PBS-VW, and scale-up was

  19. Production of oncolytic adenovirus and human mesenchymal stem cells in a single-use, Vertical-Wheel bioreactor system: Impact of bioreactor design on performance of microcarrier-based cell culture processes.

    PubMed

    Sousa, Marcos F Q; Silva, Marta M; Giroux, Daniel; Hashimura, Yas; Wesselschmidt, Robin; Lee, Brian; Roldão, António; Carrondo, Manuel J T; Alves, Paula M; Serra, Margarida

    2015-01-01

    Anchorage-dependent cell cultures are used for the production of viruses, viral vectors, and vaccines, as well as for various cell therapies and tissue engineering applications. Most of these applications currently rely on planar technologies for the generation of biological products. However, as new cell therapy product candidates move from clinical trials towards potential commercialization, planar platforms have proven to be inadequate to meet large-scale manufacturing demand. Therefore, a new scalable platform for culturing anchorage-dependent cells at high cell volumetric concentrations is urgently needed. One promising solution is to grow cells on microcarriers suspended in single-use bioreactors. Toward this goal, a novel bioreactor system utilizing an innovative Vertical-Wheel™ technology was evaluated for its potential to support scalable cell culture process development. Two anchorage-dependent human cell types were used: human lung carcinoma cells (A549 cell line) and human bone marrow-derived mesenchymal stem cells (hMSC). Key hydrodynamic parameters such as power input, mixing time, Kolmogorov length scale, and shear stress were estimated. The performance of Vertical-Wheel bioreactors (PBS-VW) was then evaluated for A549 cell growth and oncolytic adenovirus type 5 production as well as for hMSC expansion. Regarding the first cell model, higher cell growth and number of infectious viruses per cell were achieved when compared with stirred tank (ST) bioreactors. For the hMSC model, although higher percentages of proliferative cells could be reached in the PBS-VW compared with ST bioreactors, no significant differences in the cell volumetric concentration and expansion factor were observed. Noteworthy, the hMSC population generated in the PBS-VW showed a significantly lower percentage of apoptotic cells as well as reduced levels of HLA-DR positive cells. Overall, these results showed that process transfer from ST bioreactor to PBS-VW, and scale-up was

  20. Use Alkalinity Monitoring to Optimize Bioreactor Performance.

    PubMed

    Jones, Christopher S; Kult, Keegan J

    2016-05-01

    In recent years, the agricultural community has reduced flow of nitrogen from farmed landscapes to stream networks through the use of woodchip denitrification bioreactors. Although deployment of this practice is becoming more common to treat high-nitrate water from agricultural drainage pipes, information about bioreactor management strategies is sparse. This study focuses on the use of water monitoring, and especially the use of alkalinity monitoring, in five Iowa woodchip bioreactors to provide insights into and to help manage bioreactor chemistry in ways that will produce desirable outcomes. Results reported here for the five bioreactors show average annual nitrate load reductions between 50 and 80%, which is acceptable according to established practice standards. Alkalinity data, however, imply that nitrous oxide formation may have regularly occurred in at least three of the bioreactors that are considered to be closed systems. Nitrous oxide measurements of influent and effluent water provide evidence that alkalinity may be an important indicator of bioreactor performance. Bioreactor chemistry can be managed by manipulation of water throughput in ways that produce adequate nitrate removal while preventing undesirable side effects. We conclude that (i) water should be retained for longer periods of time in bioreactors where nitrous oxide formation is indicated, (ii) measuring only nitrate and sulfate concentrations is insufficient for proper bioreactor operation, and (iii) alkalinity monitoring should be implemented into protocols for bioreactor management. PMID:27136151

  1. Use Alkalinity Monitoring to Optimize Bioreactor Performance.

    PubMed

    Jones, Christopher S; Kult, Keegan J

    2016-05-01

    In recent years, the agricultural community has reduced flow of nitrogen from farmed landscapes to stream networks through the use of woodchip denitrification bioreactors. Although deployment of this practice is becoming more common to treat high-nitrate water from agricultural drainage pipes, information about bioreactor management strategies is sparse. This study focuses on the use of water monitoring, and especially the use of alkalinity monitoring, in five Iowa woodchip bioreactors to provide insights into and to help manage bioreactor chemistry in ways that will produce desirable outcomes. Results reported here for the five bioreactors show average annual nitrate load reductions between 50 and 80%, which is acceptable according to established practice standards. Alkalinity data, however, imply that nitrous oxide formation may have regularly occurred in at least three of the bioreactors that are considered to be closed systems. Nitrous oxide measurements of influent and effluent water provide evidence that alkalinity may be an important indicator of bioreactor performance. Bioreactor chemistry can be managed by manipulation of water throughput in ways that produce adequate nitrate removal while preventing undesirable side effects. We conclude that (i) water should be retained for longer periods of time in bioreactors where nitrous oxide formation is indicated, (ii) measuring only nitrate and sulfate concentrations is insufficient for proper bioreactor operation, and (iii) alkalinity monitoring should be implemented into protocols for bioreactor management.

  2. Development of bioreactor systems with functional bio-carrier modified by disperse turquoise blue S-GL for disperse scarlet S-BWFL decolorization.

    PubMed

    Lian, Jing; Guo, Jianbo; Feng, Gao; Liu, Guangfei; Yang, Jingliang; Liu, Chun; Li, Zaixing; Yue, Lin; Zhao, Lijun

    2011-12-01

    The effect of redox mediator has been studied in details in the bio-decolorization processes, but there are little literatures about bioreactor systems with functional bio-carrier modified by redox mediator. Two different bioreactor configurations (bioreactor R1 with functional bio-carrier modified by disperse turquoise blue S-GL (as redox mediator) and bioreactor R2 with non-modified bio-carrier) were designed and tested for disperse scarlet S-BWFL decolorization by Halomonas sp. GYW (EF188281) in this study. Influencing factors such as co-substrate, temperature and pH were optimized through batch experiments. Compared to bioreactor R2, bioreactor R1 exhibited good decolorization efficiency and performance ability for the disperse scarlet S-BWFL decolorization, which showed higher decolorization efficiency (over 96% color removal with 0.8 g L(-1) dye concentration) and less hydraulic retention time to attain the same decolorization efficiency. The combinational technology of redox mediator and bio-carrier was a new bio-treatment concept and a great improvement for the application of redox mediator. PMID:22001058

  3. Development of bioreactor systems with functional bio-carrier modified by disperse turquoise blue S-GL for disperse scarlet S-BWFL decolorization.

    PubMed

    Lian, Jing; Guo, Jianbo; Feng, Gao; Liu, Guangfei; Yang, Jingliang; Liu, Chun; Li, Zaixing; Yue, Lin; Zhao, Lijun

    2011-12-01

    The effect of redox mediator has been studied in details in the bio-decolorization processes, but there are little literatures about bioreactor systems with functional bio-carrier modified by redox mediator. Two different bioreactor configurations (bioreactor R1 with functional bio-carrier modified by disperse turquoise blue S-GL (as redox mediator) and bioreactor R2 with non-modified bio-carrier) were designed and tested for disperse scarlet S-BWFL decolorization by Halomonas sp. GYW (EF188281) in this study. Influencing factors such as co-substrate, temperature and pH were optimized through batch experiments. Compared to bioreactor R2, bioreactor R1 exhibited good decolorization efficiency and performance ability for the disperse scarlet S-BWFL decolorization, which showed higher decolorization efficiency (over 96% color removal with 0.8 g L(-1) dye concentration) and less hydraulic retention time to attain the same decolorization efficiency. The combinational technology of redox mediator and bio-carrier was a new bio-treatment concept and a great improvement for the application of redox mediator.

  4. Hollow Fiber Membrane Bioreactor Systems for Wastewater Processing: Effects of Environmental Stresses Including Dormancy Cycling and Antibiotic Dosing

    NASA Technical Reports Server (NTRS)

    Coutts, Janelle L.; Hummerick, Mary E.; Lunn, Griffin M.; Larson, Brian D.; Spencer, LaShelle E.; Kosiba, Michael L.; Khodadad, Christina L.; Catechis, John A.; Birmele, Michele N.; Wheeler, Raymond M.

    2016-01-01

    Membrane-aerated biofilm reactors (MABRs) have been studied for a number of years as an alternate approach for treating wastewater streams during space exploration. While the technology provides a promising pre-treatment for lowering organic carbon and nitrogen content without the need for harsh stabilization chemicals, several challenges must be addressed before adoption of the technology in future missions. One challenge is the transportation of bioreactors containing intact, active biofilms as a means for rapid start-up on the International Space Station or beyond. Similarly, there could be a need for placing these biological systems into a dormant state for extended periods when the system is not in use, along with the ability for rapid restart. Previous studies indicated that there was little influence of storage condition (4 or 25 C, with or without bulk fluid) on recovery of bioreactors with immature biofilms (48 days old), but that an extensive recovery time was required (20+ days). Bioreactors with fully established biofilms (13 months) were able to recover from a 7-month dormancy within 4 days (approximately 1 residence). Further dormancy and recovery testing is presented here that examines the role of biofilm age on recovery requirements, repeated dormancy cycle capabilities, and effects of long-duration dormancy cycles (8-9 months) on HFMB systems. Another challenge that must be addressed is the possibility of antibiotics entering the wastewater stream. Currently, for most laboratory tests of biological water processors, donors providing urine may not contribute to the study when taking antibiotics because the effects on the system are yet uncharacterized. A simulated urinary tract infection event, where an opportunistic, pathogenic organism, E. coli, was introduced to the HFMBs followed by dosing with an antibiotic, ciprofloxacin, was completed to study the effect of the antibiotic on reactor performance and to also examine the development of

  5. [Analysis of Microbial Community in the Membrane Bio-Reactor (MBR) Rural Sewage Treatment System].

    PubMed

    Kong, Xiao; Cui, Bing-jian; Jin, De-cai; Wu, Shang-hua; Yang, Bo; Deng, Ye; Zhuang, Guo-qiang; Zhuang, Xu-liang

    2015-09-01

    Uncontrolled release and arbitrary irrigation reuse of rural wastewater may lead to water pollution, and the microbial pathogens could threaten the safety of freshwater resources and public health. To understand the microbial community structure of rural wastewater and provide the theory for microbial risk assessment of wastewater irrigation, microbial community diversities in the Membrane Bio-Reactor (MBR) process for rural wastewater treatment was studied by terminal restriction fragment length polymorphism (T-RFLP) and 16S rDNA gene clone library. Meanwhile, changes of Arcobacter spp. and total bacteria before and after treatment were detected through real-time quantitative PCR. The clone library results showed that there were 73 positive clones included Proteobacteria (91. 80%), Firmicutes (2. 70%), Bacteroidetes (1. 40%), and uncultured bacteria (4. 10%) in the untreated wastewater. The typical pathogenic genus Arcobacter belonging to e-Proteobacteria was the dominant component of the library, accounting for 68. 5% of all clones. The main groups and their abundance in different treatments were significantly distinct. The highest values of species abundance (S), Shannon-Wiener (H) and Evenness (E) were observed in the adjusting tank, which were 43. 0, 3. 56 and 0. 95, respectively. The real-time quantitative PCR results showed that the copy number of Arcobacter spp. was (1. 09 ± 0. 064 0) x 10(11) copies.L-1 in the untreated sewage, which was consistent with the result of 16S rDNA gene clone library. Compared to untreated wastewater, bacterial copy number in the treated effluent decreased 100 to 1 000 times, respectively, suggesting that MBR treatment system could remove the microbial quantity in such scale. In the recycled water, the physicochemical parameters and indicator bacteria met the water quality standard of farmland irrigation. However, further research is needed to estimate the potential health risks caused by residual pathogenic microorganisms in

  6. TREATMENT OF PRODUCED WATERS USING A SURFACTANT MODIFIED ZEOLITE/VAPOR PHASE BIOREACTOR SYSTEM

    SciTech Connect

    Lynn E. Katz; Kerry A. Kinney; R.S. Bowman; E.J. Sullivan

    2003-04-01

    Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. It is by some estimates the largest single waste stream in the country, aside from nonhazardous industrial wastes. Characteristics of produced water include high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component, and chemicals added during the oil-production process. While most of the produced water is disposed via reinjection, some of them must be treated to remove organic constituents before the water is discharged. Current treatment options are successful in reducing the organic content; however, they cannot always meet the levels of current or proposed regulations for discharged water. Therefore, an efficient, cost-effective treatment technology is needed. Surfactant-modified zeolite (SMZ) has been used successfully to treat contaminated ground water for organic and inorganic constituents. In addition, the low cost of natural zeolites makes their use attractive in water-treatment applications. Our previous DOE research work (DE-AC26-99BC15221) demonstrated that SMZ could successfully remove BTEX compounds from the produced water. In addition, SMZ could be regenerated through a simple air sparging process. The primary goal of this project is to develop a robust SMZ/VPB treatment system to efficiently remove the organic constituents from produced water in a cost-effective manner. This report summarizes work of this project from October 2002 to March 2003. In this starting stage of this study, we have continued our investigation of SMZ regeneration from our previous DOE project. Two saturation/stripping cycles have been completed for SMZ columns saturated with BTEX compounds. Preliminary results suggest that BTEX sorption actually increases with the number of saturation/regeneration cycles. Furthermore, the experimental vapor phase bioreactors for this project have been designed and are

  7. [Analysis of Microbial Community in the Membrane Bio-Reactor (MBR) Rural Sewage Treatment System].

    PubMed

    Kong, Xiao; Cui, Bing-jian; Jin, De-cai; Wu, Shang-hua; Yang, Bo; Deng, Ye; Zhuang, Guo-qiang; Zhuang, Xu-liang

    2015-09-01

    Uncontrolled release and arbitrary irrigation reuse of rural wastewater may lead to water pollution, and the microbial pathogens could threaten the safety of freshwater resources and public health. To understand the microbial community structure of rural wastewater and provide the theory for microbial risk assessment of wastewater irrigation, microbial community diversities in the Membrane Bio-Reactor (MBR) process for rural wastewater treatment was studied by terminal restriction fragment length polymorphism (T-RFLP) and 16S rDNA gene clone library. Meanwhile, changes of Arcobacter spp. and total bacteria before and after treatment were detected through real-time quantitative PCR. The clone library results showed that there were 73 positive clones included Proteobacteria (91. 80%), Firmicutes (2. 70%), Bacteroidetes (1. 40%), and uncultured bacteria (4. 10%) in the untreated wastewater. The typical pathogenic genus Arcobacter belonging to e-Proteobacteria was the dominant component of the library, accounting for 68. 5% of all clones. The main groups and their abundance in different treatments were significantly distinct. The highest values of species abundance (S), Shannon-Wiener (H) and Evenness (E) were observed in the adjusting tank, which were 43. 0, 3. 56 and 0. 95, respectively. The real-time quantitative PCR results showed that the copy number of Arcobacter spp. was (1. 09 ± 0. 064 0) x 10(11) copies.L-1 in the untreated sewage, which was consistent with the result of 16S rDNA gene clone library. Compared to untreated wastewater, bacterial copy number in the treated effluent decreased 100 to 1 000 times, respectively, suggesting that MBR treatment system could remove the microbial quantity in such scale. In the recycled water, the physicochemical parameters and indicator bacteria met the water quality standard of farmland irrigation. However, further research is needed to estimate the potential health risks caused by residual pathogenic microorganisms in

  8. Evaluation of micropollutant removal and fouling reduction in a hybrid moving bed biofilm reactor-membrane bioreactor system.

    PubMed

    Luo, Yunlong; Jiang, Qi; Ngo, Huu H; Nghiem, Long D; Hai, Faisal I; Price, William E; Wang, Jie; Guo, Wenshan

    2015-09-01

    A hybrid moving bed biofilm reactor-membrane bioreactor (MBBR-MBR) system and a conventional membrane bioreactor (CMBR) were compared in terms of micropollutant removal efficiency and membrane fouling propensity. The results show that the hybrid MBBR-MBR system could effectively remove most of the selected micropollutants. By contrast, the CMBR system showed lower removals of ketoprofen, carbamazepine, primidone, bisphenol A and estriol by 16.2%, 30.1%, 31.9%, 34.5%, and 39.9%, respectively. Mass balance calculations suggest that biological degradation was the primary removal mechanism in the MBBR-MBR system. During operation, the MBBR-MBR system exhibited significantly slower fouling development as compared to the CMBR system, which could be ascribed to the wide disparity in the soluble microbial products (SMP) levels between MBBR-MBR (4.02-6.32 mg/L) and CMBR (21.78 and 33.04 mg/L). It is evident that adding an MBBR process prior to MBR treatment can not only enhance micropollutant elimination but also mitigate membrane fouling. PMID:26031758

  9. Evaluation of micropollutant removal and fouling reduction in a hybrid moving bed biofilm reactor-membrane bioreactor system.

    PubMed

    Luo, Yunlong; Jiang, Qi; Ngo, Huu H; Nghiem, Long D; Hai, Faisal I; Price, William E; Wang, Jie; Guo, Wenshan

    2015-09-01

    A hybrid moving bed biofilm reactor-membrane bioreactor (MBBR-MBR) system and a conventional membrane bioreactor (CMBR) were compared in terms of micropollutant removal efficiency and membrane fouling propensity. The results show that the hybrid MBBR-MBR system could effectively remove most of the selected micropollutants. By contrast, the CMBR system showed lower removals of ketoprofen, carbamazepine, primidone, bisphenol A and estriol by 16.2%, 30.1%, 31.9%, 34.5%, and 39.9%, respectively. Mass balance calculations suggest that biological degradation was the primary removal mechanism in the MBBR-MBR system. During operation, the MBBR-MBR system exhibited significantly slower fouling development as compared to the CMBR system, which could be ascribed to the wide disparity in the soluble microbial products (SMP) levels between MBBR-MBR (4.02-6.32 mg/L) and CMBR (21.78 and 33.04 mg/L). It is evident that adding an MBBR process prior to MBR treatment can not only enhance micropollutant elimination but also mitigate membrane fouling.

  10. A xenogeneic-free bioreactor system for the clinical-scale expansion of human mesenchymal stem/stromal cells.

    PubMed

    Dos Santos, Francisco; Campbell, Andrew; Fernandes-Platzgummer, Ana; Andrade, Pedro Z; Gimble, Jeffrey M; Wen, Yuan; Boucher, Shayne; Vemuri, Mohan C; da Silva, Cláudia L; Cabral, Joaquim M S

    2014-06-01

    The large cell doses (>1 × 10(6)  cells/kg) used in clinical trials with mesenchymal stem/stromal cells (MSC) will require an efficient production process. Moreover, monitoring and control of MSC ex-vivo expansion is critical to provide a safe and reliable cell product. Bioprocess engineering approaches, such as bioreactor technology, offer the adequate tools to develop and optimize a cost-effective culture system for the rapid expansion of human MSC for cellular therapy. Herein, a xenogeneic (xeno)-free microcarrier-based culture system was successfully established for bone marrow (BM) MSC and adipose tissue-derived stem/stromal cell (ASC) cultivation using a 1L-scale controlled stirred-tank bioreactor, allowing the production of (1.1 ± 0.1) × 10(8) and (4.5 ± 0.2) × 10(7) cells for BM MSC and ASC, respectively, after 7 days. Additionally, the effect of different percent air saturation values (%Airsat ) and feeding regime on the proliferation and metabolism of BM MSC was evaluated. No significant differences in cell growth and metabolic patterns were observed under 20% and 9%Airsat . Also, the three different feeding regimes studied-(i) 25% daily medium renewal, (ii) 25% medium renewal every 2 days, and (iii) fed-batch addition of concentrated nutrients and growth factors every 2 days-yielded similar cell numbers, and only slight metabolic differences were observed. Moreover, the immunophenotype (positive for CD73, CD90 and CD105 and negative for CD31, CD80 and HLA-DR) and multilineage differentiative potential of expanded cells were not affected upon bioreactor culture. These results demonstrated the feasibility of expanding human MSC from different sources in a clinically relevant expansion configuration in a controlled microcarrier-based stirred culture system under xeno-free conditions. The further optimization of this bioreactor culture system will represent a crucial step towards an efficient GMP-compliant clinical-scale MSC

  11. Two new disposable bioreactors for plant cell culture: The wave and undertow bioreactor and the slug bubble bioreactor.

    PubMed

    Terrier, Bénédicte; Courtois, Didier; Hénault, Nicolas; Cuvier, Arnaud; Bastin, Maryse; Aknin, Aziz; Dubreuil, Julien; Pétiard, Vincent

    2007-04-01

    The present article describes two novel flexible plastic-based disposable bioreactors. The first one, the WU bioreactor, is based on the principle of a wave and undertow mechanism that provides agitation while offering convenient mixing and aeration to the plant cell culture contained within the bioreactor. The second one is a high aspect ratio bubble column bioreactor, where agitation and aeration are achieved through the intermittent generation of large diameter bubbles, "Taylor-like" or "slug bubbles" (SB bioreactor). It allows an easy volume increase from a few liters to larger volumes up to several hundred liters with the use of multiple units. The cultivation of tobacco and soya cells producing isoflavones is described up to 70 and 100 L working volume for the SB bioreactor and WU bioreactor, respectively. The bioreactors being disposable and pre-sterilized before use, cleaning, sterilization, and maintenance operations are strongly reduced or eliminated. Both bioreactors represent efficient and low cost cell culture systems, applicable to various cell cultures at small and medium scale, complementary to traditional stainless-steel bioreactors.

  12. Important operational parameters of membrane bioreactor-sludge disintegration (MBR-SD) system for zero excess sludge production.

    PubMed

    Yoon, Seong-Hoon

    2003-04-01

    In order to prevent excess sludge production during wastewater treatment, a membrane bioreactor-sludge disintegration (MBR-SD) system has been introduced, where the disintegrated sludge is recycled to the bioreactor as a feed solution. In this study, a mathematical model was developed by incorporating a sludge disintegration term into the conventional activated sludge model and the relationships among the operational parameters were investigated. A new definition of F/M ratio for the MBR-SD system was suggested to evaluate the actual organic loading rate. The actual F/M ratio was expected to be much higher than the apparent F/M ratio in MBR-SD. The kinetic parameters concerning the biodegradability of organics hardly affect the system performance. Instead, sludge solubilization ratio (alpha) in the SD process and particulate hydrolysis rate constant (k(h)) in biological reaction determine the sludge disintegration number (SDN), which is related with the overall economics of the MBR-SD system. Under reasonable alpha and k(h) values, SDN would range between 3 and 5 which means the amount of sludge required to be disintegrated would be 3-5 times higher for preventing a particular amount of sludge production. Finally, normalized sludge disintegration rate (q/V) which is needed to maintain a certain level of MLSS in the MBR-SD system was calculated as a function of F/V ratio.

  13. Application of high-throughput mini-bioreactor system for systematic scale-down modeling, process characterization, and control strategy development.

    PubMed

    Janakiraman, Vijay; Kwiatkowski, Chris; Kshirsagar, Rashmi; Ryll, Thomas; Huang, Yao-Ming

    2015-01-01

    High-throughput systems and processes have typically been targeted for process development and optimization in the bioprocessing industry. For process characterization, bench scale bioreactors have been the system of choice. Due to the need for performing different process conditions for multiple process parameters, the process characterization studies typically span several months and are considered time and resource intensive. In this study, we have shown the application of a high-throughput mini-bioreactor system viz. the Advanced Microscale Bioreactor (ambr15(TM) ), to perform process characterization in less than a month and develop an input control strategy. As a pre-requisite to process characterization, a scale-down model was first developed in the ambr system (15 mL) using statistical multivariate analysis techniques that showed comparability with both manufacturing scale (15,000 L) and bench scale (5 L). Volumetric sparge rates were matched between ambr and manufacturing scale, and the ambr process matched the pCO2 profiles as well as several other process and product quality parameters. The scale-down model was used to perform the process characterization DoE study and product quality results were generated. Upon comparison with DoE data from the bench scale bioreactors, similar effects of process parameters on process yield and product quality were identified between the two systems. We used the ambr data for setting action limits for the critical controlled parameters (CCPs), which were comparable to those from bench scale bioreactor data. In other words, the current work shows that the ambr15(TM) system is capable of replacing the bench scale bioreactor system for routine process development and process characterization.

  14. Treatment of Produced Waters Using a Surfactant Modified Zeolite/Vapor Phase Bioreactor System

    SciTech Connect

    Lynn E. Katz; Kerry A. Kinney; R. S. Bowman; E. J. Sullivan

    2004-09-11

    supply and EBCT on compost biofilter performance were also investigated. The bioreactor maintained greater than 95% removal efficiency for over 40 days without an additional supply of nutrients when a 10X concentrated HCMM was mixed with the compost packing at the beginning of the experiments. Results also suggest that an EBCT greater than 30 seconds is required to maintain high BTEX removal efficiencies in the compost biofilter system.

  15. It's all in the timing: modeling isovolumic contraction through development and disease with a dynamic dual electromechanical bioreactor system.

    PubMed

    Morgan, Kathy Ye; Black, Lauren Deems

    2014-01-01

    This commentary discusses the rationale behind our recently reported work entitled "Mimicking isovolumic contraction with combined electromechanical stimulation improves the development of engineered cardiac constructs," introduces new data supporting our hypothesis, and discusses future applications of our bioreactor system. The ability to stimulate engineered cardiac tissue in a bioreactor system that combines both electrical and mechanical stimulation offers a unique opportunity to simulate the appropriate dynamics between stretch and contraction and model isovolumic contraction in vitro. Our previous study demonstrated that combined electromechanical stimulation that simulated the timing of isovolumic contraction in healthy tissue improved force generation via increased contractile and calcium handling protein expression and improved hypertrophic pathway activation. In new data presented here, we further demonstrate that modification of the timing between electrical and mechanical stimulation to mimic a non-physiological process negatively impacts the functionality of the engineered constructs. We close by exploring the various disease states that have altered timing between the electrical and mechanical stimulation signals as potential future directions for the use of this system.

  16. Treatment of Produced Water Using a Surfactant Modified Zeolite/Vapor Phase Bioreactor System

    SciTech Connect

    Lynn E. Katz; Kerry A. Kinney; Robert S. Bowman; Enid J. Sullivan; Soondong Kwon; Elaine B. Darby; Li-Jung Chen; Craig R. Altare

    2006-01-31

    Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. Produced waters typically contain a high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component as well as chemicals added during the oil-production process. It has been estimated that a total of 14 billion barrels of produced water were generated in 2002 from onshore operations (Veil, 2004). Although much of this produced water is disposed via reinjection, environmental and cost considerations can make surface discharge of this water a more practical means of disposal. In addition, reinjection is not always a feasible option because of geographic, economic, or regulatory considerations. In these situations, it may be desirable, and often necessary from a regulatory viewpoint, to treat produced water before discharge. It may also be feasible to treat waters that slightly exceed regulatory limits for re-use in arid or drought-prone areas, rather than losing them to reinjection. A previous project conducted under DOE Contract DE-AC26-99BC15221 demonstrated that surfactant modified zeolite (SMZ) represents a potential treatment technology for produced water containing BTEX. Laboratory and field experiments suggest that: (1) sorption of benzene, toluene, ethylbenzene and xylenes (BTEX) to SMZ follows linear isotherms in which sorption increases with increasing solute hydrophobicity; (2) the presence of high salt concentrations substantially increases the capacity of the SMZ for BTEX; (3) competitive sorption among the BTEX compounds is negligible; and, (4) complete recovery of the SMZ sorption capacity for BTEX can be achieved by air sparging the SMZ. This report summarizes research for a follow on project to optimize the regeneration process for multiple sorption/regeneration cycles, and to develop and incorporate a vapor phase bioreactor (VPB) system for treatment of the off-gas generated during

  17. Continuous pH monitoring in a perfused bioreactor system using an optical pH sensor

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Antony S.; Vani, Sundeep; Taylor, Thomas D.; Anderson, Melody M.

    2002-01-01

    Monitoring and regulating the pH of the solution in a bioprocess is one of the key steps in the success of bioreactor operation. An in-line optical pH sensor, based on the optical absorption properties of phenol red present in the medium, was developed and tested in this work for use in NASA space bioreactors based on a rotating wall-perfused vessel system supporting a baby hamster kidney (BHK-21) cell culture. The sensor was tested over three 30-day and one 124-day cell runs. The pH sensor initially was calibrated and then used during the entire cell culture interval. The pH reported by the sensor was compared to that measured by a fiber optically coupled Shimadzu spectrophotometer and a blood gas analyzer. The maximum standard error of prediction for all the four cell runs for development pH sensor against BGA was +/-0.06 pH unit and for the fiber optically coupled Shimadzu spectrophotometer against the blood gas analyzer was +/-0.05 pH unit. The pH sensor system performed well without need of recalibration for 124 days. Copyright 2002 Wiley Periodicals, Inc.

  18. Navigating wastewater energy recovery strategies: a life cycle comparison of anaerobic membrane bioreactor and conventional treatment systems with anaerobic digestion.

    PubMed

    Smith, Adam L; Stadler, Lauren B; Cao, Ling; Love, Nancy G; Raskin, Lutgarde; Skerlos, Steven J

    2014-05-20

    The objective of this study was to evaluate emerging anaerobic membrane bioreactor (AnMBR) technology in comparison with conventional wastewater energy recovery technologies. Wastewater treatment process modeling and systems analyses were combined to evaluate the conditions under which AnMBR may produce more net energy and have lower life cycle environmental emissions than high rate activated sludge with anaerobic digestion (HRAS+AD), conventional activated sludge with anaerobic digestion (CAS+AD), and an aerobic membrane bioreactor with anaerobic digestion (AeMBR+AD). For medium strength domestic wastewater treatment under baseline assumptions at 15 °C, AnMBR recovered 49% more energy as biogas than HRAS+AD, the most energy positive conventional technology considered, but had significantly higher energy demands and environmental emissions. Global warming impacts associated with AnMBR were largely due to emissions of effluent dissolved methane. For high strength domestic wastewater treatment, AnMBR recovered 15% more net energy than HRAS+AD, and the environmental emissions gap between the two systems was reduced. Future developments of AnMBR technology in low energy fouling control, increased flux, and management of effluent methane emissions would make AnMBR competitive with HRAS+AD. Rapid advancements in AnMBR technology must continue to achieve its full economic and environmental potential as an energy recovery strategy for domestic wastewater.

  19. A new hybrid treatment system of bioreactors and electrocoagulation for superior removal of organic and nutrient pollutants from municipal wastewater.

    PubMed

    Nguyen, Dinh Duc; Ngo, Huu Hao; Yoon, Yong Soo

    2014-02-01

    This paper evaluated a novel pilot scale hybrid treatment system which combines rotating hanging media bioreactor (RHMBR), submerged membrane bioreactor (SMBR) along with electrocoagulation (EC) as post treatment to treat organic and nutrient pollutants from municipal wastewater. The results indicated that the highest removal efficiency was achieved at the internal recycling ratio as 400% of the influent flow rate which produced a superior effluent quality with 0.26mgBOD5L(-1), 11.46mgCODCrL(-1), 0.00mgNH4(+)-NL(-1), and 3.81mgT-NL(-1), 0.03mgT-PL(-1). During 16months of operation, NH4(+)-N was completely eliminated and T-P removal efficiency was also up to 100%. It was found that increasing in internal recycling ratio could improve the nitrate and nitrogen removal efficiencies. Moreover, the TSS and coliform bacteria concentration after treatment was less than 5mgL(-1) and 30MPNmL(-1), respectively, regardless of internal recycling ratios and its influent concentration.

  20. Bioreactors to Influence Stem Cell Fate: Augmentation of Mesenchymal Stem Cell Signaling Pathways via Dynamic Culture Systems

    PubMed Central

    Yeatts, Andrew B.; Choquette, Daniel T.; Fisher, John P.

    2012-01-01

    Background Mesenchymal stem cells (MSCs) are a promising cell source for bone and cartilage tissue engineering as they can be easily isolated from the body and differentiated into osteoblasts and chondrocytes. A cell based tissue engineering strategy using MSCs often involves the culture of these cells on three-dimensional scaffolds; however the size of these scaffolds and the cell population they can support can be restricted in traditional static culture. Thus dynamic culture in bioreactor systems provides a promising means to culture and differentiate MSCs in vitro. Scope of Review This review seeks to characterize key MSC differentiation signaling pathways and provides evidence as to how dynamic culture is augmenting these pathways. Following an overview of dynamic culture systems, discussion will be provided on how these systems can effectively modify and maintain important culture parameters including oxygen content and shear stress. Literature is reviewed for both a highlight of key signaling pathways and evidence for regulation of these signaling pathways via dynamic culture systems. Major Conclusions The ability to understand how these culture systems are affecting MSC signaling pathways could lead to a shear or oxygen regime to direct stem cell differentiation. In this way the efficacy of in vitro culture and differentiation of MSCs on three-dimensional scaffolds could be greatly increased. General Significance Bioreactor systems have the ability to control many key differentiation stimuli including mechanical stress and oxygen content. The further integration of cell signaling investigations within dynamic culture systems will lead to a quicker realization of the promise of tissue engineering and regenerative medicine. PMID:22705676

  1. New functional biocarriers for enhancing the performance of a hybrid moving bed biofilm reactor-membrane bioreactor system.

    PubMed

    Deng, Lijuan; Guo, Wenshan; Ngo, Huu Hao; Zhang, Xinbo; Wang, Xiaochang C; Zhang, Qionghua; Chen, Rong

    2016-05-01

    In this study, new sponge modified plastic carriers for moving bed biofilm reactor (MBBR) was developed. The performance and membrane fouling behavior of a hybrid MBBR-membrane bioreactor (MBBR-MBR) system were also evaluated. Comparing to the MBBR with plastic carriers (MBBR), the MBBR with sponge modified biocarriers (S-MBBR) showed better effluent quality and enhanced nutrient removal at HRTs of 12h and 6h. Regarding fouling issue of the hybrid systems, soluble microbial products (SMP) of the MBR unit greatly influenced membrane fouling. The sponge modified biocarriers could lower the levels of SMP in mixed liquor and extracellular polymeric substances in activated sludge, thereby mitigating cake layer and pore blocking resistances of the membrane. The reduced SMP and biopolymer clusters in membrane cake layer were also observed. The results demonstrated that the sponge modified biocarriers were capable of improving overall MBBR performance and substantially alleviated membrane fouling of the subsequent MBR unit.

  2. Bioreactors Addressing Diabetes Mellitus

    PubMed Central

    Minteer, Danielle M.; Gerlach, Jorg C.

    2014-01-01

    The concept of bioreactors in biochemical engineering is a well-established process; however, the idea of applying bioreactor technology to biomedical and tissue engineering issues is relatively novel and has been rapidly accepted as a culture model. Tissue engineers have developed and adapted various types of bioreactors in which to culture many different cell types and therapies addressing several diseases, including diabetes mellitus types 1 and 2. With a rising world of bioreactor development and an ever increasing diagnosis rate of diabetes, this review aims to highlight bioreactor history and emerging bioreactor technologies used for diabetes-related cell culture and therapies. PMID:25160666

  3. Bioreactors addressing diabetes mellitus.

    PubMed

    Minteer, Danielle M; Gerlach, Jorg C; Marra, Kacey G

    2014-11-01

    The concept of bioreactors in biochemical engineering is a well-established process; however, the idea of applying bioreactor technology to biomedical and tissue engineering issues is relatively novel and has been rapidly accepted as a culture model. Tissue engineers have developed and adapted various types of bioreactors in which to culture many different cell types and therapies addressing several diseases, including diabetes mellitus types 1 and 2. With a rising world of bioreactor development and an ever increasing diagnosis rate of diabetes, this review aims to highlight bioreactor history and emerging bioreactor technologies used for diabetes-related cell culture and therapies.

  4. Design and optimization of photo bioreactor for O2 regulation and control by system dynamics and computer simulation.

    PubMed

    Hu, Dawei; Li, Ming; Zhou, Rui; Sun, Yi

    2012-01-01

    In this paper, a valid kinetic model of photo bioreactor (PBR) used for highly-effective cultivation of blue algae, Spirulina platensis, was developed for fully describing the dynamic characteristics of O(2) concentration, then a closed-loop PBR with Linear-Quadratic Gaussian (LQG) servo controller was established and optimized via digital simulation and dynamic response optimization, and the effectiveness of the closed-loop PBR was further tested and accredited by real-time simulation. The result showed that the closed-loop PBR could regulate and control the O(2) concentration in its gas phase according to the reference with desired dynamic response performance, hence microalgae with unique characteristic could be selected as a powerful tool for O(2) regulation and control whenever O(2) concentration in Bioregenerative Life Support System (BLSS) deviates from the nominal level in emergencies, and greatly enhance safety and reliability of BLSS on space and ground missions.

  5. Membrane bioreactor and nanofiltration hybrid system for reclamation of municipal wastewater: removal of nutrients, organic matter and micropollutants.

    PubMed

    Chon, Kangmin; KyongShon, Ho; Cho, Jaeweon

    2012-10-01

    A membrane bioreactor (MBR) and nanofiltration (NF) hybrid system was investigated to demonstrate the performance of treating nitrogen, phosphorus and pharmaceuticals and personal care products (PPCPs) in municipal wastewater. With the MBR and NF (molecular weight cut off (MWCO): 210 Da), the concentration of total nitrogen (TN) and total phosphorus (TP) was effectively reduced by nitrification by MBR and negatively charged surface of NF (TN: 8.67 mgN/L and TP: 0.46 mgP/L). Biosorption and microbial decomposition in MBR seem to be major removal mechanisms for the removal of PPCPs. Among various parameters affecting the removal of PPCPs by NF, namely, physicochemical properties of the PPCPs (charge characteristics, hydrophobicity and M(W)) and membranes (MWCO and surface charge), the MWCO effect was found to be the most critical aspect. PMID:22608290

  6. Design and optimization of photo bioreactor for O2 regulation and control by system dynamics and computer simulation.

    PubMed

    Hu, Dawei; Li, Ming; Zhou, Rui; Sun, Yi

    2012-01-01

    In this paper, a valid kinetic model of photo bioreactor (PBR) used for highly-effective cultivation of blue algae, Spirulina platensis, was developed for fully describing the dynamic characteristics of O(2) concentration, then a closed-loop PBR with Linear-Quadratic Gaussian (LQG) servo controller was established and optimized via digital simulation and dynamic response optimization, and the effectiveness of the closed-loop PBR was further tested and accredited by real-time simulation. The result showed that the closed-loop PBR could regulate and control the O(2) concentration in its gas phase according to the reference with desired dynamic response performance, hence microalgae with unique characteristic could be selected as a powerful tool for O(2) regulation and control whenever O(2) concentration in Bioregenerative Life Support System (BLSS) deviates from the nominal level in emergencies, and greatly enhance safety and reliability of BLSS on space and ground missions. PMID:22153599

  7. Ethanol fermentation kinetics in a continuous and closed-circulating fermentation system with a pervaporation membrane bioreactor.

    PubMed

    Chen, Chunyan; Tang, Xiaoyu; Xiao, Zeyi; Zhou, Yihui; Jiang, Yue; Fu, Shengwei

    2012-06-01

    The kinetics of ethanol fermentation by Saccharomyces cerevisiae was studied in a continuous and closed-circulating fermentation (CCCF) system with a polydimethylsiloxane (PDMS) pervaporation membrane bioreactor. Three sequential 500-h cycles of CCCF experiments were carried out. A glucose volumetric consumption of 3.8 g L(-1) h(-1) and ethanol volumetric productivity of 1.39 g L(-1) h(-1) were obtained in the third cycle, with a specific glucose utilization rate of 0.32 h(-1) and ethanol yield rate of 0.13 h(-1). The prolonged fermentation time and good fermentation performance indicate that the CCCF would be a feasible and promising fermentation process technology. PMID:22446047

  8. Reaction mechanisms and rate constants of waste degradation in landfill bioreactor systems with enzymatic-enhancement.

    PubMed

    Jayasinghe, P A; Hettiaratchi, J P A; Mehrotra, A K; Kumar, S

    2014-06-01

    Augmenting leachate before recirculation with peroxidase enzymes is a novel method to increase the available carbon, and therefore the food supply to microorganisms at the declining phase of the anaerobic landfill bioreactor operation. In order to optimize the enzyme-catalyzed leachate recirculation process, it is necessary to identify the reaction mechanisms and determine rate constants. This paper presents a kinetic model developed to ascertain the reaction mechanisms and determine the rate constants for enzyme catalyzed anaerobic waste degradation. The maximum rate of reaction (Vmax) for MnP enzyme-catalyzed reactors was 0.076 g(TOC)/g(DS).day. The catalytic turnover number (k(cat)) of the MnP enzyme-catalyzed was 506.7 per day while the rate constant (k) of the un-catalyzed reaction was 0.012 per day.

  9. A fouling suppression system in submerged membrane bioreactors using dielectrophoretic forces.

    PubMed

    Hawari, Alaa H; Du, Fei; Baune, Michael; Thöming, Jorg

    2015-03-01

    A novel method was developed to suppress membrane fouling in submerged membrane bioreactors. The method is based on the dielectrophoretic (DEP) motion of particles in an inhomogeneous electrical field. Using a real sample of biomass as feed, the fouling-suppression performance using DEP with different electrical field intensities (60-160 V) and different frequencies (50-1000 Hz) was investigated. The fouling-suppression performance was found to relate closely with the intensity and frequency of the electrical field. A stronger electrical field was found to better recover the filtrate flux. This is because of a stronger DEP force acting on the biomass particles close to the membrane's surface. Above an intensity and frequency value of 130 V and 1 kHz, respectively the permeate flux was reduced due to an electrothermal effect.

  10. Reaction mechanisms and rate constants of waste degradation in landfill bioreactor systems with enzymatic-enhancement.

    PubMed

    Jayasinghe, P A; Hettiaratchi, J P A; Mehrotra, A K; Kumar, S

    2014-06-01

    Augmenting leachate before recirculation with peroxidase enzymes is a novel method to increase the available carbon, and therefore the food supply to microorganisms at the declining phase of the anaerobic landfill bioreactor operation. In order to optimize the enzyme-catalyzed leachate recirculation process, it is necessary to identify the reaction mechanisms and determine rate constants. This paper presents a kinetic model developed to ascertain the reaction mechanisms and determine the rate constants for enzyme catalyzed anaerobic waste degradation. The maximum rate of reaction (Vmax) for MnP enzyme-catalyzed reactors was 0.076 g(TOC)/g(DS).day. The catalytic turnover number (k(cat)) of the MnP enzyme-catalyzed was 506.7 per day while the rate constant (k) of the un-catalyzed reaction was 0.012 per day. PMID:24759644

  11. Flux influence on membrane fouling in a membrane bioreactor system under real conditions with urban wastewater.

    PubMed

    Poyatos, Jose M; Molina-Munoz, Marisa; Delgado, Fernando; Gonzalez-Lopez, Jesus; Hontoria, Ernesto

    2008-12-01

    In order to evaluate the effect of flux on membrane fouling, the performance of a bench-scale submerged membrane bioreactor (MBR) equipped with ultrafiltration membranes (ZENON) was investigated under real conditions at different flux rates. The pilot plant was located at the wastewater treatment plant of the city of Granada (Spain). Influent used in the experiments came from the primary settling tank. Assays carried out under different operating conditions indicated that dTMP/dt increased in accordance with the increase in flux. The results showed a significant impact on the rate of transmembrane pressure, while the behavior of membrane fouling was logarithmic with respect to the flux. These findings could be of some importance for understanding the behavior of the membrane, since over 20.57 L m(-2) h(-1) the flux rate produced a significant increase in transmembrane pressure. The data therefore suggest that an increase in the net flux significantly affects membrane fouling. PMID:18988106

  12. A multicommutated tester of bioreactors for flow analysis.

    PubMed

    Pokrzywnicka, Marta; Kamiński, Jacek; Michalec, Michał; Koncki, Robert; Tymecki, Łukasz

    2016-11-01

    Enzymes are often used in the modern analytical procedures allowing selective recognition and conversion of target analytes into easily detected products. In flow analysis systems, enzymes are predominantly applied in the immobilized forms as flow-through bioreactors. In this research the multicommutated flow analysis (MCFA) system for evaluation and comparison of analytical parameters of bioreactors has been developed. The MCFA manifold allows simultaneous testing up to four bioreactors, but if necessary their number can be easily increased. The system allows comparison of several parameters of tested bioreactors including activity, repeatability, reproducibility, operational and storage stability. The performance of developed bioreactor tester is presented using urea-urease model system based on plastic open-tubular bioreactor with covalently immobilized enzyme. Product of enzymatic reaction is detected using two different chemical methods and by dedicated optoelectronic ammonium detectors. Moreover, the utility of developed MCFA manifold for evaluation of other enzyme bioreactors is demonstrated. PMID:27591609

  13. Oscillating Cell Culture Bioreactor

    NASA Technical Reports Server (NTRS)

    Freed, Lisa E.; Cheng, Mingyu; Moretti, Matteo G.

    2010-01-01

    dynamic shear (i.e., as required for viability of shear-sensitive cells) to the developing engineered tissue construct. This bioreactor was recently utilized to show independent and interactive effects of a growth factor (IGF-I) and slow bidirectional perfusion on the survival, differentiation, and contractile performance of 3D tissue engineering cardiac constructs. The main application of this system is within the tissue engineering industry. The ideal final application is within the automated mass production of tissue- engineered constructs. Target industries could be both life sciences companies as well as bioreactor device producing companies.

  14. Human periosteal-derived cell expansion in a perfusion bioreactor system: proliferation, differentiation and extracellular matrix formation.

    PubMed

    Sonnaert, M; Papantoniou, I; Bloemen, V; Kerckhofs, G; Luyten, F P; Schrooten, J

    2014-09-01

    Perfusion bioreactor systems have shown to be a valuable tool for the in vitro development of three-dimensional (3D) cell-carrier constructs. Their use for cell expansion, however, has been much less explored. Since maintenance of the initial cell phenotype is essential in this process, it is imperative to obtain insight into the bioreactor-related variables determining cell fate. Therefore, this study investigated the influence of fluid flow-induced shear stress on the proliferation, differentiation and matrix deposition of human periosteal-derived cells in the absence of additional differentiation-inducing stimuli; 120 000 cells were seeded on additive manufactured 3D Ti6Al4V scaffolds and cultured for up to 28 days at different flow rates in the range 0.04-6 ml/min. DNA measurements showed, on average, a three-fold increase in cell content for all perfused conditions in comparison to static controls, whereas the magnitude of the flow rate did not have an influence. Contrast-enhanced nanofocus X-ray computed tomography showed substantial formation of an engineered neotissue in all perfused conditions, resulting in a filling (up to 70%) of the total internal void volume, and no flow rate-dependent differences were observed. The expression of key osteogenic markers, such as RunX2, OCN, OPN and Col1, did not show any significant changes in comparison to static controls after 28 days of culture, with the exception of OSX at high flow rates. We therefore concluded that, in the absence of additional osteogenic stimuli, the investigated perfusion conditions increased cell proliferation but did not significantly enhance osteogenic differentiation, thus allowing for this process to be used for cell expansion. Copyright © 2014 John Wiley & Sons, Ltd. PMID:25186024

  15. Bio-reactor chamber

    NASA Technical Reports Server (NTRS)

    Chandler, Joseph A. (Inventor)

    1989-01-01

    A bioreactor for cell culture is disclosed which provides for the introduction of fresh medium without excessive turbulent action. The fresh medium enters the bioreactor through a filter with a backwash action which prevents the cells from settling on the filter. The bioreactor is sealed and depleted medium is forced out of the container as fresh medium is added.

  16. Advanced Wastewater Treatment Engineering-Investigating Membrane Fouling in both Rotational and Static Membrane Bioreactor Systems Using Empirical Modelling.

    PubMed

    Paul, Parneet; Jones, Franck Anderson

    2016-01-05

    Advanced wastewater treatment using membranes are popular environmental system processes since they allow reuse and recycling. However, fouling is a key limiting factor and so proprietary systems such as Avanti's RPU-185 Flexidisks membrane bioreactor (MBR) use novel rotating membranes to assist in ameliorating it. In earlier research, this rotating process was studied by creating a simulation model based on first principles and traditional fouling mechanisms. In order to directly compare the potential benefits of this rotational system, this follow-up study was carried out using Avanti's newly developed static (non-rotating) Flexidisks MBR system. The results from operating the static pilot unit were simulated and modelled using the rotational fouling model developed earlier however with rotational switching functions turned off and rotational parameters set to a static mode. The study concluded that a rotating MBR system could increase flux throughput when compared against a similar static system. It is thought that although the slowly rotating spindle induces a weak crossflow shear, it is still able to even out cake build up across the membrane surface, thus reducing the likelihood of localised critical flux being exceeded at the micro level and lessening the potential of rapid trans-membrane pressure increases at the macro level.

  17. Advanced Wastewater Treatment Engineering—Investigating Membrane Fouling in both Rotational and Static Membrane Bioreactor Systems Using Empirical Modelling

    PubMed Central

    Paul, Parneet; Jones, Franck Anderson

    2016-01-01

    Advanced wastewater treatment using membranes are popular environmental system processes since they allow reuse and recycling. However, fouling is a key limiting factor and so proprietary systems such as Avanti’s RPU-185 Flexidisks membrane bioreactor (MBR) use novel rotating membranes to assist in ameliorating it. In earlier research, this rotating process was studied by creating a simulation model based on first principles and traditional fouling mechanisms. In order to directly compare the potential benefits of this rotational system, this follow-up study was carried out using Avanti’s newly developed static (non-rotating) Flexidisks MBR system. The results from operating the static pilot unit were simulated and modelled using the rotational fouling model developed earlier however with rotational switching functions turned off and rotational parameters set to a static mode. The study concluded that a rotating MBR system could increase flux throughput when compared against a similar static system. It is thought that although the slowly rotating spindle induces a weak crossflow shear, it is still able to even out cake build up across the membrane surface, thus reducing the likelihood of localised critical flux being exceeded at the micro level and lessening the potential of rapid trans-membrane pressure increases at the macro level. PMID:26742053

  18. Advanced Wastewater Treatment Engineering-Investigating Membrane Fouling in both Rotational and Static Membrane Bioreactor Systems Using Empirical Modelling.

    PubMed

    Paul, Parneet; Jones, Franck Anderson

    2016-01-01

    Advanced wastewater treatment using membranes are popular environmental system processes since they allow reuse and recycling. However, fouling is a key limiting factor and so proprietary systems such as Avanti's RPU-185 Flexidisks membrane bioreactor (MBR) use novel rotating membranes to assist in ameliorating it. In earlier research, this rotating process was studied by creating a simulation model based on first principles and traditional fouling mechanisms. In order to directly compare the potential benefits of this rotational system, this follow-up study was carried out using Avanti's newly developed static (non-rotating) Flexidisks MBR system. The results from operating the static pilot unit were simulated and modelled using the rotational fouling model developed earlier however with rotational switching functions turned off and rotational parameters set to a static mode. The study concluded that a rotating MBR system could increase flux throughput when compared against a similar static system. It is thought that although the slowly rotating spindle induces a weak crossflow shear, it is still able to even out cake build up across the membrane surface, thus reducing the likelihood of localised critical flux being exceeded at the micro level and lessening the potential of rapid trans-membrane pressure increases at the macro level. PMID:26742053

  19. Perfusion Bioreactor Module

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.

    1990-01-01

    Perfusion bioreactor module, self-contained, closed-loop cell-culture system that operates in microgravity or on Earth. Equipment supports growth or long-term maintenance of cultures of human or other fragile cells for experiments in basic cell biology or process technology. Designed to support proliferation (initially at exponential rates of growth) of cells in complex growth medium and to maintain confluent cells in defined medium under conditions optimized to permit or encourage selected functions of cells, including secretion of products of cells into medium.

  20. Advanced bioreactor concepts for coal processing

    SciTech Connect

    Scott, C.D.

    1988-01-01

    The development of advanced bioreactor systems for the processing of coal should follow some basic principles. Continuous operation is preferred, with maximum bioreagent concentrations and enhanced mass transfer. Although conventional stirred-tank bioreactors will be more appropriate for some processing concepts, columnar reactors with retained bioreagents could be the system of choice for most of the applications. Serious consideration must now be given to process development of some biological coal processing concepts. Process biology and biochemistry will continue to be very important, but efficient bioreactor systems will be necessary for economic feasibility. Conventional bioreactor concepts will be useful for some applications, but columnar systems represent an innovative approach to the design of continuous bioreactors with high productivity and good operational control. Fluidized and packed beds are the most promising configurations, especially where three-phase operation is required and where interphase mass transport is a likely controlling mechanism. Although the biocatalyst must be immobilized into or onto particles to be retained in the bioreactors, this also results in a very high biocatalyst concentration without washout and a significant enhancement in bioconversion rates. The multistage nature of these types of bioreactors also contributes to higher efficiencies for many types of biocatalytic processes. 25 refs.

  1. Monitoring endocrine activity in kraft mill effluent treated by aerobic moving bed bioreactor system.

    PubMed

    Chamorro, S; Pozo, G; Jarpa, M; Hernandez, V; Becerra, J; Vidal, G

    2010-01-01

    A Moving Bed Bioreactor (MBBR) was operated at three different hydraulic retention times for a period of 414 days. The fate of the extractive compounds and the estrogenic activity of the Pinus radiata kraft mill effluents were evaluated using Yeast Estrogen Screen (YES) and gas chromatography - mass spectrometry (GC-MS) detection. Results show that the MBBR reactor is able to remove between 80-83% of estrogenic activity present in the kraft mill Pinus radiata influent, where the values of the effluent's estrogenic activity ranged between 0.123-0.411 ng L(-1), expressed as estrogenic equivalent (EEqs) of 17-a-ethynylestradiol (EE2 eq.). Additionally, the biomass of the MBBR reactor accumulated estrogenic activity ranging between 0.29-0.37 ng EEqs EE2 during the different Hydraulic Retention Time (HRT) operations. The main groups present in pulp mills effluents, corresponding to fatty acids, hydrocarbons, phenols, sterols and triterpenes, were detected by solid phase extraction (SPE) and gas chromatography - mass spectrometry (GC-MS). The results suggest that the sterols produce the estrogenic activity in the evaluated effluent. PMID:20595766

  2. Development and testing of a fully adaptable membrane bioreactor fouling model for a sidestream configuration system.

    PubMed

    Paul, Parneet

    2013-01-01

    A dead-end filtration model that includes the three main fouling mechanisms mentioned in Hermia (i.e., cake build-up, complete pore blocking, and pore constriction) and that was based on a constant trans-membrane pressure (TMP) operation was extensively modified so it could be used for a sidestream configuration membrane bioreactor (MBR) situation. Modifications and add-ons to this basic model included: alteration so that it could be used for varying flux and varying TMP operations; inclusion of a backwash mode; it described pore constriction (i.e., irreversible fouling) in relation to the concentration of soluble microbial products (SMP) in the liquor; and, it could be used in a cross flow scenario by the addition of scouring terms in the model formulation. The additional terms in this modified model were checked against an already published model to see if they made sense, physically speaking. Next this modified model was calibrated and validated in Matlab© using data collected by carrying out flux stepping tests on both a pilot sidestream MBR plant, and then a pilot membrane filtration unit. The model fit proved good, especially for the pilot filtration unit data. In conclusion, this model formulation is of the right level of complexity to be used for most practical MBR situations. PMID:24958618

  3. Rapid detection of contaminating bacteria in the Rhodospirillum rubrum bioreactor of the life support system MELiSSA

    NASA Astrophysics Data System (ADS)

    Hendrickx, L.; Janssen, P.; Baatout, S.; Wattiez, R.; van Havermaet, A.; Bossi, V.; Mergeay, M.

    For a lunar base or a mission to Mars a reliable life support system is essential to replenish the food and water supplies and manage the production of gases and wastes MELiSSA Micro Ecological Life Support System is a model of regenerative life support system targeting complete recycling of gas liquids and solid wastes by using the combined activity of different living organisms i e microbial communities in 4 succesive microbial bioreactors CI CII CIII CIVa a plant compartment and a human crew http www estec esa nl ecls In order for the MELiSSA system to function properly the organisms inhabiting the MELiSSA loop need to perform their tasks as optimally as possible One important aspect is to control the axenicity of the MELISSA compartments CII CIII CIVa because contaminants constitute a major concern in the proper functioning and maintenance of a closed artificial ecosystem The first compartment of the MELiSSA loop wherein the organic waste is liquefied by a bacterial consortium originating from the waste itself is a likely source of pathogens Hence the second compartment in which R rubrum converts the in CI produced volatile fatty acids into minerals and biomass is probably an axenically vulnerable compartment within the MELiSSA loop due to its direct link with the first compartment Methods to check any loss of axenicity in the compartment of R rubrum are presented and evaluated in the present communication Flow cytometry in combination with specific fluorescent probes matrix assisted laser

  4. Mitigation of Salinity Buildup and Recovery of Wasted Salts in a Hybrid Osmotic Membrane Bioreactor-Electrodialysis System.

    PubMed

    Lu, Yaobin; He, Zhen

    2015-09-01

    The osmotic membrane bioreactor (OMBR) is an emerging technology that uses water osmosis to accomplish separation of biomass from the treated effluent; however, accumulation of salts in the wastewater due to water flux and loss of draw solute because of reverse salt flux seriously hinder OMBR development. In this study, a hybrid OMBR-electrodialysis (ED) system was proposed and investigated to alleviate the salinity buildup. The use of an ED (3 V applied) could maintain a relatively low conductivity of 8 mS cm(-1) in the feed solution, which allowed the OMBR to operate for 24 days, about 6 times longer than a conventional OMBR without a functional ED. It was found that the higher the voltage applied to the ED, the smaller area of ion-exchange membrane was needed for salt separation. The salts recovered by the ED were successfully reused as a draw solute in the OMBR. At an energy consumption of 1.88-4.01 kWh m(-3), the hybrid OMBR-ED system could achieve a stable water flux of about 6.23 L m(-2) h(-1) and an efficient waste salt recovery of 1.26 kg m(-3). The hybrid OMBR-ED system could be potentially more advantageous in terms of less waste saline water discharge and salt recovery compared with a combined OMBR and reverse osmosis system. It also offers potential advantages over the conventional OMBR+post ED treatment in higher water flux and less wastewater discharge.

  5. Performance analysis of a combined system of membrane bioreactor and worm reactor: wastewater treatment, sludge reduction and membrane fouling.

    PubMed

    Tian, Yu; Lu, Yaobin; Li, Zhipeng

    2012-10-01

    A new process that combined a membrane bioreactor (S-MBR) and a novel worm reactor was proposed in this study. The combined system indicated excellent sludge reduction efficiency, wastewater treatment performance and membrane permeability. The sludge reduction percentage of the combined system was about 1.9 times higher than that of the conventional MBR. The chemical oxygen demand (COD) discharge rate in the combined system was only one fourth of that in the conventional MBR, indicating that the COD was removed more thoroughly. Low extracellular polymeric substances level (60-75 μg/mg), low filamentous bacteria level, narrow floc size distribution (distribution spread index of 0.91) and high roundness (0.80 ± 0.10) were observed in the S-MBR sludge. Deposited by this modified sludge, a fouling layer with smaller thickness, larger porosity and less proteins and polysaccharides accumulation was formed in the S-MBR, demonstrating that the combined system was able to alleviate membrane fouling. PMID:22858483

  6. Estimation of flow and transport parameters for woodchip based bioreactors: I. laboratory-scale bioreactor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In subsurface bioreactors used for tile drainage systems, carbon sources are used to facilitate denitrification. The objective of this study was to estimate hydraulic conductivity, effective porosity, dispersivity, and first-order decay coefficients for a laboratory-scale bioreactor with woodchips a...

  7. Integrated thermophilic submerged aerobic membrane bioreactor and electrochemical oxidation for pulp and paper effluent treatment--towards system closure.

    PubMed

    Qu, X; Gao, W J; Han, M N; Chen, A; Liao, B Q

    2012-07-01

    A novel integrated thermophilic submerged aerobic membrane bioreactor (TSAMBR) and electrochemical oxidation (EO) technology was developed for thermomechanical pulping pressate treatment with the aim of system closure. The TSAMBR was able to achieve a chemical oxygen demand (COD) removal efficiency of 88.6 ± 1.9-92.3 ± 0.7% under the organic loading rate of 2.76 ± 0.13-3.98 ± 0.23 kg COD/(m(3) d). An optimal hydraulic retention time (HRT) of 1.1 ± 0.1d was identified for COD removal. Cake formation was identified as the dominant mechanism of membrane fouling. The EO of the TSAMBR permeate was performed using a Ti/SnO(2)-Sb(2)O(5)-IrO(2) electrode. After 6-h EO, a complete decolourization was achieved and the COD removal efficiency was increased to 96.2 ± 1.2-98.2 ± 0.3%. The high-quality effluent produced by the TSAMBR-EO system can be reused as process water for system closure in pulp and paper mill.

  8. Direct emissions of N2O, CO 2, and CH 4 from A/A/O bioreactor systems: impact of influent C/N ratio.

    PubMed

    Ren, Yangang; Wang, Jinhe; Xu, Li; Liu, Cui; Zong, Ruiqiang; Yu, Jianlin; Liang, Shuang

    2015-06-01

    Direct emissions of N2O, CO2, and CH4, three important greenhouse gases (GHGs), from biological sewage treatment process have attracted increasing attention worldwide, due to the increasing concern about climate change. Despite the tremendous efforts devoted to understanding GHG emission from biological sewage treatment process, the impact of influent C/N ratios, in terms of chemical oxygen demand (COD)/total nitrogen (TN), on an anaerobic/anoxic/oxic (A/A/O) bioreactor system has not been investigated. In this work, the direct GHG emission from A/A/O bioreactor systems fed with actual sewage was analyzed under different influent C/N ratios over a 6-month period. The results showed that the variation in influent carbon (160 to 500 mg/L) and nitrogen load (35 to 95 mg/L) dramatically influenced pollutant removal efficiency and GHG production from this process. In the A/A/O bioreactor systems, the GHG production increased from 26-39 to 112-173 g CO2-equivalent as influent C/N ratios decreased from 10.3/10.7 to 3.5/3.8. Taking consideration of pollutant removal efficiency and direct biogenic GHG (N2O, CO2, and CH4) production, the optimum influent C/N ratio was determined to be 7.1/7.5, at which a relatively high pollutant removal efficiency and meanwhile a low level of GHG production (30.4 g CO2-equivalent) can be achieved. Besides, mechanical aeration turned out to be the most significant factor influencing GHG emission from the A/A/O bioreactor systems.

  9. Microfluidic Picoliter Bioreactor for Microbial Single-cell Analysis: Fabrication, System Setup, and Operation

    PubMed Central

    Gruenberger, Alexander; Probst, Christopher; Heyer, Antonia; Wiechert, Wolfgang; Frunzke, Julia; Kohlheyer, Dietrich

    2013-01-01

    In this protocol the fabrication, experimental setup and basic operation of the recently introduced microfluidic picoliter bioreactor (PLBR) is described in detail. The PLBR can be utilized for the analysis of single bacteria and microcolonies to investigate biotechnological and microbiological related questions concerning, e.g. cell growth, morphology, stress response, and metabolite or protein production on single-cell level. The device features continuous media flow enabling constant environmental conditions for perturbation studies, but in addition allows fast medium changes as well as oscillating conditions to mimic any desired environmental situation. To fabricate the single use devices, a silicon wafer containing sub micrometer sized SU-8 structures served as the replication mold for rapid polydimethylsiloxane casting. Chips were cut, assembled, connected, and set up onto a high resolution and fully automated microscope suited for time-lapse imaging, a powerful tool for spatio-temporal cell analysis. Here, the biotechnological platform organism Corynebacterium glutamicum was seeded into the PLBR and cell growth and intracellular fluorescence were followed over several hours unraveling time dependent population heterogeneity on single-cell level, not possible with conventional analysis methods such as flow cytometry. Besides insights into device fabrication, furthermore, the preparation of the preculture, loading, trapping of bacteria, and the PLBR cultivation of single cells and colonies is demonstrated. These devices will add a new dimension in microbiological research to analyze time dependent phenomena of single bacteria under tight environmental control. Due to the simple and relatively short fabrication process the technology can be easily adapted at any microfluidics lab and simply tailored towards specific needs. PMID:24336165

  10. Studies of Cell-Mediated Immunity Against Immune Disorders Using Synthetic Peptides and Rotating Bioreactor System

    NASA Technical Reports Server (NTRS)

    Sastry, Jagannadha K.

    1997-01-01

    Our proposed experiments included: (1) immunzing mice with synthetic peptides; (2) preparing spleen and lymph node cells; (3) growing them under conventional conditions as well as in the rotatory vessel in appropriate medium reconstituting with synthetic peptides and/or cytokines as needed; and (4) comparing at regular time intervals the specific CTL activity as well as helper T-cell activity (in terms of both proliferative responses and cytokine production) using established procedures in my laboratory. We further proposed that once we demonstrated the merit of rotatory vessel technology to achieve desired results, these studies would be expanded to include immune cells from non-human primates (rhesus monkeys and chimpanzees) and also humans. We conducted a number of experiments to determine CTL induction by the synthetic peptides corresponding to antigenic proteins in HIV and HPV in different mouse strains that express MHC haplotypes H-2b or H-2d. We immunized mice with 100 ug of the synthetic peptide, suspended in sterile water, and emulsified in CFA (1:1). The immune lymph node cells obtained after 7 days were restimulated by culturing in T25 flask, HARV-10, or STLV-50, in the presence of the peptide at 20 ug/ml. The results from the 5'Cr-release assay consistently revealed complete abrogation of CTL activity of cells grown in the bioreactors (both HARV and STLV), while significant antigen-specific CTL activity was observed with cells cultured in tissue culture flasks. Thus, overall the data we generated in this study proved the usefulness of the NASA-developed developed technology for understanding the known immune deficiency during space travel. Additionally, this ex vivo microgravity technology since it mimics effectively the in vivo situation, it is also useful in understanding immune disorders in general. Thus, our proposed studies in TMC-NASA contract round II application benefit from data generated in this TMC-NASA contract round I study.

  11. Microfluidic picoliter bioreactor for microbial single-cell analysis: fabrication, system setup, and operation.

    PubMed

    Gruenberger, Alexander; Probst, Christopher; Heyer, Antonia; Wiechert, Wolfgang; Frunzke, Julia; Kohlheyer, Dietrich

    2013-12-06

    In this protocol the fabrication, experimental setup and basic operation of the recently introduced microfluidic picoliter bioreactor (PLBR) is described in detail. The PLBR can be utilized for the analysis of single bacteria and microcolonies to investigate biotechnological and microbiological related questions concerning, e.g. cell growth, morphology, stress response, and metabolite or protein production on single-cell level. The device features continuous media flow enabling constant environmental conditions for perturbation studies, but in addition allows fast medium changes as well as oscillating conditions to mimic any desired environmental situation. To fabricate the single use devices, a silicon wafer containing sub micrometer sized SU-8 structures served as the replication mold for rapid polydimethylsiloxane casting. Chips were cut, assembled, connected, and set up onto a high resolution and fully automated microscope suited for time-lapse imaging, a powerful tool for spatio-temporal cell analysis. Here, the biotechnological platform organism Corynebacterium glutamicum was seeded into the PLBR and cell growth and intracellular fluorescence were followed over several hours unraveling time dependent population heterogeneity on single-cell level, not possible with conventional analysis methods such as flow cytometry. Besides insights into device fabrication, furthermore, the preparation of the preculture, loading, trapping of bacteria, and the PLBR cultivation of single cells and colonies is demonstrated. These devices will add a new dimension in microbiological research to analyze time dependent phenomena of single bacteria under tight environmental control. Due to the simple and relatively short fabrication process the technology can be easily adapted at any microfluidics lab and simply tailored towards specific needs.

  12. Bioreactors in tissue engineering - principles, applications and commercial constraints.

    PubMed

    Hansmann, Jan; Groeber, Florian; Kahlig, Alexander; Kleinhans, Claudia; Walles, Heike

    2013-03-01

    Bioreactor technology is vital for tissue engineering. Usually, bioreactors are used to provide a tissue-specific physiological in vitro environment during tissue maturation. In addition to this most obvious application, bioreactors have the potential to improve the efficiency of the overall tissue-engineering concept. To date, a variety of bioreactor systems for tissue-specific applications have been developed. Of these, some systems are already commercially available. With bioreactor technology, various functional tissues of different types were generated and cultured in vitro. Nevertheless, these efforts and achievements alone have not yet led to many clinically successful tissue-engineered implants. We review possible applications for bioreactor systems within a tissue-engineering process and present basic principles and requirements for bioreactor development. Moreover, the use of bioreactor systems for the expansion of clinically relevant cell types is addressed. In contrast to cell expansion, for the generation of functional three-dimensional tissue equivalents, additional physical cues must be provided. Therefore, bioreactors for musculoskeletal tissue engineering are discussed. Finally, bioreactor technology is reviewed in the context of commercial constraints.

  13. Spatial Experiment Technologies Suitable for Unreturnable Bioreactor

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Zheng, Weibo; Tong, Guanghui

    2016-07-01

    The system composition and main function of the bioreactor piggybacked on TZ cargo transport spacecraft are introduced briefly in the paper.The spatial experiment technologies which are suitable for unreturnable bioreactor are described in detail,including multi-channel liquid transportion and management,multi-type animal cells circuit testing,dynamic targets microscopic observation in situ etc..The feasibility and effectiveness of these technologies which will be used in space experiment in bioreactor are verified in tests and experiments on the ground.

  14. Tubular membrane bioreactors for biotechnological processes.

    PubMed

    Wolff, Christoph; Beutel, Sascha; Scheper, Thomas

    2013-02-01

    This article is an overview of bioreactors using tubular membranes such as hollow fibers or ceramic capillaries for cultivation processes. This diverse group of bioreactor is described here in regard to the membrane materials used, operational modes, and configurations. The typical advantages of this kind of system such as environments with low shear stress together with high cell densities and also disadvantages like poor oxygen supply are summed up. As the usage of tubular membrane bioreactors is not restricted to a certain organism, a brief overview of various applications covering nearly all types of cells from prokaryotic to eukaryotic cells is also given here. PMID:23224587

  15. Bioreactor Technology in Cardiovascular Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Mertsching, H.; Hansmann, J.

    Cardiovascular tissue engineering is a fast evolving field of biomedical science and technology to manufacture viable blood vessels, heart valves, myocar-dial substitutes and vascularised complex tissues. In consideration of the specific role of the haemodynamics of human circulation, bioreactors are a fundamental of this field. The development of perfusion bioreactor technology is a consequence of successes in extracorporeal circulation techniques, to provide an in vitro environment mimicking in vivo conditions. The bioreactor system should enable an automatic hydrodynamic regime control. Furthermore, the systematic studies regarding the cellular responses to various mechanical and biochemical cues guarantee the viability, bio-monitoring, testing, storage and transportation of the growing tissue.

  16. Sensing in tissue bioreactors

    NASA Astrophysics Data System (ADS)

    Rolfe, P.

    2006-03-01

    Specialized sensing and measurement instruments are under development to aid the controlled culture of cells in bioreactors for the fabrication of biological tissues. Precisely defined physical and chemical conditions are needed for the correct culture of the many cell-tissue types now being studied, including chondrocytes (cartilage), vascular endothelial cells and smooth muscle cells (blood vessels), fibroblasts, hepatocytes (liver) and receptor neurones. Cell and tissue culture processes are dynamic and therefore, optimal control requires monitoring of the key process variables. Chemical and physical sensing is approached in this paper with the aim of enabling automatic optimal control, based on classical cell growth models, to be achieved. Non-invasive sensing is performed via the bioreactor wall, invasive sensing with probes placed inside the cell culture chamber and indirect monitoring using analysis within a shunt or a sampling chamber. Electroanalytical and photonics-based systems are described. Chemical sensing for gases, ions, metabolites, certain hormones and proteins, is under development. Spectroscopic analysis of the culture medium is used for measurement of glucose and for proteins that are markers of cell biosynthetic behaviour. Optical interrogation of cells and tissues is also investigated for structural analysis based on scatter.

  17. Evaluation of Zosteric Acid for Mitigating Biofilm Formation of Pseudomonas putida Isolated from a Membrane Bioreactor System

    PubMed Central

    Polo, Andrea; Foladori, Paola; Ponti, Benedetta; Bettinetti, Roberta; Gambino, Michela; Villa, Federica; Cappitelli, Francesca

    2014-01-01

    This study provides data to define an efficient biocide-free strategy based on zosteric acid to counteract biofilm formation on the membranes of submerged bioreactor system plants. 16S rRNA gene phylogenetic analysis showed that gammaproteobacteria was the prevalent taxa on fouled membranes of an Italian wastewater plant. Pseudomonas was the prevalent genus among the cultivable membrane-fouler bacteria and Pseudomonas putida was selected as the target microorganism to test the efficacy of the antifoulant. Zosteric acid was not a source of carbon and energy for P. putida cells and, at 200 mg/L, it caused a reduction of bacterial coverage by 80%. Biofilm experiments confirmed the compound caused a significant decrease in biomass (−97%) and thickness (−50%), and it induced a migration activity of the peritrichous flagellated P. putida over the polycarbonate surface not amenable to a biofilm phenotype. The low octanol-water partitioning coefficient and the high water solubility suggested a low bioaccumulation potential and the water compartment as its main environmental recipient and capacitor. Preliminary ecotoxicological tests did not highlight direct toxicity effects toward Daphnia magna. For green algae Pseudokirchneriella subcapitata an effect was observed at concentrations above 100 mg/L with a significant growth of protozoa that may be connected to a concurrent algal growth inhibition. PMID:24879523

  18. Modeling full-scale osmotic membrane bioreactor systems with high sludge retention and low salt concentration factor for wastewater reclamation.

    PubMed

    Park, Sung Hyuk; Park, Beomseok; Shon, Ho Kyong; Kim, Suhan

    2015-08-01

    A full-scale model was developed to find optimal design parameters for osmotic membrane bioreactor (OMBR) and reverse osmosis (RO) hybrid system for wastewater reclamation. The model simulates salt accumulation, draw solution dilution and water flux in OMBR with sludge concentrator for high retention and low salt concentration factor. The full-scale OMBR simulation results reveal that flat-sheet module with spacers exhibits slightly higher flux than hollow-fiber; forward osmosis (FO) membrane with high water permeability, low salt permeability, and low resistance to salt diffusion shows high water flux; an optimal water recovery around 50% ensures high flux and no adverse effect on microbial activity; and FO membrane cost decreases and RO energy consumption and product water concentration increases at higher DS flow rates and concentrations. The simulated FO water flux and RO energy consumption ranges from 3.03 to 13.76LMH and 0.35 to 1.39kWh/m(3), respectively. PMID:25840775

  19. Modeling full-scale osmotic membrane bioreactor systems with high sludge retention and low salt concentration factor for wastewater reclamation.

    PubMed

    Park, Sung Hyuk; Park, Beomseok; Shon, Ho Kyong; Kim, Suhan

    2015-08-01

    A full-scale model was developed to find optimal design parameters for osmotic membrane bioreactor (OMBR) and reverse osmosis (RO) hybrid system for wastewater reclamation. The model simulates salt accumulation, draw solution dilution and water flux in OMBR with sludge concentrator for high retention and low salt concentration factor. The full-scale OMBR simulation results reveal that flat-sheet module with spacers exhibits slightly higher flux than hollow-fiber; forward osmosis (FO) membrane with high water permeability, low salt permeability, and low resistance to salt diffusion shows high water flux; an optimal water recovery around 50% ensures high flux and no adverse effect on microbial activity; and FO membrane cost decreases and RO energy consumption and product water concentration increases at higher DS flow rates and concentrations. The simulated FO water flux and RO energy consumption ranges from 3.03 to 13.76LMH and 0.35 to 1.39kWh/m(3), respectively.

  20. Simultaneous effective carbon and nitrogen removals and phosphorus recovery in an intermittently aerated membrane bioreactor integrated system

    PubMed Central

    Wang, Yun-Kun; Pan, Xin-Rong; Geng, Yi-Kun; Sheng, Guo-Ping

    2015-01-01

    Recovering nutrients, especially phosphate resource, from wastewater have attracted increasing interest recently. Herein, an intermittently aerated membrane bioreactor (MBR) with a mesh filter was developed for simultaneous chemical oxygen demand (COD), total nitrogen (TN) and phosphorous removal, followed by phosphorus recovery from the phosphorus-rich sludge. This integrated system showed enhanced performances in nitrification and denitrification and phosphorous removal without excess sludge discharged. The removal of COD, TN and total phosphorus (TP) in a modified MBR were averaged at 94.4 ± 2.5%, 94.2 ± 5.7% and 53.3 ± 29.7%, respectively. The removed TP was stored in biomass, and 68.7% of the stored phosphorous in the sludge could be recovered as concentrated phosphate solution with a concentration of phosphate above 350 mg/L. The sludge after phosphorus release could be returned back to the MBR for phosphorus uptake, and 83.8% of its capacity could be recovered. PMID:26541793

  1. Trace analysis of polar pharmaceuticals in wastewater by LC-MS-MS: comparison of membrane bioreactor and activated sludge systems.

    PubMed

    Celiz, Mary Dawn; Pérez, Sandra; Barceló, Damià; Aga, Diana S

    2009-01-01

    In order to assess the efficiency of wastewater treatment plants in removing pharmaceuticals from wastewater, sensitive and reliable methods are necessary for trace analysis of these micropollutants in the presence of a highly complex matrix. In this study, conventional activated sludge (CAS) and membrane bioreactor (MBR) treatment systems are compared in eliminating pharmaceuticals in wastewater. The pharmaceuticals investigated include aceclofenac, carbamazepine, diclofenac, enalapril, and trimethoprim. Analysis is performed using a liquid chromatograph with hybrid linear ion-trap mass spectrometer equipped with a polar reversed-phase column to achieve good separation and minimize matrix effects. To pre-concentrate the samples, the use of two types of solid-phase extraction packing materials in tandem assures good recoveries of all the target analytes. In the influent, the concentration of these compounds ranges from 0.09 to 1.4 microg/L. Diclofenac shows resistance to degradation in the CAS but is amenable to degradation in the MBR. Trimethoprim and enalapril are only slightly eliminated in the CAS but are reduced by more than 95% in the MBR. Carbamazepine removal is negligible, while aceclofenac is only 50% reduced in CAS and MBR. In general, these results indicate that MBR has a higher efficiency in removing some polar pharmaceuticals in wastewater.

  2. A system of miniaturized stirred bioreactors for parallel continuous cultivation of yeast with online measurement of dissolved oxygen and off-gas.

    PubMed

    Klein, Tobias; Schneider, Konstantin; Heinzle, Elmar

    2013-02-01

    Chemostat cultivation is a powerful tool for physiological studies of microorganisms. We report the construction and application of a set of eight parallel small-scale bioreactors with a working volume of 10 mL for continuous cultivation. Hungate tubes were used as culture vessels connected to multichannel-peristaltic pumps for feeding fresh media and removal of culture broth and off-gas. Water saturated air is sucked into the bioreactors by applying negative pressure, and small stirrer bars inside the culture vessels allow sufficient mixing and oxygen transfer. Optical sensors are used for non-invasive online measurement of dissolved oxygen, which proved to be a powerful indicator of the physiological state of the cultures, particularly of steady-state conditions. Analysis of culture exhaust-gas by means of mass spectrometry enables balancing of carbon. The capacity of the developed small-scale bioreactor system was validated using the fission yeast Schizosaccharomyces pombe, focusing on the metabolic shift from respiratory to respiro-fermentative metabolism, as well as studies on consumption of different substrates such as glucose, fructose, and gluconate. In all cases, an almost completely closed carbon balance was obtained proving the reliability of the experimental setup.

  3. In vitro cardiovascular system emulator (bioreactor) for the simulation of normal and diseased conditions with and without mechanical circulatory support.

    PubMed

    Ruiz, Paula; Rezaienia, Mohammad Amin; Rahideh, Akbar; Keeble, Thomas R; Rothman, Martin T; Korakianitis, Theodosios

    2013-06-01

    This article presents a new device designed to simulate in vitro flow rates, pressures, and other parameters representing normal and diseased conditions of the human cardiovascular system. Such devices are sometimes called bioreactors or "mock" simulator of cardiovascular loops (SCVLs) in literature. Most SCVLs simulate the systemic circulation only and have inherent limitations in studying the interaction of left and right sides of circulation. Those SCVLs that include both left and right sides of the circulation utilize header reservoirs simulating cycles with constant atrial pressures. The SCVL described in this article includes models for all four chambers of the heart, and the systemic and pulmonary circulation loops. Each heart chamber is accurately activated by a separate linear motor to simulate the suction and ejection stages, thus capturing important features in the perfusion waveforms. Four mechanical heart valves corresponding to mitral, pulmonary, tricuspid, and aortic are used to control the desired unidirectional flow. This SCVL can emulate different physiological and pathological conditions of the human cardiovascular system by controlling the different parameters of blood circulation through the vascular tree (mainly the resistance, compliance, and elastance of the heart chambers). In this study, four cases were simulated: healthy, congestive heart failure, left ventricular diastolic dysfunction conditions, and left ventricular dysfunction with the addition of a mechanical circulatory support (MCS) device. Hemodynamic parameters including resistance, pressure, and flow have been investigated at aortic sinus, carotid artery, and pulmonary artery, respectively. The addition of an MCS device resulted in a significant reduction in mean blood pressure and re-establishment of cardiac output. In all cases, the experimental results are compared with human physiology and numerical simulations. The results show the capability of the SCVL to replicate various

  4. Spiral vane bioreactor

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor)

    1991-01-01

    A spiral vane bioreactor of a perfusion type is described in which a vertical chamber, intended for use in a microgravity condition, has a central rotating filter assembly and has flexible membranes disposed to rotate annularly about the filter assembly. The flexible members have end portions disposed angularly with respect to one another. A fluid replenishment medium is input from a closed loop liquid system to a completely liquid filled chamber containing microcarrier beads, cells and a fluid medium. Output of spent medium is to the closed loop. In the closed loop, the output and input parameters are sensed by sensors. A manifold permits recharging of the nutrients and pH adjustment. Oxygen is supplied and carbon dioxide and bubbles are removed and the system is monitored and controlled by a microprocessor.

  5. Biodegradation of perchlorate from real and synthetic effluent by Proteobacterium ARJR SMBS in a stirred tank bioreactor system.

    PubMed

    Raj, J R Anoop; Muruganandam, L

    2013-01-01

    The present work is a laboratory-scale study of perchlorate degradation using Proteobacterium ARJR SMBS in a stirred tank bioreactor (STBR). Anaerobically grown cultures of ARJR SMBS exposed to a variety of ClO4(-) levels within the range 30 to 150 mg L(-1) under anoxic conditions have been studied. The chloride released was measured and the average value found to be 43.55 mg L(-1). The average daily value of perchlorate degradation rate in this system was 17.24 mg L(-1) at optimum pH 7.5 and 0.25% NaCl salinity. The mixed liquor suspension solids of the system gradually increased from 0.025-0.156 g L(-1) during the operating period of 55 days. Mass balance indicated that the chloride produced was 0.45 mole per mole of perchlorate. The salinity of the system varied from 2.50-18.46 g L(-1), dependent primarily upon the inlet perchlorate concentration. The degradation mechanism, which obeyed a first-order substrate-utilizing kinetic model, allowed the growth rates and the half-saturation constants to be determined. The maximum observed anoxic growth rates (0.83-1.2 h(-1)) for ARJR SMBS in a synthetic effluent (SE) were considerably higher than in real effluent (RE) (0.45-0.59 h(-1)). The biomass yield of ARJR SMBS in STBR was higher in SE (1 +/- 0.4 mg L(-1)) than in RE (1 +/- 0.1 mg L(-1)). From the experimental findings, the uptake of perchlorate by the bacterium is suggested to be a non-interfacially-based mechanism. Under steady state operating condition the performance of the reactor was comparatively lower for RE than for SE but still offers significant control over the degradation of perchlorate under full-scale conditions.

  6. Bioreactor Design for Tendon/Ligament Engineering

    PubMed Central

    Wang, Tao; Gardiner, Bruce S.; Lin, Zhen; Rubenson, Jonas; Kirk, Thomas B.; Wang, Allan; Xu, Jiake

    2013-01-01

    Tendon and ligament injury is a worldwide health problem, but the treatment options remain limited. Tendon and ligament engineering might provide an alternative tissue source for the surgical replacement of injured tendon. A bioreactor provides a controllable environment enabling the systematic study of specific biological, biochemical, and biomechanical requirements to design and manufacture engineered tendon/ligament tissue. Furthermore, the tendon/ligament bioreactor system can provide a suitable culture environment, which mimics the dynamics of the in vivo environment for tendon/ligament maturation. For clinical settings, bioreactors also have the advantages of less-contamination risk, high reproducibility of cell propagation by minimizing manual operation, and a consistent end product. In this review, we identify the key components, design preferences, and criteria that are required for the development of an ideal bioreactor for engineering tendons and ligaments. PMID:23072472

  7. Modular bioreactor for the remediation of liquid streams and methods for using the same

    DOEpatents

    Noah, K.S.; Sayer, R.L.; Thompson, D.N.

    1998-06-30

    The present invention is directed to a bioreactor system for the remediation of contaminated liquid streams. The bioreactor system is composed of at least one and often a series of sub-units referred to as bioreactor modules. The modular nature of the system allows bioreactor systems be subdivided into smaller units and transported to waste sites where they are combined to form bioreactor systems of any size. The bioreactor modules further comprises reactor fill materials in the bioreactor module that remove the contaminants from the contaminated stream. To ensure that the stream thoroughly contacts the reactor fill materials, each bioreactor module comprises means for directing the flow of the stream in a vertical direction and means for directing the flow of the stream in a horizontal direction. In a preferred embodiment, the reactor fill comprises a sulfate reducing bacteria which is particularly useful for precipitating metals from acid mine streams. 6 figs.

  8. Modular bioreactor for the remediation of liquid streams and methods for using the same

    DOEpatents

    Noah, Karl S.; Sayer, Raymond L.; Thompson, David N.

    1998-01-01

    The present invention is directed to a bioreactor system for the remediation of contaminated liquid streams. The bioreactor system is composed of at least one and often a series of sub-units referred to as bioreactor modules. The modular nature of the system allows bioreactor systems be subdivided into smaller units and transported to waste sites where they are combined to form bioreactor systems of any size. The bioreactor modules further comprises reactor fill materials in the bioreactor module that remove the contaminants from the contaminated stream. To ensure that the stream thoroughly contacts the reactor fill materials, each bioreactor module comprises means for directing the flow of the stream in a vertical direction and means for directing the flow of the stream in a horizontal direction. In a preferred embodiment, the reactor fill comprises a sulfate reducing bacteria which is particularly useful for precipitating metals from acid mine streams.

  9. Visualizing feasible operating ranges within tissue engineering systems using a "windows of operation" approach: a perfusion-scaffold bioreactor case study.

    PubMed

    McCoy, Ryan J; O'Brien, Fergal J

    2012-12-01

    Tissue engineering approaches to developing functional substitutes are often highly complex, multivariate systems where many aspects of the biomaterials, bio-regulatory factors or cell sources may be controlled in an effort to enhance tissue formation. Furthermore, success is based on multiple performance criteria reflecting both the quantity and quality of the tissue produced. Managing the trade-offs between different performance criteria is a challenge. A "windows of operation" tool that graphically represents feasible operating spaces to achieve user-defined levels of performance has previously been described by researchers in the bio-processing industry. This paper demonstrates the value of "windows of operation" to the tissue engineering field using a perfusion-scaffold bioreactor system as a case study. In our laboratory, perfusion bioreactor systems are utilized in the context of bone tissue engineering to enhance the osteogenic differentiation of cell-seeded scaffolds. A key challenge of such perfusion bioreactor systems is to maximize the induction of osteogenesis but minimize cell detachment from the scaffold. Two key operating variables that influence these performance criteria are the mean scaffold pore size and flow-rate. Using cyclooxygenase-2 and osteopontin gene expression levels as surrogate indicators of osteogenesis, we employed the "windows of operation" methodology to rapidly identify feasible operating ranges for the mean scaffold pore size and flow-rate that achieved user-defined levels of performance for cell detachment and differentiation. Incorporation of such tools into the tissue engineer's armory will hopefully yield a greater understanding of the highly complex systems used and help aid decision making in future translation of products from the bench top to the market place. PMID:22627891

  10. Hollow fiber bioreactor technology for tissue engineering applications.

    PubMed

    Eghbali, Hadis; Nava, Michele M; Mohebbi-Kalhori, Davod; Raimondi, Manuela T

    2016-01-01

    Hollow fiber bioreactors are the focus of scientific research aiming to mimic physiological vascular networks and engineer organs and tissues in vitro. The reason for this lies in the interesting features of this bioreactor type, including excellent mass transport properties. Indeed, hollow fiber bioreactors allow limitations to be overcome in nutrient transport by diffusion, which is often an obstacle to engineer sizable constructs in vitro. This work reviews the existing literature relevant to hollow fiber bioreactors in organ and tissue engineering applications. To this purpose, we first classify the hollow fiber bioreactors into 2 categories: cylindrical and rectangular. For each category, we summarize their main applications both at the tissue and at the organ level, focusing on experimental models and computational studies as predictive tools for designing innovative, dynamic culture systems. Finally, we discuss future perspectives on hollow fiber bioreactors as in vitro models for tissue and organ engineering applications.

  11. A novel approach to recycle bacterial culture waste for fermentation reuse via a microbial fuel cell-membrane bioreactor system.

    PubMed

    Li, Jian; Zhu, Yuan; Zhuang, Liangpeng; Otsuka, Yuichiro; Nakamura, Masaya; Goodell, Barry; Sonoki, Tomonori; He, Zhen

    2015-09-01

    Biochemical production processes require water and nutrient resources for culture media preparation, but aqueous waste is generated after the target products are extracted. In this study, culture waste (including cells) produced from a lab-scale fermenter was fed into a microbial fuel cell-membrane bioreactor (MFC-MBR) system. Electrical energy was generated via the interaction between the microbial consortia and the solid electrode in the MFC. The treated wastewater was reclaimed in this process which was reused as a solvent and a nutrient source in subsequent fermentation. Polarization testing showed that the MFC produced a maximum current density of 37.53 A m(-3) with a maximum power density of 5.49 W m(-3). The MFC was able to generate 0.04 kWh of energy per cubic meter of culture waste treated. The lab-scale fermenters containing pure cultures of an engineered Pseudomonas spp. were used to generate 2-pyrone-4,6-dicarboxylic acid (PDC), a high value platform chemical. When the MFC-MBR-treated wastewater was used for the fermenter culture medium, a specific bacterial growth rate of 1.00 ± 0.05 h(-1) was obtained with a PDC production rate of 708.11 ± 64.70 mg PDC L(-1) h(-1). Comparable values for controls using pure water were 0.95 ± 0.06 h(-1) and 621.01 ± 22.09 mg PDC L(-1) h(-1) (P > 0.05), respectively. The results provide insight on a new approach for more sustainable bio-material production while at the same time generating energy, and suggest that the treated wastewater can be used as a solvent and a nutrient source for the fermentation production of high value platform chemicals.

  12. Comparison of microporous and nonporous membrane bioreactor systems for the treatment of BTEX in vapor streams.

    PubMed

    Attaway, H; Gooding, C H; Schmidt, M G

    2002-05-01

    Increased regulatory constraints on industrial releases of atmospheric volatile organic compounds (VOCs) have resulted in an interest in using biofilters, bioscrubbers and air/liquid membranes for treatment of vapor phase waste streams. In this report, we describe the comparison of the use of two fundamentally different types of membrane module systems that allow the rapid diffusion of vapor phase aromatics and oxygen to an active biofilm for subsequent biodegradation. One system used a commercial membrane module containing microporous polypropylene fibers while the other used a nonporous silicone tubing membrane module for the delivery of substrate (a mixture of benzene, ethylbenzene, toluene, and xylenes [BTEX]) and electron acceptor (O(2)). Tests of the systems under similar conditions with BTEX in the vapor feed stream showed significant performance advantages for the silicone membrane system. The average surface-area-based BTEX removal rate for the microporous membrane system over 500 h of operation was 7.88 microg h(-1) cm(-2) while the rate for the silicone membrane system was 23.87 microg h(-1) cm(-2). The percentages of BTEX removal were also consistently better in the silicone membrane system versus the microporous system. Part of the performance problem associated with the microporous membrane system appeared to be internal water condensation and possible plugging of the pores with biomass over time that could not be resolved with vapor phase backflushing. PMID:11986927

  13. Bioreactor rotating wall vessel

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Cell constructs grown in a rotating bioreactor on Earth (left) eventually become too large to stay suspended in the nutrient media. In the microgravity of orbit, the cells stay suspended. Rotation then is needed for gentle stirring to replenish the media around the cells.

  14. Complete degradation of the azo dye Acid Orange-7 and bioelectricity generation in an integrated microbial fuel cell, aerobic two-stage bioreactor system in continuous flow mode at ambient temperature.

    PubMed

    Fernando, Eustace; Keshavarz, Taj; Kyazze, Godfrey

    2014-03-01

    In this study, the commercially used model azo dye Acid Orange-7 (AO-7) was fully degraded into less toxic intermediates using an integrated microbial fuel cell (MFC) and aerobic bioreactor system. The integrated bioreactor system was operated at ambient temperature and continuous-flow mode. AO-7 loading rate was varied during experiments from 70gm(-3)day(-1) to 210gm(-3)day(-1). Colour and soluble COD removal rates reached>90% under all AO-7 loading rates. The MFC treatment stage prompted AO-7 to undergo reductive degradation into its constituent aromatic amines. HPLC-MS analysis of metabolite extracts from the aerobic stage of the bioreactor system indicated further oxidative degradation of the resulting aromatic amines into simpler compounds. Bioluminescence based Vibrio fischeri ecotoxicity testing demonstrated that aerobic stage effluent exhibited toxicity reductions of approximately fivefold and ten-fold respectively compared to the dye wastewater influent and MFC-stage effluent.

  15. Influence of aeration-homogenization system in stirred tank bioreactors, dissolved oxygen concentration and pH control mode on BHK-21 cell growth and metabolism.

    PubMed

    Núñez, Eutimio Gustavo Fernández; Leme, Jaci; de Almeida Parizotto, Letícia; Chagas, Wagner Antonio; de Rezende, Alexandre Gonçalves; da Costa, Bruno Labate Vale; Monteiro, Daniela Cristina Ventini; Boldorini, Vera Lucia Lopes; Jorge, Soraia Attie Calil; Astray, Renato Mancini; Pereira, Carlos Augusto; Caricati, Celso Pereira; Tonso, Aldo

    2014-08-01

    This work focused on determining the effect of dissolved oxygen concentration (DO) on growth and metabolism of BHK-21 cell line (host cell for recombinant proteins manufacturing and viral vaccines) cultured in two stirred tank bioreactors with different aeration-homogenization systems, as well as pH control mode. BHK-21 cell line adapted to single-cell suspension was cultured in Celligen without aeration cage (rotating gas-sparger) and Bioflo 110, at 10, 30 and 50 % air saturation (impeller for gas dispersion from sparger-ring). The pH was controlled at 7.2 as far as it was possible with gas mixtures. In other runs, at 30 and 50 % (DO) in Bioflo 110, the cells grew at pH controlled with CO2 and NaHCO3 solution. Glucose, lactate, glutamine, and ammonium were quantified by enzymatic methods. Cell concentration, size and specific oxygen consumption were also determined. When NaHCO3 solution was not used, the optimal DOs were 10 and 50 % air saturation for Celligen and Bioflo 110, respectively. In this condition maximum cell concentrations were higher than 4 × 10(6) cell/mL. An increase in maximum cell concentration of 36 % was observed in batch carried out at 30 % air saturation in a classical stirred tank bioreactor (Bioflo 110) with base solution addition. The optimal parameters defined in this work allow for bioprocess developing of viral vaccines, transient protein expression and viral vector for gene therapy based on BHK-21 cell line in two stirred tank bioreactors with different agitation-aeration systems.

  16. Bioreactors: design and operation

    SciTech Connect

    Cooney, C.L.

    1983-02-11

    The bioreactor provides a central link between the starting feedstock and the product. The reaction yield and selectivity are determined by the biocatalyst, but productivity is often determined by the process technology; as a consequence, biochemical reaction engineering becomes the interface for the biologist and engineer. Developments in bioreactor design, including whole cell immobilization, immobilized enzymes, continuous reaction, and process control, will increasingly reflect the need for cross-disciplinary interaction in the biochemical process industry. This paper examines the strategy for selection and design of bioreactors and identifies the limits and constraints in their use. 25 references, 3 figures, 3 tables.

  17. A new flat sheet membrane bioreactor hybrid system for advanced treatment of effluent, reverse osmosis pretreatment and fouling mitigation.

    PubMed

    Hosseinzadeh, Majid; Bidhendi, Gholamreza Nabi; Torabian, Ali; Mehrdadi, Naser; Pourabdullah, Mehdi

    2015-09-01

    This paper introduces a new hybrid electro membrane bioreactor (HEMBR) for reverse osmosis (RO) pretreatment and advanced treatment of effluent by simultaneously integrating electrical coagulation (EC) with a membrane bioreactor (MBR) and its performance was compared with conventional MBR. Experimental results and their statistical analysis showed removal efficiency for suspended solids (SS) of almost 100% for both reactors. HEMBR removal of chemical oxygen demand (COD) improved by 4% and membrane fouling was alleviated according to transmembrane pressure (TMP). The average silt density index (SDI) of HEMBR permeate samples was slightly better indicating less RO membrane fouling. Moreover, based on the SVI comparison of two reactor biomass samples, HEMBR showed better settling characteristics which improved the dewaterability and filterability of the sludge. Analysis the change of membrane surfaces and the cake layer formed over them through field emission scanning electron microscopy (FESEM) and X-ray fluorescence spectrometer (XRF) were also discussed.

  18. Selection of suitable fertilizer draw solute for a novel fertilizer-drawn forward osmosis-anaerobic membrane bioreactor hybrid system.

    PubMed

    Kim, Youngjin; Chekli, Laura; Shim, Wang-Geun; Phuntsho, Sherub; Li, Sheng; Ghaffour, Noreddine; Leiknes, TorOve; Shon, Ho Kyong

    2016-06-01

    In this study, a protocol for selecting suitable fertilizer draw solute for anaerobic fertilizer-drawn forward osmosis membrane bioreactor (AnFDFOMBR) was proposed. Among eleven commercial fertilizer candidates, six fertilizers were screened further for their FO performance tests and evaluated in terms of water flux and reverse salt flux. Using selected fertilizers, bio-methane potential experiments were conducted to examine the effect of fertilizers on anaerobic activity due to reverse diffusion. Mono-ammonium phosphate (MAP) showed the highest biogas production while other fertilizers exhibited an inhibition effect on anaerobic activity with solute accumulation. Salt accumulation in the bioreactor was also simulated using mass balance simulation models. Results showed that ammonium sulfate and MAP were the most appropriate for AnFDFOMBR since they demonstrated less salt accumulation, relatively higher water flux, and higher dilution capacity of draw solution. Given toxicity of sulfate to anaerobic microorganisms, MAP appears to be the most suitable draw solution for AnFDFOMBR.

  19. Treatment of Produced Waters Using a Surfactant Modified Zeolite/Vapor Phase Bioreactor System

    SciTech Connect

    Soondong Kwon; Elaine B. Darby; Li-Jung Chen; Lynn E. Katz; Kerry A. Kinney; R. S. Bowman; E. J. Sullivan

    2005-03-11

    This report summarizes work performed on this project from October 2004 through March 2005. In previous work, a surfactant modified zeolite (SMZ) was shown to be an effective system for removing BTEX contaminants from produced water. Additional work on this project demonstrated that a compost-based biofilter could biodegrade the BTEX contaminants found in the SMZ regeneration waste gas stream. However, it was also determined that the BTEX concentrations in the waste gas stream varied significantly during the regeneration period and the initial BTEX concentrations were too high for the biofilter to handle effectively. A series of experiments were conducted to determine the feasibility of using a passive adsorption column placed upstream of the biofilter to attenuate the peak gas-phase VOC concentrations delivered to the biofilter during the SMZ regeneration process. In preparation for the field test of the SMZ/VPB treatment system in New Mexico, a pilot-scale SMZ system was also designed and constructed during this reporting period. Finally, a cost and feasibility analysis was also completed. To investigate the merits of the passive buffering system during SMZ regeneration, two adsorbents, SMZ and granular activated carbon (GAC) were investigated in flow-through laboratory-scale columns to determine their capacity to handle steady and unsteady VOC feed conditions. When subjected to a toluene-contaminated air stream, the column containing SMZ reduced the peak inlet 1000 ppmv toluene concentration to 630 ppmv at a 10 second contact time. This level of buffering was insufficient to ensure complete removal in the downstream biofilter and the contact time was longer than desired. For this reason, using SMZ as a passive buffering system for the gas phase contaminants was not pursued further. In contrast to the SMZ results, GAC was found to be an effective adsorbent to handle the peak contaminant concentrations that occur early during the SMZ regeneration process. At a one

  20. An Innovative Optical Sensor for the Online Monitoring and Control of Biomass Concentration in a Membrane Bioreactor System for Lactic Acid Production

    PubMed Central

    Fan, Rong; Ebrahimi, Mehrdad; Quitmann, Hendrich; Aden, Matthias; Czermak, Peter

    2016-01-01

    Accurate real-time process control is necessary to increase process efficiency, and optical sensors offer a competitive solution because they provide diverse system information in a noninvasive manner. We used an innovative scattered light sensor for the online monitoring of biomass during lactic acid production in a membrane bioreactor system because biomass determines productivity in this type of process. The upper limit of the measurement range in fermentation broth containing Bacillus coagulans was ~2.2 g·L−1. The specific cell growth rate (µ) during the exponential phase was calculated using data representing the linear range (cell density ≤ 0.5 g·L−1). The results were consistently and reproducibly more accurate than offline measurements of optical density and cell dry weight, because more data were gathered in real-time over a shorter duration. Furthermore, µmax was measured under different filtration conditions (transmembrane pressure 0.3–1.2 bar, crossflow velocity 0.5–1.5 m·s−1), showing that energy input had no significant impact on cell growth. Cell density was monitored using the sensor during filtration and was maintained at a constant level by feeding with glucose according to the fermentation kinetics. Our novel sensor is therefore suitable for integration into control strategies for continuous fermentation in membrane bioreactor systems. PMID:27007380

  1. An Innovative Optical Sensor for the Online Monitoring and Control of Biomass Concentration in a Membrane Bioreactor System for Lactic Acid Production.

    PubMed

    Fan, Rong; Ebrahimi, Mehrdad; Quitmann, Hendrich; Aden, Matthias; Czermak, Peter

    2016-03-21

    Accurate real-time process control is necessary to increase process efficiency, and optical sensors offer a competitive solution because they provide diverse system information in a noninvasive manner. We used an innovative scattered light sensor for the online monitoring of biomass during lactic acid production in a membrane bioreactor system because biomass determines productivity in this type of process. The upper limit of the measurement range in fermentation broth containing Bacillus coagulans was ~2.2 g·L(-1). The specific cell growth rate (µ) during the exponential phase was calculated using data representing the linear range (cell density ≤ 0.5 g·L(-1)). The results were consistently and reproducibly more accurate than offline measurements of optical density and cell dry weight, because more data were gathered in real-time over a shorter duration. Furthermore, µ(max) was measured under different filtration conditions (transmembrane pressure 0.3-1.2 bar, crossflow velocity 0.5-1.5 m·s(-1)), showing that energy input had no significant impact on cell growth. Cell density was monitored using the sensor during filtration and was maintained at a constant level by feeding with glucose according to the fermentation kinetics. Our novel sensor is therefore suitable for integration into control strategies for continuous fermentation in membrane bioreactor systems.

  2. An Innovative Optical Sensor for the Online Monitoring and Control of Biomass Concentration in a Membrane Bioreactor System for Lactic Acid Production.

    PubMed

    Fan, Rong; Ebrahimi, Mehrdad; Quitmann, Hendrich; Aden, Matthias; Czermak, Peter

    2016-01-01

    Accurate real-time process control is necessary to increase process efficiency, and optical sensors offer a competitive solution because they provide diverse system information in a noninvasive manner. We used an innovative scattered light sensor for the online monitoring of biomass during lactic acid production in a membrane bioreactor system because biomass determines productivity in this type of process. The upper limit of the measurement range in fermentation broth containing Bacillus coagulans was ~2.2 g·L(-1). The specific cell growth rate (µ) during the exponential phase was calculated using data representing the linear range (cell density ≤ 0.5 g·L(-1)). The results were consistently and reproducibly more accurate than offline measurements of optical density and cell dry weight, because more data were gathered in real-time over a shorter duration. Furthermore, µ(max) was measured under different filtration conditions (transmembrane pressure 0.3-1.2 bar, crossflow velocity 0.5-1.5 m·s(-1)), showing that energy input had no significant impact on cell growth. Cell density was monitored using the sensor during filtration and was maintained at a constant level by feeding with glucose according to the fermentation kinetics. Our novel sensor is therefore suitable for integration into control strategies for continuous fermentation in membrane bioreactor systems. PMID:27007380

  3. Quantitative Validation of the Presto Blue Metabolic Assay for Online Monitoring of Cell Proliferation in a 3D Perfusion Bioreactor System.

    PubMed

    Sonnaert, Maarten; Papantoniou, Ioannis; Luyten, Frank P; Schrooten, Jan Ir

    2015-06-01

    As the fields of tissue engineering and regenerative medicine mature toward clinical applications, the need for online monitoring both for quantitative and qualitative use becomes essential. Resazurin-based metabolic assays are frequently applied for determining cytotoxicity and have shown great potential for monitoring 3D bioreactor-facilitated cell culture. However, no quantitative correlation between the metabolic conversion rate of resazurin and cell number has been defined yet. In this work, we determined conversion rates of Presto Blue, a resazurin-based metabolic assay, for human periosteal cells during 2D and 3D static and 3D perfusion cultures. Our results showed that for the evaluated culture systems there is a quantitative correlation between the Presto Blue conversion rate and the cell number during the expansion phase with no influence of the perfusion-related parameters, that is, flow rate and shear stress. The correlation between the cell number and Presto Blue conversion subsequently enabled the definition of operating windows for optimal signal readouts. In conclusion, our data showed that the conversion of the resazurin-based Presto Blue metabolic assay can be used as a quantitative readout for online monitoring of cell proliferation in a 3D perfusion bioreactor system, although a system-specific validation is required.

  4. Treatment of Produced Waters Using a Surfactant Modified Zeolite/Vapor Phase Bioreactor System

    SciTech Connect

    Soondong Kwon; Elaine B. Darby; Li-Jung Chen; Lynn E. Katz; Kerry A. Kinney; R. S. Bowman; E. J. Sullivan

    2005-09-11

    This report summarizes work performed on this project from April 2005 through September 2005. In previous work, a series of laboratory scale experiments were conducted to determine the feasibility of using a SMZ system coupled with a VPB to remove and ultimately destroy the organic pollutants found in produced water. Based on the laboratory scale data, a field test of the process was conducted at the McGrath Salt Water Disposal facility in July and August of 2005. The system performed well over repeated feed and regeneration cycles demonstrating the viability of the process for long term operation. Of the BTEX components present in the produced water, benzene had the lowest adsorption affinity for the SMZ and thus controlled the sorption cycle length. Regeneration of the SMZ using air sparging was found to be sufficient in the field to maintain the SMZ adsorption capacity and to allow continuous operation of the system. As expected, the BTEX concentrations in the regeneration off gas stream were initially very high in a given regeneration cycle. However, a granular activated carbon buffering column placed upstream of the VPB reduced the peak BTEX concentrations to acceptable levels for the VPB. In this way, the VPB was able to maintain stable performance over the entire SMZ regeneration period despite the intermittent nature of the feed.

  5. Tapered bed bioreactor

    DOEpatents

    Scott, Charles D.; Hancher, Charles W.

    1977-01-01

    A vertically oriented conically shaped column is used as a fluidized bed bioreactor wherein biologically catalyzed reactions are conducted in a continuous manner. The column utilizes a packing material a support having attached thereto a biologically active catalytic material.

  6. Predator-prey-substrate model of wastewater treatment in bioreactor system

    NASA Astrophysics Data System (ADS)

    Sadikin, Zubaidah; Salim, Normah; Allias, Razihan

    2013-04-01

    This paper analyses the mathematical model of the interaction between predator-prey and substrate that have been expressed as a system of nonlinear ordinary differential equations. This mathematical model can help to investigate the biological reaction of the interaction of predator-prey and substrate in biological wastewater treatment to improve the quality of water that flows out from the reactor. By using Monod Kinetics Growth Model, the steady state solutions have been obtained and their stability is determined as a function of the residence time.

  7. A novel approach to recycle bacterial culture waste for fermentation reuse via a microbial fuel cell-membrane bioreactor system.

    PubMed

    Li, Jian; Zhu, Yuan; Zhuang, Liangpeng; Otsuka, Yuichiro; Nakamura, Masaya; Goodell, Barry; Sonoki, Tomonori; He, Zhen

    2015-09-01

    Biochemical production processes require water and nutrient resources for culture media preparation, but aqueous waste is generated after the target products are extracted. In this study, culture waste (including cells) produced from a lab-scale fermenter was fed into a microbial fuel cell-membrane bioreactor (MFC-MBR) system. Electrical energy was generated via the interaction between the microbial consortia and the solid electrode in the MFC. The treated wastewater was reclaimed in this process which was reused as a solvent and a nutrient source in subsequent fermentation. Polarization testing showed that the MFC produced a maximum current density of 37.53 A m(-3) with a maximum power density of 5.49 W m(-3). The MFC was able to generate 0.04 kWh of energy per cubic meter of culture waste treated. The lab-scale fermenters containing pure cultures of an engineered Pseudomonas spp. were used to generate 2-pyrone-4,6-dicarboxylic acid (PDC), a high value platform chemical. When the MFC-MBR-treated wastewater was used for the fermenter culture medium, a specific bacterial growth rate of 1.00 ± 0.05 h(-1) was obtained with a PDC production rate of 708.11 ± 64.70 mg PDC L(-1) h(-1). Comparable values for controls using pure water were 0.95 ± 0.06 h(-1) and 621.01 ± 22.09 mg PDC L(-1) h(-1) (P > 0.05), respectively. The results provide insight on a new approach for more sustainable bio-material production while at the same time generating energy, and suggest that the treated wastewater can be used as a solvent and a nutrient source for the fermentation production of high value platform chemicals. PMID:26013992

  8. A bioreactor test system to mimic the biological and mechanical environment of oral soft tissues and to evaluate substitutes for connective tissue grafts.

    PubMed

    Mathes, Stephanie H; Wohlwend, Lorenz; Uebersax, Lorenz; von Mentlen, Roger; Thoma, Daniel S; Jung, Ronald E; Görlach, Christoph; Graf-Hausner, Ursula

    2010-12-15

    Gingival cells of the oral connective tissue are exposed to complex mechanical forces during mastication, speech, tooth movement and orthodontic treatments. Especially during wound healing following surgical procedures, internal and external forces may occur, creating pressure upon the newly formed tissue. This clinical situation has to be considered when developing biomaterials to augment soft tissue in the oral cavity. In order to pre-evaluate a collagen sponge intended to serve as a substitute for autogenous connective tissue grafts (CTGs), a dynamic bioreactor system was developed. Pressure and shear forces can be applied in this bioreactor in addition to a constant medium perfusion to cell-material constructs. Three-dimensional volume changes and stiffness of the matrices were analyzed. In addition, cell responses such as cell vitality and extracellular matrix (ECM) production were investigated. The number of metabolic active cells constantly increased under fully dynamic culture conditions. The sponges remained elastic even after mechanical forces were applied for 14 days. Analysis of collagen type I and fibronectin revealed a statistically significant accumulation of these ECM molecules (P < 0.05-0.001) when compared to static cultures. An increased expression of tenascin-c, indicating tissue remodeling processes, was observed under dynamic conditions only. The results indicate that the tested in vitro cell culture system was able to mimic both the biological and mechanical environments of the clinical situation in a healing wound.

  9. Open source software to control Bioflo bioreactors.

    PubMed

    Burdge, David A; Libourel, Igor G L

    2014-01-01

    Bioreactors are designed to support highly controlled environments for growth of tissues, cell cultures or microbial cultures. A variety of bioreactors are commercially available, often including sophisticated software to enhance the functionality of the bioreactor. However, experiments that the bioreactor hardware can support, but that were not envisioned during the software design cannot be performed without developing custom software. In addition, support for third party or custom designed auxiliary hardware is often sparse or absent. This work presents flexible open source freeware for the control of bioreactors of the Bioflo product family. The functionality of the software includes setpoint control, data logging, and protocol execution. Auxiliary hardware can be easily integrated and controlled through an integrated plugin interface without altering existing software. Simple experimental protocols can be entered as a CSV scripting file, and a Python-based protocol execution model is included for more demanding conditional experimental control. The software was designed to be a more flexible and free open source alternative to the commercially available solution. The source code and various auxiliary hardware plugins are publicly available for download from https://github.com/LibourelLab/BiofloSoftware. In addition to the source code, the software was compiled and packaged as a self-installing file for 32 and 64 bit windows operating systems. The compiled software will be able to control a Bioflo system, and will not require the installation of LabVIEW. PMID:24667828

  10. Open source software to control Bioflo bioreactors.

    PubMed

    Burdge, David A; Libourel, Igor G L

    2014-01-01

    Bioreactors are designed to support highly controlled environments for growth of tissues, cell cultures or microbial cultures. A variety of bioreactors are commercially available, often including sophisticated software to enhance the functionality of the bioreactor. However, experiments that the bioreactor hardware can support, but that were not envisioned during the software design cannot be performed without developing custom software. In addition, support for third party or custom designed auxiliary hardware is often sparse or absent. This work presents flexible open source freeware for the control of bioreactors of the Bioflo product family. The functionality of the software includes setpoint control, data logging, and protocol execution. Auxiliary hardware can be easily integrated and controlled through an integrated plugin interface without altering existing software. Simple experimental protocols can be entered as a CSV scripting file, and a Python-based protocol execution model is included for more demanding conditional experimental control. The software was designed to be a more flexible and free open source alternative to the commercially available solution. The source code and various auxiliary hardware plugins are publicly available for download from https://github.com/LibourelLab/BiofloSoftware. In addition to the source code, the software was compiled and packaged as a self-installing file for 32 and 64 bit windows operating systems. The compiled software will be able to control a Bioflo system, and will not require the installation of LabVIEW.

  11. Open Source Software to Control Bioflo Bioreactors

    PubMed Central

    Burdge, David A.; Libourel, Igor G. L.

    2014-01-01

    Bioreactors are designed to support highly controlled environments for growth of tissues, cell cultures or microbial cultures. A variety of bioreactors are commercially available, often including sophisticated software to enhance the functionality of the bioreactor. However, experiments that the bioreactor hardware can support, but that were not envisioned during the software design cannot be performed without developing custom software. In addition, support for third party or custom designed auxiliary hardware is often sparse or absent. This work presents flexible open source freeware for the control of bioreactors of the Bioflo product family. The functionality of the software includes setpoint control, data logging, and protocol execution. Auxiliary hardware can be easily integrated and controlled through an integrated plugin interface without altering existing software. Simple experimental protocols can be entered as a CSV scripting file, and a Python-based protocol execution model is included for more demanding conditional experimental control. The software was designed to be a more flexible and free open source alternative to the commercially available solution. The source code and various auxiliary hardware plugins are publicly available for download from https://github.com/LibourelLab/BiofloSoftware. In addition to the source code, the software was compiled and packaged as a self-installing file for 32 and 64 bit windows operating systems. The compiled software will be able to control a Bioflo system, and will not require the installation of LabVIEW. PMID:24667828

  12. Disposable bioreactors for inoculum production and protein expression.

    PubMed

    Eibl, Regine; Löffelholz, Christian; Eibl, Dieter

    2014-01-01

    Disposable bioreactors have been increasingly implemented over the past ten years. This relates to both R & D and commercial manufacture, in particular, in animal cell-based processes. Among the numerous disposable bioreactors which are available today, wave-mixed bag bioreactors and stirred bioreactors are predominant. Whereas wave-mixed bag bioreactors represent the system of choice for inoculum production, stirred systems are often preferred for protein expression. For this reason, the authors present protocols instructing the reader how to use the wave-mixed BIOSTAT CultiBag RM 20 L for inoculum production and the stirred UniVessel SU 2 L for recombinant protein production at benchtop scale. All methods described are based on a Chinese hamster ovary (CHO) suspension cell line expressing the human placental secreted alkaline phosphatase (SEAP).

  13. Evaluation of system performance and microbial communities of a bioaugmented anaerobic membrane bioreactor treating pharmaceutical wastewater.

    PubMed

    Ng, Kok Kwang; Shi, Xueqing; Ng, How Yong

    2015-09-15

    In this study, a control anaerobic membrane bioreactor (C-AnMBR) and a bioaugmented anaerobic membrane bioreactor (B-AnMBR) were operated for 210 d to treat pharmaceutical wastewater. Both the bioreactors were fed with the pharmaceutical wastewater containing TCOD of 16,249 ± 714 mg/L and total dissolved solids (TDS) of 29,450 ± 2209 mg/L with an organic loading rate (OLR) of 13.0 ± 0.6 kgCOD/m(3)d. Under steady-state condition, an average total chemical oxygen demand (TCOD) removal efficiency of 46.1 ± 2.9% and 60.3 ± 2.8% was achieved by the C-AnMBR and the B-AnMBR, respectively. The conventional anaerobes in the C-AnMBR cannot tolerate the hypersaline conditions well, resulting in lower TCOD removal efficiency, biogas production and methane yield than the B-AnMBR seeded from the coastal shore. Pyrosequencing analysis indicated that marine bacterial species (Oliephilus sp.) and halophilic bacterial species (Thermohalobacter sp.) were only present in the B-AnMBR; these species could possibly degrade complex and recalcitrant organic matter and withstand hypersaline environments. Two different dominant archaeal communities, genus Methanosaeta (43.4%) and Methanolobus (61.7%), were identified as the dominant methanogens in the C-AnMBR and the B-AnMBR, respectively. The species of genus Methanolobus was reported resistant to penicillin and required sodium and magnesium for growth, which could enable it to thrive in the hypersaline environment.

  14. NASA Classroom Bioreactor

    NASA Technical Reports Server (NTRS)

    Scully, Robert

    2004-01-01

    Exploration of space provides a compelling need for cell-based research into the basic mechanisms that underlie the profound changes that occur in terrestrial life that is transitioned to low gravity environments. Toward that end, NASA developed a rotating bioreactor in which cells are cultured while continuously suspended in a cylinder in which the culture medium rotates with the cylinder. The randomization of the gravity vector accomplished by the continuous rotation, in a low shear environment, provides an analog of microgravity. Because cultures grown in bioreactors develop structures and functions that are much closer to those exhibited by native tissue than can be achieved with traditional culture methods, bioreactors have contributed substantially to advancing research in the fields of cancer, diabetes, infectious disease modeling for vaccine production, drug efficacy, and tissue engineering. NASA has developed a Classroom Bioreactor (CB) that is built from parts that are easily obtained and assembled, user-friendly and versatile. It can be easily used in simple school settings to examine the effect cultures of seeds or cells. An educational brief provides assembly instructions and lesson plans that describes activities in science, math and technology that explore free fall, microgravity, orbits, bioreactors, structure-function relationships and the scientific method.

  15. Microbial community analysis of a full-scale DEMON bioreactor.

    PubMed

    Gonzalez-Martinez, Alejandro; Rodriguez-Sanchez, Alejandro; Muñoz-Palazon, Barbara; Garcia-Ruiz, Maria-Jesus; Osorio, Francisco; van Loosdrecht, Mark C M; Gonzalez-Lopez, Jesus

    2015-03-01

    Full-scale applications of autotrophic nitrogen removal technologies for the treatment of digested sludge liquor have proliferated during the last decade. Among these technologies, the aerobic/anoxic deammonification process (DEMON) is one of the major applied processes. This technology achieves nitrogen removal from wastewater through anammox metabolism inside a single bioreactor due to alternating cycles of aeration. To date, microbial community composition of full-scale DEMON bioreactors have never been reported. In this study, bacterial community structure of a full-scale DEMON bioreactor located at the Apeldoorn wastewater treatment plant was analyzed using pyrosequencing. This technique provided a higher-resolution study of the bacterial assemblage of the system compared to other techniques used in lab-scale DEMON bioreactors. Results showed that the DEMON bioreactor was a complex ecosystem where ammonium oxidizing bacteria, anammox bacteria and many other bacterial phylotypes coexist. The potential ecological role of all phylotypes found was discussed. Thus, metagenomic analysis through pyrosequencing offered new perspectives over the functioning of the DEMON bioreactor by exhaustive identification of microorganisms, which play a key role in the performance of bioreactors. In this way, pyrosequencing has been proven as a helpful tool for the in-depth investigation of the functioning of bioreactors at microbiological scale.

  16. Selection of suitable fertilizer draw solute for a novel fertilizer-drawn forward osmosis-anaerobic membrane bioreactor hybrid system.

    PubMed

    Kim, Youngjin; Chekli, Laura; Shim, Wang-Geun; Phuntsho, Sherub; Li, Sheng; Ghaffour, Noreddine; Leiknes, TorOve; Shon, Ho Kyong

    2016-06-01

    In this study, a protocol for selecting suitable fertilizer draw solute for anaerobic fertilizer-drawn forward osmosis membrane bioreactor (AnFDFOMBR) was proposed. Among eleven commercial fertilizer candidates, six fertilizers were screened further for their FO performance tests and evaluated in terms of water flux and reverse salt flux. Using selected fertilizers, bio-methane potential experiments were conducted to examine the effect of fertilizers on anaerobic activity due to reverse diffusion. Mono-ammonium phosphate (MAP) showed the highest biogas production while other fertilizers exhibited an inhibition effect on anaerobic activity with solute accumulation. Salt accumulation in the bioreactor was also simulated using mass balance simulation models. Results showed that ammonium sulfate and MAP were the most appropriate for AnFDFOMBR since they demonstrated less salt accumulation, relatively higher water flux, and higher dilution capacity of draw solution. Given toxicity of sulfate to anaerobic microorganisms, MAP appears to be the most suitable draw solution for AnFDFOMBR. PMID:26898159

  17. Design concepts for bioreactors in space

    NASA Technical Reports Server (NTRS)

    Seshan, P. K.; Peterson, G. R.; Beard, B.; Dunlop, E. H.

    1986-01-01

    Microbial food sources are becoming viable and more efficient alternatives to conventional food sources especially in the context of Closed Ecological Life Support Systems (CELSS) in space habitats. Since bioreactor designs for terrestrial operation will not readily apply to conditions of microgravity, there is an urgent need to learn about the differences. These differences cannot be easily estimated due to the complex nature of the mass transport and mixing mechanisms in fermenters. Therefore, a systematic and expeditious experimental program must be undertaken to obtain the engineering data necessary to lay down the foundations of designing bioreactors for microgravity. Two bioreactor design concepts presented represent two dissimilar approaches to grappling with the absence of gravity in space habitats and deserve to be tested for adoption as important components of the life support function aboard spacecrafts, space stations and other extra-terrestrial habitats.

  18. Bioreactor and methods for producing synchronous cells

    NASA Technical Reports Server (NTRS)

    Helmstetter, Charles E. (Inventor); Thornton, Maureen (Inventor); Gonda, Steve (Inventor)

    2005-01-01

    Apparatus and methods are directed to a perfusion culture system in which a rotating bioreactor is used to grow cells in a liquid culture medium, while these cells are attached to an adhesive-treated porous surface. As a result of this arrangement and its rotation, the attached cells divide, with one cell remaining attached to the substrate, while the other cell, a newborn cell is released. These newborn cells are of approximately the same age, that are collected upon leaving the bioreactor. The populations of newborn cells collected are of synchronous and are minimally, if at all, disturbed metabolically.

  19. A comparison of bioreactors for culture of fetal mesenchymal stem cells for bone tissue engineering.

    PubMed

    Zhang, Zhi-Yong; Teoh, Swee Hin; Teo, Erin Yiling; Khoon Chong, Mark Seow; Shin, Chong Woon; Tien, Foo Toon; Choolani, Mahesh A; Chan, Jerry K Y

    2010-11-01

    Bioreactors provide a dynamic culture system for efficient exchange of nutrients and mechanical stimulus necessary for the generation of effective tissue engineered bone grafts (TEBG). We have shown that biaxial rotating (BXR) bioreactor-matured human fetal mesenchymal stem cell (hfMSC) mediated-TEBG can heal a rat critical sized femoral defect. However, it is not known whether optimal bioreactors exist for bone TE (BTE) applications. We systematically compared this BXR bioreactor with three most commonly used systems: Spinner Flask (SF), Perfusion and Rotating Wall Vessel (RWV) bioreactors, for their application in BTE. The BXR bioreactor achieved higher levels of cellularity and confluence (1.4-2.5x, p < 0.05) in large 785 mm(3) macroporous scaffolds not achieved in the other bioreactors operating in optimal settings. BXR bioreactor-treated scaffolds experienced earlier and more robust osteogenic differentiation on von Kossa staining, ALP induction (1.2-1.6×, p < 0.01) and calcium deposition (1.3-2.3×, p < 0.01). We developed a Micro CT quantification method which demonstrated homogenous distribution of hfMSC in BXR bioreactor-treated grafts, but not with the other three. BXR bioreactor enabled superior cellular proliferation, spatial distribution and osteogenic induction of hfMSC over other commonly used bioreactors. In addition, we developed and validated a non-invasive quantitative micro CT-based technique for analyzing neo-tissue formation and its spatial distribution within scaffolds.

  20. Quorum-Sensing Systems LuxS/Autoinducer 2 and Com Regulate Streptococcus pneumoniae Biofilms in a Bioreactor with Living Cultures of Human Respiratory Cells

    PubMed Central

    Howery, Kristen E.; Ludewick, Herbert P.; Nava, Porfirio; Klugman, Keith P.

    2013-01-01

    Streptococcus pneumoniae forms organized biofilms in the human upper respiratory tract that may play an essential role in both persistence and acute respiratory infection. However, the production and regulation of biofilms on human cells is not yet fully understood. In this work, we developed a bioreactor with living cultures of human respiratory epithelial cells (HREC) and a continuous flow of nutrients, mimicking the microenvironment of the human respiratory epithelium, to study the production and regulation of S. pneumoniae biofilms (SPB). SPB were also produced under static conditions on immobilized HREC. Our experiments demonstrated that the biomass of SPB increased significantly when grown on HREC compared to the amount on abiotic surfaces. Additionally, pneumococcal strains produced more early biofilms on lung cells than on pharyngeal cells. Utilizing the bioreactor or immobilized human cells, the production of early SPB was found to be regulated by two quorum-sensing systems, Com and LuxS/AI-2, since a mutation in either comC or luxS rendered the pneumococcus unable to produce early biofilms on HREC. Interestingly, while LuxS/autoinducer 2 (AI-2) regulated biofilms on both HREC and abiotic surfaces, Com control was specific for those structures produced on HREC. The biofilm phenotypes of strain D39-derivative ΔcomC and ΔluxS QS mutants were reversed by genetic complementation. Of note, SPB formed on immobilized HREC and incubated under static conditions were completely lysed 24 h postinoculation. Biofilm lysis was also regulated by the Com and LuxS/AI-2 quorum-sensing systems. PMID:23403556

  1. Inactivated Enterovirus 71 Vaccine Produced by 200-L Scale Serum-Free Microcarrier Bioreactor System Provides Cross-Protective Efficacy in Human SCARB2 Transgenic Mouse.

    PubMed

    Wu, Chia-Ying; Lin, Yi-Wen; Kuo, Chia-Ho; Liu, Wan-Hsin; Tai, Hsiu-Fen; Pan, Chien-Hung; Chen, Yung-Tsung; Hsiao, Pei-Wen; Chan, Chi-Hsien; Chang, Ching-Chuan; Liu, Chung-Cheng; Chow, Yen-Hung; Chen, Juine-Ruey

    2015-01-01

    Epidemics and outbreaks caused by infections of several subgenotypes of EV71 and other serotypes of coxsackie A viruses have raised serious public health concerns in the Asia-Pacific region. These concerns highlight the urgent need to develop a scalable manufacturing platform for producing an effective and sufficient quantity of vaccines against deadly enteroviruses. In this report, we present a platform for the large-scale production of a vaccine based on the inactivated EV71(E59-B4) virus. The viruses were produced in Vero cells in a 200 L bioreactor with serum-free medium, and the viral titer reached 10(7) TCID50/mL 10 days after infection when using an MOI of 10(-4). The EV71 virus particles were harvested and purified by sucrose density gradient centrifugation. Fractions containing viral particles were pooled based on ELISA and SDS-PAGE. TEM was used to characterize the morphologies of the viral particles. To evaluate the cross-protective efficacy of the EV71 vaccine, the pooled antigens were combined with squalene-based adjuvant (AddaVAX) or aluminum phosphate (AlPO4) and tested in human SCARB2 transgenic (Tg) mice. The Tg mice immunized with either the AddaVAX- or AlPO4-adjuvanted EV71 vaccine were fully protected from challenges by the subgenotype C2 and C4 viruses, and surviving animals did not show any degree of neurological paralysis symptoms or muscle damage. Vaccine treatments significantly reduced virus antigen presented in the central nervous system of Tg mice and alleviated the virus-associated inflammatory response. These results strongly suggest that this preparation results in an efficacious vaccine and that the microcarrier/bioreactor platform offers a superior alternative to the previously described roller-bottle system. PMID:26287531

  2. Inactivated Enterovirus 71 Vaccine Produced by 200-L Scale Serum-Free Microcarrier Bioreactor System Provides Cross-Protective Efficacy in Human SCARB2 Transgenic Mouse

    PubMed Central

    Wu, Chia-Ying; Lin, Yi-Wen; Kuo, Chia-Ho; Liu, Wan-Hsin; Tai, Hsiu-Fen; Pan, Chien-Hung; Chen, Yung-Tsung; Hsiao, Pei-Wen; Chan, Chi-Hsien; Chang, Ching-Chuan; Liu, Chung-Cheng; Chow, Yen-Hung; Chen, Juine-Ruey

    2015-01-01

    Epidemics and outbreaks caused by infections of several subgenotypes of EV71 and other serotypes of coxsackie A viruses have raised serious public health concerns in the Asia-Pacific region. These concerns highlight the urgent need to develop a scalable manufacturing platform for producing an effective and sufficient quantity of vaccines against deadly enteroviruses. In this report, we present a platform for the large-scale production of a vaccine based on the inactivated EV71(E59-B4) virus. The viruses were produced in Vero cells in a 200 L bioreactor with serum-free medium, and the viral titer reached 107 TCID50/mL 10 days after infection when using an MOI of 10−4. The EV71 virus particles were harvested and purified by sucrose density gradient centrifugation. Fractions containing viral particles were pooled based on ELISA and SDS-PAGE. TEM was used to characterize the morphologies of the viral particles. To evaluate the cross-protective efficacy of the EV71 vaccine, the pooled antigens were combined with squalene-based adjuvant (AddaVAX) or aluminum phosphate (AlPO4) and tested in human SCARB2 transgenic (Tg) mice. The Tg mice immunized with either the AddaVAX- or AlPO4-adjuvanted EV71 vaccine were fully protected from challenges by the subgenotype C2 and C4 viruses, and surviving animals did not show any degree of neurological paralysis symptoms or muscle damage. Vaccine treatments significantly reduced virus antigen presented in the central nervous system of Tg mice and alleviated the virus-associated inflammatory response. These results strongly suggest that this preparation results in an efficacious vaccine and that the microcarrier/bioreactor platform offers a superior alternative to the previously described roller-bottle system. PMID:26287531

  3. Solid-state fermentation of soybean residues for bioflocculant production in a pilot-scale bioreactor system.

    PubMed

    Zulkeflee, Zufarzaana; Sánchez, Antoni

    2014-01-01

    An innovative approach using soybean residues for the production of bioflocculants through solid-state fermentation was carried out in 4.5 L near-to-adiabatic bioreactors at pilot-scale level. An added inoculum of the strain Bacillus subtilis UPMB13 was tested in comparison with control reactors without any inoculation after the thermophilic phase of the fermentation. The flocculating performances of the extracted bioflocculants were tested on kaolin suspensions, and crude bioflocculants were obtained from 20 g of fermented substrate through ethanol precipitation. The production of bioflocculants was observed to be higher during the death phase of microbial growth. The bioflocculants were observed to be granular in nature and consisted of hydroxyl, carboxyl and methoxyl groups that aid in their flocculating performance. The results show the vast potential of the idea of using wastes to produce bioactive materials that can replace the current dependence on chemicals, for future prospect in water treatment applications. PMID:25259492

  4. Evaluation of the Hydrodynamic Focusing Bioreactor (HDFB) and the Centrifugal Absorption Cartridge System (CACS) Performance Under Micro G

    NASA Technical Reports Server (NTRS)

    Gonda, Steve; Lee, Wenshan; Flechsig, Steve

    1999-01-01

    The Hydrodynamic Focusing Bioreactor (HDFB) technology is designed to provide a flow field with nearly uniform shear force throughout the vessel, which can provide the desired low shear force spatial environment to suspend three-dimensional cell aggregates while providing optimum mass transfer. The reactor vessel consists of a dome-shaped cell culture vessel, a viscous spinner, an access port, and a rotating base. The domed vessel face has a radius of R(o). and rotates at 0mega(o) rpm, while the internal viscous spinner has a radius of R(i) and rotates at 0mega(i) rpm. The culture vessel is completely filled with cell culture medium into which three-dimensional cellular structures are introduced. The HDFB domed vessel and spinner were driven by two independent step motors,

  5. Use of immobilized cells of Zymomonas mobilis in a novel fluidized bioreactor to produce ethanol

    SciTech Connect

    Margaritis, A.; Wallace, J.B.

    1982-01-01

    A novel 2-L fluidized bioreactor was designed and built and its performance characteristics were compared with those of an ordinary stirred-tank bioreactor. Calcium alginate beads containing immobilized cells of Zymomonas mobilis were used in both types of bioreactors to produce ethanol from glucose. The Ca-alginate beads were exposed to low shear rates inside the fluidized bioreactor and as a result the cell leakage from the beads was found to be about 100 times less than the cell leakage obtained in the mechanically stirred bioreactor. For the operating conditions studied, the fluidized bioreactor system gave at least 64% higher maximum rate of ethanol production and the power consumption per unit volume was found to be about four times less than that obtained with the mechanically stirred bioreactor. 9 figures, 1 table.

  6. NASA Bioreactor tissue culture

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  7. Establishing Liver Bioreactors for In Vitro Research.

    PubMed

    Rebelo, Sofia P; Costa, Rita; Sousa, Marcos F Q; Brito, Catarina; Alves, Paula M

    2015-01-01

    In vitro systems that can effectively model liver function for long periods of time are fundamental tools for preclinical research. Nevertheless, the adoption of in vitro research tools at the earliest stages of drug development has been hampered by the lack of culture systems that offer the robustness, scalability, and flexibility necessary to meet industry's demands. Bioreactor-based technologies, such as stirred tank bioreactors, constitute a feasible approach to aggregate hepatic cells and maintain long-term three-dimensional cultures. These three-dimensional cultures sustain the polarity, differentiated phenotype, and metabolic performance of human hepatocytes. Culture in computer-controlled stirred tank bioreactors allows the maintenance of physiological conditions, such as pH, dissolved oxygen, and temperature, with minimal fluctuations. Moreover, by operating in perfusion mode, gradients of soluble factors and metabolic by-products can be established, aiming at resembling the in vivo microenvironment. This chapter provides a protocol for the aggregation and culture of hepatocyte spheroids in stirred tank bioreactors by applying perfusion mode for the long-term culture of human hepatocytes. This in vitro culture system is compatible with feeding high-throughput screening platforms for the assessment of drug elimination pathways, being a useful tool for toxicology research and drug development in the preclinical phase.

  8. Human cell culture in a space bioreactor

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.

    1988-01-01

    Microgravity offers new ways of handling fluids, gases, and growing mammalian cells in efficient suspension cultures. In 1976 bioreactor engineers designed a system using a cylindrical reactor vessel in which the cells and medium are slowly mixed. The reaction chamber is interchangeable and can be used for several types of cell cultures. NASA has methodically developed unique suspension type cell and recovery apparatus culture systems for bioprocess technology experiments and production of biological products in microgravity. The first Space Bioreactor was designed for microprocessor control, no gaseous headspace, circulation and resupply of culture medium, and slow mixing in very low shear regimes. Various ground based bioreactors are being used to test reactor vessel design, on-line sensors, effects of shear, nutrient supply, and waste removal from continuous culture of human cells attached to microcarriers. The small Bioreactor is being constructed for flight experiments in the Shuttle Middeck to verify systems operation under microgravity conditions and to measure the efficiencies of mass transport, gas transfer, oxygen consumption and control of low shear stress on cells.

  9. Measuring Water in Bioreactor Landfills

    NASA Astrophysics Data System (ADS)

    Han, B.; Gallagher, V. N.; Imhoff, P. T.; Yazdani, R.; Chiu, P.

    2004-12-01

    Methane is an important greenhouse gas, and landfills are the largest anthropogenic source in many developed countries. Bioreactor landfills have been proposed as one means of abating greenhouse gas emissions from landfills. Here, the decomposition of organic wastes is enhanced by the controlled addition of water or leachate to maintain optimal conditions for waste decomposition. Greenhouse gas abatement is accomplished by sequestration of photosynthetically derived carbon in wastes, CO2 offsets from energy use of waste derived gas, and mitigation of methane emission from the wastes. Maintaining optimal moisture conditions for waste degradation is perhaps the most important operational parameter in bioreactor landfills. To determine how much water is needed and where to add it, methods are required to measure water within solid waste. However, there is no reliable method that can measure moisture content simply and accurately in the heterogeneous environment typical of landfills. While well drilling and analysis of solid waste samples is sometimes used to determine moisture content, this is an expensive, time-consuming, and destructive procedure. To overcome these problems, a new technology recently developed by hydrologists for measuring water in the vadose zone --- the partitioning tracer test (PTT) --- was evaluated for measuring water in solid waste in a full-scale bioreactor landfill in Yolo County, CA. Two field tests were conducted in different regions of an aerobic bioreactor landfill, with each test measuring water in ≈ 250 ft3 of solid waste. Tracers were injected through existing tubes inserted in the landfill, and tracer breakthrough curves were measured through time from the landfill's gas collection system. Gas samples were analyzed on site using a field-portable gas chromatograph and shipped offsite for more accurate laboratory analysis. In the center of the landfill, PTT measurements indicated that the fraction of the pore space filled with water

  10. The energy-saving anaerobic baffled reactor membrane bioreactor (EABR-MBR) system for recycling wastewater from a high-rise building.

    PubMed

    Ratanatamskul, Chavalit; Charoenphol, Chakraphan

    2015-01-01

    A novel energy-saving anaerobic baffled reactor-membrane bioreactor (EABR-MBR) system has been developed as a compact biological treatment system for reuse of water from a high-rise building. The anaerobic baffled reactor (ABR) compartment had five baffles and served as the anaerobic degradation zone, followed by the aerobic MBR compartment. The total operating hydraulic retention time (HRT) of the EABR-MBR system was 3 hours (2 hours for ABR compartment and very short HRT of 1 hour for aerobic MBR compartment). The wastewater came from the Charoen Wisawakam building. The results showed that treated effluent quality was quite good and highly promising for water reuse purposes. The average flux of the membrane was kept at 30 l/(m2h). The EABR-MBR system could remove chemical oxygen demand, total nitrogen and total phosphorus from building wastewater by more than 90%. Moreover, it was found that phosphorus concentration was rising in the ABR compartment due to the phosphorus release phenomenon, and then the concentration decreased rapidly in the aerobic MBR compartment due to the phosphorus uptake phenomenon. This implies that phosphorus-accumulating organisms inside the EABR-MBR system are responsible for biological phosphorus removal. The research suggests that the EABR-MBR system can be a promising system for water reuse and reclamation for high-rise building application in the near future. PMID:26067504

  11. The energy-saving anaerobic baffled reactor membrane bioreactor (EABR-MBR) system for recycling wastewater from a high-rise building.

    PubMed

    Ratanatamskul, Chavalit; Charoenphol, Chakraphan

    2015-01-01

    A novel energy-saving anaerobic baffled reactor-membrane bioreactor (EABR-MBR) system has been developed as a compact biological treatment system for reuse of water from a high-rise building. The anaerobic baffled reactor (ABR) compartment had five baffles and served as the anaerobic degradation zone, followed by the aerobic MBR compartment. The total operating hydraulic retention time (HRT) of the EABR-MBR system was 3 hours (2 hours for ABR compartment and very short HRT of 1 hour for aerobic MBR compartment). The wastewater came from the Charoen Wisawakam building. The results showed that treated effluent quality was quite good and highly promising for water reuse purposes. The average flux of the membrane was kept at 30 l/(m2h). The EABR-MBR system could remove chemical oxygen demand, total nitrogen and total phosphorus from building wastewater by more than 90%. Moreover, it was found that phosphorus concentration was rising in the ABR compartment due to the phosphorus release phenomenon, and then the concentration decreased rapidly in the aerobic MBR compartment due to the phosphorus uptake phenomenon. This implies that phosphorus-accumulating organisms inside the EABR-MBR system are responsible for biological phosphorus removal. The research suggests that the EABR-MBR system can be a promising system for water reuse and reclamation for high-rise building application in the near future.

  12. Disposable Bioreactors for Plant Micropropagation and Mass Plant Cell Culture

    NASA Astrophysics Data System (ADS)

    Ducos, Jean-Paul; Terrier, Bénédicte; Courtois, Didier

    Different types of bioreactors are used at Nestlé R&D Centre - Tours for mass propagation of selected plant varieties by somatic embryogenesis and for large scale culture of plants cells to produce metabolites or recombinant proteins. Recent studies have been directed to cut down the production costs of these two processes by developing disposable cell culture systems. Vegetative propagation of elite plant varieties is achieved through somatic embryogenesis in liquid medium. A pilot scale process has recently been set up for the industrial propagation of Coffea canephora (Robusta coffee). The current production capacity is 3.0 million embryos per year. The pre-germination of the embryos was previously conducted by temporary immersion in liquid medium in 10-L glass bioreactors. An improved process has been developed using a 10-L disposable bioreactor consisting of a bag containing a rigid plastic box ('Box-in-Bag' bioreactor), insuring, amongst other advantages, a higher light transmittance to the biomass due to its horizontal design. For large scale cell culture, two novel flexible plastic-based disposable bioreactors have been developed from 10 to 100 L working volumes, validated with several plant species ('Wave and Undertow' and 'Slug Bubble' bioreactors). The advantages and the limits of these new types of bioreactor are discussed, based mainly on our own experience on coffee somatic embryogenesis and mass cell culture of soya and tobacco.

  13. Innovative sponge-based moving bed-osmotic membrane bioreactor hybrid system using a new class of draw solution for municipal wastewater treatment.

    PubMed

    Nguyen, Nguyen Cong; Chen, Shiao-Shing; Nguyen, Hau Thi; Ray, Saikat Sinha; Ngo, Huu Hao; Guo, Wenshan; Lin, Po-Hsun

    2016-03-15

    For the first time, an innovative concept of combining sponge-based moving bed (SMB) and an osmotic membrane bioreactor (OsMBR), known as the SMB-OsMBR hybrid system, were investigated using Triton X-114 surfactant coupled with MgCl2 salt as the draw solution. Compared to traditional activated sludge OsMBR, the SMB-OsMBR system was able to remove more nutrients due to the thick-biofilm layer on sponge carriers. Subsequently less membrane fouling was observed during the wastewater treatment process. A water flux of 11.38 L/(m(2) h) and a negligible reverse salt flux were documented when deionized water served as the feed solution and a mixture of 1.5 M MgCl2 and 1.5 mM Triton X-114 was used as the draw solution. The SMB-OsMBR hybrid system indicated that a stable water flux of 10.5 L/(m(2) h) and low salt accumulation were achieved in a 90-day operation. Moreover, the nutrient removal efficiency of the proposed system was close to 100%, confirming the effectiveness of simultaneous nitrification and denitrification in the biofilm layer on sponge carriers. The overall performance of the SMB-OsMBR hybrid system using MgCl2 coupled with Triton X-114 as the draw solution demonstrates its potential application in wastewater treatment.

  14. Swirl Flow Bioreactor coupled with Cu-alginate beads: A system for the eradication of Coliform and Escherichia coli from biological effluents.

    PubMed

    Atkinson, Sov; Thomas, Simon F; Goddard, Paul; Bransgrove, Rachel M; Mason, Paul T; Oak, Ajeet; Bansode, Anand; Patankar, Rohit; Gleason, Zachary D; Sim, Marissa K; Whitesell, Andrew; Allen, Michael J

    2015-05-21

    It is estimated that approximately 1.1 billion people globally drink unsafe water. We previously reported both a novel copper-alginate bead, which quickly reduces pathogen loading in waste streams and the incorporation of these beads into a novel swirl flow bioreactor (SFB), of low capital and running costs and of simple construction from commercially available plumbing pipes and fittings. The purpose of the present study was to trial this system for pathogen reduction in waste streams from an operating Dewats system in Hinjewadi, Pune, India and in both simulated and real waste streams in Seattle, Washington, USA. The trials in India, showed a complete inactivation of coliforms in the discharged effluent (Mean Log removal Value (MLRV) = 3.51), accompanied by a total inactivation of E. coli with a MLRV of 1.95. The secondary clarifier effluent also showed a 4.38 MLRV in viable coliforms during treatment. However, the system was slightly less effective in reducing E. coli viability, with a MLRV of 1.80. The trials in Seattle also demonstrated the efficacy of the system in the reduction of viable bacteria, with a LRV of 5.67 observed of viable Raoultella terrigena cells (100%).

  15. Swirl Flow Bioreactor coupled with Cu-alginate beads: A system for the eradication of Coliform and Escherichia coli from biological effluents

    PubMed Central

    Atkinson, Sov; Thomas, Simon F.; Goddard, Paul; Bransgrove, Rachel M.; Mason, Paul T.; Oak, Ajeet; Bansode, Anand; Patankar, Rohit; Gleason, Zachary D.; Sim, Marissa K.; Whitesell, Andrew; Allen, Michael J.

    2015-01-01

    It is estimated that approximately 1.1 billion people globally drink unsafe water. We previously reported both a novel copper-alginate bead, which quickly reduces pathogen loading in waste streams and the incorporation of these beads into a novel swirl flow bioreactor (SFB), of low capital and running costs and of simple construction from commercially available plumbing pipes and fittings. The purpose of the present study was to trial this system for pathogen reduction in waste streams from an operating Dewats system in Hinjewadi, Pune, India and in both simulated and real waste streams in Seattle, Washington, USA. The trials in India, showed a complete inactivation of coliforms in the discharged effluent (Mean Log removal Value (MLRV) = 3.51), accompanied by a total inactivation of E. coli with a MLRV of 1.95. The secondary clarifier effluent also showed a 4.38 MLRV in viable coliforms during treatment. However, the system was slightly less effective in reducing E. coli viability, with a MLRV of 1.80. The trials in Seattle also demonstrated the efficacy of the system in the reduction of viable bacteria, with a LRV of 5.67 observed of viable Raoultella terrigena cells (100%). PMID:25999243

  16. BioReactor

    2003-04-18

    BioReactor is a simulation tool kit for modeling networks of coupled chemical processes (or similar productions rules). The tool kit is implemented in C++ and has the following functionality: 1. Monte Carlo discrete event simulator 2. Solvers for ordinary differential equations 3. Genetic algorithm optimization routines for reverse engineering of models using either Monte Carlo or ODE representation )i.e., 1 or 2)

  17. Hairy root culture: bioreactor design and process intensification.

    PubMed

    Stiles, Amanda R; Liu, Chun-Zhao

    2013-01-01

    The cultivation of hairy roots for the production of secondary metabolites offers numerous advantages; hairy roots have a fast growth rate, are genetically stable, and are relatively simple to maintain in phytohormone free media. Hairy roots provide a continuous source of secondary metabolites, and are useful for the production of chemicals for pharmaceuticals, cosmetics, and food additives. In order for hairy roots to be utilized on a commercial scale, it is necessary to scale-up their production. Over the last several decades, significant research has been conducted on the cultivation of hairy roots in various types of bioreactor systems. In this review, we discuss the advantages and disadvantages of various bioreactor systems, the major factors related to large-scale bioreactor cultures, process intensification technologies and overview the mathematical models and computer-aided methods that have been utilized for bioreactor design and development.

  18. The Potential for Microalgae as Bioreactors to Produce Pharmaceuticals.

    PubMed

    Yan, Na; Fan, Chengming; Chen, Yuhong; Hu, Zanmin

    2016-01-01

    As photosynthetic organisms, microalgae can efficiently convert solar energy into biomass. Microalgae are currently used as an important source of valuable natural biologically active molecules, such as carotenoids, chlorophyll, long-chain polyunsaturated fatty acids, phycobiliproteins, carotenoids and enzymes. Significant advances have been achieved in microalgae biotechnology over the last decade, and the use of microalgae as bioreactors for expressing recombinant proteins is receiving increased interest. Compared with the bioreactor systems that are currently in use, microalgae may be an attractive alternative for the production of pharmaceuticals, recombinant proteins and other valuable products. Products synthesized via the genetic engineering of microalgae include vaccines, antibodies, enzymes, blood-clotting factors, immune regulators, growth factors, hormones, and other valuable products, such as the anticancer agent Taxol. In this paper, we briefly compare the currently used bioreactor systems, summarize the progress in genetic engineering of microalgae, and discuss the potential for microalgae as bioreactors to produce pharmaceuticals. PMID:27322258

  19. The Potential for Microalgae as Bioreactors to Produce Pharmaceuticals

    PubMed Central

    Yan, Na; Fan, Chengming; Chen, Yuhong; Hu, Zanmin

    2016-01-01

    As photosynthetic organisms, microalgae can efficiently convert solar energy into biomass. Microalgae are currently used as an important source of valuable natural biologically active molecules, such as carotenoids, chlorophyll, long-chain polyunsaturated fatty acids, phycobiliproteins, carotenoids and enzymes. Significant advances have been achieved in microalgae biotechnology over the last decade, and the use of microalgae as bioreactors for expressing recombinant proteins is receiving increased interest. Compared with the bioreactor systems that are currently in use, microalgae may be an attractive alternative for the production of pharmaceuticals, recombinant proteins and other valuable products. Products synthesized via the genetic engineering of microalgae include vaccines, antibodies, enzymes, blood-clotting factors, immune regulators, growth factors, hormones, and other valuable products, such as the anticancer agent Taxol. In this paper, we briefly compare the currently used bioreactor systems, summarize the progress in genetic engineering of microalgae, and discuss the potential for microalgae as bioreactors to produce pharmaceuticals. PMID:27322258

  20. High-throughput miniaturized bioreactors for cell culture process development: reproducibility, scalability, and control.

    PubMed

    Rameez, Shahid; Mostafa, Sigma S; Miller, Christopher; Shukla, Abhinav A

    2014-01-01

    Decreasing the timeframe for cell culture process development has been a key goal toward accelerating biopharmaceutical development. Advanced Microscale Bioreactors (ambr™) is an automated micro-bioreactor system with miniature single-use bioreactors with a 10-15 mL working volume controlled by an automated workstation. This system was compared to conventional bioreactor systems in terms of its performance for the production of a monoclonal antibody in a recombinant Chinese Hamster Ovary cell line. The miniaturized bioreactor system was found to produce cell culture profiles that matched across scales to 3 L, 15 L, and 200 L stirred tank bioreactors. The processes used in this article involve complex feed formulations, perturbations, and strict process control within the design space, which are in-line with processes used for commercial scale manufacturing of biopharmaceuticals. Changes to important process parameters in ambr™ resulted in predictable cell growth, viability and titer changes, which were in good agreement to data from the conventional larger scale bioreactors. ambr™ was found to successfully reproduce variations in temperature, dissolved oxygen (DO), and pH conditions similar to the larger bioreactor systems. Additionally, the miniature bioreactors were found to react well to perturbations in pH and DO through adjustments to the Proportional and Integral control loop. The data presented here demonstrates the utility of the ambr™ system as a high throughput system for cell culture process development.

  1. Effect of intermittent aeration cycle on nutrient removal and microbial community in a fluidized bed reactor-membrane bioreactor combo system.

    PubMed

    Guadie, Awoke; Xia, Siqing; Zhang, Zhiqiang; Zeleke, Jemaneh; Guo, Wenshan; Ngo, Huu Hao; Hermanowicz, Slawomir W

    2014-03-01

    Effect of intermittent aeration cycle (IAC=15/45-60/60min) on nutrient removal and microbial community structure was investigated using a novel fluidized bed reactor-membrane bioreactor (FBR-MBR) combo system. FBR alone was found more efficient for removing PO4-P (>85%) than NH4-N (<40%) and chemical oxygen demand (COD<35%). However, in the combo system, COD and NH4-N removals were almost complete (>98%). Efficient nitrification, stable mixed liquor suspended solid and reduced transmembrane pressure was also achieved. Quantitative real-time polymerase chain reaction results of total bacteria 16S rRNA gene copies per mL of mixed-liquor varied from (2.48±0.42)×10(9) initial to (2.74±0.10)×10(8), (6.27±0.16)×10(9) and (9.17±1.78)×10(9) for 15/45, 45/15 and 60/60min of IACs, respectively. The results of clone library analysis revealed that Proteobacteria (59%), Firmicutes (12%) and Bacteroidetes (11%) were the dominant bacterial group in all samples. Overall, the combo system performs optimum nutrient removal and host stable microbial communities at 45/15min of IAC. PMID:24508900

  2. Fate of organic pollutants in a pilot-scale membrane bioreactor-nanofiltration membrane system at high water yield in antibiotic wastewater treatment.

    PubMed

    Wang, Jianxing; Wei, Yuansong; Li, Kun; Cheng, Yutao; Li, Mingyue; Xu, Jianguo

    2014-01-01

    A double membrane system combining a membrane bioreactor (MBR) with a nanofiltration (NF) membrane at the pilot scale was tested to treat real antibiotic wastewater at a pharmaceutical company in Wuxi (China). The water yield of the pilot system reached over 92 ± 5.6% through recycling the NF concentrate to the MBR tank. Results showed that the pilot scale system operated in good conditions throughout the entire experiment period and obtained excellent water quality in which the concentrations of chemical oxygen demand and total organic carbon were stable at 35 and 5.7 mg/L, respectively. The antibiotic removal rates of both spiramycin (SPM) and new spiramycin in wastewater were over 95%. Organics analysis results showed that the main organics in the biological effluent were proteins, soluble microbial by-product-like, fulvic acid-like and humic-like substances. These organics could be perfectly rejected by the NF membrane. Most of the organics could be removed through recycling NF concentrate to the MBR tank and only a small part was discharged with NF concentrate and permeate.

  3. Bioreactor Development for Lung Tissue Engineering

    PubMed Central

    Panoskaltsis-Mortari, Angela

    2015-01-01

    Rationale Much recent interest in lung bioengineering by pulmonary investigators, industry and the organ transplant field has seen a rapid growth of bioreactor development ranging from the microfluidic scale to the human-sized whole lung systems. A comprehension of the findings from these models is needed to provide the basis for further bioreactor development. Objective The goal was to comprehensively review the current state of bioreactor development for the lung. Methods A search using PubMed was done for published, peer-reviewed papers using the keywords “lung” AND “bioreactor” or “bioengineering” or “tissue engineering” or “ex vivo perfusion”. Main Results Many new bioreactors ranging from the microfluidic scale to the human-sized whole lung systems have been developed by both academic and commercial entities. Microfluidic, lung-mimic and lung slice cultures have the advantages of cost-efficiency and high throughput analyses ideal for pharmaceutical and toxicity studies. Perfused/ventilated rodent whole lung systems can be adapted for mid-throughput studies of lung stem/progenitor cell development, cell behavior, understanding and treating lung injury and for preliminary work that can be translated to human lung bioengineering. Human-sized ex vivo whole lung bioreactors incorporating perfusion and ventilation are amenable to automation and have been used for whole lung decellularization and recellularization. Clinical scale ex vivo lung perfusion systems have been developed for lung preservation and reconditioning and are currently being evaluated in clinical trials. Conclusions Significant advances in bioreactors for lung engineering have been made at both the microfluidic and the macro scale. The most advanced are closed systems that incorporate pressure-controlled perfusion and ventilation and are amenable to automation. Ex vivo lung perfusion systems have advanced to clinical trials for lung preservation and reconditioning. The biggest

  4. Comparison of bacterial diversity in full scale anammox bioreactors operated under different conditions.

    PubMed

    Gonzalez-Martinez, Alejandro; Osorio, Francisco; Morillo, Jose A; Rodriguez-Sanchez, Alejandro; Gonzalez-Lopez, Jesus; Abbas, Ben A; van Loosdrecht, Mark C M

    2015-01-01

    Bacterial community structure of full-scale anammox bioreactor is still mainly unknown. It has never been analyzed whether different anammox bioreactor configurations might result in the development of different bacterial community structures among these systems. In this work, the bacterial community structure of six full-scale autotrophic nitrogen removal bioreactors located in The Netherlands and China operating under three different technologies and with different influent wastewater characteristics was studied by the means of pyrotag sequencing evaluation of the bacterial assemblage yielded a great diversity in all systems. The most represented phyla were the Bacteroidetes and the Proteobacteria, followed by the Planctomycetes. 14 OTUs were shared by all bioreactors, but none of them belonged to the Brocadiales order. Statistical analysis at OTU level showed that differences in the microbial communities were high, and that the main driver of the bacterial assemblage composition was different for the distinct phyla identified in the six bioreactors, depending on bioreactor technology or influent wastewater characteristics.

  5. Salmonella Typhimurium grown in a rotating wall bioreactor

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Salmonella typhimurium appears green in on human intestinal tissue (stained red) cultured in a NASA rotating wall bioreactor. Dr. Cheryl Nickerson of Tulane University is studying the effects of simulated low-g on a well-known pathogen, Salmonella typhimurium, a bacterium that causes two to four million cases of gastrointestinal illness in the United States each year. While most healthy people recover readily, S. typhimurium can kill people with weakened immune systems. Thus, a simple case of food poisoning could disrupt a space mission. Using the NASA rotating-wall bioreactor, Nickerson cultured S. typhimurium in modeled microgravity. Mice infected with the bacterium died an average of three days faster than the control mice, indicating that S. typhimurium's virulence was enhanced by the bioreactor. Earlier research showed that 3 percent of the genes were altered by exposure to the bioreactor. Nickerson's work earned her a 2001 Presidential Early Career Award for Scientists and Engineers.

  6. Hydrofocusing Bioreactor for Three-Dimensional Cell Culture

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Spaulding, Glenn F.; Tsao, Yow-Min D.; Flechsig, Scott; Jones, Leslie; Soehnge, Holly

    2003-01-01

    The hydrodynamic focusing bioreactor (HFB) is a bioreactor system designed for three-dimensional cell culture and tissue-engineering investigations on orbiting spacecraft and in laboratories on Earth. The HFB offers a unique hydrofocusing capability that enables the creation of a low-shear culture environment simultaneously with the "herding" of suspended cells, tissue assemblies, and air bubbles. Under development for use in the Biotechnology Facility on the International Space Station, the HFB has successfully grown large three-dimensional, tissuelike assemblies from anchorage-dependent cells and grown suspension hybridoma cells to high densities. The HFB, based on the principle of hydrodynamic focusing, provides the capability to control the movement of air bubbles and removes them from the bioreactor without degrading the low-shear culture environment or the suspended three-dimensional tissue assemblies. The HFB also provides unparalleled control over the locations of cells and tissues within its bioreactor vessel during operation and sampling.

  7. A new photo-activated sludge system for nitrification by an algal-bacterial consortium in a photo-bioreactor with biomass recycle.

    PubMed

    van der Steen, Peter; Rahsilawati, Kuntarini; Rada-Ariza, Angélica M; Lopez-Vazquez, Carlos M; Lens, Piet N L

    2015-01-01

    Wastewater treatment technologies requiring large areas may be less feasible in urbanizing regions of developing countries. Therefore, a new technology, named photo-activated sludge (PAS), was investigated to combine the advantages of regular activated sludge systems with those of algae ponds for the removal of ammonium. The PAS consisted of a mixed photo-bioreactor, continuously fed with BG-11 medium, adjusted to 66 mgN-NH4⁺/l. The reactor volume was 2 l, hydraulic retention time was 24 hours, with a depth of 8 cm, and continuous illumination at the water surface was 66 μmol PAR/m²/s (photosynthetically active radiation). Reactor effluent passed through a settler and settled biomass was returned to the reactor. A well settling biomass developed, that contained both algae and nitrifiers. Effluent contained 10 mgN-NH4⁺/L and 51 mgN-NOx⁻/L. Using a simplified model, the specific algae growth rate was estimated at about 0.62 day⁻¹, which was within the expected range. For nitrifiers (ammonia oxidizers), the specific growth rate was 0.11 day⁻¹, which was lower than reported for regular activated sludge. The in-situ photo-oxygenation process by algae contributed 82% of the oxygen input, whereas oxygen diffusion through the mixed surface provided the remaining 18%. The foreseen energy savings that a PAS system could achieve warrant further investigations with real wastewater. PMID:26204077

  8. Combined hydrolysis acidification and bio-contact oxidation system with air-lift tubes and activated carbon bioreactor for oilfield wastewater treatment.

    PubMed

    Guo, Chunmei; Chen, Yi; Chen, Jinfu; Wang, Xiaojun; Zhang, Guangqing; Wang, Jingxiu; Cui, Wenfeng; Zhang, Zhongzhi

    2014-10-01

    This paper investigated the enhancement of the COD reduction of an oilfield wastewater treatment process by installing air-lift tubes and adding an activated carbon bioreactor (ACB) to form a combined hydrolysis acidification and bio-contact oxidation system with air-lift tubes (HA/air-lift BCO) and an ACB. Three heat-resistant bacterial strains were cultivated and subsequently applied in above pilot plant test. Installing air-lift tubes in aerobic tanks reduced the necessary air to water ratio from 20 to 5. Continuous operation of the HA/air-lift BCO system for 2 months with a hydraulic retention time of 36 h, a volumetric load of 0.14 kg COD/(m(3)d) (hydrolysis-acidification or anaerobic tank), and 0.06 kg COD/(m(3)d) (aerobic tanks) achieved an average reduction of COD by 60%, oil and grease by 62%, total suspended solids by 75%, and sulfides by 77%. With a COD load of 0.56 kg/(m(3)d), the average COD in the ACB effluent was 58 mg/L.

  9. The contrast study of anammox-denitrifying system in two non-woven fixed-bed bioreactors (NFBR) treating different low C/N ratio sewage.

    PubMed

    Gao, Fan; Zhang, Hanmin; Yang, Fenglin; Qiang, Hong; Zhang, Guangyi

    2012-06-01

    Two non-woven fixed-bed bioreactors (NFBR) based on different substrates (nitrite and nitrate) were constructed to study the environmental adaptability for temperature and organic matter of anammox-denitrifying system and nitrogen removal performance. The two reactors were successfully operated for 200 days. The average removal rates of nitrogen and COD of R2 were 81% and 93%, respectively. Besides, the nitrogen removal rate of R1 was 95% under not more than 105 mg/l of COD. The experimental results indicated that the R2 based on nitrate had a good nitrogen removal performance at room temperature (25 °C). Additionally, the analysis results of fluorescence in situ hybridization (FISH) showed that the percentage compositions of anammox in R1 and R2 were 84% and 65% on day 189. Finally, the possible nitrogen removal model of anammox-denitrifying system was constructed. According to nitrogen balance and C/N ratios of denitrification, the nitrogen removal approaches of R1 and R2 were obtained.

  10. A new photo-activated sludge system for nitrification by an algal-bacterial consortium in a photo-bioreactor with biomass recycle.

    PubMed

    van der Steen, Peter; Rahsilawati, Kuntarini; Rada-Ariza, Angélica M; Lopez-Vazquez, Carlos M; Lens, Piet N L

    2015-01-01

    Wastewater treatment technologies requiring large areas may be less feasible in urbanizing regions of developing countries. Therefore, a new technology, named photo-activated sludge (PAS), was investigated to combine the advantages of regular activated sludge systems with those of algae ponds for the removal of ammonium. The PAS consisted of a mixed photo-bioreactor, continuously fed with BG-11 medium, adjusted to 66 mgN-NH4⁺/l. The reactor volume was 2 l, hydraulic retention time was 24 hours, with a depth of 8 cm, and continuous illumination at the water surface was 66 μmol PAR/m²/s (photosynthetically active radiation). Reactor effluent passed through a settler and settled biomass was returned to the reactor. A well settling biomass developed, that contained both algae and nitrifiers. Effluent contained 10 mgN-NH4⁺/L and 51 mgN-NOx⁻/L. Using a simplified model, the specific algae growth rate was estimated at about 0.62 day⁻¹, which was within the expected range. For nitrifiers (ammonia oxidizers), the specific growth rate was 0.11 day⁻¹, which was lower than reported for regular activated sludge. The in-situ photo-oxygenation process by algae contributed 82% of the oxygen input, whereas oxygen diffusion through the mixed surface provided the remaining 18%. The foreseen energy savings that a PAS system could achieve warrant further investigations with real wastewater.

  11. Fluidized-bed bioreactor process for the microbial solubiliztion of coal

    DOEpatents

    Scott, Charles D.; Strandberg, Gerald W.

    1989-01-01

    A fluidized-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fluidized-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fluidized-bed bioreactor.

  12. Thin film bioreactors in space.

    PubMed

    Hughes-Fulford, M; Scheld, H W

    1989-01-01

    Studies from the Skylab, SL-3 and D-1 missions have demonstrated that biological organisms grown in microgravity have changes in basic cellular functions such as DNA, mRNA and protein synthesis, cytoskeleton synthesis, glucose utilization and cellular differentiation. Since microgravity could affect prokaryotic and eukaryotic cells at a subcellular and molecular level, space offers us an opportunity to learn more about basic biological systems with one important variable removed. The thin film bioreactor will facilitate the handling of fluids in microgravity, under constant temperature and will allow multiple samples of cells to be grown with variable conditions. Studies on cell cultures grown in microgravity would enable us to identify and quantify changes in basic biological function in microgravity which are needed to develop new applications of orbital research and future biotechnology.

  13. Thin film bioreactors in space

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, M.; Scheld, H. W.

    1989-01-01

    Studies from the Skylab, SL-3 and D-1 missions have demonstrated that biological organisms grown in microgravity have changes in basic cellular functions such as DNA, mRNA and protein synthesis, cytoskeleton synthesis, glucose utilization, and cellular differentiation. Since microgravity could affect prokaryotic and eukaryotic cells at a subcellular and molecular level, space offers an opportunity to learn more about basic biological systems with one inmportant variable removed. The thin film bioreactor will facilitate the handling of fluids in microgravity, under constant temperature and will allow multiple samples of cells to be grown with variable conditions. Studies on cell cultures grown in microgravity would make it possible to identify and quantify changes in basic biological function in microgravity which are needed to develop new applications of orbital research and future biotechnology.

  14. The role of bioreactors in tissue engineering.

    PubMed

    Martin, Ivan; Wendt, David; Heberer, Michael

    2004-02-01

    Ex vivo engineering of living tissues is a rapidly developing area with the potential to impact significantly on a wide-range of biomedical applications. Major obstacles to the generation of functional tissues and their widespread clinical use are related to a limited understanding of the regulatory role of specific physicochemical culture parameters on tissue development, and the high manufacturing costs of the few commercially available engineered tissue products. By enabling reproducible and controlled changes of specific environmental factors, bioreactor systems provide both the technological means to reveal fundamental mechanisms of cell function in a 3D environment, and the potential to improve the quality of engineered tissues. In addition, by automating and standardizing tissue manufacture in controlled closed systems, bioreactors could reduce production costs, thus facilitating a wider use of engineered tissues.

  15. Removal of N-nitrosamines in a membrane bioreactor and nanofiltration hybrid system for municipal wastewater reclamation: Process efficiency and mechanisms.

    PubMed

    Chon, Kangmin; Kim, Sung Hyun; Cho, Jaeweon

    2015-08-01

    This study investigated the removal efficiency and mechanisms of water contaminants (mainly N-nitrosamines) during municipal wastewater reclamation by a membrane bioreactor (MBR) and nanofiltration (NF) hybrid system. The removal of bulk water contaminants was governed by the microbial activities in the MBR and molecular weight cut-off (MWCO) of the NF membranes. The removal of N-nitrosamines by the MBR was primarily attributed to biodegradation by aerobic bacteria, which can be determined by the reactivity of the amine functional groups with the catabolic enzymes (removal efficiency=45-84%). Adsorption and formation of membrane fouling can enhance the removal of N-nitrosamines by the NF membranes. However, size-exclusion is found to play a major role in the removal of N-nitrosamines by the NF membranes since the removal efficiencies of N-nitrosamines varied significantly depending on molecular weight of the N-nitrosamines and MWCO of the NF membranes (removal efficiency: NE90>NE70).

  16. Bacterial response to a continuous long-term exposure of silver nanoparticles at sub-ppm silver concentrations in a membrane bioreactor activated sludge system.

    PubMed

    Zhang, Chiqian; Liang, Zhihua; Hu, Zhiqiang

    2014-03-01

    Silver nanoparticles (nanosilver or AgNPs) have excellent antimicrobial properties. Because of their increasing use, there is a concern about the potential impact of AgNPs in wastewater treatment systems. This study investigated the long-term effects of AgNPs (continuous loading for more than 60 days) on membrane bioreactor (MBR) activated sludge performance. At the influent AgNP concentration of 0.10 mg Ag/L, there was no significant difference in effluent water quality or bacterial activities before and after AgNP exposure. Nitrifying bacterial community structure was relatively stable before and after the long-term AgNP loading. Both ammonia-oxidizing bacteria (AOB) Nitrosomonas spp. and Nitrosospira spp. were present while Nitrospira spp. was the dominant nitrite-oxidizing bacterial species throughout this study. Abundance of silver resistance gene silE in the MBR, however, increased by 50-fold 41 days after the AgNP exposure, and then decreased with continuous AgNP exposure. The long-term nanosilver exposure did not change the membrane fouling rate although extracellular polymeric substances (EPS) concentration increased significantly after nanosilver dosing. The results suggest that AgNPs at the influent concentrations of 0.10 mg/L and below have almost no impact on activated sludge wastewater treatment performance, as activated sludge can effectively reduce nanosilver toxicity by adsorbing or precipitating AgNPs and silver ions (Ag(+)) released from the dissolution of AgNPs. PMID:24210505

  17. Treatment of a submerged anaerobic membrane bioreactor (SAnMBR) effluent by an activated sludge system: the role of sulphide and thiosulphate in the process.

    PubMed

    Sánchez-Ramírez, J E; Seco, A; Ferrer, J; Bouzas, A; García-Usach, F

    2015-01-01

    This work studies the use of a well-known and spread activated sludge system (UCT configuration) to treat the effluent of a submerged anaerobic membrane bioreactor (SAnMBR) treating domestic wastewater. Ammonia, phosphate, dissolved methane and sulphide concentrations in the SAnMBR effluent were around 55 mg NH4-N L(-1), 7 mg PO4-P L(-1), 30 mg non-methane biodegradable COD L(-1), and 105 mg S(2-) L(-1) respectively. The results showed a nitrification inhibition caused by the presence of sulphur compounds at any of the solids retention time (SRT) studied (15, 20 and 25 days). This inhibition could be overcome increasing the hydraulic retention time (HRT) from 13 to 26 h. Among the sulphur compounds, sulphide was identified as the substance which caused the nitrification inhibition. When the nitrification was well established, removal rates of nitrogen and phosphorus of 56% and 45% were reached respectively. The sulphide present in the influent was completely oxidised to sulphate, contributing this oxidation to the denitrification process. Moreover, the presence of methanotrophic bacteria, detected by FISH technique, could also contribute to the denitrification.

  18. Design concepts for bioreactors in space

    NASA Technical Reports Server (NTRS)

    Seshan, P. K.; Peterson, G. R.; Beard, B.; Boshe, C.; Dunlop, E. H.

    1987-01-01

    Microbial food sources are becoming viable and more efficient alternatives to conventional food sources, especially in the context of closed ecological life support systems (CELSS) in space habitats. Two bioreactor design concepts presented represent two dissimilar approaches to grappling with the absence of gravity in space habitats and deserve to be tested for adoption as important components of the life support function aboard spacecraft, space stations and other extra-terrestrial habitats.

  19. Microtechnology in space bioreactors.

    PubMed

    Walther, I; van der Schoot, B; Boillat, M; Muller, O; Cogoli, A

    1999-03-01

    Space biology is a young and rapidly developing discipline comprising basic research and biotechnology. In the next decades it will play a prominent role in the International Space Station (ISS). Therefore, there is an increasing demand for sophisticated instrumentation to satisfy the requirements of the future projects in space biology. Bioreactors will be needed to supply fresh living material (cells and tissues) either to study still obscure basic biological mechanisms or to develop profitable bioprocesses which will take advantage of the peculiar microgravity conditions. Since more than twenty years, the Space Biology Group of the ETHZ is carrying out research projects in space (Space Shuttle/Spacelab, MIR Station, satellites, and sounding rockets) that involve also the development of space-qualified instrumentation. In the last ten years we have developed, in collaboration with Mecanex SA, Nyon, and the Institute of Microtechnology of the University of Neuchatel, a space bioreactor for the continuous culture of yeast cells under controlled conditions. Sensors, pH control, nutrients pump and fluid flowmeter are based on state-of-the-art silicon technology. After two successful space flights, a further improved version is presently prepared for a flight in the year 2000.

  20. Cells growing in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    For 5 days on the STS-70 mission, a bioreactor cultivated human colon cancer cells, which grew to 30 times the volume of control specimens grown on Earth. This significant result was reproduced on STS-85 which grew mature structures that more closely match what are found in tumors in humans. Shown here, clusters of cells slowly spin inside a bioreactor. On Earth, the cells continually fall through the buffer medium and never hit bottom. In space, they are naturally suspended. Rotation ensures gentle stirring so waste is removed and fresh nutrient and oxygen are supplied. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  1. A Two-Stage Microbial Fuel Cell and Anaerobic Fluidized Bed Membrane Bioreactor (MFC-AFMBR) System for Effective Domestic Wastewater Treatment

    PubMed Central

    2014-01-01

    Microbial fuel cells (MFCs) are a promising technology for energy-efficient domestic wastewater treatment, but the effluent quality has typically not been sufficient for discharge without further treatment. A two-stage laboratory-scale combined treatment process, consisting of microbial fuel cells and an anaerobic fluidized bed membrane bioreactor (MFC-AFMBR), was examined here to produce high quality effluent with minimal energy demands. The combined system was operated continuously for 50 days at room temperature (∼25 °C) with domestic wastewater having a total chemical oxygen demand (tCOD) of 210 ± 11 mg/L. At a combined hydraulic retention time (HRT) for both processes of 9 h, the effluent tCOD was reduced to 16 ± 3 mg/L (92.5% removal), and there was nearly complete removal of total suspended solids (TSS; from 45 ± 10 mg/L to <1 mg/L). The AFMBR was operated at a constant high permeate flux of 16 L/m2/h over 50 days, without the need or use of any membrane cleaning or backwashing. Total electrical energy required for the operation of the MFC-AFMBR system was 0.0186 kWh/m3, which was slightly less than the electrical energy produced by the MFCs (0.0197 kWh/m3). The energy in the methane produced in the AFMBR was comparatively negligible (0.005 kWh/m3). These results show that a combined MFC-AFMBR system could be used to effectively treat domestic primary effluent at ambient temperatures, producing high effluent quality with low energy requirements. PMID:24568605

  2. Fate of aromatic hydrocarbons in Italian municipal wastewater systems: an overview of wastewater treatment using conventional activated-sludge processes (CASP) and membrane bioreactors (MBRs).

    PubMed

    Fatone, Francesco; Di Fabio, Silvia; Bolzonella, David; Cecchi, Franco

    2011-01-01

    We studied the occurrence, removal, and fate of 16 polycyclic aromatic hydrocarbons (PAHs) and 23 volatile organic compounds (VOCs) in Italian municipal wastewater treatment systems in terms of their common contents and forms, and their apparent and actual removal in both conventional activated-sludge processes (CASP) and membrane bioreactors (MBRs). We studied five representative full-scale CASP treatment plants (design capacities of 12,000 to 700,000 population-equivalent), three of which included MBR systems (one full-scale and two pilot-scale) operating in parallel with the conventional systems. We studied the solid-liquid partitioning and fates of these substances using both conventional samples and a novel membrane-equipped automatic sampler. Among the VOCs, toluene, ethylbenzene, xylenes, styrene, 1,2,4-trimethylbenzene, and 4-chlorotoluene were ubiquitous, whereas naphthalene, acenaphthene, fluorene, and phenanthrene were the most common PAHs. Both PAHs and aromatic VOCs had removal efficiencies of 40-60% in the headworks, even in plants without primary sedimentation. Mainly due to volatilization, aromatic VOCs had comparable removal efficiencies in CASP and MBRs, even for different sludge ages. MBRs did not enhance the retention of PAHs sorbed to suspended particulates compared with CASPs. On the other hand, the specific daily accumulation of PAHs in the MBR's activated sludge decreased logarithmically with increasing sludge age, indicating enhanced biodegradation of PAHs. The PAH and aromatic VOC contents in the final effluent are not a major driver for widespread municipal adoption of MBRs, but MBRs may enhance the biodegradation of PAHs and their removal from the environment.

  3. Bioreactor and process design for biohydrogen production.

    PubMed

    Show, Kuan-Yeow; Lee, Duu-Jong; Chang, Jo-Shu

    2011-09-01

    Biohydrogen is regarded as an attractive future clean energy carrier due to its high energy content and environmental-friendly conversion. It has the potential for renewable biofuel to replace current hydrogen production which rely heavily on fossil fuels. While biohydrogen production is still in the early stage of development, there have been a variety of laboratory- and pilot-scale systems developed with promising potential. This work presents a review of advances in bioreactor and bioprocess design for biohydrogen production. The state-of-the art of biohydrogen production is discussed emphasizing on production pathways, factors affecting biohydrogen production, as well as bioreactor configuration and operation. Challenges and prospects of biohydrogen production are also outlined.

  4. Bioreactor and process design for biohydrogen production.

    PubMed

    Show, Kuan-Yeow; Lee, Duu-Jong; Chang, Jo-Shu

    2011-09-01

    Biohydrogen is regarded as an attractive future clean energy carrier due to its high energy content and environmental-friendly conversion. It has the potential for renewable biofuel to replace current hydrogen production which rely heavily on fossil fuels. While biohydrogen production is still in the early stage of development, there have been a variety of laboratory- and pilot-scale systems developed with promising potential. This work presents a review of advances in bioreactor and bioprocess design for biohydrogen production. The state-of-the art of biohydrogen production is discussed emphasizing on production pathways, factors affecting biohydrogen production, as well as bioreactor configuration and operation. Challenges and prospects of biohydrogen production are also outlined. PMID:21624834

  5. Oxygen transfer in a pressurized airlift bioreactor.

    PubMed

    Campani, Gilson; Ribeiro, Marcelo Perencin Arruda; Horta, Antônio Carlos Luperni; Giordano, Roberto Campos; Badino, Alberto Colli; Zangirolami, Teresa Cristina

    2015-08-01

    Airlift bioreactors (ALBs) offer advantages over conventional systems, such as simplicity of construction, reduced risk of contamination, and efficient gas-liquid dispersion with low power consumption. ALBs are usually operated under atmospheric pressure. However, in bioprocesses with high oxygen demand, such as high cell density cultures, oxygen limitation may occur even when operating with high superficial gas velocity and air enriched with oxygen. One way of overcoming this drawback is to pressurize the reactor. In this configuration, it is important to assess the influence of bioreactor internal pressure on the gas hold-up, volumetric oxygen transfer coefficient (k(L)a), and volumetric oxygen transfer rate (OTR). Experiments were carried out in a concentric-tube airlift bioreactor with a 5 dm(3) working volume, equipped with a system for automatic monitoring and control of the pressure, temperature, and inlet gas flow rate. The results showed that, in disagreement with previous published results for bubble column and external loop airlift reactors, overpressure did not significantly affect k(L)a within the studied ranges of pressure (0.1-0.4 MPa) and superficial gas velocity in the riser (0.032-0.065 m s(-1)). Nevertheless, a positive effect on OTR was observed: it increased up to 5.4 times, surpassing by 2.3 times the oxygen transfer in a 4 dm(3) stirred tank reactor operated under standard cultivation conditions. These results contribute to the development of non-conventional reactors, especially pneumatic bioreactors operated using novel strategies for oxygen control.

  6. Bioreactor technology for production of valuable algal products

    NASA Astrophysics Data System (ADS)

    Liu, Guo-Cai; Cao, Ying

    1998-03-01

    Bioreactor technology has long been employed for the production of various (mostly cheap) food and pharmaceutical products. More recently, research has been mainly focused on the development of novel bioreactor technology for the production of high—value products. This paper reports the employment of novel bioreactor technology for the production of high-value biomass and metabolites by microalgae. These high-value products include microalgal biomass as health foods, pigments including phycocyanin and carotenoids, and polyunsaturated fatty acids such as eicosapentaenoic acid and docosahexaenoic acid. The processes involved include heterotrophic and mixotrophic cultures using organic substrates as the carbon source. We have demonstrated that these bioreactor cultivation systems are particularly suitable for the production of high-value products from various microalgae. These cultivation systems can be further modified to improve cell densities and productivities by using high cell density techniques such as fed-batch and membrane cell recycle systems. For most of the microalgae investigated, the maximum cell concentrations obtained using these bioreactor systems in our laboratories are much higher than any so far reported in the literature.

  7. Bioreactor design for clinical-grade expansion of stem cells.

    PubMed

    dos Santos, Francisco F; Andrade, Pedro Z; da Silva, Cláudia Lobato; Cabral, Joaquim M S

    2013-06-01

    The many clinical trials currently in progress will likely lead to the widespread use of stem cell-based therapies for an extensive variety of diseases, either in autologous or allogeneic settings. With the current pace of progress, in a few years' time, the field of stem cell-based therapy should be able to respond to the market demand for safe, robust and clinically efficient stem cell-based therapeutics. Due to the limited number of stem cells that can be obtained from a single donor, one of the major challenges on the roadmap for regulatory approval of such medicinal products is the expansion of stem cells using Good Manufacturing Practices (GMP)-compliant culture systems. In fact, manufacturing costs, which include production and quality control procedures, may be the main hurdle for developing cost-effective stem cell therapies. Bioreactors provide a viable alternative to the traditional static culture systems in that bioreactors provide the required scalability, incorporate monitoring and control tools, and possess the operational flexibility to be adapted to the differing requirements imposed by various clinical applications. Bioreactor systems face a number of issues when incorporated into stem cell expansion protocols, both during development at the research level and when bioreactors are used in on-going clinical trials. This review provides an overview of the issues that must be confronted during the development of GMP-compliant bioreactors systems used to support the various clinical applications employing stem cells. PMID:23625834

  8. Controlled-Turbulence Bioreactors

    NASA Technical Reports Server (NTRS)

    Wolf, David A.; Schwartz, Ray; Trinh, Tinh

    1989-01-01

    Two versions of bioreactor vessel provide steady supplies of oxygen and nutrients with little turbulence. Suspends cells in environment needed for sustenance and growth, while inflicting less damage from agitation and bubbling than do propeller-stirred reactors. Gentle environments in new reactors well suited to delicate mammalian cells. One reactor kept human kidney cells alive for as long as 11 days. Cells grow on carrier beads suspended in liquid culture medium that fills cylindrical housing. Rotating vanes - inside vessel but outside filter - gently circulates nutrient medium. Vessel stationary; magnetic clutch drives filter cylinder and vanes. Another reactor creates even less turbulence. Oxygen-permeable tubing wrapped around rod extending along central axis. Small external pump feeds oxygen to tubing through rotary coupling, and oxygen diffuses into liquid medium.

  9. Membrane Bioreactor With Pressure Cycle

    NASA Technical Reports Server (NTRS)

    Efthymiou, George S.; Shuler, Michael L.

    1991-01-01

    Improved class of multilayer membrane bioreactors uses convention forced by differences in pressure to overcome some of diffusional limitations of prior bioreactors. In reactor of new class, flow of nutrient solution reduces adverse gradients of concentration, keeps cells supplied with fresh nutrient, and sweeps away products faster than diffusion alone. As result, overall yield and rate of reaction increased. Pressures in sweeping gas and nutrient alternated to force nutrient liquid into and out of biocatalyst layer through hyrophilic membrane.

  10. Bioreactor Mass Transport Studies

    NASA Technical Reports Server (NTRS)

    Kleis, Stanley J.; Begley, Cynthia M.

    1997-01-01

    The objectives of the proposed research efforts were to develop both a simulation tool and a series of experiments to provide a quantitative assessment of mass transport in the NASA rotating wall perfused vessel (RWPV) bioreactor to be flown on EDU#2. This effort consisted of a literature review of bioreactor mass transport studies, the extension of an existing scalar transport computer simulation to include production and utilization of the scalar, and the evaluation of experimental techniques for determining mass transport in these vessels. Since mass transport at the cell surface is determined primarily by the relative motion of the cell assemblage and the surrounding fluid, a detailed assessment of the relative motion was conducted. Results of the simulations of the motion of spheres in the RWPV under microgravity conditions are compared with flight data from EDU#1 flown on STS-70. The mass transport across the cell membrane depends upon the environment, the cell type, and the biological state of the cell. Results from a literature review of cell requirements of several scalars are presented. As a first approximation, a model with a uniform spatial distribution of utilization or production was developed and results from these simulations are presented. There were two candidate processes considered for the experimental mass transport evaluations. The first was to measure the dissolution rate of solid or gel beads. The second was to measure the induced fluorescence of beads as a stimulant (for example hydrogen peroxide) is infused into the vessel. Either technique would use video taped images of the process for recording the quantitative results. Results of preliminary tests of these techniques are discussed.

  11. Dissipation of atrazine, enrofloxacin, and sulfamethazine in wood chip bioreactors and impact on denitrification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wood chip bioreactors are receiving increasing attention as a means of reducing nitrate in subsurface tile drainage systems. Agrochemicals in tile drainage water entering wood chip bioreactors can be retained or degraded and may impact denitrification. The degradation of 5 mg L-1 atrazine, enrofloxa...

  12. Fiber Attachment Module Experiment (FAME): Using a Multiplexed Miniature Hollow Fiber Membrane Bioreactor Solution for Rapid Process Testing

    NASA Technical Reports Server (NTRS)

    Coutts, Janelle L.; Lunn, Griffin M.; Koss, Lawrence L.; Hummerick, Mary E.; Spencer, Lachelle E.; Johnsey, Marissa N.; Richards, Jeffrey T.; Ellis, Ronald; Birmele, Michele N.; Wheeler, Raymond M.

    2014-01-01

    Bioreactor research is mostly limited to continuous stirred-tank reactors (CSTRs) which are not an option for microgravity (g) applications due to the lack of a gravity gradient to drive aeration as described by the Archimedes principle. Bioreactors and filtration systems for treating wastewater in g could avoid the need for harsh pretreatment chemicals and improve overall water recovery. Solution: Membrane Aerated Bioreactors (MABRs) for g applications, including possible use for wastewater treatment systems for the International Space Station (ISS).

  13. Regulation of mesenchymal stem cell 3D microenvironment: From macro to microfluidic bioreactors.

    PubMed

    Sart, Sébastien; Agathos, Spiros N; Li, Yan; Ma, Teng

    2016-01-01

    Human mesenchymal stem cells (hMSCs) have emerged as an important cell type in cell therapy and tissue engineering. In these applications, maintaining the therapeutic properties of hMSCs requires tight control of the culture environments and the structural cell organizations. Bioreactor systems are essential tools to achieve these goals in the clinical-scale expansion and tissue engineering applications. This review summarizes how different bioreactors provide cues to regulate the structure and the chemico-mechanical microenvironment of hMSCs with a focus on 3D organization. In addition to conventional bioreactors, recent advances in microfluidic bioreactors as a novel approach to better control the hMSC microenvironment are also discussed. These advancements highlight the key role of bioreactor systems in preserving hMSC's functional properties by providing dynamic and temporal regulation of in vitro cellular microenvironment.

  14. Bioreactor Engineering of Stem Cell Environments

    PubMed Central

    Tandon, Nina; Marolt, Darja; Cimetta, Elisa; Vunjak-Novakovic, Gordana

    2013-01-01

    Stem cells hold promise to revolutionize modern medicine by development of new therapies, disease models and drug screening systems. Standard cell culture systems have limited biological relevance because they do not recapitulate the complex 3-dimensional interactions and biophysical cues that characterize the in vivo environment. In this review, we discuss the current advances in engineering stem cell environments using novel biomaterials and bioreactor technologies. We also reflect on the challenges the field is currently facing with regard to translation of stem cell based therapies into the clinic. PMID:23531529

  15. Bioreactor boats high BTEX removal rate

    SciTech Connect

    Hickey, R.

    1994-04-01

    The oil and gas industries face formidable challenges in treating process wastes to federally mandated standards. The sheer magnitude of the job is daunting: 1,200 Superfund sites and 11,000 military installations have been identified for toxic cleanup. EPA assessments place petroleum as the point source of contamination for fully 50 percent of all identified hazardous waste sites. A new treatment technolgy is a fluidized-bed bioreactor that combines the advantages of a physical carbon adsorption system with bioremediation. The system has been effective in treating tank botton wastes, brines, groundwater contaminated with benzene, toluene, xylene, aliphatic hydrocarbons, and polycyclic aromatic hydrocarbons.

  16. Long Term Field Development of a Surfactant Modified Zeolite/Vapor Phase Bioreactor System for Treatment of Produced Waters for Power Generation

    SciTech Connect

    Lynn Katz; Kerry Kinney; Robert Bowman; Enid Sullivan; Soondong Kwon; Elaine Darby; Li-Jung Chen; Craig Altare

    2007-12-31

    The main goal of this research was to investigate the feasibility of using a combined physicochemical/biological treatment system to remove the organic constituents present in saline produced water. In order to meet this objective, a physical/chemical adsorption process was developed and two separate biological treatment techniques were investigated. Two previous research projects focused on the development of the surfactant modified zeolite adsorption process (DE-AC26-99BC15221) and development of a vapor phase biofilter (VPB) to treat the regeneration off-gas from the surfactant modified zeolite (SMZ) adsorption system (DE-FC26-02NT15461). In this research, the SMZ/VPB was modified to more effectively attenuate peak loads and to maintain stable biodegradation of the BTEX constituents from the produced water. Specifically, a load equalization system was incorporated into the regeneration flow stream. In addition, a membrane bioreactor (MBR) system was tested for its ability to simultaneously remove the aromatic hydrocarbon and carboxylate components from produced water. The specific objectives related to these efforts included the following: (1) Optimize the performance VPBs treating the transient loading expected during SMZ regeneration: (a) Evaluate the impact of biofilter operating parameters on process performance under stable operating conditions. (b) Investigate how transient loads affect biofilter performance, and identify an appropriate technology to improve biological treatment performance during the transient regeneration period of an SMZ adsorption system. (c) Examine the merits of a load equalization technology to attenuate peak VOC loads prior to a VPB system. (d) Evaluate the capability of an SMZ/VPB to remove BTEX from produced water in a field trial. (2) Investigate the feasibility of MBR treatment of produced water: (a) Evaluate the biodegradation of carboxylates and BTEX constituents from synthetic produced water in a laboratory-scale MBR. (b

  17. Treatment of phenolics, aromatic hydrocarbons, and cyanide-bearing wastewater in individual and combined anaerobic, aerobic, and anoxic bioreactors.

    PubMed

    Sharma, Naresh K; Philip, Ligy

    2015-01-01

    Studies were conducted on a mixture of pollutants commonly found in coke oven wastewater (CWW) to evaluate the biodegradation of various pollutants under anaerobic, aerobic, and anoxic conditions. The removal of the pollutants was monitored during individual bioreactor operation and using a combination of bioreactors operating in anaerobic-aerobic-anoxic sequence. While studying the performance of individual reactors, it was observed that cyanide removal (83.3 %) was predominant in the aerobic bioreactor, while much of the chemical oxygen demand (COD) (69 %) was consumed in the anoxic bioreactor. With the addition of cyanide, the COD removal efficiency was affected in all the bioreactors, and several intermediates were detected. While treating synthetic CWW using the combined bioreactor system, the overall COD removal efficiency was 86.79 % at an OLR of 2.4 g COD/L/day and an HRT of 96 h. The removal efficiency of 3,5-xylenol and cyanide, with inlet concentration of 150 and 10 mg/L, was found to be 91.8 and 93.6 % respectively. It was found that the impact of xylenol on the performance of the bioreactors was less than cyanide toxicity. Molecular analysis using T-RFLP revealed the dominance of strictly aerobic, mesophilic proteobacterium, Bosea minatitlanensis, in the aerobic bioreactor. The anoxic bioreactor was dominant with Rhodococcus pyridinivorans, known for its remarkable aromatic decomposing activity, while an unclassified Myxococcales bacterium was identified as the predominant bacterial species in the anaerobic bioreactor.

  18. Bioreactors for connective tissue engineering: design and monitoring innovations.

    PubMed

    El Haj, A J; Hampson, K; Gogniat, G

    2009-01-01

    The challenges for the tissue engineering of connective tissue lie in creating off-the-shelf tissue constructs which are capable of providing organs for transplantation. These strategies aim to grow a complex tissue with the appropriate mechanical integrity necessary for functional load bearing. Monolayer culture systems lack correlation with the in vivo environment and the naturally occur ring cell phenotypes. Part of the development of more recent models is to create growth environments or bioreactors which enable three-dimensional culture. Evidence suggests that in order to grow functional load-bearing tissues in a bioreactor, the cells must experience mechanical loading stimuli similar to that experienced in vivo which sets out the requirements for mechanical loading bioreactors. An essential part of developing new bioreactors for tissue growth is identifying ways of routinely and continuously measuring neo-tissue formation and in order to fully identify the successful generation of a tissue implant, the appropriate on-line monitoring must be developed. New technologies are being developed to advance our efforts to grow tissue ex vivo. The bioreactor is a critical part of these developments in supporting growth of biological implants and combining this with new advances in the detection of tissue formation allows us to refine our protocols and move nearer to off-the-shelf implants for clinical applications. PMID:19290498

  19. Bioreactors for Connective Tissue Engineering: Design and Monitoring Innovations

    NASA Astrophysics Data System (ADS)

    Haj, A. J. El; Hampson, K.; Gogniat, G.

    The challenges for the tissue engineering of connective tissue lie in creating off-the-shelf tissue constructs which are capable of providing organs for transplantation. These strategies aim to grow a complex tissue with the appropri ate mechanical integrity necessary for functional load bearing. Monolayer culture systems lack correlation with the in vivo environment and the naturally occur ring cell phenotypes. Part of the development of more recent models is to create growth environments or bioreactors which enable three-dimensional culture. Evidence suggests that in order to grow functional load-bearing tissues in a bioreactor, the cells must experience mechanical loading stimuli similar to that experienced in vivo which sets out the requirements for mechanical loading bioreactors. An essential part of developing new bioreactors for tissue growth is identifying ways of routinely and continuously measuring neo-tissue formation and in order to fully identify the successful generation of a tissue implant, the appropriate on-line monitoring must be developed. New technologies are being developed to advance our efforts to grow tissue ex vivo. The bioreactor is a critical part of these develop ments in supporting growth of biological implants and combining this with new advances in the detection of tissue formation allows us to refine our protocols and move nearer to off-the-shelf implants for clinical applications.

  20. Space bioreactor: Design/process flow

    NASA Technical Reports Server (NTRS)

    Cross, John H.

    1987-01-01

    The design of the space bioreactor stems from three considerations. First, and foremost, it must sustain cells in microgravity. Closely related is the ability to take advantage of the weightlessness and microgravity. Lastly, it should fit into a bioprocess. The design of the space bioreactor is described in view of these considerations. A flow chart of the bioreactor is presented and discussed.

  1. Effectiveness of dairy wastewater treatment in a bioreactor based on the integrated technology of activated sludge and hydrophyte system.

    PubMed

    Debowski, M; Zieliński, M; Krzemieniewski, M; Rokicka, M; Kupczyk, K

    2014-01-01

    The aim of this study was to determine the effectiveness of dairy wastewater treatment in the integrated technology based on the simultaneous use of the activated sludge method (AS) and a hydrophyte system (HS) (AS-HS), in this case, common reed (Phragmites australis) or common cattail (Typha latifolia). Experiments were conducted in an innovative reactor exploited in the fractional-technical scale at the loads of 0.05 mg BOD5/mg.d.m. d (biochemical oxygen demand) and 0.10 mg BOD5/mg.d.m d. The AS--HS enabled improving the removal effectiveness ofbiogenes characterized by concentrations of Ntot., N-NH4 and Ptot. In contrast, the integrated system had no significant reducing effect either on concentrations of organic compounds characterized by BOD5 and chemical oxygen demand parameters or on the structure of AS in the sequencing batch-type reactors. PMID:24701933

  2. Effectiveness of dairy wastewater treatment in a bioreactor based on the integrated technology of activated sludge and hydrophyte system.

    PubMed

    Debowski, M; Zieliński, M; Krzemieniewski, M; Rokicka, M; Kupczyk, K

    2014-01-01

    The aim of this study was to determine the effectiveness of dairy wastewater treatment in the integrated technology based on the simultaneous use of the activated sludge method (AS) and a hydrophyte system (HS) (AS-HS), in this case, common reed (Phragmites australis) or common cattail (Typha latifolia). Experiments were conducted in an innovative reactor exploited in the fractional-technical scale at the loads of 0.05 mg BOD5/mg.d.m. d (biochemical oxygen demand) and 0.10 mg BOD5/mg.d.m d. The AS--HS enabled improving the removal effectiveness ofbiogenes characterized by concentrations of Ntot., N-NH4 and Ptot. In contrast, the integrated system had no significant reducing effect either on concentrations of organic compounds characterized by BOD5 and chemical oxygen demand parameters or on the structure of AS in the sequencing batch-type reactors.

  3. Post-treatment of secondary wastewater treatment plant effluent using a two-stage fluidized bed bioreactor system

    PubMed Central

    2013-01-01

    The aim of this study was to investigate the performance of a two-stage fluidized bed reactor (FBR) system for the post-treatment of secondary wastewater treatment plant effluents (Shahrak Gharb, Tehran, Iran). The proposed treatment scheme was evaluated using pilot-scale reactors (106-L of capacity) filled with PVC as the fluidized bed (first stage) and gravel for the filtration purpose (second stage). Aluminum sulfate (30 mg/L) and chlorine (1 mg/L) were used for the coagulation and disinfection of the effluent, respectively. To monitor the performance of the FBR system, variation of several parameters (biochemical oxygen demand (BOD5), chemical oxygen demand (COD), turbidity, total phosphorous, total coliform and fecal coliform) were monitored in the effluent wastewater samples. The results showed that the proposed system could effectively reduce BOD5 and COD below 1.95 and 4.06 mg/L, respectively. Turbidity of the effluent could be achieved below 0.75 NTU, which was lower than those reported for the disinfection purpose. The total phosphorus was reduced to 0.52 mg/L, which was near the present phosphorous standard for the prevention of eutrophication process. Depending on both microorganism concentration and applied surface loading rates (5–10 m/h), about 35 to 75% and 67 to 97% of coliform were removed without and with the chlorine addition, respectively. Findings of this study clearly confirmed the efficiency of the FBR system for the post-treatment of the secondary wastewater treatment plant effluents without any solid problem during the chlorination. PMID:24499570

  4. A simple eccentric stirred tank mini-bioreactor: mixing characterization and mammalian cell culture experiments.

    PubMed

    Bulnes-Abundis, David; Carrillo-Cocom, Leydi M; Aráiz-Hernández, Diana; García-Ulloa, Alfonso; Granados-Pastor, Marisa; Sánchez-Arreola, Pamela B; Murugappan, Gayathree; Alvarez, Mario M

    2013-04-01

    In industrial practice, stirred tank bioreactors are the most common mammalian cell culture platform. However, research and screening protocols at the laboratory scale (i.e., 5-100 mL) rely primarily on Petri dishes, culture bottles, or Erlenmeyer flasks. There is a clear need for simple-easy to assemble, easy to use, easy to clean-cell culture mini-bioreactors for lab-scale and/or screening applications. Here, we study the mixing performance and culture adequacy of a 30 mL eccentric stirred tank mini-bioreactor. A detailed mixing characterization of the proposed bioreactor is presented. Laser induced fluorescence (LIF) experiments and computational fluid dynamics (CFD) computations are used to identify the operational conditions required for adequate mixing. Mammalian cell culture experiments were conducted with two different cell models. The specific growth rate and the maximum cell density of Chinese hamster ovary (CHO) cell cultures grown in the mini-bioreactor were comparable to those observed for 6-well culture plates, Erlenmeyer flasks, and 1 L fully instrumented bioreactors. Human hematopoietic stem cells were successfully expanded tenfold in suspension conditions using the eccentric mini-bioreactor system. Our results demonstrate good mixing performance and suggest the practicality and adequacy of the proposed mini-bioreactor.

  5. Bioconversion of high concentrations of hydrogen sulfide to elemental sulfur in airlift bioreactor.

    PubMed

    Zytoon, Mohamed Abdel-Monaem; AlZahrani, Abdulraheem Ahmad; Noweir, Madbuli Hamed; El-Marakby, Fadia Ahmed

    2014-01-01

    Several bioreactor systems are used for biological treatment of hydrogen sulfide. Among these, airlift bioreactors are promising for the bioconversion of hydrogen sulfide into elemental sulfur. The performance of airlift bioreactors is not adequately understood, particularly when directly fed with hydrogen sulfide gas. The objective of this paper is to investigate the performance of an airlift bioreactor fed with high concentrations of H2S with special emphasis on the effect of pH in combination with other factors such as H2S loading rate, oxygen availability, and sulfide accumulation. H2S inlet concentrations between 1,008 ppm and 31,215 ppm were applied and elimination capacities up to 113 g H2S m(-3) h(-1) were achieved in the airlift bioreactor under investigation at a pH range 6.5-8.5. Acidic pH values reduced the elimination capacity. Elemental sulfur recovery up to 95% was achieved under oxygen limited conditions (DO < 0.2 mg/L) and at higher pH values. The sulfur oxidizing bacteria in the bioreactor tolerated accumulated dissolved sulfide concentrations >500 mg/L at pH values 8.0-8.5, and near 100% removal efficiency was achieved. Overall, the resident microorganisms in the studied airlift bioreactor favored pH values in the alkaline range. The bioreactor performance in terms of elimination capacity and sulfur recovery was better at pH range 8-8.5.

  6. A simple eccentric stirred tank mini-bioreactor: mixing characterization and mammalian cell culture experiments.

    PubMed

    Bulnes-Abundis, David; Carrillo-Cocom, Leydi M; Aráiz-Hernández, Diana; García-Ulloa, Alfonso; Granados-Pastor, Marisa; Sánchez-Arreola, Pamela B; Murugappan, Gayathree; Alvarez, Mario M

    2013-04-01

    In industrial practice, stirred tank bioreactors are the most common mammalian cell culture platform. However, research and screening protocols at the laboratory scale (i.e., 5-100 mL) rely primarily on Petri dishes, culture bottles, or Erlenmeyer flasks. There is a clear need for simple-easy to assemble, easy to use, easy to clean-cell culture mini-bioreactors for lab-scale and/or screening applications. Here, we study the mixing performance and culture adequacy of a 30 mL eccentric stirred tank mini-bioreactor. A detailed mixing characterization of the proposed bioreactor is presented. Laser induced fluorescence (LIF) experiments and computational fluid dynamics (CFD) computations are used to identify the operational conditions required for adequate mixing. Mammalian cell culture experiments were conducted with two different cell models. The specific growth rate and the maximum cell density of Chinese hamster ovary (CHO) cell cultures grown in the mini-bioreactor were comparable to those observed for 6-well culture plates, Erlenmeyer flasks, and 1 L fully instrumented bioreactors. Human hematopoietic stem cells were successfully expanded tenfold in suspension conditions using the eccentric mini-bioreactor system. Our results demonstrate good mixing performance and suggest the practicality and adequacy of the proposed mini-bioreactor. PMID:23124589

  7. Distribution and mass transfer of dissolved oxygen in a multi-habitat membrane bioreactor.

    PubMed

    Tang, Bing; Qiu, Bing; Huang, Shaosong; Yang, Kanghua; Bin, Liying; Fu, Fenglian; Yang, Huiwen

    2015-04-01

    This work investigated the DO distribution and the factors influencing the mass transfer of DO in a multi-habitat membrane bioreactor. Through the continuous measurements of an on-line automatic system, the timely DO values at different zones in the bioreactor were obtained, which gave a detailed description to the distribution of oxygen within the bioreactor. The results indicated that the growth of biomass had an important influence on the distribution of oxygen. As the extension of operational time, the volumetric oxygen mass transfer coefficient (kLa) was generally decreased. With the difference in DO values, a complex environment combining anoxic and oxic state was produced within a single bioreactor, which provided a fundamental guarantee for the total removal of TN. Aeration rate, the concentration and apparent viscosity of MLSS have different influences on kLa, but adjusting the viscosity is a feasible method to improve the mass transfer of oxygen in the bioreactor.

  8. Streamlined bioreactor-based production of human cartilage tissues.

    PubMed

    Tonnarelli, B; Santoro, R; Adelaide Asnaghi, M; Wendt, D

    2016-05-27

    Engineered tissue grafts have been manufactured using methods based predominantly on traditional labour-intensive manual benchtop techniques. These methods impart significant regulatory and economic challenges, hindering the successful translation of engineered tissue products to the clinic. Alternatively, bioreactor-based production systems have the potential to overcome such limitations. In this work, we present an innovative manufacturing approach to engineer cartilage tissue within a single bioreactor system, starting from freshly isolated human primary chondrocytes, through the generation of cartilaginous tissue grafts. The limited number of primary chondrocytes that can be isolated from a small clinically-sized cartilage biopsy could be seeded and extensively expanded directly within a 3D scaffold in our perfusion bioreactor (5.4 ± 0.9 doublings in 2 weeks), bypassing conventional 2D expansion in flasks. Chondrocytes expanded in 3D scaffolds better maintained a chondrogenic phenotype than chondrocytes expanded on plastic flasks (collagen type II mRNA, 18-fold; Sox-9, 11-fold). After this "3D expansion" phase, bioreactor culture conditions were changed to subsequently support chondrogenic differentiation for two weeks. Engineered tissues based on 3D-expanded chondrocytes were more cartilaginous than tissues generated from chondrocytes previously expanded in flasks. We then demonstrated that this streamlined bioreactor-based process could be adapted to effectively generate up-scaled cartilage grafts in a size with clinical relevance (50 mm diameter). Streamlined and robust tissue engineering processes, as the one described here, may be key for the future manufacturing of grafts for clinical applications, as they facilitate the establishment of compact and closed bioreactor-based production systems, with minimal automation requirements, lower operating costs, and increased compliance to regulatory guidelines.

  9. Streamlined bioreactor-based production of human cartilage tissues.

    PubMed

    Tonnarelli, B; Santoro, R; Adelaide Asnaghi, M; Wendt, D

    2016-01-01

    Engineered tissue grafts have been manufactured using methods based predominantly on traditional labour-intensive manual benchtop techniques. These methods impart significant regulatory and economic challenges, hindering the successful translation of engineered tissue products to the clinic. Alternatively, bioreactor-based production systems have the potential to overcome such limitations. In this work, we present an innovative manufacturing approach to engineer cartilage tissue within a single bioreactor system, starting from freshly isolated human primary chondrocytes, through the generation of cartilaginous tissue grafts. The limited number of primary chondrocytes that can be isolated from a small clinically-sized cartilage biopsy could be seeded and extensively expanded directly within a 3D scaffold in our perfusion bioreactor (5.4 ± 0.9 doublings in 2 weeks), bypassing conventional 2D expansion in flasks. Chondrocytes expanded in 3D scaffolds better maintained a chondrogenic phenotype than chondrocytes expanded on plastic flasks (collagen type II mRNA, 18-fold; Sox-9, 11-fold). After this "3D expansion" phase, bioreactor culture conditions were changed to subsequently support chondrogenic differentiation for two weeks. Engineered tissues based on 3D-expanded chondrocytes were more cartilaginous than tissues generated from chondrocytes previously expanded in flasks. We then demonstrated that this streamlined bioreactor-based process could be adapted to effectively generate up-scaled cartilage grafts in a size with clinical relevance (50 mm diameter). Streamlined and robust tissue engineering processes, as the one described here, may be key for the future manufacturing of grafts for clinical applications, as they facilitate the establishment of compact and closed bioreactor-based production systems, with minimal automation requirements, lower operating costs, and increased compliance to regulatory guidelines. PMID:27232665

  10. Organic ionic salt draw solutions for osmotic membrane bioreactors.

    PubMed

    Bowden, Katie S; Achilli, Andrea; Childress, Amy E

    2012-10-01

    This investigation evaluates the use of organic ionic salt solutions as draw solutions for specific use in osmotic membrane bioreactors. Also, this investigation presents a simple method for determining the diffusion coefficient of ionic salt solutions using only a characterized membrane. A selection of organic ionic draw solutions underwent a desktop screening process before being tested in the laboratory and evaluated for performance using specific salt flux (reverse salt flux per unit water flux), biodegradation potential, and replenishment cost. Two of the salts were found to have specific salt fluxes three to six times lower than two commonly used inorganic draw solutions, NaCl and MgCl(2). All of the salts tested have organic anions with the potential to degrade in the bioreactor as a carbon source and aid in nutrient removal. Results demonstrate the potential benefits of organic ionic salt draw solutions over currently implemented inorganics in osmotic membrane bioreactor systems. PMID:22771022

  11. Investigation of the degradation of 13C-labeled fungal biomass in soil - fate of carbon in a soil bioreactor system

    NASA Astrophysics Data System (ADS)

    Schweigert, Michael; Fester, Thomas; Miltner, Anja; Kästner, Matthias

    2014-05-01

    Nutrient balances and degradation processes in boreal forests are mainly influenced by interactions of plant roots and ectomycorrhizal fungi. Plants benefit from nitrogen compounds provided by their symbiotic interaction partner. In return ectomycorrhiza are provided by large amounts of carbon from the plants which is used for the synthesis of hyphal networks in soil and for metabolic activity for nutrient uptake. Therefore ectomycorrhizal fungi play a major role in ecosystems of boreal forests and are consequently an important sink for carbon by building large amounts of mycelia. Recently, it has been shown that microbial biomass residues contribute significantly to soil organic matter formation. This suggests that also residues of ectomycorrhizal fungi may be an important source for soil organic matter formation in forest soils where these fungi are abundant. However, the fate of ectomycorrhizal biomass residues in soils is unknown. We therefore investigated the fate of ectomycorrhizal biomass in soil in a bioreactor system to quantify the contribution of this material to soil organic matter formation. As a model organism, we selected Laccaria bicolor, which was labelled by growing the fungus on 13C glucose. The stable isotope-labeled biomass was then homogenized and incubated in a podzol from a typical forest site in Central Germany. The fate of the labeled biomass was traced by analyzing the amount of 13C mineralized and the amount remaining in the soil. The fungal biomass carbon was mineralized rather rapidly during the first 25 days. Then the mineralization rate slowed down, but mineralization continued until the end of the experiment, when approximately 40% of the 13C was mineralized and 60% remained in soil. In addition, we analyzed biomolecules such as fatty acids to trace the incorporation of the L. bicolor-derived biomass carbon into other microorganisms and to identify potential primary consumers of fungal biomass. By these analyses, we found a

  12. Investigation of the degradation of 13C-labeled fungal biomass in soil - fate of carbon in a soil bioreactor system

    NASA Astrophysics Data System (ADS)

    Schweigert, Michael; Fester, Thomas; Miltner, Anja; Kaestner, Matthias

    2015-04-01

    Nutrient balances and degradation processes in boreal forests are mainly influenced by interactions of plant roots and ectomycorrhizal fungi. Plants benefit from nitrogen compounds provided by their symbiotic interaction partner. In return ectomycorrhiza are provided by large amounts of carbon from the plants which is used for the synthesis of hyphal networks in soil and for metabolic activity for nutrient uptake. Therefore, ectomycorrhizal fungi play a major role in ecosystems of boreal forests and are consequently an important sink for carbon by building large amount of mycelia. Recently, it has been shown that microbial biomass residues contribute significantly to soil organic matter formation. This suggests that also residues of ectomycorrhizal fungi may be an important source for soil organic matter formation in forest soils where these fungi are abundant. However, the fate of ectomycorrhizal biomass residues in soils is unknown. We therefore investigated the fate of ectomycorrhizal biomass in soil in a soil bioreactor system to quantify the contribution of this material to soil organic matter formation. As a model organism, we selected Laccaria bicolor, which was labelled by growing the fungus on 13C glucose. The stable isotope-labeled biomass was then homogenized and incubated in a podzol from a typical forest site in Central Germany. The fate of the labeled biomass was traced by analyzing the amount of 13C mineralized and the amount remaining in the soil. The fungal biomass carbon was mineralized rather rapidly during the first 50 days. Then the mineralization rate slowed down, but mineralization continued until the end of the experiment, when approximately 40% of the 13C was mineralized and 60% remained in soil. In addition, we analyzed biomolecules such as fatty acids to trace the incorporation of the L. bicolor-derived biomass carbon into other microorganisms and to identify potential primary consumers of fungal biomass. By these analyses, we found a

  13. Tissue grown in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Cells from kidneys lose some of their special features in conventional culture but form spheres replete with specialized cell microvilli (hair) and synthesize hormones that may be clinically useful. Ground-based research studies have demonstrated that both normal and neoplastic cells and tissues recreate many of the characteristics in the NASA bioreactor that they display in vivo. Proximal kidney tubule cells that normally have rich apically oriented microvilli with intercellular clefts in the kidney do not form any of these structures in conventional two-dimensional monolayer culture. However, when normal proximal renal tubule cells are cultured in three-dimensions in the bioreactor, both the microvilli and the intercellular clefts form. This is important because, when the morphology is recreated, the function is more likely also to be rejuvenated. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC).

  14. Leachate recirculation between alternating aged refuse bioreactors and its effect on refuse decomposition.

    PubMed

    Sun, Xiaojie; Sun, Yingjie; Zhao, Youcai; Wang, Ya-Nan

    2014-01-01

    In a sequencing batch bioreactor landfill system which combined a fresh and an aged refuse bioreactor, blockage occurred frequently in the aged refuse bioreactor during the treatment of leachate from the fresh refuse bioreactor. To overcome this problem, another aged refuse bioreactor was added, when blockage occurred, the two aged refuse bioreactor operated alternatively. A fresh refuse bioreactor F combined with two alternating aged refuse bioreactors A1 and A2 was called alternate recirculation process (ARP) in this study. The bioreactor system was operated in three stages, and the three bioreactors were exposed to air to facilitate surface re-aeration. The effect of the ARP on the accelerated degradation of fresh refuse was compared before and after blockage occurs in A1. The results indicated that ARP can improve the leachate production rate. The average daily net production rates of leachate in Stages 2 and 3 were approximately 2.1 and 1.6 mL (kgrefuse d)(-1), respectively, which exceeded that of Stage 1 (1.3 mL (kg refuse d)(-1)). The chemical oxygen demand and NH3-N concentrations of the leachate from Stage 1 are 1000 and 25mgL(-1) after 2.1 and 2.7 y, respectively. For Stages 2 and 3, these concentrations reach approximately after 0.877 and 1.3 y. Faster refuse settlement was observed in Stages 2 and 3, with an average daily settlement of approximately 0.11%, as compared with Stage 1 (approximately 0.099%). ARP can accelerate the biodegradation of the fresh refuse and overcome the problem of the blockage in the aged refuse reactor.

  15. LTCC based bioreactors for cell cultivation

    NASA Astrophysics Data System (ADS)

    Bartsch, H.; Welker, T.; Welker, K.; Witte, H.; Müller, J.

    2016-01-01

    LTCC multilayers offer a wide range of structural options and flexibility of connections not available in standard thin film technology. Therefore they are considered as material base for cell culture reactors. The integration of microfluidic handling systems and features for optical and electrical capturing of indicators for cell culture growth offers the platform for an open system concept. The present paper assesses different approaches for the creation of microfluidic channels in LTCC multilayers. Basic functions required for the fluid management in bioreactors include temperature and flow control. Both features can be realized with integrated heaters and temperature sensors in LTCC multilayers. Technological conditions for the integration of such elements into bioreactors are analysed. The temperature regulation for the system makes use of NTC thermistor sensors which serve as real value input for the control of the heater. It allows the adjustment of the fluid temperature with an accuracy of 0.2 K. The tempered fluid flows through the cell culture chamber. Inside of this chamber a thick film electrode array monitors the impedance as an indicator for the growth process of 3-dimensional cell cultures. At the system output a flow sensor is arranged to monitor the continual flow. For this purpose a calorimetric sensor is implemented, and its crucial design parameters are discussed. Thus, the work presented gives an overview on the current status of LTCC based fluid management for cell culture reactors, which provides a promising base for the automation of cell culture processes.

  16. Cell culture experiments planned for the space bioreactor

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.; Cross, John H.

    1987-01-01

    Culturing of cells in a pilot-scale bioreactor remains to be done in microgravity. An approach is presented based on several studies of cell culture systems. Previous and current cell culture research in microgravity which is specifically directed towards development of a space bioprocess is described. Cell culture experiments planned for a microgravity sciences mission are described in abstract form.

  17. Internal hydraulics of an agricultural drainage denitrification bioreactor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Denitrification bioreactors to reduce the amount of nitrate-nitrogen in agricultural drainage are now being deployed across the U.S. Midwest. However, there are still many unknowns regarding internal hydraulic-driven processes in these "black box" engineered treatment systems. To improve this unders...

  18. Novel Hydrogen Bioreactor and Detection Apparatus.

    PubMed

    Rollin, Joseph A; Ye, Xinhao; Del Campo, Julia Martin; Adams, Michael W W; Zhang, Y-H Percival

    2016-01-01

    In vitro hydrogen generation represents a clear opportunity for novel bioreactor and system design. Hydrogen, already a globally important commodity chemical, has the potential to become the dominant transportation fuel of the future. Technologies such as in vitro synthetic pathway biotransformation (SyPaB)-the use of more than 10 purified enzymes to catalyze unnatural catabolic pathways-enable the storage of hydrogen in the form of carbohydrates. Biohydrogen production from local carbohydrate resources offers a solution to the most pressing challenges to vehicular and bioenergy uses: small-size distributed production, minimization of CO2 emissions, and potential low cost, driven by high yield and volumetric productivity. In this study, we introduce a novel bioreactor that provides the oxygen-free gas phase necessary for enzymatic hydrogen generation while regulating temperature and reactor volume. A variety of techniques are currently used for laboratory detection of biohydrogen, but the most information is provided by a continuous low-cost hydrogen sensor. Most such systems currently use electrolysis for calibration; here an alternative method, flow calibration, is introduced. This system is further demonstrated here with the conversion of glucose to hydrogen at a high rate, and the production of hydrogen from glucose 6-phosphate at a greatly increased reaction rate, 157 mmol/L/h at 60 °C.

  19. Production of biomass and bioactive compounds from adventitious roots by optimization of culturing conditions of Eurycoma longifolia in balloon-type bubble bioreactor system.

    PubMed

    Lulu, Tao; Park, So-Young; Ibrahim, Rusli; Paek, Kee-Yoeup

    2015-06-01

    The present study aimed to optimize the conditions for the production of adventitious roots from Eurycoma longifolia Jack, an important medicinal woody plant, in bioreactor culture. The effects of the type and concentration of auxin on root growth were studied, as well as the effects of the NH4(+):NO3(-) ratio on adventitious root growth and the production of phenolics and flavonoids. Approximately 5 g L(-1) fresh weight of adventitious roots was inoculated into a 3 L balloon-type bubble bioreactor, which contained 2 L 3/4 MS medium supplemented with 30 g L(-1) sucrose and cultures were maintained in the dark for 7 weeks at 24 ± 1°C. Higher concentrations of IBA (7.0 and 9.0 mg L(-1)) and NAA (5.0 mg L(-1)) enhanced the biomass and accumulation of total phenolics and flavonoids. The adventitious roots were thin, numerous, and elongated in 3/4 MS medium supplemented with 5.0 and 7.0 mg L(-1) IBA, whereas the lateral roots were shorter and thicker with 5.0 mg L(-1) NAA compared with IBA treatment. The optimum biomasses of 50.22 g L(-1) fresh weight and 4.60 g L(-1) dry weight were obtained with an NH4(+):NO3(-) ratio of 15:30. High phenolic and flavonoid productions (38.59 and 11.27 mg L(-1) medium, respectively) were also obtained with a ratio of 15:30. Analysis of the 2,2-diphenyl-1-picrylhydrazyl (DPPH)-scavenging activity indicated higher antioxidant activity with an NH4(+):NO3(-) ratio of 30:15. These results suggest that balloon-type bubble bioreactor cultures are suitable for the large-scale commercial production of E. longifolia adventitious roots which contain high yield of bioactive compounds.

  20. Bioreactors for removing methyl bromide following contained fumigations

    USGS Publications Warehouse

    Miller, L.G.; Baesman, S.M.; Oremland, R.S.

    2003-01-01

    Use of methyl bromide (MeBr) as a quarantine, commodity, or structural fumigant is under scrutiny because its release to the atmosphere contributes to the depletion of stratospheric ozone. A closed-system bioreactor consisting of 0.5 L of a growing culture of a previously described bacterium, strain IMB-1, removed MeBr (> 110 ??mol L-1) from recirculating air. Strain IMB-1 grew slowly to high cell densities in the bioreactor using MeBr as its sole carbon and energy source. Bacterial oxidation of MeBr produced CO2 and hydrobromic acid (HBr), which required continuous neutralization with NaOH for the system to operate effectively. Strain IMB-1 was capable of sustained oxidation of large amounts of MeBr (170 mmol in 46 d). In an open-system bioreactor (10-L fermenter), strain IMB-1 oxidized a continuous supply of MeBr (220 ??mol L-1 in air). Growth was continuous, and 0.5 mol of MeBr was removed from the air supply in 14 d. The specific rate of MeBr oxidation was 7 ?? 10-16 mol cell-1 h-1. Bioreactors such as these can therefore be used to remove large quantities of contaminant MeBr, which opens the possibility of biodegradation as a practical means for its disposal.

  1. High retention membrane bioreactors: challenges and opportunities.

    PubMed

    Luo, Wenhai; Hai, Faisal I; Price, William E; Guo, Wenshan; Ngo, Hao H; Yamamoto, Kazuo; Nghiem, Long D

    2014-09-01

    Extensive research has focussed on the development of novel high retention membrane bioreactor (HR-MBR) systems for wastewater reclamation in recent years. HR-MBR integrates high rejection membrane separation with conventional biological treatment in a single step. High rejection membrane separation processes currently used in HR-MBR applications include nanofiltration, forward osmosis, and membrane distillation. In these HR-MBR systems, organic contaminants can be effectively retained, prolonging their retention time in the bioreactor and thus enhancing their biodegradation. Therefore, HR-MBR can offer a reliable and elegant solution to produce high quality effluent. However, there are several technological challenges associated with the development of HR-MBR, including salinity build-up, low permeate flux, and membrane degradation. This paper provides a critical review on these challenges and potential opportunities of HR-MBR for wastewater treatment and water reclamation, and aims to guide and inform future research on HR-MBR for fast commercialisation of this innovative technology. PMID:24996563

  2. Spaceflight bioreactor studies of cells and tissues.

    PubMed

    Freed, Lisa E; Vunjak-Novakovic, Gordana

    2002-01-01

    Studies of the fundamental role of gravity in the development and function of biological organisms are a central component of the human exploration of space. Microgravity affects numerous physical phenomena relevant to biological research, including the hydrostatic pressure in fluid filled vesicles, sedimentation of organelles, and buoyancy-driven convection of flow and heat. These physical phenomena can in turn directly and indirectly affect cellular morphology, metabolism, locomotion, secretion of extracellular matrix and soluble signals, and assembly into functional tissues. Studies aimed at distinguishing specific effects of gravity on biological systems require the ability to: (i) control and systematically vary gravity, e.g. by utilizing the microgravity environment of space in conjunction with an in-flight centrifuge; and (ii) maintain constant all other factors in the immediate environment, including in particular concentrations and exchange rates of biochemical species and hydrodynamic shear. The latter criteria imply the need for gravity-independent mechanisms to provide for mass transport between the cells and their environment. Available flight hardware has largely determined the experimental design and scientific objectives of spaceflight cell and tissue culture studies carried out to date. Simple culture vessels have yielded important quantitative data, and helped establish in vitro models of cell locomotion, growth and differentiation in various mammalian cell types including embryonic lung cells [6], lymphocytes [2,8], and renal cells [7,31]. Studies done using bacterial cells established the first correlations between gravity-dependent factors such as cell settling velocity and diffusional distance and the respective cell responses [12]. The development of advanced bioreactors for microgravity cell and tissue culture and for tissue engineering has benefited both research areas and provided relevant in vitro model systems for studies of astronaut

  3. Dynamics of yeast immobilized-cell fluidized-bed bioreactors systems in ethanol fermentation from lactose-hydrolyzed whey and whey permeate.

    PubMed

    Gabardo, Sabrina; Pereira, Gabriela Feix; Klein, Manuela P; Rech, Rosane; Hertz, Plinho F; Ayub, Marco Antônio Záchia

    2016-01-01

    We studied the dynamics of ethanol production on lactose-hydrolyzed whey (LHW) and lactose-hydrolyzed whey permeate (LHWP) in batch fluidized-bed bioreactors using single and co-cultures of immobilized cells of industrial strains of Saccharomyces cerevisiae and non-industrial strains of Kluyveromyces marxianus. Although the co-culture of S. cerevisiae CAT-1 and K. marxianus CCT 4086 produced two- to fourfold the ethanol productivity of single cultures of S. cerevisiae, the single cultures of the K. marxianus CCT 4086 produced the best results in both media (Y EtOH/S = 0.47-0.49 g g(-1) and Q P = 1.39-1.68 g L(-1) h(-1), in LHW and LHWP, respectively). Ethanol production on concentrated LHWP (180 g L(-1)) reached 79.1 g L(-1), with yields of 0.46 g g(-1) for K. marxianus CCT 4086 cultures. Repeated batches of fluidized-bed bioreactor on concentrated LHWP led to increased ethanol productivity, reaching 2.8 g L(-1) h(-1).

  4. Dynamics of yeast immobilized-cell fluidized-bed bioreactors systems in ethanol fermentation from lactose-hydrolyzed whey and whey permeate.

    PubMed

    Gabardo, Sabrina; Pereira, Gabriela Feix; Klein, Manuela P; Rech, Rosane; Hertz, Plinho F; Ayub, Marco Antônio Záchia

    2016-01-01

    We studied the dynamics of ethanol production on lactose-hydrolyzed whey (LHW) and lactose-hydrolyzed whey permeate (LHWP) in batch fluidized-bed bioreactors using single and co-cultures of immobilized cells of industrial strains of Saccharomyces cerevisiae and non-industrial strains of Kluyveromyces marxianus. Although the co-culture of S. cerevisiae CAT-1 and K. marxianus CCT 4086 produced two- to fourfold the ethanol productivity of single cultures of S. cerevisiae, the single cultures of the K. marxianus CCT 4086 produced the best results in both media (Y EtOH/S = 0.47-0.49 g g(-1) and Q P = 1.39-1.68 g L(-1) h(-1), in LHW and LHWP, respectively). Ethanol production on concentrated LHWP (180 g L(-1)) reached 79.1 g L(-1), with yields of 0.46 g g(-1) for K. marxianus CCT 4086 cultures. Repeated batches of fluidized-bed bioreactor on concentrated LHWP led to increased ethanol productivity, reaching 2.8 g L(-1) h(-1). PMID:26527573

  5. Membrane bioreactor for control of volatile organic compound emissions

    SciTech Connect

    Ergas, S.J.; McGrath, M.S.

    1997-06-01

    A membrane bioreactor system that overcomes many of the limitations of conventional compost biofilters is described. The system utilizes microporous hydrophobic hollow fiber membranes for mass transfer of volatile organic compounds (VOCs) from the gas phase to a microbially active liquid phase. The reactor design provides a high biomass concentration, a method for wasting biomass, and a method for addition of pH buffers, nutrients, cometabolites, and/or other amendments. A theoretical model is developed, describing mass transfer and biodegradation in the membrane bioreactor. Reactor performance was determined in a laboratory scale membrane bioreactor over a range of gas loading rates using toluene as a model VOC. Toluene removal efficiency was greater than 98% at an inlet concentration of 100 ppm, and a gas residence time of less than 2 s. Factors controlling bioreactor performance were determined through both experiments and theoretical modeling to include: compound Henry`s law constant, membrane specific surface area, gas and VOC loading rates, liquid phase turbulence, and biomass substrate utilization rate.

  6. PRACTICE REVIEW OF FIVE BIOREACTOR/RECIRCULATION LANDFILLS

    EPA Science Inventory

    Six bioreactor landfills were analyzed to provide a perspective of current practice and technical issues that differentiate bioreactor landfills from conventional landfills. Five of the bioreactor landfills were anaerobic and one was aerated. In one case, nearly identical cells e...

  7. Design and Performance of an Automated Bioreactor for Cell Culture Experiments in a Microgravity Environment

    NASA Astrophysics Data System (ADS)

    Kim, Youn-Kyu; Park, Seul-Hyun; Lee, Joo-Hee; Choi, Gi-Hyuk

    2015-03-01

    In this paper, we describe the development of a bioreactor for a cell-culture experiment on the International Space Station (ISS). The bioreactor is an experimental device for culturing mouse muscle cells in a microgravity environment. The purpose of the experiment was to assess the impact of microgravity on the muscles to address the possibility of longterm human residence in space. After investigation of previously developed bioreactors, and analysis of the requirements for microgravity cell culture experiments, a bioreactor design is herein proposed that is able to automatically culture 32 samples simultaneously. This reactor design is capable of automatic control of temperature, humidity, and culture-medium injection rate; and satisfies the interface requirements of the ISS. Since bioreactors are vulnerable to cell contamination, the medium-circulation modules were designed to be a completely replaceable, in order to reuse the bioreactor after each experiment. The bioreactor control system is designed to circulate culture media to 32 culture chambers at a maximum speed of 1 ml/min, to maintain the temperature of the reactor at 36°C, and to keep the relative humidity of the reactor above 70%. Because bubbles in the culture media negatively affect cell culture, a de-bubbler unit was provided to eliminate such bubbles. A working model of the reactor was built according to the new design, to verify its performance, and was used to perform a cell culture experiment that confirmed the feasibility of this device.

  8. Calorimetric method for adjusting the mass of culture fluid in a bioreactor

    NASA Astrophysics Data System (ADS)

    Kotelnikov, G. V.; Moiseyeva, S. P.; Krayev, V. P.

    1998-05-01

    A new calorimetric method for adjusting the mass of culture fluid in a bioreactor and the results of its experimental testing are described. The method is based on constant heat capacity of liquids in the presence of disturbing factors accompanying biotechnology processes. A new measuring parameter independent of thermal noise induced by the stirrer, the flow of fluids, chemical and physical interactions of substances in the bioreactor was used for adjusting the mass of culture fluid. This parameter is Ph, the power increment in the heater under steady-state conditions of heating the bioreactor. The scanning calorimetry principle was used to make the measurements. It was shown that it is necessary to provide a constant heating rate V for the bioreactor and a high-speed response of the automated control system (ACS) for bioreactor temperature. The ACS developed on the base of the dynamic error and transient response h(t) calculated by the inverse Laplace transform with the use of the closed-loop transfer function gives V=const and the control time of about several seconds. The experimental data reported show the adjustment of the mass of culture fluid in a 3 l bioreactor with an error of no more than 10 g. This enables an accurate evaluation of the biomass amount in the bioreactor, specific growth rate, and other growth parameters determined using specific growth rate.

  9. Modeling energy consumption in membrane bioreactors for wastewater treatment in north Africa.

    PubMed

    Skouterisl, George; Arnot, Tom C; Jraou, Mouna; Feki, Firas; Sayadi, Sami

    2014-03-01

    Two pilot-scale membrane bioreactors were operated alongside a full-sized activated sludge plant in Tunisia in order to compare specific energy demand and treated water quality. Energy consumption rates were measured for the complete membrane bioreactor systems and for their different components. Specific energy demand was measured for the systems and compared with the activated sludge plant, which operated at around 3 kWh m(-3). A model was developed for each membrane bioreactor based on both dynamic and steady-state mass balances, microbial kinetics and stoichiometry, and energy balance. Energy consumption was evaluated as a function of mixed-liquor suspended solids concentration, net permeate fluxes, and the resultant treated water quality. This work demonstrates the potential for using membrane bioreactors in decentralised domestic water treatment in North Africa, at energy consumption levels similar or lower than conventional activated sludge systems, with the added benefit of producing treated water suitable for unrestricted crop irrigation.

  10. Miniature bioreactors: current practices and future opportunities

    PubMed Central

    Betts, Jonathan I; Baganz, Frank

    2006-01-01

    This review focuses on the emerging field of miniature bioreactors (MBRs), and examines the way in which they are used to speed up many areas of bioprocessing. MBRs aim to achieve this acceleration as a result of their inherent high-throughput capability, which results from their ability to perform many cell cultivations in parallel. There are several applications for MBRs, ranging from media development and strain improvement to process optimisation. The potential of MBRs for use in these applications will be explained in detail in this review. MBRs are currently based on several existing bioreactor platforms such as shaken devices, stirred-tank reactors and bubble columns. This review will present the advantages and disadvantages of each design together with an appraisal of prototype and commercialised devices developed for parallel operation. Finally we will discuss how MBRs can be used in conjunction with automated robotic systems and other miniature process units to deliver a fully-integrated, high-throughput (HT) solution for cell cultivation process development. PMID:16725043

  11. Quantitative analysis of microbial biomass yield in aerobic bioreactor.

    PubMed

    Watanabe, Osamu; Isoda, Satoru

    2013-12-01

    We have studied the integrated model of reaction rate equations with thermal energy balance in aerobic bioreactor for food waste decomposition and showed that the integrated model has the capability both of monitoring microbial activity in real time and of analyzing biodegradation kinetics and thermal-hydrodynamic properties. On the other hand, concerning microbial metabolism, it was known that balancing catabolic reactions with anabolic reactions in terms of energy and electron flow provides stoichiometric metabolic reactions and enables the estimation of microbial biomass yield (stoichiometric reaction model). We have studied a method for estimating real-time microbial biomass yield in the bioreactor during food waste decomposition by combining the integrated model with the stoichiometric reaction model. As a result, it was found that the time course of microbial biomass yield in the bioreactor during decomposition can be evaluated using the operational data of the bioreactor (weight of input food waste and bed temperature) by the combined model. The combined model can be applied to manage a food waste decomposition not only for controlling system operation to keep microbial activity stable, but also for producing value-added products such as compost on optimum condition. PMID:25078821

  12. Effect of the mixed liquor suspended solid on permeate in a membrane bioreactor system applied for the treatment of sewage mixed with wastewater of the milk from the dairy industry.

    PubMed

    Poyatos, José M; Molina-Muñoz, Marisa; Moreno, Begoña; González-López, Jesús; Hontoria, Ernesto

    2007-06-01

    The performance of a bench-scale submerged membrane bioreactor (MBR) equipped with ultrafiltration membranes (ZENON) was investigated at different mixed liquor suspended solid (MLSS) concentrations (3069, 4314 and 6204 mg/L). The pilot plant was located in the wastewater treatment plant of the city of Granada (Puente de los Vados, Granada, Spain), which receives the wastewater of the milk from the dairy industry of Granada. The results showed the capacity of the MBR systems to remove organic material (COD and BOD5), suspended solids, turbidity, color and microbial indicators such as E. coli and coliphages. Therefore, the results suggest that the transmembrane pressure (TMP) was influence by the MLSS concentration assayed. However, an increase in the MLSS concentration increases the nitrification processes and consequently the amount of NO3- in permeate. PMID:17558781

  13. Experimental and CFD-PBM approach coupled with a simplified dynamic analysis of mass transfer in phenol biodegradation in a three phase system of an aerated two-phase partitioning bioreactor for environmental applications

    NASA Astrophysics Data System (ADS)

    Moradkhani, Hamed; Anarjan Kouchehbagh, Navideh; Izadkhah, Mir-Shahabeddin

    2016-07-01

    A three-dimensional transient modeling of a two-phase partitioning bioreactor, combining system hydrodynamics, two simultaneous mass transfer and microorganism growth is modeled using computational fluid dynamics code FLUENT 6.2. The simulation is based on standard "k-ɛ" Reynolds-averaged Navier-Stokes model. Population balance model is implemented in order to describe gas bubble coalescence, breakage and species transport in the reaction medium and to predict oxygen volumetric mass transfer coefficient (kLa). Model results are verified against experimental data and show good agreement as 13 classes of bubble size is taking into account. Flow behavior in different operational conditions is studied. Almost at all impeller speeds and aeration intensities there were acceptable distributions of species caused by proper mixing. The magnitude of dissolved oxygen percentage in aqueous phase has a direct correlation with impeller speed and any increasing of the aeration magnitude leads to faster saturation in shorter periods of time.

  14. Methane production in simulated hybrid bioreactor landfill.

    PubMed

    Xu, Qiyong; Jin, Xiao; Ma, Zeyu; Tao, Huchun; Ko, Jae Hac

    2014-09-01

    The aim of this work was to study a hybrid bioreactor landfill technology for landfill methane production from municipal solid waste. Two laboratory-scale columns were operated for about ten months to simulate an anaerobic and a hybrid landfill bioreactor, respectively. Leachate was recirculated into each column but aeration was conducted in the hybrid bioreactor during the first stage. Results showed that leachate pH in the anaerobic bioreactor maintained below 6.5, while in the hybrid bioreactor quickly increased from 5.6 to 7.0 due to the aeration. The temporary aeration resulted in lowering COD and BOD5 in the leachate. The volume of methane collected from the hybrid bioreactor was 400 times greater than that of the anaerobic bioreactor. Also, the methane production rate of the hybrid bioreactor was improved within a short period of time. After about 10 months' operation, the total methane production in the hybrid bioreactor was 212 L (16 L/kgwaste).

  15. Prostate tumor grown in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This prostate cancer construct was grown during NASA-sponsored bioreactor studies on Earth. Cells are attached to a biodegradable plastic lattice that gives them a head start in growth. Prostate tumor cells are to be grown in a NASA-sponsored Bioreactor experiment aboard the STS-107 Research-1 mission in 2002. Dr. Leland Chung of the University of Virginia is the principal investigator. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: NASA and the University of Virginia.

  16. Monolithic Continuous-Flow Bioreactors

    NASA Technical Reports Server (NTRS)

    Stephanopoulos, Gregory; Kornfield, Julia A.; Voecks, Gerald A.

    1993-01-01

    Monolithic ceramic matrices containing many small flow passages useful as continuous-flow bioreactors. Ceramic matrix containing passages made by extruding and firing suitable ceramic. Pores in matrix provide attachment medium for film of cells and allow free movement of solution. Material one not toxic to micro-organisms grown in reactor. In reactor, liquid nutrients flow over, and liquid reaction products flow from, cell culture immobilized in one set of channels while oxygen flows to, and gaseous reaction products flow from, culture in adjacent set of passages. Cells live on inner surfaces containing flowing nutrient and in pores of walls of passages. Ready access to nutrients and oxygen in channels. They generate continuous high yield characteristic of immobilized cells, without large expenditure of energy otherwise incurred if necessary to pump nutrient solution through dense biomass as in bioreactors of other types.

  17. Review of nonconventional bioreactor technology

    SciTech Connect

    Turick, C.E.; Mcllwain, M.E.

    1993-09-01

    Biotechnology will significantly affect many industrial sectors in the future. Industrial sectors that will be affected include pharmaceutical, chemical, fuel, agricultural, and environmental remediation. Future research is needed to improve bioprocessing efficiency and cost-effectiveness in order to compete with traditional technologies. This report describes recent advances in bioprocess technologies and bioreactor designs and relates them to problems encountered in many industrial bioprocessing operations. The primary focus is directed towards increasing gas and vapor transfer for enhanced bioprocess kinetics as well as unproved by-product separation and removal. The advantages and disadvantages of various conceptual designs such as hollow-fiber, gas-phase, hyperbaric/hypobaric, and electrochemical bioreactors are also discussed. Specific applications that are intended for improved bioprocesses include coal desulfurization, coal liquefaction, soil bioremediation, biomass conversion to marketable chemicals, biomining, and biohydrometallurgy as well as bioprocessing of gases and vapors.

  18. Integrating human stem cell expansion and neuronal differentiation in bioreactors

    PubMed Central

    Serra, Margarida; Brito, Catarina; Costa, Eunice M; Sousa, Marcos FQ; Alves, Paula M

    2009-01-01

    Background Human stem cells are cellular resources with outstanding potential for cell therapy. However, for the fulfillment of this application, major challenges remain to be met. Of paramount importance is the development of robust systems for in vitro stem cell expansion and differentiation. In this work, we successfully developed an efficient scalable bioprocess for the fast production of human neurons. Results The expansion of undifferentiated human embryonal carcinoma stem cells (NTera2/cl.D1 cell line) as 3D-aggregates was firstly optimized in spinner vessel. The media exchange operation mode with an inoculum concentration of 4 × 105 cell/mL was the most efficient strategy tested, with a 4.6-fold increase in cell concentration achieved in 5 days. These results were validated in a bioreactor where similar profile and metabolic performance were obtained. Furthermore, characterization of the expanded population by immunofluorescence microscopy and flow cytometry showed that NT2 cells maintained their stem cell characteristics along the bioreactor culture time. Finally, the neuronal differentiation step was integrated in the bioreactor process, by addition of retinoic acid when cells were in the middle of the exponential phase. Neurosphere composition was monitored and neuronal differentiation efficiency evaluated along the culture time. The results show that, for bioreactor cultures, we were able to increase significantly the neuronal differentiation efficiency by 10-fold while reducing drastically, by 30%, the time required for the differentiation process. Conclusion The culture systems developed herein are robust and represent one-step-forward towards the development of integrated bioprocesses, bridging stem cell expansion and differentiation in fully controlled bioreactors. PMID:19772662

  19. Three-Dimensional Modelling inside a Differential Pressure Laminar Flow Bioreactor Filled with Porous Media.

    PubMed

    Weyand, Birgit; Israelowitz, Meir; Kramer, James; Bodmer, Christian; Noehre, Mariel; Strauss, Sarah; Schmälzlin, Elmar; Gille, Christoph; von Schroeder, Herbert P; Reimers, Kerstin; Vogt, Peter M

    2015-01-01

    A three-dimensional computational fluid dynamics- (CFD-) model based on a differential pressure laminar flow bioreactor prototype was developed to further examine performance under changing culture conditions. Cell growth inside scaffolds was simulated by decreasing intrinsic permeability values and led to pressure build-up in the upper culture chamber. Pressure release by an integrated bypass system allowed continuation of culture. The specific shape of the bioreactor culture vessel supported a homogenous flow profile and mass flux at the scaffold level at various scaffold permeabilities. Experimental data showed an increase in oxygen concentration measured inside a collagen scaffold seeded with human mesenchymal stem cells when cultured in the perfusion bioreactor after 24 h compared to static culture in a Petri dish (dynamic: 11% O2 versus static: 3% O2). Computational fluid simulation can support design of bioreactor systems for tissue engineering application.

  20. A multi-level bioreactor to remove organic matter and metals, together with its associated bacterial diversity.

    PubMed

    Wu, Yonghong; Hu, Zhengyi; Kerr, Philip G; Yang, Linzhang

    2011-01-01

    The purpose of this study was to treat complex wastewater consisting of domestic wastewater, tobacco processing and building materials washings. The proposed multi-level bioreactor consists of a biopond-biofilter, anoxic/aerobic (A/O) fluidized beds and a photoautotrophic system. The results show that when the hydraulic load of the bioreactor was 200 m3/d, it successfully and simultaneously removed the organic matter and metals. When the bioreactor was in a relatively steady-state condition, the overall average organic matter and metals removal efficiencies are as follows, COD (89%), UV245 nm-matter (91%), Cu (78%), Zn (79%) and Fe (84%). The growth conditions of the native bacterial habitat were improved, which resulted from the increase of the in bacterial diversity under the rejuvenated conditions induced by the bioreactor. The results demonstrate that the multi-level bioreactor, without a sludge treatment system, can remove heterogeneous organic matter and metals from wastewater.

  1. Microbial Bioreactor Development in the ALS NSCORT

    NASA Astrophysics Data System (ADS)

    Mitchell, Cary; Whitaker, Dawn; Banks, M. Katherine; Heber, Albert J.; Turco, Ronald F.; Nies, Loring F.; Alleman, James E.; Sharvelle, Sybil E.; Li, Congna; Heller, Megan

    The NASA Specialized Center of Research and Training in Advanced Life Support (the ALS NSCORT), a partnership of Alabama A & M, Howard, and Purdue Universities, was established by NASA in 2002 to develop technologies that will reduce the Equivalent System Mass (ESM) of regenerative processes within future space life-support systems. A key focus area of NSCORT research has been the development of efficient microbial bioreactors for treatment of human, crop, and food-process wastes while enabling resource recovery. The approach emphasizes optimizing the energy-saving advantages of hydrolytic enzymes for biomass degradation, with focus on treatment of solid wastes including crop residue, paper, food, and human metabolic wastes, treatment of greywater, cabin air, off-gases from other treatment systems, and habitat condensate. This summary includes important findings from those projects, status of technology development, and recommendations for next steps. The Plant-based Anaerobic-Aerobic Bioreactor-Linked Operation (PAABLO) system was developed to reduce crop residue while generating energy and/or food. Plant residues initially were added directly to the bioreactor, and recalcitrant residue was used as a substrate for growing plants or mushrooms. Subsequently, crop residue was first pretreated with fungi to hydrolyze polymers recalcitrant to bacteria, and leachate from the fungal beds was directed to the anaerobic digester. Exoenzymes from the fungi pre-soften fibrous plant materials, improving recovery of materials that are more easily biodegraded to methane that can be used for energy reclamation. An Autothermal Thermophilic Aerobic Digestion (ATAD) system was developed for biodegradable solid wastes. Objectives were to increase water and nutrient recovery, reduce waste volume, and inactivate pathogens. Operational parameters of the reactor were optimized for degradation and resource recovery while minimizing system requirements and footprint. The start-up behavior

  2. Visualizing medium and biodistribution in complex cell culture bioreactors using in vivo imaging.

    PubMed

    Ratcliffe, E; Thomas, R J; Stacey, A J

    2014-01-01

    There is a dearth of technology and methods to aid process characterization, control and scale-up of complex culture platforms that provide niche micro-environments for some stem cell-based products. We have demonstrated a novel use of 3d in vivo imaging systems to visualize medium flow and cell distribution within a complex culture platform (hollow fiber bioreactor) to aid characterization of potential spatial heterogeneity and identify potential routes of bioreactor failure or sources of variability. This can then aid process characterization and control of such systems with a view to scale-up. Two potential sources of variation were observed with multiple bioreactors repeatedly imaged using two different imaging systems: shortcutting of medium between adjacent inlet and outlet ports with the potential to create medium gradients within the bioreactor, and localization of bioluminescent murine 4T1-luc2 cells upon inoculation with the potential to create variable seeding densities at different points within the cell growth chamber. The ability of the imaging technique to identify these key operational bioreactor characteristics demonstrates an emerging technique in troubleshooting and engineering optimization of bioreactor performance.

  3. Utilization of microgravity bioreactors for differentiation of mammalian skeletal tissue

    NASA Technical Reports Server (NTRS)

    Klement, B. J.; Spooner, B. S.

    1993-01-01

    Bioreactor cell and tissue culture vessels can be used to study bone development in a simulated microgravity environment. These vessels will also provide an advantageous, low maintenance culture system on space station Freedom. Although many types of cells and tissues can potentially utilize this system, our particular interest is in developing bone tissue. We have characterized an organ culture system utilizing embryonic mouse pre-metatarsal mesenchyme, documenting morphogenesis and differentiation as cartilage rods are formed, with subsequent terminal chondrocyte differentiation to hypertrophied cells. Further development to form bone tissue is achieved by supplementation of the culture medium. Research using pre-metatarsal tissue, combined with the bioreactor culture hardware, could give insight into the advantages and/or disadvantages of conditions experienced in microgravity. Studies such as these have the potential to enhance understanding of bone development and adult bone physiology, and may help define the processes of bone demineralization experienced in space and in pathological conditions here on earth.

  4. BIOREACTOR LANDFILLS, THEORETICAL ADVANTAGES AND RESEARCH CHALLENGES

    EPA Science Inventory

    Bioreactor landfills are municipal solid waste landfills that utilize bulk liquids in an effort to accelerate solid waste degradation. There are few potential benefits for operating a MSW landfill as a bioreactor. These include leachate treatment and management, increase in the s...

  5. BIOREACTOR DESIGN - OUTER LOOP LANDFILL, LOUISVILLE, KY

    EPA Science Inventory

    Bioreactor field demonstration projects are underway at the Outer Loop Landfill in Louisville, KY, USA. The research effort is a cooperative research effort between US EPA and Waste Management Inc. Two primary kinds of municipal waste bioreactors are under study at this site. ...

  6. Bioreactors for Plant Embryogenesis and Beyond.

    PubMed

    Fei, Liwen; Weathers, Pamela

    2016-01-01

    A variety of different bioreactors have been developed for use in initiating and cultivating somatic embryos. The various designs for embryogenesis and culture are critically evaluated here. Bioreactor optimization and operation methods are also described along with recommendations for use based on desired outcome.

  7. PIV Measurements of Bioreactor Flow Fields

    NASA Astrophysics Data System (ADS)

    Neitzel, G. P.; Brown, J. B.

    1999-11-01

    Spinner-flask bioreactors are operated with several stationary tissue constructs mounted on long needles; the culture medium is stirred by a magnetic stir bar at the vessel bottom. Flow-visualization and PIV measurements have been performed in a scaled-up model system in which the curved, outer vessel wall has been eliminated and the vessel body, culture-medium simulant and tissue-construct models are all index-of-refraction matched. Measurements in the vicinity of the tissue constructs indicate high instantaneous shear stresses at some locations, which may be detrimental to tissue growth. Since the flow is driven by a periodic source, turbulence properties are determined using phase-locked ensemble averaging.

  8. Rotating bio-reactor cell culture apparatus

    NASA Technical Reports Server (NTRS)

    Schwarz, Ray P. (Inventor); Wolf, David A. (Inventor)

    1991-01-01

    A bioreactor system is described in which a tubular housing contains an internal circularly disposed set of blade members and a central tubular filter all mounted for rotation about a common horizontal axis and each having independent rotational support and rotational drive mechanisms. The housing, blade members and filter preferably are driven at a constant slow speed for placing a fluid culture medium with discrete microbeads and cell cultures in a discrete spatial suspension in the housing. Replacement fluid medium is symmetrically input and fluid medium is symmetrically output from the housing where the input and the output are part of a loop providing a constant or intermittent flow of fluid medium in a closed loop.

  9. Biodegradation of paint stripper solvents in a modified gas lift loop bioreactor

    SciTech Connect

    Vanderberg-Twary, L.; Steenhoudt, K.; Travis, B.J.; Hanners, J.L.; Foreman, T.M.; Brainard, J.R.

    1997-07-05

    Paint stripping wastes generated during the decontamination and decommissioning of former nuclear facilities contain paint stripping organics (dichloromethane, 2-propanol, and methanol) and bulk materials containing paint pigments. It is desirable to degrade the organic residues as part of an integrated chemical-biological treatment system. The authors have developed a modified gas lift loop bioreactor employing a defined consortium of Thodococcus rhodochrous strain OFS and Hyphomicrobium sp. DM-2 that degrades paint stripper organics. Mass transfer coefficients and kinetic constants for biodegradation in the system were determined. It was found that transfer of organic substrates from surrogate waste into the air and further into the liquid medium in the bioreactor were rapid processes, occurring within minutes. Monod kinetics was employed to model the biodegradation of paint stripping organics. Analysis of the bioreactor process was accomplished with BIOLAB, a mathematical code that simulates coupled mass transfer and biodegradation processes. This code was used to fit experimental data to monod kinetics and to determine kinetic parameters. The BIOLAB code was also employed to compare activities in the bioreactor of individual microbial cultures to the activities of combined cultures in the bioreactor. This code is of benefit for further optimization and scale-up of the bioreactor for treatment of paint stripping and other volatile organic wastes in bulk materials.

  10. Comprehensive clone screening and evaluation of fed-batch strategies in a microbioreactor and lab scale stirred tank bioreactor system: application on Pichia pastoris producing Rhizopus oryzae lipase

    PubMed Central

    2014-01-01

    Background In Pichia pastoris bioprocess engineering, classic approaches for clone selection and bioprocess optimization at small/micro scale using the promoter of the alcohol oxidase 1 gene (PAOX1), induced by methanol, present low reproducibility leading to high time and resource consumption. Results An automated microfermentation platform (RoboLector) was successfully tested to overcome the chronic problems of clone selection and optimization of fed-batch strategies. Different clones from Mut+P. pastoris phenotype strains expressing heterologous Rhizopus oryzae lipase (ROL), including a subset also overexpressing the transcription factor HAC1, were tested to select the most promising clones. The RoboLector showed high performance for the selection and optimization of cultivation media with minimal cost and time. Syn6 medium was better than conventional YNB medium in terms of production of heterologous protein. The RoboLector microbioreactor was also tested for different fed-batch strategies with three clones producing different lipase levels. Two mixed substrates fed-batch strategies were evaluated. The first strategy was the enzymatic release of glucose from a soluble glucose polymer by a glucosidase, and methanol addition every 24 hours. The second strategy used glycerol as co-substrate jointly with methanol at two different feeding rates. The implementation of these simple fed-batch strategies increased the levels of lipolytic activity 80-fold compared to classical batch strategies used in clone selection. Thus, these strategies minimize the risk of errors in the clone selection and increase the detection level of the desired product. Finally, the performance of two fed-batch strategies was compared for lipase production between the RoboLector microbioreactor and 5 liter stirred tank bioreactor for three selected clones. In both scales, the same clone ranking was achieved. Conclusion The RoboLector showed excellent performance in clone selection of P

  11. Aerobic landfill bioreactor

    DOEpatents

    Hudgins, Mark P; Bessette, Bernard J; March, John C; McComb, Scott T.

    2002-01-01

    The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  12. Performance of membrane bioreactor (MBR) systems for the treatment of shipboard slops: Assessment of hydrocarbon biodegradation and biomass activity under salinity variation.

    PubMed

    Di Bella, Gaetano; Di Prima, Nadia; Di Trapani, Daniele; Freni, Gabriele; Giustra, Maria Gabriella; Torregrossa, Michele; Viviani, Gaspare

    2015-12-30

    In order to prevent hydrocarbon discharge at sea from ships, the International Maritime Organization (IMO) enacted the MARPOL 73/78 convention in which any oil and oil residue discharged in wastewater streams must contain less than 5 ppm hydrocarbons. Effective treatment of this petroleum-contaminated water is essential prior to its release into the environment, in order to prevent pollution problem for marine ecosystems as well as for human health. Therefore, two bench scale membrane bioreactors (MBRs) were investigated for hydrocarbon biodegradation. The two plants were initially fed with synthetic wastewater characterised by an increasing salinity, in order to enhance biomass acclimation to salinity. Subsequently, they were fed with a mixture of synthetic wastewater and real shipboard slops (with an increasing slops percentage up to 50% by volume). The results indicated a satisfactory biomass acclimation level in both plants with regards to salinity, providing significant removal efficiencies. The real slops exerted an inhibitory effect on the biomass, partially due to hydrocarbons as well as to other concomitant influences from other compounds contained in the real slops difficult to evaluate a priori. Nevertheless, a slight adaptation of the biomass to the new conditions was observed, with increasing removal efficiencies, despite the significant slops percentage.

  13. Aerobic landfill bioreactor

    DOEpatents

    Hudgins, Mark P; Bessette, Bernard J; March, John; McComb, Scott T.

    2000-01-01

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  14. Aerobic landfill bioreactor

    SciTech Connect

    Hudgins, M.P.; Bessette, B.J.; March, J.; McComb, S.T.

    2000-02-15

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120 F and 140 F in steady state.

  15. Protein Expression in Insect and Mammalian Cells Using Baculoviruses in Wave Bioreactors.

    PubMed

    Kadwell, Sue H; Overton, Laurie K

    2016-01-01

    Many types of disposable bioreactors for protein expression in insect and mammalian cells are now available. They differ in design, capacity, and sensor options, with many selections available for either rocking platform, orbitally shaken, pneumatically mixed, or stirred-tank bioreactors lined with an integral disposable bag (Shukla and Gottschalk, Trends Biotechnol 31(3):147-154, 2013). WAVE Bioreactors™ were among the first disposable systems to be developed (Singh, Cytotechnology 30:149-158, 1999). Since their commercialization in 1999, Wave Bioreactors have become routinely used in many laboratories due to their ease of operation, limited utility requirements, and protein expression levels comparability to traditional stirred-tank bioreactors. Wave Bioreactors are designed to use a presterilized Cellbag™, which is attached to a rocking platform and inflated with filtered air provided by the bioreactor unit. The Cellbag can be filled with medium and cells and maintained at a set temperature. The rocking motion, which is adjusted through angle and rock speed settings, provides mixing of oxygen (and CO2, which is used to control pH in mammalian cell cultures) from the headspace created in the inflated Cellbag with the cell culture medium and cells. This rocking motion can be adjusted to prevent cell shear damage. Dissolved oxygen and pH can be monitored during scale-up, and samples can be easily removed to monitor other parameters. Insect and mammalian cells grow very well in Wave Bioreactors (Shukla and Gottschalk, Trends Biotechnol 31(3):147-154, 2013). Combining Wave Bioreactor cell growth capabilities with recombinant baculoviruses engineered for insect or mammalian cell expression has proven to be a powerful tool for rapid production of a wide range of proteins. PMID:26820862

  16. Protein Expression in Insect and Mammalian Cells Using Baculoviruses in Wave Bioreactors.

    PubMed

    Kadwell, Sue H; Overton, Laurie K

    2016-01-01

    Many types of disposable bioreactors for protein expression in insect and mammalian cells are now available. They differ in design, capacity, and sensor options, with many selections available for either rocking platform, orbitally shaken, pneumatically mixed, or stirred-tank bioreactors lined with an integral disposable bag (Shukla and Gottschalk, Trends Biotechnol 31(3):147-154, 2013). WAVE Bioreactors™ were among the first disposable systems to be developed (Singh, Cytotechnology 30:149-158, 1999). Since their commercialization in 1999, Wave Bioreactors have become routinely used in many laboratories due to their ease of operation, limited utility requirements, and protein expression levels comparability to traditional stirred-tank bioreactors. Wave Bioreactors are designed to use a presterilized Cellbag™, which is attached to a rocking platform and inflated with filtered air provided by the bioreactor unit. The Cellbag can be filled with medium and cells and maintained at a set temperature. The rocking motion, which is adjusted through angle and rock speed settings, provides mixing of oxygen (and CO2, which is used to control pH in mammalian cell cultures) from the headspace created in the inflated Cellbag with the cell culture medium and cells. This rocking motion can be adjusted to prevent cell shear damage. Dissolved oxygen and pH can be monitored during scale-up, and samples can be easily removed to monitor other parameters. Insect and mammalian cells grow very well in Wave Bioreactors (Shukla and Gottschalk, Trends Biotechnol 31(3):147-154, 2013). Combining Wave Bioreactor cell growth capabilities with recombinant baculoviruses engineered for insect or mammalian cell expression has proven to be a powerful tool for rapid production of a wide range of proteins.

  17. Bioconversion of High Concentrations of Hydrogen Sulfide to Elemental Sulfur in Airlift Bioreactor

    PubMed Central

    Abdel-Monaem Zytoon, Mohamed; Ahmad AlZahrani, Abdulraheem; Hamed Noweir, Madbuli; Ahmed El-Marakby, Fadia

    2014-01-01

    Several bioreactor systems are used for biological treatment of hydrogen sulfide. Among these, airlift bioreactors are promising for the bioconversion of hydrogen sulfide into elemental sulfur. The performance of airlift bioreactors is not adequately understood, particularly when directly fed with hydrogen sulfide gas. The objective of this paper is to investigate the performance of an airlift bioreactor fed with high concentrations of H2S with special emphasis on the effect of pH in combination with other factors such as H2S loading rate, oxygen availability, and sulfide accumulation. H2S inlet concentrations between 1,008 ppm and 31,215 ppm were applied and elimination capacities up to 113 g H2S m−3 h−1 were achieved in the airlift bioreactor under investigation at a pH range 6.5–8.5. Acidic pH values reduced the elimination capacity. Elemental sulfur recovery up to 95% was achieved under oxygen limited conditions (DO < 0.2 mg/L) and at higher pH values. The sulfur oxidizing bacteria in the bioreactor tolerated accumulated dissolved sulfide concentrations >500 mg/L at pH values 8.0–8.5, and near 100% removal efficiency was achieved. Overall, the resident microorganisms in the studied airlift bioreactor favored pH values in the alkaline range. The bioreactor performance in terms of elimination capacity and sulfur recovery was better at pH range 8–8.5. PMID:25147857

  18. Moving Denitrifying Bioreactors beyond Proof of Concept: Introduction to the Special Section.

    PubMed

    Christianson, Laura E; Schipper, Louis A

    2016-05-01

    Denitrifying bioreactors are organic carbon-filled excavations designed to enhance the natural process of denitrification for the simple, passive treatment of nitrate-nitrogen. Research on and installation of these bioreactors has accelerated within the past 10 years, particularly in watersheds concerned about high nonpoint-source nitrate loads and also for tertiary wastewater treatment. This special section, inspired by the meeting of the Managing Denitrification in Agronomic Systems Community at the 2014 Annual Meeting of the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, aims to firmly establish that denitrifying bioreactors for treatment of nitrate in drainage waters, groundwater, and some wastewaters have moved beyond the proof of concept. This collection of 14 papers expands the peer-reviewed literature of denitrifying bioreactors into new locations, applications, and environmental conditions. There is momentum behind the pairing of wood-based bioreactors with other media (biochar, corn cobs) and in novel designs (e.g., use within treatment trains or use of baffles) to broaden applicability into new kinds of waters and pollutants and to improve performance under challenging field conditions such as cool early season agricultural drainage. Concerns about negative bioreactor by-products (nitrous oxide and hydrogen sulfide emissions, start-up nutrient flushing) are ongoing, but this translates into a significant research opportunity to develop more advanced designs and to fine tune management strategies. Future research must think more broadly to address bioreactor impacts on holistic watershed health and greenhouse gas balances and to facilitate collaborations that allow investigation of mechanisms within the bioreactor "black box." PMID:27136139

  19. Moving Denitrifying Bioreactors beyond Proof of Concept: Introduction to the Special Section.

    PubMed

    Christianson, Laura E; Schipper, Louis A

    2016-05-01

    Denitrifying bioreactors are organic carbon-filled excavations designed to enhance the natural process of denitrification for the simple, passive treatment of nitrate-nitrogen. Research on and installation of these bioreactors has accelerated within the past 10 years, particularly in watersheds concerned about high nonpoint-source nitrate loads and also for tertiary wastewater treatment. This special section, inspired by the meeting of the Managing Denitrification in Agronomic Systems Community at the 2014 Annual Meeting of the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, aims to firmly establish that denitrifying bioreactors for treatment of nitrate in drainage waters, groundwater, and some wastewaters have moved beyond the proof of concept. This collection of 14 papers expands the peer-reviewed literature of denitrifying bioreactors into new locations, applications, and environmental conditions. There is momentum behind the pairing of wood-based bioreactors with other media (biochar, corn cobs) and in novel designs (e.g., use within treatment trains or use of baffles) to broaden applicability into new kinds of waters and pollutants and to improve performance under challenging field conditions such as cool early season agricultural drainage. Concerns about negative bioreactor by-products (nitrous oxide and hydrogen sulfide emissions, start-up nutrient flushing) are ongoing, but this translates into a significant research opportunity to develop more advanced designs and to fine tune management strategies. Future research must think more broadly to address bioreactor impacts on holistic watershed health and greenhouse gas balances and to facilitate collaborations that allow investigation of mechanisms within the bioreactor "black box."

  20. Method for culturing mammalian cells in a horizontally rotated bioreactor

    NASA Technical Reports Server (NTRS)

    Schwarz, Ray P. (Inventor); Wolf, David A. (Inventor); Trinh, Tinh T. (Inventor)

    1992-01-01

    A bio-reactor system where cell growth microcarrier beads are suspended in a zero head space fluid medium by rotation about a horizontal axis and where the fluid is continuously oxygenated from a tubular membrane which rotates on a shaft together with rotation of the culture vessel. The oxygen is continuously throughput through the membrane and disbursed into the fluid medium along the length of the membrane.

  1. Bioelectricity generation in an integrated system combining microbial fuel cell and tubular membrane reactor: effects of operation parameters performing a microbial fuel cell-based biosensor for tubular membrane bioreactor.

    PubMed

    Wang, Jie; Zheng, Yawen; Jia, Hui; Zhang, Hongwei

    2014-10-01

    A bio-cathode microbial fuel cell (MFC) with tubular membrane was integrated to construct a microbial fuel cell-tubular membrane bioreactor (MFC-TMBR) system, in which the bio-cathode MFC was developed as a biosensor for COD real-time monitoring in TMBR and the performance was analyzed in terms of its current variation caused by operation parameters. With a constant anode potential, the effect of HRT demonstrated that higher rate of mass transport increased the response of the system. The system was further explored an inverse relationship between TMP and current peak by using EPS concentration under the different MLSS concentration. The sensor output had a linear relationship with COD up to 1000mg/L (regression coefficient, R(2)=0.97) and MLSS (regression coefficient, R(2)=0.94). The simple and compact bio-cathode MFC biosensor for TMBR using MFC-TMBR integrated system showed promising potential for direct and economical COD online monitoring, and provided an opportunity to widen the application of MFC-based biosensor.

  2. Generation of Neural Progenitor Spheres from Human Pluripotent Stem Cells in a Suspension Bioreactor.

    PubMed

    Yan, Yuanwei; Song, Liqing; Tsai, Ang-Chen; Ma, Teng; Li, Yan

    2016-01-01

    Conventional two-dimensional (2-D) culture systems cannot provide large numbers of human pluripotent stem cells (hPSCs) and their derivatives that are demanded for commercial and clinical applications in in vitro drug screening, disease modeling, and potentially cell therapy. The technologies that support three-dimensional (3-D) suspension culture, such as a stirred bioreactor, are generally considered as promising approaches to produce the required cells. Recently, suspension bioreactors have also been used to generate mini-brain-like structure from hPSCs for disease modeling, showing the important role of bioreactor in stem cell culture. This chapter describes a detailed culture protocol for neural commitment of hPSCs into neural progenitor cell (NPC) spheres using a spinner bioreactor. The basic steps to prepare hPSCs for bioreactor inoculation are illustrated from cell thawing to cell propagation. The method for generating NPCs from hPSCs in the spinner bioreactor along with the static control is then described. The protocol in this study can be applied to the generation of NPCs from hPSCs for further neural subtype specification, 3-D neural tissue development, or potential preclinical studies or clinical applications in neurological diseases. PMID:26837215

  3. Seasonal Patterns in Microbial Community Composition in Denitrifying Bioreactors Treating Subsurface Agricultural Drainage.

    PubMed

    Porter, Matthew D; Andrus, J Malia; Bartolerio, Nicholas A; Rodriguez, Luis F; Zhang, Yuanhui; Zilles, Julie L; Kent, Angela D

    2015-10-01

    Denitrifying bioreactors, consisting of water flow control structures and a woodchip-filled trench, are a promising approach for removing nitrate from agricultural subsurface or tile drainage systems. To better understand the seasonal dynamics and the ecological drivers of the microbial communities responsible for denitrification in these bioreactors, we employed microbial community "fingerprinting" techniques in a time-series examination of three denitrifying bioreactors over 2 years, looking at bacteria, fungi, and the denitrifier functional group responsible for the final step of complete denitrification. Our analysis revealed that microbial community composition responds to depth and seasonal variation in moisture content and inundation of the bioreactor media, as well as temperature. Using a geostatistical analysis approach, we observed recurring temporal patterns in bacterial and denitrifying bacterial community composition in these bioreactors, consistent with annual cycling. The fungal communities were more stable, having longer temporal autocorrelations, and did not show significant annual cycling. These results suggest a recurring seasonal cycle in the denitrifying bioreactor microbial community, likely due to seasonal variation in moisture content.

  4. Effects of alkalinity on ammonia removal, carbon dioxide stripping, and system pH in semi-commercial scale water recirculating aquaculture systems operated with moving bed bioreactors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When operating water recirculating systems (RAS) with high make-up water flushing rates in locations that have low alkalinity in the raw water, such as Norway, knowledge about the required RAS alkalinity concentration is important. Flushing RAS with make-up water containing low alkalinity washes out...

  5. Sulfur formation and recovery in a thiosulfate-oxidizing bioreactor.

    PubMed

    González-Sánchez, A; Meulepas, R; Revah, S

    2008-08-01

    This work describes the design and performance of a thiosulfate-oxidizing bioreactor that allowed high elemental sulfur production and recovery efficiency. The reactor system, referred to as a Supernatant-Recycling Settler Bioreactor (SRSB), consisted of a cylindrical upflow reactor and a separate aeration vessel. The reactor was equipped with an internal settler and packing material (structured corrugated PVC sheets) to facilitate both cell retention and the settling of the formed elemental sulfur. The supernatant from the reactor was continuously recirculated through the aerator. An inlet thiosulfate concentration of 100 mmol l(-1) was used. The reactor system was fed with 89 mmol l(-1) d(-1) thiosulfate reaching 98 to 100% thiosulfate conversion with an elemental sulfur yield of 77%. Ninety-three percent of the produced sulfur was harvested from the bottom of the reactor as sulfur sludge. The dry sulfur sludge contained 87% elemental sulfur. The inclusion of an internal settler and packing material in the reactor system resulted in an effective retention of sulfur and biomass inside the bioreactor, preventing the oxidation of thiosulfate and elemental sulfur to sulfate in the aerator and, therefore, improving the efficiency of elemental sulfur formation and recovery.

  6. Sulfur formation and recovery in a thiosulfate-oxidizing bioreactor.

    PubMed

    González-Sánchez, A; Meulepas, R; Revah, S

    2008-08-01

    This work describes the design and performance of a thiosulfate-oxidizing bioreactor that allowed high elemental sulfur production and recovery efficiency. The reactor system, referred to as a Supernatant-Recycling Settler Bioreactor (SRSB), consisted of a cylindrical upflow reactor and a separate aeration vessel. The reactor was equipped with an internal settler and packing material (structured corrugated PVC sheets) to facilitate both cell retention and the settling of the formed elemental sulfur. The supernatant from the reactor was continuously recirculated through the aerator. An inlet thiosulfate concentration of 100 mmol l(-1) was used. The reactor system was fed with 89 mmol l(-1) d(-1) thiosulfate reaching 98 to 100% thiosulfate conversion with an elemental sulfur yield of 77%. Ninety-three percent of the produced sulfur was harvested from the bottom of the reactor as sulfur sludge. The dry sulfur sludge contained 87% elemental sulfur. The inclusion of an internal settler and packing material in the reactor system resulted in an effective retention of sulfur and biomass inside the bioreactor, preventing the oxidation of thiosulfate and elemental sulfur to sulfate in the aerator and, therefore, improving the efficiency of elemental sulfur formation and recovery. PMID:18724639

  7. Tissue grown in space in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    For 5 days on the STS-70 mission, a bioreactor cultivated human colon cancer cells, such as the culture section shown here, which grew to 30 times the volume of control specimens grown on Earth. This significant result was reproduced on STS-85 which grew mature structures that more closely match what are found in tumors in humans. The two white circles within the tumor are part of a plastic lattice that helped the cells associate. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  8. Characteristics, Process Parameters, and Inner Components of Anaerobic Bioreactors

    PubMed Central

    Abdelgadir, Awad; Chen, Xiaoguang; Liu, Jianshe; Xie, Xuehui; Zhang, Jian; Zhang, Kai; Wang, Heng; Liu, Na

    2014-01-01

    The anaerobic bioreactor applies the principles of biotechnology and microbiology, and nowadays it has been used widely in the wastewater treatment plants due to their high efficiency, low energy use, and green energy generation. Advantages and disadvantages of anaerobic process were shown, and three main characteristics of anaerobic bioreactor (AB), namely, inhomogeneous system, time instability, and space instability were also discussed in this work. For high efficiency of wastewater treatment, the process parameters of anaerobic digestion, such as temperature, pH, Hydraulic retention time (HRT), Organic Loading Rate (OLR), and sludge retention time (SRT) were introduced to take into account the optimum conditions for living, growth, and multiplication of bacteria. The inner components, which can improve SRT, and even enhance mass transfer, were also explained and have been divided into transverse inner components, longitudinal inner components, and biofilm-packing material. At last, the newly developed special inner components were discussed and found more efficient and productive. PMID:24672798

  9. Bioreactor cultivation of anatomically shaped human bone grafts.

    PubMed

    Temple, Joshua P; Yeager, Keith; Bhumiratana, Sarindr; Vunjak-Novakovic, Gordana; Grayson, Warren L

    2014-01-01

    In this chapter, we describe a method for engineering bone grafts in vitro with the specific geometry of the temporomandibular joint (TMJ) condyle. The anatomical geometry of the bone grafts was segmented from computed tomography (CT) scans, converted to G-code, and used to machine decellularized trabecular bone scaffolds into the identical shape of the condyle. These scaffolds were seeded with human bone marrow-derived mesenchymal stem cells (MSCs) using spinner flasks and cultivated for up to 5 weeks in vitro using a custom-designed perfusion bioreactor system. The flow patterns through the complex geometry were modeled using the FloWorks module of SolidWorks to optimize bioreactor design. The perfused scaffolds exhibited significantly higher cellular content, better matrix production, and increased bone mineral deposition relative to non-perfused (static) controls after 5 weeks of in vitro cultivation. This technology is broadly applicable for creating patient-specific bone grafts of varying shapes and sizes.

  10. Bioreactor Cultivation of Anatomically Shaped Human Bone Grafts

    PubMed Central

    Temple, Joshua P.; Yeager, Keith; Bhumiratana, Sarindr; Vunjak-Novakovic, Gordana; Grayson, Warren L.

    2015-01-01

    In this chapter, we describe a method for engineering bone grafts in vitro with the specific geometry of the temporomandibular joint (TMJ) condyle. The anatomical geometry of the bone grafts was segmented from computed tomography (CT) scans, converted to G-code, and used to machine decellularized trabecular bone scaffolds into the identical shape of the condyle. These scaffolds were seeded with human bone marrow-derived mesenchymal stem cells (MSCs) using spinner flasks and cultivated for up to 5 weeks in vitro using a custom-designed perfusion bioreactor system. The flow patterns through the complex geometry were modeled using the FloWorks module of SolidWorks to optimize bioreactor design. The perfused scaffolds exhibited significantly higher cellular content, better matrix production, and increased bone mineral deposition relative to non-perfused (static) controls after 5 weeks of in vitro cultivation. This technology is broadly applicable for creating patient-specific bone grafts of varying shapes and sizes. PMID:24014312

  11. Evaluation of a new mist-chamber bioreactor for biotechnological applications.

    PubMed

    Tscheschke, Bernd; Dreimann, Janis; von der Ruhr, Jürgen W; Schmidt, Timo; Stahl, Frank; Just, Lothar; Scheper, Thomas

    2015-06-01

    In this article we describe the development, the characterization and the evaluation of a novel bioreactor type for the cultivation of different pro- and eukaryotic cell-systems: the mist-chamber bioreactor. This innovative bioreactor meets the demand of cultivation systems for shear stress sensitive cells with high requirements for gas supply. Within the mist-chamber bioreactor the cells are cultivated inside an aerosol of vaporized medium generated by ultrasonic vaporization. In contrast to many established bioreactor systems the mist-chamber bioreactor offers an environment with an excellent gas supply without any impeller or gas bubble induced shear stress. A mist-chamber bioreactor prototype has been manufactured and characterized during this work. In the technical and chemical characterization we evaluated the vaporization process, resulting in a vaporization performance of 32 mL/h at working conditions. On this basis we calculated a biomass of 1.4 g (S. cerevisiae, qs  = 3.45 × 10-3 mol/g/h) and 3.4 g (Aspergillus niger, qs  = 1.33 × 10-3 mol/g/h) where the growth rate becomes limited by transport processes. Additionally, we determined a homogenous cultivation area to a height of 3 cm giving a total volume of 0.45 L for the cultivation. Medium components were examined according to their stability during vaporization with the result that all components are stable for at least 5 days. After the technical characterization we demonstrated the feasibility to cultivate S. cerevisiae and F. velupites in the mist-chamber bioreactor. The results demonstrated that the mist-chamber bioreactor is able to transport a sufficient amount of nutrients consistently to the cell samples and offers an excellent oxygen supply without any shear stress inducing aeration. Furthermore we successfully cultivated F. velupites in a solid state cultivation in a long term experiment. The data indicate that the new bioreactor concept can contribute to

  12. Evaluation of a new mist-chamber bioreactor for biotechnological applications.

    PubMed

    Tscheschke, Bernd; Dreimann, Janis; von der Ruhr, Jürgen W; Schmidt, Timo; Stahl, Frank; Just, Lothar; Scheper, Thomas

    2015-06-01

    In this article we describe the development, the characterization and the evaluation of a novel bioreactor type for the cultivation of different pro- and eukaryotic cell-systems: the mist-chamber bioreactor. This innovative bioreactor meets the demand of cultivation systems for shear stress sensitive cells with high requirements for gas supply. Within the mist-chamber bioreactor the cells are cultivated inside an aerosol of vaporized medium generated by ultrasonic vaporization. In contrast to many established bioreactor systems the mist-chamber bioreactor offers an environment with an excellent gas supply without any impeller or gas bubble induced shear stress. A mist-chamber bioreactor prototype has been manufactured and characterized during this work. In the technical and chemical characterization we evaluated the vaporization process, resulting in a vaporization performance of 32 mL/h at working conditions. On this basis we calculated a biomass of 1.4 g (S. cerevisiae, qs  = 3.45 × 10-3 mol/g/h) and 3.4 g (Aspergillus niger, qs  = 1.33 × 10-3 mol/g/h) where the growth rate becomes limited by transport processes. Additionally, we determined a homogenous cultivation area to a height of 3 cm giving a total volume of 0.45 L for the cultivation. Medium components were examined according to their stability during vaporization with the result that all components are stable for at least 5 days. After the technical characterization we demonstrated the feasibility to cultivate S. cerevisiae and F. velupites in the mist-chamber bioreactor. The results demonstrated that the mist-chamber bioreactor is able to transport a sufficient amount of nutrients consistently to the cell samples and offers an excellent oxygen supply without any shear stress inducing aeration. Furthermore we successfully cultivated F. velupites in a solid state cultivation in a long term experiment. The data indicate that the new bioreactor concept can contribute to

  13. Start-up of membrane bioreactor and hybrid moving bed biofilm reactor-membrane bioreactor: kinetic study.

    PubMed

    Leyva-Díaz, J C; Poyatos, J M

    2015-01-01

    A hybrid moving bed biofilm reactor-membrane bioreactor (hybrid MBBR-MBR) system was studied as an alternative solution to conventional activated sludge processes and membrane bioreactors. This paper shows the results obtained from three laboratory-scale wastewater treatment plants working in parallel in the start-up and steady states. The first wastewater treatment plant was a MBR, the second one was a hybrid MBBR-MBR system containing carriers both in anoxic and aerobic zones of the bioreactor (hybrid MBBR-MBRa), and the last one was a hybrid MBBR-MBR system which contained carriers only in the aerobic zone (hybrid MBBR-MBRb). The reactors operated with a hydraulic retention time of 30.40 h. A kinetic study for characterizing heterotrophic biomass was carried out and organic matter and nutrients removals were evaluated. The heterotrophic biomass of the hybrid MBBR-MBRb showed the best kinetic performance in the steady state, with yield coefficient for heterotrophic biomass=0.30246 mg volatile suspended solids per mg chemical oxygen demand, maximum specific growth rate for heterotrophic biomass=0.00308 h(-1) and half-saturation coefficient for organic matter=3.54908 mg O2 L(-1). The removal of organic matter was supported by the kinetic study of heterotrophic biomass.

  14. Development of Fundamental Technologies for Micro Bioreactors

    NASA Astrophysics Data System (ADS)

    Sato, Kiichi; Kitamori, Takehiko

    This chapter reviews the development of fundamental technologies required for microchip-based bioreactors utilizing living mammalian cells and pressure driven flow. The most important factor in the bioreactor is the cell culture. For proper cell culturing, continuous medium supply from a microfluidic channel and appropriate modification of the channel surface to accommodate cell attachment is required. Moreover, the medium flow rate should be chosen carefully, because shear stress affects cell activity. The techniques presented here could be applied to the development of micro bioreactors such as microlivers, pigment production by plant cells, and artificial insemination.

  15. Bioreactor engineering using disposable technology for enhanced production of hCTLA4Ig in transgenic rice cell cultures.

    PubMed

    Kwon, Jun-Young; Yang, Yong-Suk; Cheon, Su-Hwan; Nam, Hyung-Jin; Jin, Gi-Hong; Kim, Dong-Il

    2013-09-01

    Two kinds of disposable bioreactors, air-lift disposable bioreactors (ADB) and wave disposable bioreactors (WDB) were compared with stirred-tank reactors (5-L STR). These bioreactors were successfully applied to transgenic rice cell cultures for the production of recombinant human cytotoxic T-lymphocyte antigen 4-immunoglobulin (hCTLA4Ig). In both systems, a fed-batch culture method was used to produce hCTLA4Ig efficiently by feeding concentrated amino acids and production levels were enhanced when dissolved oxygen (DO) level was regulated at 30% using pure oxygen sparging. Agitation and aeration rate during cultivation in ADB and WDB were determined by the same mixing time. The results in both disposable bioreactors showed similar values in maximum cell density (11.9 gDCW/L and 12.6 gDCW/L), doubling time (4.8- and 5.0-day), and maximum hCTLA4Ig concentration (43.7 and 43.3 mg/L). Relatively higher cell viability was sustained in the ADB whereas hCTLA4Ig productivity was 1.2-fold higher than that in WDB. The productivity was improved by increasing aeration rate (0.2 vvm). Overall, our experiments demonstrate pneumatically driven disposable bioreactors are applicable for the production of recombinant proteins in plant cell cultures. These results will be useful for development and scale-up studies of disposable bioreactor systems for transgenic plant cell cultures.

  16. Bioreactor engineering using disposable technology for enhanced production of hCTLA4Ig in transgenic rice cell cultures.

    PubMed

    Kwon, Jun-Young; Yang, Yong-Suk; Cheon, Su-Hwan; Nam, Hyung-Jin; Jin, Gi-Hong; Kim, Dong-Il

    2013-09-01

    Two kinds of disposable bioreactors, air-lift disposable bioreactors (ADB) and wave disposable bioreactors (WDB) were compared with stirred-tank reactors (5-L STR). These bioreactors were successfully applied to transgenic rice cell cultures for the production of recombinant human cytotoxic T-lymphocyte antigen 4-immunoglobulin (hCTLA4Ig). In both systems, a fed-batch culture method was used to produce hCTLA4Ig efficiently by feeding concentrated amino acids and production levels were enhanced when dissolved oxygen (DO) level was regulated at 30% using pure oxygen sparging. Agitation and aeration rate during cultivation in ADB and WDB were determined by the same mixing time. The results in both disposable bioreactors showed similar values in maximum cell density (11.9 gDCW/L and 12.6 gDCW/L), doubling time (4.8- and 5.0-day), and maximum hCTLA4Ig concentration (43.7 and 43.3 mg/L). Relatively higher cell viability was sustained in the ADB whereas hCTLA4Ig productivity was 1.2-fold higher than that in WDB. The productivity was improved by increasing aeration rate (0.2 vvm). Overall, our experiments demonstrate pneumatically driven disposable bioreactors are applicable for the production of recombinant proteins in plant cell cultures. These results will be useful for development and scale-up studies of disposable bioreactor systems for transgenic plant cell cultures. PMID:23568400

  17. Transgenic animal bioreactors.

    PubMed

    Houdebine, L M

    2000-01-01

    The production of recombinant proteins is one of the major successes of biotechnology. Animal cells are required to synthesize proteins with the appropriate post-translational modifications. Transgenic animals are being used for this purpose. Milk, egg white, blood, urine, seminal plasma and silk worm cocoon from transgenic animals are candidates to be the source of recombinant proteins at an industrial scale. Although the first recombinant protein produced by transgenic animals is expected to be in the market in 2000, a certain number of technical problems remain to be solved before the various systems are optimized. Although the generation of transgenic farm animals has become recently easier mainly with the technique of animal cloning using transfected somatic cells as nuclear donor, this point remains a limitation as far as cost is concerned. Numerous experiments carried out for the last 15 years have shown that the expression of the transgene is predictable only to a limited extent. This is clearly due to the fact that the expression vectors are not constructed in an appropriate manner. This undoubtedly comes from the fact that all the signals contained in genes have not yet been identified. Gene constructions thus result sometime in poorly functional expression vectors. One possibility consists in using long genomic DNA fragments contained in YAC or BAC vectors. The other relies on the identification of the major important elements required to obtain a satisfactory transgene expression. These elements include essentially gene insulators, chromatin openers, matrix attached regions, enhancers and introns. A certain number of proteins having complex structures (formed by several subunits, being glycosylated, cleaved, carboxylated...) have been obtained at levels sufficient for an industrial exploitation. In other cases, the mammary cellular machinery seems insufficient to promote all the post-translational modifications. The addition of genes coding for enzymes

  18. Collection of in vivo-like liver cell secretome with alternative sample enrichment method using a hollow fiber bioreactor culture system combined with tangential flow filtration for secretomics analysis.

    PubMed

    Wen, Yao-Tseng; Chang, Yu-Chen; Lin, Lung-Cheng; Liao, Pao-Chi

    2011-01-17

    A hollow fiber bioreactor (HFB) culture system coupled with a tangential flow filtration (TFF) device was used for HepG2 cell secretome analysis. In order to reduce the loss of low-molecular-weight proteins, two new features, the hollow fiber with 0.1 μm pore size and a TFF device with a membrane of 1kDa molecular weight cutoff, were added to the system described previously. The HFB culture system and the conventional dish culture method for secretome collection were compared side by side. It was observed that only a small fraction of cells (<0.01%) were lysed in the HFB culture system, in contrast to the 2.73% in the conventional dish culture. A total of 111 proteins were identified in the collected conditioned medium (CM) by liquid chromatography-tandem mass spectrometry (LC-MS/MS) with this improved collection procedure. Many of these proteins reported to be biomarkers for liver-related diseases. About 16% of the identified proteins were smaller than 20kDa, demonstrating that the modified collection system had the ability to reduce the loss of low-molecular-weight proteins, in contrast to our previous collection system. The percentage increase of proteins classified as extracellular space or plasma membrane between the conventional dish culture and the HFB culture system was 40-60%. We believed that in vivo-like culture environments could support liver cells to improve protein secretion than conventional dish cultures. We suggest that the combination of the HFB culture system, TFF device, and LC-MS/MS analysis, would be an efficient procedure for the collection and characterization of in vivo-like cell secretome. PMID:21167988

  19. On-line removal of volatile fatty acids from CELSS anaerobic bioreactor via nanofiltration

    NASA Technical Reports Server (NTRS)

    Colon, Guillermo

    1995-01-01

    The CELSS (controlled ecological life support system) resource recovery system, which is a waste processing system, uses aerobic and anaerobic bioreactors to recover plants nutrients and secondary foods from the inedible biomass. The anaerobic degradation of the inedible biomass by means of culture of rumen bacteria,generates organic compounds such as volatile fatty acids (acetic, propionic, butyric, VFA) and ammonia. The presence of VFA in the bioreactor medium at fairly low concentrations decreases the microbial population's metabolic reactions due to end-product inhibition. Technologies to remove VFA continuously from the bioreactor are of high interest. Several candidate technologies were analyzed, such as organic solvent liquid-liquid extraction, adsorption and/or ion exchange, dialysis, electrodialysis, and pressure driven membrane separation processes. The proposed technique for the on-line removal of VFA from the anaerobic bioreactor was a nanofiltration membrane recycle bioreactor. In order to establish the nanofiltration process performance variables before coupling it to the bioreactor, a series of experiments were carried out using a 10,000 MWCO tubular ceramic membrane module. The variables studied were the bioreactor slurry permeation characteristics, such as, the permeate flux, VFA and the nutrient removal rates as a function of applied transmembrane pressure, fluid recirculation velocity, suspended matter concentration, and process operating time. Results indicate that the permeate flux, VFA and nutrients removal rates are directly proportional to the fluid recirculation velocity in the range between 0.6 to 1.0 m/s, applied pressure when these are low than 1.5 bar, and inversely proportional to the total suspended solids concentration in the range between 23,466 to 34,880. At applied pressure higher than 1.5 bar the flux is not more linearly dependent due to concentration polarization and fouling effects over the membrange surface. It was also found

  20. Packed Bed Bioreactor for the Isolation and Expansion of Placental-Derived Mesenchymal Stromal Cells

    PubMed Central

    Osiecki, Michael J.; Michl, Thomas D.; Kul Babur, Betul; Kabiri, Mahboubeh; Atkinson, Kerry; Lott, William B.; Griesser, Hans J.; Doran, Michael R.

    2015-01-01

    Large numbers of Mesenchymal stem/stromal cells (MSCs) are required for clinical relevant doses to treat a number of diseases. To economically manufacture these MSCs, an automated bioreactor system will be required. Herein we describe the development of a scalable closed-system, packed bed bioreactor suitable for large-scale MSCs expansion. The packed bed was formed from fused polystyrene pellets that were air plasma treated to endow them with a surface chemistry similar to traditional tissue culture plastic. The packed bed was encased within a gas permeable shell to decouple the medium nutrient supply and gas exchange. This enabled a significant reduction in medium flow rates, thus reducing shear and even facilitating single pass medium exchange. The system was optimised in a small-scale bioreactor format (160 cm2) with murine-derived green fluorescent protein-expressing MSCs, and then scaled-up to a 2800 cm2 format. We demonstrated that placental derived MSCs could be isolated directly within the bioreactor and subsequently expanded. Our results demonstrate that the closed system large-scale packed bed bioreactor is an effective and scalable tool for large-scale isolation and expansion of MSCs. PMID:26660475

  1. X-ray Phase Contrast Imaging of Calcified Tissue and Biomaterial Structure in Bioreactor Engineered Tissues

    SciTech Connect

    Appel, Alyssa A.; Larson, Jeffery C.; Garson, III, Alfred B.; Guan, Huifeng; Zhong, Zhong; Nguyen, Bao-Ngoc; Fisher, John P.; Anastasio, Mark A.; Brey, Eric M.

    2014-11-04

    Tissues engineered in bioreactor systems have been used clinically to replace damaged tissues and organs. In addition, these systems are under continued development for many tissue engineering applications. The ability to quantitatively assess material structure and tissue formation is critical for evaluating bioreactor efficacy and for preimplantation assessment of tissue quality. These techniques allow for the nondestructive and longitudinal monitoring of large engineered tissues within the bioreactor systems and will be essential for the translation of these strategies to viable clinical therapies. X-ray Phase Contrast (XPC) imaging techniques have shown tremendous promise for a number of biomedical applications owing to their ability to provide image contrast based on multiple X-ray properties, including absorption, refraction, and scatter. In this research, mesenchymal stem cell-seeded alginate hydrogels were prepared and cultured under osteogenic conditions in a perfusion bioreactor. The constructs were imaged at various time points using XPC microcomputed tomography (µCT). Imaging was performed with systems using both synchrotron- and tube-based X-ray sources. XPC µCT allowed for simultaneous three-dimensional (3D) quantification of hydrogel size and mineralization, as well as spatial information on hydrogel structure and mineralization. Samples were processed for histological evaluation and XPC showed similar features to histology and quantitative analysis consistent with the histomorphometry. Furthermore, these results provide evidence of the significant potential of techniques based on XPC for noninvasive 3D imaging engineered tissues grown in bioreactors.

  2. X-ray phase contrast imaging of calcified tissue and biomaterial structure in bioreactor engineered tissues.

    PubMed

    Appel, Alyssa A; Larson, Jeffery C; Garson, Alfred B; Guan, Huifeng; Zhong, Zhong; Nguyen, Bao-Ngoc B; Fisher, John P; Anastasio, Mark A; Brey, Eric M

    2015-03-01

    Tissues engineered in bioreactor systems have been used clinically to replace damaged tissues and organs. In addition, these systems are under continued development for many tissue engineering applications. The ability to quantitatively assess material structure and tissue formation is critical for evaluating bioreactor efficacy and for preimplantation assessment of tissue quality. Techniques that allow for the nondestructive and longitudinal monitoring of large engineered tissues within the bioreactor systems will be essential for the translation of these strategies to viable clinical therapies. X-ray Phase Contrast (XPC) imaging techniques have shown tremendous promise for a number of biomedical applications owing to their ability to provide image contrast based on multiple X-ray properties, including absorption, refraction, and scatter. In this research, mesenchymal stem cell-seeded alginate hydrogels were prepared and cultured under osteogenic conditions in a perfusion bioreactor. The constructs were imaged at various time points using XPC microcomputed tomography (µCT). Imaging was performed with systems using both synchrotron- and tube-based X-ray sources. XPC µCT allowed for simultaneous three-dimensional (3D) quantification of hydrogel size and mineralization, as well as spatial information on hydrogel structure and mineralization. Samples were processed for histological evaluation and XPC showed similar features to histology and quantitative analysis consistent with the histomorphometry. These results provide evidence of the significant potential of techniques based on XPC for noninvasive 3D imaging engineered tissues grown in bioreactors.

  3. Packed Bed Bioreactor for the Isolation and Expansion of Placental-Derived Mesenchymal Stromal Cells.

    PubMed

    Osiecki, Michael J; Michl, Thomas D; Kul Babur, Betul; Kabiri, Mahboubeh; Atkinson, Kerry; Lott, William B; Griesser, Hans J; Doran, Michael R

    2015-01-01

    Large numbers of Mesenchymal stem/stromal cells (MSCs) are required for clinical relevant doses to treat a number of diseases. To economically manufacture these MSCs, an automated bioreactor system will be required. Herein we describe the development of a scalable closed-system, packed bed bioreactor suitable for large-scale MSCs expansion. The packed bed was formed from fused polystyrene pellets that were air plasma treated to endow them with a surface chemistry similar to traditional tissue culture plastic. The packed bed was encased within a gas permeable shell to decouple the medium nutrient supply and gas exchange. This enabled a significant reduction in medium flow rates, thus reducing shear and even facilitating single pass medium exchange. The system was optimised in a small-scale bioreactor format (160 cm2) with murine-derived green fluorescent protein-expressing MSCs, and then scaled-up to a 2800 cm2 format. We demonstrated that placental derived MSCs could be isolated directly within the bioreactor and subsequently expanded. Our results demonstrate that the closed system large-scale packed bed bioreactor is an effective and scalable tool for large-scale isolation and expansion of MSCs.

  4. Packed Bed Bioreactor for the Isolation and Expansion of Placental-Derived Mesenchymal Stromal Cells.

    PubMed

    Osiecki, Michael J; Michl, Thomas D; Kul Babur, Betul; Kabiri, Mahboubeh; Atkinson, Kerry; Lott, William B; Griesser, Hans J; Doran, Michael R

    2015-01-01

    Large numbers of Mesenchymal stem/stromal cells (MSCs) are required for clinical relevant doses to treat a number of diseases. To economically manufacture these MSCs, an automated bioreactor system will be required. Herein we describe the development of a scalable closed-system, packed bed bioreactor suitable for large-scale MSCs expansion. The packed bed was formed from fused polystyrene pellets that were air plasma treated to endow them with a surface chemistry similar to traditional tissue culture plastic. The packed bed was encased within a gas permeable shell to decouple the medium nutrient supply and gas exchange. This enabled a significant reduction in medium flow rates, thus reducing shear and even facilitating single pass medium exchange. The system was optimised in a small-scale bioreactor format (160 cm2) with murine-derived green fluorescent protein-expressing MSCs, and then scaled-up to a 2800 cm2 format. We demonstrated that placental derived MSCs could be isolated directly within the bioreactor and subsequently expanded. Our results demonstrate that the closed system large-scale packed bed bioreactor is an effective and scalable tool for large-scale isolation and expansion of MSCs. PMID:26660475

  5. An innovative membrane bioreactor for methane biohydroxylation.

    PubMed

    Pen, N; Soussan, L; Belleville, M-P; Sanchez, J; Charmette, C; Paolucci-Jeanjean, D

    2014-12-01

    In this study, a membrane bioreactor (MBR) was developed for efficient, safe microbial methane hydroxylation with Methylosinus trichosporium OB3b. This innovative MBR, which couples a bioreactor with two gas/liquid macroporous membrane contactors supplying the two gaseous substrates (methane and oxygen) was operated in fed-batch mode. The feasibility and the reproducibility of this new biohydroxylation process were first demonstrated. The mass transfer within this MBR was twice that observed in a batch reactor in similar conditions. The productivity reached with this MBR was 75±25mgmethanol(gdrycell)(-1)h(-1). Compared to the literature, this value is 35times higher than that obtained with the only other fed-batch membrane bioreactor reported, which was run with dense membranes, and is comparable to those obtained with bioreactors fed by bubble-spargers. However, in the latter case, an explosive gas mixture can be formed, a problem that is avoided with the MBR.

  6. In vivo bioreactors for mandibular reconstruction.

    PubMed

    Tatara, A M; Wong, M E; Mikos, A G

    2014-12-01

    Large mandibular defects are difficult to reconstruct with good functional and aesthetic outcomes because of the complex geometry of craniofacial bone. While the current gold standard is free tissue flap transfer, this treatment is limited in fidelity by the shape of the harvested tissue and can result in significant donor site morbidity. To address these problems, in vivo bioreactors have been explored as an approach to generate autologous prefabricated tissue flaps. These bioreactors are implanted in an ectopic site in the body, where ossified tissue grows into the bioreactor in predefined geometries and local vessels are recruited to vascularize the developing construct. The prefabricated flap can then be harvested with vessels and transferred to a mandibular defect for optimal reconstruction. The objective of this review article is to introduce the concept of the in vivo bioreactor, describe important preclinical models in the field, summarize the human cases that have been reported through this strategy, and offer future directions for this exciting approach.

  7. Progress in ultrasonic bioreactors for CELSS applications.

    PubMed

    Schlager, K J

    1998-01-01

    An important issue in Controlled Ecological Life Support Systems (CELSS) is the recycling of inedible crop residues to recover inorganic plant nutrients such as nitrates, phosphates, potassium and other macro- and micro-nutrients. In a closed system in space, such regeneration is vital to the long term viability of plant growth necessary for the food production and waste handling process. Chemical approaches to recycling such as incineration and wet oxidation are not compatible with low energy and environmentally friendly regeneration of such nutrients. Biological regeneration is more acceptable environmentally, but it is a very slow process and does not typically result in complete recovery of inorganic and organic nutrients. A new approach to biological regeneration is described here involving the combined use of special enzymatic catalysts and ultrasonic energy in a bioreactor system. This new system has the potential for rapid, efficient, environmentally friendly and complete conversion of crop wastes to inorganic plant nutrients and food recovery from cellulose materials. A series of experimental tests were carried out with a soybean crop residue meal substrate. Biochemical conversion rates were significantly expedited with the addition of enzymes and further enhanced through ultrasonic stimulation of these enzymes. The difference in conversion rates was particularly increased after the initial period of soluble organics conversion. The remaining cellulose substrate is much more difficult to biodegrade, and the ultrasonically-enhanced reaction was able to demonstrate a much higher rate of substrate conversion.

  8. Progress in ultrasonic bioreactors for celss applications

    NASA Astrophysics Data System (ADS)

    Schlager, K. J.

    1998-11-01

    An important issue in Controlled Ecological Life Support Systems (CELSS) is the recycling of inedible crop residues to recover inorganic plant nutrients such as nitrates, phosphates, potassium and other macro- and micro-nutrients. In a closed system in space, such regeneration is vital to the long term viability of plant growth necessary for the food production and waste handling process. Chemical approaches to recycling such as incineration and wet oxidation are not compatible with low energy and environmentally friendly regeneration of such nutrients. Biological regeneration is more acceptable environmentally, but it is a very slow process and does not typically result in complete recovery of inorganic and organic nutrients. A new approach to biological regeneration is described here involving the combined use of special enzymatic catalysts and ultrasonic energy in a bioreactor system. This new system has the potential for rapid, efficient, environmentally friendly and complete conversion of crop wastes to inorganic plant nutrients and food recovery from cellulose materials. A series of experimental tests were carried out with a soybean crop residue meal substrate. Biochemical conversion rates were significantly expedited with the addition of enzymes and further enhanced through ultrasonic stimulation of these enzymes. The difference in conversion rates was particularly increased after the initial period of soluble organics conversion. The remaining cellulose substrate is much more difficult to biodegrade, and the ultrasonically-enhanced reaction was able to demonstrate a much higher rate of substrate conversion.

  9. Membrane Distillation Bioreactor (MDBR) - A lower Green-House-Gas (GHG) option for industrial wastewater reclamation.

    PubMed

    Goh, Shuwen; Zhang, Jinsong; Liu, Yu; Fane, Anthony G

    2015-12-01

    A high-retention membrane bioreactor system, the Membrane Distillation Bioreactor (MDBR) is a wastewater reclamation process which has the potential to tap on waste heat generated in industries to produce high quality product water. There are a few key factors which could make MDBR an attractive advanced treatment option, namely tightening legal requirements due to increasing concerns on the micropollutants in industrial wastewater effluents as well as concerns over the electrical requirement of pressurized advanced treatment processes and greenhouse gas emissions associated with wastewater reclamation. This paper aims to provide a consolidated review on the current state of research for the MDBR system and to evaluate the system as a possible lower Green House Gas (GHG) emission option for wastewater reclamation using the membrane bioreactor-reverse osmosis (MBR-RO) system as a baseline for comparison. The areas for potential applications and possible configurations for MDBR applications are discussed. PMID:25262945

  10. Membrane Distillation Bioreactor (MDBR) - A lower Green-House-Gas (GHG) option for industrial wastewater reclamation.

    PubMed

    Goh, Shuwen; Zhang, Jinsong; Liu, Yu; Fane, Anthony G

    2015-12-01

    A high-retention membrane bioreactor system, the Membrane Distillation Bioreactor (MDBR) is a wastewater reclamation process which has the potential to tap on waste heat generated in industries to produce high quality product water. There are a few key factors which could make MDBR an attractive advanced treatment option, namely tightening legal requirements due to increasing concerns on the micropollutants in industrial wastewater effluents as well as concerns over the electrical requirement of pressurized advanced treatment processes and greenhouse gas emissions associated with wastewater reclamation. This paper aims to provide a consolidated review on the current state of research for the MDBR system and to evaluate the system as a possible lower Green House Gas (GHG) emission option for wastewater reclamation using the membrane bioreactor-reverse osmosis (MBR-RO) system as a baseline for comparison. The areas for potential applications and possible configurations for MDBR applications are discussed.

  11. Construction and characterization of a novel vocal fold bioreactor.

    PubMed

    Zerdoum, Aidan B; Tong, Zhixiang; Bachman, Brendan; Jia, Xinqiao

    2014-01-01

    In vitro engineering of mechanically active tissues requires the presentation of physiologically relevant mechanical conditions to cultured cells. To emulate the dynamic environment of vocal folds, a novel vocal fold bioreactor capable of producing vibratory stimulations at fundamental phonation frequencies is constructed and characterized. The device is composed of a function generator, a power amplifier, a speaker selector and parallel vibration chambers. Individual vibration chambers are created by sandwiching a custom-made silicone membrane between a pair of acrylic blocks. The silicone membrane not only serves as the bottom of the chamber but also provides a mechanism for securing the cell-laden scaffold. Vibration signals, generated by a speaker mounted underneath the bottom acrylic block, are transmitted to the membrane aerodynamically by the oscillating air. Eight identical vibration modules, fixed on two stationary metal bars, are housed in an anti-humidity chamber for long-term operation in a cell culture incubator. The vibration characteristics of the vocal fold bioreactor are analyzed non-destructively using a Laser Doppler Vibrometer (LDV). The utility of the dynamic culture device is demonstrated by culturing cellular constructs in the presence of 200-Hz sinusoidal vibrations with a mid-membrane displacement of 40 µm. Mesenchymal stem cells cultured in the bioreactor respond to the vibratory signals by altering the synthesis and degradation of vocal fold-relevant, extracellular matrix components. The novel bioreactor system presented herein offers an excellent in vitro platform for studying vibration-induced mechanotransduction and for the engineering of functional vocal fold tissues. PMID:25145349

  12. Construction and Characterization of a Novel Vocal Fold Bioreactor

    PubMed Central

    Zerdoum, Aidan B.; Tong, Zhixiang; Bachman, Brendan; Jia, Xinqiao

    2014-01-01

    In vitro engineering of mechanically active tissues requires the presentation of physiologically relevant mechanical conditions to cultured cells. To emulate the dynamic environment of vocal folds, a novel vocal fold bioreactor capable of producing vibratory stimulations at fundamental phonation frequencies is constructed and characterized. The device is composed of a function generator, a power amplifier, a speaker selector and parallel vibration chambers. Individual vibration chambers are created by sandwiching a custom-made silicone membrane between a pair of acrylic blocks. The silicone membrane not only serves as the bottom of the chamber but also provides a mechanism for securing the cell-laden scaffold. Vibration signals, generated by a speaker mounted underneath the bottom acrylic block, are transmitted to the membrane aerodynamically by the oscillating air. Eight identical vibration modules, fixed on two stationary metal bars, are housed in an anti-humidity chamber for long-term operation in a cell culture incubator. The vibration characteristics of the vocal fold bioreactor are analyzed non-destructively using a Laser Doppler Vibrometer (LDV). The utility of the dynamic culture device is demonstrated by culturing cellular constructs in the presence of 200-Hz sinusoidal vibrations with a mid-membrane displacement of 40 µm. Mesenchymal stem cells cultured in the bioreactor respond to the vibratory signals by altering the synthesis and degradation of vocal fold-relevant, extracellular matrix components. The novel bioreactor system presented herein offers an excellent in vitro platform for studying vibration-induced mechanotransduction and for the engineering of functional vocal fold tissues. PMID:25145349

  13. Bioreactors for tissue engineering--a new role for perfusionists?

    PubMed

    Sistino, Joseph J

    2003-09-01

    Tissue engineering is an exciting new area of medicine with rapid growth and expansion over the last decade. It has the potential to have a profound impact on the practice of medicine and influence the economic development in the industry of biotechnology. In almost every specialty of medicine, the ability to generate replacement cells and develop tissues will change the focus from artificial organs and transplantation to growing replacement organs from the patient's own stem cells. Once these organs are at a size that requires perfusion to maintain oxygen and nutrient delivery, then automated perfusion systems termed "bioreactors" will be necessary to sustain the organ until harvesting. The design of these "bioreactors" will have a crucial role in the maintenance of cellular function throughout the growth period. The perfusion schemes necessary to determine the optimal conditions have not been well elucidated and will undergo extensive research over the next decade. The key to progress in this endeavor will development of long-term perfusion techniques and identifying the ideal pressures, flow rates, type of flow (pulsatile/nonpulsatile), and perfusate solution. Perfusionists are considered experts in the field of whole body perfusion, and it is possible that they can participate in the development and operation of these "bioreactors." Additional education of perfusionists in the area of tissue engineering is necessary in order for them to become integral parts of this exciting new area of medicine.

  14. NASA Bioreactors Advance Disease Treatments

    NASA Technical Reports Server (NTRS)

    2009-01-01

    The International Space Station (ISS) is falling. This is no threat to the astronauts onboard, however, because falling is part of the ISS staying in orbit. The absence of gravity beyond the Earth s atmosphere is actually an illusion; at the ISS s orbital altitude of approximately 250 miles above the surface, the planet s gravitational pull is only 12-percent weaker than on the ground. Gravity is constantly pulling the ISS back to Earth, but the space station is also constantly traveling at nearly 18,000 miles per hour. This means that, even though the ISS is falling toward Earth, it is moving sideways fast enough to continually miss impacting the planet. The balance between the force of gravity and the ISS s motion creates a stable orbit, and the fact that the ISS and everything in it including the astronauts are falling at an equal rate creates the condition of weightlessness called microgravity. The constant falling of objects in orbit is not only an important principle in space, but it is also a key element of a revolutionary NASA technology here on Earth that may soon help cure medical ailments from heart disease to diabetes. In the mid-1980s, NASA researchers at Johnson Space Center were investigating the effects of long-term microgravity on human tissues. At the time, the Agency s shuttle fleet was grounded following the 1986 Space Shuttle Challenger disaster, and researchers had no access to the microgravity conditions of space. To provide a method for recreating such conditions on Earth, Johnson s David Wolf, Tinh Trinh, and Ray Schwarz developed that same year a horizontal, rotating device called a rotating wall bioreactor that allowed the growth of human cells in simulated weightlessness. Previously, cell cultures on Earth could only be grown two-dimensionally in Petri dishes, because gravity would cause the multiplying cells to sink within their growth medium. These cells do not look or function like real human cells, which grow three-dimensionally in

  15. Energy efficiency in membrane bioreactors.

    PubMed

    Barillon, B; Martin Ruel, S; Langlais, C; Lazarova, V

    2013-01-01

    Energy consumption remains the key factor for the optimisation of the performance of membrane bioreactors (MBRs). This paper presents the results of the detailed energy audits of six full-scale MBRs operated by Suez Environnement in France, Spain and the USA based on on-site energy measurement and analysis of plant operation parameters and treatment performance. Specific energy consumption is compared for two different MBR configurations (flat sheet and hollow fibre membranes) and for plants with different design, loads and operation parameters. The aim of this project was to understand how the energy is consumed in MBR facilities and under which operating conditions, in order to finally provide guidelines and recommended practices for optimisation of MBR operation and design to reduce energy consumption and environmental impacts.

  16. Simplified Bioreactor For Growing Mammalian Cells

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn F.

    1995-01-01

    Improved bioreactor for growing mammalian cell cultures developed. Designed to support growth of dense volumes of mammalian cells by providing ample, well-distributed flows of nutrient solution with minimal turbulence. Cells relatively delicate and, unlike bacteria, cannot withstand shear forces present in turbulent flows. Bioreactor vessel readily made in larger sizes to accommodate greater cell production quantities. Molding equipment presently used makes cylinders up to 30 centimeters long. Alternative sintered plastic techniques used to vary pore size and quantity, as necessary.

  17. Colon tumor cells grown in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    2001-01-01

    These photos compare the results of colon carcinoma cells grown in a NASA Bioreactor flown on the STS-70 Space Shuttle in 1995 flight and ground control experiments. The cells grown in microgravity (left) have aggregated to form masses that are larger and more similar to tissue found in the body than the cells cultured on the ground (right). The principal investigator is Milburn Jessup of the University of Texas M. D. Anderson Cancer Center. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Cell constructs grown in a rotating bioreactor on Earth (left) eventually become too large to stay suspended in the nutrient media. In the microgravity of orbit, the cells stay suspended. Rotation then is needed for gentle stirring to replenish the media around the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). Credit: NASA and University of Texas M. D. Anderson Cancer Center.

  18. Heart tissue grown in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Lisa Freed and Gordana Vunjak-Novakovic, both of the Massachusetts Institute of Technology (MIT), have taken the first steps toward engineering heart muscle tissue that could one day be used to patch damaged human hearts. Cells isolated from very young animals are attached to a three-dimensional polymer scaffold, then placed in a NASA bioreactor. The cells do not divide, but after about a week start to cornect to form a functional piece of tissue. Functionally connected heart cells that are capable of transmitting electrical signals are the goal for Freed and Vunjak-Novakovic. Electrophysiological recordings of engineered tissue show spontaneous contractions at a rate of 70 beats per minute (a), and paced contractions at rates of 80, 150, and 200 beats per minute respectively (b, c, and d). The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). Credit: NASA and MIT.

  19. Heart tissue grown in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Lisa Freed and Gordana Vunjak-Novakovic, both of the Massachusetts Institute of Technology (MIT), have taken the first steps toward engineering heart muscle tissue that could one day be used to patch damaged human hearts. Cells isolated from very young animals are attached to a three-dimensional polymer scaffold, then placed in a NASA bioreactor. The cells do not divide, but after about a week start to cornect to form a functional piece of tissue. Here, a transmission electron micrograph of engineered tissue shows a number of important landmarks present in functional heart tissue: (A) well-organized myofilaments (Mfl), z-lines (Z), and abundant glycogen granules (Gly); and (D) intercalcated disc (ID) and desmosomes (DES). The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). Credit: MIT

  20. Effects of granular activated carbon on methane removal performance and methanotrophic community of a lab-scale bioreactor.

    PubMed

    Lee, Eun-Hee; Choi, Sun-Ah; Yi, Taewoo; Kim, Tae Gwan; Lee, Sang-Don; Cho, Kyung-Suk

    2015-01-01

    Two identical lab-scale bioreactor systems were operated to examine the effects of granular activated carbon (GAC) on methane removal performance and methanotrophic community. Both bioreactor systems removed methane completely at a CH4 loading rate of 71.2 g-CH4·d(-1) for 17 days. However, the methane removal efficiency declined to 88% in the bioreactor without GAC, while the bioreactor amended with GAC showed greater methane removal efficiency of 97% at a CH4 loading rate of 107.5 g-CH4·d(-1). Although quantitative real-time PCR showed that methanotrophic populations were similar levels of 5-10 × 10(8) pmoA gene copy number·VSS(-1) in both systems, GAC addition changed the methanotrophic community composition of the bioreactor systems. Microarray assay revealed that GAC enhanced the type I methanotrophic genera including Methylobacter, Methylomicrobium, and Methylomonas of the system, which suggests that GAC probably provided a favorable environment for type I methanotrophs. These results indicated that GAC is a promising support material in bioreactor systems for CH4 mitigation.

  1. Containerized Wetland Bioreactor Evaluated for Perchlorate and Nitrate Degradation

    SciTech Connect

    Dibley, V R; Krauter, P W

    2004-12-02

    The U.S. Department of Energy (DOE) and Lawrence Livermore Laboratory (LLNL) designed and constructed an innovative containerized wetlands (bioreactor) system that began operation in November 2000 to biologically degrade perchlorate and nitrate under relatively low-flow conditions at a remote location at Site 300 known as Building 854. Since initial start-up, the system has processed over 3,463,000 liters of ground water and treated over 38 grams of perchlorate and 148 kilograms of nitrate. Site 300 is operated by the University of California as a high-explosives and materials testing facility supporting nuclear weapons research. The 11-square mile site located in northern California was added to the NPL in 1990 primarily due to the presence of elevated concentrations of volatile organic compounds (VOCs) in ground water. At the urging of the regulatory agencies, perchlorate was looked for and detected in the ground water in 1999. VOCs, nitrate and perchlorate were released into the soil and ground water in the Building 854 area as the result of accidental leaks during stability testing of weapons or from waste discharge practices that are no longer permitted at Site 300. Design of the wetland bioreactors was based on earlier studies showing that indigenous chlorate-respiring bacteria could effectively degrade perchlorate into nontoxic concentrations of chlorate, chlorite, oxygen, and chloride. Studies also showed that the addition of organic carbon would enhance microbial denitrification. Early onsite testing showed acetic acid to be a more effective carbon source than dried leaf matter, dried algae, or milk replacement starter; a nutrient and carbon source used in a Department of Defense phytoremediation demonstration. No inocula were added to the system. Groundwater was allowed to circulate through the bioreactor for three weeks to acclimate the wetland plants and to build a biofilm from indigenous flora. Using solar energy, ground water is pumped into granular

  2. Analysis of drug metabolism activities in a miniaturized liver cell bioreactor for use in pharmacological studies.

    PubMed

    Hoffmann, Stefan A; Müller-Vieira, Ursula; Biemel, Klaus; Knobeloch, Daniel; Heydel, Sandra; Lübberstedt, Marc; Nüssler, Andreas K; Andersson, Tommy B; Gerlach, Jörg C; Zeilinger, Katrin

    2012-12-01

    Based on a hollow fiber perfusion technology with internal oxygenation, a miniaturized bioreactor with a volume of 0.5 mL for in vitro studies was recently developed. Here, the suitability of this novel culture system for pharmacological studies was investigated, focusing on the model drug diclofenac. Primary human liver cells were cultivated in bioreactors and in conventional monolayer cultures in parallel over 10 days. From day 3 on, diclofenac was continuously applied at a therapeutic concentration (6.4 µM) for analysis of its metabolism. In addition, the activity and gene expression of the cytochrome P450 (CYP) isoforms CYP1A2, CYP2B6, CYP2C9, CYP2D6, and CYP3A4 were assessed. Diclofenac was metabolized in bioreactor cultures with an initial conversion rate of 230 ± 57 pmol/h/10(6) cells followed by a period of stable conversion of about 100 pmol/h/10(6) cells. All CYP activities tested were maintained until day 10 of bioreactor culture. The expression of corresponding mRNAs correlated well with the degree of preservation. Immunohistochemical characterization showed the formation of neo-tissue with expression of CYP2C9 and CYP3A4 and the drug transporters breast cancer resistance protein (BCRP) and multidrug resistance protein 2 (MRP2) in the bioreactor. In contrast, monolayer cultures showed a rapid decline of diclofenac conversion and cells had largely lost activity and mRNA expression of the assessed CYP isoforms at the end of the culture period. In conclusion, diclofenac metabolism, CYP activities and gene expression levels were considerably more stable in bioreactor cultures, making the novel bioreactor a useful tool for pharmacological or toxicological investigations requiring a highly physiological in vitro representation of the liver.

  3. Biofabrication of customized bone grafts by combination of additive manufacturing and bioreactor knowhow.

    PubMed

    Costa, Pedro F; Vaquette, Cédryck; Baldwin, Jeremy; Chhaya, Mohit; Gomes, Manuela E; Reis, Rui L; Theodoropoulos, Christina; Hutmacher, Dietmar W

    2014-09-01

    This study reports on an original concept of additive manufacturing for the fabrication of tissue engineered constructs (TEC), offering the possibility of concomitantly manufacturing a customized scaffold and a bioreactor chamber to any size and shape. As a proof of concept towards the development of anatomically relevant TECs, this concept was utilized for the design and fabrication of a highly porous sheep tibia scaffold around which a bioreactor chamber of similar shape was simultaneously built. The morphology of the bioreactor/scaffold device was investigated by micro-computed tomography and scanning electron microscopy confirming the porous architecture of the sheep tibiae as opposed to the non-porous nature of the bioreactor chamber. Additionally, this study demonstrates that both the shape, as well as the inner architecture of the device can significantly impact the perfusion of fluid within the scaffold architecture. Indeed, fluid flow modelling revealed that this was of significant importance for controlling the nutrition flow pattern within the scaffold and the bioreactor chamber, avoiding the formation of stagnant flow regions detrimental for in vitro tissue development. The bioreactor/scaffold device was dynamically seeded with human primary osteoblasts and cultured under bi-directional perfusion for two and six weeks. Primary human osteoblasts were observed homogenously distributed throughout the scaffold, and were viable for the six week culture period. This work demonstrates a novel application for additive manufacturing in the development of scaffolds and bioreactors. Given the intrinsic flexibility of the additive manufacturing technology platform developed, more complex culture systems can be fabricated which would contribute to the advances in customized and patient-specific tissue engineering strategies for a wide range of applications.

  4. A potential sanitary sewer overflow treatment technology: fixed-media bioreactors.

    PubMed

    Tao, Jing; Mancl, Karen M; Tuovinen, Olli H

    2011-08-01

    Under certain conditions, sanitary sewer overflows (SSOs) containing raw wastewater may be discharged to public land and can contribute to environmental and public health issues. Although this problem has attracted the attention of local, state, and federal government and regulators, relatively little SSO abatement research has been published. This study used fixed-media bioreactors, a proven onsite technology in rural areas, to treat wet weather SSO wastewater and reduce its effects on the receiving water environment. The results of this 32-month laboratory study showed that fixed-media bioreactors, especially sand bioreactors, efficiently removed organic matter, solids, and nutrients during six-hour simulated SSO peak flows. Five-day biochemical oxygen demand (BODs) of the simulated SSO varied between 40 and 125 mg/L. The average effluent concentration of BOD5 was 13 mg/L in sand bioreactors at a hydraulic loading rate of 20.4 cm/h. In addition to having high hydraulic loadings, SSO events occur infrequently. This irregularity requires that treatment systems quickly start up and effectively treat wastewater after a period of no flow. This research found that an interval up to six months between two SSO peak flows did not affect the bioreactor performance. Based on this work, fixed-media bioreactors have the potential to reduce the effects of SSOs on the water environment by following proper design parameters and operation strategies. The pollution loading of approximately 18 g BODs/m2 x h is recommended for the efficient performance of sand bioreactors in the SSO treatment.

  5. Successful Development of Small Diameter Tissue-Engineering Vascular Vessels by Our Novel Integrally Designed Pulsatile Perfusion-Based Bioreactor

    PubMed Central

    Song, Lei; Zhou, Qiang; Duan, Ping; Guo, Ping; Li, Dianwei; Xu, Yuan; Li, Songtao; Luo, Fei; Zhang, Zehua

    2012-01-01

    Small-diameter (<4 mm) vascular constructs are urgently needed for patients requiring replacement of their peripheral vessels. However, successful development of constructs remains a significant challenge. In this study, we successfully developed small-diameter vascular constructs with high patency using our integrally designed computer-controlled bioreactor system. This computer-controlled bioreactor system can confer physiological mechanical stimuli and fluid flow similar to physiological stimuli to the cultured grafts. The medium circulating system optimizes the culture conditions by maintaining fixed concentration of O2 and CO2 in the medium flow and constant delivery of nutrients and waste metabolites, as well as eliminates the complicated replacement of culture medium in traditional vascular tissue engineering. Biochemical and mechanical assay of newly developed grafts confirm the feasibility of the bioreactor system for small-diameter vascular engineering. Furthermore, the computer-controlled bioreactor is superior for cultured cell proliferation compared with the traditional non-computer-controlled bioreactor. Specifically, our novel bioreactor system may be a potential alternative for tissue engineering of large-scale small-diameter vascular vessels for clinical use. PMID:22880036

  6. Design considerations and challenges for mechanical stretch bioreactors in tissue engineering.

    PubMed

    Lei, Ying; Ferdous, Zannatul

    2016-05-01

    With the increase in average life expectancy and growing aging population, lack of functional grafts for replacement surgeries has become a severe problem. Engineered tissues are a promising alternative to this problem because they can mimic the physiological function of the native tissues and be cultured on demand. Cyclic stretch is important for developing many engineered tissues such as hearts, heart valves, muscles, and bones. Thus a variety of stretch bioreactors and corresponding scaffolds have been designed and tested to study the underlying mechanism of tissue formation and to optimize the mechanical conditions applied to the engineered tissues. In this review, we look at various designs of stretch bioreactors and common scaffolds and offer insights for future improvements in tissue engineering applications. First, we summarize the requirements and common configuration of stretch bioreactors. Next, we present the features of different actuating and motion transforming systems and their applications. Since most bioreactors must measure detailed distributions of loads and deformations on engineered tissues, techniques with high accuracy, precision, and frequency have been developed. We also cover the key points in designing culture chambers, nutrition exchanging systems, and regimens used for specific tissues. Since scaffolds are essential for providing biophysical microenvironments for residing cells, we discuss materials and technologies used in fabricating scaffolds to mimic anisotropic native tissues, including decellularized tissues, hydrogels, biocompatible polymers, electrospinning, and 3D bioprinting techniques. Finally, we present the potential future directions for improving stretch bioreactors and scaffolds. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:543-553, 2016.

  7. Scale up of fuel ethanol production from sugar beet juice using loofa sponge immobilized bioreactor.

    PubMed

    Ogbonna, J C; Mashima, H; Tanaka, H

    2001-01-01

    Production of fuel ethanol from sugar beet juice, using cells immobilized on loofa sponge was investigated. Based on ethanol productivity and ease of cell immobilization, a flocculating yeast strain, Saccharomyces cerevisiae IR2 was selected for ethanol production from sugar beet juice. It was found that raw sugar beet juice was an optimal substrate for ethanol production, requiring neither pH adjustment nor nitrogen source supplement. When compared with a 2 l bubble column bioreactor, mixing was not sufficient in an 8 l bioreactor containing a bed of sliced loofa sponges and consequently, the immobilized cells were not uniformly distributed within the bed. Most of the cells were immobilized in the lower part of the bed and this resulted in decreased ethanol productivity. By using an external loop bioreactor, constructing the fixed bed with cylindrical loofa sponges, dividing the bed into upper, middle and lower sections with approximately 1 cm spaces between them and circulating the broth through the loop during the immobilization, uniform cell distribution within the bed was achieved. Using this method, the system was scaled up to 50 l and when compared with the 2 l bubble column bioreactor, there were no significant differences (P > 0.05) in ethanol productivity and yield. By using external loop bioreactor to immobilize the cells uniformly on the loofa sponge beds, efficient large scale ethanol production systems can be constructed.

  8. Energy conservation and production in a packed-bed anaerobic bioreactor

    SciTech Connect

    Pit, W.W. Jr.; Genung, R.K.

    1980-01-01

    Oak Ridge National Laboratory (ORNL) is developing an energy-conserving/ producing wastewater treatment system based on a fixed-film anaerobic bioreactor. The treatment process is based on passing wastewaters upward through the bioreactor for continuous treatment by gravitational settling, biophysical filtration and biological decomposition. A two-year pilot-plant project using a bioreactor designed to treat 5000 gpd has been conducted using raw wastewater on a municipal site in Oak Ridge, Tennessee. Data obtained for the performance of the bioreactor during this project have been analyzed by ORNL and Associated Water and Air Resources Engineers (AWARE), Inc. of Nashville, Tennessee. From these analyses it was estimated that hydraulic loading rates of 0.25 gpm/ft/sup 2/ and hydraulic residence times of 10 hours could be used in designing such bioreactors for the secondary treatment of municipal wastewaters. Conceptual designs for total treatment systems processing up to one million gallons of wastewater per day were developed based on the performance of the pilot plant bioreactor. These systems were compared to activated sludge treatment systems also operating under secondary treatment requirements and were found to consume as little as 30% of the energy required by the activated sludge systems. Economic advantages of the process result from the elimination of operating energy requirements associated with the aeration of aerobic-based processes and with the significant decrease of sludge-handling costs required with conventional activated sludge treatment systems.Furthermore, methane produced by anaerobic fermentation processes occurring during the biological decomposition of carbonaceous wastes also represented a significant and recoverable energy production. For dilute municipal wastewaters this would completely offset the remaining energy required for treatment, while for concentrated industrial wastewater would result in a net production of energy.

  9. Photosynthetic bacteria production from food processing wastewater in sequencing batch and membrane photo-bioreactors.

    PubMed

    Chitapornpan, S; Chiemchaisri, C; Chiemchaisri, W; Honda, R; Yamamoto, K

    2012-01-01

    Application of photosynthetic process could be highly efficient and surpass anaerobic treatment in releasing less greenhouse gas and odor while the biomass produced can be utilized. The combination of photosynthetic process with membrane separation is possibly effective for water reclamation and biomass production. In this study, cultivation of mixed culture photosynthetic bacteria from food processing wastewater was investigated in a sequencing batch reactor (SBR) and a membrane bioreactor (MBR) supplied with infrared light. Both photo-bioreactors were operated at a hydraulic retention time (HRT) of 10 days. Higher MLSS concentration achieved in the MBR through complete retention of biomass resulted in a slightly improved performance. When the system was operated with MLSS controlled by occasional sludge withdrawal, total biomass production of MBR and SBR photo-bioreactor was almost equal. However, 64.5% of total biomass production was washed out with the effluent in SBR system. Consequently, the higher biomass could be recovered for utilization in MBR. PMID:22258682

  10. Suspension cell culture in microgravity and development of a space bioreactor

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.

    1987-01-01

    NASA has methodically developed unique suspension type cell and recovery apparatus culture systems for bioprocess technology experiments and production of biological products in microgravity. The first space bioreactor has been designed for microprocessor control, no gaseous headspace, circulation and resupply of culture medium, and slow mixing in very low shear regimes. Various ground based bioreactors are being used to test reactor vessel design, on-line sensors, effects of shear, nutrient supply, and waste removal from continuous culture of human cells attached to microcarriers. The small (500 ml) bioreactor is being constructed for flight experiments in the Shuttle middeck to verify systems operation under microgravity conditions and to measure the efficiencies of mass transport, gas transfer, oxygen consumption, and control of low shear stress on cells.

  11. Characterizing the Performance of Denitrifying Bioreactors during Simulated Subsurface Drainage Events.

    PubMed

    Bell, Natasha; Cooke, Richard A C; Olsen, Todd; David, Mark B; Hudson, Robert

    2015-09-01

    The need to mitigate nitrate export from corn and soybean fields with subsurface (tile) drainage systems, a major environmental issue in the midwestern United States, has made the efficacy of field-edge, subsurface bioreactors an active subject of research. This study of three such bioreactors located on the University of Illinois South Farms during their first 6 mo of operation (July-Dec. 2012) focused on the interactions of seasonal temperature changes and hydraulic retention times (HRTs), which were subject to experimental manipulation. Changes in nitrate, phosphate, oxygen, and dissolved organic carbon were monitored in influent and effluent to assess the benefits and the potential harmful effects of bioreactors for nearby aquatic ecosystems. On average, bioreactors reduced nitrate loads by 63%, with minimum and maximum reductions of 20 and 98% at low and high HRTs, respectively. The removal rate per unit reactor volume averaged 11.6 g NO-N m d (range, 5-30 g NO-N m d). Multiple regression models with exponential dependencies on influent water temperature and on HRT explained 73% of the variance in NO-N load reduction and 43% of the variance in its removal rate. Although concentrations of dissolved reactive phosphorus and dissolved organic carbon in the bioreactor effluent increased relative to the influent by an order of magnitude during initial tests, within 1 mo of operation they stabilized at nearly equal values. PMID:26436281

  12. Development of a Cyclic Strain Bioreactor for Mechanical Enhancement and Assessment of Bioengineered Myocardial Constructs.

    PubMed

    Salazar, Betsy H; Cashion, Avery T; Dennis, Robert G; Birla, Ravi K

    2015-12-01

    The purpose of this study was to develop enabling bioreactor technologies using a novel voice coil actuator system for investigating the effects of periodic strain on cardiac patches fabricated with rat cardiomyocytes. The bioengineered muscle constructs used in this study were formed by culturing rat neonatal primary cardiac cells on a fibrin gel. The physical design of the bioreactor was initially conceived using Solidworks to test clearances and perform structural strain analysis. Once the software design phase was completed the bioreactor was assembled using a combination of commercially available, custom machined, and 3-D printed parts. We utilized the bioreactor to evaluate the effect of a 4-h stretch protocol on the contractile properties of the tissue after which immunohistological assessment of the tissue was also performed. An increase in contractile force was observed after the strain protocol of 10% stretch at 1 Hz, with no significant increase observed in the control group. Additionally, an increase in cardiac myofibril alignment, connexin 43 expression, and collagen type I distribution were noted. In this study we demonstrated the effectiveness of a new bioreactor design to improve contractility of engineered cardiac muscle tissue.

  13. Design and Use of a Novel Bioreactor for Regeneration of Biaxially Stretched Tissue-Engineered Vessels.

    PubMed

    Huang, Angela Hai; Lee, Yong-Ung; Calle, Elizabeth A; Boyle, Michael; Starcher, Barry C; Humphrey, Jay D; Niklason, Laura E

    2015-08-01

    Conventional bioreactors are used to enhance extracellular matrix (ECM) production and mechanical strength of tissue-engineered vessels (TEVs) by applying circumferential strain, which is uniaxial stretching. However, the resulting TEVs still suffer from inadequate mechanical properties, where rupture strengths and compliance values are still very different from native arteries. The biomechanical milieu of native arteries consists of both circumferential and axial loading. Therefore, to better simulate the physiological stresses acting on native arteries, we built a novel bioreactor system to enable biaxial stretching of engineered arteries during culture. This new bioreactor system allows for independent control of circumferential and axial stretching parameters, such as displacement and beat rate. The assembly and setup processes for this biaxial bioreactor system are reliable with a success rate greater than 75% for completion of long-term sterile culture. This bioreactor also supports side-by-side assessments of TEVs that are cultured under three types of mechanical conditions (static, uniaxial, and biaxial), all within the same biochemical environment. Using this bioreactor, we examined the impact of biaxial stretching on arterial wall remodeling of TEVs. Biaxial TEVs developed the greatest wall thickness compared with static and uniaxial TEVs. Unlike uniaxial loading, biaxial loading led to undulated collagen fibers that are commonly found in native arteries. More importantly, the biaxial TEVs developed the most mature elastin in the ECM, both qualitatively and quantitatively. The presence of mature extracellular elastin along with the undulated collagen fibers may contribute to the observed vascular compliance in the biaxial TEVs. The current work shows that biaxial stretching is a novel and promising means to improve TEV generation. Furthermore, this novel system allows us to optimize biomechanical conditioning by unraveling the interrelationships among the

  14. Design and Use of a Novel Bioreactor for Regeneration of Biaxially Stretched Tissue-Engineered Vessels

    PubMed Central

    Huang, Angela Hai; Lee, Yong-Ung; Calle, Elizabeth A.; Boyle, Michael; Starcher, Barry C.; Humphrey, Jay D.

    2015-01-01

    Conventional bioreactors are used to enhance extracellular matrix (ECM) production and mechanical strength of tissue-engineered vessels (TEVs) by applying circumferential strain, which is uniaxial stretching. However, the resulting TEVs still suffer from inadequate mechanical properties, where rupture strengths and compliance values are still very different from native arteries. The biomechanical milieu of native arteries consists of both circumferential and axial loading. Therefore, to better simulate the physiological stresses acting on native arteries, we built a novel bioreactor system to enable biaxial stretching of engineered arteries during culture. This new bioreactor system allows for independent control of circumferential and axial stretching parameters, such as displacement and beat rate. The assembly and setup processes for this biaxial bioreactor system are reliable with a success rate greater than 75% for completion of long-term sterile culture. This bioreactor also supports side-by-side assessments of TEVs that are cultured under three types of mechanical conditions (static, uniaxial, and biaxial), all within the same biochemical environment. Using this bioreactor, we examined the impact of biaxial stretching on arterial wall remodeling of TEVs. Biaxial TEVs developed the greatest wall thickness compared with static and uniaxial TEVs. Unlike uniaxial loading, biaxial loading led to undulated collagen fibers that are commonly found in native arteries. More importantly, the biaxial TEVs developed the most mature elastin in the ECM, both qualitatively and quantitatively. The presence of mature extracellular elastin along with the undulated collagen fibers may contribute to the observed vascular compliance in the biaxial TEVs. The current work shows that biaxial stretching is a novel and promising means to improve TEV generation. Furthermore, this novel system allows us to optimize biomechanical conditioning by unraveling the interrelationships among the

  15. Hydrogenotrophic denitrification in a microporous membrane bioreactor.

    PubMed

    Mansell, Bruce O; Schroeder, Edward D

    2002-11-01

    Hydrogenotrophic denitrification of nitrate contaminated groundwater in a bench-scale microporous membrane bioreactor has been investigated. To prevent microbial contamination of the effluent from the reactor the nitrate-laden water treated was separated from the denitrifying culture with a 0.02 microm pore diameter membrane. Equal pressure was maintained across the membrane and nitrate was removed by molecular diffusion through the membrane and into the denitrifying culture. The system was operated with a hydrogenotrophic denitrification culture to circumvent the addition of an organic substrate to the water. Removal efficiencies ranging from 96% to 92% were achieved at influent concentrations ranging from 20 to 40 mg/L NO3(-)-N. The flux values achieved in this study were 2.7-5.3 g NO3-N m 2d(-1). The microporous membrane served as an effective barrier for preventing microbial contamination of the product water as evidenced by the effluent heterotrophic plate count of 9 (+/- 3.5) CFU/mL. The hydrogenotrophic culture was analyzed using available 16S and 23S rRNA-targeted oligonucleotide probes. It was determined that the enrichment process selected for organisms belonging to the beta subclass of Proteobacteria. Further analysis of the hydrogenotrophic culture indicated that the organisms may belong to the beta-3 subgroup of Proteobacteria and have yet to be identified as hydrogenotrophic denitrifiers.

  16. Regulating Glucose and pH, and Monitoring Oxygen in a Bioreactor

    NASA Technical Reports Server (NTRS)

    Anderson, Melody M.; Pellis, Neat R.; Jeevarajan, Antony S.; Taylor, Thomas D.; Xu, Yuanhang; Gao, Frank

    2006-01-01

    A system that automatically regulates the concentration of glucose or pH in a liquid culture medium that is circulated through a rotating-wall perfused bioreactor is described. Another system monitors the concentration of oxygen in the culture medium.

  17. Membrane Bioreactor Technology for the Development of Functional Materials from Sea-Food Processing Wastes and Their Potential Health Benefits

    PubMed Central

    Kim, Se-Kwon; Senevirathne, Mahinda

    2011-01-01

    Sea-food processing wastes and underutilized species of fish are a potential source of functional and bioactive compounds. A large number of bioactive substances can be produced through enzyme-mediated hydrolysis. Suitable enzymes and the appropriate bioreactor system are needed to incubate the waste materials. Membrane separation is a useful technique to extract, concentrate, separate or fractionate the compounds. The use of membrane bioreactors to integrate a reaction vessel with a membrane separation unit is emerging as a beneficial method for producing bioactive materials such as peptides, chitooligosaccharides and polyunsaturated fatty acids from diverse seafood-related wastes. These bioactive compounds from membrane bioreactor technology show diverse biological activities such as antihypertensive, antimicrobial, antitumor, anticoagulant, antioxidant and radical scavenging properties. This review discusses the application of membrane bioreactor technology for the production of value-added functional materials from sea-food processing wastes and their biological activities in relation to health benefits. PMID:24957872

  18. Nitrogen management in bioreactor landfills

    SciTech Connect

    Price, G. Alexander; Barlaz, Morton A.; Hater, Gary R

    2003-07-01

    One scenario for long-term nitrogen management in landfills is ex situ nitrification followed by denitrification in the landfill. The objective of this research was to measure the denitrification potential of actively decomposing and well decomposed refuse. A series of 10-l reactors that were actively producing methane were fed 400 mg NO{sub 3}-N /l every 48 h for periods of 19-59 days. Up to 29 nitrate additions were either completely or largely depleted within 48 h of addition and the denitrification reactions did not adversely affect the leachate pH. Nitrate did inhibit methane production, but the reactors recovered their methane-producing activity with the termination of nitrate addition. In well decomposed refuse, the nitrate consumption rate was reduced but was easily stimulated by the addition of either acetate or an overlayer of fresh refuse. Addition of acetate at five times the amount required to reduce nitrate did not lead to the production of NH{sub 4}{sup +} by dissimilatory nitrate reduction. The most probable number of denitrifying bacteria decreased by about five orders of magnitude during refuse decomposition in a reactor that did not receive nitrate. However, rapid denitrification commenced immediately with nitrate addition. This study shows that the use of a landfill as a bioreactor for the conversion of nitrate to a harmless byproduct, nitrogen gas, is technically viable.

  19. Bioreactor control improves bioprocess performance.

    PubMed

    Simutis, Rimvydas; Lübbert, Andreas

    2015-08-01

    The performance of bioreactors is not only determined by productivity but also by process quality, which is mainly determined by variances in the process variables. As fluctuations in these quantities directly affect the variability in the product properties, combatting distortions is the main task of practical quality assurance. The straightforward way of reducing this variability is keeping the product formation process tightly under control. Purpose of this keynote is to show that there is enough evidence in literature showing that the performance of the fermentation processes can significantly be improved by feedback control. Most of the currently used open loop control procedures can be replaced by relatively simple feedback techniques. It is shown by practical examples that such a retrofitting does not require significant changes in the well-established equipment. Feedback techniques are best in assuring high reproducibility of the industrial cultivation processes and thus in assuring the quality of their products. Many developments in supervising and controlling industrial fermentations can directly be taken over in manufacturing processes. Even simple feedback controllers can efficiently improve the product quality. It's the time now that manufacturers follow the developments in most other industries and improve process quality by automatic feedback control. PMID:26228573

  20. Bioreactor control improves bioprocess performance.

    PubMed

    Simutis, Rimvydas; Lübbert, Andreas

    2015-08-01

    The performance of bioreactors is not only determined by productivity but also by process quality, which is mainly determined by variances in the process variables. As fluctuations in these quantities directly affect the variability in the product properties, combatting distortions is the main task of practical quality assurance. The straightforward way of reducing this variability is keeping the product formation process tightly under control. Purpose of this keynote is to show that there is enough evidence in literature showing that the performance of the fermentation processes can significantly be improved by feedback control. Most of the currently used open loop control procedures can be replaced by relatively simple feedback techniques. It is shown by practical examples that such a retrofitting does not require significant changes in the well-established equipment. Feedback techniques are best in assuring high reproducibility of the industrial cultivation processes and thus in assuring the quality of their products. Many developments in supervising and controlling industrial fermentations can directly be taken over in manufacturing processes. Even simple feedback controllers can efficiently improve the product quality. It's the time now that manufacturers follow the developments in most other industries and improve process quality by automatic feedback control.

  1. Successful treatment of an MTBE-impacted aquifer using a bioreactor self-colonized by native aquifer bacteria

    PubMed Central

    Hicks, Kristin A.; Nickelsen, Michael G.; Boyle, Susan L.; Baker, Jeffrey M.; Tornatore, Paul M.; Hristova, Krassimira R.; Scow, Kate M.

    2014-01-01

    A field-scale fixed bed bioreactor was used to successfully treat an MTBE-contaminated aquifer in North Hollywood, CA without requiring inoculation with introduced bacteria. Native bacteria from the MTBE-impacted aquifer rapidly colonized the bioreactor, entering the bioreactor in the contaminated groundwater pumped from the site, and biodegraded MTBE with greater than 99 % removal efficiency. DNA sequencing of the 16S rRNA gene identified MTBE-degrading bacteria Methylibium petroleiphilum in the bioreactor. Quantitative PCR showed M. petroleiphilum enriched by three orders of magnitude in the bioreactor above densities pre-existing in the groundwater. Because treatment was carried out by indigenous rather than introduced organisms, regulatory approval was obtained for implementation of a full-scale bioreactor to continue treatment of the aquifer. In addition, after confirmation of MTBE removal in the bioreactor to below maximum contaminant limit levels (MCL; MTBE = 5 μg L−1), treated water was approved for reinjection back into the aquifer rather than requiring discharge to a water treatment system. This is the first treatment system in California to be approved for reinjection of biologically treated effluent into a drinking water aquifer. This study demonstrated the potential for using native microbial communities already present in the aquifer as an inoculum for ex-situ bioreactors, circumventing the need to establish non-native, non-acclimated and potentially costly inoculants. Understanding and harnessing the metabolic potential of native organisms circumvents some of the issues associated with introducing non-native organisms into drinking water aquifers, and can provide a low-cost and efficient remediation technology that can streamline future bioremediation approval processes. PMID:23613160

  2. Successful treatment of an MTBE-impacted aquifer using a bioreactor self-colonized by native aquifer bacteria.

    PubMed

    Hicks, Kristin A; Schmidt, Radomir; Nickelsen, Michael G; Boyle, Susan L; Baker, Jeffrey M; Tornatore, Paul M; Hristova, Krassimira R; Scow, Kate M

    2014-02-01

    A field-scale fixed bed bioreactor was used to successfully treat an MTBE-contaminated aquifer in North Hollywood, CA without requiring inoculation with introduced bacteria. Native bacteria from the MTBE-impacted aquifer rapidly colonized the bioreactor, entering the bioreactor in the contaminated groundwater pumped from the site, and biodegraded MTBE with greater than 99 % removal efficiency. DNA sequencing of the 16S rRNA gene identified MTBE-degrading bacteria Methylibium petroleiphilum in the bioreactor. Quantitative PCR showed M. petroleiphilum enriched by three orders of magnitude in the bioreactor above densities pre-existing in the groundwater. Because treatment was carried out by indigenous rather than introduced organisms, regulatory approval was obtained for implementation of a full-scale bioreactor to continue treatment of the aquifer. In addition, after confirmation of MTBE removal in the bioreactor to below maximum contaminant limit levels (MCL; MTBE = 5 μg L(-1)), treated water was approved for reinjection back into the aquifer rather than requiring discharge to a water treatment system. This is the first treatment system in California to be approved for reinjection of biologically treated effluent into a drinking water aquifer. This study demonstrated the potential for using native microbial communities already present in the aquifer as an inoculum for ex-situ bioreactors, circumventing the need to establish non-native, non-acclimated and potentially costly inoculants. Understanding and harnessing the metabolic potential of native organisms circumvents some of the issues associated with introducing non-native organisms into drinking water aquifers, and can provide a low-cost and efficient remediation technology that can streamline future bioremediation approval processes.

  3. New miniature stirred-tank bioreactors for parallel study of enzymatic biomass hydrolysis.

    PubMed

    Riedlberger, Peter; Weuster-Botz, Dirk

    2012-02-01

    Many factors strongly influence the enzymatic hydrolysis of biomass to fermentable sugars (feedstock composition, pretreatment, enzymes and enzyme loading). In order to optimize the reaction conditions for the hydrolysis of biomass, an accurate high-throughput bioprocess development tool is mandatory, which enables a parallelization and an easy scale-up. New S-shaped impellers were developed for magnetically inductive driven stirred-tank bioreactors at a 10mL-scale. An efficient and reproducible homogenization was shown at 20% w/w solids loading of microcrystalline cellulose and at, 4-10% with wheat straw in 48 parallel operated stirred-tank bioreactors. The scale-up was successfully validated for the enzymatic hydrolysis of wheat straw suspensions and microcrystalline cellulose mixtures by application of a cellulase complex at a milliliter- and liter-scale. As an example, the parallel stirred-tank bioreactor system was applied for the evaluation of enzymatic batch hydrolyses of plant materials with varying pretreatments.

  4. Kinetic evaluation of nitrification performance in an immobilized cell membrane bioreactor.

    PubMed

    Güven, D; Ubay Çokgör, E; Sözen, S; Orhon, D

    2016-01-01

    High rate membrane bioreactor (MBR) systems operated at extremely low sludge ages (superfast membrane bioreactors (SFMBRs)) are inefficient to achieve nitrogen removal, due to insufficient retention time for nitrifiers. Moreover, frequent chemical cleaning is required due to high biomass flux. This study aims to satisfy the nitrification in SFMBRs by using sponge as carriers, leading to the extension of the residence time of microorganisms. In order to test the limits of nitrification, bioreactor was run under 52, 5 and 2 days of carrier residence time (CRT), with a hydraulic retention time of 6 h. Different degrees of nitrification were obtained for different CRTs. Sponge immobilized SFMBR operation with short CRT resulted in partial nitrification indicating selective dominancy of ammonia oxidizers. At higher CRT, simultaneous nitrification-denitrification was achieved when accompanying with oxygen limitation. Process kinetics was determined through evaluation of the results by a modeling study. Nitrifier partition in the reactor was also identified by model calibration.

  5. Kinetic evaluation of nitrification performance in an immobilized cell membrane bioreactor.

    PubMed

    Güven, D; Ubay Çokgör, E; Sözen, S; Orhon, D

    2016-01-01

    High rate membrane bioreactor (MBR) systems operated at extremely low sludge ages (superfast membrane bioreactors (SFMBRs)) are inefficient to achieve nitrogen removal, due to insufficient retention time for nitrifiers. Moreover, frequent chemical cleaning is required due to high biomass flux. This study aims to satisfy the nitrification in SFMBRs by using sponge as carriers, leading to the extension of the residence time of microorganisms. In order to test the limits of nitrification, bioreactor was run under 52, 5 and 2 days of carrier residence time (CRT), with a hydraulic retention time of 6 h. Different degrees of nitrification were obtained for different CRTs. Sponge immobilized SFMBR operation with short CRT resulted in partial nitrification indicating selective dominancy of ammonia oxidizers. At higher CRT, simultaneous nitrification-denitrification was achieved when accompanying with oxygen limitation. Process kinetics was determined through evaluation of the results by a modeling study. Nitrifier partition in the reactor was also identified by model calibration. PMID:27332835

  6. Novel Sensor-Enabled Ex Vivo Bioreactor: A New Approach towards Physiological Parameters and Porcine Artery Viability

    PubMed Central

    Mundargi, Raghavendra; Venkataraman, Divya; Kumar, Saranya; Mogal, Vishal; Ortiz, Raphael; Loo, Joachim; Venkatraman, Subbu; Steele, Terry

    2015-01-01

    The aim of the present work is to design and construct an ex vivo bioreactor system to assess the real time viability of vascular tissue. Porcine carotid artery as a model tissue was used in the ex vivo bioreactor setup to monitor its viability under physiological conditions such as oxygen, pressure, temperature, and flow. The real time tissue viability was evaluated by monitoring tissue metabolism through a fluorescent indicator “resorufin.” Our ex vivo bioreactor allows real time monitoring of tissue responses along with physiological conditions. These ex vivo parameters were vital in determining the tissue viability in sensor-enabled bioreactor and our initial investigations suggest that, porcine tissue viability is considerably affected by high shear forces and low oxygen levels. Histological evaluations with hematoxylin and eosin and Masson's trichrome staining show intact endothelium with fresh porcine tissue whereas tissues after incubation in ex vivo bioreactor studies indicate denuded endothelium supporting the viability results from real time measurements. Hence, this novel viability sensor-enabled ex vivo bioreactor acts as model to mimic in vivo system and record vascular responses to biopharmaceutical molecules and biomedical devices. PMID:26609536

  7. Cell Cycle Progression of Human Cells Cultured in Rotating Bioreactor

    NASA Technical Reports Server (NTRS)

    Parks, Kelsey

    2009-01-01

    Space flight has been shown to alter the astronauts immune systems. Because immune performance is complex and reflects the influence of multiple organ systems within the host, scientists sought to understand the potential impact of microgravity alone on the cellular mechanisms critical to immunity. Lymphocytes and their differentiated immature form, lymphoblasts, play an important and integral role in the body's defense system. T cells, one of the three major types of lymphocytes, play a central role in cell-mediated immunity. They can be distinguished from other lymphocyte types, such as B cells and natural killer cells by the presence of a special receptor on their cell surface called T cell receptors. Reported studies have shown that spaceflight can affect the expression of cell surface markers. Cell surface markers play an important role in the ability of cells to interact and to pass signals between different cells of the same phenotype and cells of different phenotypes. Recent evidence suggests that cell-cycle regulators are essential for T-cell function. To trigger an effective immune response, lymphocytes must proliferate. The objective of this project is to investigate the changes in growth of human cells cultured in rotating bioreactors and to measure the growth rate and the cell cycle distribution for different human cell types. Human lymphocytes and lymphoblasts will be cultured in a bioreactor to simulate aspects of microgravity. The bioreactor is a cylindrical culture vessel that incorporates the aspects of clinostatic rotation of a solid fluid body around a horizontal axis at a constant speed, and compensates gravity by rotation and places cells within the fluid body into a sustained free-fall. Cell cycle progression and cell proliferation of the lymphocytes will be measured for a number of days. In addition, RNA from the cells will be isolated for expression of genes related in cell cycle regulations.

  8. A nanoliter microfluidic serial dilution bioreactor.

    PubMed

    Gu, Guo-Yue; Lee, Yi-Wei; Chiang, Chih-Chung; Yang, Ya-Tang

    2015-07-01

    Bacterial culture is a basic technique in both fundamental and applied microbiology. The excessive reagent consumption and laborious maintenance of bulk bioreactors for microbial culture have prompted the development of miniaturized on-chip bioreactors. With the minimal choice of two compartments (N = 2) and discrete time, periodic dilution steps, we realize a microfluidic bioreactor that mimics macroscopic serial dilution transfer culture. This device supports automated, long-term microbial cultures with a nanoliter-scale working volume and real-time monitoring of microbial populations at single-cell resolution. Because of the high surface-to-volume ratio, the device also operates as an effective biofilm-flow reactor to support cogrowth of planktonic and biofilm populations. We expect that such devices will open opportunities in many fields of microbiology.

  9. Dynamics of amino acid metabolism of primary human liver cells in 3D bioreactors

    PubMed Central

    Zeilinger, K.; Sickinger, S.; Schmidt-Heck, W.; Buentemeyer, H.; Iding, K.; Lehmann, J.; Pfaff, M.; Pless, G.; Gerlach, J.C.

    2006-01-01

    The kinetics of 18 amino acids, ammonia (NH3) and urea (UREA) in 18 liver cell bioreactor runs were analyzed and simulated by a two-compartment model consisting of a system of 42 differential equations. The model parameters, most of them representing enzymatic activities, were identified and their values discussed with respect to the different liver cell bioreactor performance levels. The nitrogen balance based model was used as a tool to quantify the variability of runs and to describe different kinetic patterns of the amino acid metabolism, in particular with respect to glutamate (GLU) and aspartate (ASP). PMID:16550345

  10. Scale-up of human embryonic stem cell culture using a hollow fibre bioreactor.

    PubMed

    Roberts, Iwan; Baila, Stefano; Rice, R Brent; Janssens, Michiel Etienne; Nguyen, Kim; Moens, Nathalie; Ruban, Ludmila; Hernandez, Diana; Coffey, Pete; Mason, Chris

    2012-12-01

    The commercialisation of human embryonic stem cell derived cell therapies for large patient populations is reliant on both minimising expensive and variable manual-handling methods whilst realising economies of scale. The Quantum Cell Expansion System, a hollow fibre bioreactor (Terumo BCT), was used in a pilot study to expand 60 million human embryonic stem cells to 708 million cells. Further improvements can be expected with optimisation of media flow rates throughout the run to better control the cellular microenvironment. High levels of pluripotency marker expression were maintained on the bioreactor, with 97.7 % of cells expressing SSEA-4 when harvested.

  11. Differentiation of cartilaginous anlagen in entire embryonic mouse limbs cultured in a rotating bioreactor

    NASA Astrophysics Data System (ADS)

    Montufar-Solis, D.; Oakley, C. R.; Jefferson, Y.; Duke, P. J.

    2003-10-01

    Mechanisms involved in development of the embryonic limb have remained the same throughout eons of genetic and environmental evolution under Earth gravity (lg). During the spaceflight era it has been of interest to explore the ancient theory that form of the skeleton develops in response to gravity, and that changes in gravitational forces can change the developmental pattern of the limb. This has been shown in vivo and in vitro, allowing the hypergravity of centrifugation and microgravity of space to be used as tools to increase our knowledge of limb development. In recapitulations of spaceflight experiments, premetatarsals were cultured in suspension in a bioreactor, and found to be shorter and less differentiated than those cultured in standard culture dishes. This study only measured length of the metatarsals, and did not account for possible changes due to the skeletal elements having a more in vivo 3D shape while in suspension vs. flattened tissues compressed by their own weight. A culture system with an outcome closer to in vivo and that supports growth of younger limb buds than traditional systems will allow studies of early Hox gene expression, and contribute to the understanding of very early stages of development. The purpose of the current experiment was to determine if entire limb buds could be cultured in the bioreactor, and to compare the growth and differentiation with that of culturing in a culture dish system. Fore and hind limbs from E11-E13 ICR mouse embryos were cultured for six days, either in the bioreactor or in center-well organ culture dishes, fixed, and embedded for histology. E13 specimens grown in culture dishes were flat, while bioreactor culture specimens had a more in vivo-like 3D limb shape. Sections showed excellent cartilage differentiation in both culture systems, with more cell maturation, and hypertrophy in the specimens cultured in the bioreactor. Younger limb buds fused together during culture, so an additional set of El 1

  12. Differentiation of cartilaginous anlage in entire embryonic mouse limbs cultured in a rotating bioreactor.

    NASA Astrophysics Data System (ADS)

    Duke, P.; Oakley, C.; Montufar-Solis, D.

    The embryonic mammalian limb is sensitive both in vivo and in vitro to changes in gravitational force. Hypergravity of centrifugation and microgravity of space decreased size of elements due to precocious or delayed chondrogenesis respectively. In recapitulating spaceflight experiments, premetatarsals were cultured in suspension in a low stress, low sheer rotating bioreactor, and found to be shorter than those cultured in standard culture dishes, and cartilage development was delayed. This study only measured length of the metatarsals, and did not account for possible changes in width and/or in form of the skeletal elements. Shorter cartilage elements in limbbuds cultured in the bioreactor may be due to the ability of the system to reproduce a more in vivo 3D shape than traditional organ cultures. Tissues subjected to traditional organ cultures become flattened by their own weight, attachment to the filter, and restrictions imposed by nutrient diffusion. The purpose of the current experiment was to determine if entire limb buds could be successfully cultured in the bioreactor, and to compare the effects on 3D shape with that of culturing in a culture dish system. Fore and hind limbs from E11-E13 ICR mouse embryos were placed either in the bioreactor, in Trowell culture, or fixed as controls. Limbbuds were cultured for six days, fixed, and processed either as whole mounts or embedded for histology. Qualitative analysis revealed that the Trowell culture specimens were flattened, while bioreactor culture specimens had a more in vivo-like 3D limb shape. Sections of limbbuds from both types of cultures had excellent cartilage differentiation, with apparently more cell maturation, and hypertrophy in the specimens cultured in the bioreactor. Morphometric quantitation of the cartilaginous elements for comparisons of the two culture systems was complicated due to some limb buds fusing together during culture. This problem was especially noticeable in the younger limbs, and

  13. Development of a Space Bioreactor using Microtechnology

    NASA Technical Reports Server (NTRS)

    Arquint, Philippe; Boillat, Marc A.; deRooij, Nico F.; Jeanneret, Sylvain; vanderSchoot, Bart H.; Bechler, Birgitt; Cogoli, Augusto; Walther, Isabelle; Gass, Volker; Ivorra, Marie-Therese

    1995-01-01

    A miniature bio-reactor for the cultivation of cells aboard Spacelab is presented. Yeast cells are grown in a 3 milliliter reactor chamber. A supply of fresh nutrient medium is provided by a piezo-electric silicon micro-pump. In the reactor, pH, temperature, and redox potential are monitored and the pH is regulated at a constant value. The complete instrument is fitted in a standard experiment container of 63 x 63 x 85 mm. The bioreactor was used on the IML-2 mission in July 1994 and is being refurbished for a reflight in the spring of 1996.

  14. Transport and kinetics in sandwiched membrane bioreactors.

    PubMed

    Jeong, Y S; Vieth, W R; Matsuura, T

    1991-01-01

    A bioreactor in which living yeast cells are sandwiched between an ultrafiltration membrane and a reverse osmosis membrane was constructed, and experiments were performed for the conversion of substrate glucose to product ethanol. A set of equations that include both transport through a series of barrier layers and bioreaction rate were developed to predict the performance of the sandwich bioreactor. The above equations were solved by using numerical values for the transport parameter and the bioreaction rate constant, and the results are compared with the experimental data.

  15. The oceanic crust as a bioreactor

    NASA Astrophysics Data System (ADS)

    Staudigel, Hubert; Tebo, Bradley; Yayanos, Art; Furnes, Harald; Kelley, Katie; Plank, Terry; Muehlenbachs, Karlis

    Various lines of evidence suggest that large portions of hydrothermal systems in the oceanic crust acts like a giant bioreactor that mediates water-rock exchange and buffers the chemical composition of seawater. We review the current literature and present new chemical, biological and petrographic data on microbially mediated alteration of glass in the oceanic crust. Microbial alteration of glass displays characteristic bioalteration features, in particular in the alteration fronts around residual glass in the oceanic crust, suggesting that microbes take on an active role in its dissolution. Such features are found throughout the oceanic crust ranging in age from a few million to 170 Ma and they are found down to crustal depths of 500 m, possibly defining a Deep Oceanic Biosphere (DOB) that covers up to 2/3 of the earth's surface area. Microbial glass alteration substantially increases the active surface area of dissolving glass particles thereby enhancing the reaction rates during microbially aided dissolution. Microbially mediated glass alteration involves the establishment of two types of diffusion barriers including hydration rinds and biofilms that play an important role in mediating glass alteration. In particular biofilms may be very active by creating a localized chemical environment conducive to glass alteration, and by sequestering dissolved chemical inventory from solution. When compared with abiotic alteration of the oceanic crust, bio-alteration causes more rapid deposition of biotic and abiotic reaction products in the oceanic crust that result in a more effective removal of elements from seawater and a more rapid sealing of the oceanic crust. Thus, it is likely that microbial activity increases the fluxes of seawater components into the crust, while reducing the low—temperature flux of basalt components into seawater. However, much about the microbial activity and its relationships to the chemistry of hydrothermal systems still remains to be

  16. A Multi-Paradigm Modeling Framework to Simulate Dynamic Reciprocity in a Bioreactor

    PubMed Central

    Kaul, Himanshu; Cui, Zhanfeng; Ventikos, Yiannis

    2013-01-01

    Despite numerous technology advances, bioreactors are still mostly utilized as functional black-boxes where trial and error eventually leads to the desirable cellular outcome. Investigators have applied various computational approaches to understand the impact the internal dynamics of such devices has on overall cell growth, but such models cannot provide a comprehensive perspective regarding the system dynamics, due to limitations inherent to the underlying approaches. In this study, a novel multi-paradigm modeling platform capable of simulating the dynamic bidirectional relationship between cells and their microenvironment is presented. Designing the modeling platform entailed combining and coupling fully an agent-based modeling platform with a transport phenomena computational modeling framework. To demonstrate capability, the platform was used to study the impact of bioreactor parameters on the overall cell population behavior and vice versa. In order to achieve this, virtual bioreactors were constructed and seeded. The virtual cells, guided by a set of rules involving the simulated mass transport inside the bioreactor, as well as cell-related probabilistic parameters, were capable of displaying an array of behaviors such as proliferation, migration, chemotaxis and apoptosis. In this way the platform was shown to capture not only the impact of bioreactor transport processes on cellular behavior but also the influence that cellular activity wields on that very same local mass transport, thereby influencing overall cell growth. The platform was validated by simulating cellular chemotaxis in a virtual direct visualization chamber and comparing the simulation with its experimental analogue. The results presented in this paper are in agreement with published models of similar flavor. The modeling platform can be used as a concept selection tool to optimize bioreactor design specifications. PMID:23555740

  17. USE OF MEMBRANE BIOREACTOR FOR BIODEGRADATION OF MTBE IN CONTAMINATED WATER1

    EPA Science Inventory

    An ultrafiltration membrane bioreactor was evaluated for biodegradation of methyl tert-butyl ether (MTBE) in contaminated water. The system was fed 5 mg/L MTBE in granular activated carbon (GAC) treated Cincinnati tap water containing ample buffer and nutrients. Within 120...

  18. PERFORMANCE OF NORTH AMERICAN BIOREACTOR LANDFILLS: I. LEACHATE HYDROLOGY AND WASTE SETTLEMENT

    EPA Science Inventory

    An assessment of state-of-the-practice at five full-scale North American landfills operating as bioreactors is presented in this two-paper set. This paper focuses on effectiveness of liners and leachate collection systems, leachate generation rates, leachate recirculation practi...

  19. Performance of experimental bioreactors developed for removing nitrate from nursery runoff water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A bacterial-based bioreactor containing Kaldness media as a substrate for bacteria to grow on was established at a commercial nursery. Data from approximately 90 sampling events are reported. Results indicate that the system, when properly managed, offers much potential for removing nitrate from s...

  20. Bioreactor Conditioning for Accelerated Remodeling of Fibrin-Based Tissue Engineered Heart Valves

    NASA Astrophysics Data System (ADS)

    Schmidt, Jillian Beth

    Fibrin is a promising scaffold material for tissue engineered heart valves, as it is completely biological, allows for engineered matrix alignment, and is able to be degraded and replaced with collagen by entrapped cells. However, the initial fibrin matrix is mechanically weak, and extensive in vitro culture is required to create valves with sufficient mechanical strength and stiffness for in vivo function. Culture in bioreactor systems, which provide cyclic stretching and enhance nutrient transport, has been shown to increase collagen production by cells entrapped in a fibrin scaffold, accelerating strengthening of the tissue and reducing the required culture time. In the present work, steps were taken to improve bioreactor culture conditions with the goal of accelerating collagen production in fibrin-based tissue engineered heart valves using two approaches: (i) optimizing the cyclic stretching protocol and (ii) developing a novel bioreactor system that permits transmural and lumenal flow of culture medium for improved nutrient transport. The results indicated that incrementally increasing strain amplitude cyclic stretching with small, frequent increments in strain amplitude was optimal for collagen production in our system. In addition, proof of concept studies were performed in the novel bioreactor system and increased cellularity and collagen deposition near the lumenal surface of the tissue were observed.

  1. STEADY-STATE DESIGN OF VERTICAL WELLS FOR LIQUIDS ADDITION AT BIOREACTOR LANDFILLS

    EPA Science Inventory

    This paper presents design charts that a landfill engineer can use for the design of a vertical well system for liquids addition at bioreactor landfills. The flow rate and lateral and vertical zones of impact of a vertical well were estimated as a function of input variables su...

  2. Engineering stem cell niches in bioreactors

    PubMed Central

    Liu, Meimei; Liu, Ning; Zang, Ru; Li, Yan; Yang, Shang-Tian

    2013-01-01

    Stem cells, including embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells and amniotic fluid stem cells have the potential to be expanded and differentiated into various cell types in the body. Efficient differentiation of stem cells with the desired tissue-specific function is critical for stem cell-based cell therapy, tissue engineering, drug discovery and disease modeling. Bioreactors provide a great platform to regulate the stem cell microenvironment, known as “niches”, to impact stem cell fate decision. The niche factors include the regulatory factors such as oxygen, extracellular matrix (synthetic and decellularized), paracrine/autocrine signaling and physical forces (i.e., mechanical force, electrical force and flow shear). The use of novel bioreactors with precise control and recapitulation of niche factors through modulating reactor operation parameters can enable efficient stem cell expansion and differentiation. Recently, the development of microfluidic devices and microbioreactors also provides powerful tools to manipulate the stem cell microenvironment by adjusting flow rate and cytokine gradients. In general, bioreactor engineering can be used to better modulate stem cell niches critical for stem cell expansion, differentiation and applications as novel cell-based biomedicines. This paper reviews important factors that can be more precisely controlled in bioreactors and their effects on stem cell engineering. PMID:24179601

  3. MONITORING APPROACHES FOR BIOREACTOR LANDFILLS - Report

    EPA Science Inventory

    Experimental bioreactor landfill operations at operating Municipal Solid Waste (MSW) landfills can be approved under the research development and demonstration (RD&D) provisions of 30CFR 258.4. To provide a basis for consistent data collection for future decision-making in suppor...

  4. LANDFILL BIOREACTOR PERFORMANCE, SECOND INTERIM REPORT

    EPA Science Inventory

    A bioreactor landfill is a landfill that is operated in a manner that is expected to increase the rate and extent of waste decomposition, gas generation, and settlement compared to a traditional landfill. This Second Interim Report was prepared to provide an interpretation of fie...

  5. Continuous-Flow Gas-Phase Bioreactors

    NASA Technical Reports Server (NTRS)

    Wise, Donald L.; Trantolo, Debra J.

    1994-01-01

    Continuous-flow gas-phase bioreactors proposed for biochemical, food-processing, and related industries. Reactor contains one or more selected enzymes dehydrated or otherwise immobilized on solid carrier. Selected reactant gases fed into reactor, wherein chemical reactions catalyzed by enzyme(s) yield product biochemicals. Concept based on discovery that enzymes not necessarily placed in traditional aqueous environments to function as biocatalysts.

  6. In Vivo Bioreactors for Mandibular Reconstruction

    PubMed Central

    Tatara, A.M.; Wong, M.E.; Mikos, A.G.

    2014-01-01

    Large mandibular defects are difficult to reconstruct with good functional and aesthetic outcomes because of the complex geometry of craniofacial bone. While the current gold standard is free tissue flap transfer, this treatment is limited in fidelity by the shape of the harvested tissue and can result in significant donor site morbidity. To address these problems, in vivo bioreactors have been explored as an approach to generate autologous prefabricated tissue flaps. These bioreactors are implanted in an ectopic site in the body, where ossified tissue grows into the bioreactor in predefined geometries and local vessels are recruited to vascularize the developing construct. The prefabricated flap can then be harvested with vessels and transferred to a mandibular defect for optimal reconstruction. The objective of this review article is to introduce the concept of the in vivo bioreactor, describe important preclinical models in the field, summarize the human cases that have been reported through this strategy, and offer future directions for this exciting approach. PMID:25139360

  7. Denitrifying bioreactor clogging potential during wastewater treatment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chemoheterotrophic denitrification technologies using woodchips as a solid carbon source (i.e., woodchip bioreactors) have been widely trialed for treatment of diffuse-source agricultural nitrogen pollution. There is growing interest in the use of this simple, relatively low-cost biological wastewat...

  8. Optimal design of scalable photo-bioreactor for phototropic culturing of Haematococcus pluvialis.

    PubMed

    Yoo, Jae Jun; Choi, Seung Phill; Kim, Byung Woo; Sim, Sang Jun

    2012-01-01

    The unicellular green microalgae, Haematococcus pluvialis, has been examined as a microbial source for the production of astaxanthin, which has been suggested as a food supplement for humans and is also prescribed as an ingredient in eye drops because of its powerful anti-oxidant properties. In this study, we estimated the effects of the slope of a V-shaped bottom design, the volumetric flow rate of air, height/diameter (H/D) ratio, and diameter of an air sparger on the performance of a photo-bioreactor. These parameters were selected because they are recognized as important factors effecting the mixing that produces increased cell density in the reactor. The mixing effect can be measured by changes in optical density in the bioreactor over a period of time. A 6 L indoor photo-bioreactor was prepared in a short time period of 24 h for the performance study. A bioreactor designed with a V-shaped bottom with a slope of 60° showed an optical density change of 0.052 at 680 nm, which was sixfold less than the change in a photo-bioreactor designed with a flat bottom. Studies exploring the effects of bioreactor configuration and a porous metal sparger with a 10 μm pore size showed the best performance at an H/D ratio of 6:1 and a sparger diameter of 1.3 cm, respectively. The optimal rate of air flow was 0.2 vvm. The indoor culture of microalgae in the photo-bioreactor was subsequently carried for an application study using the optimal values established for the important factors. The indoor culture system was composed of a light source controlled according to cell phase, a carbon dioxide feeder, a bag-type reactor with an H/D ratio of 6:1, and a temperature controller. Results demonstrated the efficient production of microalgal cells and astaxanthin in the amounts of 2.62 g/L and 78.37 mg/L, respectively, when using adequate hydrodynamic mixing. Furthermore, the optimal design of a photo-bioreactor can be applied for the phototropic culturing of other microalgae for

  9. Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview.

    PubMed

    Garcia-Ochoa, Felix; Gomez, Emilio

    2009-01-01

    In aerobic bioprocesses, oxygen is a key substrate; due to its low solubility in broths (aqueous solutions), a continuous supply is needed. The oxygen transfer rate (OTR) must be known, and if possible predicted to achieve an optimum design operation and scale-up of bioreactors. Many studies have been conducted to enhance the efficiency of oxygen transfer. The dissolved oxygen concentration in a suspension of aerobic microorganisms depends on the rate of oxygen transfer from the gas phase to the liquid, on the rate at which oxygen is transported into the cells (where it is consumed), and on the oxygen uptake rate (OUR) by the microorganism for growth, maintenance and production. The gas-liquid mass transfer in a bioprocess is strongly influenced by the hydrodynamic conditions in the bioreactors. These conditions are known to be a function of energy dissipation that depends on the operational conditions, the physicochemical properties of the culture, the geometrical parameters of the bioreactor and also on the presence of oxygen consuming cells. Stirred tank and bubble column (of various types) bioreactors are widely used in a large variety of bioprocesses (such as aerobic fermentation and biological wastewater treatments, among others). Stirred tanks bioreactors provide high values of mass and heat transfer rates and excellent mixing. In these systems, a high number of variables affect the mass transfer and mixing, but the most important among them are stirrer speed, type and number of stirrers and gas flow rate used. In bubble columns and airlifts, the low-shear environment compared to the stirred tanks has enabled successful cultivation of shear sensitive and filamentous cells. Oxygen transfer is often the rate-limiting step in the aerobic bioprocess due to the low solubility of oxygen in the medium. The correct measurement and/or prediction of the volumetric mass transfer coefficient, (k(L)a), is a crucial step in the design, operation and scale-up of

  10. Strategy using bioreactors and specially selected microorganisms for bioremediation of groundwater contaminated with creosote and pentachlorophenol

    SciTech Connect

    Mueller, J.G.; Lantz, S.E.; Ross, D.; Colvin, R.J.; Middaugh, D.P.

    1993-01-01

    A two-stage, continuous-flow, sequential inoculation bioreactor strategy for the bioremediation of ground water contaminated with creosote and pentachlorophenol (PCP) was evaluated at the bench- and pilot-scale levels. Performance of continually stirred tank reactors (CSTR) using specially-selected microorganisms was assessed according to chemical analyses of system influent, effluent and bioreactor residues, performing a mass balance evaluation, and comparative biological toxicity and teratogenicity measurements. When specially-selected bacteria capable of utilizing (mineralizing) high-molecular-weight polycyclic aromatic hydrocarbons (HMW PAHs) as primary growth substrates were used in pilot-sale bioreactors (120 gal), the concentration of creosote constituents was reduced from ca. 1,000 ppm in the ground water feed (flow rate = 30 GPD) to <7 ppm in the system effluent (removal efficiency of >99%). Notably, the cumulative concentration of 8 HMS PAHs (containing 4 or more fused rings) was reduced from 368 ppm in the ground water fed to 5.2 ppm in the system effluent. Moreover, the toxicity and teratogenicity of the bioreactor effluent was significantly reduced. Biodegradation of PCP was limited (ca. 18%) due in large part to poor inoculation and a high degree of abiotic loss (bioaccumulation and adsorption). In general, field data correlated well with those obtained from bench-scale studies.

  11. A study of the Coriolis effect on the fluid flow profile in a centrifugal bioreactor.

    PubMed

    Detzel, Christopher J; Thorson, Michael R; Van Wie, Bernard J; Ivory, Cornelius F

    2009-01-01

    Increasing demand for tissues, proteins, and antibodies derived from cell culture is necessitating the development and implementation of high cell density bioreactors. A system for studying high density culture is the centrifugal bioreactor (CCBR), which retains cells by increasing settling velocities through system rotation, thereby eliminating diffusional limitations associated with mechanical cell retention devices. This article focuses on the fluid mechanics of the CCBR system by considering Coriolis effects. Such considerations for centrifugal bioprocessing have heretofore been ignored; therefore, a simpler analysis of an empty chamber will be performed. Comparisons are made between numerical simulations and bromophenol blue dye injection experiments. For the non-rotating bioreactor with an inlet velocity of 4.3 cm/s, both the numerical and experimental results show the formation of a teardrop shaped plume of dye following streamlines through the reactor. However, as the reactor is rotated, the simulation predicts the development of vortices and a flow profile dominated by Coriolis forces resulting in the majority of flow up the leading wall of the reactor as dye initially enters the chamber, results are confirmed by experimental observations. As the reactor continues to fill with dye, the simulation predicts dye movement up both walls while experimental observations show the reactor fills with dye from the exit to the inlet. Differences between the simulation and experimental observations can be explained by excessive diffusion required for simulation convergence, and a slight density difference between dyed and un-dyed solutions. Implications of the results on practical bioreactor use are also discussed.

  12. Membrane bioreactors for final treatment of wastewater.

    PubMed

    Galil, N I; Sheindorf, Ch; Stahl, N; Tenenbaum, A; Levinsky, Y

    2003-01-01

    The full-scale existing treatment plant in a paper mill in Hedera, Israel, includes equalization, solids separation by either straining or by dissolved air flotation and biological treatment by activated sludge. The operation of the existing biological process is often characterized by disturbances, mainly bad settling, voluminous bioflocs, followed by wash-out of the biosolids. This paper summarizes the results obtained in a study based on a pilot plant including a membrane biological reactor (MBR) compared to the "conventional" activated sludge process in the aerobic treatment of the effluent obtained from an anaerobic reactor. During the pilot operation period (about 90 days after achieving steady state) the MBR system provided steady operation performance, while the activated sludge produced effluent characterized by oscillatory values. The results are based on average values and indicate much lower levels of suspended solids in the MBR effluent, 2.5 mg/L, as compared to 37 mg/L in the activated sludge. As a result, the total organic mater content was also substantially lower in the MBR effluent, 129 vs 204 mg/L as COD, and 7.1 vs 83 mg/L as BOD. The MBR enabled better nitrification. The ability to develop and maintain a concentration of over 11,000 mg/L of mixed liquor volatile suspended solids in the MBR bioreactor enabled an intensive bioprocess at relatively high cell residence time. As a result the biosolids which had to be removed as excess sludge were characterized by relatively low volatile/total suspended solids ratio, around 0.78. This could facilitate and lower the cost of biosolids treatment and handling. The results of this comparative study indicate that in the case of MBR there will be no need for further treatment, while after activated sludge additional filtration will be required. The study leads to the conclusion that MBR will be the best technology for aerobic treatment of the anaerobic effluent of the paper mill.

  13. Bioreactor concepts for cell culture-based viral vaccine production.

    PubMed

    Gallo-Ramírez, Lilí Esmeralda; Nikolay, Alexander; Genzel, Yvonne; Reichl, Udo

    2015-01-01

    Vaccine manufacturing processes are designed to meet present and upcoming challenges associated with a growing vaccine market and to include multi-use facilities offering a broad portfolio and faster reaction times in case of pandemics and emerging diseases. The final products, from whole viruses to recombinant viral proteins, are very diverse, making standard process strategies hardly universally applicable. Numerous factors such as cell substrate, virus strain or expression system, medium, cultivation system, cultivation method, and scale need consideration. Reviewing options for efficient and economical production of human vaccines, this paper discusses basic factors relevant for viral antigen production in mammalian cells, avian cells and insect cells. In addition, bioreactor concepts, including static systems, single-use systems, stirred tanks and packed-beds are addressed. On this basis, methods towards process intensification, in particular operational strategies, the use of perfusion systems for high product yields, and steps to establish continuous processes are introduced.

  14. Bioreactor Landfill Research and Demonstration Project Northern Oaks Landfill, Harrison, MI

    SciTech Connect

    Zhao, Xiando; Voice, Thomas; and Hashsham, Syed A.

    2006-08-29

    A bioreactor landfill cell with 1.2-acre footprint was constructed, filled, operated, and monitored at Northern Oaks Recycling and Disposal Facility (NORDF) at Harrison, MI. With a filled volume of 74,239 cubic yards, the cell contained approximately 35,317 tons of municipal solid waste (MSW) and 20,777 tons of cover soil. It was laid on the slope of an existing cell but separated by a geosynthetic membrane liner. After the cell reached a design height of 60 feet, it was covered with a geosynthetic membrane cap. A three-dimensional monitoring system to collect data at 48 different locations was designed and installed during the construction phase of the bioreactor cell. Each location had a cluster of monitoring devices consisting of a probe to monitor moisture and temperature, a leachate collection basin, and a gas sampling port. An increase in moisture content of the MSW in the bioreactor cell was achieved by pumping leachate collected on-site from various other cells, as well as recirculation of leachate from the bioreactor landfill cell itself. Three types of leachate injection systems were evaluated in this bioreactor cell for their efficacy to distribute pumped leachate uniformly: a leachate injection pipe buried in a 6-ft wide horizontal stone mound, a 15-ft wide geocomposite drainage layer, and a 60-ft wide geocomposite drainage layer. All leachate injection systems were installed on top of the compacted waste surface. The distribution of water and resulting MSW moisture content throughout the bioreactor cell was found to be similar for the three designs. Water coming into and leaving the cell (leachate pumped in, precipitation, snow, evaporation, and collected leachate) was monitored in order to carry out a water balance. Using a leachate injection rate of 26 – 30 gal/yard3, the average moisture content increased from 25% to 35% (wet based) over the period of this study. One of the key aspects of this bioreactor landfill study was to evaluate bioreactor

  15. Engineering Tendon: Scaffolds, Bioreactors, and Models of Regeneration.

    PubMed

    Youngstrom, Daniel W; Barrett, Jennifer G

    2016-01-01

    Tendons bridge muscle and bone, translating forces to the skeleton and increasing the safety and efficiency of locomotion. When tendons fail or degenerate, there are no effective pharmacological interventions. The lack of available options to treat damaged tendons has created a need to better understand and improve the repair process, particularly when suitable autologous donor tissue is unavailable for transplantation. Cells within tendon dynamically react to loading conditions and undergo phenotypic changes in response to mechanobiological stimuli. Tenocytes respond to ultrastructural topography and mechanical deformation via a complex set of behaviors involving force-sensitive membrane receptor activity, changes in cytoskeletal contractility, and transcriptional regulation. Effective ex vivo model systems are needed to emulate the native environment of a tissue and to translate cell-matrix forces with high fidelity. While early bioreactor designs have greatly expanded our knowledge of mechanotransduction, traditional scaffolds do not fully model the topography, composition, and mechanical properties of native tendon. Decellularized tendon is an ideal scaffold for cultivating replacement tissue and modeling tendon regeneration. Decellularized tendon scaffolds (DTS) possess high clinical relevance, faithfully translate forces to the cellular scale, and have bulk material properties that match natural tissue. This review summarizes progress in tendon tissue engineering, with a focus on DTS and bioreactor systems. PMID:26839559

  16. Glyco-engineering for biopharmaceutical production in moss bioreactors

    PubMed Central

    Decker, Eva L.; Parsons, Juliana; Reski, Ralf

    2014-01-01

    The production of recombinant biopharmaceuticals (pharmaceutical proteins) is a strongly growing area in the pharmaceutical industry. While most products to date are produced in mammalian cell cultures, namely Chinese hamster ovary cells, plant-based production systems gained increasing acceptance over the last years. Different plant systems have been established which are suitable for standardization and precise control of cultivation conditions, thus meeting the criteria for pharmaceutical production. The majority of biopharmaceuticals comprise glycoproteins. Therefore, differences in protein glycosylation between humans and plants have to be taken into account and plant-specific glycosylation has to be eliminated to avoid adverse effects on quality, safety, and efficacy of the products. The basal land plant Physcomitrella patens (moss) has been employed for the recombinant production of high-value therapeutic target proteins (e.g., Vascular Endothelial Growth Factor, Complement Factor H, monoclonal antibodies, Erythropoietin). Being genetically excellently characterized and exceptionally amenable for precise gene targeting via homologous recombination, essential steps for the optimization of moss as a bioreactor for the production of recombinant proteins have been undertaken. Here, we discuss the glyco-engineering approaches to avoid non-human N- and O-glycosylation on target proteins produced in moss bioreactors. PMID:25071817

  17. Tapered fluidized bed bioreactor for environmental control and fuel production

    SciTech Connect

    Scott, C. D.; Hancher, C. W.; Arcuri, E. J.

    1980-01-01

    Fluidized bed bioreactors are under development for use in environmental control and energy production. The most effective systems utilize a tapered portion either throughout the column or at the top of the column. This taper allows a wide range of operating conditions without loss of the fluidized particulates, and in general, results in more stable operation. The system described here utilize fixed films of microorganisms that have attached themselves to the fluidized particles. Preliminary investigations of the attachment indicate that reactor performance is related to film thickness. The biological denitrification of aqueous waste streams is typical of processes under development that utilize fluidized bed bioreactors. This development has progressed to the pilot plant scale where two 20-cm-diam x 800-cm fluidized beds in series accept aqueous wastes with nitrate concentrations as high as 10,000 mg/l and denitrification rates greater than 50 g/l/day using residence times of less than 30 minutes in each reactor. Other applications include aerobic degradation of phenolic wastes at rates greater than 25 g/l/day and the conversion of glucose to ethanol.

  18. Characterization of Microbial Communities Found in Bioreactor Effluent

    NASA Technical Reports Server (NTRS)

    Flowe, Candice

    2013-01-01

    The purpose of this investigation was to examine microbial communities of simulated wastewater effluent from hollow fiber membrane bioreactors collected from the Space Life Science Laboratory and Texas Technical University. Microbes were characterized using quantitative polymerase chain reaction where a total count of bacteria and fungi were determined. The primers that were used to determine the total count of bacteria and fungi were targeted for 16S rDNA genes and the internal transcribed spacer, respectively. PCR products were detected with SYBR Green I fluorescent dye and a melting curve analysis was performed to identify unique melt profiles resulting from DNA sequence variations from each species of the community. Results from both the total bacteria and total fungi count assays showed that distinct populations were present in isolates from these bioreactors. This was exhibited by variation in the number of peaks observed on the melting curve analysis graph. Further analysis of these results using species-specific primers will shed light on exactly which microbes are present in these effluents. Information gained from this study will enable the design of a system that can efficiently monitor microbes that play a role in the biogeochemical cycling of nitrogen in wastewater on the International Space Station to assist in the design of a sustainable system capable of converting this nutrient.

  19. Engineering Tendon: Scaffolds, Bioreactors, and Models of Regeneration

    PubMed Central

    Youngstrom, Daniel W.; Barrett, Jennifer G.

    2016-01-01

    Tendons bridge muscle and bone, translating forces to the skeleton and increasing the safety and efficiency of locomotion. When tendons fail or degenerate, there are no effective pharmacological interventions. The lack of available options to treat damaged tendons has created a need to better understand and improve the repair process, particularly when suitable autologous donor tissue is unavailable for transplantation. Cells within tendon dynamically react to loading conditions and undergo phenotypic changes in response to mechanobiological stimuli. Tenocytes respond to ultrastructural topography and mechanical deformation via a complex set of behaviors involving force-sensitive membrane receptor activity, changes in cytoskeletal contractility, and transcriptional regulation. Effective ex vivo model systems are needed to emulate the native environment of a tissue and to translate cell-matrix forces with high fidelity. While early bioreactor designs have greatly expanded our knowledge of mechanotransduction, traditional scaffolds do not fully model the topography, composition, and mechanical properties of native tendon. Decellularized tendon is an ideal scaffold for cultivating replacement tissue and modeling tendon regeneration. Decellularized tendon scaffolds (DTS) possess high clinical relevance, faithfully translate forces to the cellular scale, and have bulk material properties that match natural tissue. This review summarizes progress in tendon tissue engineering, with a focus on DTS and bioreactor systems. PMID:26839559

  20. Thiosulphate conversion in a methane and acetate fed membrane bioreactor.

    PubMed

    Suarez-Zuluaga, Diego A; Timmers, Peer H A; Plugge, Caroline M; Stams, Alfons J M; Buisman, Cees J N; Weijma, Jan

    2016-02-01

    The use of methane and acetate as electron donors for biological reduction of thiosulphate in a 5-L laboratory membrane bioreactor was studied and compared to disproportionation of thiosulphate as competing biological reaction. The reactor was operated for 454 days in semi-batch mode; 30 % of its liquid phase was removed and periodically replenished (days 77, 119, 166, 258, 312 and 385). Although the reactor was operated under conditions favourable to promote thiosulphate reduction coupled to methane oxidation, thiosulphate disproportionation was the dominant microbial process. Pyrosequencing analysis showed that the most abundant microorganisms in the bioreactor were phototrophic green sulphur bacteria (GSB) belonging to the family Chlorobiaceae and thiosulphate-disproportionating bacteria belonging to the genus Desulfocapsa. Even though the reactor system was surrounded with opaque plastic capable of filtering most of the light, the GSB used it to oxidize the hydrogen sulphide produced from thiosulphate disproportionation to elemental sulphur. Interrupting methane and acetate supply did not have any effect on the microbial processes taking place. The ultimate goal of our research was to develop a process that could be applied for thiosulphate and sulphate removal and biogenic sulphide formation for metal precipitation. Even though the system achieved in this study did not accomplish the targeted conversion using methane as electron donor, it does perform microbial conversions which allow to directly obtain elemental sulphur from thiosulphate.

  1. Engineering Tendon: Scaffolds, Bioreactors, and Models of Regeneration.

    PubMed

    Youngstrom, Daniel W; Barrett, Jennifer G

    2016-01-01

    Tendons bridge muscle and bone, translating forces to the skeleton and increasing the safety and efficiency of locomotion. When tendons fail or degenerate, there are no effective pharmacological interventions. The lack of available options to treat damaged tendons has created a need to better understand and improve the repair process, particularly when suitable autologous donor tissue is unavailable for transplantation. Cells within tendon dynamically react to loading conditions and undergo phenotypic changes in response to mechanobiological stimuli. Tenocytes respond to ultrastructural topography and mechanical deformation via a complex set of behaviors involving force-sensitive membrane receptor activity, changes in cytoskeletal contractility, and transcriptional regulation. Effective ex vivo model systems are needed to emulate the native environment of a tissue and to translate cell-matrix forces with high fidelity. While early bioreactor designs have greatly expanded our knowledge of mechanotransduction, traditional scaffolds do not fully model the topography, composition, and mechanical properties of native tendon. Decellularized tendon is an ideal scaffold for cultivating replacement tissue and modeling tendon regeneration. Decellularized tendon scaffolds (DTS) possess high clinical relevance, faithfully translate forces to the cellular scale, and have bulk material properties that match natural tissue. This review summarizes progress in tendon tissue engineering, with a focus on DTS and bioreactor systems.

  2. GMP-Compliant Expansion of Clinical-Grade Human Mesenchymal Stromal/Stem Cells Using a Closed Hollow Fiber Bioreactor.

    PubMed

    Barckhausen, Christina; Rice, Brent; Baila, Stefano; Sensebé, Luc; Schrezenmeier, Hubert; Nold, Philipp; Hackstein, Holger; Rojewski, Markus Thomas

    2016-01-01

    This chapter describes a method for GMP-compliant expansion of human mesenchymal stromal/stem cells (hMSC) from bone marrow aspirates, using the Quantum(®) Cell Expansion System from Terumo BCT. The Quantum system is a functionally closed, automated hollow fiber bioreactor system designed to reproducibly grow cells in either GMP or research laboratory environments. The chapter includes protocols for preparation of media, setup of the Quantum system, coating of the hollow fiber bioreactor, as well as loading, feeding, and harvesting of cells. We suggest a panel of quality controls for the starting material, the interim product, as well as the final product. PMID:27236685

  3. Bridging the gap between traditional cell cultures and bioreactors applied in regenerative medicine: practical experiences with the MINUSHEET perfusion culture system.

    PubMed

    Minuth, Will W; Denk, Lucia

    2016-03-01

    To meet specific requirements of developing tissues urgently needed in tissue engineering, biomaterial research and drug toxicity testing, a versatile perfusion culture system was developed. First an individual biomaterial is selected and then mounted in a MINUSHEET(®) tissue carrier. After sterilization the assembly is transferred by fine forceps to a 24 well culture plate for seeding cells or mounting tissue on it. To support spatial (3D) development a carrier can be placed in various types of perfusion culture containers. In the basic version a constant flow of culture medium provides contained tissue with always fresh nutrition and respiratory gas. For example, epithelia can be transferred to a gradient container, where they are exposed to different fluids at the luminal and basal side. To observe development of tissue under the microscope, in a different type of container a transparent lid and base are integrated. Finally, stem/progenitor cells are incubated in a container filled by an artificial interstitium to support spatial development. In the past years the described system was applied in numerous own and external investigations. To present an actual overview of resulting experimental data, the present paper was written.

  4. Applicability of a novel osmotic membrane bioreactor using a specific draw solution in wastewater treatment.

    PubMed

    Nguyen, Nguyen Cong; Chen, Shiao-Shing; Nguyen, Hau Thi; Ngo, Huu Hao; Guo, Wenshan; Hao, Chan Wen; Lin, Po-Hsun

    2015-06-15

    This study aims to develop a new osmotic membrane bioreactor by combining a moving bed biofilm reactor (MBBR) with forward osmosis membrane bioreactor (FOMBR) to treat wastewater. Ethylenediaminetetraacetic acid disodium salt coupled with polyethylene glycol tert-octylphenyl ether was used as an innovative draw solution in this membrane hybrid system (MBBR-OsMBR) for minimizing the reverse salt flux and maintaining a healthy environment for the microorganism community. The results showed that the hybrid system achieved a stable water flux of 6.94 L/m(2) h and low salt accumulation in the bioreactor for 68 days of operation. At a filling rate of 40% (by volume of the bioreactor) of the polyethylene balls used as carriers, NH4(+)-N and PO4(3-)-P were almost removed (>99%) while producing relatively low NO3(-)-N and NO2(-)-N in the effluent (e.g. <0.56 and 0.96 mg/L, respectively). Furthermore, from analysis based on scanning electron microscopy, Fourier transform infrared spectroscopy, and fluorescence emission-excitation matrix spectrophotometry, there was a thin gel-like fouling layer on the FO membrane, which composed of bacteria as well as biopolymers and protein-like substances. Nonetheless, the formation of these fouling layers of the FO membrane in MBBR-OsMBR was reversible and removed by a physical cleaning technique.

  5. Economic comparison of diagnostic antibody production in perfusion stirred tank and in hollow fiber bioreactor processes.

    PubMed

    Vermasvuori, Raisa; Hurme, Markku

    2011-01-01

    The total operating costs of small-scale monoclonal antibody production were calculated for two different upstream options and general downstream procedure based on protein A chromatography. The upstream options were a spin-filter equipped stirred-tank bioreactor (STR) and a hollow fiber bioreactor (HFB). Both the bioreactors were operated in perfusion mode. The total operating costs of the processes were 6,900 €/g for STR option and 6,400 €/g for the HFB option. In the both systems, the costs were dominated by expenses derived from the downstream section (almost 80%) that was almost identical in the both systems. In the upstream section, the investment depreciation was the largest cost item. The lower total costs of the HFB option were a result of lower investment costs and more concentrated product that led into savings also in downstream section. This study brings out the HFB as on viable alternative for stirred-tank bioreactor, especially in small-scale diagnostic monoclonal antibody production. PMID:21954092

  6. Application of capillary fluid management techniques to the design of a phase separating microgravity bioreactor

    NASA Technical Reports Server (NTRS)

    Finger, Barry W.; Neville, Gale E., Jr.; Sager, John C.

    1993-01-01

    Manned space missions require the development of compact, efficient, and reliable life support systems. A number of aqueous biological conversion processes are associated with bioregenerative life support systems. Vessels, or bioreactors, capable of supporting these processes in microgravity must be developed. An annular flow bioreactor has been conceived. It has the potential to incorporate containment, phase separation, gas exchange, and illumination into a single vessel. The bioreactor utilizes capillary fluid management techniques and is configured as a cylindrical tube in which a two-phase liquid-gas flow is maintained. Vanes placed around the inner perimeter enhance capillary forces and cause the liquid phase to attach and flow along the interior surface of the tube. No physical barrier is required to complete phase separation. It is shown analytically that liquid film thickness is limited only by vane geometry and that an annular flow bioreactor capable of managing 284 liters would occupy 0.7 cubic m, less than half the volume of a Spacelab experiment rack.

  7. A Novel Modular Bioreactor to In Vitro Study the Hepatic Sinusoid

    PubMed Central

    Illa, Xavi; Vila, Sergi; Yeste, Jose; Peralta, Carmen; Gracia-Sancho, Jordi; Villa, Rosa

    2014-01-01

    We describe a unique, versatile bioreactor consisting of two plates and a modified commercial porous membrane suitable for in vitro analysis of the liver sinusoid. The modular bioreactor allows i) excellent control of the cell seeding process; ii) cell culture under controlled shear stress stimulus, and; iii) individual analysis of each cell type upon completion of the experiment. The advantages of the bioreactor detailed here are derived from the modification of a commercial porous membrane with an elastomeric wall specifically moulded in order to define the cell culture area, to act as a gasket that will fit into the bioreactor, and to provide improved mechanical robustness. The device presented herein has been designed to simulate the in vivo organization of a liver sinusoid and tested by co-culturing endothelial cells (EC) and hepatic stellate cells (HSC). The results show both an optimal morphology of the endothelial cells as well as an improvement in the phenotype of stellate cells, most probably due to paracrine factors released from endothelial cells. This device is proposed as a versatile, easy-to-use co-culture system that can be applied to biomedical research of vascular systems, including the liver. PMID:25375141

  8. Bioreactors for Tissue Engineering of Cartilage

    NASA Astrophysics Data System (ADS)

    Concaro, S.; Gustavson, F.; Gatenholm, P.

    The cartilage regenerative medicine field has evolved during the last decades. The first-generation technology, autologous chondrocyte transplantation (ACT) involved the transplantation of in vitro expanded chondrocytes to cartilage defects. The second generation involves the seeding of chondrocytes in a three-dimensional scaffold. The technique has several potential advantages such as the ability of arthroscopic implantation, in vitro pre-differentiation of cells and implant stability among others (Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L, N Engl J Med 331(14):889-895, 1994; Henderson I, Francisco R, Oakes B, Cameron J, Knee 12(3):209-216, 2005; Peterson L, Minas T, Brittberg M, Nilsson A, Sjogren-Jansson E, Lindahl A, Clin Orthop (374):212-234, 2000; Nagel-Heyer S, Goepfert C, Feyerabend F, Petersen JP, Adamietz P, Meenen NM, et al. Bioprocess Biosyst Eng 27(4):273-280, 2005; Portner R, Nagel-Heyer S, Goepfert C, Adamietz P, Meenen NM, J Biosci Bioeng 100(3):235-245, 2005; Nagel-Heyer S, Goepfert C, Adamietz P, Meenen NM, Portner R, J Biotechnol 121(4):486-497, 2006; Heyland J, Wiegandt K, Goepfert C, Nagel-Heyer S, Ilinich E, Schumacher U, et al. Biotechnol Lett 28(20):1641-1648, 2006). The nutritional requirements of cells that are synthesizing extra-cellular matrix increase along the differentiation process. The mass transfer must be increased according to the tissue properties. Bioreactors represent an attractive tool to accelerate the biochemical and mechanical properties of the engineered tissues providing adequate mass transfer and physical stimuli. Different reactor systems have been [5] developed during the last decades based on different physical stimulation concepts. Static and dynamic compression, confined and nonconfined compression-based reactors have been described in this review. Perfusion systems represent an attractive way of culturing constructs under dynamic conditions. Several groups showed increased matrix

  9. Bacterial Community Dynamics in Full-Scale Activated Sludge Bioreactors: Operational and Ecological Factors Driving Community Assembly and Performance

    PubMed Central

    Valentín-Vargas, Alexis; Toro-Labrador, Gladys; Massol-Deyá, Arturo A.

    2012-01-01

    The assembling of bacterial communities in conventional activated sludge (CAS) bioreactors was thought, until recently, to be chaotic and mostly unpredictable. Studies done over the last decade have shown that specific, and often, predictable random and non-random factors could be responsible for that process. These studies have also motivated a “structure–function” paradigm that is yet to be resolved. Thus, elucidating the factors that affect community assembly in the bioreactors is necessary for predicting fluctuations in community structure and function. For this study activated sludge samples were collected during a one-year period from two geographically distant CAS bioreactors of different size. Combining community fingerprinting analysis and operational parameters data with a robust statistical analysis, we aimed to identify relevant links between system performance and bacterial community diversity and dynamics. In addition to revealing a significant β-diversity between the bioreactors’ communities, results showed that the largest bioreactor had a less dynamic but more efficient and diverse bacterial community throughout the study. The statistical analysis also suggests that deterministic factors, as opposed to stochastic factors, may have a bigger impact on the community structure in the largest bioreactor. Furthermore, the community seems to rely mainly on mechanisms of resistance and functional redundancy to maintain functional stability. We suggest that the ecological theories behind the Island Biogeography model and the species-area relationship were appropriate to predict the assembly of bacterial communities in these CAS bioreactors. These results are of great importance for engineers and ecologists as they reveal critical aspects of CAS systems that could be applied towards improving bioreactor design and operation. PMID:22880016

  10. Biofouling control: Bacterial quorum quenching versus chlorination in membrane bioreactors.

    PubMed

    Weerasekara, Nuwan A; Choo, Kwang-Ho; Lee, Chung-Hak

    2016-10-15

    Biofilm formation (biofouling) induced via cell-to-cell communication (quorum sensing) causes problems in membrane filtration processes. Chorine is one of the most common chemicals used to interfere with biofouling; however, biofouling control is challenging because it is a natural process. This study demonstrates biofouling control for submerged hollow fiber membranes in membrane bioreactors by means of bacterial quorum quenching (QQ) using Rhodococcus sp. BH4 with chemically enhanced backwashing. This is the first trial to bring QQ alongside chlorine injection into practice. A high chlorine dose (100 mg/L as Cl2) to the system is insufficient for preventing biofouling, but addition of the QQ bacterium is effective for disrupting biofouling that cannot be achieved by chlorination alone. QQ reduces the biologically induced metal precipitate and extracellular biopolymer levels in the biofilm, and biofouling is significantly delayed when QQ is applied in addition to chlorine dosing. QQ with chlorine injection gives synergistic effects on reducing physically and chemically reversible fouling resistances while saving substantial filtration energy. Manipulating microbial community functions with chemical treatment is an attractive tool for biofilm dispersal in membrane bioreactors. PMID:27474939

  11. Osmotic membrane bioreactor for phenol biodegradation under continuous operation.

    PubMed

    Praveen, Prashant; Loh, Kai-Chee

    2016-03-15

    Continuous phenol biodegradation was accomplished in a two-phase partitioning osmotic membrane bioreactor (TPPOMBR) system, using extractant impregnated membranes (EIM) as the partitioning phase. The EIMs alleviated substrate inhibition during prolonged operation at influent phenol concentrations of 600-2000mg/L, and also at spiked concentrations of 2500mg/L phenol restricted to 2 days. Filtration of the effluent through forward osmosis maintained high biomass concentration in the bioreactor and improved effluent quality. Steady state was reached in 5-6 days at removal rates varying between 2000 and 5500mg/L-day under various conditions. Due to biofouling and salt accumulation, the permeate flux varied from 1.2-7.2 LMH during 54 days of operation, while maintaining an average hydraulic retention time of 7.4h. A washing cycle, comprising 1h osmotic backwashing using 0.5M NaCl and 2h washing with water, facilitated biofilm removal from the membranes. Characterization of the extracellular polymeric substances (EPS) through FTIR showed peaks between 1700 and 1500cm(-1), 1450-1450cm(-1) and 1200-1000cm(-1), indicating the presence of proteins, phenols and polysaccharides, respectively. The carbohydrate to protein ratio in the EPS was estimated to be 0.3. These results indicate that TPPOMBR can be promising in continuous treatment of phenolic wastewater.

  12. Catabolic gene expression is monitored by bioluminescence in bioreactor studies

    SciTech Connect

    Burlage, R.S.; Kuo, D.; Palumbo, A.V.

    1993-01-01

    In order to study the expression of specific catabolic genes under defined conditions, and to determine whether certain conditions tend to increase or decrease metal catabolic activities, a bioreporter gene can be introduced into the microorganism. Activity from such bioreporter gene would indicate successful bioremediation. Our laboratory has produced several bioreporter strains using the bioluminescent lux genes of Vibrio fischeri. A bioreporter producing visible light when genetic expression is induced. The bioluminescent system include sensitivity of detection, analysis of response in real- time, and on-line capability. We constructed a bioreporter strain aimed at following the degradation of toluene and related compounds in order to study expression of the catabolic genes with various substrates and under optimized bioreactor conditions. We have been able to detect the induction of a specific operon in response to the addition of oxylene, as a gratuitous inducer of the catabolic genes. A strong bioluminescent signal in these studies. We have varied the medium of an induced bioreactor culture of RB1401, and our data suggest that conditions for optimal expression of the catabolic operon might not be identical with optimal growth conditions.

  13. Catabolic gene expression is monitored by bioluminescence in bioreactor studies

    SciTech Connect

    Burlage, R.S.; Kuo, D.; Palumbo, A.V.

    1993-03-01

    In order to study the expression of specific catabolic genes under defined conditions, and to determine whether certain conditions tend to increase or decrease metal catabolic activities, a bioreporter gene can be introduced into the microorganism. Activity from such bioreporter gene would indicate successful bioremediation. Our laboratory has produced several bioreporter strains using the bioluminescent lux genes of Vibrio fischeri. A bioreporter producing visible light when genetic expression is induced. The bioluminescent system include sensitivity of detection, analysis of response in real- time, and on-line capability. We constructed a bioreporter strain aimed at following the degradation of toluene and related compounds in order to study expression of the catabolic genes with various substrates and under optimized bioreactor conditions. We have been able to detect the induction of a specific operon in response to the addition of oxylene, as a gratuitous inducer of the catabolic genes. A strong bioluminescent signal in these studies. We have varied the medium of an induced bioreactor culture of RB1401, and our data suggest that conditions for optimal expression of the catabolic operon might not be identical with optimal growth conditions.

  14. Biofouling control: Bacterial quorum quenching versus chlorination in membrane bioreactors.

    PubMed

    Weerasekara, Nuwan A; Choo, Kwang-Ho; Lee, Chung-Hak

    2016-10-15

    Biofilm formation (biofouling) induced via cell-to-cell communication (quorum sensing) causes problems in membrane filtration processes. Chorine is one of the most common chemicals used to interfere with biofouling; however, biofouling control is challenging because it is a natural process. This study demonstrates biofouling control for submerged hollow fiber membranes in membrane bioreactors by means of bacterial quorum quenching (QQ) using Rhodococcus sp. BH4 with chemically enhanced backwashing. This is the first trial to bring QQ alongside chlorine injection into practice. A high chlorine dose (100 mg/L as Cl2) to the system is insufficient for preventing biofouling, but addition of the QQ bacterium is effective for disrupting biofouling that cannot be achieved by chlorination alone. QQ reduces the biologically induced metal precipitate and extracellular biopolymer levels in the biofilm, and biofouling is significantly delayed when QQ is applied in addition to chlorine dosing. QQ with chlorine injection gives synergistic effects on reducing physically and chemically reversible fouling resistances while saving substantial filtration energy. Manipulating microbial community functions with chemical treatment is an attractive tool for biofilm dispersal in membrane bioreactors.

  15. Comparison of Leachate Quality from Aerobic and Anaerobic Municipal Solid Waste Bioreactors

    NASA Astrophysics Data System (ADS)

    Borglin, S. E.; Hazen, T. C.; Oldenburg, C. M.

    2002-12-01

    Municipal solid waste landfills are becoming a drain on the resources of local municipalities as the requirements for stabilization and containment become increasingly stringent. Current regulations limit the moisture in the landfill to minimize leachate production and lower the potential for release of leachate to the environment. Recent research has shown that addition and recycling of moisture in the waste optimizes the biodegradation of stabilization and also provides a means for leachate treatment. This study compares the characteristics of leachate produced from aerobic and anaerobic laboratory bioreactors, and leachate collected from a full-scale anaerobic bioreactor. The laboratory reactors consisted of 200-liter tanks filled with fresh waste materials with the following conditions: (a) aerobic (air injection with leachate recirculation), (b) anaerobic (leachate recirculation). The leachate from the reactors was monitored for metals, nutrients, organic carbon, and microbiological activity for up to 500 days. Leachate from the aerobic tank had significantly lower concentrations of all potential contaminants, both organic and metal, after only a few weeks of operation. Metals leaching was low throughout the test period for the aerobic tanks, and decreased over time for the anaerobic tanks. Organic carbon as measured by BOD, COD, TOC, and COD were an order of magnitude higher in the leachate from the anaerobic system. Microbiological assessment by lipid analysis, enzyme activity assays, and cell counts showed high biomass and diversity in both the aerobic and anaerobic bioreactors, with higher activity in the anaerobic leachate. Results from the full-scale anaerobic bioreactor were not significantly different from those of the laboratory anaerobic bioreactor. The reduction in noxious odors was a significant advantage of the aerobic system. These results suggest that aerobic management of landfills could reduce or eliminate the need for leachate treatment

  16. Membrane bio-reactors for decentralized wastewater treatment and reuse.

    PubMed

    Meuler, S; Paris, S; Hackner, T

    2008-01-01

    Decentralized wastewater treatment is the key to sustainable water management because it facilitates effluent (and nutrient) reuse for irrigation or as service water in households. Membrane bioreactors (MBR) can produce effluents of bathing water quality. Septic tanks can be retrofitted to MBR units. Package MBR plants for wastewater or grey water treatment are also available. Systems for decentralized treatment and reuse of domestic wastewater or grey water are also feasible for hotels, condominiums and apartment or office complexes. This paper presents the effluent qualities of different decentralized MBR applications. The high effluent quality allows infiltration even in sensitive areas or reuse for irrigation, toilet flushing and cleaning proposes in households. Due to the reusability of treated water and the possibility to design the systems for carbon reduction only, these systems can ideally and easily serve to close water and nutrient loops.

  17. Instrumentation, control, and automation for submerged anaerobic membrane bioreactors.

    PubMed

    Robles, Ángel; Durán, Freddy; Ruano, María Victoria; Ribes, Josep; Rosado, Alfredo; Seco, Aurora; Ferrer, José

    2015-01-01

    A submerged anaerobic membrane bioreactor (AnMBR) demonstration plant with two commercial hollow-fibre ultrafiltration systems (PURON®, Koch Membrane Systems, PUR-PSH31) was designed and operated for urban wastewater treatment. An instrumentation, control, and automation (ICA) system was designed and implemented for proper process performance. Several single-input-single-output (SISO) feedback control loops based on conventional on-off and PID algorithms were implemented to control the following operating variables: flow-rates (influent, permeate, sludge recycling and wasting, and recycled biogas through both reactor and membrane tanks), sludge wasting volume, temperature, transmembrane pressure, and gas sparging. The proposed ICA for AnMBRs for urban wastewater treatment enables the optimization of this new technology to be achieved with a high level of process robustness towards disturbances. PMID:25635702

  18. Membrane bioreactors and their uses in wastewater treatments.

    PubMed

    Le-Clech, Pierre

    2010-12-01

    With the current need for more efficient and reliable processes for municipal and industrial wastewaters treatment, membrane bioreactor (MBR) technology has received considerable attention. After just a couple of decades of existence, MBR can now be considered as an established wastewater treatment system, competing directly with conventional processes like activated sludge treatment plant. However, MBR processes still suffer from major drawbacks, including high operational costs due to the use of anti-fouling strategies applied to the system to maintain sustainable filtration conditions. Moreover, this specific use of membranes has not reached full maturity yet, as MBR suppliers and users still lack experience regarding the long-term performances of the system. Still, major improvements of the MBR design and operation have been witnessed over the recent years, making MBR an option of choice for wastewater treatment and reuse. This mini-review reports recent developments and current research trends in the field.

  19. Instrumentation, control, and automation for submerged anaerobic membrane bioreactors.

    PubMed

    Robles, Ángel; Durán, Freddy; Ruano, María Victoria; Ribes, Josep; Rosado, Alfredo; Seco, Aurora; Ferrer, José

    2015-01-01

    A submerged anaerobic membrane bioreactor (AnMBR) demonstration plant with two commercial hollow-fibre ultrafiltration systems (PURON®, Koch Membrane Systems, PUR-PSH31) was designed and operated for urban wastewater treatment. An instrumentation, control, and automation (ICA) system was designed and implemented for proper process performance. Several single-input-single-output (SISO) feedback control loops based on conventional on-off and PID algorithms were implemented to control the following operating variables: flow-rates (influent, permeate, sludge recycling and wasting, and recycled biogas through both reactor and membrane tanks), sludge wasting volume, temperature, transmembrane pressure, and gas sparging. The proposed ICA for AnMBRs for urban wastewater treatment enables the optimization of this new technology to be achieved with a high level of process robustness towards disturbances.

  20. A novel dual-flow bioreactor simulates increased fluorescein permeability in epithelial tissue barriers.

    PubMed

    Giusti, Serena; Sbrana, Tommaso; La Marca, Margherita; Di Patria, Valentina; Martinucci, Valentina; Tirella, Annalisa; Domenici, Claudio; Ahluwalia, Arti

    2014-09-01

    Permeability studies across epithelial barriers are of primary importance in drug delivery as well as in toxicology. However, traditional in vitro models do not adequately mimic the dynamic environment of physiological barriers. Here, we describe a novel two-chamber modular bioreactor for dynamic in vitro studies of epithelial cells. The fluid dynamic environment of the bioreactor was characterized using computational fluid dynamic models and measurements of pressure gradients for different combinations of flow rates in the apical and basal chambers. Cell culture experiments were then performed with fully differentiated Caco-2 cells as a model of the intestinal epithelium, comparing the effect of media flow applied in the bioreactor with traditional static transwells. The flow increases barrier integrity and tight junction expression of Caco-2 cells with respect to the static controls. Fluorescein permeability increased threefold in the dynamic system, indicating that the stimulus induced by flow increases transport across the barrier, closely mimicking the in vivo situation. The results are of interest for studying the influence of mechanical stimuli on cells, and underline the importance of developing more physiologically relevant in vitro tissue models. The bioreactor can be used to study drug delivery, chemical, or nanomaterial toxicity and to engineer barrier tissues.

  1. Development of a ground-based space micro-algae photo-bioreactor

    NASA Astrophysics Data System (ADS)

    Ai, W.; Guo, S.; Qin, L.; Tang, Y.

    The purpose of the research is to develop a photo-bioreactor which may produce algae protein and oxygen for future astronauts in comparatively long-term exploration, and remove carbon dioxide in a controlled ecological life support system. Based on technical parameters and performance requirements, the project planning, design drafting, and manufacture were conducted. Finally, a demonstration test for producing algae was done. Its productivity for micro-algae and performance of the photo-bioreactor were evaluated. The facility has nine subsystems, including the reactor, the illuminating unit, the carbon dioxide (CO2) production unit and oxygen (O2) generation unit, etc. The demonstration results showed that the facility worked well, and the parameters, such as energy consumption, volume, and productivity for algae, met with the design requirement. The density of algae in the photo-bioreactor increased from 0.174 g (dry weight) L-1 to 4.064 g (dry weight) L-1 after 7 days growth. The principle of providing CO2 in the photo-bioreactor for algae and removing O2 from the culture medium was suitable for the demand of space conditions. The facility has reasonable technical indices, and smooth and dependable performances.

  2. Uniform step-by-step observer for aerobic bioreactor based on super-twisting algorithm.

    PubMed

    Martínez-Fonseca, N; Chairez, I; Poznyak, A

    2014-12-01

    This paper describes a fixed-time convergent step-by-step high order sliding mode observer for a certain type of aerobic bioreactor system. The observer was developed using a hierarchical structure based on a modified super-twisting algorithm. The modification included nonlinear gains of the output error that were used to prove uniform convergence of the estimation error. An energetic function similar to a Lyapunov one was used for proving the convergence between the observer and the bioreactor variables. A nonsmooth analysis was proposed to prove the fixed-time convergence of the observer states to the bioreactor variables. The observer was tested to solve the state estimation problem of an aerobic bioreactor described by the time evolution of biomass, substrate and dissolved oxygen. This last variable was used as the output information because it is feasible to measure it online by regular sensors. Numerical simulations showed the superior behavior of this observer compared to the one having linear output error injection terms (high-gain type) and one having an output injection obtaining first-order sliding mode structure. A set of numerical simulations was developed to demonstrate how the proposed observer served to estimate real information obtained from a real aerobic process with substrate inhibition.

  3. Culture of human mesenchymal stem cells on microcarriers in a 5 l stirred-tank bioreactor.

    PubMed

    Rafiq, Qasim A; Brosnan, Kathryn M; Coopman, Karen; Nienow, Alvin W; Hewitt, Christopher J

    2013-08-01

    For the first time, fully functional human mesenchymal stem cells (hMSCs) have been cultured at the litre-scale on microcarriers in a stirred-tank 5 l bioreactor, (2.5 l working volume) and were harvested via a potentially scalable detachment protocol that allowed for the successful detachment of hMSCs from the cell-microcarrier suspension. Over 12 days, the dissolved O2 concentration was >45 % of saturation and the pH between 7.2 and 6.7 giving a maximum cell density in the 5 l bioreactor of 1.7 × 10(5) cells/ml; this represents >sixfold expansion of the hMSCs, equivalent to that achievable from 65 fully-confluent T-175 flasks. During this time, the average specific O2 uptake of the cells in the 5 l bioreactor was 8.1 fmol/cell h and, in all cases, the 5 l bioreactors outperformed the equivalent 100 ml spinner-flasks run in parallel with respect to cell yields and growth rates. In addition, yield coefficients, specific growth rates and doubling times were calculated for all systems. Neither the upstream nor downstream bioprocessing unit operations had a discernible effect on cell quality with the harvested cells retaining their immunophenotypic markers, key morphological features and differentiation capacity.

  4. Cyclic Stretch and Perfusion Bioreactor for Conditioning Large Diameter Engineered Tissue Tubes.

    PubMed

    Schmidt, Jillian B; Tranquillo, Robert T

    2016-05-01

    A cyclic stretch and perfusion bioreactor was designed to culture large diameter engineered tissue tubes for heart valve applications. In this bioreactor, tubular tissues consisting of dermal fibroblasts in a sacrificial fibrin gel scaffold were placed over porated latex support sleeves and mounted in a custom bioreactor. Pulsatile flow of culture medium into the system resulted in cyclic stretching as well as ablumenal, lumenal, and transmural flow (perfusion). In this study, lumenal remodeling, composition, and mechanical strength and stiffness were compared for tissues cyclically stretched in this bioreactor on either the porated latex sleeves or solid latex sleeves, which did not permit lumenal or transmural flow. Tissues cyclically stretched on porated sleeves had regions of increased lumenal remodeling and cellularity that were localized to the columns of pores in the latex sleeve. A CFD model was developed with COMSOL Multiphysics(®) to predict flow of culture medium in and around the tissue, and the predictions suggest that the enhanced lumenal remodeling was likely a result of elevated shear stresses and transmural velocity in these regions. This work highlights the beneficial effects of increased nutrient transport and flow stimulation for accelerating in vitro tissue remodeling. PMID:26307332

  5. Use of microgravity bioreactors for development of an in vitro rat salivary gland cell culture model

    NASA Technical Reports Server (NTRS)

    Lewis, M. L.; Moriarity, D. M.; Campbell, P. S.

    1993-01-01

    During development, salivary gland (SG) cells both secrete factors which modulate cellular behavior and express specific hormone receptors. Whether SG cell growth is modulated by an autocrine epidermal growth factor (EGF) receptor-mediated signal transduction pathway is not clearly understood. SG tissue is the synthesis site for functionally distinct products including growth factors, digestive enzymes, and homeostasis maintaining factors. Historically, SG cells have proven difficult to grow and may be only maintained as limited three-dimensional ductal-type structures in collagen gels or on reconstituted basement membrane gels. A novel approach to establishing primary rat SG cultures is use of microgravity bioreactors originally designed by NASA as low-shear culture systems for predicting cell growth and differentiation in the microgravity environment of space. These completely fluid-filled bioreactors, which are oriented horizontally and rotate, have proven advantageous for Earth-based culture of three-dimensional cell assemblies, tissue-like aggregates, and glandular structures. Use of microgravity bioreactors for establishing in vitro models to investigate steroid-mediated secretion of EGF by normal SG cells may also prove useful for the investigation of cancer and other salivary gland disorders. These microgravity bioreactors promise challenging opportunities for future applications in basic and applied cell research.

  6. Fouling of enhanced biological phosphorus removal-membrane bioreactors by humic-like substances.

    PubMed

    Poorasgari, Eskandar; König, Katja; Fojan, Peter; Keiding, Kristian; Christensen, Morten Lykkegaard

    2014-12-01

    Fouling by free extracellular polymeric substances was studied in an enhanced biological phosphorus removal-membrane bioreactor. It was demonstrated that the free extracellular polymeric substances, primarily consisting of humic-like substances, were adsorbed to the membrane used in the enhanced biological phosphorus removal-membrane bioreactor plant. Infrared analyses indicated the presence of the humic-like substances on the membrane's active surface after filtration of the free extracellular polymeric substances suspension. Scanning electron microscopy showed the presence of a gel layer on the membrane surface after filtration of the free extracellular polymeric substances suspension. The gel layer caused a significant decline in water flux. This layer was not entirely removed by a backwashing, and the membrane's water flux could not be re-established. The membrane used in the enhanced biological phosphorus removal-membrane bioreactor plant showed infrared spectra similar to that fouled by the free extracellular polymeric substances suspension in the laboratory. Thus, the results of this study show the importance of humic-like substances in irreversible fouling of enhanced biological phosphorus removal-membrane bioreactor systems.

  7. Fouling of enhanced biological phosphorus removal-membrane bioreactors by humic-like substances.

    PubMed

    Poorasgari, Eskandar; König, Katja; Fojan, Peter; Keiding, Kristian; Christensen, Morten Lykkegaard

    2014-12-01

    Fouling by free extracellular polymeric substances was studied in an enhanced biological phosphorus removal-membrane bioreactor. It was demonstrated that the free extracellular polymeric substances, primarily consisting of humic-like substances, were adsorbed to the membrane used in the enhanced biological phosphorus removal-membrane bioreactor plant. Infrared analyses indicated the presence of the humic-like substances on the membrane's active surface after filtration of the free extracellular polymeric substances suspension. Scanning electron microscopy showed the presence of a gel layer on the membrane surface after filtration of the free extracellular polymeric substances suspension. The gel layer caused a significant decline in water flux. This layer was not entirely removed by a backwashing, and the membrane's water flux could not be re-established. The membrane used in the enhanced biological phosphorus removal-membrane bioreactor plant showed infrared spectra similar to that fouled by the free extracellular polymeric substances suspension in the laboratory. Thus, the results of this study show the importance of humic-like substances in irreversible fouling of enhanced biological phosphorus removal-membrane bioreactor systems. PMID:25014564

  8. Carbon dioxide capture using Escherichia coli expressing carbonic anhydrase in a foam bioreactor.

    PubMed

    Watson, Stuart K; Han, Zhenlin; Su, Wei Wen; Deshusses, Marc A; Kan, Eunsung

    2016-12-01

    The present study reports CO2 capture and conversion to bicarbonate using Escherichia coli expressing carbonic anhydrase (CA) on its cell surface in a novel foam bioreactor. The very large gas-liquid interfacial area in the foam bioreactor promoted rapid CO2 absorption while the CO2 in the aqueous phase was subsequently converted to bicarbonate ions by the CA. CO2 gas removal in air was investigated at various conditions such as gas velocity, cell density and CO2 inlet concentration. Regimes for kinetic and mass transfer limitations were defined. Very high removal rates of CO2 were observed: 9570 g CO2 m(-3) bioreactor h(-1) and a CO2 removal efficiency of 93% at 4% inlet CO2 when the gas retention time was 24 s, and cell concentration was 4 gdw L(-1). These performances are superior to earlier reports of experimental bioreactors using CA for CO2 capture. Overall, this bioreactor system has significant potential as an alternative CO2 capture technology.

  9. Temperature and Substrate Control Woodchip Bioreactor Performance in Reducing Tile Nitrate Loads in East-Central Illinois.

    PubMed

    David, Mark B; Gentry, Lowell E; Cooke, Richard A; Herbstritt, Stephanie M

    2016-05-01

    Tile drainage is the major source of nitrate in the upper Midwest, and end-of-tile removal techniques such as wood chip bioreactors have been installed that allow current farming practices to continue, with nitrate removed through denitrification. There have been few multiyear studies of bioreactors examining controls on nitrate removal rates. We evaluated the nitrate removal performance of two wood chip bioreactors during the first 3 yr of operation and examined the major factors that regulated nitrate removal. Bioreactor 2 was subject to river flooding, and performance was not assessed. Bioreactor 1 had average monthly nitrate removal rates of 23 to 44 g N m d in Year 1, which decreased to 1.2 to 11 g N m d in Years 2 and 3. The greater N removal rates in Year 1 and early in Year 2 were likely due to highly degradable C in the woodchips. Only late in Year 2 and in Year 3 was there a strong temperature response in the nitrate removal rate. Less than 1% of the nitrate removed was emitted as NO. Due to large tile inputs of nitrate (729-2127 kg N) at high concentrations (∼30 mg nitrate N L) in Years 2 and 3, overall removal efficiency was low (3 and 7% in Years 2 and 3, respectively). Based on a process-based bioreactor performance model, Bioreactor 1 would have needed to be 9 times as large as the current system to remove 50% of the nitrate load from this 20-ha field. PMID:27136147

  10. Advanced bioreactors for enhanced production of chemicals

    SciTech Connect

    Davison, B.H.

    1993-12-31

    A variety of advanced bioreactors are being developed to improve production of fuels, solvents, organic acids, and other fermentation products. One key approach is immobilization of the biocatalyst, leading to increased rates and yields. In addition, there are processes for simultaneous fermentation and separation to further increase production. For example, ethanol productivity in immobilized-cell fluidized-bed bioreactors (FBRs) can increase more than tenfold with 99% conversion and near stoichiometric yields. Two modified FBR configurations offer further improvements by removing the inhibitory product directly from the continuous fermentation. One involves the addition and removal of solid adsorbent particles to the FBR. This process was demonstrated with the production of lactic acid by immobilized Lactobacillus. The second uses an immiscible organic extractant in the FBR. This increased total butanol yields in the anaerobic acetone-butanol fermentation by Clostridium acetobutylicum.

  11. Bioreactor-Based Tumor Tissue Engineering

    PubMed Central

    Guller, A.E.; Grebenyuk, P.N.; Shekhter, A.B.; Zvyagin, A.V.; Deyev, S. M.

    2016-01-01

    This review focuses on modeling of cancer tumors using tissue engineering technology. Tumor tissue engineering (TTE) is a new method of three-dimensional (3D) simulation of malignant neoplasms. Design and development of complex tissue engineering constructs (TECs) that include cancer cells, cell-bearing scaffolds acting as the extracellular matrix, and other components of the tumor microenvironment is at the core of this approach. Although TECs can be transplanted into laboratory animals, the specific aim of TTE is the most realistic reproduction and long-term maintenance of the simulated tumor properties in vitro for cancer biology research and for the development of new methods of diagnosis and treatment of malignant neoplasms. Successful implementation of this challenging idea depends on bioreactor technology, which will enable optimization of culture conditions and control of tumor TECs development. In this review, we analyze the most popular bioreactor types in TTE and the emerging applications. PMID:27795843

  12. Chromium detoxification by fixed-film bioreactors

    SciTech Connect

    Chirwa, E.M.N.; Wang, Y.T.

    1996-11-01

    In this study, completely mixed, continuous flow bioreactors were utilized to detoxify chromium. Glass beads were incorporated as a support medium for two strains of bacteria, Bacillus sp. and Pseudomonas fluorescens LB300 (LB300), growing aerobically in two separate reactors. Aerobic conditions were maintained in the reactors by continuously supplying fresh air to the liquid through gas exchange chambers installed on the recycle line of the bioreactors. Results obtained showed that near complete removal of chromate was possible for influent concentrations up to 200 mg/L for Bacillus sp., and up to 100 mg/L for LB300 at 24 hours liquid detention time. Similar results were obtained for corresponding loading rates at 12 hours and 6 hours liquid detention time.

  13. Advanced bioreactors for enhanced production of chemicals

    SciTech Connect

    Davison, B.H.; Scott, C.D.

    1993-06-01

    A variety of advanced bioreactors are being developed to improve production of fuels, solvents, organic acids and other fermentation products. One key approach is immobilization of the biocatalyst leading to increased rates and yields. In addition, there are processes for simultaneous fermentation and separation to further increase production by the removal of an inhibitory product. For example, ethanol productivity in immobilized-cell fluidized-bed bioreactors (FBRs) can increase more than tenfold with 99% conversion and near stoichiometric yields. Two modified FBR configurations offer further improvements by removing the inhibitory product directly from the continuous fermentation. One involves the addition and removal of solid adsorbent particles to the FBR. This process was demonstrated with the production of lactic acid by immobilized Lactobacillus. The second uses an immiscible organic extractant in the FBR. This increased total butanol yields in the anaerobic acetone-butanol fermentation by Clostridium acetobutylicum.

  14. Design considerations and challenges for mechanical stretch bioreactors in tissue engineering.

    PubMed

    Lei, Ying; Ferdous, Zannatul

    2016-05-01

    With the increase in average life expectancy and growing aging population, lack of functional grafts for replacement surgeries has become a severe problem. Engineered tissues are a promising alternative to this problem because they can mimic the physiological function of the native tissues and be cultured on demand. Cyclic stretch is important for developing many engineered tissues such as hearts, heart valves, muscles, and bones. Thus a variety of stretch bioreactors and corresponding scaffolds have been designed and tested to study the underlying mechanism of tissue formation and to optimize the mechanical conditions applied to the engineered tissues. In this review, we look at various designs of stretch bioreactors and common scaffolds and offer insights for future improvements in tissue engineering applications. First, we summarize the requirements and common configuration of stretch bioreactors. Next, we present the features of different actuating and motion transforming systems and their applications. Since most bioreactors must measure detailed distributions of loads and deformations on engineered tissues, techniques with high accuracy, precision, and frequency have been developed. We also cover the key points in designing culture chambers, nutrition exchanging systems, and regimens used for specific tissues. Since scaffolds are essential for providing biophysical microenvironments for residing cells, we discuss materials and technologies used in fabricating scaffolds to mimic anisotropic native tissues, including decellularized tissues, hydrogels, biocompatible polymers, electrospinning, and 3D bioprinting techniques. Finally, we present the potential future directions for improving stretch bioreactors and scaffolds. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:543-553, 2016. PMID:26929197

  15. Bioreactor Yields Extracts for Skin Cream

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Johnson Space Flight Center researchers created a unique rotating-wall bioreactor that simulates microgravity conditions, spurring innovations in drug development and medical research. Renuèll Int'l Inc., based in Aventure, Florida, licensed the technology and used it to produce a healing skin care product, RE`JUVEL. In a Food and Drug Administration test, RE`JUVEL substantially increased skin moisture and elasticity while reducing dark blotches and wrinkles.

  16. Raman measurement of glucose in bioreactor materials

    NASA Astrophysics Data System (ADS)

    Xu, Yijing; Ford, Joseph F.; Mann, Charles K.; Vickers, Thomas J.; Brackett, John M.; Cousineau, Kristen L.; Robey, W. G.

    1997-06-01

    The feasibility of using Raman spectroscopy to monitor the concentration of chemical species in a bioreactor has been examined. Successful operation of a bioreactor requires that nutrients and metabolic waste products be maintained within narrow ranges, and it is, therefore, important to provide accurate, reliable and timely measurement of the composition in the reactor. Raman spectroscopy offers the possibility of real time simultaneous monitoring of molecular components present in the millimolar and higher concentration range. Work reported here has focused on four analytes: glucose, glutamine, lactic acid and ammonia. Measurements have been made with a spectrograph providing a spectral window for simultaneous measurement of about 1800 cm-1 on a multichannel CCD detector. Most measurements were made with an argon ion laser emitting at 514.5 nm. Some measurements are reported with a solid state diode laser operating at 785 nm. Locally constructed inexpensive silica fiber-optic probes delivered the laser light and collected the scattered radiation. Spectra of the four analytes n buffer and reactor media have been obtained. Analytical curves have been constructed and limits of detection measured. Limits of detection in buffer media are about 1 mM. Results are reported for off-line measurements on material drawn from a bioreactor.

  17. Oxygen transfer in membrane bioreactors treating synthetic greywater.

    PubMed

    Henkel, Jochen; Lemac, Mladen; Wagner, Martin; Cornel, Peter

    2009-04-01

    Mass transfer coefficients (k(L)a) were studied in two pilot scale membrane bioreactors (MBR) with different setup configurations treating 200L/h of synthetic greywater with mixed liquor suspended solids' (MLSS) concentrations ranging from 4.7 to 19.5g/L. Besides the MLSS concentration, mixed liquor volatile suspended solids (MLVSS), total solids (TS), volatile solids (VS), chemical oxygen demand (COD) and anionic surfactants of the sludge were measured. Although the pilot plants differed essentially in their configurations and aeration systems, similar alpha-factors at the same MLSS concentration could be determined. A comparison of the results to the published values of other authors showed that not the MLSS concentration but rather the MLVSS concentration seems to be the decisive parameter which influences the oxygen transfer in activated sludge systems operating at a high sludge retention time (SRT).

  18. Correlation between mass transfer coefficient kLa and relevant operating parameters in cylindrical disposable shaken bioreactors on a bench-to-pilot scale

    PubMed Central

    2013-01-01

    Background Among disposable bioreactor systems, cylindrical orbitally shaken bioreactors show important advantages. They provide a well-defined hydrodynamic flow combined with excellent mixing and oxygen transfer for mammalian and plant cell cultivations. Since there is no known universal correlation between the volumetric mass transfer coefficient for oxygen kLa and relevant operating parameters in such bioreactor systems, the aim of this current study is to experimentally determine a universal kLa correlation. Results A Respiration Activity Monitoring System (RAMOS) was used to measure kLa values in cylindrical disposable shaken bioreactors and Buckingham’s π-Theorem was applied to define a dimensionless equation for kLa. In this way, a scale- and volume-independent kLa correlation was developed and validated in bioreactors with volumes from 2 L to 200 L. The final correlation was used to calculate cultivation parameters at different scales to allow a sufficient oxygen supply of tobacco BY-2 cell suspension cultures. Conclusion The resulting equation can be universally applied to calculate the mass transfer coefficient for any of seven relevant cultivation parameters such as the reactor diameter, the shaking frequency, the filling volume, the viscosity, the oxygen diffusion coefficient, the gravitational acceleration or the shaking diameter within an accuracy range of +/− 30%. To our knowledge, this is the first kLa correlation that has been defined and validated for the cited bioreactor system on a bench-to-pilot scale. PMID:24289110

  19. A venturi device reduces membrane fouling in a submerged membrane bioreactor.

    PubMed

    Kayaalp, Necati; Ozturkmen, Gokmen

    2016-01-01

    In this study, for the first time, a venturi device was integrated into a submerged membrane bioreactor (MBR) to improve membrane surface cleaning and bioreactor oxygenation. The performances of a blower and the venturi device were compared in terms of membrane fouling and bioreactor oxygenation. Upon comparing membrane fouling, the performances were similar for a low operation flux (18 L/m(2).h); however, at a medium flux (32 L/m(2).h), the venturi system operated 3.4 times longer than the blower system, and the final transmembrane pressure was one-third that of the blower system. At the highest flux studied (50 L/m(2).h), the venturi system operated 5.4 times longer than the blower system. The most notable advantage of using a venturi device was that the dissolved oxygen (DO) concentration of the MBR was in the range of 7 to 8 mg/L at a 3 L/min aeration rate, while the DO concentration of the MBR was inadequate (a maximum of 0.29 mg/L) in the blower system. A clean water oxygenation test at a 3 L/min aeration rate indicated that the standard oxygen transfer rate for the venturi system was 9.5 times higher than that of the blower system. PMID:27386992

  20. Biocatalytic methanation of hydrogen and carbon dioxide in a fixed bed bioreactor.

    PubMed

    Alitalo, Anni; Niskanen, Marko; Aura, Erkki

    2015-11-01

    Biocatalytic methanation of H2 and CO2 was studied in a fixed bed reactor system consisting of two solid state bioreactors in series connected to a recirculation system. Bioreactors were packed with a mixture of vermiculite shales and granular perlite material as a support material. A maximal methane productivity of 6.35l/lreactord was achieved at a hydrogen feed rate of 25.2l/lreactord, while hydrogen conversion rate was 100%. However, stable operation of the reactor at this efficiency remains to be achieved. Very simple reactor design, constructed from low cost materials, and the idea of exploiting waste material as a robust source of nutrients for methanogens makes this study very interesting regarding the overall usability and suitability of the system as part of a decentralized energy system. PMID:26298404

  1. Production of rhEPO with a serum-free medium in the packed bed bioreactor.

    PubMed

    Deng, J; Yang, Q; Cheng, X; Li, L; Zhou, J

    1997-01-01

    Recombinant CHO (C2) cells producing human erythropoietin (rhEPO) were cultured with DMEM:F12 media containing 5% FBS for 8-10 days in a packed bed bioreactor, then rhEPO was produced with a serum-free medium (SFM-p) which was prepared in our laboratory. The SFM-p medium can support the growth of C2 cells and the production of rhEPO, and furthermore, it easily separates rhEPO from the culture supernatant. The cell culture in a packed bed bioreactor system using SFM-p was maintained in a stable condition for 20-25 days. The expression level of rhEPO was 12-28.4 mg/L. The bioreactor productivity was 71.0 mg/L.d and increased by 12-14 fold over that of the roller bottle. The glucose consumption rate was 21 g/L.d. At the end of 30 days of perfusion circulation, a final cell density of over 3.0 x 10(7)/ml of culture volume was achieved. Since the cells were entrapped in the polyester disk, the culture supernatant contained only a few detachment cells. Variations in lactate and ammonia production in the reactor were observed, and results showed that the productions of lactate and ammonia by the bioreactor were 3.5 g/L and 5 mmol/L, respectively, and did not affect the expression of interest protein. This experiment demonstrates that SFM-p is suitable for the growth and rhEPO production of recombinant C2 in the packed bed bioreactor.

  2. Culturing and Applications of Rotating Wall Vessel Bioreactor Derived 3D Epithelial Cell Models

    PubMed Central

    Radtke, Andrea L.; Herbst-Kralovetz, Melissa M.

    2012-01-01

    Cells and tissues in the body experience environmental conditions that influence their architecture, intercellular communications, and overall functions. For in vitro cell culture models to accurately mimic the tissue of interest, the growth environment of the culture is a critical aspect to consider. Commonly used conventional cell culture systems propagate epithelial cells on flat two-dimensional (2-D) impermeable surfaces. Although much has been learned from conventional cell culture systems, many findings are not reproducible in human clinical trials or tissue explants, potentially as a result of the lack of a physiologically relevant microenvironment. Here, we describe a culture system that overcomes many of the culture condition boundaries of 2-D cell cultures, by using the innovative rotating wall vessel (RWV) bioreactor technology. We and others have shown that organotypic RWV-derived models can recapitulate structure, function, and authentic human responses to external stimuli similarly to human explant tissues 1-6. The RWV bioreactor is a suspension culture system that allows for the growth of epithelial cells under low physiological fluid shear conditions. The bioreactors come in two different formats, a high-aspect rotating vessel (HARV) or a slow-turning lateral vessel (STLV), in which they differ by their aeration source. Epithelial cells are added to the bioreactor of choice in combination with porous, collagen-coated microcarrier beads (Figure 1A). The cells utilize the beads as a growth scaffold during the constant free fall in the bioreactor (Figure 1B). The microenvironment provided by the bioreactor allows the cells to form three-dimensional (3-D) aggregates displaying in vivo-like characteristics often not observed under standard 2-D culture conditions (Figure 1D). These characteristics include tight junctions, mucus production, apical/basal orientation, in vivo protein localization, and additional epithelial cell-type specific properties. The

  3. Culturing and applications of rotating wall vessel bioreactor derived 3D epithelial cell models.

    PubMed

    Radtke, Andrea L; Herbst-Kralovetz, Melissa M

    2012-04-03

    Cells and tissues in the body experience environmental conditions that influence their architecture, intercellular communications, and overall functions. For in vitro cell culture models to accurately mimic the tissue of interest, the growth environment of the culture is a critical aspect to consider. Commonly used conventional cell culture systems propagate epithelial cells on flat two-dimensional (2-D) impermeable surfaces. Although much has been learned from conventional cell culture systems, many findings are not reproducible in human clinical trials or tissue explants, potentially as a result of the lack of a physiologically relevant microenvironment. Here, we describe a culture system that overcomes many of the culture condition boundaries of 2-D cell cultures, by using the innovative rotating wall vessel (RWV) bioreactor technology. We and others have shown that organotypic RWV-derived models can recapitulate structure, function, and authentic human responses to external stimuli similarly to human explant tissues (1-6). The RWV bioreactor is a suspension culture system that allows for the growth of epithelial cells under low physiological fluid shear conditions. The bioreactors come in two different formats, a high-aspect rotating vessel (HARV) or a slow-turning lateral vessel (STLV), in which they differ by their aeration source. Epithelial cells are added to the bioreactor of choice in combination with porous, collagen-coated microcarrier beads (Figure 1A). The cells utilize the beads as a growth scaffold during the constant free fall in the bioreactor (Figure 1B). The microenvironment provided by the bioreactor allows the cells to form three-dimensional (3-D) aggregates displaying in vivo-like characteristics often not observed under standard 2-D culture conditions (Figure 1D). These characteristics include tight junctions, mucus production, apical/basal orientation, in vivo protein localization, and additional epithelial cell-type specific properties

  4. Culturing and applications of rotating wall vessel bioreactor derived 3D epithelial cell models.

    PubMed

    Radtke, Andrea L; Herbst-Kralovetz, Melissa M

    2012-01-01

    Cells and tissues in the body experience environmental conditions that influence their architecture, intercellular communications, and overall functions. For in vitro cell culture models to accurately mimic the tissue of interest, the growth environment of the culture is a critical aspect to consider. Commonly used conventional cell culture systems propagate epithelial cells on flat two-dimensional (2-D) impermeable surfaces. Although much has been learned from conventional cell culture systems, many findings are not reproducible in human clinical trials or tissue explants, potentially as a result of the lack of a physiologically relevant microenvironment. Here, we describe a culture system that overcomes many of the culture condition boundaries of 2-D cell cultures, by using the innovative rotating wall vessel (RWV) bioreactor technology. We and others have shown that organotypic RWV-derived models can recapitulate structure, function, and authentic human responses to external stimuli similarly to human explant tissues (1-6). The RWV bioreactor is a suspension culture system that allows for the growth of epithelial cells under low physiological fluid shear conditions. The bioreactors come in two different formats, a high-aspect rotating vessel (HARV) or a slow-turning lateral vessel (STLV), in which they differ by their aeration source. Epithelial cells are added to the bioreactor of choice in combination with porous, collagen-coated microcarrier beads (Figure 1A). The cells utilize the beads as a growth scaffold during the constant free fall in the bioreactor (Figure 1B). The microenvironment provided by the bioreactor allows the cells to form three-dimensional (3-D) aggregates displaying in vivo-like characteristics often not observed under standard 2-D culture conditions (Figure 1D). These characteristics include tight junctions, mucus production, apical/basal orientation, in vivo protein localization, and additional epithelial cell-type specific properties

  5. Shear stress enhances microcin B17 production in a rotating wall bioreactor, but ethanol stress does not

    NASA Technical Reports Server (NTRS)

    Gao, Q.; Fang, A.; Pierson, D. L.; Mishra, S. K.; Demain, A. L.

    2001-01-01

    Stress, including that caused by ethanol, has been shown to induce or promote secondary metabolism in a number of microbial systems. Rotating-wall bioreactors provide a low stress and simulated microgravity environment which, however, supports only poor production of microcin B17 by Escherichia coli ZK650, as compared to production in agitated flasks. We wondered whether the poor production is due to the low level of stress and whether increasing stress in the bioreactors would raise the amount of microcin B17 formed. We found that applying shear stress by addition of a single Teflon bead to a rotating wall bioreactor improved microcin B17 production. By contrast, addition of various concentrations of ethanol to such bioreactors (or to shaken flasks) failed to increase microcin B17 production. Ethanol stress merely decreased production and, at higher concentrations, inhibited growth. Interestingly, cells growing in the bioreactor were much more resistant to the growth-inhibitory and production-inhibitory effects of ethanol than cells growing in shaken flasks.

  6. Hydrostatic pressure and shear stress affect endothelin-1 and nitric oxide release by endothelial cells in bioreactors.

    PubMed

    Vozzi, Federico; Bianchi, Francesca; Ahluwalia, Arti; Domenici, Claudio

    2014-01-01

    Abundant experimental evidence demonstrates that endothelial cells are sensitive to flow; however, the effect of fluid pressure or pressure gradients that are used to drive viscous flow is not well understood. There are two principal physical forces exerted on the blood vessel wall by the passage of intra-luminal blood: pressure and shear. To analyze the effects of pressure and shear independently, these two stresses were applied to cultured cells in two different types of bioreactors: a pressure-controlled bioreactor and a laminar flow bioreactor, in which controlled levels of pressure or shear stress, respectively, can be generated. Using these bioreactor systems, endothelin-1 (ET-1) and nitric oxide (NO) release from human umbilical vein endothelial cells were measured under various shear stress and pressure conditions. Compared to the controls, a decrease of ET-1 production by the cells cultured in both bioreactors was observed, whereas NO synthesis was up-regulated in cells under shear stress, but was not modulated by hydrostatic pressure. These results show that the two hemodynamic forces acting on blood vessels affect endothelial cell function in different ways, and that both should be considered when planning in vitro experiments in the presence of flow. Understanding the individual and synergic effects of the two forces could provide important insights into physiological and pathological processes involved in vascular remodeling and adaptation.

  7. Shear stress enhances microcin B17 production in a rotating wall bioreactor, but ethanol stress does not.

    PubMed

    Gao, Q; Fang, A; Pierson, D L; Mishra, S K; Demain, A L

    2001-08-01

    Stress, including that caused by ethanol, has been shown to induce or promote secondary metabolism in a number of microbial systems. Rotating-wall bioreactors provide a low stress and simulated microgravity environment which, however, supports only poor production of microcin B17 by Escherichia coli ZK650, as compared to production in agitated flasks. We wondered whether the poor production is due to the low level of stress and whether increasing stress in the bioreactors would raise the amount of microcin B17 formed. We found that applying shear stress by addition of a single Teflon bead to a rotating wall bioreactor improved microcin B17 production. By contrast, addition of various concentrations of ethanol to such bioreactors (or to shaken flasks) failed to increase microcin B17 production. Ethanol stress merely decreased production and, at higher concentrations, inhibited growth. Interestingly, cells growing in the bioreactor were much more resistant to the growth-inhibitory and production-inhibitory effects of ethanol than cells growing in shaken flasks.

  8. Use of Orbital Shaken Disposable Bioreactors for Mammalian Cell Cultures from the Milliliter-Scale to the 1,000-Liter Scale

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaowei; Stettler, Matthieu; de Sanctis, Dario; Perrone, Marco; Parolini, Nicola; Discacciati, Marco; de Jesus, Maria; Hacker, David; Quarteroni, Alfio; Wurm, Florian

    Driven by the commercial success of recombinant biopharmaceuticals, there is an increasing demand for novel mammalian cell culture bioreactor systems for the rapid production of biologicals that require mammalian protein processing. Recently, orbitally shaken bioreactors at scales from 50 mL to 1,000 L have been explored for the cultivation of mammalian cells and are considered to be attractive alternatives to conventional stirred-tank bioreactors because of increased flexibility and reduced costs. Adequate oxygen transfer capacity was maintained during the scale-up, and strategies to increase further oxygen transfer rates (OTR) were explored, while maintaining favorable mixing parameters and low-stress conditions for sensitive lipid membrane-enclosed cells. Investigations from process development to the engineering properties of shaken bioreactors are underway, but the feasibility of establishing a robust, standardized, and transferable technical platform for mammalian cell culture based on orbital shaking and disposable materials has been established with further optimizations and studies ongoing.

  9. LEACHATE NITROGEN CONCENTRATIONS AND BACTERIAL NUMBERS FROM TWO BIOREACTOR LANDFILLS

    EPA Science Inventory

    The U.S. EPA and Waste Management Inc. have entered into a cooperative research and development agreement (CRADA) to study landfills operated as bioreactors. Two different landfill bioreactor configurations are currently being tested at the Outer Loop landfill in Louisville, KY...

  10. ADVANCING THE FIELD EVALUATIONS AND APPLICATIONS OF LANDFILL BIOREACTORS

    EPA Science Inventory

    The US Environmental Protection Agency (EPA) is undertaking a long-term program to conduct field evaluations of landfill bioreactors. The near-term effort is focused on the development of appropriate monitoring strategies to ensure adequate control of the landfill bioreactors an...

  11. Evaluation of woodchip bioreactors for improved water quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Woodchip bioreactors are gaining popularity with farmers because of their edge-of-field nitrate removal capabilities, which do not require changes in land management practices. However, limited research has been conducted to study the potential of these bioreactors to also reduce downstream transpor...

  12. Denitrifying bioreactors for nitrate removal from tile drained cropland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Denitrification bioreactors are a promising technology for mitigation of nitrate-nitrogen (NO3-N) losses in subsurface drainage water. Bioreactors are constructed with carbon substrates, typically wood chips, to provide a substrate for denitrifying microorganisms. Researchers in Iowa found that for ...

  13. STATE OF THE PRACTICE FOR BIOREACTOR LANDFILLS - SUMMARY OF USEPA WORKSHOP ON BIOREACTOR LANDFILLS: SUMMARY

    EPA Science Inventory

    This is a summary of the Workshop on Landfill Bioreactors, held 9/6-7/2000 in Arlington, VA. The purpose of the workshop was to provide a forum to EPA, state and local governments, solid waste industry, and academic research representatives to exchange information and ideas on b...

  14. Mill Seat Landfill Bioreactor Renewable Green Power (NY)

    SciTech Connect

    Barton & Loguidice, P.C.

    2010-01-07

    The project was implemented at the Mill Seat landfill located in the Town of Bergen, Monroe County, New York. The landfill was previously equipped with a landfill gas collection system to collect methane gas produced by the bioreactor landfill and transport it to a central location for end use. A landfill gas to energy facility was also previously constructed at the site, which utilized generator engines, designed to be powered with landfill methane gas, to produce electricity, to be utilized on site and to be sold to the utility grid. The landfill gas generation rate at the site had exceeded the capacity of the existing generators, and the excess landfill gas was therefore being burned at a candlestick flare for destruction. The funded project consisted of the procurement and installation of two (2) additional 800 KW Caterpillar 3516 generator engines, generator sets, switchgear and ancillary equipment.

  15. Fermentative hydrogen production in anaerobic membrane bioreactors: A review.

    PubMed

    Bakonyi, P; Nemestóthy, N; Simon, V; Bélafi-Bakó, K

    2014-03-01

    Reactor design considerations are crucial aspects of dark fermentative hydrogen production. During the last decades, many types of reactors have been developed and used in order to drive biohydrogen technology towards practicality and economical-feasibility. In general, the ultimate aim is to improve the key features of the process, namely the H2 yields and generation rates. Among the various configurations, the traditional, completely stirred tank reactors (CSTRs) are still the most routinely employed ones. However, due to their limitations, there is a progress to develop more reliable alternatives. One of the research directions points to systems combining membranes, which are called as anaerobic membrane bioreactors (AnMBRs). The aim of this paper is to summarize and highlight the recent biohydrogen related work done on AnMBRs and moreover to evaluate their performances and potentials in comparison with their conventional CSTR counterparts.