Science.gov

Sample records for noble gas discharges

  1. Noble gas magnetic resonator

    DOEpatents

    Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

    2014-04-15

    Precise measurements of a precessional rate of noble gas in a magnetic field is obtained by constraining the time averaged direction of the spins of a stimulating alkali gas to lie in a plane transverse to the magnetic field. In this way, the magnetic field of the alkali gas does not provide a net contribution to the precessional rate of the noble gas.

  2. Genesis Noble Gas Measurements

    NASA Technical Reports Server (NTRS)

    Hohenberg, Charles M.

    2005-01-01

    The original thrust of our Genesis funding was to extend and refine the noble gas analytical capabilities of this laboratory to improve the precision and accuracy of noble gas measurements in order to optimize the scientific return from the Genesis Mission. This process involved both instrumental improvement (supplemented by a SRLIDAP instrument grant) and refinement of technique. The Genesis landing mishap shifted our emphasis to the irregular aluminum heat shield material from the flat collector wafers. This has required redesign of our laser extraction cells to accommodate the longer focal lengths required for laser extraction from non-flat surfaces. Extraction of noble gases from solid aluminum surfaces, rather than thin coatings on transparent substrates has required refinement of controlled-depth laser ablation techniques. Both of these bring new problems, both with potentially higher blanks form larger laser cells and the larger quantities of evaporated aluminum which can coat the sapphire entrance ports. This is mainly a problem for the heavy noble gases where larger extraction areas are required, necessitating the new aluminum vapor containment techniques described below. With the Genesis Mission came three new multiple multiplier noble gas mass spectrometers to this laboratory, one built solely by us (Supergnome-M), one built in collaboration with Nu-Instruments (Noblesse), and one built in collaboration with GVI (Helix). All of these have multiple multiplier detection sections with the Nu-Instruments using a pair of electrostatic quad lenses for isotope spacing and the other two using mechanically adjustable positions for the electron multipliers. The Supergnome-M and Noblesse are installed and running. The GVI instrument was delivered a year late (in March 2005) and is yet to be installed by GVI. As with all new instruments there were some initial development issues, some of which are still outstanding. The most serious of these are performance issues

  3. Cosmogenic noble gas paleothermometry

    NASA Astrophysics Data System (ADS)

    Tremblay, Marissa M.; Shuster, David L.; Balco, Greg

    2014-08-01

    We present a theoretical basis for reconstructing paleotemperatures from the open-system behavior of cosmogenic noble gases produced in minerals at Earth's surface. Experimentally-determined diffusion kinetics predicts diffusive loss of cosmogenic 3He and 21Ne from common minerals like quartz and feldspars at ambient temperatures; incomplete retention has also been observed empirically in field studies. We show that the theory of simultaneous production and diffusion that applies to radiogenic noble gases in minerals-the basis of thermochronology-can also be applied to cosmogenic noble gases to reconstruct past surface temperatures on Earth. We use published diffusion kinetics and production rates for 3He in quartz and 21Ne in orthoclase to demonstrate the resolving power of cosmogenic noble gas paleothermometry with respect to exposure duration, temperature, and diffusion domain size. Calculations indicate that, when paired with a quantitatively retained cosmogenic nuclide such as 21Ne or 10Be, observations of cosmogenic 3He in quartz can constrain temperatures during surface exposure in polar and high altitude environments. Likewise, 21Ne retention in feldspars is sensitive to temperatures at lower latitudes and elevations, expanding the potential geographic applicability of this technique to most latitudes. As an example, we present paired measurements of 3He and 10Be in quartz from a suite of Antarctic sandstone erratics to test whether the abundances of cosmogenic 3He agree with what is predicted from first principles and laboratory-determined diffusion kinetics. We find that the amounts of cosmogenic 3He present in these samples are consistent with the known mean annual temperature (MAT) for this region of Antarctica between -25 and -30 °C. These results demonstrate the method's ability to record paleotemperatures through geologic time.

  4. The physical nature of the phenomenon of positive column plasma constriction in low-pressure noble gas direct current discharges

    SciTech Connect

    Kurbatov, P. F.

    2014-02-15

    The essence of the positive-column plasma constriction for static (the diffusion mode) and dynamic ionization equilibrium (the stratificated and constricted modes) is analyzed. Two physical parameters, namely, the effective ionization rate of gas atoms and the ambipolar diffusion coefficient of electrons and ions, determine the transverse distribution of discharge species and affect the current states of plasma. Transverse constriction of the positive column takes place as the gas ionization level (discharge current) and pressure increase. The stratified mode (including the constricted one) is observed between the two adjacent types of self-sustained discharge phases when they coexist together at the same time or in the same place as a coherent binary mixture. In the case, a occurrence of the discharge phase with more high electron density presently involve a great decrease in the cross-section of the current channel for d.c. discharges. Additional physical factors, such as cataphoresis and electrophoresis phenomena and spatial gas density inhomogeneity correlated with a circulatory flow in d.c. discharges, are mainly responsible for the current hysteresis and partially constricted discharge.

  5. The Effects of Added Hydrogen on Noble Gas Discharges Used as Ambient Desorption/Ionization Sources for Mass Spectrometry.

    PubMed

    Ellis, Wade C; Lewis, Charlotte R; Openshaw, Anna P; Farnsworth, Paul B

    2016-09-01

    We demonstrate the effectiveness of using hydrogen-doped argon as the support gas for the dielectric barrier discharge (DBD) ambient desorption/ionization (ADI) source in mass spectrometry. Also, we explore the chemistry responsible for the signal enhancement observed when using both hydrogen-doped argon and hydrogen-doped helium. The hydrogen-doped argon was tested for five analytes representing different classes of molecules. Addition of hydrogen to the argon plasma gas enhanced signals for gas-phase analytes and for analytes coated onto glass slides in positive and negative ion mode. The enhancements ranged from factors of 4 to 5 for gas-phase analytes and factors of 2 to 40 for coated slides. There was no significant increase in the background. The limit of detection for caffeine was lowered by a factor of 79 using H2/Ar and 2 using H2/He. Results are shown that help explain the fundamental differences between the pure-gas discharges and those that are hydrogen-doped for both argon and helium. Experiments with different discharge geometries and grounding schemes indicate that observed signal enhancements are strongly dependent on discharge configuration. Graphical Abstract ᅟ.

  6. The Effects of Added Hydrogen on Noble Gas Discharges Used as Ambient Desorption/Ionization Sources for Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ellis, Wade C.; Lewis, Charlotte R.; Openshaw, Anna P.; Farnsworth, Paul B.

    2016-09-01

    We demonstrate the effectiveness of using hydrogen-doped argon as the support gas for the dielectric barrier discharge (DBD) ambient desorption/ionization (ADI) source in mass spectrometry. Also, we explore the chemistry responsible for the signal enhancement observed when using both hydrogen-doped argon and hydrogen-doped helium. The hydrogen-doped argon was tested for five analytes representing different classes of molecules. Addition of hydrogen to the argon plasma gas enhanced signals for gas-phase analytes and for analytes coated onto glass slides in positive and negative ion mode. The enhancements ranged from factors of 4 to 5 for gas-phase analytes and factors of 2 to 40 for coated slides. There was no significant increase in the background. The limit of detection for caffeine was lowered by a factor of 79 using H2/Ar and 2 using H2/He. Results are shown that help explain the fundamental differences between the pure-gas discharges and those that are hydrogen-doped for both argon and helium. Experiments with different discharge geometries and grounding schemes indicate that observed signal enhancements are strongly dependent on discharge configuration.

  7. Noble gas fractionation during subsurface gas migration

    NASA Astrophysics Data System (ADS)

    Sathaye, Kiran J.; Larson, Toti E.; Hesse, Marc A.

    2016-09-01

    Environmental monitoring of shale gas production and geological carbon dioxide (CO2) storage requires identification of subsurface gas sources. Noble gases provide a powerful tool to distinguish different sources if the modifications of the gas composition during transport can be accounted for. Despite the recognition of compositional changes due to gas migration in the subsurface, the interpretation of geochemical data relies largely on zero-dimensional mixing and fractionation models. Here we present two-phase flow column experiments that demonstrate these changes. Water containing a dissolved noble gas is displaced by gas comprised of CO2 and argon. We observe a characteristic pattern of initial co-enrichment of noble gases from both phases in banks at the gas front, followed by a depletion of the dissolved noble gas. The enrichment of the co-injected noble gas is due to the dissolution of the more soluble major gas component, while the enrichment of the dissolved noble gas is due to stripping from the groundwater. These processes amount to chromatographic separations that occur during two-phase flow and can be predicted by the theory of gas injection. This theory provides a mechanistic basis for noble gas fractionation during gas migration and improves our ability to identify subsurface gas sources after post-genetic modification. Finally, we show that compositional changes due to two-phase flow can qualitatively explain the spatial compositional trends observed within the Bravo Dome natural CO2 reservoir and some regional compositional trends observed in drinking water wells overlying the Marcellus and Barnett shale regions. In both cases, only the migration of a gas with constant source composition is required, rather than multi-stage mixing and fractionation models previously proposed.

  8. Noble gas trapping by laboratory carbon condensates

    NASA Technical Reports Server (NTRS)

    Niemeyer, S.; Marti, K.

    1982-01-01

    Trapping of noble gases by carbon-rich matter was investigated by synthesizing carbon condensates in a noble gas atmosphere. Laser evaporation of a solid carbon target yielded submicron grains which proved to be efficient noble gas trappers (Xe distribution coefficients up to 13 cu cm STP/g-atm). The carbon condensates are better noble gas trappers than previously reported synthetic samples, except one, but coefficients inferred for meteoritic acid-residues are still orders of magnitude higher. The trapped noble gases are loosely bound and elementally strongly fractionated, but isotopic fractionations were not detected. Although this experiment does not simulate nebular conditions, the results support the evidence that carbon-rich phases in meteorites may be carriers of noble gases from early solar system reservoirs. The trapped elemental noble gas fractionations are remarkably similar to both those inferred for meteorites and those of planetary atmospheres for earth, Mars and Venus.

  9. Methane activation using noble gases in a dielectric barrier discharge reactor

    SciTech Connect

    Jo, Sungkwon; Hoon Lee, Dae; Seok Kang, Woo; Song, Young-Hoon

    2013-08-15

    The conversion of methane is measured in a planar-type dielectric barrier discharge reactor using three different noble gases—He, Ne, and Ar—as additives. The empirical results obtained clearly indicate that methane activation is considerably affected by thy type of noble gas used. Through 0-D calculations, the discharge parameters inside the reactor, i.e., electron temperature and electron density, are estimated using experiment results. A comparison of the discharge characteristics and experimental results shows that the electron temperature is an important factor in achieving high methane activation and the mixture with Ar gas shows the highest methane conversion. These results are constructed using the mechanisms of energy and charge transfer from excited and ionized noble gas atoms to methane molecules, considering the number density of active atoms of noble gases. Finally, electron temperatures obtained for gas mixtures having different reactant compositions and concentrations are analyzed to estimate methane activation.

  10. Noble Gas Temperature Proxy for Climate Change

    EPA Science Inventory

    Noble gases in groundwater appear to offer a practical approach for quantitatively determining past surface air temperatures over recharge areas for any watershed. The noble gas temperature (NGT) proxy should then permit a paleothermometry of a region over time. This terrestria...

  11. On a cryogenic noble gas ion catcher

    NASA Astrophysics Data System (ADS)

    Dendooven, P.; Purushothaman, S.; Gloos, K.

    2006-03-01

    In situ purification of the gas used as stopping medium in a noble gas ion catcher by operating the device at low temperatures of 60-150 K was investigated. Alpha-decay recoil ions from a 223Ra source served as energetic probes. The combined ion survival and transport efficiencies for 219Rn ions saturated below about 90 K, reaching 28.7(17)% in helium, 22.1(13)% in neon, and 17.0(10)% in argon. These values may well reflect the charge exchange and stripping cross-sections during the slowing down of the ions, and thus represent a fundamental upper limit for the efficiency of noble gas ion catcher devices. We suggest the cryogenic noble gas ion catcher as a technically simpler alternative to the ultra-high purity noble gas ion catcher operating at room temperature.

  12. Noble gas sputtering calculations using TRIM

    SciTech Connect

    Greene, J.P.; Nemanich, J.; Thomas, G.E.; Schiel, S.L.

    1996-12-31

    In conjunction with our experimental work on saddle field ion sputtering, we have attempted to apply the Monte Carlo program TRIM (Transport of Ions in Matter) to calculate the sputter yields for a variety of noble gas sputtering applications. Comparison with experiments are shown. Information extracted from these analyses have proved useful in optimizing the experimental sputtering parameters. Calculated sputter yields obtained utilizing TRIM are presented for noble gas sputtering of a variety of materials common to nuclear target production.

  13. GAS DISCHARGE DEVICES

    DOEpatents

    Arrol, W.J.; Jefferson, S.

    1957-08-27

    The construction of gas discharge devices where the object is to provide a gas discharge device having a high dark current and stabilized striking voltage is described. The inventors have discovered that the introduction of tritium gas into a discharge device with a subsequent electrical discharge in the device will deposit tritium on the inside of the chamber. The tritium acts to emit beta rays amd is an effective and non-hazardous way of improving the abovementioned discharge tube characteristics

  14. Solubility of noble gases in serpentine - Implications for meteoritic noble gas abundances

    NASA Technical Reports Server (NTRS)

    Zaikowski, A.; Schaeffer, O. A.

    1979-01-01

    An investigation of the solubilities of the noble gases from synthesis and solubility studies of the sheet silicate mineral serpentine in carbonaceous chondrites is presented. Hydrothermal synthesis and exchange experiments were made at 340C and 1 kbar with noble gas partial pressures from 2 times 10 to the -8th power to 0.1 atm. The measured distribution coefficients for noble gases are not sufficiently high to account for the trapped noble gases in carbonaceous chondrites by exchange in solar nebula if meteoritic minerals have comparable distribution coefficients. Also, serpentine gains and loses noble gases to approach equilibrium values with the terrestrial atmosphere, indicating that this exposure may have influenced the noble gas abundances in phyllosilicate minerals of these chondrites. The dispersion of K-Ar ages of carbonaceous chondrites could be the result of phyllosilicates approaching equilibrium solubility of atmospheric Ar-40.

  15. INTENSE ENERGETIC GAS DISCHARGE

    DOEpatents

    Luce, J.S.

    1960-03-01

    A method and apparatus for initiating and sustaining an energetic gas arc discharge are described. A hollow cathode and a hollow anode are provided. By regulating the rate of gas flow into the interior of the cathode, the arc discharge is caused to run from the inner surface of the cathode with the result that adequate space-charge neutralization is provided inside the cathode but not in the main arc volume. Thus, the gas fed to the cathode is substantially completely ionized before it leaves the cathode, with the result that an energetic arc discharge can be maintained at lower operating pressures.

  16. GAS DISCHARGE DEVICES

    DOEpatents

    Jefferson, S.

    1958-11-11

    An apparatus utilized in introducing tritium gas into envelope of a gas discharge device for the purpose f maintaining the discharge path in ionized condition is described. ln addition to the cathode and anode, the ischarge device contains a zirconium or tantalum ilament arranged for external excitation and a metallic seed containing tritium, and also arranged to have a current passed through it. Initially, the zirconium or tantalum filament is vaporized to deposit its material adjacent the main discharge region. Then the tritium gas is released and, due to its affinity for the first released material, it deposits in the region of the main discharge where it is most effective in maintaining the discharge path in an ionized condition.

  17. Noble gas storage and delivery system for ion propulsion

    NASA Technical Reports Server (NTRS)

    Back, Dwight Douglas (Inventor); Ramos, Charlie (Inventor)

    2001-01-01

    A method and system for storing and delivering a noble gas for an ion propulsion system where an adsorbent bearing a noble gas is heated within a storage vessel to desorb the noble gas which is then flowed through a pressure reduction device to a thruster assembly. The pressure and flow is controlled using a flow restrictor and low wattage heater which heats an adsorbent bed containing the noble gas propellant at low pressures. Flow rates of 5-60 sccm can be controlled to within about 0.5% or less and the required input power is generally less than 50 W. This noble gas storage and delivery system and method can be used for earth orbit satellites, and lunar or planetary space missions.

  18. Noble gas loss may indicate groundwater flow across flow barriers in southern Nevada

    USGS Publications Warehouse

    Thomas, J.M.; Bryant, Hudson G.; Stute, M.; Clark, J.F.

    2003-01-01

    Average calculated noble gas temperatures increase from 10 to 22oC in groundwater from recharge to discharge areas in carbonate-rock aquifers of southern Nevada. Loss of noble gases from groundwater in these regional flow systems at flow barriers is the likely process that produces an increase in recharge noble gas temperatures. Emplacement of low permeability rock into high permeability aquifer rock and the presence of low permeability shear zones reduce aquifer thickness from thousands to tens of meters. At these flow barriers, which are more than 1,000 m lower than the average recharge altitude, noble gases exsolve from the groundwater by inclusion in gas bubbles formed near the barriers because of greatly reduced hydrostatic pressure. However, re-equilibration of noble gases in the groundwater with atmospheric air at the low altitude spring discharge area, at the terminus of the regional flow system, cannot be ruled out. Molecular diffusion is not an important process for removing noble gases from groundwater in the carbonate-rock aquifers because concentration gradients are small.

  19. The Thermochemical Stability of Ionic Noble Gas Compounds.

    ERIC Educational Resources Information Center

    Purser, Gordon H.

    1988-01-01

    Presents calculations that suggest stoichiometric, ionic, and noble gas-metal compounds may be stable. Bases calculations on estimated values of electron affinity, anionic radius for the noble gases and for the Born exponents of resulting crystals. Suggests the desirability of experiments designed to prepare compounds containing anionic,…

  20. Dating native gold by noble gas analyses

    NASA Technical Reports Server (NTRS)

    Niedermann, S.; Eugster, O.; Hofmann, B.; Thalmann, CH.; Reimold, W. U.

    1993-01-01

    Our recent work on He, Ne, and Ar in Alpine gold samples has demonstrated that gold is extremely retentive for He and could thus, in principle, be used for U/Th-He-4 dating. For vein-type gold from Brusson, Northern Italy, we derived a U/Th-He-4 age of 36 Ma, in agreement with the K-Ar formation age of associated muscovites and biotites. However, in placer gold from the Napf area, Central Switzerland, we observed large excesses of both He-4 and radiogenic Ar-40 (Ar-40 sub rad, defined as Ar-40-295.5-Ar-.36). The gas release systematics indicate two distinct noble gas components, one of which is released below about 800 C and the other one at the melting point of gold (1064 C). We now present results of He and Xe measurements in a 1 g placer gold sample from the river Kruempelgraben, as well as He and Ar data for Brusson vein-type gold and for gold from the Lily Gold Mine, South Africa. We calculate reasonable U/Th-He-4 as well as U-Xe ages based on those gases which are released at approximately 800 C. Probably the low-temperature components represent in-situ-produced radiogenic He and fission Xe, whereas the gases evolving when gold melts have been trapped during gold formation. Therefore, only the low-temperature components are relevant for dating purposes.

  1. The Noble Gas Fingerprint in a UK Unconventional Gas Reservoir

    NASA Astrophysics Data System (ADS)

    McKavney, Rory; Gilfillan, Stuart; Györe, Domokos; Stuart, Fin

    2016-04-01

    In the last decade, there has been an unprecedented expansion in the development of unconventional hydrocarbon resources. Concerns have arisen about the effect of this new industry on groundwater quality, particularly focussing on hydraulic fracturing, the technique used to increase the permeability of the targeted tight shale formations. Methane contamination of groundwater has been documented in areas of gas production1 but conclusively linking this to fugitive emissions from unconventional hydrocarbon production has been controversial2. A lack of baseline measurements taken before drilling, and the equivocal interpretation of geochemical data hamper the determination of possible contamination. Common techniques for "fingerprinting" gas from discrete sources rely on gas composition and isotopic ratios of elements within hydrocarbons (e.g. δ13CCH4), but the original signatures can be masked by biological and gas transport processes. The noble gases (He, Ne, Ar, Kr, Xe) are inert and controlled only by their physical properties. They exist in trace quantities in natural gases and are sourced from 3 isotopically distinct environments (atmosphere, crust and mantle)3. They are decoupled from the biosphere, and provide a separate toolbox to investigate the numerous sources and migration pathways of natural gases, and have found recent utility in the CCS4 and unconventional gas5 industries. Here we present a brief overview of noble gas data obtained from a new coal bed methane (CBM) field, Central Scotland. We show that the high concentration of helium is an ideal fingerprint for tracing fugitive gas migration to a shallow groundwater. The wells show variation in the noble gas signatures that can be attributed to differences in formation water pumping from the coal seams as the field has been explored for future commercial development. Dewatering the seams alters the gas/water ratio and the degree to which noble gases degas from the formation water. Additionally the

  2. Biomedical Investigations with Laser-Polarized Noble Gas Magnetic Resonance

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.

    2003-01-01

    We pursued advanced technology development of laser-polarized noble gas nuclear magnetic resonance (NMR) as a novel biomedical imaging tool for ground-based and eventually space-based application. This new multidisciplinary technology enables high-resolution gas-space magnetic resonance imaging (MRI)-e.g., of lung ventilation-as well as studies of tissue perfusion. In addition, laser-polarized noble gases (3He and 129Xe) do not require a large magnetic field for sensitive detection, opening the door to practical MRI at very low magnetic fields with an open, lightweight, and low-power device. We pursued two technology development specific aims: (1) development of low-field (less than 0.01 T) noble gas MRI of humans; and (2) development of functional MRI of the lung using laser-polarized noble gas and related techniques.

  3. Noble gas atmospheric monitoring at reprocessing facilities

    SciTech Connect

    Nakhleh, C.W.; Perry, R.T. Jr.; Poths, J.; Stanbro, W.D.; Wilson, W.B.; Fearey, B.L.

    1997-05-01

    The discovery in Iraq after the Gulf War of the existence of a large clandestine nuclear-weapon program has led to an across-the-board international effort, dubbed Programme 93+2, to improve the effectiveness and efficiency of International Atomic Energy Agency (IAEA) safeguards. One particularly significant potential change is the introduction of environmental monitoring (EM) techniques as an adjunct to traditional safeguards methods. Monitoring of stable noble gas (Kr, Xe) isotopic abundances at reprocessing plant stacks appears to be able to yield information on the burnup and type of the fuel being processed. To estimate the size of these signals, model calculations of the production of stable Kr, Xe nuclides in reactor fuel and the subsequent dilution of these nuclides in the plant stack are carried out for two case studies: reprocessing of PWR fuel with a burnup of 35 GWd/tU, and reprocessing of CAND fuel with a burnup of 1 GWd/tU. For each case, a maximum-likelihood analysis is used to determine the fuel burnup and type from the isotopic data.

  4. Underground Sources of Radioactive Noble Gas

    SciTech Connect

    Hayes, James C.; Bowyer, Ted W.; Cordova, Elsa A.; Kirkham, Randy R.; Misner, Alex C.; Olsen, Khris B.; Woods, Vincent T.; Emer, Dudley

    2013-05-01

    It is well known that radon is present in relatively high concentrations below the surface of the Earth due to natural decay of uranium and thorium. However, less information is available on the background levels of other isotopes such as 133Xe and 131mXe produced via spontaneous fission of either manmade or naturally occurring elements. The background concentrations of radioxenon in the subsurface are important to understand because these isotopes potentially can be used to confirm violations of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) during an On-Site Inspection (OSI). Recently, Pacific Northwest National Laboratory (PNNL) measured radioxenon concentrations from the subsurface at the Nevada Nuclear Security Site (NNSS—formerly known as the Nevada Test Site) to determine whether xenon isotope background levels could be detected from spontaneous fission of naturally occurring uranium or legacy 240Pu as a result of historic nuclear testing. In this paper, we discuss the results of those measurements and review the sources of xenon background that must be taken into account during OSI noble gas measurements.

  5. Noble gas transport during devolatilization of oceanic crust

    NASA Astrophysics Data System (ADS)

    Jackson, C.; Smye, A.; Shuster, D. L.; Parman, S. W.; Kelley, S. P.; Hesse, M. A.; Cooper, R. F.

    2014-12-01

    Here we examine the role of slab dehydration in determining the elemental pattern of recycled noble gases. As a first step, we apply newly reported measurements of He-Ne-Ar (light noble gases) solubility and diffusivity in amphibole to parameterize a 1D diffusive-reaction transport model that simulates noble gas behavior during fluid loss from down-going oceanic crust. Recent experiments demonstrate that noble gases are highly soluble in ring-structured minerals, such as amphibole and other common hydrothermal products in slabs [1]. These results suggest that ring-structured minerals have the potential to strongly influence the budget of noble gases input into subduction zones and the elemental fractionations associated with volatile loss from slabs New measurements of He-Ne-Ar solubility in a suite of amphiboles have been completed utilizing the methodology described in [1]. These new measurements confirm that all light noble gases are highly soluble in amphibole, and that noble gas solubility correlates with the availability of unoccupied ring sites. New experimental measurements of He and Ne diffusivity have also been completed using a step-degassing approach at the Berkeley Geochronology Center. These measurements suggest that vacant ring sites in amphibole act to slow noble gas diffusion. We combine the newly acquired He and Ne diffusivity measurements with literature values for Ar diffusivity [2] to parameterize the diffusive-reaction transport model. Application of these data to the diffusive-reaction transport model yields several new insights. The relative mobility of Ne compared to Ar allows for efficient extraction of Ne from "hot" slabs by shallow depths (<50 km), while Ar is effectively retained to deeper depths, potentially past sub-arc conditions. Noble gas partition coefficients sharply increase with depth, following their increasing non-ideality in supercritical fluids, causing noble gases to partition back into minerals from any fluids retained in

  6. Noble-gas-rich separates from the Allende meteorite

    NASA Technical Reports Server (NTRS)

    Ott, U.; Mack, R.; Chang, S.

    1981-01-01

    Predominantly carbonaceous HF/HCl-resistant residues from the Allende meteorite are studied. Samples are characterized by SEM/EDXA, X-ray diffraction, INAA, C, S, H, N, and noble gas analyses. Isotopic data for carbon show variations no greater than 5%, while isotopic data from noble gases confirm previously established systematics. Noble gas abundances correlate with those of C and N, and concomitant partial loss of C and normal trapped gas occur during treatments with oxidizing acids. HF/HCl demineralization of bulk meteorite results in similar fractional losses of C and trapped noble gases, which leads to the conclusion that various macromolecular carbonaceous substances serve as the main host phase for normal trapped noble gases and anomalous gases in acid-resistant residues, and as the carrier of the major part of trapped noble gases lost during HF/HCl demineralization. Limits on the possible abundances of dense mineralic host phases in the residues are obtained, and considerations of the nucleogenetic origin for CCF-XE indicate that carbonaceous host phases and various forms of organic matter in carbonaceous meteorites may have a presolar origin.

  7. An isotope separator for small noble gas samples

    NASA Astrophysics Data System (ADS)

    Lehmann, B. E.; Rauber, D. F.; Thonnard, N.; Willis, R. D.

    1987-11-01

    A Wien filter isotope enrichment system has been combined with a small turbomolecular pump to form a closed isotope separator for small noble gas samples. Atoms which leave the exit aperture of the plasma discharge ion source without being ionized are circulated back into the source through a feedback line. The system can be operated for several hours in a closed mode to collect up to 50% of the total number of atoms of a selected isotope (e.g. 81Kr) out of a small gas sample of only 2 × 10 -3 cm 3 STP. Ions are implanted at 10 kV into an aluminized Kapton foil after a flight distance of 150 cm. A beam stabilization system centers the ion beam in two perpendicular directions onto a target aperture to maintain a high enrichment factor of at least 10 3 over extended periods of time. Calibration of the enrichment process is achieved by isotope dilution. The system is a key part of the sample processing for 81Kr and 85Kr analysis by laser resonance ionization spectroscopy for applications in isotope geophysics.

  8. Atomic forces between noble gas atoms, alkali ions, and halogen ions for surface interactions

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Outlaw, R. A.; Heinbockel, J. H.

    1988-01-01

    The components of the physical forces between noble gas atoms, alkali ions, and halogen ions are analyzed and a data base developed from analysis of the two-body potential data, the alkali-halide molecular data, and the noble gas crystal and salt crystal data. A satisfactory global fit to this molecular and crystal data is then reproduced by the model to within several percent. Surface potentials are evaluated for noble gas atoms on noble gas surfaces and salt crystal surfaces with surface tension neglected. Within this context, the noble gas surface potentials on noble gas and salt crystals are considered to be accurate to within several percent.

  9. Solubility investigations in support of ultrasensitive noble gas detector development.

    SciTech Connect

    Gross, K. C.

    1998-08-05

    Argonne National Laboratory (ANL) and the University of Cincinnati (UC) have been developing a new class of ultrasensitive noble gas detectors that are based upon the ANL discovery that corn oil has a high affinity for heavy noble gas absorption at room temperature, but releases the noble gases with warming or by other low-energy-input means. Environmental applications for this new class of fluid-based detectors include ultrahigh sensitivity radioxenon detectors for Comprehensive Test Ban Treaty Surveillance, improved fission gas detectors for enhanced environmental surveillance in the vicinity of DOE, DOD, and NRC-licensed facilities, and improved integrating Rn detectors for earthquake prediction. The purpose of the present paper is to present the results of theoretical and experimental investigations into the solubility phenomena of heavy noble gases (Rn, Xe, and Kr) in triglyceride oils. It is the authors' intention that the findings presented herein may be used to guide future selection, development, and refinement of vegetable and other hydrocarbon oils to bring further enhancements to noble gas detection efficiencies.

  10. Biomedical Investigations with Laser-Polarized Noble Gas Magnetic Resonance

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.

    2001-01-01

    We are developing laser-polarized noble gas nuclear magnetic resonance (NMR) as a novel biomedical imaging tool for ground-based and eventually space-based application. This emerging multidisciplinary technology enables high-resolution gas-space magnetic resonance imaging (MRI) (e.g., of lung ventilation) as well as studies of tissue perfusion. In addition, laser-polarized noble gases (He-3 and Xe-129) do not require a large magnetic field for sensitive detection, opening the door to practical MRI at very low magnetic fields with an open, lightweight, and low-power device. We are pursuing two specific aims in this research. The first aim is to develop a low-field (< 0.01 T) instrument for noble gas MRI of humans, and the second aim is to develop functional MRI of the lung using laser-polarized Xe-129 and related techniques.

  11. Defining Noble Gas Partitioning for Carbon Capture and Storage Environments

    NASA Astrophysics Data System (ADS)

    Warr, O.; Masters, A.; Rochelle, C.; Ballentine, C. J.

    2014-12-01

    For viable CCS implementation variables such as CO2 dissolution rates, reactions with the host rock and the extent of groundwater interaction must be accurately constrained. Noble gases play an important role in these systems [e.g. 1,2]. Their application, however, requires accurate Henry's constants within dense CO2-H2O systems. Current interpretations use pure noble gas-H2O partitioning data [3,4] and assume CO2-noble gas interactions are negligible, even at high (>700 kg/m3) CO2 densities [2]. To test this assumption we experimentally determined noble gas CO2-H2O partitioning for the 170-656 kg/m3 CO2 density range; representative of most CCS environments. Contrary to assumption, CO2 density significantly affected noble gas partition coefficients. For helium, increasing CO2 density resulted in a negative deviation trend from CO2-free values whilst for argon, krypton and xenon strong, positive deviations were observed. At 656 kg/m3 these deviations were -35%, 74%, 114% and 321% respectively. This is interpreted as the CO2 phase acting as a polar solvent inducing polarisation in the noble gases. Deviation trends are well defined using a 2nd order polynomial. The effect of a dense CO2 phase can now be incorporated into existing noble gas models. We also present results from a Gibbs-Ensemble Monte Carlo molecular simulation to model partitioning for this binary system. This fundamental technique makes predictions based on the pair-potentials of interaction between the molecules. Here it gives the phase compositions and Henry coefficients for noble gases. With a proven ability in accurately replicating both the CO2-H2O system and low pressure noble gas Henry constants the focus is now on fully optimising the model to match high pressure observations. [1] Gilfillan et al. (2009) Nature 458 614-618 [2] Gilfillan et al. (2008) GCA 72 1174-1198 [3] Crovetto et al. (1982) J.Chem.Phys. 76 1077-1086 [4] Ballentine et al. in Porcelli et al. (eds.) (2002) Rev.Min.Geo. 47 539-614.

  12. Isotopic mass-dependence of noble gas diffusion coefficients inwater

    SciTech Connect

    Bourg, I.C.; Sposito, G.

    2007-06-25

    Noble gas isotopes are used extensively as tracers inhydrologic and paleoclimatic studies. These applications requireknowledge of the isotopic mass (m) dependence of noble gas diffusioncoefficients in water (D), which has not been measured but is estimatedusing experimental D-values for the major isotopes along with an untestedrelationship from kinetic theory, D prop m-0.5. We applied moleculardynamics methods to determine the mass dependence of D for four noblegases at 298 K, finding that D prop m-beta with beta<0.2, whichrefutes the kinetic theory model underlying all currentapplications.

  13. An Air Noble Gas Component in the Mantle

    NASA Astrophysics Data System (ADS)

    Sarda, P.

    2005-12-01

    Noble gas geochemistry has for long attempted to recover isotopic signatures of mantle components through analyses of basalt glass or xenoliths, but this quest has been plagued by the occurrence of a conspicuous air component, which appears to have both the isotopic and elemental composition of air (except for helium). It is classically considered to be air added to samples close to the surface, in a poorly understood process called "contamination", due to the interaction of rocks and melts with air or water on emplacement. Focusing on Mid-Ocean Ridge Basalts (and Ocean Island Basalts), gases are mostly borne by vesicles and a number of puzzling observations can be made: - vesicles appear to be heterogeneous at the scale of a centimeter, as shown by stepwise crushing experiments, some vesicles having air, some having mantle gases, some having mixtures of both, - vesicles appear over-pressured (P > 1 bar) in fresh samples, as shown by highly vesiculous samples such as Popping Rocks, - the air component appears to be borne by the largest vesicles, as it is recovered in the first steps of stepwise crushing analyses, - larger samples seem to have more of the air component than smaller ones, - in Popping Rocks, the air component borne by the largest vesicles is overwhelming, - the isotopic composition of Pb-Sr-Nd in Popping Rocks was interpreted as indicating a recycled component (related to the HIMU and EM1 mantle end-members). The air noble gas component was suggested recently to be not seawater, but modern air located in fractures of the glass, which should have opened on cooling and resealed immediately [1]. This model faces some difficulties, such as keeping pressure high in the vesicles. I suggest another interpretation, namely that a large part of the air noble gases in oceanic basalts is recycled in origin [2]. It would have been carried down into the mantle at subduction zones, even if most (typically 90%) of the air noble gases in the slab returns to the

  14. Noble-gas-rich separates from ordinary chondrites

    NASA Astrophysics Data System (ADS)

    Moniot, R. K.

    1980-02-01

    Acid-resistant residues were prepared by HCl-HF demineralization of three H-type ordinary chondrites: Brownfield 1937 (H3), Dimmitt (H3, 4), and Estacado (H6). These residues were found to contain a large proportion of the planetary-type trapped Ar, Kr, and Xe in the meteorites. The similarity of these acid residues to those from carbonaceous chondrites and LL-type ordinary chondrites suggests that the same phase carries the trapped noble gases in all these diverse meteorite types. Because the H group represents a large fraction of all meteorites, this result indicates that the gas-rich carrier phase is as universal as the trapped noble-gas component itself. When treated with an oxidizing etchant, the acid residues lost almost all their complement of noble gases.

  15. Using noble gases measured in spring discharge to trace hydrothermal processes in the Norris Geyser Basin, Yellowstone National Park, U.S.A.

    USGS Publications Warehouse

    Gardner, W.P.; Susong, D.D.; Solomon, D.K.; Heasler, H.P.

    2010-01-01

    Dissolved noble gas concentrations in springs are used to investigate boiling of hydrothermal water and mixing of hydrothermal and shallow cool water in the Norris Geyser Basin area. Noble gas concentrations in water are modeled for single stage and continuous steam removal. Limitations on boiling using noble gas concentrations are then used to estimate the isotopic effect of boiling on hydrothermal water, allowing the isotopic composition of the parent hydrothermal water to be determined from that measured in spring. In neutral chloride springs of the Norris Geyser Basin, steam loss since the last addition of noble gas charged water is less than 30% of the total hydrothermal discharge, which results in an isotopic shift due to boiling of ?? 2.5% ??D. Noble gas concentrations in water rapidly and predictably change in dual phase systems, making them invaluable tracers of gas-liquid interaction in hydrothermal systems. By combining traditional tracers of hydrothermal flow such as deuterium with dissolved noble gas measurements, more complex hydrothermal processes can be interpreted. ?? 2010 Elsevier B.V.

  16. The Origin of Noble Gas Isotopic Heterogeneity in Icelandic Basalts

    NASA Technical Reports Server (NTRS)

    Dixon, E. T.; Honda, M.; McDougall, I.

    2001-01-01

    Two models for generation of heterogeneous He, Ne and Ar isotopic ratios in Icelandic basalts are evaluated using a mixing model and the observed noble gas elemental ratios in Icelandic basalts,Ocean island Basalt (OIBs) and Mid-Ocean Ridge Basalt (MORBs). Additional information is contained in the original extended abstract.

  17. ORIGIN OF THERMAL FLUIDS AT LASSEN VOLCANIC NATIONAL PARK: EVIDENCE FROM NOBLE AND REACTIVE GAS ABUNDANCES.

    USGS Publications Warehouse

    Truesdell, Alfred H.; Mazor, Emanuel; Nehring, Nancy L.

    1983-01-01

    Thermal fluid discharges at Lassen are dominated by high-altitude fumaroles and acid-sulfate hot springs in the Park, and lower altitude, neutral, high-chloride hot springs in Mill Valley 7-10 km to the south. The interrelations of these fluids have been studied by noble and reactive gas analyses. Atmospheric noble gas (ANG) contents of superheated fumaroles are similar to those of air-saturated recharge water (ASW) at 5 degree C and 2500-m elevation. Low-elevation, high-chloride, hot-spring waters are highly depleted in ANG, relative to the ASW. The surface temperatures and gas chemistry of the fumaroles and hot springs suggest that steam originating from partial to near-complete vaporization of liquid from a boiling, high-chloride, hot water aquifer is decompressed adiabatically, and more or less mixed with shallow groundwater to form superheated and drowned fumaroles within the Park. Refs.

  18. Fluorinated noble-gas cyanides FKrCN, FXeCN, and FXeNC

    SciTech Connect

    Zhu, Cheng; Räsänen, Markku; Khriachtchev, Leonid

    2015-08-21

    We report on three new noble-gas molecules, FKrCN, FXeCN, and FXeNC, prepared in low-temperature Kr and Xe matrices. These molecules are made by UV photolysis of FCN in the matrices and subsequent thermal annealing. The FCN precursor is produced by deposition of the matrix gas containing (FCN){sub 3} through a microwave discharge. The new noble-gas molecules are assigned with the help of quantum chemical calculations at the MP2(full) and CCSD(T) levels of theory. Similar Ar compounds (FArCN and FArNC) as well as FKrNC are not found in these experiments, which is in agreement with the calculated energetics.

  19. Low-field MRI of laser polarized noble gas

    NASA Technical Reports Server (NTRS)

    Tseng, C. H.; Wong, G. P.; Pomeroy, V. R.; Mair, R. W.; Hinton, D. P.; Hoffmann, D.; Stoner, R. E.; Hersman, F. W.; Cory, D. G.; Walsworth, R. L.

    1998-01-01

    NMR images of laser polarized 3He gas were obtained at 21 G using a simple, homebuilt instrument. At such low fields magnetic resonance imaging (MRI) of thermally polarized samples (e.g., water) is not practical. Low-field noble gas MRI has novel scientific, engineering, and medical applications. Examples include portable systems for diagnosis of lung disease, as well as imaging of voids in porous media and within metallic systems.

  20. Noble Gas Tracing of Fluid Transport in Shale Reservoirs

    NASA Astrophysics Data System (ADS)

    Heath, J. E.; Gardner, W. P.; Kuhlman, K. L.; Robinson, D. G.; Bauer, S. J.

    2014-12-01

    We investigate fluid transport mechanisms in a shale reservoir using natural noble gas tracers. Noble gas tracing is promising due to sensitivity of transport to: pore structure and sizes; phase partitioning between groundwater and liquid and gaseous hydrocarbons; and deformation from hydraulic fracturing and creation of surface area. A time-series of over thirty wellhead fluid samples were collected from two hydraulically-fractured wells with different oil-to-gas ratios, along with production data (i.e., flowrate and pressure). Tracer and production data sets can be combined to infer production flow regimes, to estimate reservoir transport parameters, and to improve forecasts of production decline. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  1. Light noble gas dissolution into ring structure-bearing materials and lattice influences on noble gas recycling

    NASA Astrophysics Data System (ADS)

    Jackson, Colin R. M.; Parman, Stephen W.; Kelley, Simon P.; Cooper, Reid F.

    2015-06-01

    Light noble gas (He-Ne-Ar) solubility has been experimentally determined in a range of materials with six-member, tetrahedral ring structures: beryl, cordierite, tourmaline, antigorite, muscovite, F-phlogopite, actinolite, and pargasite. Helium solubility in these materials is relatively high, 4 × 10-10 to 3 × 10-7 mol g-1 bar-1, which is ∼100 to 100,000× greater than He solubility in olivine, pyroxene, or spinel. Helium solubility broadly correlates with the topology of ring structures within different minerals. Distinctive He-Ne-Ar solubility patterns are associated with the different ring structure topologies. Combined, these observations suggest ring structures have a strong influence on noble gas solubility in materials and could facilitate the recycling of noble gases, along with other volatiles (i.e., water, chlorine, and fluorine), into the mantle. Measurements of Ne and Ar solubility in antigorite, however, are highly variable and correlated with each other, suggesting multiple factors contribute the solubility of noble gases in serpentine-rich materials.

  2. Noble Gas Signatures in Greenland - Tracing Glacial Meltwater Sources

    NASA Astrophysics Data System (ADS)

    Niu, Y.; Castro, M. C.; Hall, C. M.; Aciego, S.; Stevenson, E. I.; Arendt, C. A.

    2014-12-01

    This study is meant to explore the information noble gases can provide in glacial environments with respect to glacial meltwater sources, relative source contributions, water residence times, and spatial location where this glacial meltwater originates in the ice sheet. Ultimately, we seek to improve our understanding on the dynamics of these massive ice sheets, critical for the major role they play on climate change. This is possible due to the conservative nature of noble gases and temperature dependency of their concentrations in water in equilibrium with the atmosphere (ASW) allowing for calculation of noble gas temperatures (NGTs) and, under certain assumptions, estimation of the altitude at which glacial meltwater originated. In addition, crustally produced isotopes such as He accumulate in water over time, allowing for estimation of water residence times. Glacial meltwater samples were collected and analyzed for noble gas concentrations and isotopic ratios at five different locations in southern Greenland, between sea level and 1221 m. All samples are enriched in He with respect to ASW and are depleted in all other noble gases. Two patterns are apparent. The first one presents a relative Ar enrichment with respect to Ne, Kr, and Xe, a pattern first observed in high-altitude springs in the Galápagos Islands. The second one displays a mass-dependent pattern, a pattern first observed in Michigan rainwater samples. Most samples point to equilibration temperatures at ~0°C and altitudes between 1000 m and 2000 m, values which are consistent with both temperatures and elevations in Greenland. He concentrations vary between 1.1 and 7 times that of ASW and suggest glacial meltwater ages between ~170 and 1150 yrs, a result which is consistent with a preliminary tritium analysis. He isotopes point to surface (precipitation as snow and rainfall) contributions for most samples between ~60% and 90% with a ~10% - 40% crustal contribution from groundwater.

  3. Nuclear monitoring by nonradioactive noble gas sampling and analysis

    SciTech Connect

    Fearey, B.L.; Nakhleh, C.W.; Stanbro, W.D.

    1997-10-01

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The perceived importance of measuring the xenon and krypton isotopics of nuclear activities has increased substantially in recent years. We have performed a systems analysis and theoretical simulation of the production, atmospheric dispersion, and isotopic abundances of noble-gas fission products, addressing several questions of interest, including: the relative isotopic variation as a function of nuclear fuel composition, reactor operational history, reactor type, distance from stack, and ambient meteorological conditions. Of particular importance in this analysis was the question of back-calculating process parameters of interest given noble-gas isotopic data. An analysis of the effect of measurement uncertainties was also performed. The results of these analyses indicate that this monitoring concept should be experimentally feasible.

  4. Resonance ionization spectroscopy: counting noble-gas atoms

    SciTech Connect

    Hurst, G.S.; Payne, M.G.; Chen, C.H.; Willis, R.D.; Lehmann, B.E.; Kramer, S.D.

    1981-06-01

    New work on the counting of noble gas atoms, using lasers for the selective ionization and detectors for counting individual particles (electrons or positive ions) is reported. When positive ions are counted, various kinds of mass analyzers (magnetic, quadrupole, or time-of-flight) can be incorporated to provide A selectivity. It is shown that a variety of interesting and important applications can be made with atom-counting techniques which are both atomic number (Z) and mass number (A) selective.

  5. Possible solar noble-gas component in Hawaiian basalts

    USGS Publications Warehouse

    Honda, M.; McDougall, I.; Patterson, D.B.; Doulgeris, A.; Clague, D.A.

    1991-01-01

    THE noble-gas elemental and isotopic composition in the Earth is significantly different from that of the present atmosphere, and provides an important clue to the origin and history of the Earth and its atmosphere. Possible candidates for the noble-gas composition of the primordial Earth include a solar-like component, a planetary-like component (as observed in primitive meteorites) and a component similar in composition to the present atmosphere. In an attempt to identify the contributions of such components, we have measured isotope ratios of helium and neon in fresh basaltic glasses dredged from Loihi seamount and the East Rift Zone of Kilauea1-3. We find a systematic enrichment in 20Ne and 21Ne relative to 22Ne, compared with atmospheric neon. The helium and neon isotope signatures observed in our samples can be explained by mixing of solar, present atmospheric, radiogenic and nucleogenic components. These data suggest that the noble-gas isotopic composition of the mantle source of the Hawaiian plume is different from that of the present atmosphere, and that it includes a significant solar-like component. We infer that this component was acquired during the formation of the Earth.

  6. Noble Gas Analysis in the Quest to Find "Regolithic" Howardites

    NASA Technical Reports Server (NTRS)

    Cartwright, Julia A.; Hermann, S.; Herrin, J.; Mittlefehldt, D. W.; Ott, U.

    2011-01-01

    The howardite meteorites consist of approximately 200 polymict breccias of eucrite (basaltic) and diogenite (orthopyroxenitic) material (collectively, the HED group) that originate from the asteroid belt. Infrared reflectance spectroscopy of asteroids and laboratory studies of HEDs have indicated that the asteroid 4-Vesta is the likely parent body, and the partially-demolished south pole may be the source region. Asteroid regolith formation processes may be responsible for a number of observed petrological features including impact melt clasts, reworked clasts and mosaisicm. We have identified such features in a study of 30 howardites and polymict eucrites, and developed a regolith grading scheme based on petrology. However, the true regolithic nature of the howardite suite is not well defined, and previous research has suggested correlations between Ni contents of 300 - 1200 micron / g, a minimal variation in Al2O3 content around 8-9 wt% and the presence of solar wind noble gases are key hallmarks of an ancient regolith on Vesta . Through combined petrological, compositional and noble gas research, we aim to better understand howardite petrological diversity, regolith formation processes on parent asteroids, and to establish what defines a truly "regolithic" howardite. Our research will play an integral part in the interpretation of data gathered by the Dawn mission. Here we report the preliminary results from our noble gas analyses of four howardites: LEW 85313, EET 99408, MET 96500 and PCA 02066. Bulk major element compositional data have been collected, further petrological data for the HED group are reported by our colleagues, whilst trace-element analyses are underway. Our work will investigate the extent of whether previously described Ni, Al2O3 and noble gas characteristics are in fact indicative of a "regolithic" howardite.

  7. Cucurbit[6]uril: A Possible Host for Noble Gas Atoms.

    PubMed

    Pan, Sudip; Mandal, Subhajit; Chattaraj, Pratim K

    2015-08-27

    Density functional and ab initio molecular dynamics studies are carried out to investigate the stability of noble gas encapsulated cucurbit[6]uril (CB[6]) systems. Interaction energy, dissociation energy and dissociation enthalpy are calculated to understand the efficacy of CB[6] in encapsulating noble gas atoms. CB[6] could encapsulate up to three Ne atoms having dissociation energy (zero-point energy corrected) in the range of 3.4-4.1 kcal/mol, whereas due to larger size, only one Ar or Kr atom encapsulated analogues would be viable. The dissociation energy value for the second Ar atom is only 1.0 kcal/mol. On the other hand, the same for the second Kr is -0.5 kcal/mol, implying the instability of the system. The noble gas dissociation processes are endothermic in nature, which increases gradually along Ne to Kr. Kr encapsulated analogue is found to be viable at room temperature. However, low temperature is needed for Ne and Ar encapsulated analogues. The temperature-pressure phase diagram highlights the region in which association and dissociation processes of Kr@CB[6] would be favorable. At ambient temperature and pressure, CB[6] may be used as an effective noble gas carrier. Wiberg bond indices, noncovalent interaction indices, electron density, and energy decomposition analyses are used to explore the nature of interaction between noble gas atoms and CB[6]. Dispersion interaction is found to be the most important term in the attraction energy. Ne and Ar atoms in one Ng entrapped analogue are found to stay inside the cavity of CB[6] throughout the simulation at 298 K. However, during simulation Ng2 units in Ng2@CB[6] flip toward the open faces of CB[6]. After 1 ps, one Ne atom of Ne3@CB[6] almost reaches the open face keeping other two Ne atoms inside. At lower temperature (77 K), all the Ng atoms in Ngn@CB[6] remain well inside the cavity of CB[6] throughout the simulation time (1 ps).

  8. Noble gas encapsulation: clathrate hydrates and their HF doped analogues.

    PubMed

    Mondal, Sukanta; Chattaraj, Pratim Kumar

    2014-09-07

    The significance of clathrate hydrates lies in their ability to encapsulate a vast range of inert gases. Although the natural abundance of a few noble gases (Kr and Xe) is poor their hydrates are generally abundant. It has already been reported that HF doping enhances the stability of hydrogen hydrates and methane hydrates, which prompted us to perform a model study on helium, neon and argon hydrates with their HF doped analogues. For this purpose 5(12), 5(12)6(8) and their HF doped analogues are taken as the model clathrate hydrates, which are among the building blocks of sI, sII and sH types of clathrate hydrate crystals. We use the dispersion corrected and gradient corrected hybrid density functional theory for the calculation of thermodynamic parameters as well as conceptual density functional theory based reactivity descriptors. The method of the ab initio molecular dynamics (AIMD) simulation is used through atom centered density matrix propagation (ADMP) techniques to envisage the structural behaviour of different noble gas hydrates on a 500 fs timescale. Electron density analysis is carried out to understand the nature of Ng-OH2, Ng-FH and Ng-Ng interactions. The current results noticeably demonstrate that the noble gas (He, Ne, and Ar) encapsulation ability of 5(12), 5(12)6(8) and their HF doped analogues is thermodynamically favourable.

  9. Neutron detection by scintillation of noble-gas excimers

    NASA Astrophysics Data System (ADS)

    McComb, Jacob Collin

    Neutron detection is a technique essential to homeland security, nuclear reactor instrumentation, neutron diffraction science, oil-well logging, particle physics and radiation safety. The current shortage of helium-3, the neutron absorber used in most gas-filled proportional counters, has created a strong incentive to develop alternate methods of neutron detection. Excimer-based neutron detection (END) provides an alternative with many attractive properties. Like proportional counters, END relies on the conversion of a neutron into energetic charged particles, through an exothermic capture reaction with a neutron absorbing nucleus (10B, 6Li, 3He). As charged particles from these reactions lose energy in a surrounding gas, they cause electron excitation and ionization. Whereas most gas-filled detectors collect ionized charge to form a signal, END depends on the formation of diatomic noble-gas excimers (Ar*2, Kr*2,Xe* 2) . Upon decaying, excimers emit far-ultraviolet (FUV) photons, which may be collected by a photomultiplier tube or other photon detector. This phenomenon provides a means of neutron detection with a number of advantages over traditional methods. This thesis investigates excimer scintillation yield from the heavy noble gases following the boron-neutron capture reaction in 10B thin-film targets. Additionally, the thesis examines noble-gas excimer lifetimes with relationship to gas type and gas pressure. Experimental data were collected both at the National Institute of Standards and Technology (NIST) Center for Neutron Research, and on a newly developed neutron beamline at the Maryland University Training Reactor. The components of the experiment were calibrated at NIST and the University of Maryland, using FUV synchrotron radiation, neutron imaging, and foil activation techniques, among others. Computer modeling was employed to simulate charged-particle transport and excimer photon emission within the experimental apparatus. The observed excimer

  10. NOBLE GAS PRODUCTION FROM MERCURY SPALLATION AT SNS

    SciTech Connect

    DeVore, Joe R; Lu, Wei; Schwahn, Scott O

    2013-01-01

    Calculations for predicting the distribution of the products of spallation reactions between high energy protons and target materials are well developed and are used for design and operational applications in many projects both within DOE and in other arenas. These calculations are based on theory and limited experimental data that verifies rates of production of some spallation products exist. At the Spallation Neutron Source, a helium stream from the mercury target flows through a system to remove radioactivity from this mercury target offgas. The operation of this system offers a window through which the production of noble gases from mercury spallation by protons may be observed. This paper describes studies designed to measure the production rates of twelve noble gas isotopes within the Spallation Neutron Source mercury target.

  11. Stratification of discharge in noble gases from the viewpoint of the discrete dynamics

    SciTech Connect

    Golubovskii, Yu. Pelyukhova, E.; Sigeneger, F.; Nekuchaev, V.

    2015-03-15

    Based on the analysis of electron phase trajectories in sinusoidal electric fields, a new point of view on discharge stratification is proposed. It is shown that the positive column can be considered as a spatial resonator in which electric fields with a fundamental period length L{sub S} or higher mode length q/p L{sub S} establish, where p and q are integers and p > q. The fundamental mode length L{sub S} is equivalent to the distance on which electrons gain energy equal to the lowest excitation threshold. This distance determines a length of the S-striation. Unlike kinetic theory, in the presented model resonance properties of the discharge column are not connected with elastic collision energy losses. A point map is used to obtain the resonance trajectories of electrons in the phase plane. Stable points for the positions of inelastic collisions in the resonance trajectories have been found at the positions of field maxima in the case of integer ratios p/q . For non-integer ratios p/q , multiple resonance trajectories arise according to a more complex stability criterion. From this point of view, S-, P-, and R-striations in noble gas discharges can be explained. Due to energy losses in elastic collisions, initial electron energy distribution functions converge to the resonance trajectories (the so-called “bunch effect”). The findings of the discrete model agree with results of kinetic theory and experiment. The new approach avoids difficulties of the kinetic theory in the case of exceptionally large relaxation lengths which can even exceed the positive column length.

  12. Noble Gas Signatures in Athabasca Glacier - Tracing Glacial Meltwater Sources

    NASA Astrophysics Data System (ADS)

    Niu, Y.; Hall, C. M.; Castro, M. C.; Aciego, S.; Arendt, C. A.

    2015-12-01

    We present a noble gas study in glacial meltwater (GMW) from the Athabasca Glacier (AG) in the Columbia Icefield, Canada. It constrains the relative contributions of GMW sources, water residence times, and spatial locations where the GMW originates in the alpine glacier. This is possible due to the conservative nature of noble gases and temperature dependency of their concentrations in water in equilibrium with the atmosphere (ASW) which allows for estimation of the altitude at which GMW originated. In addition, crustal He accumulates in water over time, allowing for estimation of water residence times. Water samples were collected in the morning on selected dates in May and July 2011 at two locations about 200 m apart near the terminus area at altitudes between 2000 m and 2100 m. Eight samples were collected in six different days. Results show that the major source of subglacial meltwater is ASW rather than old, compressed glacial ice, which has a distinct noble gas signature not seen in our samples. Given that, GMW samples from the AG do deviate to a certain extent from the ASW values corresponding to measured water temperature and altitude at collection points. Two patterns are observed in the concentrations of the AG samples. The first one presents a relative Ar enrichment with respect to Ne, Kr, and Xe, first observed in high-altitude springs in the Galápagos Islands (Warrier et al., 2012). The second one displays a mass-dependent pattern, first observed in Michigan rainwater (Warrier et al., 2013). A preliminary Xe analysis indicates equilibration altitudes between 2500 m and 3400 m, values compatible with local topography. Samples present He excess of 4% to 91%, and suggest an average residence time of ~400 yrs. References:Warrier, R. B., Castro, M. C., and Hall, C. M. (2012), Recharge and source-water insights from the Galapagos Islands using noble gases and stable isotopes, Water Resour. Res., 48, W03508, doi:10.1029/2011WR010954. Warrier, R. B., Castro

  13. Using 220Rn to calibrate liquid noble gas detectors

    NASA Astrophysics Data System (ADS)

    Kobayashi, M.; Yamashita, M.; Takeda, A.; Kishimoto, K.; Moriyama, S.

    2016-07-01

    In this paper, we describe 220Rn calibration source that was developed for liquid noble gas detectors. The key advantage of this source is that it can provide 212Bi-212 Po consecutive events, which enables us to evaluate the vertex resolution of a detector at low energy by comparing low-energy events of 212Bi and corresponding higher-energy α-rays from 212Po. Since 220Rn is a noble gas, a hot metal getter can be used when introduced using xenon as the carrier gas. In addition, no long-life radioactive isotopes are left behind in the detector after the calibration is complete; this has clear advantage over the use of 222Rn which leaves longlife radioactivity, i.e., 210Pb. Using a small liquid xenon test chamber, we developed a system to introduce 220Rn via the xenon carrier gas; we demonstrated the successful introduction of 6 × 102 220Rn atoms in our test environment.

  14. Heuristic overlap-exchange model of noble gas chemical shifts

    NASA Astrophysics Data System (ADS)

    Adrian, Frank J.

    2004-05-01

    It is now generally recognized that overlap-exchange interactions are the primary cause of the medium-dependent magnetic shielding (chemical shift) in all noble gases except helium, although the attractive electrostatic-dispersion (van der Waals) interactions play an indirect role in determining the penetration of the interacting species into the repulsive overlap-exchange region. The short-range nature of these overlap-exchange interactions, combined with the fact that they often can be approximated by simple functions of the overlap of the wave functions of the interacting species, suggests a useful semiempirical model of these chemical shifts. In it the total shielding is the sum of shieldings due to pairwise interactions of the noble gas atom with the individual atoms of the medium, with the "atomic" shielding terms either estimated by simple functions of the atomic overlap integrals averaged over their Boltzmann-weighted separations, or determined by fits to experimental data in systems whose complexity makes the former procedure impractical. Results for 129Xe chemical shifts in the noble gases and in a variety of molecular and condensed systems, including families of n-alkanes, straight-chain alcohols, and the endohedral compounds Xe@C60 and Xe@C70 are encouraging for the applicability of the model to systems of technical and biomedical interest.

  15. Helium Solubility in Cyclosilicates and Implications for Noble Gas Recycling

    NASA Astrophysics Data System (ADS)

    Jackson, C.; Kelley, S. P.; Cooper, R. F.; Parman, S. W.

    2011-12-01

    It is commonly assumed that noble gases strictly flux from the mantle to the atmosphere, with negligible recycling, because noble gases are thought to be extremely insoluble in all minerals. To test this hypothesis, we have experimentally determined the He solubility in a suite of cyclosilicate minerals: beryl, tourmaline and cordierite. The experiments were run in a gas pressure vessel. Run products were analyzed by UV laser ablation, noble gas mass spectrometry. He has a remarkably high solubility (>1000 ppm/1.8 kbar PHe) in cyclosilicates with nominally vacant six-member Si-Al-tetrahedra rings. Cyclosilicates with nominally occupied ring sites have substantially lower solubility. This suggests that He dissolution is facilitated by unfilled six-member rings. If true, He should have a high solubility in other minerals that include ring sites, such as phyllosilicates and amphiboles. Subduction zones commonly recycle these minerals, providing a possible mechanism for recycling of noble gases back into the mantle. Gem quality, natural, polished crystals of each mineral were placed into graphite capsules. Pure He gas was used as the pressure medium (1800 bar), allowing for precise control of PHe. Temperatures were held at 750 C and the experimental durations were 8 hours. A capsule of hydrated MgO powder was loaded in the TZM to maintain a non-zero fugacity of water during the experiment. Close visual inspection of the run products gave no indication of breakdown products. Depth profiles (10s of microns) of the mineral faces were completed using a 193 nm excimer laser. Multiple measurements were made on each phase. He concentrations were homogenous, both vertically and horizontally, indicating a close approach to equilibrium and absence of inclusions. Compared to tourmaline, we observe that He is >1000 and >100 times more soluble in cordierite and beryl, respectively. The ring sites, also known as A sites, in beryl and cordierite are nominally vacant, where as the

  16. Solubility controlled noble gas fractionation during magmatic degassing: Implications for noble gas compositions of primary melts of OIB and MORB

    NASA Astrophysics Data System (ADS)

    Yamamoto, Junji; Burnard, Pete G.

    2005-02-01

    Noble gas abundances in basaltic glasses from ocean islands (OIBs) are generally lower than those of mid-oceanic ridge basalts (MORBs), contrary to most geodynamic models which usually require that the source of OIBs is less degassed (resulting in higher primordial noble gas abundances) and more trace element enriched (resulting in higher radiogenic noble gas abundances) than the MORB source. Therefore, noble gas abundances in OIBs are often thought to have been reduced by extensive gas loss from the magma before eruption. The extent of magmatic degassing can be tested as it will cause characteristic changes in the composition of the volatiles; notably the 4He/ 40Ar* ratio (where 40Ar* is 40Ar corrected for atmospheric contamination) will increase in residual volatiles due to the higher solubility of He relative to Ar. The degree of He-Ar fractionation for a given fraction of gas loss depends on the ratio of the solubilities, S He/S Ar, which is sensitive to (among other things) the CO 2 and H 2O content of the basalt at the time of degassing. From a global database of OIB and MORB glasses, we show that 4He/ 40Ar* ratios of MORB glasses are broadly consistent with degassing of a magma with an initial 40Ar of ≈1.5 × 10 -5 ccSTP/g, i.e., similar to that of the "popping rock." However, OIB glasses generally have lower 40Ar* concentration for a given 4He/ 40Ar*. While this would appear to require lower 40Ar* abundances in the undegassed OIB magmas, the higher volatile contents of OIBs will reduce S He/S Ar (relative to MORBs) during degassing. By modeling S He/S Ar in OIBs, it is possible to show that extensive degassing of OIBs can occur without dramatically increasing the 4He/ 40Ar* ratio. We show that undegassed 40Ar concentrations of OIB magmas were probably similar to those of MORBs.

  17. Mechanical response of noble gas films to an oscillating substrate

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hajime; Taniguchi, Junko; Suzuki, Masaru; Miura, Kouji; Arakawa, Ichiro

    2012-12-01

    We carried out quartz-crystal microbalance (QCM) experiments for Xe films adsorbed on an exfoliated single-crystalline graphite substrate (Xe/Gr) and Kr 1ms adsorbed on a synthetic mica substrate (Kr/mica) around LN2 temperature. For Xe/Gr, it was found that the resonance frequency decreases greatly around the first layer completion, while it does not decrease at low coverages. The observed behavior is similar to that of Kr films on a graphite substrate (Kr/Gr). This demonstrates that the layer completion strongly affects the sliding motion of noble gas films on graphite.

  18. The Noble-Abel Stiffened-Gas equation of state

    NASA Astrophysics Data System (ADS)

    Le Métayer, Olivier; Saurel, Richard

    2016-04-01

    Hyperbolic two-phase flow models have shown excellent ability for the resolution of a wide range of applications ranging from interfacial flows to fluid mixtures with several velocities. These models account for waves propagation (acoustic and convective) and consist in hyperbolic systems of partial differential equations. In this context, each phase is compressible and needs an appropriate convex equation of state (EOS). The EOS must be simple enough for intensive computations as well as boundary conditions treatment. It must also be accurate, this being challenging with respect to simplicity. In the present approach, each fluid is governed by a novel EOS named "Noble Abel stiffened gas," this formulation being a significant improvement of the popular "Stiffened Gas (SG)" EOS. It is a combination of the so-called "Noble-Abel" and "stiffened gas" equations of state that adds repulsive effects to the SG formulation. The determination of the various thermodynamic functions and associated coefficients is the aim of this article. We first use thermodynamic considerations to determine the different state functions such as the specific internal energy, enthalpy, and entropy. Then we propose to determine the associated coefficients for a liquid in the presence of its vapor. The EOS parameters are determined from experimental saturation curves. Some examples of liquid-vapor fluids are examined and associated parameters are computed with the help of the present method. Comparisons between analytical and experimental saturation curves show very good agreement for wide ranges of temperature for both liquid and vapor.

  19. Structural Measurements from Images of Noble Gas Diffusion

    NASA Astrophysics Data System (ADS)

    Cadman, Robert V.; Kadlecek, Stephen J.; Emami, Kiarash; MacDuffie Woodburn, John; Vahdat, Vahid; Ishii, Masaru; Rizi, Rahim R.

    2009-03-01

    Magnetic resonance imaging of externally polarized noble gases such as ^3He has been used for pulmonary imaging for more than a decade. Because gas diffusion is impeded by the alveoli, the diffusion coefficient of gas in the lung, measured on a time scale of milliseconds, is reduced compared to that of the same gas mixture in the absence of restrictions. When the alveolar walls decay, as in emphysema, diffusivity in the lung increases. In this paper, the relationship between diffusion measurements and the size of the restricting structures will be discussed. The simple case of diffusion in an impermeable cylinder, a structure similar to the upper respiratory airways in mammals, has been studied. A procedure will be presented by which airways of order 2 mm in diameter may be accurately measured; demonstration experiments with plastic tubes will also be presented. The additional developments needed before this technique becomes practical will be briefly discussed.

  20. Interaction of the Fe + cation with heavy noble gas atoms

    NASA Astrophysics Data System (ADS)

    Heinemann, Christoph; Schwarz, Joseph; Koch, Wolfram; Schwarz, Helmut

    1995-09-01

    The diatomic iron-noble gas complexes FeAr+, FeKr+, FeXe+, and FeRn+ have been theoretically investigated by means of quantum-chemical calculations including an extensive treatment of electron correlation. Potential energy curves and spectroscopic constants for the lowest 4Δ and 6Δ states are derived from an open-shell coupled-cluster approach and the relative energies of all seven low-lying electronic states are evaluated by the multireference configuration interaction method. While in FeAr+ the lowest quartet and sextet states are found to be energetically almost degenerate, the heavier Fe+-noble gas molecules are predicted to exhibit 4Φ ground states. From a qualitative point of view bonding in these species is shown to be electrostatic in origin with intrinsically higher interaction energies for the quartet as compared to the sextet states. For calibration purposes, also an accurate calculation of the 4F(4s03d7)-6D(4s13d6) energy difference in the atomic Fe+ cation is provided.

  1. Noble gas isotopic composition as a key reference parameter in a planetary atmospheric evolution model

    NASA Astrophysics Data System (ADS)

    Ozima, M.

    2010-12-01

    The isotopic composition of noble gases is a key reference parameter in discussing the evolution of planetary atmospheres. Currently, two widely occurring noble gas components are identified in the early solar system, one is the Solar Wind noble gas (SW-noble gas, hereafter) and another is the Q-noble gas in unaltered meteorites: both noble gases are characterized by their ubiquitous occurrence and high isotopic homogeneity. Since the SW-noble gas is directly ejected from the Sun, it has been assumed to be a good proxy of the average noble gas isotopic composition in the Sun, namely the solar noble gas. The systematic enrichment of the heavier isotopes in the Q-noble gas relative to the SW-noble gas is then commonly attributed to its isotopic fractionation from the SW-noble gas. However, the isotopic compositions of the SW-noble gas either implanted on lunar soils or trapped by artificial targets show considerable isotopic variation depending on the velocity of the Solar Wind. Therefore, it is important to examine how closely the SW-noble gas represents the indigenous solar noble gas component or the mean isotopic composition of noble gases of the Sun. Here we show that the isotopic composition of the SW-noble gas is substantially fractionated relative to the solar value, and therefore should not be used as a reference parameter. We further suggest that the post D-burning Q-noble gas (see below) is the better proxy of the solar noble gas, and this should be used as a reference of the Solar noble gas isotopic composition in discussing the planetary atmospheric evolution. The most distinct difference between the Q- and the SW-noble gas is apparent in a 3He/4He isotopic ratio: 4.64e-4 in Q-He [1], but 1.23e-4 in SW-He[2]. The difference is attributed to the conversion of deuteron (D) to 3He in the Sun, namely the D-burning [3], due to high temperature during the pre-main sequence stage of the Sun. With the use of recent data on D/H ratios from helio-seismology [4] and

  2. Noble Gas Migration Experiment to Support the Detection of Underground Nuclear Explosions

    SciTech Connect

    Olsen, Khris B.; Kirkham, Randy R.; Woods, Vincent T.; Haas, Derek A.; Hayes, James C.; Bowyer, Ted W.; Mendoza, Donaldo P.; Lowrey, Justin D.; Lukins, Craig D.; Suarez, Reynold; Humble, Paul H.; Ellefson, Mark D.; Ripplinger, Mike D.; Zhong, Lirong; Mitroshkov, Alexandre V.; Aalseth, Craig E.; Prinke, Amanda M.; Mace, Emily K.; McIntyre, Justin I.; Stewart, Timothy L.; Mackley, Rob D.; Milbrath, Brian D.; Emer, Dudley; Biegalski, S.

    2016-03-01

    A Noble Gas Migration Experiment (NGME) funded by the National Center for Nuclear Security and conducted at the Nevada National Security Site (NNSS) in collaboration with Lawrence Livermore national Laboratory and National Security Technology provided critical on-site inspection (OSI) information related to the detection of an underground nuclear explosion (UNE) event using noble gas signatures.

  3. Development of a Liquefied Noble Gas Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Lesser, Ezra; White, Aaron; Aidala, Christine

    2015-10-01

    Liquefied noble gas detectors have been used for various applications in recent years for detecting neutrinos, neutrons, photons, and potentially dark matter. The University of Michigan is developing a detector with liquid argon to produce scintillation light and ionization electrons. Our data collection method will allow high-resolution energy measurement and spatial reconstruction of detected particles by using multi-pixel silicon photomultipliers (SiPM) and a cylindrical time projection chamber (TPC) with a multi-wire endplate. We have already designed a liquid argon condenser and purification unit surrounded by an insulating vacuum, constructed circuitry for temperature and pressure sensors, and created software to obtain high-accuracy sensor readouts. The status of detector development will be presented. Funded through the Michigan Memorial Phoenix Project.

  4. INGAS: Iranian Noble Gas Analyzing System for radioxenon measurement

    NASA Astrophysics Data System (ADS)

    Doost-Mohammadi, V.; Afarideh, H.; Etaati, G. R.; Safari, M. J.; Rouhi, H.

    2016-03-01

    In this article, Iranian Noble Gas Analyzing System (INGAS) will be introduced. This system is based on beta-gamma coincidence technique and consists of a well-type NaI(Tl) as gamma or X radiation detector and a cylindrical plastic scintillator to detect beta or conversion electron. Standard NIM modules were utilized to detect coincidence events of detectors. Both the beta and gamma detectors were appropriately calibrated. The efficiency curve of gamma detector for volume geometry was obtained by comparing the results of gamma point sources measurements and simulations of GATE V7.0 Monte Carlo code. The performance of detection system was checked by injection of 222Rn and 131mXe gaseous source in the detection cell. The minimum detectable activity of the system for 133Xe is 1.240±0.024 mBq for 24 h measurement time.

  5. (Gas discharges and their applications)

    SciTech Connect

    Christophorou, L. G.

    1988-10-06

    The traveler attended the IX International Conference on Gas Discharges and Their Applications held in Venice, Italy, September 19--23, 1988. He was a member of the International Organizing Committee of the conference, chaired a scientific session, presented a paper, and participated in scientific discussions and the planning of the next conference. Also, he exchanged research information and ideas on electron, ion, and laser interactions in fluid media with many participants.

  6. Noble gas partitioning behavior in the Sleipner Vest hydrocarbon field

    NASA Astrophysics Data System (ADS)

    Barry, P. H.; Lawson, M.; Warr, O.; Mabry, J.; Byrne, D. J.; Meurer, W. P.; Ballentine, C. J.

    2015-12-01

    Noble gases are chemically inert and variably soluble in crustal fluids. They are primarily introduced into hydrocarbon reservoirs through exchange with formation waters, and can be used to assess migration pathways, mechanisms and reservoir storage. Of particular interest is the role groundwater plays in hydrocarbon transport, which is reflected in hydrocarbon-water volume ratios. We present compositional, stable isotope and noble gas isotope and abundance data from the Sleipner Vest field, in the Norwegian North Sea. Sleipner gases are generated from primary cracking of kerogen and the thermal cracking of oil, sourced from type II marine source, with relatively homogeneous maturities and a range in vitrinite reflectance (1.2-1.7%). Gases are hosted in the lower shoreface sandstones of the Jurassic Hugin formation, which is sealed by the Jurassic Upper Draupne and Heather formations. Gases are composed of N2 (0.6-0.9%), CO2 (5.4-15.3%) and hydrocarbons (69-80%). Helium isotopes (3He/4He) are radiogenic and range from 0.065 to 0.116 RA, showing a small mantle contribution, consistent with Ne isotopes (20Ne/22Ne from 9.70-9.91; 21Ne/22Ne from 0.0290-0.0344) and Ar isotopes (40Ar/36Ar from 315-489). 20Ne/36Ar, 84Kr/36Ar and 132Xe/36Ar values are systematically higher relative to air saturated water ratios. These data are discussed within the framework of several conceptual models: i) Total gas-stripping model, which defines the minimum volume of water to have interacted with the hydrocarbon phase; ii) Equilibrium model, assuming simple equilibration between groundwater and hydrocarbon phase at reservoir P,T and salinity; and iii) Open and closed system gas-stripping models. Using Ne-Ar, we estimate gas-water ratios for the Sleipner system of 0.02-0.09, which compare with geologic gas-water estimates of ~0.24, and suggest more groundwater interaction than a static system estimate. Kr and Xe show evidence for an additional source or process involving oil or sediments.

  7. Computational phase diagrams of noble gas hydrates under pressure

    SciTech Connect

    Teeratchanan, Pattanasak Hermann, Andreas

    2015-10-21

    We present results from a first-principles study on the stability of noble gas-water compounds in the pressure range 0-100 kbar. Filled-ice structures based on the host water networks ice-I{sub h}, ice-I{sub c}, ice-II, and C{sub 0} interacting with guest species He, Ne, and Ar are investigated, using density functional theory (DFT) with four different exchange-correlation functionals that include dispersion effects to various degrees: the non-local density-based optPBE-van der Waals (vdW) and rPW86-vdW2 functionals, the semi-empirical D2 atom pair correction, and the semi-local PBE functional. In the He-water system, the sequence of stable phases closely matches that seen in the hydrogen hydrates, a guest species of comparable size. In the Ne-water system, we predict a novel hydrate structure based on the C{sub 0} water network to be stable or at least competitive at relatively low pressure. In the Ar-water system, as expected, no filled-ice phases are stable; however, a partially occupied Ar-C{sub 0} hydrate structure is metastable with respect to the constituents. The ability of the different DFT functionals to describe the weak host-guest interactions is analysed and compared to coupled cluster results on gas phase systems.

  8. Computational phase diagrams of noble gas hydrates under pressure

    NASA Astrophysics Data System (ADS)

    Teeratchanan, Pattanasak; Hermann, Andreas

    2015-10-01

    We present results from a first-principles study on the stability of noble gas-water compounds in the pressure range 0-100 kbar. Filled-ice structures based on the host water networks ice-Ih, ice-Ic, ice-II, and C0 interacting with guest species He, Ne, and Ar are investigated, using density functional theory (DFT) with four different exchange-correlation functionals that include dispersion effects to various degrees: the non-local density-based optPBE-van der Waals (vdW) and rPW86-vdW2 functionals, the semi-empirical D2 atom pair correction, and the semi-local PBE functional. In the He-water system, the sequence of stable phases closely matches that seen in the hydrogen hydrates, a guest species of comparable size. In the Ne-water system, we predict a novel hydrate structure based on the C0 water network to be stable or at least competitive at relatively low pressure. In the Ar-water system, as expected, no filled-ice phases are stable; however, a partially occupied Ar-C0 hydrate structure is metastable with respect to the constituents. The ability of the different DFT functionals to describe the weak host-guest interactions is analysed and compared to coupled cluster results on gas phase systems.

  9. Noble gas trapping and fractionation during synthesis of carbonaceous matter. [in meteorites

    NASA Technical Reports Server (NTRS)

    Frick, U.; Mack, R.; Chang, S.

    1979-01-01

    An investigation of noble gas entrapment during synthesis of carbonaceous, macromolecular, and kerogen-like substances is presented. High molecular weight organic matter synthesized in aqueous condensation reactions contained little gas, and the composition was consistent with fractionation due to noble gas solubility in water; however, propane soot produced during a modified Miller-Urey experiment in an aritificial gas mixture contained high concentrations of trapped noble gases that displayed strong elemental fractionation from their reservoirs. It is concluded that theses experiemnts show that processes exist for synthesis of carbonaceous carriers that result in high noble gas concentrations and strong elemental fractionation at temperatures well above those required by absorption to achieve similar effects.

  10. Mechanoluminescence of terbium and cerium sulfates in a noble-gas atmosphere

    NASA Astrophysics Data System (ADS)

    Tukhbatullin, A. A.; Sharipov, G. L.; Abdrakhmanov, A. M.; Muftakhutdinov, M. R.

    2014-05-01

    Lines of Ne (3 p-3 s, 550-800 nm) and Xe (6 p-6 s, 800-1050 nm; 7 p-6 s, 475 nm) have been detected in the mechanoluminescence spectrum of terbium and cerium sulfate crystallohydrates. The luminescence of noble gas is observed jointly with the known bands of Ce3+ and Tb3+ ions and N*2 lines. The lines corresponding to excited Xe+ ions (500-550 nm), indicative of achievement of electric-field strengths on the order of 107 V/cm during mechanoluminescence, are also observed. It is established that, during mechanoluminescence of Tb2(SO4)3 · 8D2O in an argon atmosphere under a pressure of 1.3 atm, mechanochemical reactions of decomposition of crystallization water (D2O) molecules cause luminescence of OD radicals; this luminescence is initiated by electron impact occurring during electrization and in discharges in crystals during destruction.

  11. Determination of natural in vivo noble-gas concentrations in human blood.

    PubMed

    Tomonaga, Yama; Brennwald, Matthias S; Livingstone, David M; Tomonaga, Geneviève; Kipfer, Rolf

    2014-01-01

    Although the naturally occurring atmospheric noble gases He, Ne, Ar, Kr, and Xe possess great potential as tracers for studying gas exchange in living beings, no direct analytical technique exists for simultaneously determining the absolute concentrations of these noble gases in body fluids in vivo. In this study, using human blood as an example, the absolute concentrations of all stable atmospheric noble gases were measured simultaneously by combining and adapting two analytical methods recently developed for geochemical research purposes. The partition coefficients determined between blood and air, and between blood plasma and red blood cells, agree with values from the literature. While the noble-gas concentrations in the plasma agree rather well with the expected solubility equilibrium concentrations for air-saturated water, the red blood cells are characterized by a distinct supersaturation pattern, in which the gas excess increases in proportion to the atomic mass of the noble-gas species, indicating adsorption on to the red blood cells. This study shows that the absolute concentrations of noble gases in body fluids can be easily measured using geochemical techniques that rely only on standard materials and equipment, and for which the underlying concepts are already well established in the field of noble-gas geochemistry.

  12. Pyroxenes from Governador Valadares and Lafayette: A Nitrogen and Noble Gas Study

    NASA Astrophysics Data System (ADS)

    Schwenzer, S. P.; Herrmann, S.; Ott, U.

    2006-03-01

    We present new noble gas and nitrogen data on pyroxene separates from Lafayette and Governador Valadares [rad. 4He, cosmogenic nuclides (in Ne, Ar), martian interior, fractionated and unfractionated martian, and fractionated terrestrial atmosphere].

  13. Analysis of the physical atomic forces between noble gas atoms, alkali ions and halogen ions

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Heinbockel, J. H.; Outlaw, R. A.

    1986-01-01

    The physical forces between atoms and molecules are important in a number of processes of practical importance, including line broadening in radiative processes, gas and crystal properties, adhesion, and thin films. The components of the physical forces between noble gas atoms, alkali ions, and halogen ions are analyzed and a data base for the dispersion forces is developed from the literature based on evaluations with the harmonic oscillator dispersion model for higher order coefficients. The Zener model of the repulsive core is used in the context of the recent asymptotic wave functions of Handler and Smith; and an effective ionization potential within the Handler and Smith wave functions is defined to analyze the two body potential data of Waldman and Gordon, the alkali-halide molecular data, and the noble gas crystal and salt crystal data. A satisfactory global fit to this molecular and crystal data is then reproduced by the model to within several percent. Surface potentials are evaluated for noble gas atoms on noble gas and salt crystal surfaces with surface tension neglected. Within this context, the noble gas surface potentials on noble gas and salt crystals are considered to be accurate to within several percent.

  14. Noble Gas Polarimetry Using Rb EPR Frequency Shifts

    NASA Astrophysics Data System (ADS)

    Ma, Z. L.; Jeong, K.; Houghtby, E.; Paskvan, T.; Limes, M. E.; Saam, B.

    2014-05-01

    EPR frequency shifts of optically polarized alkali-metal atoms can be exploited for polarimetry of noble-gas nuclei polarized by spin-exchange optical pumping. Our group recently measured the enhancement factor κ0 = 493 for Rb-129Xe, which characterizes the electron wave-function overlap during collisions and is crucial to the calibration of the frequency-shift for 129Xe polarimetry. This type of polarimetry is useful in several applications involving optically polarized 129Xe; our particular motivation is an in situ measurement of absolute 129Xe polarization within the optical pumping cell of a flow-through 129Xe polarizer. This application has some particular challenges, and we have initially observed some unexpected shifts in the 87Rb EPR frequency measurement on board the polarizer. In effort to disentangle these apparent systematic effects, we have constructed a separate experiment to characterize Rb EPR shifts for both 3He and 129Xe in sealed cells. We present results and analysis of these experiments and discuss implications for using this method in flow-through polarizers. NSF PHY-0855482

  15. EXTERNAL PHOTOEVAPORATION OF THE SOLAR NEBULA: JUPITER's NOBLE GAS ENRICHMENTS

    SciTech Connect

    Monga, Nikhil; Desch, Steven

    2015-01-01

    We present a model explaining the elemental enrichments in Jupiter's atmosphere, particularly the noble gases Ar, Kr, and Xe. While He, Ne, and O are depleted, seven other elements show similar enrichments (∼3 times solar, relative to H). Being volatile, Ar is difficult to fractionate from H{sub 2}. We argue that external photoevaporation by far-ultraviolet (FUV) radiation from nearby massive stars removed H{sub 2}, He, and Ne from the solar nebula, but Ar and other species were retained because photoevaporation occurred at large heliocentric distances where temperatures were cold enough (≲ 30 K) to trap them in amorphous water ice. As the solar nebula lost H, it became relatively and uniformly enriched in other species. Our model improves on the similar model of Guillot and Hueso. We recognize that cold temperatures alone do not trap volatiles; continuous water vapor production is also necessary. We demonstrate that FUV fluxes that photoevaporated the disk generated sufficient water vapor in regions ≲ 30 K to trap gas-phase species in amorphous water ice in solar proportions. We find more efficient chemical fractionation in the outer disk: whereas the model of Guillot and Hueso predicts a factor of three enrichment when only <2% of the disk mass remains, we find the same enrichments when 30% of the disk mass remains. Finally, we predict the presence of ∼0.1 M {sub ⊕} of water vapor in the outer solar nebula and protoplanetary disks in H II regions.

  16. The MSFC Noble Gas Research Laboratory (MNGRL): A NASA Investigator Facility

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara

    2016-01-01

    Noble-gas isotopes are a well-established technique for providing detailed temperature-time histories of rocks and meteorites. We have established the MSFC Noble Gas Research Laboratory (MNGRL) at Marshall Space Flight Center to serve as a NASA investigator facility in the wake of the closure of the JSC laboratory formerly run by Don Bogard. The MNGRL lab was constructed to be able to measure all the noble gases, particularly Ar-Ar and I-Xe radioactive dating to find the formation age of rocks and meteorites, and Ar/Kr/Ne cosmic-ray exposure ages to understand when the meteorites were launched from their parent planets.

  17. Review: gas-phase ion chemistry of the noble gases: recent advances and future perspectives.

    PubMed

    Grandinetti, Felice

    2011-01-01

    This review article surveys recent experimental and theoretical advances in the gas-phase ion chemistry of the noble gases. Covered issues include the interaction of the noble gases with metal and non-metal cations, the conceivable existence of covalent noble-gas anions, the occurrence of ion-molecule reactions involving singly-charged xenon cations, and the occurrence of bond-forming reactions involving doubly-charged cations. Research themes are also highlighted, that are expected to attract further interest in the future.

  18. Experimental studies and model analysis of noble gas fractionation in porous media

    USGS Publications Warehouse

    Ding, Xin; Kennedy, B. Mack.; Evans, William C.; Stonestrom, David A.

    2016-01-01

    The noble gases, which are chemically inert under normal terrestrial conditions but vary systematically across a wide range of atomic mass and diffusivity, offer a multicomponent approach to investigating gas dynamics in unsaturated soil horizons, including transfer of gas between saturated zones, unsaturated zones, and the atmosphere. To evaluate the degree to which fractionation of noble gases in the presence of an advective–diffusive flux agrees with existing theory, a simple laboratory sand column experiment was conducted. Pure CO2 was injected at the base of the column, providing a series of constant CO2 fluxes through the column. At five fixed sampling depths within the system, samples were collected for CO2 and noble gas analyses, and ambient pressures were measured. Both the advection–diffusion and dusty gas models were used to simulate the behavior of CO2 and noble gases under the experimental conditions, and the simulations were compared with the measured depth-dependent concentration profiles of the gases. Given the relatively high permeability of the sand column (5 ´ 10−11 m2), Knudsen diffusion terms were small, and both the dusty gas model and the advection–diffusion model accurately predicted the concentration profiles of the CO2 and atmospheric noble gases across a range of CO2 flux from ?700 to 10,000 g m−2 d−1. The agreement between predicted and measured gas concentrations demonstrated that, when applied to natural systems, the multi-component capability provided by the noble gases can be exploited to constrain component and total gas fluxes of non-conserved (CO2) and conserved (noble gas) species or attributes of the soil column relevant to gas transport, such as porosity, tortuosity, and gas saturation.

  19. Applicability of Monte-Carlo Simulation to Equipment Design of Radioactive Noble Gas Monitor

    NASA Astrophysics Data System (ADS)

    Sakai, Hirotaka; Hattori, Kanako; Umemura, Norihiro

    In the nuclear facilities, radioactive noble gas is continuously monitored by using the radioactive noble gas monitor with beta-sensitive plastic scintillation radiation detector. The detection efficiency of the monitor is generally calibrated by using a calibration loop and standard radioactive noble gases such as 85Kr. In this study, the applicability of PHITS to the equipment design of the radioactive noble gas monitor was evaluated by comparing the calculated results to the test results obtained by actual calibration loop tests to simplify the radiation monitor design evaluation. It was confirmed that the calculated results were well matched to the test results of the monitor after the modeling. In addition, the key parameters for equipment design, such as thickness of detector window or depth of the sampler, were also specified and evaluated.

  20. Appraisal of transport and deformation in shale reservoirs using natural noble gas tracers

    SciTech Connect

    Heath, Jason E.; Kuhlman, Kristopher L.; Robinson, David G.; Bauer, Stephen J.; Gardner, William Payton

    2015-09-01

    This report presents efforts to develop the use of in situ naturally-occurring noble gas tracers to evaluate transport mechanisms and deformation in shale hydrocarbon reservoirs. Noble gases are promising as shale reservoir diagnostic tools due to their sensitivity of transport to: shale pore structure; phase partitioning between groundwater, liquid, and gaseous hydrocarbons; and deformation from hydraulic fracturing. Approximately 1.5-year time-series of wellhead fluid samples were collected from two hydraulically-fractured wells. The noble gas compositions and isotopes suggest a strong signature of atmospheric contribution to the noble gases that mix with deep, old reservoir fluids. Complex mixing and transport of fracturing fluid and reservoir fluids occurs during production. Real-time laboratory measurements were performed on triaxially-deforming shale samples to link deformation behavior, transport, and gas tracer signatures. Finally, we present improved methods for production forecasts that borrow statistical strength from production data of nearby wells to reduce uncertainty in the forecasts.

  1. Carbon and Noble Gas Isotope Banks in Two-Phase Flow: Changes in Gas Composition During Migration

    NASA Astrophysics Data System (ADS)

    Sathaye, K.; Larson, T.; Hesse, M. A.

    2015-12-01

    In conjunction with the rise of unconventional oil and gas production, there has been a recent rise in interest in noble gas and carbon isotope changes that can occur during the migration of natural gas. Natural gas geochemistry studies use bulk hydrocarbon composition, carbon isotopes, and noble gas isotopes to determine the migration history of gases from source to reservoir, and to trace fugitive gas leaks from reservoirs to shallow groundwater. We present theoretical and experimental work, which helps to explain trends observed in gas composition in various migration scenarios. Noble gases are used as tracers for subsurface fluid flow due to distinct initial compositions in air-saturated water and natural gases. Numerous field studies have observed enrichments and depletions of noble gases after gas-water interaction. A theoretical two-phase gas displacement model shows that differences in noble gas solubility will cause volatile gas components will become enriched at the front of gas plumes, leaving the surrounding residual water stripped of dissolved gases. Changes in hydrocarbon gas composition are controlled by gas solubility in both formation water and residual oil. In addition to model results, we present results from a series of two-phase flow experiments. These results demonstrate the formation of a noble gas isotope banks ahead of a main CO2 gas plume. Additionally, we show that migrating hydrocarbon gas plumes can sweep biogenic methane from groundwater, significantly altering the isotope ratio of the gas itself. Results from multicomponent, two-phase flow experiments qualitatively agree with the theoretical model, and previous field studies. These experimentally verified models for gas composition changes can be used to aid source identification of subsurface gases.

  2. Pulse circuit apparatus for gas discharge laser

    DOEpatents

    Bradley, Laird P.

    1980-01-01

    Apparatus and method using a unique pulse circuit for a known gas discharge laser apparatus to provide an electric field for preconditioning the gas below gas breakdown and thereafter to place a maximum voltage across the gas which maximum voltage is higher than that previously available before the breakdown voltage of that gas laser medium thereby providing greatly increased pumping of the laser.

  3. Determining noble gas partitioning within a CO2-H2O system at elevated temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Warr, Oliver; Rochelle, Christopher A.; Masters, Andrew; Ballentine, Christopher J.

    2015-06-01

    Quantifying the distribution of noble gases between phases is essential for using these inert trace gases to track the processes controlling multi-phase subsurface systems. Here we present experimental data that defines noble gas partitioning for two phase CO2-water systems. These are at the pressure and temperature range relevant for engineered systems used for anthropogenic carbon capture and geological storage (CCS) technologies, and CO2-rich natural gas reservoirs (CO2 density range 169-656 kg/m3 at 323-377 K and 89-134 bar). The new partitioning data are compared to predictions of noble gas partitioning determined in low-pressure, pure noble gas-water systems for all noble gases except neon and radon. At low CO2 density there was no difference between measured noble gas partitioning and that predicted in pure noble gas-water systems. At high CO2 density, however, partition coefficients express significant deviation from pure noble gas-water systems. At 656 kg/m3, these deviations are -35%, 74%, 113% and 319% for helium, argon, krypton and xenon, respectively. A second order polynomial fit to the data for each noble gas describes the deviation from the pure noble gas-water system as a function of CO2 density. We argue that the difference between pure noble gas-water systems and the high density CO2-water system is due to an enhanced degree of molecular interactions occurring within the dense CO2 phase due to the combined effect of inductive and dispersive forces acting on the noble gases. As the magnitude of these forces are related to the size and polarisability of each noble gas, xenon followed by krypton and argon become significantly more soluble within dense CO2. In the case of helium repulsive forces dominate and so it becomes less soluble as a function of CO2 density.

  4. Helium Isotopes and Noble Gas Abundances of Cave Dripping Water in Three Caves in East Asia

    NASA Astrophysics Data System (ADS)

    Chen, A. T.; Shen, C. C.; Tan, M.; Li, T.; Uemura, R.; Asami, R.

    2015-12-01

    Paleo-temperature recorded in nature archives is a critical parameter to understand climate change in the past. With advantages of unique inert chemical characteristics and sensitive solubilities with temperature, dissolved noble gases in speleothem inclusion water were recently proposed to retrieve terrestrial temperature history. In order to accurately apply this newly-developed speleothem noble gas temperature (NGT) as a reliable proxy, a fundamental issue about behaviors of noble gases in the karst should be first clarified. In this study, we measured noble gas contents in air and dripping water to evaluate any ratio deviation between noble gases. Cave dripping water samples was collected from three selected caves, Shihua Cave in northern China, Furong Cave in southwestern, and Gyukusen Cave in an island located in the western Pacific. For these caves are characterized by a thorough mixing and long-term storage of waters in a karst aquifer by the absence of seasonal oxygen isotope shifts. Ratios of dripping water noble gases are statistically insignificant from air data. Helium isotopic ratios in the dripping water samples match air value. The results indicate that elemental and isotopic signatures of noble gases from air can be frankly preserved in the epikarst and support the fidelity of NGT techniques.

  5. Signal-to-noise ratio comparison of encoding methods for hyperpolarized noble gas MRI

    NASA Technical Reports Server (NTRS)

    Zhao, L.; Venkatesh, A. K.; Albert, M. S.; Panych, L. P.

    2001-01-01

    Some non-Fourier encoding methods such as wavelet and direct encoding use spatially localized bases. The spatial localization feature of these methods enables optimized encoding for improved spatial and temporal resolution during dynamically adaptive MR imaging. These spatially localized bases, however, have inherently reduced image signal-to-noise ratio compared with Fourier or Hadamad encoding for proton imaging. Hyperpolarized noble gases, on the other hand, have quite different MR properties compared to proton, primarily the nonrenewability of the signal. It could be expected, therefore, that the characteristics of image SNR with respect to encoding method will also be very different from hyperpolarized noble gas MRI compared to proton MRI. In this article, hyperpolarized noble gas image SNRs of different encoding methods are compared theoretically using a matrix description of the encoding process. It is shown that image SNR for hyperpolarized noble gas imaging is maximized for any orthonormal encoding method. Methods are then proposed for designing RF pulses to achieve normalized encoding profiles using Fourier, Hadamard, wavelet, and direct encoding methods for hyperpolarized noble gases. Theoretical results are confirmed with hyperpolarized noble gas MRI experiments. Copyright 2001 Academic Press.

  6. Noble gases in gas shales : Implications for gas retention and circulating fluids.

    NASA Astrophysics Data System (ADS)

    Basu, Sudeshna; Jones, Adrian; Verchovsky, Alexander

    2016-04-01

    Gas shales from three cores of Haynesville-Bossier formation have been analysed simultaneously for carbon, nitrogen and noble gases (He, Ne, Ar, Xe) to constrain their source compositions and identify signatures associated with high gas retention. Ten samples from varying depths of 11785 to 12223 feet from each core, retrieved from their centres, have been combusted from 200-1200°C in incremental steps of 100°C, using 5 - 10 mg of each sample. Typically, Xe is released at 200°C and is largely adsorbed, observed in two of the three cores. The third core lacked any measureable Xe. High 40Ar/36Ar ratio up to 8000, is associated with peak release of nitrogen with distinctive isotopic signature, related to breakdown of clay minerals at 500°C. He and Ne are also mostly released at the same temperature step and predominantly hosted in the pore spaces of the organic matter associated with the clay. He may be produced from the uranium related to the organic matter. The enrichment factors of noble gases defined as (iX/36Ar)sample/(iX/36Ar)air where iX denotes any noble gas isotope, show Ne and Xe enrichment observed commonly in sedimentary rocks including shales (Podosek et al., 1980; Bernatowicz et al., 1984). This can be related to interaction of the shales with circulating fluids and diffusive separation of gases (Torgersen and Kennedy, 1999), implying the possibility of loss of gases from these shales. Interaction with circulating fluids (e.g. crustal fluids) have been further confirmed using 20Ne/N2, 36Ar/N2 and 4He/N2 ratios. Deviations of measured 4He/40Ar* (where 40Ar* represents radiogenic 40Ar after correcting for contribution from atmospheric Ar) from expected values has been used to monitor gas loss by degassing. Bernatowicz, T., Podosek, F.A., Honda, M., Kramer, F.E., 1984. The Atmospheric Inventory of Xenon and Noble Gases in Shales: The Plastic Bag Experiment. Journal of Geophysical Research 89, 4597-4611. Podosek, F.A., Honda, M., Ozima, M., 1980

  7. Ternary gas mixture for diffuse discharge switch

    DOEpatents

    Christophorou, Loucas G.; Hunter, Scott R.

    1988-01-01

    A new diffuse discharge gas switch wherein a mixture of gases is used to take advantage of desirable properties of the respective gases. There is a conducting gas, an insulating gas, and a third gas that has low ionization energy resulting in a net increase in the number of electrons available to produce a current.

  8. Performance of the High Resolution, Multi-collector Helix MC Plus Noble Gas Mass Spectrometer at the Australian National University

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaodong; Honda, Masahiko; Hamilton, Doug

    2016-12-01

    Performance of the Helix MC Plus noble gas mass spectrometer installed at the Australian National University (ANU) is reported. Results for sensitivity, mass discrimination and their linearity against partial pressure of noble gases, and mass resolution of the mass spectrometer are presented, and the results are compared with those of conventional noble gas mass spectrometers. The application of the five detectors on the Helix MC Plus in measuring various noble gas isotopes in multi-collector modes and the integration of the software drivers of peripheral hardware devices into the controlling program Qtegra of the mass spectrometer are discussed. High mass resolution (>1800) and mass resolving power (>8000) make this mass spectrometer unique in noble gas cosmo-geochemistry. It provides the capability to measure isobaric interference-free noble gas isotopes in multi-collector mode, significantly improves the accuracy to determine isotopic ratios, and greatly increases the efficiency of data acquisition.

  9. Effects of traces of molecular gases (hydrogen, nitrogen) in glow discharges in noble gases

    NASA Astrophysics Data System (ADS)

    Steers, E. B. M.; Smid, P.; Hoffmann, V.

    2008-07-01

    The "Grimm" type of low pressure glow discharge source, introduced some forty years ago, has proved to be a versatile analytical source. A flat sample is used as the cathode and placed about 0.2mm away from the end of a hollow tubular anode leading to an obstructed discharge. When the source was first developed, it was used for the direct analysis of solid metallic samples by optical emission spectroscopy (OES), normally with argon as the plasma gas; it was soon found that, using suitable electrical parameters, the cathode material was sputtered uniformly from a circular crater of diameter equal to that of the tubular anode, so that the technique could be used for compositional depth profile analysis (CDPA). Over the years the capability and applications of the technique have steadily increased. The use of rf powered discharges now permits the analysis of non-conducting layers and samples; improved instrumental design now allows CDPA of ever thinner layers (e.g. resolution of layers 5 nm thick in multilayer stacks is possible). For the original bulk material application, pre-sputtering could be used to remove any surface contamination but for CDPA, analysis must start immediately the discharge is ignited, so that any surface contamination can introduce molecular gases into the plasma gas and have significant analytical consequences, especially for very thin layers; in addition, many types of samples now analysed contain molecular gases as components (either as occluded gas, or e.g. as a nitride or oxide), and this gas enters the discharge when the sample is sputtered. It is therefore important to investigate the effect of such foreign gases on the discharge, in particular on the spectral intensities and hence the analytical results. The presentation will concentrate mainly on the effect of hydrogen in argon discharges, in the concentration range 0-2 % v/v but other gas mixtures (e.g. Ar/N_2, Ne/H_2) will be considered for comparison. In general, the introduction of

  10. Solar Noble Gases in Polymict Ureilites and an Update on Ureilite Noble Gas Data

    NASA Astrophysics Data System (ADS)

    Ott, U.; Lohr, H. P.; Begemann, F.

    1993-07-01

    Ureilites are one of the least understood classes of meteorites; they show signs of being processed, but also appear to be primitive, with abundant carbon and trapped noble gases [1-6]. We have now begun to analyze a number of recently recovered specimens: one from the Saharan desert (Acfer 277) amd five from the Antarctic (LEW 85328, LEW 85440, EET 87720, FRO 90036, and FRO 90054). Analyses of Acfer 277, LEW 85328, and EET 87720 are complete (Table 1). Solar noble gases are present in polymict EET 87720, as shown by the three- isotope plot of Fig. 1. There, in contrast to the bulk data point for Acfer 277, data points for EET 87720 deviate from a mixing line between "typical" spallation Ne (as approximated here by the spallation-dominated 1800 degrees C step for EET 87720) and Ne-U [7] toward higher ^20Ne/^22Ne. A line fitted to the EET 87720 data points passes slightly below Ne-B [8]. The situation is similar for sample F1 from polymict EET 83309 [9], which is shown for comparison. Additional support for the presence of solar gases arises from the abundance of ^4He (~9 x 10^-5 cm^3 STP/g in EET 87720-F1, corrected for spallogenic contributions), which in both cases is far higher than in other ureilite bulk samples [6,10]. Also, in the ratio of spallation-corrected ^4He to trapped ^36Ar, these two polymict ureilites clearly stand out. Helium-4/argon-36 ratios in EET 87720-F1 and EET 83309-F1 are ~20 and ~28 respectively, at least 1 order of magnitude higher than in bulk monomict ureilites and 2 orders of magnitude higher than what appears typical of ureilite diamonds [6]. Nilpena, another polymict ureilite [11], also has a ^4He/^36Ar ratio (2.1 in Nilpena II-1 [7]) higher than all monomict ureilites but one (Dingo Pup Donga), indicating the presence of solar noble gases (in variable contents) as a possible general feature of polymict ureilites, similar to the presence in them of nitrogen with high delta(^15N/^14N) [12]. Monomict LEW 85328 has a very high (^22Ne

  11. Noble gas encapsulation into carbon nanotubes: Predictions from analytical model and DFT studies

    NASA Astrophysics Data System (ADS)

    Balasubramani, Sree Ganesh; Singh, Devendra; Swathi, R. S.

    2014-11-01

    The energetics for the interaction of the noble gas atoms with the carbon nanotubes (CNTs) are investigated using an analytical model and density functional theory calculations. Encapsulation of the noble gas atoms, He, Ne, Ar, Kr, and Xe into CNTs of various chiralities is studied in detail using an analytical model, developed earlier by Hill and co-workers. The constrained motion of the noble gas atoms along the axes of the CNTs as well as the off-axis motion are discussed. Analyses of the forces, interaction energies, acceptance and suction energies for the encapsulation enable us to predict the optimal CNTs that can encapsulate each of the noble gas atoms. We find that CNTs of radii 2.98 - 4.20 Å (chiral indices, (5,4), (6,4), (9,1), (6,6), and (9,3)) can efficiently encapsulate the He, Ne, Ar, Kr, and Xe atoms, respectively. Endohedral adsorption of all the noble gas atoms is preferred over exohedral adsorption on various CNTs. The results obtained using the analytical model are subsequently compared with the calculations performed with the dispersion-including density functional theory at the M06 - 2X level using a triple-zeta basis set and good qualitative agreement is found. The analytical model is however found to be computationally cheap as the equations can be numerically programmed and the results obtained in comparatively very less time.

  12. Noble gas encapsulation into carbon nanotubes: Predictions from analytical model and DFT studies

    SciTech Connect

    Balasubramani, Sree Ganesh; Singh, Devendra; Swathi, R. S.

    2014-11-14

    The energetics for the interaction of the noble gas atoms with the carbon nanotubes (CNTs) are investigated using an analytical model and density functional theory calculations. Encapsulation of the noble gas atoms, He, Ne, Ar, Kr, and Xe into CNTs of various chiralities is studied in detail using an analytical model, developed earlier by Hill and co-workers. The constrained motion of the noble gas atoms along the axes of the CNTs as well as the off-axis motion are discussed. Analyses of the forces, interaction energies, acceptance and suction energies for the encapsulation enable us to predict the optimal CNTs that can encapsulate each of the noble gas atoms. We find that CNTs of radii 2.98 − 4.20 Å (chiral indices, (5,4), (6,4), (9,1), (6,6), and (9,3)) can efficiently encapsulate the He, Ne, Ar, Kr, and Xe atoms, respectively. Endohedral adsorption of all the noble gas atoms is preferred over exohedral adsorption on various CNTs. The results obtained using the analytical model are subsequently compared with the calculations performed with the dispersion-including density functional theory at the M06 − 2X level using a triple-zeta basis set and good qualitative agreement is found. The analytical model is however found to be computationally cheap as the equations can be numerically programmed and the results obtained in comparatively very less time.

  13. Method and apparatus for noble gas atom detection with isotopic selectivity

    DOEpatents

    Hurst, G. Samuel; Payne, Marvin G.; Chen, Chung-Hsuan; Parks, James E.

    1984-01-01

    Apparatus and methods of operation are described for determining, with isotopic selectivity, the number of noble gas atoms in a sample. The analysis is conducted within an evacuated chamber which can be isolated by a valve from a vacuum pumping system capable of producing a pressure of 10.sup.-8 Torr. Provision is made to pass pulses of laser beams through the chamber, these pulses having wavelengths appropriate for the resonance ionization of atoms of the noble gas under analysis. A mass filter within the chamber selects ions of a specific isotope of the noble gas, and means are provided to accelerate these selected ions sufficiently for implantation into a target. Specific types of targets are discussed. An electron measuring device produces a signal relatable to the number of ions implanted into the target and thus to the number of atoms of the selected isotope of the noble gas removed from the gas sample. The measurement can be continued until a substantial fraction, or all, of the atoms in the sample have been counted. Furthermore, additional embodiments of the apparatus are described for bunching the atoms of a noble gas for more rapid analysis, and for changing the target for repetitive cycling of the gas in the chamber. The number of repetitions of the cyclic steps depend upon the concentration of the isotope of interest, the separative efficiency of the mass filter, etc. The cycles are continued until a desired selectivity is achieved. Also described are components and a method of operation for a pre-enrichment operation for use when an introduction of a total sample would elevate the pressure within the chamber to levels in excess of those for operation of the mass filter, specifically a quadrupole mass filter. Specific examples of three noble gas isotope analyses are described.

  14. Noble Gas Signatures in Groundwater and Rainwater on the Island of Maui, Hawaii - Developing a New Noble Gas Application in Fractured, Volcanic Systems

    NASA Astrophysics Data System (ADS)

    Castro, M. C.; Niu, Y.; Warrier, R. B.; Hall, C. M.; Gingerich, S. B.; Scholl, M. A.; Bouvier, L.

    2014-12-01

    Recent work in the Galapagos Islands suggests that noble gas temperatures (NGTs) in fractured groundwater systems reflect the temperature of the ground surface at the time of infiltration rather than the mean annual air temperature (MAAT) value as commonly assumed in sedimentary systems where NGTs are typically used as indicators of past climate. This suggests that noble gases in fractured areas may record seasonality, and thus, provide information about timing of recharge in addition to location. Calculation of NGTs assumes that rain-derived recharge at the water table is in equilibrium with ground air. Lack of noble gas equilibration with respect to surface conditions, however, was observed in high-altitude springs in the Galapagos Islands and in a rainwater pilot study in Michigan, supporting the NGT seasonality hypothesis. Developing this new NGT application will lead to a better understanding of fractured groundwater flow systems and will contribute to improved water resource management plans. This study, carried out on Maui, Hawaii, is meant to test these hypotheses while improving knowledge of this island's groundwater flow system where limited hydrologic data are available. Here, we present the first results of noble gas analyses from samples collected in springs, groundwater wells and rainwater on northeast Maui. Results show that like most Michigan rainwater samples, rainwater from Maui is in disequilibrium with surface conditions and follows a mass-dependent pattern. Spring samples follow a similar pattern to that of rainwater and suggest that spring water originates directly from rainfall. These findings further support the hypothesis of NGT seasonality. However, while the atmospheric composition of noble gases points to direct supply from rainfall to spring aquifer systems, a direct connection between spring water and deeper aquifer levels or the mantle is apparent from He isotopic ratios which display an almost pure He mantle component in some springs.

  15. Mass fractionation of noble gases in synthetic methane hydrate: Implications for naturally occurring gas hydrate dissociation

    USGS Publications Warehouse

    Hunt, Andrew G.; Stern, Laura; Pohlman, John W.; Ruppel, Carolyn; Moscati, Richard J.; Landis, Gary P.

    2013-01-01

    As a consequence of contemporary or longer term (since 15 ka) climate warming, gas hydrates in some settings may presently be dissociating and releasing methane and other gases to the ocean-atmosphere system. A key challenge in assessing the impact of dissociating gas hydrates on global atmospheric methane is the lack of a technique able to distinguish between methane recently released from gas hydrates and methane emitted from leaky thermogenic reservoirs, shallow sediments (some newly thawed), coal beds, and other sources. Carbon and deuterium stable isotopic fractionation during methane formation provides a first-order constraint on the processes (microbial or thermogenic) of methane generation. However, because gas hydrate formation and dissociation do not cause significant isotopic fractionation, a stable isotope-based hydrate-source determination is not possible. Here, we investigate patterns of mass-dependent noble gas fractionation within the gas hydrate lattice to fingerprint methane released from gas hydrates. Starting with synthetic gas hydrate formed under laboratory conditions, we document complex noble gas fractionation patterns in the gases liberated during dissociation and explore the effects of aging and storage (e.g., in liquid nitrogen), as well as sampling and preservation procedures. The laboratory results confirm a unique noble gas fractionation pattern for gas hydrates, one that shows promise in evaluating modern natural gas seeps for a signature associated with gas hydrate dissociation.

  16. Calibration of Dissolved Noble Gas Mass Spectrometric Measurements by an Air-Water Equilibration System

    NASA Astrophysics Data System (ADS)

    Hillegonds, Darren; Matsumoto, Takuya; Jaklitsch, Manfred; Han, Liang-Feng; Klaus, Philipp; Wassenaar, Leonard; Aggarwal, Pradeep

    2013-04-01

    Precise measurements by mass spectrometry of dissolved noble gases (He, Ar, Ne, Kr, Xe) in water samples require careful calibration against laboratory standards with known concentrations. Currently, air pipettes are used for day-to-day calibrations, making estimation of overall analytical uncertainties for dissolved noble gas measurements in water difficult. Air equilibrated water (AEW) is often used as a matrix-equivalent laboratory standard for dissolved gases in groundwater, because of the well-known and constant fractions of noble gases in the atmosphere. AEW standards, however, are only useful if the temperature and pressure of the gas-water equilibrium can be controlled and measured precisely (i.e., to better than 0.5%); contamination and partial sample degassing must also be prevented during sampling. Here we present the details of a new custom air-water equilibration system which consists of an insulated 600 liter tank filled with deionized water, held isothermally at a precise target temperature (<0.05 °C) through the use of a heat exchanger. The temperature and total dissolved gas of the water in the tank are monitored continually, as are atmospheric pressure and air temperature in the laboratory. Different noble gas concentration standards can be reliably produced by accurately controlling the water temperature of the equilibration system. Equilibration characteristics and reproducibility of this system for production of copper tubes containing known amounts of noble gases will be presented.

  17. Perspectives of hyperpolarized noble gas MRI beyond 3He

    NASA Astrophysics Data System (ADS)

    Lilburn, David M. L.; Pavlovskaya, Galina E.; Meersmann, Thomas

    2013-04-01

    Nuclear Magnetic Resonance (NMR) studies with hyperpolarized (hp) noble gases are at an exciting interface between physics, chemistry, materials science and biomedical sciences. This paper intends to provide a brief overview and outlook of magnetic resonance imaging (MRI) with hp noble gases other than hp 3He. A particular focus are the many intriguing experiments with 129Xe, some of which have already matured to useful MRI protocols, while others display high potential for future MRI applications. Quite naturally for MRI applications the major usage so far has been for biomedical research but perspectives for engineering and materials science studies are also provided. In addition, the prospects for surface sensitive contrast with hp 83Kr MRI is discussed.

  18. Photoionization of noble-gas atoms by ultrashort electromagnetic pulses

    SciTech Connect

    Astapenko, V. A. Svita, S. Yu.

    2014-11-15

    The photoionization of atoms of noble gases (Ar, Kr, and Xe) by ultrashort electromagnetic pulses of a corrected Gaussian shape is studied theoretically. Computations are performed in the context of perturbation theory using a simple expression for the total probability of photoionization of an atom by electromagnetic pulses. The features of this process are revealed and analyzed for various ranges of the parameters of the problem.

  19. Relationship between recent cave temperatures and noble gas temperatures derived from fluid inclusions of modern soda straw stalactites

    NASA Astrophysics Data System (ADS)

    Palcsu, Laszlo; Papp, Laszlo; Major, Zoltan; Molnar, Mihaly

    2010-05-01

    Recently, strong effort is devoted to establish a new method to derive palaeotemperatures from noble gas (Ne, Ar, Kr, Xe) concentrations dissolved in fluid inclusions of speleothems [1-2]. It has been already shown that the water content of the speleothems can be determined via the water vapour pressure after the water has been released from the carbonate samples and collected in a cold finger and then heated up to room temperature. Additionally, the noble gas contents can be precisely measured with noble gas mass spectrometers. Based on these noble gas concentration data sets, a so-called noble gas temperature (NGT) can be calculated meaning a temperature at which the noble gases have been dissolved in water. To use these NGT's as a palaeoclimate proxy, one of the main questions is how these noble gas temperatures reflect the prevailing cave temperature in which the carbonate has grown. We studied noble gas significances in recent soda straw stalactites from more than ten Central European caves covering a temperature range of 1 to 14 °C. Kluge et al. (2008) has shown the soda straw stalactites might contain less excess air, hence they are more suitable samples to derive NGT's, because noble gas abundances from large air inclusions can mask the temperature information. The 14C ages of these soda straw dripstones were obtained to be recent or at least Holocene ages. Thus one can assume that the cave temperatures during carbonate formation were as same as at present. We measured the water and noble gas contents of numerous carbonate samples from soda straw stalactites and calculated noble gas temperatures by a precision of 1 °C or better. Comparing these temperatures with cave temperatures we obtained that they agree well within the uncertainty of the noble gas temperature determination. Therefore, we can conclude if diffusion of noble gas isotopes does not play a significant role in the carbonate lattice this new tool helps the palaeoclimate community to gain

  20. Physiological response of rats to delivery of helium and xenon: implications for hyperpolarized noble gas imaging

    NASA Technical Reports Server (NTRS)

    Ramirez, M. P.; Sigaloff, K. C.; Kubatina, L. V.; Donahue, M. A.; Venkatesh, A. K.; Albert, M. S.; ALbert, M. S. (Principal Investigator)

    2000-01-01

    The physiological effects of various hyperpolarized helium and xenon MRI-compatible breathing protocols were investigated in 17 Sprague-Dawley rats, by continuous monitoring of blood oxygen saturation, heart rate, EKG, temperature and endotracheal pressure. The protocols included alternating breaths of pure noble gas and oxygen, continuous breaths of pure noble gas, breath-holds of pure noble gas for varying durations, and helium breath-holds preceded by two helium rinses. Alternate-breath protocols up to 128 breaths caused a decrease in oxygen saturation level of less than 5% for either helium or xenon, whereas 16 continuous-breaths caused a 31.5% +/- 2.3% decrease in oxygen saturation for helium and a 30.7% +/- 1. 3% decrease for xenon. Breath-hold protocols up to 25 s did not cause the oxygen saturation to fall below 90% for either of the noble gases. Oxygen saturation values below 90% are considered pathological. At 30 s of breath-hold, the blood oxygen saturation dropped precipitously to 82% +/- 0.6% for helium, and to 76.5% +/- 7. 4% for xenon. Breath-holds longer than 10 s preceded by pre-rinses caused oxygen saturation to drop below 90%. These findings demonstrate the need for standardized noble gas inhalation procedures that have been carefully tested, and for continuous physiological monitoring to ensure the safety of the subject. We find short breath-hold and alternate-breath protocols to be safe procedures for use in hyperpolarized noble gas MRI experiments. Copyright 2000 John Wiley & Sons, Ltd.

  1. Experimental evidence for high noble gas solubilities in silicate melts under mantle pressures

    NASA Astrophysics Data System (ADS)

    Schmidt, Burkhard C.; Keppler, Hans

    2002-02-01

    The solubilities of Ar and Xe in Fe-free synthetic haplogranitic and tholeiitic melts were experimentally determined in the pressure range of 1-11 GPa and at temperatures between 1500 and 2000°C. Experiments were performed in a piston cylinder apparatus (1-3 GPa) and in a multi-anvil apparatus (2-11 GPa). The noble gas concentrations in the quenched glasses were determined with electron microprobe. As a function of pressure, Ar solubility increases linearly up to about 4-5 GPa where it reaches about 4.0 and 0.8 wt% for the haplogranitic and tholeiitic melt, respectively. At higher pressure the amount of dissolved Ar remains constant, suggesting that some threshold concentration is reached. The Xe solubility in tholeiite melt exhibits a very similar pattern. It increases linearly up to about 6 GPa, where a threshold concentration of 0.8 wt% is reached. A further increase of pressure up to 11 GPa does not result in changes in Xe solubility. The leveling off in noble gas solubility at high pressures may imply that the interstitial sites in the melt structure, suitable for the accommodation of noble gas atoms, are fully occupied. Indeed, the experimental data can be successfully reproduced with the Langmuir isotherm, implying a solubility model in which the gas atoms occupy a certain population of interstitial sites. However, the data can be equally well described by a model assuming mixing of the noble gas atoms with the oxygen atoms of the silicate melt. From a thermodynamic point of view, the constant noble gas solubility at high pressures simply implies that the partial molar volumes of the respective noble gas in the fluid and in the melt are equal. Our results differ from those of Chamorro-Perez et al. [Earth Planet. Sci. Lett. 145 (1996) 97-107; Nature 393 (1998) 352-355] who reported an abrupt, order-of-magnitude drop of Ar solubility in silica and olivine melt at around 5 GPa, suggesting that melt densification results in an abrupt decrease of the hole size

  2. Targets Involved in Cardioprotection by the Non-Anesthetic Noble Gas Helium.

    PubMed

    Weber, Nina C; Smit, Kirsten F; Hollmann, Markus W; Preckel, Benedikt

    2015-01-01

    Research data from the past decade indicate that noble gases like xenon and helium exert profound cardioprotection when applied before, during or after organ ischemia. Of all noble gases, especially helium, has gained interest in the past years because it does not have an anesthetic "side effect" like xenon, allowing application of this specific gas in numerous clinical ischemia/reperfusion situations. Because helium has several unique characteristics and no hemodynamic side effects, helium could be administered in severely ill patients. Investigations in animals as well as in humans have proven that this noble gas is not completely inert and can induce several biological effects. Though the underlying molecular mechanisms of helium-induced cardiac protection are still not yet fully understood, recently different signaling pathways have been elucidated.

  3. Noble gas isotopes in mineral springs within the Cascadia Forearc, Wasihington and Oregon

    USGS Publications Warehouse

    McCrory, Patricia A.; Constantz, James E.; Hunt, Andrew G.

    2014-01-01

    This U.S. Geological Survey report presents laboratory analyses along with field notes for a pilot study to document the relative abundance of noble gases in mineral springs within the Cascadia forearc of Washington and Oregon. Estimates of the depth to the underlying Juan de Fuca oceanic plate beneath the sample sites are derived from the McCrory and others (2012) slab model. Some of these springs have been previously sampled for chemical analyses (Mariner and others, 2006), but none currently have publicly available noble gas data. Helium isotope values as well as the noble gas values and ratios presented below will be used to determine the sources and mixing history of these mineral waters.

  4. A Philippinite with an Unusually Large Bubble: Gas Pressure and Noble Gas Composition

    NASA Astrophysics Data System (ADS)

    Matsuda, J.; Maruoka, T.; Pinti, D. L.; Koeberl, C.

    1995-09-01

    Bubbles are common in tektites, but usually their sizes range up to only a few mm. They are most abundant in Muong Nong-type tektites. The gases contained in these bubbles are of terrestrial atmospheric composition, with pressures below 1 atm (e.g., [1]). The abundances of light noble gases (He, Ne) are controlled by diffusion from the atmosphere [2], and noble gases dissolved in tektite glass indicate that the glass solidified at atmospheric pressures equivalent to about 40 km altitude [3]. Large bubbles in splash-form tektites are rather rare. Thus, the finding that a philippinite (size: 6.0 x 4.5 cm; weight: 199.6 g) contains an unusually large bubble justified a detailed study. The volume of the bubble, which was confirmed by X-ray photography, was estimated at 5.4 cm^3, by comparing the density of this tektite (2.288 g/cm^3) to that of normal philippinites (2.438 g/cm^3). A device was specifically constructed for crushing the present sample under vacuum. The 10x10 cm cylindrical device has a piston that allows to gently crush the sample by turning a handle. Various disk spacers can be used to adjust the inner height to that of the sample. The device is made of stainless steel, yielding a low noble gas blank. The crushing device is connected to a purification line and a noble gas sector-type mass spectrometer (VG 5400) [4]. Before crushing, the complete tektite was wrapped in aluminum foil. A first crushing attempt, using stainless steel disk spacers, failed and resulted in damage to the steel spacers, indicating a high strength of the tektite. Using iron disk spacers resulted in an ambient pressure increase (probably due to hydrogen from the Fe) in the sample chamber. However, the noble gas blanks were negligible. The background pressure, at 2 x 10-4 Torr, increased to 3 x 10-4 Torr when the sample was crushed. From the volume of the crushing device and that of the bubble in the tektite, the total gas pressure in the bubble was estimated at about 1 x 10-4 atm

  5. Electron-beam generation in a wide-aperture open gas discharge: A comparative study for different inert gases

    SciTech Connect

    Bokhan, P. A.; Zakrevsky, Dm. E.

    2010-08-30

    In the present study, electron-beam generation by open discharges was examined. The study was performed at gas pressures up to 20 Torr, and covered all inert gases. At voltages up to 8 kV, electron-beam currents up to 1600 A with current density {approx}130 A/cm{sup 2} and a beam generation efficiency in excess of 93% were obtained. The production of electrons from cold cathode was concluded to be of photoemissive nature, enabling the production of high-intensity electron beams in any noble gas or in a mixture of a noble gas with molecular gases irrespective of cathode material.

  6. Isotopic and noble gas geochemistry in geothermal research

    SciTech Connect

    Kennedy, B.M.; DePaolo, D.J.

    1997-12-31

    The objective of this program is to provide, through isotopic analyses of fluids, fluid inclusions, and rocks and minerals coupled with improved methods for geochemical data analysis, needed information regarding sources of geothermal heat and fluids, the spatial distribution of fluid types, subsurface flow, water-rock reaction paths and rates, and the temporal evolution of geothermal systems. Isotopic studies of geothermal fluids have previously been limited to the light stable isotopes of H, C, and O. However, other isotopic systems such as the noble gases (He, Ne, Ar, Kr and Xe) and reactive elements (e.g. B, N, S, Sr and Pb) are complementary and may even be more important in some geothermal systems. The chemistry and isotopic composition of a fluid moving through the crust will change in space and time in response to varying chemical and physical parameters or by mixing with additional fluids. The chemically inert noble gases often see through these variations, making them excellent tracers for heat and fluid sources. Whereas, the isotopic compositions of reactive elements are useful tools in characterizing water-rock interaction and modeling the movement of fluids through a geothermal reservoir.

  7. Potential Energy Curves and Associated Line Shape of Alkali-Metal and Noble-Gas Interactions

    DTIC Science & Technology

    2014-10-20

    xii I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation...150 xii POTENTIAL ENERGY CURVES AND ASSOCIATED LINE SHAPE OF ALKALI-METAL AND NOBLE-GAS INTERACTIONS I. Introduction 1.1 Motivation...starting point for all modern developments of a quantum picture of pressure broadening, and show how this theory reduces to the classical theory under

  8. Holocene noble gas paleothermometry from springs in the Olympic Mountains, Washington.

    EPA Science Inventory

    Noble gas temperature proxies are examined from 52 springs in the Olympic Mountains, Washington. Groundwater flows from seeps to pooled springs at <0.1 L s-1 - 2.5 L s-1 in the Elwha watershed (≈692 km2). About 85% of sampled springs issue from confined fracture reservoirs preser...

  9. Non-Adiabatic Atomic Transitions: Computational Cross Section Calculations of Alkali Metal-Noble Gas Collisions

    DTIC Science & Technology

    2011-09-01

    collisions were computationally simulated. The alkali metals were potassium, rubidium, and cesium and the noble gas partners were helium, neon, and argon...195 20. Spin-Orbit split energies of Potassium, Rubidium, and Cesium ...composed of an alkali metal typically Rubidium[26, 37] or Cesium [5, 18]. The unique character of the alkali atoms, having a single valence electron in

  10. Experimental determination of noble gas, SF6 and CO2 flow profiles through a porous sandstone

    NASA Astrophysics Data System (ADS)

    Kilgallon, Rachel; Gilfillan, Stuart; Edlmann, Katriona; McDermott, Chris

    2016-04-01

    The noble gases (He, Ne, Ar, Kr and Xe) and SF6 have recently been used as artificial and inherent tracers of CO2 flow and migration from within[1,2] and from geological reservoirs[3]. However, outstanding questions remain, particularly regarding the flow behaviour of the noble gases compared to CO2. Here we present results from specially constructed experimental equipment, which has been used to determine the factors affecting transport of noble gases relative to CO2 in a porous sandstone. The experimental setup consists of a sample loop that can be loaded with a desired gas mixture. This sample can be released as a pulse into a feeder gas stream through a flow cell. The flow cell consists of a 3.6 cm diameter core, which can be of any length. The sample is surrounded by aluminium foil and treated with epoxy resin inside stainless steel tubing. The flow cell is encased by two purpose designed dispersion end plates. Real-time analysis of the arrival peaks of the gases downstream is recorded using a Quadrupole Mass Spectrometer (QMS). For the experiments, a 0.96 m core of Fell Sandstone was selected to represent a porous media. Noble gases and SF6 pulses were flowed through a CO2 carrier gas at five different pressure gradients (10 - 50 kPa) with arrival profiles measured using the QMS. Surprisingly, peak arrival times of He were slower than the other noble gases at each pressure gradient. The differences in peak arrival times between He and other noble gases increased as pressure decreased and the curve profiles for each noble gas differ significantly. The heavier noble gases (Kr and Xe) along with SF6 show a steeper peak rise at initial appearance, but have a longer duration profile than the He curves. Interestingly, the breakthrough curve profiles for both Kr and Xe were similar to SF6 indicating that Kr and Xe could be substituted for SF6, which is a potent greenhouse gas, in tracing applications. In addition, CO2 pulses were passed through a N2 carrier gas. The

  11. Formation of noble-gas hydrides and decay of solvated protons revisited: diffusion-controlled reactions and hydrogen atom losses in solid noble gases.

    PubMed

    Tanskanen, Hanna; Khriachtchev, Leonid; Lignell, Antti; Räsänen, Markku; Johansson, Susanna; Khyzhniy, Ivan; Savchenko, Elena

    2008-02-07

    UV photolysis and annealing of C2H2/Xe, C2H2/Xe/Kr, and HBr/Xe matrices lead to complicated photochemical processes and reactions. The dominating products in these experiments are noble-gas hydrides with general formula HNgY (Ng = noble-gas atom, Y = electronegative fragment). We concentrate on distinguishing the local and global mobility and losses of H atoms, barriers of the reactions, and the decay of solvated protons. Different deposition temperatures change the amount of lattice imperfections and thus the amount of traps for H atoms. The averaged distance between reacting species influencing the reaction kinetics is controlled by varying the precursor concentration. A number of solid-state processes connected to the formation of noble-gas hydrides and decay of solvated protons are discussed using a simple kinetic model. The most efficient formation of noble-gas hydrides is connected with global (long-range) mobility of H atoms leading to the H + Xe + Y reaction. The highest concentration of noble-gas hydrides was obtained in matrices of highest optical quality, which probably have the lowest concentration of defects and H-atom losses. In matrices with high amount of geometrical imperfections, the product formation is inefficient and dominated by a local (short-range) process. The decay of solvated protons is rather local than a global process, which is different from the formation of noble-gas molecules. However, the present data do not allow distinguishing local proton and electron mobilities. Our previous results indicate that these are electrons which move to positively-charged centers and neutralize them. It is believed that the image obtained here for solid xenon is applicable to solid krypton whereas the case of argon deserves special attention.

  12. Bartlett's discovery of noble gas fluorides, a milestone in chemical history.

    PubMed

    Christe, Karl O

    2013-05-21

    In 1962, Neil Bartlett published a terse note in Proc. Chem. Soc. eradicating the long held dogma that noble gases are inert and cannot form stable compounds. This historical discovery has revolutionized our views on chemistry and has given rise to thousands of papers on noble gas chemistry. The fact that his proposed reaction product "Xe(+)[PtF6](-)" has eluded experimental detection for more than half a century and actually was a mixture of XeF(+) and Xe2F3(+) salts does not diminish the enormous impact of his discovery. A plausible explanation for the failures to observe "Xe(+)[PtF6](-)" experimentally is presented.

  13. Element distribution and noble gas isotopic abundances in lunar meteorite Allan Hills A81005

    NASA Technical Reports Server (NTRS)

    Kraehenbuehl, U.; Eugster, O.; Niedermann, S.

    1986-01-01

    Antarctic meteorite ALLAN HILLS A81005, an anorthositic breccia, is recognized to be of lunar origin. The noble gases in this meteorite were analyzed and found to be solar-wind implanted gases, whose absolute and relative concentrations are quite similar to those in lunar regolith samples. A sample of this meteorite was obtained for the analysis of the noble gas isotopes, including Kr(81), and for the determination of the elemental abundances. In order to better determine the volume derived from the surface correlated gases, grain size fractions were prepared. The results of the instrumental measurements of the gamma radiation are listed. From the amounts of cosmic ray produced noble gases and respective production rates, the lunar surface residence times were calculated. It was concluded that the lunar surface time is about half a billion years.

  14. New interatomic potentials for studying the behavior of noble gas atoms in tungsten

    NASA Astrophysics Data System (ADS)

    Zhou, Fen; Fang, Jingzhong; Deng, Huiqiu; Liu, Jianglong; Xiao, Shifang; Shu, Xiaolin; Gao, Fei; Hu, Wangyu

    2015-12-01

    To study the behavior of noble gas atoms (He, Ne and Ar) in bulk tungsten, new DFT-based potentials for W-He, W-Ne and W-Ar interactions were developed by fitting the results obtained from density functional theory calculations. The new potentials adopt the embedded atom method (EAM) formalism, and the "s-band model" is used to describe the many-body interactions between each of the noble gas atoms and its neighboring W atoms. These potentials reproduce the formation energies of point defects and the migration barriers of single noble gas atoms. The simulations using these potentials successfully predict that the tetrahedral interstitial site is more stable than the octahedral interstitial site for X (= He, Ne or Ar) interstitials. Based on these new potentials, the binding interactions of a single X atom with the Xn and Xn-Vacancy clusters and the diffusion properties of Xn clusters in bulk W were studied using molecular dynamics (MD) simulations. The present results indicate that the binding energies obtained using the new potentials are good in agreement with the results of DFT calculations. The migration energies of the clusters increase with both the increase in the atomic radius of noble gases and the increase in the size of the clusters.

  15. Computational investigation of noble gas adsorption and separation by nanoporous materials.

    SciTech Connect

    Allendorf, Mark D.; Sanders, Joseph C.; Greathouse, Jeffery A.

    2008-10-01

    Molecular simulations are used to assess the ability of metal-organic framework (MOF) materials to store and separate noble gases. Specifically, grand canonical Monte Carlo simulation techniques are used to predict noble gas adsorption isotherms at room temperature. Experimental trends of noble gas inflation curves of a Zn-based material (IRMOF-1) are matched by the simulation results. The simulations also predict that IRMOF-1 selectively adsorbs Xe atoms in Xe/Kr and Xe/Ar mixtures at total feed gas pressures of 1 bar (14.7 psia) and 10 bar (147 psia). Finally, simulations of a copper-based MOF (Cu-BTC) predict this material's ability to selectively adsorb Xe and Kr atoms when present in trace amounts in atmospheric air samples. These preliminary results suggest that Cu-BTC may be an ideal candidate for the pre-concentration of noble gases from air samples. Additional simulations and experiments are needed to determine the saturation limit of Cu-BTC for xenon, and whether any krypton atoms would remain in the Cu-BTC pores upon saturation.

  16. Noble Metal Catalysts for Mercury Oxidation in Utility Flue Gas: Gold, Palladium and Platinum Formulations

    SciTech Connect

    Presto, A.A.; Granite, E.J

    2008-07-01

    The use of noble metals as catalysts for mercury oxidation in flue gas remains an area of active study. To date, field studies have focused on gold and palladium catalysts installed at pilot scale. In this article, we introduce bench-scale experimental results for gold, palladium and platinum catalysts tested in realistic simulated flue gas. Our initial results reveal some intriguing characteristics of catalytic mercury oxidation and provide insight for future research into this potentially important process.

  17. Noble Gas Thermometry and Hydrologic Ages: Evidence for Late Holocene Warming in Southwest Texas

    NASA Astrophysics Data System (ADS)

    Castro, M.; Goblet, P.

    2003-12-01

    Paleoclimatic reconstruction through the use of noble gases dissolved in groundwater has been the object of numerous studies in recent years. Unlike many other continental temperature proxies, noble gases have the advantage of providing direct information on atmospheric temperatures at the time rainwater penetrated the ground and joined a particular groundwater reservoir. In recent years, new methods for determination of noble gas temperatures have been developed, which provide a high level of accuracy on such temperature estimations. The issue of paleoclimatic reconstruction through noble gases however, is not only one of accurate temperature determination, but also one of accurate water age estimation so that a correct correspondence between noble gas temperatures and groundwater age can be established and proper paleoclimatic reconstruction attempted. The typical approach to estimate groundwater ages has been based on computing water travel times along streamlines from the recharge to the observation point taking into account only advection. This approach is limited because, like any other tracer, the movement of water in porous media is also affected by cinematic dispersion and molecular diffusion. We have therefore undertaken the formulation of hydrologic models that yield significantly better constraints on groundwater ages in the Carrizo aquifer and surrounding formations of south Texas, where noble gas temperatures have already been determined. To account for groundwater mixing we treat age as one would treat a solute concentration. In order to simulate groundwater ages we used a finite element model of groundwater flow that has been validated by 4He and 3He. The finite model spans a 120.6 Km cross-section between altitudes of +220m and -2210 m, and comprises 58,968 elements and 31,949 nodes. Combination of these newly calculated water ages and previously reported noble gas temperatures reveals new aspects of late Pleistocene and Holocene climate in

  18. Positron Impact Ionization in Noble Gas Atoms and Diatomic Molecules

    NASA Astrophysics Data System (ADS)

    Marler, J. P.

    2005-05-01

    Results are presented for absolute positronium formation and direct ionization by positron impact on Ne, Ar, Kr, Xe, N2, CO and O2 at energies from threshold up to 90 eV. The experiments use a high-resolution, trap-based positron beam and exploit the properties of positron orbits in a magnetic field [1]. Results for the noble gases are compared with theoretical predictions and with measurements obtained using a significantly different method [2]. Results for diatomic molecules are compared to other available measurements and theoretical calculations where available. There is generally good agreement between the experimental measurements, providing an important benchmark for theoretical calculations. Intriguing features in Ar and O2 will be discussed. [1] J.P. Sullivan, S.J. Gilbert, J.P. Marler, R.G. Greaves, S.J. Buckman and C.M. Surko., Phys. Rev. A. 66, 042708 (2002) [2] J.P. Marler, J.P. Sullivan and C.M. Surko, Phys. Rev. A (2005), in press.

  19. The Noble Gas Record of Gas-Water Phase Interaction in the Tight-Gas-Sand Reservoirs of the Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Ballentine, C. J.; Zhou, Z.; Harris, N. B.

    2015-12-01

    The mass of hydrocarbons that have migrated through tight-gas-sandstone systems before the permeability reduces to trap the hydrocarbon gases provides critical information in the hydrocarbon potential analysis of a basin. The noble gas content (Ne, Ar, Kr, Xe) of the groundwater has a unique isotopic and elemental composition. As gas migrates through the water column, the groundwater-derived noble gases partition into the hydrocarbon phase. Determination of the noble gases in the produced hydrocarbon phase then provides a record of the type of interaction (simple phase equilibrium or open system Rayleigh fractionation). The tight-gas-sand reservoirs of the Rocky Mountains represent one of the most significant gas resources in the United States. The producing reservoirs are generally developed in low permeability (averaging <0.1mD) Upper Cretaceous fluvial to marginal marine sandstones and commonly form isolated overpressured reservoir bodies encased in even lower permeability muddy sediments. We present noble gas data from producing fields in the Greater Green River Basin, Wyoming; the the Piceance Basin, Colorado; and in the Uinta Basin, Utah. The data is consistent from all three basins. We show how in each basin the noble gases record open system gas migration through a water column at maximum basin burial. The data within an open system model indicates that the gas now in-place represents the last ~10% of hydrocarbon gas to have passed through the water column, most likely prior to permeability closedown.

  20. Long Term Field Calibration of the Noble Gas Temperature System in a Shallow Unconfined Pleistocene Aquifer

    NASA Astrophysics Data System (ADS)

    Hall, C. M.; Castro, M. C.; Lohmann, K. C.; Ma, L.

    2005-12-01

    Noble gas temperatures (NGTs) are a potentially powerful tool for paleoclimate reconstruction on continents, but the assumptions underlying the technique have not been widely tested for aquifers in colder climates. In a recent study of NGTs from S. Michigan groundwater, Ma et al. (2004) found significant NGT variation over time, but apparently modern water yielded NGTs that were ~ 3 ° C or more below that expected from the local mean annual air temperature (MAAT). For nearly a year, we have monitored NGTs and stable isotopes at a shallow water well in the glacial drift that recharges the aquifer studied by Ma et al. (2004). Initial results are in press (Hall et al., 2005) and they confirm that modern NGTs measured from Oct. to Jul. are typically 5-6°C, instead of the MAAT of 9.1°C. Measured water temperatures during sampling are within 1-2°C of MAAT. Stable isotopic analyses of local snow and rain water suggest that the groundwater is a mixture of these two end member components. Short term variations in well pH and stable isotope ratios confirm that the groundwater is indeed modern, but initial noble gas results did not show similar variations. Ground ice noble gas concentrations are very low, with the exception of He, which is enriched, with 3He/4He equal to the air value. All early noble gas concentrations in groundwater were too high for the MAAT, including both He isotopes which had 3He/4He about 1.3 times air. Measured groundwater excess He values are compatible with 4He influx from below and tritium decay for ~ 30 yr. None of the standard NGT interpretational models adequately account for the complete data set, without modifications to normal assumptions. The most recent Aug. 2005 data after a very rainy Jul. does show a dramatic rise in NGT, with typical excess He, suggesting that noble gas concentrations acquired high in the unsaturated zone can persist and mix with those below the water table. This implies that dynamic effects may be very important in

  1. Investigating noble gas mixtures for use in TPCs

    NASA Astrophysics Data System (ADS)

    Jungbluth, Anna

    2017-01-01

    MITPC is a gas-based time projection chamber used for detecting fast, MeV-scale neutrons. MITPC relies on a CCD camera and the TPC (time projection chamber) technique to visualize and reconstruct tracks of neutron-induced nuclear recoils within a chosen gas. The standard version of the detector uses a mixture of 600 torr gas composed of 87.5% helium-4 and and 12.5% tetrafluoromethane (CF4) for precise measurements of the energy and direction of neutron-induced nuclear recoils. Previous studies demonstrated advantages of using neon as a replacement gas for helium-4. This talk will present a discussion of studies performed with helium and neon, as well as argon and krypton as primary neutron targets in the gas mixture with CF4.

  2. Investigating the nature of noble gas-copper bonds by the quantum theory of atoms in molecules.

    PubMed

    Rodrigues, Eduardo F F; de Sá, Eduardo L; Haiduke, Roberto L A

    2010-04-22

    We investigated noble gas-copper bonds in linear complexes represented by the NgCuX general formula in which Ng and X stand for a noble gas (neon, argon, krypton, or xenon) and a halogen (fluorine, chlorine or bromine), respectively, by coupled cluster methods and modified cc-pVQZ basis sets. The quantum theory of atoms in molecules (QTAIM) shows a linear relation between the dissociation energy of noble gas-copper bonds and the amount of electronic charge transferred mainly from the noble gas to copper during complexation. Large changes in the QTAIM quadrupole moments of copper and noble gases resulting from this bonding and a comparison between NgCuX and NgNaCl systems indicate that these noble gas-copper bonds should be better interpreted as predominantly covalent. Finally, QTAIM atomic dipoles of noble gases in NgNaCl systems agree satisfactorily with atomic dipoles given by a simple model for these NgNa van der Waals bonds.

  3. Noble gases solubility models of hydrocarbon charge mechanism in the Sleipner Vest gas field

    NASA Astrophysics Data System (ADS)

    Barry, P. H.; Lawson, M.; Meurer, W. P.; Warr, O.; Mabry, J. C.; Byrne, D. J.; Ballentine, C. J.

    2016-12-01

    Noble gases are chemically inert and variably soluble in crustal fluids. They are primarily introduced into hydrocarbon reservoirs through exchange with formation waters, and can be used to assess migration pathways and mechanisms, as well as reservoir storage conditions. Of particular interest is the role groundwater plays in hydrocarbon transport, which is reflected in hydrocarbon-water volume ratios. Here, we present compositional, stable isotope and noble gas isotope and abundance data from the Sleipner Vest field, in the Norwegian North Sea. Sleipner Vest gases are generated from primary cracking of kerogen and the thermal cracking of oil. Gas was emplaced into the Sleipner Vest from the south and subsequently migrated to the east, filling and spilling into the Sleipner Ost fields. Gases principally consist of hydrocarbons (83-93%), CO2 (5.4-15.3%) and N2 (0.6-0.9%), as well as trace concentrations of noble gases. Helium isotopes (3He/4He) are predominantly radiogenic and range from 0.065 to 0.116 RA; reported relative to air (RA = 1.4 × 10-6; Clarke et al., 1976; Sano et al., 1988), showing predominantly (>98%) crustal contributions, consistent with Ne (20Ne/22Ne from 9.70 to 9.91; 21Ne/22Ne from 0.0290 to 0.0344) and Ar isotopes (40Ar/36Ar from 315 to 489). Air-derived noble gas isotopes (20Ne, 36Ar, 84Kr, 132Xe) are introduced into the hydrocarbon system by direct exchange with air-saturated water (ASW). The distribution of air-derived noble gas species are controlled by phase partitioning processes; in that they preferentially partition into the gas (i.e., methane) phase, due to their low solubilities in fluids. Therefore, the extent of exchange between hydrocarbon phases and formation waters - that have previously equilibrated with the atmosphere - can be determined by investigating air-derived noble gas species. We utilize both elemental ratios to address process (i.e., open vs. closed system) and concentrations to quantify the extent of hydrocarbon

  4. Temporal changes in noble gas compositions within the Aidlinsector ofThe Geysers geothermal system

    SciTech Connect

    Dobson, Patrick; Sonnenthal, Eric; Kennedy, Mack; van Soest,Thijs; Lewicki, Jennifer

    2006-05-03

    The use of nonreactive isotopic tracers coupled to a full thermal-hydrological reservoir simulation allows for an improved method of investigating how reservoir fluids contained within matrix and fractures contribute over time to fluids produced from geothermal systems. A combined field and modeling study has been initiated to evaluate the effects of injection, production, and fracture-matrix interaction on produced noble gas contents and isotopic ratios. Gas samples collected periodically from the Aidlin steam field at The Geysers, California, between 1997 and 2006 have been analyzed for their noble gas compositions, and reveal systematic shifts in abundance and isotopic ratios over time. Because of the low concentrations of helium dissolved in the injection waters, the injectate itself has little impact on the helium isotopic composition of the reservoir fluids over time. However, the injection process may lead to fracturing of reservoir rocks and an increase in diffusion-controlled variations in noble gas compositions, related to gases derived from fluids within the rock matrix.

  5. Multiplex electric discharge gas laser system

    NASA Technical Reports Server (NTRS)

    Laudenslager, James B. (Inventor); Pacala, Thomas J. (Inventor)

    1987-01-01

    A multiple pulse electric discharge gas laser system is described in which a plurality of pulsed electric discharge gas lasers are supported in a common housing. Each laser is supplied with excitation pulses from a separate power supply. A controller, which may be a microprocessor, is connected to each power supply for controlling the application of excitation pulses to each laser so that the lasers can be fired simultaneously or in any desired sequence. The output light beams from the individual lasers may be combined or utilized independently, depending on the desired application. The individual lasers may include multiple pairs of discharge electrodes with a separate power supply connected across each electrode pair so that multiple light output beams can be generated from a single laser tube and combined or utilized separately.

  6. Metal hydrides studied in gas discharge tube

    NASA Astrophysics Data System (ADS)

    Bozhinova, I.; Kolev, S.; Popov, Tsv.; Pashov, A.; Dimitrova, M.

    2016-05-01

    A novel construction of gas discharge tube has been tested for production of high densities of metal hydrydes. Its performance turned out to be comparable with the existing sources of the same type and even better. First results of the tests on NiH are reported and critically analysed. Plans for future modifiaction of the construction and application of the tube are discussed.

  7. Noble gas contents of shergottites and implications for the Martian origin of SNC meteorites

    NASA Astrophysics Data System (ADS)

    Bogard, D. D.; Nyquist, L. E.; Johnson, P.

    1984-09-01

    Three meteorites belonging to the rare group of SNC achondrites, which may have originated in the planet Mars, have been subjected to noble gas isotopic concentration measurements. The elemental and isotopic ratios obtained are unlike those for any other noble gas components except those obtained in analyses of the Martian atmosphere by Viking spacecraft. It is hypothesized that the Kr and Xe gases represent a portion of the Martian atmosphere which was shock-implanted in the case of Elephant Moraine A79001, and that they constitute direct evidence of a Martian origin for the shergottite meteorites. If the SNC meteorites were ejected from Mars at the shergottite shock age of about 180 My ago, they must have been objects more than 6 m in diameter which experienced at least three space collisions to initiate cosmic ray exposure.

  8. Noble gas contents of shergottites and implications for the Martian origin of SNC meteorites

    NASA Technical Reports Server (NTRS)

    Bogard, D. D.; Nyquist, L. E.; Johnson, P.

    1984-01-01

    Three meteorites belonging to the rare group of SNC achondrites, which may have originated in the planet Mars, have been subjected to noble gas isotopic concentration measurements. The elemental and isotopic ratios obtained are unlike those for any other noble gas components except those obtained in analyses of the Martian atmosphere by Viking spacecraft. It is hypothesized that the Kr and Xe gases represent a portion of the Martian atmosphere which was shock-implanted in the case of Elephant Moraine A79001, and that they constitute direct evidence of a Martian origin for the shergottite meteorites. If the SNC meteorites were ejected from Mars at the shergottite shock age of about 180 My ago, they must have been objects more than 6 m in diameter which experienced at least three space collisions to initiate cosmic ray exposure.

  9. Quantum-chemical modeling of boron and noble gas dopants in silicon

    NASA Technical Reports Server (NTRS)

    Aronowitz, S.

    1983-01-01

    The electron effects of the presence of boron and noble gas dopants in a model silicon lattice were investigated using a self-consistent charge extended Hueckel program. The extent of electronic interaction of the noble gas with the lattice is given by: Kr greater than Ar greater than Ne. Theoretically, boron diffusion in the presence of neon, argon or krypton was examined using a self-consistent charge extended Hueckel program. The net energy of interaction between boron and neon is strongly repulsive while argon-boron exhibits a region of relative stability; krypton exhibits behavior similar to argon though no region of stability was found for the range of separations used in the calculations. Finally, it is noted, from the relative energy of the topmost filled molecular orbital associated with boron (in an interstitial position), that activation of the boron does not require boron movement but can be accomplished by indirect transitions.

  10. Comparison of the bonding between ML(+) and ML2(+) (M = metal, L = noble gas)

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R.

    1990-01-01

    Ab initio calculations are reported of the spectroscopic constants for the low-lying states of the molecular ions ML2(+), where M = Li, Na, Mg, V, Fe, Co, Ni and Cu, and where L is usually Ar. Comparison with existing analogous calculations on the ML(+) ions shows how the bonding and binding energy change with the addition of a second noble gas atom. The second binding energy is predicted to be essentially the same as the first for the Li, Na, Mg, and V ions, but larger for the Fe, Co, Ni and Cu ions. The binding energies of the transition metal noble gas ions are not accurately predicted at the SCF level, because correlation is required to describe their M(0)Ln(+) character. All trends can be explained in terms of promotion and hybridization on the metal ion.

  11. Noble Gas Partitioning Behaviour During Mantle Melting: A Possible Explanation for 'The He Paradox'?

    NASA Astrophysics Data System (ADS)

    Brooker, R. A.; Heber, V.; Kelley, S. P.; Wood, B. J.

    2003-12-01

    New UVLAMP measurements of experimental noble gas crystal/melt partitioning values (including He) suggest reasonably incompatible behaviour for both olivine and cpx and no significant fractionation of noble gases relative to one another. This is consistent with models of noble gas incorporation at crystal lattice sites in both crystals (1). However the determined D values of approximately 8 x10-4 for cpx and 5 x10-3 for olivine suggest a small but significant amount of noble gas might be retained in the mantle after melting. It is also apparent that He is three orders of magnitude less incompatible than U and Th in olivine. As opx is predicted to show similar characteristic to olivine, melting to produce a highly depleted harzbugitic (low-cpx) mantle would involve the preferential removal of U+Th relative to He. This in turn would allow a relatively undisturbed primordial/radiogenic 3He/4He ratio to be retained in association with low He abundance. Thus, recycling of previously depleted mantle into the source region of 'hot spots' provides one possible explanation for the paradox of high 3/4 He ratios previously thought to indicate an undegassed, primordial lower mantle reservoir, with low He abundance indicating a degassed source (2). Preliminary UVLAMP depth profiles for noble gas diffusion in mantle minerals confirm that although sub-solidus diffusive removal of He relative to other noble gases from a gas-rich mantle plum is theoretically possible, the short distances involved are unlikely to produce an effect that can be sustained though a hot spot melting event. The slow diffusion rates and lack of fractionation of noble gases in our partitioning experiments suggests that low He/Ar (and Ne/Ar) ratios observed at hot spots are most likely to be features inherited from the source, or subsequently imposed by some shallow level process. In our partitioning experiments, it proved surprisingly difficult to grow olivine crystals that are free of bubbles, even from

  12. A Simple Model for Fine Structure Transitions in Alkali-Metal Noble-Gas Collisions

    DTIC Science & Technology

    2015-03-01

    fine- structure transition rates of the alkali atoms . The integration of this integral is primarily performed nu- merically, using an adaptive Romberg...Previous work on the fine structure transitions of alkali atoms as they collide with noble gas atoms includes a full quantum mechanical calculation of...adiabaticity in alkali atom fine structure mixing”. SPIE LASE, 896207–896207. International Society for Optics and Photonics, 2014. 4. Griffiths, David J

  13. Prediction of a neutral noble gas compound in the triplet state.

    PubMed

    Manna, Debashree; Ghosh, Ayan; Ghanty, Tapan K

    2015-05-26

    Discovery of the HArF molecule associated with H-Ar covalent bonding [Nature, 2000, 406, 874-876] has revolutionized the field of noble gas chemistry. In general, this class of noble gas compound involving conventional chemical bonds exists as closed-shell species in a singlet electronic state. For the first time, in a bid to predict neutral noble gas chemical compounds in their triplet electronic state, we have carried out a systematic investigation of xenon inserted FN and FP species by using quantum chemical calculations with density functional theory and various post-Hartree-Fock-based correlated methods, including the multireference configuration interaction technique. The FXeP and FXeN species are predicted to be stable by all the computational methods employed in the present work, such as density functional theory (DFT), second-order Møller-Plesset perturbation theory (MP2), coupled-cluster theory (CCSD(T)), and multireference configuration interaction (MRCI). For the purpose of comparison we have also included the Kr-inserted compounds of FN and FP species. Geometrical parameters, dissociation energies, transition-state barrier heights, atomic charge distributions, vibrational frequency data, and atoms-in-molecules properties clearly indicate that it is possible to experimentally realize the most stable state of FXeP and FXeN molecules, which is triplet in nature, through the matrix isolation technique under cryogenic conditions.

  14. A review of noble gas geochemistry in relation to early Earth history

    NASA Technical Reports Server (NTRS)

    Kurz, M. D.

    1985-01-01

    One of the most fundamental noble gas constraints on early Earth history is derived from isotopic differences in (129)Xe/(130)Xe between various terrestrial materials. The short half life (17 m.y.) of extinct (129I, parent of (129)Xe, means that these differences must have been produced within the first 100 m.y. after terrestrial accretion. The identification of large anomalies in (129)Xe/(130)Xe in mid ocean ridge basalts (MORB), with respect to atmospheric xenon, suggests that the atmosphere and upper mantle have remained separate since that time. This alone is a very strong argument for early catastrophic degassing, which would be consistent with an early fractionation resulting in core formation. However, noble gas isotopic systematics of oceanic basalts show that the mantle cannot necessarily be regarded as a homogeneous system, since there are significant variations in (3)He/(4)He, (40)Ar/(36)Ar, and (129)Xe/(130)Xe. Therefore, the early degassing cannot be considered to have acted on the whole mantle. The specific mechanisms of degassing, in particular the thickness and growth of the early crust, is an important variable in understanding present day noble gas inventories. Another constraint can be obtained from rocks that are thought to be derived from near the lithosphere asthenosphere boundary: ultramafic xenoliths.

  15. Atomistic-Scale Simulations of Defect Formation in Graphene under Noble Gas Ion Irradiation.

    PubMed

    Yoon, Kichul; Rahnamoun, Ali; Swett, Jacob L; Iberi, Vighter; Cullen, David A; Vlassiouk, Ivan V; Belianinov, Alex; Jesse, Stephen; Sang, Xiahan; Ovchinnikova, Olga S; Rondinone, Adam J; Unocic, Raymond R; van Duin, Adri C T

    2016-09-27

    Despite the frequent use of noble gas ion irradiation of graphene, the atomistic-scale details, including the effects of dose, energy, and ion bombardment species on defect formation, and the associated dynamic processes involved in the irradiations and subsequent relaxation have not yet been thoroughly studied. Here, we simulated the irradiation of graphene with noble gas ions and the subsequent effects of annealing. Lattice defects, including nanopores, were generated after the annealing of the irradiated graphene, which was the result of structural relaxation that allowed the vacancy-type defects to coalesce into a larger defect. Larger nanopores were generated by irradiation with a series of heavier noble gas ions, due to a larger collision cross section that led to more detrimental effects in the graphene, and by a higher ion dose that increased the chance of displacing the carbon atoms from graphene. Overall trends in the evolution of defects with respect to a dose, as well as the defect characteristics, were in good agreement with experimental results. Additionally, the statistics in the defect types generated by different irradiating ions suggested that the most frequently observed defect types were Stone-Thrower-Wales (STW) defects for He(+) irradiation and monovacancy (MV) defects for all other ion irradiations.

  16. Atomistic-scale simulations of defect formation in graphene under noble gas ion irradiation

    DOE PAGES

    Yoon, Kichul; Rahnamoun, Ali; Swett, Jacob L.; ...

    2016-08-17

    Despite the frequent use of noble gas ion irradiation of graphene, the atomistic-scale details, including the effects of dose, energy, and ion bombardment species on defect formation, and the associated dynamic processes involved in the irradiations and subsequent relaxation have not yet been thoroughly studied. Here, we simulated the irradiation of graphene with noble gas ions and the subsequent effects of annealing. Lattice defects, including nanopores, were generated after the annealing of the irradiated graphene, which was the result of structural relaxation that allowed the vacancy-type defects to coalesce into a larger defect. Larger nanopores were generated by irradiation withmore » a series of heavier noble gas ions, due to a larger collision cross section that led to more detrimental effects in the graphene, and by a higher ion dose that increased the chance of displacing the carbon atoms from graphene. Overall trends in the evolution of defects with respect to a dose, as well as the defect characteristics, were in good agreement with experimental results. In addition, the statistics in the defect types generated by different irradiating ions suggested that the most frequently observed defect types were Stone-Thrower-Wales (STW) defects for He+ irradiation and monovacancy (MV) defects for all other ion irradiations.« less

  17. Atomistic-scale simulations of defect formation in graphene under noble gas ion irradiation

    SciTech Connect

    Yoon, Kichul; Rahnamoun, Ali; Swett, Jacob L.; Iberi, Vighter; Cullen, David A.; Vlassiouk, Ivan V.; Belianinov, Alex; Jesse, Stephen; Sang, Xiahan; Ovchinnikova, Olga S.; Rondinone, Adam Justin; Unocic, Raymond R.; van Duin, Adri C. T.

    2016-08-17

    Despite the frequent use of noble gas ion irradiation of graphene, the atomistic-scale details, including the effects of dose, energy, and ion bombardment species on defect formation, and the associated dynamic processes involved in the irradiations and subsequent relaxation have not yet been thoroughly studied. Here, we simulated the irradiation of graphene with noble gas ions and the subsequent effects of annealing. Lattice defects, including nanopores, were generated after the annealing of the irradiated graphene, which was the result of structural relaxation that allowed the vacancy-type defects to coalesce into a larger defect. Larger nanopores were generated by irradiation with a series of heavier noble gas ions, due to a larger collision cross section that led to more detrimental effects in the graphene, and by a higher ion dose that increased the chance of displacing the carbon atoms from graphene. Overall trends in the evolution of defects with respect to a dose, as well as the defect characteristics, were in good agreement with experimental results. In addition, the statistics in the defect types generated by different irradiating ions suggested that the most frequently observed defect types were Stone-Thrower-Wales (STW) defects for He+ irradiation and monovacancy (MV) defects for all other ion irradiations.

  18. Issues Involving The OSI Concept of Operation For Noble Gas Radionuclide Detection

    SciTech Connect

    Carrigan, C R; Sun, Y

    2011-01-21

    The development of a technically sound protocol for detecting the subsurface release of noble gas radionuclides is critical to the successful operation of an on site inspection (OSI) under the CTBT and has broad ramifications for all aspects of the OSI regime including the setting of specifications for both sampling and analysis equipment used during an OSI. With NA-24 support, we are investigating a variety of issues and concerns that have significant bearing on policy development and technical guidance regarding the detection of noble gases and the creation of a technically justifiable OSI concept of operation. The work at LLNL focuses on optimizing the ability to capture radioactive noble gases subject to the constraints of possible OSI scenarios. This focus results from recognizing the difficulty of detecting gas releases in geologic environments - a lesson we learned previously from the LLNL Non-Proliferation Experiment (NPE). Evaluation of a number of important noble gas detection issues, potentially affecting OSI policy, has awaited the US re-engagement with the OSI technical community. Thus, there have been numerous issues to address during the past 18 months. Most of our evaluations of a sampling or transport issue necessarily involve computer simulations. This is partly due to the lack of OSI-relevant field data, such as that provided by the NPE, and partly a result of the ability of LLNL computer-based models to test a range of geologic and atmospheric scenarios far beyond what could ever be studied in the field making this approach very highly cost effective. We review some highlights of the transport and sampling issues we have investigated during the past year. We complete the discussion of these issues with a description of a preliminary design for subsurface sampling that is intended to be a practical solution to most if not all the challenges addressed here.

  19. Research on Modern Gas Discharge Light Sources

    NASA Astrophysics Data System (ADS)

    Born, M.; Markus, T.

    This article gives an overview of today's gas discharge light sources and their application fields with focus on research aspects. In Sect. 15.1 of this chapter, an introduction to electric light sources, the lighting market and related research topics is outlined. Due to the complexity of the subject, we have focused on selected topics in the field of high intensity discharge (HID) lamps since these represent an essential part of modern lamp research. The working principle and light technical properties of HID lamps are described in Sect. 15.2. Physical and thermochemical modelling procedures and tools as well as experimental analysis are discussed in Sects. 15.3 and 15.4, respectively. These tools result in a detailed scientific insight into the complexity of real discharge lamps. In particular, analysis and modelling are the keys for further improvement and development of existing and new products.

  20. The noble gas geochemistry of natural CO 2 gas reservoirs from the Colorado Plateau and Rocky Mountain provinces, USA

    NASA Astrophysics Data System (ADS)

    Gilfillan, Stuart M. V.; Ballentine, Chris J.; Holland, Greg; Blagburn, Dave; Lollar, Barbara Sherwood; Stevens, Scott; Schoell, Martin; Cassidy, Martin

    2008-02-01

    Identification of the source of CO 2 in natural reservoirs and development of physical models to account for the migration and interaction of this CO 2 with the groundwater is essential for developing a quantitative understanding of the long term storage potential of CO 2 in the subsurface. We present the results of 57 noble gas determinations in CO 2 rich fields (>82%) from three natural reservoirs to the east of the Colorado Plateau uplift province, USA (Bravo Dome, NM., Sheep Mountain, CO. and McCallum Dome, CO.), and from two reservoirs from within the uplift area (St. John's Dome, AZ., and McElmo Dome, CO.). We demonstrate that all fields have CO 2/ 3He ratios consistent with a dominantly magmatic source. The most recent volcanics in the province date from 8 to 10 ka and are associated with the Bravo Dome field. The oldest magmatic activity dates from 42 to 70 Ma and is associated with the McElmo Dome field, located in the tectonically stable centre of the Colorado Plateau: CO 2 can be stored within the subsurface on a millennia timescale. The manner and extent of contact of the CO 2 phase with the groundwater system is a critical parameter in using these systems as natural analogues for geological storage of anthropogenic CO 2. We show that coherent fractionation of groundwater 20Ne/ 36Ar with crustal radiogenic noble gases ( 4He, 21Ne, 40Ar) is explained by a two stage re-dissolution model: Stage 1: Magmatic CO 2 injection into the groundwater system strips dissolved air-derived noble gases (ASW) and accumulated crustal/radiogenic noble gas by CO 2/water phase partitioning. The CO 2 containing the groundwater stripped gases provides the first reservoir fluid charge. Subsequent charges of CO 2 provide no more ASW or crustal noble gases, and serve only to dilute the original ASW and crustal noble gas rich CO 2. Reservoir scale preservation of concentration gradients in ASW-derived noble gases thus provide CO 2 filling direction. This is seen in the Bravo Dome

  1. ABOUT THE POSSIBLE ROLE OF HYDROCARBON LAKES IN THE ORIGIN OF TITAN'S NOBLE GAS ATMOSPHERIC DEPLETION

    SciTech Connect

    Cordier, D.; Mousis, O.; Lebonnois, S.; Lavvas, P.; Lobo, L. Q.; Ferreira, A. G. M.

    2010-10-01

    An unexpected feature of Titan's atmosphere is the strong depletion in primordial noble gases revealed by the Gas Chromatograph Mass Spectrometer aboard the Huygens probe during its descent on 2005 January 14. Although several plausible explanations have already been formulated, no definitive response to this issue has yet been found. Here, we investigate the possible sequestration of these noble gases in the liquid contained in lakes and wet terrains on Titan and the consequences for their atmospheric abundances. Considering the atmosphere and the liquid existing on the soil as a whole system, we compute the abundance of each noble gas relative to nitrogen. To do so, we make the assumption of thermodynamic equilibrium between the liquid and the atmosphere, the abundances of the different constituents being determined via regular solution theory. We find that xenon's atmospheric depletion can be explained by its dissolution at ambient temperature in the liquid presumably present on Titan's soil. In the cases of argon and krypton, we find that the fractions incorporated in the liquid are negligible, implying that an alternative mechanism must be invoked to explain their atmospheric depletion.

  2. Apparatus for preparing a solution of a hyperpolarized noble gas for NMR and MRI analysis

    DOEpatents

    Pines, Alexander; Budinger, Thomas; Navon, Gil; Song, Yi-Qiao; Appelt, Stephan; Bifone, Angelo; Taylor, Rebecca; Goodson, Boyd; Seydoux, Roberto; Room, Toomas; Pietrass, Tanja

    2008-06-10

    The present invention relates generally to nuclear magnetic resonance (NMR) techniques for both spectroscopy and imaging. More particularly, the present invention relates to methods in which hyperpolarized noble gases (e.g., Xe and He) are used to enhance and improve NMR and MRI. Additionally, the hyperpolarized gas solutions of the invention are useful both in vitro and in vivo to study the dynamics or structure of a system. When used with biological systems, either in vivo or in vitro, it is within the scope of the invention to target the hyperpolarized gas and deliver it to specific regions within the system.

  3. Noble gas measurements from tiny water amounts: fluid inclusions in carbonates of speleothemes and coral skeletons

    NASA Astrophysics Data System (ADS)

    Papp, Laszlo; Palcsu, Laszlo; Major, Zoltan

    2010-05-01

    Based on the concentrations of dissolved noble gases in fluid inclusions in speleothems and corals, noble gas temperatures (NGT) might be derived, that would be important climate information [1]. In the case of terrestrial carbonates, it means that the temperature dependency of noble gases in the evolving fluid inclusions is suitable to determine the prevailing temperature. This recognition provides new opportunities for the research of paleoclimate. Additionally, the dissolved noble gases in the fluid inclusions represented in corals could be used to study past sea surface temperatures that are one of the most essential parameter of climate reconstructions. To measure dissolved noble gases in fluid inclusions of a few micro-litres, a noble gas mass spectrometer equipped with an ultra high vacuum preparation line is the most suitable way. The preparation of the carbonate samples is performed in a sample preparation system connected to a static mode VG 5400 noble gas mass spectrometer. As a first step of the sample preparation, one piece of a sample is put into a crusher of the preparation line and then evacuated and heated at night. The crushing of dripstone and coral samples is carried out in a stainless steel pipe with a ferro-magnetic ball at 150 °C temperature, in such a way that the ball is kept on elevating and falling down onto the carbonate sample one hundred times. The aim of the heating is to avoid the water released from the fluid inclusions not to be adsorbed on the surface of the freshly broken carbonate [2]. The water released from the fluid inclusions is frozen into a cold finger, being held at temperature of -70 °C for 15 minutes. In this case, the collection efficiency is better than 99.7 %. Then the cold finger is warmed to 27 °C, and the pressure of the water vapour expanded to the volume of the cold finger is determined by a pressure gauge, which accuracy is better than 0.2 % in the pressure range of 10-2 mbar to 11 mbar. The water vapour

  4. Noble gas tracers of ventilation during deep-water formation in the Weddell Sea

    NASA Astrophysics Data System (ADS)

    Nicholson, D. P.; Khatiwala, S.; Heimbach, P.

    2016-05-01

    To explore the dynamics and implications of incomplete air-sea equilibration during the formation of abyssal water masses, we simulated noble gases in the Estimating the Circulation & Climate of the Ocean (ECCO) global ocean state estimate. A novel computation approach utilizing a matrix-free Newton-Krylov (MFNK) scheme was applied to quickly compute the periodic seasonal solutions for noble gas tracers. MFNK allows for quick computation of a cyclo-stationary solution for tracers (i.e., a spun-up, repeating seasonal cycle), which would otherwise be computationally infeasible due to the long time scale of dynamic adjustment of the abyssal ocean (1000’s of years). A suite of experiments isolates individual processes, including atmospheric pressure effects, the solubility pump and air-sea bubble fluxes. In addition to these modeled processes, a volumetric contribution of 0.28 ± 0.07% of glacial melt water is required to reconcile deep-water observations in the Weddell Sea. Another primary finding of our work is that the saturation anomaly of heavy noble gases in model simulations is in excess of two-fold more negative than is suggested from Weddell Sea observations. This result suggests that model water masses are insufficiently ventilated prior to subduction and thus there is insufficient communication between atmosphere and ocean at high latitudes. The discrepancy between noble gas observations and ECCO simulations highlights that important inadequacies remain in how we model high-latitude ventilation with large implications for the oceanic uptake and storage of carbon.

  5. Numerical study of a helicon gas discharge

    NASA Astrophysics Data System (ADS)

    Batishchev, Oleg; Molvig, Kim

    2001-06-01

    Plasma sources based on the helicon gas discharge are widely used in industry [1] due to their high efficiency. We investigate performance of a particular helicon plasma sources designed for the VASIMR [2] plasma thruster. Specifically we are interested in the VX-10 configuration [3] operating with hydrogen or helium plasmas. Firstly, we use our zero-dimensional model to characterize plasma condition and composition [4]. Next we couple it to one-dimensional hybrid model [5] for a rarified gas flow in the system feeding pipe - quartz tube of the helicon. We perform numerical analysis of plasma source operation in different regimes. Results are compared and used to explain experimental data [3]. Finally, we'll discuss more detailed fully kinetic models for the gas and plasma species evolution in the helicon discharge with parameters typical to that of the VASIMR plasma thruster. [1] M.A. Lieberman and A.J.Lihtenberg, , 'Principles of plasma discharges and materials processing', Wiley, NY, 1994; [2] F.Chang-Diaz et al, Bull. APS 45 (7) 129, 2000; [3] J. Squire et al., Bull. APS 45 (7) 130, 2000; [4] O.Batishchev and Kim Molvig, AIAA technical paper 2000-3754, 2000; [5] O.Batishchev and Kim Molvig, AIAA technical paper 2001-0963, 2001.

  6. Using noble gas ratios to determine the origin of ground ice

    NASA Astrophysics Data System (ADS)

    Utting, Nicholas; Lauriol, Bernard; Lacelle, Denis; Clark, Ian

    2016-01-01

    Argon, krypton and xenon have different solubilities in water, meaning their ratios in water are different from those in atmospheric air. This characteristic is used in a novel method to distinguish between ice bodies which originate from the compaction of snow (i.e. buried snow banks, glacial ice) vs. ice which forms from the freezing of groundwater (i.e. pingo ice). Ice which forms from the compaction of snow has gas ratios similar to atmospheric air, while ice which forms from the freezing of liquid water is expected to have gas ratios similar to air-equilibrated water. This analysis has been conducted using a spike dilution noble gas line with gas extraction conducted on-line. Samples were mixed with an aliquot of rare noble gases while being melted, then extracted gases are purified and cryogenically separated. Samples have been analysed from glacial ice, buried snow bank ice, intrusive ice, wedge ice, cave ice and two unknown ice bodies. Ice bodies which have formed from different processes have different gas ratios relative to their formation processes.

  7. A new noble gas paleoclimate record in Texas — Basic assumptions revisited

    NASA Astrophysics Data System (ADS)

    Castro, Maria Clara; Hall, Chris Michael; Patriarche, Delphine; Goblet, Patrick; Ellis, Brian Robert

    2007-05-01

    A generally accepted basic principle in relation to the use of the noble gas thermometer in groundwater flow systems is that high-frequency noble gas climatic signals are lost due to the effect of dispersion. This loss of signal, combined with 14C dating issues, makes it only suited to identify major climatic events such as the Last Glacial Maximum (LGM). Consequently, the identification of significant noble gas temperature (NGT) cooling (≥ 5 °C) with respect to present time has systematically been associated with the occurrence of the LGM even when reasonable water age controls were unavailable. It has also become apparent at a number of studied sites that modern NGTs estimated through standard models [M. Stute, P. Schlosser, Principles and applications of the noble gas paleothermometer, in: P.K. Swart, K.C. Lohmann, J.A. McKenzie, S. Savin, (Eds), Climate change in continental isotopic records, Geophysical monograph 78, AGU (1993) 89-100.; W. Aeschbach-Hertig, F. Peeters, U. Beyerle, R. Kipfer, Paleotemperature reconstruction from noble gases in ground water taking into account equilibration with entrapped air, Nature 405(6790) (2000) 1040-1044.] are unable to reproduce ground temperatures at the interface with the unsaturated zone, a basic requirement for proper paleoclimate reconstruction through noble gases. Instead, a systematic bias to low NGTs in recharge areas is observed. The Carrizo aquifer, in which the LGM was previously identified [M. Stute, P. Schlosser, J.F. Clark, W.S. Broecker, Paleotemperatures in the Southwestern United States derived from noble gases in ground water, Science 256(5059) (1992) 1000-1001.] and which presents an NGT bias of over 4 °C, is an ideal setting to analyze and revise basic principles and assumptions in relation with the use of the noble gas thermometer. Here, we present a new noble gas data set (49 measurements) collected at 20 different locations in the Carrizo aquifer. This new data set together with previously

  8. Development of Laser-Polarized Noble Gas Magnetic Resonance Imaging (MRI) Technology

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.

    2004-01-01

    We are developing technology for laser-polarized noble gas nuclear magnetic resonance (NMR), with the aim of enabling it as a novel biomedical imaging tool for ground-based and eventually space-based application. This emerging multidisciplinary technology enables high-resolution gas-space magnetic resonance imaging (MRI)-e.g., of lung ventilation, perfusion, and gas-exchange. In addition, laser-polarized noble gases (3He and 1BXe) do not require a large magnetic field for sensitive NMR detection, opening the door to practical MRI with novel, open-access magnet designs at very low magnetic fields (and hence in confined spaces). We are pursuing two specific aims in this technology development program. The first aim is to develop an open-access, low-field (less than 0.01 T) instrument for MRI studies of human gas inhalation as a function of subject orientation, and the second aim is to develop functional imaging of the lung using laser-polarized He-3 and Xe-129.

  9. Noble gas isotopes and halogens in volatile-rich inclusions in diamonds

    NASA Technical Reports Server (NTRS)

    Burgess, Raymond; Turner, Grenville

    1994-01-01

    Application of the (40)Ar-(39)Ar method and noble gas studies to diamonds has increased our understanding of their age relationships to the host kimberlite or lamproite, and of the source and composition of volatile-rich fluids in the upper mantle. The properties of diamond (inert, high mechanical strength and low gas diffusivities) means they are especially useful samples for studying gases trapped deep within the earth (less than 150 km) as they are unlikely to have undergone loss or exchange of entrapped material since formation. Volatile-rich fluids (H2O-CO2) are important agents for metasomatic processes in the upper mantle, and the noble gases and halogens preferentially partition into this phase leading to a strong geochemical coherence between these groups of elements. The abundances of the halogens in the major reservoirs of the Earth shows a marked progression from chlorine, concentrated in the oceans, through to iodine which, through its affinity to organic material, is concentrated mainly in sediments. Abundances in the upper mantle are low. This is particularly true for iodine which is of special interest in view of its potential significance as an indicator of sediment recycling and by way of its link to (129)Xe amomalies in the mantle through the low extinct isotope (129)I. Extensions of the (40)Ar-(39)Ar technique enable measurements of halogens and other elements (K, Ca, Ba, U) by production of noble gas isotopes from these species during neutron irradiation. Samples analyzed in this way include 15 coated stones from an unknown source in Zaire, 3 boarts from the Jwaneng and 1 boart from the Orapa kimberlites, both in Botswana.

  10. Looking for a correlation between terrestrial age and noble gas record of H chondrites

    NASA Astrophysics Data System (ADS)

    Loeken, Th.; Schultz, L.

    1994-07-01

    On the basis of statistically significant concentration differences of some trace elements, it has been suggested that H chondrites found in Antarctica and Modern Falls represent members of different extraterrestrial populations with different thermal histories. It was also concluded that H chondrites found in Victoria Land (Allan Hills) differ chemically from those found in Queen Maud Land (Yamato Mountains), an effect that could be based on the different terrestrial age distribution of both groups. This would imply a change of the meteoroid flux hitting the Earth on a timescale that is comparable to typical terrestrial ages of Antarctic chondrites. A comparison of the noble gas record of H chondrites from the Allan Hills icefields and Modern Fall shows that the distributions of cosmic-ray exposure ages and the concentrations of radiogenic He-4 and Ar-40 are very similar. In an earlier paper we compared the noble gas measurements of 20 Yamato H contents with meteorites from the Allan Hills region and Modern Falls. Similar distributions were found. The distribution of cosmic-ray exposure ages and radiogenic He-4 and Ar-40 gas contents as a function of the terrestrial age is investigated in these chondrites. The distribution shows the well-known 7-Ma-cluster indicating that about 40% of the H chondrites were excavated from their parent body in a single event. Both populations, Antarctic Meteorites and Modern Falls, exhibit the same characteristic feature: a major meteoroid-producing event about 7 Ma. This indicates that one H-group population delivers H chondrites to Antarctica and the rest of the world. Cosmic-ray exposure ages and thermal-history indicaters like radiogenic noble gases show no evidence of a change in the H chondrite meteoroid population during the last 200,000 years.

  11. Noble gas excimer scintillation following neutron capture in boron thin films

    SciTech Connect

    McComb, Jacob C.; Al-Sheikhly, Mohamad; Coplan, Michael A.; Thompson, Alan K.; Vest, Robert E.; Clark, Charles W.

    2014-04-14

    Far-ultraviolet scintillation signals have been measured in heavy noble gases (argon, krypton, xenon) following boron-neutron capture ({sup 10}B(n,α){sup 7}Li) in {sup 10}B thin films. The observed scintillation yields are comparable to the yields from some liquid and solid neutron scintillators. At noble gas pressures of 107 kPa, the number of photons produced per neutron absorbed following irradiation of a 1200 nm thick {sup 10}B film was 14 000 for xenon, 11 000 for krypton, and 6000 for argon. The absolute scintillation yields from the experimental configuration were calculated using data from (1) experimental irradiations, (2) thin-film characterizations, (3) photomultiplier tube calibrations, and (4) photon collection modeling. Both the boron films and the photomultiplier tube were characterized at the National Institute of Standards and Technology. Monte Carlo modeling of the reaction cell provided estimates of the photon collection efficiency and the transport behavior of {sup 10}B(n,α){sup 7}Li reaction products escaping the thin films. Scintillation yields increased with gas pressure due to increased ionization and excitation densities of the gases from the {sup 10}B(n,α){sup 7}Li reaction products, increased frequency of three-body, excimer-forming collisions, and reduced photon emission volumes (i.e., larger solid angle) at higher pressures. Yields decreased for thicker {sup 10}B thin films due to higher average energy loss of the {sup 10}B(n,α){sup 7}Li reaction products escaping the films. The relative standard uncertainties in the measurements were determined to lie between 14% and 16%. The observed scintillation signal demonstrates that noble gas excimer scintillation is promising for use in practical neutron detectors.

  12. Anatomy of a cluster IDP. Part 2: Noble gas abundances, trace element geochemistry, isotopic abundances, and trace organic chemistry of several fragments from L2008#5

    NASA Technical Reports Server (NTRS)

    Thomas, K. L.; Clemett, S. J.; Flynn, G. J.; Keller, L. P.; Mckay, David S.; Messenger, S.; Nier, A. O.; Schlutter, D. J.; Sutton, S. R.; Walker, R. M.

    1994-01-01

    The topics discussed include the following: noble gas content and release temperatures; trace element abundances; heating summary of cluster fragments; isotopic measurements; and trace organic chemistry.

  13. Confinement induced binding in noble gas atoms within a BN-doped carbon nanotube

    NASA Astrophysics Data System (ADS)

    Chakraborty, Debdutta; Chattaraj, Pratim Kumar

    2015-02-01

    Confinement induced binding interaction patterns for noble gas atoms (Hen/m, Arn, Krn; n = 2, m = 3) atoms inside pristine and -BN doped (3, 3) single walled carbon nanotube (SWCNT) have been studied through density functional theory calculations. The kinetic stability for He dimer and trimer has been investigated at 100 K and 300 K through an ab initio molecular dynamics simulation. The positive role of doping in SWCNT in enhancing the nature of interaction as well as the kinetic stability of the said systems has been found.

  14. A model to explain the various paradoxes associated with mantle noble gas geochemistry

    PubMed Central

    Anderson, Don L.

    1998-01-01

    As a result of an energetic accretion, the Earth is a volatile-poor and strongly differentiated planet. The volatile elements can be accounted for by a late veneer (≈1% of total mass of the Earth). The incompatible elements are strongly concentrated into the exosphere (atmosphere, oceans, sediments, and crust) and upper mantle. Recent geochemical models invoke a large primordial undegassed reservoir with chondritic abundances of uranium and helium, which is clearly at odds with mass and energy balance calculations. The basic assumption behind these models is that excess “primordial” 3He is responsible for 3He/4He ratios higher than the average for midocean ridge basalts. The evidence however favors depletion of 3He and excessive depletion of 4He and, therefore, favors a refractory, residual (low U, Th) source Petrological processes such as melt-crystal and melt-gas separation fractionate helium from U and Th and, with time, generate inhomogeneities in the 3He/4He ratio. A self-consistent model for noble gases involves a gas-poor planet with trapping of CO2 and noble gases in the shallow mantle. Such trapped gases are released by later tectonic and magmatic processes. Most of the mantle was depleted and degassed during the accretion process. High 3He/4He gases are viewed as products of ancient gas exsolution stored in low U environments, rather than products of primordial reservoirs. PMID:9689038

  15. Mechanisms of disruptions caused by noble gas injection into tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Morozov, D. Kh.; Yurchenko, E. I.; Lukash, V. E.; Baronova, E. O.; Pozdnyakov, Yu. I.; Rozhansky, V. A.; Senichenkov, I. Yu.; Veselova, I. Yu.; Schneider, R.

    2005-08-01

    Noble gas injection for disruption mitigation in DIII-D is simulated. The simulation of the first two stages of the disruption is performed: the first one is the neutral gas jet penetration through the background plasmas, and the second one is the instability growth. In order to simulate the first stage, the MHD pellet code LLP with improved radiation model for noble gas is used. Plasma cooling at this stage is provided by the energy exchange with the jet. The opacity effects in radiation losses are found to be important in the energy balance calculations. The magnetic surfaces in contact with the jet are cooled significantly; however, the temperature as well as the electric conductivity, remains high. The cooling front propagates towards the plasma centre. It has been shown that the cooling front is accompanied by strongly localized 'shark fin-like' perturbation in toroidal current density profile. The simplified cylindrical model shows that the cooling front is able to produce the internal kink-like mode with growth rate significantly higher than the tearing mode. The unstable kink perturbation obtained is non-resonant for any magnetic surface, both inside the plasma column, and in the vacuum space outside the separatrix. The mode disturbs mainly the core region. The growth time of the 'shark fin-like' mode is higher than the Alfven time by a factor of 10-100 for DIII-D parameters.

  16. 46 CFR 153.964 - Discharge by gas pressurization.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Discharge by gas pressurization. 153.964 Section 153.964... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer Procedures § 153.964 Discharge by gas pressurization. The person in charge of cargo transfer may...

  17. 46 CFR 153.964 - Discharge by gas pressurization.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Discharge by gas pressurization. 153.964 Section 153.964... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer Procedures § 153.964 Discharge by gas pressurization. The person in charge of cargo transfer may...

  18. Tracing groundwater input into Lake Vanda, Wright Valley, Antarctica using major ions, stable isotopes and noble gas

    NASA Astrophysics Data System (ADS)

    Dowling, C. B.; Poreda, R. J.; Snyder, G. T.

    2008-12-01

    The McMurdo Dry Valleys (MDV), Antarctica, is the largest ice-free region on Antarctica. Lake Vanda, located in central Wright Valley, is the deepest lake among the MDV lakes. It has a relatively fresh water layer above 50 m with a hypersaline calcium-chloride brine below (50-72 m). The Onyx River is the only stream input into Lake Vanda. It flows westward from the coastal Lower Wright Glacier and discharges into Lake Vanda. Suggested by the published literature and this study, there has been and may still be groundwater input into Lake Vanda. Stable isotopes, major ions, and noble gas data from this study coupled with previously published data indicate that the bottom waters of Lake Vanda have had significant contributions from a deep groundwater system. The dissolved gas of the bottom waters of Lake Vanda display solubility concentrations rather than the Ar-enriched dissolved gas seen in the Taylor Valley lakes (such as Lake Bonney). The isotopic data indicate that the bottom calcium-chloride-brine of Lake Vanda has undergone very little evaporation. The calcium-chloride chemistry of the groundwater that discharges into Lake Vanda most likely results from the chemical weathering and dissolution of cryogenic evaporites (antarcticite and gypsum) within the glacial sediments of Wright Valley. The high calcium concentrations of the brine have caused gypsum to precipitate on the lake bottom. Our work also supports previous physical and chemical observations suggesting that the upper portion actively circulates and the hypersaline bottom layer does not. The helium and calcium chloride values are concentrated at the bottom, with a very narrow transition layer between it and the above fresh water. If the freshwater layer did not actively circulate, then diffusion over time would have caused the helium and calcium chloride to slowly permeate upwards through the water column.

  19. Disruption mitigation by injection of small quantities of noble gas in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Pautasso, G.; Bernert, M.; Dibon, M.; Duval, B.; Dux, R.; Fable, E.; Fuchs, J. C.; Conway, G. D.; Giannone, L.; Gude, A.; Herrmann, A.; Hoelzl, M.; McCarthy, P. J.; Mlynek, A.; Maraschek, M.; Nardon, E.; Papp, G.; Potzel, S.; Rapson, C.; Sieglin, B.; Suttrop, W.; Treutterer, W.; The ASDEX Upgrade Team; The EUROfusion MST1 Team

    2017-01-01

    The most recent experiments of disruption mitigation by massive gas injection in ASDEX Upgrade have concentrated on small—relatively to the past—quantities of noble gas injected, and on the search for the minimum amount of gas necessary for the mitigation of the thermal loads on the divertor and for a significant reduction of the vertical force during the current quench. A scenario for the generation of a long-lived runaway electron beam has been established; this allows the study of runaway current dissipation by moderate quantities of argon injected. This paper presents these recent results and discusses them in the more general context of physical models and extrapolation, and of the open questions, relevant for the realization of the ITER disruption mitigation system.

  20. 46 CFR 154.1838 - Discharge by gas pressurization.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Discharge by gas pressurization. 154.1838 Section 154... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1838 Discharge by gas pressurization. The person in charge of cargo transfer may not authorize cargo discharge...

  1. 46 CFR 154.1838 - Discharge by gas pressurization.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Discharge by gas pressurization. 154.1838 Section 154... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1838 Discharge by gas pressurization. The person in charge of cargo transfer may not authorize cargo discharge...

  2. 46 CFR 154.1838 - Discharge by gas pressurization.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Discharge by gas pressurization. 154.1838 Section 154... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1838 Discharge by gas pressurization. The person in charge of cargo transfer may not authorize cargo discharge...

  3. Noble Gas Analysis for Mars Robotic Missions: Evaluating K-Ar Age Dating for Mars Rock Analogs and Martian Shergottites

    NASA Technical Reports Server (NTRS)

    Park, J.; Ming, D. W.; Garrison, D. H.; Jones, J. H.; Bogard, D. D.; Nagao, K.

    2009-01-01

    The purpose of this noble gas investigation was to evaluate the possibility of measuring noble gases in martian rocks and air by future robotic missions such as the Mars Science Laboratory (MSL). The MSL mission has, as part of its payload, the Sample Analysis at Mars (SAM) instrument, which consists of a pyrolysis oven integrated with a GCMS. The MSL SAM instrument has the capability to measure noble gas compositions of martian rocks and atmosphere. Here we suggest the possibility of K-Ar age dating based on noble gas release of martian rocks by conducting laboratory simulation experiments on terrestrial basalts and martian meteorites. We provide requirements for the SAM instrument to obtain adequate noble gas abundances and compositions within the current SAM instrumental operating conditions, especially, a power limit that prevents heating the furnace above approx.1100 C. In addition, Martian meteorite analyses from NASA-JSC will be used as ground truth to evaluate the feasibility of robotic experiments to constrain the ages of martian surface rocks.

  4. Light noble gas chemistry: Structures, stabilities, and bonding of helium, neon and argon compounds

    SciTech Connect

    Frenking, G. ); Koch, W. ); Reichel, F. ); Cremer, D. )

    1990-05-23

    Theoretically determined geometries are reported for the light noble gas ions Ng{sub 2}C{sup 2+}, Ng{sub 2}N{sup 2+}, Ng{sub 2}O{sup 2+}, NgCCNg{sup 2+}, NgCCH{sup +}, NgCN{sup +}, and NgNC{sup +} (Ng = He, Ne, Ar) at the MP2/6-31G(d,p) level of theory. In a few cases, optimizations were carried out at CASSCF/6-31G(d,p). The thermodynamic stability of the Ng compounds is investigated at MP4(SDTQ)/6-311G(2df,2pd) for Ng = He, Ne and at MP4(SDTQ)/6-311G(d,p) for Ng = Ar. The structures and stabilities of the molecules are discussed in terms of donor-acceptor interactions between Ng and the respective fragment cation, by using molecular orbital arguments and utilizing the analysis of the electron density distribution and its associated Laplace field. Generally, there is an increase in Ng,X binding interactions of a noble gas molecule NgX with increasing atomic size of Ng. In some cases the Ne,X stabilization energies are slightly smaller than the corresponding He,X values because of repulsive p-{pi} interactions in the neon compounds. The argon molecules are in all cases significantly stronger bound.

  5. Noble gas patterns in the atmospheres of Mars and Earth: A comparison via the SNC meteorites

    NASA Technical Reports Server (NTRS)

    Pepin, R. O.; Becker, R. H.

    1985-01-01

    Noble gas and nitrogen compositions in the glassy phase of the EETA 79001 shergottite correspond closely with Viking measurements. This direct evidence for the origin of the SNC meteorites on Mars, and for trapping of an unfractionated sample of Martian atmospheric gases in the 79001 glass, provides a reasonable basis for comparing the Martian and terrestrial atmospheres with more precision than that afforded by the Viking data set. Results are that, with one exception, elemental and isotopic compositions of nonradiogenic Martian noble gases are similar to those in the Earth's atmosphere; relatively small isotopic discrepancies in Kr and perhaps Xe may be attributable to different degrees of mass fractionation of a common parent reservoir. The anomaly is in Ar composition, where Martian Ar-36/AR-38 approx. 4 is strikingly lower than the values near 5.3 that characterize both the Earth and major meteoritic gas carriers. Although a primordial Martian ratio of 5.3 could in principle be altered by some planet specific process (e.g., cosmic ray spallation of surface materials) operating over geologic time, one has not been found that works.

  6. Non-solar noble gas abundances in the atmosphere of Jupiter

    NASA Technical Reports Server (NTRS)

    Lunine, Jonathan I.; Stevenson, David J.

    1986-01-01

    The thermodynamic stability of clathrate hydrate is calculated to predict the formation conditions corresponding to a range of solar system parameters. The calculations were performed using the statistical mechanical theory developed by van der Waals and Platteeuw (1959) and existing experimental data concerning clathrate hydrate and its components. Dissociation pressures and partition functions (Langmuir constants) are predicted at low pressure for CO clathrate (hydrate) using the properties of chemicals similar to CO. It is argued that nonsolar but well constrained noble gas abundances may be measurable by the Galileo spacecraft in the Jovian atmosphere if the observed carbon enhancement is due to bombardment of the atmosphere by clathrate-bearing planetesimals sometime after planetary formation. The noble gas abundances of the Jovian satellite Titan are predicted, assuming that most of the methane in Titan is accreted as clathrate. It is suggested that under thermodynamically appropriate conditions, complete clathration of water ice could have occurred in high-pressure nebulas around giant planets, but probably not in the outer solar nebula. The stability of clathrate in other pressure ranges is also discussed.

  7. Migration of noble gas atoms in interaction with vacancies in silicon

    NASA Astrophysics Data System (ADS)

    Pizzagalli, L.; Charaf-Eddin, A.

    2015-08-01

    First principles calculations in combination with the nudged elastic band method have been performed in order to determine the mobility properties of various noble gas species (He, Ne, Ar, Kr, and Xe) in silicon, a model semiconducting material. We focussed on single impurity, in interstitial configuration or forming a complex with a mono- or a di-vacancy, since the latter are known to be present and to play a key role in the formation of extended defects like bubbles or platelets. We determined several migration mechanisms and associated activation energies and have discussed these results in relation to available experiments. In particular, conflicting measured values of the migration energy of helium are explained by the present calculations. We also predict that helium diffuses solely as an interstitial, while an opposite behaviour is found for heavier species such as Ar, Kr, and Xe, with the prevailing role of complexes in that case. Finally, our calculations indicate that extended defects evolution by Ostwald ripening is possible for helium and maybe neon, but is rather unlikely for heavier noble gas species.

  8. Atmospheric noble gases as tracers of biogenic gas dynamics in a shallow unconfined aquifer

    NASA Astrophysics Data System (ADS)

    Jones, Katherine L.; Lindsay, Matthew B. J.; Kipfer, Rolf; Mayer, K. Ulrich

    2014-03-01

    Atmospheric noble gases (NGs) were used to investigate biogenic gas dynamics in a shallow unconfined aquifer impacted by a crude oil spill, near Bemidji, MN. Concentrations of 3,4He, 20,22Ne, 36,40Ar, Kr, and Xe were determined for gas- and aqueous-phase samples collected from the vadose and saturated zones, respectively. Systematic elemental fractionation of Ne, Ar, Kr, and Xe with respect to air was observed in both of these hydrogeologic zones. Within the vadose zone, relative ratios of Ne and Ar to Kr and Xe revealed distinct process-related trends when compared to corresponding ratios for air. The degree of NG deviation from atmospheric concentrations generally increased with greater atomic mass (i.e., ΔXe > ΔKr > ΔAr > ΔNe), indicating that Kr and Xe are the most sensitive NG tracers in the vadose zone. Reactive transport modeling of the gas data confirms that elemental fractionation can be explained by mass-dependent variations in diffusive fluxes of NGs opposite to a total pressure gradient established between different biogeochemical process zones. Depletion of atmospheric NGs was also observed within a methanogenic zone of petroleum hydrocarbon degradation located below the water table. Solubility normalized NG abundances followed the order Xe > Kr > Ar > Ne, which is indicative of dissolved NG partitioning into the gas phase in response to bubble formation and possibly ebullition. Observed elemental NG ratios of Ne/Kr, Ne/Xe, Ar/Xe, and Kr/Xe and a modeling analysis provide strong evidence that CH4 generation below the water table caused gas exsolution and possibly ebullition and carbon transfer from groundwater to the vadose zone. These results suggest that noble gases provide sensitive tracers in biologically active unconfined aquifers and can assist in identifying carbon cycling and transfer within the vadose zone, the capillary fringe, and below the water table.

  9. Noble gas composition of subcontinental lithospheric mantle: An extensively degassed reservoir beneath Southern Patagonia

    NASA Astrophysics Data System (ADS)

    Jalowitzki, Tiago; Sumino, Hirochika; Conceição, Rommulo V.; Orihashi, Yuji; Nagao, Keisuke; Bertotto, Gustavo W.; Balbinot, Eduardo; Schilling, Manuel E.; Gervasoni, Fernanda

    2016-09-01

    Patagonia, in the Southern Andes, is one of the few locations where interactions between the oceanic and continental lithosphere can be studied due to subduction of an active spreading ridge beneath the continent. In order to characterize the noble gas composition of Patagonian subcontinental lithospheric mantle (SCLM), we present the first noble gas data alongside new lithophile (Sr-Nd-Pb) isotopic data for mantle xenoliths from Pali-Aike Volcanic Field and Gobernador Gregores, Southern Patagonia. Based on noble gas isotopic compositions, Pali-Aike mantle xenoliths represent intrinsic SCLM with higher (U + Th + K)/(3He, 22Ne, 36Ar) ratios than the mid-ocean ridge basalt (MORB) source. This reservoir shows slightly radiogenic helium (3He/4He = 6.84-6.90 RA), coupled with a strongly nucleogenic neon signature (mantle source 21Ne/22Ne = 0.085-0.094). The 40Ar/36Ar ratios vary from a near-atmospheric ratio of 510 up to 17700, with mantle source 40Ar/36Ar between 31100-6800+9400 and 54000-9600+14200. In addition, the 3He/22Ne ratios for the local SCLM endmember, at 12.03 ± 0.15 to 13.66 ± 0.37, are higher than depleted MORBs, at 3He/22Ne = 8.31-9.75. Although asthenospheric mantle upwelling through the Patagonian slab window would result in a MORB-like metasomatism after collision of the South Chile Ridge with the Chile trench ca. 14 Ma, this mantle reservoir could have remained unhomogenized after rapid passage and northward migration of the Chile Triple Junction. The mantle endmember xenon isotopic ratios of Pali-Aike mantle xenoliths, which is first defined for any SCLM-derived samples, show values indistinguishable from the MORB source (129Xe/132Xe =1.0833-0.0053+0.0216 and 136Xe/132Xe =0.3761-0.0034+0.0246). The noble gas component observed in Gobernador Gregores mantle xenoliths is characterized by isotopic compositions in the MORB range in terms of helium (3He/4He = 7.17-7.37 RA), but with slightly nucleogenic neon (mantle source 21Ne/22Ne = 0.065-0.079). We

  10. Pressure disequilibria induced by rapid valve closure in noble gas extraction lines

    USGS Publications Warehouse

    Morgan, Leah; Davidheiser-Kroll, Brett

    2015-01-01

    Pressure disequilibria during rapid valve closures can affect calculated molar quantities for a range of gas abundance measurements (e.g., K-Ar geochronology, (U-Th)/He geochronology, noble gas cosmogenic chronology). Modeling indicates this effect in a system with a 10 L reservoir reaches a bias of 1% before 1000 pipette aliquants have been removed from the system, and a bias of 10% before 10,000 aliquants. Herein we explore the causes and effects of this problem, which is the result of volume changes during valve closure. We also present a solution in the form of an electropneumatic pressure regulator that can precisely control valve motion. This solution reduces the effect to ∼0.3% even after 10,000 aliquants have been removed from a 10 L reservoir.

  11. A system for low field imaging of laser-polarized noble gas

    NASA Technical Reports Server (NTRS)

    Wong, G. P.; Tseng, C. H.; Pomeroy, V. R.; Mair, R. W.; Hinton, D. P.; Hoffmann, D.; Stoner, R. E.; Hersman, F. W.; Cory, D. G.; Walsworth, R. L.

    1999-01-01

    We describe a device for performing MRI with laser-polarized noble gas at low magnetic fields (<50 G). The system is robust, portable, inexpensive, and provides gas-phase imaging resolution comparable to that of high field clinical instruments. At 20.6 G, we have imaged laser-polarized (3)He (Larmor frequency of 67 kHz) in both sealed glass cells and excised rat lungs, using approximately 0.1 G/cm gradients to achieve approximately 1 mm(2) resolution. In addition, we measured (3)He T(2)(*) times greater than 100 ms in excised rat lungs, which is roughly 20 times longer than typical values observed at high ( approximately 2 T) fields. We include a discussion of the practical considerations for working at low magnetic fields and conclude with evidence of radiation damping in this system. Copyright 1999 Academic Press.

  12. MRI of the lung gas-space at very low-field using hyperpolarized noble gases

    NASA Technical Reports Server (NTRS)

    Venkatesh, Arvind K.; Zhang, Adelaide X.; Mansour, Joey; Kubatina, Lyubov; Oh, Chang Hyun; Blasche, Gregory; Selim Unlu, M.; Balamore, Dilip; Jolesz, Ferenc A.; Goldberg, Bennett B.; Albert, Mitchell S.

    2003-01-01

    In hyperpolarized (HP) noble-gas magnetic resonance imaging, large nuclear spin polarizations, about 100,000 times that ordinarily obtainable at thermal equilibrium, are created in 3He and 129Xe. The enhanced signal that results can be employed in high-resolution MRI studies of void spaces such as in the lungs. In HP gas MRI the signal-to-noise ratio (SNR) depends only weakly on the static magnetic field (B(0)), making very low-field (VLF) MRI possible; indeed, it is possible to contemplate portable MRI using light-weight solenoids or permanent magnets. This article reports the first in vivo VLF MR images of the lungs in humans and in rats, obtained at a field of only 15 millitesla (150 Gauss).

  13. Demonstration of neutron detection utilizing open cell foam and noble gas scintillation

    SciTech Connect

    Lavelle, C. M. Miller, E. C.; Coplan, M.; Thompson, Alan K.; Vest, Robert E.; Yue, A. T.; Kowler, A. L.; Koeth, T.; Al-Sheikhly, M.; Clark, Charles W.

    2015-03-02

    We present results demonstrating neutron detection via a closely spaced converter structure coupled to low pressure noble gas scintillation instrumented by a single photo-multiplier tube (PMT). The converter is dispersed throughout the gas volume using a reticulated vitreous carbon foam coated with boron carbide (B{sub 4}C). A calibrated cold neutron beam is used to measure the neutron detection properties, using a thin film of enriched {sup 10}B as a reference standard. Monte Carlo computations of the ion energy deposition are discussed, including treatment of the foam random network. Results from this study indicate that the foam shadows a significant portion of the scintillation light from the PMT. The high scintillation yield of Xe appears to overcome the light loss, facilitating neutron detection and presenting interesting opportunities for neutron detector design.

  14. Testing of a prototype of calibration facility for noble gas monitoring using 41Ar.

    PubMed

    Saibathulham, Holnisar; Wurdiyanto, Gatot; Marsum, Pujadi

    2012-09-01

    A prototype of a calibration facility for noble gas monitoring using (41)Ar in the PTKMR-BATAN has been tested. The facility was designed in such a way that the standard source of gas can be reused. The radioactive (41)Ar source was obtained by thermal neutron reaction of (40)Ar(n, γ)(41)Ar using a thermal neutron flux of 4.8×10(13) neutrons per cm(2) per second in two minutes on the multipurpose G.A. Siwabessy Reactor (Batan, Serpong, Indonesia). Gamma spectrometry was used to measure the radioactivity and purity of (41)Ar. The spectrum of the (41)Ar observed yields an energy of 1294 keV because of the highest intensity (99.2%). The activity of (41)Ar was 2821 kBq and 4% of the expanded uncertainty. The time required for (41)Ar to reach homogeneity was 7 min, and the effectiveness of resuse was 53%.

  15. Evaluating Gas-Phase Transport And Detection Of Noble Gas Signals From Underground Nuclear Explosions Using Chemical Tracers

    NASA Astrophysics Data System (ADS)

    Carrigan, C. R.; Hunter, S. L.; Sun, Y.; Wagoner, J. L.; Ruddle, D.; Anderson, G.; Felske, D.; Myers, K.; Zucca, J. J.; Emer, D. F.; Townsend, M.; Drellack, S.; Chipman, V.; Snelson, C. M.

    2013-12-01

    The 1993 Non-Proliferation Experiment (NPE) involved detonating 1 kiloton of chemical explosive in a subsurface cavity which also contained bottles of tracer gases (ref 1). That experiment provided an improved understanding of transport processes relevant to the detection of noble gas signals at the surface emanating from a clandestine underground nuclear explosion (UNE). As an alternative to performing large chemical detonations to simulate gas transport from UNEs, we have developed a test bed for subsurface gas transport, sampling and detection studies using a former UNE cavity. The test bed site allows for the opportunity to evaluate pathways to the surface created by the UNE as well as possible transport mechanisms including barometric pumping and cavity pressurization (ref 2). With the test bed we have monitored long-term chemical tracers as well as newly injected tracers. In order to perform high temporal resolution tracer gas monitoring, we have also developed a Subsurface Gas Smart Sampler (SGSS) which has application during an actual On Site Inspection (OSI) and is available for deployment in OSI field exercises planned for 2014. Deployment of five SGSS at the remote test bed has provided unparalleled detail concerning relationships involving tracer gas transport to the surface, barometric fluctuations and temporal variations in the natural radon concentration. We anticipate that the results of our tracer experiments will continue to support the development of improved noble gas detection technology for both OSI and International Monitoring System applications. 1. C.R. Carrigan et al., 1996, Nature, 382, p. 528. 2. Y. Sun and C.R. Carrigan, 2012, Pure Appl. Geophys., DOI 10.1007/s00024-012-0514-4.

  16. Noble Gases

    NASA Astrophysics Data System (ADS)

    Podosek, F. A.

    2003-12-01

    The noble gases are the group of elements - helium, neon, argon, krypton, xenon - in the rightmost column of the periodic table of the elements, those which have "filled" outermost shells of electrons (two for helium, eight for the others). This configuration of electrons results in a neutral atom that has relatively low electron affinity and relatively high ionization energy. In consequence, in most natural circumstances these elements do not form chemical compounds, whence they are called "noble." Similarly, much more so than other elements in most circumstances, they partition strongly into a gas phase (as monatomic gas), so that they are called the "noble gases" (also, "inert gases"). (It should be noted, of course, that there is a sixth noble gas, radon, but all isotopes of radon are radioactive, with maximum half-life a few days, so that radon occurs in nature only because of recent production in the U-Th decay chains. The factors that govern the distribution of radon isotopes are thus quite different from those for the five gases cited. There are interesting stories about radon, but they are very different from those about the first five noble gases, and are thus outside the scope of this chapter.)In the nuclear fires in which the elements are forged, the creation and destruction of a given nuclear species depends on its nuclear properties, not on whether it will have a filled outermost shell when things cool off and nuclei begin to gather electrons. The numerology of nuclear physics is different from that of chemistry, so that in the cosmos at large there is nothing systematically special about the abundances of the noble gases as compared to other elements. We live in a very nonrepresentative part of the cosmos, however. As is discussed elsewhere in this volume, the outstanding generalization about the geo-/cosmochemistry of the terrestrial planets is that at some point thermodynamic conditions dictated phase separation of solids from gases, and that the

  17. The contribution of hydrothermally altered ocean crust to the mantle halogen and noble gas cycles

    NASA Astrophysics Data System (ADS)

    Chavrit, Déborah; Burgess, Ray; Sumino, Hirochika; Teagle, Damon A. H.; Droop, Giles; Shimizu, Aya; Ballentine, Chris J.

    2016-06-01

    Recent studies suggest that seawater-derived noble gases and halogens are recycled into the deep mantle by the subduction of oceanic crust. To understand the processes controlling the availability of halogens and noble gases for subduction, we determined the noble gas elemental and isotopic ratios and halogen (Cl, Br, I) concentrations in 28 igneous samples from the altered oceanic crust (AOC) from 5 ODP sites in the Eastern and Western Pacific Ocean. Crushing followed by heating experiments enabled determination of noble gases and halogens in fluid inclusions and mineral phases respectively. Except for He and Ar, Ne, Kr and Xe isotopic ratios were all air-like suggesting that primary MORB signatures have been completely overprinted by air and/or seawater interaction. In contrast, 3He/4He ratios obtained by crushing indicate that a mantle helium component is still preserved, and 40Ar/36Ar values are affected by radiogenic decay in the mineral phases. The 130Xe/36Ar and 84Kr/36Ar ratios are respectively up to 15 times and 5 times higher than those of seawater and the highest ratios are found in samples affected by low temperature alteration (shallower than 800-900 m sub-basement). We consider three possible processes: (i) adsorption onto the clays present in the samples; (ii) fluid inclusions with a marine pore fluid composition; and (iii) fractionation of seawater through phase separation caused by boiling. Ninety percent of the Cl, Br and I were released during the heating experiments, showing that halogens are dominantly held in mineral phases prior to subduction. I/Cl ratios vary by 4 orders of magnitude, from 3 × 10-6 to 2 × 10-2. The mean Br/Cl ratio is 30% lower than in MORB and seawater. I/Cl ratios lower than MORB values are attributed to Cl-rich amphibole formation caused by hydrothermal alteration at depths greater than 800-900 m sub-basement together with different extents of I loss during low and high temperature alteration. At shallower depths, I

  18. Noble gas isotopes in mineral springs and wells within the Cascadia forearc, Washington, Oregon, and California

    USGS Publications Warehouse

    McCrory, Patricia A.; Constantz, James E.; Hunt, Andrew G.

    2017-01-31

    IntroductionThis U.S. Geological Survey report presents laboratory analyses along with field notes for an exploratory study to document the relative abundance of noble gases in mineral springs and water wells within the Cascadia forearc of Washington, Oregon, and California (fig. 1). This report describes 14 samples collected in 2014 and 2015 and complements a previous report that describes 9 samples collected in 2012 and 2013 (McCrory and others, 2014b). Estimates of the depth to the underlying Juan de Fuca oceanic plate beneath sample sites are derived from the McCrory and others (2012) slab model. Some of the springs have been previously sampled for chemical analyses (Mariner and others, 2006), but none of the springs or wells currently has publicly available noble gas data. The helium and neon isotope values and ratios presented below are used to determine the sources and mixing history of these mineral and well waters (for example, McCrory and others, 2016).

  19. Optimizing detection of noble gas emission at a former UNE site: sample strategy, collection, and analysis

    NASA Astrophysics Data System (ADS)

    Kirkham, R.; Olsen, K.; Hayes, J. C.; Emer, D. F.

    2013-12-01

    Underground nuclear tests may be first detected by seismic or air samplers operated by the CTBTO (Comprehensive Nuclear-Test-Ban Treaty Organization). After initial detection of a suspicious event, member nations may call for an On-Site Inspection (OSI) that in part, will sample for localized releases of radioactive noble gases and particles. Although much of the commercially available equipment and methods used for surface and subsurface environmental sampling of gases can be used for an OSI scenario, on-site sampling conditions, required sampling volumes and establishment of background concentrations of noble gases require development of specialized methodologies. To facilitate development of sampling equipment and methodologies that address OSI sampling volume and detection objectives, and to collect information required for model development, a field test site was created at a former underground nuclear explosion site located in welded volcanic tuff. A mixture of SF-6, Xe127 and Ar37 was metered into 4400 m3 of air as it was injected into the top region of the UNE cavity. These tracers were expected to move towards the surface primarily in response to barometric pumping or through delayed cavity pressurization (accelerated transport to minimize source decay time). Sampling approaches compared during the field exercise included sampling at the soil surface, inside surface fractures, and at soil vapor extraction points at depths down to 2 m. Effectiveness of various sampling approaches and the results of tracer gas measurements will be presented.

  20. Hyperpolarized noble gas magnetic resonance imaging of the animal lung: Approaches and applications

    NASA Astrophysics Data System (ADS)

    Santyr, Giles E.; Lam, Wilfred W.; Parra-Robles, Juan M.; Taves, Timothy M.; Ouriadov, Alexei V.

    2009-05-01

    Hyperpolarized noble gas (HNG) magnetic resonance (MR) imaging is a very promising noninvasive tool for the investigation of animal models of lung disease, particularly to follow longitudinal changes in lung function and anatomy without the accumulated radiation dose associated with x rays. The two most common noble gases for this purpose are H3e (helium 3) and X129e (xenon 129), the latter providing a cost-effective approach for clinical applications. Hyperpolarization is typically achieved using spin-exchange optical pumping techniques resulting in ˜10 000-fold improvement in available magnetization compared to conventional Boltzmann polarizations. This substantial increase in polarization allows high spatial resolution (<1 mm) single-slice images of the lung to be obtained with excellent temporal resolution (<1 s). Complete three-dimensional images of the lungs with 1 mm slice thickness can be obtained within reasonable breath-hold intervals (<20 s). This article provides an overview of the current methods used in HNG MR imaging with an emphasis on ventilation studies in animals. Special MR hardware and software considerations are described in order to use the strong but nonrecoverable magnetization as efficiently as possible and avoid depolarization primarily by molecular oxygen. Several applications of HNG MR imaging are presented, including measurement of gross lung anatomy (e.g., airway diameters), microscopic anatomy (e.g., apparent diffusion coefficient), and a variety of functional parameters including dynamic ventilation, alveolar oxygen partial pressure, and xenon diffusing capacity.

  1. Noble gas and hydrocarbon tracers in multiphase unconventional hydrocarbon systems: Toward integrated advanced reservoir simulators

    NASA Astrophysics Data System (ADS)

    Darrah, T.; Moortgat, J.; Poreda, R. J.; Muehlenbachs, K.; Whyte, C. J.

    2015-12-01

    Although hydrocarbon production from unconventional energy resources has increased dramatically in the last decade, total unconventional oil and gas recovery from black shales is still less than 25% and 9% of the totals in place, respectively. Further, the majority of increased hydrocarbon production results from increasing the lengths of laterals, the number of hydraulic fracturing stages, and the volume of consumptive water usage. These strategies all reduce the economic efficiency of hydrocarbon extraction. The poor recovery statistics result from an insufficient understanding of some of the key physical processes in complex, organic-rich, low porosity formations (e.g., phase behavior, fluid-rock interactions, and flow mechanisms at nano-scale confinement and the role of natural fractures and faults as conduits for flow). Noble gases and other hydrocarbon tracers are capably of recording subsurface fluid-rock interactions on a variety of geological scales (micro-, meso-, to macro-scale) and provide analogs for the movement of hydrocarbons in the subsurface. As such geochemical data enrich the input for the numerical modeling of multi-phase (e.g., oil, gas, and brine) fluid flow in highly heterogeneous, low permeability formations Herein we will present a combination of noble gas (He, Ne, Ar, Kr, and Xe abundances and isotope ratios) and molecular and isotopic hydrocarbon data from a geographically and geologically diverse set of unconventional hydrocarbon reservoirs in North America. Specifically, we will include data from the Marcellus, Utica, Barnett, Eagle Ford, formations and the Illinois basin. Our presentation will include geochemical and geological interpretation and our perspective on the first steps toward building an advanced reservoir simulator for tracer transport in multicomponent multiphase compositional flow (presented separately, in Moortgat et al., 2015).

  2. Numerical models, geochemistry and the zero-paradox noble-gas mantle.

    PubMed

    Ballentine, Chris J; Van Keken, Peter E; Porcelli, Don; Hauri, Erik H

    2002-11-15

    Numerical models of whole-mantle convection demonstrate that degassing of the mantle is an inefficient process, resulting in ca. 50% of the (40)Ar being degassed from the mantle system. In this sense the numerical simulations are consistent with the (40)Ar mass balance between the atmosphere and mantle reservoir. These models, however, are unable to preserve the large-scale heterogeneity predicted by models invoking geochemical layering of the mantle system. We show that the three most important noble-gas constraints on the geochemically layered mantle are entirely dependent on the (3)He concentration of the convecting mantle derived from the (3)He flux into the oceans and the average ocean-crust generation rate. A factor of 3.5 increase in the convecting-mantle noble-gas concentration removes all requirements for: a (3)He flux into the upper mantle from a deeper high (3)He source; a boundary in the mantle capable of separating heat from helium; and a substantial deep-mantle reservoir to contain a hidden (40)Ar rich reservoir. We call this model concentration for the convecting mantle the 'zero-paradox' concentration. The time-integrated flux of (3)He into the oceans is a robust observation, but only representative of the ocean-floor activity over the last 1000 years. In contrast, ocean-floor generation occurs over tens of millions of years. We argue that combining these two observations to obtain the (3)He concentration of the mantle beneath mid-ocean ridges is unsound. Other indicators of mantle (3)He concentration suggest that the real value may be at least a factor of two higher. As the zero-paradox concentration is approached, the noble-gas requirement for mantle layering is removed. We further consider the role that recycled material plays in ocean-island-basalt generation and show that a source with high (3)He and (3)He/(4)He must exist within the mantle. Nevertheless, only a small amount of this material is required to generate both the observed ocean

  3. Noble gas as tracers for CO2 deep input in petroleum reservoirs

    NASA Astrophysics Data System (ADS)

    Pujol, Magali; Stuart, Finlay; Gilfillan, Stuart; Montel, François; Masini, Emmanuel

    2016-04-01

    The sub-salt hydrocarbon reservoirs in the deep offshore part of the Atlantic Ocean passive margins are a new key target for frontier oil and gas exploration. Type I source rocks locally rich in TOC (Total Organic Carbon) combined with an important secondary connected porosity of carbonate reservoirs overlain by an impermeable salt layer gives rise to reservoirs with high petroleum potential. However, some target structures have been found to be mainly filled with CO2 rich fluids. δ13C of the CO2 is generally between -9 and -4 permil, compatible with a deep source (metamorphic or mantle). Understanding the origin of the CO2 and the relative timing of its input into reservoir layers in regard to the geodynamic context appears to be a key issue for CO2 risk evaluation. The inertness and ubiquity of noble gases in crustal fluids make them powerful tools to trace the origin and migration of mixed fluids (Ballentine and Burnard 2002). The isotopic signature of He, Ne and Ar and the elemental pattern (He to Xe) of reservoir fluid from pressurized bottom hole samples provide an insight into fluid source influences at each reservoir depth. Three main end-members can be mixed into reservoir fluids (e.g. Gilfillan et al., 2008): atmospheric signature due to aquifer recharge, radiogenic component from organic fluid ± metamorphic influence, and mantle input. Their relative fractionation provides insights into the nature of fluid transport (Burnard et al., 2012)and its relative migration timing. In the studied offshore passive margin reservoirs, from both sides of South Atlantic margin, a strong MORB-like magmatic CO2 influence is clear. Hence, CO2 charge must have occurred during or after lithospheric break-up. CO2 charge(s) history appears to be complex, and in some cases requires several inputs to generate the observed noble gas pattern. Combining the knowledge obtained from noble gas (origin, relative timing, number of charges) with organic geochemical and thermodynamic

  4. Discharge stratification in noble gases as convergence of electron phase trajectories to attractors

    NASA Astrophysics Data System (ADS)

    Golubovskii, Yu.; Valin, S.; Pelyukhova, E.; Nekuchaev, V.; Sigeneger, F.

    2016-12-01

    A new dynamic method to analyse resonance effects in glow discharges is proposed as a supplement to fluid and kinetic approaches for the investigation of discharge stratification. The method is applicable to striations, which are caused by the nonlocal electron behaviour at lower pressure and current. It is based on the analysis of the electron phase trajectories in spatially periodic fields. Being quite intuitive and easier than the solution of the Boltzmann equation, this method gives a quantitative description of the main effects arising from the kinetic analysis, for example, the appearance of attractors of the phase trajectories. The dynamic theory eliminates the main difficulty of the kinetic theory associated with the large relaxation length of the electron energy distribution function in periodic fields and describes the integer and rational resonances that correspond to S-, P- and R-striations. As a result, the stratification of the discharge can be interpreted as the excitation of one of the spatial resonator modes of the positive column.

  5. Assessing Compositional Variability and Migration of Natural Gas in the Antrim Shale in the Michigan Basin Using Noble Gas Geochemistry

    NASA Astrophysics Data System (ADS)

    Wen, T.; Castro, M. C.; Ellis, B. R.; Hall, C. M.; Lohmann, K. C.

    2015-12-01

    The Antrim Shale was one of the first economic shale gas plays in the U.S. and has been actively produced since the 1980's. While previous studies suggest co-produced water in the Antrim is a mixture of brine from deeper formations and freshwater recharge, the extent of water-gas interactions has yet to be determined. The extent and source of thermogenic methane in the Antrim Shale are also under debate. This study uses stable noble gases' (He, Ne, Ar, Kr, Xe) isotopic ratios and their volume fractions from the Antrim Shale gases to assess compositional variability and vertical fluid migration, in addition to distinguishing between the presence of thermogenic versus biogenic methane. R/Ra values of Antrim Shale gases (where R and Ra are the measured and atmospheric 3He/4He ratios, respectively) vary from 0.01 to 0.34 suggesting dominant crustal 4He in addition to minor mantle and atmospheric He. Elevated 20Ne/22Ne ratios (up to 10.4) point to mantle Ne. Similarly crustal 21Ne*, 40Ar* and 136Xe* are also suggested. High variability of noble gas signatures in the Antrim Shale are observed, which are mainly due to variable noble gas input from deep brines and, to a smaller extent, variable in-situ production in the Antrim Shale. Estimated 4He ages considering external 4He flux for Antrim water match well with timings of three major glaciation periods (Wisconsin, Illinoian and Kansan glaciations) in the Michigan Basin, suggesting that all our Antrim samples were more or less influenced by glaciation recharge. Consistency in measured and predicted 40Ar/36Ar assuming Ar release temperatures ≥ 250°C supports a thermogenic origin for the majority of the methane in our Antrim Shale gas samples. Thermogenic methane is likely to originate at greater depth, either from deeper portions of the Antrim Shale in the central Michigan Basin or from deeper formations underlying the Antrim Shale, as the thermal maturity of the Antrim Shale in our study area is low.

  6. 46 CFR 153.964 - Discharge by gas pressurization.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... authorize cargo discharge by gas pressurization unless: (a) The tank to be offloaded has an SR or PV venting system; (b) The pressurization medium is either the cargo vapor or a nonflammable, nontoxic gas inert...

  7. 46 CFR 153.964 - Discharge by gas pressurization.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... authorize cargo discharge by gas pressurization unless: (a) The tank to be offloaded has an SR or PV venting system; (b) The pressurization medium is either the cargo vapor or a nonflammable, nontoxic gas inert...

  8. Using noble gas tracers to constrain a groundwater flow model with recharge elevations: A novel approach for mountainous terrain

    NASA Astrophysics Data System (ADS)

    Doyle, Jessica M.; Gleeson, Tom; Manning, Andrew H.; Mayer, K. Ulrich

    2015-10-01

    Environmental tracers provide information on groundwater age, recharge conditions, and flow processes which can be helpful for evaluating groundwater sustainability and vulnerability. Dissolved noble gas data have proven particularly useful in mountainous terrain because they can be used to determine recharge elevation. However, tracer-derived recharge elevations have not been utilized as calibration targets for numerical groundwater flow models. Herein, we constrain and calibrate a regional groundwater flow model with noble-gas-derived recharge elevations for the first time. Tritium and noble gas tracer results improved the site conceptual model by identifying a previously uncertain contribution of mountain block recharge from the Coast Mountains to an alluvial coastal aquifer in humid southwestern British Columbia. The revised conceptual model was integrated into a three-dimensional numerical groundwater flow model and calibrated to hydraulic head data in addition to recharge elevations estimated from noble gas recharge temperatures. Recharge elevations proved to be imperative for constraining hydraulic conductivity, recharge location, and bedrock geometry, and thus minimizing model nonuniqueness. Results indicate that 45% of recharge to the aquifer is mountain block recharge. A similar match between measured and modeled heads was achieved in a second numerical model that excludes the mountain block (no mountain block recharge), demonstrating that hydraulic head data alone are incapable of quantifying mountain block recharge. This result has significant implications for understanding and managing source water protection in recharge areas, potential effects of climate change, the overall water budget, and ultimately ensuring groundwater sustainability.

  9. Using noble gas tracers to constrain a groundwater flow model with recharge elevations: A novel approach for mountainous terrain

    USGS Publications Warehouse

    Doyle, Jessica M.; Gleeson, Tom; Manning, Andrew H.; Mayer, K. Ulrich

    2015-01-01

    Environmental tracers provide information on groundwater age, recharge conditions, and flow processes which can be helpful for evaluating groundwater sustainability and vulnerability. Dissolved noble gas data have proven particularly useful in mountainous terrain because they can be used to determine recharge elevation. However, tracer-derived recharge elevations have not been utilized as calibration targets for numerical groundwater flow models. Herein, we constrain and calibrate a regional groundwater flow model with noble-gas-derived recharge elevations for the first time. Tritium and noble gas tracer results improved the site conceptual model by identifying a previously uncertain contribution of mountain block recharge from the Coast Mountains to an alluvial coastal aquifer in humid southwestern British Columbia. The revised conceptual model was integrated into a three-dimensional numerical groundwater flow model and calibrated to hydraulic head data in addition to recharge elevations estimated from noble gas recharge temperatures. Recharge elevations proved to be imperative for constraining hydraulic conductivity, recharge location, and bedrock geometry, and thus minimizing model nonuniqueness. Results indicate that 45% of recharge to the aquifer is mountain block recharge. A similar match between measured and modeled heads was achieved in a second numerical model that excludes the mountain block (no mountain block recharge), demonstrating that hydraulic head data alone are incapable of quantifying mountain block recharge. This result has significant implications for understanding and managing source water protection in recharge areas, potential effects of climate change, the overall water budget, and ultimately ensuring groundwater sustainability.

  10. Detection of a noble gas molecular ion, 36ArH+, in the Crab Nebula.

    PubMed

    Barlow, M J; Swinyard, B M; Owen, P J; Cernicharo, J; Gomez, H L; Ivison, R J; Krause, O; Lim, T L; Matsuura, M; Miller, S; Olofsson, G; Polehampton, E T

    2013-12-13

    Noble gas molecules have not hitherto been detected in space. From spectra obtained with the Herschel Space Observatory, we report the detection of emission in the 617.5- and 1234.6-gigahertz J = 1-0 and 2-1 rotational lines of (36)ArH(+) at several positions in the Crab Nebula, a supernova remnant known to contain both molecular hydrogen and regions of enhanced ionized argon emission. Argon-36 is believed to have originated from explosive nucleosynthesis in massive stars during core-collapse supernova events. Its detection in the Crab Nebula, the product of such a supernova event, confirms this expectation. The likely excitation mechanism for the observed (36)ArH(+) emission lines is electron collisions in partially ionized regions with electron densities of a few hundred per centimeter cubed.

  11. Solar wind neon from Genesis: implications for the lunar noble gas record.

    PubMed

    Grimberg, Ansgar; Baur, Heinrich; Bochsler, Peter; Bühler, Fritz; Burnett, Donald S; Hays, Charles C; Heber, Veronika S; Jurewicz, Amy J G; Wieler, Rainer

    2006-11-17

    Lunar soils have been thought to contain two solar noble gas components with distinct isotopic composition. One has been identified as implanted solar wind, the other as higher-energy solar particles. The latter was puzzling because its relative amounts were much too large compared with present-day fluxes, suggesting periodic, very high solar activity in the past. Here we show that the depth-dependent isotopic composition of neon in a metallic glass exposed on NASA's Genesis mission agrees with the expected depth profile for solar wind neon with uniform isotopic composition. Our results strongly indicate that no extra high-energy component is required and that the solar neon isotope composition of lunar samples can be explained as implantation-fractionated solar wind.

  12. Detection of a Noble Gas Molecular Ion, 36ArH+, in the Crab Nebula

    NASA Astrophysics Data System (ADS)

    Barlow, M. J.; Swinyard, B. M.; Owen, P. J.; Cernicharo, J.; Gomez, H. L.; Ivison, R. J.; Krause, O.; Lim, T. L.; Matsuura, M.; Miller, S.; Olofsson, G.; Polehampton, E. T.

    2013-12-01

    Noble gas molecules have not hitherto been detected in space. From spectra obtained with the Herschel Space Observatory, we report the detection of emission in the 617.5- and 1234.6-gigahertz J = 1-0 and 2-1 rotational lines of 36ArH+ at several positions in the Crab Nebula, a supernova remnant known to contain both molecular hydrogen and regions of enhanced ionized argon emission. Argon-36 is believed to have originated from explosive nucleosynthesis in massive stars during core-collapse supernova events. Its detection in the Crab Nebula, the product of such a supernova event, confirms this expectation. The likely excitation mechanism for the observed 36ArH+ emission lines is electron collisions in partially ionized regions with electron densities of a few hundred per centimeter cubed.

  13. Imaging the impulsive alignment of noble-gas dimers via Coulomb explosion

    NASA Astrophysics Data System (ADS)

    Veltheim, A. von; Borchers, B.; Steinmeyer, G.; Rottke, H.

    2014-02-01

    The impulsive alignment of the noble-gas dimers Ne2, Ar2, Kr2, and Xe2 is experimentally investigated by determining the alignment through Coulomb explosion imaging after their double ionization. This approach yields a favorably detailed insight into the temporal evolution of the alignment succeeding the aligning laser pulse. Particular emphasis is put on analyzing higher order coherences induced in the density matrix as these coherences determine the details of the temporal evolution of the aligned molecular ensemble. The recorded data enable an extraction of polarizability anisotropies for the dimers and of their rotational constants in the vibrational ground state. At the elevated level of rotational excitation obtained, centrifugal distortion starts influencing the temporal evolution of the alignment.

  14. Delineation of Fast Flow Paths in Porous Media Using Noble Gas Tracers

    SciTech Connect

    Hudson, G B; Moran, J E

    2002-03-21

    Isotopically enriched xenon isotopes are ideal for tracking the flow of relatively large volumes of groundwater. Dissolved noble gas tracers behave conservatively in the saturated zone, pose no health risk to drinking water supplies, and can be used with a large dynamic range. Different Xe isotopes can be used simultaneously at multiple recharge sources in a single experiment. Results from a tracer experiment at a California water district suggests that a small fraction of tracer moved from the recharge ponds through the thick, unconfined, coarse-grained alluvial aquifer to high capacity production wells at a horizontal velocity of 6 m/day. In contrast, mean water residence times indicate that the average rate of transport is 0.5 to 1 m/day.

  15. Infrared and density functional theory studies of formic acid hydrate clusters in noble gas matrices

    NASA Astrophysics Data System (ADS)

    Ito, Fumiyuki

    2016-08-01

    Infrared absorption spectra of formic acid hydrate clusters (HCOOH)m(H2O)n have been measured in noble gas matrices (Ar and Kr). The concentration dependence of the spectra and the comparison with a previous experimental study on HCOOH(H2O) and HCOOH(H2O)2 [Geoge et al., Spectrochim. Acta, Part A 60 (2004) 3225] led to the identification of large clusters. Density functional theory calculations at the B3LYP-DCP/6-31+G(2d,2p) level were carried out to determine the anharmonic vibrational properties of the clusters, enabling a consistent assignment of the observed vibrational peaks to specific clusters.

  16. Discharge source with gas curtain for protecting optics from particles

    DOEpatents

    Fornaciari, Neal R.; Kanouff, Michael P.

    2004-03-30

    A gas curtain device is employed to deflect debris that is generated by an extreme ultraviolet and soft x-ray radiation discharge source such as an electric discharge plasma source. The gas curtain device projects a stream of gas over the path of the radiation to deflect debris particles into a direction that is different from that of the path of the radiation. The gas curtain can be employed to prevent debris accumulation on the optics used in photolithography.

  17. Coupled gas discharge and pulse circuit analysis

    NASA Astrophysics Data System (ADS)

    von Dadelszen, Michael; Rothe, Dietmar E.

    1991-04-01

    Two examples of the importance of accurate coupling of driving electric circuits to discharge models, when simulating fast pulse discharges, are presented. The first example uses a commercial electric field analysis code, TETRAelf, to simulate a pulsed discharge TEA CO2 laser and demonstrates the value of including displacement current effects in the modeling of the avalanche phase of the discharge. The second example uses a commercial electric circuit analysis package, ECA, to simulate a three-electrode, long-pulse, 2-J, XeCl excimer laser. Both the saturable magnetic cores and the discharge kinetics are included in the simulation. Comparisons are made between the numerical results and experimental data.

  18. Battling Bacterial Biofilms with Gas Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Zelaya, Anna; Vandervoort, Kurt; Brelles-Mariño, Graciela

    Most studies dealing with growth and physiology of bacteria have been carried out using free-living cells. However, most bacteria live in communities referred to as biofilms where cooperative interactions among their members make conventional methods of controlling microbial growth often ineffective. The use of gas discharge plasmas represents an alternative to traditional decontamination/sterilization methods. We studied biofilms using two organisms, Chromobacterium violaceum and Pseudomonas aeruginosa. With the first organism we demonstrated almost complete loss of cell culturability after a 5-min plasma treatment. However, additional determinations showed that non-culturable cells were still alive after short exposure times. We have recently reported the effect of plasma on P. aeruginosa biofilms grown on borosilicate coupons. In this paper, we present results for plasma treatments of 1-, 3-, and 7-day old P. aeruginosa biofilms grown on polycarbonate or stainless-steel coupons. Results indicate nearly 100% of ­biofilm inactivation after 5 min of exposure with similar inactivation kinetics for 1-, 3-, and 7-day-old biofilms, and for both materials used. The inactivation kinetics is similar for both organisms, suggesting that the method is useful regardless of the type of biofilm. AFM images show changes in biofilm structure for various plasma exposure times.

  19. Noble gases identify the mechanisms of fugitive gas contamination in drinking-water wells overlying the Marcellus and Barnett Shales.

    PubMed

    Darrah, Thomas H; Vengosh, Avner; Jackson, Robert B; Warner, Nathaniel R; Poreda, Robert J

    2014-09-30

    Horizontal drilling and hydraulic fracturing have enhanced energy production but raised concerns about drinking-water contamination and other environmental impacts. Identifying the sources and mechanisms of contamination can help improve the environmental and economic sustainability of shale-gas extraction. We analyzed 113 and 20 samples from drinking-water wells overlying the Marcellus and Barnett Shales, respectively, examining hydrocarbon abundance and isotopic compositions (e.g., C2H6/CH4, δ(13)C-CH4) and providing, to our knowledge, the first comprehensive analyses of noble gases and their isotopes (e.g., (4)He, (20)Ne, (36)Ar) in groundwater near shale-gas wells. We addressed two questions. (i) Are elevated levels of hydrocarbon gases in drinking-water aquifers near gas wells natural or anthropogenic? (ii) If fugitive gas contamination exists, what mechanisms cause it? Against a backdrop of naturally occurring salt- and gas-rich groundwater, we identified eight discrete clusters of fugitive gas contamination, seven in Pennsylvania and one in Texas that showed increased contamination through time. Where fugitive gas contamination occurred, the relative proportions of thermogenic hydrocarbon gas (e.g., CH4, (4)He) were significantly higher (P < 0.01) and the proportions of atmospheric gases (air-saturated water; e.g., N2, (36)Ar) were significantly lower (P < 0.01) relative to background groundwater. Noble gas isotope and hydrocarbon data link four contamination clusters to gas leakage from intermediate-depth strata through failures of annulus cement, three to target production gases that seem to implicate faulty production casings, and one to an underground gas well failure. Noble gas data appear to rule out gas contamination by upward migration from depth through overlying geological strata triggered by horizontal drilling or hydraulic fracturing.

  20. Noble gases identify the mechanisms of fugitive gas contamination in drinking-water wells overlying the Marcellus and Barnett Shales

    PubMed Central

    Darrah, Thomas H.; Vengosh, Avner; Jackson, Robert B.; Warner, Nathaniel R.; Poreda, Robert J.

    2014-01-01

    Horizontal drilling and hydraulic fracturing have enhanced energy production but raised concerns about drinking-water contamination and other environmental impacts. Identifying the sources and mechanisms of contamination can help improve the environmental and economic sustainability of shale-gas extraction. We analyzed 113 and 20 samples from drinking-water wells overlying the Marcellus and Barnett Shales, respectively, examining hydrocarbon abundance and isotopic compositions (e.g., C2H6/CH4, δ13C-CH4) and providing, to our knowledge, the first comprehensive analyses of noble gases and their isotopes (e.g., 4He, 20Ne, 36Ar) in groundwater near shale-gas wells. We addressed two questions. (i) Are elevated levels of hydrocarbon gases in drinking-water aquifers near gas wells natural or anthropogenic? (ii) If fugitive gas contamination exists, what mechanisms cause it? Against a backdrop of naturally occurring salt- and gas-rich groundwater, we identified eight discrete clusters of fugitive gas contamination, seven in Pennsylvania and one in Texas that showed increased contamination through time. Where fugitive gas contamination occurred, the relative proportions of thermogenic hydrocarbon gas (e.g., CH4, 4He) were significantly higher (P < 0.01) and the proportions of atmospheric gases (air-saturated water; e.g., N2, 36Ar) were significantly lower (P < 0.01) relative to background groundwater. Noble gas isotope and hydrocarbon data link four contamination clusters to gas leakage from intermediate-depth strata through failures of annulus cement, three to target production gases that seem to implicate faulty production casings, and one to an underground gas well failure. Noble gas data appear to rule out gas contamination by upward migration from depth through overlying geological strata triggered by horizontal drilling or hydraulic fracturing. PMID:25225410

  1. Using Noble Gas Geochemistry to Determine the Source and Mechanism of Natural Gas Leakage into Shallow Aquifers Near Unconventional Drilling

    NASA Astrophysics Data System (ADS)

    Darrah, T.; Whyte, C. J.

    2015-12-01

    Horizontal drilling and hydraulic fracturing have enhanced energy production but raised concerns about drinking-water contamination and other environmental impacts associated with unconventional energy development. The occurrence of fugitive gas contamination in drinking-water wells near unconventional natural gas development has been central to the debate about the environmental impacts of hydraulic fracturing, but still has a controversial origin that has variably been attributed to natural geogenic occurrences, poor well bore integrity, and crustal-scale migration of natural gas along natural deformation features. Differentiating amongst these possibilities is critical to ongoing efforts to understand the environmental implications for the presence of elevated methane and aliphatic hydrocarbons (ethane, propane, etc.) in drinking-water and a necessary step toward the development of implementable solutions that limit the occurrence of future fugitive gas events. Here we will expand upon our recent work in the Marcellus and Barnett gas fields (Jackson et al., 2013; Darrah et al., 2014; 2015) that developed noble gas techniques for distinguishing natural and anthropogenic mechanisms of natural gas migration by integrating the molecular and isotopic composition of non-hydrocarbon molecules (N2, H2S, CO2) in addition to compound specific isotopes of hydrocarbons (d2H of CH4 and d2H-C2H6 and d13C of CH4, C2H6, and C3H8) and non-hydrocarbon compounds (d15N-N2). The expanded data sets validate our initial study and support the hypothesis that a subset of drinking-water wells experience natural gas contamination following faulty well construction or poor well integrity amid a background of naturally occurring gas and salt-rich groundwater.

  2. Unprecedented Enhancement of Noble Gas-Noble Metal Bonding in NgAu3(+) (Ng = Ar, Kr, and Xe) Ion through Hydrogen Doping.

    PubMed

    Ghosh, Ayan; Ghanty, Tapan K

    2016-12-22

    Behavior of gold as hydrogen in certain gold compounds and a very recent experimental report on the noble gas-noble metal interaction in Ar complexes of mixed Au-Ag trimers have motivated us to investigate the effect of hydrogen doping on the Ng-Au (Ng = Ar, Kr, and Xe) bonding through various ab initio based techniques. The calculated results show considerable strengthening of the Ng-Au bond in terms of bond length, bond energy, stretching vibrational frequency, and force constant. Particularly, an exceptional enhancement of Ar-Au bonding strength has been observed in ArAuH2(+) species as compared to that in ArAu3(+) system, as revealed from the CCSD(T) calculated Ar-Au bond energy value of 32 and 72 kJ mol(-1) for ArAu3(+) and ArAuH2(+), respectively. In the calculated IR spectra, the Ar-Au stretching frequency is blue-shifted by 65% in going from ArAu3(+) to ArAuH2(+) species. Similar trends have been obtained in the case of all Ar, Kr, and Xe complexes with Ag and Cu trimers. Among all the NgM3-kHk(+) complexes (where k = 0-2), the strongest binding in NgMH2(+) complex is attributed to significant enhancement in the covalent characteristics of the Ng-M bond and considerable increase in charge-induced dipole interaction, as shown from the topological analysis.

  3. The role of soil air composition for noble gas tracer applications in tropical groundwater

    NASA Astrophysics Data System (ADS)

    Mayer, Simon; Jenner, Florian; Aeschbach, Werner; Weissbach, Therese; Peregovich, Bernhard; Machado, Carlos

    2016-04-01

    Dissolved noble gases (NGs) in groundwater provide a well-established tool for paleo temperature reconstruction. However, reliable noble gas temperature (NGT) determination needs appropriate assumptions or rather an exact knowledge of soil air composition. Deviations of soil air NG partial pressures from atmospheric values have already been found in mid latitudes during summer time as a consequence of subsurface oxygen depletion. This effect depends on ambient temperature and humidity and is thus expected to be especially strong in humid tropical soils, which was not investigated so far. We therefore studied NGs in soil air and shallow groundwater near Santarém (Pará, Brazil) at the end of the rainy and dry seasons, respectively. Soil air data confirms a correlation between NG partial pressures, the sum value of O2+CO2 and soil moisture contents. During the rainy season, we find significant NG enhancements in soil air by up to 7% with respect to the atmosphere. This is twice as much as observed during the dry season. Groundwater samples show neon excess values between 15% and 120%. Nearly all wells show no seasonal variations of excess air, even though the local river level seasonally fluctuates by about 8 m. Assuming atmospheric NG contents in soil air, fitted NGTs underestimate the measured groundwater temperature by about 1-2° C. However, including enhanced soil air NG contents as observed during the rainy season, resulting NGTs are in good agreement with local groundwater temperatures. Our presented data allows for a better understanding of subsurface NG variations. This is essential with regard to NG tracer applications in humid tropical areas, for which reliable paleoclimate data is of major importance for modern climate research.

  4. Mineralogy and noble gas isotopes of micrometeorites collected from Antarctic snow

    NASA Astrophysics Data System (ADS)

    Okazaki, Ryuji; Noguchi, Takaaki; Tsujimoto, Shin-ichi; Tobimatsu, Yu; Nakamura, Tomoki; Ebihara, Mitsuru; Itoh, Shoichi; Nagahara, Hiroko; Tachibana, Shogo; Terada, Kentaro; Yabuta, Hikaru

    2015-06-01

    We have investigated seven micrometeorites (MMs) from Antarctic snow collected in 2003 and 2010 by means of electron microscopy, X-ray diffraction, micro-Raman spectroscopy, transmission electron microscopy (TEM) observation, and noble-gas isotope analysis. Isotopic ratios of He and Ne indicate that the noble gases in these MMs are mostly of solar wind (SW). Based on the release patterns of SW 4He, which should reflect the degree of heating during atmospheric entry, the seven MMs were classified into three types including two least heated, three moderately heated, and two severely heated MMs. The heating degrees are well correlated to their mineralogical features determined by TEM observation. One of the least heated MMs is composed of phyllosilicates, whereas the other consists of anhydrous minerals within which solar flare tracks were observed. The two severely heated MMs show clear evidence of atmospheric heating such as partial melt of the uppermost surface layer in one and abundant patches of dendritic magnetite and Si-rich glass within an olivine grain in the other. It is noteworthy that a moderately heated MM composed of a single crystal of olivine has a 3He/4He ratio of 8.44 × 10-4, which is higher than the SW value of 4.64 × 10-4, but does not show a cosmogenic 21Ne signature such as 20Ne/21Ne/22Ne = 12.83/0.0284/1. The isotopic compositions of He and Ne in this sample cannot be explained by mixing of a galactic cosmic ray (GCR)-produced component and SW gases. The high 3He/4He ratio without cosmogenic 21Ne signature likely indicates the presence of a 3He-enriched component derived from solar energetic particles.

  5. U.S. Geological Survey Noble Gas Laboratory’s standard operating procedures for the measurement of dissolved gas in water samples

    USGS Publications Warehouse

    Hunt, Andrew G.

    2015-08-12

    This report addresses the standard operating procedures used by the U.S. Geological Survey’s Noble Gas Laboratory in Denver, Colorado, U.S.A., for the measurement of dissolved gases (methane, nitrogen, oxygen, and carbon dioxide) and noble gas isotopes (helium-3, helium-4, neon-20, neon-21, neon-22, argon-36, argon-38, argon-40, kryton-84, krypton-86, xenon-103, and xenon-132) dissolved in water. A synopsis of the instrumentation used, procedures followed, calibration practices, standards used, and a quality assurance and quality control program is presented. The report outlines the day-to-day operation of the Residual Gas Analyzer Model 200, Mass Analyzer Products Model 215–50, and ultralow vacuum extraction line along with the sample handling procedures, noble gas extraction and purification, instrument measurement procedures, instrumental data acquisition, and calculations for the conversion of raw data from the mass spectrometer into noble gas concentrations per unit mass of water analyzed. Techniques for the preparation of artificial dissolved gas standards are detailed and coupled to a quality assurance and quality control program to present the accuracy of the procedures used in the laboratory.

  6. Hydrochemistry and noble gas origin of geothermal waters of Icheon and Pocheon area in South Korea

    NASA Astrophysics Data System (ADS)

    Jeong, Chan Ho; Shin, Seon Ho; Nagao, Keisuke; Kim, Kyu Han; Koh, Yung Kwon; Kim, Gun Young

    2010-05-01

    Hydrochemical, stable isotopic (δ18O and δD) and noble gas isotopic analyses of seven geothermal water samples, eleven groundwater samples and six surface water samples collected from the Icheon and Pocheon area were carried out to find out hydrochemical characteristics, and to interpret the source of noble gases and the geochemical evolution of the geothermal waters. The geothermal waters show low temperature type ranging from 21.5 to 31.4 ℃ and the pH value between 6.69 and 9.21. Electrical conductivity of geothermal waters has the range from 310 to 735 μS/cm. Whereas the geothermal in the Icheon area shows the geochemical characteristics of neutral pH, the Ca-HCO3(or Ca(Na)-HCO3) chemical type and a high uranium content, the geothermal water in the Pocheon area shows the characteristics of alkaline pH, the Na-HCO3 chemical type and a high fluorine content. These characteristics indicate that the geothermal water in the Icheon area is under the early stage in the geochemical evolution, and that geothermal water in the Pocheon area has been geochemically evolved. The δ18O and δD values of geothermal waters show the range of -10.1˜-8.69‰ and from -72.2˜-60.8‰, respectively, and these values supply the information of the recharge area of geothermal waters. The 3He/4He ratios of the geothermal waters range from 0.09×10-6 to 0.65×10-6 which are plotted above the mixing line between air and crustal components. Whereas the helium gas in the Icheon geothermal water was mainly provided from the atmospheric source mixing with the mantle(or magma) origin, the origin of helium gas in the Pocheon geothermal water shows a dominant crustal source. 40Ar/36Ar ratios of geothermal water are in the range of an atmosphere source. Key words: hot spring water, hydrochemical composition, low temperature type, 3He/4He ratios, crustal source

  7. The ATTA-Hefei Instrument for Radioactive Noble-gas Dating

    NASA Astrophysics Data System (ADS)

    Hu, S.; Cheng, C.; Cheng, G.; Sun, Y. R.; Tu, L.; Yang, G.

    2013-12-01

    Long-lived noble-gas isotopes 85Kr (10.8 y), 39Ar (269 y) and 81Kr (229 ky) are ideal tracers for dating environmental samples such as groundwater and ice. Together with 14C, these nuclides can be used to cover the whole range of 100-106 y. Atom Trap Trace Analysis (ATTA) is an emerging method for the analysis of these isotopes at an isotopic abundance level as low as 10^-16 [1,2]. The ATTA instrument built in Hefei, China, can determine the isotopic abundances of 85Kr and 81Kr with typically 5-10% accuracy using krypton gas samples of a few micro-liters (STP) krypton gas [3]. The krypton gas sample can be extracted from several liters of air using a distillation-chromatograph setup with a typical efficiency of 85%, while the air sample can be extracted from groundwater or ices. The typical sample size for ATTA measurement is 100L groundwater or 40Kg ices. One such ATTA beamline can handle about 100 samples per year. [1] Chen, C. Y. et al. Ultrasensitive isotope trace analyses with a magneto-optical trap. Science 286, 1139-1141 (1999). [2] Jiang, W. et al. 39Ar detection at the 10-16 isotopic abundance level with atom trap trace analysis. Phys. Rev. Lett. 106, 103001 (2011). [3] Yang, G. -M. et al. Analysis of 85Kr: a comparison at the 10-14 level using micro-liter samples, Sci. Rep. 3, 1596 (2013). Relative uncertainty of the determined 85Kr abundance by the ATTA-Hefei instrument.

  8. Cross-Calibration of Secondary Electron Multiplier in Noble Gas Analysis

    NASA Astrophysics Data System (ADS)

    Santato, Alessandro; Hamilton, Doug; Deerberg, Michael; Wijbrans, Jan; Kuiper, Klaudia; Bouman, Claudia

    2015-04-01

    The latest generation of multi-collector noble gas mass spectrometers has decisively improved the precision in isotopic ratio analysis [1, 2] and helped the scientific community to address new questions [3]. Measuring numerous isotopes simultaneously has two significant advantages: firstly, any fluctuations in signal intensity have no effect on the isotope ratio and secondly, the analysis time is reduced. This particular point becomes very important in static vacuum mass spectrometry where during the analysis, the signal intensity decays and at the same time the background increases. However, when multi-collector analysis is utilized, it is necessary to pay special attention to the cross calibration of the detectors. This is a key point in order to have accurate and reproducible isotopic ratios. In isotope ratio mass spectrometry, with regard to the type of detector (i.e. Faraday or Secondary Electron Multiplier, SEM), analytical technique (TIMS, MC-ICP-MS or IRMS) and isotope system of interest, several techniques are currently applied to cross-calibrate the detectors. Specifically, the gain of the Faraday cups is generally stable and only the associated amplifier must be calibrated. For example, on the Thermo Scientific instrument control systems, the 1011 and 1012 ohm amplifiers can easily be calibrated through a fully software controlled procedure by inputting a constant electric signal to each amplifier sequentially [4]. On the other hand, the yield of the SEMs can drift up to 0.2% / hour and other techniques such as peak hopping, standard-sample bracketing and multi-dynamic measurement must be used. Peak hopping allows the detectors to be calibrated by measuring an ion beam of constant intensity across the detectors whereas standard-sample bracketing corrects the drift of the detectors through the analysis of a reference standard of a known isotopic ratio. If at least one isotopic pair of the sample is known, multi-dynamic measurement can be used; in this

  9. Indigenous nitrogen in the Moon: Constraints from coupled nitrogen-noble gas analyses of mare basalts

    NASA Astrophysics Data System (ADS)

    Füri, Evelyn; Barry, Peter H.; Taylor, Lawrence A.; Marty, Bernard

    2015-12-01

    Nitrogen and noble gas (Ne-Ar) abundances and isotope ratios, determined by step-wise CO2 laser-extraction, static-mass spectrometry analysis, are reported for bulk fragments and mineral separates of ten lunar mare basalts (10020, 10057, 12008, 14053, 15555, 70255, 71557, 71576, 74255, 74275), one highland breccia (14321), and one ferroan anorthosite (15414). The mare basalt sub-samples 10057,183 and 71576,12 contain a large amount of solar noble gases, whereas neon and argon in all other samples are purely cosmogenic, as shown by their 21Ne/22Ne ratios of ≈0.85 and 36Ar/38Ar ratios of ≈0.65. The solar-gas-free basalts contain a two-component mixture of cosmogenic 15N and indigenous nitrogen (<0.5 ppm). Mare basalt 74255 and the olivine fraction of 15555,876 record the smallest proportion of 15Ncosm; therefore, their δ15 N values of -0.2 to + 26.7 ‰ (observed at the low-temperature steps) are thought to well represent the isotopic composition of indigenous lunar nitrogen. However, δ15 N values ≤ - 30 ‰ are found in several basalts, overlapping with the isotopic signature of Earth's primordial mantle or an enstatite chondrite-like impactor. While the lowest δ15 N values allow for nitrogen trapped in the Moon's interior to be inherited from the proto-Earth and/or the impactor, the more 15N-enriched compositions require that carbonaceous chondrites provided nitrogen to the lunar magma ocean prior to the solidification of the crust. Since nitrogen can efficiently be incorporated into mafic minerals (olivine, pyroxene) under oxygen fugacities close to or below the iron-wustite buffer (Li et al., 2013), the mare basalt source region is likely characterized by a high nitrogen storage capacity. In contrast, anorthosite 15414 shows no traces of indigenous nitrogen, suggesting that nitrogen was not efficiently incorporated into the lunar crust during magma ocean differentiation.

  10. Discharge effects on gas flow dynamics in a plasma jet

    NASA Astrophysics Data System (ADS)

    Xian, Yu Bin; Hasnain Qaisrani, M.; Yue, Yuan Fu; Lu, Xin Pei

    2016-10-01

    Plasma is used as a flow visualization method to display the gas flow of a plasma jet. Using this method, it is found that a discharge in a plasma jet promotes the transition of the gas flow to turbulence. A discharge at intermediate frequency (˜6 kHz in this paper) has a stronger influence on the gas flow than that at lower or higher frequencies. Also, a higher discharge voltage enhances the transition of the gas flow to turbulence. Analysis reveals that pressure modulation induced both by the periodically directed movement of ionized helium and Ohmic heating on the gas flow plays an important role in inducing the transition of the helium flow regime. In addition, since the modulations induced by the high- and low-frequency discharges are determined by the frequency-selective effect, only intermediate-frequency (˜6 kHz) discharges effectively cause the helium flow transition from the laminar to the turbulent flow. Moreover, a discharge with a higher applied voltage makes a stronger impact on the helium flow because it generates stronger modulations. These conclusions are useful in designing cold plasma jets and plasma torches. Moreover, the relationship between the discharge parameters and the gas flow dynamics is a useful reference on active flow control with plasma actuators.

  11. Determining the source and genetic fingerprint of natural gases using noble gas geochemistry: a northern Appalachian Basin case study

    USGS Publications Warehouse

    Hunt, Andrew G.; Darrah, Thomas H.; Poreda, Robert J.

    2012-01-01

    Silurian and Devonian natural gas reservoirs present within New York state represent an example of unconventional gas accumulations within the northern Appalachian Basin. These unconventional energy resources, previously thought to be noneconomically viable, have come into play following advances in drilling (i.e., horizontal drilling) and extraction (i.e., hydraulic fracturing) capabilities. Therefore, efforts to understand these and other domestic and global natural gas reserves have recently increased. The suspicion of fugitive mass migration issues within current Appalachian production fields has catalyzed the need to develop a greater understanding of the genetic grouping (source) and migrational history of natural gases in this area. We introduce new noble gas data in the context of published hydrocarbon carbon (C1,C2+) (13C) data to explore the genesis of thermogenic gases in the Appalachian Basin. This study includes natural gases from two distinct genetic groups: group 1, Upper Devonian (Marcellus shale and Canadaway Group) gases generated in situ, characterized by early mature (13C[C1  C2][13C113C2]: –9), isotopically light methane, with low (4He) (average, 1  103 cc/cc) elevated 4He/40Ar and 21Ne/40Ar (where the asterisk denotes excess radiogenic or nucleogenic production beyond the atmospheric ratio), and a variable, atmospherically (air-saturated–water) derived noble gas component; and group 2, a migratory natural gas that emanated from Lower Ordovician source rocks (i.e., most likely, Middle Ordovician Trenton or Black River group) that is currently hosted primarily in Lower Silurian sands (i.e., Medina or Clinton group) characterized by isotopically heavy, mature methane (13C[C1 – C2] [13C113C2]: 3), with high (4He) (average, 1.85  103 cc/cc) 4He/40Ar and 21Ne/40Ar near crustal production levels and elevated crustal noble gas content (enriched 4He,21Ne, 40Ar). Because the release of each crustal noble gas (i.e., He, Ne, Ar

  12. USGS-NoGaDat - A global dataset of noble gas concentrations and their isotopic ratios in volcanic systems

    USGS Publications Warehouse

    Abedini, Atosa A.; Hurwitz, S.; Evans, William C.

    2006-01-01

    The database (Version 1.0) is a MS-Excel file that contains close to 5,000 entries of published information on noble gas concentrations and isotopic ratios from volcanic systems in Mid-Ocean ridges, ocean islands, seamounts, and oceanic and continental arcs (location map). Where they were available we also included the isotopic ratios of strontium, neodymium, and carbon. The database is sub-divided both into material sampled (e.g., volcanic glass, different minerals, fumarole, spring), and into different tectonic settings (MOR, ocean islands, volcanic arcs). Included is also a reference list in MS-Word and pdf from which the data was derived. The database extends previous compilations by Ozima (1994), Farley and Neroda (1998), and Graham (2002). The extended database allows scientists to test competing hypotheses, and it provides a framework for analysis of noble gas data during periods of volcanic unrest.

  13. Deflagration-to-Detonation Transition Control by Nanosecond Gas Discharges

    DTIC Science & Technology

    2008-04-07

    Report 3. DATES COVERED (From – To) 1 April 2007 - 18 August 09 4. TITLE AND SUBTITLE Deflagration-To- Detonation Transition Control By Nanosecond...SUPPLEMENTARY NOTES 14. ABSTRACT During the current project, an extensive experimental study of detonation initiation by high{voltage...nanosecond gas discharges has been performed in a smooth detonation tube with different discharge chambers and various discharge cell numbers. The chambers

  14. The degassing history of the Earth: Noble gas studies of Archaean cherts and zero age glassy submarine basalts

    NASA Technical Reports Server (NTRS)

    Hart, R.; Hogan, L.

    1985-01-01

    Recent noble gas studies suggests the Earth's atmosphere outgassed from the Earth's upper mantle synchronous with sea floor spreading, ocean ridge hydrothermal activity and the formation of continents by partial melting in subduction zones. The evidence for formation of the atmosphere by outgassing of the mantle is the presence of radionuclides H3.-4, Ar-040 and 136 Xe-136 in the atmosphere that were produced from K-40, U and Th in the mantle. How these radionuclides were formed is reviewed.

  15. Atmospheric pressure helium afterglow discharge detector for gas chromatography

    DOEpatents

    Rice, Gary; D'Silva, Arthur P.; Fassel, Velmer A.

    1986-05-06

    An apparatus for providing a simple, low-frequency electrodeless discharge system for atmospheric pressure afterglow generation. A single quartz tube through which a gas mixture is passed is extended beyond a concentric electrode positioned thereabout. A grounding rod is placed directly above the tube outlet to permit optical viewing of the discharge between the electrodes.

  16. Atmospheric pressure helium afterglow discharge detector for gas chromatography

    DOEpatents

    Rice, G.; D'Silva, A.P.; Fassel, V.A.

    1985-04-05

    An apparatus for providing a simple, low-frequency, electrodeless discharge system for atmospheric pressure afterglow generation. A single quartz tube through which a gas mixture is passed is extended beyond a concentric electrode positioned thereabout. A grounding rod is placed directly above the tube outlet to permit optical viewing of the discharge between the electrodes.

  17. Making channeling visible: keV noble gas ion trails on Pt(111)

    NASA Astrophysics Data System (ADS)

    Redinger, A.; Standop, S.; Rosandi, Y.; Urbassek, H. M.; Michely, T.

    2011-01-01

    The impact of argon and xenon noble gas ions on Pt(111) in grazing incidence geometry are studied through direct comparison of scanning tunneling microscopy images and molecular dynamics simulations. The energy range investigated is 1-15 keV and the angles of incidence with respect to the surface normal are between 78.5° and 88°. The focus of the paper is on events where ions gently enter the crystal at steps and are guided in channels between the top most layers of the crystal. The trajectories of the subsurface channeled ions are visible as trails of surface damage. The mechanism of trail formation is analyzed using simulations and analytical theory. Significant differences between Xe+ and Ar+ projectiles in damage, in the onset energy of subsurface channeling as well as in ion energy dependence of trail length and appearance are traced back to the projectile and ion energy dependence of the stopping force. The asymmetry of damage production with respect to the ion trajectory direction is explained through the details of the channel shape and subchannel structure as calculated from the continuum approximation of the channel potential. Measured and simulated channel switching in directions normal and parallel to the surface as well as an increase of ions entering into channels from the perfect surface with increasing angles of incidence are discussed.

  18. Communication: Nuclear quadrupole moment-induced Cotton-Mouton effect in noble gas atoms

    SciTech Connect

    Fu, Li-juan; Vaara, Juha; Rizzo, Antonio

    2013-11-14

    New, high-sensitivity and high-resolution spectroscopic and imaging methods may be developed by exploiting nuclear magneto-optic effects. A first-principles electronic structure formulation of nuclear electric quadrupole moment-induced Cotton-Mouton effect (NQCME) is presented for closed-shell atoms. In NQCME, aligned quadrupole moments alter the index of refraction of the medium along with and perpendicular to the direction of nuclear alignment. The roles of basis-set convergence, electron correlation, and relativistic effects are investigated for three quadrupolar noble gas isotopes: {sup 21}Ne, {sup 83}Kr, and {sup 131}Xe. The magnitude of the resulting ellipticities is predicted to be 10{sup −4}–10{sup −6} rad/(M cm) for fully spin-polarized nuclei. These should be detectable in the Voigt setup. Particularly interesting is the case of {sup 131}Xe, in which a high degree of spin polarization can be achieved via spin-exchange optical hyperpolarization.

  19. Comparing Meteorite and Spacecraft Noble Gas Measurements to Trace Processes in the Martian Crust and Atmosphere

    NASA Astrophysics Data System (ADS)

    Swindle, T. D.

    2014-12-01

    Our knowledge of the noble gas abundances and isotopic compositions in the Martian crust and atmosphere come from two sources, measurements of meteorites from Mars and in situ measurements by spacecraft. Measurements by the Viking landers had large uncertainties, but were precise enough to tie the meteorites to Mars. Hence most of the questions we have are currently defined by meteorite measurements. Curiosity's SAM has confirmed that the Ar isotopic composition of the atmosphere is highly fractionated, presumably representing atmospheric loss that can now be modeled with more confidence. What turns out to be a more difficult trait to explain is the fact that the ratio of Kr/Xe in nakhlites, chassignites and ALH84001 is distinct from the atmospheric ratio, as defined by measurements from shergottites. This discrepancy has been suggested to be a result of atmosphere/groundwater/rock interaction, polar clathrate formation, or perhaps local temperature conditions. More detailed atmospheric measurements, along with targeted simulation experiments, will be needed to make full use of this anomaly.

  20. Potential interstellar noble gas molecules: ArOH+ and NeOH+ rovibrational analysis from quantum chemical quartic force fields

    NASA Astrophysics Data System (ADS)

    Theis, Riley A.; Fortenberry, Ryan C.

    2016-03-01

    The discovery of ArH+ in the interstellar medium has shown that noble gas chemistry may be of more chemical significance than previously believed. The present work extends the known chemistry of small noble gas molecules to NeOH+ and ArOH+. Besides their respective neonium and argonium diatomic cation cousins, these hydroxyl cation molecules are the most stable small noble gas molecules analyzed of late. ArOH+ is once again more stable than the neon cation, but both are well-behaved enough for a complete quartic force field analysis of their rovibrational properties. The Ar-O bond in ArOH+ , for instance, is roughly three-quarters of the strength of the Ar-H bond in ArH+ highlighting the rigidity of this system. The rotational constants, geometries, and vibrational frequencies for both molecules and their various isotopologues are computed from ab initio quantum chemical theory at high-level, and it is shown that these cations may form in regions where peroxy or weakly-bound alcohols may be present. The resulting data should be of significant assistance for the laboratory or observational analysis of these potential interstellar molecules.

  1. Noble gas systematics for coexisting glass and olivine crystals in basalts and dunite xenoliths from Loihi Seamount

    USGS Publications Warehouse

    Kaneoka, I.; Takaoka, N.; Clague, D.A.

    1983-01-01

    Noble gas isotopes including 3He 4He, 40Ar 36Ar and Xe isotope ratios were determined for coexisting glass and olivine crystals in tholeiitic and alkalic basalts and dunite xenoliths from Loihi Seamount. Glass and coexisting olivine crystals have similar 3He 4He ratios (2.8-3.4) ?? 10-5, 20 to 24 times the atmospheric ratio (RA), but different 40Ar 36Ar ratios (400-1000). Based on the results of noble gas isotope ratios and microscopic observation, some olivine crystals are xenocrysts. We conclude that He is equilibrated between glass and olivine xenocrysts, but Ar is not. The apparent high 3He 4He ratio (3 ?? 10-5; = 21 RA) coupled with a relatively high 40Ar 36Ar ratio (4200) for dunite xenoliths (KK 17-5) may be explained by equilibration of He between MORB-type cumulates and the host magma. Except for the dunite xenoliths, noble gas data for these Loihi samples are compatible with a model in which samples from hot spot areas may be explained by mixing between P (plume)-type and M (MORB)-type components with the addition of A (atmosphere)-type component. Excess 129Xe has not been observed due to apparent large mass fractionation among Xe isotopes. ?? 1983.

  2. Stream measurements locate thermogenic methane fluxes in groundwater discharge in an area of shale-gas development.

    PubMed

    Heilweil, Victor M; Grieve, Paul L; Hynek, Scott A; Brantley, Susan L; Solomon, D Kip; Risser, Dennis W

    2015-04-07

    The environmental impacts of shale-gas development on water resources, including methane migration to shallow groundwater, have been difficult to assess. Monitoring around gas wells is generally limited to domestic water-supply wells, which often are not situated along predominant groundwater flow paths. A new concept is tested here: combining stream hydrocarbon and noble-gas measurements with reach mass-balance modeling to estimate thermogenic methane concentrations and fluxes in groundwater discharging to streams and to constrain methane sources. In the Marcellus Formation shale-gas play of northern Pennsylvania (U.S.A.), we sampled methane in 15 streams as a reconnaissance tool to locate methane-laden groundwater discharge: concentrations up to 69 μg L(-1) were observed, with four streams ≥ 5 μg L(-1). Geochemical analyses of water from one stream with high methane (Sugar Run, Lycoming County) were consistent with Middle Devonian gases. After sampling was completed, we learned of a state regulator investigation of stray-gas migration from a nearby Marcellus Formation gas well. Modeling indicates a groundwater thermogenic methane flux of about 0.5 kg d(-1) discharging into Sugar Run, possibly from this fugitive gas source. Since flow paths often coalesce into gaining streams, stream methane monitoring provides the first watershed-scale method to assess groundwater contamination from shale-gas development.

  3. Noble Gas Isotopic Evidence for Primordial Evolution of the Earth's Atmosphere in Three Distinct Stages

    NASA Astrophysics Data System (ADS)

    Harper, C. L., Jr.; Jacobsen, S. B.

    1995-09-01

    The deep Earth is the key to understanding the primordial evolution of the Earth's atmosphere. However the atmosphere was not derived by degassing of the Earth, as widely held. Isotopic characterization of mantle noble gases and modeling based on this information [1] suggests the atmosphere experienced a 3-stage early history. This follows from 5 basic observations: (i) Ne in the mantle is solar-like, with light (high) 20Ne/22Ne relative to the atmosphere [2]; (ii) mantle Xe has higher 128Xe/130Xe than the atmosphere [3], which carries an extreme heavy isotope enriched mass fractionation signature of >3%/amu (iii) most of the radiogenic Xe from l29I and 244Pu decay in the Earth is not present either in the mantle or in the atmosphere; (iv) the inferred abundances of noble gases in the deep Earth "plume source" are insufficient to generate the present atmospheric abundances, even for whole mantle degassing; and (v) mantle noble gases indicate a 2 component structure, with solar light gases (He and Ne) and planetary heavy gases [4]. The present day noble gas budgets (and likely also N2) must derive from late accretion of a volatile-rich "veneer." This is stage III. Stage II is a naked (no atmosphere) epoch indicated by evidence for Hadean degassing of 244Pu (T1/2 = 80 Ma) fission Xe from the whole mantle, which was not retained in the present atmosphere. The naked stage must have lasted for more than ~200 Ma, and was supported by the early intense solar EUV luminosity. Stage I, a massive solar-composition protoatmosphere, occurred during the Earth's early accretion phase. Its existence is indicated by the presence of the solar gas component in the Earth. This is not attributable to subduction of solar wind rich cosmic dust, or solar wind irradiation of coagulating objects. It is best explained by accretion of a solar composition atmosphere from the nebula. This provided a thermal blanket supporting a magma ocean in which solar gases dissolved. Under these conditions

  4. Nature of sonoluminescence: noble gas radiation excited by hot electrons in cold water

    PubMed

    Garcia; Levanyuk; Osipov

    2000-08-01

    It was proposed before that single bubble sonoluminescence (SBSL) may be caused by strong electric fields occurring in water near the surface of collapsing gas bubbles because of the flexoelectric effect involving polarization resulting from a gradient of pressure. Here we show that these fields can indeed provoke dynamic electric breakdown in a micron-size region near the bubble and consider the scenario of the SBSL. The scenario is (i) at the last stage of incomplete collapse of the bubble, the gradient of pressure in water near the bubble surface has such a value and a sign that the electric field arising from the flexoelectric effect exceeds the threshold field of the dynamic electrical breakdown of water and is directed to the bubble center; (ii) mobile electrons are generated because of thermal ionization of water molecules near the bubble surface; (iii) these electrons are accelerated in "cold" water by the strong electric fields; (iv) these hot electrons transfer noble gas atoms dissolved in water to high-energy excited states and optical transitions between these states produce SBSL UV flashes in the transparency window of water; (v) the breakdown can be repeated several times and the power and duration of the UV flash are determined by the multiplicity of the breakdowns. The SBSL spectrum is found to resemble a black-body spectrum where temperature is given by the effective temperature of the hot electrons. The pulse energy and some other characteristics of the SBSL are found to be in agreement with the experimental data when realistic estimates are made.

  5. Modulation by the noble gas argon of the catalytic and thrombolytic efficiency of tissue plasminogen activator.

    PubMed

    David, Hélène N; Haelewyn, Benoît; Risso, Jean-Jacques; Abraini, Jacques H

    2013-01-01

    Argon has been shown to provide cortical as well as, under certain conditions, subcortical neuroprotection in all models so far (middle cerebral artery occlusion, trauma, neonatal asphyxia, etc.). This has led to the suggestion that argon could be a cost-efficient alternative to xenon, a metabolically inert gas thought to be gold standard in gas pharmacology but whose clinical development suffers its little availability and excessive cost of production. However, whether argon interacts with the thrombolytic agent tissue plasminogen activator, which is the only approved therapy of acute ischemic stroke to date, still remains unknown. This latter point is not trivial since previous data have clearly demonstrated the inhibiting effect of xenon on tPA enzymatic and thrombolytic efficiency and the critical importance of the time at which xenon is administered, during or after ischemia, in order not to block thrombolysis and to obtain neuroprotection. Here, we investigated the effect of argon on tPA enzymatic and thrombolytic efficiency using in vitro methods shown to provide reliable prediction of the in vivo effects of both oxygen and the noble inert gases on tPA-induced thrombolysis. We found that argon has a concentration-dependent dual effect on tPA enzymatic and thrombolytic efficiency. Low and high concentrations of argon of 25 and 75 vol% respectively block and increase tPA enzymatic and thrombolytic efficiency. The possible use of argon at low and high concentrations in the treatment of acute ischemic stroke if given during ischemia or after tPA-induced reperfusion is discussed as regards to its neuroprotectant action and its inhibiting and facilitating effects on tPA-induced thrombolysis. The mechanisms of argon-tPA interactions are also discussed.

  6. Noble Gas Proxy Evidence Of Holocene Climate Fluctuations In The Elwha Watershed, Olympic Mountains, Washington

    EPA Science Inventory

    Paleotempertures retrieved from the groundwater archives in the largest watershed (≈800 km2) in the Olympic Mountains suggest asynchronous Olympic Peninsula climate responses during the Everson interstade period after the last continental glacial maximum. Dissolved noble gases fr...

  7. A Rapid, Low-Cost Method to Determine Travel Times at Managed Aquifer Recharge Operations Using Noble Gas Tracers

    NASA Astrophysics Data System (ADS)

    Moran, J. E.; Visser, A.; Singleton, M. J.; Esser, B. K.; Halliwell, M.; Hillegonds, D. J.

    2012-12-01

    Managed aquifer recharge is a key component for the sustainable use of surface water and groundwater in the arid western U.S. When recycled water is a recharge water source, subsurface residence time, required for bacteria and virus deactivation, is best verified by application of an extrinsic tracer. Desirable tracer properties include: no real or perceived health risk, inexpensive even for a large volume of tagged water, large dynamic range, efficient introduction, convenient sampling methods, and rapid, low-cost analysis. We have developed and tested a dissolved noble gas tracer technique ideally suited for tracing large water volumes at managed aquifer recharge facilities. In an application of the method at a water district's facilities in the San Francisco Bay area, Xenon was introduced into a 106 m3 pond over a period of 7 days using a 300 m length of gas-permeable silicone tubing. Samples from the pond, near-field shallow monitoring wells, and production wells about 400 m from the recharge pond were analyzed for dissolved Xe by noble gas membrane inlet mass spectrometry (NGMIMS). The NGMIMS uses a syringe pump, gas-permeable membrane inlet, and quadrupole residual gas analyzer for measurement of noble gas concentrations. Samples are collected in VOA vials, and analysis can be carried out in real-time, with a measurement uncertainty of about 5% for Xe. Tracer first appeared in a production well 136 days after starting the tracer introduction at 0.7% (C/C0) of the peak pond xenon concentration. The cost of the tracer is about US650/106 m3 water, and the NGMIMS was assembled with parts totaling approximately US50,000, making application of the tracer method feasible for most managed aquifer recharge projects. This project is part of the California State Water Resources Control Board Groundwater Ambient Monitoring and Assessment (GAMA) Program.

  8. Laser microprobe analyses of noble gas isotopes and halogens in fluid inclusions: Analyses of microstandards and synthetic inclusions in quartz

    USGS Publications Warehouse

    Böhlke, J.K.; Irwin, J.J.

    1992-01-01

    Ar, Kr, Xe, Cl, Br, I, and K abundances and isotopic compositions have been measured in microscopic fluid inclusions in minerals by noble gas mass spectrometry following neutron irradiation and laser extraction. The laser microprobe noble gas mass spectrometric (LMNGMS) technique was quantified by use of microstandards, including air-filled capillary tubes, synthetic basalt glass grains, standard hornblende grains, and synthetic fluid inclusions in quartz. Common natural concentrations of halogens (Cl, Br, and I) and noble gases (Ar and Kr) in trapped groundwaters and hydrothermal fluids can be analyzed simultaneously by LMNGMS in as little as 10-11 L of inclusion fluid, with accuracy and precision to within 5-10% for element and isotope ratios. Multicomponent element and isotope correlations indicate contaminants or persistent reservoirs of excess Xe and/or unfractionated air in some synthetic and natural fluid inclusion samples. LMNGMS analyses of natural fluid inclusions using the methods and calibrations reported here may be used to obtain unique information on sources of fluids, sources of fluid salinity, mixing, boiling (or unmixing), and water-rock interactions in ancient fluid flow systems. ?? 1992.

  9. Detection of Noble Gas Radionuclides from an Underground Nuclear Explosion During a CTBT On-Site Inspection

    NASA Astrophysics Data System (ADS)

    Carrigan, Charles R.; Sun, Yunwei

    2014-03-01

    The development of a technically sound approach to detecting the subsurface release of noble gas radionuclides is a critical component of the on-site inspection (OSI) protocol under the Comprehensive Nuclear Test Ban Treaty. In this context, we are investigating a variety of technical challenges that have a significant bearing on policy development and technical guidance regarding the detection of noble gases and the creation of a technically justifiable OSI concept of operation. The work focuses on optimizing the ability to capture radioactive noble gases subject to the constraints of possible OSI scenarios. This focus results from recognizing the difficulty of detecting gas releases in geologic environments—a lesson we learned previously from the non-proliferation experiment (NPE). Most of our evaluations of a sampling or transport issue necessarily involve computer simulations. This is partly due to the lack of OSI-relevant field data, such as that provided by the NPE, and partly a result of the ability of computer-based models to test a range of geologic and atmospheric scenarios far beyond what could ever be studied by field experiments, making this approach very highly cost effective. We review some highlights of the transport and sampling issues we have investigated and complete the discussion of these issues with a description of a preliminary design for subsurface sampling that addresses some of the sampling challenges discussed here.

  10. Pulsed Electrical Discharge in a Gas Bubble in Water

    NASA Astrophysics Data System (ADS)

    Schaefer, Erica; Gershman, Sophia; Mozgina, Oksana

    2005-10-01

    This experiment is an investigation of the electrical and optical characteristics of a pulsed electrical discharge ignited in a gas bubble in water in a needle-to-plane electrode geometry. Argon or oxygen gas is fed through a platinum hypodermic needle that serves as the high voltage electrode. The gas filled bubble forms at the high voltage electrode with the tip of the needle inside the bubble. The discharge in the gas bubble in water is produced by applying 5 -- 15 kV, microsecond long rectangular pulses between the electrodes submerged in water. The voltage across the electrodes and the current are measured as functions of time. Electrical measurements suggest a discharge ignited in the bubble (composed of the bubbled gas and water vapor) without breakdown of the entire water filled electrode gap. Time-resolved optical emission measurements are taken in the areas of the spectrum corresponding to the main reactive species produced in the discharge, e.g. OH 309 nm, Ar 750 nm, and O 777 nm emissions using optical filters. The discharge properties are investigated as a function of the applied voltage, the distance between the electrodes, the gas in the bubble (Ar or O2). Work supported by the US Army, Picatinny Arsenal, NJ and the US DOE (Contract number DE-AC02-76CH03073).

  11. Gas mixture for diffuse-discharge switch

    DOEpatents

    Christophorou, Loucas G.; Carter, James G.; Hunter, Scott R.

    1984-01-01

    Gaseous medium in a diffuse-discharge switch of a high-energy pulse generator is formed of argon combined with a compound selected from the group consisting of CF.sub.4, C.sub.2 F.sub.6, C.sub.3 F.sub.8, n-C.sub.4 F.sub.10, WF.sub.6, (CF.sub.3).sub.2 S and (CF.sub.3).sub.2 O.

  12. Gas mixture for diffuse-discharge switch

    DOEpatents

    Christophorou, L.G.; Carter, J.G.; Hunter, S.R.

    1982-08-31

    Gaseous medium in a diffuse-discharge switch of a high-energy pulse generator is formed of argon combined with a compound selected from the group consisting of CF/sub 4/, C/sub 2/F/sub 6/, C/sub 3/F/sub 8/, n-C/sub 4/F/sub 10/, WF/sub 6/, (CF/sub 3/)/sub 2/S and (CF/sub 3/)/sub 2/O.

  13. Periodically Discharging, Gas-Coalescing Filter

    NASA Technical Reports Server (NTRS)

    Carter, Donald Layne; Holder, Donald W.

    2006-01-01

    A proposed device would remove bubbles of gas from a stream of liquid (typically water), accumulate the gas, and periodically release the gas, in bulk, back into the stream. The device is intended for use in a flow system (1) in which there is a requirement to supply bubble-free water to a downstream subsystem and (2) that includes a sensor and valves, just upstream of the subsystem, for sensing bubbles and diverting the flow from the subsystem until the water stream is again free of bubbles. By coalescing the gas bubbles and then periodically releasing the accumulated gas, the proposed device would not contribute to net removal of gas from the liquid stream; nevertheless, it would afford an advantage by reducing the frequency with which the diverter valves would have to be activated. The device (see figure) would include an upper and a lower porous membrane made of a hydrophilic material. Both membranes would cover openings in a tube leading to an outlet. These membranes would allow water, but not gas bubbles, to pass through to the interior of the tube. Inside the tube, between the two membranes, there would be a flow restrictor that would play a role described below. Below both membranes there would be a relief valve. Water, possibly containing bubbles, would enter from the top and would pass through either the lower membrane or both membranes, depending how much gas had been accumulated thus far. When the volume of accumulated gas was sufficient to push the top surface of the liquid below the lower porous membrane, water could no longer flow through either membrane toward the outlet. This blockage would cause an increase in back pressure that would cause the relief valve to open. The opening of the relief valve would allow both the water and the bulk-accumulated gas to pass through to the outlet. Once the gas had been pushed out, water would once again flow through both membranes at a much lower pressure drop. The flow restrictor would maintain enough pressure

  14. Plasma physics issues in gas discharge laser development

    SciTech Connect

    Garscadden, A. ); Kushner, M.J.; Eden, J.G. . Dept. of Electrical and Computer Engineering)

    1991-12-01

    In this paper an account is given of the interplay between partially ionized plasma physics and the development of gas discharge lasers. Gas discharge excitation has provided a wide array of laser devices extending from the soft X-ray region to the far infrared. The scaling of gas discharge lasers in power and energy also covers many orders of magnitude. The particular features of three regimes are discussed: short wavelength lasers (deep UV to soft X-ray); visible and near UV lasers; and infrared molecular gas lasers. The current status (Fall 1990) of these areas is reviewed, and an assessment is made of future research topics that are perceived to be important.

  15. A preliminary report on noble gas isotope analyses using the Helix-MC multi-collector mass spectrometer

    NASA Astrophysics Data System (ADS)

    Honda, M.; Zhang, X.; Phillips, D.; Szczepanski, S.; Deerberg, M.; Hamilton, D.; Krummen, M.; Schwieters, J.

    2013-12-01

    Analyses of noble gas isotopes by multi-collector mass spectrometry substantially improve measurement precision and accuracy, with the potential to revolutionise applications to cosmo-geo-sciences. The Helix-MC noble gas mass spectrometer manufactured by Thermo-Fisher is a 350mm, 120 degree extended geometry, high resolution, multi-collector mass spectrometer for the simultaneous analysis of noble gas isotopes. The detector array includes a fixed axial (Ax) detector, 2 adjustable high mass (H1 and H2) detectors and 2 adjustable low mass (L1 and L2) detectors. Each detector is equipped with a Faraday/ion counting multiplier CFM (Combined Faraday and CDD Multiplier) detector. Mass resolution and mass resolving power on the H2, Ax and L2 detectors of the Helix-MC installed at the Australian National University (ANU) are approximately 1,800 and 8,000, respectively. The noble gas handling system on-line to the Helix-MC consists of: (1) a resistively-heated, double-vacuum, tantalum furnace system, (2) air actuated vacuum crusher, (3) Photon-Machines diode laser heating system, (4) Janis He cryogenic trap assembly, (5) gas purification system and (6) standard gas pipette tanks, which are totally automated and controlled by the Qtegra software platform developed by Thermo-Fisher. Eleven repeat measurements of atmospheric Ar using the H2 Faraday (1E11 ohm resistor) and L2 CDD collectors on the Helix-MC, yield a mean 40Ar/36Ar ratio of 322.09 +- 0.28 (0.089%) with a 4,700 fA 40Ar beam current. This result compares favourably with the precision achieved by the Argus VI at the University of Melbourne (318.12 +- 0.17; 0.052%; n = 10) with a similar beam size of 4,200 fA. The high mass resolution of the L2 collector permits complete separation of the 36Ar and interfering 3 x 12C (required mass resolution (MR) of 1,100) and partial separation of H35Cl (MR = 3,900). This capability enables evaluation of the significance of Ar isotopic interferences related to the correction of

  16. WLS R&D for the detection of noble gas scintillation at LBL: seeing the light from neutrinos, to dark matter, to double beta decay

    NASA Astrophysics Data System (ADS)

    Gehman, V. M.

    2013-09-01

    Radiation detectors with noble gasses as the active medium are becoming increasingly common in experimental programs searching for physics beyond the standard model. Nearly all of these experiments rely to some degree on collecting scintillation light from noble gasses. The VUV wavelengths associated with noble gas scintillation mean that most of these experiments use a fluorescent material to shift the direct scintillation light into the visible or near UV band. We present an overview of the R&D program at LBL related to noble gas detectors for neutrino physics, double beta decay, and dark matter. This program ranges from precise measurements of the fluorescence behavior of wavelength shifting films, to the prototyping of large are VUV sensitive light guides for multi-kiloton detectors.

  17. Recent studies on nanosecond-timescale pressurized gas discharges

    NASA Astrophysics Data System (ADS)

    Yatom, S.; Shlapakovski, A.; Beilin, L.; Stambulchik, E.; Tskhai, S.; Krasik, Ya E.

    2016-12-01

    The results of recent experimental and numerical studies of nanosecond high-voltage discharges in pressurized gases are reviewed. The discharges were ignited in a diode filled by different gases within a wide range of pressures by an applied pulsed voltage or by a laser pulse in the gas-filled charged resonant microwave cavity. Fast-framing imaging of light emission, optical emission spectroscopy, x-ray foil spectrometry and coherent anti-Stokes Raman scattering were used to study temporal and spatial evolution of the discharge plasma density and temperature, energy distribution function of runaway electrons and dynamics of the electric field in the plasma channel. The results obtained allow a deeper understanding of discharge dynamical properties in the nanosecond timescale, which is important for various applications of these types of discharges in pressurized gases.

  18. Recent studies on nanosecond-timescale pressurized gas discharges

    SciTech Connect

    Yatom, S.; Shlapakovski, A.; Beilin, L.; Stambulchik, E.; Tskhai, S.; Krasik, Ya E.

    2016-10-05

    The results of recent experimental and numerical studies of nanosecond high-voltage discharges in pressurized gases are reviewed. The discharges were ignited in a diode filled by different gases within a wide range of pressures by an applied pulsed voltage or by a laser pulse in the gas-filled charged resonant microwave cavity. Fast-framing imaging of light emission, optical emission spectroscopy, X-ray foil spectrometry and coherent anti-Stokes Raman scattering were used to study temporal and spatial evolution of the discharge plasma density and temperature, energy distribution function of runaway electrons and dynamics of the electric field in the plasma channel. The results obtained allow a deeper understanding of discharge dynamical properties in the nanosecond timescale, which is important for various applications of these types of discharges in pressurized gases.

  19. Recent studies on nanosecond-timescale pressurized gas discharges

    DOE PAGES

    Yatom, S.; Shlapakovski, A.; Beilin, L.; ...

    2016-10-05

    The results of recent experimental and numerical studies of nanosecond high-voltage discharges in pressurized gases are reviewed. The discharges were ignited in a diode filled by different gases within a wide range of pressures by an applied pulsed voltage or by a laser pulse in the gas-filled charged resonant microwave cavity. Fast-framing imaging of light emission, optical emission spectroscopy, X-ray foil spectrometry and coherent anti-Stokes Raman scattering were used to study temporal and spatial evolution of the discharge plasma density and temperature, energy distribution function of runaway electrons and dynamics of the electric field in the plasma channel. The resultsmore » obtained allow a deeper understanding of discharge dynamical properties in the nanosecond timescale, which is important for various applications of these types of discharges in pressurized gases.« less

  20. Identifying the Sources of Methane in Shallow Groundwaters in Parker and Hood Counties, Texas through Noble Gas Signatures

    NASA Astrophysics Data System (ADS)

    Wen, T.; Castro, M. C.; Nicot, J. P.; Hall, C. M.; Mickler, P. J.; Darvari, R.

    2015-12-01

    With rising demands for cleaner domestic energy resources, horizontal drilling and hydraulic fracturing techniques in unconventional hydrocarbon exploration have been extensively developed. However, the observation that some water wells have showed elevated concentrations of dissolved methane and other light hydrocarbons has caused public concern regarding unconventional energy extraction. In this contribution, we present noble gas data of production shale gases from the Barnett and Strawn Formations, as well as nearby groundwater samples in south-central Texas. The Barnett Shale located in the Fort Worth Basin at an average depth of ~2300 m is one of the most prominent shale gas plays in the U.S. This DOE-sponsored study explores the potential of noble gases for fingerprinting shale gas and thus, for identifying the sources of gas in aquifers overlying the Barnett Shale, due either to natural hydrocarbon occurrences or potentially related to gas production from unconventional energy resources. A total of 35 groundwater samples were collected in Parker and Hood counties in areas where high amounts of methane (>10 mg/L) were detected in shallow groundwater. Two gas samples were also collected directly from groundwater wells where bubbling methane was present. Preliminary results show that He concentrations in water samples, in excess of up to three orders of magnitude higher than expected atmospheric values are directly correlated with methane concentrations. 3He/4He ratio values vary from 0.030 to 0.889 times the atmospheric ratio with the lowest, more pure radiogenic contributions being associated with highest methane levels. The presence of crustally-produced radiogenic 40Ar is also apparent in groundwater samples with 40Ar/36Ar ratios up to 316. A combined analysis of 40Ar/36Ar ratios from groundwater wells bubbling gas and that of shale gas suggests that the source of this methane is not the heavily exploited Barnett Shale, but rather, the Strawn Formation.

  1. Origin and age of thermal waters in Cieplice Spa, Sudeten, Poland, inferred from isotope, chemical and noble gas data

    NASA Astrophysics Data System (ADS)

    Ciȩżkowski, W.; Gröning, M.; Leśniak, P. M.; Weise, S. M.; Zuber, A.

    1992-12-01

    Isotope and hydrochemical data of the thermal water system in Cieplice Ṡlaskie Zdrój (Spa) indicate the existence of two subsystems that greatly differ in volume and which meet at the fault zones of a granitic horst, where they discharge at an altitude of about 340m. One of the subsystems is very small (about 4 × 10 3 m 3) as indicated by the tritium age of the order of 10 years and a low outflow rate. Its recharge area found from the δ18O and δD values, is about 200m above the springs, most probably on the slopes of the foothills of the Karkonosze Mountains south-southwest of the spa. The large subsystem contains water which is free of tritium and whose 14C content is from 1 to 8 pmc with δ13C = -8.0 to -9.2‰. The isotopic composition of this water reflects either the climatic effect (low-altitude recharge during a cooler pre-Holocene climate) or the altitude effect (recharge in the early Holocene period at about 1000m at the heights of the Karkonosze assuming that the 14C concentration is strongly reduced by exchange with calcite in veins). For the former hypothesis, the recharge area of this water is probably either at the foot of the southeastern slopes of the Kaczawa Mountains or/and at the foot of the Rudawy Janowickie Mountains, to the east of Cieplice. The noble gas temperatures are more consistent with the pre-Holocene recharge. Similarly, the 4He excess and {40Ar}/{36Ar} ratio support the hypothesis of a pre-Holecene age. The constant {3He}/{4He} ratio of 26 × 10 -8 for highly different helium contents indicates crustal origin of helium. For the pre-Holocene age of water its volume is calculated at >- 10 9m 3 (stagnant water in micropores and mobile water in fractures) and the hydraulic conductivity of the host granite massif is estimated at about 7 × 10 -8 ms -1. Two outflows from this subsystem have different and variable fractions of a modern water component (bomb age), most probably originating from the bank infiltration of a nearby stream.

  2. GAS DISCHARGE SWITCH EVALUATION FOR RHIC BEAM ABORT KICKER APPLICATION.

    SciTech Connect

    ZHANG,W.; SANDBERG,J.; SHELDRAKE,R.; PIRRIE,C.

    2002-06-30

    A gas discharge switch EEV HX3002 is being evaluated at Brookhaven National Laboratory as a possible candidate of RHIC Beam Abort Kicker modulator main switch. At higher beam energy and higher beam intensity, the switch stability becomes very crucial. The hollow anode thyratron used in the existing system is not rated for long reverse current conduction. The reverse voltage arcing caused thyratron hold-off voltage de-rating has been the main limitation of the system operation. To improve the system reliability, a new type of gas discharge switch has been suggested by Marconi Applied Technology for its reverse conducting capability.

  3. Single-bubble sonoluminescence from noble gases.

    PubMed

    Yasui, K

    2001-03-01

    Single-bubble sonoluminescence (SBSL) from noble gases in water is studied theoretically in order to clarify the reason of the distinguished feature that the luminescence is strong for all noble gases, while the other systems of cavitation luminescence are greatly enhanced by the presence of the heavy noble gas(xenon). It is clarified that in spite of the larger thermal conductivity of lighter noble gases the maximum temperature in a SBSL bubble of lighter noble gases is higher due both to the segregation of water vapor and noble gas inside a SBSL bubble and the stronger acoustic drive of a SBSL bubble of lighter noble gases.

  4. Single-bubble sonoluminescence from noble gases

    NASA Astrophysics Data System (ADS)

    Yasui, Kyuichi

    2001-03-01

    Single-bubble sonoluminescence (SBSL) from noble gases in water is studied theoretically in order to clarify the reason of the distinguished feature that the luminescence is strong for all noble gases, while the other systems of cavitation luminescence are greatly enhanced by the presence of the heavy noble gas(xenon). It is clarified that in spite of the larger thermal conductivity of lighter noble gases the maximum temperature in a SBSL bubble of lighter noble gases is higher due both to the segregation of water vapor and noble gas inside a SBSL bubble and the stronger acoustic drive of a SBSL bubble of lighter noble gases.

  5. Noble gas isotope signals of mid-ocean ridge basalts and their implication for upper mantle structure

    NASA Astrophysics Data System (ADS)

    Stroncik, Nicole A.; Niedermann, Samuel

    2016-04-01

    The geochemical structure of the upper mantle in general and its noble gas isotopic structure in particular have been the subject of countless studies, as both provide important insights into mantle dynamic processes and are essential for the formulation of mantle geodynamic models. This contribution presents a noble gas study of basaltic glasses derived from the Mid-Atlantic-Ridge (MAR) between 4 and 12° S, an area well known for its high degree of lithophile isotope heterogeneity and exhibiting anomalous crustal thickness. The Sr, Nd, Pb and Hf isotopies along this segment of the MAR range from ultra-depleted (more than NMORB) to highly enriched, and different concepts have been proposed to explain the observed isotopic signatures. Here we show that the high degree of heterogeneity is not confined to the isotopes of the lithophile elements, but is also shown by the noble gas isotopes and noble gas interelement ratios, such as e.g. 3He/22NeM or 4He/40Ar*. 3He/4He, 21Ne/22Neextra and 40Ar/36Ar range from 7.3 to 9.3 RA, from 0.05 to 0.08, and from 346 to 37,400, respectively. Nevertheless, the majority of the Ne isotope data are clearly aligned along a single mixing line in the Ne-three-isotope diagram, represented by the equation 20Ne/22Ne=70.5 x 21Ne/22Ne + 7.782, with a slope distinctly different from that of the MORB line, indicating that the ultra-depleted material is characterised by a significantly more nucleogenic 21Ne/22Ne isotopy than the normal depleted mantle. We show, based on covariations between 3He/4He and 21Ne/22Neextra with 206Pb/204Pb and 178Hf/177Hf, that the ultra-depleted material erupted at this MAR segment was most likely produced by an ancient, deep melting event. This implies that isotopic heterogeneities in the upper mantle are not solely caused by the injection of enriched materials from deep-seated mantle plumes or by crustal recycling but may also be due to differences in the depth and degree of melting of upper mantle material within

  6. Stability of noble-gas-bound SiH₃⁺ clusters.

    PubMed

    Pan, Sudip; Moreno, Diego; Merino, Gabriel; Chattaraj, Pratim K

    2014-11-10

    The stability of noble gas (Ng)-bound SiH3(+) clusters is explored by ab initio computations. Owing to a high positive charge (+1.53 e(-)), the Si center of SiH3(+) can bind two Ng atoms. However, the Si-Ng dissociation energy for the first Ng atom is considerably larger than that for the second one. As we go down group 18, the dissociation energy gradually increases, and the largest value is observed for the case of Rn. For NgSiH3(+) clusters, the Ar-Rn dissociation processes are endergonic at room temperature. For He and Ne, a much lower temperature is required for it to be viable. The formation of Ng2SiH3(+) clusters is also feasible, particularly for the heavier members and at low temperature. To shed light on the nature of Si-Ng bonding, natural population analysis, Wiberg bond indices computations, electron-density analysis, and energy-decomposition analysis were performed. Electron transfer from the Ng centers to the electropositive Si center occurs only to a small extent for the lighter Ng atoms and to a somewhat greater extent for the heavier analogues. The Si-Xe/Rn bonds can be termed covalent bonds, whereas the Si-He/Ne bonds are noncovalent. The Si-Ar/Kr bonds possess some degree of covalent character, as they are borderline cases. Contributions from polarization and charge transfer and exchange are key terms in forming Si-Ng bonds. We also studied the effect of substituting the H atoms of SiH3(+) by halide groups (-X) on the Ng binding ability. SiF3(+) showed enhanced Ng binding ability, whereas SiCl3(+) and SiBr3(+) showed a lower ability to bind Ng than SiH3(+). A compromise originates from the dual play of the inductive effect of the -X groups and X→Si π backbonding (p(z)-p(z) interaction).

  7. METHOD AND APPARATUS FOR PRODUCING INTENSE ENERGETIC GAS DISCHARGES

    DOEpatents

    Bell, P.R.; Luce, J.S.

    1960-01-01

    A device for producing an energetic gas arc discharge employing the use of gas-fed hollow cathode and anode electrodes is reported. The rate of feed of the gas to the electrodes is regulated to cause complete space charge neutralization to occur within the electrodes. The arc discharge is closely fitted within at least one of the electrodes so tint the gas fed to this electrode is substantially completely ionized before it is emitted into the vacuum chamber. It is this electrode design and the axial potential gradient that exists in the arc which permits the arc to be operated in low pressures and at volthges and currents that permit the arc to be energetic. The use of the large number of energetic ions that are accelerated toward the cathode as a propulsion device for a space vehicle is set forth.

  8. Method and apparatus for processing exhaust gas with corona discharge

    DOEpatents

    Barlow, Stephan E.; Orlando, Thomas M.; Tonkyn, Russell G.

    1999-01-01

    The present invention is placing a catalyst coating upon surfaces surrounding a volume containing corona discharge. In addition, the electrodes are coated with a robust dielectric material. Further, the electrodes are arranged so that at least a surface portion of each electrode extends into a flow path of the exhaust gas to be treated and there is only exhaust gas in the volume between each pair of electrodes.

  9. Method and apparatus for processing exhaust gas with corona discharge

    DOEpatents

    Barlow, S.E.; Orlando, T.M.; Tonkyn, R.G.

    1999-06-22

    The present invention is placing a catalyst coating upon surfaces surrounding a volume containing corona discharge. In addition, the electrodes are coated with a robust dielectric material. Further, the electrodes are arranged so that at least a surface portion of each electrode extends into a flow path of the exhaust gas to be treated and there is only exhaust gas in the volume between each pair of electrodes. 12 figs.

  10. Geostatistical Analysis of Tritium, 3H/3He Age and Noble Gas Derived Parameters in California Groundwater

    NASA Astrophysics Data System (ADS)

    Visser, A.; Singleton, M. J.; Moran, J. E.; Fram, M. S.; Kulongoski, J. T.; Esser, B. K.

    2014-12-01

    Key characteristics of California groundwater systems related to aquifer vulnerability, sustainability, recharge locations and mechanisms, and anthropogenic impact on recharge, are revealed in a spatial geostatistical analysis of the data set of tritium, dissolved noble gas and helium isotope analyses collected for the California State Water Resources Control Board's Groundwater Ambient Monitoring and Assessment (GAMA) and California Aquifer Susceptibility (CAS) programs. Over 4,000 tritium and noble gas analyses are available from wells across California. 25% of the analyzed samples contained less than 1 pCi/L indicating recharge occurred before 1950. The correlation length of tritium concentration is 120 km. Nearly 50% of the wells show a significant component of terrigenic helium. Over 50% of these samples show a terrigenic helium isotope ratio (Rter) that is significantly higher than the radiogenic helium isotope ratio (Rrad = 2×10-8). Rter values of more than three times the atmospheric isotope ratio (Ra = 1.384×10-6) are associated with known faults and volcanic provinces in Northern California. In the Central Valley, Rter varies from radiogenic to 2.25 Ra, complicating 3H/3He dating. The Rter was mapped by kriging, showing a correlation length of less than 50 km. The local predicted Rter was used to separate tritiogenic from atmospheric and terrigenic 3He. Regional groundwater recharge areas, indicated by young groundwater ages, are located in the southern Santa Clara Basin and in the upper LA basin and in the eastern San Joaquin Valley and along unlined canals carrying Colorado River water. Recharge in California is dominated by agricultural return flows, river recharge and managed aquifer recharge rather than precipitation excess. Combined application of noble gases and other groundwater tracers reveal the impact of engineered groundwater recharge and prove invaluable for the study of complex groundwater systems. This work was performed under the

  11. Direct-current converter for gas-discharge lamps

    NASA Technical Reports Server (NTRS)

    Lutus, P.

    1980-01-01

    Metal/halide and similar gas-discharge lamps are powered from low-voltage dc source using small efficient converter. Converter is useful whenever 60-cycle ac power is not available or where space and weight allocations are limited. Possible applications are offshore platforms, mobile homes, and emergency lighting. Design innovations give supply high reliability and efficiency up to 75 percent.

  12. Pulsed electrical discharge in gas bubbles in water

    NASA Astrophysics Data System (ADS)

    Gershman, Sophia

    A phenomenological picture of pulsed electrical discharge in gas bubbles in water is produced by combining electrical, spectroscopic, and imaging methods. The discharge is generated by applying one microsecond long 5 to 20 kilovolt pulses between the needle and disk electrodes submerged in water. A gas bubble is generated at the tip of the needle electrode. The study includes detailed experimental investigation of the discharge in argon bubbles and a brief look at the discharge in oxygen bubbles. Imaging, electrical characteristics, and time-resolved optical emission data point to a fast streamer propagation mechanism and formation of a plasma channel in the bubble. Spectroscopic methods based on line intensity ratios and Boltzmann plots of line intensities of argon, atomic hydrogen, and argon ions and the examination of molecular emission bands from molecular nitrogen and hydroxyl radicals provide evidence of both fast beam-like electrons and slow thermalized ones with temperatures of 0.6 -- 0.8 electron-volts. The collisional nature of plasma at atmospheric pressure affects the decay rates of optical emission. Spectroscopic study of rotational-vibrational bands of hydroxyl radical and molecular nitrogen gives vibrational and rotational excitation temperatures of the discharge of about 0.9 and 0.1 electron-volt, respectively. Imaging and electrical evidence show that discharge charge is deposited on the bubble wall and water serves as a dielectric barrier for the field strength and time scales of this experiment. Comparing the electrical and imaging information for consecutive pulses applied at a frequency of 1 Hz indicates that each discharge proceeds as an entirely new process with no memory of the previous discharge aside from long-lived chemical species, such as ozone and oxygen. Intermediate values for the discharge gap and pulse duration, low repetition rate, and unidirectional character of the applied voltage pulses make the discharge process here unique

  13. Comparison of electrical and optical characteristics in gas-phase and gas-liquid phase discharges

    NASA Astrophysics Data System (ADS)

    Qazi, H. I. A.; Nie, Qiu-Yue; Li, He-Ping; Zhang, Xiao-Fei; Bao, Cheng-Yu

    2015-12-01

    This paper presents an AC-excited argon discharge generated using a gas-liquid (two-phase) hybrid plasma reactor, which mainly consists of a powered needle electrode enclosed in a conical quartz tube and grounded deionized water electrode. The discharges in the gas-phase, as well as in the two-phase, exhibit two discharge modes, i.e., the low current glow-like diffuse mode and the high current streamer-like constrict mode, with a mode transition, which exhibits a negative resistance of the discharges. The optical emission spectral analysis shows that the stronger diffusion of the water vapor into the discharge region in the two-phase discharges boosts up the generation of OH (A-X) radicals, and consequently, leads to a higher rotational temperature in the water-phase plasma plume than that of the gas-phase discharges. Both the increase of the power input and the decrease of the argon flow rate result in the increase of the rotational temperature in the plasma plume of the water-phase discharge. The stable two-phase discharges with a long plasma plume in the water-phase under a low power input and gas flow rate may show a promising prospect for the degradation of organic pollutants, e.g., printing and dyeing wastewater, in the field of environmental protection.

  14. Comparison of electrical and optical characteristics in gas-phase and gas-liquid phase discharges

    SciTech Connect

    Qazi, H. I. A.; Li, He-Ping Zhang, Xiao-Fei; Bao, Cheng-Yu; Nie, Qiu-Yue

    2015-12-15

    This paper presents an AC-excited argon discharge generated using a gas-liquid (two-phase) hybrid plasma reactor, which mainly consists of a powered needle electrode enclosed in a conical quartz tube and grounded deionized water electrode. The discharges in the gas-phase, as well as in the two-phase, exhibit two discharge modes, i.e., the low current glow-like diffuse mode and the high current streamer-like constrict mode, with a mode transition, which exhibits a negative resistance of the discharges. The optical emission spectral analysis shows that the stronger diffusion of the water vapor into the discharge region in the two-phase discharges boosts up the generation of OH (A–X) radicals, and consequently, leads to a higher rotational temperature in the water-phase plasma plume than that of the gas-phase discharges. Both the increase of the power input and the decrease of the argon flow rate result in the increase of the rotational temperature in the plasma plume of the water-phase discharge. The stable two-phase discharges with a long plasma plume in the water-phase under a low power input and gas flow rate may show a promising prospect for the degradation of organic pollutants, e.g., printing and dyeing wastewater, in the field of environmental protection.

  15. Groundwater noble gas, age, and temperature signatures in an Alpine watershed: Valuable tools in conceptual model development

    USGS Publications Warehouse

    Manning, A.H.; Caine, J.S.

    2007-01-01

    [1] Bedrock groundwater in alpine watersheds is poorly understood, mainly because of a scarcity of wells in alpine settings. Groundwater noble gas, age, and temperature data were collected from springs and wells with depths of 3-342 m in Handcart Gulch, an alpine watershed in Colorado. Temperature profiles indicate active groundwater circulation to a maximum depth (aquifer thickness) of about 200 m, or about 150 m below the water table. Dissolved noble gas data show unusually high excess air concentrations (>0.02 cm3 STP/g, ??Ne > 170%) in the bedrock, consistent with unusually large seasonal water table fluctuations (up to 50 m) observed in the upper part of the watershed. Apparent 3H/3He ages are positively correlated with sample depth and excess air concentrations. Integrated samples were collected from artesian bedrock wells near the trunk stream and are assumed to approximate flow-weighted samples reflecting bedrock aquifer mean residence times. Exponential mean ages for these integrated samples are remarkably consistent along the stream, four of five being from 8 to 11 years. The tracer data in combination with other hydrologic and geologic data support a relatively simple conceptual model of groundwater flow in the watershed in which (1) permeability is primarily a function of depth; (2) water table fluctuations increase with distance from the stream; and (3) recharge, aquifer thickness, and porosity are relatively uniform throughout the watershed in spite of the geological complexity of the Proterozoic crystalline rocks that underlie it. Copyright 2007 by the American Geophysical Union.

  16. Noble Gas Inventory of Micrometeorites Collected at the Transantarctic Mountains (TAM) and Indications for Their Provenance

    NASA Technical Reports Server (NTRS)

    Ott, U.; Baecker, B.; Folco, L.; Cordier, C.

    2016-01-01

    A variety of processes have been considered possibly contributing the volatiles including noble gases to the atmospheres of the terrestrial planets (e.g., [1-3]). Special consideration has been given to the concept of accretion of volatile-rich materials by the forming planets. This might include infalling planetesimals and dust, and could include material from the outer asteroid belt, as well as cometary material from the outer solar system. Currently, the dominant source of extraterrestrial material accreted by the Earth is represented by micrometeorites (MMs) with sizes mostly in the 100-300 micron range [3, 4]). Their role has been assessed by [3], who conclude that accretion of early micrometeorites played a major role in the formation of the terrestrial atmosphere and oceans. We have therefore set out to investigate in more detail the inventory of noble gases in MMs. Here we summarize some of our results obtained on MMs collected in micrometeorite traps of the Transantarctic Mountains [5].

  17. Experimental Investigations of Halogen and Noble Gas Geochemistry as Constraints on Planetary Outgassing

    NASA Astrophysics Data System (ADS)

    Musselwhite, D. S.; Drake, M. J.; Swindle, T. D.

    1992-07-01

    Introduction The ^129Xe/^132Xe ratio in Mid-Ocean Ridge Basalts (MORBs) is higher than in the atmosphere and Ocean Island Basalts. Enhanced ^129Xe/^132Xe ratios are widely regarded to be the result of ^129I decay (t(sub)1/2 = 16 m.y.) early in solar system history (e.g. Swindle et al., 1986). Allegre et al. (1983, 1988) proposed a catastrophic degassing scheme to explain this excess. Both Musselwhite et al. (1990) and Hiyagon and Ozima (1990) have noted that because mineral/melt partition coefficients (D) for I appear lower than for Xe, the I/Xe ratio may not be enhanced in the mantle by mineral/melt fractionation. Musselwhite et al. (1990) proposed recycling of I back into the mantle following outgassing, and Hiyagon and Ozima (1990) proposed impact degassing of the mantle as a way around this problem. Knowledge of the relative values of D(I) and D(Xe) is important to the discussion of early planetary outgassing models. Although the dataset for D(I) values is not complete, the known values so far are uniformly low. The dataset for Xe on the other hand is quite ambiguous. Experimentally determined values for D(Xe) vary widely--ranging from 0.05 to >> 1 (Hiyagon and Ozima, 1986; Broadhurst et al., 1992), and it is unclear which of the values is the geologically significant one. Particularly important is the question of whether D(Xe) is greater than or less than unity. Partitioning Experiments: We have undertaken to simultaneously determine the D(I) and D(Ar) values directly, then calculate the D(Xe) from D(Ar). This approach is possible because experiments investigating the mineral/melt partitioning of noble gases, while not consistent in an absolute sense between experiments, do display a consistent trend with the lightest noble gases being most incompatible and Xe most compatible. We are adapting our technique to determine D(Kr) and D(Xe) directly. Finely crushed silica glass (~100 micrometer grain size) was placed in a gas pressure vessel. The vessel was

  18. Noble Gas Tracing of Subsurface CO2 Origin and the Role of Groundwater as a CO2 Sink

    NASA Astrophysics Data System (ADS)

    Zhou, Z.; Ballentine, C. J.; Schoell, M.; Stevens, S. H.

    2003-12-01

    The source, generation, migration and accumulation of CO2 gas associated either alone or with hydrocarbons are unclear and therefore hard to predict. So far, noble gases provide one of the best tools to resolve this question, because they are conservative within the subsurface system. The atmosphere-derived noble gases dissolved in groundwater do not react with the rock system, while noble gases produced in the rock phase by radioactive decay or input from magmatic source are isotopically distinct and can be resolved from the dissolved air-derived noble gases. 10 samples were taken from a CO2-rich natural gas reservoir in Jackson Dome, Mississippi, USA to investigate its origin and extent of interaction with the groundwater system. The area lies within the Mississippi Interior Salt Basin. It is bounded on the north by the Pickens-Gilbertown fault system, the updip limit of the Jurassic Louann Salt unit, and on the south by basement highs of the Wiggins, South Mississippi, and Lasalle uplifts. We present compositional, stable isotope and noble gas results of Jackson Dome samples. Gas composition is 98.75-99.38% CO2, with small amounts of methane and nitrogen. CO2 content increases linearly with the decrease of CH4. d13C(CO2) in all samples ranges between -3.55 and -2.57 per mil, increasing with the increase of the CO2 content. Atmosphere-derived He contributions are negligible in all cases. 3He/4He ratios are between 4.27 and 5.01Ra, indicating a strong mantle signature. Crustal 4He in these samples therefore accounts for between 7.0% and 20.8%, the remainder being magmatic in origin. 40Ar/36Ar ratios are all above air ratio, ranging between 4071 and 6420. Air corrected 40Ar* vary between 92.7 and 95.4%, to give 4He/40Ar* ratios of between 1.26 and 2.52. This range is comparable with values estimated for the upper mantle. CO2/3He values are between 1.09E+9 and 4.62E+9, and also fall in the mantle range, indicating that the CO2 gas in Jackson Dome is also

  19. Gas transport below artificial recharge ponds: insights from dissolved noble gases and a dual gas (SF6 and 3He) tracer experiment.

    PubMed

    Clark, Jordan F; Hudson, G Bryant; Avisar, Dror

    2005-06-01

    A dual gas tracer experiment using sulfur hexafluoride (SF6) and an isotope of helium (3He) and measurements of dissolved noble gases was performed at the El Rio spreading grounds to examine gas transport and trapped air below an artificial recharge pond with a very high recharge rate (approximately 4 m day(-1)). Noble gas concentrations in the groundwater were greater than in surface water due to excess air formation showing that trapped air exists below the pond. Breakthrough curves of SF6 and 3He at two nearby production wells were very similar and suggest that nonequilibrium gas transfer was occurring between the percolating water and the trapped air. At one well screened between 50 and 90 m below ground, both tracers were detected after 5 days and reached a maximum at approximately 24 days. Despite the potential dilution caused by mixing within the production well, the maximum concentration was approximately 25% of the mean pond concentration. More than 50% of the SF6 recharged was recovered by the production wells during the 18 month long experiment. Our results demonstrate that at artificial recharge sites with high infiltration rates and moderately deep water tables, transport times between recharge locations and wells determined with gas tracer experiments are reliable.

  20. Noble gas paleotemperatures and water contents of stalagmites - a new extraction tool and a new paleoclimate proxy

    NASA Astrophysics Data System (ADS)

    Vogel, N.; Scheidegger, Y.; Brennwald, M. S.; Fleitmann, D.; Figura, S.; Wieler, R.; Kipfer, R.

    2012-04-01

    Stalagmites represent excellent multi-proxy paleoclimate archives as they cover long timescales and can be dated with high precision [e.g., 1]. The absolute temperature at which a stalagmite grew, can be deduced from the amounts of atmospheric noble gases dissolved in the stalagmite's fluid inclusion water (= noble gas temperature, NGT) [2-4]. We present technical advances towards more robust NGT determinations and also propose a new paleoclimate proxy, namely the stalagmite's water content, which is a "by-product" of NGT determination. Water contents and oxygen isotope records of two Holocene stalagmites from Socotra Island (Yemen) were found to vary systematically: progressively lighter oxygen is accompanied by decreasing water contents and vice versa. Via the oxygen isotope records [5] the stalagmites' water contents are linked to the amounts of precipitation on Socotra Island. High precipitation, i.e., high drip rates lead to homogeneous calcite growth with low porosity and therefore a small number of water-filled inclusions, i.e. low water contents. A reduction of drip water supply fosters irregular crystal growth with higher porosity, leading to higher water contents of the calcite (see also [6]). Therefore the stalagmites' water contents seem to record changes in drip water supply and, under favourable conditions, changes in regional precipitation. The current method to extract water and noble gases from stalagmite samples is experimentally challenging and subject to certain limitations (e.g., time-consuming sample preparation in a glove box, temperature restrictions for water extraction, and the often inadequate correction for air from residual air-filled inclusions [3, 4]). To overcome these limitations we have developed a new type of crusher directly attached to our noble gas line. It not only allows crushing and separating the samples into different grain size fractions in vacuo, but the separates can be individually heated to significantly higher

  1. Pre-breakdown evaluation of gas discharge mechanisms in microgaps

    SciTech Connect

    Semnani, Abbas; Peroulis, Dimitrios; Venkattraman, Ayyaswamy; Alexeenko, Alina A.

    2013-04-29

    The individual contributions of various gas discharge mechanisms to total pre-breakdown current in microgaps are quantified numerically. The variation of contributions of field emission and secondary electron emission with increasing electric field shows contrasting behavior even for a given gap size. The total current near breakdown decreases rapidly with gap size indicating that microscale discharges operate in a high-current, low-voltage regime. This study provides the first such analysis of breakdown mechanisms and aids in the formulation of physics-based theories for microscale breakdown.

  2. Noble gas composition and 40Ar/39Ar age in eclogites from the main hole of the Chinese Continental Scientific Drilling project

    NASA Astrophysics Data System (ADS)

    Hopp, Jens; Schwarz, Winfried H.; Trieloff, Mario; Meyer, Hans-Peter; Hanel, Michael; Altherr, Rainer

    2016-10-01

    We present the first comprehensive noble gas study on eclogites. The four eclogite samples were recovered during the Chinese Continental Scientific Drilling and are from two distinct profile depth sections differing in their degree of interaction with meteoric water, based on their δ 18O-values (surface related and of mantle-type). Hence, noble gas analyses offer the potential to further discriminate between shallow (meteoric) and deep (mantle) fluid sources. Noble gas compositions reveal typical crustal fluid compositions, characterized by a variable mixture of atmospheric gases with significant contributions of nucleogenic neon, radiogenic 4He*, radiogenic 40Ar*, fissiogenic 131-136Xe, and presumably bariogenic 131Xe, but no significant addition of mantle gases. This signature can be also considered to represent one endmember component of eclogitic diamonds. Concentrations of non-radiogenic noble gases are rather low, with depletion of light relative to the heavier noble gases. Eclogites from lower depth which experienced a higher degree of interaction with meteoric water also showed higher contributions of atmospheric gas compared with eclogites recovered from greater depth. This is interpreted to result from interaction with high-salinity fluids during ultrahigh pressure (UH P). It demonstrates that the atmospheric noble gas abundance is a proxy for interaction with surface related fluids. 40Ar/39Ar (inverse) isochron ages of two phengite separates (241.2 ± 0.4 Ma and 275.0 ± 1.8 Ma, 1 σ-errors) predate the main phase of UH P metamorphism (ca. 220 Ma). Biotite yields an integrated age of about 1100 Ma. These age values are interpreted to reflect the likely addition of excess 40Ar without any chronological meaning.

  3. Closed cycle annular-return gas flow electrical discharge laser

    SciTech Connect

    Bletzinger, P.; Garscadden, A.; Hasinger, S.H.; Olson, R.A.; Sarka, B.

    1981-06-16

    A closed cycle, high repetition pulsed laser is disclosed that has a laser flow channel with an annular flow return surrounding the laser flow channel. Ultra high vacuum components and low out-gassing materials are used in the device. An externally driven axial flow fan is used for gas recirculation. A thyratron-switched lowinductance energy storage capacitor is used to provide a transverse discharge between profiled electrodes in the laser cavity.

  4. Modeling nuclear and electronic recoils in noble gas detectors with NEST

    NASA Astrophysics Data System (ADS)

    Mock, Jeremy; NEST Collaboration

    2015-10-01

    Noble gases such as xenon and argon are used as targets in single and dual phased rare event detectors like those used in the search for dark matter. Such experiments require an understanding of the behavior of the target material in the presence of low-energy ionizing radiation. This understanding allows an exploration of detector effects such as threshold, energy and position reconstruction, and pulse shape discrimination. The Noble Element Simulation Technique (NEST) package is a comprehensive code base that models the scintillation and ionization yields from liquid and gaseous xenon and argon in the energy regimes of interest to many types of experiments, like dark matter and neutrino detectors. NEST is built on multiple physics models, which are constrained by available data for both electronic and nuclear recoils. A substantial body of data exists in the literature, and we are reaching an era in which sub-keV yields can be explored experimentally. Here we present a new global analysis of all available nuclear recoil data, and the latest updates to the electronic recoil model, in light of recent low-energy measurements and an improved understanding of detector systematics.

  5. A Concept for a Low Pressure Noble Gas Fill Intervention in the IFE Fusion Test Facility (FTF) Target Chamber

    SciTech Connect

    Gentile, C. A.; Blanchard, W. R.; Kozub, T. A.; Aristova, M.; McGahan, C.; Natta, S.; Pagdon, K.; Zelenty, J.

    2010-01-14

    An engineering evaluation has been initiated to investigate conceptual engineering methods for implementing a viable gas shield strategy in the Fusion Test Facility (FTF) target chamber. The employment of a low pressure noble gas in the target chamber to thermalize energetic helium ions prior to interaction with the wall could dramatically increase the useful life of the first wall in the FTF reactor1. For the purpose of providing flexibility, two target chamber configurations are addressed: a five meter radius sphere and a ten meter radius sphere. Experimental studies at Nike have indicated that a low pressure, ambient gas resident in the target chamber during laser pulsing does not appear to impair the ability of laser light from illuminating targets2. In addition, current investigations into delivering, maintaining, and processing low pressure gas appear to be viable with slight modification to current pumping and plasma exhaust processing technologies3,4. Employment of a gas fill solution for protecting the dry wall target chamber in the FTF may reduce, or possibly eliminate the need for other attenuating technologies designed for keeping He ions from implanting in first wall structures and components. The gas fill concept appears to provide an effective means of extending the life of the first wall while employing mostly commercial off the shelf (COTS) technologies. Although a gas fill configuration may provide a methodology for attenuating damage inflicted on chamber surfaces, issues associated with target injection need to be further analyzed to ensure that the gas fill concept is viable in the integrated FTF design5. In the proposed system, the ambient noble gas is heated via the energetic helium ions produced by target detonation. The gas is subsequently cooled by the chamber wall to approximately 800oC, removed from the chamber, and processed by the chamber gas processing system (CGPS). In an optimized scenario of the above stated concept, the chamber

  6. Coordination of ScO+ and YO+ by multiple Ar, Kr, and Xe atoms in noble gas matrixes: a matrix isolation infrared spectroscopic and theoretical study.

    PubMed

    Zhao, Yanying; Gong, Yu; Chen, Mohua; Ding, Chuanfan; Zhou, Mingfei

    2005-12-29

    The combination of matrix isolation infrared spectroscopic and quantum chemical calculation results provide strong evidence that scandium and yttrium monoxide cations, ScO+ and YO+, coordinate multiple noble gas atoms in forming noble gas complexes. The results showed that ScO+ coordinates five Ar, Kr, or Xe atoms, and YO+ coordinates six Ar or Kr and five Xe atoms in solid noble gas matrixes. Hence, the ScO+ and YO+ cations trapped in solid noble gas matrixes should be regarded as the [ScO(Ng)5]+ (Ng = Ar, Kr, or Xe), [YO(Ng)6]+ (Ng = Ar or Kr) or [YO(Xe)5]+ complexes. Experiments with dilute krypton or xenon in argon or krypton in xenon produced new IR bands, which are due to the stepwise formation of the [ScO(Ar)(5-n)(Kr)n]+, [ScO(Kr)(5-n)(Xe)n]+ (n = 1-5), [YO(Ar)(6-n)(Kr)n]+ (n = 1-6), and [YO(Ar)(6-n)(Xe)n]+ (n = 1-4) complexes.

  7. Determining CO2 storage potential during miscible CO2 enhanced oil recovery: Noble gas and stable isotope tracers

    USGS Publications Warehouse

    Shelton, Jenna L.; McIntosh, Jennifer C.; Hunt, Andrew; Beebe, Thomas L; Parker, Andrew D; Warwick, Peter; Drake, Ronald; McCray, John E.

    2016-01-01

    Rising atmospheric carbon dioxide (CO2) concentrations are fueling anthropogenic climate change. Geologic sequestration of anthropogenic CO2 in depleted oil reservoirs is one option for reducing CO2 emissions to the atmosphere while enhancing oil recovery. In order to evaluate the feasibility of using enhanced oil recovery (EOR) sites in the United States for permanent CO2 storage, an active multi-stage miscible CO2flooding project in the Permian Basin (North Ward Estes Field, near Wickett, Texas) was investigated. In addition, two major natural CO2 reservoirs in the southeastern Paradox Basin (McElmo Dome and Doe Canyon) were also investigated as they provide CO2 for EOR operations in the Permian Basin. Produced gas and water were collected from three different CO2 flooding phases (with different start dates) within the North Ward Estes Field to evaluate possible CO2 storage mechanisms and amounts of total CO2retention. McElmo Dome and Doe Canyon were sampled for produced gas to determine the noble gas and stable isotope signature of the original injected EOR gas and to confirm the source of this naturally-occurring CO2. As expected, the natural CO2produced from McElmo Dome and Doe Canyon is a mix of mantle and crustal sources. When comparing CO2 injection and production rates for the CO2 floods in the North Ward Estes Field, it appears that CO2 retention in the reservoir decreased over the course of the three injections, retaining 39%, 49% and 61% of the injected CO2 for the 2008, 2010, and 2013 projects, respectively, characteristic of maturing CO2 miscible flood projects. Noble gas isotopic composition of the injected and produced gas for the flood projects suggest no active fractionation, while δ13CCO2 values suggest no active CO2dissolution into formation water, or mineralization. CO2 volumes capable of dissolving in residual formation fluids were also estimated along with the potential to store pure-phase supercritical CO2. Using a combination

  8. Ultrabright multikilovolt x-ray source: saturated amplification on noble gas transition arrays from hollow atom states

    DOEpatents

    Rhodes, Charles K.; Boyer, Keith

    2004-02-17

    An apparatus and method for the generation of ultrabright multikilovolt x-rays from saturated amplification on noble gas transition arrays from hollow atom states is described. Conditions for x-ray amplification in this spectral region combine the production of cold, high-Z matter, with the direct, selective multiphoton excitation of hollow atoms from clusters using ultraviolet radiation and a nonlinear mode of confined, self-channeled propagation in plasmas. Data obtained is consistent with the presence of saturated amplification on several transition arrays of the hollow atom Xe(L) spectrum (.lambda..about.2.9 .ANG.). An estimate of the peak brightness achieved is .about.10.sup.29 .gamma..multidot.s.sup.-1.multidot.mm.sup.-2.multidot.mr.sup.-2 (0.1% Bandwidth).sup.-1, that is .about.10.sup.5 -fold higher than presently available synchotron technology.

  9. Neutralization of solvated protons and formation of noble-gas hydride molecules: Matrix-isolation indications of tunneling mechanisms?

    SciTech Connect

    Khriachtchev, Leonid; Lignell, Antti; Raesaenen, Markku

    2005-08-08

    The (NgHNg){sup +} cations (Ng=Ar and Kr) produced via the photolysis of HF/Ar, HF/Kr, and HBr/Kr solid mixtures are studied, with emphasis on their decay mechanisms. The present experiments provide a large variety of parameters connected to this decay phenomenon, which allows us to reconsider various models for the decay of the (NgHNg){sup +} cations in noble-gas matrices. As a result, we propose that this phenomenon could be explained by the neutralization of the solvated protons by electrons. The mechanism of this neutralization reaction probably involves tunneling of an electron from an electronegative fragment or another trap to the (NgHNg){sup +} cation. The proposed electron-tunneling mechanism should be considered as a possible alternative to the literature models based on tunneling-assisted or radiation-induced diffusion of protons in noble-gas solids. As a novel experimental observation of this work, the efficient formation of HArF molecules occurs at 8 K in a photolyzed HF/Ar matrix. It is probable that the low-temperature formation of HArF involves local tunneling of the H atom to the Ar-F center, which in turn supports the locality of HF photolysis in solid Ar. In this model, the decay of (ArHAr){sup +} ions and the formation of HArF molecules observed at low temperatures are generally unconnected processes; however, the decaying (ArHAr){sup +} ions may contribute to some extent to the formation of HArF molecules.

  10. Decomposition of dimethylamine gas with dielectric barrier discharge.

    PubMed

    Ye, Zhaolian; Zhao, Jie; Huang, Hong ying; Ma, Fei; Zhang, Renxi

    2013-09-15

    The decomposition of dimethylamine (DMA) with gas under high flow rate was investigated with dielectric barrier discharge (DBD) technology. Different parameters including removal efficiency, energy yield, carbon balance and CO2 selectivity, secondary products, as well as pathways and mechanisms of DMA degradation were studied. The experimental results showed that removal efficiency of DMA depended on applied voltage and gas flow rate, but had no obvious correlation with initial concentration. Excellent energy performance was obtained using present DBD technology for DMA abatement. When experiment conditions were controlled at: gas flow rate of 14.9 m(3)/h, initial concentration of 2104 mg/m(3), applied voltage of 4.8 kV, removal efficiency of DMA and energy yield can reach 85.2% and 953.9 g/kWh, respectively. However, carbon balance (around 40%) was not ideal due to shorter residence time (about 0.1s), implying that some additional conditions should be considered to improve the total oxidation of DMA. Moreover, secondary products in outlet gas stream were detected via gas chromatogram-mass spectrum and the amounts of NO3(-) and NO2(-) were analyzed by ion chromatogram. The obtained data demonstrated that NOx might be suppressed due to reductive NH radical form DMA dissociation. The likely reaction pathways and mechanisms for the removal of DMA were suggested based on products analysis. Experimental results demonstrated the application potential of DBD as a clean technology for organic nitrogen-containing gas elimination from gas streams.

  11. Noble gas studies in vapor-growth diamonds: Comparison with shock-produced diamonds and the origin of diamonds in ureilites

    SciTech Connect

    Matsuda, Junichi; Fukunaga, Kazuya; Ito, Keisuke )

    1991-07-01

    The authors synthesized vapor-trowth diamonds by two kinds of Chemical Vapor Deposition (CVD) using microwave (MWCVD) and hot filament (HFCVD) ionization of gases, and examined elemental abundances and isotopic compositions of the noble gases trapped in the diamonds. It is remarkable that strong differences existed in the noble gas concentrations in the two kinds of CVD diamonds: large amounts of noble gases were trapped in the MWCVD diamonds, but not in the HFCVD diamonds. The heavy noble gases (Ar to Xe) in the MWCVD diamonds were highly fractionated compared with those in the ambient atmosphere, and are in good agreement with the calculated fractionation patterns for plasma at an electron temperature of 7,000-9,000 K. These results strongly suggest that the trapping mechanism of noble gases in CVD diamonds is ion implantation during diamond growth. The degrees of fractionation of heavy noble gases were also in good agreement with those in ureilites. The vapor-growth hypothesis is discussed in comparison with the impact-shock hypothesis as a better model for the origin of diamonds in ureilites. The diamond (and graphite, amorphous carbon, too) may have been deposited on early condensates such as Re, Ir, W, etc. This model explains the chemical features of vein material in ureilites; the refractory siderophile elements are enriched in carbon and noble gases and low in normal siderophiles. The vapor-growth model is also compatible with the oxygen isotopic data of ureilites which suggests that nebular processes are primarily responsible for the composition of ureilites.

  12. Evaluating the accretion of meteoritic debris and interplanetary dust particles in the GPC-3 sediment core using noble gas and mineralogical tracers

    NASA Astrophysics Data System (ADS)

    Darrah, Thomas H.; Poreda, Robert J.

    2012-05-01

    Extraterrestrial (ET) noble gases (helium and neon) in 35 sediment samples from Central Pacific core LL-44 GPC-3 demonstrate the variable flux of interplanetary dust particles (IDPs) and major meteorite impacts over the past 70 Ma (21-72 Ma). Spinel mineralogical and chemical compositions clearly distinguish major impact events from the continuous flux of IDPs, including the well-established Cretaceous/Tertiary (K/T) and late Eocene (E/O) impact boundaries. No spinel grains with chemical or mineralogical evidence of a distinctly ET origin were found in an extensive survey of 'background' samples (i.e. non E/O or K/T boundary) suggesting that either the carrier grains for ET noble gas occur within the Fe-Ti oxide mineral fraction observed in this study (found to include ilmenite and ulvospinel) or are too small for identification by SEM. The presence of ilmenite and ulvospinel suggest lunar regolith is a potential source for ET noble gas-rich particles. Noble gas analysis on both the EMF (extractable magnetic fraction) and the Bulk minus EMF (Bulk - EMF) show that the He and Ne compositions are consistent with partially degassed noble gas signatures of zero-age magnetic grains (Z-MAG) and stratospheric interplanetary dust particles (IDPs). Conclusive evidence for a 'planetary' (Ne-A) noble gas signature is found only in the bulk sediments at the K/T boundary, although all GPC-3 K/T fractions (Bulk, EMF, and HF Digestion) plot along a mixing line between planetary (Ne-A) and solar wind (SW). Spinels from major impact boundaries (K/T; E/O) exhibit dendritic texture and elevated [Ni], consistent with previous reports. In contrast to the otherwise consistent [3He] signal from IDPs, the [3He] at the known impact boundaries (K/T and E/O) actually decreases. These anomalously low [3He] are accompanied by significantly elevated [Ne] and significantly lower (3He/20Ne)solar ratios (˜10× lower) produced by both preferentially degassing of He relative to Ne at times of

  13. Innovative discharge geometries for diffusion-cooled gas lasers

    NASA Astrophysics Data System (ADS)

    Lapucci, Antonio

    2004-09-01

    Large area, narrow discharge gap, diffusion cooled gas lasers are nowadays a well established technology for the construction of industrial laser sources. Successful examples exist both with the slab (Rofin-Sinar) or coaxial (Trumpf) geometry. The main physical properties and the associated technical problems of the transverse large area RF discharge, adopted for the excitation of high power diffusion cooled gas lasers, are reviewed here. The main problems of this technology are related to the maintenance of a uniform and stable plasma excitation between closely spaced large-area electrodes at high power-density loading. Some practical solutions such as distributed resonance of the discharge channel proved successful in the case of square or rectangular cross-sections but hardly applicable to geometries such as that of coaxial electrodes. In this paper we present some solutions, adopted by our group, for the development of slab and annular CO2 lasers and for CO2 laser arrays with linear or circular symmetry. We will also briefly mention the difficulties encountered in the extraction of a good quality beam from an active medium with such a cross section. A problem that has also seen some interesting solutions.

  14. Memory effect in semiconductor gas discharge electronic devices

    NASA Astrophysics Data System (ADS)

    Sadiq, Y.; Kurt, H.; Salamov, B. G. Yücel

    2008-11-01

    The memory effect in the planar semiconductor gas discharge system at different pressures (15-760 Torr) and interelectrode distances (60-445 µm) was experimentally studied. The study was performed on the basis of current-voltage characteristic (CVC) measurements with a time lag of several hours of afterglow periods. The influence of the active space charge remaining from the previous discharge on the breakdown voltage (UB) has been analysed using the CVC method for different conductivities of semiconductor GaAs photocathode. CVC showed that even a measurement taken 96 h after the first breakdown was influenced by accumulated active particles deposited from the previous discharge. Such phenomena based on metastable atoms surviving from the previous discharge and recombined on the cathode to create initial electrons in the avalanche mechanism are shown to be fully consistent with CVC data for both pre-breakdown and post-breakdown regions. However, in the post-breakdown region pronounced negative differential conductivity was observed. Such nonlinear electrical property of GaAs is attributed to the existence of deep electronic defect called EL2 in the semiconductor cathode material. On the other hand, the CVC data for subsequent dates present a correlation of memory effect and hysteresis behaviour. The explanation for such a relation is based on the influence of long lived active charges on the electronic transport mechanism of semiconductor material.

  15. Ore genesis constraints on the Idaho Cobalt Belt from fluid inclusion gas, noble gas isotope, and ion ratio analyses

    USGS Publications Warehouse

    Hofstra, Albert H.; Landis, Gary P.

    2012-01-01

    The Idaho cobalt belt is a 60-km-long alignment of deposits composed of cobaltite, Co pyrite, chalcopyrite, and gold with anomalous Nb, Y, Be, and rare-earth elements (REEs) in a quartz-biotite-tourmaline gangue hosted in Mesoproterozoic metasedimentary rocks of the Lemhi Group. It is the largest cobalt resource in the United States with historic production from the Blackbird Mine. All of the deposits were deformed and metamorphosed to upper greenschist-lower amphibolite grade in the Cretaceous. They occur near a 1377 Ma anorogenic bimodal plutonic complex. The enhanced solubility of Fe, Co, Cu, and Au as chloride complexes together with gangue biotite rich in Fe and Cl and gangue quartz containing hypersaline inclusions allows that hot saline fluids were involved. The isotopes of B in gangue tourmaline are suggestive of a marine source, whereas those of Pb in ore suggest a U ± Th-enriched source. The ore and gangue minerals in this belt may have trapped components in fluid inclusions that are distinct from those in post-ore minerals and metamorphic minerals. Such components can potentially be identified and distinguished by their relative abundances in contrasting samples. Therefore, we obtained samples of Co and Cu sulfides, gangue quartz, biotite, and tourmaline and post-ore quartz veins as well as Cretaceous metamorphic garnet and determined the gas, noble gas isotope, and ion ratios of fluid inclusion extracts by mass spectrometry and ion chromatography. The most abundant gases present in extracts from each sample type are biased toward the gas-rich population of inclusions trapped during maximum burial and metamorphism. All have CO2/CH4 and N2/Ar ratios of evolved crustal fluids, and many yield a range of H2-CH4-CO2-H2S equilibration temperatures consistent with the metamorphic grade. Cretaceous garnet and post-ore minerals have high RH and RS values suggestive of reduced sulfidic conditions. Most extracts have anomalous 4He produced by decay of U and Th and

  16. Determination of space-time resolved electron temperature in nanosecond pulsed longitudinal discharge in various noble gases and discharge tube constructions

    NASA Astrophysics Data System (ADS)

    Temelkov, K. A.; Slaveeva, S. I.; Chernogorova, T. P.

    2016-03-01

    Using our results obtained by the analytical solution of the steady-state heat conduction equation for electrons and deriving a new thermal conductivity, 2D (r, t) numerical solution of nonstationary heat conduction, an equation for electrons is found for nanosecond pulsed longitudinal discharge in helium for two different pressures and in neon.

  17. Magma dynamics at mid-ocean ridges by noble gas kinetic fractionation: Assessment of magmatic ascent rates

    NASA Astrophysics Data System (ADS)

    Paonita, A.; Martelli, M.

    2006-01-01

    Despite its impact in understanding oceanic crust formation and eruptive styles of related volcanism, magma dynamics at mid-ocean ridges are poorly known. Here, we propose a new method to assess ascent rates of mid-ocean ridge basalt (MORB) magmas, as well as their pre- and sin-eruptive dynamics. It is based on the idea that a rising magma can reach a variable degree of both CO2 supersaturation in melt and kinetic fractionation among noble gases in vesicles in relation to its ascent rate through the crust. To quantify the relationship, we have used a model of multicomponent bubble growth in MORB melts, developed by extending the single-component model of Proussevitch and Sahagian [A.A. Proussevitch, D.L. Sahagian, Dynamics and energetics of bubble growth in magmas: analytical formulation and numerical modeling, J. Geophys. Res. 103 (1998), 18223-18251.] to CO2-He-Ar gas mixtures. After proper parameterization, we have applied it to published suites of data having the required features (glasses from Pito Seamount and mid-Atlantic ridges). Our results highlight that the investigated MORB magmas display very different ranges of ascent rates: slow rises of popping rock forming-magmas that cross the crust (0.01-0.5 m/s), slightly faster rates of energetic effusions (0.1-1 m/s), up to rates of 1-10 m/s which fall on the edge between lava effusion and Hawaiian activity. Inside a single plumbing system, very dissimilar magma dynamics highlight the large differences in compressive stress of the oceanic crust on a small scale. Constraints on how the systems of ridges work, as well as the characteristics of the magmatic source, can also be obtained. Our model shows how measurements of both the dissolved gas concentration in melt and the volatile composition of vesicles in the same sample are crucial in recognizing the kinetic effects and definitively assessing magma dynamics. An effort should be made to correctly set the studied samples in the sequence of volcanic submarine

  18. Recycle and fractionation of U and K in the mantle via slab subduction; noble gas isotopic evidence from Polynesian HIMU

    NASA Astrophysics Data System (ADS)

    Hanyu, Takeshi; Tatsumi, Yoshiyuki; Kimura, Jun-Ichi

    2013-04-01

    The abundance and distribution of U and K in the Earth are critical not only for isotope and noble gas geochemistry but also for internal heat production in the mantle. While the concentration of U in bulk silicate Earth (BSE) has been estimated from the chondritic value, K concentration in BSE is poorly constrained. K concentration in BSE has been estimated using U concentration in BSE multiplied by the canonical K/U ratio (13000) on the ground that crustal and mantle-derived rocks show uniform K/U. However, such theory might be uncertain if the subducted slab had fractionated K/U and it remained isolated as a hidden reservoir. We present He-Ne-Ar isotopic compositions for Polynesian HIMU lavas with radiogenic Pb isotopic compositions. It has been widely accepted that the HIMU lavas are sourced from subducted ancient oceanic crust. K/U of the HIMU reservoir is constrained using the relative abundances of radiogenic and nucleogenic noble gases, because 40Ar/36Ar evolves by decay of 40K while production of 4He and 21Ne is related with U and Th decay. In 4He/40Ar*-4He/21Ne* space (asterisks denote radiogenic component), the HIMU lavas define a trend that is parallel to, but offset from the trend previously observed for other ocean island basalts. Using 4He/21Ne* as a monitor of elemental fractionation of noble gasses, fractionation-corrected 4He/40Ar* is higher than that expected for the mantle with the canonical K/U of 13000. K/U of the HIMU reservoir converted from 4He/40Ar* is approximately 3000. Low K/U of the HIMU reservoir is best explained by a model where this reservoir originates from subducted oceanic crust that preferentially lost K relative to U via dehydration during its subduction. Since the HIMU reservoir, involving subducted oceanic crust, is enriched in U, but not in K, previous estimates of K/U and K concentrations for BSE, that did not take this reservoir into consideration, will be too high. The mass balance calculation, considering continental

  19. Conceptual Engineering Method for Attenuating He Ion Interactions on First Wall Components in the Fusion Test Facility (FTF) Employing a Low-Pressure Noble Gas

    SciTech Connect

    C.A.Gentile, W.R.Blanchard, T.Kozub, C.Priniski, I.Zatz, S.Obenschain

    2009-09-21

    It has been shown that post detonation energetic helium ions can drastically reduce the useful life of the (dry) first wall of an IFE reactor due to the accumulation of implanted helium. For the purpose of attenuating energetic helium ions from interacting with first wall components in the Fusion Test Facility (FTF) target chamber, several concepts have been advanced. These include magnetic intervention (MI), deployment of a dynamically moving first wall, use of a sacrificial shroud, designing the target chamber large enough to mitigate the damage caused by He ions on the target chamber wall, and the use of a low pressure noble gas resident in the target chamber during pulse power operations. It is proposed that employing a low-pressure (~ 1 torr equivalent) noble gas in the target chamber will thermalize energetic helium ions prior to interaction with the wall. The principle benefit of this concept is the simplicity of the design and the utilization of (modified) existing technologies for pumping and processing the noble ambient gas. Although the gas load in the system would be increased over other proposed methods, the use of a "gas shield" may provide a cost effective method of greatly extending the first wall of the target chamber. An engineering study has been initiated to investigate conceptual engineering metmethods for implementing a viable gas shield strategy in the FTF.

  20. Heterogeneous upper mantle Ne, Ar and Xe isotopic compositions and a possible Dupal noble gas signature recorded in basalts from the Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Parai, R.; Mukhopadhyay, S.; Standish, J. J.

    2012-12-01

    Variations in heavy noble gas (Ne, Ar, Xe) isotopic compositions provide unique insights into the nature of heterogeneities in the mantle. However, few precise constraints on mantle source heavy noble gas isotopic compositions are available due to ubiquitous shallow-level atmospheric contamination. As a result, the extent of heterogeneity in mid-ocean ridge basalt (MORB) mantle source Ne, Ar and Xe isotopic compositions is unknown. Basalts from the ultra-slow spreading Southwest Indian Ridge (SWIR) between 7°E and 25°E exhibit remarkable variability in He isotopic composition: SWIR 4He/3He spans half the total range observed in all mantle-derived basalts. Therefore, basalts from the SWIR provide a unique window into upper mantle heterogeneity and present an ideal opportunity to characterize variations in upper mantle heavy noble gas isotopic composition. Here we present new high-precision Ne, Ar and Xe isotopic compositions as well as He, CO2, Ne, Ar and Xe abundances measured in basalt glasses from the SWIR. After correcting the measured values for shallow-level atmospheric contamination, significant and systematic variations in mantle source Ne, Ar and Xe compositions are observed. We note that large variations in source 40Ar/36Ar and 129Xe/130Xe are observed in basalts removed from the influence of known hotspots, indicating a heterogeneous mid-ocean ridge basalt source. Thus, SWIR heavy noble gas data reveal a greater degree of source heterogeneity than is evident in the 4He/3He systematics alone. The observed heavy noble gas isotopic heterogeneities imply that the average MORB source 40Ar/36Ar and 129Xe/130Xe ratios are not yet well-determined. Variation in MORB source 40Ar/36Ar and 129Xe/130Xe at a given 4He/3He and 21Ne/22Ne may reflect heterogeneous recycling of atmospheric Ar and Xe. In particular, we find low mantle source 40Ar/36Ar and 129Xe/130Xe ratios in the eastern region of the study area, which may reflect the noble gas signature of the Dupal

  1. GAS-PHASE SEQUESTRATION OF NOBLE GASES IN THE PROTOSOLAR NEBULA: POSSIBLE CONSEQUENCES ON THE OUTER SOLAR SYSTEM COMPOSITION

    SciTech Connect

    Pauzat, F.; Ellinger, Y.; Ozgurel, O.; Mousis, O.; Ali Dib, M. E-mail: ellinger@lct.jussieu.fr E-mail: olivier.mousis@obs-besancon.fr

    2013-11-01

    We address the problem of the sequestration of Ar, Kr, and Xe by H{sub 3}{sup +} in the gas-phase conditions encountered during the cooling of protoplanetary disks when H{sub 3}{sup +} is competing with other species present in the same environment. Using high-level ab initio simulations, we try to quantify other sequestration possibilities involving He, H{sub 5}{sup +}, H{sub 2}O, and H{sub 3}O{sup +} present in the protosolar nebula. Apart from the fact that H{sub 3}{sup +} complexes formed with heavy noble gases are found to be by far much more stable than those formed with He or H{sub 2}O, we show that H{sub 2}D{sup +} and H{sub 3}O{sup +}, both products of the reactions of H{sub 3}{sup +} with HD and H{sub 2}O, can also be efficient trapping agents for Ar, Kr, and Xe. Meanwhile, the abundance profile of H{sub 3}{sup +} in the outer part of the nebula is revisited with the use of an evolutionary accretion disk model that allows us to investigate the possibility that heavy noble gases can be sequestered by H{sub 3}{sup +} at earlier epochs than those corresponding to their trapping in planetesimals. We find that H{sub 3}{sup +} might be abundant enough in the outer protosolar nebula to trap Xe and Kr prior their condensation epochs, implying that their abundances should be solar in Saturn's current atmosphere and below the observational limit in Titan. The same scenario predicts that comets formed at high heliocentric distances should also be depleted in Kr and Xe. In situ measurements, such as those planed with the Rosetta mission on 67P/Churyumov-Gerasimenko, will be critical to check the validity of our hypotheses.

  2. Noble gas component organization in Apollo 14 breccia 14318: /sup 129/I and /sup 244/Pu regolith chronology

    SciTech Connect

    Swindle, T.D.; Caffee, M.W.; Hohenberg, C.M.; Hudson, G.B.; Laul, J.C.; Simon, S.B.; Papike, J.J.

    1985-02-15

    Noble gas, petrological, and chemical studies made on grain-size separates from lunar regolith breccia 14318 demonstrate that the noble gases are organized into two functional components, volume-correlated and surface-correlated. As in regolith breccia 14301, volume-correlated xenon in 14318 is primarily spallation-derived and the surface-correlated component contains not only solar wind xenon but also significant amounts of ''parentless' xenon from the fission of now extinct /sup 244/Pu and the decay of now extinct /sup 129/I (''parentless'' means the daughter products were incorporated onto grain surfaces following decay of the parent nuclide elsewhere). The ratio of /sup 129/Xe//sup 136/Xe in the total surface-correlated parentless component, as identified in grain-size analysis, is substantially higher than in the least tightly bound parentless component identified in stepwise heating analyses, confirming the trend seen in 14301. If the order of release of gases in stepwise heating is related to the order of incorporation in the simplest way (first in, last out), incorporation of these grain-surface components was probably time-ordered. The /sup 129/Xe//sup 136/Xe ratio in each identifiable parentless component would then be characteristic of the xenon available for surface adsorption at the particular time of acquisition. Continuous variations in this ratio further suggest that incorporation of the parentless xenon was closely coupled with production. Such observations provide the basis for a new chronometer from which we conclude that acquisition of parentless xenon was an ongoing process spanning at least 90 m.y., beginning no more than 44 +- 34 m.y. after the formation of the most meteorites and possibly predating xenon acquisition for the earth.

  3. Gas-discharge plasma sources for nonlocal plasma technology

    SciTech Connect

    Demidov, V. I.; DeJoseph, C. A. Jr.; Simonov, V. Ya.

    2007-11-12

    Nonlocal plasma technology is based on the effect of self-trapping of fast electrons in the plasma volume [V. I. Demidov, C. A. DeJoseph, Jr., and A. A. Kudryavtsev, Phys. Rev. Lett. 95, 215002 (2006)]. This effect can be achieved by changing the ratio of fast electron flux to ion flux incident on the plasma boundaries. This in turn leads to a significant change in plasma properties and therefore can be useful for technological applications. A gas-discharge device which demonstrates control of the plasma properties by this method is described.

  4. Hydrochemistry and origin of CO2 gas and noble gas of carbonated mineral water in the Gyeongbuk-Gangwon Province, South Korea

    NASA Astrophysics Data System (ADS)

    Jeong, C. H.; Yoo, S. W.

    2012-04-01

    Hydrochemical, carbon isotopic (δ13CDIC) analyses of 11 samples, and noble gas isotopic analyses of 8 samples collected in the Gangwon and the Gyeongbuk area of South Korea were carried out to elucidate hydrochemical characteristics and to interpret the source of noble gases and CO2 gas. The carbonated mineral waters show a weak acidic pH between 5.59 and 6.04. An electrical conductivity of carbonated mineral waters ranges from 302 to 864 μS/cm. The chemical composition of all carbonated mineral waters can be grouped into only one type such as Ca-HCO3. A high content of Fe and Mn in carbonated mineral waters exceeds a regulation limit of drinking water. The δ13CDIC values of carbonated mineral waters show the range of -5.30~-2.84 ‰. This range indicates that the carbon of carbonated mineral waters is mainly supplied from a deep-seated source and partly from an inorganic carbonate source. The 3He/4He ratios of the carbonated mineral waters show the range of 1.51×10-6 to 6.45×10-6. The carbonated mineral waters on the 3He/4He and 4He/20Ne diagram are plotted into three groups: deep seated area such as mantle source, atmospheric area, and air-mantle mixing area. A wide range of 4He/20Ne ratios is observed (0.036×10-6 to 1.76×10-6), showing evidence that while radiogenic 4He is dominant in these water samples, He of mantle-origin is also supplied to these waters. It is estimated that supply of CO2 gas and noble gas of a deep-seated source into carbonated waters is closely related to geologic structures such as fault and geologic boundary. Key words: carbonated mineral waters, hydrochemical composition, carbon isotope, 3He/4He, deep-seated origin

  5. The Role of Boron-Chloride and Noble Gas Isotope Ratios in TVZ Geothermal Systems

    SciTech Connect

    Hulston, J.R.

    1995-01-01

    The model of the geothermal system in which deep circulating groundwater containing noble gases, at air saturated water concentrations, mixes with hot fluids of mantle origin at depth, is extended to include the effect of interaction of the ascending fluid with both solid and gaseous phases of basement (or other) rocks en route to the surface. It is demonstrated that this interaction is responsible for most of the CO{sub 2} in the Taupo Volcanic Zone (TVZ) geothermal systems. It is proposed that the modeling of this interaction might be accomplished by techniques similar to those used for the understanding of the oxygen isotope shift found in geothermal systems. The water rock interaction experiments of Ellis and Mahon (1964, 1967) provides some data on the kinetic rates for B and Cl dissolution from rocks likely to be encountered in the geothermal system, but further information on the behavior of B may be needed. If these problems can be overcome this modeling technique has promise for the estimation of the recharge of geothermal systems and hence the sustainability of these systems.

  6. Geostatistical analysis of tritium, groundwater age and other noble gas derived parameters in California.

    PubMed

    Visser, A; Moran, J E; Hillegonds, Darren; Singleton, M J; Kulongoski, Justin T; Belitz, Kenneth; Esser, B K

    2016-03-15

    Key characteristics of California groundwater systems related to aquifer vulnerability, sustainability, recharge locations and mechanisms, and anthropogenic impact on recharge are revealed in a spatial geostatistical analysis of a unique data set of tritium, noble gases and other isotopic analyses unprecedented in size at nearly 4000 samples. The correlation length of key groundwater residence time parameters varies between tens of kilometers ((3)H; age) to the order of a hundred kilometers ((4)Heter; (14)C; (3)Hetrit). The correlation length of parameters related to climate, topography and atmospheric processes is on the order of several hundred kilometers (recharge temperature; δ(18)O). Young groundwater ages that highlight regional recharge areas are located in the eastern San Joaquin Valley, in the southern Santa Clara Valley Basin, in the upper LA basin and along unlined canals carrying Colorado River water, showing that much of the recent recharge in central and southern California is dominated by river recharge and managed aquifer recharge. Modern groundwater is found in wells with the top open intervals below 60 m depth in the southeastern San Joaquin Valley, Santa Clara Valley and Los Angeles basin, as the result of intensive pumping and/or managed aquifer recharge operations.

  7. Updated compilations of electron scattering from ground-state, noble gas atoms

    NASA Astrophysics Data System (ADS)

    Biagi, S. F.

    2011-10-01

    An updated analysis of the cross sections for electron scattering from ground state atoms for noble gases in the energy range from thermalto 10 MeV is outlined. The work was driven by the necessity tounderstand the Penning transfers and light emission in detectors of high energy particles and dark matter. The published experimental data for electron scattering up to 2010 have been used in the analysis. Recent, theoretically improved cross sections have been used in the important threshold region for both the singlet and triplet states. Experimental or theoretical oscillator strengths and BEF scaling have been used above the resonance region for the singlet states. The number of excitation levels considered (typically about 40) is chosen so that the sum of the oscillator strengths for the considered levels is within a few percent of the theoretical sum rule. The resulting total cross sections are within a few percent of the measured values, and the calculated Fano factors are consistent with available data. These data are now available on the LXCat website. This work is part of the RD51 collaboration at CERN.

  8. Ground-Water Temperature, Noble Gas, and Carbon Isotope Data from the Espanola Basin, New Mexico

    USGS Publications Warehouse

    Manning, Andrew H.

    2009-01-01

    Ground-water samples were collected from 56 locations throughout the Espanola Basin and analyzed for general chemistry (major ions and trace elements), carbon isotopes (delta 13C and 14C activity) in dissolved inorganic carbon, noble gases (He, Ne, Ar, Kr, Xe, and 3He/4He ratio), and tritium. Temperature profiles were measured at six locations in the southeastern part of the basin. Temperature profiles suggest that ground water generally becomes warmer with distance from the mountains and that most ground-water flow occurs at depths 50 years old, consistent with the 14C ages. Terrigenic He (Heterr) concentrations in ground water are high (log Delta Heterr of 2 to 5) throughout much of the basin. High Heterr concentrations are probably caused by in situ production in the Tesuque Formation from locally high concentrations of U-bearing minerals (Northeast zone only), or by upward diffusive/advective transport of crustal- and mantle-sourced He possibly enhanced by basement piercing faults, or by both. The 3He/4He ratio of Heterr (Rterr) is commonly high (Rterr/Ra of 0.3-2.0, where Ra is the 3He/4He ratio in air) suggesting that Espanola Basin ground water commonly contains mantle-sourced He. The 3He/4He ratio of Heterr is generally the highest in the western and southern parts of the basin, closest to the western border fault system and the Quaternary to Miocene volcanics of the Jemez Mountains and Cerros del Rio.

  9. Noble Gas Systematics in MORBs and OIBs and Reconstitution of the Time-Evolution of Mantle Composition for Heavy Noble Gases: the Role of Subduction of Atmospheric Noble Gases.

    NASA Astrophysics Data System (ADS)

    Roubinet, C.; Moreira, M. A.

    2014-12-01

    Chondrites are considered as the building rocks of the Earth as they represent remnants of the protoplanetary accretion stage. Among all chondritic classes, heavy noble gases are mainly concentrated in phase Q [1] hence it represents a likely primordial composition of the Earth. This is supported by the observation of [2] who detected this peculiar composition in CO2 well gases thanks to Kr isotopes. As CO2 well gases are supposed to derive from the same reservoir as MORBs [3], this signature should be observed in MORBs and OIBs as well. In this perspective, we will present analyses performed by mass spectrometry of MORBs and OIBs samples for all noble gases. Preliminary results are quite promising as the same trend seems to appear into OIB and MORB data for Kr isotopes. However, our analyses show that this primordial composition isn't displayed for stable isotopes of Xe as already observed by [4-5] and remains a trace in the mantle signature, which appears at first sight atmospheric. We thus propose that subduction of atmospheric noble gases has gradually covered this meteoritic imprint. In order to test this scenario, we will present a modelling performed for Ar and Xe in three distinct reservoirs: mantle, atmosphere and continental crust. The mantle is considered as homogenized by convection and similar to the MORB reservoir. Its degasing is divided in two stages: a massive early degasing followed by a decreasing one describing the cooling of the Earth's interior. Extraction of parent elements from the mantle to the continental crust is also taken into account as well as distillation of atmospheric Xe needed to explain the missing Xe paradox and the present Xe isotopic signature of the atmosphere. Finally, subduction of noble gases is assimilated to simple incorporation into the mantle of elementally fractionated air, enriched in heavy noble gases as supported by [6]. Thus, we show that starting with a chondritic composition, the present mantle composition can

  10. 21 CFR 1020.20 - Cold-cathode gas discharge tubes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cold-cathode gas discharge tubes. 1020.20 Section... discharge tubes. (a) Applicability. The provisions of this section are applicable to cold-cathode gas discharge tubes designed to demonstrate the effects of a flow of electrons or the production of...

  11. 21 CFR 1020.20 - Cold-cathode gas discharge tubes.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cold-cathode gas discharge tubes. 1020.20 Section... discharge tubes. (a) Applicability. The provisions of this section are applicable to cold-cathode gas discharge tubes designed to demonstrate the effects of a flow of electrons or the production of...

  12. 21 CFR 1020.20 - Cold-cathode gas discharge tubes.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cold-cathode gas discharge tubes. 1020.20 Section... discharge tubes. (a) Applicability. The provisions of this section are applicable to cold-cathode gas discharge tubes designed to demonstrate the effects of a flow of electrons or the production of...

  13. 21 CFR 1020.20 - Cold-cathode gas discharge tubes.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cold-cathode gas discharge tubes. 1020.20 Section... discharge tubes. (a) Applicability. The provisions of this section are applicable to cold-cathode gas discharge tubes designed to demonstrate the effects of a flow of electrons or the production of...

  14. 21 CFR 1020.20 - Cold-cathode gas discharge tubes.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cold-cathode gas discharge tubes. 1020.20 Section... discharge tubes. (a) Applicability. The provisions of this section are applicable to cold-cathode gas discharge tubes designed to demonstrate the effects of a flow of electrons or the production of...

  15. EFFECTS OF ALTERNATE ANTIFOAM AGENTS, NOBLE METALS, MIXING SYSTEMS AND MASS TRANSFER ON GAS HOLDUP AND RELEASE FROM NONNEWTONIAN SLURRIES

    SciTech Connect

    Guerrero, H; Mark Fowley, M; Charles Crawford, C; Michael Restivo, M; Robert Leishear, R

    2007-12-24

    Gas holdup tests performed in a small-scale mechanically-agitated mixing system at the Savannah River National Laboratory (SRNL) were reported in 2006. The tests were for a simulant of waste from the Hanford Tank 241-AZ-101 and featured additions of DOW Corning Q2-3183A Antifoam agent. Results indicated that this antifoam agent (AFA) increased gas holdup in the waste simulant by about a factor of four and, counter intuitively, that the holdup increased as the simulant shear strength decreased (apparent viscosity decreased). These results raised questions about how the AFA might affect gas holdup in Hanford Waste Treatment and Immobilization Plant (WTP) vessels mixed by air sparging and pulse-jet mixers (PJMs). And whether the WTP air supply system being designed would have the capacity to handle a demand for increased airflow to operate the sparger-PJM mixing systems should the AFA increase retention of the radiochemically generated flammable gases in the waste by making the gas bubbles smaller and less mobile, or decrease the size of sparger bubbles making them mix less effectively for a given airflow rate. A new testing program was developed to assess the potential effects of adding the DOW Corning Q2-3183A AFA to WTP waste streams by first confirming the results of the work reported in 2006 by Stewart et al. and then determining if the AFA in fact causes such increased gas holdup in a prototypic sparger-PJM mixing system, or if the increased holdup is just a feature of the small-scale agitation system. Other elements of the new program include evaluating effects other variables could have on gas holdup in systems with AFA additions such as catalysis from trace noble metals in the waste, determining mass transfer coefficients for the AZ-101 waste simulant, and determining whether other AFA compositions such as Dow Corning 1520-US could also increase gas holdup in Hanford waste. This new testing program was split into two investigations, prototypic sparger

  16. Martian fluid and Martian weathering signatures identified in Nakhla, NWA 998 and MIL 03346 by halogen and noble gas analysis

    NASA Astrophysics Data System (ADS)

    Cartwright, J. A.; Gilmour, J. D.; Burgess, R.

    2013-03-01

    We report argon (Ar) noble gas, Ar-Ar ages and halogen abundances (Cl, Br, I) of Martian nakhlites Nakhla, NWA 998 and MIL 03346 to determine the presence of Martian hydrous fluids and weathering products. Neutron-irradiated samples were either crushed and step-heated (Nakhla only), or simply step-heated using a laser or furnace, and analysed for noble gases using an extension of the 40Ar-39Ar technique to determine halogen abundances. The data obtained provide the first isotopic evidence for a trapped fluid that is Cl-rich, has a strong correlation with 40ArXS (40ArXS = 40Armeasured - 40Arradiogenic) and displays 40ArXS/36Ar of ˜1000 - consistent with the Martian atmosphere. This component was released predominantly in the low temperature and crush experiments, which may suggest a fluid inclusion host. For the halogens, we observe similar Br/Cl and I/Cl ratios between the nakhlites and terrestrial reservoirs, which is surprising given the absence of crustal recycling, organic matter and frequent fluid activity on Mars. In particular, Br/Cl ratios in our Nakhla samples (especially olivine) are consistent with previously analysed Martian weathering products, and both low temperature and crush analyses show a similar trend to the evaporation of seawater. This may indicate that surface brines play an important role on Mars and on halogen assemblages within Martian meteorites and rocks. Elevated I/Cl ratios in the low temperature NWA 998 and MIL 03346 releases may relate to in situ terrestrial contamination, though we are unable to distinguish between low temperature terrestrial or Martian components. Whilst estimates of the amount of water present based on the 36Ar concentrations are too high to be explained by a fluid component alone, they are consistent with a mixed-phase inclusion (gas and fluid) or with shock-implanted Martian atmospheric argon. The observed fluid is dilute (low salinity, but high Br/Cl and I/Cl ratios), contains a Martian atmospheric component

  17. Recycling of volatiles at subduction zones: Noble gas evidence from the Tabar-Lihir-Tanga-Feni arc of papua New Guinea

    NASA Technical Reports Server (NTRS)

    Farley, Kenneth; Mcinnes, Brent; Patterson, Desmond

    1994-01-01

    Convergent margin processes play an important but poorly understood role in the distribution of terrestrial volatile species. For example, subduction processes filter volatiles from the subducting package, thereby restricting their return to the mantle. In addition, once extracted from the downgoing slab, volatiles become an essential component in the petrogenesis of island arc magmas. The noble gases, with their systematic variation in physical properties and diversity of radiogenic isotopes, should carry a uniquely valuable record of these processes. However, thus far studies of noble gases in arc volcanics have achieved only limited success in this regard. Subduction-related lavas and geothermal fluids carry (3)He/(4)He ratios equal to or slightly lower than those found in the depleted upper mantle source of mid-ocean ridge basalts. Apparently slab-derived helium (which should have (3)He/(4)He much less than MORB) is extensively diluted by MORB-like helium from the mantle wedge, making it difficult to use helium as a tracer of convergent margin processes. Interpretation of the heavier noble gases (Ne-Ar-Kr-Xe) in arc lavas has also proven difficult, because the lavas carry low noble gas concentrations and hence are subject to pervasive atmospheric contamination. The low noble gas concentrations may be a consequence of degassing in the high level magma chambers characteristic of arc stratovolcanos. We have recently initiated a project to better constrain the behavior of volatiles in subduction zones through geochemical studies of the tectonically unusual volcanoes of the Tabar-Lihir-Tanga-Feni (TLTF) arc in the Bismarck Archipelago, Papua New Guinea.

  18. Radial Measurements of Gas Discharge Parameters of Atmospheric Pressure Microplasma

    NASA Astrophysics Data System (ADS)

    Caetano, R.; Hoyer, Y. D.; Barbosa, I. M.; Grigorov, K. G.; Sismanoglu, B. N.

    2013-07-01

    In this work Abel inversion technique was used for radial measurements of the microplasma in Ar-2%H2 flow at open atmosphere. The gas discharge parameters were investigated using spatially resolved high resolution optical emission spectroscopy (OES) to allow acquisition of OH (A 2Σ+, ν = 0 →X 2Π, ν‧ = 0) rotational bands at 306.357 nm, Ar I 603.213 nm line and N2(C3∏u, ν = 0 →B3∏g, ν‧ = 0) second positive system with the band head at 337.13 nm. The nonthermal plasma was generated between microhollow anode ( 500 μm inner diameter) and a cathode copper foil, fed by direct current source for a current ranging from 20 mA to 100 mA (Townsend discharge from 20 mA to 30 mA, normal glow discharge from 30 mA to 80 mA at 210 V and abnormal discharge beyond 90 mA). The 1.5 mm length cylindrical-shape plasma has an outspread bright disk (negative glow region) near the cathode surface. Besides the gas temperature, the excitation temperature was measured radially for a current ranging from 20 mA to 100 mA, either from Boltzmann-plot of Ar I 4p - 4s and 5p - 4s transitions of excited argon or from Cu I two lines method of excited cuprum atoms released from the cathode surface. The measurements showed a nearly bell-shaped distribution of these temperatures, peaked at 120 μm from the center with the minimum at the plasma border. The average excitation temperature was about 8000 K (maximum 10,000 K) and the average rotational temperature was about 650 K (maximum 800 K) from 20 K to 100 K. For the N2 second positive system with Δν = -2 it was estimated the vibrational temperature for the bright disk (1500 K to 5000 K). Hβ line Stark broadening was employed to define the electron number density of the negative glow (1015cm-3).

  19. ORAL ISSUE OF THE JOURNAL "USPEKHI FIZICHESKIKH NAUK": Modeling of gas discharge plasma

    NASA Astrophysics Data System (ADS)

    Smirnov, Boris M.

    2009-06-01

    The condition for the self-maintenance of a gas discharge plasma (GDP) is derived from its ionization balance expressed in the Townsend form and may be used as a definition of a gas discharge plasma in its simplest form. The simple example of a gas discharge plasma in the positive column of a cylindrical discharge tube allows demonstrating a wide variety of possible GDP regimes, revealing a contradiction between simple models used to explain gas discharge regimes and the large number of real processes responsible for the self-maintenance of GDP. The variety of GDP processes also results in a stepwise change of plasma parameters and developing some instabilities as the voltage or discharge current is varied. As a consequence, new forms and new applications of gas discharge arise as technology progresses.

  20. Comparison of induced damage, range, reflection, and sputtering yield between amorphous, bcc crystalline, and bubble-containing tungsten materials under hydrogen isotope and noble gas plasma irradiations

    NASA Astrophysics Data System (ADS)

    Saito, Seiki; Nakamura, Hiroaki; Tokitani, Masayuki

    2017-01-01

    Binary-collision-approximation simulation of hydrogen isotope (i.e., hydrogen, deuterium, and tritium) and noble gas (i.e., helium, neon, and argon) injections into tungsten materials is performed. Three tungsten structures (i.e., amorphous, bcc crystalline, and helium bubble-containing structures) are prepared as target materials. Then, the trajectories of incident atoms, the distribution of recoil atoms, the penetration depth range of incident atoms, the sputtering yield, and the reflection rate are carefully investigated for these target materials.

  1. Comparative Study on the Noble-Gas Binding Ability of BeX Clusters (X = SO4, CO3, O).

    PubMed

    Saha, Ranajit; Pan, Sudip; Merino, Gabriel; Chattaraj, Pratim K

    2015-06-25

    Ab initio computations are carried out to assess the noble gas (Ng) binding capability of BeSO4 cluster. We have further compared the stability of NgBeSO4 with that of the recently detected NgBeCO3 cluster. The Ng-Be bond in NgBeCO3 is somewhat weaker than that in NgBeO cluster. In NgBeSO4, the Ng-Be bond is found to be stronger compared with not only the Ng-Be bond in NgBeCO3 but also that in NgBeO, except the He case. The Ar-Rn-bound BeSO4 analogues are viable even at room temperature. The Wiberg bond indices of Be-Ng bonds and the degree of electron transfer from Ng to Be are somewhat larger in NgBeSO4 than those in NgBeCO3 and NgBeO. Electron density and energy decomposition analyses are performed in search of the nature of interaction in the Be-Ng bond in NgBeSO4. The orbital energy term (ΔE(orb)) contributes the maximum (ca. 80-90%) to the total attraction energy. The Ar/Kr/Xe/Rn-Be bonds in NgBeSO4 could be of partial covalent type with a gradual increase in covalency along Ar to Rn.

  2. Ultrahigh sensitivity heavy noble gas detectors for long-term monitoring and monitoring air. 1998 annual progress report

    SciTech Connect

    Valentine, J.D.; Gross, K.

    1998-06-01

    'The primary objective of this research project is to develop heavy noble gas (krypton, xenon, and radon) detectors for: (1) long-term monitoring of transuranic waste, spent fuel, and other uranium and thorium bearing wastes, and (2) alpha particle air monitors that discriminate between radon emissions and other alpha emitters. A University of Cincinnati/Argonne National Laboratory (UC/ANL) Team has been assembled to complete this detector development project. DOE needs that are addressed by this project include improved long-term monitoring capability and improved air monitoring capability during remedial activities. Successful development and implementation of the proposed detection systems could significantly improve current capabilities with relatively simple and inexpensive equipment. As of June 1, 1998, the UC/ANL Team has: (1) made significant progress toward characterizing the fluid transfer process which is the basis for this detector development project and (2) evaluated several radiation detectors and several potential pulse processing schemes. The following discussion describes the progress made during the first year of this project and the implications of this progress.'

  3. Coulomb explosion in dicationic noble gas clusters: A genetic algorithm-based approach to critical size estimation for the suppression of Coulomb explosion and prediction of dissociation channels

    NASA Astrophysics Data System (ADS)

    Nandy, Subhajit; Chaudhury, Pinaki; Bhattacharyya, S. P.

    2010-06-01

    We present a genetic algorithm based investigation of structural fragmentation in dicationic noble gas clusters, Arn+2, Krn+2, and Xen+2, where n denotes the size of the cluster. Dications are predicted to be stable above a threshold size of the cluster when positive charges are assumed to remain localized on two noble gas atoms and the Lennard-Jones potential along with bare Coulomb and ion-induced dipole interactions are taken into account for describing the potential energy surface. Our cutoff values are close to those obtained experimentally [P. Scheier and T. D. Mark, J. Chem. Phys. 11, 3056 (1987)] and theoretically [J. G. Gay and B. J. Berne, Phys. Rev. Lett. 49, 194 (1982)]. When the charges are allowed to be equally distributed over four noble gas atoms in the cluster and the nonpolarization interaction terms are allowed to remain unchanged, our method successfully identifies the size threshold for stability as well as the nature of the channels of dissociation as function of cluster size. In Arn2+, for example, fissionlike fragmentation is predicted for n =55 while for n =43, the predicted outcome is nonfission fragmentation in complete agreement with earlier work [Golberg et al., J. Chem. Phys. 100, 8277 (1994)].

  4. Using noble-gas and stable-isotope data to determine groundwater origin and flow regimes: Application to the Ceneri Base Tunnel (Switzerland)

    NASA Astrophysics Data System (ADS)

    Tomonaga, Yama; Marzocchi, Roberto; Pera, Sebastian; Pfeifer, Hans-Rudolf; Kipfer, Rolf; Decrouy, Laurent; Vennemann, Torsten

    2017-02-01

    Tunnel drilling provides a unique opportunity to sample and study deep groundwaters that are otherwise difficult to access. Understanding deep groundwater flow is of primary importance in assessing the possible impacts of tunnelling on hydrogeological systems. During this study, water was sampled for noble-gas analysis from tunnel inflows in the AlpTransit Ceneri Base Tunnel (Canton Ticino, southern Switzerland), which passes through an area mainly characterized by metamorphic rocks (gneiss). Furthermore, water was sampled from springs located in the same geological environment. Based on the measurement of noble-gas concentrations and isotope ratios, tritium concentrations, the stable isotope composition of hydrogen (δ2H) and oxygen (δ18O), and the concentrations of major ions in the water, a conceptual hydrogeological model was established for this case study that allowed the most probable origin of the groundwaters sampled at different locations to be determined. The measured abundances of 3He, 4He, and 20Ne allow the geochemical characterization of old groundwaters strongly enriched in terrigenic helium of crustal origin and the identification of mixing with water that circulates preferentially through cataclastic structures. Noble-gas concentrations and isotope ratios as well as tritium are useful proxies for the characterization of faults that may be critical for tunnel drilling because of their active hydrogeological role and their influence on the mechanics of the rocks.

  5. Destruction of Bacterial Biofilms Using Gas Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Abramzon, Nina

    2005-03-01

    Biofilms are bacterial communities embedded in an exopolysaccharidic matrix with a complex architectural structure. Bacteria in biofilms show different properties from those in free life thus, conventional methods of killing bacteria are often ineffective with biofilms. The use of plasmas potentially offers an alternative to conventional sterilization methods since plasmas contain a mixture of charged particles, chemically reactive species, and UV radiation. 4 and 7 day-old biofilms were produced using two bacterial species: Rhizobium gallicum and Chromobacterium violaceum. Gas discharge plasma was produced by using an AtomfloTM reactor (Surfx Technologies) and bacterial biofilms were exposed to it for different periods of time. Our results show that a 10-minute plasma treatment was able to kill 100% of the cells in most cases. Optical emission spectroscopy was used to study plasma composition which is then correlated with the effectiveness of killing. These results indicate the potentiality of plasma as an alternative sterilization method. Supported by CSuperb.

  6. Electron-beam sustained discharge in oxygen gas mixtures: singlet delta oxygen production for oxygen-iodine laser

    NASA Astrophysics Data System (ADS)

    Frolov, Mikhail P.; Hager, Gordon D.; Ionin, Andrei A.; Klimachev, Yurii M.; Kochetov, Igor V.; Kotkov, Andrei A.; McIver, John K.; Napartovich, Anatolii P.; Podmar'kov, Yurii P.; Seleznev, Leonid V.; Sinitsyn, Dmitrii V.; Vagin, Nikolai P.; Yuryshev, Nikolay N.

    2004-09-01

    Electric properties and spectroscopy of an e-beam sustained discharge (EBSD) in oxygen and oxygen gas mixtures at gas pressure up to 100 Torr were experimentally studied. The pulsed discharge in pure oxygen and its mixtures with noble gases was shown to be very unstable and characterized by low input energy. When adding small amount of carbon monoxide or hydrogen, the electric stability of the discharge increases, specific input energy (SIE) per molecular component being more than order of magnitude higher and coming up to 6.5 kJ/(l atm) for gas mixture O2:Ar:CO = 1:1:0.1. The results of experiments on spectroscopy of the singlet delta oxygen O2(a1Δg)(SDO) and O2(b1Σg+) states in the EBSD are presented. The calibration of the optical scheme for measuring the SDO absolute concentration and yield using the detection of luminescence of the SDO going from a chemical SDO generator was done. The preliminary measurement of the SDO yield demonstrated that it was ~3% for the SIE of ~1 kJ/(l atm), which is close to the results of theoretical calculations for such a SIE. Theoretical calculations demonstrated that for the SIE of 6.5 kJ/(l atm) the SDO yield may reach ~20% exceeding its threshold value needed for oxygen-iodine laser operation at room temperature, although a part of the energy loaded into the EBSD goes into the vibrational energy of the molecular admixture, (which was experimentally demonstrated by launching a CO laser operating on an oxygen-rich mixture O2:Ar:CO = 1:1:0.1 and measuring its small-signal gain).

  7. Theoretical prediction of maximum capacity of C₈₀ and Si₈₀ fullerenes for noble gas storage.

    PubMed

    Mahdavifar, Zabiollah

    2014-11-01

    In this paper, we try to demonstrate that how many helium, neon and argon atoms can be trapped into fullerene cages until the pressure becomes large enough to break the C80 and Si80 frameworks. The maximum number of helium, neon and argon atoms which can be encapsulated into C80 fullerene, is found with 46, 24 and 10 atoms respectively. Having investigated the mechanism of C80 opening, we found that if the number of helium and argon atoms reaches to 50 and 12 respectively, the C-C bonds of C80 are broken and the gas molecules escaped from the fullerene cage. The final optimization geometries of latter complexes are similar to the shopping cart. Therefore, this appearance is named as molecular cart. Moreover, the maximum capacity of Si80 fullerene for encapsulated noble gas atoms is found 95, 56 and 22 for helium, neon and argon atoms correspondingly. It is worth highlighting that the new phenomenon of trapping argon atoms into Si80 cage is observed, when a Si atom randomly added to the center of Ar19@Si80 structures. In this case, the Si-Si bonds of Si80 are broken and two argon atoms will escape from the cage. After that, the framework rebuilds its structure like the initial one. This phenomenon is introduced as molecular cesarean section. The estimated internal pressure of Ng atoms trapped into the fullerene cages is also investigated. Results show that the maximum calculated internal pressure is related to He46@C80 and He95@Si80 structures with 212.3 and 144.1GPa respectively.

  8. Simulation of discharge in insulating gas from initial partial discharge to growth of a stepped leader using the percolation model

    NASA Astrophysics Data System (ADS)

    Sasaki, Akira; Kato, Susumu; Takahashii, Eiichi; Kishimoto, Yasuaki; Fujii, Takashi; Kanazawa, Seiji

    2016-02-01

    We show a cell simulation of a discharge in an insulating gas from the initial partial discharge to leader inception until breakdown, based on the percolation model. In the model, we consider that the propagation of the leader occurs when connections between randomly produced ionized regions in the discharge medium are established. To determine the distribution of ionized regions, the state of each simulation cell is decided by evaluating the probability of ionization in SF6, which depends on the local electric field. The electric field as well as the discharge current are calculated by solving circuit equations for the network of simulation cells. Both calculations are coupled to each other and the temporal evolution of discharge is self-consistently calculated. The model dependence of the features of the discharge is investigated. It is found that taking the suppression of attachment in the presence of a discharge current into account, the calculation reproduces the behavior of experimental discharges. It is shown that for a strong electric field, the inception of a stepped leader causes immediate breakdown. For an electric field of 30-50% of the critical field, the initial partial discharge persists for a stochastic time lag and then the propagation of a leader takes place. As the strength of the electric field decreases, the time lag increases rapidly and eventually only a partial discharge with a short arrested leader occurs, as observed in experiments.

  9. Simultaneous measurement of rock permeability and effective porosity using laser-polarized noble gas NMR

    NASA Astrophysics Data System (ADS)

    Wang, R.; Mair, R. W.; Rosen, M. S.; Cory, D. G.; Walsworth, R. L.

    2004-08-01

    We report simultaneous measurements of the permeability and effective porosity of oil-reservoir rock cores using one-dimensional NMR imaging of the penetrating flow of laser-polarized xenon gas. The permeability result agrees well with industry standard techniques, whereas effective porosity is not easily determined by other methods. This NMR technique may have applications to the characterization of fluid flow in a wide variety of porous and granular media.

  10. Transport properties in semiconductor-gas discharge electronic devices

    NASA Astrophysics Data System (ADS)

    Sadiq, Y.; (Yücel) Kurt, H.; Albarzanji, A. O.; Alekperov, S. D.; Salamov, B. G.

    2009-09-01

    Nonlinear electrical transport of semi-insulating (SI) GaAs detector in semiconductor-gas discharge IR image converter (SGDIC) are studied experimentally for a wide range of the gas pressures ( p = 28-55 Torr), interelectrode distances ( d = 445-525 μm) and inner electrode diameters ( D = 12-22 mm) of photocathode. The destabilization of homogeneous state observed in a planar dc-driven structure is due to nonlinear transport properties of GaAs photocathode. Experimental investigation of electrical instability in SGDIC structure was analyzed using hysteresis, N-shaped negative differential conductivity (NDC) current voltage characteristics (CVC) and dynamic behavior of current in a wide range of feeding voltage ( U = 590-1000 V) under different IR light intensities incident on cathode material. It is established that hysteresis are related to electron capture and emission from EL2 deep center on the detector substrate. We have experimentally investigated domain velocity and electron mobility based on well-understood transferred electron effect (TEE) for abovementioned nonlinear electrical characteristics of SI GaAs. The experimental findings are in good agreement with estimated results reported by other independent authors.

  11. Growth of arc in high-pressure, pulsed glow discharge by gas density depletion

    NASA Astrophysics Data System (ADS)

    Imada, Go; Yatsui, Kiyoshi; Masuda, Wataru

    2000-10-01

    Effects of gas density depletion on arc formation of high-pressure, pulsed glow discharge have been investigated by eliminating the other factors which may affect the discharge stability, such as shock waves, residual ions, electrode heating, and discharge products. The gas density depletion has been simulated by utilizing a subsonic gas flow between the curved electrodes combined with a convergent nozzle and a divergent diffuser. A comparison has been made on the discharge in the aerodynamically created gas density depletion with the second discharge in the double-pulse discharge within a stable gas. We have found that the large gas density depletion, Δρ/ρ0˜-3.6% corresponding to a pulse repetition rate (PRR) of ˜50 Hz, tends to cause an arc-like filament or an arc without the shocks, ions, electrode heating, and products. However, the second discharge in the double-pulse discharge becomes an arc in much smaller gas density depletion (Δρ/ρ0˜-1.2% corresponding to PRR ˜3 Hz). Therefore, the collapse of high-pressure, pulsed glow discharge is most likely caused by some factor other than the gas density depletion.

  12. Common versus noble Bacillus subtilis differentially responds to air and argon gas plasma.

    PubMed

    Winter, Theresa; Bernhardt, Jörg; Winter, Jörn; Mäder, Ulrike; Schlüter, Rabea; Weltmann, Klaus-Dieter; Hecker, Michael; Kusch, Harald

    2013-09-01

    The applications of low-temperature plasma are not only confined to decontamination and sterilization but are also found in the medical field in terms of wound and skin treatment. For the improvement of already established and also for new plasma techniques, in-depth knowledge on the interactions between plasma and microorganism is essential. In an initial study, the interaction between growing Bacillus subtilis and argon plasma was investigated by using a growth chamber system suitable for low-temperature gas plasma treatment of bacteria in liquid medium. In this follow-up investigation, a second kind of plasma treatment-namely air plasma-was applied. With combined proteomic and transcriptomic analyses, we were able to investigate the plasma-specific stress response of B. subtilis toward not only argon but also air plasma. Besides an overlap of cellular responses due to both argon and air plasma treatment (DNA damage and oxidative stress), a variety of gas-dependent cellular responses such as growth retardation and morphological changes were observed. Only argon plasma treatments lead to a phosphate starvation response whereas air plasma induced the tryptophan operon implying damage by photooxidation. Biological findings were supported by the detection of reactive plasma species by optical emission spectroscopy and Fourier transformed infrared spectroscopy measurements.

  13. Emission spectroscopic study on gas-gas interactions in glow discharge plasmas using several binary gas mixtures.

    PubMed

    Wagatsuma, Kazuaki

    2010-01-01

    Emission spectra of constituent gas species from glow discharge plasmas using argon-helium, krypton-helium, argon-krypton, and krypton-argon gas mixtures were analyzed to elucidate collisional energy transfer between these gas species occurring in the plasma. In the argon-helium mixed gas plasma, the enhancement or quenching of particular Ar II lines was observed when helium was added to an argon-matrix glow discharge plasma, meaning that a redistribution in the population among the excited levels could be induced through argon-helium collisions. On the other hand, the krypton-helium plasma showed little change in the emission intensities of Kr II lines when helium was added to a krypton-matrix glow discharge plasma, meaning that energy exchanges between krypton and helium excited species occur inactively. These phenomena are principally because the excitation energy as well as the spin multiplicity between collision partners follow both the energy resonance conditions and the spin conservation rule in collisions of the second kind in the argon-helium system, but not in the krypton-helium system. In the argon-krypton and krypton-argon mixed gas plasmas, significant intensity changes of particular Ar II or Kr II lines could not be found; therefore, there were no dominant channels for energy exchanges between argon and krypton species in the mixed gas plasmas.

  14. Study of gas discharge with a liquid cathode at maximum thermal load to the cathode

    NASA Astrophysics Data System (ADS)

    Tazmeev, G. Kh; Timerkaev, B. A.; Tazmeev, Kh K.; Arslanov, I. M.; Tazmeev, B. K.; Sarvarov, F. S.

    2017-01-01

    Thermal phenomena were experimentally studied in the atmospheric pressure gas discharge between the electrolyte liquid cathode and the metal anode under conditions in which the electrolyte temperature is close to the boiling temperature. It is shown that electrolyte mass discharge can only be reduced to a certain limit, while maintaining stable mode of burning discharge.

  15. Understanding the interaction of injected CO2 and reservoir fluids in the Cranfield enhanced oil recovery (EOR) field (MS, USA) by non-radiogenic noble gas isotopes

    NASA Astrophysics Data System (ADS)

    Gyore, Domokos; Stuart, Finlay; Gilfillan, Stuart

    2016-04-01

    Identifying the mechanism by which the injected CO2 is stored in underground reservoirs is a key challenge for carbon sequestration. Developing tracing tools that are universally deployable will increase confidence that CO2 remains safely stored. CO2 has been injected into the Cranfield enhanced oil recovery (EOR) field (MS, USA) since 2008 and significant amount of CO2 has remained (stored) in the reservoir. Noble gases (He, Ne, Ar, Kr, Xe) are present as minor natural components in the injected CO2. He, Ne and Ar previously have been shown to be powerful tracers of the CO2 injected in the field (Györe et al., 2015). It also has been implied that interaction with the formation water might have been responsible for the observed CO2 loss. Here we will present work, which examines the role of reservoir fluids as a CO2 sink by examining non-radiogenic noble gas isotopes (20Ne, 36Ar, 84Kr, 132Xe). Gas samples from injection and production wells were taken 18 and 45 months after the start of injection. We will show that the fractionation of noble gases relative to Ar is consistent with the different degrees of CO2 - fluid interaction in the individual samples. The early injection samples indicate that the CO2 injected is in contact with the formation water. The spatial distribution of the data reveal significant heterogeneity in the reservoir with some wells exhibiting a relatively free flow path, where little formation water is contacted. Significantly, in the samples, where CO2 loss has been previously identified show active and ongoing contact. Data from the later stage of the injection shows that the CO2 - oil interaction has became more important than the CO2 - formation water interaction in controlling the noble gas fingerprint. This potentially provides a means to estimate the oil displacement efficiency. This dataset is a demonstration that noble gases can resolve CO2 storage mechanisms and its interaction with the reservoir fluids with high resolution

  16. Particle-in-cell modeling of gas-confined barrier discharge

    NASA Astrophysics Data System (ADS)

    Levko, Dmitry; Raja, Laxminarayan L.

    2016-04-01

    Gas-confined barrier discharge is studied using the one-dimensional Particle-in-Cell Monte Carlo Collisions model for the conditions reported by Guerra-Garcia and Martinez-Sanchez [Appl. Phys. Lett. 106, 041601 (2015)]. Depending on the applied voltage, two modes of discharge are observed. In the first mode, the discharge develops in the entire interelectrode gap. In the second mode, the discharge is ignited and develops only in the gas layer having smaller breakdown voltage. The one-dimensional model shows that for the conditions considered, there is no streamer stage of breakdown as is typical for a traditional dielectric barrier discharge.

  17. The Thermo Scientific HELIX-SFT noble gas mass spectrometer: (preliminary) performance for 40Ar/39Ar geochronology

    NASA Astrophysics Data System (ADS)

    Barfod, D. N.; Mark, D. F.; Morgan, L. E.; Tomkinson, T.; Stuart, F.; Imlach, J.; Hamilton, D.

    2011-12-01

    The Thermo Scientific HELIX-platform Split Flight Tube (HELIX-SFT) noble gas mass spectrometer is specifically designed for simultaneous collection of helium isotopes. The high mass spur houses a switchable 1011 - 1012 Ω resistor Faraday cup and the low mass spur a digital pulse-counting secondary electron multiplier (SEM). We have acquired the HELIX-SFT with the specific intention to measure argon isotopes for 40Ar/39Ar geochronology. This contribution will discuss preliminary performance (resolution, reproducibility, precision etc.) with respect to measuring argon isotope ratios for 40Ar/39Ar dating of geological materials. We anticipate the greatest impact for 40Ar/39Ar dating will be increased accuracy and precision, especially as we approach the techniques younger limit. Working with Thermo Scientific we have subtly modified the source, alpha and collector slits of the HELIX-SFT mass spectrometer to improve its resolution for resolving isobaric interferences at masses 36 to 40. The enhanced performance will allow for accurate and precise measurement of argon isotopes. Preliminary investigations show that we can obtain a valley resolution of >700 and >1300 (compared to standard HELIX-SFT specifications of >400 and >700) for the high and low mass spurs, respectively. The improvement allows for full resolution of hydrocarbons (C3+) at masses 37 - 40 and almost full resolution at mass 36. The HELIX-SFT will collect data in dual collection mode with 40Ar+ ion beams measured using the switchable 1011 - 1012 Ω resistor Faraday cup and 39Ar through 36Ar measured using the SEM. The HELIX-SFT requires Faraday-SEM inter-calibration but negates the necessity to inter-calibrate multiple electron multipliers. We will further present preliminary data from the dating of mineral standards: Alder Creek sanidine, Fish Canyon sanidine and Mount Dromedary biotite (GA1550).

  18. Molecular dynamics simulation of framework flexibility effects on noble gas diffusion in HKUST-1 and ZIF-8

    DOE PAGES

    Parkes, Marie V.; Demir, Hakan; Teich-McGoldrick, Stephanie L.; ...

    2014-03-28

    Molecular dynamics simulations were used to investigate trends in noble gas (Ar, Kr, Xe) diffusion in the metal-organic frameworks HKUST-1 and ZIF-8. Diffusion occurs primarily through inter-cage jump events, with much greater diffusion of guest atoms in HKUST-1 compared to ZIF-8 due to the larger cage and window sizes in the former. We compare diffusion coefficients calculated for both rigid and flexible frameworks. For rigid framework simulations, in which the framework atoms were held at their crystallographic or geometry optimized coordinates, sometimes dramatic differences in guest diffusion were seen depending on the initial framework structure or the choice of frameworkmore » force field parameters. When framework flexibility effects were included, argon and krypton diffusion increased significantly compared to rigid-framework simulations using general force field parameters. Additionally, for argon and krypton in ZIF-8, guest diffusion increased with loading, demonstrating that guest-guest interactions between cages enhance inter-cage diffusion. No inter-cage jump events were seen for xenon atoms in ZIF-8 regardless of force field or initial structure, and the loading dependence of xenon diffusion in HKUST-1 is different for rigid and flexible frameworks. Diffusion of krypton and xenon in HKUST-1 depends on two competing effects: the steric effect that decreases diffusion as loading increases, and the “small cage effect” that increases diffusion as loading increases. Finally, a detailed analysis of the window size in ZIF-8 reveals that the window increases beyond its normal size to permit passage of a (nominally) larger krypton atom.« less

  19. Molecular dynamics simulation of framework flexibility effects on noble gas diffusion in HKUST-1 and ZIF-8

    SciTech Connect

    Parkes, Marie V.; Demir, Hakan; Teich-McGoldrick, Stephanie L.; Sholl, David S.; Greathouse, Jeffery A.; Allendorf, Mark D.

    2014-03-28

    Molecular dynamics simulations were used to investigate trends in noble gas (Ar, Kr, Xe) diffusion in the metal-organic frameworks HKUST-1 and ZIF-8. Diffusion occurs primarily through inter-cage jump events, with much greater diffusion of guest atoms in HKUST-1 compared to ZIF-8 due to the larger cage and window sizes in the former. We compare diffusion coefficients calculated for both rigid and flexible frameworks. For rigid framework simulations, in which the framework atoms were held at their crystallographic or geometry optimized coordinates, sometimes dramatic differences in guest diffusion were seen depending on the initial framework structure or the choice of framework force field parameters. When framework flexibility effects were included, argon and krypton diffusion increased significantly compared to rigid-framework simulations using general force field parameters. Additionally, for argon and krypton in ZIF-8, guest diffusion increased with loading, demonstrating that guest-guest interactions between cages enhance inter-cage diffusion. No inter-cage jump events were seen for xenon atoms in ZIF-8 regardless of force field or initial structure, and the loading dependence of xenon diffusion in HKUST-1 is different for rigid and flexible frameworks. Diffusion of krypton and xenon in HKUST-1 depends on two competing effects: the steric effect that decreases diffusion as loading increases, and the “small cage effect” that increases diffusion as loading increases. Finally, a detailed analysis of the window size in ZIF-8 reveals that the window increases beyond its normal size to permit passage of a (nominally) larger krypton atom.

  20. High precision nitrogen isotope measurements in oceanic basalts using a static triple collection noble gas mass spectrometer

    NASA Astrophysics Data System (ADS)

    Barry, P. H.; Hilton, D. R.; Halldórsson, S. A.; Hahm, D.; Marti, K.

    2012-01-01

    We describe a new system for the simultaneous static triple-collection of nitrogen isotopes at the <10μcm3 STP [N2] (<1 × 10-5 cm3STP; <0.5 nmol) level using a modified VG-5440 noble gas mass spectrometer. The system consists of an internal N2-STD with aδ15N value of -0.11 ± 0.22 ‰ (1σ) calibrated against an air-standard (Air-STD). The N2-STD was measured repeatedly with an average uncertainty on an individualδ15N measurement being 0.03 ‰ (1σ) versus an average single day reproducibility of 0.38 ‰ (1σ). Additional refinements include (1) monitoring of interfering CO contributions at mass 30, allowing a comprehensive CO correction to be applied to all samples, (2) quantification of procedural N2 blanks (n = 22) in both size (4.2 ± 0.5 μcm3 STP) and isotopic composition (δ15N = 12.64 ± 2.04 ‰), allowing consistent blank corrections to all samples, and (3) independent measurement of N2/Ar ratios using a quadrupole mass spectrometer (QMS). The new system was tested by measuring nitrogen isotopes (δ15N), concentrations and N2/Ar ratios on 11 submarine basalt glasses. Results show that the uncertainty on the δ15N data is improved as a consequence of multiple standards being run per day. Reduced analytical times, afforded by triple collection, also minimize sample depletion and memory effects, thus improving measurement statistics. Additionally, we show that CO corrections can be accomplished using mass 30 to monitor CO interferences, leading to substantial improvements in reproducibility and the overall accuracy of results when the contribution of CO is significant.

  1. The noble gas argon modifies extracellular signal-regulated kinase 1/2 signaling in neurons and glial cells.

    PubMed

    Fahlenkamp, Astrid V; Rossaint, Rolf; Haase, Hajo; Al Kassam, Hussam; Ryang, Yu-Mi; Beyer, Cordian; Coburn, Mark

    2012-01-15

    Recently, the noble gas argon has been identified as a potent neuroprotective agent, but little is known about its cellular effects. In this in vitro study, we investigated argon's influence on the extracellular signal-regulated kinase (ERK) 1/2, a ubiquitous enzyme with numerous functions in cell proliferation and survival. Primary neuronal and astroglial cell cultures and the microglial cell line BV-2 were exposed to 50 vol.% argon. Further possible effects were studied following stimulation of microglia with 50 ng/ml LPS. ERK 1/2 activation was assessed by phosphorylation state-specific western blotting, cytokine levels by real-time PCR and western blotting. Total phosphotyrosine phosphatase activity was examined with p-nitrophenylphosphate. After 30 min exposure, argon significantly activated ERK 1/2 signaling in microglia. Enhanced phosphorylation of ERK 1/2 was also found in astrocytes and neurons following argon exposure, but it lacked statistical significance. In microglia, argon did not substantially interfere with LPS-induced ERK1/2 activation and inflammatory cytokine induction. Addition of the MEK-Inhibitor U0126 abolished the induced ERK 1/2 phosphorylation. Cellular phosphatase activity and the inactivation of phosphorylated ERK 1/2 were not altered by argon. In conclusion, argon enhanced ERK 1/2 activity in microglia via the upstream kinase MEK, probably through a direct mode of activation. ERK 1/2 signaling in astrocytes and neurons in vitro was also influenced, although not with statistical significance. Whether ERK 1/2 activation by argon affects cellular functions like differentiation and survival in the brain in vivo will have to be determined in future experiments.

  2. Fluid circulation and reservoir conditions of the Los Humeros Geothermal Field (LHGF), Mexico, as revealed by a noble gas survey

    NASA Astrophysics Data System (ADS)

    Pinti, Daniele L.; Castro, M. Clara; Lopez-Hernandez, Aida; Han, Guolei; Shouakar-Stash, Orfan; Hall, Chris M.; Ramírez-Montes, Miguel

    2017-03-01

    Los Humeros Geothermal Field (LHGF) is one of four geothermal fields currently operating in Mexico, in exploitation since 1990. Located in a caldera complex filled with very low-permeability rhyolitic ignimbrites that are the reservoir cap-rock, recharge of the geothermal field is both limited and localized. Because of this, planning of any future geothermal exploitation must be based on a clear understanding of the fluid circulation. To this end, a first noble gas survey was carried out in which twenty-two production wells were sampled for He, Ne, Ar, Kr, and Xe isotope analysis. Air-corrected 3He/4He ratios (Rc) measured in the fluid, normalized to the helium atmospheric ratio (Ra; 1.384 × 10- 6), are consistently high across the field, with an average value of 7.03 ± 0.40 Ra. This value is close to that of the sub-continental upper mantle, indicating that LHGF mines heat from an active magmatic system. Freshwater recharge does not significantly affect He isotopic ratios, contributing 1-10% of the total fluid amount. The presence of radiogenic 40Ar* in the fluid suggests a fossil fluid component that might have circulated within the metacarbonate basement with radiogenic argon produced from detrital dispersed illite. Solubility-driven elemental fractionation of Ne/Ar, Kr/Ar, and Xe/Ar confirm extreme boiling in the reservoir. However, a combined analysis of these ratios with 40Ar/36Ar reveals mixing with an air component, possibly introduced by re-injected geothermal fluids.

  3. Quantum dynamics of an excited alkali atom in a noble gas cluster: lithium attached to a helium cluster.

    PubMed

    Pacheco, Alexander B; Thorndyke, Brian; Reyes, Andrés; Micha, David A

    2007-12-28

    An alkali atom-noble gas cluster system is considered as a model for solvation effects in optical spectra, within a quantum-classical description based on the density operator of a many-atom system and its partial Wigner transform. This leads to an eikonal-time-dependent molecular orbital treatment suitable for a time-dependent description of the coupling of light emission and atom dynamics in terms of the time-dependent electric dipole of the whole system. As an application, we consider an optically excited lithium atom as the dopant in a helium cluster at 0.5 K. We describe the motions of the excited Li atom interacting with a cluster of He atoms and calculate the time-dependent electric dipole of the Li-He(99) system during the dynamics. The electronic Hamiltonian is taken as a sum of three-body Li-He diatomic potentials including electronic polarization and repulsion, with l-dependent atomic pseudopotentials for Li and He, while we use a modified pair potential for He-He. The calculations involve the coupling of 12 quantum states with 300 classical degrees of freedom. We present results for the dynamics and spectra of a Li atom interacting with a model cluster surface of He atoms and also interacting with a droplet of He. We have found that the Li atom is attracted or repulsed from the He surface, depending on the orientation of its 2p orbitals. The spectra and dynamics of Li inside and at the surface of a cluster are found to be strongly dependent on its electronic states, its velocity direction, and whether light is present during emission or not.

  4. PARAMETRIC EFFECTS OF ANTI-FOAM COMPOSITION, SIMULANT PROPERTIES AND NOBLE METALS ON THE GAS HOLDUP AND RELEASE OF A NON-NEWTONIAN WASTE SLURRY SIMULANT

    SciTech Connect

    Guerrero, H; Charles Crawford, C; Mark Fowley, M

    2008-08-07

    Gas holdup tests were performed in bench-scale and small-scale mechanically-agitated mixing systems at the Savannah River National Laboratory (SRNL) for a simulant of waste from the Hanford Tank 241-AZ-101. These featured additions of DOW Corning Q2-3183A anti-foam agent. Results indicated that this anti-foam agent (AFA) increased gas holdup in the waste simulant by about a factor of four and, counter-intuitively, that the holdup increased as the non-newtonian simulant shear strength decreased (apparent viscosity decreased). Such results raised the potential of increased flammable gas retention in Hanford Waste Treatment and Immobilization Plant (WTP) vessels mixed by air sparging and pulse-jet mixers (PJMs) during a Design Basis Event (DBE). Additional testing was performed to determine the effects of simulant properties, composition of alternate AFAs, and presence of trace noble metals. Key results are that: (1) Increased gas holdup resulting from addition of Q2-3183A is due to a decrease in surface tension that supports small bubbles which have low rise velocities. (2) Dow Corning 1520-US AFA shows it to be a viable replacement to Dow Corning Q2-3183A AFA. This alternative AFA, however, requires significantly higher dosage for the same anti-foam function. (3) Addition of noble metals to the AZ-101 waste simulant does not produce a catalytic gas retention effect with the AFA.

  5. Noble gas adsorption in two-dimensional zeolites: a combined experimental and density functional theory study

    NASA Astrophysics Data System (ADS)

    Wang, Mengen; Zhong, Jianqiang; Boscoboinik, Jorge Anibal; Lu, Deyu

    Zeolites are important industrial catalysts with porous three-dimensional structures. The catalytically active sites are located inside the pores, thus rendering them inaccessible for surface science measurements. We synthesized a two-dimensional (2D) zeolite model system, consisting of an (alumino)silicate bilayer weakly bound to a Ru (0001) surface. The 2D zeolite is suitable for surface science studies; it allows a detailed characterization of the atomic structure of the active site and interrogation of the model system during the catalytic reaction. As an initial step, we use Ar adsorption to obtain a better understanding of the atomic structure of the 2D zeolite. In addition, atomic level studies of rare gas adsorption and separation by zeolite are important for its potential application in nuclear waste sequestration. Experimental studies found that Ar atoms can be trapped inside the 2D-zeolite, raising an interesting question on whether Ar atoms are trapped inside the hexagonal prism nano-cages or at the interface between the (alumino)silicate bilayer and Ru(0001), or both. DFT calculations using van der Waals density functionals were carried out to determine the preferred Ar adsorption sites and the corresponding adsorption energies. This research used resources of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704.

  6. 46 CFR 153.462 - Static discharges from inert gas systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Static discharges from inert gas systems. 153.462... Equipment Special Requirements for Flammable Or Combustible Cargoes § 153.462 Static discharges from inert... create static arcing as the inert gas is injected into the tank....

  7. 46 CFR 153.462 - Static discharges from inert gas systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Static discharges from inert gas systems. 153.462... Equipment Special Requirements for Flammable Or Combustible Cargoes § 153.462 Static discharges from inert... create static arcing as the inert gas is injected into the tank....

  8. 46 CFR 153.462 - Static discharges from inert gas systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Static discharges from inert gas systems. 153.462... Equipment Special Requirements for Flammable Or Combustible Cargoes § 153.462 Static discharges from inert... create static arcing as the inert gas is injected into the tank....

  9. 46 CFR 153.462 - Static discharges from inert gas systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Static discharges from inert gas systems. 153.462... Equipment Special Requirements for Flammable Or Combustible Cargoes § 153.462 Static discharges from inert... create static arcing as the inert gas is injected into the tank....

  10. 46 CFR 153.462 - Static discharges from inert gas systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Static discharges from inert gas systems. 153.462... Equipment Special Requirements for Flammable Or Combustible Cargoes § 153.462 Static discharges from inert... create static arcing as the inert gas is injected into the tank....

  11. Inception of Snapover and Gas Induced Glow Discharges

    NASA Technical Reports Server (NTRS)

    Galofaro, J. T.; Vayner, B. V.; Degroot, W. A.; Ferguson, D. C.; Thomson, C. D.; Dennison, J. R.; Davies, R. E.

    2000-01-01

    Ground based experiments of the snapover phenomenon were conducted in the large vertical simulation chamber at the Glenn Research Center (GRC) Plasma Interaction Facility (PIF). Two Penning sources provided both argon and xenon plasmas for the experiments. The sources were used to simulate a variety of ionospheric densities pertaining to a spacecraft in a Low Earth Orbital (LEO) environment. Secondary electron emission is believed responsible for dielectric surface charging, and all subsequent snapover phenomena observed. Voltage sweeps of conductor potentials versus collected current were recorded in order to examine the specific charging history of each sample. The average time constant for sample charging was estimated between 25 and 50 seconds for all samples. It appears that current drops off by approximately a factor of 3 over the charging time of the sample. All samples charged in the forward and reverse bias directions, demonstrated hysteresis. Current jumps were only observed in the forward or positive swept voltage direction. There is large dispersion in tile critical snapover potential when repeating sweeps on any one sample. The current ratio for the first snapover region jumps between 2 and 4.6 times, with a standard deviation less than 1.6. Two of the samples showed even larger current ratios. It is believed the second large snapover region is due to sample outgassing. Under certain preset conditions, namely at the higher neutral gas background pressures, a perceptible blue-green glow was observed around the conductor. The glow is believed to be a result of secondary electrons undergoing collisions with an expelled tenuous cloud of gas, that is outgassed from the sample. Spectroscopic measurements of the glow discharge were made in an attempt to identify specific lines contributing to the observed glow.

  12. Characteristics of excitation discharge of an excimer laser in gas density depletion

    NASA Astrophysics Data System (ADS)

    Imada, Go; Masuda, Wataru; Yatsui, Kiyoshi

    1998-12-01

    The influences of gas density depletion on the highly- repetitive, high-pressure, pulsed glow discharge for excitation of excimer laser have been investigated eliminating the other instabilities, such as shock waves, residual ions, discharge products and electrode heating. The gas density depletion is simulated by utilizing a subsonic flow between the curved electrodes. The comparison has been made on the discharge occurred in the presence of the gas density depletion with the second discharge on the double-pulse experiment. We have found that the big gas density non uniformity, (Delta) (rho) /(rho) 0 approximately 3.6% corresponding to a pulse repetition rate (PRR) of approximately 20 Hz, tends to cause the arc discharge without the shocks, ions, discharge products and electrode heating. On the other hand, the second discharge on the double-pulse experiment becomes arc discharge in much smaller non uniformity ((Delta) (rho) /(rho) 0 approximately 1.2% corresponding to PRR approximately 3 Hz). The arc discharge in the double-pulse experiment might be driven by the residual ions and/or discharge products other than gas density depletion except for PRR greater than 20 Hz.

  13. Magma Dynamics at Mid-Ocean Ridges by Noble Gas Kinetic Fractionation: Assessment of Magmatic Ascent Rates and Mantle Composition

    NASA Astrophysics Data System (ADS)

    Paonita, A.; Martelli, M.

    2007-12-01

    Topical scientific literature on magma degassing at mid-ocean ridges more and more focuses on exsolution processes occurring under conditions that are far from thermodynamic equilibrium between bubbles and silicate melt. Indeed, the dynamics of magma ascent and decompression can be faster than that of CO2 diffusion into bubbles, in which case the diffusivity ratios among volatiles are the main control of the composition of the exsolving gas phase. We have developed a model of bubble growth in silicate melts that calculates the extent of both CO2 supersaturation and kinetic fractionation among noble gases in vesicles in relation to the decompressive rate of basaltic melts. The model predicts that, due to comparable Ar and CO2 diffusivity, magma degassing at low pressure fractionates both He/Ar and He/CO2 ratios by a similar extent, while the slower CO2 diffusion at high pressure causes early kinetic effects on Ar/CO2 ratio and dramatically changes the degassing paths. By using this tool, we have reviewed the global He-Ar-CO2 dataset of fluid inclusions in mid-ocean-ridge glasses. We display that non-equilibrium fractionations among He, Ar and CO2, driven by their different diffusivities in silicate melts, are common in most of the natural conditions of magma decompression and their signature strongly depends on pressure of degassing. The different geochemical signatures among suites of data coming from different ridge segments mainly depend on the depth of the magma chamber where the melt was stored. Moreover, variations inside a single suite emerge due to the interplay between variable ascent speed of magma and cooling rate of the emplaced lava. As a result, two data groups coming from the Pito Seamount suite (Easter Microplate East ridge), showing different degree of CO2 supersaturation and He/Ar fractionation, provide ascent rates which differ by ten folds or even more. The large variations in both the He/CO2 and Ar/CO2 ratios at almost constant He/Ar, displayed

  14. Explaining the Noble Gas Content of the Planets: Theoretical Models for Argon-Trapping by Amorphous Ices in the Solar Nebula

    NASA Astrophysics Data System (ADS)

    Sanders, C. B.; Ciesla, F.

    2014-12-01

    The composition of planets in the modern solar system can be traced to the chemistry and physics of the solar nebula, the diffuse disk of gas and dust that surrounded the young sun immediately after its formation. Materials such as the noble gases were too volatile to be chemically incorporated by planetary embryos. Instead, it is likely that they were trapped physically and transported to the inner planets by migrating comets and planetesimals. One trapping mechanism under consideration is the capture of noble gas atoms in amorphous ices on the surface of cold grains. We created a simple numerical model to explore this mechanism, using argon as a representative volatile gas. We have demonstrated that our model reproduces experimental trapping efficiencies (ratio of the volatile atoms to water molecules in the deposited ice) when we constrain the binding energy of our representative volatile to 3500-5500K and the sticking efficiency of volatile atoms to 0.004x gas phase water pressure. Binding energy and sticking efficiency are poorly understood for most volatile substances, but this study finds that they are among the most critical when predicting the trapping of volatiles in the physical world. Constraining these parameters under nebular conditions will allow us to evaluate how much argon could have been trapped in nebular ices and ultimately assess the role of amorphous ice trapping in the origin of planetary volatiles.

  15. Mineralogy and noble-gas signatures of the carbonate-rich lithology of the Tagish Lake carbonaceous chondrite: evidence for an accretionary breccia

    NASA Astrophysics Data System (ADS)

    Nakamura, Tomoki; Noguchi, Takaaki; Zolensky, Michael E.; Tanaka, Masahiko

    2003-02-01

    The carbonate-rich lithology of the Tagish Lake carbonaceous chondrite was characterized by noble-gas mass spectrometry, synchrotron X-ray diffraction analysis, and transmission and scanning electron microscopy. Noble-gas analysis was performed on two samples and the results showed that primordial noble gases are abundant and solar noble gases are absent in the samples of carbonate-rich lithology. The concentrations of Ne-A2 and -E in both samples are at the maximum level observed for CI and CM chondrites, suggesting high abundances of presolar diamonds and SiC/graphite, respectively. The cosmic-ray exposure age cannot be determined precisely, because the shielding depth of our Tagish Lake samples is unknown, but the minimum exposure age was determined to be 5.5±0.7 Myr on the basis of cosmogenic 21Ne concentrations and the highest 21Ne production rate. X-ray and electron-microscopic study showed that the carbonate-rich lithology is dominated by loosely packed porous matrix that consists mainly of fine-grained saponite and ferromagenesian carbonate. The matrix contains very few chondrules, but many fine-grained clasts having angular shape with longest dimensions up to 1 mm. The clasts differ from host matrix in both texture and mineralogy. They are massive, compacted material with porosity much lower than matrix and contain abundant magnetite and a coherent intergrowth of serpentine and saponite that is rare in matrix. The presence of texturally and mineralogically distinct clasts indicates that the carbonate-rich lithology is a breccia, but the absence of solar noble gases and impact-induced deformational features in host matrix distinguish it from an asteroid regolith breccia. Our results instead indicate that it is an accretionary breccia formed by simultaneous accretion of diverse objects in a massive dust cloud. The clasts often enclose chondrules and anhydrous silicate fragments such as low-iron-manganese-enriched olivines. This observation and their highly

  16. Prediction of neutral noble gas insertion compounds with heavier pnictides: FNgY (Ng = Kr and Xe; Y = As, Sb and Bi).

    PubMed

    Ghosh, Ayan; Manna, Debashree; Ghanty, Tapan K

    2016-04-28

    A novel class of interesting insertion compounds obtained through the insertion of a noble gas atom into the heavier pnictides have been explored by various ab initio quantum chemical techniques. Recently, the first neutral noble gas insertion compounds, FXeY (Y = P, N), were theoretically predicted to be stable; the triplet state was found to be the most stable state, with a high triplet-singlet energy gap, by our group. In this study, we investigated another noble gas inserted compound, FNgY (Ng = Kr and Xe; Y = As, Sb and Bi), with a triplet ground state. Density functional theory (DFT), second order Møller-Plesset perturbation theory (MP2), coupled-cluster theory (CCSD(T)) and multi-reference configuration interaction (MRCI) based techniques have been utilized to investigate the structures, stabilities, harmonic vibrational frequencies, charge distributions and topological properties of these compounds. These predicted species, FNgY (Ng = Kr and Xe; Y = As, Sb and Bi) are found to be energetically stable with respect to all the probable 2-body and 3-body dissociation pathways, except for the 2-body channel leading to the global minimum products (FY + Ng). Nevertheless, the finite barrier height corresponding to the saddle points of the compounds connected to their respective global minima products indicates that these compounds are kinetically stable. The structural parameters, energetics, and charge distribution results as well as atoms-in-molecules (AIM) analysis suggest that these predicted molecules can be best represented as F(-)[(3)NgY](+). Thus, all the aforementioned computed results clearly indicate that it may be possible to experimentally prepare the most stable triplet state of FNgY molecules under cryogenic conditions through a matrix isolation technique.

  17. Structure and stability of noble gas bound EX3+ compounds (E = C, Ge, Sn, Pb; X = H, F, Cl, Br).

    PubMed

    Pan, Sudip; Moreno, Diego; Ghosh, Sreyan; Chattaraj, Pratim K; Merino, Gabriel

    2016-01-15

    It has been analyzed at the MP2/def2-QZVPPD level whether EX3+ (E = C-Pb; X = H, F-Br) can bind noble gas atoms. Geometrical and electronic structures, dissociation energy values, thermochemical parameters, natural bond order, electron density, and energy decomposition analyses highlight the possibility of such noble gas bound EX3+ compounds. Except He and Ne, the other heavier congeners of this family make quite strong bonds with E. In fact, the dissociations of Ar-Rn bound analogues turn out to be endergonic in nature at 298 K, except in the cases of ArGe Cl3+, Ar/KrGeBr3+, and ArSnBr3+. GeH3+ and EF3+ (E = Ge-Pb) can even bind two Ng atoms with reasonably high dissociation energy. As the pz orbital of the E center in EX3+ plays a crucial role in its binding with the noble gas atoms, the effect of the π back-bonding causing X → E electron transfer ought to be properly understood. Due to the larger back-donation, the Ng binding ability of EX3+ gradually decreases along F to Br. EH2+ and the global minimum HE(+…) H2 (E = Sn, Pb) complexes are also able to bind Ar-Rn atoms quite effectively. The NgE bonds in Ar-Rn bound CH3+, GeH3+, and EF3+ (E = Ge-Pb) and Xe/RnE bonds in NgECl3+ and NgEBr3+ (E = Ge, Sn) are mainly of covalent type.

  18. Calculation of Collisional Cross Sections for the 2P3/2 - 2P1/2 Transition in Alkali-Noble Gas Systems

    DTIC Science & Technology

    2010-03-01

    collisional cross sections given input potentials of a system may provide a partial answer to this question in systems where collisions play a major...CALCULATION OF COLLISIONAL CROSS SECTIONS FOR THE 2P3/2 → 2P1/2 TRANSITION IN ALKALI-NOBLE GAS SYSTEMS THESIS Sam Butler, Captain, USAF AFIT/GAP/ENP...States Air Force, Department of Defense, or the United States Government. AFIT/GAP/ENP/10-M04 CALCULATION OF COLLISIONAL CROSS SECTIONS FOR THE 2P3/2

  19. Dual Species Noble Gas Nuclear Spin Polarizer for a New Search for the Atomic EDM of Xe-129 at FRM-II (Munich Research Reactor)

    NASA Astrophysics Data System (ADS)

    Cohn, Jared; Coulter, Daniel; Frisbie, Dustin; Fromm, Steven; Huneau, Jake; Rabga, Tenzin; Underwood, Walter; Singh, Jaideep; Fierlinger, Peter; Kraegeloh, Eva; Kuchler, Florian; Lins, Tobias; Marino, Mike; Meinel, Jonas; Neissen, Benjamin; Stuiber, Stefan; Fan, Isaac; Kilian, Wolfgang; Knappe-Gruenberg, Silvia; Trahms, Lutz; Chupp, Tim; Degenkolb, Skyler; Sachdeva, Natasha; Gong, Fei; Babcock, Earl; Fierlinger Group Team; Chupp Laboratory Team; Physikalisch-Technische Bundesanstalt Collaboration; Juelich CenterNeutron Science Collaboration

    2015-10-01

    Electric dipole moments are believed to be very sensitive probes of CP violation beyond the Standard Model. A new search for the atomic electric dipole moment of Xe-129 is currently underway at FRM-II in Munich. Our technique takes advantage of a state of the art magnetically shielded room, ultra-sensitive magnetometry using SQUIDs, and control of systematics using a He-3 co-magnetometer. Our goal is an order of magnitude improvement over the previous Xe-129 atomic EDM limit. We will describe the design and construction of a noble gas polarizer using spectrally-narrow diode lasers. Technische Universitaet Muenchen.

  20. Origin and Processes Highlighted By Noble Gases Geochemistry of Submarine Gas Emissions from Seeps at the Aquitaine Shelf (Bay of Biscay):

    NASA Astrophysics Data System (ADS)

    Battani, A.; Ruffine, L.; Donval, J. P.; Bignon, L.; Pujol, M.; Levaché, D.

    2014-12-01

    Noble gases are widely used as tracers to both determine fluid origin and identify transfer processes governing fluid flow in natural systems. This work presents the preliminary results and interpretations from submarine gas samples collected during the GAZCOGNE2 cruise (2013). The seepage activity and the spatial distribution of the widespread emission sites encountered at this area are described by (Dupré et al. 2014). Gas composition shows that methane is the dominant species compared to the C2+. The associated δ13C and δD signatures point to a biogenic origin- through CO2 reduction- of the gas. Helium concentrations are very low, ranging from 0.1 and 2.3 ppm, indicating a low residence time of the fluids in the subsurface. However, the resulting helium isotopic ratios are mostly crustal fingerprinted (around 0.02). The R/Ra values sometimes exhibit higher value of 0.2, indicative either an ASW (air saturated water) value, or the fingerprint of ancient mantle helium, the later in agreement with the geological structural context of the Parentis Basin. Most of the samples exhibit a mixing between ASW and air, probably by excess air addition to the initial ASW concentration. The elemental Ne/Ar ratio is remarkably constant for the totality of the samples, with a value typical of ASW (0.2). This result implies that the migrating gas phase is "stripping" the original water matrix from its noble gas content, as described by Gillfillian et al., 2008. This further indicates that an intermediate reservoir of biogenic gas should be present at depth. The GAZCOGNE study is co-funded by TOTAL and IFREMER as part of the PAMELA (Passive Margin Exploration Laboratories) scientific project. References: Dupré, S., L. Berger, N. Le Bouffant, C. Scalabrin, and J. F. Bourillet (2014), Fluid emissions at the Aquitaine Shelf (Bay of Biscay, France): a biogenic origin or the expression of hydrocarbon leakage?, Continental Shelf Research, doi:10.1016/j.csr.2014.07.004. Gilfillan S

  1. The intrusion of new magma triggered the 2011-2012 unrest at Santorini: evidence from noble-gas isotopes

    NASA Astrophysics Data System (ADS)

    Rizzo, A.; Barberi, F.; Carapezza, M.; Di Piazza, A.; Francalanci, L.; Sortino, F.; D'Alessandro, W.

    2013-12-01

    Santorini is one of the most famous active volcanoes of the world for its catastrophic explosive eruption that occurred during the Minoan civilization. Since then the Kameni eruptive centers that formed within the caldera erupted repeatedly until 1950. In 2011-2012 the volcano has been characterized by a seismic unrest, that was unprecedented at Santorini at least since the 1950 eruption, and that led to fear for an imminent eruption. Because more than 100,000 visitors are present on the island during the tourist season, and considering the eruptive potential of Santorini, it is crucial to evaluate the hazard of this volcano, which depends on the type of magma actually present in the volcanic system. With the aim to address this question, this research shows the first comparison between noble-gas isotope composition of the present fumarolic gases with that of fluid inclusions hosted in enclaves contained in the 1570 and 1925 AD dacitic magmas erupted at Nea Kameni. These enclaves are a portion of mafic magma batches that replenished the shallow chamber of the plumbing system hosting cooler and more silicic melts. Their Sr-Nd isotope ratios are quite similar to those measured in the host dacitic rocks, implying a common parental magma. Therefore, the analyzed enclaves may be considered representative of the historic magma erupted at Nea Kameni which could be still present in the volcano plumbing system feeding the crater fumaroles. The 3He/4He ratios of enclaves, once corrected for air contamination (3.1-3.6 Ra), partially overlap those of the gases (3.5-4.0 Ra) collected from Nea and Palea Kameni. The range of 3He/4He ratios (3.1-4.0 Ra) is appreciably lower than typical arc volcanoes (R/Ra ~7-8), implying that a contamination by 4He-rich fluids occurred either directly in the mantle and/or in the plumbing system. Comparison of 3He/4He and 4He/40Ar* ratios measured in enclaves with those of gases, as well as long-term monitoring of R/Ra in the latters, coherently

  2. Simulation of waves of partial discharges in a chain of gas inclusions located in condensed dielectrics

    NASA Astrophysics Data System (ADS)

    Kupershtokh, A. L.; Karpov, D. I.

    2016-10-01

    A stochastic model of partial discharges inside gas inclusions in condensed dielectrics was developed. The possibility of a "relay-race" wave propagation mechanism of partial discharges in a linear chain of gas inclusions is shown. The lattice Boltzmann method is successfully implemented for three-dimensional computer simulations of flows of dielectric fluid with bubbles. Growth and elongation of bubbles in a liquid dielectric under the action of a strong electric field are simulated. The physical model of propagation of partial discharges along a chain of gas bubbles in a liquid is formulated.

  3. Using noble gas tracers to estimate residual CO2 saturation in the field: results from the CO2CRC Otway residual saturation and dissolution test

    NASA Astrophysics Data System (ADS)

    LaForce, T.; Ennis-King, J.; Paterson, L.

    2013-12-01

    Residual CO2 saturation is a critically important parameter in CO2 storage as it can have a large impact on the available secure storage volume and post-injection CO2 migration. A suite of single-well tests to measure residual trapping was conducted at the Otway test site in Victoria, Australia during 2011. One or more of these tests could be conducted at a prospective CO2 storage site before large-scale injection. The test involved injection of 150 tonnes of pure carbon dioxide followed by 454 tonnes of CO2-saturated formation water to drive the carbon dioxide to residual saturation. This work presents a brief overview of the full test sequence, followed by the analysis and interpretation of the tests using noble gas tracers. Prior to CO2 injection krypton (Kr) and xenon (Xe) tracers were injected and back-produced to characterise the aquifer under single-phase conditions. After CO2 had been driven to residual the two tracers were injected and produced again. The noble gases act as non-partitioning aqueous-phase tracers in the undisturbed aquifer and as partitioning tracers in the presence of residual CO2. To estimate residual saturation from the tracer test data a one-dimensional radial model of the near-well region is used. In the model there are only two independent parameters: the apparent dispersivity of each tracer and the residual CO2 saturation. Independent analysis of the Kr and Xe tracer production curves gives the same estimate of residual saturation to within the accuracy of the method. Furthermore the residual from the noble gas tracer tests is consistent with other measurements in the sequence of tests.

  4. Interelectrode bridging of carbon nanotube fibrous assembly induced by gas discharge breakdown

    NASA Astrophysics Data System (ADS)

    Sato, Hideki; Mizushima, Yuuki; Komatsu, Yusuke

    2017-01-01

    In this work, we demonstrate a fibrous assembly of carbon nanotubes (CNTs) induced by a gas discharge breakdown that bridge the distance between two planar electrodes. To achieve this, we placed the two planar electrodes, one of which was covered with a CNT film, in a chamber; a vacuum pump was used to evacuate the air from the chamber and replace it with inert gas. By then applying a voltage between the electrodes, we induced a discharge breakdown between them. This caused the CNTs coated on the electrode surface to detach and form fibrous assemblies. The assemblies elongated and reached the opposite electrode, thereby creating bridges between the electrodes. These bridges formed when the gas pressure was greater than ca. 1.0 × 103 Pa and in combination with the occurrence of a spark discharge. At lower pressures, a glow discharge occurred, and no bridge formation was observed, indicating that the discharge mode is critical for the bridge formation.

  5. Using dissolved noble gas and isotopic tracers to evaluate the vulnerability of groundwater resources in a small, high elevation catchment to predicted climate changes

    SciTech Connect

    Singleton, M J; Moran, J E

    2009-10-02

    We use noble gas concentrations and multiple isotopic tracers in groundwater and stream water in a small high elevation catchment to provide a snapshot of temperature, altitude, and physical processes at the time of recharge; and to determine subsurface residence times of different groundwater components. They identify three sources that contribute to groundwater flow: (1) seasonal groundwater recharge with short travel times, (2) water from bedrock aquifers that have elevated radiogenic {sup 4}He, and (3) upwelling of deep fluids that have 'mantle' helium and hydrothermal carbon isotope signatures. Although a bimodal distribution in apparent groundwater age indicates that groundwater storage times range from less than a year to several decades, water that recharges seasonally is the largest likely contributor to stream baseflow. Under climate change scnearios with earlier snowmelt, the groundwater that moves through the alluvial aquifer seasonally will be depleted earlier, providing less baseflow and possible extreme low flows in the creek during summer and fall. Dissolved noble gas measurements indciate recharge temperatures are 5 to 11 degrees higher than would be expected for direct influx of snowmelt, and that excess air concentrations are lower than would be expected for recharge through bedrock fractures. Instead, recharge likely occurs over diffuse vegetated areas, as indicated by {delta}{sup 13}C-DIC values that are consistent with incorporation of CO{sub 2} from soil respiration. Recharge temperatures are close to or slightly higher than mean annual air temperature, and are consistent with recharge during May and June, when snowpack melting occurs.

  6. Endotoxin removal by radio frequency gas plasma (glow discharge)

    NASA Astrophysics Data System (ADS)

    Poon, Angela

    2011-12-01

    Contaminants remaining on implantable medical devices, even following sterilization, include dangerous fever-causing residues of the outer lipopolysaccharide-rich membranes of Gram-negative bacteria such as the common gut microorganism E. coli. The conventional method for endotoxin removal is by Food & Drug Administration (FDA)-recommended dry-heat depyrogenation at 250°C for at least 45 minutes, an excessively time-consuming high-temperature technique not suitable for low-melting or heat-distortable biomaterials. This investigation evaluated the mechanism by which E. coli endotoxin contamination can be eliminated from surfaces during ambient temperature single 3-minute to cumulative 15-minute exposures to radio-frequency glow discharge (RFGD)-generated residual room air plasmas activated at 0.1-0.2 torr in a 35MHz electrodeless chamber. The main analytical technique for retained pyrogenic bio-activity was the Kinetic Chromogenic Limulus Amebocyte Lysate (LAL) Assay, sufficiently sensitive to document compliance with FDA-required Endotoxin Unit (EU) titers less than 20 EU per medical device by optical detection of enzymatic color development corresponding to < 0.5 EU/ml in sterile water extracts of each device. The main analytical technique for identification of chemical compositions, amounts, and changes during sequential reference Endotoxin additions and subsequent RFGD-treatment removals from infrared (IR)-transparent germanium (Ge) prisms was Multiple Attenuated Internal Reflection (MAIR) infrared spectroscopy sensitive to even monolayer amounts of retained bio-contaminant. KimaxRTM 60 mm x 15 mm and 50mm x 15mm laboratory glass dishes and germanium internal reflection prisms were inoculated with E. coli bacterial endotoxin water suspensions at increments of 0.005, 0.05, 0.5, and 5 EU, and characterized by MAIR-IR spectroscopy of the dried residues on the Ge prisms and LAL Assay of sterile water extracts from both glass and Ge specimens. The Ge prism MAIR

  7. Determination of gas-discharge plasma parameters in powerful metal halide vapor lasers

    NASA Astrophysics Data System (ADS)

    Temelkov, Krassimir A.; Slaveeva, Stefka I.; Fedchenko, Yulian I.

    2016-01-01

    Powerful metal halide vapor lasers are excited with nanosecond pulsed longitudinal discharge in complex multicomponent gas mixtures. Using a new method, thermal conductivity of various 5- and 6-component gas mixtures is obtained under gas-discharge conditions, which are optimal for laser operation on the corresponding metal atom and ion transitions. Assuming that the gas temperature varies only in the radial direction and using the calculated thermal conductivities, an analytical solution of the steady-state heat conduction equation is found for uniform and radially nonuniform power input in various laser tube constructions. Using the results obtained for time-resolved electron temperature by measurement of electrical discharge characteristics and analytically solving steady-state heat conduction equation for electrons as well, radial distribution of electron temperature is also obtained for the discharge period.

  8. Initiation of long, free-standing z discharges by CO2 laser gas heating

    NASA Astrophysics Data System (ADS)

    Niemann, C.; Tauschwitz, A.; Penache, D.; Neff, S.; Knobloch, R.; Birkner, R.; Presura, R.; Hoffmann, D. H. H.; Yu, S. S.; Sharp, W. M.

    2002-01-01

    High current discharge channels can neutralize both current and space charge of very intense ion beams. Therefore, they are considered an interesting solution for final focus and beam transport in a heavy ion beam fusion reactor. At the Gesellschaft für Schwerionenforschung accelerator facility, 50 cm long, free-standing discharge channels were created in a 60 cm diameter metallic chamber. Discharges with currents of 45 kA in 2 to 25 mbar ammonia (NH3) gas are initiated by a CO2 laser pulse along the channel axis before the capacitor bank is triggered. Resonant absorption of the laser, tuned to the v2 vibration of the ammonia molecule, causes strong gas heating. Subsequent expansion and rarefaction of the gas prepare the conditions for a stable discharge to fulfill the requirements for ion beam transport. The influence of an electric prepulse on the high current discharge was investigated. This article describes the laser-gas interaction and the discharge initiation mechanism. We found that channels are magnetohydrodynamic stable up to currents of 45 kA, measured by fast shutter and streak imaging techniques. The rarefaction of the laser heated gas is studied by means of a one-dimensional Lagrangian fluid code (CYCLOPS) and is identified as the dominant initiation mechanism of the discharge.

  9. Gas-discharge probe microscopy of water-carrying channels in wood

    NASA Astrophysics Data System (ADS)

    Ivanov-Omskii, V. I.; Ivanova, E. I.

    2012-04-01

    We have used a gas-discharge imaging technique to study the water transport channels (tracheids) in wood samples. Results obtained for the samples of bitch and aspen show features of this variant of the probe microscopy and show its additional possibilities as compared to optical microscopy. It is concluded that gas-discharge probe microscopy can be used for additional diagnostics of the structure of plant and animal tissues.

  10. Binary and ternary gas mixtures for use in glow discharge closing switches

    DOEpatents

    Hunter, Scott R.; Christophorou, Loucas G.

    1990-01-01

    Highly efficient binary and ternary gas mixtures for use in diffuse glow discharge closing switches are disclosed. The binary mixtures are combinations of helium or neon and selected perfluorides. The ternary mixtures are combinations of helium, neon, or argon, a selected perfluoride, and a small amount of gas that exhibits enhanced ionization characteristics. These mixtures are shown to be the optimum choices for use in diffuse glow discharge closing switches by virtue of the combined physio-electric properties of the mixture components.

  11. The evolution of Devonian hydrocarbon gases in shallow aquifers of the northern Appalachian Basin: Insights from integrating noble gas and hydrocarbon geochemistry

    NASA Astrophysics Data System (ADS)

    Darrah, Thomas H.; Jackson, Robert B.; Vengosh, Avner; Warner, Nathaniel R.; Whyte, Colin J.; Walsh, Talor B.; Kondash, Andrew J.; Poreda, Robert J.

    2015-12-01

    The last decade has seen a dramatic increase in domestic energy production from unconventional reservoirs. This energy boom has generated marked economic benefits, but simultaneously evoked significant concerns regarding the potential for drinking-water contamination in shallow aquifers. Presently, efforts to evaluate the environmental impacts of shale gas development in the northern Appalachian Basin (NAB), located in the northeastern US, are limited by: (1) a lack of comprehensive "pre-drill" data for groundwater composition (water and gas); (2) uncertainty in the hydrogeological factors that control the occurrence of naturally present CH4 and brines in shallow Upper Devonian (UD) aquifers; and (3) limited geochemical techniques to quantify the sources and migration of crustal fluids (specifically methane) at various time scales. To address these questions, we analyzed the noble gas, dissolved ion, and hydrocarbon gas geochemistry of 72 drinking-water wells and one natural methane seep all located ≫1 km from shale gas drill sites in the NAB. In the present study, we consciously avoided groundwater wells from areas near active or recent drilling to ensure shale gas development would not bias the results. We also intentionally targeted areas with naturally occurring CH4 to characterize the geochemical signature and geological context of gas-phase hydrocarbons in shallow aquifers of the NAB. Our data display a positive relationship between elevated [CH4], [C2H6], [Cl], and [Ba] that co-occur with high [4He]. Although four groundwater samples show mantle contributions ranging from 1.2% to 11.6%, the majority of samples have [He] ranging from solubility levels (∼45 × 10-6 cm3 STP/L) with below-detectable [CH4] and minor amounts of tritiogenic 3He in low [Cl] and [Ba] waters, up to high [4He] = 0.4 cm3 STP/L with a purely crustal helium isotopic end-member (3He/4He = ∼0.02 times the atmospheric ratio (R/Ra)) in samples with CH4 near saturation for shallow

  12. Temporally, spatially, and spectrally resolved barrier discharge produced in trapped helium gas at atmospheric pressure

    SciTech Connect

    Chiper, Alina Silvia; Popa, Gheorghe

    2013-06-07

    Experimental study was made on induced effects by trapped helium gas in the pulsed positive dielectric barrier discharge (DBD) operating in symmetrical electrode configuration at atmospheric pressure. Using fast photography technique and electrical measurements, the differences in the discharge regimes between the stationary and the flowing helium are investigated. It was shown experimentally that the trapped gas atmosphere (TGA) has notable impact on the barrier discharge regime compared with the influence of the flowing gas atmosphere. According to our experimental results, the DBD discharge produced in trapped helium gas can be categorized as a multi-glow (pseudo-glow) discharge, each discharge working in the sub-normal glow regime. This conclusion is made by considering the duration of current pulse (few {mu}s), their maximum values (tens of mA), the presence of negative slope on the voltage-current characteristic, and the spatio-temporal evolution of the most representative excited species in the discharge gap. The paper focuses on the space-time distribution of the active species with a view to better understand the pseudo-glow discharge mechanism. The physical basis for these effects was suggested. A transition to filamentary discharge is suppressed in TGA mode due to the formation of supplementary source of seed electrons by surface processes (by desorption of electrons due to vibrationally excited nitrogen molecules, originated from barriers surfaces) rather than volume processes (by enhanced Penning ionisation). Finally, we show that the pseudo-glow discharge can be generated by working gas trapping only; maintaining unchanged all the electrical and constructive parameters.

  13. Characterization of gas chemistry and noble-gas isotope ratios of inclusion fluids in magmatic-hydrothermal and magmatic-steam alunite

    USGS Publications Warehouse

    Landis, G.P.; Rye, R.O.

    2005-01-01

    Chemical and isotope data were obtained for the active gas and noble gas of inclusion fluids in coarse-grained samples of magmatic-hydrothermal and magmatic-steam alunite from well-studied deposits (Marysvale, Utah; Tambo, Chile; Tapajo??s, Brazil; Cactus, California; Pierina, Peru), most of which are discussed in this Volume. Primary fluid inclusions in the alunite typically are less than 0.2 ??m but range up to several micrometers. Analyses of the active-gas composition of these alunite-hosted inclusion fluids released in vacuo by both crushing and heating indicate consistent differences in the compositions of magmatic-hydrothermal and magmatic-steam fluids. The compositions of fluids released by crushing were influenced by contributions from significant populations of secondary inclusions that trapped largely postdepositional hydrothermal fluids. Thermally released fluids gave the best representation of the fluids that formed primary alunite. The data are consistent with current models for the evolution of magmatic-hydrothermal and magmatic-steam fluids. Magmatic-steam fluids are vapor-dominant, average about 49 mol% H2O, and contain N2, H2, CH4, CO, Ar, He, HF, and HCl, with SO2 the dominant sulfur gas (average SO2/ H2S=202). In contrast, magmatic-hydrothermal fluids are liquid-dominant, average about 88 mol% H2O, and N2, H2, CO2, and HF, with H2S about as abundant as SO2 (average SO2/H2 S=0.7). The low SO2/H2S and N2/Ar ratios, and the near-absence of He in magmatic-hydrothermal fluids, are consistent with their derivation from degassed condensed magmatic fluids whose evolution from reduced-to-oxidized aqueous sulfur species was governed first by rock and then by fluid buffers. The high SO2/H2S and N2/Ar with significant concentrations of He in magmatic-steam fluids are consistent with derivation directly from a magma. None of the data supports the entrainment of atmospheric gases or mixing of air-saturated gases in meteoric water in either magmatic

  14. Study of medical isotope production facility stack emissions and noble gas isotopic signature using automatic gamma-spectra analysis platform

    NASA Astrophysics Data System (ADS)

    Zhang, Weihua; Hoffmann, Emmy; Ungar, Kurt; Dolinar, George; Miley, Harry; Mekarski, Pawel; Schrom, Brian; Hoffman, Ian; Lawrie, Ryan; Loosz, Tom

    2013-04-01

    The nuclear industry emissions of the four CTBT (Comprehensive Nuclear-Test-Ban Treaty) relevant radioxenon isotopes are unavoidably detected by the IMS along with possible treaty violations. Another civil source of radioxenon emissions which contributes to the global background is radiopharmaceutical production companies. To better understand the source terms of these background emissions, a joint project between HC, ANSTO, PNNL and CRL was formed to install real-time detection systems to support 135Xe, 133Xe, 131mXe and 133mXe measurements at the ANSTO and CRL 99Mo production facility stacks as well as the CANDU (CANada Deuterium Uranium) primary coolant monitoring system at CRL. At each site, high resolution gamma spectra were collected every 15 minutes using a HPGe detector to continuously monitor a bypass feed from the stack or CANDU primary coolant system as it passed through a sampling cell. HC also conducted atmospheric monitoring for radioxenon at approximately 200 km distant from CRL. A program was written to transfer each spectrum into a text file format suitable for the automatic gamma-spectra analysis platform and then email the file to a server. Once the email was received by the server, it was automatically analysed with the gamma-spectrum software UniSampo/Shaman to perform radionuclide identification and activity calculation for a large number of gamma-spectra in a short period of time (less than 10 seconds per spectrum). The results of nuclide activity together with other spectrum parameters were saved into the Linssi database. This database contains a large amount of radionuclide information which is a valuable resource for the analysis of radionuclide distribution within the noble gas fission product emissions. The results could be useful to identify the specific mechanisms of the activity release. The isotopic signatures of the various radioxenon species can be determined as a function of release time. Comparison of 133mXe and 133Xe activity

  15. Using Noble Gas Tracers to Estimate CO2 Saturation in the Field: Results from the 2014 CO2CRC Otway Repeat Residual Saturation Test

    NASA Astrophysics Data System (ADS)

    LaForce, T.; Ennis-King, J.; Boreham, C.; Serno, S.; Cook, P. J.; Freifeld, B. M.; Gilfillan, S.; Jarrett, A.; Johnson, G.; Myers, M.; Paterson, L.

    2015-12-01

    Residual trapping efficiency is a critical parameter in the design of secure subsurface CO2 storage. Residual saturation is also a key parameter in oil and gas production when a field is under consideration for enhanced oil recovery. Tracers are an important tool that can be used to estimate saturation in field tests. A series of measurements of CO2 saturation in an aquifer were undertaken as part of the Otway stage 2B extension field project in Dec. 2014. These tests were a repeat of similar tests in the same well in 2011 with improvements to the data collection and handling method. Two single-well tracer tests using noble gas tracers were conducted. In the first test krypton and xenon are injected into the water-saturated formation to establish dispersivity of the tracers in single-phase flow. Near-residual CO2 saturation is then established near the well. In the second test krypton and xenon are injected with CO2-saturated water to measure the final CO2 saturation. The recovery rate of the tracers is similar to predicted rates using recently published partitioning coefficients. Due to technical difficulties, there was mobile CO2 in the reservoir throughout the second tracer test in 2014. As a consequence, it is necessary to use a variation of the previous simulation procedure to interpret the second tracer test. One-dimensional, radial simulations are used to estimate average saturation of CO2 near the well. Estimates of final average CO2 saturation are computed using two relative permeability models, thermal and isothermal simulations, and three sets of coefficients for the partitioning of the tracers between phases. Four of the partitioning coefficients used were not previously available in the literature. The noble gas tracer field test and analysis of the 2011 and 2014 data both give an average CO2 saturation that is consistent with other field measurements. This study has demonstrated the repeatability of the methodology for noble gas tracer tests in the

  16. Decomposition of phenol by hybrid gas/liquid electrical discharge reactors with zeolite catalysts.

    PubMed

    Kusić, Hrvoje; Koprivanac, Natalija; Locke, Bruce R

    2005-10-17

    Application of hybrid gas/liquid electrical discharge reactors and a liquid phase direct electrical discharge reactor for degradation of phenol in the presence and absence of zeolites have been investigated. Hybrid gas/liquid electrical discharges involve simultaneous high voltage electrical discharges in water and in the gas phase above the water surface leading to the additional OH radicals in the liquid phase and ozone formation in the gas phase with subsequent dissolution into the liquid. The role of applied zeolites, namely NH4ZSM5, FeZSM5 and HY, were also studied. Phenol degradation and production of primary phenol by-products, catechol and hydroquinone, during the treatment were monitored by HPLC measurements. The highest phenol removal results, 89.4-93.6%, were achieved by electrical discharge in combination with FeZSM5 in all three configurations of corona reactors. These results indicate that the Fenton reaction has significant influence on overall phenol removal efficiency in the electrical discharge/FeZSM5 system due to the additional OH radical formation from hydrogen peroxide generated by the water phase discharge.

  17. Polywater: an attempt at synthesis in a gas discharge.

    PubMed

    Leiga, A G; Vance, D W; Ward, A T

    1970-04-03

    An attempt to produce polywater in a corona discharge in moist air was unsuccessful. However, the major product produced, nitric acid, has a midrange infrared spectrum which is strikingly similar to that reported for polywater. The Raman spectrum offers a better means of distinguishing between nitric acid and polywater than the infrared spectrum does.

  18. Impact of gas flow rate on breakdown of filamentary dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Höft, H.; Becker, M. M.; Kettlitz, M.

    2016-03-01

    The influence of gas flow rate on breakdown properties and stability of pulsed dielectric barrier discharges (DBDs) in a single filament arrangement using a gas mixture of 0.1 vol. % O2 in N2 at atmospheric pressure was investigated by means of electrical and optical diagnostics, accompanied by fluid dynamics and electrostatics simulations. A higher flow rate perpendicular to the electrode symmetry axis resulted in an increased breakdown voltage and DBD current maximum, a higher discharge inception jitter, and a larger emission diameter of the discharge channel. In addition, a shift of the filament position for low gas flow rates with respect to the electrode symmetry axis was observed. These effects can be explained by the change of the residence time of charge carriers in the discharge region—i.e., the volume pre-ionization—for changed flow conditions due to the convective transport of particles out of the center of the gap.

  19. 2D fluid simulations of discharges at atmospheric pressure in reactive gas mixtures

    NASA Astrophysics Data System (ADS)

    Bourdon, Anne

    2015-09-01

    Since a few years, low-temperature atmospheric pressure discharges have received a considerable interest as they efficiently produce many reactive chemical species at a low energy cost. This potential is of great interest for a wide range of applications as plasma assisted combustion or biomedical applications. Then, in current simulations of atmospheric pressure discharges, there is the need to take into account detailed kinetic schemes. It is interesting to note that in some conditions, the kinetics of the discharge may play a role on the discharge dynamics itself. To illustrate this, we consider the case of the propagation of He-N2 discharges in long capillary tubes, studied for the development of medical devices for endoscopic applications. Simulation results put forward that the discharge dynamics and structure depend on the amount of N2 in the He-N2 mixture. In particular, as the amount of N2 admixture increases, the discharge propagation velocity in the tube increases, reaches a maximum for about 0 . 1 % of N2 and then decreases, in agreement with experiments. For applications as plasma assisted combustion with nanosecond repetitively pulsed discharges, there is the need to handle the very different timescales of the nanosecond discharge with the much longer (micro to millisecond) timescales of combustion processes. This is challenging from a computational point of view. It is also important to better understand the coupling of the plasma induced chemistry and the gas heating. To illustrate this, we present the simulation of the flame ignition in lean mixtures by a nanosecond pulsed discharge between two point electrodes. In particular, among the different discharge regimes of nanosecond repetitively pulsed discharges, a ``spark'' regime has been put forward in the experiments, with an ultra-fast local heating of the gas. For other discharge regimes, the gas heating is much weaker. We have simulated the nanosecond spark regime and have observed shock waves

  20. Plasma Physics Issues in Gas Discharge Laser Development

    DTIC Science & Technology

    1991-12-01

    34 Carbon dioxide electric Flow. New York: Ronald Press. 1953. discharge laser kinetics handbook." Avco Everett Res. Lab.. Apr. 1975: [106] M. A...the the 275-306 nm range yielded as much as h W of CW power. 4 B. Molecular Lasers s The introduction of new UV and VUV molecular lasers over 0( the...permission). in pumping molecular lasers by electron impact is the H, VUV laser experiments reported by Benerofe et. al. [291. Molecular C. Future

  1. Physics and Chemistry of MW Discharge in Gas Flows

    DTIC Science & Technology

    2007-11-02

    this working regime of wind tunnel. Measurement was carried out by means of pneumatic probes. 1.1.1. Experimental conditions Nozzle with Mach number 2.1...unstable objects may be Laser Thomson Scattering Technique. Created laser Thomson Final Report 30 July, 2004 Project 2014p IHT-SPSU scattering...experimental scheme for investigation of Thomson scattering in MW discharge in SS flow with static pressure 20 - 50 Torr and Mach number 1.5 - 2. Impulse

  2. Absorption spectroscopy of xenon and ethylene-noble gas mixtures at high pressure: towards Bose-Einstein condensation of vacuum ultraviolet photons

    NASA Astrophysics Data System (ADS)

    Wahl, Christian; Brausemann, Rudolf; Schmitt, Julian; Vewinger, Frank; Christopoulos, Stavros; Weitz, Martin

    2016-12-01

    Bose-Einstein condensation is a phenomenon well known for material particles as cold atomic gases, and this concept has in recent years been extended to photons confined in microscopic optical cavities. Essential for the operation of such a photon condensate is a thermalization mechanism that conserves the average particle number, as in the visible spectral regime can be realized by subsequent absorption re-emission processes in dye molecules. Here we report on the status of an experimental effort aiming at the extension of the concept of Bose-Einstein condensation of photons towards the vacuum ultraviolet spectral regime, with gases at high-pressure conditions serving as a thermalization medium for the photon gas. We have recorded absorption spectra of xenon gas at up to 30 bar gas pressure of the 5p^6-5p^56s transition with a wavelength close to 147 nm. Moreover, spectra of ethylene noble gas mixtures between 158 and 180 nm wavelength are reported.

  3. Toxic Gas Removal by Dielectric Discharge with Corona Effect

    SciTech Connect

    Moreno, H.; Pacheco, M.; Mercado, A.; Cruz, A.; Pacheco, J.; Yousfi, M.; Eichwald, O.; Benhenni, M.

    2006-12-04

    In this work, a theoretical and experimental study on SO2 and NOx removal by non-thermal plasma technology, more specifically a dielectric barrier (DBD) discharge combined with the Corona effect, is presented. Results obtained from a theoretical study describe the chemical kinetic model of SO2 and NOx removal processes; the effect of OH radicals in removal of both gases is noteworthy. Experimental results of de-SO2 process are reported. Also, optical emission spectroscopy study was applied on some atomic helium lines to obtain temperature of electrons in the non-thermal plasma.

  4. Stratification of the plasma column in transverse nanosecond gas discharges with a hollow cathode

    NASA Astrophysics Data System (ADS)

    Ashurbekov, N. A.; Iminov, K. O.

    2015-10-01

    Electric and optical characteristics and the structure of spatial distribution of optical radiation from a transverse nanosecond discharge with a hollow cathode in inert gases are systematically studied experimentally. It is found that for moderate working gas pressures in nanosecond discharges with extended electrodes, a periodic plasma structure appears in the form of standing strata. The strata formation boundaries and the critical values of the discharge voltage and current are determined from the gas pressure in helium, neon, and argon under experimental conditions. It is found that the most probable mechanisms of strata formation are the direct ionization of atoms by an electron impact and electron drift in an electric field. The smearing of the plasma structure upon an increase in the voltage applied to electrodes is explained by the emergence of accelerated electrons in the discharge gap.

  5. Effect of duty-cycles on the air plasma gas-phase of dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Barni, R.; Biganzoli, I.; Dell'Orto, E. C.; Riccardi, C.

    2015-10-01

    An experimental investigation concerning the effects of a duty-cycle in the supply of a dielectric barrier discharge in atmospheric pressure air has been performed. Electrical characteristics of the discharge have been measured, focusing mainly on the statistical properties of the current filaments and on dielectric surface charging, both affected by the frequent repetition of breakdown imposed by the duty-cycle. Information on the gas-phase composition was gathered too. In particular, a strong enhancement in the ozone formation rate is observed when suitable long pauses separate the active discharge phases. A simulation of the chemical kinetics in the gas-phase, based on a simplified discharge modeling, is briefly described in order to shed light on the observed increase in ozone production. The effect of a duty-cycle on surface modification of polymeric films in order to increase their wettability has been investigated too.

  6. Photosensitive dopants for liquid noble gases

    DOEpatents

    Anderson, David F.

    1988-01-01

    In an ionization type detector for high energy radiation wherein the energy of incident radiation is absorbed through the ionization of a liquid noble gas and resulting free charge is collected to form a signal indicative of the energy of the incident radiation, an improvement comprising doping the liquid noble gas with photosensitive molecules to convert scintillation light due to recombination of ions, to additional free charge.

  7. Degradation of Microcystin-LR by Gas-Liquid Interfacial Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Xin, Qing; Zhang, Yi; Wu, Kaibin

    2013-12-01

    In this study, we report on the degradation of microcystin-LR (MC-LR) by gas-liquid interfacial discharge plasma. The influences of operation parameters such as average input voltage, electrode distance and gas flow rate are investigated. Experimental results indicate that the input voltage and gas flow rate have positive influences on MC-LR degradation, while the electrode distance has a negative one. After 6 min discharge with 25 kV average input voltage and 60 L/h air aeration, the degradation rate of MC-LR achieves 75.3%. H2O2 and O3 generated by discharge both in distilled water and MC-LR solution are measured. Moreover, an emission spectroscopy is used as an indicator of the processes that take place on the gas-liquid boundary and inside plasma. Varied types of radicals (O, ·OH, CO, O3, etc.) are proved to be present in the gas phase during gas-liquid interfacial discharge.

  8. Zero Discharge Water Management for Horizontal Shale Gas Well Development

    SciTech Connect

    Paul Ziemkiewicz; Jennifer Hause; Raymond Lovett; David Locke Harry Johnson; Doug Patchen

    2012-03-31

    Hydraulic fracturing technology (fracking), coupled with horizontal drilling, has facilitated exploitation of huge natural gas (gas) reserves in the Devonian-age Marcellus Shale Formation (Marcellus) of the Appalachian Basin. The most-efficient technique for stimulating Marcellus gas production involves hydraulic fracturing (injection of a water-based fluid and sand mixture) along a horizontal well bore to create a series of hydraulic fractures in the Marcellus. The hydraulic fractures free the shale-trapped gas, allowing it to flow to the well bore where it is conveyed to pipelines for transport and distribution. The hydraulic fracturing process has two significant effects on the local environment. First, water withdrawals from local sources compete with the water requirements of ecosystems, domestic and recreational users, and/or agricultural and industrial uses. Second, when the injection phase is over, 10 to 30% of the injected water returns to the surface. This water consists of flowback, which occurs between the completion of fracturing and gas production, and produced water, which occurs during gas production. Collectively referred to as returned frac water (RFW), it is highly saline with varying amounts of organic contamination. It can be disposed of, either by injection into an approved underground injection well, or treated to remove contaminants so that the water meets the requirements of either surface release or recycle use. Depending on the characteristics of the RFW and the availability of satisfactory disposal alternatives, disposal can impose serious costs to the operator. In any case, large quantities of water must be transported to and from well locations, contributing to wear and tear on local roadways that were not designed to handle the heavy loads and increased traffic. The search for a way to mitigate the situation and improve the overall efficiency of shale gas production suggested a treatment method that would allow RFW to be used as make

  9. Investigation Of The High-Voltage Discharge On The Surface Of Gas-Liquid System

    NASA Astrophysics Data System (ADS)

    Nguyen-Kuok, Shi; Morgunov, Aleksandr; Malakhov, Yury; Korotkikh, Ivan

    2016-09-01

    This paper describes an experimental setup for study of physical processes in the high-voltage discharge on the surface of gas-liquid system at atmospheric pressure. Measurements of electrical and optical characteristics of the high-voltage discharge in gas, at the surface of the gas-liquid system and in the electrolyte are obtained. The parameters of the high-voltage discharge and the conditions for its stable operation are presented. Investigations with various electrolytes and cathode assemblies of various materials and sizes were carried out. The installation can be used for the processing and recycling of industrial and chemical liquid waste. Professor of Laboratory of Plasma Physics, National Research University MPEI, Krasnokazarmennya Str.14, 111250, Moscow, Russia.

  10. Electron density measurements in a photoinitiated, impulse-enhanced, electrically excited laser gas discharge

    NASA Astrophysics Data System (ADS)

    Seguin, V. A.; Seguin, H. J. J.; Capjack, C. E.; Nikumb, S. K.

    1986-11-01

    Measurements of the electron density within a photo-initiated, impulse-enhanced, electrically excited (PIE) laser gas discharge are presented. Ion current measurements were made using a single Langmuir electrostatic probe positioned within the laser discharge volume. Calculations of the electron density were made utilizing a thick-sheath analysis. The results indicate that the electron density increases by two orders of magnitude as the pulser power level is increased. In addition, the electron density was observed to decrease markedly as the dc discharge current was increased.

  11. Effects of Gas Flow Rate on the Discharge Characteristics of a DC Excited Plasma Jet

    NASA Astrophysics Data System (ADS)

    Li, Xuechen; Jia, Pengying; Di, Cong; Bao, Wenting; Zhang, Chunyan

    2015-09-01

    A direct current (DC) source excited plasma jet consisting of a hollow needle anode and a plate cathode has been developed to form a diffuse discharge plume in ambient air with flowing argon as the working gas. Using optical and electrical methods, the discharge characteristics are investigated for the diffuse plasma plume. Results indicate that the discharge has a pulse characteristic, under the excitation of a DC voltage. The discharge pulse corresponds to the propagation process of a plasma bullet travelling from the anode to the cathode. It is found that, with an increment of the gas flow rate, both the discharge plume length and the current peak value of the pulsed discharge decrease in the laminar flow mode, reach their minima at about 1.5 L/min, and then slightly increase in the turbulent mode. However, the frequency of the pulsed discharge increases in the laminar mode with increasing the argon flow rate until the argon flow rate equals to about 1.5 L/min, and then slightly decreases in the turbulent mode. supported by National Natural Science Foundation of China (Nos. 10805013, 11375051), Funds for Distinguished Young Scientists of Hebei Province, China (No. A2012201045), Department of Education for Outstanding Youth Project of China (No. Y2011120), and Youth Project of Hebei University of China (No. 2011Q14)

  12. Simulations of atmospheric pressure discharge in a high-voltage nanosecond pulse using the particle-in-cell Monte Carlo collision model in noble gases

    NASA Astrophysics Data System (ADS)

    Shi, Feng; Wang, Dezhen; Ren, Chunsheng

    2008-06-01

    Atmospheric pressure discharge nonequilibrium plasmas have been applied to plasma processing with modern technology. Simulations of discharge in pure Ar and pure He gases at one atmospheric pressure by a high voltage trapezoidal nanosecond pulse have been performed using a one-dimensional particle-in-cell Monte Carlo collision (PIC-MCC) model coupled with a renormalization and weighting procedure (mapping algorithm). Numerical results show that the characteristics of discharge in both inert gases are very similar. There exist the effects of local reverse field and double-peak distributions of charged particles' density. The electron and ion energy distribution functions are also observed, and the discharge is concluded in the view of ionization avalanche in number. Furthermore, the independence of total current density is a function of time, but not of position.

  13. Atomic Force Microscope Investigations of Bacterial Biofilms Treated with Gas Discharge Plasmas

    NASA Astrophysics Data System (ADS)

    Vandervoort, Kurt; Zelaya, Anna; Brelles-Marino, Graciela

    2012-02-01

    We present investigations of bacterial biofilms before and after treatment with gas discharge plasmas. Gas discharge plasmas represent a way to inactivate bacteria under conditions where conventional disinfection methods are often ineffective. These conditions involve biofilm communities, where bacteria grow embedded in an exopolysaccharide matrix, and cooperative interactions between cells make organisms less susceptible to standard inactivation methods. In this study, biofilms formed by the opportunistic bacterium Pseudomonas aeruginosa were imaged before and after plasma treatment using an atomic force microscope (AFM). Through AFM images and micromechanical measurements we observed bacterial morphological damage and reduced AFM tip-sample surface adhesion following plasma treatment.

  14. Binary and ternary gas mixtures for use in glow discharge closing switches

    DOEpatents

    Hunter, S.R.; Christophorou, L.G.

    1988-04-27

    Highly efficient binary and ternary gas mixtures for use in diffuse glow discharge closing switches are disclosed. The binary mixtures are combinations of helium or neon and selected perfluorides. The ternary mixtures are combinations of helium, neon, or argon, a selected perfluoride, and a small amount of gas that exhibits enhanced ionization characteristics. These mixtures are shown to be the optimum choices for use in diffuse glow discharge closing switches by virtue if the combines physio-electric properties of the mixture components. 9 figs.

  15. Atomic Force Microscope Investigations of Biofilm-Forming Bacterial Cells Treated with Gas Discharge Plasmas

    NASA Astrophysics Data System (ADS)

    Vandervoort, Kurt; Renshaw, Andrew; Abramzon, Nina; Brelles-Marino, Graciela

    2009-03-01

    We present investigations of biofilm-forming bacteria before and after treatment from gas discharge plasmas. Gas discharge plasmas represent a way to inactivate bacteria under conditions where conventional disinfection methods are often ineffective. These conditions involve bacteria in biofilm communities, where cooperative interactions between cells make organisms less susceptible to standard killing methods. Chromobacterium violaceum were imaged before and after plasma treatment using an atomic force microscope (AFM). After 5 min. plasma treatment, 90% of cells were inactivated, that is, transformed to non-culturable cells. Results for cell surface morphology and micromechanical properties for plasma treatments lasting from 5 to 60 minutes were obtained and will be presented.

  16. Emission Spectroscopy of the 4X Source Discharge With and Without N2 Gas

    SciTech Connect

    Smith, Horace Vernon

    2016-01-14

    This tech note summarizes the December, 1988 emission spectroscopy measurements made on the 4X source discharge with and without N₂ gas added to the H + Cs discharge. This study is motivated by the desire to understand why small amounts of N₂ gas added to the source discharge results in a reduction in the H⁻ beam noise. The beneficial effect of N₂ gas on H⁻ beam noise was first discovered by Bill Ingalls and Stu Orbesen on the ATS SAS source. For the 4X source the observed effect is that when N2 gas is added to the discharge the H⁻ beam noise is reduced about a factor of 2.

  17. Gas temperature layer visualization in hypersonic shock tunnel using electric discharge

    NASA Astrophysics Data System (ADS)

    Jagadeesh, Gopalan; Nagashetty, K.; Srinivasa Rao, B. R.; Reddy, K. P. J.

    2001-04-01

    A novel technique for visualizing the gas temperature layer around bodies flying at hypersonic speeds is presented. The high temperature zone is visualized by photographing the light emitted from the electric discharge generated over a model exposed to hypersonic flow in a shock tunnel. The technique is based on electrical discharge phenomena, where the frequency of radiation emitted by the discharge path passing through the flow field varies with the temperature of the gas medium in the discharge path. The experiments are carried out in the Indian Institute of Science (IISc), Bangalore, India, hypersonic shock tunnel HST-1 at a nominal Mach number of 5.75 using helium as the driver gas, with free stream velocity of 1.38 km/s and free stream molecular density of 2.3396 X 1016 molecules/cm3. The electric discharge is generated across a line electrode embedded in the model surface and a point electrode suspended in the free stream. A high voltage discharge device (1.6 kV and 1 A) along with a micro-controller based pulse delay control module is integrated with the shock tunnel for generating and controlling electric discharge which lasts for approximately 2 microseconds. The gas temperature layer at zero angle of incidence around a flat plate and slightly blunted (5 mm bluntness radius) 20 degree apex angle slender cone model are visualized in this study. The visualized thickness of the high temperature layer around the flat plate is approximately 2 mm, which agrees well with numerical simulation, carried out using 2-D Navier-Stokes equations.

  18. CORONA DISCHARGE IGNITION FOR ADVANCED STATIONARY NATURAL GAS ENGINES

    SciTech Connect

    Dr. Paul D. Ronney

    2003-09-12

    An ignition source was constructed that is capable of producing a pulsed corona discharge for the purpose of igniting mixtures in a test chamber. This corona generator is adaptable for use as the ignition source for one cylinder on a test engine. The first tests were performed in a cylindrical shaped chamber to study the characteristics of the corona and analyze various electrode geometries. Next a test chamber was constructed that closely represented the dimensions of the combustion chamber of the test engine at USC. Combustion tests were performed in this chamber and various electrode diameters and geometries were tested. The data acquisition and control system hardware for the USC engine lab was updated with new equipment. New software was also developed to perform the engine control and data acquisition functions. Work is underway to design a corona electrode that will fit in the new test engine and be capable igniting the mixture in one cylinder at first and eventually in all four cylinders. A test engine was purchased for the project that has two spark plug ports per cylinder. With this configuration it will be possible to switch between corona ignition and conventional spark plug ignition without making any mechanical modifications.

  19. Discharge characteristics and hydrodynamics behaviors of atmospheric plasma jets produced in various gas flow patterns

    NASA Astrophysics Data System (ADS)

    Setsuhara, Yuichi; Uchida, Giichiro; Nakajima, Atsushi; Takenaka, Kosuke; Koga, Kazunori; Shiratani, Masaharu

    2015-09-01

    Atmospheric nonequilibrium plasma jets have been widely employed in biomedical applications. For biomedical applications, it is an important issue to understand the complicated mechanism of interaction of the plasma jet with liquid. In this study, we present analysis of the discharge characteristics of a plasma jet impinging onto the liquid surface under various gas flow patterns such as laminar and turbulence flows. For this purpose, we analyzed gas flow patters by using a Schlieren gas-flow imaging system in detail The plasma jet impinging into the liquid surface expands along the liquid surface. The diameter of the expanded plasma increases with gas flow rate, which is well explained by an increase in the diameter of the laminar gas-flow channel. When the gas flow rate is further increased, the gas flow mode transits from laminar to turbulence in the gas flow channel, which leads to the shortening of the plasm-jet length. Our experiment demonstrated that the gas flow patterns strongly affect the discharge characteristics in the plasma-jet system. This study was partly supported by a Grant-in-Aid for Scientific Research on Innovative Areas ``Plasma Medical Innovation'' (24108003) from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT).

  20. A powerful electrohydrodynamic flow generated by a high-frequency dielectric barrier discharge in a gas

    SciTech Connect

    Nebogatkin, S. V.; Rebrov, I. E.; Khomich, V. Yu.; Yamshchikov, V. A.

    2016-01-15

    Theoretical and experimental studies of an electrohydrodynamic flow induced by a high-frequency dielectric barrier discharge distributed over a dielectric surface in a gas have been conducted. Dependences of the ion current, the gas flow velocity, and the spatial distributions thereof on the parameters of the power supply of the plasma ion emitter and an external electric field determined by the collector grid voltage have been described.

  1. A powerful electrohydrodynamic flow generated by a high-frequency dielectric barrier discharge in a gas

    NASA Astrophysics Data System (ADS)

    Nebogatkin, S. V.; Rebrov, I. E.; Khomich, V. Yu.; Yamshchikov, V. A.

    2016-01-01

    Theoretical and experimental studies of an electrohydrodynamic flow induced by a high-frequency dielectric barrier discharge distributed over a dielectric surface in a gas have been conducted. Dependences of the ion current, the gas flow velocity, and the spatial distributions thereof on the parameters of the power supply of the plasma ion emitter and an external electric field determined by the collector grid voltage have been described.

  2. Kinetics of charged particles in a high-voltage gas discharge in a nonuniform electrostatic field

    NASA Astrophysics Data System (ADS)

    Kolpakov, V. A.; Krichevskii, S. V.; Markushin, M. A.

    2017-01-01

    A high-voltage gas discharge is of interest as a possible means of generating directed flows of low-temperature plasma in the off-electrode space distinguished by its original features [1-4]. We propose a model for calculating the trajectories of charges particles in a high-voltage gas discharge in nitrogen at a pressure of 0.15 Torr existing in a nonuniform electrostatic field and the strength of this field. Based on the results of our calculations, we supplement and refine the extensive experimental data concerning the investigation of such a discharge published in [1, 2, 5-8]; good agreement between the theory and experiment has been achieved. The discharge burning is initiated and maintained through bulk electron-impact ionization and ion-electron emission. We have determined the sizes of the cathode surface regions responsible for these processes, including the sizes of the axial zone involved in the discharge generation. The main effect determining the kinetics of charged particles consists in a sharp decrease in the strength of the field under consideration outside the interelectrode space, which allows a free motion of charges with specific energies and trajectories to be generated in it. The simulation results confirm that complex electrode systems that allow directed plasma flows to be generated at a discharge current of hundreds or thousands of milliamperes and a voltage on the electrodes of 0.3-1 kV can be implemented in practice [3, 9, 10].

  3. Degradation of dyes by active species injected from a gas phase surface discharge

    NASA Astrophysics Data System (ADS)

    Li, Jie; Wang, Tiecheng; Lu, Na; Zhang, Dandan; Wu, Yan; Wang, Tianwei; Sato, Masayuki

    2011-06-01

    A reactor, based on the traditional gas phase surface discharge (GPSD), is designed for degradation of dye wastewater in this study. The reactor is characterized by using the dye wastewater as a ground electrode. A spiral discharge electrode of stainless steel wire attached on the inside wall of a cylindrical insulating medium and the wastewater surrounding the insulating medium for simultaneous cooling of the discharge electrode constitute the reactor. The active chemical radicals generated by the discharge of the spiral electrode are injected into the water with the carrier gas. The removal of three organic dyes (including methyl red (MR), reactive brilliant blue (RBB) and cationic red (CR)) in aqueous solution is investigated. The effects of electrode configuration, discharge voltage and solution pH value on the decoloration efficiency of MR are discussed. The experimental results show that over 95% of decoloration efficiencies for all the dyes are obtained after several minutes of plasma treatment. 40% of chemical oxygen demand removal of MR is obtained after 8 min of discharge treatment. Furthermore, it is found that ozone mainly affects the removal of dyes and several aliphatic compounds are identified as the oxidation products of MR. The possible degradation pathways of MR by GPSD are proposed.

  4. Ageing studies of TPB in noble gas detectors for dark matter and neutrinoless ββ decay searches.

    PubMed

    Yahlali, N; Garcia, J M; Díaz, J; Soriano, A; Fernandes, L M P

    2017-02-05

    Noble gases (Xe, Ar, Kr) are very attractive as detector media in Dark Matter search and neutrinoless double-beta decay experiments. However, the detection of their scintillation light (in the VUV spectral region) requires shifting the VUV light to visible light, where standard photosensors are more efficient. Tetraphenyl butadiene (TPB) is widely used as wavelength shifter, absorbing the VUV light and re-emitting in the blue region (~430nm). TPB is an organic molecule that may degrade due to exposure to environmental agents and also to ultraviolet light. In this work, we present TPB ageing studies due to exposure to VUV light, aiming at quantifying the reduction of the absolute fluorescence yield of TPB coatings of several thicknesses (130nm, 260nm, 390nm, 1600nm), exposed to various doses of VUV light at 170nm (similar to the Xe scintillation). In our setup, the VUV light is produced from a vacuum monochromator coupled to a deuterium lamp. The VUV exposure in our setup is compared to the exposure obtained in the electroluminescent gaseous Xe TPC of the NEXT-100 experiment for neutrinoless double-beta decay search.

  5. Ageing studies of TPB in noble gas detectors for dark matter and neutrinoless ββ decay searches

    NASA Astrophysics Data System (ADS)

    Yahlali, N.; Garcia, J. M.; Díaz, J.; Soriano, A.; Fernandes, L. M. P.

    2017-02-01

    Noble gases (Xe, Ar, Kr) are very attractive as detector media in Dark Matter search and neutrinoless double-beta decay experiments. However, the detection of their scintillation light (in the VUV spectral region) requires shifting the VUV light to visible light, where standard photosensors are more efficient. Tetraphenyl butadiene (TPB) is widely used as wavelength shifter, absorbing the VUV light and re-emitting in the blue region ( 430 nm). TPB is an organic molecule that may degrade due to exposure to environmental agents and also to ultraviolet light. In this work, we present TPB ageing studies due to exposure to VUV light, aiming at quantifying the reduction of the absolute fluorescence yield of TPB coatings of several thicknesses (130 nm, 260 nm, 390 nm, 1600 nm), exposed to various doses of VUV light at 170 nm (similar to the Xe scintillation). In our setup, the VUV light is produced from a vacuum monochromator coupled to a deuterium lamp. The VUV exposure in our setup is compared to the exposure obtained in the electroluminescent gaseous Xe TPC of the NEXT-100 experiment for neutrinoless double-beta decay search.

  6. Real gas effects on charging and discharging processes of high pressure pneumatics

    NASA Astrophysics Data System (ADS)

    Luo, Yuxi; Wang, Xuanyin; Ge, Yaozheng

    2013-01-01

    The high pressure pneumatic system has been applied to special industries. It may cause errors when we analyze high pressure pneumatics under ideal gas assumption. However, the real gas effect on the performances of high pressure pneumatics is seldom investigated. In this paper, the real gas effects on air enthalpy and internal energy are estimated firstly to study the real gas effect on the energy conversion. Under ideal gas assumption, enthalpy and internal energy are solely related to air temperature. The estimation result indicates that the pressure enthalpy and pressure internal energy of real pneumatic air obviously decrease the values of enthalpy and internal energy for high pressure pneumatics, and the values of pressure enthalpy and pressure internal energy are close. Based on the relationship among pressure, enthalpy and internal energy, the real gas effects on charging and discharging processes of high pressure pneumatics are estimated, which indicates that the real gas effect accelerates the temperature and pressure decreasing rates during discharging process, and decelerates their increasing rates during charging process. According to the above analysis, and for the inconvenience in building the simulation model for real gas and the difficulty of measuring the detail thermal capacities of pneumatics, a method to compensate the real gas effect under ideal gas assumption is proposed by modulating the thermal capacity of the pneumatic container in simulation. The experiments of switching expansion reduction (SER) for high pressure pneumatics are used to verify this compensating method. SER includes the discharging process of supply tanks and the charging process of expansion tank. The simulated and experimental results of SER are highly consistent. The proposed compensation method provides a convenient way to obtain more realistic simulation results for high pressure pneumatics.

  7. Computer simulation of effect of conditions on discharge-excited high power gas flow CO laser

    NASA Astrophysics Data System (ADS)

    Ochiai, Ryo; Iyoda, Mitsuhiro; Taniwaki, Manabu; Sato, Shunichi

    2017-01-01

    The authors have developed the computer simulation codes to analyze the effect of conditions on the performances of discharge excited high power gas flow CO laser. The six be analyzed. The simulation code described and executed by Macintosh computers consists of some modules to calculate the kinetic processes. The detailed conditions, kinetic processes, results and discussions are described in this paper below.

  8. Characterization of a radio frequency hollow electrode discharge at low gas pressures

    SciTech Connect

    Ahadi, Amir Mohammad; Rehders, Stefan; Strunskus, Thomas; Faupel, Franz; Trottenberg, Thomas; Kersten, Holger

    2015-08-15

    A radio frequency (RF) hollow discharge configuration is presented, which makes use of a combination of RF plasma generation and the hollow cathode effect. The system was especially designed for the treatment of nanoparticles, plasma polymerization, and nanocomposite fabrication. The process gas streams through the plasma in the inner of the cylindrical electrode system. In the here presented measurements, pure argon and argon with oxygen admixtures are exemplarily used. The discharge is characterized by probe measurements in the effluent, electrical measurements of the discharge parameters, and visual observations of the plasma glow. It is found that the RF fluctuations of the plasma potential are weak. The plasma potential resembles the one of a DC hollow cathode discharge, the RF hollow electrode acts as a cathode due to the self-bias, and a high voltage sheath forms in its inner cylinder.

  9. Gas discharges in fumarolic ice caves of Erebus volcano, Antarctica

    NASA Astrophysics Data System (ADS)

    Fischer, T. P.; Curtis, A. G.; Kyle, P. R.; Sano, Y.

    2013-12-01

    Fumarolic ice caves and towers on Erebus are the surface expression of flank degassing on the world's southernmost active volcano. The caves are formed by warm gases and steam escaping from small vents on the lava flow floors that melts the overlying ice and snow. Extremophiles in the caves may be analogues for extraterrestrial environments. Over the past four Austral summers, mapping, gas and thermal monitoring conducted under the Erebus Caves Project has provided insights into the ice cave formation processes and the relationships between cave structures, magmatic processes, and weather. Gas samples were collected during the 2012 - 2013 field season in 4 ice caves (Warren, Harry's Dream, Sauna, Haggis Hole) as well as the thermal ground at Tramway Ridge. The vents at all of these sites are characterized by diffuse degassing through loose lava or cracks in the lava flow floor. Vent temperatures ranged from 5 to 17°C in most caves and at Tramway Ridge. In Sauna cave the temperature was 40°C. Gases were sampled by inserting a perforated 1 m long, 5 mm diameter stainless steel tube, into the vents or hot ground. Giggenbach bottles, copper tubes and lead glass bottles were connected in series. The gases were pumped at a slow rate (about 20 ml per minute) using a battery pump for 12-24 hours to flush the system. After flushing samples were collected for later analyses. All samples are dominated by atmospheric components, however, carbon dioxide (0.1 to 1.9%), methane (0.005 to 0.01%), hydrogen (0.002 to 0.07%), and helium (0.0009 to 0.002 %) are above air background. Nitrogen (average 74%) and oxygen (23.5%) are slightly below and above air values, respectively. Helium isotopes show minor input of mantle derived helium-3 with 3He4He ratios ranging from 1.03 to 1.18 RA (where RA is the ratio of air). This represents the first detection of hydrogen and helium in the caves. Methane could be produced by anaerobic respiration of subsurface microbes or hydrothermal

  10. Ignition of a combustible gas mixture by a high-current electric discharge in a closed volume

    SciTech Connect

    Berezhetskaya, N. K.; Gritsinin, S. I.; Kop'ev, V. A.; Kossyi, I. A.; Kuleshov, P. S.; Popov, N. A.; Starik, A. M.; Tarasova, N. M.

    2009-06-15

    Results are presented from experimental studies and numerical calculations of the ignition of a stoichiometric CH{sub 4}: O{sub 2} gas mixture by a high-current gliding discharge. It is shown that this type of discharge generates an axially propagating thermal wave (precursor) that penetrates into the gas medium and leads to fast gas heating. This process is followed by an almost simultaneous ignition of the gas mixture over the entire reactor volume.

  11. Ignition of a combustible gas mixture by a high-current electric discharge in a closed volume

    NASA Astrophysics Data System (ADS)

    Berezhetskaya, N. K.; Gritsinin, S. I.; Kop'ev, V. A.; Kossyi, I. A.; Kuleshov, P. S.; Popov, N. A.; Starik, A. M.; Tarasova, N. M.

    2009-06-01

    Results are presented from experimental studies and numerical calculations of the ignition of a stoichiometric CH4: O2 gas mixture by a high-current gliding discharge. It is shown that this type of discharge generates an axially propagating thermal wave (precursor) that penetrates into the gas medium and leads to fast gas heating. This process is followed by an almost simultaneous ignition of the gas mixture over the entire reactor volume.

  12. Influence of dust-particle concentration on gas-discharge plasma

    SciTech Connect

    Sukhinin, G. I.; Fedoseev, A. V.

    2010-01-15

    A self-consistent kinetic model of a low-pressure dc glow discharge with dust particles based on Boltzmann equation for the electron energy distribution function is presented. The ions and electrons production in ionizing processes as well as their recombination on the dust-particle surface and on the discharge tube wall were taken into account. The influence of dust-particle concentration N{sub d} on gas discharge and dust particles parameters was investigated. It is shown that the increase of N{sub d} leads to the increase of an averaged electric field and ion density, and to the decrease of a dust-particle charge and electron density in the dusty cloud. The results were obtained in a wide region of different discharge and dusty plasma parameters: dust particles density 10{sup 2}-10{sup 8} cm{sup -3}, discharge current density 10{sup -1}-10{sup 1} mA/cm{sup 2}, and dust particles radius 1, 2, and 5 mum. The scaling laws for dust-particle surface potential and electric filed dependencies on dust-particle density, particle radius and discharge currents were revealed. It is shown that the absorption of electrons and ions on the dust particles surface does not lead to the electron energy distribution function depletion due to a self-consistent adjustment of dust particles and discharge parameters.

  13. Influence of dust-particle concentration on gas-discharge plasma.

    PubMed

    Sukhinin, G I; Fedoseev, A V

    2010-01-01

    A self-consistent kinetic model of a low-pressure dc glow discharge with dust particles based on Boltzmann equation for the electron energy distribution function is presented. The ions and electrons production in ionizing processes as well as their recombination on the dust-particle surface and on the discharge tube wall were taken into account. The influence of dust-particle concentration N(d) on gas discharge and dust particles parameters was investigated. It is shown that the increase of N(d) leads to the increase of an averaged electric field and ion density, and to the decrease of a dust-particle charge and electron density in the dusty cloud. The results were obtained in a wide region of different discharge and dusty plasma parameters: dust particles density 10(2)-10(8) cm(-3), discharge current density 10(-1)-10(1) mA/cm(2), and dust particles radius 1, 2, and 5 microm. The scaling laws for dust-particle surface potential and electric filed dependencies on dust-particle density, particle radius and discharge currents were revealed. It is shown that the absorption of electrons and ions on the dust particles surface does not lead to the electron energy distribution function depletion due to a self-consistent adjustment of dust particles and discharge parameters.

  14. 77 FR 38790 - Noble Americas Gas & Power Corp., LNG Development Company, LLC, LNG Development Company, LLC (d/b...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... Americas Gas & Power Corp., LNG Development Company, LLC, LNG Development Company, LLC (d/b/a Oregon LNG... Corp. authority to import/ export natural gas from/ to Canada/Mexico, and to import LNG from various international sources by vessel. 3099 05/31/12 12-43-NG LNG Development Order granting blanket Company,...

  15. Dimmable Electronic Ballast for a Gas Discharge Lamp

    NASA Technical Reports Server (NTRS)

    Raducanu, Marius; Hennings, Brian D.

    2013-01-01

    Titanium dioxide (TiO2) is the most efficient photocatalyst for organic oxidative degradation. TiO2 is effective not only in aqueous solution, but also in nonaqueous solvents and in the gas phase. It is photostable, biologically and chemically inert, and non-toxic. Low-energy UV light (approximately 375 nm, UV-A) can be used to photoactivate TiO2. TiO2 photocatalysis has been used to mineralize most types of organic compounds. Also, TiO2 photocatalysis has been effectively used in sterilization. This effectiveness has been demonstrated by its aggressive destruction of microorganisms, and aggressive oxidation effects of toxins. It also has been used for the oxidation of carbon monoxide to carbon dioxide, and ammonia to nitrogen. Despite having many attractive features, advanced photocatalytic oxidation processes have not been effectively used for air cleaning. One of the limitations of the traditional photocatalytic systems is the ballast that powers (lights) the bulbs. Almost all commercial off-the-shelf (COTS) ballasts are not dimmable and do not contain safety features. COTS ballasts light the UV lamp as bright as the bulb can be lit, and this results in shorter bulb lifetime and maximal power consumption. COTS magnetic ballasts are bulky, heavy, and inefficient. Several iterations of dimmable electronic ballasts have been developed. Some manifestations have safety features such as broken-bulb or over-temperature warnings, replace-bulb alert, logbulb operational hours, etc. Several electronic ballast boards capable of independently lighting and controlling (dimming) four fluorescent (UV light) bulbs were designed, fabricated, and tested. Because of the variation in the market bulb parameters, the ballast boards were designed with a very broad range output. The ballast boards can measure and control the current (power) for each channel.

  16. Binary and ternary gas mixtures with temperature enhanced diffuse glow discharge characteristics for use in closing switches

    DOEpatents

    Christophorou, L.G.; Hunter, S.R.

    1988-06-28

    An improvement to the gas mixture used in diffuse glow discharge closing switches is disclosed which includes binary and ternary gas mixtures which are formulated to exhibit decreasing electron attachment with increasing temperature. This increases the efficiency of the conductance of the glow discharge and further inhibits the formation of an arc. 11 figs.

  17. Binary and ternary gas mixtures with temperature enhanced diffuse glow discharge characteristics for use in closing switches

    DOEpatents

    Christophorou, Loucas G.; Hunter, Scott R.

    1990-01-01

    An improvement to the gas mixture used in diffuse glow discharge closing switches is disclosed which includes binary and ternary gas mixtures which are formulated to exhibit decreasing electron attachment with increasing temperature. This increases the efficiency of the conductance of the glow discharge and further inhibits the formation of an arc.

  18. Binary and ternary gas mixtures with temperature enhanced diffuse glow discharge characteristics for use in closing switches

    DOEpatents

    Christophorou, L.G.; Hunter, S.R.

    1990-06-26

    An improvement to the gas mixture used in diffuse glow discharge closing switches is disclosed which includes binary and ternary gas mixtures which are formulated to exhibit decreasing electron attachment with increasing temperature. This increases the efficiency of the conductance of the glow discharge and further inhibits the formation of an arc. 11 figs.

  19. Neutral gas temperature estimates and metastable resonance energy transfer for argon-nitrogen discharges

    SciTech Connect

    Greig, A. Charles, C.; Boswell, R. W.

    2016-01-15

    Rovibrational spectroscopy band fitting of the nitrogen (N{sub 2}) second positive system is a technique used to estimate the neutral gas temperature of N{sub 2} discharges, or atomic discharges with trace amounts of a N{sub 2} added. For mixtures involving argon and N{sub 2}, resonant energy transfer between argon metastable atoms (Ar*) and N{sub 2} molecules may affect gas temperature estimates made using the second positive system. The effect of Ar* resonance energy transfer is investigated here by analyzing neutral gas temperatures of argon-N{sub 2} mixtures, for N{sub 2} percentages from 1% to 100%. Neutral gas temperature estimates are higher than expected for mixtures involving greater than 5% N{sub 2} addition, but are reasonable for argon with less than 5% N{sub 2} addition when compared with an analytic model for ion-neutral charge exchange collisional heating. Additional spatiotemporal investigations into neutral gas temperature estimates with 10% N{sub 2} addition demonstrate that although absolute temperature values may be affected by Ar* resonant energy transfer, spatiotemporal trends may still be used to accurately diagnose the discharge.

  20. Multiwalled carbon nanotubes produced by direct current arc discharge in hydrogen gas

    NASA Astrophysics Data System (ADS)

    Jinno, M.; Bandow, S.; Ando, Y.

    2004-11-01

    Multiwalled carbon nanotubes were produced by direct current (DC) arc discharge in the mixture gas of H 2-N 2. Raman scattering spectroscopy was used to characterize the MWNTs. Radial breathing mode vibration signals were observed at 272 and 388 cm -1. Tangential mode vibration signal was observed at ≈1582 cm -1, and other intense signals were also observed at ≈1860 cm -1for the MWNTs produced in the gas with the H 2 contents exceeding 90%. DC arc discharge in pure D 2 was also carried out, by which it was confirmed that the peak position and intensity of the Raman signal at ≈1860 cm -1 were independent of whether the gas was H 2 or D 2. This suggests that the ≈1860 cm -1 band is not associated with hydrogen-based vibrations.

  1. Low power gas discharge plasma mediated inactivation and removal of biofilms formed on biomaterials.

    PubMed

    Traba, Christian; Chen, Long; Liang, Jun F

    2013-03-20

    The antibacterial activity of gas discharge plasma has been studied for quiet some time. However, high biofilm inactivation activity of plasma was only recently reported. Studies indicate that the etching effect associated with plasmas generated represent an undesired effect, which may cause live bacteria relocation and thus contamination spreading. Meanwhile, the strong etching effects from these high power plasmas may also alter the surface chemistry and affect the biocompatibility of biomaterials. In this study, we examined the efficiency and effectiveness of low power gas discharge plasma for biofilm inactivation and removal. Among the three tested gases, oxygen, nitrogen, and argon, discharge oxygen demonstrated the best anti-biofilm activity because of its excellent ability in killing bacteria in biofilms and mild etching effects. Low power discharge oxygen completely killed and then removed the dead bacteria from attached surface but had negligible effects on the biocompatibility of materials. DNA left on the regenerated surface after removal of biofilms did not have any negative impact on tissue cell growth. On the contrary, dramatically increased growth was found for these cells seeded on regenerated surfaces. These results demonstrate the potential applications of low power discharge oxygen in biofilm treatments of biomaterials and indwelling device decontaminations.

  2. 1D simulation of runaway electrons generation in pulsed high-pressure gas discharge

    NASA Astrophysics Data System (ADS)

    Kozhevnikov, V. Yu.; Kozyrev, A. V.; Semeniuk, N. S.

    2015-10-01

    The results of theoretical modelling of runaway electron generation in the high-pressure nanosecond pulsed gas discharge are presented. A novel hybrid model of gas discharge has been successfully built. Hydrodynamic and kinetic approaches are used simultaneously to describe the dynamics of different components of low-temperature discharge plasma. To consider motion of ions and low-energy (plasma) electrons the corresponding equations of continuity with drift-diffusion approximation are used. To describe high-energy (runaway) electrons the Boltzmann kinetic equation is included. As a result of the simulation we obtained spatial and temporal distributions of charged particles and electric field in a pulsed discharge. Furthermore, the energy spectra calculated runaway electrons in different cross-sections, particularly, the discharge gap in the anode plane. It is shown that the average energy of fast electrons (in eV) in the anode plane is usually slightly higher than the instantaneous value of the applied voltage to the gap (in V).

  3. Basin scale natural gas source, migration and trapping traced by noble gases and major elements: the Pakistan Indus basin

    NASA Astrophysics Data System (ADS)

    Battani, Anne; Sarda, Philippe; Prinzhofer, Alain

    2000-08-01

    He, Ne and Ar concentrations, He and Ar isotopic ratios, carbon isotopic ratios and chemical compositions of hydrocarbon gases were measured in natural gas samples from gas-producing wells in the Indus basin, Pakistan, where no oil has ever been found. 3He/ 4He ratios are in the range 0.01-0.06 Ra (Ra is the atmospheric value of 1.38×10 -6) indicating the absence of mantle-derived helium despite the Trias extension. 40Ar/ 36Ar ratios range from 296 to 800, consistent with variable additions of radiogenic argon to atmospheric, groundwater-derived argon. Rare gas concentrations show large variations, from 6×10 -5 to 1×10 -3 mol/mol for 4He and from 3×10 -7 to 3×10 -5 mol/mol for 36Ar. In general, 36Ar concentrations are high compared to literature data for natural gas. CO 2 and N 2 concentrations are variable, ranging up to 70 and 20%, respectively. Mantle-derived He is not observed, therefore CO 2 and N 2 are not mantle-derived either. Hydrocarbon gas maturity is high, but accumulation efficiency is small, suggesting that early-produced hydrocarbons, including oil, were lost as well as mantle helium. This is consistent with the generally late, Pliocene, trap formation, and explains the high N 2 concentrations, since N 2 is the final species generated at the end of organic matter maturation. Based on δ 13C data, CO 2 originates from carbonate decomposition. Very elevated 20Ne/ 36Ar ratios are found, reaching a maximum of 1.3 (compared to 0.1-0.2 for air-saturated water and 0.5 for air), and these high values are related to the lowest rare gas concentrations. We suggest that this highly fractionated signature is the trace of the past presence of oil in the basin and appeared in groundwater. We propose a model where oil-water contact is followed by gas-water contact, both with Rayleigh distillation for rare gas abundance ratios, thereby generating the fractionated 20Ne/ 36Ar signature in groundwater first and transferring it to gas later. Assuming the gas

  4. Nanosecond-timescale high-pressure gas discharge in a microwave pulse compressor

    NASA Astrophysics Data System (ADS)

    Shlapakovski, Anatoli; Beilin, Leonid; Krasik, Yakov

    2016-09-01

    The results of experimental and numerical studies of the microwave plasma discharge initiated by a nanosecond laser pulse are presented. The discharge is ignited in the pressurized gas filling the switch, which opens the charged resonant cavity, so that the accumulated microwave energy is rapidly released into a load. Fast-framing optical imaging showed that the plasma in the switch appears as filaments expanding along the RF electric field. The temporal evolution of the plasma density was derived from time-resolved spectroscopic measurements. With increasing microwave energy in the cavity, the plasma appears earlier in time after the laser beam enters the switch and its density rises more steeply reaching values which exceed 1016 cm-3 at a gas pressure of 2 .105 Pa. Numerical simulations were conducted using the gas conductivity model of plasma and representation of discharge origin by setting initial population of seed electrons treated by PIC algorithm. The results showed good agreement with the experiments and explained how the self-consistent dynamics of the plasma and RF fields determines the quality of microwave output pulses. In addition, the dynamics of the microwave energy absorption in the discharge plasma was studied. It was shown that at a high pressure, even with an unlimited rate of ionization, a significant portion of the stored energy, 20%, is lost. This work was partially supported by the BSF Grant No. 2012038.

  5. Size-controlled synthesis and gas sensing application of tungsten oxide nanostructures produced by arc discharge.

    PubMed

    Fang, F; Kennedy, J; Futter, J; Hopf, T; Markwitz, A; Manikandan, E; Henshaw, G

    2011-08-19

    Several different synthetic methods have been developed to fabricate tungsten oxide (WO(3)) nanostructures, but most of them require exotic reagents or are unsuitable for mass production. In this paper, we present a systematic investigation demonstrating that arc discharge is a fast and inexpensive synthesis method which can be used to produce high quality tungsten oxide nanostructures for NO(2) gas sensing measurements. The as-synthesized WO(3) nanostructures are characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), finger-print Raman spectroscopy and proton induced x-ray emission (PIXE). The analysis shows that spheroidal-shaped monoclinic WO(3) crystal nanostructures were produced with an average diameter of 30 nm (range 10-100 nm) at an arc discharge current of 110 A and 300 Torr oxygen partial pressure. It is found that the morphology is controlled by the arc discharge parameters of current and oxygen partial pressure, e.g. a high arc discharge current combined with a low oxygen partial pressure results in small WO(3) nanostructures with improved conductivity. Sensors produced from the WO(3) nanostructures show a strong response to NO(2) gas at 325 °C. The ability to tune the morphology of the WO(3) nanostructures makes this method ideal for the fabrication of gas sensing materials.

  6. Transport of methane and noble gases during gas push-pull tests in variably saturated porous media.

    PubMed

    Gómez, Katherine; Gonzalez-Gil, Graciela; Schroth, Martin H; Zeyer, Josef

    2008-04-01

    The gas push-pull test (GPPT) is a single-well gas-tracer method to quantify in situ rates of CH4 oxidation in soils. To improve the design and interpretation of GPPT field experiments, gas component transport during GPPTs was examined in abiotic porous media over a range of water saturations (0.0 < or = Sw < or = 0.61). A series of GPPTs using He, Ne, and Ar as tracers for CH4 were performed at two injection/extraction gas flow rates (approximately 200 and approximately 700 mL min(-1)) in a laboratory tank. Extraction phase breakthrough curves and mass recovery curves of the gaseous components became more similar at higher Sw as water in the pore space restricted diffusive gas-phase transport. Diffusional fractionation of the stable carbon isotopes of CH4 during the extraction period of GPPTs also decreased with increasing Sw (particularly when Sw > 0.42). Gas-component transport during GPPTs was numerically simulated using estimated hydraulic parameters for the porous media and no fitting of data for the GPPTs. Numerical simulations accurately predicted the relative decline of the gaseous components in the breakthrough curves, but slightly overestimated recoveries at low Sw (< or = 0.35) and underestimated recoveries at high Sw (> or = 0.49). Comparison of numerical simulations considering and not considering air-water partitioning indicated that removal of gaseous components through dissolution in pore water was not significant during GPPTs, even at Sw = 0.61. These data indicate that Ar is a good tracer for CH4 physical transport over the full range of Sw studied, whereas, at Sw > 0.61, any of the tracers could be used. Greater mass recovery at higher Sw raises the possibility to reduce gas flow rates, thereby extending GPPT times in environments such as tundra soils where low activity due to low temperatures may require longer test times to establish a quantifiable difference between reactant and tracer breakthrough curves.

  7. Gas laser for efficient sustaining a continuous optical discharge plasma in scientific and technological applications

    SciTech Connect

    Zimakov, V P; Kuznetsov, V A; Kedrov, A Yu; Solov'ev, N G; Shemyakin, A N; Yakimov, M Yu

    2009-09-30

    A stable high-power laser is developed for the study and technical applications of a continuous optical discharge (COD). The laser based on the technology of a combined discharge in a scheme with a fast axial gas flow emits 2.2 kW at 10.6 {mu}m per meter of the active medium in continuous and repetitively pulsed regimes with the electrooptical efficiency 20%. The sustaining of the COD plasma in argon and air is demonstrated at the atmospheric pressure. The emission properties of the COD plasma are studied and its possible applications are discussed. (lasers)

  8. Evaluation of the potentials of humic acid removal in water by gas phase surface discharge plasma.

    PubMed

    Wang, Tiecheng; Qu, Guangzhou; Ren, Jingyu; Yan, Qiuhe; Sun, Qiuhong; Liang, Dongli; Hu, Shibin

    2016-02-01

    Degradation of humic acid (HA), a predominant type of natural organic matter in ground water and surface waters, was conducted using a gas phase surface discharge plasma system. HA standard and two surface waters (Wetland, and Weihe River) were selected as the targets. The experimental results showed that about 90.9% of standard HA was smoothly removed within 40 min's discharge plasma treatment at discharge voltage 23.0 kV, and the removal process fitted the first-order kinetic model. Roles of some active species in HA removal were studied by evaluating the effects of solution pH and OH radical scavenger; and the results presented that O3 and OH radical played significant roles in HA removal. Scanning electron microscope (SEM) and FTIR analysis showed that HA surface topography and molecular structure were changed during discharge plasma process. The mineralization of HA was analyzed by UV-Vis spectrum, dissolved organic carbon (DOC), specific UV absorbance (SUVA), UV absorption ratios, and excitation-emission matrix (EEM) fluorescence. The formation of disinfection by-products during HA sample chlorination was also identified, and CHCl3 was detected as the main disinfection by-product, but discharge plasma treatment could suppress its formation to a certain extent. In addition, approximately 82.3% and 67.9% of UV254 were removed for the Weihe River water and the Wetland water after 40 min of discharge plasma treatment.

  9. Piezoelectric transformers for low-voltage generation of gas discharges and ionic winds in atmospheric air

    SciTech Connect

    Johnson, Michael J.; Go, David B.

    2015-12-28

    To generate a gas discharge (plasma) in atmospheric air requires an electric field that exceeds the breakdown threshold of ∼30 kV/cm. Because of safety, size, or cost constraints, the large applied voltages required to generate such fields are often prohibitive for portable applications. In this work, piezoelectric transformers are used to amplify a low input applied voltage (<30 V) to generate breakdown in air without the need for conventional high-voltage electrical equipment. Piezoelectric transformers (PTs) use their inherent electromechanical resonance to produce a voltage amplification, such that the surface of the piezoelectric exhibits a large surface voltage that can generate corona-like discharges on its corners or on adjacent electrodes. In the proper configuration, these discharges can be used to generate a bulk air flow called an ionic wind. In this work, PT-driven discharges are characterized by measuring the discharge current and the velocity of the induced ionic wind with ionic winds generated using input voltages as low as 7 V. The characteristics of the discharge change as the input voltage increases; this modifies the resonance of the system and subsequent required operating parameters.

  10. Gas breakdown mechanism in pulse-modulated asymmetric ratio frequency dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Sun, Jizhong; Nozaki, Tomohiro; Ding, Zhenfeng; Ding, Hongbin; Wang, Zhanhui; Wang, Dezhen

    2014-08-01

    The gas breakdown mechanisms, especially the roles of metastable species in atmospheric pressure pulse-modulated ratio frequency barrier discharges with co-axial cylindrical electrodes, were studied numerically using a one dimensional self-consistent fluid model. Simulation results showed that in low duty cycle cases, the electrons generated from the channels associated with metastable species played a more important role in initializing next breakdown than the direct ionization of helium atoms of electronic grounded states by electron-impact. In order to quantitatively evaluate the contribution to the discharge by the metastables, we defined a "characteristic time" and examined how the value varied with the gap distance and the electrode asymmetry. The results indicated that the lifetime of the metastable species (including He*and He2*) was much longer than that of the pulse-on period and as effective sources of producing electrons they lasted over a period up to millisecond. When the ratio of the outer radius to the inner radius of the cylindrical electrodes was far bigger than one, it was found that the metastables distributed mainly in a cylindrical region around the inner electrode. When the ratio decreased as the inner electrode moved outward, the density of metastables in the discharge region near the outer electrode became gradually noticeable. As the discharging gap continued to decrease, the two hill-shaped distributions gradually merged to one big hill. When the discharge spacing was fixed, asymmetric electrodes facilitated the discharge.

  11. Piezoelectric transformers for low-voltage generation of gas discharges and ionic winds in atmospheric air

    NASA Astrophysics Data System (ADS)

    Johnson, Michael J.; Go, David B.

    2015-12-01

    To generate a gas discharge (plasma) in atmospheric air requires an electric field that exceeds the breakdown threshold of ˜30 kV/cm. Because of safety, size, or cost constraints, the large applied voltages required to generate such fields are often prohibitive for portable applications. In this work, piezoelectric transformers are used to amplify a low input applied voltage (<30 V) to generate breakdown in air without the need for conventional high-voltage electrical equipment. Piezoelectric transformers (PTs) use their inherent electromechanical resonance to produce a voltage amplification, such that the surface of the piezoelectric exhibits a large surface voltage that can generate corona-like discharges on its corners or on adjacent electrodes. In the proper configuration, these discharges can be used to generate a bulk air flow called an ionic wind. In this work, PT-driven discharges are characterized by measuring the discharge current and the velocity of the induced ionic wind with ionic winds generated using input voltages as low as 7 V. The characteristics of the discharge change as the input voltage increases; this modifies the resonance of the system and subsequent required operating parameters.

  12. Two-stage plasma gun based on a gas discharge with a self-heating hollow emitter.

    PubMed

    Vizir, A V; Tyunkov, A V; Shandrikov, M V; Oks, E M

    2010-02-01

    The paper presents the results of tests of a new compact two-stage bulk gas plasma gun. The plasma gun is based on a nonself-sustained gas discharge with an electron emitter based on a discharge with a self-heating hollow cathode. The operating characteristics of the plasma gun are investigated. The discharge system makes it possible to produce uniform and stable gas plasma in the dc mode with a plasma density up to 3x10(9) cm(-3) at an operating gas pressure in the vacuum chamber of less than 2x10(-2) Pa. The device features high power efficiency, design simplicity, and compactness.

  13. Band-structure calculations of noble-gas and alkali halide solids using accurate Kohn-Sham potentials with self-interaction correction

    SciTech Connect

    Li, Y.; Krieger, J.B. ); Norman, M.R. ); Iafrate, G.J. )

    1991-11-15

    The optimized-effective-potential (OEP) method and a method developed recently by Krieger, Li, and Iafrate (KLI) are applied to the band-structure calculations of noble-gas and alkali halide solids employing the self-interaction-corrected (SIC) local-spin-density (LSD) approximation for the exchange-correlation energy functional. The resulting band gaps from both calculations are found to be in fair agreement with the experimental values. The discrepancies are typically within a few percent with results that are nearly the same as those of previously published orbital-dependent multipotential SIC calculations, whereas the LSD results underestimate the band gaps by as much as 40%. As in the LSD---and it is believed to be the case even for the exact Kohn-Sham potential---both the OEP and KLI predict valence-band widths which are narrower than those of experiment. In all cases, the KLI method yields essentially the same results as the OEP.

  14. A coupled-cluster study on the noble gas binding ability of metal cyanides versus metal halides (metal = Cu, Ag, Au).

    PubMed

    Pan, Sudip; Gupta, Ashutosh; Saha, Ranajit; Merino, Gabriel; Chattaraj, Pratim K

    2015-11-05

    A coupled-cluster study is carried out to investigate the efficacy of metal(I) cyanide (MCN; M = Cu, Ag, Au) compounds to bind with noble gas (Ng) atoms. The M-Ng bond dissociation energy, enthalpy change, and Gibbs free energy change for the dissociation processes producing Ng and MCN are computed to assess the stability of NgMCN compounds. The Ng binding ability of MCN is then compared with the experimentally detected NgMX (X = F, Cl, Br) compounds. While CuCN and AgCN have larger Ng binding ability than those of MCl and MBr (M = Cu, Ag), AuCN shows larger efficacy toward bond formation with Ng than that of AuBr. Natural bond orbital analysis, energy decomposition analysis in conjunction with the natural orbital for chemical valence theory, and the topological analysis of the electron density are performed to understand the nature of interaction occurring in between Ng and MCN. The Ng-M bonds in NgMCN are found comprise an almost equal contribution from covalent and electrostatic types of interactions. The different electron density descriptors also reveal the partial covalent character in the concerned bonds.

  15. Noble Gas (Argon and Xenon)-Saturated Cold Storage Solutions Reduce Ischemia-Reperfusion Injury in a Rat Model of Renal Transplantation

    PubMed Central

    Irani, Y.; Pype, J.L.; Martin, A.R.; Chong, C.F.; Daniel, L.; Gaudart, J.; Ibrahim, Z.; Magalon, G.; Lemaire, M.; Hardwigsen, J.

    2011-01-01

    Background Following kidney transplantation, ischemia-reperfusion injury contributes to adverse outcomes. The purpose of this study was to determine whether a cold-storage solution saturated with noble gas (xenon or argon) could limit ischemia-reperfusion injury following cold ischemia. Methods Sixty Wistar rats were randomly allocated to 4 experimental groups. Kidneys were harvested and then stored for 6 h before transplantation in cold-storage solution (Celsior®) saturated with either air, nitrogen, xenon or argon. A syngenic orthotopic transplantation was performed. Renal function was determined on days 7 and 14 after transplantation. Transplanted kidneys were removed on day 14 for histological and immunohistochemical analyses. Results Creatinine clearance was significantly higher and urinary albumin significantly lower in the argon and xenon groups than in the other groups at days 7 and 14. These effects were considerably more pronounced for argon than for xenon. In addition, kidneys stored with argon, and to a lesser extent those stored with xenon, displayed preserved renal architecture as well as higher CD-10 and little active caspase-3 expression compared to other groups. Conclusion Argon- or xenon-satured cold-storage solution preserved renal architecture and function following transplantation by reducing ischemia-reperfusion injury. PMID:22470401

  16. Evidence for prolonged El Nino-like conditions in the Pacific during the Late Pleistocene: a 43 ka noble gas record from California groundwaters

    USGS Publications Warehouse

    Kulongoski, J.T.; Hilton, David R.; Izbicki, J.A.; Belitz, K.

    2009-01-01

    Information on the ocean/atmosphere state over the period spanning the Last Glacial Maximum - from the Late Pleistocene to the Holocene - provides crucial constraints on the relationship between orbital forcing and global climate change. The Pacific Ocean is particularly important in this respect because of its dominant role in exporting heat and moisture from the tropics to higher latitudes. Through targeting groundwaters in the Mojave Desert, California, we show that noble gas derived temperatures in California averaged 4.2 ?? 1.1 ??C cooler in the Late Pleistocene (from ???43 to ???12 ka) compared to the Holocene (from ???10 to ???5 ka). Furthermore, the older groundwaters contain higher concentrations of excess air (entrained air bubbles) and have elevated oxygen-18/oxygen-16 ratios (??18O) - indicators of vigorous aquifer recharge, and greater rainfall amounts and/or more intense precipitation events, respectively. Together, these paleoclimate indicators reveal that cooler and wetter conditions prevailed in the Mojave Desert from ???43 to ???12 ka. We suggest that during the Late Pleistocene, the Pacific ocean/atmosphere state was similar to present-day El Nino-like patterns, and was characterized by prolonged periods of weak trade winds, weak upwelling along the eastern Pacific margin, and increased precipitation in the southwestern U.S.

  17. Effect of hydration on the organo-noble gas molecule HKrCCH: role of krypton in the stabilization of hydrated HKrCCH complexes.

    PubMed

    Biswas, Biswajit; Singh, Prashant Chandra

    2015-11-11

    The effect of hydration on the fluorine free organo-noble gas compound HKrCCH and the role of krypton in the stabilization of the hydrated HKrCCH complexes have been investigated using the quantum chemical calculations on the HKrCCH-(H2O)n=1-6 clusters. Structure and energetics calculations show that water stabilizes HKrCCH through the π hydrogen bond in which the OH group of water interacts with the C[triple bond, length as m-dash]C group of HKrCCH. A maximum of four water molecules can directly interact with the C[triple bond, length as m-dash]C of HKrCCH and after that only inter-hydrogen bonding takes place between the water molecules indicating that the primary hydration shell contains four water molecules. Atom in molecule analysis depicts that π hydrogen bonded complexes of the hydrated HKrCCH are cyclic structures in which the OKr interaction cooperates in the formation of strong O-HC[triple bond, length as m-dash]C interaction. Structure, energetics and charge analysis clearly established that krypton plays an important role in the stabilization as well as the formation of the primary hydration shell of hydrated HKrCCH complexes.

  18. Solute transport in formations of very low permeability: profiles of stable isotope and dissolved noble gas contents of pore water in the Opalinus Clay, Mont Terri, Switzerland

    NASA Astrophysics Data System (ADS)

    Rübel, André P.; Sonntag, Christian; Lippmann, Johanna; Pearson, F. J.; Gautschi, Andreas

    2002-04-01

    Pore water profiles of water, stable isotope, and dissolved noble gas content have been determined across the Opalinus Clay and adjacent formations at the rock laboratory at Mont Terri. We have found enhanced helium contents (up to [ 4He] = 1 × 10 -4 cubic centimeters at standard pressure and temperature per gram of pore water) and argon isotope ratios ( 40Ar/ 36Ar ratios up to 334) due to accumulation of 4He and 40Ar produced in situ. The helium profile was found to be in steady state with respect to in situ production and diffusive loss into the adjacent limestones where groundwater circulates. From this profile a representative mean value of the apparent diffusion coefficient for helium in the pore water of the whole formation was derived for the first time to be D a = 3.5 × 10 -11 m 2 · s -1, which is more than two orders of magnitude lower than the diffusion coefficient D 0 in free water. The stable isotope profile, however, indicates a component of fossil marine pore water, which has not yet been replaced by molecular diffusion of meteoric water from the adjacent limestone and shale formations over the past 10 million years.

  19. Noble metal alloy clusters in the gas phase derived from protein templates: unusual recognition of palladium by gold

    NASA Astrophysics Data System (ADS)

    Baksi, Ananya; Pradeep, T.

    2013-11-01

    Matrix assisted laser desorption ionization of a mixture of gold and palladium adducts of the protein lysozyme (Lyz) produces naked alloy clusters of the type Au24Pd+ in the gas phase. While a lysozyme-Au adduct forms Au18+, Au25+, Au38+ and Au102+ ions in the gas phase, lysozyme-Pd alone does not form any analogous cluster. Addition of various transition metal ions (Ag+, Pt2+, Pd2+, Cu2+, Fe2+, Ni2+ and Cr3+) in the adducts contributes to drastic changes in the mass spectrum, but only palladium forms alloys in the gas phase. Besides alloy formation, palladium enhances the formation of specific single component clusters such as Au38+. While other metal ions like Cu2+ help forming Au25+ selectively, Fe2+ catalyzes the formation of Au25+ over all other clusters. Gas phase cluster formation occurs from protein adducts where Au is in the 1+ state while Pd is in the 2+ state. The creation of alloys in the gas phase is not affected whether a physical mixture of Au and Pd adducts or a Au and Pd co-adduct is used as the precursor. The formation of Au cores and AuPd alloy cores of the kind comparable to monolayer protected clusters implies that naked clusters themselves may be nucleated in solution.Matrix assisted laser desorption ionization of a mixture of gold and palladium adducts of the protein lysozyme (Lyz) produces naked alloy clusters of the type Au24Pd+ in the gas phase. While a lysozyme-Au adduct forms Au18+, Au25+, Au38+ and Au102+ ions in the gas phase, lysozyme-Pd alone does not form any analogous cluster. Addition of various transition metal ions (Ag+, Pt2+, Pd2+, Cu2+, Fe2+, Ni2+ and Cr3+) in the adducts contributes to drastic changes in the mass spectrum, but only palladium forms alloys in the gas phase. Besides alloy formation, palladium enhances the formation of specific single component clusters such as Au38+. While other metal ions like Cu2+ help forming Au25+ selectively, Fe2+ catalyzes the formation of Au25+ over all other clusters. Gas phase cluster

  20. Is Submarine Groundwater Discharge a Gas Hydrate Formation Mechanism on the Circum-Arctic Shelf?

    NASA Astrophysics Data System (ADS)

    Frederick, J. M.; Buffett, B. A.

    2015-12-01

    Methane hydrate is an ice-like solid that can sequester large quantities of methane gas in marine sediments along most continental margins where thermodynamic conditions permit its formation. Along the circum-Arctic shelf, relict permafrost-associated methane hydrate deposits formed when non-glaciated portions of the shelf experienced subaerial exposure during ocean transgressions. Gas hydrate stability and the permeability of circum-Arctic shelf sediments to gas migration is closely linked with relict submarine permafrost. Heat flow observations on the Alaskan North Slope and Canadian Beaufort Shelf suggest the movement of groundwater offshore, but direct observations of groundwater flow do not exist. Submarine discharge, an offshore flow of fresh, terrestrial groundwater, can affect the temperature and salinity field in shelf sediments, and may be an important factor in submarine permafrost and gas hydrate evolution on the Arctic continental shelf. Submarine groundwater discharge may also enhance the transport of organic matter for methanogenesis within marine sediments. Because it is buoyancy-driven, the velocity field contains regions with a vertical (upward) component as groundwater flows offshore. This combination of factors makes submarine groundwater discharge a potential mechanism controlling permafrost-associated gas hydrate evolution on the Arctic continental shelf. In this study, we quantitatively investigate the feasibility of submarine groundwater discharge as a control on permafrost-associated gas hydrate formation on the Arctic continental shelf, using the Canadian Beaufort Shelf as an example. We have developed a shelf-scale, two-dimensional numerical model based on the finite volume method for two-phase flow of pore fluid and methane gas within Arctic shelf sediments. The model tracks the evolution of the pressure, temperature, salinity, methane gas, methane hydrate, and permafrost fields given imposed boundary conditions, with latent heat of

  1. Environmental policy constraints for acidic exhaust gas scrubber discharges from ships.

    PubMed

    Ülpre, H; Eames, I

    2014-11-15

    Increasingly stringent environmental legislation on sulphur oxide emissions from the combustion of fossil fuels onboard ships (International Maritime Organization (IMO) Regulation 14) can be met by either refining the fuel to reduce sulphur content or by scrubbing the exhaust gases. Commonly used open loop marine scrubbers discharge warm acidic exhaust gas wash water into the sea, depressing its pH. The focus on this paper is on the physics and chemistry behind the disposal of acidic discharges in seawater. The IMO Marine Environment Protection Committee (MEPC 59/24/Add.1 Annex 9) requires the wash water to reach a pH greater than 6.5 at a distance of 4m from the point of discharge. We examine the engineering constraints, specifically size and number of ports, to identify the challenges of meeting regulatory compliance.

  2. Characterisation of a dielectric barrier surface twin discharge using defined gas mixtures

    NASA Astrophysics Data System (ADS)

    Offerhaus, Björn; Kogelheide, Friederike; Lackmann, Jan-Wilm; Bibinov, Nikita; Smith, Ryan; Bracht, Vera; Stapelmann, Katharina; Awakowicz, Peter; Aept Team; Bimap Team

    2016-09-01

    In the last decades extensive study has been performed on dielectric barrier discharges (DBDs) in several fields of applications of non-thermal atmospheric pressure plasmas. Their applicability ranges from health-promoting effects to the human skin to air decontamination combined with a rather good scalability. Further insight into their physical and chemical properties is mandatory for a proper configuration of plasma sources for a given application. In our case a dielectric barrier surface twin discharge is ignited in different gas mixtures. The surface discharge electrode is made of an Al2O3 plate working as a dielectric barrier and grid-structured copper traces on each side of the plate. The electrode is connected to a HV-HF plasma generator with external transformer. The plasma parameters are determined via OES using an absolutely calibrated Echelle-spectrometer.

  3. Compressor discharge bleed air circuit in gas turbine plants and related method

    DOEpatents

    Anand, Ashok Kumar; Berrahou, Philip Fadhel; Jandrisevits, Michael

    2002-01-01

    A gas turbine system that includes a compressor, a turbine component and a load, wherein fuel and compressor discharge bleed air are supplied to a combustor and gaseous products of combustion are introduced into the turbine component and subsequently exhausted to atmosphere. A compressor discharge bleed air circuit removes bleed air from the compressor and supplies one portion of the bleed air to the combustor and another portion of the compressor discharge bleed air to an exhaust stack of the turbine component in a single cycle system, or to a heat recovery steam generator in a combined cycle system. In both systems, the bleed air diverted from the combustor may be expanded in an air expander to reduce pressure upstream of the exhaust stack or heat recovery steam generator.

  4. Compressor discharge bleed air circuit in gas turbine plants and related method

    DOEpatents

    Anand, Ashok Kumar; Berrahou, Philip Fadhel; Jandrisevits, Michael

    2003-04-08

    A gas turbine system that includes a compressor, a turbine component and a load, wherein fuel and compressor discharge bleed air are supplied to a combustor and gaseous products of combustion are introduced into the turbine component and subsequently exhausted to atmosphere. A compressor discharge bleed air circuit removes bleed air from the compressor and supplies one portion of the bleed air to the combustor and another portion of the compressor discharge bleed air to an exhaust stack of the turbine component in a single cycle system, or to a heat recovery steam generator in a combined cycle system. In both systems, the bleed air diverted from the combustor may be expanded in an air expander to reduce pressure upstream of the exhaust stack or heat recovery steam generator.

  5. Study of the switching rate of gas-discharge devices based on the open discharge with counter-propagating electron beams

    SciTech Connect

    Bokhan, P. A.; Gugin, P. P.; Lavrukhin, M. A.; Zakrevsky, Dm. E.

    2015-06-15

    The switching rate of gas-discharge devices “kivotrons” based on the open discharge with counter-propagating electron beams has been experimentally studied. Structures with 2-cm{sup 2} overall cathode area were examined. The switching time was found to show a monotonic decrease with increasing the working-gas helium pressure and with increasing the voltage across the discharge gap at breakdown. The minimum switching time was found to be ∼240 ps at 17 kV voltage, and the maximum rate of electric-current rise limited by the discharge-circuit inductance was 3 × 10{sup 12 }A/s.

  6. Computational modelling of discharges within the impulse plasma deposition accelerator with a gas valve

    NASA Astrophysics Data System (ADS)

    Rabiński, Marek; Choduń, Rafał; Nowakowska-Langier, Katarzyna; Zdunek, Krzysztof

    2014-05-01

    The paper presents computational studies of working medium dynamics during the impulse plasma deposition (IPD) process when the electric discharge in an interelectrode region is initiated by a gas introduced through a fast-acting valve. During the computational simulations the influence of different discharge parameters on the plasma dynamics was studied. The optimization of the device includes the calculation of the current sheath movement and the sensibility analysis of its dynamics to geometrical and operational parameters. It was found that gas injection can be considered as a useful tool in optimization of the coatings obtained with the IPD technique. Computer simulation results indicate the direction of changes in the development and application of the analysed surface engineering method.

  7. A sensitive gas chromatography detector based on atmospheric pressure chemical ionization by a dielectric barrier discharge.

    PubMed

    Kirk, Ansgar T; Last, Torben; Zimmermann, Stefan

    2017-02-03

    In this work, we present a novel concept for a gas chromatography detector utilizing an atmospheric pressure chemical ionization which is initialized by a dielectric barrier discharge. In general, such a detector can be simple and low-cost, while achieving extremely good limits of detection. However, it is non-selective apart from the use of chemical dopants. Here, a demonstrator manufactured entirely from fused silica capillaries and printed circuit boards is shown. It has a size of 75×60×25mm(3) and utilizes only 2W of power in total. Unlike other known discharge detectors, which require high-purity helium, this detector can theoretically be operated using any gas able to form stable ion species. Here, purified air is used. With this setup, limits of detection in the low parts-per-billion range have been obtained for acetone.

  8. Electron density measurement in gas discharge plasmas by optical and acoustic methods

    NASA Astrophysics Data System (ADS)

    Biagioni, A.; Anania, M. P.; Bellaveglia, M.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Filippi, F.; Mostacci, A.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.

    2016-08-01

    Plasma density represents a very important parameter for both laser wakefield and plasma wakefield acceleration, which use a gas-filled capillary plasma source. Several techniques can be used to measure the plasma density within a capillary discharge, which are mainly based on optical diagnostic methods, as for example the well-known spectroscopic method using the Stark broadening effect. In this work, we introduce a preliminary study on an alternative way to detect the plasma density, based on the shock waves produced by gas discharge in a capillary. Firstly, the measurements of the acoustic spectral content relative to the laser-induced plasmas by a solid target allowed us to understand the main properties of the acoustic waves produced during this kind of plasma generation; afterwards, we have extended such acoustic technique to the capillary plasma source in order to calibrate it by comparison with the stark broadening method.

  9. Static gas-liquid interfacial direct current discharge plasmas using ionic liquid cathode

    SciTech Connect

    Kaneko, T.

    2009-05-15

    Due to the unique properties of ionic liquids such as their extremely low vapor pressure and high heat capacity, we have succeeded in creating the static and stable gas (plasmas)-liquid (ionic liquids) interfacial field using a direct current discharge under a low gas pressure condition. It is clarified that the ionic liquid works as a nonmetal liquid electrode, and furthermore, a secondary electron emission coefficient of the ionic liquid is larger than that of conventional metal electrodes. The plasma potential structure of the gas-liquid interfacial region, and resultant interactions between the plasma and the ionic liquid are revealed by changing a polarity of the electrode in the ionic liquid. By utilizing the ionic liquid as a cathode electrode, the positive ions in the plasma region are found to be irradiated to the ionic liquid. This ion irradiation causes physical and chemical reactions at the gas-liquid interfacial region without the vaporization of the ionic liquid.

  10. Control of stochastic sensitivity in a stabilization problem for gas discharge system

    SciTech Connect

    Bashkirtseva, Irina

    2015-11-30

    We consider a nonlinear dynamic stochastic system with control. A problem of stochastic sensitivity synthesis of the equilibrium is studied. A mathematical technique of the solution of this problem is discussed. This technique is applied to the problem of the stabilization of the operating mode for the stochastic gas discharge system. We construct a feedback regulator that reduces the stochastic sensitivity of the equilibrium, suppresses large-amplitude oscillations, and provides a proper operation of this engineering device.

  11. VUV generation by adiabatically expanded and excited by a DC electrical discharge Argon gas

    SciTech Connect

    Pipergias, K.; Yasemidis, D.; Reppa, E.; Pentaris, D.; Efthimiopoulos, T.; Merlemis, N.; Giannetas, V.

    2010-11-10

    We investigate the emission of Argon (Ar) gas which is adiabatically expanded through a nozzle and excited using a DC electrical discharge. Because of the expansion and the electronic excitation, Ar dimers and clusters are formed, which give radiation in the second (2nd) and in the third (3rd) continua of Ar, centered at about 126 and 254 nm respectively. We particularly focus our study on the 2nd continuum, in order to develop a laser at this wavelength.

  12. Longitudinal Plasmoid in High-Speed Vortex Gas Flow Created by Capacity HF Discharge

    DTIC Science & Technology

    2010-10-28

    plasmoid (b) and central plasmoid (a) created by transversal HF discharge in N2 vortex flow. Q= 4G /s Nel=1.7kW, P=40Torr a. TR=600K TV =3500K...thermocouples,  Measurement of rotation temperature Tr, vibration temperature Tv , electron temperature Te of vortex plasmoid by optical spectroscopy...Optical laser shadow system (or optical interferometer) for gas flow visualization,  Electric shunts and calibrated resistor divider with digital

  13. Electron beam method and apparatus for obtaining uniform discharges in electrically pumped gas lasers

    DOEpatents

    Fenstermacher, Charles A.; Boyer, Keith

    1986-01-01

    A method and apparatus for obtaining uniform, high-energy, large-volume electrical discharges in the lasing medium of a gas laser whereby a high-energy electron beam is used as an external ionization source to ionize substantially the entire volume of the lasing medium which is then readily pumped by means of an applied potential less than the breakdown voltage of the medium. The method and apparatus are particularly useful in CO.sub.2 laser systems.

  14. A Method for Removal of CO from Exhaust Gas Using Pulsed Corona Discharge.

    PubMed

    Li, Xiaohong; Yang, Lin; Lei, Yuyong; Wang, Jiansheng; Lu, Yiyu

    2000-10-01

    An experimental study of the oxidation of CO in exhaust gas from a motorcycle has been carried out using plasma chemical reactions in a pulsed corona discharge. In the process, some main parameters, such as the initial CO concentration, amplitude and frequency of pulses, residence time, reactor volume, and relative humidity (RH), as well as their effects on CO removal characteristics, were investigated. O3, which is beneficial to reducing CO, was produced during CO removal . When the exhaust gas was at ambient temperature, more than 80% CO removal efficiency was realized at an initial concentration of 288 ppm in a suitable range of the parameters.

  15. A method for removal of CO from exhaust gas using pulsed corona discharge.

    PubMed

    Li, X; Yang, L; Lei, Y; Wang, J; Lu, Y

    2000-10-01

    An experimental study of the oxidation of CO in exhaust gas from a motorcycle has been carried out using plasma chemical reactions in a pulsed corona discharge. In the process, some main parameters, such as the initial CO concentration, amplitude and frequency of pulses, residence time, reactor volume, and relative humidity (RH), as well as their effects on CO removal characteristics, were investigated. O3, which is beneficial to reducing CO, was produced during CO removal. When the exhaust gas was at ambient temperature, more than 80% CO removal efficiency was realized at an initial concentration of 288 ppm in a suitable range of the parameters.

  16. Theory of a stationary microwave discharge with multiply charged ions in an expanding gas jet

    NASA Astrophysics Data System (ADS)

    Shalashov, A. G.; Abramov, I. S.; Golubev, S. V.; Gospodchikov, E. D.

    2016-08-01

    The formation of a jet of a nonequilibrium multiply charged ion plasma is studied in the inhomogeneous gas jet. It is shown that the geometrical divergence of the jet restricts the maximum ion charge state and results in the spatial localization of the discharge. Stationary solutions corresponding to such regimes are constructed. The model proposed can be used to optimize modern experiments on generation of hard UV radiation due to the line emission of multiply ionized atoms in a gas jet heated by high-power millimeter and submillimeter radiation.

  17. Time-dependent coupled kinetics and gas temperature in N2-NO pulsed discharges

    NASA Astrophysics Data System (ADS)

    Pintassilgo, Carlos D.; Welzel, Stefan

    2016-10-01

    A self-consistent time-dependent kinetic model coupled to the gas thermal balance equation is presented for a N2-1%NO millisecond pulsed DC discharge at a pressure of 266 Pa (2 Torr) and a current of 35 mA. The model provides the temporal evolution of the most important heavy species of interest to this work such as N2(X1Σg+, v), NO(X2Π), N2(A3Σu+), N2(a'1Σu-), N(4S) and O(3P), simultaneously with the time-dependent variation of the gas temperature. Predicted results for NO number densities during the pulse are compared to experimental ones measured by time-resolved quantum cascade laser absorption spectroscopy (QCLAS). The agreement between experiment and modelling predictions is very reasonable, mainly until a pulse duration of 2 ms, revealing the temporal evolution of the most important creation and loss mechanisms of NO(X). Simulations show a slow gas heating during the first millisecond. Thereafter, gas heating is accelerated and levels off at a time ~ 40 ms. These effects are explained and discussed in detail, together with the analysis of the fraction of the discharge power transferred to gas heating.

  18. Dynamics of spiral patterns in gas discharge detected by optical method

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Wang, Mingyi; Liu, Shuhua

    2016-09-01

    The dynamics behavior of spiral patterns is investigated in gas discharge using optical method. Rich kinks of spiral patterns are obtained and the formation and evolution process is investigated. The process of pattern formation is breakdown -> hexagon -> bee comb-like -> strip -> spiral -> chaos. Spiral pattern always formed after the strip pattern. It is found that the temperature of the water electrodes plays an important role in the spiral patterns formation. When it exceeds 20°C no spiral has been obtained. The discharge current waveform and the emission spectrum of the discharge have been measured when the filaments self-organized in spiral pattern. Electron excited temperature of forming spiral pattern is calculated using intensity ratio method. It is found that the electron excited temperature of spiral pattern increase as the power supply frequency increased. Relation between wavelength and discharge parameter has been measured. It shows that the wavelength of spiral pattern increases as the discharge gap increases, and decreases as the air ratio mixed in argon increases. Accompanying measurements proved that the wavelength is approximately linear to the square root of the spiral rotating period .This work has useful reference value for studying pattern dynamics.

  19. Improvement of discharge pumping for pulsed high-pressure gas lasers

    NASA Astrophysics Data System (ADS)

    Velikin, Alexei A.; Galaktionov, Imar I.; Belov, Sergei N.; Kanatenko, Michael A.; Podmoshensky, Ivan V.

    1990-10-01

    This paper presents an upgrading technique using anisotropic-resistive (AR) electrodes and radionucide pre-ionization for discharge pumping of pulsed high-pressure gas lasers. Plutonium-238, polonium-210 and krypton-85 radionucide alpha and beta radiation sources were effectivelyused for pre-ionization in the volumetric discharge setup. These sources feature high stability, versatility and simplicity as compared to traditional UV irradiation and electron beam ionization techniques. The use of AR electrodes makes it possible to suppress efficiently electrode instabilities in volumetric discharges with various power modes of operation and to increase energy input in an active medium by a factor of 2-3 due to extended discharge duration in the volumetric phase. With the use of the AR cathode as an alternative to a metal one, a commercially available photo-ionization 2 laser gained two-fold increase in generation energy. It also showed a stable operation of the volumetric discharge in Ar, Kr, Xe mixtures with He at atmospheric pressure and allowed us to obtain generation in An, Kr!, Xe! spectral lines.

  20. Effect of pulsed corona discharge voltage and feed gas flow rate on dissolved ozone concentration

    NASA Astrophysics Data System (ADS)

    Prasetyaningrum, A.; Ratnawati, Jos, B.

    2015-12-01

    Ozonization is one of the methods extensively used for water purification and degradation of organic materials. Ozone (O3) is recognized as a powerful oxidizing agent. Due to its strong oxidability and better environmental friendless, ozone increasing being used in domestic and industrial applications. Current technology in ozone production utilizes several techniques (corona discharge, ultra violet radiation and electrolysis). This experiment aimed to evaluating effect of voltage and gas flow rate on ozone production with corona discharge. The system consists of two net-type stainless steel electrode placed in a dielectric barrier. Three pulsed voltage (20, 30, 40 KV) and flow rate (5, 10, 15 L/min) were prepare for operation variable at high frequency (3.7 kHz) with AC pulsed power supply. The dissolved ozone concentration depends on the applied high-voltage level, gas flow rate and the discharge exposure duration. The ozone concentration increases with decreasing gas flow rate. Dissolved ozone concentrations greater than 200 ppm can be obtained with a minimum voltage 40 kV.

  1. Theoretical Study of Plasma Parameters Dependence on Gas Temperature in an Atmospheric Pressure Argon Microwave Discharge

    SciTech Connect

    Pencheva, M.; Benova, E.; Zhelyazkov, I.

    2008-03-19

    The gas temperature is an important parameter in many applications of atmospheric pressure microwave discharges (MW). That is why it is necessary to study the influence of that temperature on the plasma characteristics. Our investigation is based on a self-consistent model including the wave electrodynamics and gas-discharge kinetics. We adopt a blocks' energy structure of the argon excited atom. More specifically, we consider 7 different blocks of states, namely 4s, 4p, 3d, 5s, 5p, 4d, and 6s. Each block k is characterized by its effective energy uk (derived as an average energy of all levels in the block), as well as its effective g-factor and population. The argon dimmer, atomic and molecular ions are also taken into account in the model. We solve the Boltzmann equation in order to get the electron energy distribution function and the necessary rate constants of the elementary processes. The collisional-radiative part of the model is based on 87 processes. As a result we obtain the electron and ions' number densities, mean electron energy, mean power for sustaining an electron--ion pair in the discharge bulk, as well as the population of the excited blocks of states of the argon atom as functions of the gas temperature.

  2. Radiation properties of low-pressure discharges in rare-gas mixtures containing xenon

    NASA Astrophysics Data System (ADS)

    Gortchakov, S.; Uhrlandt, D.

    2005-02-01

    Glow discharges in mixtures of xenon with other rare gases can be used as alternatives to mercury-containing UV/VUV radiation sources and fluorescent lamps. The advantages of such sources are environmental compatibility, instant light output after switching on, and less pronounced temperature dependence. However, the optimum choice of the gas composition with respect to the maximum efficiency and power of the xenon resonance radiation as well as to a stable discharge operation still remains an open question. The dc cylindrical positive column of low-pressure discharges in rare-gas mixtures is studied by a detailed self-consistent kinetic description. The influence of the buffer gases helium, neon and argon as well as the appropriate choice of the xenon admixture are revealed by analysing different triple-gas mixtures. Changes in the global power budget and the radial structure of the plasma are discussed. A mixture of He and about 1-2% Xe arises as an optimum composition.

  3. Effect of pulsed corona discharge voltage and feed gas flow rate on dissolved ozone concentration

    SciTech Connect

    Prasetyaningrum, A. Ratnawati,; Jos, B.

    2015-12-29

    Ozonization is one of the methods extensively used for water purification and degradation of organic materials. Ozone (O{sub 3}) is recognized as a powerful oxidizing agent. Due to its strong oxidability and better environmental friendless, ozone increasing being used in domestic and industrial applications. Current technology in ozone production utilizes several techniques (corona discharge, ultra violet radiation and electrolysis). This experiment aimed to evaluating effect of voltage and gas flow rate on ozone production with corona discharge. The system consists of two net-type stainless steel electrode placed in a dielectric barrier. Three pulsed voltage (20, 30, 40 KV) and flow rate (5, 10, 15 L/min) were prepare for operation variable at high frequency (3.7 kHz) with AC pulsed power supply. The dissolved ozone concentration depends on the applied high-voltage level, gas flow rate and the discharge exposure duration. The ozone concentration increases with decreasing gas flow rate. Dissolved ozone concentrations greater than 200 ppm can be obtained with a minimum voltage 40 kV.

  4. Fast Plasma Shutdowns Obtained With Massive Hydrogenic, Noble and Mixed-Gas Injection in DIII-D

    SciTech Connect

    Wesley, J; Hollmann, E; Jernigan, T; Van Zeeland, M; Baylor, L; Boedo, J; Combs, S; Evans, T; Groth, M; Humphreys, D; Hyatt, A; Izzo, V; James, A; Moyer, R; Parks, P; Rudakov, D; Strait, E; Wu, W; Yu, J

    2008-10-14

    Massive gas injection (MGI) experiments with H{sub 2}, D{sub 2}, He, Ne and Ar and 'mixed' (H{sub 2} + Ar and D{sub 2} + Ne) gases injected into 'ITER-similar' 1.3-MA H-mode plasmas are described. Gas species, injected quantity Q, delivery time, t{sub inj}, rate-of-rise and intrinsic and added impurities are found to affect the attributes and 'disruption mitigation' efficacies of the resulting fast plasma shutdowns. With sufficient Q and t{sub inj} < {approx}2 ms, all species provide fast (within {le} {approx}3 ms), more-or-less uniform radiative dissipation of the 0.7-MJ plasma thermal energy and fast but benign current decays with reduced vacuum vessel vertical force impulse. With pure and mixed low-Z gases, free-electron densities up to 2 x 10{sup 21} m{sup -3} are obtained. While these densities are high relative to normal tokamak densities, they are still an order of magnitude smaller than the densities required for unconditional mitigation of the runaway electron avalanche process. Key information relevant to the design of effective MGI systems for larger tokamaks and ITER has been obtained and the collective species and Q-variation data provides a rich basis for validation of emerging 2D + t MHD/transport/radiation models.

  5. Influence of the microstructure on the charge transport in semiconductor gas discharge electronic devices

    NASA Astrophysics Data System (ADS)

    Sadiq, Y.; Aktas, K.; Acar, S.; Salamov, B. G.

    2010-06-01

    Experimental results with nonlinear features and hysteresis characteristics in the pre-breakdown Townsend discharge regime is studied experimentally for a planar microstructure with a GaAs photocathode, an interelectrode gap thickness of 445 μm and gas pressure in the range 28-66 Torr. An investigation of the effect of the voltage amplitude on the dynamics of transient processes in the semiconductor gas discharge microstructure was made to explain the mechanism of the current decay. A linearly increasing voltage (i.e. 3 V s and 5 V s voltage rate) was applied to the system to study current instability. The nonlinear transport mechanism of carriers through the cross-section of the discharge gap i.e. the appearance of the spatio-temporal self-organization of a nonlinear dissipative system, non-equilibrium electron motion and autocatalytic effect of carrier accumulation in the gas layer attributed to decrease of current with the increase of applied voltage. It is established that the pre-breakdown current decreases anomalously with increase of the feeding voltage and illumination intensity on the photocathode. The current density change through the cross-section of the discharge gap, i.e. the appearance of the spatio-temporal self-organization of nonlinear dissipative systems, causes these observed effects. On the other hand, the oscillatory current with non-monotonic N-shaped and hysteresis peculiarities in post-breakdown region is known to be related to a nonlinear mechanism of carrier transport in the semiconductor material caused by EL2 defect centres.

  6. Analytical model of atmospheric pressure, helium/trace gas radio-frequency capacitive Penning discharges

    NASA Astrophysics Data System (ADS)

    Lieberman, M. A.

    2015-04-01

    Atmospheric and near-atmospheric pressure, helium/trace gas radio-frequency capacitive discharges have wide applications. An analytic equilibrium solution is developed based on a homogeneous, current-driven discharge model that includes sheath and electron multiplication effects and contains two electron populations. A simplified chemistry is used with four unknown densities: hot electrons, warm electrons, positive ions and metastables. The dominant electron-ion pair production is Penning ionization, and the dominant ion losses are to the walls. The equilibrium particle balances are used to determine a single ionization balance equation for the warm electron temperature, which is solved, both approximately within the α- and γ-modes, and exactly by conventional root-finding techniques. All other discharge parameters are found, the extinction and α-γ transitions are determined, and a similarity law is given, in which the equilibrium for a short gap at high pressure can be rescaled to a longer gap at lower pressure. Within the α-mode, we find the scaling of the discharge parameters with current density, frequency, gas density and gap width. The analytic results are compared to hybrid and particle-in-cell (PIC) results for He/0.1%N2, and to hybrid results for He/0.1%H2O. For nitrogen, a full reaction set is used for the hybrid calculations and a simplified reaction set for the PIC simulations. For the chemically complex water trace gas, a set of 209 reactions among 43 species is used. The analytic results are found to be in reasonably good agreement with the more elaborate hybrid and PIC calculations.

  7. [The influence factors of SO2 removal in flue gas with a pulsed corona discharge].

    PubMed

    Li, J; Wu, Y; Wang, N; Li, G; Zhang, Y

    2001-09-01

    The influence of the operation parameters on SO2 removal rate with a pulsed corona discharge was studied in this paper, in order to promote the industrial applications of this technology. The flow rate of the flue gas was 1000-3000 m3/h. The SO2 removal rate reached 80%. The range of SO2 concentration in flue gas was 1000-2000 ml/m3. The flue gas temperature was 60 degrees C-80 degrees C. The molecule ratio of NH3 to SO2 was 2. The energy consumption was 3-5 W.h/Nm3. The wire-plane electrode structure and a positive high voltage pulse power supply were used in the experiment.

  8. Nondestructive Evaluation of the J-2X Direct Metal Laser Sintered Gas Generator Discharge Duct

    NASA Technical Reports Server (NTRS)

    Esther, Elizabeth A.; Beshears, Ronald D.; Lash, Rhonda K.

    2012-01-01

    The J-2X program at NASA's Marshall Space Flight Center (MSFC) procured a direct metal laser sintered (DMLS) gas generator discharge duct from Pratt & Whitney Rocketdyne and Morris Technologies for a test program that would evaluate the material properties and durability of the duct in an engine-like environment. DMLS technology was pursued as a manufacturing alternative to traditional techniques, which used off nominal practices to manufacture the gas generator duct's 180 degree turn geometry. MSFC's Nondestructive Evaluation (NDE) Team performed radiographic, ultrasonic, computed tomographic, and fluorescent penetrant examinations of the duct. Results from the NDE examinations reveal some shallow porosity but no major defects in the as-manufactured material. NDE examinations were also performed after hot-fire testing the gas generator duct and yielded similar results pre and post-test and showed no flaw growth or development.

  9. Production of Mg and Al Auger electrons by noble gas ion bombardment of Mg and Al surfaces

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Pepper, S. V.

    1976-01-01

    Relative production efficiencies of Mg and Al Auger electrons by He, Ne, Ar, Kr, and Xe ion bombardment are reported as a function of ion energy for energies not exceeding 3 keV. The experimental apparatus employed consisted of a LEED-Auger system equipped with an ion gun and a four-grid retarding-potential analyzer. It is found that: (1) the shape of the ion-excited Auger signal was independent of the rare gas and quite symmetric; (2) the Al signal was about an order of magnitude smaller than the Mg signal for a given bombarding species and ion-gun voltage; (3) no signal was observed for He(+) bombardment under any of the experimental conditions; (4) signal strengths were independent of temperature and ion dose; (5) the Auger production efficiencies differed by no more than a factor of two among the different gases - except for He(+) - on a given metal; (6) all the signal strengths increased with increasing ion-gun voltage, with no maximum exhibited; and (7) the apparent threshold energy for the Al signal was higher than that for the Mg signal. The differences between the results for the two metals are attributed to the fact that the Al 2p orbital lies deeper in energy and closer to the nucleus than the corresponding Mg orbital.

  10. Singlet delta oxygen production in a 2D micro-discharge array in air: effect of gas residence time and discharge power

    NASA Astrophysics Data System (ADS)

    Nayak, Gaurav; Santos Sousa, João; Bruggeman, Peter J.

    2017-03-01

    The production of singlet delta oxygen (O2(a 1Δg)) is of growing interest for many applications. We report on the measurement of O2(a 1Δg) and ozone (O3) in a room temperature atmospheric pressure discharge in dry air. The plasma source is a 2D array of micro-discharges generated by an alternating current voltage at 20 kHz. The study focuses on the effect of gas flow through the discharge. The maximum investigated flow rate allows reducing the gas residence time in the discharge zone to half the discharge period. Results indicate that the residence time and discharge power have a major effect on the O2(a 1Δg) production. Different O2(a 1Δg) density dependencies on power are observed for different flow rates. Effects of collisional quenching on the as-produced and measured O2(a 1Δg) densities are discussed. The flow rate also allows for control of the O2(a 1Δg) to O3 density ratio in the effluent from 0.7 to conditions of pure O3.

  11. Scenario Analysis of the Impact on Drinking Water Intakes from Bromide in the Discharge of Treated Oil and Gas Wastewater

    EPA Pesticide Factsheets

    EPA scientists created different scenarios for conventional commercial wastewater treatment plants that treat oil and gas wastewaters to evaluate the impact from bromide in discharges by the CWTP plants.

  12. A high-current rail-type gas switch with preionization by an additional corona discharge

    NASA Astrophysics Data System (ADS)

    Antipov, E. I.; Belozerov, O. S.; Krastelev, E. G.

    2016-12-01

    The characteristics of a high-current rail-type gas switch with preionization of the gas (air) in a spark gap by an additional corona discharge are investigated. The experiments were performed in a voltage range of 10-45 kV using a two-electrode switch consisting of two cylindrical electrodes with a diameter of 22 mm and a length of 100 mm and a set of laterally located corona-discharge needles. The requirements for the position and size of the needles are defined for which a corona discharge is ignited before a breakdown of the main gap and does not change to a sparking form, and the entire length of the rail electrodes is efficiently used. The fulfillment of these requirements ensures stable operation of the switch with a small variation of the pulse breakdown voltage, which is not more than 1% for a fixed voltage-pulse rise time in the range from 150 ns to 3.5 μs. A short delay time of the switch breakdown makes it possible to control the two-electrode switch by an overvoltage pulse of nanosecond duration.

  13. Plasma Discharges in Gas Bubbles in Liquid Water: Breakdown Mechanisms and Resultant Chemistry

    NASA Astrophysics Data System (ADS)

    Gucker, Sarah M. N.

    The use of atmospheric pressure plasmas in gases and liquids for purification of liquids has been investigated by numerous researchers, and is highly attractive due to their strong potential as a disinfectant and sterilizer. However, the fundamental understanding of plasma production in liquid water is still limited. Despite the decades of study dedicated to electrical discharges in liquids, many physical aspects of liquids, such as the high inhomogeneity of liquids, complicate analyses. For example, the complex nonlinearities of the fluid have intricate effects on the electric field of the propagating streamer. Additionally, the liquid material itself can vaporize, leading to discontinuous liquid-vapor boundaries. Both can and do often lead to notable hydrodynamic effects. The chemistry of these high voltage discharges on liquid media can have circular effects, with the produced species having influence on future discharges. Two notable examples include an increase in liquid conductivity via charged species production, which affects the discharge. A second, more complicated scenario seen in some liquids (such as water) is the doubling or tripling of molecular density for a few molecule layers around a high voltage electrode. These complexities require technological advancements in optical diagnostics that have only recently come into being. This dissertation investigates several aspects of electrical discharges in gas bubbles in liquids. Two primary experimental configurations are investigated: the first allows for single bubble analysis through the use of an acoustic trap. Electrodes may be brought in around the bubble to allow for plasma formation without physically touching the bubble. The second experiment investigates the resulting liquid phase chemistry that is driven by the discharge. This is done through a dielectric barrier discharge with a central high voltage surrounded by a quartz discharge tube with a coil ground electrode on the outside. The plasma

  14. Breakdown voltage reliability improvement in gas-discharge tube surge protectors employing graphite field emitters

    NASA Astrophysics Data System (ADS)

    Žumer, Marko; Zajec, Bojan; Rozman, Robert; Nemanič, Vincenc

    2012-04-01

    Gas-discharge tube (GDT) surge protectors are known for many decades as passive units used in low-voltage telecom networks for protection of electrical components from transient over-voltages (discharging) such as lightning. Unreliability of the mean turn-on DC breakdown voltage and the run-to-run variability has been overcome successfully in the past by adding, for example, a radioactive source inside the tube. Radioisotopes provide a constant low level of free electrons, which trigger the breakdown. In the last decades, any concept using environmentally harmful compounds is not acceptable anymore and new solutions were searched. In our application, a cold field electron emitter source is used as the trigger for the gas discharge but with no activating compound on the two main electrodes. The patent literature describes in details the implementation of the so-called trigger wires (auxiliary electrodes) made of graphite, placed in between the two main electrodes, but no physical explanation has been given yet. We present experimental results, which show that stable cold field electron emission current in the high vacuum range originating from the nano-structured edge of the graphite layer is well correlated to the stable breakdown voltage of the GDT surge protector filled with a mixture of clean gases.

  15. Electrospray mass spectrometry of methanol and water solutions suppression of electric discharge with SF6 gas.

    PubMed

    Ikonomou, M G; Blades, A T; Kebarle, P

    1991-12-01

    An equation by D. P. H. Smith predicts the capillary voltage required for the onset of electrospray (ES). For different solvents the voltage increases with the square root of the surface tension. Water requires a potential that is 1.8 times higher than that for methanol. This is verified experimentally. The higher potential required for water leads to ES in the presence of corona electric discharge. For low total ES plus corona currents, the electrosprayed analyte ion intensity is not adversely affected by the presence of discharge. At high total currents, there is a large decrease of analyte sensitivity. The sensitivity decrease is probably due to adverse space charge effect at high currents. The discharge can be suppressed by adding sulfur hexafluoride to the ambient gas. Both sensitivity and signal stability are improved. However, the sensitivity still remains lower by a factor of - 4 relative to that observed with methanol. This is attributed to lower efficiency of gas-phase ion formation from charged water, relative to methanol, droplets.

  16. Organic acids enhanced decoloration of azo dye in gas phase surface discharge plasma system.

    PubMed

    Wang, Tiecheng; Qu, Guangzhou; Ren, Jingyu; Sun, Qiuhong; Liang, Dongli; Hu, Shibin

    2016-01-25

    A gas phase surface discharge plasma combined with organic acids system was developed to enhance active species mass transfer and dye-containing wastewater treatment efficacy, with Acid Orange II (AO7) as the model pollutant. The effects of discharge voltage and various organic acid additives (acetic acid, lactic acid and nonoic acid) on AO7 decoloration efficiency were evaluated. The experimental results showed that an AO7 decoloration efficiency of approximately 69.0% was obtained within 4 min of discharge plasma treatment without organic acid addition, which was improved to 82.8%, 83.5% and 88.6% within the same treatment time with the addition of acetic acid, lactic acid and nonoic acid, respectively. The enhancement effects on AO7 decoloration efficiency could be attributed to the decrease in aqueous surface tension, improvement in bubble distribution and shape, and increase in ozone equivalent concentration. The AO7 wastewater was biodegradable after discharge plasma treatment with the addition of organic acid. AO7 decomposition intermediates were analyzed by UV-vis spectrometry and GC-MS; 2-naphthol, 1,4-benzoquinone, phthalic anhydride, coumarin, 1,2-naphthoquinone, and 2-formyl-benzoic acid were detected. A possible pathway for AO7 decomposition in this system was proposed.

  17. Analysis of double-probe characteristics in low-frequency gas discharges and its improvement

    SciTech Connect

    Liu, DongLin Li, XiaoPing; Xie, Kai; Liu, ZhiWei; Shao, MingXu

    2015-01-15

    The double-probe has been used successfully in radio-frequency discharges. However, in low-frequency discharges, the double-probe I-V curve is so much seriously distorted by the strong plasma potential fluctuations that the I-V curve may lead to a large estimate error of plasma parameters. To suppress the distortion, we investigate the double-probe characteristics in low-frequency gas discharge based on an equivalent circuit model, taking both the plasma sheath and probe circuit into account. We discovered that there are two primary interferences to the I-V curve distortion: the voltage fluctuation between two probe tips caused by the filter difference voltage and the current peak at the negative edge of the plasma potential. Consequently, we propose a modified passive filter to reduce the two types of interference simultaneously. Experiments are conducted in a glow-discharge plasma (f = 30 kHz) to test the performance of the improved double probe. The results show that the electron density error is reduced from more than 100% to less than 10%. The proposed improved method is also suitable in cases where intensive potential fluctuations exist.

  18. Fluid clathrate system for continuous removal of heavy noble gases from mixtures of lighter gases

    DOEpatents

    Gross, Kenneth C.; Markun, Francis; Zawadzki, Mary T.

    1998-01-01

    An apparatus and method for separation of heavy noble gas in a gas volume. An apparatus and method have been devised which includes a reservoir containing an oil exhibiting a clathrate effect for heavy noble gases with a reservoir input port and the reservoir is designed to enable the input gas volume to bubble through the oil with the heavy noble gas being absorbed by the oil exhibiting a clathrate effect. The gas having reduced amounts of heavy noble gas is output from the oil reservoir, and the oil having absorbed heavy noble gas can be treated by mechanical agitation and/or heating to desorb the heavy noble gas for analysis and/or containment and allow recycling of the oil to the reservoir.

  19. Fluid clathrate system for continuous removal of heavy noble gases from mixtures of lighter gases

    DOEpatents

    Gross, K.C.; Markun, F.; Zawadzki, M.T.

    1998-04-28

    An apparatus and method are disclosed for separation of heavy noble gas in a gas volume. An apparatus and method have been devised which includes a reservoir containing an oil exhibiting a clathrate effect for heavy noble gases with a reservoir input port and the reservoir is designed to enable the input gas volume to bubble through the oil with the heavy noble gas being absorbed by the oil exhibiting a clathrate effect. The gas having reduced amounts of heavy noble gas is output from the oil reservoir, and the oil having absorbed heavy noble gas can be treated by mechanical agitation and/or heating to desorb the heavy noble gas for analysis and/or containment and allow recycling of the oil to the reservoir. 6 figs.

  20. Plasma ionization frequency, edge-to-axis density ratio, and density on axis of a cylindrical gas discharge

    SciTech Connect

    Palacio Mizrahi, J. H.

    2014-06-15

    A rigorous derivation of expressions, starting from the governing equations, for the ionization frequency, edge-to-axis ratio of plasma density, plasma density at the axis, and radially averaged plasma density in a cylindrical gas discharge has been obtained. The derived expressions are simple and involve the relevant parameters of the discharge: Cylinder radius, axial current, and neutral gas pressure. The found expressions account for ion inertia, ion temperature, and changes in plasma ion collisionality.

  1. Development of a parallel implicit solver of fluid modeling equations for gas discharges

    NASA Astrophysics Data System (ADS)

    Hung, Chieh-Tsan; Chiu, Yuan-Ming; Hwang, Feng-Nan; Wu, Jong-Shinn

    2011-01-01

    A parallel fully implicit PETSc-based fluid modeling equations solver for simulating gas discharges is developed. Fluid modeling equations include: the neutral species continuity equation, the charged species continuity equation with drift-diffusion approximation for mass fluxes, the electron energy density equation, and Poisson's equation for electrostatic potential. Except for Poisson's equation, all model equations are discretized by the fully implicit backward Euler method as a time integrator, and finite differences with the Scharfetter-Gummel scheme for mass fluxes on the spatial domain. At each time step, the resulting large sparse algebraic nonlinear system is solved by the Newton-Krylov-Schwarz algorithm. A 2D-GEC RF discharge is used as a benchmark to validate our solver by comparing the numerical results with both the published experimental data and the theoretical prediction. The parallel performance of the solver is investigated.

  2. Kinetic temperature of dust particle motion in gas-discharge plasma.

    PubMed

    Norman, G E; Timofeev, A V

    2011-11-01

    A system of equations describing motion of dust particles in gas discharge plasma is formulated. This system is developed for a monolayer of dust particles with an account of dust particle charge fluctuations and features of the discharge near-electrode layer. Molecular dynamics simulation of the dust particles system is performed. A mechanism of dust particle average kinetic energy increase is suggested on the basis of theoretical analysis of the simulation results. It is shown that heating of dust particles' vertical motion is initiated by forced oscillations caused by the dust particles' charge fluctuations. The process of energy transfer from vertical to horizontal motion is based on the phenomenon of the parametric resonance. The combination of parametric and forced resonances explains the abnormally high values of the dust particles' kinetic energy. Estimates of frequency, amplitude, and kinetic energy of dust particles are close to the experimental values.

  3. Magnetic Ignition of Pulsed Gas Discharges in Air of Low Pressure in a Coaxial Plasma Gun

    NASA Technical Reports Server (NTRS)

    Thom, Karlheinz; Norwood, Joseph, Jr.

    1961-01-01

    The effect of an axial magnetic field on the breakdown voltage of a coaxial system of electrodes has been investigated by earlier workers. For low values of gas pressure times electrode spacing, the breakdown voltage is decreased by the application of the magnetic field. The electron cyclotron radius now assumes the role held by the mean free path in nonmagnetic discharges and the breakdown voltage becomes a function of the magnetic flux density. In this paper the dependence of the formative time lag as a function of the magnetic flux density is established and the feasibility of using a magnetic field for igniting high-voltage, high-current discharges is shown through theory and experiment. With a 36 microfarad capacitor bank charged to 48,000 volts, a peak current of 1.3 x 10( exp 6) amperes in a coaxial type of plasma gun was achieved with a current rise time of only 2 microseconds.

  4. Runaway electron beams in the gas discharge for UV nitrogen laser excitation

    SciTech Connect

    Khomich, V. Yu.; Yamschikov, V. A.

    2011-12-15

    The review of the methods for obtaining the runaway electron beams in the gas discharge is performed. The new method is offered, using which the beam is first formed in a narrow gap ({approx}1 mm) between the cathode and the grid and then it is accelerated by the field of the plasma column of the anomalous self-sustained discharge in the main gap (10-20 mm long). The electron beams with an energy of about 10 keV and current density of 10{sup 3} A/cm{sup 2} at a molecular nitrogen pressure of up to 100 Torr have been obtained experimentally. The results of research of the UV nitrogen laser with an excitation via runaway electron beam and radiation of energy of {approx}1 mJ are given. The UV nitrogen laser generation with the energy of {approx}1 mJ has been obtained by the runaway electron beams.

  5. The Noble Gases in A-Level Chemistry.

    ERIC Educational Resources Information Center

    Marchant, G. W.

    1983-01-01

    Suggests two methods of developing the study of the noble gases: first, the discovery of the elements and recent discovery of xenon show the human face of chemistry (historical development); second, the properties of noble gas compounds (particularly xenon) can be used to test the framework of conventional chemistry. (Author/JM)

  6. [Study on Spectral Characteristics of Micro Plasma Channels of Different Gas-Gap in Dielectric Barrier Discharge].

    PubMed

    Gao, Ye-nan; Dong, Li-fang; Liu, Ying

    2015-10-01

    By optical emission spectrum, we report on the first investigation on the plasma parameters of micro plasma channels which are generated in two gas-gaps with different thickness in a triple-layer dielectric barrier discharge system. Different from the micro plasma channels formed in traditional two-layer dielectric barrier discharge, micro plasma channels formed in the triple-layer dielectric barrier discharge system reflect a unique discharge characteristic. From the pattern images taken by an ordinary camera, it shows that micro plasma channels generated in two discharge gas-gaps discharge with different sizes and light intensities. The micro plasma channels in wide gas-gap are much bigger than those in narrow gas-gap, and their light intensities are obvious stronger. By collecting the emission spectra of N2 second positive band (C3∏u --> B3∏g ) and calculating the relative intensity ratio method of N2 molecular ion line at 391.4 and the N2 molecular line at 394.1, the molecular vibration temperature and the average electron energy of micro plasma channels in two gas-gaps as functions of Argon concentration and applied voltage are investigated, respectively. It is found that the molecular vibration temperature and the average electron energy of micro plasma channels in wide gas-gap are lower than those in narrow gas-gap, and they both decrease with the increasing of the Argon concentration. As the applied voltage increases, micro plasma channels in wide gas-gap vary in a small range on the above two plasma investigations, while those in narrow gas-gap vary obviously. It indicates that micro plasma channels in narrow gas-gap are more sensitive to the applied voltage and they have a wider variation range of electric field than those in wide gas-gap.

  7. Noble gas isotopic ratios from historical lavas and fumaroles at Mount Vesuvius (southern Italy): constraints for current and future volcanic activity

    NASA Astrophysics Data System (ADS)

    Tedesco, Dario; Nagao, Keisuke; Scarsi, Paolo

    1998-12-01

    Helium, neon and argon isotope ratios have been analysed from phenocrysts of eleven lava samples belonging to the last eruptive cycle of Mount Vesuvius (1631 until 1944). The phenocrysts separates include pyroxene ( N=10) and olivine ( N=1). All phenocryst samples show similarly low gas contents (He, Ne and Ar ˜10 -10 cm 3/g). 3He/ 4He ratios, 5.3-2.11 Ra, are generally low if compared to those typical of the MORB and those of the European Subcontinental Mantle (ESCM), respectively R/ Ra 8.5±1 and 6.0-6.5. A decreasing trend is found from 1631 to 1796, while a more homogeneous set of data is obtained for more recent eruptions, as evidenced by an average R/ Ra value of 2.85. Neon ratios ( 21Ne/ 22Ne and 20Ne/ 22Ne) strongly differ from those typically found on volcanoes and suggest that a crustal component has been added in the source region to Mt. Vesuvius magmas. Argon ratios ( 40Ar/ 36Ar and 38Ar/ 36Ar) have values similar to the atmosphere and are well correlated. The low 40Ar/ 36Ar ratio (max. 302) is, however, in the range of the 40Ar/ 36Ar ratios obtained from several lava samples at other Italian volcanoes and might be considered to have a deep origin. Two hypothesis have been discussed: (1) a deep argon-like-air source, due to subduction of air-rich sediments and/or (2) a preferential loss of Ar, in comparison to lighter noble gases, from silicic melts. Helium isotopic analysis of gas samples recently collected from crater and submarine fumaroles are similar to those of lavas belonging to the final part of this eruptive cycle. This result supports the idea that no new juvenile fluids from the source region have been injected into the magmatic reservoir during the 1631-1944 eruptive cycle and, more importantly, until 1993. Both sets of data help to understand the genesis of these fluids and to constrain the current activity of the volcano.

  8. Effect of humidity on gas temperature in the afterglow of pulsed positive corona discharge

    NASA Astrophysics Data System (ADS)

    Ono, Ryo; Teramoto, Yoshiyuki; Oda, Tetsuji

    2010-01-01

    The effects of humidity on gas temperature in the afterglow of a pulsed positive corona discharge are studied. The gas temperature is measured using the laser-induced fluorescence (LIF) of NO molecules. The discharge occurs in a 13 mm point-to-plane gap under atmospheric pressure. When the water vapor concentration in air is increased from 0.5% to 2.4%, the temperature increases from 550 to 850 K near the anode tip, and from 350 to 650 K at a position 2.5 mm from the anode tip. The gas heating in the humid environment is due to the fast vibration-to-vibration processes of the O2-H2O and N2-H2O systems and the extremely rapid vibration-to-translation process of the H2O-H2O system. These processes accelerate the transfer of energy from O2(v) and N2(v) to translational energy. Measurements of the LIF of O2(v = 6) show that the decay rate of O2(v) density is increased by humidification.

  9. Simulation of a wire-cylinder-plate positive corona discharge in nitrogen gas at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Martins, Alexandre A.

    2012-06-01

    In this work, we are going to perform a simulation of a wire-cylinder-plate positive corona discharge in nitrogen gas, and compare our results with already published experimental results in air for the same structure. We have chosen to simulate this innovative geometry because it has been established experimentally that it can generate a thrust per unit electrode length transmitted to the gas of up to 0.35 N/m and is also able to induce an ion wind top velocity in the range of 8-9 m/s in air. In our model, the used ion source is a small diameter wire, which generates a positive corona discharge in nitrogen gas directed to the ground electrode, after which the generated positive ions are further accelerated in the acceleration channel between the ground and cathode. By applying the fluid dynamic and electrostatic theories, all hydrodynamic and electrostatic forces that act on the considered geometries will be computed in an attempt to theoretically confirm the generated ion wind profile and also the thrust per unit electrode length. These results are important to establish the validity of this simulation tool for the future study and development of this effect for practical purposes.

  10. 2D numerical modelling of gas temperature in a nanosecond pulsed longitudinal He-SrBr2 discharge excited in a high temperature gas-discharge tube for the high-power strontium laser

    NASA Astrophysics Data System (ADS)

    Chernogorova, T. P.; Temelkov, K. A.; Koleva, N. K.; Vuchkov, N. K.

    2016-05-01

    An active volume scaling in bore and length of a Sr atom laser excited in a nanosecond pulse longitudinal He-SrBr2 discharge is carried out. Considering axial symmetry and uniform power input, a 2D model (r, z) is developed by numerical methods for determination of gas temperature in a new large-volume high-temperature discharge tube with additional incompact ZrO2 insulation in the discharge free zone, in order to find out the optimal thermal mode for achievement of maximal output laser parameters. A 2D model (r, z) of gas temperature is developed by numerical methods for axial symmetry and uniform power input. The model determines gas temperature of nanosecond pulsed longitudinal discharge in helium with small additives of strontium and bromine.

  11. Selective Growth of Noble Gases at Metal/Oxide Interface.

    PubMed

    Takahashi, Keisuke; Oka, Hiroshi; Ohnuki, Somei

    2016-02-17

    The locations and roles of noble gases at an oxide/metal interface in oxide dispersed metal are theoretically and experimentally investigated. Oxide dispersed metal consisting of FCC Fe and Y2Hf2O7 (Y2Ti2O7) is synthesized by mechanical alloying under a saturated Ar gas environment. Transmission electron microscopy and density functional theory observes the strain field at the interface of FCC Fe {111} and Y2Hf2O7 {111} whose physical origin emerges from surface reconstruction due to charge transfer. Noble gases are experimentally observed at the oxide (Y2Ti2O7) site and calculations reveal that the noble gases segregate the interface and grow toward the oxide site. In general, the interface is defined as the trapping site for noble gases; however, transmission electron microscopy and density functional theory found evidence which shows that noble gases grow toward the oxide, contrary to the generally held idea that the interface is the final trapping site for noble gases. Furthermore, calculations show that the inclusion of He/Ar hardens the oxide, suggesting that material fractures could begin from the noble gas bubble within the oxides. Thus, experimental and theoretical results demonstrate that noble gases grow from the interface toward the oxide and that oxides behave as a trapping site for noble gases.

  12. Evaluation of a pulse-discharge helium ionisation detector for the determination of neon concentrations by gas chromatography.

    PubMed

    Lasa, J; Mochalski, P; Pusz, J

    2004-05-07

    A pulse-discharge helium ionisation detector, PDHID (Valco, PD-D2-I) with sample introduced to the discharge zone is shown to be applicable for reliable determinations of neon by gas chromatography. The detection level of 80 pg was obtained, but the dependence between detector response and neon mass was non-linear. However, for the discharge gas doped with 33 ppm of neon, a linear response to the neon mass up to 10(-5) g and the detection level of 0.5 ng were obtained. The method can be used for measuring neon concentrations in groundwater systems for hydrogeological purposes.

  13. A parallel hybrid numerical algorithm for simulating gas flow and gas discharge of an atmospheric-pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Lin, K.-M.; Hu, M.-H.; Hung, C.-T.; Wu, J.-S.; Hwang, F.-N.; Chen, Y.-S.; Cheng, G.

    2012-12-01

    Development of a hybrid numerical algorithm which couples weakly with the gas flow model (GFM) and the plasma fluid model (PFM) for simulating an atmospheric-pressure plasma jet (APPJ) and its acceleration by two approaches is presented. The weak coupling between gas flow and discharge is introduced by transferring between the results obtained from the steady-state solution of the GFM and cycle-averaged solution of the PFM respectively. Approaches of reducing the overall runtime include parallel computing of the GFM and the PFM solvers, and employing a temporal multi-scale method (TMSM) for PFM. Parallel computing of both solvers is realized using the domain decomposition method with the message passing interface (MPI) on distributed-memory machines. The TMSM considers only chemical reactions by ignoring the transport terms when integrating temporally the continuity equations of heavy species at each time step, and then the transport terms are restored only at an interval of time marching steps. The total reduction of runtime is 47% by applying the TMSM to the APPJ example presented in this study. Application of the proposed hybrid algorithm is demonstrated by simulating a parallel-plate helium APPJ impinging onto a substrate, which the cycle-averaged properties of the 200th cycle are presented. The distribution patterns of species densities are strongly correlated by the background gas flow pattern, which shows that consideration of gas flow in APPJ simulations is critical.

  14. Polishing of Optical Media by Dielectric Barrier Discharge Inert Gas Plasma at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Gerhard, C.; Weihs, T.; Luca, A.; Wieneke, S.; Viöl, W.

    2013-12-01

    In this paper, surface smoothing of optical glasses, glass ceramic and sapphire using a low-power dielectric barrier discharge inert gas plasma at atmospheric pressure is presented. For this low temperature treatment method, no vacuum devices or chemicals are required. It is shown that by such plasma treatment the micro roughness and waviness of the investigated polished surfaces were significantly decreased, resulting in a decrease in surface scattering. Further, plasma polishing of lapped fused silica is introduced. Based on simulation results, a plasma physical process is suggested to be the underlying mechanism for initialising the observed smoothing effect.

  15. Modelling the interaction between the plasma and the neutral gas in a pulsed glow discharge in nitrogen

    SciTech Connect

    Guiberteau, E.; Bonhomme, G.; Zoheir, C.

    1995-12-31

    We present here the first results obtained from the modelling of a pulsed glow discharge in nitrogen, taking into account the heat transfer to the neutral gas. The aim of modelling is to optimize the plasma process in a nitriding reactor. The iron sample to be nitrided forms the cathode of the glow discharge at low pressure (100 to 200 Pa). The reactor uses two disks of diameter 50 mm as electrodes with a 40 mm gap. It works in a pulsed regime (cycle period varies from 10 to 100 ms) with a discharge duration which can be varied from 0.5 to 10 ms. Experimental studies have been carried out using emission spectroscopy resolved in space (1 mm) and time (1 {mu}s), under various discharge and post-discharge durations. These studies have shown the important effect of energy transfer from the discharge to the neutral gas. In fact this transfer produces an expansion of the negative glow observed when the post-discharge duration is decreased. A realistic modelling should thus be performed bearing in mind that the neutral gas behaves not as a thermostat. Consequently the thermal and hydrodynamic evolution of the neutral gas must be considered in the whole modelling.

  16. Investigation of scaling laws as applied to the gas discharge in the case of a barrier-discharge-excited Kr/CCl4 mixture

    NASA Astrophysics Data System (ADS)

    Pikulev, A. A.; Tsvetkov, V. M.

    2010-01-01

    The electrical and luminescent characteristics of a barrier-discharge lamp filled with a Kr/CCl4 (150: 1) mixture are experimentally studied versus the value of pd, which varies in the range (7.6-14) × 103 Pa cm. When simulating the gas discharge using similarity parameters, the following relationships are fulfilled: for pd = const ( p is the pressure, d is the interelectrode distance), the pulse duration and the mean current density are τ j ˜ 1/ p and < j> ˜ p; the surface charge density on the electrodes, σ ˜ const; the duration of the UV radiation pulse and the efficiency of UV radiation due to a KrCl* (222 nm) exciplex, τrad ˜ 1/ p and η ˜ p 2. The maximal radiation efficiency achieved in the experiments is about 13%. Deviations from the similarity laws for the gas discharge are related to the filamentary form of the observed discharge. Qualitative analysis indicates that similarity laws may be fulfilled for such a form of discharge as well but locally, within a single filament.

  17. Carbon dioxide fixation by microalgae photosynthesis using actual flue gas discharged from a boiler

    SciTech Connect

    Matsumoto, Hiroyo; Shioji, Norio; Hamasaki, Akihiro

    1995-12-31

    To mitigate CO{sub 2} discharged from thermal power plants, studies on CO{sub 2} fixation by the photosynthesis of microalgae using actual exhaust gas have been carried out. The results are as follows: (1) A method is proposed for evaluating the maximum photosynthesis rate in the raceway cultivator using only the algal physical properties; (2) Outdoor cultivation tests taking actual flue gas were performed with no trouble or break throughout 1 yr using the strain collected in the test; (3) The produced microalgae is effective as solid fuel; and (4) The feasibility studies of this system were performed. The system required large land area, but the area is smaller than that required for other biomass systems, such as tree farms.

  18. Nonlocal control of electron temperature in short direct current glow discharge plasma

    SciTech Connect

    Demidov, V. I.; Kudryavtsev, A. A.; Stepanova, O. M.; Kurlyandskaya, I. P.

    2014-09-15

    To demonstrate controlling the electron temperature in nonlocal plasma, experiments have been performed on a short (without positive column) dc glow discharge with a cold cathode by applying different voltages to the conducting discharge wall. The experiments have been performed for low-pressure noble gas discharges. The applied voltage can modify trapping the energetic electrons emitted from the cathode sheath and arising from the atomic and molecular processes in the plasma within the device volume. This phenomenon results in the energetic electrons heating the slow plasma electrons, which consequently modifies the electron temperature. Furthermore, a numerical model of the discharge has demonstrated the electron temperature modification for the above case.

  19. Evolution of a vortex in gas-discharge plasma with allowance for gas compressibility

    NASA Astrophysics Data System (ADS)

    Sukhomlinov, V. S.; Mustafaev, A. S.

    2016-09-01

    The dynamics of a vortex tube in a compressible medium with the Rayleigh energy release mechanism has been considered theoretically. The analytic theory of this phenomenon is constructed and various approximations have been considered. The range of applicability conditions for the vortex formation theory has been extended substantially. It has been shown based on the model of a plasma as a Rayleigh medium that, for a certain relative orientation of the vortex axis and the electric field vector at an air pressure of tens of Torr, a vortex tube in the glow discharge plasma is destroyed over time intervals on the order of hundredths of a second. It has been found that allowance for the compressibility leads to an increase in the rate of vortex destruction. For this medium, the time dependences of the tangential velocity in a vortex tube have been calculated for various initial parameters. The similarity rules for the given phenomena and the universal dependence of the vortex tube dynamics have been obtained.

  20. Modeling the Dynamics of Micro- and Macroparticles in a Combined Gas-Discharge Installation

    NASA Astrophysics Data System (ADS)

    Astashinskii, V. V.; Bogach, M. I.; Burachevskii, A. V.

    2016-05-01

    We present a model of the dynamics of micro- and macroparticles in a combined gas-discharge installation that accounts for the processes of metal explosion (heating of a metal in its solid state, melting, heating of the liquid metal, intense evaporation, ionization in metal vapor), a magnetohydrodynamic description of plasma acceleration (on the basis of the mass, momentum, and energy conservation laws neglecting the plasma viscosity and thermal conductivity), and a description of the processes of energy transfer from a high-velocity stream to accelerated particles. It has been established that the process of melting terminates in 1.3 ns after the start of the discharge and that the evaporation terminates in 480 ns. The stage of cooling starts in 21 μs. The average density of the plasma upon completion of the evaporation process can be estimated to be 1.7·10-5 g/cm3, with the pressure being of the order of 1.5·104 Pa and the total time of discharge, of about 250 μs.

  1. Origin and distribution of thiophenes and furans in gas discharges from active volcanoes and geothermal systems.

    PubMed

    Tassi, Franco; Montegrossi, Giordano; Capecchiacci, Francesco; Vaselli, Orlando

    2010-03-31

    The composition of non-methane organic volatile compounds (VOCs) determined in 139 thermal gas discharges from 18 different geothermal and volcanic systems in Italy and Latin America, consists of C(2)-C(20) species pertaining to the alkanes, alkenes, aromatics and O-, S- and N-bearing classes of compounds. Thiophenes and mono-aromatics, especially the methylated species, are strongly enriched in fluids emissions related to hydrothermal systems. Addition of hydrogen sulphide to dienes and electrophilic methylation involving halogenated radicals may be invoked for the formation of these species. On the contrary, the formation of furans, with the only exception of C(4)H(8)O, seems to be favoured at oxidizing conditions and relatively high temperatures, although mechanisms similar to those hypothesized for the production of thiophenes can be suggested. Such thermodynamic features are typical of fluid reservoirs feeding high-temperature thermal discharges of volcanoes characterised by strong degassing activity, which are likely affected by conspicuous contribution from a magmatic source. The composition of heteroaromatics in fluids naturally discharged from active volcanoes and geothermal areas can then be considered largely dependent on the interplay between hydrothermal vs. magmatic contributions. This implies that they can be used as useful geochemical tools to be successfully applied in both volcanic monitoring and geothermal prospection.

  2. Origin and Distribution of Thiophenes and Furans in Gas Discharges from Active Volcanoes and Geothermal Systems

    PubMed Central

    Tassi, Franco; Montegrossi, Giordano; Capecchiacci, Francesco; Vaselli, Orlando

    2010-01-01

    The composition of non-methane organic volatile compounds (VOCs) determined in 139 thermal gas discharges from 18 different geothermal and volcanic systems in Italy and Latin America, consists of C2–C20 species pertaining to the alkanes, alkenes, aromatics and O-, S- and N-bearing classes of compounds. Thiophenes and mono-aromatics, especially the methylated species, are strongly enriched in fluids emissions related to hydrothermal systems. Addition of hydrogen sulphide to dienes and electrophilic methylation involving halogenated radicals may be invoked for the formation of these species. On the contrary, the formation of furans, with the only exception of C4H8O, seems to be favoured at oxidizing conditions and relatively high temperatures, although mechanisms similar to those hypothesized for the production of thiophenes can be suggested. Such thermodynamic features are typical of fluid reservoirs feeding high-temperature thermal discharges of volcanoes characterised by strong degassing activity, which are likely affected by conspicuous contribution from a magmatic source. The composition of heteroaromatics in fluids naturally discharged from active volcanoes and geothermal areas can then be considered largely dependent on the interplay between hydrothermal vs. magmatic contributions. This implies that they can be used as useful geochemical tools to be successfully applied in both volcanic monitoring and geothermal prospection. PMID:20480029

  3. Application of bipolar gas discharge for water sterilization from S.aureus and E-coli

    NASA Astrophysics Data System (ADS)

    Taran, Anatoliy; Okhrimovskyy, Andriy; Komozynskyi, Petro; Kyslytsyn, Oleksandr; Taran, Svitlana; Filimonova, Nataliya; Lesnoy, Viktor; Oranska, Daria

    2016-09-01

    Recently, water treatment by gas discharge above the surface of the liquid has attracted a lot of attention. In most cases, however, the unipolar power source is used. Bipolar pulses of high voltage and current can increases degree of water sterilization from organic compounds, both chemical and bacterial since non equilibrium atmospheric plasma contains not only electrons but also positive and negative ions as well as an excited molecules or atoms and active radicals. Heavy charged particles of both signs, accelerated by bipolar electric field, can easily destroy chemical and biological contaminants in water. To evaluate this phenomenon, high voltage bipolar pulse generator was used. The amplitude of the pulse voltage was approaching value of 200 kV at the discharge ignition. The repetition time was varied from 1 to 14 milliseconds. Current pulse had a shape of a superposition of bipolar pulses with decaying amplitude. Liquid surface was used as a cathode or anode.Two types of contaminants, S.aureus and E.coli, with was 1 . 5 ×108 CFU/mL were treated by bipolar high voltage pulse discharge. After 30 minutes of exposition, no contaminants were observed within the water.

  4. Growth of β-FeSi2 films via noble-gas ion-beam mixing of Fe/Si bilayers

    NASA Astrophysics Data System (ADS)

    Milosavljević, M.; Dhar, S.; Schaaf, P.; Bibić, N.; Huang, Y.-L.; Seibt, M.; Lieb, K. P.

    2001-11-01

    A detailed study of the formation of β-FeSi2 films by ion-beam mixing of Fe/Si bilayers with noble gas ions is presented. Fe films of 35-50 nm deposited on Si (100) were irradiated with 80-700 keV Ar, Kr, or Xe ions in a wide temperature interval, from room temperature to 600 °C. The structures were analyzed by Rutherford backscattering spectroscopy, x-ray diffraction, conversion electron Mössbauer spectroscopy, elastic recoil detection analysis, cross-section high resolution transmission electron microscopy, and energy dispersive x-ray spectroscopy. Already after Xe irradiation at 300 °C the whole Fe layer is transformed to a mixture of Fe3Si, ɛ-FeSi, and β-FeSi2 phases. At 400-450 °C, a unique, layer by layer growth of β-FeSi2 starting from the surface was found. A full transformation of 35 nm Fe on Si to a 105 nm β-FeSi2 layer was achieved by irradiation with 205 keV Xe to 2×1016 ions/cm2, at a temperature of 600 °C. The fully ion-beam grown layers exhibit a pronounced surface roughness, but a sharp interface to Si. This structure is assigned to a growth of β-FeSi2 grains in a local surrounding of interdiffused silicon. Rapid diffusion of silicon to the surface was observed during all ion irradiations. Single-phase β-FeSi2 layers were also synthesized by vacuum annealing for 2 h at 600 °C of 35 nm Fe/Si bilayers premixed with Xe at 450 °C. In this case, the layers form with a smoother surface topography. It is concluded that ion-beam mixing can be used successfully for growth of β-FeSi2 layers at moderate temperatures, either directly or combined with postirradiation annealing.

  5. Dust trap formation in a non-self-sustained discharge with external gas ionization

    SciTech Connect

    Filippov, A. V. Babichev, V. N.; Pal’, A. F.; Starostin, A. N.; Cherkovets, V. E.; Rerikh, V. K.; Taran, M. D.

    2015-11-15

    Results from numerical studies of a non-self-sustained gas discharge containing micrometer dust grains are presented. The non-self-sustained discharge (NSSD) was controlled by a stationary fast electron beam. The numerical model of an NSSD is based on the diffusion drift approximation for electrons and ions and self-consistently takes into account the influence of the dust component on the electron and ion densities. The dust component is described by the balance equation for the number of dust grains and the equation of motion for dust grains with allowance for the Stokes force, gravity force, and electric force in the cathode sheath. The interaction between dust grains is described in the self-consistent field approximation. The height of dust grain levitation over the cathode is determined and compared with experimental results. It is established that, at a given gas ionization rate and given applied voltage, there is a critical dust grain size above which the levitation condition in the cathode sheath cannot be satisfied. Simulations performed for the dust component consisting of dust grains of two different sizes shows that such grains levitate at different heights, i.e., size separation of dust drains levitating in the cathode sheath of an NSSD takes place.

  6. Hydrogen generation in a microhollow cathode discharge in high-pressure ammonia-argon gas mixtures

    NASA Astrophysics Data System (ADS)

    Qiu, H.; Martus, K.; Lee, W. Y.; Becker, K.

    2004-04-01

    We explored the feasibility of using a single flow-through microhollow cathode discharge (MHCD) as a non-thermal plasma source for hydrogen (H2) production for portable fuel cell applications. The MHCD device consisted of two thin metal electrodes separated by a mica spacer with a single-hole, roughly 100 [mu]m in diameter, through all three layers. The efficiency of the MHCD reactor for H2 generation from NH3 was analyzed by monitoring the products formed in the discharge in a mass spectrometer. Using a gas mixture of up to 10% NH3 in Ar at pressures up to one atmosphere, the MHCD reactor achieved a maximum ammonia conversion of slightly more than 20%. The overall power efficiency of the MHCD reactor reached a peak value of about 11%. The dependence of NH3 conversion and power efficiency on the residence time of the gas in the MHCD plasma was studied. Experiments using pulsed excitation of the MHCD plasma indicated that pulsing can increase the power efficiency. Design and operating criteria are proposed for a microplasma-based H2 generator that can achieve a power efficiency above the break-even point, i.e., a microplasma reactor that requires less electrical power to generate and maintain the plasma than the power that can be obtained from the conversion of the H2 generated in the microplasma reactor.

  7. Studies on gas breakdown in pulsed radio frequency atmospheric pressure glow discharges

    SciTech Connect

    Huo, W. G.; Jian, S. J.; Yao, J.; Ding, Z. F.

    2014-05-15

    In pulsed RF atmospheric pressure glow discharges, the gas breakdown judged by the rapid drop in the amplitude of the pulsed RF voltage is no longer universally true. The steep increment of the plasma-absorbed RF power is proposed to determine the gas breakdown. The averaged plasma-absorbed RF power over a pulse period is used to evaluate effects of the preceding pulsed RF discharge on the breakdown voltage of the following one, finding that the breakdown voltage decreases with the increment in the averaged plasma-absorbed RF power under constant pulse duty ratio. Effects of the pulse off-time on the breakdown voltage and the breakdown delay time are also studied. The obtained dependence of the breakdown voltage on the pulse off-time is indicative of the transitional plasma diffusion processes in the afterglow. The breakdown voltage varies rapidly as the plasma diffuses fast in the region of moderate pulse off-time. The contribution of nitrogen atom recombination at the alumina surface is demonstrated in the prolonged memory effect on the breakdown delay time vs. the pulse off-time and experimentally validated by introducing a trace amount of nitrogen into argon at short and long pulse off-times.

  8. Noble-Gas Atomic Interferometer

    DTIC Science & Technology

    2011-01-19

    Awards W. E. Lamb Medal for Laser Science and Quantum Optics (2008). Lewiner Distinguished Lecturer, Technion, Israel (2009). Graduate Students...effort to explain Maxwell’s demon in terms of information entropy . Single-photon cooling was demonstrated experimentally on magnetically trapped

  9. Optical and application study of gas-liquid discharge excited by bipolar nanosecond pulse in atmospheric air

    NASA Astrophysics Data System (ADS)

    Wang, Sen; Wang, Wen-chun; Yang, De-zheng; Liu, Zhi-jie; Zhang, Shuai

    2014-10-01

    In this study, a bipolar nanosecond pulse with 20 ns rising time is employed to generate air gas-liquid diffuse discharge plasma with room gas temperature in quartz tube at atmospheric pressure. The image of the discharge and optical emission spectra of active species in the plasma are recorded. The plasma gas temperature is determined to be approximately 390 K by compared the experimental spectra with the simulated spectra, which is slightly higher than the room temperature. The result indicated that the gas temperature rises gradually with pulse peak voltage increasing, while decreases slightly with the electrode gap distance increasing. As an important application, bipolar nanosecond pulse discharge is used to sterilize the common microorganisms (Actinomycetes, Candida albicans and Escherichia coli) existing in drinking water, which performs high sterilization efficiency.

  10. The inactivation of Chlorella spp. with dielectric barrier discharge in gas-liquid mixture

    NASA Astrophysics Data System (ADS)

    Song, Dan; Sun, Bing; Zhu, Xiaomei; Yan, Zhiyu; Liu, Hui; Liu, Yongjun

    2013-03-01

    The inactivation of Chlorella spp. with high voltage and frequency pulsed dielectric barrier discharge in hybrid gas-liquid reactor with a suspension electrode was studied experimentally. In the hybrid gas-liquid reactor, a steel plate was used as high voltage electrode while a quartz plate as a dielectric layer, another steel plate placing in the aqueous solution worked as a whole ground electrode. A suspension electrode is installed near the surface of solution between high voltage and ground electrode to make the dielectric barrier discharge uniform and stable, the discharge gap was between the quartz plate and the surface of the water. The effect of peak voltage, treatment time, the initial concentration of Chlorella spp. and conductivity of solution on the inactivation rate of Chlorella spp. was investigated, and the inactivation mechanism of Chlorella spp. preliminarily was studied. Utilizing this system inactivation of Chlorella spp., the inactivation rate increased with increasing of peak voltage, treatment time and electric conductivity. It was found that the inactivation rate of Chlorella spp. arrived at 100% when the initial concentration was 4 × 106 cells mL-1, and the optimum operation condition required a peak voltage of 20 kV, a treatment time of 10 min and a frequency of 7 kHz. Though the increasing of initial concentration of the Chlorella spp. contributed to the addition of interaction probability between the Chlorella spp. and O3, H2O2, high-energy electrons, UV radiation and other active substances, the total inactivation number raise, but the inactivation rate of the Chlorella spp. decreased.

  11. Atmospheric pressure glow discharge generated in nitrogen-methane gas mixture: PTR-MS analyzes of the exhaust gas

    NASA Astrophysics Data System (ADS)

    Torokova, Lucie; Mazankova, Vera; Krcma, Frantisek; Mason, Nigel J.; Matejcik, Stefan

    2015-07-01

    This paper reports the results of an extensive study of with the in situ mass spectrometry analysis of gaseous phase species produced by an atmospheric plasma glow discharge in N2-CH4 gas mixtures (with methane concentrations ranging from 1% to 4%). The products are studied using proton-transfer-reaction mass spectrometry (PTR-MS). HCN and CH3CN are identified as the main gaseous products. Hydrazine, methanimine, methyldiazene, ethylamine, cyclohexadiene, pyrazineacetylene, ethylene, propyne and propene are identified as minor compounds. All the detected compounds and their relative abundances are determined with respect to the experimental conditions (gas composition and applied power). The same molecules were observed by the Cassini-Huygens probe in Titan's atmosphere (which has same N2-CH4 gas mixtures). Such, experiments show that the formation of such complex organics in atmospheres containing C, N and H, like that of Titan, could be a source of prebiotic molecules. Contribution to the topical issue "The 14th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XIV)", edited by Nicolas Gherardi, Ronny Brandenburg and Lars Stollenwark

  12. Periodic input of primitive magmas in a complex plumbing system revealed by noble gas geochemistry: the case of Mt Etna (Italy)

    NASA Astrophysics Data System (ADS)

    Paonita, Antonio; Caracausi, Antonio; Martelli, Mauro; Rizzo, Andrea

    2015-04-01

    A long-term series of noble gas compositions (He and Ar isotope abundances plus elemental Ne) coming from geochemical monitoring of five peripheral gas emissions at the base of Mt Etna, integrated by some fumaroles located in the rim of the summit crater, have allowed to put constraints on the magmatic system feeding the volcano. The peripheral gas emissions seem to be released by magmatic degassing occurring at depths of 200-400 MPa, while the crater fumaroles receive contributes coming from magmas residing at shallower levels (up to 130 MPa), which mix to the fluids from the deep levels. These estimations are in good agreement with the depth of the two main magma ponding zones (i.e., 5-12 km and 2-3 km b.s.l.) inferred by petrological and geophysical studies. The long-term monitoring of 3He/4He ratios from both peripheral and crater gases has allowed us to recognize phases of increase of the isotope ratios, occurred at all the sampled emissions some months before the onset of eruptive activities. This behaviour has been systematic for all the main eruptive phases occurred at Mt Etna since 2001 (i.e., 2001, 2002-2003, 2006, 2008-2009, 2011-2012, 2013, and 2014, except for the 2004-2005 eruption), making this parameter a very powerful tool in evaluating the activity level of the volcano and in eruption forecast. A detailed investigation of the 3He/4He time series displays that there is no defined time gap between the isotope ratio increase and the onset of the eruptive activity, this interval ranging from one to several months. After examination of shape and duration of the isotope increases versus main features of the eruptive events (e.g. duration, amount of erupted material, eruption rate), no systematic relationships emerge. It seems only that the rate of 3He/4He increase was anomalously high (by almost 10 times) during the only two eccentric eruptions since 2001 (i.e., 2001 and 2002-2003). The differences among He isotopic composition between the peripheral

  13. Angular correlation studies in noble gases

    NASA Technical Reports Server (NTRS)

    Coleman, P. G.

    1990-01-01

    There has been a recent revival of interest in the measurement of angular correlation of annihilation photons from the decay of positrons and positronium in gases. This revival has been stimulated by the possibility offered by the technique to shed new light on the apparently low positronium formation fraction in the heavier noble gases and to provide information on positronium quenching processes in gases such as oxygen. There is also the potential for learning about positronium slowing down in gases. This review focuses on experimental noble gas work and considers what new information has been, and may be, gained from these studies.

  14. Sterilization of Fungus in Water by Pulsed Power Gas Discharge Reactor Spraying Water Droplets for Water Treatment

    NASA Astrophysics Data System (ADS)

    Saito, Tsukasa; Handa, Taiki; Minamitani, Yasushi

    We study sterilization of bacteria in water using pulsed streamer discharge of gas phase. This method enhances efficiency of water treatment by spraying pretreatment water in a streamer discharge area. In this paper, yeast was sterilized because we assumed a case that fungus like mold existed in wastewater. As a result, colony forming units decreased rapidly for 2 minutes of the processing time, and all yeast sterilized by 45 minutes of the processing time.