Sample records for nnsf national nature science

  1. Senator Fred Harris's National Social Science Foundation proposal: Reconsidering federal science policy, natural science-social science relations, and American liberalism during the 1960s.

    PubMed

    Solovey, Mark

    2012-03-01

    During the 1960s, a growing contingent of left-leaning voices claimed that the social sciences suffered mistreatment and undue constraints within the natural science-dominated federal science establishment. According to these critics, the entrenched scientific pecking order in Washington had an unreasonable commitment to the unity of the sciences, which reinforced unacceptable inequalities between the social and the natural sciences. The most important political figure who advanced this critique, together with a substantial legislative proposal for reform, was the Oklahoma Democratic Senator Fred Harris. Yet histories of science and social science have told us surprisingly little about Harris. Moreover, existing accounts of his effort to create a National Social Science Foundation have misunderstood crucial features of this story. This essay argues that Harris's NSSF proposal developed into a robust, historically unique, and increasingly critical liberal challenge to the post-World War II federal science establishment's treatment of the social sciences as "second-class citizens."

  2. Karawajew's ant type specimens (Hymenoptera, Formicidae) in the National Museum of Natural History of the National Academy of Sciences of Ukraine.

    PubMed

    Martynov, Alexander V; Radchenko, Alexander G

    2016-03-30

    The collection of W.A. Karawajew is one of the richest and most famous ant collections of the World. Much of this collection consists of dry mounted specimens, including types of about 550 taxa, housed in the Shmalhausen Institute of Zoology of the National Academy of Sciences of Ukraine (Kiev). Nevertheless, we located a considerable part of Karawajew's collection, containing about 25,000 specimens in alcohol, that is preserved in the National Museum of Natural History of the National Academy of Sciences of Ukraine (Kiev). The latter material was recently examined and we found types of 24 taxa. This type material was partly mounted, re-ordered and catalogued. In this paper we present a catalogue of these type specimens housed in the National Museum of Natural History.

  3. Natural hazards science strategy

    USGS Publications Warehouse

    Holmes, Robert R.; Jones, Lucile M.; Eidenshink, Jeffery C.; Godt, Jonathan W.; Kirby, Stephen H.; Love, Jeffrey J.; Neal, Christina A.; Plant, Nathaniel G.; Plunkett, Michael L.; Weaver, Craig S.; Wein, Anne; Perry, Suzanne C.

    2012-01-01

    The mission of the U.S. Geological Survey (USGS) in natural hazards is to develop and apply hazard science to help protect the safety, security, and economic well-being of the Nation. The costs and consequences of natural hazards can be enormous, and each year more people and infrastructure are at risk. USGS scientific research—founded on detailed observations and improved understanding of the responsible physical processes—can help to understand and reduce natural hazard risks and to make and effectively communicate reliable statements about hazard characteristics, such as frequency, magnitude, extent, onset, consequences, and where possible, the time of future events.To accomplish its broad hazard mission, the USGS maintains an expert workforce of scientists and technicians in the earth sciences, hydrology, biology, geography, social and behavioral sciences, and other fields, and engages cooperatively with numerous agencies, research institutions, and organizations in the public and private sectors, across the Nation and around the world. The scientific expertise required to accomplish the USGS mission in natural hazards includes a wide range of disciplines that this report refers to, in aggregate, as hazard science.In October 2010, the Natural Hazards Science Strategy Planning Team (H–SSPT) was charged with developing a long-term (10-year) Science Strategy for the USGS mission in natural hazards. This report fulfills that charge, with a document hereinafter referred to as the Strategy, to provide scientific observations, analyses, and research that are critical for the Nation to become more resilient to natural hazards. Science provides the information that decisionmakers need to determine whether risk management activities are worthwhile. Moreover, as the agency with the perspective of geologic time, the USGS is uniquely positioned to extend the collective experience of society to prepare for events outside current memory. The USGS has critical statutory

  4. Alaska Science Center: Providing Timely, Relevant, and Impartial Study of the Landscape, Natural Resources, and Natural Hazards for Alaska and Our Nation

    USGS Publications Warehouse

    ,

    2007-01-01

    The U.S. Geological Survey (USGS), the Nation's largest water, earth, and biological science and civilian mapping agency, has studied the natural features of Alaska since its earliest geologic expeditions in the 1800s. The USGS Alaska Science Center (ASC), with headquarters in Anchorage, Alaska, studies the complex natural science phenomena of Alaska to provide scientific products and results to a wide variety of partners. The complexity of Alaska's unique landscapes and ecosystems requires USGS expertise from many science disciplines to conduct thorough, integrated research.

  5. Youth Engagement through Science (YES!) - Engaging Underrepresented Minorities in Science through High School Internships at the National Museum of Natural History

    NASA Astrophysics Data System (ADS)

    Robertson, G.; Cruz, E.; Selvans, M. M.

    2014-12-01

    The Smithsonian's Youth Engagement through Science (YES!) program at the National Museum of Natural History gives young people from the Washington, D.C. area the opportunity to engage in science out of school through 16-week internships. We will present the program's successful strategies and lessons learned around recruiting and engaging young people from underserved communities, and maintaining relationships that help to support their pursuit of STEM and other career paths. The YES! program connects Smithsonian collections, experts, and training with local DC youth from communities traditionally underrepresented in science careers. YES! is now in its fifth year and has directly served 122 students; demographics of alumni are 67% female, and 51% Latino, 31% African-American, 7% Asian, 5% Caucasian and 6% other. The program immerses students in science research by giving them the opportunity to work side-by-side with scientists and staff from the Smithsonian's National Museum of Natural History, Air and Space Museum, Smithsonian Gardens, and National Zoo. In addition to working on a research project, students have college preparatory courses, are trained in science communication, and apply their skills by interacting with the public on the exhibit floor.

  6. [Funding for Division of Microbiology in 2014 by National Natural Science Foundation of China].

    PubMed

    Qiao, Jianjun; Huang, Chenyang; Liu, Lin; Wen, Mingzhang

    2015-02-04

    In this paper, we provided an overview of proposals submitted and projects funded in 2014 at the Division of Microbiology, Department of Life Sciences, National Natural Science Foundation of China. The traits and problems in different sub-disciplines were analyzed, the background, results and analysis of internet voting before panel meetings in Microbiology discipline were also introduced. The information will provide references for Chinese researchers to apply funding in microbiology discipline in the future.

  7. Exploring National Parks & Monuments: Students Can Discover National Monuments, National Parks & Natural Wonders

    ERIC Educational Resources Information Center

    Curriculum Review, 2009

    2009-01-01

    This article presents an interview with Cynthia Light Brown, author of "Discover National Monuments, National Parks: Natural Wonders," a book that introduces readers ages 8-12 to the history and science behind some of the amazing natural sites in the United States. In this interview, Cynthia Light Brown describes how she became interested in…

  8. U.S. Geological Survey natural hazards science strategy: promoting the safety, security, and economic well-being of the Nation

    USGS Publications Warehouse

    Holmes, Robert R.; Jones, Lucile M.; Eidenshink, Jeffery C.; Godt, Jonathan W.; Kirby, Stephen H.; Love, Jeffrey J.; Neal, Christina A.; Plant, Nathaniel G.; Plunkett, Michael L.; Weaver, Craig S.; Wein, Anne; Perry, Suzanne C.

    2013-01-01

    The mission of the U.S. Geological Survey (USGS) in natural hazards is to develop and apply hazard science to help protect the safety, security, and economic well-being of the Nation. The costs and consequences of natural hazards can be enormous, and each year more people and infrastructure are at risk. USGS scientific research—founded on detailed observations and improved understanding of the responsible physical processes—can help to understand and reduce natural hazard risks and to make and effectively communicate reliable statements about hazard characteristics, such as frequency, magnitude, extent, onset, consequences, and where possible, the time of future events. To accomplish its broad hazard mission, the USGS maintains an expert workforce of scientists and technicians in the earth sciences, hydrology, biology, geography, social and behavioral sciences, and other fields, and engages cooperatively with numerous agencies, research institutions, and organizations in the public and private sectors, across the Nation and around the world. The scientific expertise required to accomplish the USGS mission in natural hazards includes a wide range of disciplines that this report refers to, in aggregate, as hazard science. In October 2010, the Natural Hazards Science Strategy Planning Team (H–SSPT) was charged with developing a long-term (10–year) Science Strategy for the USGS mission in natural hazards. This report fulfills that charge, with a document hereinafter referred to as the Strategy, to provide scientific observations, analyses, and research that are critical for the Nation to become more resilient to natural hazards. Science provides the information that decisionmakers need to determine whether risk management activities are worthwhile. Moreover, as the agency with the perspective of geologic time, the USGS is uniquely positioned to extend the collective experience of society to prepare for events outside current memory. The USGS has critical

  9. [Analysis on Research Projects Supported by the National Natural Science Foundation of China at the National Institute of Parasitic Diseases during 2003-2013].

    PubMed

    Zhou, Xiao-jun; Zheng, Bin; Yi, Feng-yun; Xiong, Yan-hong; Zhang, Min-qi

    2015-04-01

    The data of the National Natural Science Foundation (NSFC) projests obtained by the National Institute of Parasitic Diseases (NIPD), Chinese Center for Disease Control and Prevention (China CDC) during 2003-2013 were collected from internet-based science information system of NSFC, and NSFC search tool of Dingxiang Garden (http://nsfc.biomart.cn/). The number of funded projects, their subject classification and approved amount were analyzed, and compared with the other institutes of China CDC. Furthermore, the rationalization proposals were given in order to enhance the level of foundation management in the future.

  10. Science Olympiad students' nature of science understandings

    NASA Astrophysics Data System (ADS)

    Philpot, Cindy J.

    2007-12-01

    Recent reform efforts in science education focus on scientific literacy for all citizens. In order to be scientifically literate, an individual must have informed understandings of nature of science (NOS), scientific inquiry, and science content matter. This study specifically focused on Science Olympiad students' understanding of NOS as one piece of scientific literacy. Research consistently shows that science students do not have informed understandings of NOS (Abd-El-Khalick, 2002; Bell, Blair, Crawford, and Lederman, 2002; Kilcrease and Lucy, 2002; Schwartz, Lederman, and Thompson, 2001). However, McGhee-Brown, Martin, Monsaas and Stombler (2003) found that Science Olympiad students had in-depth understandings of science concepts, principles, processes, and techniques. Science Olympiad teams compete nationally and are found in rural, urban, and suburban schools. In an effort to learn from students who are generally considered high achieving students and who enjoy science, as opposed to the typical science student, the purpose of this study was to investigate Science Olympiad students' understandings of NOS and the experiences that formed their understandings. An interpretive, qualitative, case study method was used to address the research questions. The participants were purposefully and conveniently selected from the Science Olympiad team at a suburban high school. Data collection consisted of the Views of Nature of Science -- High School Questionnaire (VNOS-HS) (Schwartz, Lederman, & Thompson, 2001), semi-structured individual interviews, and a focus group. The main findings of this study were similar to much of the previous research in that the participants had informed understandings of the tentative nature of science and the role of inferences in science, but they did not have informed understandings of the role of human imagination and creativity, the empirical nature of science, or theories and laws. High level science classes and participation in

  11. [Analysis of ophthalmic projects granted by National Natural Science Foundation].

    PubMed

    Shao, Jing-Jing; Mo, Xiao-Fen; Pan, Zhi-Qiang; Gan, De-Kang; Xu, Yan-Ying

    2008-09-01

    To understand the status of basic research work in the field of ophthalmology by analyzing the projects funded by the National Natural Science Foundation of China (NSFC) from the year of 1986 to 2007, and offer as a reference to the ophthalmologists and researchers. NSFC supported ophthalmology projects in the 22 year's period were collected from the database of NSFC. The field of funded projects, the research team and their achievements were analyzed. There were 228 applicants from 47 home institutions were funded in the field of ophthalmology during the past 22 years, 323 projects funded with 66.74 million Yuan in total, in which 165 projects were fulfilled before the end of 2006. The applied and funded projects mainly focus on six different kinds of research area related to retinal diseases, corneal diseases, glaucoma, optic nerve diseases, myopia and cataract, and 70% of them were basic research in nature. As a brief achievement of 165 fulfilled projects, more than 610 papers were published in domestic journals, over 140 papers were published in Science Citation Index journals, more than 600 people were trained, and over 20 scientific awards were obtained. The number of funded projects and achievement of fulfilled projects in the discipline of ophthalmology gradually increased over the past two decades, the research fields were concentrated in certain diseases. NSFC has played an important role in promoting the development of ophthalmology research and bringing up specialists in China. However, clinical research, continuously research, transforming from basic research to clinic applications and multidisciplinary cross studies should be strengthened.

  12. The concept of nature in Islamic science teaching

    NASA Astrophysics Data System (ADS)

    Zarman, Wendi

    2016-02-01

    Science teaching is basically value laden activities. One of the values tells that science is not related to any religion. This secular value is reflected to science teaching in many places, including religious country like Indonesia. However, we argue that in Indonesia science teaching should not be secular as in the Western country since one of the basic aim of National Education according to the Indonesian constitution Undang-Undang Dasar 1945, is to inculcate faith and god-fearing to One God Almighty. As we know, Indonesia is a Moslem country and has many Islamic schools in it too. Thus, it is important to design a science teaching framework base on Islamic teaching to fulfill the basic aim of National Education This paper discusses concept of nature, the key term in science, based on Islamic view that may used as a framework to develop Islamic science teaching. In Islam, science has a strong relation to religion since nature reflects the existence of the Creator. This concept is derived from the analysis of several verses from Qur'an as the main source of Islamic teaching. There are several principle can be derived from this analysis. Firstly, visible world is not the only world, but there is also the unseen world. Secondly, the nature is not merely matter that doesn't have any sacred value, but it is the indication or symbol of God existence and His Nature. Thirdly, The Qur'an and the nature are both Books of Allah that contain messages of Him, so they are complementary to each other

  13. [THE PROFESSORS OF THE NATIONAL MUSEUM OF NATURAL HISTORY AND THE SOCIETY OF THE FRIENDS OF THE SCIENCES OF WARSAW (1800-1832)].

    PubMed

    Daszkiewicz, Piotr

    2015-01-01

    The National Museum of Natural History played a crucial role in the formation of Polish scientific elites in the 19th century. Many Polish students were attending in Paris natural history, botany, zoology, chemistry and mineralogy courses. The Warsaw Society of Friends of Learning was the largest scientific society and one of the most important scientific institutions in Poland. It had also an impact on the political and cultural life of the country, occupied and deprived of freedom at that time. Amongst its founders and members, could be found listeners to the lectures of Lamarck, Haüy, Vauquelin, Desfontaines, Jussieu. Moreover, seven professors of the National Museum of Natural History were elected foreign members of the Warsaw Society of Friends of Learning: Cuvier, Desfontaines, Haüy, Jussieu, Latreille, Mirbel, Vauquelin. The article analyses this choice and underlines the relationship between these scientists and Warsaw's scientists. The results of this research allow to confirm that the National Museum of Natural History was the most important foreign institution in the 19th century for Polish science, and more specifically natural sciences.

  14. Natural resource assessment: an approach to science based planning in national parks

    USGS Publications Warehouse

    Mahan, C.G.; Vanderhorst, J.P.; Young, J.A.

    2009-01-01

    We conducted a natural resource assessment at two national parks, New River Gorge National River and Shenandoah National Park, to help meet the goals of the Natural Resource Challenge-a program to help strengthen natural resource management at national parks. We met this challenge by synthesizing and interpreting natural resource information for planning purposes and we identified information gaps and natural significance of resources. We identified a variety of natural resources at both parks as being globally and/or nationally significant, including large expanses of unfragmented, mixed-mesophytic forests that qualify for wilderness protection, rare plant communities, diverse assemblages of neotropical migratory birds and salamanders, and outstanding aquatic recreational resources. In addition, these parks function, in part, as ecological reserves for plants in and wildlife. With these significant natural resources in mind, we also developed a suite of natural resource management recommendations in light of increasing threats from within and outside park boundaries. We hope that our approach can provide a blueprint for natural resource conservation at publically owned lands.

  15. Natural resource assessment: an approach to science based planning in national parks.

    PubMed

    Mahan, Carolyn G; Vanderhorst, James P; Young, John A

    2009-06-01

    We conducted a natural resource assessment at two national parks, New River Gorge National River and Shenandoah National Park, to help meet the goals of the Natural Resource Challenge--a program to help strengthen natural resource management at national parks. We met this challenge by synthesizing and interpreting natural resource information for planning purposes and we identified information gaps and natural significance of resources. We identified a variety of natural resources at both parks as being globally and/or nationally significant, including large expanses of unfragmented, mixed-mesophytic forests that qualify for wilderness protection, rare plant communities, diverse assemblages of neotropical migratory birds and salamanders, and outstanding aquatic recreational resources. In addition, these parks function, in part, as ecological reserves for plants in and wildlife. With these significant natural resources in mind, we also developed a suite of natural resource management recommendations in light of increasing threats from within and outside park boundaries. We hope that our approach can provide a blueprint for natural resource conservation at publically owned lands.

  16. USGS Science: Addressing Our Nation's Challenges

    USGS Publications Warehouse

    Larson, Tania M.

    2009-01-01

    With 6.6 billion people already living on Earth, and that number increasing every day, human influence on our planet is ever more apparent. Changes to the natural world combined with increasing human demands threaten our health and safety, our national security, our economy, and our quality of life. As a planet and a Nation, we face unprecedented challenges: loss of critical and unique ecosystems, the effects of climate change, increasing demand for limited energy and mineral resources, increasing vulnerability to natural hazards, the effects of emerging diseases on wildlife and human health, and growing needs for clean water. The time to respond to these challenges is now, but policymakers and decisionmakers face difficult choices. With competing priorities to balance, and potentially serious - perhaps irreversible - consequences at stake, our leaders need reliable scientific information to guide their decisions. As the Nation's earth and natural science agency, the USGS monitors and conducts scientific research on natural hazards and resources and how these elements and human activities influence our environment. Because the challenges we face are complex, the science needed to better understand and deal with these challenges must reflect the complex interplay among natural and human systems. With world-class expertise in biology, geology, geography, hydrology, geospatial information, and remote sensing, the USGS is uniquely capable of conducting the comprehensive scientific research needed to better understand the interdependent interactions of Earth's systems. Every day, the USGS helps decisionmakers to minimize loss of life and property, manage our natural resources, and protect and enhance our quality of life. This brochure provides examples of the challenges we face and how USGS science helps decisionmakers to address these challenges.

  17. Natural Hazard Resilience - A Large-scale Transdisciplinary "National Science Challenge" for New Zealand

    NASA Astrophysics Data System (ADS)

    Cronin, S. J.

    2017-12-01

    The National Science Challenges are initiatives to address the most important public science issues that face New Zealand with long-term funding and the combined strength of a coordinated science-sector behind them. Eleven major topics are tackled, across our human, natural and built environments. In the "Resilience Challenge" we address New Zealand's natural hazards. Alongside severe metrological threats, New Zealand also faces one of the highest levels of earthquake and volcanic hazard in the world. Resilience is a hotly discussed concept, here, we take the view: Resilience encapsulates the features of a system to anticipate threats, acknowledge there will be impacts (no matter how prepared we are), quickly pick up the pieces, as well as learn and adapt from the experience to better absorb and rebound from future shocks. Our research must encompass innovation in building and lifelines engineering, planning and regulation, emergency management practice, alongside understanding how our natural hazard systems work, how we monitor them and how our communities/governance/industries can be influenced and encouraged (e.g., via economic incentives) to develop and implement resilience practice. This is a complex interwoven mix of areas and is best addressed through case-study areas where researchers and the users of the research can jointly identify problems and co-develop science solutions. I will highlight some of the strengths and weaknesses of this coordinated approach to an all-hazard, all-country problem, using the example of the Resilience Challenge approach after its first two and a half years of operation. Key issues include balancing investment into high-profile (and often high consequence), but rare hazards against the frequent "monthly" hazards that collectively occupy regional and local governance. Also, it is clear that despite increasingly sophisticated hazard and hazard mitigation knowledge being generated in engineering and social areas, a range of policy

  18. Exploring culture, language and the perception of the nature of science

    NASA Astrophysics Data System (ADS)

    Sutherland, Dawn

    2002-01-01

    One dimension of early Canadian education is the attempt of the government to use the education system as an assimilative tool to integrate the First Nations and Me´tis people into Euro-Canadian society. Despite these attempts, many First Nations and Me´tis people retained their culture and their indigenous language. Few science educators have examined First Nations and Western scientific worldviews and the impact they may have on science learning. This study explored the views some First Nations (Cree) and Euro-Canadian Grade-7-level students in Manitoba had about the nature of science. Both qualitative (open-ended questions and interviews) and quantitative (a Likert-scale questionnaire) instruments were used to explore student views. A central hypothesis to this research programme is the possibility that the different world-views of two student populations, Cree and Euro-Canadian, are likely to influence their perceptions of science. This preliminary study explored a range of methodologies to probe the perceptions of the nature of science in these two student populations. It was found that the two cultural groups differed significantly between some of the tenets in a Nature of Scientific Knowledge Scale (NSKS). Cree students significantly differed from Euro-Canadian students on the developmental, testable and unified tenets of the nature of scientific knowledge scale. No significant differences were found in NSKS scores between language groups (Cree students who speak English in the home and those who speak English and Cree or Cree only). The differences found between language groups were primarily in the open-ended questions where preformulated responses were absent. Interviews about critical incidents provided more detailed accounts of the Cree students' perception of the nature of science. The implications of the findings of this study are discussed in relation to the challenges related to research methodology, further areas for investigation, science

  19. 78 FR 50085 - Advisory Committee on Climate Change and Natural Resource Science

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-16

    ... Climate Change and Natural Resource Science AGENCY: U.S. Geological Survey, Interior. ACTION: Meeting.... 2, we announce that the Advisory Committee on Climate Change and Natural Resource Science will hold... Partnership Coordinator, National Climate Change and Wildlife Science Center, U.S. Geological Survey, 12201...

  20. 78 FR 79478 - Advisory Committee on Climate Change and Natural Resource Science

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-30

    ... announce that the Advisory Committee on Climate Change and Natural Resource Science will hold a meeting..., National Climate Change and Wildlife Science Center, U.S. Geological Survey, 12201 Sunrise Valley Drive...: Chartered in May 2013, the Advisory Committee on Climate Change and Natural Resource Science (ACCCNRS...

  1. The influence of the history of science course on pre-service science teachers' understanding of the nature of science concepts

    NASA Astrophysics Data System (ADS)

    Akcay, Behiye

    The purpose of this study was to investigate the influence of a history of science course on pre-service science teachers' understanding of the nature of science concepts. Subjects in the study were divided in two groups: (1) students who enrolled in only in the history of science course, (2) students who enrolled both the meaning of science and the history of science courses. An interpretative-descriptive approach and constant comparative analysis were used to identify similarities and differences among pre-service teachers' views about nature of scientific knowledge prior to and after the history of science course. The results of this study indicate that explicitly addressing certain aspects of the nature of science is effective in promoting adequate understanding of the nature of science for pre-service science teachers. Moreover, the results indicate that a student's prior experience with the history of science helps to improve their understanding of the history and nature of science. The history of science course helped pre-service teachers to develop the following views which are parallel with these advocated in both the Benchmarks (AAAS, 1993) and the National Science Education Standards (NRC, 1996) concerning the nature of scientific knowledge: (1) Scientific knowledge is empirically based and an ongoing process of experimentation, investigation, and observation. (2) Science is a human endeavor. (3) People from different cultures, races, genders, and nationality contribute to science. (4) Scientific knowledge is not based on myths, personal beliefs, and religious values. (5) Science background and prior knowledge have important roles for scientific investigations. (6) Scientific theories and laws represent different kinds of knowledge. (7) Science is affected by political, social, and cultural values. (8) Creativity and imagination are used during all stages of scientific investigations. (9) Theories change because of new evidence and new views of existing

  2. Natural Hazards Science at the U.S. Geological Survey

    USGS Publications Warehouse

    Perry, Suzanne C.; Jones, Lucile M.; Holmes, Robert R.

    2013-01-01

    The mission of the USGS in natural hazards is to develop and apply hazard science to help protect the safety, security, and economic well-being of the Nation. The costs and consequences of natural hazards can be enormous, and each year more people and infrastructure are at risk. The USGS conducts hazard research and works closely with stakeholders and cooperators to inform a broad range of planning and response activities at individual, local, State, national, and international levels. It has critical statutory and nonstatutory roles regarding floods, earthquakes, tsunamis, landslides, coastal erosion, volcanic eruptions, wildfires, and magnetic storms. USGS science can help to understand and reduce risks from natural hazards by providing the information that decisionmakers need to determine which risk management activities are worth­while.

  3. Evaluating Instrument Quality in Science Education: Rasch-Based Analyses of a Nature of Science Test

    ERIC Educational Resources Information Center

    Neumann, Irene; Neumann, Knut; Nehm, Ross

    2011-01-01

    Given the central importance of the Nature of Science (NOS) and Scientific Inquiry (SI) in national and international science standards and science learning, empirical support for the theoretical delineation of these constructs is of considerable significance. Furthermore, tests of the effects of varying magnitudes of NOS knowledge on…

  4. Turkish Grade 10 Students' and Science Teachers' Conceptions of Nature of Science: A National Study

    ERIC Educational Resources Information Center

    Dogan, Nihal; Abd-El-Khalick, Fouad

    2008-01-01

    This study aimed to assess grade 10 Turkish students' and science teachers' conceptions of nature of science (NOS) and whether these conceptions were related to selected variables. These variables included participants' gender, geographical region, and the socioeconomic status (SES) of their city and region; teacher disciplinary background, years…

  5. 76 FR 9598 - Notice of Inventory Completion: Denver Museum of Nature & Science, Denver, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-18

    ... Museum of Nature & Science, Denver, CO AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The Denver Museum of Nature & Science has completed an inventory of human remains, in consultation... Nature & Science, 2001 Colorado Blvd., Denver, CO 80205, telephone (303) 370-6378. SUPPLEMENTARY...

  6. Derivation and Implementation of a Model Teaching the Nature of Science Using Informal Science Education Venues

    ERIC Educational Resources Information Center

    Spector, Barbara S.; Burkett, Ruth; Leard, Cyndy

    2012-01-01

    This paper introduces a model for using informal science education venues as contexts within which to teach the nature of science. The model was initially developed to enable university education students to teach science in elementary schools so as to be consistent with "National Science Education Standards" (NSES) (1996) and "A Framework for…

  7. 76 FR 14061 - Notice of Inventory Completion: Denver Museum of Nature & Science, Denver, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-15

    ... Museum of Nature & Science, Denver, CO AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The Denver Museum of Nature & Science has completed an inventory of human remains and associated... contact the Denver Museum of Nature & Science at the address below by April 14, 2011. ADDRESSES: Dr. Chip...

  8. National innovation policy and public science in Australia

    NASA Astrophysics Data System (ADS)

    Carter, Lyn

    2017-12-01

    In this paper, I have positioned myself with Kean Birch and explored some of the political-economic actors/actants of policy suites implicated in the biotechnologies and bioeconomy. In particular, I have considered Australia's recent National Innovation and Science Agenda and allied documents and entities (that is, Innovation and Science Australia, the National Science Statement and the 2016 National Research Infrastructure Roadmap) as one of the National Innovation Strategies in place now in OECD countries and beyond. In overview, these policy suites utilise the same high knowledge creation/low translation and commericalisation arguments as elsewhere to press for particular ideologically based `improvements' to public science. Mapping the terrain of these entities has revealed the innovation, biotechnology and bioeconomy policy space to be inordinately complex and challenging to navigate. Reviewing Australia's position enables the type of comparative work that contributes to a closer understanding of the largely neoliberal global economic imperatives shaping contemporaneity. Moreover, while these policy suites attempt to constitute and circulate particular visions of science education, their complex nature mitigates against science teachers/educators grappling with their implications.

  9. Nature of Science or Nature of the Sciences?

    ERIC Educational Resources Information Center

    Schizas, Dimitrios; Psillos, Dimitris; Stamou, George

    2016-01-01

    The present essay examines the emerging issue of domain-general versus domain-specific nature of science (NOS) understandings from a perspective that illuminates the value of domain-specific philosophies of science for the growth and development of the NOS educational field. Under the assumption that individual sciences do have their own…

  10. A historical examination of the nature of science and its consensus as presented in the Benchmarks for Science Literacy and National Science Education Standards

    NASA Astrophysics Data System (ADS)

    Felske, Daniel D.

    Developing a scientific literate citizenry has fueled science education reforms for the past 40 years. A review of the literature reveals that definitions of scientific literacy during this period were greatly influenced by the goals, directions, and political agendas of the day. This approach has resulted in programs emphasizing certain aspects of scientific literacy while neglecting others. Additionally, consensus on what scientific literacy means or how to develop it has not been achieved. One aspect of scientific literacy that is agreed upon is the essential role that the nature of science (NOS) plays in its development. For this reason, an extensive review of the literature was conducted to develop a comprehensive background of this topic. The component structure of the NOS revealed in the literature was then synthesized into a NOS framework. The NOS framework served to guide the construction of a 21 item questionnaire taken from statements embedded in the consensual documents Benchmarks for Science Literacy (AAAS, 1993) and National Science Education Standards (NRC, 1996). A panel of five experts who have written extensively on the nature of science was then assembled and the degree of NOS consensus measured using a modified Delphi technique. The results of the survey indicated a high level of consensus (95%) at the ≥80% level. The panelists concurred positively on 19 of 21 NOS items, concurred negatively on one of 21 NOS items (item 10), and could not reach consensus on one of 21 NOS items (item 16). These findings, as well as, the NOS framework, are important first steps toward developing programs that foster the development of scientific literacy.

  11. The web of life: Natural science information on the Internet

    USGS Publications Warehouse

    Clement, Gail

    2000-01-01

    As society has come to equate economic prosperity with the health of our living resources, national science policy has called for the development of a comprehensive digital knowledge base to support informed decision making and wise resource management. The Internet and World Wide Web demonstrate the earliest stages of this evolving virtual library of the natural world, offering an increasing array of high-quality, innovative resources and services in the natural science arena. This article discusses the leading providers of natural science information on the Internet and highlights some of the exemplary resources they are delivering online. The discussion concludes with a brief discussion of the role of the librarian in developing the Web of natural science knowledge online and provides a short Webliography of starting points for further exploration of this subject area. PDF

  12. National Science Board: 2020 Vision for the National Science Foundation. NSB-05-142

    ERIC Educational Resources Information Center

    National Science Foundation, 2005

    2005-01-01

    History suggests that a nation that relinquishes the torch of science puts its future prosperity at risk and jeopardizes its place in the history of civilization. The National Science Board believes this fate must not be allowed to befall the country. The National Science Board 2020 Vision for the National Science Foundation (NSF) provides a…

  13. 76 FR 9604 - Notice of Inventory Completion: Denver Museum of Nature & Science, Denver, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-18

    ... Museum of Nature & Science, Denver, CO AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The Denver Museum of Nature & Science has completed an inventory of human remains, in consultation... affiliation with the human remains should contact Dr. Chip Colwell-Chanthaphonh, Denver Museum of Nature...

  14. 77 FR 23504 - Notice of Inventory Completion: Denver Museum of Nature & Science, Denver, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-19

    ... Museum of Nature & Science, Denver, CO AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The Denver Museum of Nature & Science has completed an inventory of human remains and [[Page 23505... affiliated with the human remains and associated funerary objects may contact the Denver Museum of Nature...

  15. How Multidisciplinary Are the Multidisciplinary Journals Science and Nature?

    PubMed

    Solomon, Gregg E A; Carley, Stephen; Porter, Alan L

    2016-01-01

    Interest in cross-disciplinary research knowledge interchange runs high. Review processes at funding agencies, such as the U.S. National Science Foundation, consider plans to disseminate research across disciplinary bounds. Publication in the leading multidisciplinary journals, Nature and Science, may signify the epitome of successful interdisciplinary integration of research knowledge and cross-disciplinary dissemination of findings. But how interdisciplinary are they? The journals are multidisciplinary, but do the individual articles themselves draw upon multiple fields of knowledge and does their influence span disciplines? This research compares articles in three fields (Cell Biology, Physical Chemistry, and Cognitive Science) published in a leading disciplinary journal in each field to those published in Nature and Science. We find comparable degrees of interdisciplinary integration and only modest differences in cross-disciplinary diffusion. That said, though the rate of out-of-field diffusion might be comparable, the sheer reach of Nature and Science, indicated by their potent Journal Impact Factors, means that the diffusion of knowledge therein can far exceed that of leading disciplinary journals in some fields (such as Physical Chemistry and Cognitive Science in our samples).

  16. 77 FR 60717 - Establishment of the Advisory Committee on Climate Change and Natural Resource Science

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-04

    ... seeking nominations for the Advisory Committee on Climate Change and Natural Resource Science (Committee... of the U.S. Geological Survey National Climate Change and Wildlife Science Center and the DOI Climate... Partnership Coordinator, National Climate Change and Wildlife Science Center, U.S. Geological Survey, 12201...

  17. Delivering Climate Science for the Nation's Fish, Wildlife, and Ecosystems: The U.S. Geological Survey National Climate Change and Wildlife Science Center

    USGS Publications Warehouse

    Beard, T. Douglas

    2011-01-01

    Changes to the Earth's climate-temperature, precipitation, and other important aspects of climate-pose significant challenges to our Nation's natural resources now and will continue to do so. Managers of land, water, and living resources need to understand the impacts of climate change-which will exacerbate ongoing stresses such as habitat fragmentation and invasive species-so they can design effective response strategies. In 2008 Congress created the National Climate Change and Wildlife Science Center (NCCWSC) within the U.S. Geological Survey (USGS); this center was formed to address challenges resulting from climate change and to empower natural resource managers with rigorous scientific information and effective tools for decision-making. Located at the USGS National Headquarters in Reston, Virginia, the NCCWSC has invested over $20M in cutting-edge climate change research and is now leading the effort to establish eight regional Department of the Interior (DOI) Climate Science Centers (CSCs).

  18. Institutionalization and Sustainability of the National Science Foundation's Advanced Technological Education Program.

    ERIC Educational Resources Information Center

    Bailey, Thomas R.; Matsuzuka, Yukari; Jacobs, James; Morest, Vanessa Smith; Hughes, Katherine L.

    This document reports on a study conducted by the National Science Foundation (NSF) that examines the Advanced Technological Education (ATE) program. ATE aims to promote systemic reform of the nation's science, technology, engineering, and mathematics (STEM) education. The study analyzed the influence of the ATE program on the nature of STEM…

  19. Teacher understanding of the nature of science and its impact on student learning about the nature of science in STS/Constructivist classrooms

    NASA Astrophysics Data System (ADS)

    Lieu, Sang-Chong

    In the National Science Education Standards both STS/Constructivist teaching strategies and student understanding of the nature of science are stressed. If certain teaching practices can achieve both goals at one time, many problems will be solved. Such relationships were investigated in this study. Teacher subjects were selected based on two extremes of scores on the Testing on Understanding Science. The Secondary Teacher Analysis Matrix - Science Version was used to categorize teachers into their use of STS/Constructivist or more traditional strategies based on their teaching behaviors observed from video tapes. After the teacher subjects were selected, a non-equivalent control group design was adapted for the administration of items from the Views on Science-Technology-Society (VOSTS) to the students of these teachers. Pre- and post-test data were collected using 20 VOSTS items. VOSTS options were categorized into a Congruent/Partially Congruent/Naive format by a panel of six science educators. A special scoring procedure was devised for the VOSTS items to allow the use of inferential statistics. When performance on 17 VOSTS items were studied, more understanding of the nature of science by teachers, the presence of an STS/Constructivist learning environment in the classroom, or a combination of both factors was not found to help students learn more about the nature of science. Explanations for such results are offered. A McNemar test was performed to take a closer look at the 17 VOSTS items individually. The results indicated that students who were taught by STS/Constructivist teachers with high TOUS scores moved toward "congruent" views concerning the nature of science on a number of VOSTS items. Also, students who were taught by more traditional teachers with low TOUS scores moved toward "naive" views on other VOSTS items. The findings support the fact that teachers who know more about the nature of science and who practice many of the STS

  20. How Multidisciplinary Are the Multidisciplinary Journals Science and Nature?

    PubMed Central

    Solomon, Gregg E. A.; Carley, Stephen; Porter, Alan L.

    2016-01-01

    Interest in cross-disciplinary research knowledge interchange runs high. Review processes at funding agencies, such as the U.S. National Science Foundation, consider plans to disseminate research across disciplinary bounds. Publication in the leading multidisciplinary journals, Nature and Science, may signify the epitome of successful interdisciplinary integration of research knowledge and cross-disciplinary dissemination of findings. But how interdisciplinary are they? The journals are multidisciplinary, but do the individual articles themselves draw upon multiple fields of knowledge and does their influence span disciplines? This research compares articles in three fields (Cell Biology, Physical Chemistry, and Cognitive Science) published in a leading disciplinary journal in each field to those published in Nature and Science. We find comparable degrees of interdisciplinary integration and only modest differences in cross-disciplinary diffusion. That said, though the rate of out-of-field diffusion might be comparable, the sheer reach of Nature and Science, indicated by their potent Journal Impact Factors, means that the diffusion of knowledge therein can far exceed that of leading disciplinary journals in some fields (such as Physical Chemistry and Cognitive Science in our samples). PMID:27043924

  1. Investing in citizen science can improve natural resource management and environmental protection

    USGS Publications Warehouse

    McKinley, Duncan C.; Miller-Rushing, Abraham J.; Ballard, Heidi L.; Bonney, Rick; Brown, Hutch; Evans, Daniel M.; French, Rebecca A.; Parrish, Julia K.; Phillips, Tina B.; Ryan, Sean F.; Shanley, Lea A.; Shirk, Jennifer L.; Stepenuck, Kristine F.; Weltzin, Jake F.; Wiggins, Andrea; Boyle, Owen D.; Briggs, Russell D.; Chapin, Stuart F.; Hewitt, David A.; Preuss, Peter W.; Soukup, Michael A.

    2015-01-01

    Citizen science has made substantive contributions to science for hundreds of years. More recently, it has contributed to many articles in peer-reviewed scientific journals and has influenced natural resource management and environmental protection decisions and policies across the nation. Over the last 10 years, citizen science—participation by the public in a scientific project—has seen explosive growth in the United States, particularly in ecology, the environmental sciences, and related fields of inquiry. In this report, we explore the current use of citizen science in natural resource and environmental science and decision making in the United States and describe the investments organizations might make to benefit from citizen science.

  2. 78 FR 68480 - National Science Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-14

    ... NATIONAL SCIENCE FOUNDATION National Science Board The National Science Board's ad hoc Committee on Honorary Awards, pursuant to NSF regulations (45 CFR part 614), the National Science Foundation... gives notice in regard to the scheduling of a meeting for the transaction of National Science Board...

  3. 77 FR 1956 - National Science Board; Notice of Opportunity for Public Comment on the National Science Board...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-12

    ... NATIONAL SCIENCE FOUNDATION National Science Board; Notice of Opportunity for Public Comment on the National Science Board Data Policies Report AGENCY: National Science Board (NSB), NSF. ACTION: Request for public comments. SUMMARY: The National Science Board seeks comments from the public on the...

  4. The national science agenda as a ritual of modern nation-statehood: The consequences of national "Science for National Development" projects

    NASA Astrophysics Data System (ADS)

    Drori, Gili S.

    This study is a comparative investigation of the ways by which the globalization of modern science affects the characteristics of different nation-states. Whereas much research and policy discussion focuses on science as an instrumental, or technical, system with immediate consequences for national conditions, such as economic development, science should also be regarded as a general cultural framework, which is highly institutionalized at the global level. As such, the institutionalization of science at both the global and national levels affects a wide variety of national properties. Following this line of reasoning, this dissertation study employs cross-national and longitudinal data and multiple-indicator methods to show national-level consequences of scientific expansion on the processes of rationalization and modernization of social and political life. It appears that the cross-national expansion of science practice results in, or is associated with, a variety of measures of (a) the standardization of civil and governmental procedures and (b) the expansion of the political rights and political engagement. I conclude from these empirical findings that scientization encourages (a) greater general societal rationalization and (b) expanded notions of social actorhood and agency. This evidence demonstrates how the globalization of science alters local conditions, both civil and political, by supporting the institutionalization of bureaucratic practices and participatory politics. Thus, the expansion of science--clearly affected by global processes--carries a general secularized faith in a rationalized world and in human agency. In this sense, the practice of science is a national ritual, whose social role is as a legitimacy-providing institution, rather then a technically functional institution. On a broader level, the study emphasizes the relations between globalization processes and the sovereignty of the nation-state. I conclude that science carries modernist

  5. Reconceptualizing the Nature of Science for Science Education

    NASA Astrophysics Data System (ADS)

    Dagher, Zoubeida R.; Erduran, Sibel

    2016-03-01

    Two fundamental questions about science are relevant for science educators: (a) What is the nature of science? and (b) what aspects of nature of science should be taught and learned? They are fundamental because they pertain to how science gets to be framed as a school subject and determines what aspects of it are worthy of inclusion in school science. This conceptual article re-examines extant notions of nature of science and proposes an expanded version of the Family Resemblance Approach (FRA), originally developed by Irzik and Nola (International handbook of research in history, philosophy and science teaching. Springer, Dordrecht, pp 999-1021, 2014) in which they view science as a cognitive-epistemic and as an institutional-social system. The conceptual basis of the expanded FRA is described and justified in this article based on a detailed account published elsewhere (Erduran and Dagher in Reconceptualizing the nature of science for science education: scientific knowledge, practices and other family categories. Springer, Dordrecht, 2014a). The expanded FRA provides a useful framework for organizing science curriculum and instruction and gives rise to generative visual tools that support the implementation of a richer understanding of and about science. The practical implications for this approach have been incorporated into analysis of curriculum policy documents, curriculum implementation resources, textbook analysis and teacher education settings.

  6. Women's Representation in Science Predicts National Gender-Science Stereotypes: Evidence from 66 Nations

    ERIC Educational Resources Information Center

    Miller, David I.; Eagly, Alice H.; Linn, Marcia C.

    2015-01-01

    In the past 40 years, the proportion of women in science courses and careers has dramatically increased in some nations but not in others. Our research investigated how national differences in women's science participation related to gender-science stereotypes that associate science with men more than women. Data from ~350,000 participants in 66…

  7. [Overview of research projects funding in traditional Chinese medicine oncology field supported by National Natural Science Foundation of China].

    PubMed

    Tang, Dong-Xin; Chen, Lian-Yu; Guo, Shu-Zhen; Han, Li-Wei; Zhang, Feng-Zhu

    2017-05-01

    In this paper, the funding situation of traditional Chinese medicine oncology research projects supported by National Natural Science Fund from 1986-2016 was reviewed. The characteristics of funded projects were summarized from funding amount, funding expenses, funding category, and the main research contents of projects, etc. At the same time, the main problems in the projects were analyzed in this paper, in order to provide reference for the relevant fund applicants. Copyright© by the Chinese Pharmaceutical Association.

  8. [Characteristics and innovation in projects of ethnomedicine and ethnopharmacology funded by National Natural Science Foundation of China].

    PubMed

    Han, Li-wei

    2015-09-01

    The overall situation of projects of ethnomedicine and ethnopharmacology funded by the National Natural Science Foundation of China (NSFC) since 2008 has been presented in this paper. The main source of characteristics and innovation of the funded projects were summarized, which may come from several aspects, such as the ethnomedical theories, the dominant diseases of ethnomedicine, special diseases in ethnic minorities inhabited areas, unique ethnomedical therapy, special methods for applying medication, endemic medicinal materials in ethnic minorities inhabited areas, same medicinal materials with different applications. Examples have been provided to give references to the applicants in the fields of ethnomedicine and ethnopharmacology.

  9. [Analysis of proposals received and funded in discipline of microbiology of the National Natural Science Foundation of China from 2011 to 2015].

    PubMed

    Zhang, Xin; Li, Weimin; He, Jianwei; Wen, Mingzhang; Du, Quansheng

    2016-02-04

    Based on a wrap-up of the research proposals received and awards made during 2011 through 2015 in the discipline of microbiology of the Department of Life Sciences, National Natural Science Foundation of China, this article presents a statistic analysis of award recipient institutions and main research trends, and attempts a prospective prioritization of the funding areas from the points of encouraging interdisciplinary research, optimizing funding instruments and strengthening talent training, with a view to providing reference for scientists and researchers in the field of microbiology.

  10. The effect of explicit, inquiry instruction on freshman college science majors' understanding of the nature of science

    NASA Astrophysics Data System (ADS)

    Kenyon, Lisa Orvik

    Reform efforts have placed strong emphasis on teaching practices that should help students learn about the nature of science. Researchers have examined two general instructional approaches, explicit and implicit, believed to be useful in teaching science. Of these two approaches, researchers emphasize explicit instruction as the more effective approach when enhancing students' views of the scientific endeavor (Abd-El-Khalick & Lederman, 2000; Bell, 2001; Billeh & Hasan, 1975; Carey & Stauss, 1968; Schwartz et al., 2000). Furthermore, recent studies (Schwartz et al ., 2000, 2001) indicate that teaching science inquiry through investigative activities and reflective discussions have demonstrated to be most effective for understanding science. The purpose of this study was to describe the effect of explicit, inquiry instruction on the understanding of freshman college science majors regarding the nature of science. Participants included 74 freshman college science majors, 50 students in the experimental group and 24 students in the control group. The experimental group was exposed to the treatment of the study, which took place in a Succeeding in Science course. The course content included explicit instruction on the nature of science, emphasizing scientific inquiry and the processes that scientists carry out in their work. The course reflected three aspects of inquiry-based science that are discussed in the Inquiry and the National Science Education Standards (2000) which are (1) to learn the principles and concepts of science; (2) to participate in scientific investigations; and (3) to reflect on the epistemology of science. The research design of this study used a pretest-posttest instrument, The Views of Nature of Science Questionnaire Form C (VNOS-C) (Lederman et al., 2001) and an essay paper at the end of the course to assess students' understanding about the nature of science. The results from the VNOS-C were analyzed using analysis of covariance in which the

  11. Diabetic nephropathy research in China: Data analysis and review from the National Natural Science Foundation of China.

    PubMed

    Wan, Qiang; Xu, Yanying; Dong, Erdan

    2015-05-01

    As the largest funding agency of natural science of China, the National Natural Science Foundation of China (NSFC) has made great efforts in promoting the development of diabetic nephropathy (DN) research in recent years. The aim of the current study is to summarize the diabetic nephropathy research in China by analyzing NSFC-funded projects. Data on all projects in the DN field funded by NSFC from 1986 to 2013 were collected. The funding tendency, funding areas, and hotspots in the DN field, and major research institutions, were analyzed. As one output of this support, outstanding research groups in China, and their representative studies, are also highlighted. From 1986 to 2013, the NSFC has funded a total of 248 projects in the DN field, with a total funding amount of 91.5 million RMB (US$14.9 million). A rapid increase could be seen in the past 5 years, with an average annual 30% increase in projects numbers and a 52% increase in funding amount. All fields in DN research have been covered by the NSFC, including etiology, pathophysiology, diagnostics, and therapeutics. Along with increased funding of the DN research, there has been a growth in the papers published in Science Citation Index journals by Chinese scholars. In the past decade, the funding scale and funding budget have increased dramatically. Benefiting from this, DN research in China has also made considerable progression. © 2015 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  12. Conceptual change in pre-service science teachers' views on nature of science when learning a unit on the physics of waves

    NASA Astrophysics Data System (ADS)

    Kattoula, Ehsan Habib

    Recent reform efforts in science education have culminated in National Science Education Standards (NSES), which include the nature of science and science inquiry themes across all grade levels. Consideration must be given to pre-service science teachers' nature of science conceptions and their perceived roles in implementing the nature of science in the science classroom. This qualitative study investigates how pre-service science teachers' views about the nature of science develop and change when learning a college physics unit on waves in an urban university. The study uses case study methodology with four pre-service science teachers as individual units of analysis. Data regarding the participants' views about the nature of science were collected before and after the instruction on the physics of waves unit. The research design used 'The Views of Nature of Science/Views of Scientific Inquiry-Physics Questionnaire' followed by structured interviews throughout the wave unit. In addition, the participants responded to daily questions that incorporated nature of science themes and constructed concept maps regarding the physics content and their nature of science understanding. After completing the VNOS/VOSI-PHYS questionnaire the pre-service science teachers' views of the nature of science were found to be mainly naive and transitional before the instruction. At the end of the wave unit instruction, the data indicated that conceptual change occurred in participants' nature of science views, shifting toward informed views. The findings of this study provide evidence that using explicit instruction with specific activities, such as experiments and concept mapping, shifted the pre-service science teachers' views away from naive and toward informed.

  13. National GDP, Science Interest and Science Achievement: A Person-by-Nation Interaction

    PubMed Central

    Drob, Elliot M. Tucker; Cheung, Amanda K.; Briley, Daniel A.

    2014-01-01

    Maximizing science achievement is a critical target of educational policy, with important implications for national and international economic and technological competitiveness. Previous research has identified both science interest and socioeconomic status (SES) as robust predictors of science achievement, but little research has examined their joint effects. In a dataset drawn from approximately 400,000 high school students from 57 countries, we document large interest by SES and interest by per capita gross domestic product (GDP) interactions in the prediction of science achievement. Student interest in science is a substantially stronger predictor of science achievement in higher socioeconomic contexts and in higher GDP nations. Our results are consistent with the hypothesis that, in higher opportunity contexts, motivational factors play larger roles in learning and achievement. They add to the growing body of evidence indicating that substantial cross national differences in psychological effect sizes are not simply a logical possibility, but in many cases, an empirical reality. PMID:25304883

  14. Delivering climate science about the Nation's fish, wildlife, and ecosystems: the U.S. Geological Survey National Climate Change and Wildlife Science Center

    USGS Publications Warehouse

    Varela-Acevedo, Elda

    2014-01-01

    Changes to the Earth’s climate—temperature, precipitation, and other climate variables—pose significant challenges to our Nation’s natural resources. Managers of land, water, and living resources require an understanding of the impacts of climate change—which exacerbate ongoing stresses such as habitat alteration and invasive species—in order to design effective response strategies. In 2008, Congress created the National Climate Change and Wildlife Science Center (NCCWSC) within the U.S. Geological Survey (USGS). The center was formed to address environmental challenges resulting from climate and land-use change and to provide natural resource managers with rigorous scientific information and effective tools for decision making. Located at the USGS National Headquarters in Reston, Virginia, the NCCWSC has established eight regional Department of the Interior (DOI) Climate Science Centers (CSCs) and has invested over $93 million (through fiscal year 2013) in cutting-edge climate change research.

  15. 76 FR 58032 - Notice of Intent To Repatriate a Cultural Item: Denver Museum of Nature and Science, Denver, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-19

    ... Denver Museum of Nature & Science, Denver, CO, that meets the definition of an object of cultural... Cultural Item: Denver Museum of Nature and Science, Denver, CO AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The Denver Museum of Nature & Science, in consultation with the appropriate...

  16. The Nature of Science and Science Education: A Bibliography

    NASA Astrophysics Data System (ADS)

    Bell, Randy; Abd-El-Khalick, Fouad; Lederman, Norman G.; Mccomas, William F.; Matthews, Michael R.

    Research on the nature of science and science education enjoys a long history, with its origins in Ernst Mach's work in the late nineteenth century and John Dewey's at the beginning of the twentieth century. As early as 1909 the Central Association for Science and Mathematics Teachers published an article - A Consideration of the Principles that Should Determine the Courses in Biology in Secondary Schools - in School Science and Mathematics that reflected foundational concerns about science and how school curricula should be informed by them. Since then a large body of literature has developed related to the teaching and learning about nature of science - see, for example, the Lederman (1992)and Meichtry (1993) reviews cited below. As well there has been intense philosophical, historical and philosophical debate about the nature of science itself, culminating in the much-publicised Science Wars of recent time. Thereferences listed here primarily focus on the empirical research related to the nature of science as an educational goal; along with a few influential philosophical works by such authors as Kuhn, Popper, Laudan, Lakatos, and others. While not exhaustive, the list should prove useful to educators, and scholars in other fields, interested in the nature of science and how its understanding can be realised as a goal of science instruction. The authors welcome correspondence regarding omissions from the list, and on-going additions that can be made to it.

  17. How do the high school biology textbooks introduce the nature of science?

    NASA Astrophysics Data System (ADS)

    Lee, Young H.

    2007-05-01

    Although helping students to achieve an adequate understanding of the nature of science has been a consistent goal for science education for over half a century, current research reveals that the majority of students and teachers have naive views of the nature of science (Abd-El-khalick & Akerson, 2004; Bianchini & Colburn, 2000). This problem could be attributed not only to the complex nature of science, but also to the way the nature of science is presented to students during instruction. Thus, research must be conducted to examine how the science is taught, especially in science textbooks, which are a major instructional resource for teaching science. The aim of this study was to conduct a content analysis of the first chapter of four high school biology textbooks, which typically discusses "What is science?" and "What is biology?" This research used a content analysis technique to analyze the four high school biology textbooks, using a conceptual framework that has been used often for science textbook analysis. This conceptual framework consists of four themes of the nature of science: (a) science as a body of knowledge, (b) science as a way of thinking, (c) science as a way of investigating, and (d) the interaction of science, technology, and society. For this study, the four-theme-framework was modified to incorporate descriptors from national-level documents, such as Science for All Americans (AAAS, 1990) Benchmarks for Science Literacy (AAAS, 1993) and the National Science Education Standards (NRC, 1996), as well as science education research reports. A scoring procedure was used that resulted in good to excellent intercoder agreement with Cohen's kappa (k) ranging from .63 to .96. The findings show that the patterns of presentation of the four themes of the nature of science in the four high school biology textbooks are similar across the different locations of data, text, figures, and assessments. On the other hand, the pattern of presentation of the four

  18. Case Study: Teaching Nature of Science through Scientific Models--The Geocentric vs. Heliocentric Cosmology

    ERIC Educational Resources Information Center

    Price, Matthew; Rogers, Michael

    2016-01-01

    In the nonmajor science classroom, case studies--when used as learning tools--should help students build the necessary framework to understand the nature of science. For most students, the nonmajor science course (in this case, Astronomy 101) may be the last time that they interact with science in a formal learning setting. A National Science…

  19. Kick-Starting the Nature of Science

    ERIC Educational Resources Information Center

    Bull, Ally; Joyce, Chris; Spiller, Lorraine; Hipkins, Rosemary

    2010-01-01

    Nature of Science is the core strand of science in "The New Zealand Curriculum". This resource aims to support teachers to understand the different aspects of the Nature of Science and what this might mean in practice. All aspects of this strand are covered: Understanding about science; Investigating in science; Communicating in science;…

  20. Nature of Science Contextualized: Studying Nature of Science with Scientists

    ERIC Educational Resources Information Center

    Tala, Suvi; Vesterinen, Veli-Matti

    2015-01-01

    Understanding nature of science (NOS) is widely considered an important educational objective and views of NOS are closely linked to science teaching and learning. Thus there is a lively discussion about what understanding NOS means and how it is reached. As a result of analyses in educational, philosophical, sociological and historical research,…

  1. Science teachers' worldviews and values regarding nature and the environment

    NASA Astrophysics Data System (ADS)

    Roberts, Wendy P.

    According to the National Science Education Standards (1996), science educators are challenged with the goal of educating future citizens and policy makers to make informed decisions concerning socio-scientific issues. Previous science education research has not explored the influence of science teachers' personal worldviews and values in achieving this educational goal. The purpose of this study was to investigate secondary science teachers' worldviews and values as they relate to nature and environmental education in their science classrooms. The participants' descriptions of their environmental personae and their perception of its influence in their classrooms were also examined. The participants represented a purposeful sample of twelve certified secondary school science teachers who teach in a suburban Atlanta, Georgia school. The study employed an interpretive, qualitative methodology using a constant comparative, inductive analysis design to develop grounded theory. Each participant's worldview, values, and environmental personae regarding the natural world and the environment were explored using William Cobern's (2000) Nature Card Sort instrument, responses to five environmental scenarios and individual interviews that addressed each participant's interpretation of the effect that personal worldviews and values have in their science classrooms. The participants' worldviews and values were disproportionately reflective of both science and society with far more weight given to the contextual values of society rather than the constitutive values of science. Most of these teachers had strong spiritual worldviews of nature; however, these views were of a Puritanical nature rather than Aboriginal. The participants felt conflicted about the appropriate course of action in many environmental issues. Contrary to other studies conducted in this field, there were few philosophical differences between teachers in the different disciplines of science, with the exception

  2. When Nature of Science Meets Marxism: Aspects of Nature of Science Taught by Chinese Science Teacher Educators to Prospective Science Teachers

    NASA Astrophysics Data System (ADS)

    Wan, Zhi Hong; Wong, Siu Ling; Zhan, Ying

    2013-05-01

    Nature of science (NOS) is beginning to find its place in the science education in China. In a study which investigated Chinese science teacher educators' conceptions of teaching NOS to prospective science teachers through semi-structured interviews, five key dimensions emerged from the data. This paper focuses on the dimension, NOS content to be taught to prospective science teachers. Among a total of twenty NOS elements considered by the Chinese science teacher educators to be important ideas to be taught, five were suggested by no less than a half of the educators. They are (1) empirical basis of scientific investigation, (2) logics in scientific investigation, (3) general process of scientific investigation, (4) progressive nature of scientific knowledge, and (5) realist views of mind and natural world. This paper discusses the influence of Marxism, a special socio-cultural factor in China, on Chinese science teacher educators' conceptions of NOS content to be taught to prospective science teachers. We argue the importance of considering ideological traditions (mainly those in general philosophy and religion) when interpreting views of NOS or its content to be taught in different countries and regions and understanding students' conceptual ecology of learning NOS.

  3. [Continuous funding of National Natural Science Foundation of China has boosted the development of the discipline of ophthalmology over the past 25 years].

    PubMed

    Jia, Ren-bing; Fan, Xian-qun; Xu, Yan-ying; Dong, Er-dan

    2012-02-01

    To analyze the role of National Natural Science Foundation of China (NSFC) on the development of the discipline of Ophthalmology from 1986 to 2010. Data on the total number of projects and funding of NSFC allocated to Ophthalmology, as well as papers published, awards, personnel training, subject construction were collected, and the role of NSFC on other sources of funding was evaluated. From 1986 to 2010, NSFC supported a total of 593 scientific research projects of Ophthalmology, funding a total amount of 152.44 million Yuan, among which were 371 free application projects, 156 Young Scientist Funds, 9 Key Programs, 5 National Science Fund for Distinguished Young Scholars, 3 Major international (regional) joint research programs, 1 Science Fund for Creative Research Group and 48 other projects. Over the past 25 years, the number of NSFC projects received by Ophthalmology has been an overall upward trend in the share in the Department of Life (Health) Sciences. Take the projects (186 of 292, 63.7%) as examples completed between 2002 and 2010, a total 262 papers were published in Science Citation Index (SCI) included journals and 442 papers were published in Chinese journals. Meanwhile, 8 Second prizes of National Science and Technology Progress Award and 1 State Technological Invention Award were received. As of 2010, the training of a total of more than 40 postdoctoral, more than 400 doctoral students and more than 600 graduate students have been completed. 5 national key disciplines and 1 national key laboratory have been built. Moreover, 2 "973" programs from Ministry of Science and Technology and 1 project of special fund in the public interest from Ministry of Public Health were obtained. 2 scholars were among the list of Yangtze Fund Scholars granted by Ministry of Education. Over the past 25 years, a full range of continuous funding from NSFC has led to fruitful results and a strong impetus to the progress of discipline of Ophthalmology.

  4. Science Indicators, 1976: Report of the National Science Board.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. National Science Board.

    This ninth annual report of the National Science Board presents the third assessment of the state of science in the United States. The assessment includes reports on the status and health of science including national resources and manpower. Indicators reviewed in the report include: international science and technology, resources for research and…

  5. Conceptual Change in Understanding the Nature of Science Learning: An Interpretive Phenomenological Analysis

    NASA Astrophysics Data System (ADS)

    DiBenedetto, Christina M.

    This study is the first of its kind to explore the thoughts, beliefs, attitudes and values of secondary educators as they experience conceptual change in their understanding of the nature of science learning vis a vis the Framework for K-12 Science Education published by the National Research Council. The study takes aim at the existing gap between the vision for science learning as an active process of inquiry and current pedagogical practices in K-12 science classrooms. For students to understand and explain everyday science ideas and succeed in science studies and careers, the means by which they learn science must change. Focusing on this change, the study explores the significance of educator attitudes, beliefs and values to science learning through interpretive phenomenological analysis around the central question, "In what ways do educators understand and articulate attitudes and beliefs toward the nature of science learning?" The study further explores the questions, "How do educators experience changes in their understanding of the nature of science learning?" and "How do educators believe these changes influence their pedagogical practice?" Study findings converge on four conceptions that science learning: is the action of inquiry; is a visible process initiated by both teacher and learner; values student voice and changing conceptions is science learning. These findings have implications for the primacy of educator beliefs, attitudes and values in reform efforts, science teacher leadership and the explicit instruction of both Nature of Science and conceptual change in educator preparation programs. This study supports the understanding that the nature of science learning is cognitive and affective conceptual change. Keywords: conceptual change, educator attitudes and beliefs, framework for K-12 science education, interpretive phenomenological analysis, nature of science learning, next generation science standards, science professional development

  6. A Cross-Cultural Comparison of Korean and American Science Teachers' Views of Evolution and the Nature of Science

    NASA Astrophysics Data System (ADS)

    Kim, Sun Young; Nehm, Ross H.

    2011-01-01

    Despite a few international comparisons of the evolutionary beliefs of the general public, comparatively less research has focused on science teachers. Cross-cultural studies offer profitable opportunities for exploring the interactions among knowledge and belief variables in regard to evolution in different socio-cultural contexts. We investigated the evolutionary worldviews of pre-service science teachers from Asia (specifically South Korea), a region often excluded from international comparisons. We compared Korean and American science teachers': (1) understandings of evolution and the nature of science, and (2) acceptance of evolution in order to elucidate how knowledge and belief relationships are manifested in different cultural contexts. We found that Korean science teachers exhibited 'moderate' evolutionary acceptance levels comparable to or lower than American science teacher samples. Gender was significantly related to Korean teachers' evolution content knowledge and acceptance of evolution, with female Christian biology teachers displaying the lowest values on all measures. Korean science teachers' understandings of nature of science were significantly related to their acceptance and understanding of evolution; this relationship appears to transcend cultural boundaries. Our new data on Korean teachers, combined with studies from more than 20 other nations, expose the global nature of science teacher ambivalence or antipathy toward evolutionary knowledge.

  7. National Science Bowl | NREL

    Science.gov Websites

    and high school student teams on science and math topics. The National Science Bowl provides an opportunity for students to develop science, technology, engineering, and math (STEM) skills in a non tournament challenges students' knowledge of science. Student teams are questioned on life science, math

  8. The National Science Education Standards.

    ERIC Educational Resources Information Center

    Bybee, Rodger W.; Champagne, Audrey B.

    2000-01-01

    Describes efforts under the sponsorship of the National Research Council (NRC) to improve science education. Provides an overview of the National Science Education Standards. First published in 1995. (YDS)

  9. Henry David Thoreau, Forest Succession & The Nature of Science: A Method for Curriculum Development

    ERIC Educational Resources Information Center

    Howe, Eric M.

    2009-01-01

    A main reason for using the history of science in classroom instruction is its utility in promoting students' understanding of the nature of science (NOS). As indicated in such documents as the "National Science Education Standards," it is important to help students develop their understanding of NOS so that they will become more critical…

  10. Phenology observations collected by citizen scientists directly support science and natural resource management

    NASA Astrophysics Data System (ADS)

    Gerst, K.; Crimmins, T. M.; Rosemartin, A.

    2016-12-01

    The USA National Phenology Network (USA-NPN; www.usanpn.org) serves science and society by promoting a broad understanding of plant and animal phenology and the relationships among phenological patterns, climate, and environmental change. Data collected by citizen and professional scientists through Nature's Notebook - a national-scale, multi-taxa phenology observation program - serve USA-NPN strategic goals of advancing science and informing decisions. These phenology data and resultant products and maps are being used in a rapidly growing number of applications for science, conservation and resource management. Here we describe recent outcomes that have resulted from successful engagement with citizen scientists, with a focus on robust scientific products and results that would not have been possible without a coordinated national effort. Since 2009 over 7,500 Nature's Notebook participants have contributed over 7.8 million observation records of plants and animals across the United States. These data, and value-added data products developed and delivered by the USA-NPN, have been used in 24 peer-reviewed publications to date. In our presentation, we first highlight several recent published studies that demonstrate the value of data stored in the National Phenology Database (NPDb) to advance understanding of the ecological impacts of climate change. Second, we discuss local- to national-scale projects that capitalize on Nature's Notebook to inform management decisions, including scheduling street-sweeping to prevent leaves from entering inland lakes, setting the timing of herbicide treatments to maximize efficacy against invasive plants, and developing predictions of the emergence of forest pests. Finally, we present an overview of the framework we use to ensure data are of high quality. We invite researchers and partners to explore these data to address a wide range of science questions and management needs.

  11. National Medal of Science

    NASA Image and Video Library

    2014-11-20

    President Barack Obama delivers remarks at the National Medals of Science and National Medals of Technology and Innovation Awards Ceremony, Thursday, Nov. 20, 2014 in the East Room of the White House in Washington. MESSENGER Principal Investigator, director of Columbia University's Lamont-Doherty Earth Observatory, Sean Solomon, was awarded the National Medal of Science, the nation's top scientific honor, at the ceremony. MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) is a NASA-sponsored scientific investigation of the planet Mercury and the first space mission designed to orbit the planet closest to the Sun. Photo Credit: (NASA/Bill Ingalls)

  12. Between the national and the universal: natural history networks in Latin America in the nineteenth and twentieth centuries.

    PubMed

    Duarte, Regina Horta

    2013-12-01

    This essay examines contemporary Latin American historical writing about natural history from the nineteenth through the twentieth centuries. Natural history is a "network science," woven out of connections and communications between diverse people and centers of scholarship, all against a backdrop of complex political and economic changes. Latin American naturalists navigated a tension between promoting national science and participating in "universal" science. These tensions between the national and the universal have also been reflected in historical writing on Latin America. Since the 1980s, narratives that recognize Latin Americans' active role have become more notable within the renewal of the history of Latin American science. However, the nationalist slant of these approaches has kept Latin American historiography on the margins. The networked nature of natural history and Latin America's active role in it afford an opportunity to end the historiographic isolation of Latin America and situate it within world history.

  13. Demystifying Nature of Science

    ERIC Educational Resources Information Center

    Lederman, Judith; Bartels, Selina; Lederman, Norman; Gnanakkan, Dionysius

    2014-01-01

    With the emergence of the "Next Generation Science Standards" ("NGSS"; NGSS Lead States 2013), it is apparent that teaching and learning about nature of science (NOS) continues to be an important goal of science education for all K-12 students. With this emphasis on NOS, early childhood teachers are asking how to design…

  14. Earth Science and Public Health: Proceedings of the Second National Conference on USGS Health-Related Research

    USGS Publications Warehouse

    Buxton, Herbert T.; Griffin, Dale W.; Pierce, Brenda S.

    2007-01-01

    The mission of the U.S. Geological Survey (USGS) is to serve the Nation by providing reliable scientific information to describe and understand the earth; minimize loss of life and property from natural disasters; manage water, biological, energy, and mineral resources; and enhance and protect our quality of life. As the Nation?s largest water, earth, and biological science and civilian mapping agency, the USGS can play a significant role in providing scientific knowledge and information that will improve our understanding of the relations of environment and wildlife to human health and disease. USGS human health-related research is unique in the Federal government because it brings together a broad spectrum of natural science expertise and information, including extensive data collection and monitoring on varied landscapes and ecosystems across the Nation. USGS can provide a great service to the public health community by synthesizing the scientific information and knowledge on our natural and living resources that influence human health, and by bringing this science to the public health community in a manner that is most useful. Partnerships with health scientists and managers are essential to the success of these efforts. USGS scientists already are working closely with the public health community to pursue rigorous inquiries into the connections between natural science and public health. Partnering agencies include the Armed Forces Institute of Pathology, Agency for Toxic Substances Disease Registry, Centers for Disease Control and Prevention, U.S. Environmental Protection Agency, Food and Drug Administration, Mine Safety and Health Administration, National Cancer Institute, National Institute of Allergy and Infectious Disease, National Institute of Environmental Health Sciences, National Institute for Occupational Safety and Health, U.S. Public Health Service, and the U.S. Army Medical Research Institute of Infectious Diseases. Collaborations between public

  15. A content analysis of sixth-grade, seventh-grade, and eighth-grade science textbooks with regard to the nature of science

    NASA Astrophysics Data System (ADS)

    Phillips, Marianne C.

    Science teachers rely heavily on their textbooks; for many, it is the only curriculum they use (Weiss, 1993). Therefore, it is important these materials convey an accurate conception of the nature of science. Science for All Americans (AAAS, 1990) and the National Science Education Standards (NRC, 1996) call for teaching students about the nature of science. Including the nature of science throughout science textbooks will produce scientifically literate citizens (Driver and others, 1993) with an improved ability to make informed decisions (McComas, 1998). Teaching the nature of science supports the successful learning of science content and process (Driver and others, 1996), and bridges the gap between the two cultures of practicing scientists and school science (Sorsby, 2000). Do middle school science textbooks provide a balanced presentation of the nature of science throughout their text? To determine the answer, this investigation used a content analysis technique to analyze a random sample from the introduction chapter and the rest of the textbook chapters from twelve middle school science textbooks for the four aspects of the nature of science (Chiappetta, Fillman, & Sethna, 2004). Scoring procedures were used to determine interrater agreement using both Cohen's kappa (kappa) and Krippendorff's alpha (alpha). Kappa values were determined to be fair to excellent beyond chance among the three coders. The resulting values for Krippendorff's alpha ranged from acceptable (alpha > .80) to unacceptable (alpha < .67). The results from this content analysis indicated little change from previous studies in the balance for the themes of the nature of science. This investigation found the sixth-grade, seventh-grade, and eighth-grade science textbooks adopted by Texas to have unbalanced presentations for the four aspects of the nature of science. In addition, it found these middle school science textbooks are not balanced across programs. This imbalance is providing

  16. When Nature of Science Meets Marxism: Aspects of Nature of Science Taught by Chinese Science Teacher Educators to Prospective Science Teachers

    ERIC Educational Resources Information Center

    Wan, Zhi Hong; Wong, Siu Ling; Zhan, Ying

    2013-01-01

    Nature of science (NOS) is beginning to find its place in the science education in China. In a study which investigated Chinese science teacher educators' conceptions of teaching NOS to prospective science teachers through semi-structured interviews, five key dimensions emerged from the data. This paper focuses on the dimension, "NOS content…

  17. Theoretical computer science and the natural sciences

    NASA Astrophysics Data System (ADS)

    Marchal, Bruno

    2005-12-01

    I present some fundamental theorems in computer science and illustrate their relevance in Biology and Physics. I do not assume prerequisites in mathematics or computer science beyond the set N of natural numbers, functions from N to N, the use of some notational conveniences to describe functions, and at some point, a minimal amount of linear algebra and logic. I start with Cantor's transcendental proof by diagonalization of the non enumerability of the collection of functions from natural numbers to the natural numbers. I explain why this proof is not entirely convincing and show how, by restricting the notion of function in terms of discrete well defined processes, we are led to the non algorithmic enumerability of the computable functions, but also-through Church's thesis-to the algorithmic enumerability of partial computable functions. Such a notion of function constitutes, with respect to our purpose, a crucial generalization of that concept. This will make easy to justify deep and astonishing (counter-intuitive) incompleteness results about computers and similar machines. The modified Cantor diagonalization will provide a theory of concrete self-reference and I illustrate it by pointing toward an elementary theory of self-reproduction-in the Amoeba's way-and cellular self-regeneration-in the flatworm Planaria's way. To make it easier, I introduce a very simple and powerful formal system known as the Schoenfinkel-Curry combinators. I will use the combinators to illustrate in a more concrete way the notion introduced above. The combinators, thanks to their low-level fine grained design, will also make it possible to make a rough but hopefully illuminating description of the main lessons gained by the careful observation of nature, and to describe some new relations, which should exist between computer science, the science of life and the science of inert matter, once some philosophical, if not theological, hypotheses are made in the cognitive sciences. In the

  18. The Nature of Science in Science Curricula: Methods and Concepts of Analysis

    ERIC Educational Resources Information Center

    Ferreira, Sílvia; Morais, Ana M.

    2013-01-01

    The article shows methods and concepts of analysis of the nature of science in science curricula through an exemplary study made in Portugal. The study analyses the extent to which the message transmitted by the Natural Science curriculum for Portuguese middle school considers the nature of science. It is epistemologically and sociologically…

  19. 75 FR 10845 - Subcommittee on Forensic Science; Committee on Science; National Science and Technology Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-09

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Subcommittee on Forensic Science; Committee on Science; National Science and Technology Council ACTION: General Notice. Nominations for Interagency Working Group participants. SUMMARY: The Subcommittee on Forensic Science of the National Science and Technology Council's...

  20. Impacts of psychological science on national security agencies post-9/11.

    PubMed

    Brandon, Susan E

    2011-09-01

    Psychologists have been an integral part of national security agencies since World War I, when psychological science helped in personnel selection. A robust infrastructure supporting wider applications of psychology to military and intelligence problems developed further during World War II and the years following, primarily in the areas of testing, human factors, perception, and the decision sciences. Although the nature of the attacks on 9/11 raised the level of perceived need for increased human-based intelligence, the impacts of psychologists on the policies and practices of national security agencies in the decade since have not increased significantly. © 2011 American Psychological Association

  1. 77 FR 41205 - Sunshine Act Meetings; National Science Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-12

    ... NATIONAL SCIENCE FOUNDATION Sunshine Act Meetings; National Science Board The National Science Board, pursuant to NSF regulations (45 CFR part 614), the National Science Foundation Act, as amended... National Science Board business and other matters specified, as follows: AGENCY: National Science Board...

  2. The National Climate Change and Wildlife Science Center annual report for 2012

    USGS Publications Warehouse

    Varela-Acevedo, Elda; O'Malley, Robin

    2013-01-01

    Welcome to the inaugural edition of the U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC) and the Department of the Interior (DOI) Climate Science Centers (CSCs) annual report. In 2008, Congress created the National Climate Change and Wildlife Science Center (NCCWSC) within the U.S. Geological Survey (USGS). The center was formed to respond to the demands of natural resource managers for rigorous scientific information and effective tools for assessing and responding to climate change. Located at the USGS National Headquarters in Reston, Va., the NCCWSC has invested more than $70 million in cutting-edge climate change research and, in response to Secretarial Order No. 3289,established and is managing eight regional Department of Interior (DOI) Climate Science Centers (CSCs). The mission of the NCCWSC is to provide natural resource managers with the tools and information they need to develop and execute management strategies that address the impacts of climate and other ongoing global changes on fish and wildlife and their habitats. The DOI CSCs are joint Federal-university partnerships that focus their scientific work on regional priorities identified by DOI Landscape Conservation Cooperatives (LCCs) as well as Federal, State, Tribal, and other resource managers. The CSCs provide access to a wide range of scientific capabilities through their network of university partners along with the USGS and other Federal agency scientists. The focus of the NCCWSC on multiregion and national priorities complements the regionally focused agendas of the CSCs.

  3. Simple webs of natural environment theme as a result of sharing in science teacher training

    NASA Astrophysics Data System (ADS)

    Tapilouw, M. C.; Firman, H.; Redjeki, S.; Chandra, D. T.

    2018-03-01

    Thematic learning is one type of integrated science (Biology, Physics, Chemistry and Earth Science) in Science Education. This study is concerning about simple webs of natural environment theme in science learning, as one of training material in science teacher training program. Making simple web is a goal of first step in teacher training program. Every group explain their web illustration to other group. Twenty Junior High School science teacher above one education foundation participate in science teacher training program. In order to gather simple webs, sharing method was used in this first step of science teacher training. The result of this study is five different simple web of natural environment themes. These webs represent science learning in class VII/Semester I, class VII/Semester II, Class VIII, Class IX/Semester I, Class IX/Semester II based on basic competency in National Curriculum 2013. Each group discussed web of natural environment theme based on their learning experience in real class which basic competency and subject matters are linked with natural environment theme. As a conclusion, simple webs are potential to develop in the next step of science teacher training program and to be implemented in real class.

  4. Pseudo-Science: A Meaningful Context for Assessing Nature of Science

    ERIC Educational Resources Information Center

    Afonso, Ana Sofia; Gilbert, John K.

    2010-01-01

    Although an understanding of nature of science is a core element in scientific literacy, there is considerable evidence that school and university students hold naive conceptions about it. It is argued that, whilst the failure to learn about nature of science arises from its neglect in formal science education, a major reason is the adherence to…

  5. Student conceptions of the nature of science

    NASA Astrophysics Data System (ADS)

    Talbot, Amanda L.

    Research has shown that students from elementary school to college have major misconceptions about the nature of science. While an appropriate understanding of the nature of science has been an objective of science education for a century, researchers using a variety of instruments, continue to document students' inadequate conceptions of what science is and how it operates as an enterprise. Current research involves methods to improve student understanding of the nature of science. Students often misunderstand the creative, subjective, empirical, and tentative nature of science. They do not realize the relationship between laws and theories, nor do they understand that science does not follow a prescribed method. Many do not appreciate the influence culture, society, and politics; nor do they have an accurate understanding of the types of questions addressed by science. This study looks at student understanding of key nature of science (NOS) concepts in order to examine the impact of implementing activities intended to help students better understand the process of science and to see if discussion of key NOS concepts following those activities will result in greater gains in NOS understanding. One class received an "activities only" treatment, while the other participated in the same activities followed by explicit discussion of key NOS themes relating to the activity. The interventions were implemented for one school year in two high school anatomy and physiology courses composed of juniors and seniors. Student views of the nature of science were measured using the Views of the Nature of Science-Form C (VNOS-C). Students in both classes demonstrated significant gains in NOS understanding. However, contrary to current research, the addition of explicit discussion did not result in significantly greater gains in NOS understanding. This suggests that perhaps students in higher-level science classes can draw the correlations between NOS related activities and

  6. Investigating inquiry beliefs and nature of science (NOS) conceptions of science teachers as revealed through online learning

    NASA Astrophysics Data System (ADS)

    Atar, Hakan Yavuz

    Creating a scientifically literate society appears to be the major goal of recent science education reform efforts (Abd-El-Khalick, Boujaoude, Dushl, Lederman, Hofstein, Niaz, Tregust, & Tuan, 2004). Recent national reports in the U.S, such as Shaping the Future, New Expectations for Undergraduate Education in Science, Mathematics, Engineering, and Technology (NSF,1996), Inquiry in Science and In Classroom, Inquiry and the National Science Education Standards (NRC, 2001), Pursuing excellence: Comparison of international eight-grade mathematics and science achievement from a U.S. perspective (NCES, 2001), and Standards for Science Teacher Preparation (NSTA 2003) appear to agree on one thing: the vision of creating a scientifically literate society. It appears from science education literature that the two important components of being a scientifically literate individual are developing an understanding of nature of science and ability to conduct scientific inquiries. Unfortunately, even though teaching science through inquiry has been recommended in national reports since the 1950's, it has yet to find its way into many science classrooms (Blanchard, 2006; Yerrick, 2000). Science education literature identfies several factors for this including: (1) lack of content knowledge (Anderson, 2002; Lee, Hart Cuevas, & Enders, 2004; Loucks-Horsely, Hewson, Love, & Stiles, 1998; Moscovici, 1999; Smith & Naele, 1989; Smith, 1989); (2) high stake tests (Aydeniz, 2006); (3) teachers' conflicting beliefs with inquiry-based science education reform (Blanchard, 2006; Wallace & Kang, 2004); and, (4) lack of collaboration and forums for communication (Anderson, 2002; Davis, 2003; Loucks-Horsely, Hewson, Love, & Stiles, 1998; Wallace & Kang, 2004). In addition to the factors stated above this study suggest that some of the issues and problems that have impeded inquiry instruction to become the primary approach to teaching science in many science classrooms might be related to

  7. Design, science and naturalism

    NASA Astrophysics Data System (ADS)

    Deming, David

    2008-09-01

    The Design Argument is the proposition that the presence of order in the universe is evidence for the existence of God. The Argument dates at least to the presocratic Greek philosophers, and is largely based on analogical reasoning. Following the appearance of Aquinas' Summa Theologica in the 13th century, the Christian Church in Europe embraced a Natural Theology based on observation and reason that allowed it to dominate the entire world of knowledge. Science in turn advanced itself by demonstrating that it could be of service to theology, the recognized queen of the sciences. During the heyday of British Natural Theology in the 17th and 18th centuries, the watchmaker, shipbuilder, and architect analogies were invoked reflexively by philosophers, theologians, and scientists. The Design Argument was not systematically and analytically criticized until David Hume wrote Dialogues on Natural Religion in the 1750s. After Darwin published Origin of Species in 1859, Design withered on the vine. But in recent years, the Argument has been resurrected under the appellation "intelligent design," and been the subject of political and legal controversy in the United States. Design advocates have argued that intelligent design can be formulated as a scientific hypothesis, that new scientific discoveries validate a design inference, and that naturalism must be removed as a methodological requirement in science. If science is defined by a model of concentric epistemological zonation, design cannot be construed as a scientific hypothesis because it is inconsistent with the core aspects of scientific methodology: naturalism, uniformity, induction, and efficient causation. An analytical examination of claims by design advocates finds no evidence of any type to support either scientific or philosophical claims that design can be unambiguously inferred from nature. The apparent irreducible complexity of biological mechanisms may be explained by exaptation or scaffolding. The argument

  8. Los Alamos National Lab: National Security Science

    Science.gov Websites

    SKIP TO PAGE CONTENT Los Alamos National Laboratory Delivering science and technology to protect Permit for Storm Water Public Reading Room Environment Home News Los Alamos National Lab: National deposition operations for the Center for Integrated Nanotechnologies at Los Alamos. Innovation drives his

  9. Comparison of Views of the Nature of Science between Natural Science and Nonscience Majors

    ERIC Educational Resources Information Center

    Desaulniers Miller, Marie C.; Montplaisir, Lisa M.; Offerdahl, Erika G.; Cheng, Fu-Chih; Ketterling, Gerald L.

    2010-01-01

    Science educators have the common goal of helping students develop scientific literacy, including understanding of the nature of science (NOS). University faculties are challenged with the need to develop informed NOS views in several major student subpopulations, including science majors and nonscience majors. Research into NOS views of…

  10. [Review and analysis of transplant biological research projects funded by National Natural Science Foundation of China].

    PubMed

    Gong, Weihua; Sun, Ruijuan; Dong, Erdan

    2015-08-01

    To study the funding and achievements in the field of organ transplantation support by the National Natural Science Foundation of China (NSFC). A search of NSFC database was made by using the key word "transplantation" and excluding "bone marrow transplantation" for the projects funded between 1988 and 2013. SCI indexed publications that marked with NSFC project number were collected by searching each grant number in the database of the Web of Science. Six hundreds fifty-five projects were identified and received about 220 million yuan in grant funding. These funded research projects were distributed among 25 provinces and autonomous regions, however, which were mainly in the developed coastal areas; of them, 43 (6.56%) projects were granted in xenotransplantation and 17 projects (2.60%) were funded in the field of traditional Chinese medicine-related organ transplantation; Transplantation on blood vessels, heart, kidney, liver, lung, small intestine, pancreatic, cornea, trachea, skin, etc. were primarily performed in research. Nine hundreds and sixty-one SCI-indexed publications were achieved. Magnitude and intensity of NSFC funding, output of SCI publications have been increasing, suggesting that NSFC positively promotes the development of organ transplantation. Although a great progress of transplantation has been made, basic and translational studies should be vigorously strengthened.

  11. Engaged, embedded, enjoined: science and technology studies in the National Science Foundation.

    PubMed

    Hackett, Edward J; Rhoten, Diana R

    2011-12-01

    Engaged scholarship is an intellectual movement sweeping across higher education, not only in the social and behavioral sciences but also in fields of natural science and engineering. It is predicated on the idea that major advances in knowledge will transpire when scholars, while pursuing their research interests, also consider addressing the core problems confronting society. For a workable engaged agenda in science and technology studies, one that informs scholarship as well as shapes practice and policy, the traditional terms of engagement must be renegotiated to be more open and mutual than has historically characterized the nature of inquiry in this field. At the same time, it is essential to protect individual privacy and preserve government confidentiality. Yet there is a scientific possibility for and benefit to introducing more collaborative and deliberative research approaches between scholar and subject in ways that will not violate these first-order ethics. To make the case, this article discusses the possibilities and perils of engaged science and technology scholarship by drawing on our own recent experiences to conduct and apply STS research while embedded in the National Science Foundation. Brief accounts of these experiences reveal the opportunities as well as the challenges of engaged scholarship. They also provide lessons for those fellow travelers who might follow the authors to this or other like host organizations with ambitions of increasing fundamental knowledge about and applying research to the policies, programs, and decisions of the scientific enterprise.

  12. Integrating the Nature of Science

    ERIC Educational Resources Information Center

    Weiland, Ingrid; Blieden, Katherine; Akerson, Valarie

    2014-01-01

    The nature of science (NOS) describes what science is and how knowledge in science is developed (NSTA 2013). To develop elementary students' understandings of how scientists explore the world, the authors--an education professor and a third-grade teacher--endeavored to integrate NOS into a third-grade life science unit. Throughout the lesson,…

  13. National differences in gender–science stereotypes predict national sex differences in science and math achievement

    PubMed Central

    Nosek, Brian A.; Smyth, Frederick L.; Sriram, N.; Lindner, Nicole M.; Devos, Thierry; Ayala, Alfonso; Bar-Anan, Yoav; Bergh, Robin; Cai, Huajian; Gonsalkorale, Karen; Kesebir, Selin; Maliszewski, Norbert; Neto, Félix; Olli, Eero; Park, Jaihyun; Schnabel, Konrad; Shiomura, Kimihiro; Tulbure, Bogdan Tudor; Wiers, Reinout W.; Somogyi, Mónika; Akrami, Nazar; Ekehammar, Bo; Vianello, Michelangelo; Banaji, Mahzarin R.; Greenwald, Anthony G.

    2009-01-01

    About 70% of more than half a million Implicit Association Tests completed by citizens of 34 countries revealed expected implicit stereotypes associating science with males more than with females. We discovered that nation-level implicit stereotypes predicted nation-level sex differences in 8th-grade science and mathematics achievement. Self-reported stereotypes did not provide additional predictive validity of the achievement gap. We suggest that implicit stereotypes and sex differences in science participation and performance are mutually reinforcing, contributing to the persistent gender gap in science engagement. PMID:19549876

  14. Perceptions of agriculture and natural resource careers among minority students in a national organization

    Treesearch

    Corliss Wilson Outley

    2008-01-01

    The purpose of the study was to identify factors that influence the career choice behaviors among students who were members of Minorities in Agriculture, Natural Resources and Related Sciences (MANRRS) National Society. A secondary purpose was to identify perceptions and attitudes among students that chose careers in agriculture and natural resources. The MANRRS...

  15. Which values regarding nature and other species are we promoting in the Australian science curriculum?

    NASA Astrophysics Data System (ADS)

    Castano Rodriguez, Carolina

    2016-12-01

    Through a critical textual analysis of the content and structure of the new Australian science curriculum, in this paper I identify the values it encourages and those that are absent. I investigate whether the Australian science curriculum is likely to promote the attitudes needed to educate generations of children who act more responsibly with other species and the environment. Over the past decades, there has been an increasing awareness of the human impact on the environment and other species. Consistently, there is a growing awareness of the role of education in encouraging children to act in a more ethical, responsible, and caring way. However, it is still unclear as to whether national curricula can (or will aspire to) accomplish this. In Australia, a national science curriculum has been implemented. In this paper I argue that the Australian science curriculum is likely to miss the opportunity to cultivate values of care for nature and other species. Instead, it is likely to reinforce anthropocentric attitudes toward our natural environment. The importance of explicitly promoting values that encourage care and respect for all species and challenges anthropocentric views of other animals and nature are discussed.

  16. 78 FR 69138 - Sunshine Act Meeting; National Science Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-18

    ... NATIONAL SCIENCE FOUNDATION Sunshine Act Meeting; National Science Board The National Science Board, pursuant to NSF regulations (45 CFR Part 614), the National Science Foundation Act, as amended... the scheduling of meetings for the transaction of National Science Board business and other matters...

  17. National Academy of Sciences

    MedlinePlus

    ... special activities. Through the National Academies of Sciences, Engineering, and Medicine, the NAS provides objective, science-based ... YouTube Instagram Resources Member Directory Meetings & Events Locations Careers Newsroom | Directory | Meetings & Events | Support the NAS Copyright © ...

  18. Preservice Teachers' Perception about Nature of Science

    ERIC Educational Resources Information Center

    Nuangchalerm, Prasart

    2009-01-01

    Teacher student is an important role improving their own perception what science should be anticipated in classroom. Also, science learning in the current studies try to have relied understanding in the nature of science. This research aimed to study teacher students' perception in the nature of science. One hundred and one of junior teacher…

  19. Reconceptualizing the Nature of Science for Science Education: Why Does it Matter?

    ERIC Educational Resources Information Center

    Dagher, Zoubeida R.; Erduran, Sibel

    2016-01-01

    Two fundamental questions about science are relevant for science educators: (a) What is the nature of science? and (b) what aspects of nature of science should be taught and learned? They are fundamental because they pertain to how science gets to be framed as a school subject and determines what aspects of it are worthy of inclusion in school…

  20. 78 FR 51752 - Sunshine Act Meetings; National Science Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-21

    ... NATIONAL SCIENCE FOUNDATION Sunshine Act Meetings; National Science Board The National Science... CFR part 614), the National Science Foundation Act, as amended (42 U.S.C. 1862n- 5), and the... for the transaction of National Science Board business, as follows: DATE AND TIME: Monday, August 26...

  1. 78 FR 2451 - National Science Board; Sunshine Act Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-11

    ... NATIONAL SCIENCE FOUNDATION National Science Board; Sunshine Act Meetings The National Science... National Science Foundation Act, as amended (42 U.S.C. 1862n-5), and the Government in the Sunshine Act (5... transaction of National Science Board business and other matters specified, as follows: DATE AND TIME...

  2. Climate Science Centers: Growing Federal and Academic Expertise in the Nation's Interests

    NASA Astrophysics Data System (ADS)

    Ryker, S. J.

    2014-12-01

    The U.S. Department of the Interior's (Interior) natural and cultural resource managers face increasingly complex challenges exacerbated by climate change. In 2009, under Secretarial Order 3289, Interior created eight regional Climate Science Centers managed by the U.S. Geological Survey's (USGS) National Climate Change and Wildlife Science Center and in partnership with universities. Secretarial Order 3289 provides a framework to coordinate climate change science and adaptation efforts across Interior and to integrate science and resource management expertise from Federal, State, Tribal, private, non-profit, and academic partners. In addition to broad research expertise, these Federal/university partnerships provide opportunities to develop a next generation of climate science professionals. These include opportunities to increase the climate science knowledge base of students and practicing professionals; build students' skills in working across the boundary between research and implementation; facilitate networking among researchers, students, and professionals for the application of research to on-the-ground issues; and support the science pipeline in climate-related fields through structured, intensive professional development. In 2013, Climate Science Centers supported approximately 10 undergraduates, 60 graduate students, and 26 postdoctoral researchers. Additional students trained by Climate Science Center-affiliated faculty also contribute valuable time and expertise, and are effectively part of the Climate Science Center network. The Climate Science Centers' education and training efforts have also reached a number of high school students interested in STEM careers, and professionals in natural and cultural resource management. The Climate Science Centers are coordinating to build on each other's successful education and training efforts. Early successes include several intensive education experiences, such as the Alaska Climate Science Center's Girls on

  3. Nurturing the Nature of Science

    ERIC Educational Resources Information Center

    Reeves, Carolyn; Chessin, Debby; Chambless, Martha

    2007-01-01

    Historical stories of scientists provide an excellent opportunity to help students see that science is indeed a human endeavor and demonstrate the interrelationships among science, technology, and society. A number of engaging historical accounts illustrate characteristics of the nature of science. The story of Lise Meitner leads students through…

  4. Exploring How Research Experiences for Teachers Changes Their Understandings of the Nature of Science and Scientific Inquiry

    ERIC Educational Resources Information Center

    Buxner, Sanlyn R.

    2014-01-01

    The nature of science is a prevalent theme across United States national science education standards and frameworks as well as other documents that guide formal and informal science education reform. To support teachers in engaging their students in authentic scientific practices and reformed teaching strategies, research experiences for teachers…

  5. Integrating traditional ecological knowledge with western science for optimal natural resource management

    Treesearch

    Serra J. Hoagland

    2017-01-01

    Traditional ecological knowledge (TEK) has been recognized within indigenous communities for millennia; however, traditional ecological knowledge has received growing attention within the western science (WS) paradigm over the past twenty-five years. Federal agencies, national organizations, and university programs dedicated to natural resource management are beginning...

  6. Representing the nature of science in a science textbook: Exploring author-editor-publisher interactions

    NASA Astrophysics Data System (ADS)

    Digiuseppe, Maurizio

    Current reforms in elementary and secondary science education call for students and teachers to develop more informed views of the nature of science---a process in which learning materials like science textbooks play a significant role. This dissertation reports on a case study of the development of representations of the nature of science in one unit of a senior high school chemistry textbook by the book's author, editor, and publisher. The study examines the multiple discourses that arose as the developers reflected on their personal and shared understandings of the nature of science; squared these understandings with mandated curricula, the educational needs of chemistry students and teachers, and the exigencies of large-scale commercial textbook publishing; and developed and incorporated into the textbook representations of the nature of science they believed were the most suitable. Analyses of the data in this study indicate that a number of factors significantly influenced the development of representations of the nature of science, including representational accuracy (the degree to which suggested representations of the nature of science conformed to what the developers believed were contemporary understandings of the nature of science), representational consistency (the degree to which similar representations of the nature of science in different parts of the textbook conveyed the same meaning), representational appropriateness (the age-, grade-, and reading-level suitability of the suggested nature of science representations), representational alignment (the degree to which suggested representations of the nature of science addressed the requirements of mandated curricula), representational marketability (the degree to which textbook developers believed suggested representations of the nature of science would affect sales of the textbook in the marketplace), and a number of "Workplace Resources" factors such as the availability of time, relevant expertise

  7. Factors Affecting Early Elementary (K-4) Teachers' Introduction of the Nature of Science: A National Survey

    ERIC Educational Resources Information Center

    Sweeney, Sophia Jean

    2010-01-01

    A researcher-developed questionnaire regarding the importance and developmental appropriateness of 12 specific elements of the nature of science (Alshamrani, 2008) for early elementary (kindergarten through fourth grade [K-4]) science instruction was mailed to a random sample of U.S. K-4 teachers. At least half (N = 377) of the respondents…

  8. National Transportation Science and Technology Strategy.

    DOT National Transportation Integrated Search

    1999-04-01

    The National Science and Technology Council (NSTC) Committee on Technology, Subcommittee on Transportation Research and Development (R&D), has created a National Transportation Science and Technology Strategy that builds on the earlier strategy publi...

  9. [Applications and approved projects on traditional Chinese medicine in National Natural Science Foundation of China in 2010].

    PubMed

    Shang, Hong-cai; Huang, Jin-ling; Han, Li-wei; Pei, Ling-peng; Guo, Lin; Lin, Na; Wang, Chang-en

    2011-10-01

    In this article, the authors firstly summarized the number of applications submitted to and projects supported by the National Natural Science Foundation of China (NSFC) in the field of traditional Chinese medicine research in 2010. Then they described the district distribution, research direction layout and allotment of the approved projects in the three primary disciplines (traditional Chinese medicine, Chinese materia medica and integrated traditional Chinese and Western medicine) and their 43 subdisciplines. The targeting suggestions for improvement were given respectively by concluding the reason of disapproved projects from the point of view of applicants and supporting institution, and by stating the common problems existing in the review process from the perspectives of fund managers and evaluation experts. Lastly, the major funding fields in the near future were predicted in the hope of providing guidance for applicants.

  10. [Analysis of projects of infectious disease epidemiology sponsored by National Natural Science Foundation of China].

    PubMed

    Jian-Ming, Wang; Yan-Kai, Xia; Hui-Juan, Zhu; Feng, Chen; Hong-Bing, Shen

    2016-05-10

    To analyze the projects on the infectious disease epidemiology sponsored by the National Natural Science Foundation of China (NSFC), explore the hotspot and development trend, and offer a reference for researchers in this field. Based on the NSFC database, the projects on the infectious disease epidemiology (H2609) sponsored from 1987 to 2014 were analyzed. The changes of fund numbers, amounts and research fields were described. During the study period, NSFC sponsored 373 projects, including 228 general projects (61.1%), 78 youth projects (20.9%) and 67 other projects (18.0%). The average amount of the grant was 358.2 thousand Yuan (20 thousand-8 million). The main sponsored research fields were mechanisms of pathogen and immunity (36.2%) and population-based epidemiological studies (33.0%). The top three diseases were hepatitis, HIV/AIDS and tuberculosis. The amount of funding on researches of infectious disease epidemiology has increased continuously, which has played an important role in training scientific talents in the field of prevention and control of infectious diseases.

  11. National Medal of Science

    NASA Astrophysics Data System (ADS)

    Wendel, JoAnna

    2014-04-01

    The nation's highest honor for American scientists and engineers, the National Medal of Science is awarded annually by the president of the United States to individuals who have made outstanding contributions to or for the total impact of their work on the current state of chemical, physical, biological, social or behavioral sciences; mathematics; or engineering. Anyone can submit a nomination. Submit a short description of the nominee's contribution and three letters of support to http://www.nsf.gov/od/nms/medal.jsp by 1 May 2014.

  12. Beyond Nature of Science: The Case for Reconceptualising "Science" for Science Education

    ERIC Educational Resources Information Center

    Erduran, Sibel

    2014-01-01

    In this paper, I argue that contemporary accounts of nature of science (NoS) are limited in their depiction of "science" and that new perspectives are needed to broaden their characterisation and appeal for science education. In particular, I refer to the role of interdisciplinary characterisations of science in informing the theory and…

  13. [Science and nation: romanticism and natural history in the works of E. J. da Silva Maia].

    PubMed

    Kury, L

    1998-01-01

    The works of physician and naturalist Emílio Joaquim da Silva Maia (1808-59) can be viewed as a scientific project that discovers Brazil and its inhabitants. Maia's nationalism and his romantic view of nature formed the underpinnings of his scientific theories, especially his studies on zoological geography. He subordinated the issue of the biological specificity of different regions of the world to his era's debates on the construction of Brazil as an independent nation. In his interpretations of European natural history, Maia endeavored to understand Brazilian nature as a specific achievement of the Cosmos, in keeping with Alexander von Humboldt's approach.

  14. Webs Wires Waves: The Science & Technology of Communication. National Science and Technology Week, April 20-26, 1997.

    ERIC Educational Resources Information Center

    National Science Foundation, Arlington, VA.

    This collection of activities revolves around the theme of National Science and Technology Week (NSTW). The six 8-page booklets that make up this package present activities that follow a pathway from natural, simple forms of communication toward increasingly complex and technological forms. They are designed to be undertaken in sequence, but can…

  15. Science Indicators, 1978: Report of the National Science Board.

    ERIC Educational Resources Information Center

    Buzzelli, Donald E.; And Others

    This eleventh annual report of the National Science Board presents the fourth assessment of the state of science in the United States. The assessment includes reports on the status of science, with the following indicators reviewed within the report: international science and technology, resources for research and development, resources for basic…

  16. Science Education and the Nature of Nature: Bruno Latour's Ontological Politics

    ERIC Educational Resources Information Center

    Gleason, Tristan

    2017-01-01

    This article explores recent developments in the field of science and technology, and the work of Bruno Latour in particular, to problematize the nature of Nature in science education. Although science and technology studies, and the scholarship on science education alike, have become increasingly attentive to the antidemocratic habits of science…

  17. Science as Story: "Communicating the Nature of Science through Historical Perspectives on Science"

    ERIC Educational Resources Information Center

    Wieder, Will

    2006-01-01

    Historical perspectives on science serve to humanize the sciences, increase student motivation, communicate academic content, and convey the nature of science. This paper briefly reviews pertinent literature regarding the history of science and narrates the author's experiences of incorporating historical perspectives in high school biology…

  18. How Nonfiction Reveals the Nature of Science

    ERIC Educational Resources Information Center

    Zarnowski, Myra; Turkel, Susan

    2013-01-01

    In this article, the authors consider whether children's trade books promote an authentic understanding of the nature of science. They begin by discussing the characteristics of the nature of science and then examine existing research in children's science books for evidence of the visibility of these features. They describe the problems…

  19. Making Cosmic Connections in the Nature of Science

    NASA Astrophysics Data System (ADS)

    Androes, D. L.

    2011-09-01

    Presenting the rich heritage of astronomy includes exposing the process of science, warts and all. In the quest to comprehensively cover science content, the nature of science is often neglected. A cursory inclusion of the nature of science generally showcases in the lives and times of the Copernican Revolution - and rightly so. Astronomy owes its mark of fame in all other disciplines to the radical shift in thinking about our place in the cosmos that occurred in the late 1500s and early 1600s. However, the nature of science offers a much broader range of connections between science objectives and course content.

  20. 76 FR 50759 - National Science Board; Sunshine Act Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-16

    ... NATIONAL SCIENCE FOUNDATION National Science Board; Sunshine Act Meeting The National Science Board's Task Force on Merit Review, pursuant to NSF regulations (45 CFR Part 614), the National Science....T. SUBJECT MATTER: Discussion of proposed revisions to the draft principles and review criteria...

  1. National Medal of Science

    NASA Astrophysics Data System (ADS)

    Nineteen scientists and engineers were awarded the nation's highest scientific honor, the National Medal of Science, by President Ronald Reagan in late February in a ceremony held in the East Room of the White House. Among the recipients were two AGU members.

  2. The influence of educational context on science learning: a cross-national analysis of PISA

    NASA Astrophysics Data System (ADS)

    Coll, Richard K.; Dahsah, Chanyah; Faikhamta, Chatree

    2010-04-01

    The literature is replete with studies about the importance of context in relation to teaching and learning. Major international studies such as PISA, among others, attempt to develop an understanding of achievement in science learning in a variety of educational contexts. Here we explore the influence of educational context itself on science learning as measured by PISA. Comparison is made between two countries: one developed or 'western' nation, New Zealand, and one non-western developing nation from southeast Asia, Thailand. In this work the authors seek to establish links between the nature of the educational context (based on Lave's notion of situated cognition) and achievement in the PISA science evaluation exercise.

  3. 45 CFR 650.2 - National Science Foundation patent policy.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 3 2011-10-01 2011-10-01 false National Science Foundation patent policy. 650.2 Section 650.2 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION PATENTS § 650.2 National Science Foundation patent policy. As authorized by the National Science...

  4. 45 CFR 650.2 - National Science Foundation patent policy.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 3 2012-10-01 2012-10-01 false National Science Foundation patent policy. 650.2 Section 650.2 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION PATENTS § 650.2 National Science Foundation patent policy. As authorized by the National Science...

  5. 45 CFR 650.2 - National Science Foundation patent policy.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 3 2013-10-01 2013-10-01 false National Science Foundation patent policy. 650.2 Section 650.2 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION PATENTS § 650.2 National Science Foundation patent policy. As authorized by the National Science...

  6. 45 CFR 650.2 - National Science Foundation patent policy.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 3 2010-10-01 2010-10-01 false National Science Foundation patent policy. 650.2 Section 650.2 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION PATENTS § 650.2 National Science Foundation patent policy. As authorized by the National Science...

  7. 45 CFR 650.2 - National Science Foundation patent policy.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 3 2014-10-01 2014-10-01 false National Science Foundation patent policy. 650.2 Section 650.2 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION PATENTS § 650.2 National Science Foundation patent policy. As authorized by the National Science...

  8. Upper Secondary School Pupils' Attitudes towards Natural Science

    ERIC Educational Resources Information Center

    Akarsu, Bayram; Kariper, Afsin

    2013-01-01

    Students' attitudes towards natural science constitute an important area in science education as fewer students are interested in natural science and they do not choose corresponding science disciplines in postsecondary education. The current study reports preliminary results of a survey on high school students' interests and attitudes towards…

  9. The effect of nature of science metacognitive prompts on science students' content and nature of science knowledge, metacognition, and self-regulatory efficacy

    NASA Astrophysics Data System (ADS)

    Peters, Erin E.

    The purpose of the present quasi-experimental mixed-method design is to examine the effectiveness of a developmental intervention (4-phase EMPNOS) to teach the nature of science using metacognitive prompts embedded in an inquiry unit. Eighty-eight (N=88) eighth grade students from four classrooms were randomly assigned to an experimental and a control group. All participants were asked to respond to a number of tests (content and nature of science knowledge) and surveys (metacognition of the nature of science, metacognitive orientation of the classroom, and self-regulatory efficacy). Participants were also interviewed to find problem solving techniques and shared experiences between the groups. It was hypothesized that the experimental group would outperform the control group in all measures. Partial support for the hypotheses was found. Specifically, results showed significant gains in content knowledge and nature of science knowledge of the experimental group over the control group. Qualitative findings revealed that students in the control group reported valuing authority over evidence, while the experimental group reported that they depended on consensus of their group on the interpretation of the evidence rather than authority, which is more closely aligned to the aspects of the nature of science. Four-phase EMPNOS may have implications as a useful classroom tool in guiding students to check their thinking for alignment to scientific thinking.

  10. 78 FR 49297 - National Science Board; Sunshine Act Meetings; Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... NATIONAL SCIENCE FOUNDATION National Science Board; Sunshine Act Meetings; Notice The National Science Board, pursuant to NSF regulations (45 CFR part 614), the National Science Foundation Act, as... of the scheduling of a teleconference meeting of the Executive Committee National Science Board...

  11. 77 FR 71453 - National Science Board; Sunshine Act Meetings; Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-30

    ... NATIONAL SCIENCE FOUNDATION National Science Board; Sunshine Act Meetings; Notice The National Science Board, pursuant to NSF regulations (45 CFR part 614), the National Science Foundation Act, as...: These meetings will be held at the National Science Foundation, 4201 Wilson Blvd., Rooms 1235 and 1295...

  12. National Climate Change and Wildlife Science Center, Version 2.0

    USGS Publications Warehouse

    O'Malley, R.; Fort, E.; Hartke-O'Berg, N.; Varela-Acevedo, E.; Padgett, Holly A.

    2013-01-01

    The mission of the USGS's National Climate Change and Wildlife Science Center (NCCWSC) is to serve the scientific needs of managers of fish, wildlife, habitats, and ecosystems as they plan for a changing climate. DOI Climate Science Centers (CSCs) are management by NCCWSC and include this mission as a core responsibility, in line with the CSC mission to provide scientific support for climate-adaptation across a full range of natural and cultural resources. NCCWSC is a Science Center application designed in Drupal with the OMEGA theme. As a content management system, Drupal allows the science center to keep their website up-to-date with current publications, news, meetings and projects. OMEGA allows the site to be adaptive at different screen sizes and is developed on the 960 grid.

  13. [Toward a national system on science and technology].

    PubMed

    Cilento-Sarli, A

    1994-01-01

    This essay discuss the integration of a National System on Science and Technology (SINACYT), supported with resources arising from a National Found for Science and Technology (FONACYT), and whose leader entity should be the Institute of the National Found for Science and Technology (INFONACYT) to substitute CONICIT.

  14. National Ocean Sciences Bowl in 2013: A National Competition for High School Ocean Science Education

    DTIC Science & Technology

    2013-09-30

    The school even has begun to list oceanography as an extracurricular activity in its advertisements! I have seen firsthand how NOSB has raised an...event at the NOSB Finals; • Develop a career booklet to help guide students selecting a career related to ocean sciences; and • Actively encourage...students from diverse communities to participate in NOSB activities . APPROACH The National Ocean Sciences Bowl® (NOSB ®) is a nationally

  15. Explicitly Targeting Pre-Service Teacher Scientific Reasoning Abilities and Understanding of Nature of Science through an Introductory Science Course

    ERIC Educational Resources Information Center

    Koenig, Kathleen; Schen, Melissa; Bao, Lei

    2012-01-01

    Development of a scientifically literate citizenry has become a national focus and highlights the need for K-12 students to develop a solid foundation of scientific reasoning abilities and an understanding of nature of science, along with appropriate content knowledge. This implies that teachers must also be competent in these areas; but…

  16. Grade six students' understanding of the nature of science

    NASA Astrophysics Data System (ADS)

    Cochrane, Donald Brian

    The goal of scientific literacy requires that students develop an understanding of the nature of science to assist them in the reasoned acquisition of science concepts and in their future role as citizens in a participatory democracy. The purpose of this study was to investigate and describe the range of positions that grade six students hold with respect to the nature of science and to investigate whether gender or prior science education was related to students' views of the nature of science. Two grade six classes participated in this study. One class was from a school involved in a long-term elementary science curriculum project. The science curriculum at this school involved constructivist epistemology and pedagogy and a realist ontology. The curriculum stressed hands-on, open-ended activities and the development of science process skills. Students were frequently involved in creating and testing explanations for physical phenomena. The second class was from a matched school that had a traditional science program. Results of the study indicated that students hold a wider range of views of the nature of science than previously documented. Student positions ranged from having almost no understanding of the nature of science to those expressing positions regarding the nature of science that were more developed than previous studies had documented. Despite the range of views documented, all subjects held realist views of scientific knowledge. Contrary to the literature, some students were able to evaluate a scientific theory in light of empirical evidence that they had generated. Results also indicated that students from the project school displayed more advanced views of the nature of science than their matched peers. However, not all students benefited equally from their experiences. No gender differences were found with respect to students' understanding of the nature of science.

  17. 77 FR 5282 - National Science and Technology Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-02

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY National Science and Technology Council ACTION: Notice of... Nanoscale Science, Engineering, and Technology (NSET) Subcommittee of the Committee on Technology, National Science and Technology Council (NSTC), will hold an ``International Symposium on Assessing the Economic...

  18. The Particulate Nature of Matter in Science Education and in Science.

    ERIC Educational Resources Information Center

    Vos, Wobbe de; Verdonk, Adri H.

    1996-01-01

    Discusses ideas about the particulate nature of matter and assesses the extent to which these represent a compromise between scientific and educational considerations. Analyzes relations between the particulate nature of matter in science and science education in an attempt to understand children's inclination to attribute all kinds of macroscopic…

  19. An Analysis of South African Grade 9 Natural Sciences Textbooks for Their Representation of Nature of Science

    ERIC Educational Resources Information Center

    Ramnarain, Umesh Dewnarain; Chanetsa, Tarisai

    2016-01-01

    This article reports on an analysis and comparison of three South African Grade 9 (13-14 years) Natural Sciences textbooks for the representation of nature of science (NOS). The analysis was framed by an analytical tool developed and validated by Abd-El-Khalick and a team of researchers in a large-scale study on the high school textbooks in the…

  20. Medicine as combining natural and human science.

    PubMed

    Dreyfus, Hubert L

    2011-08-01

    Medicine is unique in being a combination of natural science and human science in which both are essential. Therefore, in order to make sense of medical practice, we need to begin by drawing a clear distinction between the natural and the human sciences. In this paper, I try to bring the old distinction between the Geistes and Naturwissenschaften up to date by defending the essential difference between a realist explanatory theoretical study of nature including the body in which the scientist discovers the causal properties of natural kinds and the interpretive understanding of human beings as embodied agents which, as Charles Taylor has convincingly argued, requires a hermeneutic account of self-interpreting human practices.

  1. Understanding nature of science as progressive transitions in heuristic principles

    NASA Astrophysics Data System (ADS)

    Niaz, Mansoor

    2001-11-01

    This study has the following objectives: (a) understand nature of science as progressive transitions in heuristic principles as conceptualized by Schwab (1962); (b) reformulate Smith and Scharmann's characterization of nature of science (Smith & Scharmann, 1999) in the light of evidence from history and philosophy of science; and (c) provide a rationale for the inclusion of three more characteristics of nature of science, to the original five suggested by Smith and Scharmann. It is concluded that nature of science manifests in the different topics of the science curriculum as heuristic principles. Science education, by emphasizing not only the empirical nature of science but also the underlying heuristic principles, can facilitate conceptual understanding.

  2. 76 FR 70168 - National Science Board; Sunshine Act Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-10

    ... NATIONAL SCIENCE FOUNDATION National Science Board; Sunshine Act Meetings The National Science Board's Subcommittee on Facilities (SCF), pursuant to NSF regulations (45 CFR part 614), the National Science Foundation Act, as amended (42 U.S.C. 1862n-5), and the Government in the Sunshine Act (5 U.S.C. 552b), hereby gives notice in regard to the...

  3. 77 FR 49462 - National Science Board; Sunshine Act Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-16

    ... NATIONAL SCIENCE FOUNDATION National Science Board; Sunshine Act Meetings The National Science Board, pursuant to NSF regulations (45 CFR Part 614), the National Science Foundation Act, as amended (42 U.S.C. 1862n-5), and the Government in the Sunshine Act (5 U.S.C. 552b), hereby gives notice in regard to the scheduling of a teleconference...

  4. Understanding the True Meaning of Nature of Science

    ERIC Educational Resources Information Center

    Crowther, David T.; Lederman, Norman G.; Lederman, Judith S.

    2005-01-01

    Along with the awesome responsibility to teach science content and inquiry comes a responsibility to nurture an understanding of the nature of science. Just what is nature of science? As simple as this statement sounds, the term in and of itself is not readily agreed upon in scientific communities. For K-12 and science education communities,…

  5. [Statistics and analysis on acupuncture and moxibustion projects of the National Natural Science Foundation of China of traditional Chinese medicine universities and colleges in recent 10 years: taking the General Program and National Science Fund for Young Scholars as examples].

    PubMed

    Li, Qingling; Ma, Qiang; Li, Dan; Liu, Nana; Yang, Jiahui; Sun, Chun; Cheng, Cheng; Jia, Xuezhao; Wang, Jing; Zeng, Yonglei

    2018-03-12

    To analyze statistically the situation of the National Natural Science Foundation of China (NSFC) from 2007 to 2016 in the field of acupuncture and moxibustion for supporting the national Universities colleges of traditional Chinese medicine on the General Program (GP) and the National Science Fund for Young Scholars (NSFYS). In view of five aspects, named fund, supporting units, key words, method, disorder and signal path, the differences were compared between GP and NSFYS, the following characteristics were summarized. ① The fund aid was increased from 2007 through 2013 and down-regulated from 2013 through 2016. In recent ten years, the funding condition was fluctuated, but increasing in tendency generally. ② The relevant projects of the same research direction had been approved continuously for over 3 years in a part of TCM universities, in which, the research continuity was the hot topic. ③ Regarding the therapeutic methods, acupuncture was the chief therapy; electroacupuncture, moxibustion and acupoints were involved as well. ④ The disorders involved in the research were cerebral ischemia, myocardial ischemia and reperfusion injury. It is suggested that the ischemic disorder is predominated in the research. ⑤ The signal path occupied the main research index system, including cell proliferation, metabolism, immune, apoptosis and autophagy. The researches on the other aspects were less.

  6. USRA's NCSEFSE: a new National Center for Space, Earth, and Flight Sciences Education

    NASA Astrophysics Data System (ADS)

    Livengood, T. A.; Goldstein, J.; Vanhala, H.; Hamel, J.; Miller, E. A.; Pulkkinen, K.; Richards, S.

    2005-08-01

    A new National Center for Space, Earth, and Flight Sciences Education (NCSEFSE) has been created in the Washington, DC metropolitan area under the auspices of the Universities Space Research Association. The NCSEFSE provides education and public outreach services in the areas of NASA's research foci in programs of both national and local scope. Present NCSEFSE programs include: Journey through the Universe, which unites formal and informal education within communities and connects a nationally-distributed network of communities from Hilo, HI to Washington, DC with volunteer Visiting Researchers and thematic education modules; the Voyage Scale Model Solar System exhibition on the National Mall, a showcase for planetary science placed directly outside the National Air and Space Museum; educational module development and distribution for the MESSENGER mission to Mercury through a national cadre of MESSENGER Educator Fellows; Teachable Moments in the News, which capitalizes on current events in space, Earth, and flight sciences to teach the science that underlies students' natural interests; the Voyages Across the Universe Speakers' Bureau; and Family Science Night at the National Air and Space Museum, which reaches audiences of 2000--3000 each year, drawn from the Washington metropolitan area. Staff scientists of NCSEFSE maintain active research programs, presently in the areas of planetary atmospheric composition, structure, and dynamics, and in solar system formation. NCSEFSE scientists thus are able to act as authentic representatives of frontier scientific research, and ensure accuracy, relevance, and significance in educational products. NCSEFSE instructional designers and educators ensure pedagogic clarity and effectiveness, through a commitment to quantitative assessment.

  7. Citizen science can improve conservation science, natural resource management, and environmental protection

    USGS Publications Warehouse

    McKinley, Duncan C.; Miller-Rushing, Abe J.; Ballard, Heidi L.; Bonney, Rick; Brown, Hutch; Cook-Patton, Susan; Evans, Daniel M.; French, Rebecca A.; Parrish, Julia; Phillips, Tina B.; Ryan, Sean F.; Shanley, Lea A.; Shirk, Jennifer L.; Stepenuck, Kristine F.; Weltzin, Jake F.; Wiggins, Andrea; Boyle, Owen D.; Briggs, Russell D.; Chapin, Stuart F.; Hewitt, David A.; Preuss, Peter W.; Soukup, Michael A.

    2017-01-01

    Citizen science has advanced science for hundreds of years, contributed to many peer-reviewed articles, and informed land management decisions and policies across the United States. Over the last 10 years, citizen science has grown immensely in the United States and many other countries. Here, we show how citizen science is a powerful tool for tackling many of the challenges faced in the field of conservation biology. We describe the two interwoven paths by which citizen science can improve conservation efforts, natural resource management, and environmental protection. The first path includes building scientific knowledge, while the other path involves informing policy and encouraging public action. We explore how citizen science is currently used and describe the investments needed to create a citizen science program. We find that:Citizen science already contributes substantially to many domains of science, including conservation, natural resource, and environmental science. Citizen science informs natural resource management, environmental protection, and policymaking and fosters public input and engagement.Many types of projects can benefit from citizen science, but one must be careful to match the needs for science and public involvement with the right type of citizen science project and the right method of public participation.Citizen science is a rigorous process of scientific discovery, indistinguishable from conventional science apart from the participation of volunteers. When properly designed, carried out, and evaluated, citizen science can provide sound science, efficiently generate high-quality data, and help solve problems.

  8. [JSPS-NRCT Core university program on natural medicine in pharmaceutical sciences].

    PubMed

    Saiki, Ikuo; Yamazaki, Mikako; Matsumoto, Kinzo

    2009-04-01

    The Core University Program provides a framework for international cooperative research in specifically designated fields and topics, centering around a core university in Japan and its counterpart university in other countries. In this program, individual scientists in the affiliated countries carry out cooperative research projects with sharply focused topics and explicitly delineated goals under leadership of the core universities. The Core University Program which we introduce here has been renewed since 2001 under the support of both the Japan Society for the Promotion of Science (JSPS) and the National Research Council of Thailand (NRCT). Our program aims to conduct cooperative researches particularly focusing on Natural Medicine in the field of Pharmaceutical Sciences. Institute of Natural Medicine at University of Toyama (Japan), Faculty of Pharmaceutical Sciences at Chulalongkorn University (Thailand), and Chulabhorn Research Institute (Thailand) have been taking part in this JSPS-NRCT Core University Program as core universities. The Program is also supported by the 20 institution members in both countries. This program is running the five research subject under a key word of natural medicine which are related to i) age-related diseases, ii) allergy and cancer, iii) hepatitis and infectious diseases, iv) structure, synthesis, and bioactivity of natural medicines, and v) molecular biology of Thai medicinal plant components and database assembling of Thai medicinal plants. The program also encourages university members to strengthen related research activities, to share advanced academic and scientific knowledge on natural medicines.

  9. 76 FR 55422 - National Science Board; Sunshine Act Meetings; Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-07

    ... Professor, School of Life Science, Arizona State University. CSB Subcommittee on Facilities (SCF) Open... NATIONAL SCIENCE FOUNDATION National Science Board; Sunshine Act Meetings; Notice The National Science Board, pursuant to NSF regulations (45 CFR part 614), the National Science Foundation Act, as...

  10. 78 FR 26399 - National Science Board; Sunshine Act Meetings; Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-06

    ... (DBI): The iPlant Collaborative-- Cyberinfrastructure for the Life Sciences (NSB-13-25) Closed... NATIONAL SCIENCE FOUNDATION National Science Board; Sunshine Act Meetings; Notice The National Science Board, pursuant to NSF regulations (45 CFR Part 614), the National Science Foundation Act, as...

  11. Science Teachers' Conceptions of Nature of Science: The Case of Bangladesh

    ERIC Educational Resources Information Center

    Sarkar, Md. Mahbub Alam; Gomes, Jui Judith

    2010-01-01

    This study explored Bangladeshi science teachers' conceptions of nature of science (NOS) with a particular focus on the nature of (a) scientific knowledge, (b) scientific inquiry and (c) scientific enterprise. The tentative, inferential, subjective and creative NOS, in addition to the myths of the scientific method and experimentation, the nature…

  12. 77 FR 21812 - National Science Board; Sunshine Act Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... NATIONAL SCIENCE FOUNDATION National Science Board; Sunshine Act Meeting The National Science Board's Committee on Strategy and Budget Task Force on Data Policies, pursuant to NSF regulations (45 CFR part 614), the National Science Foundation Act, as amended (42 U.S.C. 1862n-5), and the Government in the Sunshine Act (5 U.S.C. 552b), hereby give...

  13. 78 FR 56745 - Sunshine Act Meetings; National Science Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ... NATIONAL SCIENCE FOUNDATION Sunshine Act Meetings; National Science Board The National Science Board, pursuant to NSF regulations (45 CFR part 614), the National Science Foundation Act, as amended (42 U.S.C. 1862n-5), and the Government in the Sunshine Act (5 U.S.C. 552b), hereby gives notice of the scheduling of a teleconference meeting of the...

  14. 75 FR 81678 - Aeronautics Science and Technology Subcommittee; Committee on Technology; National Science and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Aeronautics Science and Technology Subcommittee; Committee on Technology; National Science and Technology Council ACTION: Notice of Meeting--Public input is.... SUMMARY: The Aeronautics Science and Technology Subcommittee (ASTS) of the National Science and Technology...

  15. Scientometrics: Nature Index and Brazilian science.

    PubMed

    Silva, Valter

    2016-09-01

    A recent published newspaper article commented on the (lack of) quality of Brazilian science and its (in) efficiency. The newspaper article was based on a special issue of Nature and on a new resource for scientometrics called Nature Index. I show here arguments and sources of bias that, under the light of the principle in dubio pro reo, it is questionable to dispute the quality and efficiency of the Brazilian science on these grounds, as it was commented on the referred article. A brief overview of Brazilian science is provided for readers to make their own judgment.

  16. The 1992 Science Olympiad National Tournament

    NASA Technical Reports Server (NTRS)

    Perry, W. D.; Simon, Marllin L.

    1992-01-01

    In the fall of 1991, approximately 8000 Junior and Senior High Schools from 39 states in the country registered one or more teams with the National Science Olympiad Headquarters, and started working their way towards the Science Olympiad National Tournament, which was held at Auburn University, Alabama on May 15 and 16, 1992. Teams that made it to the Science Olympiad National Tournament had to compete at the regional (e.g., Alabama had five regional tournaments) and state levels. In most cases a team had to be number one in the state in order to make it into the National Tournament. Since the decision was made to invite 50 teams from each division (division B is Junior High and division C is Senior High), for each state that did not participate, another state could send two teams. The selection of states that could send a second team was based on statewide registration with the National Headquarters.

  17. The Pedagogy of Science Teachers from Non-Natural Science Backgrounds

    ERIC Educational Resources Information Center

    Woods, Shaneka

    2017-01-01

    This is a descriptive, exploratory, qualitative, collective case study that explores the pedagogical practices of science teachers who do not hold natural science degrees. The intent of this study is to support the creation of alternative pathways for recruiting and retaining high-quality secondary science teachers in K-12 education. The…

  18. 76 FR 74077 - National Science Board; Sunshine Act Meetings; Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-30

    ... NATIONAL SCIENCE FOUNDATION National Science Board; Sunshine Act Meetings; Notice The National Science Board's Subcommittee on Facilities, Committee on Strategy and Budget, pursuant to NSF regulations... Office, National Science Foundation, 4201 Wilson Blvd., Arlington, VA 22230. A public listening room will...

  19. National Medal of Science nominations sought

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2013-03-01

    The U.S. National Science Foundation (NSF) is accepting nominations for the 2013 National Medal of Science until 1 April 2013. Congress established the medal in 1959 as a presidential award for individuals "deserving of special recognition by reason of their outstanding contributions to knowledge in the physical, biological, mathematical, or engineering sciences." Later, Congress expanded the recognition to include the social and behavioral sciences. NSF notes, "We are especially interested in identifying women, members of minority groups, and persons with disabilities for consideration." More information is available at http://www.nsf.gov/od/nms/medal.jsp and http://www.nsf.gov/od/nms/nsf_2013nationalmedalofscience_callfornominations.pdf. For more details, contact the Medal of Science program manager at nms@nsf.gov or 703-292-8040.

  20. Can Nature Protection be Unsustainable? Models Behind Nature Protection in New Zealands National Parks

    NASA Astrophysics Data System (ADS)

    Hauhs, Michael; Bogner, Christina

    2013-04-01

    Nature protection can be justified by intrinsic values of life. Western culture sees nature as an autonomous system. Thus, nature protection is often synonymous with refraining from human interference as much as possible. This, however, can pose at least technical problems. Indeed, historical human impacts such as introduced species are often irreversible. In such cases refraining from human interference to protect threatened species is not an adequate management response. Nature protection in New Zealand is a prominent example. Many introduced species make a non-interventionist attitude infeasible to protect endemic species such as kiwis. Actually, active human interference is necessary to attain this goal. Therefore, one may consider nature protection as another form of land use. As any other form of land use, it needs standards of proper management (i.e. explicit goals, assessment, intervention etc.). In other words, it has to be shown to be sustainable. However, sustainability may rigorously be defined as an attribute of past land use only. Instantaneous positive indicators of sustainability may be elusive. At best it can be decided by observation whether or not a land use has been (not) sustainable until now. Stakeholders of nature protection have often different (implicit) concepts or models of nature in mind. This can lead to conflicts when it comes to management decisions. For example, the methods by which conservationists in New Zealand seek to re-establish historical species assemblages (e.g. aerial drop of poison into national parks) have come under criticism of animal rights groups as non-humane. We propose to use abstract modelling language to classify these concepts of nature protection and related issues. We show that from modelling perspective these conflicts pose a basic science problem rather than an applied science problem. This makes the delegation into existing disciplines so hard. We discuss possible implications for nature protection

  1. 76 FR 6828 - National Science Board; Sunshine Act Meetings; Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-08

    ... Future Advancement: Discussion in the Context of Recent STEM Education Policy Developments Committee on... NATIONAL SCIENCE FOUNDATION National Science Board; Sunshine Act Meetings; Notice The National Science Board, pursuant to NSF regulations (45 CFR Part 614), the National Science Foundation Act, as...

  2. 75 FR 21045 - National Science Board; Sunshine Act Meetings; Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-22

    ... NATIONAL SCIENCE FOUNDATION National Science Board; Sunshine Act Meetings; Notice The National Science Board's Committee on Strategy and Budget, pursuant to National Science Foundation regulations (45... designated for the public to listen to this teleconference meeting. All visitors must contact the Board...

  3. 76 FR 6829 - National Science Board; Sunshine Act Meetings; Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-08

    ... the National Science Board website www.nsf.gov/nsb for additional information and schedule updates... NATIONAL SCIENCE FOUNDATION National Science Board; Sunshine Act Meetings; Notice The National Science Board's Committee on Programs and Plans, pursuant to NSF regulations (45 CFR part 614), the...

  4. 75 FR 48996 - National Science Board; Sunshine Act Meetings; Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-12

    ...., Arlington, VA 22230. UPDATES & POINT OF CONTACT: Please refer to the National Science Board website http... NATIONAL SCIENCE FOUNDATION National Science Board; Sunshine Act Meetings; Notice The National Science Board's Committee on Audit & Oversight, pursuant to NSF regulations (45 CFR part 614), the...

  5. Science inquiry learning environments created by National Board Certified Teachers

    NASA Astrophysics Data System (ADS)

    Saderholm, Jon

    The purpose of this study was to discern what differences exist between the science inquiry learning environments created by National Board Certified Teachers (NBCTs) and non-NBCTs. Four research questions organized the data collection and analysis: (a) How do National Board Certified science teachers' knowledge of the nature of science differ from that of their non-NBCT counterparts? (b) How do the frequencies of student science inquiry behaviors supported by in middle/secondary learning environments created by NBCTs differ from those created by their non-NBCT counterparts? (c) What is the relationship between the frequency of students' science inquiry behaviors and their science reasoning and understanding of the nature of science? (d) What is the impact of teacher perceptions factors impacting curriculum and limiting inquiry on the existence of inquiry learning environments? The setting in which this study was conducted was middle and high schools in Kentucky during the period between October 2006 and January 2007. The population sampled for the study was middle and secondary science teachers certified to teach in Kentucky. Of importance among those were the approximately 70 National Board Certified middle and high school science teachers. The teacher sample consisted of 50 teachers, of whom 19 were NBCTs and 31 were non-NBCTs. This study compared the science inquiry teaching environments created by NBCTs and non-NBCTs along with their consequent effect on the science reasoning and nature of science (NOS) understanding of their students. In addition, it examined the relationship with these science inquiry environments of other teacher characteristics along with teacher perception of factors influencing curriculum and factors limiting inquiry. This study used a multi-level mixed methodology study incorporating both quantitative and qualitative measures of both teachers and their students. It was a quasi-experimental design using non-random assignment of

  6. The Nature of Science Education for Enhancing Scientific Literacy

    ERIC Educational Resources Information Center

    Holbrook, Jack; Rannikmae, Miia

    2007-01-01

    This article explores the meaning of the nature of science education to enhance scientific literacy. It argues that the teaching approach for science education should be regarded as "education through science", rather than "science through education". A model of the nature of science education is proposed, having its foundations based on activity…

  7. 76 FR 38430 - Subcommittee on Forensic Science; Committee on Science; National Science and Technology Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-30

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Subcommittee on Forensic Science; Committee on Science; National Science and Technology Council ACTION: Notice of Panel Session. Public input is requested... Sciences 2009 report: ``Strengthening Forensic Science in the United States: A Path Forward'' ( http://www...

  8. Learner Characteristics and Understanding Nature of Science. Is There an Association?

    NASA Astrophysics Data System (ADS)

    Çetinkaya-Aydın, Gamze; Çakıroğlu, Jale

    2017-11-01

    The purpose of this study was to investigate the possible associations between preservice science teachers' understanding of nature of science and their learner characteristics; understanding of nature of scientific inquiry, science teaching self-efficacy beliefs, metacognitive awareness level, and faith/worldview schemas. The sample of the current study was 60 3rd-year preservice science teachers enrolled in the Nature of Science and History of Science course. Using a descriptive and associational case study design, data were collected by means of different qualitative and quantitative questionnaires. Analysis of the data revealed that preservice science teachers' understanding of nature of science and nature of scientific inquiry were highly associated. Similarly, science teaching self-efficacy beliefs, metacognitive awareness levels, and faith/worldviews of the preservice science teachers were found to be significantly associated with their understanding of nature of science. Thus, it can be concluded that there might be other factors interfering with the learning processes of nature of science.

  9. Natural Dyes. Third World Science.

    ERIC Educational Resources Information Center

    Jones, Natalie; Hughes, Wyn

    This unit, developed by the Third World Science Project, is designed to add a multicultural element to existing science syllabi (for students aged 11-16) in the United Kingdom. The project seeks to develop an appreciation of the: boundless fascination of the natural world; knowledge, skills, and expertise possessed by men/women everywhere;…

  10. 78 FR 69462 - National Nanotechnology Initiative Strategic Plan; National Science and Technology Council...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-19

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY OFFICE National Nanotechnology Initiative Strategic Plan; National Science and Technology Council; National Nanotechnology Coordination Office AGENCY: Executive... Nanotechnology Initiative (NNI) Strategic Plan. The draft plan will be posted at www.nano.gov/2014strategy...

  11. 75 FR 23807 - Notice of Inventory Completion: Denver Museum of Nature & Science, Denver, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-04

    ... made by the Denver Museum of Nature & Science professional staff in consultation with representatives... DEPARTMENT OF THE INTERIOR National Park Service Notice of Inventory Completion: Denver Museum of.... 3003, of the completion of an inventory of human remains in the possession of the Denver Museum of...

  12. 75 FR 5627 - Notice of Inventory Completion: Denver Museum of Nature & Science, Denver, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-03

    ... made by the Denver Museum of Nature & Science professional staff in consultation with representatives... DEPARTMENT OF THE INTERIOR National Park Service Notice of Inventory Completion: Denver Museum of.... 3003, of the completion of an inventory of human remains in the possession of the Denver Museum of...

  13. 75 FR 2893 - National Science Board; Sunshine Act Meetings; Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-19

    ... NATIONAL SCIENCE FOUNDATION National Science Board; Sunshine Act Meetings; Notice The National Science Board's Subcommittee on Facilities, Committee on Strategy and Budget, pursuant to NSF regulations (45 CFR Part 614), the National Science Foundation Act, as amended (42 U.S.C. 1862n-5), and the...

  14. 75 FR 13141 - National Science Board; Sunshine Act Meetings; Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-18

    ... NATIONAL SCIENCE FOUNDATION National Science Board; Sunshine Act Meetings; Notice The National Science Board's Subcommittee on Facilities, Committee on Strategy and Budget, pursuant to NSF regulations (45 CFR part 614), the National Science Foundation Act, as amended (42 U.S.C. 1862n-5), and the...

  15. 76 FR 20720 - National Science Board; Sunshine Act Meetings; Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... AND POINT OF CONTACT: Please refer to the National Science Board website http://www.nsf.gov/nsb for... NATIONAL SCIENCE FOUNDATION National Science Board; Sunshine Act Meetings; Notice The National Science Board's Committee on Programs and Plans (CPP) Task Force on Unsolicited Mid-Scale Research (MS...

  16. The Use of Clinical Interviews to Develop Inservice Secondary Science Teachers' Nature of Science Knowledge and Assessment of Student Nature of Science Knowledge

    ERIC Educational Resources Information Center

    Peters-Burton, Erin E.

    2013-01-01

    To fully incorporate nature of science knowledge into classrooms, teachers must be both proficient in their own nature of science knowledge, but also skillful in translating their knowledge into a learning environment which assesses student knowledge. Twenty-eight inservice teachers enrolled in a graduate course which in part required a clinical…

  17. Informal Science Educators' Views about Nature of Scientific Knowledge

    ERIC Educational Resources Information Center

    Holliday, Gary M.; Lederman, Norman G.

    2014-01-01

    Publications such as "Surrounded by science: Learning science in informal environments" [Fenichel, M., & Schweingruber, H. A. (2010). Washington, DC: The National Academies Press] and "Learning science in informal environments: People, places, and pursuits" [National Research Council. (2009). Washington, DC: National…

  18. 76 FR 6163 - Subcommittee on Forensic Science; Committee on Science; National Science and Technology Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-03

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Subcommittee on Forensic Science; Committee on Science; National Science and Technology Council ACTION: Notice of meeting. Public input is requested concerning... Forensic Science can be obtained through the Office of Science and Technology Policy's NSTC Web site at...

  19. 77 FR 15141 - National Science Board; Sunshine Act Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-14

    ... NATIONAL SCIENCE FOUNDATION National Science Board; Sunshine Act Meetings The National Science Board's Committee on Strategy and Budget Task Force on Data Policies, pursuant to NSF regulations (45..., VA 22230. A public listening room will be available for this teleconference meeting. All visitors...

  20. 77 FR 68851 - National Science Board; Sunshine Act Meetings; Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    ... NATIONAL SCIENCE FOUNDATION National Science Board; Sunshine Act Meetings; Notice The National Science Board's ad hoc Committee on Honorary Awards, pursuant to NSF regulations (45 CFR Part 614), the National Science Foundation Act, as amended (42 U.S.C. 1862n-5), and the Government in the Sunshine Act (5...

  1. 76 FR 75916 - National Science Board; Sunshine Act Meetings; Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-05

    ... NATIONAL SCIENCE FOUNDATION National Science Board; Sunshine Act Meetings; Notice The National Science Board's ad hoc Committee on Honorary Awards, pursuant to NSF regulations (45 CFR part 614), the National Science Foundation Act, as amended (42 U.S.C. 1862n-5), and the Government in the Sunshine Act (5...

  2. 76 FR 36938 - National Science Board; Sunshine Act Meetings; Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-23

    ... NATIONAL SCIENCE FOUNDATION National Science Board; Sunshine Act Meetings; Notice The National Science Board's ad hoc Committee on Nominations for the NSB Class of 2012--2018, pursuant to NSF regulations (45 CFR part 614), the National Science Foundation Act, as amended (42 U.S.C. 1862n- 5), and the...

  3. 75 FR 13265 - National Board for Education Sciences

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... DEPARTMENT OF EDUCATION National Board for Education Sciences AGENCY: Institute of Education Sciences, Department of Education. ACTION: Notice of an open meeting. SUMMARY: This notice sets forth the schedule and proposed agenda of an upcoming meeting of the National Board for Education Sciences. The...

  4. 75 FR 53280 - National Board for Education Sciences

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... DEPARTMENT OF EDUCATION National Board for Education Sciences AGENCY: Department of Education, Institute of Education Sciences. ACTION: Notice of an open meeting. SUMMARY: This notice sets forth the schedule and proposed agenda of an upcoming meeting of the National Board for Education Sciences. The...

  5. The Nature of Science as Viewed by Science Teachers in Najran District, Saudi Arabia

    ERIC Educational Resources Information Center

    Saif, Abdulsalam Dale Amer

    2016-01-01

    This study aims to investigate the views of Saudi Science Teachers in Najran district about the nature of science (NOS). A questionnaire of fourteen items was developed and administered to a sample of 83 science teachers. The questionnaire covers five aspects of the nature of science which are: scientific theories and models; role of scientists;…

  6. Initiating and continuing participation in citizen science for natural history.

    PubMed

    Everett, Glyn; Geoghegan, Hilary

    2016-07-22

    Natural history has a long tradition in the UK, dating back to before Charles Darwin. Developing from a principally amateur pursuit, natural history continues to attract both amateur and professional involvement. Within the context of citizen science and public engagement, we examine the motivations behind citizen participation in the national survey activities of the Open Air Laboratories (OPAL) programme, looking at: people's experiences of the surveys as 'project-based leisure'; their motivations for taking part and barriers to continued participation; where they feature on our continuum of engagement; and whether participation in an OPAL survey facilitated their movement between categories along this continuum. The paper focuses on a less-expected but very significant outcome regarding the participation of already-engaged amateur naturalists in citizen science. Our main findings relate to: first, how committed amateur naturalists (already-engaged) have also enjoyed contributing to OPAL and the need to respect and work with their interest to encourage broader and deeper involvement; and second, how new (previously-unengaged) and relatively new participants (casually-engaged) have gained confidence, renewed their interests, refocussed their activities and/or gained validation from participation in OPAL. Overall, we argue that engagement with and enthusiasm for the scientific process is a motivation shared by citizens who, prior to participating in the OPAL surveys, were previously-unengaged, casually-engaged or already-engaged in natural history activities. Citizen science has largely been written about by professional scientists for professional scientists interested in developing a project of their own. This study offers a qualitative example of how citizen science can be meaningful to participants beyond what might appear to be a public engagement data collection exercise.

  7. 76 FR 12136 - National Science Board; Notice of Delegation of Authority

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-04

    ... NATIONAL SCIENCE FOUNDATION National Science Board; Notice of Delegation of Authority In accordance with Section 1863(e)(2) of the National Science Foundation Act, as amended, the National Science Board (Board) hereby gives notice in regards to a delegation of authority provided to the Director, National Science Foundation (NSF), as follows: Per...

  8. An examination of the relationship among science teaching actions, beliefs, and knowledge of the nature of science

    NASA Astrophysics Data System (ADS)

    Chun, Sajin

    Scholars in science education advocate curriculum and instruction practices that reflect an understanding of the nature of science. This aspect of school science is an important component of scientific literacy, a primary goal of science education. Considering teaching as a thoughtful profession, there has been a growing research interest on the issue of the consistency between teacher beliefs and actions. Yet, the self-evident assumption that teachers' beliefs about the nature of science will impact on their classroom teaching actions has not been justified. The purpose of this study was to examine the relationship between science teaching actions and beliefs about the nature of science. Defining teacher beliefs as a broad construct, the researcher tried to examine not only teacher's cognitive understanding about the nature of science but also teachers' affect as well as actions with regard to the nature of science. Guiding research questions were as follows: (a) what are the teachers' beliefs about the nature of science; (b) how do the teachers, pedagogical actions reflect their beliefs about the nature of science; and (c) what are the other referent beliefs that mediate the teachers, pedagogical actions within a local school culture. The methodology of this study was an interpretive, qualitative approach that included multiple sources of data, interviews, classroom observations, and instructional materials. Six science teachers from a secondary school located in a rural area of the southeastern US were chosen by convenience. The cross-case study and the grounded theory study designs were adopted as the data analysis process. The constant comparative analysis method was used to generate the emerging themes for this study. This study revealed a gap between these teachers' personal beliefs of the nature of science and the concepts of the nature of science suggested by many researchers. These teachers' personal beliefs about the nature of science have been

  9. 75 FR 4882 - Subcommittee on Forensic Science; Committee on Science; National Science and Technology Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-29

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Subcommittee on Forensic Science; Committee on Science; National Science and Technology Council ACTION: Notice of Panel Session. Public input is requested... be obtained through the Office of Science and Technology Policy's NSTC Web site at http://www.ostp...

  10. 75 FR 49538 - National Science Board; Sunshine Act Meetings; Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... NATIONAL SCIENCE FOUNDATION National Science Board; Sunshine Act Meetings; Notice The National Science Board's Committee on Strategy and Budget, pursuant to NSF regulations (45 CFR part 614), the National Science Foundation Act, as amended (42 U.S.C. 1862n-5), and the Government in the Sunshine Act (5 U.S.C. 552b), hereby gives notice in regard...

  11. 76 FR 31992 - National Science Board; Sunshine Act Meetings; Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-02

    ... NATIONAL SCIENCE FOUNDATION National Science Board; Sunshine Act Meetings; Notice The National Science Board's Committee on Education and Human Resources (CEH), pursuant to NSF regulations (45 CFR part 614), the National Science Foundation Act, as amended (42 U.S.C. 1862n-5), and the Government in the Sunshine Act (5 U.S.C. 552b), hereby gives...

  12. 76 FR 51064 - National Science Board; Sunshine Act Meetings; Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-17

    ... NATIONAL SCIENCE FOUNDATION National Science Board; Sunshine Act Meetings; Notice The National Science Board (NSB) Committee on Audit and Oversight and the NSB Committee on Strategy and Budget, pursuant to NSF regulations (45 CFR part 614), the National Science Foundation Act, as amended (42 U.S.C. 1862n-5), and the Government in the Sunshine Ac...

  13. 76 FR 35050 - National Science Board; Sunshine Act Meetings; Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-15

    ... NATIONAL SCIENCE FOUNDATION National Science Board; Sunshine Act Meetings; Notice The National Science Board's Committee on Strategy and Budget's Subcommittee on Facilities, pursuant to NSF regulations (45 CFR part 614), the National Science Foundation Act, as amended (42 U.S.C. 1862n- 5), and the Government in the Sunshine Act (5 U.S.C. 552b),...

  14. 77 FR 39270 - National Science Board; Sunshine Act Meetings; Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-02

    ... NATIONAL SCIENCE FOUNDATION National Science Board; Sunshine Act Meetings; Notice The National Science Board, pursuant to NSF regulations (45 CFR part 614), the National Science Foundation Act, as amended (42 U.S.C. 1862n-5), and the Government in the Sunshine Act (5 U.S.C. 552b), hereby gives notice in regard to the scheduling of a...

  15. 75 FR 34769 - National Science Board; Sunshine Act Meeting Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ... NATIONAL SCIENCE FOUNDATION National Science Board; Sunshine Act Meeting Notice The National Science Board's Subcommittee on Facilities, Committee on Strategy and Budget, pursuant to NSF regulations (45 CFR part 614), the National Science Foundation Act, as amended (42 U.S.C. 1862n-5), and the Government in the Sunshine Act (5 U.S.C. 552b),...

  16. 75 FR 17786 - National Science Board; Sunshine Act Meetings; Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-07

    ... NATIONAL SCIENCE FOUNDATION National Science Board; Sunshine Act Meetings; Notice The National Science Board's Subcommittee on Facilities, Committee on Strategy and Budget, pursuant to NSF regulations (45 CFR Part 614), the National Science Foundation Act, as amended (42 U.S.C. 1862n-5), and the Government in the Sunshine Act (5 U.S.C. 552b),...

  17. 76 FR 76191 - National Science Board; Sunshine Act Meetings; Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-06

    ... NATIONAL SCIENCE FOUNDATION National Science Board; Sunshine Act Meetings; Notice The National Science Board's Committee on Strategy and Budget and the CSB Task Force on Data Policies, pursuant to NSF regulations (45 CFR Part 614), the National Science Foundation Act, as amended (42 U.S.C. 1862n-5), and the Government in the Sunshine Act (5 U.S....

  18. 78 FR 23312 - National Science Board; Sunshine Act Meetings; Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-18

    ... NATIONAL SCIENCE FOUNDATION National Science Board; Sunshine Act Meetings; Notice The National Science Board's Task Force on Administrative Burdens, pursuant to NSF regulations (45 CFR part 614), the National Science Foundation Act, as amended (42 U.S.C. 1862n-5), and the Government in the Sunshine Act (5 U.S.C. 552b), hereby gives notice in...

  19. 78 FR 45983 - National Science Board; Sunshine Act Meetings; Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-30

    ... NATIONAL SCIENCE FOUNDATION National Science Board; Sunshine Act Meetings; Notice The National Science Board's Subcommittee on Facilities of the Committee on Strategy and Budget, pursuant to NSF regulations (45 CFR part 614), the National Science Foundation Act, as amended (42 U.S.C. 1862n-5), and the Government in the Sunshine Act (5 U.S.C. 552...

  20. In Brief: National Medal of Science nomination deadline

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2010-03-01

    The deadline for nominations for the 2010 U.S. National Medal of Science is 31 March 2010. The Medal of Science, which is presented annually by the president of the United States to distinguished scientists and engineers, is the nation's highest honor for American scientists and engineers. For more information, visit http://www.nsf.gov/od/nms/nominations.jsp or contact Mayra Montrose at the U.S. National Science Foundation, mmontros@nsf.gov.

  1. How In-Service Science Teachers Integrate History and Nature of Science in Elementary Science Courses

    ERIC Educational Resources Information Center

    Hacieminoglu, Esme

    2014-01-01

    The purpose of this study is to investigate how the in-service science teachers' (IST) perceptions and practices about curriculum and integration of the history of science (HOS) and the nature of science (NOS) affect their science courses. For this aim, how ISTs integrated the NOS and HOS in their elementary science courses for understanding of…

  2. Gross domestic product, science interest, and science achievement: a person × nation interaction.

    PubMed

    Tucker-Drob, Elliot M; Cheung, Amanda K; Briley, Daniel A

    2014-11-01

    Maximizing science achievement is a critical target of educational policy and has important implications for national and international economic and technological competitiveness. Previous research has identified both science interest and socioeconomic status (SES) as robust predictors of science achievement, but little research has examined their joint effects. In a data set drawn from approximately 400,000 high school students from 57 countries, we documented large Science Interest × SES and Science Interest × Per Capita Gross Domestic Product (GDP) interactions in the prediction of science achievement. Student interest in science is a substantially stronger predictor of science achievement in higher socioeconomic contexts and in higher-GDP nations. Our results are consistent with the hypothesis that in higher-opportunity contexts, motivational factors play larger roles in learning and achievement. They add to the growing body of evidence indicating that substantial cross-national differences in psychological effect sizes are not simply a logical possibility but, in many cases, an empirical reality. © The Author(s) 2014.

  3. 75 FR 21223 - National Academy of Sciences Study

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-23

    ... CHEMICAL SAFETY AND HAZARD INVESTIGATION BOARD [Docket No. CSB-10-01] National Academy of Sciences... Board (CSB) provides funding for a study by the National Academy of Sciences (NAS) to examine the use... processes and an examination of the cost of alternatives at the Bayer CropScience facility in Institute...

  4. The National Science Foundation and the History of Science

    NASA Astrophysics Data System (ADS)

    Rothenberg, Marc

    2014-01-01

    The National Science Foundation (NSF) is the major funder of the history of science in the United States. Between 1958 and 2010, the NSF program for the history of science has given 89 awards in the history of astronomy. This paper analyzes the award recipients and subject areas of the awards and notes significant shifts in the concentration of award recipients and the chronological focus of the research being funded.

  5. 78 FR 68480 - Sunshine Act Meetings; National Science Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-14

    ..., December 11, 2013, 6:00 p.m.-7:00 p.m. e.s.t. SUBJECT MATTER: A discussion of the results of the Task Force... NATIONAL SCIENCE FOUNDATION Sunshine Act Meetings; National Science Board The National Science Board's Task Force on Administrative Burdens, pursuant to NSF regulations (45 CFR Part 614), the...

  6. Understandings of the nature of science and decision making on science and technology-based issues

    NASA Astrophysics Data System (ADS)

    Bell, Randy Lee

    Current reforms emphasize the development of scientific literacy as the principal goal of science education. The nature of science is considered a critical component of scientific literacy and is assumed to be an important factor in decision making on science and technology based issues. However, little research exists that delineates the role of the nature of science in decision making. The purpose of this investigation was to explicate the role of the nature of science in decision making on science and technology based issues and to delineate the reasoning and factors associated with these types of decisions. The 15-item, open-ended "Decision Making Questionnaire" (DMQ) based on four different scenarios concerning science and technology issues was developed to assess decision making. Twenty-one volunteer participants purposively selected from the faculty of geographically diverse universities completed the questionnaire and follow-up interviews. Participants were subsequently grouped according to their understandings of the nature of science, based on responses to a second open-ended questionnaire and follow-up interview. Profiles of each group's decision making were constructed, based on their previous responses to the DMQ and follow-up interviews. Finally, the two groups' decisions, decision making factors, and decision making strategies were compared. No differences were found between the decisions of the two groups, despite their disparate views of the nature of science. While their reasoning did not follow formal lines of argumentation, several influencing factors and general reasoning patterns were identified. Participants in both groups based their decisions primarily on personal values, morals/ethics, and social concerns. While all participants said they considered scientific evidence in their decision making, most did not require absolute "proof," even though Group B participants held more absolute conceptions of the nature of science. Overall, the

  7. Teaching and Assessing the Nature of Science

    ERIC Educational Resources Information Center

    Clough, Michael P.

    2011-01-01

    Understanding the nature of science (NOS)--what science is and how it works, the assumptions that underlie scientific knowledge, how scientists function as a social group, and how society impacts and reacts to science--is prominent in science education reform documents (Rutherford and Ahlgren 1990; AAAS 1993; McComas and Olson 1998; NRC 1996; AAAS…

  8. An Evaluation of the Particle Physics Masterclass as a Context for Student Learning about the Nature of Science

    ERIC Educational Resources Information Center

    Wadness, Michael J.

    2010-01-01

    This dissertation addresses the research question: To what extent do secondary school science students attending the U.S. Particle Physics Masterclass change their view of the nature of science (NOS)? The U.S. Particle Physics Masterclass is a physics outreach program run by QuarkNet, a national organization of secondary school physics teachers…

  9. Learning and teaching about the nature of science through process skills

    NASA Astrophysics Data System (ADS)

    Mulvey, Bridget K.

    This dissertation, a three-paper set, explored whether the process skills-based approach to nature of science instruction improves teachers' understandings, intentions to teach, and instructional practice related to the nature of science. The first paper examined the nature of science views of 53 preservice science teachers before and after a year of secondary science methods instruction that incorporated the process skills-based approach. Data consisted of each participant's written and interview responses to the Views of the Nature of Science (VNOS) questionnaire. Systematic data analysis led to the conclusion that participants exhibited statistically significant and practically meaningful improvements in their nature of science views and viewed teaching the nature of science as essential to their future instruction. The second and third papers assessed the outcomes of the process skills-based approach with 25 inservice middle school science teachers. For the second paper, she collected and analyzed participants' VNOS and interview responses before, after, and 10 months after a 6-day summer professional development. Long-term retention of more aligned nature of science views underpins teachers' ability to teach aligned conceptions to their students yet it is rarely examined. Participants substantially improved their nature of science views after the professional development, retained those views over 10 months, and attributed their more aligned understandings to the course. The third paper addressed these participants' instructional practices based on participant-created video reflections of their nature of science and inquiry instruction. Two participant interviews and class notes also were analyzed via a constant comparative approach to ascertain if, how, and why the teachers explicitly integrated the nature of science into their instruction. The participants recognized the process skills-based approach as instrumental in the facilitation of their improved

  10. Thai Pre-Service Science Teachers' Conceptions of the Nature of Science

    ERIC Educational Resources Information Center

    Buaraphan, Khajornsak; Sung-ong, Sunun

    2009-01-01

    The conceptions of the nature of science (NOS), particularly scientific knowledge, scientific method, scientists' work, and scientific enterprise, of 113 Thai pre-service science teachers were was captured by the Myths of Science Questionnaire (MOSQ) in the first semester of the 2008 academic year. The data was quantitatively and qualitatively…

  11. Thai In-Service Science Teachers' Conceptions of the Nature of Science

    ERIC Educational Resources Information Center

    Buaraphan, Khajornsak

    2009-01-01

    Understanding of the Nature of Science (NOS) serves as one of the desirable characteristics of science teachers. The current study attempted to explore 101 Thai in-service science teachers' conceptions of the NOS, particularly scientific knowledge, the scientific method, scientists' work, and scientific enterprise, by using the Myths of Science…

  12. Elucidating elementary science teachers' conceptions of the nature of science: A view to beliefs about both science and teaching

    NASA Astrophysics Data System (ADS)

    Keske, Kristina Palmer

    The purpose of this interpretive case study was to elucidate the conceptions of the nature of science held by seven elementary science teachers. The constructivist paradigm provided the philosophical and methodological foundation for the study. Interviews were employed to collect data from the participants about their formal and informal experiences with science. In addition, the participants contributed their perspectives on four aspects of the nature of science: what is science; who is a scientist; what are the methods of science; and how is scientific knowledge constructed. Data analysis not only revealed these teachers' views of science, but also provided insights into how they viewed science teaching. Four themes emerged from the data. The first theme developed around the participants' portrayals of the content of science, with participant views falling on a continuum of limited to universal application of science as procedure. The second theme dealt with the participants' views of the absolute nature of scientific knowledge. Participants' perceptions of the tentative nature of science teaching provided the basis for the third theme concerning the need for absolutes in practice. The fourth theme drew parallels between participants' views of science and science teaching, with two participants demonstrating a consistency in beliefs about knowledge construction across contexts. This study revealed both personal and contextual factors which impacted how the participants saw science and science teaching. Many of the participants' memories of formal science revolved around the memorization of content and were viewed negatively. All the participants had limited formal training in science. Of the seven participants, only two had chosen to be science teachers at the beginning of their careers. The participants' limited formal experiences with science provided little time for exploration into historical, philosophical, and sociological studies of science, a necessary

  13. The Role of Metaphysical Naturalism in Science

    NASA Astrophysics Data System (ADS)

    Mahner, Martin

    2012-10-01

    This paper defends the view that metaphysical naturalism is a constitutive ontological principle of science in that the general empirical methods of science, such as observation, measurement and experiment, and thus the very production of empirical evidence, presuppose a no-supernature principle. It examines the consequences of metaphysical naturalism for the testability of supernatural claims, and it argues that explanations involving supernatural entities are pseudo-explanatory due to the many semantic and ontological problems of supernatural concepts. The paper also addresses the controversy about metaphysical versus methodological naturalism.

  14. [Applications and spproved projects of general program, young scientist fund and fund for less developed region of national natural science funds in discipline of Chinese materia medica, NSFC in 2011].

    PubMed

    Han, Liwei; Wang, Yueyun; He, Wenbin; Zhang, Junjie; Bi, Minggang; Shang, Hongcai; Shang, Deyang; Wang, Chang'en

    2012-03-01

    The applications accepted and approved by general program, young scientist fund and fund for less developed region of national natural science funds in the discipline of Chinese materia medica, NSFC in 2011 have been introduced. The character and problems in these applications have been analyzed to give a reference to the scientists in the field of Chinese material medica.

  15. National Institute of General Medical Sciences

    MedlinePlus

    ... Over Navigation Links National Institute of General Medical Sciences Site Map Staff Search My Order Search the ... NIGMS Website Research Funding Research Training News & Meetings Science Education About NIGMS Feature Slides View All Slides ...

  16. Experience the natural sciences: Programs for teachers at the University of Hawaii at Hilo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hapai, M.N.

    1994-12-31

    Since 1988, the University of Hawaii at Hilo Science and Education faculty have jointly created programs for pre- and in-service teachers, and to improve science teaching, to increase the number of science teachers, and to improve scientific literacy in the general population. The National Sciences major, approved in 1991, with both elementary and secondary teaching options, has gone from three degree seeking candidates in the fall of 1991 to fifty-nine in the spring of 1994. The major provides elementary teachers with a general science degree and teaching certification; and secondary teachers with a more intense general science degree, a specializedmore » minor, and teaching certification. Additionally, a new 18 credit Natural Sciences Certificate for in-service elementary teachers, designed to enhance their scientific background and classroom methodology, has already attracted over 250 teachers within the last year.« less

  17. Building, using, and maximizing the impact of concept inventories in the biological sciences: report on a National Science Foundation sponsored conference on the construction of concept inventories in the biological sciences.

    PubMed

    Garvin-Doxas, Kathy; Klymkowsky, Michael; Elrod, Susan

    2007-01-01

    The meeting "Conceptual Assessment in the Biological Sciences" was held March 3-4, 2007, in Boulder, Colorado. Sponsored by the National Science Foundation and hosted by University of Colorado, Boulder's Biology Concept Inventory Team, the meeting drew together 21 participants from 13 institutions, all of whom had received National Science Foundation funding for biology education. Topics of interest included Introductory Biology, Genetics, Evolution, Ecology, and the Nature of Science. The goal of the meeting was to organize and leverage current efforts to develop concept inventories for each of these topics. These diagnostic tools are inspired by the success of the Force Concept Inventory, developed by the community of physics educators to identify student misconceptions about Newtonian mechanics. By working together, participants hope to lessen the risk that groups might develop competing rather than complementary inventories.

  18. Political science, public administration, and natural hazards: contributions and connections

    NASA Astrophysics Data System (ADS)

    Lindquist, E.

    2009-04-01

    The connection between the natural and social sciences has become stronger, and has increasingly been recognized as a vital component in the area of natural hazards research. Moving applied natural hazards research into the public policy or administration realm is not often easy, or effective. An improved understanding of the connection between the natural and social sciences can assist in this process and result in better public policy, acceptance from the public for these policies, and a safer and better educated public. This paper will present initial findings from a larger data set on natural hazards and social science research. Specifically we will review the current contribution of the formal academic disciplines of political science and public administration within recent natural hazards-related scholarship. The general characteristics of the contributions (e.g. coauthored, interdisciplinary, etc.), specific theories and methods being applied, and the types of natural hazards being scrutinized by these related fields will be assessed. In conclusion we will discuss future contributions and areas for potential collaboration between the natural and social sciences in the area of natural hazards research.

  19. On teaching the nature of science: perspectives and resources

    NASA Astrophysics Data System (ADS)

    Radloff, Jeffrey

    2016-06-01

    In this paper, I present a critical review of the recent book, On Teaching the Nature of Science: Perspectives and Resources, written by Douglas Allchin (2013). This publication presents an in-depth examination of the nature of science construct, as well as instruction for educators about how to teach it effectively utilizing historical case studies as vehicles for knowledge. Although several themes in the book merit further attention, a central issue present across all chapters is the largely masculine, monocultural nature of science presented, which is common to a multitude of scientific publications. In this review, I illustrate how culture and gender in science is not addressed throughout the book. I also discuss where we can build on the work of the author to integrate more aspects of gender and culture in teaching the nature of science.

  20. Recent progress of flexible and wearable strain sensors for human-motion monitoring

    NASA Astrophysics Data System (ADS)

    Ge, Gang; Huang, Wei; Shao, Jinjun; Dong, Xiaochen

    2018-01-01

    With the rapid development of human artificial intelligence and the inevitably expanding markets, the past two decades have witnessed an urgent demand for the flexible and wearable devices, especially the flexible strain sensors. Flexible strain sensors, incorporated the merits of stretchability, high sensitivity and skin-mountable, are emerging as an extremely charming domain in virtue of their promising applications in artificial intelligent realms, human-machine systems and health-care devices. In this review, we concentrate on the transduction mechanisms, building blocks of flexible physical sensors, subsequently property optimization in terms of device structures and sensing materials in the direction of practical applications. Perspectives on the existing challenges are also highlighted in the end. Project supported by the NNSF of China (Nos. 61525402, 61604071), the Key University Science Research Project of Jiangsu Province (No. 15KJA430006), and the Natural Science Foundation of Jiangsu Province (No. BK20161012).

  1. National Science Board Approves VLA Expansion

    NASA Astrophysics Data System (ADS)

    2001-11-01

    The National Science Board, the governing body for the National Science Foundation (NSF), has approved an expansion project for the Very Large Array (VLA) radio telescope in New Mexico. The board recommended an NSF award of approximately 58.3 million for the project over the next decade. The action came at the Board's meeting in Washington on Nov. 15. The Very Large Array The Very Large Array "This approval means that the VLA, already the most scientifically productive ground-based telescope in all of astronomy, will remain at the cutting edge of astrophysical research through the coming decades," said Paul Vanden Bout, director of the National Radio Astronomy Observatory (NRAO). The expansion project will replace aging equipment left over from the VLA's construction during the 1970s with modern technology, improving the VLA's scientific capabilities more than tenfold. Using the existing 27 dish antennas, each weighing 230 tons, the Expanded VLA will have greatly improved ability to image distant celestial objects and to decipher the physical nature of those objects. In addition to the 58.3 million NSF allocation, the governments of Canada and Mexico plan to provide funding for the VLA expansion. The VLA Expansion Project was formally proposed to the NSF, which owns the VLA, last year. Also last year, the project received a strong endorsement from the Astronomy and Astrophysics Survey Committee of the National Research Council, the working arm of the National Academies of Sciences and Engineering. That committee had been given the task of setting nationwide priorities for astronomy spending over the next decade. The Survey Committee report listed the Expanded VLA as an important contributor to new understanding in three high-priority research areas for the next decade: studies of star and planet formation; research into black holes; and unraveling details about the "dawn of the modern universe." Dedicated in 1980, the VLA is the most powerful, flexible and widely

  2. An investigation of Taiwanese early adolescents' views about the nature of science.

    PubMed

    Huang, Chao-Ming; Tsai, Chin-Chung; Chang, Chun-Yen

    2005-01-01

    This study developed a Pupils' Nature of Science Scale, including the subscales of the invented and changing nature of science, the role of social negotiation on science, and cultural context on science, to assess early adolescents' views about the nature of science. More than 6,000 fifth and sixth graders in Taiwan responded to the Scale. The study revealed that the adolescents had quite different perspectives toward different subscales of the nature of science. Moreover, male adolescents tended to express more constructivist-oriented views toward the nature of science than did their female counterparts. The adolescents of different grades and races also displayed varying views toward the nature of science.

  3. Epistemology & the Nature of Science: A Classroom Strategy

    ERIC Educational Resources Information Center

    Viney, Mike

    2007-01-01

    Efforts to enact balanced treatment laws represent an attempt to wedge the supernatural into scientific explanations. Current attempts to displace methodological naturalism from science indicate a need to make the nature of science a central theme in our instruction. This article utilizes constructivist listening to introduce students to five…

  4. Australian National University Science Extension Day

    ERIC Educational Resources Information Center

    Fletcher, Sarah

    2016-01-01

    The first Australian National University (ANU) Science Extension Day was held on September 8, 2015. The ANU Science Extension Day is a project that was initiated by Theodore Primary School (ACT) and developed by Theodore Primary, Calwell High School, Science Educators Association of the ACT (SEA*ACT), and the ANU. The project was developed with a…

  5. Exploring Natural and Social Scientists' Views of Nature of Science

    ERIC Educational Resources Information Center

    Bayir, Eylem; Cakici, Yilmaz; Ertas, Ozge

    2014-01-01

    Science education researchers recently turned their attention to exploring views about nature of science (NOS). A large body of research indicates that both students and teachers have many naïve views about the NOS. Unfortunately, less attention has been directed at the issue of exploring the views of the scientists. Also, the little research in…

  6. Understandings of the nature of science and decision making on science and technology based issues

    NASA Astrophysics Data System (ADS)

    Bell, Randy L.; Lederman, Norman G.

    2003-05-01

    The purpose of this investigation was to explicate the role of the nature of science in decision making on science and technology based issues and to delineate factors and reasoning associated with these types of decisions. Twenty-one volunteer participants purposively selected from the faculty of geographically diverse universities completed an open-ended questionnaire and follow-up interview designed to assess their decision making on science and technology based issues. Participants were subsequently placed in one of two groups based upon their divergent views of the nature of science as assessed by a second open-ended questionnaire and follow-up interview. Profiles of each group's decision making were then constructed, based on participants' previous responses to the decision making questionnaire and follow-up interviews. Finally, the two groups' decisions, decision influencing factors, and decision making strategies were compared. No differences were found between the decisions of the two groups, despite their disparate views of the nature of science. Participants in both groups based their decisions primarily on personal values, morals/ethics, and social concerns. While all participants considered scientific evidence in their decision making, most did not require absolute proof, even though many participants held absolute conceptions of the nature of science. Overall, the nature of science did not figure prominently in either group's decisions. These findings contrast with basic assumptions of current science education reform efforts and call for a re-examination of the goals of nature of science instruction. Developing better decision making skills - even on science and technology based issues - may involve other factors, including more value-based instruction and attention to intellectual/moral development.

  7. Future STEM Leaders Prepare for the National Science Bowl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benjamin, Angela

    2014-06-11

    Each year, students from across the country converge on Washington, DC, for the National Science Bowl, an intense academic competition that tests the students' knowledge in science, engineering, chemistry, math and Earth science. Follow one team, from Washington DC's Woodrow Wilson High School, as they prepare for and compete in the 2014 National Science Bowl.

  8. Future STEM Leaders Prepare for the National Science Bowl

    ScienceCinema

    Benjamin, Angela

    2018-05-18

    Each year, students from across the country converge on Washington, DC, for the National Science Bowl, an intense academic competition that tests the students' knowledge in science, engineering, chemistry, math and Earth science. Follow one team, from Washington DC's Woodrow Wilson High School, as they prepare for and compete in the 2014 National Science Bowl.

  9. Does Science Presuppose Naturalism (or Anything at All)?

    ERIC Educational Resources Information Center

    Fishman, Yonatan I.; Boudry, Maarten

    2013-01-01

    Several scientists, scientific institutions, and philosophers have argued that science is committed to Methodological Naturalism (MN), the view that science, by virtue of its methods, is limited to studying "natural" phenomena and cannot consider or evaluate hypotheses that refer to supernatural entities. While they may in fact exist, gods,…

  10. Geophysicist picked to lead US National Science Board

    NASA Astrophysics Data System (ADS)

    Gwynne, Peter

    2016-07-01

    Maria Zuber, a planetary geophysicist who is vice-president for research at the Massachusetts Institute of Technology (MIT), US, has been elected chair of the country's National Science Board (NSB) - the body that oversees the National Science Foundation (NSF).

  11. Does Science Presuppose Naturalism (or Anything at All)?

    NASA Astrophysics Data System (ADS)

    Fishman, Yonatan I.; Boudry, Maarten

    2013-05-01

    Several scientists, scientific institutions, and philosophers have argued that science is committed to Methodological Naturalism (MN), the view that science, by virtue of its methods, is limited to studying `natural' phenomena and cannot consider or evaluate hypotheses that refer to supernatural entities. While they may in fact exist, gods, ghosts, spirits, and extrasensory or psi phenomena are inherently outside the domain of scientific investigation. Recently, Mahner (Sci Educ 3:357-371, 2012) has taken this position one step further, proposing the more radical view that science presupposes an a priori commitment not just to MN, but also to ontological naturalism (ON), the metaphysical thesis that supernatural entities and phenomena do not exist. Here, we argue that science presupposes neither MN nor ON and that science can indeed investigate supernatural hypotheses via standard methodological approaches used to evaluate any `non-supernatural' claim. Science, at least ideally, is committed to the pursuit of truth about the nature of reality, whatever it may be, and hence cannot exclude the existence of the supernatural a priori, be it on methodological or metaphysical grounds, without artificially limiting its scope and power. Hypotheses referring to the supernatural or paranormal should be rejected not because they violate alleged a priori methodological or metaphysical presuppositions of the scientific enterprise, but rather because they fail to satisfy basic explanatory criteria, such as explanatory power and parsimony, which are routinely considered when evaluating claims in science and everyday life. Implications of our view for science education are discussed.

  12. Scientific Communication and the Nature of Science

    ERIC Educational Resources Information Center

    Nielsen, Kristian H.

    2013-01-01

    Communication is an important part of scientific practice and, arguably, may be seen as constitutive to scientific knowledge. Yet, often scientific communication gets cursory treatment in science studies as well as in science education. In Nature of Science (NOS), for example, communication is rarely mentioned explicitly, even though, as will be…

  13. The Nature of Information Science: Changing Models

    ERIC Educational Resources Information Center

    Robinson, Lyn; Karamuftuoglu, Murat

    2010-01-01

    Introduction: This paper considers the nature of information science as a discipline and profession. Method: It is based on conceptual analysis of the information science literature, and consideration of philosophical perspectives, particularly those of Kuhn and Peirce. Results: It is argued that information science may be understood as a field of…

  14. 78 FR 52923 - Meetings of the National Biodefense Science Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-27

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Meetings of the National Biodefense Science Board AGENCY... giving notice that the National Biodefense Science Board (NBSB) will be holding a public meeting on...: The National Biodefense Science Board mailbox: [email protected] . SUPPLEMENTARY INFORMATION: Pursuant to...

  15. Epistemological Predictors of Prospective Biology Teachers' Nature of Science Understandings

    ERIC Educational Resources Information Center

    Köseoglu, Pinar; Köksal, Mustafa Serdar

    2015-01-01

    The purpose of this study was to investigate epistemological predictors of nature of science understandings of 281 prospective biology teachers surveyed using the Epistemological Beliefs Scale Regarding Science and the Nature of Science Scale. The findings on multiple linear regression showed that understandings about definition of science and…

  16. Comparison of views of the nature of science between natural science and nonscience majors.

    PubMed

    Miller, Marie C Desaulniers; Montplaisir, Lisa M; Offerdahl, Erika G; Cheng, Fu-Chih; Ketterling, Gerald L

    2010-01-01

    Science educators have the common goal of helping students develop scientific literacy, including understanding of the nature of science (NOS). University faculties are challenged with the need to develop informed NOS views in several major student subpopulations, including science majors and nonscience majors. Research into NOS views of undergraduates, particularly science majors, has been limited. In this study, NOS views of undergraduates in introductory environmental science and upper-level animal behavior courses were measured using Likert items and open-ended prompts. Analysis revealed similarities in students' views between the two courses; both populations held a mix of naïve, transitional, and moderately informed views. Comparison of pre- and postcourse mean scores revealed significant changes in NOS views only in select aspects of NOS. Student scores on sections addressing six aspects of NOS were significantly different in most cases, showing notably uninformed views of the distinctions between scientific theories and laws. Evidence-based insight into student NOS views can aid in reforming undergraduate science courses and will add to faculty and researcher understanding of the impressions of science held by undergraduates, helping educators improve scientific literacy in future scientists and diverse college graduates.

  17. Cognitive and developmental components of understanding the nature of science

    NASA Astrophysics Data System (ADS)

    Dotger, Sharon

    The purpose of this study is to determine the degree to which years of education, college major, or reflective judgment stage influences individual's understandings of the nature of science. Using a cross-sectional design influenced by the literature describing the development of reflective judgment and nature of science understandings, this study encompasses the viewpoints of 323 individuals from ninth grade through graduate study. This research involves the careful selection of instruments for assessing these two complex constructs, and the processes used to select and rate participants responses is described in detail. Multinomial ordinal regression was used to determine the significance of educational level, major, and reflective judgment on nature of science views. Results indicate that high school students as a whole are least likely to respond appropriately to questions about the nature of science. However, the performance of college students is inconsistent with predictions, college freshmen more often select the desired response than college seniors or graduate students. Additionally, college major has no significant impact on nature of science understandings. Reflective judgment, a term that describes cognitive developmental model of advanced thinking skills, is found to have the most significant correlations with nature of science views. Reflective thinkers are more likely to select the desired nature of science response than quasi-reflective and pre-reflective thinkers for six of the ten questions. Discussion of results is followed by implications for science teaching and learning in K-12 classrooms.

  18. Natural Hazards and Research Needs in Coastal and Ocean Engineering, Summary and Recommendations to the National Science Foundation and the Office of Naval Research,

    DTIC Science & Technology

    1984-11-01

    1,746 N. RAL HAZARDS AND RESEARCH NEEDS IN COASTAL AND OCEAN I ENEERING SUMMA..W NATIONAL SCIENCE FOUNDATION WA ;NG ON OC 1NAVE F AL NOV 84 FG02 N N...and Research Needs in Coastal and Ocean Engineering Summary and Recommendations to the National Science Foundation and the Office of Naval Research A T...Recommendations to the National Science Foundation and the Office of Naval Research by the Ad Hoc Committee for the Civil and Environmental Engineering

  19. A content analysis of physical science textbooks with regard to the nature of science and ethnic diversity

    NASA Astrophysics Data System (ADS)

    Brooks, Kristine M.

    The goal of science education is the preparation of scientifically literate students (Abd-El-Khalick & Lederman, 2000, & American Association for the Advancement of Science (AAAS), 1990). In order to instruct students in the nature of science with its history, development, methods and applications, science teachers use textbooks as the primary organizer for the curriculum (Chippetta, Ganesh, Lee, & Phillips, 2006). Science textbooks are the dominant instructional tool that exerts great influence on instructional content and its delivery (Wang, 1998). Science and science literacy requires acquiring knowledge about the natural world and understanding its application in society, or, in other words, the nature of science. An understanding of the nature of science is an important part of science literacy (Abd-El-Khalik & Lederman, 2000, & AAAS, 1990). The nature of science has four basic themes or dimensions: science as a body of knowledge, science as a way of thinking, science as a way of investigating, and science with its interaction with technology and society (Chippetta & Koballa, 2006). Textbooks must relay and incorporate these themes to promote science literacy. The results from this content analysis provide further insights into science textbooks and their content with regard to the inclusion of the nature of science and ethnic diversity. Science textbooks usually downplay human influences (Clough & Olson, 2004) whether as part of the nature of science with its historical development or its interaction with societies of diverse cultures. Minority students are underperforming in science and science is divided on ethnic, linguistic, and gender identity (Brown, 2005). Greater representations of diversity in curriculum materials enable minority students to identify with science (Nines, 2000). Textbooks, with their influence on curriculum and presentation, must include links for science and students of diverse cultures. What is the balance of the four aspects of the

  20. Learning and Teaching about the Nature of Science through Process Skills

    ERIC Educational Resources Information Center

    Mulvey, Bridget K.

    2012-01-01

    This dissertation, a three-paper set, explored whether the process skills-based approach to nature of science instruction improves teachers' understandings, intentions to teach, and instructional practice related to the nature of science. The first paper examined the nature of science views of 53 preservice science teachers before and after a…

  1. Advanced Science Students' Understanding on Nature of Science in Turkey

    ERIC Educational Resources Information Center

    Köksal, Mustafa Serdar; Sormunen, Kari

    2014-01-01

    Nature of science (NOS), as an aspect of informed decision making about science related issues in daily life, is frequently emphasised when reform and the curriculum are in question. When reflecting on studies done on the subject, it comes apparent that the majority of them comprise of determination or assessment studies conducted with traditional…

  2. National Institute of Environmental Health Sciences Kids' Pages

    MedlinePlus

    ... Recycle Science – How It Works The Natural World Games Brainteasers Puzzles Riddles Songs Activities Be a Scientist ... Recycle Science – How It Works The Natural World Games Expand Brainteasers Puzzles Riddles Songs Activities Expand Be ...

  3. A Geometric Model to Teach Nature of Science, Science Practices, and Metacognition

    ERIC Educational Resources Information Center

    Nyman, Matthew; St. Clair, Tyler

    2016-01-01

    Using the science practice model in science classes for preservice teachers addresses three important aspects of science teacher preparation: teaching the nonlinear nature of scientific process, using scientific practices rather than the ambiguous term "inquiry-based," and emphasizing the process of metacognition as an important tool in…

  4. An analysis of South African Grade 9 natural sciences textbooks for their representation of nature of science

    NASA Astrophysics Data System (ADS)

    Dewnarain Ramnarain, Umesh; Chanetsa, Tarisai

    2016-04-01

    This article reports on an analysis and comparison of three South African Grade 9 (13-14 years) Natural Sciences textbooks for the representation of nature of science (NOS). The analysis was framed by an analytical tool developed and validated by Abd-El-Khalick and a team of researchers in a large-scale study on the high school textbooks in the USA. The three textbooks were scored on targeted NOS aspects on a scale of -3 to +3 that reflected the explicitness with which these aspects were addressed. The analysis revealed that the textbooks poorly depict NOS, and in particular, there was scant attention given to the social dimension of science, science versus pseudoscience and the 'myth of the scientific method'. The findings of this study are incommensurate with the strong emphasis in a reformed school science curriculum that underlies the need for learners to understand the scientific enterprise, and how scientific knowledge develops. In view of this, the findings of this research reinforce the need for a review on the mandate given to textbook publishers and writers so that a stronger focus be placed on the development of materials that better represent the tenets of NOS.

  5. A HISTORY IN HIGHLIGHTS 1950-2000: The National Science Board

    DTIC Science & Technology

    2001-02-15

    built a solid foundation for the future. Through its stewardship of the National Science Foundation and its advice to the President and Congress on...consists of twenty-four men and women and the Director of the National Science Foundation eminent scientists, engineers, and educators who guide the...the Board in its governance of the National Science Foundation and in its national policy role.

  6. 75 FR 41241 - National Science Board; Sunshine Act Meetings; Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ... NATIONAL SCIENCE FOUNDATION National Science Board; Sunshine Act Meetings; Notice The National Science Board's Committee on Strategy and Budget, pursuant to NSF regulations (45 CFR part 614), the... information and schedule updates (time, place, subject matter or status of meeting) may be found at http://www...

  7. [Applications and approved projectsof general program, young scientist fund and fund for less developedregion of national natural science funds in discipline of Chinese materia medica, NSFC in 2012].

    PubMed

    Huang, Ming-Qing; Han, Li-Wei; Wu, Xiu-Hong; Bi, Ming-Gang; Shang, Hong-Cai; Liu, Yun-Fang; He, Wei-Ming; Li, Dan-Dan; Dong, Yan; Wang, Chang-En

    2013-01-01

    The applications accepted and approved by general program, young scientist fund and fund for less developed region of national natural science funds in the discipline of Chinese materia medica, NSFC in 2012 have been introduced. The research contents of the funded projects in the popular research areas have been summarized and the problems in the applications have been analyzed to give a reference to the scientists in the field of Chinese materia medica.

  8. A Thai pre-service teacher's understanding of nature of science in biology teaching

    NASA Astrophysics Data System (ADS)

    Srisawat, Akkarawat; Aiemsum-ang, Napapan; Yuenyong, Chokchai

    2018-01-01

    This study was conducted on the effect of understanding and instruction of the nature of science of Ms. Wanida, a pre-service student under science education program in biology, Faculty of Education, Khon Kaen University. Wanida was a teaching practicum student majoring in biology at Khon Kaen University Demonstration School (Modindaeng). She was teaching biology for 38 Grade 10 students. Methodology regarded interpretive paradigm. The study aimed to examine 1) Wanida's understanding of the nature of science, 2) Wanida's instruction of the nature of science, 3 students' understanding of the nature of science from Wanida's instruction, and 4) the effects of Wanida's understanding and instruction of the nature of science on students' understanding of the nature of science from Wanida's instruction. Tools of interpretation included teaching observation, a semi-structured interview, open-ended questionnaire, and an observation record form for the instruction of the nature of science. The data obtained was interpreted, encoded, and classified, using the descriptive statistics. The findings indicated that Wanida held good understanding of the nature of science. She could apply the deficient nature of science approach mostly, followed by the implicit nature of science approach. Unfortunately, she could not show her teaching as explicit nature of science. However, her students' the understanding of the nature of science was good.

  9. Teaching the Nature of Science with Scientific Narratives

    ERIC Educational Resources Information Center

    Adúriz-Bravo, Agustín

    2014-01-01

    The aim of this paper is to discuss the use of short science stories based on the history of science for science teacher education. Such stories are implemented to acquaint prospective and practicing science teachers in all educational levels with a conceptualisation of the nature of science (NOS) drawing from recent and contemporary developments…

  10. 78 FR 57136 - National Board for Education Sciences; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-17

    ... DEPARTMENT OF EDUCATION National Board for Education Sciences; Meeting AGENCY: Institute of Education Sciences, ED. ACTION: Notice of an open meeting. SUMMARY: This notice sets forth the schedule and proposed agenda of an upcoming meeting of the National Board for Education Sciences (NBES). The notice also...

  11. Influence of subject matter discipline and science content knowledge on National Board Certified science teachers' conceptions, enactment, and goals for inquiry

    NASA Astrophysics Data System (ADS)

    Breslyn, Wayne Gene

    The present study investigated differences in the continuing development of National Board Certified Science Teachers' (NBCSTs) conceptions of inquiry across the disciplines of biology, chemistry, earth science, and physics. The central research question of the study was, "How does a NBCST's science discipline (biology, chemistry, earth science, or physics) influence their conceptions, enactment, and goals for inquiry-based teaching and learning?" A mixed methods approach was used that included an analysis of the National Board portfolio entry, Active Scientific Inquiry, for participants (n=48) achieving certification in the 2007 cohort. The portfolio entry provided detailed documentation of teachers' goals and enactment of an inquiry lesson taught in their classroom. Based on the results from portfolio analysis, participant interviews were conducted with science teachers (n=12) from the 2008 NBCST cohort who represented the science disciplines of biology, chemistry, earth science, and physics. The interviews provided a broader range of contexts to explore teachers' conceptions, enactment, and goals of inquiry. Other factors studied were disciplinary differences in NBCSTs' views of the nature of science, the relation between their science content knowledge and use of inquiry, and changes in their conceptions of inquiry as result of the NB certification process. Findings, based on a situated cognitive framework, suggested that differences exist between biology, chemistry, and earth science teachers' conceptions, enactment, and goals for inquiry. Further, individuals teaching in more than one discipline often held different conceptions of inquiry depending on the discipline in which they were teaching. Implications for the research community include being aware of disciplinary differences in studies on inquiry and exercising caution in generalizing findings across disciplines. In addition, teachers who teach in more than one discipline can highlight the contextual

  12. Is Science Biased Toward Natural?

    EPA Science Inventory

    Having widely available, accurate, understandable, and unbiased scientific information is central to the successful resolution of the typically contentious, divisive, and litigious natural resource policy issue. Three examples are offered to illustrate how science is often misus...

  13. Examining Preservice Science Teacher Understanding of Nature of Science: Discriminating Variables on the Aspects of Nature of Science

    NASA Astrophysics Data System (ADS)

    Jones, William I.

    This study examined the understanding of nature of science among participants in their final year of a 4-year undergraduate teacher education program at a Midwest liberal arts university. The Logic Model Process was used as an integrative framework to focus the collection, organization, analysis, and interpretation of the data for the purpose of (1) describing participant understanding of NOS and (2) to identify participant characteristics and teacher education program features related to those understandings. The Views of Nature of Science Questionnaire form C (VNOS-C) was used to survey participant understanding of 7 target aspects of Nature of Science (NOS). A rubric was developed from a review of the literature to categorize and score participant understanding of the target aspects of NOS. Participants' high school and college transcripts, planning guides for their respective teacher education program majors, and science content and science teaching methods course syllabi were examined to identify and categorize participant characteristics and teacher education program features. The R software (R Project for Statistical Computing, 2010) was used to conduct an exploratory analysis to determine correlations of the antecedent and transaction predictor variables with participants' scores on the 7 target aspects of NOS. Fourteen participant characteristics and teacher education program features were moderately and significantly ( p < .01) correlated with participant scores on the target aspects of NOS. The 6 antecedent predictor variables were entered into multiple regression analyses to determine the best-fit model of antecedent predictor variables for each target NOS aspect. The transaction predictor variables were entered into separate multiple regression analyses to determine the best-fit model of transaction predictor variables for each target NOS aspect. Variables from the best-fit antecedent and best-fit transaction models for each target aspect of NOS were

  14. An Analysis of Several Instruments Measuring "Nature of Science" Objectives

    ERIC Educational Resources Information Center

    Doran, Rodney L.; And Others

    1974-01-01

    Reported is an investigation of the relationship among three selected instruments based on the responses of a sample of high school students. The instruments were the Nature of Science Scale (NOSS), the Science Support Scale (SSS), and the Test on the Social Aspects of Science (TSAS). All purport to measure "nature of science"…

  15. National Academy of Sciences Recommends Continued Support of ALMA Project

    NASA Astrophysics Data System (ADS)

    2000-05-01

    , will be built at a high-altitude, extremely dry mountain site in Chile's Atacama desert. The array is scheduled to be completed sometime in this decade. Millimeter-wave astronomy studies the universe in the spectral region where most of its energy lies, between the long-wavelength radio waves and the shorter-wavelength infrared waves. In this realm, ALMA will study the structure of the early universe and the evolution of galaxies; gather crucial data on the formation of stars, protoplanetary disks, and planets; and provide new insights on the familiar objects of our own solar system. "Most of the photons in the Universe lie in the millimeter wavelength regime; among existing or planned instruments only ALMA can image the sources of these photons with the crispness required to understand the events of galaxy, star and planet formation which launched them into space," said NRAO's Dr. Alwyn Wootten, U.S. ALMA Project Scientist. ALMA is an international partnership between the United States (National Science Foundation) and Europe. European participants include the European Southern Observatory, the Centre National de la Recherche Scientifique (France), the Max-Planck Gesellschaft (Germany), the Netherlands Foundation for Research in Astronomy, the United Kingdom Particle Physics and Astronomy Research Council, the Oficina de Ciencia Y Tecnologia/Instituto Geografico Nacional (Spain), and the Swedish Natural Science Research Council. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  16. Science and engineering research opportunities at the National Science Foundation.

    PubMed

    Demir, Semahat S

    2004-01-01

    Research at the interface of the physical sciences and life sciences has produced remarkable advances and understanding in biology and medicine over the past fifty years. These bases for many of these healthcare and research advances have been discoveries in the quantitative sciences and engineering approaches to applying them. The National Science Foundation supports research and development in the physical sciences which underpins multi-disciplinary approaches to addressing problems in biology and medicine. This presentation will cover research opportunities offered by the NSF and collaborative programs with the NIH to transfer the resulting advances and technologies.

  17. Understandings of Nature of Science and Multiple Perspective Evaluation of Science News by Non-science Majors

    NASA Astrophysics Data System (ADS)

    Leung, Jessica Shuk Ching; Wong, Alice Siu Ling; Yung, Benny Hin Wai

    2015-10-01

    Understandings of nature of science (NOS) are a core component of scientific literacy, and a scientifically literate populace is expected to be able to critically evaluate science in the media. While evidence has remained inconclusive on whether better NOS understandings will lead to critical evaluation of science in the media, this study aimed at examining the correlation therein. Thirty-eight non-science majors, enrolled in a science course for non-specialists held in a local community college, evaluated three health news articles by rating the extent to which they agreed with the reported claims and providing as many justifications as possible. The majority of the participants were able to evaluate and justify their viewpoint from multiple perspectives. Students' evaluation was compared with their NOS conceptions, including the social and cultural embedded NOS, the tentative NOS, the peer review process and the community of practice. Results indicated that participants' understanding of the tentative NOS was significantly correlated with multiple perspective evaluation of science news reports of socioscientific nature (r = 0.434, p < 0.05). This moderate correlation suggested the association between understanding of the tentative NOS and multiple perspective evaluation of science in the media of socioscientific nature. However, the null result for other target NOS aspects in this study suggested a lack of evidence to assume that understanding the social dimensions of science would have significant influence on the evaluation of science in the media. Future research on identifying the reasons for why and why not NOS understandings are applied in the evaluation will move this field forward.

  18. National Register of Research Projects, 1986/87. Part 2A: Natural sciences. Physical, engineering and related sciences (modified projects)

    NASA Astrophysics Data System (ADS)

    1988-08-01

    This Register is intended to serve as a source of information on research which is being conducted in all fields (both natural and human sciences) in the Republic of South Africa. New and current research projects that were commenced or modified during 1986 and 1987, on which information was received by the compilers until January 1988, are included, with the exception of confidential projects. Project titles and keywords are presented in the language as supplied, and the classifications are based on those provided by the primary sources.

  19. [School museums, collections, and elementary teaching of the natural sciences in late XIX century Argentina].

    PubMed

    García, Susana V

    2007-01-01

    In this study we analyze the organization of natural science teaching within the Argentinian school context starting with teaching practices and material support in the late XIX century. By that time, school staff and teachers fostered modernization and nationalization of teaching by using collections with national issues and the foundation of museums within the schools. In particular, we examine the official debates over the mineralogical collections offered for sale by the naturalist Enrique de Carlés, and the "school museums" by professors Pedro Scalabrini and Guillermo Navarro. These account for the tension between searching for modern didactic materials associated with foreign models, and the importance of counting on elements that represented the country nature and industry.

  20. Brazilian science communication research: national and international contributions.

    PubMed

    Barata, Germana; Caldas, Graça; Gascoigne, Toss

    2017-08-31

    Science communication has emerged as a new field over the last 50 years, and its progress has been marked by a rise in jobs, training courses, research, associations, conferences and publications. This paper describes science communication internationally and the trends and challenges it faces, before looking at the national level. We have documented science communication activities in Brazil, the training courses, research, financial support and associations/societies. By analyzing the publication of papers, dissertations and theses we have tracked the growth of this field, and compared the level of activity in Brazil with other countries. Brazil has boosted its national research publications since 2002, with a bigger contribution from postgraduate programs in education and communication, but compared to its national research activity Brazil has only a small international presence in science communication. The language barrier, the tradition of publishing in national journals and the solid roots in education are some of the reasons for that. Brazil could improve its international participation, first by considering collaborations within Latin America. International publication is dominated by the USA and the UK. There is a need to take science communication to the next level by developing more sophisticated tools for conceptualizing and analyzing science communication, and Brazil can be part of that.

  1. Connecting Science and Mathematics: The Nature of Proof and Disproof in Science and Mathematics

    ERIC Educational Resources Information Center

    Oehrtman, Michael; Lawson, Anton E.

    2008-01-01

    Disagreements exist among textbook authors, curriculum developers, and even among science and mathematics educators/researchers regarding the meanings and roles of several key nature-of-science (NOS) and nature-of-mathematics (NOM) terms such as proof, disproof, hypotheses, predictions, theories, laws, conjectures, axioms, theorems, and…

  2. Nominations sought for U.S. National Medal of Science

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-01-01

    Nominations are now being accepted for the 2012 U.S. National Medal of Science, which is the nation's highest honor for American scientists and engineers, presented annually by the president. The award is given to individuals “deserving of special recognition by reason of their outstanding cumulative contributions to knowledge” in the physical, biological, chemical, mathematical, engineering, or behavioral or social sciences, in combination with exemplary service to the nation, according to the program, which is administered by the National Science Foundation (NSF) on behalf of the White House Office of Science and Technology Policy. A note in NSF's call for nominations states, “We are especially interested in identifying women, members of minority groups, and persons with disabilities for consideration.”

  3. Using History of Science to Teach Nature of Science to Elementary Students

    ERIC Educational Resources Information Center

    Fouad, Khadija E.; Masters, Heidi; Akerson, Valarie L.

    2015-01-01

    Science lessons using inquiry only or history of science with inquiry were used for explicit reflective nature of science (NOS) instruction for second-, third-, and fourth-grade students randomly assigned to receive one of the treatments. Students in both groups improved in their understanding of creative NOS, tentative NOS, empirical NOS, and…

  4. National Medal of Science

    NASA Image and Video Library

    2014-11-20

    President Barack Obama congratulates MESSENGER Principal Investigator, director of Columbia University's Lamont-Doherty Earth Observatory, Sean Solomon, after awarding him the National Medal of Science, the nation's top scientific honor,Thursday, Nov. 20, 2014 during a ceremony in the East Room of the White House in Washington. MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) is a NASA-sponsored scientific investigation of the planet Mercury and the first space mission designed to orbit the planet closest to the Sun. Photo Credit: (NASA/Bill Ingalls)

  5. Astrobiology Outreach and the Nature of Science: The Role of Creativity

    PubMed Central

    Oliver, Carol; Walter, Malcolm R.

    2012-01-01

    Abstract There is concern in many developed countries that school students are turning away from science. However, students may be choosing not to study science and dismissing the possibility of a scientific career because, in the junior secondary years, they gain a false view of science and the work of scientists. There is a disparity between science as it is portrayed at school and science as it is practiced. This paper describes a study to explore whether engaging in science through astrobiology outreach activities may improve students' understanding of the nature and processes of science, and how this may influence their interest in a career in science. The results suggest that the students attending these Mars research–related outreach activities are more interested in science than the average student but are lacking in understanding of aspects of the nature of science. A significant difference was detected between pre- and posttest understandings of some concepts of the nature of science. Key Words: Science education—School science—Creativity—Nature and processes of science—Attitudes—Astrobiology. Astrobiology 12, 1143–1153. PMID:23134090

  6. An Overview of Environmental Education in Middle School Natural Science Courses

    ERIC Educational Resources Information Center

    Zhanbao, Shu

    2004-01-01

    Environmental education in middle school natural science courses is based on integrating environmental knowledge into natural science education. Therefore, environmental education objectives should be set as an extension of the objectives for natural science education. However, in order to reach the objectives laid out for environmental education…

  7. Math and Science Are America's Future. National Math and Science Initiative Annual Report, 2008

    ERIC Educational Resources Information Center

    National Math and Science Initiative, 2008

    2008-01-01

    This paper presents the annual report of the National Math and Science Initiative (NMSI) for 2008. Eighteen months ago, the National Math and Science Initiative did not exist. Today NMSI is helping lead the country forward in math and science. In just 18 months, NMSI has rolled out the first round of grants and has implemented programs in 14…

  8. National Assessment Program--Science Literacy Year 6 Report, 2006

    ERIC Educational Resources Information Center

    Donovan, Jenny; Lennon, Melissa; O'Connor, Gayl; Morrissey, Noni

    2008-01-01

    In 2003 the first nationally-comparable science assessment was designed, developed and carried out under the auspices of the national council of education ministers, the Ministerial Council on Education, Employment, Training and Youth Affairs (MCEETYA). In 2006 a second science assessment was conducted and, for the first time nationally, the…

  9. The USA National Phenology Network: A national science and monitoring program for understanding climate change

    NASA Astrophysics Data System (ADS)

    Weltzin, J.

    2009-04-01

    Patterns of phenology for plants and animals control ecosystem processes, determine land surface properties, control biosphere-atmosphere interactions, and affect food production, health, conservation, and recreation. Although phenological data and models have applications related to scientific research, education and outreach, agriculture, tourism and recreation, human health, and natural resource conservation and management, until recently there was no coordinated effort to understand phenology at the national scale in the United States. The USA National Phenology Network (USA-NPN; www.usanpn.org), established in 2007, is an emerging and exciting partnership between federal agencies, the academic community, and the general public to establish a national science and monitoring initiative focused on phenology. The first year of operation of USA-NPN produced many new phenology products and venues for phenology research and citizen involvement. Products include a new web-site (www.usanpn.org) that went live in June 2008; the web-site includes a tool for on-line data entry, and serves as a clearinghouse for products and information to facilitate research and communication related to phenology. The new core Plant Phenology Program includes profiles for 200 vetted local, regional, and national plant species with descriptions and (BBCH-consistent) monitoring protocols, as well as templates for addition of new species. A partnership program describes how other monitoring networks can engage with USA-NPN to collect, manage or disseminate phenological information for science, health, education, management or predictive service applications. Project BudBurst, a USA-NPN field campaign for citizen scientists, went live in February 2008, and now includes over 3000 registered observers monitoring 4000 plants across the nation. For 2009 and beyond, we will initiate a new Wildlife Phenology Program, create an on-line clearing-house for phenology education and outreach, strengthen

  10. Preservice and Inservice Science Teachers' Responses and Reasoning about the Nature of Science

    ERIC Educational Resources Information Center

    Buaraphan, Khajornsak

    2009-01-01

    An adequate understanding of the nature of science (NOS) is essential for science teachers. The Myths of Science Questionnaire (MOSQ) consisting of 14 items, which comprised both optional and written types of response, was utilized to explore 113 Thai preservice and 101 inservice science teachers' understanding and reasoning about the NOS,…

  11. National Patterns of Science and Technology Resources 1981.

    ERIC Educational Resources Information Center

    Chirichiello, John; Crowley, Michael

    An overview of two science and technology resources (financial support and scientific/technical personnel) is presented, based on a series of National Science Foundation (NSF) surveys on research and development (R&D) resources and scientific/technical personnel in the United States. Areas addressed related to national perspectives of R&D…

  12. LLNL: Science in the National Interest

    ScienceCinema

    George Miller

    2017-12-09

    This is Lawrence Livermore National Laboratory. located in the Livermore Valley about 50 miles east of San Francisco, the Lab is where the nations topmost science, engineering and technology come together. National security, counter-terrorism, medical technologies, energy, climate change our researchers are working to develop solutions to these challenges. For more than 50 years, we have been keeping America strong.

  13. Controversy as a Blind Spot in Teaching Nature of Science: Why the Range of Different Positions Concerning Nature of Science Should Be an Issue in the Science Classroom

    ERIC Educational Resources Information Center

    Kötter, Mario; Hammann, Marcus

    2017-01-01

    In this article, the argument is put forth that controversies about the scope and limits of science should be considered in Nature of Science (NOS) teaching. Reference disciplines for teaching NOS are disciplines, which reflect upon science, like philosophy of science, history of science, and sociology of science. The culture of these disciplines…

  14. Small Unmanned Aerial Systems: Implications of the Evolving Legal Context for Use in Natural Resources Science and Management

    NASA Astrophysics Data System (ADS)

    Walker, M. J.

    2016-12-01

    Small unmanned aerial systems (sUAS, also known as drones) potentially provide researchers and managers with the capacity to enhance temporal and spatial resolution of data sets for natural resources science and management. sUAS have been used for many types of data collection and have a partial definition in mass of the aircraft, ranging from 0.5 to <55 lbs (0.2 to <24.9 kg). Aircraft within this range of mass can present a collision hazard to other aircraft. The Federal Aviation Administration (FAA) recently faced the challenge of removing regulatory barriers to sUAS application while minimizing risk in the national airspace. The regulatory and legal framework developed for using sUAS in natural resources science and management has evolved from a very conservative approach prior in the first decade of the 21st century. FAA's recently revised operating rules for sUAS, significantly changing pilot certification requirements and operating rules in the national airspace. The next 2-5 years will bring advances in sUAS applications for science and management, building upon the accomplishments of users who complied with the former regulatory environment. We review the current operating rules (49 CFR, part 107) that apply specifically to sUAS and discuss the implications for researchers and managers. While part 107 relaxed many restrictions, it is important to understand the regulatory framework currently in place that encourages development of applications for sUAS while adhering to the mandate that the national airspace be safe and secure. We consider potential applications for natural resources science and management in the context of the recently released operating rules, especially with respect to training requirements and protocols for use.

  15. The Physical Sciences. Report of the National Science Board Submitted to the Congress.

    ERIC Educational Resources Information Center

    Handler, Philip

    Recent advances in the physical sciences, including astronomy, chemical synthesis, chemical dynamics, solid-state sciences, atomic and nuclear science, and elementary particles and high-energy physics are summarized in this report to Congress. The nature of physical science, including its increasing unity, the relationship between science and…

  16. Understanding Natural Sciences Education in a Reggio Emilia-Inspired Preschool

    ERIC Educational Resources Information Center

    Inan, Hatice Zeynep; Trundle, Kathy Cabe; Kantor, Rebecca

    2010-01-01

    This ethnographic study explored aspects of how the natural sciences were represented in a Reggio Emilia-inspired laboratory preschool. The natural sciences as a discipline--a latecomer to preschool curricula--and the internationally known approach, Reggio Emilia, interested educators and researchers, but there was little research about science in…

  17. National Medal of Science

    NASA Image and Video Library

    2014-11-20

    President Barack Obama, right, and MESSENGER Principal Investigator, director of Columbia University's Lamont-Doherty Earth Observatory, Sean Solomon, listen as a citation is read prior to the President bestowing the National Medal of Science, the nation's top scientific honor to Solomon, Thursday, Nov. 20, 2014 during a ceremony in the East Room of the White House in Washington. MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) is a NASA-sponsored scientific investigation of the planet Mercury and the first space mission designed to orbit the planet closest to the Sun. Photo Credit: (NASA/Bill Ingalls)

  18. A Structural Model of Prospective Science Teachers' Nature of Science Views

    ERIC Educational Resources Information Center

    Mugaloglu, Ebru Z.; Bayram, Hale

    2010-01-01

    This study aims to establish a viable structural model of prospective science teachers' nature of science (NOS) views, which could be used as an analytical tool for understanding the complex relationships between prospective teachers' conceptions of NOS and factors possibly affecting their conceptions. In order to construct such a model, likely…

  19. From Orthodoxy to Plurality in the Nature of Science (NOS) and Science Education: A Metacommentary

    ERIC Educational Resources Information Center

    Bazzul, Jesse

    2017-01-01

    This article provides a metacommentary on the special issue on nature of science (NOS). The issue is composed of senior scholars discussing Hodson and Wong's (2017, this issue) critique of the consensus view of nature of science, which on a basic level states that there are agreed-upon aspects of science that can be taught in K-12 schools. Each…

  20. Religious Belief: The Main Impact on the Perception of the Nature of Science on Student Teachers

    ERIC Educational Resources Information Center

    Aflalo, Ester

    2013-01-01

    This study aims to examine the affect of the degree of religiosity of student teachers, and their nationalism and scientific background on their perception of the nature of science (NOS). First year Arab and Jewish religiously observant, traditional and secular students in Israel (101 in number) with different scientific backgrounds participated…

  1. National Science Education Standards.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC.

    The National Science Education Standards present a vision of a scientifically literate populace. The standards outline what students need to know, understand, and be able to do to be scientifically literate at different grade levels. They describe an educational system in which all students demonstrate high levels of performance, teachers are…

  2. Nature of Science and Science Content Learning: The Relation between Students' Nature of Science Understanding and Their Learning about the Concept of Energy

    ERIC Educational Resources Information Center

    Michel, Hanno; Neumann, Irene

    2016-01-01

    Besides viewing knowledge about the nature of science (NOS) as important for its own value with respect to scientific literacy, an adequate understanding of NOS is expected to improve science content learning by fostering the ability to interrelate scientific concepts and, thus, coherently acquire scientific content knowledge. However, there is a…

  3. 75 FR 40754 - Government in the Sunshine Act Regulations of the National Science Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-14

    ... NATIONAL SCIENCE FOUNDATION 45 CFR Part 614 RIN 3145-AA53 Government in the Sunshine Act Regulations of the National Science Board AGENCY: National Science Board (NSB), National Science Foundation (NSF). ACTION: Direct final rule. SUMMARY: The National Science Board (NSB) National Science Foundation...

  4. Special Education Teachers' Nature of Science Instructional Experiences

    ERIC Educational Resources Information Center

    Mulvey, Bridget K.; Chiu, Jennifer L.; Ghosh, Rajlakshmi; Bell, Randy L.

    2016-01-01

    Special education teachers provide critical science instruction to students. However, little research investigates special education teacher beliefs and practices around science in general or the nature of science and inquiry in particular. This investigation is a cross-case analysis of four elementary special education teachers' initial…

  5. The Nature of Science in a Multicultural Context.

    ERIC Educational Resources Information Center

    Vira, Shashank

    1997-01-01

    Proposes an alternative view of the nature of science that strikes a balance between extremely relativist views that see no difference between science and pseudoscience and current views that are inappropriate in a multicultural society. Implications for science teaching in the British schools are discussed. (SLD)

  6. The United Nations Basic Space Science Initiative

    NASA Astrophysics Data System (ADS)

    Haubold, Hans; Balogh, Werner

    2014-05-01

    The basic space science initiative was a long-term effort for the development of astronomy and space science through regional and international cooperation in this field on a worldwide basis, particularly in developing nations. Basic space science workshops were co-sponsored and co-organized by ESA, JAXA, and NASA. A series of workshops on basic space science was held from 1991 to 2004 (India 1991, Costa Rica and Colombia 1992, Nigeria 1993, Egypt 1994, Sri Lanka 1995, Germany 1996, Honduras 1997, Jordan 1999, France 2000, Mauritius 2001, Argentina 2002, and China 2004; http://neutrino.aquaphoenix.com/un-esa/) and addressed the status of astronomy in Asia and the Pacific, Latin America and the Caribbean, Africa, and Western Asia. Through the lead of the National Astronomical Observatory Japan, astronomical telescope facilities were inaugurated in seven developing nations and planetariums were established in twenty developing nations based on the donation of respective equipment by Japan.Pursuant to resolutions of the Committee on the Peaceful Uses of Outer Space of the United Nations (COPUOS) and its Scientific and Technical Subcommittee, since 2005, these workshops focused on the preparations for and the follow-ups to the International Heliophysical Year 2007 (UAE 2005, India 2006, Japan 2007, Bulgaria 2008, South Korea 2009; www.unoosa.org/oosa/SAP/bss/ihy2007/index.html). IHY's legacy is the current operation of 16 worldwide instrument arrays with more than 1000 instruments recording data on solar-terrestrial interaction from coronal mass ejections to variations of the total electron content in the ionosphere (http://iswisecretariat.org/). Instruments are provided to hosting institutions by entities of Armenia, Brazil, France, Israel, Japan, Switzerland, and the United States. Starting in 2010, the workshops focused on the International Space Weather Initiative (ISWI) as mandated in a three-year-work plan as part of the deliberations of COPUOS. Workshops on ISWI

  7. 76 FR 44333 - National Biodefense Science Board; Call for Nominees

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-25

    ..., and opportunities presented by advances in biological and life sciences, biotechnology, and genetic... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Biodefense Science Board; Call for Nominees... considered for membership on the National Biodefense Science Board. Seven members have membership expiration...

  8. 78 FR 35035 - National Biodefense Science Board; Call for Nominees

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-11

    ... and future trends, challenges, and opportunities presented by advances in biological and life sciences... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Biodefense Science Board; Call for Nominees... considered for membership on the National Biodefense Science Board (NBSB). Six members have membership...

  9. 75 FR 30832 - National Biodefense Science Board; Call for Nominees

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-02

    ... opportunities presented by advances in biological and life sciences, biotechnology, and genetic engineering with... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Biodefense Science Board; Call for Nominees... considered for membership on the National Biodefense Science Board. Six members have membership expiration...

  10. Citizen Scientists Contribute National-Scale Phenology Data for Science, Conservation and Resource Management

    NASA Astrophysics Data System (ADS)

    Weltzin, J. F.; Rosemartin, A.; Crimmins, T. M.; Posthumus, E.

    2015-12-01

    The USA National Phenology Network (USA-NPN; www.usanpn.org) serves science and society by promoting a broad understanding of plant and animal phenology and the relationships among phenological patterns and all aspects of environmental change. Data maintained by USA-NPN is being used for applications related to science, conservation and resource management. The majority of the data have been provided by "citizen scientists" participating in a national-scale, multi-taxa phenology observation program, Nature's Notebook. Since 2008, more than 5,500 active participants registered with Nature's Notebook have contributed over 5.5 million observation records for plants and animals. This presentation will demonstrate several types of questions that can be addressed by engaging citizen scientists in a standardized national monitoring system focused on field observations of biodiversity. Because the proof is often in the pudding, we will feature a diversity of recently published studies, but will also highlight several new and ongoing local- to continental-scale projects. Projects include continental bioclimatic indices, regional assessments of historical and potential future trends in phenology, sub-regional assessments of temperate deciduous forest response to recent variability in spring-time heat accumulation, state- and management unit- level foci on spatio-temporal variation in organismal activity at both the population and community level, and local monitoring for invasive species detection across platforms from ground to satellite. Additional data-mining and exploration by interested researchers and/or resource managers will likely further demonstrate the value of these data. The bottom line is that "citizen science" represents a viable approach to collect data across spatiotemporal scales often unattainable to research scientists under typical resource constraints.

  11. Pre-service Teachers Learn the Nature of Science in Simulated Worlds

    NASA Astrophysics Data System (ADS)

    Marshall, Jill

    2007-10-01

    Although the Texas Essential Knowledge and Skills include an understanding of the nature of science as an essential goal of every high school science course, few students report opportunities to explore essential characteristics of science in their previous classes. A simulated-world environment (Erickson, 2005) allows students to function as working scientists and discover these essential elements for themselves (i.e. that science is evidence-based and involves testable conjectures, that theories have limitations and are constantly being modified based on new discoveries to more closely reflect the natural world.) I will report on pre-service teachers' exploration of two simulated worlds and resulting changes in their descriptions of the nature of science. Erickson (2005). Simulating the Nature of Science. Presentation at the 2005 Summer AAPT Meeting, Salt Lake City, UT.

  12. 78 FR 40480 - National Biodefense Science Board; Call for Nominees

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-05

    ... and future trends, challenges, and opportunities presented by advances in biological and life sciences... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Biodefense Science Board; Call for Nominees... deadline for all application submissions to the National Biodefense Science Board (NBSB) is extended from...

  13. Science informs stewardship: Committing to a national wilderness science agenda

    Treesearch

    Susan A. Fox; Beth A. Hahn

    2016-01-01

    The National Wilderness Preservation System (NWPS) is a vital component of the national and international infrastructure for science, education, and information. The NWPS serves as an important resource for advancing research, from discovering new dinosaurs (Arbour et al. 2014, Landon 2016) to understanding human history on the American landscape (Rasic 2003). The NWPS...

  14. The Role of Metaphysical Naturalism in Science

    ERIC Educational Resources Information Center

    Mahner, Martin

    2012-01-01

    This paper defends the view that metaphysical naturalism is a constitutive ontological principle of science in that the general empirical methods of science, such as observation, measurement and experiment, and thus the very production of empirical evidence, presuppose a no-supernature principle. It examines the consequences of metaphysical…

  15. Understandings of Nature of Science and Multiple Perspective Evaluation of Science News by Non-Science Majors

    ERIC Educational Resources Information Center

    Leung, Jessica Shuk Ching; Wong, Alice Siu Ling; Yung, Benny Hin Wai

    2015-01-01

    Understandings of nature of science (NOS) are a core component of scientific literacy, and a scientifically literate populace is expected to be able to critically evaluate science in the media. While evidence has remained inconclusive on whether better NOS understandings will lead to critical evaluation of science in the media, this study aimed at…

  16. Psychology and the National Medal of Science

    ERIC Educational Resources Information Center

    Lowman, Robert P.; Benjamin, Ludy T., Jr.

    2012-01-01

    When Congress created the National Medal of Science in 1959 to be awarded by the president of the United States, psychology was not among the eligible sciences. A concerted lobbying effort in the late 1970s changed that situation, adding social and behavioral sciences to the listing of eligible disciplines. This article describes how the award…

  17. From the National Academies: Overview of the National Research Council's Board on Science Education and Personal Reflections as a Science Teacher

    ERIC Educational Resources Information Center

    Wieman, Carl

    2005-01-01

    Over the past year, the National Academies have established a Board on Science Education (BOSE). This marks a major restructuring of the portion of the National Research Council (NRC) that deals with science education. As the first chair of BOSE, the author describes in this column the new structure and advantages of this board and discusses some…

  18. Evaluating Instrument Quality in Science Education: Rasch-based analyses of a Nature of Science test

    NASA Astrophysics Data System (ADS)

    Neumann, Irene; Neumann, Knut; Nehm, Ross

    2011-07-01

    Given the central importance of the Nature of Science (NOS) and Scientific Inquiry (SI) in national and international science standards and science learning, empirical support for the theoretical delineation of these constructs is of considerable significance. Furthermore, tests of the effects of varying magnitudes of NOS knowledge on domain-specific science understanding and belief require the application of instruments validated in accordance with AERA, APA, and NCME assessment standards. Our study explores three interrelated aspects of a recently developed NOS instrument: (1) validity and reliability; (2) instrument dimensionality; and (3) item scales, properties, and qualities within the context of Classical Test Theory and Item Response Theory (Rasch modeling). A construct analysis revealed that the instrument did not match published operationalizations of NOS concepts. Rasch analysis of the original instrument-as well as a reduced item set-indicated that a two-dimensional Rasch model fit significantly better than a one-dimensional model in both cases. Thus, our study revealed that NOS and SI are supported as two separate dimensions, corroborating theoretical distinctions in the literature. To identify items with unacceptable fit values, item quality analyses were used. A Wright Map revealed that few items sufficiently distinguished high performers in the sample and excessive numbers of items were present at the low end of the performance scale. Overall, our study outlines an approach for how Rasch modeling may be used to evaluate and improve Likert-type instruments in science education.

  19. Teachers' conceptions of the nature of science: Analyzing the impact of a teacher enhancement program in changing attitudes and perceptions of science and scientific research

    NASA Astrophysics Data System (ADS)

    Govett, Aimee Lee

    The purpose of this study was to determine the efficacy of a residential science research experience in changing participants' attitudes and understanding of the nature of science and their view of themselves as science researchers. Data from interviews, journal writings, classroom observations and two pre-post instruments were used in the evaluation plan. As participants of this study, 16 inservice teachers (K--16) attended a two-week residential institute at the National Radio Astronomy Observatory (NRAO) in Green Bank, West Virginia. The format of the institute featured a scientific research experience designed to arm its participants with the skills needed to model their classroom teaching after scientific research. The program included lessons on the fundamentals of radio astronomy, science talks and interactions with practicing scientists, in-depth tours of the NRAO facilities, and pedagogical instruction for implementing research in the classroom. The WVU College of Education staff and the NRAO staff stressed the importance of the nature of the research experience offered to these teachers. In the Education Sessions the WVU science education staff guided participants through the steps required to turn their experience around, in order to develop student research projects for their classrooms. The results from the Research Self Assessment instrument show significant gains for all participants in being more comfortable doing research. For the Nature of Science and Science Teaching instrument there were only three items that showed significant gains for all participants both in understanding the nature of science and in their views on implementing the Green Bank constructivist learning philosophy. The women, especially the elementary teacher group, showed the greatest change in their understanding of the nature of science as reflected in the interviews as well as in their personal journals. The seven men, who were all in the secondary field, made no significant

  20. On Teaching the Nature of Science: Perspectives and Resources

    ERIC Educational Resources Information Center

    Radloff, Jeffrey

    2016-01-01

    In this paper, I present a critical review of the recent book, "On Teaching the Nature of Science: Perspectives and Resources," written by Douglas Allchin (2013). This publication presents an in-depth examination of the nature of science construct, as well as instruction for educators about how to teach it effectively utilizing…

  1. Understanding How Science Works: The Nature of Science as The Foundation for Science Teaching and Learning

    ERIC Educational Resources Information Center

    McComas, William F.

    2017-01-01

    The nature of science (NOS) is a phrase used to represent the rules of the game of science. Arguably, NOS is the most important content issue in science instruction because it helps students understand the way in which knowledge is generated and validated within the scientific enterprise. This article offers a proposal for the elements of NOS that…

  2. 75 FR 36722 - Aeronautics Science and Technology Subcommittee; Committee on Technology; National Science and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Aeronautics Science and Technology Subcommittee; Committee on Technology; National Science and Technology Council ACTION: Notice of Meeting--Public input is... Evaluation (RDT&E) Infrastructure Plan. SUMMARY: The Aeronautics Science and Technology Subcommittee (ASTS...

  3. 76 FR 12718 - National Board for Education Sciences Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-08

    ... DEPARTMENT OF EDUCATION National Board for Education Sciences Meeting AGENCY: Institute of Education Sciences, Department of Education. ACTION: Notice of an open meeting. SUMMARY: This notice sets forth the schedule and proposed agenda of an upcoming meeting of the National Board for Education...

  4. 77 FR 57079 - National Board for Education Sciences; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-17

    ... DEPARTMENT OF EDUCATION National Board for Education Sciences; Meeting AGENCY: Institute of Education Sciences, Department of Education. ACTION: Notice of an open meeting. SUMMARY: This notice sets forth the schedule and proposed agenda of an upcoming meeting of the National Board for Education...

  5. 77 FR 51537 - Meetings of the National Biodefense Science Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-24

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Meetings of the National Biodefense Science Board AGENCY... notice that the National Biodefense Science Board (NBSB) will be holding a closed session under exemption... Biodefense Science Board mailbox: [email protected] . SUPPLEMENTARY INFORMATION: Pursuant to section 319M of the...

  6. 77 FR 7164 - Meeting of the National Biodefense Science Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-10

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Meeting of the National Biodefense Science Board AGENCY... giving notice that the National Biodefense Science Board (NBSB) will be holding a closed session by... Biodefense Science Board. The Board shall provide expert advice and guidance to the Secretary on scientific...

  7. Astrobiology outreach and the nature of science: the role of creativity.

    PubMed

    Fergusson, Jennifer; Oliver, Carol; Walter, Malcolm R

    2012-12-01

    There is concern in many developed countries that school students are turning away from science. However, students may be choosing not to study science and dismissing the possibility of a scientific career because, in the junior secondary years, they gain a false view of science and the work of scientists. There is a disparity between science as it is portrayed at school and science as it is practiced. This paper describes a study to explore whether engaging in science through astrobiology outreach activities may improve students' understanding of the nature and processes of science, and how this may influence their interest in a career in science. The results suggest that the students attending these Mars research-related outreach activities are more interested in science than the average student but are lacking in understanding of aspects of the nature of science. A significant difference was detected between pre- and posttest understandings of some concepts of the nature of science.

  8. Focusing the Camera Lens on the Nature of Science: Evidence for the Effectiveness of Documentary Film as a Broader Impacts Strategy

    ERIC Educational Resources Information Center

    Laursen, Sandra L.; Brickley, Annette

    2011-01-01

    Scientists' involvement in education has increased in recent years due to mechanisms such as the National Science Foundation's "broader impacts" expectations for research projects. The best investment of their effort lies in sharing their expertise on the nature and processes of science; film is one medium by which this can be done…

  9. Only One Science: Twelfth Annual Report of the National Science Board.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. National Science Board.

    Departing markedly from previous reports to Congress by the National Science Board, this document presents in an informal, narrative style six stories depicting scientific discoveries and their effects on society. Drawn from the physical, biological, medical, and social sciences, topics discussed include: (1) computers and semiconductors; (2)…

  10. What Scientists Say: Scientists' Views of Nature of Science and Relation to Science Context

    ERIC Educational Resources Information Center

    Schwartz, Renee; Lederman, Norman

    2008-01-01

    The purpose of this study is to examine practicing scientists' views of nature of science (NOS) and explore possible relationships between these views and science context. Science educators emphasize teaching NOS through inquiry-based learning experiences throughout science disciplines. Yet aspects of NOS that are agreed upon as relevant to…

  11. Changes in Pre-Service Science Teachers' Understandings After Being Involved in Explicit Nature of Science and Socioscientific Argumentation Processes

    ERIC Educational Resources Information Center

    Kutluca, A. Y.; Aydin, A.

    2017-01-01

    The study explored the changes in pre-service science teachers' understanding of the nature of science and their opinions about the nature of science, science teaching and argumentation after their participation in explicit nature of science (NOS) and socioscientific argumentation processes. The participants were 56 third-grade pre-service science…

  12. Populations, Natural Selection, and Applied Organizational Science.

    ERIC Educational Resources Information Center

    McKelvey, Bill; Aldrich, Howard

    1983-01-01

    Deficiencies in existing models in organizational science may be remedied by applying the population approach, with its concepts of taxonomy, classification, evolution, and population ecology; and natural selection theory, with its principles of variation, natural selection, heredity, and struggle for existence, to the idea of organizational forms…

  13. 76 FR 34069 - National Board for Education Sciences; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-10

    ... DEPARTMENT OF EDUCATION National Board for Education Sciences; Meeting AGENCY: U.S. Department of Education, Institute of Education Sciences. ACTION: Notice of an open meeting. SUMMARY: This notice sets forth the schedule and proposed agenda of an upcoming meeting of the National Board for Education...

  14. 76 FR 58789 - National Board for Education Sciences; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-22

    ... DEPARTMENT OF EDUCATION National Board for Education Sciences; Meeting AGENCY: Institute of Education Sciences, U.S. Department of Education. ACTION: Notice of an open meeting. SUMMARY: This notice sets forth the schedule and proposed agenda of an upcoming meeting of the National Board for Education...

  15. 78 FR 28811 - National Board for Education Sciences; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-16

    ... DEPARTMENT OF EDUCATION National Board for Education Sciences; Meeting AGENCY: Institute of Education Sciences, U.S. Department of Education. ACTION: Notice of an open meeting. SUMMARY: This notice sets forth the schedule and proposed agenda of an upcoming meeting of the National Board for Education...

  16. 78 FR 8499 - National Board for Education Sciences; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-06

    ... DEPARTMENT OF EDUCATION National Board for Education Sciences; Meeting AGENCY: U.S. Department of Education, Institute of Education Sciences. ACTION: Notice of an open meeting. SUMMARY: This notice sets forth the schedule and proposed agenda of an upcoming meeting of the National Board for Education...

  17. 77 FR 6789 - National Board for Education Sciences; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-09

    ... DEPARTMENT OF EDUCATION National Board for Education Sciences; Meeting AGENCY: Institute of Education Sciences, U.S. Department of Education. ACTION: Notice of an open meeting. SUMMARY: This notice sets forth the schedule and proposed agenda of an upcoming meeting of the National Board for Education...

  18. Identifying Internet Sites to Coordinate with National Science Education Standards

    ERIC Educational Resources Information Center

    Fehrenbach, Carolyn R.; Morris, Maxine G.

    2004-01-01

    Identifying Internet sites to coordinate with National Science Education Standards can be challenging for teachers and students. By identifying quality free Internet sites in science, teachers and students can use the extensive resources of the Internet to enhance learning and instruction while meeting National Science Education Content Standards…

  19. Professional Development of Elementary and Science Teachers in a Summer Science Camp: Changing Nature of Science Conceptions

    ERIC Educational Resources Information Center

    Karaman, Ayhan

    2016-01-01

    Many countries all over the world have recently integrated nature of science (NOS) concepts into their science education standards. Providing professional support to teachers about NOS concepts is crucially important for successful implementation of the standards. For this purpose, a summer science camp was offered to elementary and science…

  20. In Brief: Rita Colwell receives National Medal of Science

    NASA Astrophysics Data System (ADS)

    Kumar, Mohi

    2007-07-01

    Rita Colwell, director of the U.S. National Science Foundation from 1998 to 2004, was awarded a U.S. National Medal of Science in a White House ceremony on 27 July 2007. Colwell, currently a professor of microbiology and biotechnology at the University of Maryland at College Park and a professor at Johns Hopkins University Bloomberg School of Public Health, received the award for her research on global infectious diseases and marine microbes, specifically the bacterium that causes pandemic cholera. The National Medal of Science is the United States' highest honor for scientific achievement. Colwell currently serves on AGU's development board.

  1. Teaching "With" and "About" Nature of Science, and Science Teacher Knowledge Domains

    ERIC Educational Resources Information Center

    Abd-El-Khalick, Fouad

    2013-01-01

    The ubiquitous goals of helping precollege students develop informed conceptions of nature of science (NOS) and experience inquiry learning environments that progressively approximate authentic scientific practice have been long-standing and central aims of science education reforms around the globe. However, the realization of these goals…

  2. Fall 1978 Directory - Assembly of Life Sciences, National Research Council.

    ERIC Educational Resources Information Center

    National Academy of Sciences, Washington, DC.

    This directory of the Assembly of Life Sciences (ALS), National Research Council, reflects the status of all committees, their membership, Corresponding Societies, and ALS staff as of October, 1978. Organization charts illustrate the relationship between the Assembly of Life Sciences and the general structure of the National Academy of Sciences,…

  3. 77 FR 33732 - National Board for Education Sciences; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-07

    ... DEPARTMENT OF EDUCATION National Board for Education Sciences; Meeting AGENCY: ED, Institute of Education Sciences, U.S. Department of Education. ACTION: Notice of an Open Meeting. SUMMARY: This notice sets forth the schedule and proposed agenda of an upcoming meeting of the National Board for Education...

  4. 5 CFR 5301.105 - Restrictions applicable to Members of the National Science Board.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... National Science Board. 5301.105 Section 5301.105 Administrative Personnel NATIONAL SCIENCE FOUNDATION SUPPLEMENTAL STANDARDS OF ETHICAL CONDUCT FOR EMPLOYEES OF THE NATIONAL SCIENCE FOUNDATION § 5301.105 Restrictions applicable to Members of the National Science Board. (a) Participation in proposals and awards. (1...

  5. 5 CFR 5301.105 - Restrictions applicable to Members of the National Science Board.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... National Science Board. 5301.105 Section 5301.105 Administrative Personnel NATIONAL SCIENCE FOUNDATION SUPPLEMENTAL STANDARDS OF ETHICAL CONDUCT FOR EMPLOYEES OF THE NATIONAL SCIENCE FOUNDATION § 5301.105 Restrictions applicable to Members of the National Science Board. (a) Participation in proposals and awards. (1...

  6. 5 CFR 5301.105 - Restrictions applicable to Members of the National Science Board.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... National Science Board. 5301.105 Section 5301.105 Administrative Personnel NATIONAL SCIENCE FOUNDATION SUPPLEMENTAL STANDARDS OF ETHICAL CONDUCT FOR EMPLOYEES OF THE NATIONAL SCIENCE FOUNDATION § 5301.105 Restrictions applicable to Members of the National Science Board. (a) Participation in proposals and awards. (1...

  7. 5 CFR 5301.105 - Restrictions applicable to Members of the National Science Board.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... National Science Board. 5301.105 Section 5301.105 Administrative Personnel NATIONAL SCIENCE FOUNDATION SUPPLEMENTAL STANDARDS OF ETHICAL CONDUCT FOR EMPLOYEES OF THE NATIONAL SCIENCE FOUNDATION § 5301.105 Restrictions applicable to Members of the National Science Board. (a) Participation in proposals and awards. (1...

  8. 5 CFR 5301.105 - Restrictions applicable to Members of the National Science Board.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... National Science Board. 5301.105 Section 5301.105 Administrative Personnel NATIONAL SCIENCE FOUNDATION SUPPLEMENTAL STANDARDS OF ETHICAL CONDUCT FOR EMPLOYEES OF THE NATIONAL SCIENCE FOUNDATION § 5301.105 Restrictions applicable to Members of the National Science Board. (a) Participation in proposals and awards. (1...

  9. Indian Natural Resource, Science and Engineering Program.

    ERIC Educational Resources Information Center

    Oros, Tia

    1993-01-01

    The Indian Natural Resource, Science, and Engineering Program at California State University, Humboldt, offers a wide variety of courses related to working in natural-resource fields in indigenous communities and provides academic and personal support services to American Indian students in such fields. A program participant is profiled. (SV)

  10. Course on the Nature of Physical Science.

    ERIC Educational Resources Information Center

    Derr, Patrick G.; Andersen, Roy S.

    1981-01-01

    Describes a course which provides nonscience students with an understanding of methods and nature of natural science. The course is a seminar organized around a detailed examination of the Copernican revolution, in part through Copernicus's original writings, and in part through contemporary historical and philosophical analysis. (Author/SK)

  11. Physics. Teacher's Guide. Investigations in Natural Science.

    ERIC Educational Resources Information Center

    Renner, John W.; And Others

    Investigations in Natural Science is a program in secondary school biology, chemistry, and physics based upon the description of science as a quest for knowledge, not the knowledge itself. This teaching guide is designed for use with the 36 physics investigations found in the student manual. These investigations focus on concepts related to:…

  12. Biology. Teacher's Guide. Investigations in Natural Science.

    ERIC Educational Resources Information Center

    Renner, John W.; And Others

    Investigations in Natural Science is a program in secondary school biology, chemistry, and physics based upon the description of science as a quest for knowledge, not the knowledge itself. This teaching guide is designed for use with the 18 biology investigations found in the student manual. These investigations focus on concepts related to:…

  13. Chemistry. Teacher's Guide. Investigations in Natural Science.

    ERIC Educational Resources Information Center

    Renner, John W.; And Others

    Investigations in Natural Science is a program in secondary school biology, chemistry, and physics based upon the description of science as a quest for knowledge, not the knowledge itself. This teaching guide is designed for use with the 19 chemistry investigations found in the student manual. These investigations focus on concepts related to:…

  14. Exoplanet Science in the National Science Olympiad

    NASA Astrophysics Data System (ADS)

    Komacek, Thaddeus D.; Young, Donna

    2015-11-01

    The National Science Olympiad is one of the United States' largest science competitions, reaching over 6,000 schools in 48 states. The Olympiad includes a wide variety of events, stretching a full range of potential future STEM careers, from biological sciences to engineering to earth and space sciences. The Astronomy event has been a mainstay at the high school level for well over a decade, and nominally focuses on aspects of stellar evolution. For the 2014-2015 competition season, the event focus was aligned to include exoplanet discovery and characterization along with star formation. Teams studied both the qualitative features of exoplanets and exoplanetary systems and the quantitative aspects behind their discovery and characterization, including basic calculations with the transit and radial velocity methods. Students were also expected to have a qualitative understanding of stellar evolution and understand the differences between classes of young stars including T Tauri and FU Orionis variables, and Herbig Ae/Be stars. Based on the successes of this event topic, we are continuing this event into the 2015-2016 academic year. The key modification is the selection of new exoplanetary systems for students to research. We welcome feedback from the community on how to improve the event and the related educational resources that are created for Science Olympiad students and coaches. We also encourage any interested community members to contact your regional or state Science Olympiad tournament directors and volunteer to organize competitions and supervise events locally.

  15. 75 FR 65305 - National Board for Education Sciences

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ... DEPARTMENT OF EDUCATION National Board for Education Sciences AGENCY: Department of Education, Institute of Education Sciences. ACTION: Notice of an open meeting with a closed session. SUMMARY: This... Education Sciences. The notice also describes the functions of the Committee. Notice of this meeting is...

  16. The International Space Station: A National Science Laboratory

    NASA Technical Reports Server (NTRS)

    Giblin, Timothy W.

    2011-01-01

    After more than a decade of assembly missions and on the heels of the final voyage of Space Shuttle Discovery, the International Space Station (ISS) has reached assembly completion. With visiting spacecraft now docking with the ISS on a regular basis, the Station now serves as a National Laboratory to scientists back on Earth. ISS strengthens relationships among NASA, other Federal entities, higher educational institutions, and the private sector in the pursuit of national priorities for the advancement of science, technology, engineering, and mathematics. In this lecture we will explore the various areas of research onboard ISS to promote this advancement: (1) Human Research, (2) Biology & Biotechnology, (3) Physical & Material Sciences, (4) Technology, and (5) Earth & Space Science. The ISS National Laboratory will also open new paths for the exploration and economic development of space.

  17. Concurrent Study of Eastern and Western Medicine at the National College of Natural Medicine: Dual or Duel?

    ERIC Educational Resources Information Center

    Smith, Andrea Christine

    2010-01-01

    Students at the National College of Natural Medicine (NCNM) are eligible to concurrently study both Western medicine, as reflected by the Doctor of Naturopathic Medicine (ND) program, and Eastern medicine, as exhibited by the Master of Science in Oriental Medicine (MSOM) degree program. The dual track is unique in that the dominant Western…

  18. "Getting Practical" and the National Network of Science Learning Centres

    ERIC Educational Resources Information Center

    Chapman, Georgina; Langley, Mark; Skilling, Gus; Walker, John

    2011-01-01

    The national network of Science Learning Centres is a co-ordinating partner in the Getting Practical--Improving Practical Work in Science programme. The principle of training provision for the "Getting Practical" programme is a cascade model. Regional trainers employed by the national network of Science Learning Centres trained the cohort of local…

  19. A guide to understanding social science research for natural scientists.

    PubMed

    Moon, Katie; Blackman, Deborah

    2014-10-01

    Natural scientists are increasingly interested in social research because they recognize that conservation problems are commonly social problems. Interpreting social research, however, requires at least a basic understanding of the philosophical principles and theoretical assumptions of the discipline, which are embedded in the design of social research. Natural scientists who engage in social science but are unfamiliar with these principles and assumptions can misinterpret their results. We developed a guide to assist natural scientists in understanding the philosophical basis of social science to support the meaningful interpretation of social research outcomes. The 3 fundamental elements of research are ontology, what exists in the human world that researchers can acquire knowledge about; epistemology, how knowledge is created; and philosophical perspective, the philosophical orientation of the researcher that guides her or his action. Many elements of the guide also apply to the natural sciences. Natural scientists can use the guide to assist them in interpreting social science research to determine how the ontological position of the researcher can influence the nature of the research; how the epistemological position can be used to support the legitimacy of different types of knowledge; and how philosophical perspective can shape the researcher's choice of methods and affect interpretation, communication, and application of results. The use of this guide can also support and promote the effective integration of the natural and social sciences to generate more insightful and relevant conservation research outcomes. © 2014 Society for Conservation Biology.

  20. Representing Nature of Science in a Science Textbook: Exploring Author-Editor-Publisher Interactions

    ERIC Educational Resources Information Center

    DiGiuseppe, Maurice

    2014-01-01

    Current reforms in elementary and secondary science education call for students and teachers to develop more informed views of the nature of science (NOS)--a process in which science textbooks play a significant role. This paper reports on a case study of the development of representations of the NOS in a senior high school chemistry textbook by…

  1. Learner Characteristics and Understanding Nature of Science: Is There an Association?

    ERIC Educational Resources Information Center

    Çetinkaya-Aydin, Gamze; Çakiroglu, Jale

    2017-01-01

    The purpose of this study was to investigate the possible associations between preservice science teachers' understanding of nature of science and their learner characteristics; understanding of nature of scientific inquiry, science teaching self-efficacy beliefs, metacognitive awareness level, and faith/worldview schemas. The sample of the…

  2. Science Lives: School choices and `natural tendencies'

    NASA Astrophysics Data System (ADS)

    Salehjee, Saima; Watts, Mike

    2015-03-01

    An analysis of 12 semi-structured interviews with university-based scientists and non-scientists illustrates their life journeys towards, or away from, science and the strengths and impact of life occurrences leading them to choose science or non-science professions. We have adopted narrative approaches and used Mezirow's transformative learning theory framework. The areas of discussion from the result have stressed on three main categories that include 'smooth transition', 'incremental wavering transition' and 'transformative transition'. The article concludes by discussing the key influences that shaped initial attitudes and direction in these people through natural inclination, environmental inspirations and perceptions of science.

  3. Topographic Science

    USGS Publications Warehouse

    Poppenga, Sandra K.; Evans, Gayla; Gesch, Dean; Stoker, Jason M.; Queija, Vivian R.; Worstell, Bruce; Tyler, Dean J.; Danielson, Jeff; Bliss, Norman; Greenlee, Susan

    2010-01-01

    The mission of U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center Topographic Science is to establish partnerships and conduct research and applications that facilitate the development and use of integrated national and global topographic datasets. Topographic Science includes a wide range of research and applications that result in improved seamless topographic datasets, advanced elevation technology, data integration and terrain visualization, new and improved elevation derivatives, and development of Web-based tools. In cooperation with our partners, Topographic Science is developing integrated-science applications for mapping, national natural resource initiatives, hazards, and global change science. http://topotools.cr.usgs.gov/.

  4. Understanding the nature of science through the historical development of conceptual models

    NASA Astrophysics Data System (ADS)

    Metz, Donald J.

    Understanding the nature of science has been a common goal in science education for years and continues to hold a distinct place in the recently developed Pan-Canadian science framework. Although the nature of science is often prominent in the front end of such reform documents, the implementation of these goals is presumed to be taught implicitly with the delivery of knowledge outcomes. Research strongly indicates that most students have naive conceptions about the nature of science. Surprisingly, research also clearly shows that science teachers do not fare much better, and that when they do possess adequate understanding of the nature of science it does not significantly influence their behaviour in the classroom. Norm Lederman (1998), one of the leading scholars in this field, describes two approaches advocated by curriculum reform documents to address the nature of science outcomes. The first approach suggests that students can achieve nature of science outcomes by "doing science", the second suggests that history of science can enhance students' understanding of the nature of science. While Lederman advocates the use of the history of science, he argues that these approaches are not effective when used implicitly. He recommends that an explicit approach be used (planned for, taught, assessed), but so far there have been no studies which employ this technique beyond short lessons or limited case histories. This thesis advocates an explicit approach to teaching the nature of science using the historical development of conceptual models. The research study of this thesis integrated the historical development of conceptual models with the traditional content found in a typical grade ten chemistry curriculum. Participants in the research were 74 senior 2 (grade 10) science students from four different classes in three different schools in the province of Manitoba. Prior to, and after instruction, students wrote Lederman's VNOS nature of science test. The tests

  5. Online Higher Education in the Natural Sciences

    NASA Astrophysics Data System (ADS)

    Pearson, Karen; Liddicoat, Joseph

    2013-04-01

    Online courses in higher education allow traditional and non-traditional students to complete course work in all disciplines with great flexibility. Courses in the Natural Sciences are no exception because the online environment allows students to collapse time and space; to access a course anywhere; to get immediate feedback, tutoring and coaching; and to receive real-time interaction between themselves and the instructor. This presentation will highlight successful examples of course content from the areas of astronomy, environmental, and earth and physical sciences. Content examples will focus on helping students use their 'environment' as part of the laboratory experience in courses traditionally thought of as lecture and laboratory courses. These examples will include real and virtual field trips, use of multimedia content, collaboration between students and faculty to design and conduct experiments and field work, and modifications to traditional lecture methods for the online environment. Dr. Karen Pearson former director of Online-Learning and Academic Technologies and Professor Science and Mathematics at the Fashion Institute of Technology (SUNY) and Dr. Joseph Liddicoat will focus on how courses in the Natural Sciences can be delivered in the online environment while maintaining high academic standards and not losing the "hands" on experience students need while completing a laboratory science course as part of a liberal arts curriculum.

  6. Working with the Nature of Science in Physics Class: Turning "Ordinary" Classroom Situations into Nature of Science Learning Situations

    ERIC Educational Resources Information Center

    Hansson, Lena; Leden, Lotta

    2016-01-01

    In the science education research field there is a large body of literature on the "nature of science" (NOS). NOS captures issues about what characterizes the research process as well as the scientific knowledge. Here we, in line with a broad body of literature, use a wide definition of NOS including also e.g. socio-cultural aspects. It…

  7. Instructional Strategy for Promoting Understanding of Nature of Science

    ERIC Educational Resources Information Center

    Chimphali, Kamonrat; Nuangchalerm, Prasart; Ladachart, Luecha

    2013-01-01

    The Nature of science (NOS) has been thought of as an important component of "Science literacy" that the goal of standards-based science education. The aim of this paper try to present NOS for science education. Hereby, we may compile and notice where we promote students' understanding NOS. We find the highlight by using…

  8. A Science Faculty's Transformation of Nature of Science Understanding into His Teaching Graduate Level Chemistry Course

    ERIC Educational Resources Information Center

    Aydin, Sevgi

    2015-01-01

    This is an interpretive case study to examine the teaching of an experienced science faculty who had a strong interest in teaching undergraduate and graduate science courses and nature of science specifically. It was interested in how he transformed knowledge from his experience as a scientist and his ideas about nature of science into forms…

  9. Lessons from COASST: How Does Citizen Science Contribute to Natural Resource Management & Decision-Making?

    NASA Astrophysics Data System (ADS)

    Metes, J.; Ballard, H. L.; Parrish, J.

    2016-12-01

    As many scholars and practitioners in the environmental field turn to citizen science to collect robust scientific data as well as engage with wider audiences, it is crucial to build a more complete understanding of how citizen science influences and affects different interests within a social-ecological system. This research investigates how federal, state, and tribal natural resource managers interact with data from the Coastal Observation & Seabird Survey Team (COASST) project—a citizen science program that trains participants to monitor species and abundance of beach-cast birds on the Pacific Northwest Coast. Fifteen coastal and fisheries managers who previously requested COASST data were interviewed about how and why they used data from the project and were asked to describe how information gained from COASST affected their management decisions. Results suggest that broadly, managers value and learn from the program's capacity to gather data spanning a wide spatial-temporal range. This contribution to baseline monitoring helps managers signal and track both short- and long-term environmental change. More specifically, managers use COASST data in conjunction with other professional monitoring programs, such as the National Marine Fisheries Observer Program, to build higher degrees of reliability into management decisions. Although managers offered diverse perspectives and experiences about what the role of citizen science in natural resource management generally should be, there was agreement that agencies on their own often lack personnel and funding required to sufficiently monitor many crucial resources. Additionally, managers strongly suggested that COASST and other citizen science projects increased public awareness and support for agency decision-making and policies, and indirect yet important contribution to natural resource management.

  10. Production of a Science Documentary and its Usefulness in Teaching the Nature of Science: Indirect Experience of How Science Works

    NASA Astrophysics Data System (ADS)

    Kim, Sun Young; Yi, Sang Wook; Cho, Eun Hee

    2014-05-01

    In this study, we produced a documentary which portrays scientists at work and critically evaluated the use of this film as a teaching tool to help students develop an understanding of the nature of science. The documentary, "Life as a Scientist: People in Love with Caenorhabditis elegans, a Soil Nematode" encompasses the entire process of a scientific investigation by exploring the everyday life of a particular group of scientists. We explored the effectiveness of this documentary in teaching the nature of science by examining the epistemological views of college students toward science before and after viewing. In addition, we collected written responses from the students where they described which aspect of the nature of science they learned from the documentary. The scores of epistemological views toward science increased between the pretest and the posttest ( p < 0.01) with the most significant increase being in their views of the role of social negotiation. In the written responses, approximately half of the students suggested that they had learned more about the role which cooperation and collaboration play in the development of scientific knowledge by watching the documentary. The documentary overall provides a valuable instructional context so that students are able to discuss and reflect on various aspects of nature of science within authentic scientific research.

  11. Science-based natural resource management decisions: what are they?

    Treesearch

    T.J. Mills; T.M. Quigley; F.J. Everest

    2001-01-01

    While many people interested in natural resources management propose science-based decisions, it is not clear what “science-based” means. Science-based decisions are those that result from the full and complete consideration of the relevant science information. We offer five guidelines to focus the scientist’s contributions to science-based decisionmaking and use the...

  12. Teaching the "Nature of Science": Modest Adaptations or Radical Reconceptions?

    ERIC Educational Resources Information Center

    Hipkins, Rosemary; Barker, Miles; Bolstad, Rachel

    2005-01-01

    This article explores the nature of a continuing mismatch between curriculum reform rhetoric in science education and actual classroom practice. Lack of philosophical consensus about the nature of science (NOS); lack of appropriate curriculum guidance, classroom materials and pedagogical content knowledge for NOS teaching; teachers' personal…

  13. The National Space Science and Technology Center (NSSTC)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The National Space Science and Technology Center (NSSTC), located in Huntsville, Alabama, is a laboratory for cutting-edge research in selected scientific and engineering disciplines. The major objectives of the NSSTC are to provide multiple fields of expertise coming together to solve solutions to science and technology problems, and gaining recognition as a world-class science research organization. The center, opened in August 2000, focuses on space science, Earth sciences, information technology, optics and energy technology, biotechnology and materials science, and supports NASA's mission of advancing and communicating scientific knowledge using the environment of space for research. In addition to providing basic and applied research, NSSTC, with its student participation, also fosters the next generation of scientists and engineers. NSSTC is a collaborated effort between NASA and the state of Alabama through the Space Science and Technology alliance, a group of six universities including the Universities of Alabama in Huntsville (UAH),Tuscaloosa (UA), and Birmingham (UAB); the University of South Alabama in Mobile (USA);Alabama Agricultural and Mechanical University (AM) in Huntsville; and Auburn University (AU) in Auburn. Participating federal agencies include NASA, Marshall Space Flight Center, the National Oceanic and Atmospheric Administration, the Department of Defense, the National Science Foundation, and the Department of Energy. Industries involved include the Space Science Research Center, the Global Hydrology and Climate Center, the Information Technology Research Center, the Optics and Energy Technology Center, the Propulsion Research Center, the Biotechnology Research Center, and the Materials Science Research Center. This photo shows the completed center with the additional arnex (right of building) that added an additional 80,000 square feet (7,432 square meters) to the already existent NSSTC, nearly doubling the size of the core facility. At

  14. The National Space Science and Technology Center (NSSTC)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The National Space Science and Technology Center (NSSTC), located in Huntsville, Alabama, is a laboratory for cutting-edge research in selected scientific and engineering disciplines. The major objectives of the NSSTC are to provide multiple fields of expertise coming together to solve solutions to science and technology problems, and gaining recognition as a world-class science research organization. The center, opened in August 2000, focuses on space science, Earth sciences, information technology, optics and energy technology, biotechnology and materials science, and supports NASA's mission of advancing and communicating scientific knowledge using the environment of space for research. In addition to providing basic and applied research, NSSTC, with its student participation, also fosters the next generation of scientists and engineers. NSSTC is a collaborated effort between NASA and the state of Alabama through the Space Science and Technology alliance, a group of six universities including the Universities of Alabama in Huntsville (UAH),Tuscaloosa (UA), and Birmingham (UAB); the University of South Alabama in Mobile (USA); Alabama Agricultural and Mechanical University (AM) in Huntsville; and Auburn University (AU) in Auburn. Participating federal agencies include NASA, Marshall Space Flight Center, the National Oceanic and Atmospheric Administration, the Department of Defense, the National Science Foundation, and the Department of Energy. Industries involved include the Space Science Research Center, the Global Hydrology and Climate Center, the Information Technology Research Center, the Optics and Energy Technology Center, the Propulsion Research Center, the Biotechnology Research Center, and the Materials Science Research Center. An arnex, scheduled for completion by summer 2002, will add an additional 80,000 square feet (7,432 square meters) to NSSTC nearly doubling the size of the core facility. At full capacity, the completed NSSTC will top 200

  15. 76 FR 34103 - President's Committee on the National Medal of Science; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-10

    ... NATIONAL SCIENCE FOUNDATION President's Committee on the National Medal of Science; Notice of... Science Foundation announces the following meeting: Name: President's Committee on the National Medal of Science (1182). Date and Time: Wednesday, July 6, 2011, 8:30 a.m.-3:30 p.m. Place: National Science...

  16. 78 FR 48724 - President's Committee on the National Medal of Science; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-09

    ... NATIONAL SCIENCE FOUNDATION President's Committee on the National Medal of Science; Notice of... Science Foundation announces the following meeting: Name: President's Committee on the National Medal of Science (1182). Date and Time: Tuesday, September 3, 2013, 8:30 a.m.-2 p.m. Place: National Science...

  17. 77 FR 61644 - President's Committee on the National Medal of Science Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-10

    ... NATIONAL SCIENCE FOUNDATION President's Committee on the National Medal of Science Notice of... Science Foundation announces the following meeting: Name: President's Committee on the National Medal of Science (1182). Date and Time: Wednesday, October 31, 2011, 8:30 a.m.-2:00 p.m. Place: National Science...

  18. Multicultural Chemistry and the Nature of Science: But What about Knowledge?

    ERIC Educational Resources Information Center

    Tan, Michael

    2012-01-01

    In response to Goff, Boesdorfer, and Hunter's article on the use of a multicultural approach to teaching chemistry and the nature of science, I forward this critical reflective essay to discuss more general curriculum aspects of the relationship between the nature of science and science education in school contexts. Taking a social realist…

  19. Suggesting a NOS Map for Nature of Science for Science Education Instruction

    ERIC Educational Resources Information Center

    Oh, Jun-Young

    2017-01-01

    The aims of this research are 1) to explore the inter-relationships within the individual elements or tenets of Nature of Science (NOS), based on the dimensions of scientific knowledge in science learning, and 2) to consider Kuhn's concept of how scientific revolution takes place. This study suggests that instruction according to our NOS Flowchart…

  20. An NSTA Position Statement: International Science Education and the National Science Teachers Association

    ERIC Educational Resources Information Center

    National Science Teachers Association (NJ1), 2009

    2009-01-01

    The National Science Teachers Association (NSTA) encourages and promotes international science education because it has the ability to improve the teaching and learning of science, as well as to "empower people, improve their quality of life, and increase their capacity to participate in the decision-making processes leading to social, cultural,…

  1. Using Art to Enhance the Learning of Math and Science: Developing an Educational Art-Science Kit about Fractal Patterns in Nature

    NASA Astrophysics Data System (ADS)

    Rao, Deepa

    This study documents the development of an educational art-science kit about natural fractals, whose aim is to unite artistic and scientific inquiry in the informal learning of science and math. Throughout this research, I argue that having an arts-integrated approach can enhance the learner of science and math concepts. A guiding metaphor in this thesis is the Enlightenment-era cabinet of curiosities that represents a time when art and science were unified in the process of inquiry about the natural world. Over time, increased specialization in the practice of arts and science led to a growing divergence between the disciplines in the educational system. Recently, initiatives like STEAM are underway at the national level to integrate "Arts and Design" into the Science, Technology, Engineering, and Math (STEM) formal education agenda. Learning artifacts like science kits present an opportunity to unite artistic and scientific inquiry in informal settings. Although science kits have been introduced to promote informal learning, presently, many science kits have a gap in their design, whereby the activities consist of recipe-like instructions that do not encourage further inquiry-based learning. In the spirit of the cabinet of curiosities, this study seeks to unify visual arts and science in the process of inquiry. Drawing from educational theories of Dewey, Piaget, and Papert, I developed a novel, prototype "art-science kit" that promotes experiential, hands-on, and active learning, and encourages inquiry, exploration, creativity, and reflection through a series of art-based activities to help users learn science and math concepts. In this study, I provide an overview of the design and development process of the arts-based educational activities. Furthermore, I present the results of a pilot usability study (n=10) conducted to receive user feedback on the designed materials for use in improving future iterations of the art-science fractal kit. The fractal kit

  2. The National Educational Science Planning Conference.

    DTIC Science & Technology

    1983-01-27

    OF STANDARDS-1963-A =7 FTD-ID(RS)T-1606-82 FOREIGN TECHNOLOGY DIVISION THE NATIONAL EDUCATIONAL SCIENCE PLANNING CONFERENCE DTIC EECTE %%C.. D...institute were abolished; people were laid off. Many officials and teachers never learned education theories and do not know anything about S Sponsored by...levels of education must learn educational sciences in order to master the objective laws of educational work. *: We must turn laymen into professionals

  3. Science Teachers' Thinking about the Nature of Science: A New Methodological Approach to Its Assessment

    ERIC Educational Resources Information Center

    Vazquez-Alonso, Angel; Garcia-Carmona, Antonio; Manassero-Mas, Maria Antonia; Bennassar-Roig, Antoni

    2013-01-01

    This paper describes Spanish science teachers' thinking about issues concerning the nature of science (NOS) and the relationships connecting science, technology, and society (STS). The sample consisted of 774 in-service and pre-service teachers. The participants responded to a selection of items from the Questionnaire of Opinions on Science,…

  4. 76 FR 3091 - National Annual Catch Limit Science Workshop; Meeting Announcement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-19

    ... Annual Catch Limit Science Workshop; Meeting Announcement AGENCY: National Marine Fisheries Service (NMFS...: Richard Methot, Office of Science and Technology, NMFS at [email protected] , or at (206) 860-3365. SUPPLEMENTARY INFORMATION: NOAA Fisheries Service is announcing a National Annual Catch Limit (ACL) Science...

  5. THE NATIONAL RESEARCH COUNCIL REPORT ON MONITORED NATURAL ATTENUATION

    EPA Science Inventory

    The National Research Council recently released a report titled Natural Attenuation for Groundwater Remediation, available from the National Academy Press(http://www.nap.edu>). The report made a number of observations and recommedations, including the following. -Natural attenu...

  6. Citizen Science, Crowdsourcing and Big Data: A Scientific and Social Framework for Natural Resources and Environments

    NASA Astrophysics Data System (ADS)

    Glynn, P. D.; Jones, J. W.; Liu, S. B.; Shapiro, C. D.; Jenter, H. L.; Hogan, D. M.; Govoni, D. L.; Poore, B. S.

    2014-12-01

    We describe a conceptual framework for Citizen Science that can be applied to improve the understanding and management of natural resources and environments. For us, Citizen Science represents an engagement from members of the public, usually volunteers, in collaboration with paid professionals and technical experts to observe and understand natural resources and environments for the benefit of science and society. Our conceptual framework for Citizen Science includes crowdsourcing of observations (or sampling). It considers a wide range of activities, including volunteer and professional monitoring (e.g. weather and climate variables, water availability and quality, phenology, biota, image capture and remote sensing), as well as joint fact finding and analyses, and participatory mapping and modeling. Spatial distribution and temporal dynamics of the biophysical processes that control natural resources and environments are taken into account within this conceptual framework, as are the availability, scaling and diversity of tools and efforts that are needed to properly describe these biophysical processes. Opportunities are sought within the framework to properly describe, QA/QC, archive, and make readily accessible, the large amounts of information and traceable knowledge required to better understand and manage natural resources and environments. The framework also considers human motivational needs, primarily through a modern version of Maslow's hierarchy of needs. We examine several USGS-based Citizen Science efforts within the context of our framework, including the project called "iCoast - Did the Coast Change?", to understand the utility of the framework, its costs and benefits, and to offer concrete examples of how to expand and sustain specific projects. We make some recommendations that could aid its implementation on a national or larger scale. For example, implementation might be facilitated (1) through greater engagement of paid professionals, and (2

  7. Gregor Mendel's classic paper and the nature of science in genetics courses.

    PubMed

    Westerlund, Julie F; Fairbanks, Daniel J

    2010-12-01

    The discoveries of Gregor Mendel, as described by Mendel in his 1866 paper Versuche uber Pflanzen-Hybriden (Experiments on plant hybrids), can be used in undergraduate genetics and biology courses to engage students about specific nature of science characteristics and their relationship to four of his major contributions to genetics. The use of primary source literature as an instructional tool to enhance genetics students' understanding of the nature of science helps students more clearly understand how scientists work and how the science of genetics has evolved as a discipline. We offer a historical background of how the nature of science developed as a concept and show how Mendel's investigations of heredity can enrich biology and genetics courses by exemplifying the nature of science. © 2010 The Authors.

  8. Natural products in modern life science.

    PubMed

    Bohlin, Lars; Göransson, Ulf; Alsmark, Cecilia; Wedén, Christina; Backlund, Anders

    2010-06-01

    With a realistic threat against biodiversity in rain forests and in the sea, a sustainable use of natural products is becoming more and more important. Basic research directed against different organisms in Nature could reveal unexpected insights into fundamental biological mechanisms but also new pharmaceutical or biotechnological possibilities of more immediate use. Many different strategies have been used prospecting the biodiversity of Earth in the search for novel structure-activity relationships, which has resulted in important discoveries in drug development. However, we believe that the development of multidisciplinary incentives will be necessary for a future successful exploration of Nature. With this aim, one way would be a modernization and renewal of a venerable proven interdisciplinary science, Pharmacognosy, which represents an integrated way of studying biological systems. This has been demonstrated based on an explanatory model where the different parts of the model are explained by our ongoing research. Anti-inflammatory natural products have been discovered based on ethnopharmacological observations, marine sponges in cold water have resulted in substances with ecological impact, combinatory strategy of ecology and chemistry has revealed new insights into the biodiversity of fungi, in depth studies of cyclic peptides (cyclotides) has created new possibilities for engineering of bioactive peptides, development of new strategies using phylogeny and chemography has resulted in new possibilities for navigating chemical and biological space, and using bioinformatic tools for understanding of lateral gene transfer could provide potential drug targets. A multidisciplinary subject like Pharmacognosy, one of several scientific disciplines bridging biology and chemistry with medicine, has a strategic position for studies of complex scientific questions based on observations in Nature. Furthermore, natural product research based on intriguing scientific

  9. Uncommon Sense - The Heretical Nature of Science

    NASA Astrophysics Data System (ADS)

    Cromer, Alan

    1995-08-01

    Most people believe that science arose as a natural end-product of our innate intelligence and curiosity, as an inevitable stage in human intellectual development. But physicist and educator Alan Cromer disputes this belief. Cromer argues that science is not the natural unfolding of human potential, but the invention of a particular culture, Greece, in a particular historical period. Indeed, far from being natural, scientific thinking goes so far against the grain of conventional human thought that if it hadn't been discovered in Greece, it might not have been discovered at all.In Uncommon Sense , Alan Cromer develops the argument that science represents a radically new and different way of thinking. Using Piaget's stages of intellectual development, he shows that conventional thinking remains mired in subjective, "egocentric" ways of looking at the world--most people even today still believe in astrology, ESP, UFOs, ghosts and other paranormal phenomena--a mode of thought that science has outgrown. He provides a fascinating explanation of why science began in Greece, contrasting the Greek practice of debate to the Judaic reliance on prophets for acquiring knowledge. Other factors, such as a maritime economy and wandering scholars (both of which prevented parochialism) and an essentially literary religion not dominated by priests, also promoted in Greece an objective, analytical way of thinking not found elsewhere in the ancient world. He examines India and China and explains why science could not develop in either country. In China, for instance, astronomy served only the state, and the private study of astronomy was forbidden. Cromer also provides a perceptive account of science in Renaissance Europe and of figures such as Copernicus, Galileo, and Newton. Along the way, Cromer touches on many intriguing topics, arguing, for instance, that much of science is essential complete; there are no new elements yet to be discovered. He debunks the vaunted SETI (Search for

  10. Learning the 'grammar of science': The influence of a physical science content course on teachers' understanding of the nature of science

    NASA Astrophysics Data System (ADS)

    Hanuscin, Deborah L.

    This research examined the development of practicing K--8 teachers' views of the nature of science (NOS) within a physical science content course. Reforms in science education have called for the teaching of science as inquiry. In order to achieve the vision of the reforms, teachers must understand science, both a body of knowledge and as a process, but also the very nature of science itself-or the values and assumptions inherent in the construction of scientific knowledge. NOS has been deemed a critical component of scientific literacy, with implications for making informed decisions about scientific claims. Research has indicated that despite the emphasis of reforms, teachers generally do not possess accurate views of NOS. Recent work in science education has led to the recommendation that efforts undertaken within teacher education programs to improve teachers' understanding of NOS can be enhanced through relevant coursework in other academic areas, including the sciences. The purpose of this dissertation was to provide an empirical basis for this recommendation, by examining the development of teachers' views of NOS within a physical science content course. To this end, the researcher employed qualitative methodology including participant observation, interview, document analysis, and questionnaire to assess teacher participants' views of the nature of science and the impact of their experience in the content course on these views. As a result of this research, implications for both the course design and science teacher education have been described. In addition, various aspects of the community of practice that characterizes the classroom that inhibit the development of understandings about the nature of science are identified. It is argued that instruction in NOS should be approached from the perspective that builds bridges between the communities of practice of learners and of scientists.

  11. Disaster mitigation science for Earthquakes and Tsunamis -For resilience society against natural disasters-

    NASA Astrophysics Data System (ADS)

    Kaneda, Y.; Takahashi, N.; Hori, T.; Kawaguchi, K.; Isouchi, C.; Fujisawa, K.

    2017-12-01

    Destructive natural disasters such as earthquakes and tsunamis have occurred frequently in the world. For instance, 2004 Sumatra Earthquake in Indonesia, 2008 Wenchuan Earthquake in China, 2010 Chile Earthquake and 2011 Tohoku Earthquake in Japan etc., these earthquakes generated very severe damages. For the reduction and mitigation of damages by destructive natural disasters, early detection of natural disasters and speedy and proper evacuations are indispensable. And hardware and software developments/preparations for reduction and mitigation of natural disasters are quite important. In Japan, DONET as the real time monitoring system on the ocean floor is developed and deployed around the Nankai trough seismogenic zone southwestern Japan. So, the early detection of earthquakes and tsunamis around the Nankai trough seismogenic zone will be expected by DONET. The integration of the real time data and advanced simulation researches will lead to reduce damages, however, in the resilience society, the resilience methods will be required after disasters. Actually, methods on restorations and revivals are necessary after natural disasters. We would like to propose natural disaster mitigation science for early detections, evacuations and restorations against destructive natural disasters. This means the resilience society. In natural disaster mitigation science, there are lots of research fields such as natural science, engineering, medical treatment, social science and literature/art etc. Especially, natural science, engineering and medical treatment are fundamental research fields for natural disaster mitigation, but social sciences such as sociology, geography and psychology etc. are very important research fields for restorations after natural disasters. Finally, to realize and progress disaster mitigation science, human resource cultivation is indispensable. We already carried out disaster mitigation science under `new disaster mitigation research project on Mega

  12. Goethe's phenomenology of nature: a juvenilization of science.

    PubMed

    Skaftnesmo, Trond

    2009-01-01

    Empirical science is not a mere collection of facts. It builds theories and frames hypotheses within those theories. Empirical theories are stated as plausible answers to questions we pose to nature. According to the Galilean-Baconian tradition within science, these questions should basically explore the causes of observed phenomena, and further be restricted to the measurable and quantitative realm. Thus, the answers are generally expected to explain the effective causes behind the actual phenomena. By framing falsifiable hypotheses, the theories are tested against the empirical foundation on which they rest. In this way we try to relieve science from false theories. Thus, we have two epistemological levels: First, the theoretical level; the scientific theory explaining the phenomena, and second, the empirical level; the phenomena or facts verifying or falsifying those theories. According to the poet and multi-scientist Johann Wolfgang von Goethe (1749-1832), there is however another way of science, namely an approach where these two levels fuse and become one. Goethe intended this approach to be a complementation of the Galilean-Baconian method, more than an alternative. He considered his "hypothesis-free method" to be a more comprehensive and secure way to understand nature. Whereas the Galilean-Baconian method aimed at explaining the effective causes of natural phenomena, in order to control and exploit nature for technical and industrial purposes, Goethe aimed at an exposition of the inherent meaning of the phenomena.We will explore, exemplify and discuss this approach with reference to the inherently Goethean phenomenology of evolution credited to the Dutch anatomist Louis Bolk (1866-1930), later commented and complemented by Stephen Jay Gould (1941-2002) and Jos Verhulst (1949 ). In the course of this presentation we will outline the Goethean approach as a method representing a juvenilization or in Bolk's terms, a fetalization of science.

  13. U.S. Geological Survey Water science strategy--observing, understanding, predicting, and delivering water science to the nation

    USGS Publications Warehouse

    Evenson, Eric J.; Orndorff, Randall C.; Blome, Charles D.; Böhlke, John Karl; Hershberger, Paul K.; Langenheim, V.E.; McCabe, Gregory J.; Morlock, Scott E.; Reeves, Howard W.; Verdin, James P.; Weyers, Holly S.; Wood, Tamara M.

    2013-01-01

    This report expands the Water Science Strategy that began with the USGS Science Strategy, “Facing Tomorrow’s Challenges—U.S. Geological Survey Science in the Decade 2007–2017” (U.S. Geological Survey, 2007). This report looks at the relevant issues facing society and develops a strategy built around observing, understanding, predicting, and delivering water science for the next 5 to 10 years by building new capabilities, tools, and delivery systems to meet the Nation’s water-resource needs. This report begins by presenting the vision of water science for the USGS and the societal issues that are influenced by, and in turn influence, the water resources of our Nation. The essence of the Water Science Strategy is built on the concept of “water availability,” defined as spatial and temporal distribution of water quantity and quality, as related to human and ecosystem needs, as affected by human and natural influences. The report also describes the core capabilities of the USGS in water science—the strengths, partnerships, and science integrity that the USGS has built over its 134-year history. Nine priority actions are presented in the report, which combine and elevate the numerous specific strategic actions listed throughout the report. Priority actions were developed as a means of providing the audience of this report with a list for focused attention, even if resources and time limit the ability of managers to address all of the strategic actions in the report.

  14. Pre-Service Physics Teachers' Conceptions of Nature of Science

    ERIC Educational Resources Information Center

    Buaraphan, Khajornsak

    2011-01-01

    Understanding of NOS (nature of science) appears as a prerequisite of a scientifically literate person. Promoting adequate understanding of NOS in pre-service physics teachers is, therefore, an important task of science educators. Before doing that, science educators must have information concerning their pre-service teachers' conceptions of NOS.…

  15. Teaching Evolution & the Nature of Science.

    ERIC Educational Resources Information Center

    Farber, Paul

    2003-01-01

    The theory of evolution provides direction in many fields, such as ecology, genetics, and embryology. Examines issues concerning the teaching of the subject in the United States. Presents a case study approach to teach about the nature of science using the theory of evolution. (SOE)

  16. The Story behind the Science: Bringing Science and Scientists to Life in Post-Secondary Science Education

    ERIC Educational Resources Information Center

    Clough, Michael P.

    2011-01-01

    With funding from the United States National Science Foundation, 30 historical short stories designed to teach science content and draw students' attention to the nature of science (NOS) have been created for post-secondary introductory astronomy, biology, chemistry, geology, and physics courses. The project rationale, story development and…

  17. Exploring the Conceptions of a Science Teacher from Karachi about the Nature of Science

    ERIC Educational Resources Information Center

    Shah, Mir Zaman

    2009-01-01

    The main purpose of this study is to investigate a science teacher's beliefs and understanding of the nature of science (NOS) in order to be able to relate these beliefs about the NOS to classroom practice and therefore student experience. Teachers' beliefs about the NOS are embedded in their experiences of learning and teaching science and hence,…

  18. Theories of the Earth and the Nature of Science.

    ERIC Educational Resources Information Center

    Williams, James

    1991-01-01

    Describes the history of the science of geology. The author expounds upon the discovery of deep time and plate tectonics, explaining how the theory of deep time influenced the development of Darwin and Wallace's theory of evolution. Describes how the history of earth science helps students understand the nature of science. (PR)

  19. NSF in a Changing World: The National Science Foundation's Strategic Plan.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC.

    The National Science Foundation's (NSF) role as a leader and steward of the Nation's science and engineering enterprise faces new tests--promoting new approaches to research, education, and workforce training that reach all Americans; responding to the increased importance of science and engineering in many aspects of daily life; modernizing the…

  20. Kuhn in the Classroom, Lakatos in the Lab: Science Educators Confront the Nature-of-Science Debate.

    ERIC Educational Resources Information Center

    Turner, Steven; Sullenger, Karen

    1999-01-01

    Examines how science educators and educational researchers have drawn on the fragmented teachings of science studies about the nature of science, and how they have used those teachings as a resource in their own projects. Analyzes some of the deep assumptions about the relationship between science, school science, and children's learning.…

  1. A Comparative Analysis of South African Life Sciences and Biology Textbooks for Inclusion of the Nature of Science

    ERIC Educational Resources Information Center

    Ramnarain, Umesh; Padayachee, Keshni

    2015-01-01

    This study reports on the analysis of South African Life Sciences and Biology textbooks for the inclusion of the nature of science using a conceptual framework developed by Chiappetta, Fillman and Sethna (1991). In particular, we investigated the differences between the representation of the nature of science in Biology textbooks that were written…

  2. Inaugural AGU Science Policy Conference

    NASA Astrophysics Data System (ADS)

    Uhlenbrock, Kristan

    2012-01-01

    AGU will present its inaugural Science Policy Conference, 30 April to 3 May 2012, at the Ronald Reagan Building and International Trade Center, located in downtown Washington, D. C. This conference will bring together leading scientists, policy makers, industry professionals, press, and other stakeholders to discuss natural hazards, natural resources, oceans, and Arctic science and the role these sciences play in serving communities. To bridge the science and policy fields, AGU plans to host this conference every 2 years and focus on the applications of Earth and space sciences to serve local and national communities. "Our nation faces a myriad of challenges such as the sustainability of our natural resources, current and future energy needs, and the ability to mitigate and adapt to natural and manmade hazards," said Michael McPhaden, president of AGU. "It is essential that policies to address these challenges be built on a solid foundation of credible scientific knowledge."

  3. Conceptions of the nature of science and worldviews of preservice elementary science teachers in Taiwan

    NASA Astrophysics Data System (ADS)

    Liu, Shiang-Yao

    This exploratory investigation aimed to identify preservice science teachers' conceptions of the nature of science (NOS), and worldviews that represent their culturally dependent beliefs about the world, in the context of Taiwan. The interrelationships between the responses elicited from both the assessments of NOS understandings and worldviews were examined. Participants included 54 third-year students enrolled in the departments of science education and mathematics education at a teachers college. Their worldviews and NOS conceptions were tabulated by two questionnaires and 14 of them were purposefully selected to participate follow-up interviews. The worldview questionnaire contained five open-ended items, of which each examines one of the worldview domains in Kearney's model (1984). The NOS questionnaire consisting of nine open-ended questions was developed, specifically addressing cultural characteristics, to assess participants' views on the development of scientific knowledge. An anthropocentric-moderate continuum emerged to describe participants' views of the humanity's relationship with Nature. It was found that participants with informed NOS conceptions were more likely to emphasize harmony with Nature, recognize the limitations of scientific knowledge, and accept the idea that science involves subjective and cultural components. On the other hand, participants who provided a pragmatic perspective of Nature seemed to possess narrow views about the scientific enterprises by describing science as close to technology and as a materialistic benefit. Authoritarianism was also a noticeable cultural trait hindering some participants from reflecting on the values inherent to the development of scientific knowledge, and also prohibiting them from searching empirical evidence to solve problems. It was found that there were differences between science education and mathematics education majors in their worldviews and NOS understandings. The results in this study not

  4. Bradbury science museum: your window to Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deck, Linda Theresa

    The Bradbury Science Museum is the public's window to Los Alamos National Laboratory and supports the Community Program Office's mission to develop community support to accomplish LANL's national security and science mission. It does this by stimulating interest in and increasing basic knowledge of science and technology in northern New Mexico audiences, and increasing public understanding and appreciation of how LANL science and technology solve our global problems. In performing these prime functions, the Museum also preserves the history of scientific accomplishment at the Lab by collecting and preserving artifacts of scientific and historical importance.

  5. The Influence of Argumentation on Understanding Nature of Science

    ERIC Educational Resources Information Center

    Boran, Gül Hanim; Bag, Hüseyin

    2016-01-01

    The aim in conducting this study is to explore the effects of argumentation on pre-service science teachers' views of the nature of science. This study used a qualitative case study and conducted with 20 pre-service science teachers. Data sources include an open-ended questionnaire and audio-taped interviews. According to pretest and posttest…

  6. Social and Economic Analysis Branch: integrating policy, social, economic, and natural science

    USGS Publications Warehouse

    Schuster, Rudy; Walters, Katie D.

    2015-01-01

    The Fort Collins Science Center's Social and Economic Analysis Branch provides unique capabilities in the U.S. Geological Survey by leading projects that integrate social, behavioral, economic, and natural science in the context of human–natural resource interactions. Our research provides scientific understanding and support for the management and conservation of our natural resources in support of multiple agency missions. We focus on meeting the scientific needs of the Department of the Interior natural resource management bureaus in addition to fostering partnerships with other Federal and State managers to protect, restore, and enhance our environment. The Social and Economic Analysis Branch has an interdisciplinary group of scientists whose primary functions are to conduct both theoretical and applied social science research, provide technical assistance, and offer training to support the development of skills in natural resource management activities. Management and research issues associated with human-resource interactions typically occur in a unique context and require knowledge of both natural and social sciences, along with the skill to integrate multiple science disciplines. In response to these challenging contexts, Social and Economic Analysis Branch researchers apply a wide variety of social science concepts and methods which complement our rangeland/agricultural, wildlife, ecology, and biology capabilities. The goal of the Social and Economic Analysis Branch's research is to enhance natural-resource management, agency functions, policies, and decisionmaking.

  7. U.S. Department of the Interior Climate Science Centers and U.S. Geological Survey National Climate Change and Wildlife Science Center—Annual report for 2015

    USGS Publications Warehouse

    Varela Minder, Elda; Padgett, Holly A.

    2016-04-07

    2015 was another great year for the Department of the Interior (DOI) Climate Science Centers (CSCs) and U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC) network. The DOI CSCs and USGS NCCWSC continued their mission of providing the science, data, and tools that are needed for on-the-ground decision making by natural and cultural resource managers to address the effects of climate change on fish, wildlife, ecosystems, and communities. Our many accomplishments in 2015 included initiating a national effort to understand the influence of drought on wildlife and ecosystems; providing numerous opportunities for students and early career researchers to expand their networks and learn more about climate change effects; and working with tribes and indigenous communities to expand their knowledge of and preparation for the impacts of climate change on important resources and traditional ways of living. Here we illustrate some of these 2015 activities from across the CSCs and NCCWSC.

  8. On the map: Nature and Science editorials.

    PubMed

    Waaijer, Cathelijn J F; van Bochove, Cornelis A; van Eck, Nees Jan

    2011-01-01

    Bibliometric mapping of scientific articles based on keywords and technical terms in abstracts is now frequently used to chart scientific fields. In contrast, no significant mapping has been applied to the full texts of non-specialist documents. Editorials in Nature and Science are such non-specialist documents, reflecting the views of the two most read scientific journals on science, technology and policy issues. We use the VOSviewer mapping software to chart the topics of these editorials. A term map and a document map are constructed and clusters are distinguished in both of them. The validity of the document clustering is verified by a manual analysis of a sample of the editorials. This analysis confirms the homogeneity of the clusters obtained by mapping and augments the latter with further detail. As a result, the analysis provides reliable information on the distribution of the editorials over topics, and on differences between the journals. The most striking difference is that Nature devotes more attention to internal science policy issues and Science more to the political influence of scientists. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11192-010-0205-9) contains supplementary material, which is available to authorized users.

  9. More than a Museum: Natural History is Relevant in 21st Century Environmental Science

    NASA Astrophysics Data System (ADS)

    Hernandez, R. R.; Murphy-Mariscal, M. L.; Barrows, C. W.

    2015-12-01

    In the Anthropocene, the relevancy of natural history in environmental science is challenged and marginalized today more than ever. We tested the hypothesis that natural history is relevant to the fields of environmental science and ecology by assessing the values, needs, and decisions related to natural history of graduate students and environmental science professionals across 31 universities and various employers, respectively, in California. Graduate students surveyed (93.3%) agreed that natural history was relevant to science, approximately 70% believed it "essential" for conducting field-based research; however, 54.2% felt inadequately trained to teach a natural history course and would benefit from additional training in natural history (> 80%). Of the 185 professionals surveyed, all felt that natural history was relevant to science and "essential" or "desirable" in their vocation (93%). Our results indicate a disconnect between the value and relevancy of natural history in 21st century ecological science and opportunities for gaining those skills and knowledge through education and training.

  10. 78 FR 62634 - Meeting of the National Biodefense Science Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Meeting of the National Biodefense Science Board AGENCY... hereby giving notice that the National Biodefense Science Board (NBSB) will be holding a public meeting via teleconference. The meeting is open to the public. DATES: The NBSB will hold a public meeting on...

  11. 78 FR 76626 - Meeting of the National Biodefense Science Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-18

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Meeting of the National Biodefense Science Board AGENCY... hereby giving notice that the National Biodefense Science Board (NBSB) will be holding a public meeting via teleconference. The meeting is open to the public. DATES: The NBSB will hold a public meeting on...

  12. 77 FR 20805 - National Board for Education Sciences; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-06

    ... DEPARTMENT OF EDUCATION National Board for Education Sciences; Meeting AGENCY: U.S. Department of Education, Institute of Education Sciences. ACTION: Notice of an Open Teleconference Meeting. SUMMARY: This... Education Sciences. The notice also describes the functions of the Committee. Notice of this meeting is...

  13. Views of nature of science questionnaire: Toward valid and meaningful assessment of learners' conceptions of nature of science

    NASA Astrophysics Data System (ADS)

    Lederman, Norm G.; Abd-El-Khalick, Fouad; Bell, Randy L.; Schwartz, Renée S.

    2002-08-01

    Helping students develop informed views of nature of science (NOS) has been and continues to be a central goal for kindergarten through Grade 12 (K-12) science education. Since the early 1960s, major efforts have been undertaken to enhance K-12 students and science teachers' NOS views. However, the crucial component of assessing learners' NOS views remains an issue in research on NOS. This article aims to (a) trace the development of a new open-ended instrument, the Views of Nature of Science Questionnaire (VNOS), which in conjunction with individual interviews aims to provide meaningful assessments of learners' NOS views; (b) outline the NOS framework that underlies the development of the VNOS; (c) present evidence regarding the validity of the VNOS; (d) elucidate the use of the VNOS and associated interviews, and the range of NOS aspects that it aims to assess; and (e) discuss the usefulness of rich descriptive NOS profiles that the VNOS provides in research related to teaching and learning about NOS. The VNOS comes in response to some calls within the science education community to go back to developing standardized forced-choice paper and pencil NOS assessment instruments designed for mass administrations to large samples. We believe that these calls ignore much of what was learned from research on teaching and learning about NOS over the past 30 years. The present state of this line of research necessitates a focus on individual classroom interventions aimed at enhancing learners' NOS views, rather than on mass assessments aimed at describing or evaluating students' beliefs.

  14. Thai and Bangladeshi In-Service Science Teachers' Conceptions of Nature of Science: A Comparative Study

    ERIC Educational Resources Information Center

    Buaraphan, Khajornsak; Abedin Forhad, Ziaul

    2014-01-01

    Understanding of nature of science (NOS) serves as one of the desirable characteristics of science teachers. The current study explored 55 Thai and 110 Bangladeshi in-service secondary science teachers' conceptions of NOS regarding scientific knowledge, scientific method, scientists' work, and scientific enterprise, by using the Myths of Science…

  15. A Teenager's View of the Nature of Science.

    ERIC Educational Resources Information Center

    George, Theresa H.

    This study is a qualitative investigation into a teenager's view of the nature of science. This thesis draws on arguments from various philosophies of science and describes the data collection techniques employed. The data are presented in eight categories which are assumed to be related to the notion of "truth" that is central to this…

  16. A Science Information Infrastructure for Access to Earth and Space Science Data through the Nation's Science Museums

    NASA Technical Reports Server (NTRS)

    Murray, S.

    1999-01-01

    In this project, we worked with the University of California at Berkeley/Center for Extreme Ultraviolet Astrophysics and five science museums (the National Air and Space Museum, the Science Museum of Virginia, the Lawrence Hall of Science, the Exploratorium., and the New York Hall of Science) to formulate plans for computer-based laboratories located at these museums. These Science Learning Laboratories would be networked and provided with real Earth and space science observations, as well as appropriate lesson plans, that would allow the general public to directly access and manipulate the actual remote sensing data, much as a scientist would.

  17. Distancing Students From Nature: Science Camp and the Representation of the Human-Nature Relationship

    NASA Astrophysics Data System (ADS)

    Terrill, Laura Anne

    This study investigated the curricular representations of the environment and the human-environment relationship at one residential school sponsored science camp. Data gathered included field notes from observational time at the camp, interviews with staff and classroom teachers, and documents from the site's website, guides, manuals, and curricular guides. These data were analyzed to understand how the camp represented the human-environment relationship and the "proper" human-environment relationship to its participants. Analysis indicated that the camp's official and enacted curriculum was shaped in response to two perceived problems, (1) students were perceived as having a disconnected relationship with the outdoors and lacking in outdoor experiences; and (2) staff members of the camp believed that time for science during the school day had diminished and that students were not receiving adequate science instruction at school. In response, the goal of the camp was to connect students to the outdoors through hands-on, sensory, experience based science and outdoor education experiences. However, key aspects of the camp experience and the formal and enacted curriculum unintentionally positioned students as separate from nature. The camp experience presented a vacation like understanding of the human-environment relationship as students became tourists of the outdoors. Despite the site's goal of connecting students to the outdoors, the science camp experience worked to distance students from the outdoors by unintentionally representing the outdoors as a place that existed away from home and students' everyday lives. Notably, nature became a place that existed in the past, separate from modernity. Students were tourists in an exotic location - nature. They received tours of the foreign outdoors, had fun, and returned home to their ordinary lives that were separate and distinct from the natural world.

  18. Effectiveness of Science-Technology-Society (STS) Instruction on Student Understanding of the Nature of Science and Attitudes toward Science

    ERIC Educational Resources Information Center

    Akcay, Behiye; Akcay, Hakan

    2015-01-01

    The study reports on an investigation about the impact of science-technology-society (STS) instruction on middle school student understanding of the nature of science (NOS) and attitudes toward science compared to students taught by the same teacher using traditional textbook-oriented instruction. Eight lead teachers used STS instruction an…

  19. Broadening participation in Natural Sciences and Mathematics at the University of Maryland Baltimore County

    NASA Astrophysics Data System (ADS)

    Rous, Philip

    2013-03-01

    Over the past two decades, UMBC has undertaken a series of efforts to broaden participation in the natural sciences and mathematics, beginning with the establishment of the Meyerhoff program. Using as examples the multiple initiatives that followed, and with a focus on the challenge of increasing access and success of all students who enter as both freshmen and transfer students, I will describe a model of culture change that we have employed repeatedly to understand and guide our efforts in broadening participation. Particular attention will be paid to the concept of cultural capital, the role of innovators and the challenge of scaling small-scale innovations towards institutional change. Supported by the National Science Foundation and the Bill and Melinda Gates Foundation.

  20. 76 FR 14974 - Meeting of the National Biodefense Science Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Meeting of the National Biodefense Science Board AGENCY... notice that the National Biodefense Science Board (NBSB) will be holding a public meeting. The meeting is open to the public. DATES: The NBSB will hold a public meeting on April 28-29, 2011. Tentatively the...

  1. An exploration of worldview and conceptions of nature of science among science teachers at a private Christian high school

    NASA Astrophysics Data System (ADS)

    Kits, Kara M.

    Both worldview and conceptions of nature of science (NOS) are important components in teaching and learning science. However, few empirical studies have examined the interplay between both of these components for teachers or students. Therefore, this study examines the possible relationship between worldview and conceptions of nature of science for secondary science teachers who currently teach at a Christian school. Qualitative methodologies developed a rich description of the worldview beliefs and conceptions of NOS for teachers in this study. Eight secondary science teachers employed at a private Christian school participated in the study. A Views of Nature of Science (VNOS) questionnaire and follow-up interviews elicited participants' conceptions of NOS. A semi-structured interview and Test of Preferred Explanations (TOPE) questionnaire elicited participants' worldview beliefs regarding nature and the natural world and causality. Participants communicated understandings of NOS that ranged from uninformed to informed in various aspects. In addition, while their worldview beliefs and conceptions of NOS reflected their faith beliefs, participants did not have a less informed view of NOS than other science teachers in previous studies. In fact, for several aspects of NOS, these participants articulated more informed conceptions of NOS than participants in previous studies. For these participants, faith did not appear to interfere with their ability to think scientifically in regards to their worldview beliefs regarding nature and causality. Rather, faith was incorporated into a scientifically compatible worldview regarding nature and causality that is not much different from other teachers. Other than the fact that these science teachers integrated their faith beliefs into some of their responses regarding worldview and NOS, these teachers did not appear to be much different from other science teachers. That is, there was no predictable pattern between worldview

  2. Northwest Climate Science Center: Integrating Regional Research, Conservation and Natural Resource Management

    NASA Astrophysics Data System (ADS)

    Mote, P.; Bisbal, G.

    2012-12-01

    The Northwest Climate Science Center (NW CSC) was established in 2010, among the first three of eight regional Climate Science Centers created by the Department of the Interior (DOI). The NW CSC is supported by an academic consortium (Oregon State University, University of Idaho, and the University of Washington), which has the capacity to generate and coordinate decision-relevant science related to climate, thus serving stakeholders across the Pacific Northwest region. The NW CSC has overlapping boundaries with three Landscape Conservation Cooperatives (LCCs): the Great Northern, the Great Basin, and the North Pacific. Collaboration between the NW CSC and these three LCCs addresses the highest priority regional climate science needs of Northwest natural and cultural resource managers. Early in 2012, the NW CSC released its first Strategic Plan for the period 2012-2015. The plan offers a practical blueprint for operation and describes five core services that the NW CSC provides to the Northwest community. These core services emphasize (a) bringing together the regional resource management and science communities to calibrate priorities and ensure efficient integration of climate science resources and tools when addressing practical issues of regional significance; (b) developing and implementing a stakeholder-driven science agenda which highlights the NW CSC's regional leadership in generating scenarios of the future environment of the NW; (c) supporting and training graduate students at the three consortium universities, including through an annual 'Climate science boot camp'; (d) providing a platform for effective climate-change-related communication among scientists, resource managers, and the general public; and (e) national leadership in data management and climate scenario development.

  3. 77 FR 35430 - National Science Board; Sunshine Act Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-13

    ... Board's Committee on Science and Engineering Indicators, pursuant to NSF regulations (45 CFR part 614... policy Companion to Science and Engineering Indicators 2012 on the topic of state funding of public... National Science Board Web site www.nsf.gov/nsb for additional information and schedule updates (time...

  4. U.S. Department of the Interior Climate Science Centers and U.S. Geological Survey National Climate Change and Wildlife Science Center—Annual report for 2016

    USGS Publications Warehouse

    Weiskopf, Sarah R.; Varela Minder, Elda; Padgett, Holly A.

    2017-05-19

    Introduction2016 was an exciting year for the Department of the Interior (DOI) Climate Science Centers (CSCs) and the U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC). In recognition of our ongoing efforts to raise awareness and provide the scientific data and tools needed to address the impacts of climate change on fish, wildlife, ecosystems, and people, NCCWSC and the CSCs received an honorable mention in the first ever Climate Adaptation Leadership Award for Natural Resources sponsored by the National Fish, Wildlife, and Plant Climate Adaptation Strategy’s Joint Implementation Working Group. The recognition is a reflection of our contribution to numerous scientific workshops and publications, provision of training for students and early career professionals, and work with Tribes and indigenous communities to improve climate change resilience across the Nation. In this report, we highlight some of the activities that took place throughout the NCCWSC and CSC network in 2016.

  5. History of Science as an Instructional Context: Student Learning in Genetics and Nature of Science

    ERIC Educational Resources Information Center

    Kim, Sun Young; Irving, Karen E.

    2010-01-01

    This study (1) explores the effectiveness of the contextualized history of science on student learning of nature of science (NOS) and genetics content knowledge (GCK), especially interrelationships among various genetics concepts, in high school biology classrooms; (2) provides an exemplar for teachers on how to utilize history of science in…

  6. Investigating the Relationship between Teachers' Nature of Science Conceptions and Their Practice of Inquiry Science

    ERIC Educational Resources Information Center

    Atar, Hakan Yavuz; Gallard, Alejandro

    2011-01-01

    In addition to recommending inquiry as the primary approach to teaching science, developers of recent reform efforts in science education have also strongly suggested that teachers develop a sound understanding of the nature of science. Most studies on teachers' NOS conceptions and inquiry beliefs investigated these concepts of teachers' NOS…

  7. EPA at the National Science Teachers Association STEM Forum

    EPA Pesticide Factsheets

    EPA staff will be sharing educational resources, materials, information and STEM (Science, Technology, Engineering, and Mathematics) hands-on activities at the National Science Teachers Association's STEM Forum in Philadelphia, PA

  8. 78 FR 9071 - Comment Request: National Science Foundation Proposal/Award Information-Grant Proposal Guide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-07

    ... research potential; Science and engineering education programs at all levels and in all the various fields... science and engineering and enhancing the potential for research and education to contribute to the Nation... NATIONAL SCIENCE FOUNDATION Comment Request: National Science Foundation Proposal/Award...

  9. Learning about the Nature of Science Using Algae

    ERIC Educational Resources Information Center

    Edelmann, Hans G.; Martius, Thilo; Hahn, Achim; Schlüter, Kirsten; Nessler, Stefan H.

    2016-01-01

    Enquiry learning and teaching about the nature of science (NoS) is a key element of science education. We have designed an experimental setting for students aged 12-14 years to exercise enquiry-learning skills and to introduce students to the NoS aspects of creativity and imagination. It also illustrates the impact of carbon dioxide on the growth…

  10. Nature of science in instruction materials of science through the model of educational reconstruction

    NASA Astrophysics Data System (ADS)

    Azizah, Nur; Mudzakir, Ahmad

    2016-02-01

    The study was carried out to reconstruct the science teaching materials charged view of the nature of science (VNOS). This reconstruction process using the Model of Educational Reconstruction (MER), which is the framework for research and development of science education as well as a guide for planning the teaching of science in the schools is limited in two stages, namely: content structure analysis, and empirical studies of learners. The purpose of this study is to obtain a pre-conception of learners and prospective scientists to the topic of the nature of the material and utilization. The method used to descriptive with the instruments is guidelines for interviews for 15 students of class VIII, text analysis sheet, sheet analysis of the concept, and the validation sheet indicators and learning objectives NOS charged on cognitive and affective aspects. The results obtained in the form of pre-conceptions of learners who demonstrate almost 100% of students know the types of materials and some of its nature, the results of the scientist's perspective on the topic of the nature of the material and its use, as well as the results of the validation indicators and learning objectives charged NOS and competencies PISA 2015 cognitive and affective aspects with CVI value of 0.99 and 1.0 after being validated by five experts. This suggests that the indicators and the resulting learning objectives feasible and can proceed to the reconstruction of teaching materials on the topic of material properties and utilization.

  11. Reasoning About Nature: Graduate students and teachers integrating historic and modern science in high school math and science classes

    NASA Astrophysics Data System (ADS)

    Davis, J. B.; Rigsby, C. A.; Muston, C.; Robinson, Z.; Morehead, A.; Stellwag, E. J.; Shinpaugh, J.; Thompson, A.; Teller, J.

    2010-12-01

    Graduate students and faculty at East Carolina University are working with area high schools to address the common science and mathematics deficiencies of many high school students. Project RaN (Reasoning about Nature), an interdisciplinary science/math/education research project, addresses these deficiencies by focusing on the history of science and the relationship between that history and modern scientific thought and practice. The geological sciences portion of project RaN has three specific goals: (1) to elucidate the relationships among the history of scientific discovery, the geological sciences, and modern scientific thought; (2) to develop, and utilize in the classroom, instructional modules that are relevant to the modern geological sciences curriculum and that relate fundamental scientific discoveries and principles to multiple disciplines and to modern societal issues; and (3) to use these activity-based modules to heighten students’ interest in science disciplines and to generate enthusiasm for doing science in both students and instructors. The educational modules that result from this linkage of modern and historical scientific thought are activity-based, directly related to the National Science Standards for the high school sciences curriculum, and adaptable to fit each state’s standard course of study for the sciences and math. They integrate historic sciences and mathematics with modern science, contain relevant background information on both the concept(s) and scientist(s) involved, present questions that compel students to think more deeply (both qualitatively and quantitatively) about the subject matter, and include threads that branch off to related topics. Modules on topics ranging from the density to cladistics to Kepler’s laws of planetary motion have been developed and tested. Pre- and post-module data suggest that both students and teachers benefit from these interdisciplinary historically based classroom experiences.

  12. Embedding Nature of Science in Teaching about Astronomy and Space

    ERIC Educational Resources Information Center

    Buaraphan, Khajornsak

    2012-01-01

    Science teachers need an adequate understanding of nature of science (NOS) and the ability to embed NOS in their teaching. This collective case study aims to explore in-service science teachers' conceptions of NOS and the embeddedness of NOS in their teaching about astronomy and space. Three science teachers participated in this study. All…

  13. 76 FR 15349 - National Science Board; Sunshine Act Meetings; Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-21

    ... National Science Board business and other matters specified, as follows: DATE, TIME AND SUBJECT MATTER..., 2011 8:30 National Science Foundation Perspective 8:45-10:30 Session V: Policy Issues 10:45-11 Public... schedule updates (time, place, subject matter or status of meeting) may be found at http://www.nsf.gov/nsb...

  14. 77 FR 70483 - President's Committee on the National Medal of Science; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-26

    ... NATIONAL SCIENCE FOUNDATION President's Committee on the National Medal of Science; Notice of... Science. Originally the meeting was scheduled for October 31, 2012. A notice was published in the Federal... Science Foundation announces the rescheduled meeting: Name: President's Committee on the National Medal of...

  15. Great Valley Riparian Habitats and the National Registry of Natural Landmarks

    Treesearch

    Robert F. Holland; Cynthia L. Roye

    1989-01-01

    The National Registry of Natural Landmarks is a program established by the National Park Service that seeks to recognize nationally significant examples of the Nation's natural history. Nearly 100 Great Valley riparian sites were evaluated using Park Service criteria. Three sites illustrative of the range of this biotic theme were recommended to the National Park...

  16. 77 FR 35430 - National Science Board; Sunshine Act Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-13

    ... Board's Committee on Science and Engineering Indicators, pursuant to NSF regulations (45 CFR part 614... policy Companion to Science and Engineering Indicators 2012 on the topic of state funding of public... refer to the National Science Board Web site www.nsf.gov/nsb for additional information and schedule...

  17. People behind the Science

    ERIC Educational Resources Information Center

    Kruse, Jerrid; Borzo, Sarah

    2010-01-01

    In addition to meeting National Science Education Standards (NSES) related to the history and nature of science (NOS), reading or hearing about real scientists helps students connect with science emotionally. The authors have even noticed increased student interest in science concepts during history of science discussions. Toward these efforts,…

  18. Plasma Physics at the National Science Foundation

    NASA Astrophysics Data System (ADS)

    Lukin, Vyacheslav

    2017-10-01

    The Town Meeting on Plasma Physics at the National Science Foundation will provide an opportunity for Q&A about the variety of NSF programs and solicitations relevant to a broad cross-section of the academic plasma science community, from graduating college seniors to senior leaders in the field, and from plasma astrophysics to basic physics to plasma engineering communities. We will discuss recent NSF-hosted events, research awards, and multi-agency partnerships aimed at enabling the progress of science in plasma science and engineering. Future outlook for plasma physics and broader plasma science support at NSF, with an emphasis on how you can help NSF to help the community, will be speculated upon within the uncertainty of the federal budgeting process.

  19. National Patterns of Science and Technology Resources, 1982.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC.

    The National Science Foundation, in attempting to monitor the health of U.S. science and technology, assembles and analyzes comprehensive measures of the financial and human resources that various sectors (government, industry, academia, and other nonprofit institutions) devote to scientific and technological activities. This annual report…

  20. Pre-Service and In-Service Science Teachers' Conceptions of the Nature of Science

    ERIC Educational Resources Information Center

    Buaraphan, Khajornsak

    2010-01-01

    The author explores the history of nature of science beliefs among pre-service and in-service teachers primarily in the United States and Thailand and compares this history to findings in a current study being conducted in Thailand. Two research questions were used to guide this current study: What are pre-service and in-service science teachers'…

  1. 76 FR 6162 - Public Availability of the National Science Foundation FY 2010 Service Contract Inventory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-03

    ... National Science Foundation homepage at the following link: http://www.nsf.gov/publications/pub_summ.jsp... NATIONAL SCIENCE FOUNDATION Public Availability of the National Science Foundation FY 2010 Service Contract Inventory AGENCY: National Science Foundation. ACTION: Notice of Public Availability of FY 2010...

  2. 76 FR 3853 - National Science Foundation Rules of Practice and Statutory Conflict-of-Interest Exemptions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-21

    ... NATIONAL SCIENCE FOUNDATION 45 CFR Part 680 RIN 3145-AA51 National Science Foundation Rules of Practice and Statutory Conflict-of-Interest Exemptions AGENCY: National Science Foundation. ACTION: Final rule. SUMMARY: The National Science Foundation (NSF) is amending its regulations to remove the...

  3. Controversy as a Blind Spot in Teaching Nature of Science. Why the Range of Different Positions Concerning Nature of Science Should Be an Issue in the Science Classroom

    NASA Astrophysics Data System (ADS)

    Kötter, Mario; Hammann, Marcus

    2017-07-01

    In this article, the argument is put forth that controversies about the scope and limits of science should be considered in Nature of Science (NOS) teaching. Reference disciplines for teaching NOS are disciplines, which reflect upon science, like philosophy of science, history of science, and sociology of science. The culture of these disciplines is characterized by controversy rather than unified textbook knowledge. There is common agreement among educators of the arts and humanities that controversies in the reference disciplines should be represented in education. To teach NOS means to adopt a reflexive perspective on science. Therefore, we suggest that controversies within and between the reference disciplines are relevant for NOS teaching and not only the NOS but about NOS should be taught, too. We address the objections that teaching about NOS is irrelevant for real life and too demanding for students. First, we argue that science-reflexive meta-discourses are relevant for students as future citizens because the discourses occur publicly in the context of sociopolitical disputes. Second, we argue that it is in fact necessary to reduce the complexity of the above-mentioned discourses and that this is indeed possible, as it has been done with other reflexive elements in science education. In analogy to the German construct Bewertungskompetenz (which means the competency to make informed ethical decisions in scientific contexts), we suggest epistemic competency as a goal for NOS teaching. In order to do so, science-reflexive controversies must be simplified and attitudes toward science must be considered. Discourse on the scientific status of potential pseudoscience may serve as an authentic and relevant context for teaching the controversial nature of reflexion on science.

  4. 75 FR 61520 - President's Committee on the National Medal of Science; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-05

    ... NATIONAL SCIENCE FOUNDATION President's Committee on the National Medal of Science; Notice of... Science Foundation announces the following meeting: Name: President's Committee on the National Medal of Science (1182). Date and Time: Wednesday, October 20, 2010, 8:30 a.m.-1:30 p.m. Place: Conference Room...

  5. Paradigms and problems: The practice of social science in natural resource management

    Treesearch

    Michael E. Patterson; Daniel R. Williams

    1998-01-01

    Increasingly, natural resource management is seeing calls for new paradigms. These calls pose challenges that have implications not only for planning and management, but also for the practice of science. As a consequence, the profession needs to deepen its understanding of the nature of science by exploring recent advances in the philosophy of science....

  6. Scientific Communication and the Nature of Science

    NASA Astrophysics Data System (ADS)

    Nielsen, Kristian H.

    2013-09-01

    Communication is an important part of scientific practice and, arguably, may be seen as constitutive to scientific knowledge. Yet, often scientific communication gets cursory treatment in science studies as well as in science education. In Nature of Science (NOS), for example, communication is rarely mentioned explicitly, even though, as will be argued in this paper, scientific communication could be treated as a central component of NOS. Like other forms of communication, scientific communication is socially and symbolically differentiated. Among other things, it encompasses technical language and grammar, lab communications, and peer reviews, all of which will be treated in this paper in an attempt to engage on an empirical and theoretical level with science as communication. Seeing science as a form of communicative action supplements the epistemological view of science that is standard to both NOS and the philosophy of science. Additions to the seven NOS aspects on Lederman's (Handbook of research on science education. Lawrence Erlbaum, Mahwah, pp. 831-879, 2007) list are put forward as well as preliminary thoughts on the inclusion of scientific communication into NOS instruction.

  7. 76 FR 2388 - Meeting of the National Biodefense Science Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-13

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Meeting of the National Biodefense Science Board AGENCY... notice that the National Biodefense Science Board (NBSB) will be holding a public meeting. The meeting is open to the public. DATES: The NBSB will hold a public meeting on January 25, 2011 from 1:15 p.m. to 3...

  8. Nature of Science and Decision-Making

    ERIC Educational Resources Information Center

    Khishfe, Rola

    2012-01-01

    The study investigated the relationship of nature of science (NOS) instruction and students' decision-making (DM) related to a controversial socioscientific issue about genetically modified food. Participants were ninth-grade students in four intact sections (two regulars and two honors) in a public high school in the Midwest. All four groups were…

  9. ON THE NATURE OF SPEECH SCIENCE.

    ERIC Educational Resources Information Center

    PETERSON, GORDON E.

    IN THIS ARTICLE THE NATURE OF THE DISCIPLINE OF SPEECH SCIENCE IS CONSIDERED AND THE VARIOUS BASIC AND APPLIED AREAS OF THE DISCIPLINE ARE DISCUSSED. THE BASIC AREAS ENCOMPASS THE VARIOUS PROCESSES OF THE PHYSIOLOGY OF SPEECH PRODUCTION, THE ACOUSTICAL CHARACTERISTICS OF SPEECH, INCLUDING THE SPEECH WAVE TYPES AND THE INFORMATION-BEARING ACOUSTIC…

  10. Le programme de sciences de la nature. Avis a la ministre de l'enseignement superieur et de la science (The Natural Sciences Program. Advisory to the Minister of Higher Education and Science).

    ERIC Educational Resources Information Center

    Conseil des Colleges, Quebec (Quebec).

    A series of recommendations developed by the Council of Colleges of the Colleges of General and Professional Education (CEGEP) in Quebec (Canada) are presented in this report to the Ministry of Higher Education and Science for redesigning the CEGEP's natural sciences curriculum. The proposed reforms are designed to meet legislative requirements…

  11. National IQs Predict Educational Attainment in Math, Reading and Science across 56 Nations

    ERIC Educational Resources Information Center

    Lynn, Richard; Mikk, Jaan

    2009-01-01

    The results of the 2006 PISA (Program for International Student Assessment) study of reading comprehension, mathematical ability, and science understanding administered to 15 year olds in 56 countries [OECD (2007). PISA 2006: Science Competencies for Tomorrow's World. Paris: OECD.] are examined to assess the predictive validity of the national IQs…

  12. The National Science Foundation’s Management Information System: A Status Report.

    DTIC Science & Technology

    1980-04-08

    is.alsoneeded in addressing user needs. RECOMMENDATIONS We recommend that the Director of the National Science Foundation improve MIS by taking actions in the...Committee and National Science Foundation recipients. Subsequent distribution will be made to interested parties 1 week from the date of the report. y...Agency comments and our evaluation 23 Recommendations 27 ATTACHMENT I Organization of the NSF MIS 29 II National Science Foundation organization chart

  13. Awakening a Dialogue: A Critical Race Theory Analysis of U.S. Nature of Science Research from 1967 to 2013

    ERIC Educational Resources Information Center

    Walls, Leon

    2016-01-01

    As the nation's K-12 classrooms become increasingly more racially, culturally, and linguistically diverse, it is incumbent upon the science community to seize opportunities to attend to the rhetoric of reform, namely to enhance scientific literacy for all students. Using Critical Race Theory (CRT) as a framework, this study examined 112 nature of…

  14. The Nature of Laboratory Learning Experiences in Secondary Science Online

    NASA Astrophysics Data System (ADS)

    Crippen, Kent J.; Archambault, Leanna M.; Kern, Cindy L.

    2013-06-01

    Teaching science to secondary students in an online environment is a growing international trend. Despite this trend, reports of empirical studies of this phenomenon are noticeably missing. With a survey concerning the nature of laboratory activities, this study describes the perspective of 35-secondary teachers from 15-different U.S. states who are teaching science online. The type and frequency of reported laboratory activities are consistent with the tradition of face-to-face instruction, using hands-on and simulated experiments. While provided examples were student-centered and required the collection of data, they failed to illustrate key components of the nature of science. The features of student-teacher interactions, student engagement, and nonverbal communications were found to be lacking and likely constitute barriers to the enactment of inquiry. These results serve as a call for research and development focused on using existing communication tools to better align with the activity of science such that the nature of science is more clearly addressed, the work of students becomes more collaborative and authentic, and the formative elements of a scientific inquiry are more accessible to all participants.

  15. Exploring Prospective Teachers' Worldviews and Conceptions of Nature of Science

    ERIC Educational Resources Information Center

    Liu, Shiang-Yao; Lederman, Norman G.

    2007-01-01

    This study explores the relationship, if any, between an individual's culturally based worldviews and conceptions of nature of science. In addition, the implications of this relationship (or lack of relationship) for science teaching and learning are discussed. Participants were 54 Taiwanese prospective science teachers. Their conceptions of…

  16. The Development of In-Service Science Teachers' Understandings of and Orientations to Teaching the Nature of Science within a PCK-Based NOS Course

    ERIC Educational Resources Information Center

    Faikhamta, Chatree

    2013-01-01

    The nature of science (NOS) has become a central goal of science education in many countries. This study sought an understanding of the extent to which a nature of science course (NOSC), designed according to the conceptualization of pedagogical content knowledge (PCK) for teaching nature of science (NOS), affects in-service science teachers'…

  17. 75 FR 31818 - National Science Board; Committee on Strategy and Budget; Sunshine Act Meetings; Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-04

    ... NATIONAL SCIENCE FOUNDATION National Science Board; Committee on Strategy and Budget; Sunshine Act Meetings; Notice The National Science Board's Committee on Strategy and Budget, pursuant to NSF regulations (45 CFR part 614), the National Science Foundation Act, as amended (42 U.S.C. 1862n-5), and the...

  18. Does the nature of science influence college students' learning of biological evolution?

    NASA Astrophysics Data System (ADS)

    Butler, Wilbert, Jr.

    This quasi-experimental, mixed-methods study assessed the influence of the nature of science (NOS) instruction on college students' learning of biological evolution. In this research, conducted in two introductory biology courses, in each course the same instruction was employed, with one important exception: in the experimental section students were involved in an explicit, reflective treatment of the nature of science (Explicit, reflective NOS), in the traditional treatment section, NOS was implicitly addressed (traditional treatment). In both sections, NOS aspects of science addressed included is tentative, empirically based, subjective, inferential, and based on relationship between scientific theories and laws. Students understanding of evolution, acceptance of evolution, and understanding of the nature of science were assessed before, during and after instruction. Data collection entailed qualitative and quantitative methods including Concept Inventory for Natural Selection (CINS), Measure of Acceptance of the Theory of Evolution (MATE) survey, Views of nature of Science (VNOS-B survey), as well as interviews, classroom observations, and journal writing to address understand students' views of science and understanding and acceptance of evolution. The quantitative data were analyzed via inferential statistics and the qualitative data were analyzed using grounded theory. The data analysis allowed for the construction and support for four assertions: Assertion 1: Students engaged in explicit and reflective NOS specific instruction significantly improved their understanding of the nature of science concepts. Alternatively, students engaged in instruction using an implicit approach to the nature of science did not improve their understanding of the nature of science to the same degree. The VNOS-B results indicated that students in the explicit, reflective NOS class showed the better understanding of the NOS after the course than students in the implicit NOS class

  19. Dancing Flies: A Guided Discovery Illustration of the Nature of Science.

    ERIC Educational Resources Information Center

    Nissani, M.

    1996-01-01

    Presents a guided discovery activity that uses fruit flies and can be implemented in introductory biology and nature of science classes to flesh out abstract lectures about life cycles, insect morphology, patterns and causes of animal behavior, and the nature of science. Discusses strengths and drawbacks and results of student evaluations of the…

  20. Four Dialogues and Metalogues about the Nature of Science.

    ERIC Educational Resources Information Center

    Roth, Wolff-Michael; McRobbie, Campbell J.; Lucas, Keith B.

    1998-01-01

    Analyzes and explores questions about the dialogic nature of beliefs and students' belief talk about the nature of science and scientific knowledge. Argues that students' discourse is better understood as a textual bricolage sensitive to conversational context. Contains 26 references. (DDR)

  1. Common Interest, Common Visions? Chinese Science Teacher Educators' Views about the Values of Teaching Nature of Science to Prospective Science Teachers

    ERIC Educational Resources Information Center

    Wan, Zhi Hong; Wong, Siu Ling; Yung, Benny Hin Wai

    2011-01-01

    Teaching nature of science (NOS) is beginning to take root in science education in China. This exploratory study interviewed 24 science teacher educators from economically developed parts of China about their conceptions of teaching NOS to prospective science teachers. Five key dimensions emerged from the data. This paper focuses on the dimension…

  2. Thai in-service teacher understanding of nature of science in biology teaching: Case of Mali

    NASA Astrophysics Data System (ADS)

    Aiemsum-ang, Napapan; Yuenyong, Chokchai

    2018-01-01

    This paper aimed to investigate the existing ideas of nature of science (NOS) teaching in Thailand biology classroom. The study reported the existing ideas of nature of science (NOS) teaching of one biology teacher Mrs. Mali who had been teaching for 6 years at in a school in Khon Kaen city. Methodology regarded interpretive paradigm. Tools of interpretation included 2 months of classroom observation, interviewing, and questionnaire of NOS. The findings revealed Mali held good understanding of the nature of science in the aspect of the use of evidence, the aspect of knowledge inquiry through different observation and deduction, the aspect of creativity and imagination influencing science knowledge inquiry, and the aspect of changeable scientific knowledge. Her biology teaching indicated that she used both the deficient nature of science approach and the implicit nature of science approach. The implicit nature of science approach was applied mostly in 7 periods and only 2 periods were arranged using the deficient nature of science approach. The paper has implication for professional development and pre-service program on NOS teaching in Thailand.

  3. 'Nature and the Greeks' and 'Science and Humanism'

    NASA Astrophysics Data System (ADS)

    Schrödinger, Erwin

    2014-11-01

    Foreword; Part I. Nature and the Greeks: 1. The motives for returning to ancient thought; 2. The competition, reason v. senses; 3. The Pythagoreans; 4. The Ionian enlightenment; 5. The religion of Xenophanes, Heraclitus of Ephesus; 6. The atomists; 7. What are the special features?; Part II. Science and Humanism: 1. The spiritual bearing of science on life; 2. The practical achievements of science tending to obliterate its true import; 3. A radical change in our ideas of matter; 4. Form, not substance, the fundamental concept; 5. The nature of our 'models'; 6. Continuous descriptions and causality; 7. The intricacy of the continuum; 8. The makeshift of wave mechanics; 9. The alleged breakdown of the barrier between subject and object; 10. Atoms or quanta - the counter-spell of old standing, to escape the intricacy of the continuum; 11. Would physical indeterminacy give free will a chance?; 12. The bar to prediction, according to Niels Bohr; Literature.

  4. [Analysis of the application and funding projects of National Natural Science Foundation of China in the field of burns and plastic surgery from 2010 to 2016].

    PubMed

    Zhang, Z C; Dou, D; Wang, X Y; Xie, D H; Yan, Z C

    2017-02-20

    We analyzed the data of application and funding projects of the National Natural Science Foundation of China (NSFC) during 2010-2016 in the field of burns and plastic surgery and summarized the NSFC funding pattern, the research hotspots, and weaknesses in this field. The NSFC has funded 460 projects in the field of burns and plastic surgery, with total funding of RMB 227.96 million. The scientific issues involved in the funding projects include orthotherapy against malformations, wound repair, basic research of burns, skin grafting, scars prevention, and regeneration of hair follicle and sweat glands. The research techniques involved in the funding projects are diversified. NSFC plays an important role in the scientific research and talents training in the field of burns and plastic surgery.

  5. Boundaries and audiences of national histories of science: insights from the history of science and technology of the Netherlands.

    PubMed

    Homburg, Ernst

    2008-01-01

    The present paper traces the evolution of writing national-oriented histories of science and technology of the Netherlands. Several episodes are distinguished. A first wave of national histories of science and technology was written during the first decades of the 19th century. These histories had a wide scope, which included science, technology, the humanities and the arts. A second wave, which lasted from about 1865 to 1900, was strongly connected to the rise of the scientific professions. Its focus was on the sciences perse, and on the Dutch "Golden Age" of the 17th century. A third wave occurred during and shortly after the Second World War. Its focus was mainly on the "Second Golden Age" of Dutch science (1870-1910), and its major audience were young boys that were to be recruited to the sciences. The second part of the paper discusses the growing influence of "contextualization" in both the history of science and the history of technology from about 1975 onwards. As a result, local factors often received more attention in historical studies of science and technology than national influences. In 1985, Klaas van Berkel undertook a bold attempt to write a new synthesis of the history of Dutch science, but his approach was too strongly influenced by the three previous waves of national histories. From 1989 to 2003 two projects on the national history of technology resulted in 13 volumes on Dutch technology between 1800 and 1970. New research was initiated, and the issue of "national styles" in the development of technology received ample attention. In his conclusions the author points to lessons to be learned from economic history and the history of art, and he concludes with a plea for more historiographical discussion in the history of science and technology.

  6. Aligning USGS senior leadership structure with the USGS science strategy

    USGS Publications Warehouse

    ,

    2010-01-01

    The U.S. Geological Survey (USGS) is realigning its management and budget structure to further enhance the work of its science programs and their interdisciplinary focus areas related to the USGS Science Strategy as outlined in 'Facing Tomorrow's Challenges-U.S. Geological Survey Science in the Decade 2007-2017' (U.S. Geological Survey, 2007). In 2007, the USGS developed this science strategy outlining major natural-science issues facing the Nation and focusing on areas where natural science can make a substantial contribution to the well being of the Nation and the world. These areas include global climate change, water resources, natural hazards, energy and minerals, ecosystems, and data integration.

  7. National Science Foundation Annual Report 1989.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC.

    The report begins with a statement from the National Science Foundation (NSF) director, followed by a series of research notes summarizing research findings and results during the year 1989. Chapter 1, "Research Collaborations," describes some examples of the collaborations between universities, industry, and government in astronomy,…

  8. How Contextualized Learning Settings Enhance Meaningful Nature of Science Understanding

    ERIC Educational Resources Information Center

    Bilican, K.; Cakiroglu, J.; Oztekin, C.

    2015-01-01

    Exploring different contexts to facilitate in-depth nature of science (NOS) views were seen as critical for better professional development of pre-service science teachers, which ultimately would assure better students' NOS understanding and achieve an ultimate goal of current science education reforms. This study aimed to reduce the lack of…

  9. Science Instructors' Perceptions of the Risks of Biotechnology: Implications for Science Education

    ERIC Educational Resources Information Center

    Gardner, Grant Ean; Jones, M. Gail

    2011-01-01

    Developing scientifically literate students who understand the socially contextualized nature of science and technology is a national focus of science education reform. Science educators' perceptions of risks and benefits of new technologies (such as biotechnology) may shape their instructional approaches. This study examined the perceived risk of…

  10. Poetry, Nature and Science: Romantic Nature Philosophy in the Works of Novalis and E. T. a. Hoffmann

    NASA Astrophysics Data System (ADS)

    Weisend, Ausma Skerbele

    The nature philosophy of the early Romantic period in Germany attempted to find a synthesis of science and philosophy in a new philosophy of nature. This philosophy was first formulated by F. W. J. Schelling and influenced by the galvanic experiments of J. W. Ritter. Novalis is a unique figure in romanticism since he combines scientific expertise with philosophical insight and poetic imagination. In Lehrlinge zu Sais he explores the significance of nature's language and presents different relationships between man and nature. Novalis thinks that a synthesis of all divergent elements in nature and society is necessary to transform the world. In Klingsohrs Marchen this transformation is accomplished by poetic activation of the physical sciences and by the power of love. After 1800 the romantic movement becomes interested in the problems of subconscious and abnormal psychological states, which are seen as contacts with a more spiritual level of existence. These ideas, expressed in a popular form by G. H. Schubert, provide a rich source of materials for E. T. A. Hoffmann, who elevates the realms of poetry and music in his fairy tales, but sees only negative qualities in science. Hoffmann's protagonists find that love, music, and poetry are the greatest forces in life. The figure of the scientist becomes an evil magician with no regard for human values. The romantic movement failed to unite the values of humanities with the insights of physical sciences. The problem of autonomy isolates both modern science and modern literature from the ethical values of society.

  11. Monitoring wetland of Poyang Lake National Nature Reserve zone by remote sensing

    NASA Astrophysics Data System (ADS)

    Le, Xinghua; Fan, Zhewen; Fang, Yu; Yu, Yuping; Zhang, Yun

    2008-10-01

    In order to monitor the wetland of the Poyang Lake national nature reserve zone, we selected three different seasons TM image data which were achieved individually in April 23th in 1988, Nov 2nd in 1994, and Jan 1st in 2000. Based on the band 5, band 4 and band 3of TM image, we divided the land coverage of Poyang Lake national nature reserve zone into three classes--water field, meadow field and the other land use by rule of maximum likelihood. Using the outcome data to make the statistical analysis, combining with the GIS overlay function operation, the land coverage changes of the Poyang Lake national nature reserve zone can be achieved. Clipped by the Poyang Lake national nature reserve zone boundary, the land coverage changes of Poyang Lake national nature reserve zone in three different years can be attained. Compared with the different wetland coverage data in year of 1988, 1994, 2000, the Poyang Lake national nature reserve zone eco-environment can be inferred from it. After analyzing the land coverage changes data, we draw the conclusion that the effort of Poyang Lake national nature reserve administration bureaucracy has worked well in certain sense.

  12. 2012 National Survey of Science and Mathematics Education: Status of Elementary School Science

    ERIC Educational Resources Information Center

    Trygstad, Peggy J.

    2013-01-01

    The 2012 National Survey of Science and Mathematics Education was designed to provide up-to-date information and to identify trends in the areas of teacher background and experience, curriculum and instruction, and the availability and use of instructional resources. A total of 7,752 science and mathematics teachers in schools across the United…

  13. 2012 National Survey of Science and Mathematics Education: Status of Middle School Science

    ERIC Educational Resources Information Center

    Weis, Aaron M.

    2013-01-01

    The 2012 National Survey of Science and Mathematics Education was designed to provide up-to-date information and to identify trends in the areas of teacher background and experience, curriculum and instruction, and the availability and use of instructional resources. A total of 7,752 science and mathematics teachers in schools across the United…

  14. 7 CFR 600.2 - National headquarters.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., conservation education, and public affairs activities. (g) Strategic Natural Resource Issues. The Strategic... social sciences, conservation engineering, and ecological sciences. This deputy chief also is responsible... plant data) and five national institutes (grazing lands technology, social sciences, watershed science...

  15. 7 CFR 600.2 - National headquarters.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., conservation education, and public affairs activities. (g) Strategic Natural Resource Issues. The Strategic... social sciences, conservation engineering, and ecological sciences. This deputy chief also is responsible... plant data) and five national institutes (grazing lands technology, social sciences, watershed science...

  16. 7 CFR 600.2 - National headquarters.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., conservation education, and public affairs activities. (g) Strategic Natural Resource Issues. The Strategic... social sciences, conservation engineering, and ecological sciences. This deputy chief also is responsible... plant data) and five national institutes (grazing lands technology, social sciences, watershed science...

  17. 7 CFR 600.2 - National headquarters.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., conservation education, and public affairs activities. (g) Strategic Natural Resource Issues. The Strategic... social sciences, conservation engineering, and ecological sciences. This deputy chief also is responsible... plant data) and five national institutes (grazing lands technology, social sciences, watershed science...

  18. The United Nations Basic Space Science Initiative

    NASA Astrophysics Data System (ADS)

    Haubold, H. J.

    2006-08-01

    Pursuant to recommendations of the United Nations Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE III) and deliberations of the United Nations Committee on the Peaceful Uses of Outer Space (UNCOPUOS), annual UN/ European Space Agency workshops on basic space science have been held around the world since 1991. These workshops contribute to the development of astrophysics and space science, particularly in developing nations. Following a process of prioritization, the workshops identified the following elements as particularly important for international cooperation in the field: (i) operation of astronomical telescope facilities implementing TRIPOD, (ii) virtual observatories, (iii) astrophysical data systems, (iv) concurrent design capabilities for the development of international space missions, and (v) theoretical astrophysics such as applications of nonextensive statistical mechanics. Beginning in 2005, the workshops focus on preparations for the International Heliophysical Year 2007 (IHY2007). The workshops continue to facilitate the establishment of astronomical telescope facilities as pursued by Japan and the development of low-cost, ground-based, world-wide instrument arrays as lead by the IHY secretariat. Wamsteker, W., Albrecht, R. and Haubold, H.J.: Developing Basic Space Science World-Wide: A Decade of UN/ESA Workshops. Kluwer Academic Publishers, Dordrecht 2004. http://ihy2007.org http://www.unoosa.org/oosa/en/SAP/bss/ihy2007/index.html http://www.cbpf.br/GrupPesq/StatisticalPhys/biblio.htm

  19. The United Nations Basic Space Science Initiative

    NASA Astrophysics Data System (ADS)

    Haubold, H. J.

    Pursuant to recommendations of the United Nations Conference on the Exploration and Peaceful Uses of Outer Space UNISPACE III and deliberations of the United Nations Committee on the Peaceful Uses of Outer Space UNCOPUOS annual UN European Space Agency workshops on basic space science have been held around the world since 1991 These workshops contribute to the development of astrophysics and space science particularly in developing nations Following a process of prioritization the workshops identified the following elements as particularly important for international cooperation in the field i operation of astronomical telescope facilities implementing TRIPOD ii virtual observatories iii astrophysical data systems iv concurrent design capabilities for the development of international space missions and v theoretical astrophysics such as applications of nonextensive statistical mechanics Beginning in 2005 the workshops focus on preparations for the International Heliophysical Year 2007 IHY2007 The workshops continue to facilitate the establishment of astronomical telescope facilities as pursued by Japan and the development of low-cost ground-based world-wide instrument arrays as lead by the IHY secretariat Further information Wamsteker W Albrecht R and Haubold H J Developing Basic Space Science World-Wide A Decade of UN ESA Workshops Kluwer Academic Publishers Dordrecht 2004 http ihy2007 org http www oosa unvienna org SAP bss ihy2007 index html http www cbpf br GrupPesq StatisticalPhys biblio htm

  20. How the nature of science is presented to elementary students in science read-alouds

    NASA Astrophysics Data System (ADS)

    Rivera, Seema

    Students as early as elementary school age are capable of learning the aspects of the nature of science (NOS), and the National Benchmarks incorporate the NOS as part of the learning objectives for K--2 students. Learning more about elementary science instruction can aid in understanding how the NOS can be taught or potentially integrated into current teaching methods. Although many teaching methods exist, this study will focus on read-alouds because they are recommended for and are very common in elementary schools. The read-aloud practice is particularly helpful to young students because most of these students have a higher listening comprehension than reading comprehension. One of the main components of the read-aloud practice is the discourse that takes place about the trade book. Both explicit and implicit messages are communicated to students by teachers' language and discussion that takes place in the classroom. Therefore, six multisite naturalistic case studies were conducted to understand elementary teachers' understanding of the NOS, students' understandings of the NOS, trade book representations of the NOS, and read-aloud practices and understandings in upstate New York. The findings of the study revealed that teachers and students held mostly naive and mixed understandings of the NOS. The trade books that had explicit connections to the NOS helped teachers discuss NOS related issues, even when the teachers did not hold strong NOS views. Teachers who held more informed NOS views were able to ask students NOS related questions. All teachers showed they need guidance on how to translate their NOS views into discussion and see the significance of the NOS in their classroom. Explicit NOS instruction can improve student understanding of the NOS, however the focus should be not only on teachers and their NOS understanding but also on the books used. These results show that quality trade books with explicit connections to the NOS are a useful instructional tool

  1. Science, environment and technology summit: A long term national science strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trivelpiece, A.W.

    1995-06-01

    This document contains the text of the testimony given by Alvin W. Trivelpiece, Director, Oak Ridge National Laboratory, before the Subcommittee on Basic Research, Committee on Science, US House of Representatives in Oak Ridge, TN on June 1, 1995.

  2. Biology. Student Investigations and Readings. Investigations in Natural Science.

    ERIC Educational Resources Information Center

    Renner, John W.; And Others

    Investigations in Natural Science is a program in secondary school biology, chemistry, and physics based upon the description of science as a quest for knowledge, not the knowledge itself. This student manual contains the 18 biology investigations. These investigations focus on concepts related to: organisms; classification; populations;…

  3. Religious belief: the main impact on the perception of the nature of science on student teachers

    NASA Astrophysics Data System (ADS)

    Aflalo, Ester

    2013-09-01

    This study aims to examine the affect of the degree of religiosity of student teachers, and their nationalism and scientific background on their perception of the nature of science (NOS). First year Arab and Jewish religiously observant, traditional and secular students in Israel (101 in number) with different scientific backgrounds participated in the study. The students completed a closed questionnaire with 35 statements that explored diverse aspects of the perception of the NOS. The findings show that previous scientific knowledge or belonging to the Jewish or Arab nation barely impacts the perceptions of the NOS. In contrast, religious belief, whether Jewish or Muslim, had significant impact. The more religious the students the greater weight they afforded culture and society versus science, and their support of the freedom of inquiry and of the tentativeness of science declined. The educational implications of the findings are discussed in view of the social increase in dogmatic religious belief alongside the unreserved exacerbated skepticism of every truth. Emphasis is placed on reinforcing the liberal dialogue approach that does not fear criticizing tradition, according to which it is possible to educate to critical thought without negating religious belief.

  4. 75 FR 2864 - National Biodefense Science Board: Notification of Public Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-19

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Biodefense Science Board: Notification of Public...) is hereby giving notice that the National Biodefense Science Board (NBSB) will hold a teleconference... wish to participate in the public comment session should e-mail [email protected]GOV to RSVP. DATES: The...

  5. Students' and Teachers' Understanding of the Nature of Science: A Reassessment.

    ERIC Educational Resources Information Center

    Lederman, Norman G.

    1986-01-01

    High school biology teachers (N=18), and one 10th-grade class of each teacher, were given the Nature of Scientific Knowledge Scale at the beginning and end of a school year to determine their conceptions of the nature of science. Results (such as students not possessing "adequate" conceptions of science) are reported and discussed. (JN)

  6. The Nature of Science: Integrating Historical, Philosophical, and Sociological Perspectives

    ERIC Educational Resources Information Center

    Espinoza, Fernando

    2011-01-01

    The role of science in society, along with its nature and development, are commonly misunderstood by students in the social sciences and humanities, and even those studying in the field. Fernando Espinoza shines light on these misconceptions to give readers a deeper understanding of science and its effect and influence upon society, through…

  7. 76 FR 8381 - National Science Board; Sunshine Act Meetings; Impromptu Notice of Time & Location Change

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-14

    ... NATIONAL SCIENCE FOUNDATION National Science Board; Sunshine Act Meetings; Impromptu Notice of Time & Location Change The National Science Board's Committee on Program and Plans, pursuant to NSF regulations (45 CFR Part 614), the National Science Foundation Act, as amended (42 U.S.C. 1862n-5), and the Government in the Sunshine Act (5 U.S.C. 552...

  8. Genetics instruction with history of science: Nature of science learning

    NASA Astrophysics Data System (ADS)

    Kim, Sun Young

    2007-12-01

    This study explored the effect of history of genetics in teaching genetics and learning the nature of science (NOS). A quasi-experimental control group research design with pretests, posttests, and delayed posttests was used, combining qualitative data and quantitative data. Two classes which consisted of tenth grade biology students participated in this study. The present study involved two instructional interventions, Best Practice Instruction with History of Genetics (BPIw/HG) and Best Practice Instruction (BPI). The experimental group received BPIw/HG utilizing various historical materials from the history of genetics, while the control group was not introduced to historical materials. Scientific Attitude Inventory II, Genetics Terms' Definitions with Concept Mapping (GTDCM), NOS Terms' Definitions with Concept Mapping (NTDCM), and View of Nature of Science (VNOS-C) were used to investigate students' scientific attitude inventory, and their understanding of genetics as well as the NOS. The results showed that students' scientific attitude inventory, and their understanding of genetics and the NOS were not statistically significantly different in the pretest (p>.05). After the intervention, the experimental group of students who received BPIw/HG demonstrated better understanding of the NOS. NTDCM results showed that the experimental group was better in defining the NOS terms and constructing a concept map ( p<.01). In addition, the experimental group retained their understanding of the NOS two-months after the completion of the intervention, showing no statistically significant difference between the posttest and the delayed posttest of NTDCM (p>.05). Further, VNOS-C data indicated that a greater percentage of the experimental group than the control group improved their understanding of the NOS. However, the two groups' understanding of genetics concepts did not show any statistically significant difference in the pretest, the posttest, and the delayed posttest

  9. Physics. Student Investigations and Readings. Investigations in Natural Science.

    ERIC Educational Resources Information Center

    Renner, John W.; And Others

    Investigations in Natural Science is a program in secondary school biology, chemistry, and physics based upon the description of science as a quest for knowledge, not the knowledge itself. This student manual contains the 36 physics investigations which focus on concepts related to: movement; vectors; falling objects; force and acceleration; a…

  10. A Critical Review: Connecting Nature of Science and Argumentation

    ERIC Educational Resources Information Center

    Soysal, Y.

    2015-01-01

    The purpose of this critical review is to examine studies incorporating interconnectedness between Nature of Science (NOS) and Argumentation. This in-depth critical review seeks to illuminate insights and direction of the linkage between these two eminent research fields in science education. It involves a computerized, web-based search to provide…

  11. Chemistry. Student Investigations and Readings. Investigations in Natural Science.

    ERIC Educational Resources Information Center

    Renner, John W.; And Others

    Investigations in Natural Science is a program in secondary school biology, chemistry, and physics based upon the description of science as a quest for knowledge, not the knowledge itself. This student manual contains the 19 chemistry investigations. These investigations focus on concepts related to: interactions with water; salt and calcium;…

  12. Cooperative Learning about Nature of Science with a Case from the History of Science

    ERIC Educational Resources Information Center

    Wolfensberger, Balz; Canella, Claudia

    2015-01-01

    This paper reports a predominantly qualitative classroom study on cooperative learning about nature of science (NOS) using a case from the history of science. The purpose of the research was to gain insight into how students worked with the historical case study during cooperative group work, how students and teachers assessed the teaching unit,…

  13. Explicit Reflective Nature of Science Instruction: Evolution, Intelligent Design, and Umbrellaology

    ERIC Educational Resources Information Center

    Scharmann, Lawrence C.; Smith, Mike U.; James, Mark C.; Jensen, Murray

    2005-01-01

    The investigators sought to design an instructional unit to enhance an understanding of the nature of science (NOS) by taking into account both instructional best practices and suggestions made by noted science philosopher Thomas Kuhn. Preservice secondary science teachers enrolled in a course, "Laboratory Techniques in the Teaching of Science,"…

  14. Engaging Nature of Science to Preservice Teachers through Inquiry-Based Classroom

    ERIC Educational Resources Information Center

    Nuangchalerm, Prasart

    2013-01-01

    Inquiry-based classroom is widely distributed in the school science based on its useful and effective instruction. Science teachers are key elements allowing students to have scientific inquiry. If teachers understand and imply inquiry-based learning into science classroom, students will learn science as scientific inquiry and understand nature of…

  15. Information science and technology developments within the National Biological Information Infrastructure

    USGS Publications Warehouse

    Frame, M.T.; Cotter, G.; Zolly, L.; Little, J.

    2002-01-01

    Whether your vantage point is that of an office window or a national park, your view undoubtedly encompasses a rich diversity of life forms, all carefully studied or managed by some scientist, resource manager, or planner. A few simple calculations - the number of species, their interrelationships, and the many researchers studying them - and you can easily see the tremendous challenges that the resulting biological data presents to the information and computer science communities. Biological information varies in format and content: it may pertain to a particular species or an entire ecosystem; it can contain land use characteristics, and geospatially referenced information. The complexity and uniqueness of each individual species or ecosystem do not easily lend themselves to today's computer science tools and applications. To address the challenges that the biological enterprise presents, the National Biological Information Infrastructure (NBII) (http://www.nbii.gov) was established in 1993 on the recommendation of the National Research Council (National Research Council 1993). The NBII is designed to address these issues on a national scale, and through international partnerships. This paper discusses current information and computer science efforts within the National Biological Information Infrastructure Program, and future computer science research endeavors that are needed to address the ever-growing issues related to our nation's biological concerns. ?? 2003 by The Haworth Press, Inc. All rights reserved.

  16. 76 FR 24923 - National Science Board; Sunshine Act Meetings; Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-03

    ...: Some portions open, some portions closed. UPDATES: Please refer to the National Science Board Web site... Information Item: Status Deep Underground Science and Engineering Laboratory Information Item: High...

  17. 77 FR 16846 - National Science Advisory Board for Biosecurity Meeting; Office of Biotechnology Activities...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-22

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Science Advisory Board for Biosecurity Meeting; Office of Biotechnology Activities, Office of Science Policy, Office of..., as amended (5 U.S.C. App.), notice is hereby given of the following meeting of the National Science...

  18. Using the Planetary Science Institute’s Meteorite Mini-Kits to Address the Nature of Science

    NASA Astrophysics Data System (ADS)

    Lebofsky, Larry A.; Cañizo, Thea L.; Buxner, Sanlyn

    2014-11-01

    Hands-on learning allows students to understand science concepts by directly observing and experiencing the topics they are studying. The Planetary Science Institute (PSI) has created instructional rock kits that have been introduced to elementary and middle school teachers in Tucson, in our professional development workshops. PSI provides teachers with supporting material and training so that they can use the kits as tools for students’ hands-on learning. Use of these kits provides an important experience with natural materials that is essential to instruction in Earth and Space Science. With a stronger knowledge of science content and of how science is actually conducted, the workshops and kits have instilled greater confidence in teachers’ ability to teach science content. The Next Generation Science Standards (NGSS) Performance Expectations includes: “What makes up our solar system?” NGSS emphasizes the Crosscutting Concepts—Patterns Scale, Portion, and Quantity; and Systems and System Models. NGSS also states that the Nature of Science (NOS) should be an “essential part” of science education. NOS topics include understanding that scientific investigations use a variety of methods, that scientific knowledge is based on empirical evidence, that scientific explanations are open to revision in light of new evidence, and an understanding of the nature of scientific models.Addressing a need expressed by teachers for borrowing kits less expensive than our $2000 option, we created a Meteorite Mini-Kit. Each Mini-Kit contains eight rocks: an iron-bearing chondrite, a sliced chondrite (showing iron and chondrules), a tektite, a common Tucson rock, a river-polished rock, pumice, a small iron, and a rounded obsidian rock (false tektite). Also included in the Mini-Kits are magnets and a magnifier. The kits cost $40 to $50, depending on the sizes of the chondrites. A teacher can check out a classroom set of these which contains either 10 or 20 Mini-Kits. Each

  19. National Climate Change and Wildlife Science Center project accomplishments: highlights

    USGS Publications Warehouse

    Holl, Sally

    2011-01-01

    The National Climate Change and Wildlife Science Center (NCCWSC) has invested more than $20M since 2008 to put cutting-edge climate science research in the hands of resource managers across the Nation. With NCCWSC support, more than 25 cooperative research initiatives led by U.S. Geological Survey (USGS) researchers and technical staff are advancing our understanding of habitats and species to provide guidance to managers in the face of a changing climate. Projects focus on quantifying and predicting interactions between climate, habitats, species, and other natural resources such as water. Spatial scales of the projects range from the continent of North America, to a regional scale such as the Pacific Northwest United States, to a landscape scale such as the Florida Everglades. Time scales range from the outset of the 20th century to the end of the 21st century. Projects often lead to workshops, presentations, publications and the creation of new websites, computer models, and data visualization tools. Partnership-building is also a key focus of the NCCWSC-supported projects. New and on-going cooperative partnerships have been forged and strengthened with resource managers and scientists at Federal, tribal, state, local, academic, and non-governmental organizations. USGS scientists work closely with resource managers to produce timely and relevant results that can assist managers and policy makers in current resource management decisions. This fact sheet highlights accomplishments of five NCCWSC projects.

  20. 75 FR 9000 - Comment Request: National Science Foundation Proposal/Award Information-Grant Proposal Guide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    ... process; Programs to strengthen scientific and engineering research potential; Science and engineering..., authority to support applied research was added to the Organic Act. In 1980, The Science and Engineering... NATIONAL SCIENCE FOUNDATION Comment Request: National Science Foundation Proposal/Award...

  1. Dilemmas in Examining Understanding of Nature of Science in Vietnam

    ERIC Educational Resources Information Center

    Thao-Do, Thi Phuong; Yuenyong, Chokchai

    2017-01-01

    Scholars proved nature of science (NOS) has made certain contributions to science teaching and learning. Nonetheless, what, how and how much NOS should be integrated in the science curriculum of each country cannot be a benchmark, due to the influence of culture and society. Before employing NOS in a new context, it should be carefully studied. In…

  2. Influence of Nature and History of Science Courses on Value Perceptions of Elementary Science Teacher Candidates in Conceptual Dimension in Turkey

    ERIC Educational Resources Information Center

    Aktamis, Hilal; Higde, Emrah

    2018-01-01

    This study aimed to determine the changes in understanding about the nature of science (NOS) and conceptual values of 28 elementary science teacher candidates who engaged in the instruction of the nature and history of science (NHOS). A values scale was used to determine the values of science teacher candidates in six areas of the conceptual…

  3. Development and Nature of Preservice Chemistry Teachers' Pedagogical Content Knowledge for Nature of Science

    NASA Astrophysics Data System (ADS)

    Demirdöğen, Betül; Hanuscin, Deborah L.; Uzuntiryaki-Kondakci, Esen; Köseoğlu, Fitnat

    2016-08-01

    The purpose of this case study is to delve into the complexities of the early development of preservice chemistry teachers' science teaching orientations, knowledge of learners, knowledge of instructional strategies, and knowledge of assessment during a two-semester intervention designed to enhance their pedagogical content knowledge (PCK) for teaching nature of science (NOS). Thirty preservice chemistry teachers enrolled in a Research in Science Education course participated in the study. Qualitative data sources included responses to an open-ended instrument, interviews, observations, and artifacts such as lesson plans and reflection papers. Through the in-depth analysis of explicit PCK and constant comparative method of analysis, we identified the influence of the intervention on participants' PCK for NOS. Analysis of data revealed four major themes related to the nature of preservice chemistry teachers' NOS teaching practices and their PCK for NOS: (1) prerequisite knowledge and beliefs are necessary to teach NOS, (2) there is a developmental progression of PCK for NOS from knowledge to application level, (3) teachers need some comfort in their NOS understanding to teach NOS, and (4) the higher integration of PCK components leads to successful NOS teaching practices. Implications for science teacher education and research are discussed.

  4. 78 FR 66369 - National Institute of General Medical Sciences; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-05

    ... General Medical Sciences; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory... Sciences Initial Review Group Training and Workforce Development Subcommittee--D. Date: November 7, 2013... Review Officer, Office of Scientific Review, National Institute of General Medical Sciences, National...

  5. 76 FR 10911 - National Institute of General Medical Sciences; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-28

    ... General Medical Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... Sciences Special Emphasis Panel; Review of Minority Biomedical Research Support Applications. Date: March... Review, National Institute of General Medical Sciences, National Institutes of Health, 45 Center Drive...

  6. 78 FR 66367 - National Institute of General Medical Sciences; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-05

    ... General Medical Sciences; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory... Sciences Initial Review Group; Training and Workforce Development Subcommittee--A. Date: November 21, 2013... Review Officer, Office of Scientific Review, National Institute of General Medical Sciences, National...

  7. Turkish Version of Students' Ideas about Nature of Science Questionnaire: A Validation Study

    ERIC Educational Resources Information Center

    Cansiz, Mustafa; Cansiz, Nurcan; Tas, Yasemin; Yerdelen, Sundus

    2017-01-01

    Mass assessment of large samples' nature of science views has been one of the core concerns in science education research. Due to impracticality of using open-ended questionnaires or conducting interviews with large groups, another line of research has been required for mass assessment of pupils' nature of science conception meaningfully.…

  8. The Development of the Nature of Science View Scale (NOSvs) at University Level

    ERIC Educational Resources Information Center

    Temel, Senar; Sen, Senol; Özcan, Özgür

    2018-01-01

    Background: Determining individuals' views of the nature of science is quite important for researchers since it is both a component of scientific literacy and a fundamental aim of science education. Purpose: This study aims to develop a NOSvs for assessing prospective teachers' views of the nature of science and to analyse their psychometric…

  9. The Two Cultures of Science: On Language-Culture Incommensurability Concerning "Nature" and "Observation"

    ERIC Educational Resources Information Center

    Loo, Seng Piew

    2007-01-01

    Culture without nature is empty, nature without culture is deaf Intercultural dialogue in higher education around the globe is needed to improve the theory, policy and practice of science and science education. The culture, cosmology and philosophy of "global" science as practiced today in all societies around the world are seemingly anchored in…

  10. Student perceptions of the nature of science and attitudes towards science education in an experiential science program

    NASA Astrophysics Data System (ADS)

    Jelinek, David John

    1997-11-01

    This study investigates student perceptions of the nature of science and student attitudes toward science education, then employs experiential teaching strategies to determine what role, if any, these play in enhancing those perceptions and attitudes. The literature review identifies three shortcomings that justify the need for such research, concluding that a study to help broaden knowledge regarding interactive effects of attitudes, perceptions, and experiential learning could add significantly to the literature base. This is an explorative case study of 20 high school students participating in an Upward Bound summer program at the University of California in Santa Barbara. A six-week course drawing upon experiential learning theory was devised and delivered to the students, then various qualitative data collection materials were administered. The objective was to investigate pre-, during-, and post-instruction perspectives of students, thus identifying core factors concerning attitudes and perceptions. Constant comparative analysis was used to investigate the multiple sources of data, resulting in: (a) a collection of emic perspectives that distinguish between pre- and post-perceptions of the nature of science and of attitudes towards science education; (b) three themes of enhanced students' images of science and scientists; (c) two themes suggesting sociological perspectives that help broaden student perceptions; and (d) interest and boredom as key motivational considerations. A model of nature of science enhancement is proposed, proceeding through four stages of: (a) engagement in meaningful, first-hand activities; (b) student accountability for active participation and reflectiveness; (c) emphasis of high importance and high interest values; and (d) in-depth, multiple encounters with the phenomena and processes. Finally, implications of catching and holding interest are discussed. It was found that various experiential strategies proved successful in catching

  11. 76 FR 4947 - Comment Request: National Science Foundation Proposal & Award Policies and Procedures Guide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-27

    ... process; Programs to strengthen scientific and engineering research potential; Science and engineering..., authority to support applied research was added to the Organic Act. In 1980, The Science and Engineering... NATIONAL SCIENCE FOUNDATION Comment Request: National Science Foundation Proposal & Award Policies...

  12. Do Pre-Service Science Teachers Have Understanding of the Nature of Science?: Explicit-Reflective Approach

    ERIC Educational Resources Information Center

    Örnek, Funda; Turkey, Kocaeli

    2014-01-01

    Current approaches in Science Education attempt to enable students to develop an understanding of the nature of science, develop fundamental scientific concepts, and develop the ability to structure, analyze, reason, and communicate effectively. Students pose, solve, and interpret scientific problems, and eventually set goals and regulate their…

  13. Preserving nature in forested wilderness areas and national parks

    Treesearch

    Miron L. Heinselman

    1971-01-01

    The natural forest ecosystems of some of our national parks and wilderness areas are endangered by subtle ecological changes primarily because we have failed to understand the dynamic nature of these ecosystems and because protection programs frequently have excluded the very factors that produce natural plant and animal communities. Maintaining natural ecosystems...

  14. The Consensus Process at the Water Science and Technology Board, National Research Council

    NASA Astrophysics Data System (ADS)

    Logan, W. S.

    2001-12-01

    Whereas the very birth of the U.S. Geological Survey arose from the recommendations of a National Academy of Sciences report, water science has not always had a prominent place at that institution. Prior to the 1980s, water issues were dealt with on an ad hoc basis by various boards related to science, engineering, and policy. With the birth of the Water Science and Technology Board (WSTB) in 1982, a diversity of water-related issues are now handled under one roof. The "business" of the WSTB is to produce consensus reports on a spectrum of topics in water science. Some of the projects that the WSTB works on are self-generated. The majority are generated either by Congress, or by government agencies. The WSTB takes on several different kinds of studies. Some of these are designed to advance the science of hydrology itself. This category would include the report Opportunities in the Hydrologic Sciences, which helped to establish hydrologic science as something separate from applied hydrology in Congress, the White House, and agencies such as NSF. However, the majority of the board's consensus studies involve hydrology in the interests of improving the natural and human environment. For example, Water for the Future: The West Bank and Gaza Strip, Israel, and Jordan outlined consensus principles backed by scientists from all of these entities for sustaining freshwater resources of the region. Closer to home, but no less controversial, a WSTB committee recently reached consensus on improving the process by which states determine which water bodies are polluted enough to require clean-up, and develop Total Maximum Daily Loads for these pollutants. Another committee recently sorted through the scientific bases for using natural attenuation for various contaminants in ground water and soil. And an ongoing committee is trying to help the South Florida scientific community to determine the best strategies for restoring the Everglades to some semblance of its former self

  15. Impacts of Contextual and Explicit Instruction on Preservice Elementary Teachers' Understandings of the Nature of Science.

    ERIC Educational Resources Information Center

    Matkins, Juanita Jo; Bell, Randy; Irving, Karen; McNall, Rebecca

    Science educators have identified the development of accurate understandings of the nature of science as an instruction goal for nearly a century. Unfortunately, science instructors are unlikely to focus on the nature of science in content courses and the nature of science lessons are generally relegated to the methods courses where they are…

  16. The wisdom of nature in integrating science, ethics and the arts.

    PubMed

    Moser, A

    2000-07-01

    This paper deals with an approach to the integration of science (with technology and economics), ethics (with religion and mysticism), the arts (aesthetics) and Nature, in order to establish a world-view based on holistic, evolutionary ethics that could help with problem solving. The author suggests that this integration is possible with the aid of "Nature's wisdom" which is mirrored in the macroscopic pattern of the ecosphere. The corresponding eco-principles represent the basis for unifying soft and hard sciences resulting in "deep sciences". Deduction and induction will remain the methodology for deep sciences and will include conventional experiments and aesthetic and sentient experiences. Perception becomes the decisive factor with the senses as operators for the building of consciousness through the subconscious. In this paper, an attempt at integrating the concepts of the "true", the "right" and the "beautiful" with the aid of Nature's wisdom is explained in more detail along with consequences.

  17. Reassessing Possible Naturalized Ideology Regarding Science, Education, and Religion

    ERIC Educational Resources Information Center

    Campbell, Todd

    2006-01-01

    This manuscript asks questions about what may be the naturalized, or taken for granted, ideologies in science education regarding religion. There have been times in history when religion has taken a dogmatic role in limiting the practices of science (e.g., the Roman Catholic Church and Galileo). This manuscript reflects on the dogmatic rule of…

  18. Regional and National Use of Semi‐Natural and Natural Depressional Wetlands in Green Infrastructure

    EPA Science Inventory

    Regional and National Use of Semi‐Natural and Natural Depressional Wetlands in Green Infrastructure Charles Lane, US Environmental Protection Agency, Ellen D’Amico, Pegasus Technical ServicesDepressional wetlands are frequently amongst the first aquatic systems to be ...

  19. Understanding the Heterogeneous Nature of Science: A Comprehensive Notion of PCK for Scientific Literacy

    ERIC Educational Resources Information Center

    Van Dijk, Esther M.

    2014-01-01

    This paper is concerned with the conceptualization of pedagogical content knowledge (PCK) for teaching about the nature of science. In contrast to the view that science teachers need to develop a specific "PCK for nature of science," an alternative, more comprehensive notion of PCK for science teaching is suggested. The point of…

  20. Introducing Taiwanese Undergraduate Students to the Nature of Science through Nobel Prize Stories

    ERIC Educational Resources Information Center

    Eshach, Haim; Hwang, Fu-Kwun; Wu, Hsin-Kai; Hsu, Ying-Shao

    2013-01-01

    Although there is a broad agreement among scientists and science educators that students should not only learn science, but also acquire some sense of its nature, it has been reported that undergraduate students possess an inadequate grasp of the nature of science (NOS). The study presented here examined the potential and effectiveness of Nobel…