Sample records for noble gas mixture

  1. Metal-organic frameworks for adsorption and separation of noble gases

    DOEpatents

    Allendorf, Mark D.; Greathouse, Jeffery A.; Staiger, Chad

    2017-05-30

    A method including exposing a gas mixture comprising a noble gas to a metal organic framework (MOF), including an organic electron donor and an adsorbent bed operable to adsorb a noble gas from a mixture of gases, the adsorbent bed including a metal organic framework (MOF) including an organic electron donor.

  2. Pathway to Cryogen Free Production of Hyperpolarized Krypton-83 and Xenon-129

    PubMed Central

    Six, Joseph S.; Hughes-Riley, Theodore; Stupic, Karl F.; Pavlovskaya, Galina E.; Meersmann, Thomas

    2012-01-01

    Hyperpolarized (hp) 129Xe and hp 83Kr for magnetic resonance imaging (MRI) are typically obtained through spin-exchange optical pumping (SEOP) in gas mixtures with dilute concentrations of the respective noble gas. The usage of dilute noble gases mixtures requires cryogenic gas separation after SEOP, a step that makes clinical and preclinical applications of hp 129Xe MRI cumbersome. For hp 83Kr MRI, cryogenic concentration is not practical due to depolarization that is caused by quadrupolar relaxation in the condensed phase. In this work, the concept of stopped flow SEOP with concentrated noble gas mixtures at low pressures was explored using a laser with 23.3 W of output power and 0.25 nm linewidth. For 129Xe SEOP without cryogenic separation, the highest obtained MR signal intensity from the hp xenon-nitrogen gas mixture was equivalent to that arising from 15.5±1.9% spin polarized 129Xe in pure xenon gas. The production rate of the hp gas mixture, measured at 298 K, was 1.8 cm3/min. For hp 83Kr, the equivalent of 4.4±0.5% spin polarization in pure krypton at a production rate of 2 cm3/min was produced. The general dependency of spin polarization upon gas pressure obtained in stopped flow SEOP is reported for various noble gas concentrations. Aspects of SEOP specific to the two noble gas isotopes are discussed and compared with current theoretical opinions. A non-linear pressure broadening of the Rb D1 transition was observed and taken into account for the qualitative description of the SEOP process. PMID:23209620

  3. Fluid clathrate system for continuous removal of heavy noble gases from mixtures of lighter gases

    DOEpatents

    Gross, K.C.; Markun, F.; Zawadzki, M.T.

    1998-04-28

    An apparatus and method are disclosed for separation of heavy noble gas in a gas volume. An apparatus and method have been devised which includes a reservoir containing an oil exhibiting a clathrate effect for heavy noble gases with a reservoir input port and the reservoir is designed to enable the input gas volume to bubble through the oil with the heavy noble gas being absorbed by the oil exhibiting a clathrate effect. The gas having reduced amounts of heavy noble gas is output from the oil reservoir, and the oil having absorbed heavy noble gas can be treated by mechanical agitation and/or heating to desorb the heavy noble gas for analysis and/or containment and allow recycling of the oil to the reservoir. 6 figs.

  4. Fluid clathrate system for continuous removal of heavy noble gases from mixtures of lighter gases

    DOEpatents

    Gross, Kenneth C.; Markun, Francis; Zawadzki, Mary T.

    1998-01-01

    An apparatus and method for separation of heavy noble gas in a gas volume. An apparatus and method have been devised which includes a reservoir containing an oil exhibiting a clathrate effect for heavy noble gases with a reservoir input port and the reservoir is designed to enable the input gas volume to bubble through the oil with the heavy noble gas being absorbed by the oil exhibiting a clathrate effect. The gas having reduced amounts of heavy noble gas is output from the oil reservoir, and the oil having absorbed heavy noble gas can be treated by mechanical agitation and/or heating to desorb the heavy noble gas for analysis and/or containment and allow recycling of the oil to the reservoir.

  5. Noble gas trapping and fractionation during synthesis of carbonaceous matter. [in meteorites

    NASA Technical Reports Server (NTRS)

    Frick, U.; Mack, R.; Chang, S.

    1979-01-01

    An investigation of noble gas entrapment during synthesis of carbonaceous, macromolecular, and kerogen-like substances is presented. High molecular weight organic matter synthesized in aqueous condensation reactions contained little gas, and the composition was consistent with fractionation due to noble gas solubility in water; however, propane soot produced during a modified Miller-Urey experiment in an aritificial gas mixture contained high concentrations of trapped noble gases that displayed strong elemental fractionation from their reservoirs. It is concluded that theses experiemnts show that processes exist for synthesis of carbonaceous carriers that result in high noble gas concentrations and strong elemental fractionation at temperatures well above those required by absorption to achieve similar effects.

  6. Theoretical Calculation of the Electron Transport Parameters and Energy Distribution Function for CF3I with noble gases mixtures using Monte Carlo simulation program

    NASA Astrophysics Data System (ADS)

    Jawad, Enas A.

    2018-05-01

    In this paper, The Monte Carlo simulation program has been used to calculation the electron energy distribution function (EEDF) and electric transport parameters for the gas mixtures of The trif leoroiodo methane (CF3I) ‘environment friendly’ with a noble gases (Argon, Helium, kryptos, Neon and Xenon). The electron transport parameters are assessed in the range of E/N (E is the electric field and N is the gas number density of background gas molecules) between 100 to 2000Td (1 Townsend = 10-17 V cm2) at room temperature. These parameters, namely are electron mean energy (ε), the density –normalized longitudinal diffusion coefficient (NDL) and the density –normalized mobility (μN). In contrast, the impact of CF3I in the noble gases mixture is strongly apparent in the values for the electron mean energy, the density –normalized longitudinal diffusion coefficient and the density –normalized mobility. Note in the results of the calculation agreed well with the experimental results.

  7. Investigation of the noble gas solubility in H 2O-CO 2 bearing silicate liquids at moderate pressure II: the extended ionic porosity (EIP) model

    NASA Astrophysics Data System (ADS)

    Nuccio, P. M.; Paonita, A.

    2000-12-01

    A semi-theoretical model is proposed to predict partitioning of noble gases between any silicate liquid and a H 2O-CO 2 gas phase with noble gas as a minor component, in a large range of pressures (at least up to 300 MPa). The model is based on the relationship between the concentration of dissolved noble gas and ionic porosity of the melt, found by Carroll and Stolper [Geochim. Cosmochim. Acta 57 (1993) 5039-5051] for H 2O-CO 2 free melts. It evaluates the effect of dissolved H 2O and CO 2 on the melt ionic porosity and, consequently on Henry's constants of noble gases. The fugacities of the noble gases in the H 2O-CO 2-noble gas mixtures are also considered in our equilibrium calculations of dissolved gas by using a modified Redlich-Kwong equation of state for the H 2O-CO 2-noble gas system. The formulated model (referred to as the extended ionic porosity model) clearly predicts a positive dependence of noble gas solubility on dissolved H 2O in melt, which becomes negligible when water concentration is higher than 3 wt%. Oppositely, noble gas solubility decreases as a consequence of increasing CO 2 in both basaltic and rhyolitic melts. The increase of noble gas solubility as a consequence of H 2O addition to the melt grows exponentially with the increase of the noble gas atomic size. As a result, although xenon solubility is much lower than the helium solubility in anhydrous melts, they become almost comparable at several percent of dissolved H 2O in the melt. On this basis, an exponential augmentation of the number of large free spaces in silicate liquid can be inferred in relation to increasing dissolved H 2O. Comparison between our predicted values and available experimental data [A. Paonita et al., Earth Planet. Sci. Lett. 181 (2000) 595-604] shows good agreement. At present, the EIP model is the unique tool which predicts how the main volatiles in magmatic systems affect the noble gas solubility in silicate melts, therefore it should be taken into account for future studies of noble gas fractionation in degassing natural magmas.

  8. International comparison CCQM-K113—noble gas mixture

    NASA Astrophysics Data System (ADS)

    Lim, Jeong Sik; Lee, Jinbok; Moon, Dongmin; Tshilongo, James; Qiao, Han; Shuguo, Hu; Tiqiang, Zhang; Kelley, Michael E.; Rhoderick, George C.; Konopelko, L. A.; Kolobova, A. V.; Vasserman, I. I.; Zavyalov, S. V.; Gromova, E. V.; Efremova, O. V.

    2017-01-01

    Noble gases are one of the key elements used in the various processes of the bulbs industry, automotive industry, space industry, lasers industry, display industry as well as the semiconductor industry. Considering continuous growth, the provision of a reliable standard is required for those industries to improve their productivity. In this report, a result of the key comparison, CCQM-K113: noble gas mixture, is presented. Nominal amount-of-substance fractions of argon, neon, krypton, and xenon in helium are 20, 10, 2, and 1 cmol/mol, respectively. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  9. Computational investigation of noble gas adsorption and separation by nanoporous materials.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allendorf, Mark D.; Sanders, Joseph C.; Greathouse, Jeffery A.

    2008-10-01

    Molecular simulations are used to assess the ability of metal-organic framework (MOF) materials to store and separate noble gases. Specifically, grand canonical Monte Carlo simulation techniques are used to predict noble gas adsorption isotherms at room temperature. Experimental trends of noble gas inflation curves of a Zn-based material (IRMOF-1) are matched by the simulation results. The simulations also predict that IRMOF-1 selectively adsorbs Xe atoms in Xe/Kr and Xe/Ar mixtures at total feed gas pressures of 1 bar (14.7 psia) and 10 bar (147 psia). Finally, simulations of a copper-based MOF (Cu-BTC) predict this material's ability to selectively adsorb Xemore » and Kr atoms when present in trace amounts in atmospheric air samples. These preliminary results suggest that Cu-BTC may be an ideal candidate for the pre-concentration of noble gases from air samples. Additional simulations and experiments are needed to determine the saturation limit of Cu-BTC for xenon, and whether any krypton atoms would remain in the Cu-BTC pores upon saturation.« less

  10. Gas mixtures for gas-filled radiation detectors

    DOEpatents

    Christophorou, Loucas G.; McCorkle, Dennis L.; Maxey, David V.; Carter, James G.

    1982-01-05

    Improved binary and ternary gas mixtures for gas-filled radiation detectors are provided. The components are chosen on the basis of the principle that the first component is one molecular gas or mixture of two molecular gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a noble gas having a very small cross section at and below about 1.0 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electric field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  11. Improved gas mixtures for gas-filled radiation detectors

    DOEpatents

    Christophorou, L.G.; McCorkle, D.L.; Maxey, D.V.; Carter, J.G.

    1980-03-28

    Improved binary and ternary gas mixtures for gas-filled radiation detectors are provided. The components are chosen on the basis of the principle that the first component is one molecular gas or mixture of two molecular gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a noble gas having a very small cross section at and below about 1.0 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electric field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  12. Noble Gases

    NASA Astrophysics Data System (ADS)

    Podosek, F. A.

    2003-12-01

    The noble gases are the group of elements - helium, neon, argon, krypton, xenon - in the rightmost column of the periodic table of the elements, those which have "filled" outermost shells of electrons (two for helium, eight for the others). This configuration of electrons results in a neutral atom that has relatively low electron affinity and relatively high ionization energy. In consequence, in most natural circumstances these elements do not form chemical compounds, whence they are called "noble." Similarly, much more so than other elements in most circumstances, they partition strongly into a gas phase (as monatomic gas), so that they are called the "noble gases" (also, "inert gases"). (It should be noted, of course, that there is a sixth noble gas, radon, but all isotopes of radon are radioactive, with maximum half-life a few days, so that radon occurs in nature only because of recent production in the U-Th decay chains. The factors that govern the distribution of radon isotopes are thus quite different from those for the five gases cited. There are interesting stories about radon, but they are very different from those about the first five noble gases, and are thus outside the scope of this chapter.)In the nuclear fires in which the elements are forged, the creation and destruction of a given nuclear species depends on its nuclear properties, not on whether it will have a filled outermost shell when things cool off and nuclei begin to gather electrons. The numerology of nuclear physics is different from that of chemistry, so that in the cosmos at large there is nothing systematically special about the abundances of the noble gases as compared to other elements. We live in a very nonrepresentative part of the cosmos, however. As is discussed elsewhere in this volume, the outstanding generalization about the geo-/cosmochemistry of the terrestrial planets is that at some point thermodynamic conditions dictated phase separation of solids from gases, and that the Earth and the rest of the inner solar were made by collecting the solids, to the rather efficient exclusion of the gases. In this grand separation the noble gases, because they are noble, were partitioned strongly into the gas phase. The resultant generalization is that the noble gases are very scarce in the materials of the inner solar system, whence their common synonym "rare gases."This scarcity is probably the most important single feature to remember about noble-gas cosmochemistry. As illustration of the absolute quantities, for example, a meteorite that contains xenon at a concentration of order 10 -10 cm3STP g -1 (4×10-15 mol g-1) would be considered relatively rich in xenon. Yet this is only 0.6 ppt (part per trillion, fractional abundance 10-12) by mass. In most circumstances, an element would be considered efficiently excluded from some sample if its abundance, relative to cosmic proportions to some convenient reference element, were depleted by "several" orders of magnitude. But a noble gas would be considered to be present in quite high concentration if it were depleted by only four or five orders of magnitude (in the example above, 10-10 cm3STP g-1 of xenon corresponds to depletion by seven orders of magnitude), and one not uncommonly encounters noble-gas depletion of more than 10 orders of magnitude.The second most important feature to note about noble-gas cosmochemistry is that while a good deal of the attention given to noble gases really is about chemistry, traditionally a good deal of attention is also devoted to nuclear phenomena, much more so than for most other elements. This feature is a corollary of the first feature noted above, namely scarcity. A variety of nuclear transmutation processes - decay of natural radionuclides and energetic particle reactions - lead to the production of new nuclei that are often new elements. Most commonly, the quantity of new nuclei originating in nuclear transmutation is very small compared to the quantity already present in the sample in question, metaphorically a drop in the bucket. Thus, they are very difficult or impossible to detect and, therefore, in practical terms, attracting little or no interest. When the bucket is empty, or nearly so, however, the "drop" contributed by nuclear transmutations may become observable or even dominant. Traditionally there are two types of (nearly) empty buckets that are most suitable for revealing the effects of nuclear transmutations: short-lived radionuclides (e.g., 10Be and 26Al) which would be entirely absent except for recent nuclear reactions, and the noble gases, renowned for their scarcity.Emphasis on nuclear processes explains what sometimes seems to be an obsession with isotopes in noble-gas geo- and cosmochemistry. Different nuclear processes will produce different isotopes, singly or in suites with well-defined proportions (i.e., "components"), different from one process to another. Much of the traditional agenda of noble-gas geochemistry, and especially cosmochemistry, thus consists of isotopic analysis, and deconvolution of an observed isotopic spectrum into constituent components. (In most geochemical investigations, noble gases are detected by mass spectrometry, a technique that is inherently sensitive to specific isotopes, not just the chemical element. Isotopic data thus emerge naturally in most studies. Noble-gas mass spectrometry can be a much more sensitive technique than other traditional types of mass spectrometry because the gases are "noble," and therefore relatively easy to separate from other elements, and because they are scarce, so that they can be analyzed in "static"-mode (no pumping during analysis) gas-source spectrometers, permitting relatively high detection efficiency without overwhelming blanks.) In realistic terms, it is very difficult to appreciate noble-gas geo-/cosmochemistry without a basic familiarity with noble-gas isotopes: which isotopes occur in nature (i.e., which are stable), in what approximate abundance they are found, how they relate to non-noble neighbors, and, to some extent, how they are associated with specific nuclear processes. Figure 1 provides assistance in this regard. (6K)Figure 1. A display of the isotopes of the noble gases and neighboring isotopes in the familiar "chart of the nuclides" format. The abscissa is neutron number (N) and the ordinate is proton number (Z). The box corresponding to any pair (Z, N) represents an isotope; an element is represented by a horizontal row. Boxes for stable isotopes are shown with solid outline; for the noble gases, approximate solar (in the case of He, protosolar) isotope ratios are shown at the bottom of each box. Selected unstable isotopes are shown as boxes with broken line edges. The left-superscript isotope label is the atomic weight A (=Z+N). The five panels show regions around the five noble gases (excluding Rn). When the goal is to identify and quantify different noble-gas components that may be present in a sample or group of samples, a common approach to this goal is to try to unmix the components, at least partially, to provide some leverage. One path to this end, of course, is analysis of different samples that may contain the components in different proportions, and thus have different isotopic compositions. Another path, available in addition to or instead of the first, is stepwise heating analysis, which has traditionally been very extensively used in noble-gas studies. Noble gases may be released from solid samples by volume diffusion, or by reaction, recrystallization, melting, or even evaporation of their host phases. If different noble-gas components reside in physically distinct locations within a complex sample, they may be liberated, and thus become available for analysis, at different steps in a time-temperature heating sequence. Differential release of isotopically distinct components will then result in variation of the isotopic composition of gas released in different steps (e.g., see Figures 2 and 4). (12K)Figure 2. A three-isotope diagram illustrating compositional variations in lunar samples and meteorites, as observed in stepwise in vacuo etching and pyrolysis. Since the observed isotopic compositions do not lie on a single straight line, at least three isotopically distinct components must contribute in variable proportions. These data are interpreted as superposition of solar wind (SW), solar energetic particles (SEP), and galactic cosmic ray, i.e., spallation (GCR) Ne components (source Wieler, 1998). A common tool for visualization of isotopic variations is the so-called "three-isotope diagram," in which two isotope ratios, each with the same reference (denominator) isotope, are displayed on abscissa and ordinate (e.g., Figure 2). Two isotopically distinct components will plot at distinct points on a three-isotope diagram, and an often-used feature is that mixtures of the two components will plot on the straight line joining those two points. A lever rule applies: the greater the proportion that one component contributes to a mixture, the closer the point representing the mixture will lie to the point representing that end-member component, and there is a linear relationship between fractional distance from one end-member to the other and the fraction that each component contributes to the mixture (specifically to the reference isotope). If observed isotopic data are variable but the variations in two ratios are correlated, so as to be consistent with a straight line on a three-isotope diagram, it can be inferred that at least two components are present and it will often be hypothesized that only two components are present, in which case their compositions can be constrained to lie on the line, one on either side of the data field. If three components are present, not coincidentally collinear on this diagram, mixtures will occupy the triangular field defined by the three compositions, and conversely if observed data are not consistent with linear correlation it can be inferred that at least three components are contributing to the mix. The concept of the three-isotope diagram is readily generalized. Four isotopes defining three ratios (all with the same reference isotope), for example, will define a three-dimensional space in which mixture of two components will produce compositions lying along a straight line, and mixture of three components will produce compositions lying in a plane, etc. Generalization to more dimensions is mathematically straightforward, even if difficult to envision.

  13. Optical Pumping Spin Exchange 3He Gas Cells for Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Kim, W.; Stepanyan, S. S.; Kim, A.; Jung, Y.; Woo, S.; Yurov, M.; Jang, J.

    2009-08-01

    We present a device for spin-exchange optical pumping system to produce large quantities of polarized noble gases for Magnetic Resonance Imaging (MRI). A method and design of apparatus for pumping the polarization of noble gases is described. The method and apparatus enable production, storage and usage of hyperpolarized noble gases for different purposes, including Magnetic Resonance Imaging of human and animal subjects. Magnetic imaging agents breathed into lungs can be observed by the radio waves of the MRI scanner and report back physical and functional information about lung's health and desease. The technique known as spin exchange optical pumping is used. Nuclear magnetic resonance is implemented to measure the polarization of hyperpolarized gas. The cells prepared and sealed under high vacuum after handling Alkali metals into the cell and filling with the 3He-N2 mixture. The cells could be refilled. The 3He reaches around 50% polarization in 5-15 hours.

  14. Closed System Step Etching of CI chondrite Ivuna reveals primordial noble gases in the HF-solubles

    NASA Astrophysics Data System (ADS)

    Riebe, My E. I.; Busemann, Henner; Wieler, Rainer; Maden, Colin

    2017-05-01

    We analyzed all the noble gases in HF-soluble phases in the CI chondrite Ivuna by in-vacuum gas release using the "Closed System Step Etching" (CSSE) technique, which allows for direct noble gas measurements of acid-soluble phases. The main motivation was to investigate if there are primordial noble gases in HF-soluble phases in Ivuna, something that has not been done before in CI chondrites, as most primordial noble gases are known to reside in HF-resistant phases. The first steps under mild etching released He, Ne, and Ar with solar-like elemental and isotopic compositions, confirming that Ivuna contains implanted solar wind (SW) noble gases acquired in the parent body regolith. The SW component released in some etch steps was elementally unfractionated. This is unusual as trapped SW noble gases are elementally fractionated in most meteoritic material. In the intermediate etch steps under slightly harsher etching, cosmogenic noble gases were more prominent than SW noble gases. The HF-soluble portion of Ivuna contained primordial Ne and Xe, that was most visible in the last etch steps after all cosmogenic and most SW gases had been released. The primordial Ne and Xe in the HF-solubles have isotopic and elemental ratios readily explained as a mixture of the two most abundant primordial noble gas components in Ivuna bulk samples: HL and Q. Only small fractions of the total HL and Q in Ivuna were released during CSSE analysis; ∼3% of 20NeHL and ∼4% of 132XeQ. HL is known to reside in nanodiamond-rich separates and Q-gases are most likely carried by a carbonaceous phase known as phase Q. Q-gases were likely released from an HF-soluble portion of phase Q. However, nanodiamonds might not be the source of the HL-gases released upon etching, since nanodiamond-rich separates are very HF-resistant and the less tightly bound nanodiamond component P3 was not detected.

  15. Tracing time scales of fluid residence and migration in the crust (Invited)

    NASA Astrophysics Data System (ADS)

    Yokochi, R.; Sturchio, N. C.; Purtschert, R.; Jiang, W.; Lu, Z.; Müller, P.; Yang, G.; Kennedy, B. M.

    2013-12-01

    Crustal fluids (water, gas and oil) mediate chemical reactions, and they may transport, concentrate or disperse elements in the crust; the fluids are often valuable resources in their own right. In this context, determining the time scales of fluid transport and residence time is essential for understanding geochemical cycle of elements, as well as risk and resource management. Crustal fluids contain stable and radioactive noble gases indigenous to the fluid, which may be of magmatic or atmospheric origin of various ages. In addition, radiogenic and nucleogenic noble gases (both stable and radioactive) are continuously produced by the decay of U, Th and K and related nuclear reactions in the crust at known rates and in known relative proportions. They may be released from their production sites and incorporated into the fluid, acting as natural spikes to trace fluid flow. The concentrations of a noble gas isotope in a crustal fluid in a system devoid of phase separation or mixing varies as a function of decay time and supply from the production sites into the fluids. The release rate of noble gases from the production sites in minerals to the fluid phase may be determined uniquely through the studies of noble gas radionuclides (Yokochi et al., 2012), which is fundamental to the behavior of volatile elements in geochemistry. A pilot study of noble gas radionuclides in an active geothermal system was performed at Yellowstone National Park (Yokochi et al., 2013). Prior studies of the Yellowstone system using stable noble gas isotopes show that the thermal fluids contain a mixture of atmospheric, mantle, and crustal components. Noble gas radionuclide measurements provide new chronometric constraints regarding the subsurface residence times of Yellowstone thermal fluids. Upper limits on deep thermal fluid mean residence times, estimated from 39Ar/40Ar* ratios, range from 118 to 137 kyr for features in the Gibbon and Norris Geyser Basin areas, and are about 16 kyr in Lower Geyser Basin, with the key assumption that the fluid acquires its crustal component of Ar in Quaternary volcanic rock of the Yellowstone caldera. Krypton-81 isotopic abundances in the gas samples yield upper limits on residence time that are consistent with those obtained from 39Ar/40Ar* ratios. Young fluid components can also be determined by krypton-85 concentrations in the extracted gases. Better understanding of the production mechanisms of noble-gas radionuclides in reservoir rocks would significantly decrease the uncertainties in modeling fluid residence times.

  16. Widom Lines in Binary Mixtures of Supercritical Fluids.

    PubMed

    Raju, Muralikrishna; Banuti, Daniel T; Ma, Peter C; Ihme, Matthias

    2017-06-08

    Recent experiments on pure fluids have identified distinct liquid-like and gas-like regimes even under supercritical conditions. The supercritical liquid-gas transition is marked by maxima in response functions that define a line emanating from the critical point, referred to as Widom line. However, the structure of analogous state transitions in mixtures of supercritical fluids has not been determined, and it is not clear whether a Widom line can be identified for binary mixtures. Here, we present first evidence for the existence of multiple Widom lines in binary mixtures from molecular dynamics simulations. By considering mixtures of noble gases, we show that, depending on the phase behavior, mixtures transition from a liquid-like to a gas-like regime via distinctly different pathways, leading to phase relationships of surprising complexity and variety. Specifically, we show that miscible binary mixtures have behavior analogous to a pure fluid and the supercritical state space is characterized by a single liquid-gas transition. In contrast, immiscible binary mixture undergo a phase separation in which the clusters transition separately at different temperatures, resulting in multiple distinct Widom lines. The presence of this unique transition behavior emphasizes the complexity of the supercritical state to be expected in high-order mixtures of practical relevance.

  17. Structural Measurements from Images of Noble Gas Diffusion

    NASA Astrophysics Data System (ADS)

    Cadman, Robert V.; Kadlecek, Stephen J.; Emami, Kiarash; MacDuffie Woodburn, John; Vahdat, Vahid; Ishii, Masaru; Rizi, Rahim R.

    2009-03-01

    Magnetic resonance imaging of externally polarized noble gases such as ^3He has been used for pulmonary imaging for more than a decade. Because gas diffusion is impeded by the alveoli, the diffusion coefficient of gas in the lung, measured on a time scale of milliseconds, is reduced compared to that of the same gas mixture in the absence of restrictions. When the alveolar walls decay, as in emphysema, diffusivity in the lung increases. In this paper, the relationship between diffusion measurements and the size of the restricting structures will be discussed. The simple case of diffusion in an impermeable cylinder, a structure similar to the upper respiratory airways in mammals, has been studied. A procedure will be presented by which airways of order 2 mm in diameter may be accurately measured; demonstration experiments with plastic tubes will also be presented. The additional developments needed before this technique becomes practical will be briefly discussed.

  18. Method and apparatus for manufacturing gas tags

    DOEpatents

    Gross, K.C.; Laug, M.T.

    1996-12-17

    For use in the manufacture of gas tags employed in a gas tagging failure detection system for a nuclear reactor, a plurality of commercial feed gases each having a respective noble gas isotopic composition are blended under computer control to provide various tag gas mixtures having selected isotopic ratios which are optimized for specified defined conditions such as cost. Using a new approach employing a discrete variable structure rather than the known continuous-variable optimization problem, the computer controlled gas tag manufacturing process employs an analytical formalism from condensed matter physics known as stochastic relaxation, which is a special case of simulated annealing, for input feed gas selection. For a tag blending process involving M tag isotopes with N distinct feed gas mixtures commercially available from an enriched gas supplier, the manufacturing process calculates the cost difference between multiple combinations and specifies gas mixtures which approach the optimum defined conditions. The manufacturing process is then used to control tag blending apparatus incorporating tag gas canisters connected by stainless-steel tubing with computer controlled valves, with the canisters automatically filled with metered quantities of the required feed gases. 4 figs.

  19. Method and apparatus for manufacturing gas tags

    DOEpatents

    Gross, Kenny C.; Laug, Matthew T.

    1996-01-01

    For use in the manufacture of gas tags employed in a gas tagging failure detection system for a nuclear reactor, a plurality of commercial feed gases each having a respective noble gas isotopic composition are blended under computer control to provide various tag gas mixtures having selected isotopic ratios which are optimized for specified defined conditions such as cost. Using a new approach employing a discrete variable structure rather than the known continuous-variable optimization problem, the computer controlled gas tag manufacturing process employs an analytical formalism from condensed matter physics known as stochastic relaxation, which is a special case of simulated annealing, for input feed gas selection. For a tag blending process involving M tag isotopes with N distinct feed gas mixtures commercially available from an enriched gas supplier, the manufacturing process calculates the cost difference between multiple combinations and specifies gas mixtures which approach the optimum defined conditions. The manufacturing process is then used to control tag blending apparatus incorporating tag gas canisters connected by stainless-steel tubing with computer controlled valves, with the canisters automatically filled with metered quantities of the required feed gases.

  20. Temperature Dependent Rubidium Helium Line Shapes and Fine Structure Mixing Rates

    DTIC Science & Technology

    2015-09-01

    that uses alkali metal vapor as a gain medium and a buffer gas to control the line shape and kinetics. While these systems were first demonstrated in...noble gas interactions with a high degree of accuracy. The physical parameters of interest here include pressure broadening (γ), pressure shift (δ...optical transitions between the two excited states. This collisional partner is a gas mixture that is pumped into the cell. The gases used range from

  1. Temperature Dependent Rubidium-Helium Line Shapes and Fine Structure Mixing Rates

    DTIC Science & Technology

    2015-09-17

    that uses alkali metal vapor as a gain medium and a buffer gas to control the line shape and kinetics. While these systems were first demonstrated in...noble gas interactions with a high degree of accuracy. The physical parameters of interest here include pressure broadening (γ), pressure shift (δ...optical transitions between the two excited states. This collisional partner is a gas mixture that is pumped into the cell. The gases used range from

  2. Ion Kinetics in Silane Plasmas

    DTIC Science & Technology

    1988-02-01

    stimulated emission. Rg2 + is then a classical excimer laser scheme which ought to apply generally to the homonuclear and heteronuclear rare- gas dimer...kinetics of ion formation by electron impact and subsequent reaction in silane:noble- gas mixtures have been examined using pulsed ion cyclotron reso...charge transfer reactions such as X + + SiH4 -- SiH + + X + (4 - n)(H, H2) where X+ is a rare- gas or s:licon-hydride ion. Room-temperature rate constants

  3. Matrix-isolation and ab initio study of HKrCCCl and HXeCCCl

    NASA Astrophysics Data System (ADS)

    Zhu, Cheng; Räsänen, Markku; Khriachtchev, Leonid

    2015-12-01

    We report on two new noble-gas molecules, HKrCCCl and HXeCCCl, prepared in low-temperature Kr and Xe matrices. These molecules are made by UV photolysis of HCCCl in the matrices and subsequent thermal annealing. The HCCCl precursor is produced by microwave discharge of a mixture of a matrix gas with trichloroethylene (HClC=CCl2). The assignments of the new noble-gas molecules are supported by deuteration experiments and quantum chemical calculations at the MP2(full) and CCSD(T) levels of theory with the def2-TZVPPD basis set. No evidence of ClXeCCH, which is computationally reliably stable, is found in the experiments. ClKrCCH as well as the Ar compounds HArCCCl and ClArCCH are not observed either, which is in agreement with the calculations.

  4. Long-term deconditioning of gas-filled surge arresters

    NASA Astrophysics Data System (ADS)

    Stanković, Koviljka; Brajović, Dragan; Alimpijević, Mališa; Lončar, Boris

    2016-07-01

    The aim of this paper is to identify parameters that influence the long-term deconditioning effect of gas-filled surge arrester (GFSA) and to provide practical recommendations for mitigating this effect. Namely, after some period of time, on order of hours or days, during which there is no activation due to overvoltage, the deconditioning of GFSA occurs. This effect was observed experimentally within the paper. The observed parameters that could influence the long-term deconditioning effect were the following: shape of voltage load, gas type, gas pressure, interelectrode distance, electrode material, electrode surface topography as well as GFSA design such as two- or three-electrode configuration. According to the results obtained, it has been shown that the occurrence of long-term deconditioning in an insulating system, insulated by a noble gas at a subpressure and with small interelectrode distances, is a phenomenon that always occurs when the insulating system is at rest for about an hour. It has been found that the type of noble gas does not influence the long-term deconditioning. Analysis of such insulating systems' parameters, with a prospect of being used as GFSAs, has demonstrated that this phenomenon is less pronounced at higher pressures (for the same value of the pressure (p) and interelectrode distance (d) product) and for electrodes with microscopically embossed surfaces. According to the results that were obtained by noble gases and their mixtures, as well as the results that were obtained by mixtures of SF6 gas with noble gasses, it can be claimed with confidence that the effect of the long-term deconditioning is an electrode effect. It has also been established that the deconditioning effect does not depend on the electrode material except in the case of electrodes made out of noble metals, which reduce the effect. Based on these results, it can be recommended that the working point of GFSAs be set (according to the DC breakdown voltage value) at a pressure that is as high as possible (with pd = const), and that the electrode active surface should have a marked microscopic topography. In addition to this, an essential conclusion for GFSA manufacturers is that long-term system deconditioning is caused by impurities and adsorbed gases that appear at electrode during the state of rest. Out of these two causes, the influence of impurities is probably the dominant one, which is proved by considerably reduced long-term deconditioning in the case of noble metal electrodes, not susceptible to corrosion. This has also been confirmed by a less distinct effect of long-term deconditioning in the case of sandblasted electrodes that have a stronger tendency towards gas adsorption and a weaker tendency towards corrosion. However, it has been shown that adding of the third electrode (that is concentric to the main electrode system) on a free floating potential along with usage of sandblasted electrodes and with smaller interelectrode distance significantly reduces the effects of the long-term deconditioning.

  5. Inert electrode containing metal oxides, copper and noble metal

    DOEpatents

    Ray, Siba P.; Woods, Robert W.; Dawless, Robert K.; Hosler, Robert B.

    2001-01-01

    A cermet composite material is made by treating at an elevated temperature a mixture comprising a compound of iron and a compound of at least one other metal, together with an alloy or mixture of copper and a noble metal. The alloy or mixture preferably comprises particles having an interior portion containing more copper than noble metal and an exterior portion containing more noble metal than copper. The noble metal is preferably silver. The cermet composite material preferably includes alloy phase portions and a ceramic phase portion. At least part of the ceramic phase portion preferably has a spinel structure.

  6. Inert electrode containing metal oxides, copper and noble metal

    DOEpatents

    Ray, Siba P.; Woods, Robert W.; Dawless, Robert K.; Hosler, Robert B.

    2000-01-01

    A cermet composite material is made by treating at an elevated temperature a mixture comprising a compound of iron and a compound of at least one other metal, together with an alloy or mixture of copper and a noble metal. The alloy or mixture preferably comprises particles having an interior portion containing more copper than noble metal and an exterior portion containing more noble metal than copper. The noble metal is preferably silver. The cermet composite material preferably includes alloy phase portions and a ceramic phase portion. At least part of the ceramic phase portion preferably has a spinel structure.

  7. Matrix-isolation and ab initio study of HKrCCCl and HXeCCCl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Cheng; Räsänen, Markku; Khriachtchev, Leonid, E-mail: leonid.khriachtchev@helsinki.fi

    2015-12-28

    We report on two new noble-gas molecules, HKrCCCl and HXeCCCl, prepared in low-temperature Kr and Xe matrices. These molecules are made by UV photolysis of HCCCl in the matrices and subsequent thermal annealing. The HCCCl precursor is produced by microwave discharge of a mixture of a matrix gas with trichloroethylene (HClC=CCl{sub 2}). The assignments of the new noble-gas molecules are supported by deuteration experiments and quantum chemical calculations at the MP2(full) and CCSD(T) levels of theory with the def2-TZVPPD basis set. No evidence of ClXeCCH, which is computationally reliably stable, is found in the experiments. ClKrCCH as well as themore » Ar compounds HArCCCl and ClArCCH are not observed either, which is in agreement with the calculations.« less

  8. Precise control of atomic nitrogen production in an electron cyclotron resonance plasma using N2/noble gas mixtures

    NASA Astrophysics Data System (ADS)

    Fan, Z. Y.; Newman, N.

    1998-07-01

    The atomic nitrogen flux and impacting ion kinetic energy are two important parameters which influence the quality of deposited nitride films using reactive growth. In this letter, a method is described to control the flux and kinetic energy of atomic and molecular nitrogen ions using an electron cyclotron resonance plasma with N2/Ar and N2/Ne gas mixtures. The results clearly show that the addition of neon to nitrogen plasma can remarkably enhance the production rate of atomic nitrogen due to Penning ionization involving the metastable state of Ne. In contrast, the addition of argon significantly decreases the rate.

  9. Reduced gas seepages in serpentinized peridotite complexes: Evidences for multiple origins of the H2-CH4-N2 gas mixtures

    NASA Astrophysics Data System (ADS)

    Deville, E.; Vacquand, C.; Beaumont, V.; Francois, G.; Sissmann, O.; Pillot, D.; Arcilla, C. A.; Prinzhofer, A.

    2017-12-01

    A comparative study of reduced gas seepages associated to serpentinized ultrabasic rocks was conducted in the ophiolitic complexes of Oman, the Philippines, Turkey and New Caledonia. This study is based on analyzes of the gas chemical composition, noble gases contents, and stable isotopes of carbon, hydrogen and nitrogen. These gas seepages are mostly made of mixtures of three main components which are H2, CH4 and N2 in various proportions. The relative contents of the three main gas components show 4 distinct families of gas mixtures (H2-rich, N2-rich, N2-H2-CH4 and H2-CH4). These families are interpreted as reflecting different zones of gas generation within or below the ophiolitic complexes. In the H2-rich family associated noble gases display signatures close to the value of air. In addition to the atmospheric component, mantle and crustal contributions are present in the N2-rich, N2-H2-CH4 and H2-CH4 families. H2-bearing gases are either associated to ultra-basic (pH 10-12) spring waters or they seep directly in fracture systems from the ophiolitic rocks. In ophiolitic contexts, ultrabasic rocks provide an adequate environment with available Fe2+ and high pH conditions that favor H2 production. CH4 is produced either directly by reaction of dissolved CO2 with basic-ultrabasic rocks during the serpentinization process or in a second step by H2-CO2 interaction. H2 is present in the gas when no more carbon is available in the system to generate CH4 (conditions of strong carbon restriction). The N2-rich family is associated with relatively high contents of crustal 4He. In this family N2 is interpreted as issued mainly from sediments located below the ophiolitic units.

  10. Reduced gas seepages in ophiolitic complexes: Evidences for multiple origins of the H2-CH4-N2 gas mixtures

    NASA Astrophysics Data System (ADS)

    Vacquand, Christèle; Deville, Eric; Beaumont, Valérie; Guyot, François; Sissmann, Olivier; Pillot, Daniel; Arcilla, Carlo; Prinzhofer, Alain

    2018-02-01

    This paper proposes a comparative study of reduced gas seepages occurring in ultrabasic to basic rocks outcropping in ophiolitic complexes based on the study of seepages from Oman, the Philippines, Turkey and New Caledonia. This study is based on analyses of the gas chemical composition, noble gases contents, stable isotopes of carbon, hydrogen and nitrogen. These seepages are mostly made of mixtures of three main components which are H2, CH4 and N2 in various proportions. The relative contents of the three main gas components show 4 distinct types of gas mixtures (H2-rich, N2-rich, N2-H2-CH4 and H2-CH4). These types are interpreted as reflecting different zones of gas generation within or below the ophiolitic complexes. In the H2-rich type, associated noble gases display signatures close to the value of air. In addition to the atmospheric component, mantle and crustal contributions are present in the N2-rich, N2-H2-CH4 and H2-CH4 types. H2-bearing gases are either associated with ultra-basic (pH 10-12) spring waters or they seep directly in fracture systems from the ophiolitic rocks. In ophiolitic contexts, ultrabasic rocks provide an adequate environment with available Fe2+ and alkaline conditions that favor H2 production. CH4 is produced either directly by reaction of dissolved CO2 with basic-ultrabasic rocks during the serpentinization process or in a second step by H2-CO2 interaction. H2 is present in the gas when no more carbon is available in the system to generate CH4. The N2-rich type is notably associated with relatively high contents of crustal 4He and in this gas type N2 is interpreted as issued mainly from sediments located below the ophiolitic units.

  11. Hydrocarbon-Rich Groundwater above Shale-Gas Formations: A Karoo Basin Case Study.

    PubMed

    Eymold, William K; Swana, Kelley; Moore, Myles T; Whyte, Colin J; Harkness, Jennifer S; Talma, Siep; Murray, Ricky; Moortgat, Joachim B; Miller, Jodie; Vengosh, Avner; Darrah, Thomas H

    2018-03-01

    Horizontal drilling and hydraulic fracturing have enhanced unconventional hydrocarbon recovery but raised environmental concerns related to water quality. Because most basins targeted for shale-gas development in the USA have histories of both active and legacy petroleum extraction, confusion about the hydrogeological context of naturally occurring methane in shallow aquifers overlying shales remains. The Karoo Basin, located in South Africa, provides a near-pristine setting to evaluate these processes, without a history of conventional or unconventional energy extraction. We conducted a comprehensive pre-industrial evaluation of water quality and gas geochemistry in 22 groundwater samples across the Karoo Basin, including dissolved ions, water isotopes, hydrocarbon molecular and isotopic composition, and noble gases. Methane-rich samples were associated with high-salinity, NaCl-type groundwater and elevated levels of ethane, 4 He, and other noble gases produced by radioactive decay. This endmember displayed less negative δ 13 C-CH 4 and evidence of mixing between thermogenic natural gases and hydrogenotrophic methane. Atmospheric noble gases in the methane-rich samples record a history of fractionation during gas-phase migration from source rocks to shallow aquifers. Conversely, methane-poor samples have a paucity of ethane and 4 He, near saturation levels of atmospheric noble gases, and more negative δ 13 C-CH 4 ; methane in these samples is biogenic and produced by a mixture of hydrogenotrophic and acetoclastic sources. These geochemical observations are consistent with other basins targeted for unconventional energy extraction in the USA and contribute to a growing data base of naturally occurring methane in shallow aquifers globally, which provide a framework for evaluating environmental concerns related to unconventional energy development (e.g., stray gas). © 2018, National Ground Water Association.

  12. Laser-polarized noble gases: a powerful probe for biology, medicine, and subatomic physics

    NASA Astrophysics Data System (ADS)

    Cates, Gordon

    2010-03-01

    For over a decade, laser-polarized noble gases such as ^3He and ^129Xe have proven useful for a wide range of scientific inquiries. These include investigations of pulmonary disease using the polarized gas as a signal source for magnetic resonance imaging (MRI), measurements of various aspects of nucleon structure, and tests of fundamental symmetries. Early efforts were often limited by expensive and bulky laser systems, but ongoing advancements in solid-state lasers have enabled increasingly large volumes of polarized gas to be produced with steadily improved polarization. Equally important have been advances in the fundamental understanding of spin exchange. This has led, for example, to the introduction of hybrid mixtures of alkali metals that can increase the efficiency of spin exchange by an order of magnitude. As a consequence of these advances, the figure of merit for polarized nuclear targets has increased by roughly three orders of magnitude in comparison to early accelerator-based experiments. And in MRI applications, it has become possible to pursue increasingly sophisticated imaging protocols that provide a wide range of diagnostic information. Even the earliest noble-gas MR images of the gas space of the human lung provided unprecedented resolution. More recent work includes the use of diffusion-sensitizing pulse sequences to study lung microstructure, and tagging techniques that enable the visualization (in real-time MRI movies) of gas flow during breathing. The range of applications of laser-polarized noble gases is continuing to grow, and it is notable that with an improved understanding of the underlying physics, it is quite likely that the capabilities of this useful technology will expand for some time to come.

  13. Theoretical study of metal noble-gas positive ions

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R.

    1989-01-01

    Theoretical calculations have been performed to determine the spectroscopic constant for the ground and selected low-lying electronic states of the transition-metal noble-gas ions Var(+), FeAr(+), CoAr(+), CuHe(+), CuAr(+), and CuKr(+). Analogous calculations have been performed for the ground states of the alkali noble-gas ions LiAr(+), LiKr(+), NaAr(+), and KAr(+) and the alkaline-earth noble-gas ion MgAr(+) to contrast the difference in binding energies between the simple and transition-metal noble-gas ions. The binding energies increase with increasing polarizability of the noble-gas ions, as expected for a charge-induced dipole bonding mechanism. It is found that the spectroscopic constants of the X 1Sigma(+) states of the alkali noble-gas ions are well described at the self-consistent field level. In contrast, the binding energies of the transition-metal noble-gas ions are substantially increased by electron correlation.

  14. Noble gas evidence for the depositional and irradiational history of 60010-60009 core soils

    NASA Technical Reports Server (NTRS)

    Bogard, D. D.; Hirsch, W. C.

    1977-01-01

    Isotopic abundances of the noble gases have been determined in grain size separates of eleven soils from different depths in the 60010-60009 double drive tube and in magnetic and plagioclase separates from a few of these soils. Data for the 60010 core are presented here. The entire core was deposited a maximum of approximately 125 m.y. ago as deduced from the Ar-38 cosmic ray exposure age of soil 60009,457. Soils in the topmost 12 cm of the core show loss of cosmogenic He-3 and Ne-21 and gain of trapped solar gases in proportion to the degree of surface reworking by micrometeorites as deduced from FMR data. A variety of compositional and irradiational evidence suggests that soils in the core were formed by mixing of three or more components during or immediately prior to core deposition less than about 125 m.y. ago. Based on cosmogenic noble gases and a variety of other data soils 60009,457 and 60010,3107 are similar (and possibly identical) to two of the end member soils which formed the mixture. More mature soils in the core, however, could not have matured in situ from these two soils because of significant differences in noble gas abundances and chemical composition.

  15. The electroluminescence of Xe-Ne gas mixtures: A Monte Carol simulation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, F.P.; Dias, T.H.V.T.; Rachinhas, P.J.B.M.

    1998-04-01

    The authors have performed a Monte Carlo simulation of the drift of electrons through a mixture of gaseous xenon with the lighter noble gas neon at a total pressure of 1 atm. The electroluminescence characteristics and other transport parameters are investigated as a function of the reduced electric field and composition of the mixture. For Xe-Ne mixtures with 5, 10, 20, 40, 70, 90, and 100% of Xe, they present results for electroluminescence yield and excitation efficiency, average electron energy, electron drift velocity, reduced mobility, reduced diffusion coefficients, and characteristic energies over a range of reduced electric fields which excludemore » electron multiplication. For the 5% Xe mixture, they also assess the influence of electron multiplication on the electroluminescence yield. The present study of Xe-Ne mixtures was motivated by an interest in using them as a filling for gas proportional scintillation counters in low-energy X-ray applications. In this energy range, the X rays will penetrate further into the detector due to the presence of Ne, and this will lead to an improvement in the collection of primary electrons originating near the detector window and may represent an advantage over the use of pure Xe.« less

  16. A membrane inlet mass spectrometry system for noble gases at natural abundances in gas and water samples.

    PubMed

    Visser, Ate; Singleton, Michael J; Hillegonds, Darren J; Velsko, Carol A; Moran, Jean E; Esser, Bradley K

    2013-11-15

    Noble gases dissolved in groundwater can reveal paleotemperatures, recharge conditions, and precise travel times. The collection and analysis of noble gas samples are cumbersome, involving noble gas purification, cryogenic separation and static mass spectrometry. A quicker and more efficient sample analysis method is required for introduced tracer studies and laboratory experiments. A Noble Gas Membrane Inlet Mass Spectrometry (NG-MIMS) system was developed to measure noble gases at natural abundances in gas and water samples. The NG-MIMS system consists of a membrane inlet, a dry-ice water trap, a carbon-dioxide trap, two getters, a gate valve, a turbomolecular pump and a quadrupole mass spectrometer equipped with an electron multiplier. Noble gases isotopes (4)He, (22)Ne, (38)Ar, (84)Kr and (132)Xe are measured every 10 s. The NG-MIMS system can reproduce measurements made on a traditional noble gas mass spectrometer system with precisions of 2%, 8%, 1%, 1% and 3% for He, Ne, Ar, Kr and Xe, respectively. Noble gas concentrations measured in an artificial recharge pond were used to monitor an introduced xenon tracer and to reconstruct temperature variations to within 2 °C. Additional experiments demonstrated the capability to measure noble gases in gas and in water samples, in real time. The NG-MIMS system is capable of providing analyses sufficiently accurate and precise for introduced noble gas tracers at managed aquifer recharge facilities, groundwater fingerprinting based on excess air and noble gas recharge temperature, and field and laboratory studies investigating ebullition and diffusive exchange. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Steady state fractionation of heavy noble gas isotopes in a deep unsaturated zone

    USGS Publications Warehouse

    Seltzer, Alan M.; Severinghaus, Jeffrey P.; Andraski, Brian J.; Stonestrom, David A.

    2017-01-01

    To explore steady state fractionation processes in the unsaturated zone (UZ), we measured argon, krypton, and xenon isotope ratios throughout a ∼110 m deep UZ at the United States Geological Survey (USGS) Amargosa Desert Research Site (ADRS) in Nevada, USA. Prior work has suggested that gravitational settling should create a nearly linear increase in heavy-to-light isotope ratios toward the bottom of stagnant air columns in porous media. Our high-precision measurements revealed a binary mixture between (1) expected steady state isotopic compositions and (2) unfractionated atmospheric air. We hypothesize that the presence of an unsealed pipe connecting the surface to the water table allowed for direct inflow of surface air in response to extensive UZ gas sampling prior to our first (2015) measurements. Observed isotopic resettling in deep UZ samples collected a year later, after sealing the pipe, supports this interpretation. Data and modeling each suggest that the strong influence of gravitational settling and weaker influences of thermal diffusion and fluxes of CO2 and water vapor accurately describe steady state isotopic fractionation of argon, krypton, and xenon within the UZ. The data confirm that heavy noble gas isotopes are sensitive indicators of UZ depth. Based on this finding, we outline a potential inverse approach to quantify past water table depths from noble gas isotope measurements in paleogroundwater, after accounting for fractionation during dissolution of UZ air and bubbles.

  18. A method for calculating the gas volume proportions and inhalation temperature of inert gas mixtures allowing reaching normothermic or hypothermic target body temperature in the awake rat.

    PubMed

    Abraini, Jacques H; David, Hélène N; Blatteau, Jean-Éric; Risso, Jean Jacques; Vallée, Nicolas

    2017-01-01

    The noble gases xenon (Xe) and helium (He) are known to possess neuroprotective properties. Xe is considered the golden standard neuroprotective gas. However, Xe has a higher molecular weight and lower thermal conductivity and specific heat than those of nitrogen, the main diluent of oxygen (O2) in air, conditions that could impair or at least reduce the intrinsic neuroprotective properties of Xe by increasing the critical care patient's respiratory workload and body temperature. In contrast, He has a lower molecular weight and higher thermal conductivity and specific heat than those of nitrogen, but is unfortunately far less potent than Xe at providing neuroprotection. Therefore, combining Xe with He could allow obtaining, depending on the gas inhalation temperature and composition, gas mixtures with neutral or hypothermic properties, the latter being advantageous in term of neuroprotection. However, calculating the thermal properties of a mixture, whatever the substances - gases, metals, rubbers, etc . - is not trivial. To answer this question, we provide a graphical method to assess the volume proportions of Xe, He and O2 that a gas mixture should contain, and the inhalation temperature to which it should be administered to allow a clinician to maintain the patient at a target body temperature.

  19. Synthesis of refractory organic matter in the ionized gas phase of the solar nebula.

    PubMed

    Kuga, Maïa; Marty, Bernard; Marrocchi, Yves; Tissandier, Laurent

    2015-06-09

    In the nascent solar system, primitive organic matter was a major contributor of volatile elements to planetary bodies, and could have played a key role in the development of the biosphere. However, the origin of primitive organics is poorly understood. Most scenarios advocate cold synthesis in the interstellar medium or in the outer solar system. Here, we report the synthesis of solid organics under ionizing conditions in a plasma setup from gas mixtures (H2(O)-CO-N2-noble gases) reminiscent of the protosolar nebula composition. Ionization of the gas phase was achieved at temperatures up to 1,000 K. Synthesized solid compounds share chemical and structural features with chondritic organics, and noble gases trapped during the experiments reproduce the elemental and isotopic fractionations observed in primitive organics. These results strongly suggest that both the formation of chondritic refractory organics and the trapping of noble gases took place simultaneously in the ionized areas of the protoplanetary disk, via photon- and/or electron-driven reactions and processing. Thus, synthesis of primitive organics might not have required a cold environment and could have occurred anywhere the disk is ionized, including in its warm regions. This scenario also supports N2 photodissociation as the cause of the large nitrogen isotopic range in the solar system.

  20. Synthesis of refractory organic matter in the ionized gas phase of the solar nebula

    PubMed Central

    Kuga, Maïa; Marty, Bernard; Marrocchi, Yves; Tissandier, Laurent

    2015-01-01

    In the nascent solar system, primitive organic matter was a major contributor of volatile elements to planetary bodies, and could have played a key role in the development of the biosphere. However, the origin of primitive organics is poorly understood. Most scenarios advocate cold synthesis in the interstellar medium or in the outer solar system. Here, we report the synthesis of solid organics under ionizing conditions in a plasma setup from gas mixtures (H2(O)−CO−N2−noble gases) reminiscent of the protosolar nebula composition. Ionization of the gas phase was achieved at temperatures up to 1,000 K. Synthesized solid compounds share chemical and structural features with chondritic organics, and noble gases trapped during the experiments reproduce the elemental and isotopic fractionations observed in primitive organics. These results strongly suggest that both the formation of chondritic refractory organics and the trapping of noble gases took place simultaneously in the ionized areas of the protoplanetary disk, via photon- and/or electron-driven reactions and processing. Thus, synthesis of primitive organics might not have required a cold environment and could have occurred anywhere the disk is ionized, including in its warm regions. This scenario also supports N2 photodissociation as the cause of the large nitrogen isotopic range in the solar system. PMID:26039983

  1. Noble gases released by vacuum crushing of EETA 79001 glass

    NASA Technical Reports Server (NTRS)

    Wiens, R. C.

    1988-01-01

    An EETA 79001 glass sample was crushed in a vacuum to observe the gases released. About 15 pct of the total gas concentrations were a mixture of a small amount of SPB-type gas with larger proportions of another air-like component. Less than 5 pct of the SPB gas was released by crushing, while 36-40 pct of the EETV (indigenous) gas was crush-released. The results are consistent with a siting of the EETV component in 10-100 micron vesicles seen in the glass. It is suggested that the SPB component is either in vesicles less than 6 microns in diameter or is primarily sited elsewhere.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, W.; Korea Basic Science Institute; Stepanyan, S. S.

    We present a device for spin-exchange optical pumping system to produce large quantities of polarized noble gases for Magnetic Resonance Imaging (MRI). A method and design of apparatus for pumping the polarization of noble gases is described. The method and apparatus enable production, storage and usage of hyperpolarized noble gases for different purposes, including Magnetic Resonance Imaging of human and animal subjects. Magnetic imaging agents breathed into lungs can be observed by the radio waves of the MRI scanner and report back physical and functional information about lung's health and desease. The technique known as spin exchange optical pumping ismore » used. Nuclear magnetic resonance is implemented to measure the polarization of hyperpolarized gas. The cells prepared and sealed under high vacuum after handling Alkali metals into the cell and filling with the {sup 3}He-N{sub 2} mixture. The cells could be refilled. The {sup 3}He reaches around 50% polarization in 5-15 hours.« less

  3. Noble gas storage and delivery system for ion propulsion

    NASA Technical Reports Server (NTRS)

    Back, Dwight Douglas (Inventor); Ramos, Charlie (Inventor)

    2001-01-01

    A method and system for storing and delivering a noble gas for an ion propulsion system where an adsorbent bearing a noble gas is heated within a storage vessel to desorb the noble gas which is then flowed through a pressure reduction device to a thruster assembly. The pressure and flow is controlled using a flow restrictor and low wattage heater which heats an adsorbent bed containing the noble gas propellant at low pressures. Flow rates of 5-60 sccm can be controlled to within about 0.5% or less and the required input power is generally less than 50 W. This noble gas storage and delivery system and method can be used for earth orbit satellites, and lunar or planetary space missions.

  4. Characterizing the Noble Gas Isotopic Composition of the Barnett Shale and Strawn Group and Constraining the Source of Stray Gas in the Trinity Aquifer, North-Central Texas.

    PubMed

    Wen, Tao; Castro, M Clara; Nicot, Jean-Philippe; Hall, Chris M; Pinti, Daniele L; Mickler, Patrick; Darvari, Roxana; Larson, Toti

    2017-06-06

    This study presents the complete set of stable noble gases for Barnett Shale and Strawn Group production gas together with stray flowing gas in the Trinity Aquifer, Texas. It places new constraints on the source of this stray gas and further shows that Barnett and Strawn gas have distinct crustal and atmospheric noble gas signatures, allowing clear identification of these two sources. Like stray gas, Strawn gas is significantly more enriched in crustal 4 He*, 21 Ne*, and 40 Ar* than Barnett gas. The similarity of Strawn and stray gas crustal noble gas signatures suggests that the Strawn is the source of stray gas in the Trinity Aquifer. Atmospheric 22 Ne/ 36 Ar ratios of stray gas mimic also that of Strawn, further reinforcing the notion that the source of stray gas in this aquifer is the Strawn. While noble gas signatures of Strawn and stray gas are consistent with a single-stage water degassing model, a two-stage oil modified groundwater exsolution fractionation model is required to explain the light atmospheric noble gas signature of Barnett Shale production gas. These distinct Strawn and Barnett noble gas signatures are likely the reflection of distinct evolution histories with Strawn gas being possibly older than that of Barnett Shale.

  5. A mass spectrometric line for tritium analysis of water and noble gas measurements from different water amounts in the range of microlitres and millilitres.

    PubMed

    Papp, Laszlo; Palcsu, Laszlo; Major, Zoltan; Rinyu, Laszlo; Tóth, Istvan

    2012-01-01

    This paper describes the procedure followed for noble gas measurements for litres, millilitres and microlitres of water samples in our laboratory, including sample preparation, mass spectrometric measurement procedure, and the complete calibrations. The preparation line extracts dissolved gases from water samples of volumes of 0.2 μ l to 3 l and it separates them as noble and other chemically active gases. Our compact system handles the following measurements: (i) determination of tritium concentration of environmental water samples by the (3)He ingrowth method; (ii) noble gas measurements from surface water and groundwater; and (iii) noble gas measurements from fluid inclusions of solid geological archives (e.g. speleothems). As a result, the tritium measurements have a detection limit of 0.012 TU, and the expectation value (between 1 and 20 TU) is within 0.2 % of the real concentrations with a standard deviation of 2.4 %. The reproducibility of noble gas measurements for water samples of 20-40 ml allows us to determine solubility temperatures by an uncertainty better than 0.5 °C. Moreover, noble gas measurements for tiny water amounts (in the microlitre range) show that the results of the performed calibration measurements for most noble gas isotopes occur with a deviation of less than 2 %. Theoretically, these precisions for noble gas concentrations obtained from measurements of waters samples of a few microlitres allow us to determine noble gas temperatures by an uncertainty of less than 1 °C. Here, we present the first noble gas measurements of tiny amounts of artificial water samples prepared under laboratory conditions.

  6. Barnett Shale or Strawn Group: Identifying the Source of Stray Gas through Noble Gases in the Trinity Aquifer, North-Central Texas

    NASA Astrophysics Data System (ADS)

    Wen, T.; Castro, M. C.; Nicot, J. P.; Hall, C. M.; Pinti, D. L.; Mickler, P. J.; Darvari, R.; Larson, T. E.

    2017-12-01

    The complete set of stable noble gases (He, Ne, Ar, Kr, Xe) is presented for Barnett Shale and Strawn Group production gas together with that of stray flowing gas present in the Trinity Aquifer, Texas. It places new constraints on the source of this stray gas and further shows that Barnett and Strawn gas have distinct crustal and atmospheric noble gas signatures, allowing clear identification of these two sources. Like Trinity Aquifer stray gas, Strawn gas is significantly more enriched in crustal 4He*, 21Ne*, and 40Ar* than Barnett gas. The similarity of Strawn and stray gas crustal noble gas signatures suggests that the Strawn is the source of stray gas in the Trinity Aquifer. Atmospheric 22Ne/36Ar ratios of stray gas mimic also that of Strawn, further reinforcing the notion that the source of stray gas in this aquifer is the Strawn. While noble gas signatures of Strawn and stray gas are consistent with a single-stage water degassing model, a two-stage oil modified groundwater exsolution fractionation model is required to explain the light atmospheric noble gas signature of Barnett Shale production gas. These distinct Strawn and Barnett noble gas signatures are likely the reflection of distinct evolution histories with Strawn gas being possibly older than that of Barnett Shale.

  7. Trapping of noble gases in proton-irradiated silicate smokes

    NASA Technical Reports Server (NTRS)

    Nichols, R. H., Jr.; Nuth, J. A., III; Hohenberg, C. M.; Olinger, C. T.; Moore, M. H.

    1992-01-01

    We have measured Ne, Ar, Kr, and Xe in Si2O3 'smokes' that were condensed on Al substrates, vapor-deposited with various mixtures of CH4, NH3, H2O3 and noble gases at 10 K and subsequently irradiated with 1 MeV protons to simulate conditions during grain mantle formation in interstellar clouds. Neither Ne nor Ar is retained by the samples upon warming to room temperature, but Xe is very efficiently trapped and retained. Kr is somewhat less effectively retained, typically depleted by factors of about 10-20 relative to Xe. Isotopic fractionation favoring the heavy isotopes of Xe and Kr of about 5-10-percent/amu is observed. Correlations between the specific chemistry of the vapor deposition and heavy noble gas retention are most likely the result of competition by the various species for irradiation-produced trapping sites. The concentration of Xe retained by some of these smokes exceeds that observed in phase Q of meteorites and, like phase Q, they do not seem to be carriers of the light noble gases.

  8. The Noble-Abel Stiffened-Gas equation of state

    NASA Astrophysics Data System (ADS)

    Le Métayer, Olivier; Saurel, Richard

    2016-04-01

    Hyperbolic two-phase flow models have shown excellent ability for the resolution of a wide range of applications ranging from interfacial flows to fluid mixtures with several velocities. These models account for waves propagation (acoustic and convective) and consist in hyperbolic systems of partial differential equations. In this context, each phase is compressible and needs an appropriate convex equation of state (EOS). The EOS must be simple enough for intensive computations as well as boundary conditions treatment. It must also be accurate, this being challenging with respect to simplicity. In the present approach, each fluid is governed by a novel EOS named "Noble Abel stiffened gas," this formulation being a significant improvement of the popular "Stiffened Gas (SG)" EOS. It is a combination of the so-called "Noble-Abel" and "stiffened gas" equations of state that adds repulsive effects to the SG formulation. The determination of the various thermodynamic functions and associated coefficients is the aim of this article. We first use thermodynamic considerations to determine the different state functions such as the specific internal energy, enthalpy, and entropy. Then we propose to determine the associated coefficients for a liquid in the presence of its vapor. The EOS parameters are determined from experimental saturation curves. Some examples of liquid-vapor fluids are examined and associated parameters are computed with the help of the present method. Comparisons between analytical and experimental saturation curves show very good agreement for wide ranges of temperature for both liquid and vapor.

  9. A method for calculating the gas volume proportions and inhalation temperature of inert gas mixtures allowing reaching normothermic or hypothermic target body temperature in the awake rat

    PubMed Central

    Abraini, Jacques H.; David, Hélène N.; Blatteau, Jean-Éric; Risso, Jean Jacques; Vallée, Nicolas

    2017-01-01

    The noble gases xenon (Xe) and helium (He) are known to possess neuroprotective properties. Xe is considered the golden standard neuroprotective gas. However, Xe has a higher molecular weight and lower thermal conductivity and specific heat than those of nitrogen, the main diluent of oxygen (O2) in air, conditions that could impair or at least reduce the intrinsic neuroprotective properties of Xe by increasing the critical care patient's respiratory workload and body temperature. In contrast, He has a lower molecular weight and higher thermal conductivity and specific heat than those of nitrogen, but is unfortunately far less potent than Xe at providing neuroprotection. Therefore, combining Xe with He could allow obtaining, depending on the gas inhalation temperature and composition, gas mixtures with neutral or hypothermic properties, the latter being advantageous in term of neuroprotection. However, calculating the thermal properties of a mixture, whatever the substances – gases, metals, rubbers, etc. – is not trivial. To answer this question, we provide a graphical method to assess the volume proportions of Xe, He and O2 that a gas mixture should contain, and the inhalation temperature to which it should be administered to allow a clinician to maintain the patient at a target body temperature. PMID:29152210

  10. Investigation of laser polarized xenon magnetic resonance

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.

    1998-01-01

    Ground-based investigations of a new biomedical diagnostic technology: nuclear magnetic resonance of laser polarized noble gas are addressed. The specific research tasks discussed are: (1) Development of a large-scale noble gas polarization system; (2) biomedical investigations using laser polarized noble gas in conventional (high magnetic field) NMR systems; and (3) the development and application of a low magnetic field system for laser polarized noble gas NMR.

  11. Using noble gases measured in spring discharge to trace hydrothermal processes in the Norris Geyser Basin, Yellowstone National Park, U.S.A.

    USGS Publications Warehouse

    Gardner, W.P.; Susong, D.D.; Solomon, D.K.; Heasler, H.P.

    2010-01-01

    Dissolved noble gas concentrations in springs are used to investigate boiling of hydrothermal water and mixing of hydrothermal and shallow cool water in the Norris Geyser Basin area. Noble gas concentrations in water are modeled for single stage and continuous steam removal. Limitations on boiling using noble gas concentrations are then used to estimate the isotopic effect of boiling on hydrothermal water, allowing the isotopic composition of the parent hydrothermal water to be determined from that measured in spring. In neutral chloride springs of the Norris Geyser Basin, steam loss since the last addition of noble gas charged water is less than 30% of the total hydrothermal discharge, which results in an isotopic shift due to boiling of ?? 2.5% ??D. Noble gas concentrations in water rapidly and predictably change in dual phase systems, making them invaluable tracers of gas-liquid interaction in hydrothermal systems. By combining traditional tracers of hydrothermal flow such as deuterium with dissolved noble gas measurements, more complex hydrothermal processes can be interpreted. ?? 2010 Elsevier B.V.

  12. LaRC results on nuclear pumped noble gas lasers

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.

    1979-01-01

    The recent experiment and theoretical results obtained for noble gas nuclear laser systems are presented. It is shown that the noble gas lasers are among the easiest systems to pump by nuclear excitation and as a result, all of the noble gases except He have lased under nuclear excitation. The noble gas systems are not ideal for high-power applications but they do give valuable insight into the operation and pumping mechanisms associated with nuclear lasers. At present, the Ar-Xe system is the best noble gas candidate for (U-235)F6 pumping. It appears that the quenching of Ar-Xe lasing is a result of the fluorine and not the uranium or fission fragments themselves. Thus, to achieve lasing with UF6, a fluorine compatible system must be found.

  13. Investigation of the volatile species in the lunar soil

    NASA Astrophysics Data System (ADS)

    Wurz, Peter; Hofer, Lukas; Tulej, Marek; Lasi, Davide; Cabane, Michel; Cosica, David; Gerasimov, Mikhail; Rodinov, Daniel

    2013-04-01

    Two spacecraft, Luna-Glob and Luna-Resource of Roskosmos (Russia), will be landing on the lunar south pole in 2016 and 2018, respectively. These spacecraft will carry a complex scientific payload. Part of the scientific instrumentation is the gas-chromatographic mass-spectrometric complex, which combines a Thermal Differential Analyser (TDA), a Gas Chromatograph (GC), and a mass spectrometer (MS). This instrument is dedicated to the investigation of the volatiles in the lunar soil, its chemical composition, the fraction of water and organic species, and the identification of noble gases. Measurement of isotopic composition will be performed of CHON elements (13C/12C, D/H, 17O/16O, 18O/16O, 15N/14N) and noble gases. We developed a prototype GC-MS instrument for these missions where the GC part is heritage from the Phobos Grunt mission of Roskosmos and the MS part is a complete new development for the Luna missions. We have carried out several GC-MS measurements on calibration gas mixtures that demonstrate that this instrument fulfills the scientific requirements for the Luna missions.

  14. Analysis of the physical atomic forces between noble gas atoms, alkali ions and halogen ions

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Heinbockel, J. H.; Outlaw, R. A.

    1986-01-01

    The physical forces between atoms and molecules are important in a number of processes of practical importance, including line broadening in radiative processes, gas and crystal properties, adhesion, and thin films. The components of the physical forces between noble gas atoms, alkali ions, and halogen ions are analyzed and a data base for the dispersion forces is developed from the literature based on evaluations with the harmonic oscillator dispersion model for higher order coefficients. The Zener model of the repulsive core is used in the context of the recent asymptotic wave functions of Handler and Smith; and an effective ionization potential within the Handler and Smith wave functions is defined to analyze the two body potential data of Waldman and Gordon, the alkali-halide molecular data, and the noble gas crystal and salt crystal data. A satisfactory global fit to this molecular and crystal data is then reproduced by the model to within several percent. Surface potentials are evaluated for noble gas atoms on noble gas and salt crystal surfaces with surface tension neglected. Within this context, the noble gas surface potentials on noble gas and salt crystals are considered to be accurate to within several percent.

  15. Noble gas magnetic resonator

    DOEpatents

    Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

    2014-04-15

    Precise measurements of a precessional rate of noble gas in a magnetic field is obtained by constraining the time averaged direction of the spins of a stimulating alkali gas to lie in a plane transverse to the magnetic field. In this way, the magnetic field of the alkali gas does not provide a net contribution to the precessional rate of the noble gas.

  16. Real-time noble gas release signaling rock deformation

    NASA Astrophysics Data System (ADS)

    Bauer, S. J.; Gardner, W. P.; Lee, H.

    2016-12-01

    We present empirical results/relationships of rock strain, microfracture density, acoustic emissions, and noble gas release from laboratory triaxial experiments for a granite and basalt. Noble gases are contained in most crustal rock at inter/intra granular sites, their release during natural and manmade stress and strain changes represents a signal of brittle/semi brittle deformation. The gas composition depends on lithology, geologic history and age, fluids present, and uranium, thorium and potassium-40 concentrations in the rocks that affect radiogenic noble gases (helium, argon) production. Noble gas emission and its relationship to crustal processes have been studied, including correlations to tectonic velocities and qualitative estimates of deep permeability from surface measurements, finger prints of nuclear weapon detonation, and as potential precursory signals to earthquakes attributed to gas release due to pre-seismic stress, dilatancy and/or rock fracturing. Helium emission has been shown as a precursor of volcanic activity. Real-time noble gas release is observed using an experimental system utilizing mass spectrometers to measure gases released during triaxial rock deformation. Noble gas release is shown to represent a sensitive precursor signal of rock deformation by relating real-time noble gas release to stress-strain state changes and acoustic emissions. We propose using noble gas release to also signal rock deformation in boreholes, mines and nuclear waste repositories. We postulate each rock exhibits a gas release signature which is microstructure, stress/strain state, and or permanent deformation dependent. Such relationships, when calibrated, may be used to sense rock deformation and then develop predictive models. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the US Dept. of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2016-7468 A

  17. Preparation and evaluation of advanced catalysts for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Stonehart, P.; Baris, J.; Hockmuth, J.; Pagliaro, P.

    1984-01-01

    The platinum electrocatalysts were characterized for their crystallite sizes and the degree of dispersion on the carbon supports. One application of these electrocatalysts was for anodic oxidation of hydrogen in hot phosphoric acid fuel cells, coupled with the influence of low concentrations of carbon monoxide in the fuel gas stream. In a similar way, these platinum on carbon electrocatalysts were evaluated for oxygen reduction in hot phosphoric acid. Binary noble metal alloys were prepared for anodic oxidation of hydrogen and noble metal-refractory metal mixtures were prepared for oxygen reduction. An exemplar alloy of platinum and palladium (50/50 atom %) was discovered for anodic oxidation of hydrogen in the presence of carbon monoxide, and patent disclosures were submitted. For the cathode, platinum-vanadium alloys were prepared showing improved performance over pure platinum. Preliminary experiments on electrocatalyst utilization in electrode structures showed low utilization of the noble metal when the electrocatalyst loading exceeded one weight percent on the carbon.

  18. On the interatomic potentials for noble gas mixtures

    NASA Astrophysics Data System (ADS)

    Watanabe, Kyoko; Allnatt, A. R.; Meath, William J.

    1982-07-01

    Recently, a relatively simple scheme for the construction of isotropic intermolecular potentials has been proposed and tested for the like species interactions involving He, Ne, Ar, Kr and H 2. The model potential has an adjustable parameter which controls the balance between its exchange and Coulomb energy components. The representation of the Coulomb energy contains a damped multipolar dispersion energy series (which is truncated through O( R-10) and provides additional flexibility through adjustment of the dispersion energy coefficients, particularly C8 and C10, within conservative error estimates. In this paper the scheme is tested further by application to interactions involving unlike noble gas atoms where the parameters in the potential model are determined by fitting mixed second virial coefficient data as a function of temperature. Generally the approach leads to potential of accuracy comparable to the best available literature potentials which are usually determined using a large base of experimental and theoretical input data. Our results also strongly indicate the need of high quality virial data.

  19. Neutron detection with noble gas scintillation: a review of recent results

    NASA Astrophysics Data System (ADS)

    Lavelle, C. M.; Coplan, Michael; Miller, Eric C.; Thompson, Alan K.; Kowler, Alex; Vest, Rob; Yue, Andrew; Koeth, Tim; Al-Sheikhly, Mohammad; Clark, Charles

    2015-08-01

    Thermal neutron detection is of vital importance to many disciplines, including neutron scattering, workplace monitoring, and homeland protection. We survey recent results from our collaboration which couple low-pressure noble gas scintillation with novel approaches to neutron absorbing materials and geometries to achieve potentially advantageous detector concepts. Noble gas scintillators were used for neutron detection as early as the late 1950's. Modern use of noble gas scintillation includes liquid and solid forms of argon and xenon in the dark matter and neutron physics experiments and commercially available high pressure applications have achieved high resolution gamma ray spectroscopy. Little attention has been paid to the overlap between low pressure noble gas scintillation and thermal neutron detection, for which there are many potential benefits.

  20. Noble gases as tracers of the origin and evolution of the Martian atmosphere and the degassing history of the planet

    NASA Technical Reports Server (NTRS)

    Swindle, T. D.

    1988-01-01

    Noble gas analysis of Martian samples can provide answers to a number of crucial questions. Some of the most obvious benefits will be in Martian chronology, using techniques that have been applied to lunar samples. However, these are by no means the only relevant noble gas studies possible. Since Mars has a substantial atmosphere, noble gases can be used to study the origin and evolution of that atmosphere, including the degassing history of the planet. This type of study can provide constraints on: (1) the total noble gas inventory of the planet, (2) the number of noble gas reservoirs existing, and (3) the exchange of gases between these reservoirs. How to achieve these goals are examined.

  1. Trapping Ne, Ar, Kr, and Xe in Si2O3 smokes

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A., III; Donn, Bertram; Olinger, Chad; Garrison, Dan; Hohenberg, Charles

    1988-01-01

    Simple Si2O3 smokes have been condensed at both low (less than 750 K) and high (greater than 1000 K) temperature at 35 torr H2 pressure in the presence of 0, 10, 100, and 1000 microns of a noble gas mixture containing Ne, Ar, Kr, and Xe. In general, both Ne and Ar are quite loosely bound in the smokes (6.0 x 10 to the -8th and 2.6 x 10 to the -4th ccSTP/g, respectively), and are degassed at temperatures below 1200 K. Both Kr and Xe are somewhat more strongly bound at concentrations of 1.0 x 10 to the -7th and 8.2 x 10 to the -8th ccSTP/g, respectively, and in addition show a double release with a second component at a temperature of about 1875 K. With the exception that Si2O3 smokes appear to show a particular affinity for argon, possibly due to an anomalous absorption of atmospheric argon, none of the other noble gases are found in sufficient concentration to explain the gases observed in meteorites as primary circumstellar condensates. However, this data in conjunction with observations of Honda et al. (1979) do seem to show a degree of dependence between noble gas retention and chemical composition.

  2. Experimental studies and model analysis of noble gas fractionation in porous media

    USGS Publications Warehouse

    Ding, Xin; Kennedy, B. Mack.; Evans, William C.; Stonestrom, David A.

    2016-01-01

    The noble gases, which are chemically inert under normal terrestrial conditions but vary systematically across a wide range of atomic mass and diffusivity, offer a multicomponent approach to investigating gas dynamics in unsaturated soil horizons, including transfer of gas between saturated zones, unsaturated zones, and the atmosphere. To evaluate the degree to which fractionation of noble gases in the presence of an advective–diffusive flux agrees with existing theory, a simple laboratory sand column experiment was conducted. Pure CO2 was injected at the base of the column, providing a series of constant CO2 fluxes through the column. At five fixed sampling depths within the system, samples were collected for CO2 and noble gas analyses, and ambient pressures were measured. Both the advection–diffusion and dusty gas models were used to simulate the behavior of CO2 and noble gases under the experimental conditions, and the simulations were compared with the measured depth-dependent concentration profiles of the gases. Given the relatively high permeability of the sand column (5 ´ 10−11 m2), Knudsen diffusion terms were small, and both the dusty gas model and the advection–diffusion model accurately predicted the concentration profiles of the CO2 and atmospheric noble gases across a range of CO2 flux from ?700 to 10,000 g m−2 d−1. The agreement between predicted and measured gas concentrations demonstrated that, when applied to natural systems, the multi-component capability provided by the noble gases can be exploited to constrain component and total gas fluxes of non-conserved (CO2) and conserved (noble gas) species or attributes of the soil column relevant to gas transport, such as porosity, tortuosity, and gas saturation.

  3. Noble gases in CH 4-rich gas fields, Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Hiyagon, H.; Kennedy, B. M.

    1992-04-01

    The elemental and isotopic compositions of helium, neon, argon, and xenon in twenty-one CH 4-rich natural gas samples from Cretaceous and Devonian reservoirs in the Alberta, Canada, sedimentary basin were measured. In all but a few cases, radiogenic ( 4He, 40Ar, and 131-136Xe) and nucleogenic ( 21,22Ne) isotopes dominated. Based solely on the noble gas composition, two types of natural gas reservoirs are identified. One (Group B) is highly enriched in radiogenic-nucleogenic noble gases and varies little in composition: 3He /4He = 1.5 ± 0.5 × 10 -8, 40Ar /36Ar = 5000-6500 , 40∗Ar /4He = 0.10 , 136∗Xe /4He ~ 0.7 × 10 -9, and 21∗Ne /22∗Ne = 0.452 ± 0.041 (∗ denotes radiogenic or nucleogenic origin; all 4He is radiogenic). High nitrogen content with 4He /N 2 ~ 0.06 is also characteristic of Group B samples. The remaining samples (Group A) contain a radiogenic-nucleogenic component with a different composition and, relative to Group B samples, the extent of enrichment in this component is less and more variable: 3He /4He = 10-70 × 10 -8, 40Ar /36Ar < 1550 , and 40∗Ar /4He ~ 0.25 . The composition of Group B radiogenic-nucleogenic noble gases is consistent with production in crust of average composition. Enrichment in Group B noble gases and nitrogen increases with proximity to the underlying Precambrian basement, consistent with a present-day mass flux into the overlying sedimentary basin. Inferred 40∗Ar /136∗Xe 4He ratios imply a basement source enriched in thorium relative to uranium and potassium (Th/U > 20). Combined, the overall lower total radiogenic-nucleogenic content of Group A reservoirs, the greater variability in composition, and the appearance of Group A noble gases in reservoirs higher in the sedimentary sequence relative to the underlying basement implies that the Group A radiogenic-nucleogenic noble gases are indigenous to the sediments. The most interesting aspect of the Group A noble gases are the very high 3He /4He ratios; ~ 10-70 times greater than expected if derived from average crust. The mantle, surface cosmogenic 3He production, cosmic dust, or production in a lithium-enriched environment as potential sources for the 3He excesses are evaluated. The present data set would seem to rule out cosmogenic 3He. The mantle, cosmic dust, or high Li, however, remain viable candidates. The relative abundances of the nonradiogenic, non-nucleogenic noble gases show no correlation with the Group A-B reservoir classification. Compositional variations indicate three-component mixing between air or an air-like component, 10°C air-saturated water, and a third component enriched in xenon. Apparently, the latter cannot be derived from equilibrium solubility degassing of air-saturated water or oil-water mixtures, and may have been derived from devolatilization of C-rich petroleum source sediments.

  4. Experimental studies and model analysis of noble gas fractionation in low-permeability porous media

    NASA Astrophysics Data System (ADS)

    Ding, Xin; Mack Kennedy, B.; Molins, Sergi; Kneafsey, Timothy; Evans, William C.

    2017-05-01

    Gas flow through the vadose zone from sources at depth involves fractionation effects that can obscure the nature of transport and even the identity of the source. Transport processes are particularly complex in low permeability media but as shown in this study, can be elucidated by measuring the atmospheric noble gases. A series of laboratory column experiments was conducted to evaluate the movement of noble gas from the atmosphere into soil in the presence of a net efflux of CO2, a process that leads to fractionation of the noble gases from their atmospheric abundance ratios. The column packings were designed to simulate natural sedimentary deposition by interlayering low permeability ceramic plates and high permeability beach sand. Gas samples were collected at different depths at CO2 fluxes high enough to cause extreme fractionation of the noble gases (4He/36Ar > 20 times the air ratio). The experimental noble gas fractionation-depth profiles were in good agreement with those predicted by the dusty gas (DG) model, demonstrating the applicability of the DG model across a broad spectrum of environmental conditions. A governing equation based on the dusty gas model was developed to specifically describe noble gas fractionation at each depth that is controlled by the binary diffusion coefficient, Knudsen diffusion coefficient and the ratio of total advection flux to total flux. Finally, the governing equation was used to derive the noble gas fractionation pattern and illustrate how it is influenced by soil CO2 flux, sedimentary sequence, thickness of each sedimentary layer and each layer's physical parameters. Three potential applications of noble gas fractionation are provided: evaluating soil attributes in the path of gas flow from a source at depth to the atmosphere, testing leakage through low permeability barriers used to isolate buried waste, and tracking biological methanogenesis and methane oxidation associated with hydrocarbon degradation.

  5. Biomedical Investigations with Laser-Polarized Noble Gas Magnetic Resonance

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.

    2003-01-01

    We pursued advanced technology development of laser-polarized noble gas nuclear magnetic resonance (NMR) as a novel biomedical imaging tool for ground-based and eventually space-based application. This new multidisciplinary technology enables high-resolution gas-space magnetic resonance imaging (MRI)-e.g., of lung ventilation-as well as studies of tissue perfusion. In addition, laser-polarized noble gases (3He and 129Xe) do not require a large magnetic field for sensitive detection, opening the door to practical MRI at very low magnetic fields with an open, lightweight, and low-power device. We pursued two technology development specific aims: (1) development of low-field (less than 0.01 T) noble gas MRI of humans; and (2) development of functional MRI of the lung using laser-polarized noble gas and related techniques.

  6. Multidiffusion mechanisms for noble gases (He, Ne, Ar) in silicate glasses and melts in the transition temperature domain: Implications for glass polymerization

    NASA Astrophysics Data System (ADS)

    Amalberti, Julien; Burnard, Pete; Laporte, Didier; Tissandier, Laurent; Neuville, Daniel R.

    2016-01-01

    Noble gases are ideal probes to study the structure of silicate glasses and melts as the modifications of the silicate network induced by the incorporation of noble gases are negligible. In addition, there are systematic variations in noble gas atomic radii and several noble gas isotopes with which the influence of the network itself on diffusion may be investigated. Noble gases are therefore ideally suited to constrain the time scales of magma degassing and cooling. In order to document noble gas diffusion behavior in silicate glass, we measured the diffusivities of three noble gases (4He, 20Ne and 40Ar) and the isotopic diffusivities of two Ar isotopes (36Ar and 40Ar) in two synthetic basaltic glasses (G1 and G2; 20Ne and 36Ar were only measured in sample G1). These new diffusion results are used to re-interpret time scales of the acquisition of fractionated atmospheric noble gas signatures in pumices. The noble gas bearing glasses were synthesized by exposing the liquids to high noble gas partial pressures at high temperature and pressure (1750-1770 K and 1.2 GPa) in a piston-cylinder apparatus. Diffusivities were measured by step heating the glasses between 423 and 1198 K and measuring the fraction of gas released at each temperature step by noble gas mass spectrometry. In addition we measured the viscosity of G1 between 996 and 1072 K in order to determine the precise glass transition temperature and to estimate network relaxation time scales. The results indicate that, to a first order, that the smaller the size of the diffusing atom, the greater its diffusivity at a given temperature: D(He) > D(Ne) > D(Ar) at constant T. Significantly, the diffusivities of the noble gases in the glasses investigated do not display simple Arrhenian behavior: there are well-defined departures from Arrhenian behavior which occur at lower temperatures for He than for Ne or Ar. We propose that the non-Arrhenian behavior of noble gases can be explained by structural modifications of the silicate network itself as the glass transition temperature is approached: as the available free volume (available site for diffusive jumps) is modified, noble gas diffusion is no longer solely temperature-activated but also becomes sensitive to the kinetics of network rearrangements. The non-Arrhenian behavior of noble gas diffusion close to Tg is well described by a modified Vogel-Tammann-Fulcher (VTF) equation: Finally, our step heating diffusion experiments suggest that at T close to Tg, noble gas isotopes may suffer kinetic fractionation at a degree larger than that predicted by Graham's law. In the case of 40Ar and 36Ar, the traditional assumption based on Graham's law is that the ratio D40Ar/D36Ar should be equal to 0.95 (the square root of the ratio of the mass of 36Ar over the mass of 40Ar). In our experiment with glass G1, D40Ar/D36Ar rapidly decreased with decreasing temperature, from near unity (0.98 ± 0.14) at T > 1040 K to 0.76 when close to Tg (T = 1003 K). Replicate experiments are needed to confirm the strong kinetic fractionation of heavy noble gases close to the transition temperature.

  7. Solubility of noble gases in serpentine - Implications for meteoritic noble gas abundances

    NASA Technical Reports Server (NTRS)

    Zaikowski, A.; Schaeffer, O. A.

    1979-01-01

    An investigation of the solubilities of the noble gases from synthesis and solubility studies of the sheet silicate mineral serpentine in carbonaceous chondrites is presented. Hydrothermal synthesis and exchange experiments were made at 340C and 1 kbar with noble gas partial pressures from 2 times 10 to the -8th power to 0.1 atm. The measured distribution coefficients for noble gases are not sufficiently high to account for the trapped noble gases in carbonaceous chondrites by exchange in solar nebula if meteoritic minerals have comparable distribution coefficients. Also, serpentine gains and loses noble gases to approach equilibrium values with the terrestrial atmosphere, indicating that this exposure may have influenced the noble gas abundances in phyllosilicate minerals of these chondrites. The dispersion of K-Ar ages of carbonaceous chondrites could be the result of phyllosilicates approaching equilibrium solubility of atmospheric Ar-40.

  8. Ab initio theory of noble gas atoms in bcc transition metals.

    PubMed

    Jiang, Chao; Zhang, Yongfeng; Gao, Yipeng; Gan, Jian

    2018-06-18

    Systematic ab initio calculations based on density functional theory have been performed to gain fundamental understanding of the interactions between noble gas atoms (He, Ne, Ar and Kr) and bcc transition metals in groups 5B (V, Nb and Ta), 6B (Cr, Mo and W) and 8B (Fe). Our charge density analysis indicates that the strong polarization of nearest-neighbor metal atoms by noble gas interstitials is the electronic origin of their high formation energies. Such polarization becomes more significant with an increasing gas atom size and interstitial charge density in the host bcc metal, which explains the similar trend followed by the unrelaxed formation energies of noble gas interstitials. Upon allowing for local relaxation, nearby metal atoms move farther away from gas interstitials in order to decrease polarization, albeit at the expense of increasing the elastic strain energy. Such atomic relaxation is found to play an important role in governing both the energetics and site preference of noble gas atoms in bcc metals. Our most notable finding is that the fully relaxed formation energies of noble gas interstitials are strongly correlated with the elastic shear modulus of the bcc metal, and the physical origin of this unexpected correlation has been elucidated by our theoretical analysis based on the effective-medium theory. The kinetic behavior of noble gas atoms and their interaction with pre-existing vacancies in bcc transition metals have also been discussed in this work.

  9. Tracing enhanced oil recovery signatures in casing gases from the Lost Hills oil field using noble gases

    USGS Publications Warehouse

    Barry, Peter H.; Kulongoski, Justin; Landon, Matthew K.; Tyne, R.L.; Gillespie, Janice; Stephens, Michael; Hillegonds, D.J.; Byrne, D.J.; Ballentine, C.J.

    2018-01-01

    Enhanced oil recovery (EOR) and hydraulic fracturing practices are commonly used methods to improve hydrocarbon extraction efficiency; however the environmental impacts of such practices remain poorly understood. EOR is particularly prevalent in oil fields throughout California where water resources are in high demand and disposal of high volumes of produced water may affect groundwater quality. Consequently, it is essential to better understand the fate of injected (EOR) fluids in California and other subsurface petroleum systems, as well as any potential effect on nearby aquifer systems. Noble gases can be used as tracers to understand hydrocarbon generation, migration, and storage conditions, as well as the relative proportions of oil and water present in the subsurface. In addition, a noble gas signature diagnostic of injected (EOR) fluids can be readily identified. We report noble gas isotope and concentration data in casing gases from oil production wells in the Lost Hills oil field, northwest of Bakersfield, California, and injectate gas data from the Fruitvale oil field, located within the city of Bakersfield. Casing and injectate gas data are used to: 1) establish pristine hydrocarbon noble-gas signatures and the processes controlling noble gas distributions, 2) characterize the noble gas signature of injectate fluids, 3) trace injectate fluids in the subsurface, and 4) construct a model to estimate EOR efficiency. Noble gas results range from pristine to significantly modified by EOR, and can be best explained using a solubility exchange model between oil and connate/formation fluids, followed by gas exsolution upon production. This model is sensitive to oil-water interaction during hydrocarbon expulsion, migration, and storage at reservoir conditions, as well as any subsequent modification by EOR.

  10. Non-noble metal based electro-catalyst compositions for proton exchange membrane based water electrolysis and methods of making

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumta, Prashant N.; Kadakia, Karan Sandeep; Datta, Moni Kanchan

    The invention provides electro-catalyst compositions for an anode electrode of a proton exchange membrane-based water electrolysis system. The compositions include a noble metal component selected from the group consisting of iridium oxide, ruthenium oxide, rhenium oxide and mixtures thereof, and a non-noble metal component selected from the group consisting of tantalum oxide, tin oxide, niobium oxide, titanium oxide, tungsten oxide, molybdenum oxide, yttrium oxide, scandium oxide, cooper oxide, zirconium oxide, nickel oxide and mixtures thereof. Further, the non-noble metal component can include a dopant. The dopant can be at least one element selected from Groups III, V, VI and VIImore » of the Periodic Table. The compositions can be prepared using a surfactant approach or a sol gel approach. Further, the compositions are prepared using noble metal and non-noble metal precursors. Furthermore, a thin film containing the compositions can be deposited onto a substrate to form the anode electrode.« less

  11. Signal-to-noise ratio comparison of encoding methods for hyperpolarized noble gas MRI

    NASA Technical Reports Server (NTRS)

    Zhao, L.; Venkatesh, A. K.; Albert, M. S.; Panych, L. P.

    2001-01-01

    Some non-Fourier encoding methods such as wavelet and direct encoding use spatially localized bases. The spatial localization feature of these methods enables optimized encoding for improved spatial and temporal resolution during dynamically adaptive MR imaging. These spatially localized bases, however, have inherently reduced image signal-to-noise ratio compared with Fourier or Hadamad encoding for proton imaging. Hyperpolarized noble gases, on the other hand, have quite different MR properties compared to proton, primarily the nonrenewability of the signal. It could be expected, therefore, that the characteristics of image SNR with respect to encoding method will also be very different from hyperpolarized noble gas MRI compared to proton MRI. In this article, hyperpolarized noble gas image SNRs of different encoding methods are compared theoretically using a matrix description of the encoding process. It is shown that image SNR for hyperpolarized noble gas imaging is maximized for any orthonormal encoding method. Methods are then proposed for designing RF pulses to achieve normalized encoding profiles using Fourier, Hadamard, wavelet, and direct encoding methods for hyperpolarized noble gases. Theoretical results are confirmed with hyperpolarized noble gas MRI experiments. Copyright 2001 Academic Press.

  12. The Noble Gas Record of Gas-Water Phase Interaction in the Tight-Gas-Sand Reservoirs of the Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Ballentine, C. J.; Zhou, Z.; Harris, N. B.

    2015-12-01

    The mass of hydrocarbons that have migrated through tight-gas-sandstone systems before the permeability reduces to trap the hydrocarbon gases provides critical information in the hydrocarbon potential analysis of a basin. The noble gas content (Ne, Ar, Kr, Xe) of the groundwater has a unique isotopic and elemental composition. As gas migrates through the water column, the groundwater-derived noble gases partition into the hydrocarbon phase. Determination of the noble gases in the produced hydrocarbon phase then provides a record of the type of interaction (simple phase equilibrium or open system Rayleigh fractionation). The tight-gas-sand reservoirs of the Rocky Mountains represent one of the most significant gas resources in the United States. The producing reservoirs are generally developed in low permeability (averaging <0.1mD) Upper Cretaceous fluvial to marginal marine sandstones and commonly form isolated overpressured reservoir bodies encased in even lower permeability muddy sediments. We present noble gas data from producing fields in the Greater Green River Basin, Wyoming; the the Piceance Basin, Colorado; and in the Uinta Basin, Utah. The data is consistent from all three basins. We show how in each basin the noble gases record open system gas migration through a water column at maximum basin burial. The data within an open system model indicates that the gas now in-place represents the last ~10% of hydrocarbon gas to have passed through the water column, most likely prior to permeability closedown.

  13. Noble gas signatures in the Island of Maui, Hawaii: Characterizing groundwater sources in fractured systems

    USGS Publications Warehouse

    Niu, Yi; Castro, M. Clara; Hall, Chris M.; Gingerich, Stephen B.; Scholl, Martha A.; Warrier, Rohit B.

    2017-01-01

    Uneven distribution of rainfall and freshwater scarcity in populated areas in the Island of Maui, Hawaii, renders water resources management a challenge in this complex and ill-defined hydrological system. A previous study in the Galapagos Islands suggests that noble gas temperatures (NGTs) record seasonality in that fractured, rapid infiltration groundwater system rather than the commonly observed mean annual air temperature (MAAT) in sedimentary systems where infiltration is slower thus, providing information on recharge sources and potential flow paths. Here we report noble gas results from the basal aquifer, springs, and rainwater in Maui to explore the potential for noble gases in characterizing this type of complex fractured hydrologic systems. Most samples display a mass-dependent depletion pattern with respect to surface conditions consistent with previous observations both in the Galapagos Islands and Michigan rainwater. Basal aquifer and rainwater noble gas patterns are similar and suggest direct, fast recharge from precipitation to the basal aquifer. In contrast, multiple springs, representative of perched aquifers, display highly variable noble gas concentrations suggesting recharge from a variety of sources. The distinct noble gas patterns for the basal aquifer and springs suggest that basal and perched aquifers are separate entities. Maui rainwater displays high apparent NGTs, incompatible with surface conditions, pointing either to an origin at high altitudes with the presence of ice or an ice-like source of undetermined origin. Overall, noble gas signatures in Maui reflect the source of recharge rather than the expected altitude/temperature relationship commonly observed in sedimentary systems.

  14. Subsurface dynamics of reactive and inert gases in the context of noble gases as environmental tracers in groundwater hydrology

    NASA Astrophysics Data System (ADS)

    Mayer, Simon; Jenner, Florian; Aeschbach, Werner

    2017-04-01

    Applications of inert gases in groundwater hydrology require a profound understanding of underlying biogeochemical processes. Some of these processes are, however, not well understood and therefore require further investigation. This is the first study simultaneously investigating soil air and groundwater in the context of noble gas tracer applications, accounting for seasonal effects in different climate regions. The sampled data confirm a general reliability of common assumptions proposed in the literature. In particular, a solubility-controlled description of excess air formation and of groundwater degassing can be confirmed. This study identifies certain effects which need to be taken into account to reliably evaluate noble gas patterns. First, long-term samplings suggest a permanent temperature-driven equilibration of shallow groundwater with entrapped air bubbles, even some years after recharge. Second, minor groundwater degassing is found to challenge existing excess air model approaches, depending on the amount and the fractionation of excess air. Third, soil air composition data of this study imply a potential bias of noble gas temperatures by up to about 2℃ due to microbial oxygen depletion and a reduced sum value of O2+CO2. This effect causes systematically lower noble gas temperatures in tropical groundwater samples and in shallow mid-latitude groundwater samples after strong recharge during the warm season. However, a general bias of noble gas temperatures in mid-latitudes is probably prevented by a predominant recharge during the cold season, accompanied by nearly atmospheric noble gas mixing ratios in the soil air. Findings of this study provide a remarkable contribution to the reliability of noble gas tracer applications in hydrology, in particular with regard to paleoclimate reconstructions and an understanding of subsurface gas dynamics.

  15. Noble Gas Temperature Proxy for Climate Change

    EPA Science Inventory

    Noble gases in groundwater appear to offer a practical approach for quantitatively determining past surface air temperatures over recharge areas for any watershed. The noble gas temperature (NGT) proxy should then permit a paleothermometry of a region over time. This terrestria...

  16. Noble gas loss may indicate groundwater flow across flow barriers in southern Nevada

    USGS Publications Warehouse

    Thomas, J.M.; Bryant, Hudson G.; Stute, M.; Clark, J.F.

    2003-01-01

    Average calculated noble gas temperatures increase from 10 to 22oC in groundwater from recharge to discharge areas in carbonate-rock aquifers of southern Nevada. Loss of noble gases from groundwater in these regional flow systems at flow barriers is the likely process that produces an increase in recharge noble gas temperatures. Emplacement of low permeability rock into high permeability aquifer rock and the presence of low permeability shear zones reduce aquifer thickness from thousands to tens of meters. At these flow barriers, which are more than 1,000 m lower than the average recharge altitude, noble gases exsolve from the groundwater by inclusion in gas bubbles formed near the barriers because of greatly reduced hydrostatic pressure. However, re-equilibration of noble gases in the groundwater with atmospheric air at the low altitude spring discharge area, at the terminus of the regional flow system, cannot be ruled out. Molecular diffusion is not an important process for removing noble gases from groundwater in the carbonate-rock aquifers because concentration gradients are small.

  17. Noble-gas-rich separates from the Allende meteorite

    NASA Technical Reports Server (NTRS)

    Ott, U.; Mack, R.; Chang, S.

    1981-01-01

    Predominantly carbonaceous HF/HCl-resistant residues from the Allende meteorite are studied. Samples are characterized by SEM/EDXA, X-ray diffraction, INAA, C, S, H, N, and noble gas analyses. Isotopic data for carbon show variations no greater than 5%, while isotopic data from noble gases confirm previously established systematics. Noble gas abundances correlate with those of C and N, and concomitant partial loss of C and normal trapped gas occur during treatments with oxidizing acids. HF/HCl demineralization of bulk meteorite results in similar fractional losses of C and trapped noble gases, which leads to the conclusion that various macromolecular carbonaceous substances serve as the main host phase for normal trapped noble gases and anomalous gases in acid-resistant residues, and as the carrier of the major part of trapped noble gases lost during HF/HCl demineralization. Limits on the possible abundances of dense mineralic host phases in the residues are obtained, and considerations of the nucleogenetic origin for CCF-XE indicate that carbonaceous host phases and various forms of organic matter in carbonaceous meteorites may have a presolar origin.

  18. High Pressure Noble Gas Alkali Vapor Mixtures and Their Visible and Infrared Excimer Bands.

    DTIC Science & Technology

    1980-02-01

    Curry, and W. Bapper, "Visible emission bands of KXen polyatomic exciplexes ," Phys. Rev. Letters 41, 543 (1978). A. C. Tam, T. Yabuzaki, S. M. Curry...I178 Visible Emission Bands of KXe. Polyatomic Exciplexes ’. Yauviki.’ ) A. C. Tam, 0’ S. M. Curry, ( ) and W. liapper COdumble Ru’Iiati.op labor,, ,wy...giound electronic states. These temperature. " exciplex " molectle, are often gool laser species (2) The polyxetide band broadens substantially since the

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, L.; Manning, B.; Bowden, N. S.

    The MICROMEGAS (MICRO-MEsh GAseous Structure) charge amplification structure has found wide use in many detection applications, especially as a gain stage for the charge readout of Time Projection Chambers (TPCs). We report on the behavior of a MICROMEGAS TPC when operated in a high-energy (up to 800 MeV) neutron beam. It is found that neutron-induced reactions can cause discharges in some drift gas mixtures that are stable in the absence of the neutron beam. The discharges result from recoil ions close to the MICROMEGAS that deposit high specific ionization density and have a limited diffusion time. And for a binarymore » drift gas, increasing the percentage of the molecular component (quench gas) relative to the noble component and operating at lower pressures generally improves stability.« less

  20. Noble Gas Analysis for Mars Robotic Missions: Evaluating K-Ar Age Dating for Mars Rock Analogs and Martian Shergottites

    NASA Technical Reports Server (NTRS)

    Park, J.; Ming, D. W.; Garrison, D. H.; Jones, J. H.; Bogard, D. D.; Nagao, K.

    2009-01-01

    The purpose of this noble gas investigation was to evaluate the possibility of measuring noble gases in martian rocks and air by future robotic missions such as the Mars Science Laboratory (MSL). The MSL mission has, as part of its payload, the Sample Analysis at Mars (SAM) instrument, which consists of a pyrolysis oven integrated with a GCMS. The MSL SAM instrument has the capability to measure noble gas compositions of martian rocks and atmosphere. Here we suggest the possibility of K-Ar age dating based on noble gas release of martian rocks by conducting laboratory simulation experiments on terrestrial basalts and martian meteorites. We provide requirements for the SAM instrument to obtain adequate noble gas abundances and compositions within the current SAM instrumental operating conditions, especially, a power limit that prevents heating the furnace above approx.1100 C. In addition, Martian meteorite analyses from NASA-JSC will be used as ground truth to evaluate the feasibility of robotic experiments to constrain the ages of martian surface rocks.

  1. In situ measurement of atmospheric krypton and xenon on Mars with Mars Science Laboratory

    DOE PAGES

    Conrad, P. G.; Malespin, C. A.; Franz, H. B.; ...

    2016-11-01

    Mars Science Laboratory's Sample Analysis at Mars (SAM) investigation has measured all of the stable isotopes of the heavy noble gases krypton and xenon in the martian atmosphere, in situ, from the Curiosity Rover at Gale Crater, Mars. Previous knowledge of martian atmospheric krypton and xenon isotope ratios has been based upon a combination of the Viking mission's krypton and xenon detections and measurements of noble gas isotope ratios in martian meteorites. But, the meteorite measurements reveal an impure mixture of atmospheric, mantle, and spallation contributions. The xenon and krypton isotopic measurements reported here include the complete set of stablemore » isotopes, unmeasured by Viking. Our new results generally agree with Mars meteorite measurements but also provide a unique opportunity to identify various non-atmospheric heavy noble gas components in the meteorites. Kr isotopic measurements define a solar-like atmospheric composition, but deviating from the solar wind pattern at 80Kr and 82Kr in a manner consistent with contributions originating from neutron capture in Br. The Xe measurements suggest an intriguing possibility that isotopes lighter than 132Xe have been enriched to varying degrees by spallation and neutron capture products degassed to the atmosphere from the regolith, and a model is constructed to explore this possibility. Such a spallation component, but, is not apparent in atmospheric Xe trapped in the glassy phases of martian meteorites.« less

  2. In situ measurement of atmospheric krypton and xenon on Mars with Mars Science Laboratory

    NASA Astrophysics Data System (ADS)

    Conrad, P. G.; Malespin, C. A.; Franz, H. B.; Pepin, R. O.; Trainer, M. G.; Schwenzer, S. P.; Atreya, S. K.; Freissinet, C.; Jones, J. H.; Manning, H.; Owen, T.; Pavlov, A. A.; Wiens, R. C.; Wong, M. H.; Mahaffy, P. R.

    2016-11-01

    Mars Science Laboratory's Sample Analysis at Mars (SAM) investigation has measured all of the stable isotopes of the heavy noble gases krypton and xenon in the martian atmosphere, in situ, from the Curiosity Rover at Gale Crater, Mars. Previous knowledge of martian atmospheric krypton and xenon isotope ratios has been based upon a combination of the Viking mission's krypton and xenon detections and measurements of noble gas isotope ratios in martian meteorites. However, the meteorite measurements reveal an impure mixture of atmospheric, mantle, and spallation contributions. The xenon and krypton isotopic measurements reported here include the complete set of stable isotopes, unmeasured by Viking. The new results generally agree with Mars meteorite measurements but also provide a unique opportunity to identify various non-atmospheric heavy noble gas components in the meteorites. Kr isotopic measurements define a solar-like atmospheric composition, but deviating from the solar wind pattern at 80Kr and 82Kr in a manner consistent with contributions originating from neutron capture in Br. The Xe measurements suggest an intriguing possibility that isotopes lighter than 132Xe have been enriched to varying degrees by spallation and neutron capture products degassed to the atmosphere from the regolith, and a model is constructed to explore this possibility. Such a spallation component, however, is not apparent in atmospheric Xe trapped in the glassy phases of martian meteorites.

  3. In Situ Measurement of Atmospheric Krypton and Xenon on Mars with Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Conrad, P. G.; Malespin, C. A.; Franz, H. B.; Pepin, R. O.; Trainer, M. G.; Schwenzer, S. P.; Atreya, S. K.; Freissinet, C.; Jones, J. H.; Manning, H.; hide

    2016-01-01

    Mars Science Laboratorys Sample Analysis at Mars (SAM) investigation has measured all of the stable isotopes of the heavy noble gases krypton and xenon in the martian atmosphere, in situ, from the Curiosity Rover at Gale Crater, Mars. Previous knowledge of martian atmospheric krypton and xenon isotope ratios has been based upon a combination of the Viking missions krypton and xenon detections and measurements of noble gas isotope ratios in martian meteorites. However, the meteorite measurements reveal an impure mixture of atmospheric, mantle, and spallation contributions. The xenon and krypton isotopic measurements reported here include the complete set of stable isotopes, unmeasured by Viking. The new results generally agree with Mars meteorite measurements but also provide a unique opportunity to identify various non-atmospheric heavy noble gas components in the meteorites. Kr isotopic measurements define a solar-like atmospheric composition, but deviating from the solar wind pattern at 80Kr and 82Kr in a manner consistent with contributions originating from neutron capture in Br. The Xe measurements suggest an intriguing possibility that isotopes lighter than 132Xe have been enriched to varying degrees by spallation and neutron capture products degassed to the atmosphere from the regolith, and a model is constructed to explore this possibility. Such a spallation component, however, is not apparent in atmospheric Xe trapped in the glassy phases of martian meteorites.

  4. In situ measurement of atmospheric krypton and xenon on Mars with Mars Science Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conrad, P. G.; Malespin, C. A.; Franz, H. B.

    Mars Science Laboratory's Sample Analysis at Mars (SAM) investigation has measured all of the stable isotopes of the heavy noble gases krypton and xenon in the martian atmosphere, in situ, from the Curiosity Rover at Gale Crater, Mars. Previous knowledge of martian atmospheric krypton and xenon isotope ratios has been based upon a combination of the Viking mission's krypton and xenon detections and measurements of noble gas isotope ratios in martian meteorites. But, the meteorite measurements reveal an impure mixture of atmospheric, mantle, and spallation contributions. The xenon and krypton isotopic measurements reported here include the complete set of stablemore » isotopes, unmeasured by Viking. Our new results generally agree with Mars meteorite measurements but also provide a unique opportunity to identify various non-atmospheric heavy noble gas components in the meteorites. Kr isotopic measurements define a solar-like atmospheric composition, but deviating from the solar wind pattern at 80Kr and 82Kr in a manner consistent with contributions originating from neutron capture in Br. The Xe measurements suggest an intriguing possibility that isotopes lighter than 132Xe have been enriched to varying degrees by spallation and neutron capture products degassed to the atmosphere from the regolith, and a model is constructed to explore this possibility. Such a spallation component, but, is not apparent in atmospheric Xe trapped in the glassy phases of martian meteorites.« less

  5. "Solar-Wind-Rich" Howardite: True Regolith vs. CM-Implanted Components

    NASA Technical Reports Server (NTRS)

    Cartwright, Julia A.; Mittlefehldt, D. W.; Herrin, J. S.; Hermann, S.; Ott, U.

    2011-01-01

    Howardite, eucrite and diogenite meteorites (collectively HED) likely originate from asteroid 4-Vesta [1], one of two asteroids targeted by NASA s Dawn mission. Many howardites (polymict breccias of E and D material) contain "regolithic" features, including impact-melt clasts, fragmental breccia clasts, and carbonaceous chondrite fragments. True regolithic nature can be determined through noble gas analysis, as Solar Wind (SW) is implanted into the upper-most surfaces of solar system bodies. Whilst previous work [2] suggested that high siderophile element contents (e.g. Ni of 300-1200 g/g) were regolith indicators, we found no obvious correlation between SW and these indicators in our initial howardite noble gas analyses [3]. We observed CM-like fragments in a number of our howardites, whose textures suggest late addition to the breccia assemblage [4]. As typical CMs contain mixtures of SW (in matrix) and planetary (in clasts) components [5], we investigate the dominance of such components in SW-rich howardites. This will help deter-mine the extent of implanted SW in HED grains vs. SW and planetary gases from CM fragments, and allow better understanding of regolith processes

  6. The Noble-Abel Stiffened-Gas equation of state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Métayer, Olivier, E-mail: olivier.lemetayer@univ-amu.fr; Saurel, Richard, E-mail: richard.saurel@univ-amu.fr; RS2N, 371 Chemin de Gaumin, 83640 Saint-Zacharie

    2016-04-15

    Hyperbolic two-phase flow models have shown excellent ability for the resolution of a wide range of applications ranging from interfacial flows to fluid mixtures with several velocities. These models account for waves propagation (acoustic and convective) and consist in hyperbolic systems of partial differential equations. In this context, each phase is compressible and needs an appropriate convex equation of state (EOS). The EOS must be simple enough for intensive computations as well as boundary conditions treatment. It must also be accurate, this being challenging with respect to simplicity. In the present approach, each fluid is governed by a novel EOSmore » named “Noble Abel stiffened gas,” this formulation being a significant improvement of the popular “Stiffened Gas (SG)” EOS. It is a combination of the so-called “Noble-Abel” and “stiffened gas” equations of state that adds repulsive effects to the SG formulation. The determination of the various thermodynamic functions and associated coefficients is the aim of this article. We first use thermodynamic considerations to determine the different state functions such as the specific internal energy, enthalpy, and entropy. Then we propose to determine the associated coefficients for a liquid in the presence of its vapor. The EOS parameters are determined from experimental saturation curves. Some examples of liquid-vapor fluids are examined and associated parameters are computed with the help of the present method. Comparisons between analytical and experimental saturation curves show very good agreement for wide ranges of temperature for both liquid and vapor.« less

  7. Applicability of Monte-Carlo Simulation to Equipment Design of Radioactive Noble Gas Monitor

    NASA Astrophysics Data System (ADS)

    Sakai, Hirotaka; Hattori, Kanako; Umemura, Norihiro

    In the nuclear facilities, radioactive noble gas is continuously monitored by using the radioactive noble gas monitor with beta-sensitive plastic scintillation radiation detector. The detection efficiency of the monitor is generally calibrated by using a calibration loop and standard radioactive noble gases such as 85Kr. In this study, the applicability of PHITS to the equipment design of the radioactive noble gas monitor was evaluated by comparing the calculated results to the test results obtained by actual calibration loop tests to simplify the radiation monitor design evaluation. It was confirmed that the calculated results were well matched to the test results of the monitor after the modeling. In addition, the key parameters for equipment design, such as thickness of detector window or depth of the sampler, were also specified and evaluated.

  8. Negligible fractionation of Kr and Xe isotopes by molecular diffusion in water

    NASA Astrophysics Data System (ADS)

    Tyroller, Lina; Brennwald, Matthias S.; Busemann, Henner; Maden, Colin; Baur, Heinrich; Kipfer, Rolf

    2018-06-01

    Molecular diffusion is a key transport process for noble gases in water. Such diffusive transport is often thought to cause a mass-dependent fractionation of noble gas isotopes that is inversely proportional to the square root of the ratio of their atomic mass, referred to as the square root relation. Previous studies, challenged the commonly held assumption that the square root relation adequately describes the behaviour of noble gas isotopes diffusing through water. However, the effect of diffusion on noble gas isotopes has only been determined experimentally for He, Ne and Ar to date, whereas the extent of fractionation of Kr and Xe has not been measured. In the present study the fractionation of Kr and Xe isotopes diffusing through water immobilised by adding agar was quantified through measuring the respective isotope ratio after diffusing through the immobilised water. No fractionation of Kr and Xe isotopes was observed, even using high-precision noble gas analytics. These results complement our current understanding on isotopic fractionation of noble gases diffusing through water. Therefore this complete data set builds a robust basis to describe molecular diffusion of noble gases in water in a physical sound manner which is fundamental to assess the physical aspects of gas dynamics in aquatic systems.

  9. Method and apparatus for noble gas atom detection with isotopic selectivity

    DOEpatents

    Hurst, G. Samuel; Payne, Marvin G.; Chen, Chung-Hsuan; Parks, James E.

    1984-01-01

    Apparatus and methods of operation are described for determining, with isotopic selectivity, the number of noble gas atoms in a sample. The analysis is conducted within an evacuated chamber which can be isolated by a valve from a vacuum pumping system capable of producing a pressure of 10.sup.-8 Torr. Provision is made to pass pulses of laser beams through the chamber, these pulses having wavelengths appropriate for the resonance ionization of atoms of the noble gas under analysis. A mass filter within the chamber selects ions of a specific isotope of the noble gas, and means are provided to accelerate these selected ions sufficiently for implantation into a target. Specific types of targets are discussed. An electron measuring device produces a signal relatable to the number of ions implanted into the target and thus to the number of atoms of the selected isotope of the noble gas removed from the gas sample. The measurement can be continued until a substantial fraction, or all, of the atoms in the sample have been counted. Furthermore, additional embodiments of the apparatus are described for bunching the atoms of a noble gas for more rapid analysis, and for changing the target for repetitive cycling of the gas in the chamber. The number of repetitions of the cyclic steps depend upon the concentration of the isotope of interest, the separative efficiency of the mass filter, etc. The cycles are continued until a desired selectivity is achieved. Also described are components and a method of operation for a pre-enrichment operation for use when an introduction of a total sample would elevate the pressure within the chamber to levels in excess of those for operation of the mass filter, specifically a quadrupole mass filter. Specific examples of three noble gas isotope analyses are described.

  10. 77 FR 41976 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-17

    ...-2200-002; ER12-1716-001. Applicants: Noble Americas Gas & Power Corp., Noble Americas Energy Solutions LLC, Your Energy Holdings, LLC. Description: Notice of Change in Status of Noble Americas Gas & Power...-004. Applicants: EDF Trading North America, LLC, EDF Industrial Power Services (IL), LLC, EDF...

  11. Reactor experiments to study luminescence of He-Ne and He-Kr gaseous mixtures, excited by the products of 6Li (n, α) 3H nuclear reaction

    NASA Astrophysics Data System (ADS)

    Batyrbekov, E. G.; Gordienko, Yu. N.; Barsukov, N. I.; Ponkratov, Yu. V.; Kulsartov, T. V.; Khassenov, M. U.; Zaurbekova, Zh. A.; Tulubayev, Ye. Y.; Samarkhanov, K. K.

    2018-04-01

    The spectral studies of optical radiation of gaseous mixtures are of interest for solving problems associated with finding gaseous media with high energy conversion efficiency of nuclear reactions into the energy of laser or spontaneous emission [1, 2]. Such media can be used to extract energy from nuclear and fusion reactors in the form of optical radiation, and also to control and adjust the nuclear reactors parameters. This paper presents the preliminary results of the reactor experiments to study the spectral-luminescent properties of gas mixtures (based on He, Ne and Kr noble gases) excited by the products of 6Li(n,α)3H nuclear reaction at different levels of the stationary power of the IVG.1M reactor.

  12. U.S. Geological Survey Noble Gas Laboratory’s standard operating procedures for the measurement of dissolved gas in water samples

    USGS Publications Warehouse

    Hunt, Andrew G.

    2015-08-12

    This report addresses the standard operating procedures used by the U.S. Geological Survey’s Noble Gas Laboratory in Denver, Colorado, U.S.A., for the measurement of dissolved gases (methane, nitrogen, oxygen, and carbon dioxide) and noble gas isotopes (helium-3, helium-4, neon-20, neon-21, neon-22, argon-36, argon-38, argon-40, kryton-84, krypton-86, xenon-103, and xenon-132) dissolved in water. A synopsis of the instrumentation used, procedures followed, calibration practices, standards used, and a quality assurance and quality control program is presented. The report outlines the day-to-day operation of the Residual Gas Analyzer Model 200, Mass Analyzer Products Model 215–50, and ultralow vacuum extraction line along with the sample handling procedures, noble gas extraction and purification, instrument measurement procedures, instrumental data acquisition, and calculations for the conversion of raw data from the mass spectrometer into noble gas concentrations per unit mass of water analyzed. Techniques for the preparation of artificial dissolved gas standards are detailed and coupled to a quality assurance and quality control program to present the accuracy of the procedures used in the laboratory.

  13. The Thermochemical Stability of Ionic Noble Gas Compounds.

    ERIC Educational Resources Information Center

    Purser, Gordon H.

    1988-01-01

    Presents calculations that suggest stoichiometric, ionic, and noble gas-metal compounds may be stable. Bases calculations on estimated values of electron affinity, anionic radius for the noble gases and for the Born exponents of resulting crystals. Suggests the desirability of experiments designed to prepare compounds containing anionic,…

  14. Improvement of spin-exchange optical pumping of xenon-129 using in situ NMR measurement in ultra-low magnetic field

    NASA Astrophysics Data System (ADS)

    Takeda, Shun; Kumagai, Hiroshi

    2018-02-01

    Hyperpolarized (HP) noble gas has attracted attention in NMR / MRI. In an ultra-low magnetic field, the effectiveness of signal enhancement by HP noble gas should be required because reduction of the signal intensity is serious. One method of generating HP noble gas is spin exchange optical pumping which uses selective excitation of electrons of alkali metal vapor and spin transfer to nuclear spin by collision to noble gas. Although SEOP does not require extreme cooling or strong magnetic field, generally it required large-scale equipment including high power light source to generate HP noble gas with high efficiency. In this study, we construct a simply generation system of HP xenon-129 by SEOP with an ultralow magnetic field (up to 1 mT) and small-scale light source (about 1W). In addition, we measure in situ NMR signal at the same time, and then examine efficient conditions for SEOP in ultra-low magnetic fields.

  15. Defining Noble Gas Partitioning for Carbon Capture and Storage Environments

    NASA Astrophysics Data System (ADS)

    Warr, O.; Masters, A.; Rochelle, C.; Ballentine, C. J.

    2014-12-01

    For viable CCS implementation variables such as CO2 dissolution rates, reactions with the host rock and the extent of groundwater interaction must be accurately constrained. Noble gases play an important role in these systems [e.g. 1,2]. Their application, however, requires accurate Henry's constants within dense CO2-H2O systems. Current interpretations use pure noble gas-H2O partitioning data [3,4] and assume CO2-noble gas interactions are negligible, even at high (>700 kg/m3) CO2 densities [2]. To test this assumption we experimentally determined noble gas CO2-H2O partitioning for the 170-656 kg/m3 CO2 density range; representative of most CCS environments. Contrary to assumption, CO2 density significantly affected noble gas partition coefficients. For helium, increasing CO2 density resulted in a negative deviation trend from CO2-free values whilst for argon, krypton and xenon strong, positive deviations were observed. At 656 kg/m3 these deviations were -35%, 74%, 114% and 321% respectively. This is interpreted as the CO2 phase acting as a polar solvent inducing polarisation in the noble gases. Deviation trends are well defined using a 2nd order polynomial. The effect of a dense CO2 phase can now be incorporated into existing noble gas models. We also present results from a Gibbs-Ensemble Monte Carlo molecular simulation to model partitioning for this binary system. This fundamental technique makes predictions based on the pair-potentials of interaction between the molecules. Here it gives the phase compositions and Henry coefficients for noble gases. With a proven ability in accurately replicating both the CO2-H2O system and low pressure noble gas Henry constants the focus is now on fully optimising the model to match high pressure observations. [1] Gilfillan et al. (2009) Nature 458 614-618 [2] Gilfillan et al. (2008) GCA 72 1174-1198 [3] Crovetto et al. (1982) J.Chem.Phys. 76 1077-1086 [4] Ballentine et al. in Porcelli et al. (eds.) (2002) Rev.Min.Geo. 47 539-614.

  16. A 3He-129Xe co-magnetometer probed by a Rb magnetometer with Ramsey-pulse technique

    NASA Astrophysics Data System (ADS)

    Sheng, Dong; Kabcenell, Aaron; Romalis, Michael

    2013-05-01

    We report the recent progress in development of a new kind of co-magnetometer, benifiting from both the long spin coherence time of a noble gas and a highly sensitive alkali metal magnetometer. Due to the Fermi-contact interaction between alkali metal electron spin and noble gas nuclear spin the effective magnetization of the noble gas is enhanced by a factor of 6 to 600, allowing near quantum-limited detection of nuclear spins. Collisions between polarized alkali atoms and noble gas also introduce a large shift to the nuclear spin precession frequency. We reduce this effect by using Ramsey pulse techniques to measure the noble gas spin precession frequency ``in the dark'' by turning off the pumping laser between Ramsey pulses. A furthur reduction of the back-hyperpolarization from the noble gas can be achieved by controlling the cell temperature on short time scale. We showed that a 3He-129Xe Ramsey co-magnetometer is effective in cancelling fluctuations of external magnetic fields and gradients and developed cells with sufficient 129Xe T2 time without surface coatings. The new co-magnetometer has potential applications for many precision measurements, such as searches for spin-gravity couplings, electric dipole moments, and nuclear spin gyroscopes. Supported by DARPA.

  17. Infrared Matrix-Isolation Study of New Noble-Gas Compounds

    NASA Astrophysics Data System (ADS)

    Zhu, Cheng; Räsänen, Markku; Khriachtchev, Leonid

    2016-06-01

    We identify new noble-gas compounds in solid matrices using IR spectroscopy. The compounds under study belong to two types: HNgY and YNgY' where Ng is a noble-gas atom and Y and Y' are electronegative fragments. The experimental assignments are supported by ab initio calculations at the MP2(full) and CCSD(T) levels of theory with the def2-TZVPPD basis set. We have prepared and characterized two new HNgY compounds (noble-gas hydrides): HKrCCCl in a Kr matrix and HXeCCCl in a Xe matrix.I The synthesis of these compounds includes two steps: UV photolysis of HCCCl in a noble-gas matrix to form the H + CCCl fragments and annealing of the matrix to mobilize H atoms and to promote the H + Ng + CCCl = HNgCCCl reaction. An interesting observation in the experiments on HXeCCCl in a Xe matrix is the temperature-induced transformation of the three H-Xe stretching bands. This observation is explained by temperature-induced changes of local matrix morphology around the embedded HXeCCCl molecule. In these experiments, we have also obtained the IR spectrum of the CCCl radical, which is produced by photodecomposition of HCCCl. We have identified three new YNgY' compounds (fluorinated noble-gas cyanides): FKrCN in a Kr matrix and FXeCN and FXeNC in a Xe matrix.II These molecule are formed by photolysis of FCN in a noble-gas matrix due to locality of this process. The amount of these molecules increases upon thermal mobilization of the F atoms in the photolyzed matrix featuring the F + Ng + CN reaction.

  18. Physiological response of rats to delivery of helium and xenon: implications for hyperpolarized noble gas imaging

    NASA Technical Reports Server (NTRS)

    Ramirez, M. P.; Sigaloff, K. C.; Kubatina, L. V.; Donahue, M. A.; Venkatesh, A. K.; Albert, M. S.; ALbert, M. S. (Principal Investigator)

    2000-01-01

    The physiological effects of various hyperpolarized helium and xenon MRI-compatible breathing protocols were investigated in 17 Sprague-Dawley rats, by continuous monitoring of blood oxygen saturation, heart rate, EKG, temperature and endotracheal pressure. The protocols included alternating breaths of pure noble gas and oxygen, continuous breaths of pure noble gas, breath-holds of pure noble gas for varying durations, and helium breath-holds preceded by two helium rinses. Alternate-breath protocols up to 128 breaths caused a decrease in oxygen saturation level of less than 5% for either helium or xenon, whereas 16 continuous-breaths caused a 31.5% +/- 2.3% decrease in oxygen saturation for helium and a 30.7% +/- 1. 3% decrease for xenon. Breath-hold protocols up to 25 s did not cause the oxygen saturation to fall below 90% for either of the noble gases. Oxygen saturation values below 90% are considered pathological. At 30 s of breath-hold, the blood oxygen saturation dropped precipitously to 82% +/- 0.6% for helium, and to 76.5% +/- 7. 4% for xenon. Breath-holds longer than 10 s preceded by pre-rinses caused oxygen saturation to drop below 90%. These findings demonstrate the need for standardized noble gas inhalation procedures that have been carefully tested, and for continuous physiological monitoring to ensure the safety of the subject. We find short breath-hold and alternate-breath protocols to be safe procedures for use in hyperpolarized noble gas MRI experiments. Copyright 2000 John Wiley & Sons, Ltd.

  19. Noble Gas signatures of Enhanced Oil Recovery

    NASA Astrophysics Data System (ADS)

    Barry, P. H.; Kulongoski, J. T.; Tyne, R. L.; Hillegonds, D.; Byrne, D. J.; Landon, M. K.; Ballentine, C. J.

    2017-12-01

    Noble gases are powerful tracers of fluids from various oil and gas production activities in hydrocarbon reservoirs and nearby groundwater. Non-radiogenic noble gases are introduced into undisturbed oil and natural gas reservoirs through exchange with formation waters [1-3]. Reservoirs with extensive hydraulic fracturing, injection for enhanced oil recovery (EOR), and/or waste disposal also show evidence for a component of noble gases introduced from air [4]. Isotopic and elemental ratios of noble gases can be used to 1) assess the migration history of the injected and formation fluids, and 2) determine the extent of exchange between multiphase fluids in different reservoirs. We present noble gas isotope and abundance data from casing, separator and injectate gases of the Lost Hills and Fruitvale oil fields in the San Joaquin basin, California. Samples were collected as part of the California State Water Resource Control Board's Oil and Gas Regional Groundwater Monitoring Program. Lost Hills (n=7) and Fruitvale (n=2) gases are geochemically distinct and duplicate samples are highly reproducible. Lost Hills casing gas samples were collected from areas where EOR and hydraulic fracturing has occurred in the past several years, and from areas where EOR is absent. The Fruitvale samples were collected from a re-injection port. All samples are radiogenic in their He isotopes, typical of a crustal environment, and show enrichments in heavy noble gases, resulting from preferential adsorption on sediments. Fruitvale samples reflect air-like surface conditions, with higher air-derived noble gas concentrations. Lost Hills gases show a gradation from pristine crustal signatures - indicative of closed-system exchange with formation fluids - to strongly air-contaminated signatures in the EOR region. Pristine samples can be used to determine the extent of hydrocarbon exchange with fluids, whereas samples with excess air can be used to quantify the extent of EOR. Determining noble gas baseline values for pristine vs. recently modified (EOR, hydraulic fracturing) zones will be critical for interpreting the origin of any fugitive gases identified in nearby aquifers. [1] Ballentine et al., (1996) GCA, 60, 831-849 [2] Barry et al., (2016) GCA, 194, 291-309. [3] Barry et al., (2017) Geology, 45, 9. Darrah et al., (2014) PNAS 111, 39.

  20. Preliminary results from screening tests of commercial catalysts with potential use in gas turbine combustors. Part 1: Furnace studies of catalyst activity

    NASA Technical Reports Server (NTRS)

    Anderson, D. N.

    1976-01-01

    Thirty commercially produced monolith and pellet catalysts were tested as part of a screening process to select catalysts suitable for use in a gas turbine combustor. The catalysts were contained in a 1.8 centimeter diameter quartz tube and heated to temperatures varying between 300 and 1,200 K while a mixture of propane and air passed through the bed at space velocities of 44,000 to 70,000/hour. The amount of propane oxidized was measured as a function of catalyst temperature. Of the samples tested, the most effective catalysts proved to be noble metal catalysts on monolith substrates.

  1. Noble Gas Isotopic Signatures and X-Ray and Electron Diffraction Characteristics of Tagish Lake Carbonaceous Chondrite

    NASA Technical Reports Server (NTRS)

    Nakamura, T.; Noguchi, T.; Zolensky, M. E.; Takaoka, N.

    2001-01-01

    Noble gas isotopic signatures and X-ray and electron diffraction characteristics of Tagish Lake indicate that it is a unique carbonaceous chondrite rich in saponite, Fe-Mg-Ca carbonate, primordial noble gases, and presolar grains. Additional information is contained in the original extended abstract.

  2. Noble Gas Release Signal as a Precursor to Fracture

    NASA Astrophysics Data System (ADS)

    Bauer, S. J.; Lee, H.; Gardner, W. P.

    2017-12-01

    We present empirical results of rock strain, microfracturing, acoustic emissions, and noble gas release from laboratory triaxial experiments for a granite, basalt, shale and bedded rock salt. Noble gases are released and measured real-time during deformation using mass spectrometry. The gas release represents a precursive signal to macrofracture. Gas release is associated with increased acoustic emissions indicating that microfracturing is required to release gas and create pathways for the gas to be sensed. The gas released depends on initial gas content, pore structure and its evolution during deformation, the deformation amount, matrix permeability, deformation style and the stress/strain history. Gases are released from inter and intracrystalline sites; release rate increases as strain and microfracturing increases. The gas composition depends on lithology, geologic history and age, fluids present, and radioisotope concentrations that affect radiogenic noble gas isotope (e.g. 4He,40Ar) production. Noble gas emission and its relationship to crustal processes such as seismicity and volcanism, tectonic velocities, qualitative estimates of deep permeability, age dating of groundwater, and a signature of nuclear weapon detonation. Our result show that mechanical deformation of crustal materials is an important process controlling gas release from rocks and minerals, and should be considered in techniques which utilize gas release and/or accumulation. We propose using noble gas release to signal rock deformation in boreholes, mines and waste repositories. We postulate each rock exhibits a gas release signature which is microstructure, stress, strain, and/or permanent deformation dependent. Calibration of such relationships, for example relating gas release per rock unit volume to strain may be used to quantify rock deformation and develop predictive models.Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2017-7823A

  3. Performance of a MICROMEGAS-based TPC in a high-energy neutron beam

    NASA Astrophysics Data System (ADS)

    Snyder, L.; Manning, B.; Bowden, N. S.; Bundgaard, J.; Casperson, R. J.; Cebra, D. A.; Classen, T.; Duke, D. L.; Gearhart, J.; Greife, U.; Hagmann, C.; Heffner, M.; Hensle, D.; Higgins, D.; Isenhower, D.; King, J.; Klay, J. L.; Geppert-Kleinrath, V.; Loveland, W.; Magee, J. A.; Mendenhall, M. P.; Sangiorgio, S.; Seilhan, B.; Schmitt, K. T.; Tovesson, F.; Towell, R. S.; Walsh, N.; Watson, S.; Yao, L.; Younes, W.

    2018-02-01

    The MICROMEGAS (MICRO-MEsh GAseous Structure) charge amplification structure has found wide use in many detection applications, especially as a gain stage for the charge readout of Time Projection Chambers (TPCs). Here we report on the behavior of a MICROMEGAS TPC when operated in a high-energy (up to 800 MeV) neutron beam. It is found that neutron-induced reactions can cause discharges in some drift gas mixtures that are stable in the absence of the neutron beam. The discharges result from recoil ions close to the MICROMEGAS that deposit high specific ionization density and have a limited diffusion time. For a binary drift gas, increasing the percentage of the molecular component (quench gas) relative to the noble component and operating at lower pressures generally improves stability.

  4. The MSFC Noble Gas Research Laboratory (MNGRL): A NASA Investigator Facility

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara

    2016-01-01

    Noble-gas isotopes are a well-established technique for providing detailed temperature-time histories of rocks and meteorites. We have established the MSFC Noble Gas Research Laboratory (MNGRL) at Marshall Space Flight Center to serve as a NASA investigator facility in the wake of the closure of the JSC laboratory formerly run by Don Bogard. The MNGRL lab was constructed to be able to measure all the noble gases, particularly Ar-Ar and I-Xe radioactive dating to find the formation age of rocks and meteorites, and Ar/Kr/Ne cosmic-ray exposure ages to understand when the meteorites were launched from their parent planets.

  5. Observations of mass fractionation of noble gases in synthetic methane hydrate

    USGS Publications Warehouse

    Hunt, Andrew G.; Pohlman, John; Stern, Laura A.; Ruppel, Carolyn D.; Moscati, Richard J.; Landis, Gary P.; Pinkston, John C.

    2011-01-01

    As a consequence of contemporary or longer term (since 15 ka) climate warming, gas hydrates in some settings are presently dissociating and releasing methane and other gases to the oceanatmosphere system. A key challenge in assessing the susceptibility of gas hydrates to warming climate is the lack of a technique able to distinguish between methane recently released from gas hydrates and methane emitted from leaky thermogenic reservoirs, shallow sublake and subseafloor sediments, coalbeds, and other sources. Carbon and deuterium stable isotopic data provide only a first-order characterization of methane sources, while gas hydrate can sequester any type of methane. Here, we investigate the possibility of exploiting the pattern of noble gas fractionation within the gas hydrate lattice to fingerprint methane released from gas hydrates. Starting with synthetic gas hydrate formed under careful laboratory conditions, we document complex noble gas fractionation patterns in the gases liberated during dissociation and explore the effects of aging and storage (e.g., in liquid nitrogen), as well as sampling and preservation procedures. The laboratory results confirm a unique noble gas fractionation pattern for gas hydrates, one that shows promise in evaluating modern natural gas seeps for a signature associated with gas hydrate dissociation.

  6. Coordination of ScO+ and YO+ by multiple Ar, Kr, and Xe atoms in noble gas matrixes: a matrix isolation infrared spectroscopic and theoretical study.

    PubMed

    Zhao, Yanying; Gong, Yu; Chen, Mohua; Ding, Chuanfan; Zhou, Mingfei

    2005-12-29

    The combination of matrix isolation infrared spectroscopic and quantum chemical calculation results provide strong evidence that scandium and yttrium monoxide cations, ScO+ and YO+, coordinate multiple noble gas atoms in forming noble gas complexes. The results showed that ScO+ coordinates five Ar, Kr, or Xe atoms, and YO+ coordinates six Ar or Kr and five Xe atoms in solid noble gas matrixes. Hence, the ScO+ and YO+ cations trapped in solid noble gas matrixes should be regarded as the [ScO(Ng)5]+ (Ng = Ar, Kr, or Xe), [YO(Ng)6]+ (Ng = Ar or Kr) or [YO(Xe)5]+ complexes. Experiments with dilute krypton or xenon in argon or krypton in xenon produced new IR bands, which are due to the stepwise formation of the [ScO(Ar)(5-n)(Kr)n]+, [ScO(Kr)(5-n)(Xe)n]+ (n = 1-5), [YO(Ar)(6-n)(Kr)n]+ (n = 1-6), and [YO(Ar)(6-n)(Xe)n]+ (n = 1-4) complexes.

  7. Optimizing detection of noble gas emission at a former UNE site: sample strategy, collection, and analysis

    NASA Astrophysics Data System (ADS)

    Kirkham, R.; Olsen, K.; Hayes, J. C.; Emer, D. F.

    2013-12-01

    Underground nuclear tests may be first detected by seismic or air samplers operated by the CTBTO (Comprehensive Nuclear-Test-Ban Treaty Organization). After initial detection of a suspicious event, member nations may call for an On-Site Inspection (OSI) that in part, will sample for localized releases of radioactive noble gases and particles. Although much of the commercially available equipment and methods used for surface and subsurface environmental sampling of gases can be used for an OSI scenario, on-site sampling conditions, required sampling volumes and establishment of background concentrations of noble gases require development of specialized methodologies. To facilitate development of sampling equipment and methodologies that address OSI sampling volume and detection objectives, and to collect information required for model development, a field test site was created at a former underground nuclear explosion site located in welded volcanic tuff. A mixture of SF-6, Xe127 and Ar37 was metered into 4400 m3 of air as it was injected into the top region of the UNE cavity. These tracers were expected to move towards the surface primarily in response to barometric pumping or through delayed cavity pressurization (accelerated transport to minimize source decay time). Sampling approaches compared during the field exercise included sampling at the soil surface, inside surface fractures, and at soil vapor extraction points at depths down to 2 m. Effectiveness of various sampling approaches and the results of tracer gas measurements will be presented.

  8. Appraisal of transport and deformation in shale reservoirs using natural noble gas tracers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heath, Jason E.; Kuhlman, Kristopher L.; Robinson, David G.

    2015-09-01

    This report presents efforts to develop the use of in situ naturally-occurring noble gas tracers to evaluate transport mechanisms and deformation in shale hydrocarbon reservoirs. Noble gases are promising as shale reservoir diagnostic tools due to their sensitivity of transport to: shale pore structure; phase partitioning between groundwater, liquid, and gaseous hydrocarbons; and deformation from hydraulic fracturing. Approximately 1.5-year time-series of wellhead fluid samples were collected from two hydraulically-fractured wells. The noble gas compositions and isotopes suggest a strong signature of atmospheric contribution to the noble gases that mix with deep, old reservoir fluids. Complex mixing and transport of fracturingmore » fluid and reservoir fluids occurs during production. Real-time laboratory measurements were performed on triaxially-deforming shale samples to link deformation behavior, transport, and gas tracer signatures. Finally, we present improved methods for production forecasts that borrow statistical strength from production data of nearby wells to reduce uncertainty in the forecasts.« less

  9. The Inherent Tracer Fingerprint of Captured CO2

    NASA Astrophysics Data System (ADS)

    Flude, Stephanie; Gyore, Domokos; Stuart, Finlay; Boyce, Adrian; Haszeldine, Stuart; Chalaturnyk, Rick; Gilfillan, Stuart

    2017-04-01

    Inherent tracers, the isotopic and trace gas composition of captured CO2 streams, are potentially powerful tracers for use in CCS technology [1,2]. Despite this potential, the inherent tracer fingerprint in captured CO2 streams has yet to be robustly investigated and documented [3]. Here, we will present the first high quality systematic measurements of the carbon and oxygen isotopic and noble gas fingerprints measured in anthropogenic CO2 captured from combustion power stations and fertiliser plants, using amine capture, oxyfuel and gasification processes, and derived from coal, biomass and natural gas feedstocks. We will show that δ13C values are mostly controlled by the feedstock composition, as expected. The majority of the CO2 samples exhibit δ18O values similar to atmospheric O2 although captured CO2 samples from biomass and gas feedstocks at one location in the UK are significantly higher. Our measured noble gas concentrations in captured CO2 are generally as expected [2], typically being two orders of magnitude lower in concentration than in atmospheric air. Relative noble gas elemental abundances are variable and often show an opposite trend to that of a water in contact with the atmosphere. Expected enrichments in radiogenic noble gases (4He and 40Ar) for fossil fuel derived CO2 were not always observed due to dilution with atmospheric noble gases during the CO2 generation and capture process. Many noble gas isotope ratios indicate that isotopic fractionation takes place during the CO2 generation and capture processes, resulting in isotope ratios similar to fractionated air. We conclude that phase changes associated with CO2 transport and sampling may induce noble gas elemental and isotopic fractionation, due to different noble gas solubilities between high (liquid or supercritical) and low (gaseous) density CO2. Data from the Australian CO2CRC Otway test site show that δ13C of CO2 will change once injected into the storage reservoir, but that this change is small and can be quantitatively modelled in order to determine the proportion of CO2 that has dissolved into the formation waters. Furthermore, noble gas data from the Otway storage reservoir post-injection, shows evidence of noble gas stripping of formation water and contamination with Kr and Xe related to an earlier injection experiment. Importantly, He data from SaskPower's Aquistore illustrates that injected CO2 will inherit distinctive crustal radiogenic noble gas fingerprints from the subsurface once injected into an undisturbed geological storage reservoir, meaning this could be used to identify unplanned migration of the CO2 to the surface and shallow subsurface [4]. References [1] Mayer et al., (2015) IJGGC, Vol. 37, 46-60 http://dx.doi.org/10.1016/j.ijggc.2015.02.021 [2] Gilfillan et al., (2014) Energy Procedia, Vol. 63, 4123-4133 http://dx.doi.org/10.1016/j.egypro.2014.11.443 [3] Flude et al., (2016) Environ. Sci. Technol., 50 (15), pp 7939-7955 DOI: 10.1021/acs.est.6b01548 [4] Gilfillan et al., (2011) IJGGC, Vol. 5 (6) 1507-1516 http://dx.doi.org/10.1016/j.ijggc.2011.08.008

  10. Generation of spectral clusters in a mixture of noble and Raman-active gases.

    PubMed

    Hosseini, Pooria; Abdolvand, Amir; St J Russell, Philip

    2016-12-01

    We report a novel scheme for the generation of dense clusters of Raman sidebands. The scheme uses a broadband-guiding hollow-core photonic crystal fiber (HC-PCF) filled with a mixture of H2, D2, and Xe for efficient interaction between the gas mixture and a green laser pump pulse (532 nm, 1 ns) of only 5 μJ of energy. This results in the generation from noise of more than 135 rovibrational Raman sidebands covering the visible spectral region with an average spacing of only 2.2 THz. Such a spectrally dense and compact fiber-based source is ideal for applications where closely spaced narrow-band laser lines with high spectral power density are required, such as in spectroscopy and sensing. When the HC-PCF is filled with a H2-D2 mixture, the Raman comb spans the spectral region from the deep UV (280 nm) to the near infrared (1000 nm).

  11. Gas Release as a Deformation Signal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Stephen J.

    Radiogenic noble gases are contained in crustal rock at inter and intra granular sites. The gas composition depends on lithology, geologic history, fluid phases, and the aging effect by decay of U, Th, and K. The isotopic signature of noble gases found in rocks is vastly different than that of the atmosphere which is contributed by a variety of sources. When rock is subjected to stress conditions exceeding about half its yield strength, micro-cracks begin to form. As rock deformation progresses a fracture network evolves, releasing trapped noble gases and changing the transport properties to gas migration. Thus, changes inmore » gas emanation and noble gas composition from rocks could be used to infer changes in stress-state and deformation. The purpose of this study has been to evaluate the effect of deformation/strain rate upon noble gas release. Four triaxial experiments were attempted for a strain rate range of %7E10-8 /s (180,000s) to %7E 10-4/s (500s); the three fully successful experiments (at the faster strain rates) imply the following: (1) helium is measurably released for all strain rates during deformation, this release is in amounts 1-2 orders of magnitude greater than that present in the air, and (2) helium gas release increases with decreasing strain rate.« less

  12. Noble Gas Signatures in Snow: a New Experimental Investigation.

    NASA Astrophysics Data System (ADS)

    Amalberti, J.; Hall, C. M.; Castro, C.

    2016-12-01

    Dissolved noble gases in groundwater (He, Ne, Ar, Kr, and Xe) have been widely used to improve our knowledge of surface and groundwater dynamics. However, a recent rainwater study [1] recorded noble gas concentration anomalies originating from conditions at high altitude. Potential anomaly sources might include fog, orographic rain, synoptic rain and snow, depending on the region considered. Here, we outline a methodology for measuring noble gases in freshly collected snow samples. Their fine-grained nature leads to significant experimental challenges. Overall, our results (Fig. 1) show that snow has elevated He concentrations with depleted concentrations of all other noble gases. Similar results have been recorded in ice [2, 3]. In addition, our results show relatively homogeneous (< 14%) He and Ne concentrations while Ar, Kr and Xe display large concentration variability (> 80%). These observations led us to investigate the structure of snow and potential host-sites (available empty space) within the crystal structure. Noble gases are chemically inert and do not form bonds that could affect the ice crystal structure. Therefore, host-sites control the solubility of each noble gas. Our results show that He and Ne, which are known to have small atomic radii, are likely dissolved into the ice/snow crystal lattice, while heavy noble gas (Ar, Kr and Xe) are likely accommodated into defects. Consequently, smaller variability recorded in light noble gases, may result from He and Ne being hosted within the crystal lattice, whereas heavy noble gases rely on the presence of defects, which may randomly appear within the structure during snow formation. These new results can be used to better constrain the source of ground ice [3], groundwater systems and to investigate the structural transition mechanisms from snow to firn and ice. Figure 1: Noble gas concentrations (C) in snow (filled circles symbols) and ice (half-filled square symbols) normalized to air saturated water (ASW). [1] Warrier, et al., (2013), Geophys. Res. Lett., 40, 3248-3252. [2] Malone et al., (2010), EPSL, 289, 112-122. [3] Utting et a., (2016), Quat. Res., 85, 117-184.

  13. Antiapoptotic activity of argon and xenon

    PubMed Central

    Spaggiari, Sabrina; Kepp, Oliver; Rello-Varona, Santiago; Chaba, Kariman; Adjemian, Sandy; Pype, Jan; Galluzzi, Lorenzo; Lemaire, Marc; Kroemer, Guido

    2013-01-01

    Although chemically non-reactive, inert noble gases may influence multiple physiological and pathological processes via hitherto uncharacterized physical effects. Here we report a cell-based detection system for assessing the effects of pre-defined gas mixtures on the induction of apoptotic cell death. In this setting, the conventional atmosphere for cell culture was substituted with gas combinations, including the same amount of oxygen (20%) and carbon dioxide (5%) but 75% helium, neon, argon, krypton, or xenon instead of nitrogen. The replacement of nitrogen with noble gases per se had no effects on the viability of cultured human osteosarcoma cells in vitro. Conversely, argon and xenon (but not helium, neon, and krypton) significantly limited cell loss induced by the broad-spectrum tyrosine kinase inhibitor staurosporine, the DNA-damaging agent mitoxantrone and several mitochondrial toxins. Such cytoprotective effects were coupled to the maintenance of mitochondrial integrity, as demonstrated by means of a mitochondrial transmembrane potential-sensitive dye and by assessing the release of cytochrome c into the cytosol. In line with this notion, argon and xenon inhibited the apoptotic activation of caspase-3, as determined by immunofluorescence microscopy coupled to automated image analysis. The antiapoptotic activity of argon and xenon may explain their clinically relevant cytoprotective effects. PMID:23907115

  14. Helium Isotopes and Noble Gas Abundances of Cave Dripping Water in Three Caves in East Asia

    NASA Astrophysics Data System (ADS)

    Chen, A. T.; Shen, C. C.; Tan, M.; Li, T.; Uemura, R.; Asami, R.

    2015-12-01

    Paleo-temperature recorded in nature archives is a critical parameter to understand climate change in the past. With advantages of unique inert chemical characteristics and sensitive solubilities with temperature, dissolved noble gases in speleothem inclusion water were recently proposed to retrieve terrestrial temperature history. In order to accurately apply this newly-developed speleothem noble gas temperature (NGT) as a reliable proxy, a fundamental issue about behaviors of noble gases in the karst should be first clarified. In this study, we measured noble gas contents in air and dripping water to evaluate any ratio deviation between noble gases. Cave dripping water samples was collected from three selected caves, Shihua Cave in northern China, Furong Cave in southwestern, and Gyukusen Cave in an island located in the western Pacific. For these caves are characterized by a thorough mixing and long-term storage of waters in a karst aquifer by the absence of seasonal oxygen isotope shifts. Ratios of dripping water noble gases are statistically insignificant from air data. Helium isotopic ratios in the dripping water samples match air value. The results indicate that elemental and isotopic signatures of noble gases from air can be frankly preserved in the epikarst and support the fidelity of NGT techniques.

  15. Noble gas systematics of the Skaergaard intrusion

    NASA Astrophysics Data System (ADS)

    Horton, F.; Farley, K. A.; Taylor, H. P.

    2017-12-01

    The noble gas isotopic compositions of olivines from the Skaergaard layered mafic intrusion in Greenland reveal that magmas readily exchange noble gases with their environment after emplacement. Although Skaergaard magmas are thought to have derived from the upper mantle, all of the olivine separates we analyzed have 3He/4He ratios less than that of the upper mantle ( 8 Ra, where Ra = 3He/4He of the atmosphere, 1.39 x 10-6). This suggests that crustal and/or atmospheric noble gases have contaminated all Skaergaard magmas to some extent. We obtained the highest 3He/4He ratios ( 2 Ra) from olivines found in the lowermost exposed layers of the intrusion away from the margins. Excess radiogenic 4He (indicated by Ra<1) along the margin of the intrusion indicates that noble gases from the Archean host-rock were incorporated into the cooling magma chamber, probably via magmatic assimilation. Noble gases in olivines from the upper portions of the intrusion have atmospheric isotopic compositions, but higher relative helium abundances than the atmosphere. We suggest that post-crystallization hydrothermal circulation introduced atmosphere-derived noble gases into uppermost layers of the intrusion. Such high temperature exchanges of volatiles between plutons and their immediate surroundings may help explain why so few mantle-derived rocks retain mantle-like noble gas signatures.

  16. Biomedical Investigations with Laser-Polarized Noble Gas Magnetic Resonance

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.

    2001-01-01

    We are developing laser-polarized noble gas nuclear magnetic resonance (NMR) as a novel biomedical imaging tool for ground-based and eventually space-based application. This emerging multidisciplinary technology enables high-resolution gas-space magnetic resonance imaging (MRI) (e.g., of lung ventilation) as well as studies of tissue perfusion. In addition, laser-polarized noble gases (He-3 and Xe-129) do not require a large magnetic field for sensitive detection, opening the door to practical MRI at very low magnetic fields with an open, lightweight, and low-power device. We are pursuing two specific aims in this research. The first aim is to develop a low-field (< 0.01 T) instrument for noble gas MRI of humans, and the second aim is to develop functional MRI of the lung using laser-polarized Xe-129 and related techniques.

  17. Photosensitive dopants for liquid noble gases

    DOEpatents

    Anderson, David F.

    1988-01-01

    In an ionization type detector for high energy radiation wherein the energy of incident radiation is absorbed through the ionization of a liquid noble gas and resulting free charge is collected to form a signal indicative of the energy of the incident radiation, an improvement comprising doping the liquid noble gas with photosensitive molecules to convert scintillation light due to recombination of ions, to additional free charge.

  18. Performance of a MICROMEGAS-based TPC in a high-energy neutron beam

    DOE PAGES

    Snyder, L.; Manning, B.; Bowden, N. S.; ...

    2017-11-01

    The MICROMEGAS (MICRO-MEsh GAseous Structure) charge amplification structure has found wide use in many detection applications, especially as a gain stage for the charge readout of Time Projection Chambers (TPCs). We report on the behavior of a MICROMEGAS TPC when operated in a high-energy (up to 800 MeV) neutron beam. It is found that neutron-induced reactions can cause discharges in some drift gas mixtures that are stable in the absence of the neutron beam. The discharges result from recoil ions close to the MICROMEGAS that deposit high specific ionization density and have a limited diffusion time. And for a binarymore » drift gas, increasing the percentage of the molecular component (quench gas) relative to the noble component and operating at lower pressures generally improves stability.« less

  19. Optimizing Noble Gas-Water Interactions via Monte Carlo Simulations.

    PubMed

    Warr, Oliver; Ballentine, Chris J; Mu, Junju; Masters, Andrew

    2015-11-12

    In this work we present optimized noble gas-water Lennard-Jones 6-12 pair potentials for each noble gas. Given the significantly different atomic nature of water and the noble gases, the standard Lorentz-Berthelot mixing rules produce inaccurate unlike molecular interactions between these two species. Consequently, we find simulated Henry's coefficients deviate significantly from their experimental counterparts for the investigated thermodynamic range (293-353 K at 1 and 10 atm), due to a poor unlike potential well term (εij). Where εij is too high or low, so too is the strength of the resultant noble gas-water interaction. This observed inadequacy in using the Lorentz-Berthelot mixing rules is countered in this work by scaling εij for helium, neon, argon, and krypton by factors of 0.91, 0.8, 1.1, and 1.05, respectively, to reach a much improved agreement with experimental Henry's coefficients. Due to the highly sensitive nature of the xenon εij term, coupled with the reasonable agreement of the initial values, no scaling factor is applied for this noble gas. These resulting optimized pair potentials also accurately predict partitioning within a CO2-H2O binary phase system as well as diffusion coefficients in ambient water. This further supports the quality of these interaction potentials. Consequently, they can now form a well-grounded basis for the future molecular modeling of multiphase geological systems.

  20. Metal-organic frameworks for Xe/Kr separation

    DOEpatents

    Ryan, Patrick J.; Farha, Omar K.; Broadbelt, Linda J.; Snurr, Randall Q.; Bae, Youn-Sang

    2014-07-22

    Metal-organic framework (MOF) materials are provided and are selectively adsorbent to xenon (Xe) over another noble gas such as krypton (Kr) and/or argon (Ar) as a result of having framework voids (pores) sized to this end. MOF materials having pores that are capable of accommodating a Xe atom but have a small enough pore size to receive no more than one Xe atom are desired to preferentially adsorb Xe over Kr in a multi-component (Xe--Kr mixture) adsorption method. The MOF material has 20% or more, preferably 40% or more, of the total pore volume in a pore size range of 0.45-0.75 nm which can selectively adsorb Xe over Kr in a multi-component Xe--Kr mixture over a pressure range of 0.01 to 1.0 MPa.

  1. Metal-organic frameworks for Xe/Kr separation

    DOEpatents

    Ryan, Patrick J.; Farha, Omar K.; Broadbelt, Linda J.; Snurr, Randall Q.; Bae, Youn-Sang

    2013-08-27

    Metal-organic framework (MOF) materials are provided and are selectively adsorbent to xenon (Xe) over another noble gas such as krypton (Kr) and/or argon (Ar) as a result of having framework voids (pores) sized to this end. MOF materials having pores that are capable of accommodating a Xe atom but have a small enough pore size to receive no more than one Xe atom are desired to preferentially adsorb Xe over Kr in a multi-component (Xe--Kr mixture) adsorption method. The MOF material has 20% or more, preferably 40% or more, of the total pore volume in a pore size range of 0.45-0.75 nm which can selectively adsorb Xe over Kr in a multi-component Xe--Kr mixture over a pressure range of 0.01 to 1.0 MPa.

  2. Xenon and Other Volatile Anesthetics Change Domain Structure in Model Lipid Raft Membranes

    PubMed Central

    Weinrich, Michael; Worcester, David L.

    2014-01-01

    Inhalation anesthetics have been in clinical use for over 160 years, but the molecular mechanisms of action continue to be investigated. Direct interactions with ion channels received much attention after it was found that anesthetics do not change the structure of homogeneous model membranes. However, it was recently found that halothane, a prototypical anesthetic, changes domain structure of a binary lipid membrane. The noble gas xenon is an excellent anesthetic and provides a pivotal test of the generality of this finding, extended to ternary lipid raft mixtures. We report that xenon and conventional anesthetics change the domain equilibrium in two canonical ternary lipid raft mixtures. These findings demonstrate a membrane-mediated mechanism whereby inhalation anesthetics can affect the lipid environment of trans-membrane proteins. PMID:24299622

  3. Exotic species with explicit noble metal-noble gas-noble metal linkages.

    PubMed

    Moreno, Norberto; Restrepo, Albeiro; Hadad, C Z

    2018-02-14

    We present a study of the isoelectronic Pt 2 Ng 2 F 4 and [Au 2 Ng 2 F 4 ] 2+ species with noble gas atoms (Ng = Kr, Xe, Rn) acting as links bridging the two noble metal atoms. The stability of the species is investigated using several thermodynamic, kinetic and reactivity indicators. The results are compared against [AuXe 4 ] 2+ , which is thermodynamically unstable in the gas phase but is stabilized in the solid state to the point that it has been experimentally detected as [AuXe 4 ](Sb 2 F 11 ) 2 (S. Seidel and K. Seppelt, Science, 2000, 290, 117-118). Our results indicate that improving upon [AuXe 4 ] 2+ , these exotic combinations between the a priori non-reactive noble metals and noble gases lead to metastable species, and, therefore, they have the possibility of existing in the solid state under adequate conditions. Our calculations include accurate energies and geometries at both the CCSD/SDDALL and MP2/SDDALL levels. We offer a detailed description of the nature of the bonding interactions using orbital and density-based analyses. The computational evidence suggests partially covalent and ionic interactions as the stabilization factors.

  4. Noble gas isotopes in mineral springs within the Cascadia Forearc, Wasihington and Oregon

    USGS Publications Warehouse

    McCrory, Patricia A.; Constantz, James E.; Hunt, Andrew G.

    2014-01-01

    This U.S. Geological Survey report presents laboratory analyses along with field notes for a pilot study to document the relative abundance of noble gases in mineral springs within the Cascadia forearc of Washington and Oregon. Estimates of the depth to the underlying Juan de Fuca oceanic plate beneath the sample sites are derived from the McCrory and others (2012) slab model. Some of these springs have been previously sampled for chemical analyses (Mariner and others, 2006), but none currently have publicly available noble gas data. Helium isotope values as well as the noble gas values and ratios presented below will be used to determine the sources and mixing history of these mineral waters.

  5. Noble-gas-rich separates from ordinary chondrites

    NASA Astrophysics Data System (ADS)

    Moniot, R. K.

    1980-02-01

    Acid-resistant residues were prepared by HCl-HF demineralization of three H-type ordinary chondrites: Brownfield 1937 (H3), Dimmitt (H3, 4), and Estacado (H6). These residues were found to contain a large proportion of the planetary-type trapped Ar, Kr, and Xe in the meteorites. The similarity of these acid residues to those from carbonaceous chondrites and LL-type ordinary chondrites suggests that the same phase carries the trapped noble gases in all these diverse meteorite types. Because the H group represents a large fraction of all meteorites, this result indicates that the gas-rich carrier phase is as universal as the trapped noble-gas component itself. When treated with an oxidizing etchant, the acid residues lost almost all their complement of noble gases.

  6. Mass fractionation of noble gases in synthetic methane hydrate: Implications for naturally occurring gas hydrate dissociation

    USGS Publications Warehouse

    Hunt, Andrew G.; Stern, Laura; Pohlman, John W.; Ruppel, Carolyn; Moscati, Richard J.; Landis, Gary P.

    2013-01-01

    As a consequence of contemporary or longer term (since 15 ka) climate warming, gas hydrates in some settings may presently be dissociating and releasing methane and other gases to the ocean-atmosphere system. A key challenge in assessing the impact of dissociating gas hydrates on global atmospheric methane is the lack of a technique able to distinguish between methane recently released from gas hydrates and methane emitted from leaky thermogenic reservoirs, shallow sediments (some newly thawed), coal beds, and other sources. Carbon and deuterium stable isotopic fractionation during methane formation provides a first-order constraint on the processes (microbial or thermogenic) of methane generation. However, because gas hydrate formation and dissociation do not cause significant isotopic fractionation, a stable isotope-based hydrate-source determination is not possible. Here, we investigate patterns of mass-dependent noble gas fractionation within the gas hydrate lattice to fingerprint methane released from gas hydrates. Starting with synthetic gas hydrate formed under laboratory conditions, we document complex noble gas fractionation patterns in the gases liberated during dissociation and explore the effects of aging and storage (e.g., in liquid nitrogen), as well as sampling and preservation procedures. The laboratory results confirm a unique noble gas fractionation pattern for gas hydrates, one that shows promise in evaluating modern natural gas seeps for a signature associated with gas hydrate dissociation.

  7. Methane Sources and Migration Mechanisms in the Shallow Trinity Aquifer in Parker and Hood Counties, Texas - a Noble Gas Analysis

    NASA Astrophysics Data System (ADS)

    Wen, T.; Castro, C.; Nicot, J. P.; Hall, C. M.; Mickler, P. J.; Darvari, R.

    2016-12-01

    The presence of elevated methane in groundwaters within the Barnett Shale footprint in Parker and Hood counties, Texas has caused public concern that hydrocarbon production may facilitate migration of natural gas into a critical groundwater resource. This study places constraints on the source of methane in these groundwaters by analyzing water and stray gas data from groundwater wells and gas production wells from both the Barnett Shale and Strawn Group for methane content and noble gases, both of crustal and atmospheric origin. Particular emphasis is given to the atmospheric heavier noble gases 84Kr and 132Xe, which are significantly less affected by the presence of excess air, commonly present in modern Texas groundwaters (e.g., [1]). Dissolved methane concentrations are positively correlated with crustal 4He, 21Ne and 40Ar and suggest that noble gases and methane in these groundwaters originate from a common source, likely the Strawn Group, which the sampled aquifer overlies unconformably. This finding is further supported by the noble gas isotopic signature of stray gas when compared to the gas isotopic signatures of both Barnett Shale and the Strawn Group. In contrast to most samples, four groundwater wells with the highest methane concentrations unequivocally show heavy depletion of the atmospheric noble gases 20Ne, 36Ar, 84Kr and 132Xe with respect to freshwater recharge equilibrated with the atmosphere (ASW). This is consistent with predicted noble gas concentrations in a residual water phase in contact with a gas phase with initial ASW composition at 18°C-25°C, assuming a closed-system and suggest a highly localized gas source. All these four wells, without exception, tap into the Strawn Group and it is likely that shallow gas accumulations, as they are known to exist, were reached. Additionally, lack of correlation between 84Kr/36Ar and 132Xe/36Ar fractionation levels and distance to the nearest production wells does not support the notion that methane present in these groundwater wells migrated from nearby production wells, either conventional or using hydraulic fracturing techniques. Lack of correlation between the latter and 4He/20Ne further supports these findings. [1] Castro et al. (2007) EPSL 257, 170-187.

  8. Probing the interaction of noble gases with pristine and nitrogen-doped graphene through Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Cunha, Renato; Perea-López, Néstor; Elías, Ana Laura; Fujisawa, Kazunori; Carozo, Victor; Feng, Simin; Lv, Ruitao; dos Santos, Maria Cristina; Terrones, Mauricio; Araujo, Paulo T.

    2018-05-01

    The interactions of adsorbates with graphene have received increasing attention due to its importance in the development of applications involving graphene-based coatings. Here, we present a study of the adsorption of noble gases on pristine and nitrogen-doped graphene. Single-layer graphene samples were synthesized by chemical vapor deposition (CVD) and transferred to transmission electron microscopy (TEM) grids. Several noble gases were allowed to adsorb on the suspended graphene substrate at very low temperatures. Raman spectra show distinct frequency blue shifts in both the 2D and G bands, which are induced by gas adsorption onto high quality single layer graphene (1LG). These shifts, which we associate with compressive biaxial strain in the graphene layers induced by the noble gases, are negligible for nitrogen-doped graphene. Additionally, a thermal depinning transition, which is related to the desorption of a noble gas layer from the graphene surface at low temperatures (ranging from 20 to 35 K), was also observed at different transition temperatures for different noble gases. These transition temperatures were found to be 25 K for argon and 35 K for xenon. Moreover, we were able to obtain values for the compressive biaxial strain in graphene induced by the adsorbed layer of noble gases, using Raman spectroscopy. Ab initio calculations confirmed the correlation between the noble gas-induced strain and the changes in the Raman features observed.

  9. Using 81Kr and noble gases to characterize and date groundwater and brines in the Baltic Artesian Basin on the one-million-year timescale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, Christoph; Vaikmae, Rein; Aeschbach, Werner

    Analyses for 81Kr and noble gases on groundwater from the deepest aquifer system of the Baltic Artesian Basin (BAB) were performed to determine groundwater ages and uncover the flow dynamics of the system on a timescale of several hundred thousand years. We find that the system is controlled by mixing of three distinct water masses: Interglacial or recent meteoric water (δ 18O ≈ –10.4‰) with a poorly evolved chemical and noble gas signature, glacial meltwater (δ 18O ≤ –18‰) with elevated noble gas concentrations, and an old, high-salinity brine component (δ 18O ≥ –4.5‰, ≥ 90 g Cl –/L) withmore » strongly depleted atmospheric noble gas concentrations. The 81Kr measurements are interpreted within this mixing framework to estimate the age of the end-members. Deconvoluted 81Kr ages range from 300 ka to 1.3 Ma for interglacial or recent meteoric water and glacial meltwater. For the brine component, ages exceed the dating range of the ATTA-3 instrument of 1.3 Ma. The radiogenic noble gas components 4He* and 40Ar* are less conclusive but also support an age of > 1 Ma for the brine. Based on the chemical and noble gas concentrations and the dating results, we conclude that the brine originates from evaporated seawater that has been modified by later water–rock interaction. Furthermore, as the obtained tracer ages cover several glacial cycles, we discuss the impact of the glacial cycles on flow patterns in the studied aquifer system.« less

  10. Using 81Kr and noble gases to characterize and date groundwater and brines in the Baltic Artesian Basin on the one-million-year timescale

    DOE PAGES

    Gerber, Christoph; Vaikmae, Rein; Aeschbach, Werner; ...

    2017-01-31

    Analyses for 81Kr and noble gases on groundwater from the deepest aquifer system of the Baltic Artesian Basin (BAB) were performed to determine groundwater ages and uncover the flow dynamics of the system on a timescale of several hundred thousand years. We find that the system is controlled by mixing of three distinct water masses: Interglacial or recent meteoric water (δ 18O ≈ –10.4‰) with a poorly evolved chemical and noble gas signature, glacial meltwater (δ 18O ≤ –18‰) with elevated noble gas concentrations, and an old, high-salinity brine component (δ 18O ≥ –4.5‰, ≥ 90 g Cl –/L) withmore » strongly depleted atmospheric noble gas concentrations. The 81Kr measurements are interpreted within this mixing framework to estimate the age of the end-members. Deconvoluted 81Kr ages range from 300 ka to 1.3 Ma for interglacial or recent meteoric water and glacial meltwater. For the brine component, ages exceed the dating range of the ATTA-3 instrument of 1.3 Ma. The radiogenic noble gas components 4He* and 40Ar* are less conclusive but also support an age of > 1 Ma for the brine. Based on the chemical and noble gas concentrations and the dating results, we conclude that the brine originates from evaporated seawater that has been modified by later water–rock interaction. Furthermore, as the obtained tracer ages cover several glacial cycles, we discuss the impact of the glacial cycles on flow patterns in the studied aquifer system.« less

  11. In vivo MRI Using Laser Polarized Noble Gases.

    NASA Astrophysics Data System (ADS)

    Cates, G. D.

    1996-03-01

    A new technique for magnetic resonance imaging (MRI) will be reviewed in which the noble gas nuclei ^3He and ^129Xe are used as the source of signal instead of the protons in water, as is the case in conventional MRI. The noble gas nuclei are polarized by spin exchange with laser optically pumped alkali-metal vapor. The noble gas, which under appropriate conditions can exhibit spin relaxation times of hours to days, can be inhaled, making it possible to obtain images of the gas space of the lungs of unprecedented resolution. In the case of ^129Xe, substantial quantities of gas dissolves into the blood, opening up the prospect of imaging other parts of the body such as the heart and the brain. Recent results will be reviewed, including lung images of both guinea pigs and humans from a Duke/Princeton collaboration, and spectroscopic measurements of ^129Xe that is dissolved in mouse blood, from the Stony Brook group. Other results will be reviewed as available. Attention will be given to the issues involved in producing large quantities of polarized noble gas for imaging, including a discussion of the use of high power diode laser arrays, a technology that has helped this new MRI technique grow quickly to be of potential clinical value. Finally, future prospects for the diagnosis of disease will be discussed.

  12. Methane Sources and Migration Mechanisms in Shallow Groundwaters in Parker and Hood Counties, Texas-A Heavy Noble Gas Analysis.

    PubMed

    Wen, Tao; Castro, M Clara; Nicot, Jean-Philippe; Hall, Chris M; Larson, Toti; Mickler, Patrick; Darvari, Roxana

    2016-11-01

    This study places constraints on the source and transport mechanisms of methane found in groundwater within the Barnett Shale footprint in Texas using dissolved noble gases, with particular emphasis on 84 Kr and 132 Xe. Dissolved methane concentrations are positively correlated with crustal 4 He, 21 Ne, and 40 Ar and suggest that noble gases and methane originate from common sedimentary strata, likely the Strawn Group. In contrast to most samples, four water wells with the highest dissolved methane concentrations unequivocally show strong depletion of all atmospheric noble gases ( 20 Ne, 36 Ar, 84 Kr, 132 Xe) with respect to air-saturated water (ASW). This is consistent with predicted noble gas concentrations in a water phase in contact with a gas phase with initial ASW composition at 18 °C-25 °C and it suggests an in situ, highly localized gas source. All of these four water wells tap into the Strawn Group and it is likely that small gas accumulations known to be present in the shallow subsurface were reached. Additionally, lack of correlation of 84 Kr/ 36 Ar and 132 Xe/ 36 Ar fractionation levels along with 4 He/ 20 Ne with distance to the nearest gas production wells does not support the notion that methane present in these groundwaters migrated from nearby production wells either conventional or using hydraulic fracturing techniques.

  13. Diamond film growth from fullerene precursors

    DOEpatents

    Gruen, Dieter M.; Liu, Shengzhong; Krauss, Alan R.; Pan, Xianzheng

    1997-01-01

    A method and system for manufacturing diamond film. The method involves forming a fullerene vapor, providing a noble gas stream and combining the gas with the fullerene vapor, passing the combined fullerene vapor and noble gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the fullerene and deposition of a diamond film on a substrate.

  14. 75 FR 20989 - Combined Notice of Filings # 1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-22

    ... of Termination of the Etiwanda Exchange Agreement with California Department of Water Resources...: EC10-60-000. Applicants: New York State Electric & Gas Corp., Noble Wethersfield Windpark, LLC. Description: Application of New York State Electric & Gas Corporation and Noble Wethersfield Windpark, LLC...

  15. Noble gases, nitrogen, cosmic ray exposure history and mineralogy of Beni M'hira (L6) chondrite

    NASA Astrophysics Data System (ADS)

    Mahajan, Ramakant R.; Nejia, Laridhi Ouazaa; Ray, Dwijesh; Naik, Sekhar

    2018-03-01

    The concentrations and isotopic composition of noble gases helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon(Xe) and nitrogen were measured in the Beni M'hira L6 chondrite. The cosmic ray exposure age of Beni M'hira is estimated of 15.6 ± 3.7 (Ma). The radiogenic age, of around 485 ± 64 Ma, derived from 4He, and of around 504 ± 51 Ma from 40Ar, suggests an age resetting indicating the event impact. The heavy noble gases (Ar, Kr and Xe) concentrations imply that the gas is a mixture of trapped component Q and solar wind. The measured nitrogen abundance of 0.74 ppm and the isotopic signature of δ15N = 14.6‰ are within the range of ordinary chondrites. The homogeneous chemical composition of olivine (Fa:26 ± 0.25) and low-Ca pyroxene (Fs:22.4 ± 0.29) suggest that the Beni M'hira meteorite is an equilibrated chondrite. This is further corroborated by strong chondrule-matrix textural integration (lack of chondrules, except a few relict clast). Shock metamorphism generally corresponds to S5 (>45 GPa), however, locally disequilibrium melting (shock-melt veins) suggests, that the peak shock metamorphism was at ∼75 GPa, 950 °C.

  16. Release of radiogenic noble gases as a new signal of rock deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Stephen J.; Gardner, W. Payton; Lee, Hyunwoo

    In this paper we investigate the release of radiogenic noble gas isotopes during mechanical deformation. We developed an analytical system for dynamic mass spectrometry of noble gas composition and helium release rate of gas produced during mechanical deformation of rocks. Our results indicate that rocks release accumulated radiogenic helium and argon from mineral grains as they undergo deformation. We found that the release of accumulated 4He and 40Ar from rocks follows a reproducible pattern and can provide insight into the deformation process. Increased gas release can be observed before dilation, and macroscopic failure is observed during high-pressure triaxial rock deformationmore » experiments. Accumulated radiogenic noble gases can be released due to fracturing of mineral grains during small-scale strain in Earth materials. Helium and argon are highly mobile, conservative species and could be used to provide information on changes in the state of stress and strain in Earth materials, and as an early warning signal of macroscopic failure. These results pave the way for the use of noble gases to trace and monitor rock deformation for earthquake prediction and a variety of other subsurface engineering projects.« less

  17. Release of radiogenic noble gases as a new signal of rock deformation

    DOE PAGES

    Bauer, Stephen J.; Gardner, W. Payton; Lee, Hyunwoo

    2016-10-09

    In this paper we investigate the release of radiogenic noble gas isotopes during mechanical deformation. We developed an analytical system for dynamic mass spectrometry of noble gas composition and helium release rate of gas produced during mechanical deformation of rocks. Our results indicate that rocks release accumulated radiogenic helium and argon from mineral grains as they undergo deformation. We found that the release of accumulated 4He and 40Ar from rocks follows a reproducible pattern and can provide insight into the deformation process. Increased gas release can be observed before dilation, and macroscopic failure is observed during high-pressure triaxial rock deformationmore » experiments. Accumulated radiogenic noble gases can be released due to fracturing of mineral grains during small-scale strain in Earth materials. Helium and argon are highly mobile, conservative species and could be used to provide information on changes in the state of stress and strain in Earth materials, and as an early warning signal of macroscopic failure. These results pave the way for the use of noble gases to trace and monitor rock deformation for earthquake prediction and a variety of other subsurface engineering projects.« less

  18. Characterisation of an ion source on the Helix MC Plus noble gas mass spectrometer - pressure dependent mass discrimination

    NASA Astrophysics Data System (ADS)

    Zhang, X.

    2017-12-01

    Characterisation of an ion source on the Helix MC Plusnoble gas mass spectrometer - pressure dependent mass discrimination Xiaodong Zhang* dong.zhang@anu.edu.au Masahiko Honda Masahiko.honda@anu.edu.au Research School of Earth Sciences, The Australian National University, Canberra, Australia To obtain reliable measurements of noble gas elemental and isotopic abundances in a geological sample it is essential that the mass discrimination (instrument-induced isotope fractionation) of the mass spectrometer remain constant over the working range of noble gas partial pressures. It is known, however, that there are pressure-dependent variations in sensitivity and mass discrimination in conventional noble gas mass spectrometers [1, 2, 3]. In this study, we discuss a practical approach to ensuring that the pressure effect in the Helix MC Plus high resolution, multi-collector noble gas mass spectrometer is minimised. The isotopic composition of atmospheric Ar was measured under a range of operating conditions to test the effects of different parameters on Ar mass discrimination. It was found that the optimised ion source conditions for pressure independent mass discrimination for Ar were different from those for maximised Ar sensitivity. The optimisation can be achieved by mainly adjusting the repeller voltage. It is likely that different ion source settings will be required to minimise pressure-dependent mass discrimination for different noble gases. A recommended procedure for tuning an ion source to reduce pressure dependent mass discrimination will be presented. References: Honda M., et al., Geochim. Cosmochim. Acta, 57, 859 -874, 1993. Burnard P. G., and Farley K. A., Geochemistry Geophysics Geosystems, Volume 1, 2000GC00038, 2000. Mabry J., et al., Journal of Analytical Atomic Spectrometry, 27, 1012 - 1017, 2012.

  19. Anatomy of a cluster IDP. Part 2: Noble gas abundances, trace element geochemistry, isotopic abundances, and trace organic chemistry of several fragments from L2008#5

    NASA Technical Reports Server (NTRS)

    Thomas, K. L.; Clemett, S. J.; Flynn, G. J.; Keller, L. P.; Mckay, David S.; Messenger, S.; Nier, A. O.; Schlutter, D. J.; Sutton, S. R.; Walker, R. M.

    1994-01-01

    The topics discussed include the following: noble gas content and release temperatures; trace element abundances; heating summary of cluster fragments; isotopic measurements; and trace organic chemistry.

  20. Plasma treatment of polymers for improved adhesion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelber, J.A.

    1988-01-01

    A variety of plasma treatments of polymer surfaces for improved adhesion are reviewed: noble and reactive gas treatment of fluoropolymers; noble and reactive treatment of polyolefins, and plasma-induced amination of polymer fibers. The plasma induced surface chemical and morphological changes are discussed, as are the mechanisms of adhesion to polymeric adhesives, particularly epoxy. Noble gas plasma etching of flouropolymers produces a partially defluorinated, textured surface. The mechanical interlocking of this textured surface is the primary cause of improved adhesion to epoxy. Reactive gas plasmas also induce defluorination, but oxygen containing gases cause continual ablation of the fluoropolymer surface. Noble andmore » reactive gas (exept for hydrogen) etching of polyolefins results in surface oxidation and improved adhesion via hydrogen bonding of these oxygen containing groups across the interface. The introduction of amine groups to a polymer surface by amonia or amine plasma treatment generally results in improved adhesion to epoxy. However, amine-epoxy ring interactions can be severely effected by steric factors due to chemical groups surrounding the amine. 41 refs.« less

  1. Diamond film growth from fullerene precursors

    DOEpatents

    Gruen, D.M.; Liu, S.; Krauss, A.R.; Pan, X.

    1997-04-15

    A method and system are disclosed for manufacturing diamond film. The method involves forming a fullerene vapor, providing a noble gas stream and combining the gas with the fullerene vapor, passing the combined fullerene vapor and noble gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the fullerene and deposition of a diamond film on a substrate. 10 figs.

  2. Isotopic abundance in atom trap trace analysis

    DOEpatents

    Lu, Zheng-Tian; Hu, Shiu-Ming; Jiang, Wei; Mueller, Peter

    2014-03-18

    A method and system for detecting ratios and amounts of isotopes of noble gases. The method and system is constructed to be able to measure noble gas isotopes in water and ice, which helps reveal the geological age of the samples and understand their movements. The method and system uses a combination of a cooled discharge source, a beam collimator, a beam slower and magneto-optic trap with a laser to apply resonance frequency energy to the noble gas to be quenched and detected.

  3. Geochemistry of reduced gas related to serpentinization of the Zambales ophiolite, Philippines

    USGS Publications Warehouse

    Abrajano, T.A.; Sturchio, N.C.; Kennedy, B.M.; Lyon, G.L.; Muehlenbachs, K.; Böhlke, J.K.

    1990-01-01

    Methane-hydrogen gas seeps with mantle-like C and noble gas isotopic characteristics issue from partially serpentinized ultramafic rocks in the Zambales ophiolite, Philippines. New measurements of noble gas and 14C isotope abundances, rock/mixed-volatile equilibrium calculations, and previous chemical and isotopic data suggest that these reduced gases are products of periodotite hydration. The gas seeps are produced in rock-dominated zones of serpentinization, and similar gases may be ubiquitous in ultramafic terranes undergoing serpentinization.

  4. Paleoclimate Signals and Age Distributions from 41 Public Water Works in the Netherlands

    NASA Astrophysics Data System (ADS)

    Broers, H. P.; Weert, J. D.; Sültenfuß, J.; Aeschbach, W.; Vonhof, H.; Casteleijns, J.

    2015-12-01

    Knowing the age distribution of water abstracted from public water supply wells is of prime importance to ensure customer trust and to underpin predictions of water quality evolution in time. Especially, age distributions enable the assessment of the vulnerability of well fields, both in relation to surface sources of contamination as in relation to subsurface sources, such as possibly related to shale gas extraction. We sampled the raw water of 41 large public supply well fields which represents a mixture of groundwaters and used the a discrete travel time distribution model (DTTDM, Visser et al. 2013, WRR) in order to quantify the age distribution of the mixture. Measurements included major ion chemistry, 3H, 3He, 4He, 18O, 2H, 14C, 13CDIC and 13CCH4 and the full range of noble gases. The heavier noble gases enable the calculation of the Noble Gas Temperature (NGT) which characterizes the temperature of past recharge conditions. The 14C apparent age of each mixture was derived correcting for dead carbon sources. The DTTDM used the 3H and 4He concentrations, the 14C apparent age and the NGT as the four distinctive tracers to estimate the age distributions. Especially 4He and NGT provide extra information on the older part of the age distributions and showed that the 14C apparent ages are often the result of mixing of waters ranging between 2.000 and 35.000 years old, instead of being discrete ages with a limited .variance as sometimes assumed.The results show a large range of age distributions, comprising vulnerable well fields with >60% young water (< 100 yrs) and well-protected well fields with >85% very old groundwater (> 25 kyrs) and all forms of TTD's in between. The age distributions are well in correspondence with the hydrogeological setting of the well fields; all well fields with an age distribution skewed towards older ages are in the Roer Valley Graben structure, where fluvial and marine aquitards provide protection from recent recharge. Especially waters from this graben structure exhibit clear paleoclimate signals, with a clear relations between NGT (ranging from 2,8 -9 °C), 4He (up to 3.3E-6 cc STP/g) and 18O (range from -8.5—5.5‰). Moreover, ¾ ratios of these graben waters suggest an influx of He from mantle origin.

  5. Paleoclimate signals and age distributions from 41 public water works in the Netherlands

    NASA Astrophysics Data System (ADS)

    Broers, Hans Peter; de Weert, Jasperien; Sueltenfuss, Juergen; Aeschbach-Hertig, Werner; Vonhof, Hubert; Casteleijns, Jeroen

    2015-04-01

    Knowing the age distribution of water abstracted from public water supply wells is of prime importance to ensure customer trust and to underpin predictions of water quality evolution in time. Especially, age distributions enable the assessment of the vulnerability of well fields, both in relation to surface sources of contamination as in relation to subsurface sources, such as possibly related to shale gas extraction. We sampled the raw water of 41 large public supply well fields which represents a mixture of groundwaters and used the a discrete travel time distribution model (DTTDM, Visser et al. 2013, WRR) in order to quantify the age distribution of the mixture. Measurements included major ion chemistry, 3H, 3He, 4He, 18O, 2H, 14C, 13CDIC and 13CCH4 and the full range of noble gases. The heavier noble gases enable the calculation of the Noble Gas Temperature (NGT) which characterizes the temperature of past recharge conditions. The 14C apparent age of each mixture was derived correcting for dead carbon sources and included carbonate dissolution and methanogenesis as the defining processes. The DTTDM used the 3H and 4He concentrations, the 14C apparent age and the NGT as the four distinctive tracers to estimate the age distributions. The use of 18O was less effective because the processes that led to more enriched values are too uncertain . Especially 4He and NGT provide extra information on the older part of the age distributions and showed that the 14C apparent ages are often the result of mixing of waters ranging between 2.000 and 35.000 years old, instead of being discrete ages with a limited .variance as sometimes assumed. The results show a large range of age distributions, comprising vulnerable well fields with >60% young water (< 100 yrs) and well-protected well fields with >85% very old groundwater (> 25 kyrs) and all forms of TTD's in between. The age distributions are well in correspondence with the hydrogeological setting of the well fields; all well fields with an age distribution skewed towards older ages are in the Roer Valley Graben structure, where fluvial and marine aquitards provide protection from recent recharge. Especially waters from this graben structure exhibit clear paleoclimate signals, with a clear relations between NGT (ranging from 2,8 -9 °C), 4He (up to 3.3E-6 cc STP/g) and 18O (range from -8.5 -- 5.5‰).

  6. Method and apparatus for measuring purity of noble gases

    DOEpatents

    Austin, Robert

    2008-04-01

    A device for detecting impurities in a noble gas includes a detection chamber and a source of pulsed ultraviolet light. The pulse of the ultraviolet light is transferred into the detection chamber and onto a photocathode, thereby emitting a cloud of free electrons into the noble gas within the detection chamber. The cloud of electrons is attracted to the opposite end of the detection chamber by a high positive voltage potential at that end and focused onto a sensing anode. If there are impurities in the noble gas, some or all of the electrons within the cloud will bond with the impurity molecules and not reach the sensing anode. Therefore, measuring a lower signal at the sensing anode indicates a higher level of impurities while sensing a higher signal indicates fewer impurities. Impurities in the range of one part per billion can be measured by this device.

  7. Noble Gas Signatures in Antrim Shale Gas in the Michigan Basin - Assessing Compositional Variability and Transport Processes

    NASA Astrophysics Data System (ADS)

    Wen, T.; Castro, M. C.; Ellis, B. R.; Hall, C. M.; Lohmann, K. C.; Bouvier, L.

    2014-12-01

    Recent studies in the Michigan Basin looked at the atmospheric and terrigenic noble gas signatures of deep brines to place constraints on the past thermal history of the basin and to assess the extent of vertical transport processes within this sedimentary system. In this contribution, we present noble gas data of shale gas samples from the Antrim shale formation in the Michigan Basin. The Antrim shale was one of the first economic shale-gas plays in the U.S. and has been actively developed since the 1980's. This study pioneers the use of noble gases in subsurface shale gas in the Michigan Basin to clarify the nature of vertical transport processes within the sedimentary sequence and to assess potential variability of noble gas signatures in shales. Antrim Shale gas samples were analyzed for all stable noble gases (He, Ne, Ar, Kr, Xe) from samples collected at depths between 300 and 500m. Preliminary results show R/Ra values (where R and Ra are the measured and atmospheric 3He/4He ratios, respectively) varying from 0.022 to 0.21. Although most samples fall within typical crustal R/Ra range values (~0.02-0.05), a few samples point to the presence of a mantle He component with higher R/Ra ratios. Samples with higher R/Ra values also display higher 20Ne/22Ne ratios, up to 10.4, and further point to the presence of mantle 20Ne. The presence of crustally produced nucleogenic 21Ne and radiogenic 40Ar is also apparent with 21Ne/22Ne ratios up to 0.033 and 40Ar/36Ar ratios up to 312. The presence of crustally produced 4He, 21Ne and 40Ar is not spatially homogeneous within the Antrim shale. Areas of higher crustal 4He production appear distinct to those of crustally produced 21Ne and 40Ar and are possibly related the presence of different production levels within the shale with varying concentrations of parent elements.

  8. Noble Gases Trace Earth's Subducted Water Flux

    NASA Astrophysics Data System (ADS)

    Smye, A.; Jackson, C.; Konrad-Schmolke, M.; Parman, S. W.; Ballentine, C. J.

    2016-12-01

    Volatile elements are transported from Earth's surface reservoirs back into the mantle during subduction of oceanic lithosphere [e.g. 1]. Here, we investigate the degree to which the fate of slab-bound noble gases and water are linked through the subduction process. Both water and noble gases are soluble in ring-structured minerals, such as amphibole, that are common constituents of subducted oceanic lithosphere. Heating and burial during subduction liberates noble gases and water from minerals through a combination of diffusion and dissolution. Combining a kinetic model, parameterized for noble gas fractionation in amphibole [2], with thermodynamic phase equilibria calculations, we quantify the effect of subduction dehydration on the elemental composition of slab-bound noble gases. Results show that post-arc slab water and noble gas fluxes are highly correlated. Hot subduction zones, which likely dominate over geologic history, efficiently remove noble gases and water from the down-going slab; furthermore, kinetic fractionation of noble gases is predicted to occur beneath the forearc. Conversely, hydrated portions of slab mantle in cold subduction zones transport noble gases and water to depths exceeding 200 km. Preservation of seawater-like abundances of Ar, Kr and Xe in the convecting mantle [1] implies that recycling of noble gases and water occurred during cold subduction and that the subduction efficiency of these volatile elements has increased over geological time, driven by secular cooling of the mantle. [1] Holland, G. and Ballentine, C. (2006). Nature 441, 186-191. [2] Jackson et al. (2013). Nat.Geosci. 6, 562-565.

  9. Accurate calibration of a molecular beam time-of-flight mass spectrometer for on-line analysis of high molecular weight species.

    PubMed

    Apicella, B; Wang, X; Passaro, M; Ciajolo, A; Russo, C

    2016-10-15

    Time-of-Flight (TOF) Mass Spectrometry is a powerful analytical technique, provided that an accurate calibration by standard molecules in the same m/z range of the analytes is performed. Calibration in a very large m/z range is a difficult task, particularly in studies focusing on the detection of high molecular weight clusters of different molecules or high molecular weight species. External calibration is the most common procedure used for TOF mass spectrometric analysis in the gas phase and, generally, the only available standards are made up of mixtures of noble gases, covering a small mass range for calibration, up to m/z 136 (higher mass isotope of xenon). In this work, an accurate calibration of a Molecular Beam Time-of Flight Mass Spectrometer (MB-TOFMS) is presented, based on the use of water clusters up to m/z 3000. The advantages of calibrating a MB-TOFMS with water clusters for the detection of analytes with masses above those of the traditional calibrants such as noble gases were quantitatively shown by statistical calculations. A comparison of the water cluster and noble gases calibration procedures in attributing the masses to a test mixture extending up to m/z 800 is also reported. In the case of the analysis of combustion products, another important feature of water cluster calibration was shown, that is the possibility of using them as "internal standard" directly formed from the combustion water, under suitable experimental conditions. The water clusters calibration of a MB-TOFMS gives rise to a ten-fold reduction in error compared to the traditional calibration with noble gases. The consequent improvement in mass accuracy in the calibration of a MB-TOFMS has important implications in various fields where detection of high molecular mass species is required. In combustion products analysis, it is also possible to obtain a new calibration spectrum before the acquisition of each spectrum, only modifying some operative conditions. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Mantle Noble Gas Contents Controlled by Serpentinite Subduction

    NASA Astrophysics Data System (ADS)

    Krantz, J. A.; Parman, S. W.; Kelley, S. P.; Smye, A.; Jackson, C.; Cooper, R. F.

    2017-12-01

    Noble gases serve as powerful tracers of the mantle's chemical and physical evolution. Analyses of material from subduction zones1, mid-ocean ridge basalts, and ocean island basalts2 indicate that heavy noble gases are being recycled from the surface of the earth into the mantle. The exact mechanism by which these uncharged atoms can be bound to a mineral and the subsequent path of recycling remains unclear, but experimental work suggests that ring structures in silicate minerals are ideal sites for noble gases3. Serpentine contains such ring structures and is abundant in subducting slabs. Developing an understanding of how noble gases are transported sheds light on the large-scale mantle dynamics associated with volatile transport, subduction, convection, and mantle heterogeneity. The solubilities of He, Ne, Ar, Kr, and Xe have been experimentally determined in natural samples of antigorite, the high-pressure polymorph of serpentine. The measured solubilities for all noble gases are high relative to mantle silicates (olivine and pyroxenes)4,5. Mixing lines between the noble gas contents of seawater and serpentinite may explain the noble gas composition of mid-ocean ridge basalts and constrain the source material of EM1, EM2 and HIMU ocean island basalts. 1. Kendrick, M.A. et al., Nature Geoscience, 4, 807-812, 2011 2. Parai, R. and Mukhopadhyay, S., GGG, 16, 719-735, 2015 3. Jackson, C.R.M. et al., GCA, 159, 1-15, 2015 4. Heber, V.S. et al., GCA, 71, 1041-1061, 2007 5. Jackson, C.R.M. et al., EPSL, 384, 178-187, 2013

  11. Noble Gas Signatures in Groundwater and Rainwater on the Island of Maui, Hawaii - Developing a New Noble Gas Application in Fractured, Volcanic Systems

    NASA Astrophysics Data System (ADS)

    Castro, M. C.; Niu, Y.; Warrier, R. B.; Hall, C. M.; Gingerich, S. B.; Scholl, M. A.; Bouvier, L.

    2014-12-01

    Recent work in the Galapagos Islands suggests that noble gas temperatures (NGTs) in fractured groundwater systems reflect the temperature of the ground surface at the time of infiltration rather than the mean annual air temperature (MAAT) value as commonly assumed in sedimentary systems where NGTs are typically used as indicators of past climate. This suggests that noble gases in fractured areas may record seasonality, and thus, provide information about timing of recharge in addition to location. Calculation of NGTs assumes that rain-derived recharge at the water table is in equilibrium with ground air. Lack of noble gas equilibration with respect to surface conditions, however, was observed in high-altitude springs in the Galapagos Islands and in a rainwater pilot study in Michigan, supporting the NGT seasonality hypothesis. Developing this new NGT application will lead to a better understanding of fractured groundwater flow systems and will contribute to improved water resource management plans. This study, carried out on Maui, Hawaii, is meant to test these hypotheses while improving knowledge of this island's groundwater flow system where limited hydrologic data are available. Here, we present the first results of noble gas analyses from samples collected in springs, groundwater wells and rainwater on northeast Maui. Results show that like most Michigan rainwater samples, rainwater from Maui is in disequilibrium with surface conditions and follows a mass-dependent pattern. Spring samples follow a similar pattern to that of rainwater and suggest that spring water originates directly from rainfall. These findings further support the hypothesis of NGT seasonality. However, while the atmospheric composition of noble gases points to direct supply from rainfall to spring aquifer systems, a direct connection between spring water and deeper aquifer levels or the mantle is apparent from He isotopic ratios which display an almost pure He mantle component in some springs.

  12. Howardite Noble Gases as Indicators of Asteroid Surface Processing

    NASA Technical Reports Server (NTRS)

    Cartwright, J. A.; Mittlefehldt, D. W.; Herrin, J. S.; Ott, U.

    2011-01-01

    The HED (Howardite, Eucrite and Diogenite) group meteorites likely or iginate from the Asteroid 4 Vesta - one of two asteroid targets of NA SA's Dawn mission. Whilst Howardites are polymict breccias of eucriti c and diogenitic material that often contain "regolithic" petrologica l features, neither their exact regolithic nature nor their formation processes are well defined. As the Solar Wind (SW) noble gas compon ent is implanted onto surfaces of solar system bodies, noble gas anal yses of Howardites provides a key indicator of regolithic origin. In addition to SW, previous work by suggested that restricted Ni (300-12 00 micro g/g) and Al2O3 (8-9 wt%) contents may indicate an ancient we ll-mixed regolith. Our research combines petrological, compositional and noble gas analyses to help improve understanding of asteroid reg olith formation processes, which will play an intergral part in the i nterpretation of Dawn mission data. Following compositional and petrological analyses, we developed a regolith grading scheme for our sampl e set of 30 Howardites and polymict Eucrites. In order to test the r egolith indicators suggested by, our 8 selected samples exhibited a r ange of Ni, Al2O3 contents and regolithic grades. Noble gas analyses were performed using furnace stepheating on our MAP 215-50 noble gas mass spectrometer. Of our 8 howardites, only 3 showed evidence of SW noble gases (e.g approaching Ne-20/Ne-22 approximately equals 13.75, Ne-21/Ne-22 approximately equals 0.033). As these samples display low regolithic grades and a range of Ni and Al2O3 contents, so far we are unable to find any correlation between these indicators and "regolit hic" origin. These results have a number of implications for both Ho wardite and Vesta formation, and may suggest complex surface stratigr aphies and surface-gardening processes.

  13. Colloidally separated samples from Allende residues - Noble gases, carbon and an ESCA-study

    NASA Technical Reports Server (NTRS)

    Ott, U.; Kronenbitter, J.; Flores, J.; Chang, S.

    1984-01-01

    Results are presented which strengthen the hypothesis of heterogeneity among the carbon- and nitrogen-bearing phases of the Allende meteorite. These data also highlight the possibility of performing physical separations yielding samples in which some of the noble gas- and carbon-bearing phases are extraordinarily predominant over others. The conclusion, based on mass and isotope balance arguments, that a significant portion of the carbonaceous matter in Allende is likely to be gas-poor or gas-free need not weaken the case for carbonaceous carriers for the major noble gas components. The concept that acid-soluble carbonaceous phases contain a multiplicity of components, each of which may have formed under a multiplicity of different physical-chemical conditions, is reemphasized by the results of the present study.

  14. Protracted storage of CR chondrules in a region of the disk transparent to galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Roth, Antoine S. G.; Metzler, Knut; Baumgartner, Lukas P.; Hofmann, Beda A.; Leya, Ingo

    2017-10-01

    Renazzo-type carbonaceous (CR) chondrites are accretionary breccias that formed last. As such they are ideal samples to study precompaction exposures to cosmic rays. Here, we present noble gas data for 24 chondrules and 3 dark inclusion samples (DIs) from Shişr 033 (CR2). The meteorite was selected based on the absence of implanted solar wind noble gases and an anomalous oxygen isotopic composition of the DIs; the oxygen isotopes match those in CV3 and CO3 chondrites. Our samples contain variable mixtures of galactic cosmic ray (GCR)-produced cosmogenic noble gases and trapped noble gases of presolar origin. Remarkably, all chondrules have cosmogenic 3He and 21Ne concentrations up to 4.3 and 7.1 times higher than the DIs, respectively. We derived an average 3He-21Ne cosmic ray exposure (CRE) age for Shişr 033 of 2.03 ± 0.20 Ma (2 SD) and excesses in cosmogenic 3He and 21Ne in chondrules (relative to the DIs) in the range (in 10-8 cm3STP/g) 3.99-7.76 and 0.94-1.71, respectively. Assuming present-day GCR flux density, the excesses translate into average precompaction 3He-21Ne CRE ages of 3.1-27.3 Ma depending on the exposure geometry. The data can be interpreted assuming a protracted storage of a single chondrule generation prior to the final assembly of the Shişr 033 parent body in a region of the disk transparent to GCRs.

  15. Screening metal-organic frameworks for selective noble gas adsorption in air: effect of pore size and framework topology.

    PubMed

    Parkes, Marie V; Staiger, Chad L; Perry, John J; Allendorf, Mark D; Greathouse, Jeffery A

    2013-06-21

    The adsorption of noble gases and nitrogen by sixteen metal-organic frameworks (MOFs) was investigated using grand canonical Monte Carlo simulation. The MOFs were chosen to represent a variety of net topologies, pore dimensions, and metal centers. Three commercially available MOFs (HKUST-1, AlMIL-53, and ZIF-8) and PCN-14 were also included for comparison. Experimental adsorption isotherms, obtained from volumetric and gravimetric methods, were used to compare krypton, argon, and nitrogen uptake with the simulation results. Simulated trends in gas adsorption and predicted selectivities among the commercially available MOFs are in good agreement with experiment. In the low pressure regime, the expected trend of increasing adsorption with increasing noble gas polarizabilty is seen. For each noble gas, low pressure adsorption correlates with several MOF properties, including free volume, topology, and metal center. Additionally, a strong correlation exists between the Henry's constant and the isosteric heat of adsorption for all gases and MOFs considered. Finally, we note that the simulated and experimental gas selectivities demonstrated by this small set of MOFs show improved performance compared to similar values reported for zeolites.

  16. Low-field MRI of laser polarized noble gas

    NASA Technical Reports Server (NTRS)

    Tseng, C. H.; Wong, G. P.; Pomeroy, V. R.; Mair, R. W.; Hinton, D. P.; Hoffmann, D.; Stoner, R. E.; Hersman, F. W.; Cory, D. G.; Walsworth, R. L.

    1998-01-01

    NMR images of laser polarized 3He gas were obtained at 21 G using a simple, homebuilt instrument. At such low fields magnetic resonance imaging (MRI) of thermally polarized samples (e.g., water) is not practical. Low-field noble gas MRI has novel scientific, engineering, and medical applications. Examples include portable systems for diagnosis of lung disease, as well as imaging of voids in porous media and within metallic systems.

  17. Holocene noble gas paleothermometry from springs in the Olympic Mountains, Washington.

    EPA Science Inventory

    Noble gas temperature proxies are examined from 52 springs in the Olympic Mountains, Washington. Groundwater flows from seeps to pooled springs at <0.1 L s-1 - 2.5 L s-1 in the Elwha watershed (≈692 km2). About 85% of sampled springs issue from confined fracture reservoirs preser...

  18. Ab initio theory of noble gas atoms in bcc transition metals

    DOE PAGES

    Jiang, Chao; Zhang, Yongfeng; Gao, Yipeng; ...

    2018-01-01

    Systematic ab initio calculations based on density functional theory have been performed to gain fundamental understanding of the interactions between noble gas atoms (He, Ne, Ar and Kr) and bcc transition metals in groups 5B (V, Nb and Ta), 6B (Cr, Mo and W) and 8B (Fe).

  19. The Origin of Noble Gas Isotopic Heterogeneity in Icelandic Basalts

    NASA Technical Reports Server (NTRS)

    Dixon, E. T.; Honda, M.; McDougall, I.

    2001-01-01

    Two models for generation of heterogeneous He, Ne and Ar isotopic ratios in Icelandic basalts are evaluated using a mixing model and the observed noble gas elemental ratios in Icelandic basalts,Ocean island Basalt (OIBs) and Mid-Ocean Ridge Basalt (MORBs). Additional information is contained in the original extended abstract.

  20. Recent Experimental Advances to Determine (noble) Gases in Waters

    NASA Astrophysics Data System (ADS)

    Kipfer, R.; Brennwald, M. S.; Huxol, S.; Mächler, L.; Maden, C.; Vogel, N.; Tomonaga, Y.

    2013-12-01

    In aquatic systems noble gases, radon, and bio-geochemically conservative transient trace gases (SF6, CFCs) are frequently applied to determine water residence times and to reconstruct past environmental and climatic conditions. Recent experimental breakthroughs now enable ● to apply the well-established concepts of terrestrial noble gas geochemistry in waters to the minute water amounts stored in sediment pore space and in fluid inclusions (A), ● to determine gas exchange processes on the bio-geochemical relevant time scales of minutes - hours (B), and ● to separate diffusive and advective gas transport in soil air (C). A. Noble-gas analysis in water samples (< 1 g) facilitates determining the solute transport in the pore space and identifying the origin of bio- and geogenic fluids in (un) consolidated sediments [1]. Advanced techniques that combine crushing and sieving speleothem samples in ultra-high-vacuum to a specific grain size allow to separate air and water-bearing fluid inclusions and thus enables noble-gas-based reconstruction of environmental conditions from water masses as small as 1mg [2]. B. The coupling of noble gas analysis with approaches of gas chromatography permits combined analysis of noble gases and other gases species (e.g., SF6, CFCs, O2, N2) from a single water sample. The new method substantially improves ground water dating by SF6 and CFCs as excess air is quantified from the same sample and hence can adequately be corrected for [3]. Portable membrane-inlet mass spectrometers enable the quasi-continuous and real-time analysis of noble gases and other dissolved gases directly in the field, allowing, for instance, quantification of O2 turnover rates on small time scales [4]. C. New technical developments perfect 222Rn analysis in water by the synchronous the determination of the short-lived 220Rn. The combined 220,222Rn analysis sheds light on the emanation behaviour of radon by identifying soil water content to be the crucial control of 220Rn occurrence in the environment, e.g., making an argument why 220Rn is not detectable in water, but in soil air. As 220Rn occurrence is of 'very local origin' the combined analysis of 220,222Rn in soil air allows differentiating between advective and diffusive soil gas transport [5]. By discussing these recent achievements, we intend to stimulate a broader discussion to identify future applications of noble and other gases in (un) conventional aquatic systems, such as blood. [1] Tomonaga et al. (2011) Limnol. Oceanogr. Methods, 9, 42-49, doi:10:4319/lom.2011.9.42. [2] Vogel et al. (2013) Geochem. Geophys. Geosyst., 14, doi:10.1002/ggge.20164. [3] Brennwald et al. (2013) Environ. Sci. Technol., Article ASAP, DOI: 10.1021/es401698p. [4] Mächler et al. (2012) Environ. Sci. Technol., 47, 7060-7066. [5] Huxol et al. Environ. Sci. Technol., in revision.

  1. The Noble Gases in A-Level Chemistry.

    ERIC Educational Resources Information Center

    Marchant, G. W.

    1983-01-01

    Suggests two methods of developing the study of the noble gases: first, the discovery of the elements and recent discovery of xenon show the human face of chemistry (historical development); second, the properties of noble gas compounds (particularly xenon) can be used to test the framework of conventional chemistry. (Author/JM)

  2. Noble gases identify the mechanisms of fugitive gas contamination in drinking-water wells overlying the Marcellus and Barnett Shales

    PubMed Central

    Darrah, Thomas H.; Vengosh, Avner; Jackson, Robert B.; Warner, Nathaniel R.; Poreda, Robert J.

    2014-01-01

    Horizontal drilling and hydraulic fracturing have enhanced energy production but raised concerns about drinking-water contamination and other environmental impacts. Identifying the sources and mechanisms of contamination can help improve the environmental and economic sustainability of shale-gas extraction. We analyzed 113 and 20 samples from drinking-water wells overlying the Marcellus and Barnett Shales, respectively, examining hydrocarbon abundance and isotopic compositions (e.g., C2H6/CH4, δ13C-CH4) and providing, to our knowledge, the first comprehensive analyses of noble gases and their isotopes (e.g., 4He, 20Ne, 36Ar) in groundwater near shale-gas wells. We addressed two questions. (i) Are elevated levels of hydrocarbon gases in drinking-water aquifers near gas wells natural or anthropogenic? (ii) If fugitive gas contamination exists, what mechanisms cause it? Against a backdrop of naturally occurring salt- and gas-rich groundwater, we identified eight discrete clusters of fugitive gas contamination, seven in Pennsylvania and one in Texas that showed increased contamination through time. Where fugitive gas contamination occurred, the relative proportions of thermogenic hydrocarbon gas (e.g., CH4, 4He) were significantly higher (P < 0.01) and the proportions of atmospheric gases (air-saturated water; e.g., N2, 36Ar) were significantly lower (P < 0.01) relative to background groundwater. Noble gas isotope and hydrocarbon data link four contamination clusters to gas leakage from intermediate-depth strata through failures of annulus cement, three to target production gases that seem to implicate faulty production casings, and one to an underground gas well failure. Noble gas data appear to rule out gas contamination by upward migration from depth through overlying geological strata triggered by horizontal drilling or hydraulic fracturing. PMID:25225410

  3. Noble gases identify the mechanisms of fugitive gas contamination in drinking-water wells overlying the Marcellus and Barnett Shales.

    PubMed

    Darrah, Thomas H; Vengosh, Avner; Jackson, Robert B; Warner, Nathaniel R; Poreda, Robert J

    2014-09-30

    Horizontal drilling and hydraulic fracturing have enhanced energy production but raised concerns about drinking-water contamination and other environmental impacts. Identifying the sources and mechanisms of contamination can help improve the environmental and economic sustainability of shale-gas extraction. We analyzed 113 and 20 samples from drinking-water wells overlying the Marcellus and Barnett Shales, respectively, examining hydrocarbon abundance and isotopic compositions (e.g., C2H6/CH4, δ(13)C-CH4) and providing, to our knowledge, the first comprehensive analyses of noble gases and their isotopes (e.g., (4)He, (20)Ne, (36)Ar) in groundwater near shale-gas wells. We addressed two questions. (i) Are elevated levels of hydrocarbon gases in drinking-water aquifers near gas wells natural or anthropogenic? (ii) If fugitive gas contamination exists, what mechanisms cause it? Against a backdrop of naturally occurring salt- and gas-rich groundwater, we identified eight discrete clusters of fugitive gas contamination, seven in Pennsylvania and one in Texas that showed increased contamination through time. Where fugitive gas contamination occurred, the relative proportions of thermogenic hydrocarbon gas (e.g., CH4, (4)He) were significantly higher (P < 0.01) and the proportions of atmospheric gases (air-saturated water; e.g., N2, (36)Ar) were significantly lower (P < 0.01) relative to background groundwater. Noble gas isotope and hydrocarbon data link four contamination clusters to gas leakage from intermediate-depth strata through failures of annulus cement, three to target production gases that seem to implicate faulty production casings, and one to an underground gas well failure. Noble gas data appear to rule out gas contamination by upward migration from depth through overlying geological strata triggered by horizontal drilling or hydraulic fracturing.

  4. Using noble gas tracers to constrain a groundwater flow model with recharge elevations: A novel approach for mountainous terrain

    USGS Publications Warehouse

    Doyle, Jessica M.; Gleeson, Tom; Manning, Andrew H.; Mayer, K. Ulrich

    2015-01-01

    Environmental tracers provide information on groundwater age, recharge conditions, and flow processes which can be helpful for evaluating groundwater sustainability and vulnerability. Dissolved noble gas data have proven particularly useful in mountainous terrain because they can be used to determine recharge elevation. However, tracer-derived recharge elevations have not been utilized as calibration targets for numerical groundwater flow models. Herein, we constrain and calibrate a regional groundwater flow model with noble-gas-derived recharge elevations for the first time. Tritium and noble gas tracer results improved the site conceptual model by identifying a previously uncertain contribution of mountain block recharge from the Coast Mountains to an alluvial coastal aquifer in humid southwestern British Columbia. The revised conceptual model was integrated into a three-dimensional numerical groundwater flow model and calibrated to hydraulic head data in addition to recharge elevations estimated from noble gas recharge temperatures. Recharge elevations proved to be imperative for constraining hydraulic conductivity, recharge location, and bedrock geometry, and thus minimizing model nonuniqueness. Results indicate that 45% of recharge to the aquifer is mountain block recharge. A similar match between measured and modeled heads was achieved in a second numerical model that excludes the mountain block (no mountain block recharge), demonstrating that hydraulic head data alone are incapable of quantifying mountain block recharge. This result has significant implications for understanding and managing source water protection in recharge areas, potential effects of climate change, the overall water budget, and ultimately ensuring groundwater sustainability.

  5. A whiff of nebular gas in Titan's atmosphere - Potential implications for the conditions and timing of Titan's formation

    NASA Astrophysics Data System (ADS)

    Glein, Christopher R.

    2017-09-01

    In situ data from the GCMS instrument on the Huygens probe indicate that Titan's atmosphere contains small amounts of the primordial noble gases 36Ar and 22Ne (tentative detection), but it is unknown how they were obtained by the satellite. Based on the apparent similarity in the 22Ne/36Ar (atom) ratio between Titan's atmosphere and the solar composition, a previously neglected hypothesis for the origin of primordial noble gases in Titan's atmosphere is suggested - these species may have been acquired near the end of Titan's formation, when the moon could have gravitationally captured some nebular gas that would have been present in its formation environment (the Saturnian subnebula). These noble gases may be remnants of a primary atmosphere. This could be considered the simplest hypothesis to explain the 22Ne/36Ar ratio observed at Titan. However, the 22Ne/36Ar ratio may not be exactly solar if these species can be fractionated by external photoevaporation in the solar nebula, atmospheric escape from Titan, or sequestration on the surface of Titan. While the GCMS data are consistent with a 22Ne/36Ar ratio of 0.05 to 2.5 times solar (1σ range), simple estimates that attempt to account for some of the effects of these evolutionary processes suggest a sub-solar ratio, which may be depleted by approximately one order of magnitude. Models based on capture of nebular gas can explain why the GCMS did not detect any other primordial noble gas isotopes, as their predicted abundances are below the detection limits (especially for 84Kr and 132Xe). It is also predicted that atmospheric Xe on Titan should be dominated by radiogenic 129Xe if the source of primordial Xe is nebular gas. Of order 10-2-10-1 bar of primordial H2 may have been captured along with the noble gases from a gas-starved disk, but this H2 would have quickly escaped from the initial atmosphere. To have the opportunity to capture nebular gas, Titan should have formed within ∼10 Myr of the formation of the solar system, before the ultimate source of gas (the solar nebula) dissipated. More specifically, if photoevaporative fractionation happened, the time-evolution for the depletion of permanent gases in the solar nebula can be parameterized to the ∼3 times solar noble gas enrichments of Jupiter for an assumed Jupiter formation time of ∼2 Myr after calcium-aluminum-rich inclusions (CAIs). This allows the construction of a consistent chronology with a Titan formation time of ∼3-4 Myr after CAIs. Because the models presented in this work are pushing the limits of the data from Titan, future mass spectrometric measurements of the noble gases and their isotopes (to at least ppt sensitivity) will be essential to confirm the Huygens detection of 22Ne, and to constrain the roles of evolutionary processes and mixed sources in determining the noble gas geochemistry of Titan's atmosphere. The clearest indication of a nebular gas source for noble gases on Titan would be a solar-like isotopic ratio of 20Ne/22Ne ≈ 14.

  6. Cucurbit[6]uril: A Possible Host for Noble Gas Atoms.

    PubMed

    Pan, Sudip; Mandal, Subhajit; Chattaraj, Pratim K

    2015-08-27

    Density functional and ab initio molecular dynamics studies are carried out to investigate the stability of noble gas encapsulated cucurbit[6]uril (CB[6]) systems. Interaction energy, dissociation energy and dissociation enthalpy are calculated to understand the efficacy of CB[6] in encapsulating noble gas atoms. CB[6] could encapsulate up to three Ne atoms having dissociation energy (zero-point energy corrected) in the range of 3.4-4.1 kcal/mol, whereas due to larger size, only one Ar or Kr atom encapsulated analogues would be viable. The dissociation energy value for the second Ar atom is only 1.0 kcal/mol. On the other hand, the same for the second Kr is -0.5 kcal/mol, implying the instability of the system. The noble gas dissociation processes are endothermic in nature, which increases gradually along Ne to Kr. Kr encapsulated analogue is found to be viable at room temperature. However, low temperature is needed for Ne and Ar encapsulated analogues. The temperature-pressure phase diagram highlights the region in which association and dissociation processes of Kr@CB[6] would be favorable. At ambient temperature and pressure, CB[6] may be used as an effective noble gas carrier. Wiberg bond indices, noncovalent interaction indices, electron density, and energy decomposition analyses are used to explore the nature of interaction between noble gas atoms and CB[6]. Dispersion interaction is found to be the most important term in the attraction energy. Ne and Ar atoms in one Ng entrapped analogue are found to stay inside the cavity of CB[6] throughout the simulation at 298 K. However, during simulation Ng2 units in Ng2@CB[6] flip toward the open faces of CB[6]. After 1 ps, one Ne atom of Ne3@CB[6] almost reaches the open face keeping other two Ne atoms inside. At lower temperature (77 K), all the Ng atoms in Ngn@CB[6] remain well inside the cavity of CB[6] throughout the simulation time (1 ps).

  7. Noble gases solubility models of hydrocarbon charge mechanism in the Sleipner Vest gas field

    NASA Astrophysics Data System (ADS)

    Barry, P. H.; Lawson, M.; Meurer, W. P.; Warr, O.; Mabry, J. C.; Byrne, D. J.; Ballentine, C. J.

    2016-12-01

    Noble gases are chemically inert and variably soluble in crustal fluids. They are primarily introduced into hydrocarbon reservoirs through exchange with formation waters, and can be used to assess migration pathways and mechanisms, as well as reservoir storage conditions. Of particular interest is the role groundwater plays in hydrocarbon transport, which is reflected in hydrocarbon-water volume ratios. Here, we present compositional, stable isotope and noble gas isotope and abundance data from the Sleipner Vest field, in the Norwegian North Sea. Sleipner Vest gases are generated from primary cracking of kerogen and the thermal cracking of oil. Gas was emplaced into the Sleipner Vest from the south and subsequently migrated to the east, filling and spilling into the Sleipner Ost fields. Gases principally consist of hydrocarbons (83-93%), CO2 (5.4-15.3%) and N2 (0.6-0.9%), as well as trace concentrations of noble gases. Helium isotopes (3He/4He) are predominantly radiogenic and range from 0.065 to 0.116 RA; reported relative to air (RA = 1.4 × 10-6; Clarke et al., 1976; Sano et al., 1988), showing predominantly (>98%) crustal contributions, consistent with Ne (20Ne/22Ne from 9.70 to 9.91; 21Ne/22Ne from 0.0290 to 0.0344) and Ar isotopes (40Ar/36Ar from 315 to 489). Air-derived noble gas isotopes (20Ne, 36Ar, 84Kr, 132Xe) are introduced into the hydrocarbon system by direct exchange with air-saturated water (ASW). The distribution of air-derived noble gas species are controlled by phase partitioning processes; in that they preferentially partition into the gas (i.e., methane) phase, due to their low solubilities in fluids. Therefore, the extent of exchange between hydrocarbon phases and formation waters - that have previously equilibrated with the atmosphere - can be determined by investigating air-derived noble gas species. We utilize both elemental ratios to address process (i.e., open vs. closed system) and concentrations to quantify the extent of hydrocarbon-water exchange (i.e., volumetric gas-water ratios). These data are discussed within the framework of several conceptual models: (i) total gas-stripping model, which assumes all noble gases have been stripped from the water phase, thus defining the minimum volume of water to have interacted with the hydrocarbon phase; (ii) equilibrium model, which assumes equilibration between groundwater and hydrocarbon phase at reservoir P, T and salinity; and (iii) open and closed system gas-stripping models, using concentrations and elemental ratios. By applying these models to Ne-Ar data from Sleipner, we estimate volumetric gas-water ratios (Vg/Vw) between 0.02 and 0.07, which are lower than standard geologic gas-water estimates of ∼0.24, estimated by combining gas-in-place estimates with groundwater porosity estimates. Sleipner Vest data can be best approximated by an open system model, which predicts more than an order of magnitude more groundwater interaction during migration than geologic estimates, indicating a dynamic aquifer system and/or a hydrous migration pathway. In an open system, the extent of gas loss can be estimated to be between 8 and 10 reservoir volumes, which have passed through the system and been lost (i.e., filled and spilled).

  8. New Tracers of Gas Migration in the Continental Crust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurz, Mark D.

    2015-11-01

    Noble gases are exceptional tracers in continental settings due to the remarkable isotopic variability between the mantle, crust, and atmosphere, and because they are inert. Due to systematic variability in physical properties, such as diffusion, solubility, and production rates, the combination of helium, neon, and argon provides unique but under-utilized indices of gas migration. Existing noble gas data sets are dominated by measurements of gas and fluid phases from gas wells, ground waters and hot springs. There are very few noble gas measurements from the solid continental crust itself, which means that this important reservoir is poorly characterized. The centralmore » goal of this project was to enhance understanding of gas distribution and migration in the continental crust using new measurements of noble gases in whole rocks and minerals from existing continental drill cores, with an emphasis on helium, neon, argon. We carried out whole-rock and mineral-separate noble gas measurements on Precambrian basement samples from the Texas Panhandle. The Texas Panhandle gas field is the southern limb of the giant Hugoton-Panhandle oil and gas field; it has high helium contents (up to ~ 2 %) and 3He/4He of 0.21 (± 0.03) Ra. Because the total amount of helium in the Panhandle gas field is relatively well known, crustal isotopic data and mass balance calculations can be used to constrain the ultimate source rocks, and hence the helium migration paths. The new 3He/4He data range from 0.03 to 0.11 Ra (total), all of which are lower than the gas field values. There is internal isotopic heterogeneity in helium, neon, and argon, within all the samples; crushing extractions yield less radiogenic values than melting, demonstrating that fluid inclusions preserve less radiogenic gases. The new data suggest that the Precambrian basement has lost significant amounts of helium, and shows the importance of measuring helium with neon and argon. The 4He/40Ar values are particularly useful in demonstrating helium loss because all the data falls well below the production ratio.« less

  9. Pulsed-field-gradient measurements of time-dependent gas diffusion

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Cory, D. G.; Peled, S.; Tseng, C. H.; Patz, S.; Walsworth, R. L.

    1998-01-01

    Pulsed-field-gradient NMR techniques are demonstrated for measurements of time-dependent gas diffusion. The standard PGSE technique and variants, applied to a free gas mixture of thermally polarized xenon and O2, are found to provide a reproducible measure of the xenon diffusion coefficient (5.71 x 10(-6) m2 s-1 for 1 atm of pure xenon), in excellent agreement with previous, non-NMR measurements. The utility of pulsed-field-gradient NMR techniques is demonstrated by the first measurement of time-dependent (i.e., restricted) gas diffusion inside a porous medium (a random pack of glass beads), with results that agree well with theory. Two modified NMR pulse sequences derived from the PGSE technique (named the Pulsed Gradient Echo, or PGE, and the Pulsed Gradient Multiple Spin Echo, or PGMSE) are also applied to measurements of time dependent diffusion of laser polarized xenon gas, with results in good agreement with previous measurements on thermally polarized gas. The PGMSE technique is found to be superior to the PGE method, and to standard PGSE techniques and variants, for efficiently measuring laser polarized noble gas diffusion over a wide range of diffusion times. Copyright 1998 Academic Press.

  10. Method and system to measure temperature of gases using coherent anti-stokes doppler spectroscopy

    DOEpatents

    Rhodes, Mark

    2013-12-17

    A method of measuring a temperature of a noble gas in a chamber includes providing the noble gas in the chamber. The noble gas is characterized by a pressure and a temperature. The method also includes directing a first laser beam into the chamber and directing a second laser beam into the chamber. The first laser beam is characterized by a first frequency and the second laser beam is characterized by a second frequency. The method further includes converting at least a portion of the first laser beam and the second laser beam into a coherent anti-Stokes beam, measuring a Doppler broadening of the coherent anti-Stokes beam, and computing the temperature using the Doppler broadening.

  11. Use of IMS data and its potential for research through global noble gases concentration maps

    NASA Astrophysics Data System (ADS)

    Terzi, Lucrezia; Kalinowski, Martin; Gueibe, Christophe; Camps, Johan; Gheddou, Abdelhakim; Kusmierczyk-Michulec, Jolanta; Schoeppner, Michael

    2017-04-01

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT) established for verification purposes a global monitoring system for atmospheric radioisotopes and noble gas radioactivity. Daily activity concentrations have been collected worldwide for over 15 years providing unique data sets with long term time series that can be used for atmospheric circulation dynamics analysis. In this study, we want to emphasize the value of worldwide noble gas data by reconstructing global xenon concentration maps and comparing these observations with ATM simulations. By creating a residual plot, we can improve our understanding of our source estimation level for each region.

  12. Modeling soil gas dynamics in the context of noble gas tracer applications

    NASA Astrophysics Data System (ADS)

    Jenner, Florian; Mayer, Simon; Aeschbach, Werner; Peregovich, Bernhard; Machado, Carlos

    2017-04-01

    Noble gas tracer applications show a particular relevance for the investigation of gas dynamics in the unsaturated zone, but also for a treatment of soil contamination as well as concerning exchange processes between soil and atmosphere. In this context, reliable conclusions require a profound understanding of underlying biogeochemical processes. With regard to noble gas tracer applications, the dynamics of reactive and inert gases in the unsaturated zone is investigated. Based on long-term trends and varying climatic conditions, this is the first study providing general insights concerning the role of unsaturated zone processes. Modeling approaches are applied, in combination with an extensive set of measured soil air composition data from appropriate sampling sites. On the one hand, a simple modeling approach allows to identify processes which predominantly determine inert gas mixing ratios in soil air. On the other hand, the well-proven and sophisticated modeling routine Min3P is applied to describe the measured data by accounting for the complex nature of subsurface gas dynamics. Both measured data and model outcomes indicate a significant deviation of noble gas mixing ratios in soil air from the respective atmospheric values, occurring on seasonal scale. Observed enhancements of noble gas mixing ratios are mainly caused by an advective balancing of depleted sum values of O2+CO2, resulting from microbial oxygen depletion in combination with a preferential dissolution of CO2. A contrary effect, meaning an enhanced sum value of O2+CO2, is shown to be induced at very dry conditions due to the different diffusivities of O2 and CO2. Soil air composition data show a yearlong mass-dependent fractionation, occurring as a relative enhancement of heavier gas species with respect to lighter ones. The diffusive balancing of concentration gradients between soil air and atmosphere is faster for lighter gas species compared to heavier ones. The rather uniform fractionation is a consequence of the time scale of diffusive transport which is decoupled from the typically stronger fluctuating advective impact.

  13. Gas Transport and Detection Following Underground Nuclear Explosions

    NASA Astrophysics Data System (ADS)

    Carrigan, C. R.; Sun, Y.; Wagoner, J. L.; Zucca, J. J.

    2011-12-01

    Some extremely rare radioactive noble gases are by-products of underground nuclear explosions, and the detection of significant levels of these gases (e.g., Xe-133 and Ar-37) at the surface is a very strong indicator of the occurrence of an underground nuclear event. Because of their uniqueness, such noble gas signatures can be confirmatory of the nuclear nature of an event while signatures from other important detection methods, such as anomalous seismicity, are generally not. As a result, noble gas detection at a suspected underground nuclear test site is considered to be the most important technique available to inspectors operating under the On-Site-Inspection protocol of the Comprehensive Nuclear Test Ban Treaty. A one-kiloton chemical underground explosion, the Non-Proliferation Experiment (NPE), was carried out at the Nevada Test Site in 1993 and represented the first On-Site-Inspection oriented test of subsurface gas transport with subsequent detection at the surface using soil gas sampling methods. A major conclusion of the experiment was that noble gases from underground nuclear tests have a good possibility of being detected even if the test is well contained. From this experiment and from computer simulations, we have also learned significant lessons about the modes of gas transport to the surface and the importance of careful subsurface sampling to optimize the detected noble gas signature. Understanding transport and sampling processes for a very wide range of geologic and testing scenarios presents significant challenges that we are currently addressing using sensitivity studies, which we attempt to verify using experiments such as the NPE and a new subsurface gas migration experiment that is now being undertaken at the National Center for Nuclear Security. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  14. Noble gases recycled into the mantle through cold subduction zones

    NASA Astrophysics Data System (ADS)

    Smye, Andrew J.; Jackson, Colin R. M.; Konrad-Schmolke, Matthias; Hesse, Marc A.; Parman, Steve W.; Shuster, David L.; Ballentine, Chris J.

    2017-08-01

    Subduction of hydrous and carbonated oceanic lithosphere replenishes the mantle volatile inventory. Substantial uncertainties exist on the magnitudes of the recycled volatile fluxes and it is unclear whether Earth surface reservoirs are undergoing net-loss or net-gain of H2O and CO2. Here, we use noble gases as tracers for deep volatile cycling. Specifically, we construct and apply a kinetic model to estimate the effect of subduction zone metamorphism on the elemental composition of noble gases in amphibole - a common constituent of altered oceanic crust. We show that progressive dehydration of the slab leads to the extraction of noble gases, linking noble gas recycling to H2O. Noble gases are strongly fractionated within hot subduction zones, whereas minimal fractionation occurs along colder subduction geotherms. In the context of our modelling, this implies that the mantle heavy noble gas inventory is dominated by the injection of noble gases through cold subduction zones. For cold subduction zones, we estimate a present-day bulk recycling efficiency, past the depth of amphibole breakdown, of 5-35% and 60-80% for 36Ar and H2O bound within oceanic crust, respectively. Given that hotter subduction dominates over geologic history, this result highlights the importance of cooler subduction zones in regassing the mantle and in affecting the modern volatile budget of Earth's interior.

  15. Prospects of Optical Single Atom Detection in Noble Gas Solids for Measurements of Rare Nuclear Reactions

    NASA Astrophysics Data System (ADS)

    Singh, Jaideep; Bailey, Kevin G.; Lu, Zheng-Tian; Mueller, Peter; O'Connor, Thomas P.; Xu, Chen-Yu; Tang, Xiaodong

    2013-04-01

    Optical detection of single atoms captured in solid noble gas matrices provides an alternative technique to study rare nuclear reactions relevant to nuclear astrophysics. I will describe the prospects of applying this approach for cross section measurements of the ^22Ne,,),25Mg reaction, which is the crucial neutron source for the weak s process inside of massive stars. Noble gas solids are a promising medium for the capture, detection, and manipulation of atoms and nuclear spins. They provide stable and chemically inert confinement for a wide variety of guest species. Because noble gas solids are transparent at optical wavelengths, the guest atoms can be probed using lasers. We have observed that ytterbium in solid neon exhibits intersystem crossing (ISC) which results in a strong green fluorescence (546 nm) under excitation with blue light (389 nm). Several groups have observed ISC in many other guest-host pairs, notably magnesium in krypton. Because of the large wavelength separation of the excitation light and fluorescence light, optical detection of individual embedded guest atoms is feasible. This work is supported by DOE, Office of Nuclear Physics, under contract DE-AC02-06CH11357.

  16. Possible solar noble-gas component in Hawaiian basalts

    USGS Publications Warehouse

    Honda, M.; McDougall, I.; Patterson, D.B.; Doulgeris, A.; Clague, D.A.

    1991-01-01

    THE noble-gas elemental and isotopic composition in the Earth is significantly different from that of the present atmosphere, and provides an important clue to the origin and history of the Earth and its atmosphere. Possible candidates for the noble-gas composition of the primordial Earth include a solar-like component, a planetary-like component (as observed in primitive meteorites) and a component similar in composition to the present atmosphere. In an attempt to identify the contributions of such components, we have measured isotope ratios of helium and neon in fresh basaltic glasses dredged from Loihi seamount and the East Rift Zone of Kilauea1-3. We find a systematic enrichment in 20Ne and 21Ne relative to 22Ne, compared with atmospheric neon. The helium and neon isotope signatures observed in our samples can be explained by mixing of solar, present atmospheric, radiogenic and nucleogenic components. These data suggest that the noble-gas isotopic composition of the mantle source of the Hawaiian plume is different from that of the present atmosphere, and that it includes a significant solar-like component. We infer that this component was acquired during the formation of the Earth.

  17. Potential interstellar noble gas molecules: ArOH+ and NeOH+ rovibrational analysis from quantum chemical quartic force fields

    NASA Astrophysics Data System (ADS)

    Theis, Riley A.; Fortenberry, Ryan C.

    2016-03-01

    The discovery of ArH+ in the interstellar medium has shown that noble gas chemistry may be of more chemical significance than previously believed. The present work extends the known chemistry of small noble gas molecules to NeOH+ and ArOH+. Besides their respective neonium and argonium diatomic cation cousins, these hydroxyl cation molecules are the most stable small noble gas molecules analyzed of late. ArOH+ is once again more stable than the neon cation, but both are well-behaved enough for a complete quartic force field analysis of their rovibrational properties. The Ar-O bond in ArOH+ , for instance, is roughly three-quarters of the strength of the Ar-H bond in ArH+ highlighting the rigidity of this system. The rotational constants, geometries, and vibrational frequencies for both molecules and their various isotopologues are computed from ab initio quantum chemical theory at high-level, and it is shown that these cations may form in regions where peroxy or weakly-bound alcohols may be present. The resulting data should be of significant assistance for the laboratory or observational analysis of these potential interstellar molecules.

  18. Development of Laser-Polarized Noble Gas Magnetic Resonance Imaging (MRI) Technology

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.

    2004-01-01

    We are developing technology for laser-polarized noble gas nuclear magnetic resonance (NMR), with the aim of enabling it as a novel biomedical imaging tool for ground-based and eventually space-based application. This emerging multidisciplinary technology enables high-resolution gas-space magnetic resonance imaging (MRI)-e.g., of lung ventilation, perfusion, and gas-exchange. In addition, laser-polarized noble gases (3He and 1BXe) do not require a large magnetic field for sensitive NMR detection, opening the door to practical MRI with novel, open-access magnet designs at very low magnetic fields (and hence in confined spaces). We are pursuing two specific aims in this technology development program. The first aim is to develop an open-access, low-field (less than 0.01 T) instrument for MRI studies of human gas inhalation as a function of subject orientation, and the second aim is to develop functional imaging of the lung using laser-polarized He-3 and Xe-129.

  19. A generic biokinetic model for noble gases with application to radon.

    PubMed

    Leggett, Rich; Marsh, James; Gregoratto, Demetrio; Blanchardon, Eric

    2013-06-01

    To facilitate the estimation of radiation doses from intake of radionuclides, the International Commission on Radiological Protection (ICRP) publishes dose coefficients (dose per unit intake) based on reference biokinetic and dosimetric models. The ICRP generally has not provided biokinetic models or dose coefficients for intake of noble gases, but plans to provide such information for (222)Rn and other important radioisotopes of noble gases in a forthcoming series of reports on occupational intake of radionuclides (OIR). This paper proposes a generic biokinetic model framework for noble gases and develops parameter values for radon. The framework is tailored to applications in radiation protection and is consistent with a physiologically based biokinetic modelling scheme adopted for the OIR series. Parameter values for a noble gas are based largely on a blood flow model and physical laws governing transfer of a non-reactive and soluble gas between materials. Model predictions for radon are shown to be consistent with results of controlled studies of its biokinetics in human subjects.

  20. Noble Gases as tracers of fluid migration in the Haynesville shale and overlying strata

    NASA Astrophysics Data System (ADS)

    Byrne, D. J.; Barry, P. H.; Lawson, M.; Ballentine, C. J.

    2017-12-01

    Noble gases are ideal tracers of physical processes and fluid provenance in crustal systems. Due to their inert nature, they are unaffected by chemical alteration, redox, or biological phenomena that fractionate other geochemical tracers. Noble gas analysis has been used to quantify fluid provenance, interactions, and ages in petroleum systems [1,2], but the effects of hydrocarbon migration on noble gas signatures have not been directly observed. The Haynesville Shale (East Texas & Louisiana), is exploited commercially for unconventional shale gas, but also acts as the source-rock for overlying conventional reservoirs. We present noble gas isotope and abundance data in samples collected from 9 natural gas wells sourced from the Haynesville Shale, as well as 21 from reservoirs in the overlying Cotton Valley (n=7), Travis Peak (n=9), and James (n=5) groups. Using a stratigraphic model, we observe systematic changes in the noble gas signatures as the fluids migrate from the Haynesville source rock to the overlying conventional accumulations. Helium isotope ratios (3He/4He) are strongly radiogenic in the Haynesville and stratigraphically older conventional reservoirs, with the younger reservoirs showing evidence of a mantle helium input. Argon isotope ratios (40Ar/36Ar) are strongly correlated with high 3He/4He, suggesting a similar provenance for radiogenic 40Ar and mantle 3He. Concentrations of groundwater-derived 36Ar are consistently higher in the conventional reservoirs than in the Haynesville shale, reflecting the greater interaction with groundwater during migration. However, 20Ne/36Ar ratios are not significantly different, suggesting that solubility-dependent partitioning is not simply dependent on vertical or horizontal migration distance. Krypton and xenon abundances are higher than expected for groundwater in all samples, a phenomenon that has been observed in many other hydrocarbon accumulations [3]. The excess Xe/Kr ratio is highest in the Haynesville itself, suggesting that this excess Xe and Kr originates from within the source-rock, and is subsequently shifted towards normal Xe/Kr values by mixing with groundwater-derived noble gases during migration. [1] Barry et al., 2016, GCA 194, 291-309; [2] Darrah et al., 2014, PNAS 111, 14076-81; [3] Zhou et al., 2005, GCA 69, 5413-28

  1. High-throughput investigation of catalysts for JP-8 fuel cracking to liquefied petroleum gas.

    PubMed

    Bedenbaugh, John E; Kim, Sungtak; Sasmaz, Erdem; Lauterbach, Jochen

    2013-09-09

    Portable power technologies for military applications necessitate the production of fuels similar to LPG from existing feedstocks. Catalytic cracking of military jet fuel to form a mixture of C₂-C₄ hydrocarbons was investigated using high-throughput experimentation. Cracking experiments were performed in a gas-phase, 16-sample high-throughput reactor. Zeolite ZSM-5 catalysts with low Si/Al ratios (≤25) demonstrated the highest production of C₂-C₄ hydrocarbons at moderate reaction temperatures (623-823 K). ZSM-5 catalysts were optimized for JP-8 cracking activity to LPG through varying reaction temperature and framework Si/Al ratio. The reducing atmosphere required during catalytic cracking resulted in coking of the catalyst and a commensurate decrease in conversion rate. Rare earth metal promoters for ZSM-5 catalysts were screened to reduce coking deactivation rates, while noble metal promoters reduced onset temperatures for coke burnoff regeneration.

  2. Reactions in Portland cement-clay mixtures : final report.

    DOT National Transportation Integrated Search

    1970-01-01

    This study was an extension of earlier work by Sherwood and Noble to determine the nature of the clay content of common Virginia soils and the strength development of those soils in cement mixtures. In addition attempts were made (1) to study the rel...

  3. ARPA/NRL X-Ray Laser Program - Semiannual Technical Report to Defense Advanced Research Projects Agency, 1 January 1975-30 June 1975

    DTIC Science & Technology

    1975-09-01

    being conducted with highly- stripped carbon ions emitted fron a laser -irradiated surface and ^xpandin- into a background gas . The...obtained from reported measurement s of noble gas lasers indicate that the amplifiers will operate in I depletion mode, providing pulse powers in the...pumping appears to be the easier alternative and it will be pursued. The alternative amplifier approach involving electron beam pumped noble gas lasers

  4. Using noble gas ratios to determine the origin of ground ice

    NASA Astrophysics Data System (ADS)

    Utting, Nicholas; Lauriol, Bernard; Lacelle, Denis; Clark, Ian

    2016-01-01

    Argon, krypton and xenon have different solubilities in water, meaning their ratios in water are different from those in atmospheric air. This characteristic is used in a novel method to distinguish between ice bodies which originate from the compaction of snow (i.e. buried snow banks, glacial ice) vs. ice which forms from the freezing of groundwater (i.e. pingo ice). Ice which forms from the compaction of snow has gas ratios similar to atmospheric air, while ice which forms from the freezing of liquid water is expected to have gas ratios similar to air-equilibrated water. This analysis has been conducted using a spike dilution noble gas line with gas extraction conducted on-line. Samples were mixed with an aliquot of rare noble gases while being melted, then extracted gases are purified and cryogenically separated. Samples have been analysed from glacial ice, buried snow bank ice, intrusive ice, wedge ice, cave ice and two unknown ice bodies. Ice bodies which have formed from different processes have different gas ratios relative to their formation processes.

  5. Neutron detection by scintillation of noble-gas excimers

    NASA Astrophysics Data System (ADS)

    McComb, Jacob Collin

    Neutron detection is a technique essential to homeland security, nuclear reactor instrumentation, neutron diffraction science, oil-well logging, particle physics and radiation safety. The current shortage of helium-3, the neutron absorber used in most gas-filled proportional counters, has created a strong incentive to develop alternate methods of neutron detection. Excimer-based neutron detection (END) provides an alternative with many attractive properties. Like proportional counters, END relies on the conversion of a neutron into energetic charged particles, through an exothermic capture reaction with a neutron absorbing nucleus (10B, 6Li, 3He). As charged particles from these reactions lose energy in a surrounding gas, they cause electron excitation and ionization. Whereas most gas-filled detectors collect ionized charge to form a signal, END depends on the formation of diatomic noble-gas excimers (Ar*2, Kr*2,Xe* 2) . Upon decaying, excimers emit far-ultraviolet (FUV) photons, which may be collected by a photomultiplier tube or other photon detector. This phenomenon provides a means of neutron detection with a number of advantages over traditional methods. This thesis investigates excimer scintillation yield from the heavy noble gases following the boron-neutron capture reaction in 10B thin-film targets. Additionally, the thesis examines noble-gas excimer lifetimes with relationship to gas type and gas pressure. Experimental data were collected both at the National Institute of Standards and Technology (NIST) Center for Neutron Research, and on a newly developed neutron beamline at the Maryland University Training Reactor. The components of the experiment were calibrated at NIST and the University of Maryland, using FUV synchrotron radiation, neutron imaging, and foil activation techniques, among others. Computer modeling was employed to simulate charged-particle transport and excimer photon emission within the experimental apparatus. The observed excimer scintillation yields from the 10B( n, alpha)7Li reaction are comparable to the yields of many liquid and solid neutron scintillators. Additionally, the observed slow triplet-state decay of neutron-capture-induced excimers may be used in a practical detector to discriminate neutron interactions from gamma-ray interactions. The results of these measurements and simulations will contribute to the development and optimization of a deployable neutron detector based on noble-gas excimer scintillation.

  6. Infrared spectroscopy of isoprene in noble gas matrices

    NASA Astrophysics Data System (ADS)

    Ito, Fumiyuki

    2018-06-01

    In this study, the infrared absorption spectra of 2-methyl-1,3-butadiene (isoprene) in noble gas matrices (Ar, Kr, and Xe) have been reported. The vibrational structure observed at cryogenic temperature, in combination with anharmonic vibrational calculations using density functional theory, helped in unambiguously assigning the fundamental modes of isoprene unresolved in the previous gas phase measurements, which would be of basic importance in the remote sensing of this molecule. A careful comparison with the most recent gas phase study [Brauer et al., Atmos. Meas. Tech. 7 (2014) 3839-3847.] led us to alternative assignments of the weak bands.

  7. Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts

    DOE PAGES

    Hunt, Sean T.; Milina, Maria; Alba-Rubio, Ana C.; ...

    2016-05-20

    Here, we demonstrated the self-assembly of transition metal carbide nanoparticles coated with atomically thin noble metal monolayers by carburizing mixtures of noble metal salts and transition metal oxides encapsulated in removable silica templates. This approach allows for control of the final core-shell architecture, including particle size, monolayer coverage, and heterometallic composition. Carbon-supported Ti 0.1W 0.9C nanoparticles coated with Pt or bimetallic PtRu monolayers exhibited enhanced resistance to sintering and CO poisoning, achieving an order of magnitude increase in specific activity over commercial catalysts for methanol electrooxidation after 10,000 cycles. These core-shell materials provide a new direction to reduce the loading,more » enhance the activity, and increase the stability of noble metal catalysts.« less

  8. Determining the source and genetic fingerprint of natural gases using noble gas geochemistry: a northern Appalachian Basin case study

    USGS Publications Warehouse

    Hunt, Andrew G.; Darrah, Thomas H.; Poreda, Robert J.

    2012-01-01

    Silurian and Devonian natural gas reservoirs present within New York state represent an example of unconventional gas accumulations within the northern Appalachian Basin. These unconventional energy resources, previously thought to be noneconomically viable, have come into play following advances in drilling (i.e., horizontal drilling) and extraction (i.e., hydraulic fracturing) capabilities. Therefore, efforts to understand these and other domestic and global natural gas reserves have recently increased. The suspicion of fugitive mass migration issues within current Appalachian production fields has catalyzed the need to develop a greater understanding of the genetic grouping (source) and migrational history of natural gases in this area. We introduce new noble gas data in the context of published hydrocarbon carbon (C1,C2+) (13C) data to explore the genesis of thermogenic gases in the Appalachian Basin. This study includes natural gases from two distinct genetic groups: group 1, Upper Devonian (Marcellus shale and Canadaway Group) gases generated in situ, characterized by early mature (13C[C1  C2][13C113C2]: –9), isotopically light methane, with low (4He) (average, 1  103 cc/cc) elevated 4He/40Ar and 21Ne/40Ar (where the asterisk denotes excess radiogenic or nucleogenic production beyond the atmospheric ratio), and a variable, atmospherically (air-saturated–water) derived noble gas component; and group 2, a migratory natural gas that emanated from Lower Ordovician source rocks (i.e., most likely, Middle Ordovician Trenton or Black River group) that is currently hosted primarily in Lower Silurian sands (i.e., Medina or Clinton group) characterized by isotopically heavy, mature methane (13C[C1 – C2] [13C113C2]: 3), with high (4He) (average, 1.85  103 cc/cc) 4He/40Ar and 21Ne/40Ar near crustal production levels and elevated crustal noble gas content (enriched 4He,21Ne, 40Ar). Because the release of each crustal noble gas (i.e., He, Ne, Ar) from mineral grains in the shale matrix is regulated by temperature, natural gases obtain and retain a record of the thermal conditions of the source rock. Therefore, noble gases constitute a valuable technique for distinguishing the genetic source and post-genetic processes of natural gases.

  9. Comparison of various stopping gases for 3He-based position sensitive neutron detectors

    NASA Astrophysics Data System (ADS)

    Doumas, A.; Smith, G. C.

    2012-05-01

    A range of solid state, scintillator and gas based detectors are being developed for use at the next generation of high flux neutron facilities. Since gas detectors are expected to continue to play a key role in future specific thermal neutron experiments, a comparison of the performance characteristics of prospective stopping gases is beneficial. Gas detectors typically utilize the reaction 3He(n,p)t to detect thermal neutrons; the 3He gas is used in a mixture containing a particular stopping gas in order to maintain relatively short ranges for the proton and triton pair emitted from the n-3He reaction. Common stopping gases include hydrocarbons (e.g. propane), carbon tetrafluoride, and noble gases such as argon and xenon. For this study, we utilized the Monte Carlo simulation code "Stopping and Range of Ions in Matter" to analyze the expected behavior of argon, xenon, carbon dioxide, difluoroethane and octafluoropropane as stopping gases for thermal neutron detectors. We also compare these findings to our previously analyzed performance of propane, butane and carbon tetrafluoride. A discussion of these gases includes their behavior in terms of proton and triton range, ionization distribution and straggle.

  10. Primordial Noble Gases from Earth's Core

    NASA Astrophysics Data System (ADS)

    Wang, K.; Lu, X.; Brodholt, J. P.

    2016-12-01

    Recent partitioning experiment suggests helium is more compatible in iron melt than in molten silicates at high pressures (> 10 GPa) (1), thus provide the possibility of the core as being the primordial noble gases warehouse that is responsible for the high primordial/radiogenic noble gas isotopic ratios observed in plume-related basalts. However, the possible transportation mechanism of the noble gases from the core to the overlying mantle is still ambiguous, understanding how this process would affect the noble gas isotopic characteristics of the mantle is critical to validate this core reservoir model. As diffusion is a dominant mass transport process that plays an important role in chemical exchange at the core-mantle boundary (CMB), we have determined the diffusion coefficients of helium, neon and argon in major lower mantle minerals, i.e. periclase (MgO), bridgemanite (MgSiO3-Pv) and post-perovskite (MgSiO3-PPv), by first-principles calculation based on density functional theory (DFT). As expected, the diffusion rate of helium is the fastest at the CMB, which is in the range of 3 × 10-10 to 1 × 10-8 m2/s. The neon diffusion is slightly slower, from 5 × 10-10 to 5 × 10-9 m2/s. Argon diffuses slowest at the rate from 1 × 10-10 to 2 × 10-10 m2/s. We have further simulated the evolution of noble gas isotopic ratios in the mantle near the CMB. Considering its close relationship with the mantle plumes and very likely to be the direct source of "hot-spot" basalts, we took a close investigation on the large low-shear-velocity provinces (LLSVPs). Under reasonable assumptions based on our diffusion parameters, the modelling results indicate that LLSVP is capable of generating all the noble gas isotope signals, e.g., 3He/4He = 55 Ra, 3He/22Ne = 3.1, 3He/36Ar = 0.82, 40Ar/36Ar = 9500, that are in good agreement with the observed values in "hot-spot" basalts (2). Therefore, this core-reservior hypothesis is a self-consistent model that can fits in multiple noble gas isotopic constrains. (1) Bouhifd, M.A., Jephcoat, A.P., Heber, V.S., Kelley, S.P., 2013. Helium in Earth's early core. Nat. Geosci. 6, 982-986. (2) Mukhopadhyay, S., 2012. Early differentiation and volatile accretion recorded in deep-mantle neon and xenon. Nature 486, 101-124.

  11. Atomistic-scale simulations of defect formation in graphene under noble gas ion irradiation

    DOE PAGES

    Yoon, Kichul; Rahnamoun, Ali; Swett, Jacob L.; ...

    2016-08-17

    Despite the frequent use of noble gas ion irradiation of graphene, the atomistic-scale details, including the effects of dose, energy, and ion bombardment species on defect formation, and the associated dynamic processes involved in the irradiations and subsequent relaxation have not yet been thoroughly studied. Here, we simulated the irradiation of graphene with noble gas ions and the subsequent effects of annealing. Lattice defects, including nanopores, were generated after the annealing of the irradiated graphene, which was the result of structural relaxation that allowed the vacancy-type defects to coalesce into a larger defect. Larger nanopores were generated by irradiation withmore » a series of heavier noble gas ions, due to a larger collision cross section that led to more detrimental effects in the graphene, and by a higher ion dose that increased the chance of displacing the carbon atoms from graphene. Overall trends in the evolution of defects with respect to a dose, as well as the defect characteristics, were in good agreement with experimental results. In addition, the statistics in the defect types generated by different irradiating ions suggested that the most frequently observed defect types were Stone-Thrower-Wales (STW) defects for He + irradiation and monovacancy (MV) defects for all other ion irradiations.« less

  12. A review of noble gas geochemistry in relation to early Earth history

    NASA Technical Reports Server (NTRS)

    Kurz, M. D.

    1985-01-01

    One of the most fundamental noble gas constraints on early Earth history is derived from isotopic differences in (129)Xe/(130)Xe between various terrestrial materials. The short half life (17 m.y.) of extinct (129I, parent of (129)Xe, means that these differences must have been produced within the first 100 m.y. after terrestrial accretion. The identification of large anomalies in (129)Xe/(130)Xe in mid ocean ridge basalts (MORB), with respect to atmospheric xenon, suggests that the atmosphere and upper mantle have remained separate since that time. This alone is a very strong argument for early catastrophic degassing, which would be consistent with an early fractionation resulting in core formation. However, noble gas isotopic systematics of oceanic basalts show that the mantle cannot necessarily be regarded as a homogeneous system, since there are significant variations in (3)He/(4)He, (40)Ar/(36)Ar, and (129)Xe/(130)Xe. Therefore, the early degassing cannot be considered to have acted on the whole mantle. The specific mechanisms of degassing, in particular the thickness and growth of the early crust, is an important variable in understanding present day noble gas inventories. Another constraint can be obtained from rocks that are thought to be derived from near the lithosphere asthenosphere boundary: ultramafic xenoliths.

  13. Enhanced Control of Transient Raman Scattering Using Buffered Hydrogen in Hollow-Core Photonic Crystal Fibers

    NASA Astrophysics Data System (ADS)

    Hosseini, P.; Novoa, D.; Abdolvand, A.; Russell, P. St. J.

    2017-12-01

    Many reports on stimulated Raman scattering in mixtures of Raman-active and noble gases indicate that the addition of a dispersive buffer gas increases the phase mismatch to higher-order Stokes and anti-Stokes sidebands, resulting in a preferential conversion to the first few Stokes lines, accompanied by a significant reduction in the Raman gain due to collisions with gas molecules. Here we report that, provided the dispersion can be precisely controlled, the effective Raman gain in a gas-filled hollow-core photonic crystal fiber can actually be significantly enhanced when a buffer gas is added. This counterintuitive behavior occurs when the nonlinear coupling between the interacting fields is strong and can result in a performance similar to that of a pure Raman-active gas, but at a much lower total gas pressure, allowing competing effects such as Raman backscattering to be suppressed. We report high modal purity in all the emitted sidebands, along with anti-Stokes conversion efficiencies as high as 5% in the visible and 2% in the ultraviolet. This new class of gas-based waveguide device, which allows the nonlinear optical response to be beneficially pressure-tuned by the addition of buffer gases, may find important applications in laser science and spectroscopy.

  14. Recycling of volatiles at subduction zones: Noble gas evidence from the Tabar-Lihir-Tanga-Feni arc of papua New Guinea

    NASA Technical Reports Server (NTRS)

    Farley, Kenneth; Mcinnes, Brent; Patterson, Desmond

    1994-01-01

    Convergent margin processes play an important but poorly understood role in the distribution of terrestrial volatile species. For example, subduction processes filter volatiles from the subducting package, thereby restricting their return to the mantle. In addition, once extracted from the downgoing slab, volatiles become an essential component in the petrogenesis of island arc magmas. The noble gases, with their systematic variation in physical properties and diversity of radiogenic isotopes, should carry a uniquely valuable record of these processes. However, thus far studies of noble gases in arc volcanics have achieved only limited success in this regard. Subduction-related lavas and geothermal fluids carry (3)He/(4)He ratios equal to or slightly lower than those found in the depleted upper mantle source of mid-ocean ridge basalts. Apparently slab-derived helium (which should have (3)He/(4)He much less than MORB) is extensively diluted by MORB-like helium from the mantle wedge, making it difficult to use helium as a tracer of convergent margin processes. Interpretation of the heavier noble gases (Ne-Ar-Kr-Xe) in arc lavas has also proven difficult, because the lavas carry low noble gas concentrations and hence are subject to pervasive atmospheric contamination. The low noble gas concentrations may be a consequence of degassing in the high level magma chambers characteristic of arc stratovolcanos. We have recently initiated a project to better constrain the behavior of volatiles in subduction zones through geochemical studies of the tectonically unusual volcanoes of the Tabar-Lihir-Tanga-Feni (TLTF) arc in the Bismarck Archipelago, Papua New Guinea.

  15. Spin exchange optical pumping of neon and its applications

    NASA Astrophysics Data System (ADS)

    Ghosh, Rajat K.

    Hyperpolarized noble gases are used in a variety of applications including medical diagnostic lung imaging, tests of fundamental symmetries, spin filters, atomic gyroscopes, and atomic magnetometers. Typically 3He is utilized because large 3He polarizations on the order of 80% can be achieved. This is accomplished by optically pumping an alkali vapour which polarizes a noble gas nucleus via spin exchange optical pumping. One hyperpolarized noble gas application of particular importance is the K-3He co-magnetometer. Here, the alkali atoms optically pump a diamagnetic noble gas. The magnetic holding field for the alkali and noble gas is reduced until both species are brought into hybrid magnetic resonance. The co-magnetometer exhibits many useful attributes which make it ideal for tests of fundamental physics, such as insensitivity to magnetic fields. The co-magnetometer would demonstrate increased sensitivity by replacing 3He with polarized 21Ne gas. Tests of CPT violation using co-magnetometers would be greatly improved if one utilizes polarized 21Ne gas. The sensitivity of the nuclear spin gyroscope is inversely proportional to the gyromagnetic ratio of the noble gas. Switching to neon would instigate an order of magnitude gain in sensitivity over 3He. In order to realize these applications the interaction parameters of 21Ne with alkali metals must be measured. The spin-exchange cross section sigmase, and magnetic field enhancement factor kappa0 are unknown, and have only been theoretically calculated. There are no quantitative predictions of the neon-neon quadrupolar relaxation rate Gammaquad. In this thesis I test the application of a K-3He co-magnetometer as a navigational gyroscope. I discuss the advantages of switching the buffer gas to 21Ne. I discuss the feasibility of utilizing polarized 21Ne for operation in a co-magnetometer, and construct a prototype 21Ne co-magnetometer. I investigate polarizing 21Ne with optical pumping via spin exchange collisions and measure the spin exchange rate coefficient of K and Rb with Ne to be 2.9 x 10-20cm 3/s and 0.81 x 10-19cm3/s. We measure the magnetic field enhancement factor kappa0 to be 30.8 +/- 2.7, and 35.7 +/- 3.7 for the K-Ne, and the Rb-Ne pair. We measure the quadrupolar relaxation coefficient to be 214 +/- 10 Amagat˙s. Furthermore the spin destruction cross section of Rb, and K with 21 Ne is measured to be 1.9 x 10-23cm2 and 1.1 x 10-23cm2.

  16. USGS-NoGaDat - A global dataset of noble gas concentrations and their isotopic ratios in volcanic systems

    USGS Publications Warehouse

    Abedini, Atosa A.; Hurwitz, S.; Evans, William C.

    2006-01-01

    The database (Version 1.0) is a MS-Excel file that contains close to 5,000 entries of published information on noble gas concentrations and isotopic ratios from volcanic systems in Mid-Ocean ridges, ocean islands, seamounts, and oceanic and continental arcs (location map). Where they were available we also included the isotopic ratios of strontium, neodymium, and carbon. The database is sub-divided both into material sampled (e.g., volcanic glass, different minerals, fumarole, spring), and into different tectonic settings (MOR, ocean islands, volcanic arcs). Included is also a reference list in MS-Word and pdf from which the data was derived. The database extends previous compilations by Ozima (1994), Farley and Neroda (1998), and Graham (2002). The extended database allows scientists to test competing hypotheses, and it provides a framework for analysis of noble gas data during periods of volcanic unrest.

  17. The 2014 Integrated Field Exercise of the Comprehensive Nuclear-Test-Ban Treaty revisited: The case for data fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnett, Jonathan L.; Miley, Harry S.; Bowyer, Theodore W.

    The International Monitoring System of the Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) uses a global network of radionuclide monitoring stations to detect evidence of a nuclear explosion. The two radionuclide technologies employed—particulate and noble gas (radioxenon) detection—have applications for data fusion to improve detection of a nuclear explosion. Using the hypothetical 0.5 kT nuclear explosive test scenario of the CTBTO 2014 Integrated Field Exercise, the intrinsic relationship between particulate and noble gas signatures has been examined. This study shows that, depending upon the time of the radioxenon release, the particulate progeny can produce the more detectable signature.more » Thus, as both particulate and noble gas signatures are inherently coupled, the authors recommend that the sample categorization schemes should be linked.« less

  18. The 2014 Integrated Field Exercise of the Comprehensive Nuclear-Test-Ban Treaty revisited: The case for data fusion.

    PubMed

    Burnett, Jonathan L; Miley, Harry S; Bowyer, Theodore W; Cameron, Ian M

    2018-09-01

    The International Monitoring System of the Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) uses a global network of radionuclide monitoring stations to detect evidence of a nuclear explosion. The two radionuclide technologies employed-particulate and noble gas (radioxenon) detection-have applications for data fusion to improve detection of a nuclear explosion. Using the hypothetical 0.5 kT nuclear explosive test scenario of the CTBTO 2014 Integrated Field Exercise, the intrinsic relationship between particulate and noble gas signatures has been examined. This study shows that, depending upon the time of the radioxenon release, the particulate progeny can produce the more detectable signature. Thus, as both particulate and noble gas signatures are inherently coupled, the authors recommend that the sample categorization schemes should be linked. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Comparison of the bonding between ML(+) and ML2(+) (M = metal, L = noble gas)

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R.

    1990-01-01

    Ab initio calculations are reported of the spectroscopic constants for the low-lying states of the molecular ions ML2(+), where M = Li, Na, Mg, V, Fe, Co, Ni and Cu, and where L is usually Ar. Comparison with existing analogous calculations on the ML(+) ions shows how the bonding and binding energy change with the addition of a second noble gas atom. The second binding energy is predicted to be essentially the same as the first for the Li, Na, Mg, and V ions, but larger for the Fe, Co, Ni and Cu ions. The binding energies of the transition metal noble gas ions are not accurately predicted at the SCF level, because correlation is required to describe their M(0)Ln(+) character. All trends can be explained in terms of promotion and hybridization on the metal ion.

  20. Laser microprobe analyses of noble gas isotopes and halogens in fluid inclusions: Analyses of microstandards and synthetic inclusions in quartz

    USGS Publications Warehouse

    Böhlke, J.K.; Irwin, J.J.

    1992-01-01

    Ar, Kr, Xe, Cl, Br, I, and K abundances and isotopic compositions have been measured in microscopic fluid inclusions in minerals by noble gas mass spectrometry following neutron irradiation and laser extraction. The laser microprobe noble gas mass spectrometric (LMNGMS) technique was quantified by use of microstandards, including air-filled capillary tubes, synthetic basalt glass grains, standard hornblende grains, and synthetic fluid inclusions in quartz. Common natural concentrations of halogens (Cl, Br, and I) and noble gases (Ar and Kr) in trapped groundwaters and hydrothermal fluids can be analyzed simultaneously by LMNGMS in as little as 10−11 L of inclusion fluid, with accuracy and precision to within 5–10% for element and isotope ratios. Multicomponent element and isotope correlations indicate contaminants or persistent reservoirs of excess Xe and/or unfractionated air in some synthetic and natural fluid inclusion samples. LMNGMS analyses of natural fluid inclusions using the methods and calibrations reported here may be used to obtain unique information on sources of fluids, sources of fluid salinity, mixing, boiling (or unmixing), and water-rock interactions in ancient fluid flow systems.

  1. Noble gases in gas shales : Implications for gas retention and circulating fluids.

    NASA Astrophysics Data System (ADS)

    Basu, Sudeshna; Jones, Adrian; Verchovsky, Alexander

    2016-04-01

    Gas shales from three cores of Haynesville-Bossier formation have been analysed simultaneously for carbon, nitrogen and noble gases (He, Ne, Ar, Xe) to constrain their source compositions and identify signatures associated with high gas retention. Ten samples from varying depths of 11785 to 12223 feet from each core, retrieved from their centres, have been combusted from 200-1200°C in incremental steps of 100°C, using 5 - 10 mg of each sample. Typically, Xe is released at 200°C and is largely adsorbed, observed in two of the three cores. The third core lacked any measureable Xe. High 40Ar/36Ar ratio up to 8000, is associated with peak release of nitrogen with distinctive isotopic signature, related to breakdown of clay minerals at 500°C. He and Ne are also mostly released at the same temperature step and predominantly hosted in the pore spaces of the organic matter associated with the clay. He may be produced from the uranium related to the organic matter. The enrichment factors of noble gases defined as (iX/36Ar)sample/(iX/36Ar)air where iX denotes any noble gas isotope, show Ne and Xe enrichment observed commonly in sedimentary rocks including shales (Podosek et al., 1980; Bernatowicz et al., 1984). This can be related to interaction of the shales with circulating fluids and diffusive separation of gases (Torgersen and Kennedy, 1999), implying the possibility of loss of gases from these shales. Interaction with circulating fluids (e.g. crustal fluids) have been further confirmed using 20Ne/N2, 36Ar/N2 and 4He/N2 ratios. Deviations of measured 4He/40Ar* (where 40Ar* represents radiogenic 40Ar after correcting for contribution from atmospheric Ar) from expected values has been used to monitor gas loss by degassing. Bernatowicz, T., Podosek, F.A., Honda, M., Kramer, F.E., 1984. The Atmospheric Inventory of Xenon and Noble Gases in Shales: The Plastic Bag Experiment. Journal of Geophysical Research 89, 4597-4611. Podosek, F.A., Honda, M., Ozima, M., 1980. Sedimentary noble gases. Geochimica Cosmochimica Acta 44, 1875-1884. Torgersen, T., Kennedy, B.M., 1999. Air-Xe enrichments in Oil Field Gases and the Influence of Water during Oil Migration and Storage. Earth and Planetary Science Letters167, 239-253.

  2. Understanding and modulating the high-energy properties of noble-gas hydrides from their long-bonding: an NBO/NRT investigation on HNgCO+/CS+/OSi+ and HNgCN/NC (Ng = He, Ar, Kr, Xe, Rn) molecules.

    PubMed

    Zhang, Guiqiu; Song, Junjie; Fu, Lei; Tang, Kongshuang; Su, Yue; Chen, Dezhan

    2018-04-18

    The noble-gas hydrides, HNgX (X is an electronegative atom or fragment), represent potential high-energy materials because their two-body decomposition process, HNgX → Ng + HX, is strongly exoergic. Our previous studies have shown that each member of the HNgX (X = halogen atom or CN/NC fragment) molecules is composed of three leading resonance structures: two ω-bonding structures (H-Ng+ :X- and H:- Ng+-X) and one long-bonding structure (H∧X). The last one paints a novel [small sigma, Greek, circumflex]-type long-bonding picture. The present study focuses on the relationship between this novel bonding motif and the unusual energetic properties. We chose HNgCO+/CS+/OSi+/CN/NC, with the formula HNgAB (Ng = He, Ar, Kr, Xe, Rn; AB = CO+/CS+/OSi+/CN/NC) as the research system. We first investigated the bonding of HNgCO+ and its analogous HNgCS+/OSi+ species using NBO/NRT methods, and quantitatively compared the bonding with that in HNgCN/NC molecules. NBO/NRT results showed that each of the HNgCO+/CS+/OSi+ molecules could be better represented as a resonance hybrid of ω-bonding and long-bonding structures, but the long-bonding is much weaker than that in HNgCN/NC molecules. Furthermore, we introduced the long-bonding concept into the rationalization of the high-energy properties, and found a good correlation between the highly exothermic two-body dissociation channel and the long-bond order, bH-A. We also found that the long-bond order is highly tunable for these noble-gas hydrides due to its dependence on the nature of the electronegative AB fragments or the central noble-gas atoms, Ng. On the basis of these results, we could optimize the energetic properties by changing the long-bonding motif of our studied molecules. Overall, this study shows that the long-bonding model provides an easy way to rationalize and modulate the unusual energy properties of noble-gas hydrides, and that it is helpful to predict some noble-gas hydrides as potential energetic materials.

  3. The persistence of natural CO2 accumulations over millennial timescales: Integrating noble gas and reservoir data at Bravo Dome, NM

    NASA Astrophysics Data System (ADS)

    Akhbari, D.

    2017-12-01

    Bravo Dome, the largest CO2 reservoir in the US, is a hydrogeologically closed system that has stored a very large amount of CO2 on millennial time scales. The pre-production gas pressures in Bravo Dome indicate that the reservoir is highly under-pressured and is divided into separate pressure compartments that do not communicate hydrologically. Previous studies used the noble gas composition at Bravo Dome to constrain the amount of dissolved CO2 into the brine. This CO2 dissolution into brine plays an important role in the observed under-pressure at the reservoir. However, the dissolution rates and transport mechanisms remain unknown. In this study, we are looking into reservoir pressures and noble gas composition in the northeastern section of the reservoir to constrain timescales of CO2 dissolution. We are interested in northeastern part of the reservoir because the largest amount of CO2 was dissolved into brine in this section. Also, we specifically look into the evolution of the CO2/3He and 20Ne concentration during convective CO2 dissolution at Bravo Dome. 20Ne has atmospheric origin and is initially in the brine, while 3He and CO2 have magmatic sources and were introduced with the gas. CO2/3He decreases as more CO2 dissolves into brine, due to the higher solubility of CO2 compare to that of 3He. However, 20Ne concentration in the gas increases due to exsolution of 20Ne from brine into the gas phase. We present 2D numerical simulation that demonstrate the persistence of CO2 over 1Ma and reproduce the observed reservoir pressures and noble gas compositions. Our results indicate that convection is required to produce observed changes in gas composition. But diffusion makes a significant contribution to mass transport.

  4. Noble Gas Thermometry and Hydrologic Ages: Evidence for Late Holocene Warming in Southwest Texas

    NASA Astrophysics Data System (ADS)

    Castro, M.; Goblet, P.

    2003-12-01

    Paleoclimatic reconstruction through the use of noble gases dissolved in groundwater has been the object of numerous studies in recent years. Unlike many other continental temperature proxies, noble gases have the advantage of providing direct information on atmospheric temperatures at the time rainwater penetrated the ground and joined a particular groundwater reservoir. In recent years, new methods for determination of noble gas temperatures have been developed, which provide a high level of accuracy on such temperature estimations. The issue of paleoclimatic reconstruction through noble gases however, is not only one of accurate temperature determination, but also one of accurate water age estimation so that a correct correspondence between noble gas temperatures and groundwater age can be established and proper paleoclimatic reconstruction attempted. The typical approach to estimate groundwater ages has been based on computing water travel times along streamlines from the recharge to the observation point taking into account only advection. This approach is limited because, like any other tracer, the movement of water in porous media is also affected by cinematic dispersion and molecular diffusion. We have therefore undertaken the formulation of hydrologic models that yield significantly better constraints on groundwater ages in the Carrizo aquifer and surrounding formations of south Texas, where noble gas temperatures have already been determined. To account for groundwater mixing we treat age as one would treat a solute concentration. In order to simulate groundwater ages we used a finite element model of groundwater flow that has been validated by 4He and 3He. The finite model spans a 120.6 Km cross-section between altitudes of +220m and -2210 m, and comprises 58,968 elements and 31,949 nodes. Combination of these newly calculated water ages and previously reported noble gas temperatures reveals new aspects of late Pleistocene and Holocene climate in southwestern Texas, in particular, an abrupt late Holocene temperature increase previously unidentified through 14C dating. Temperature increased by up to 3.4° C in the first half of the last millennium and by 1.5° C between ˜5.6 and 3.7 kyrs BP. More important than the resolution of individual paleoclimate episodes is the identification of a slow cooling trend between ˜1,200 kyrs and ˜200 kyrs, a trend that accelerates during the late Pleistocene and early Holocene. This cooling trend gives way to an extremely rapid increase in temperature in the late Holocene. Such abrupt warming seems to have accelerated in the last millennium and seems to continue at present. This temperature increase is the most striking feature arising from the determination of new groundwater ages.

  5. A first-principles study on the interaction of biogas with noble metal (Rh, Pt, Pd) decorated nitrogen doped graphene as a gas sensor: A DFT study

    NASA Astrophysics Data System (ADS)

    Zhao, Chunjiang; Wu, Huarui

    2018-03-01

    Density functional theory calculations are carried out to investigate the adsorption characteristics of methane (CH4), carbon dioxide (CO2), hydrogen (H2), hydrogen sulfide (H2S), nitrogen (N2), and oxygen (O2) on the surface of pyridine-like nitrogen doped graphene (PNG) as well as noble metal (Rh, Pt, Pd) decorated PNG to elaborate their potentials as gas sensors. The adsorption intensities of biogas on noble metal (Rh, Pt, Pd) decorated PNG are in the order of O2> H2S> N2> CH4> CO2> H2, which are corresponded to the order of their sensitivity on surface. Compared with biogas adsorption on pristine PNG, there exist higher adsorption ability, higher charge transfer and higher orbital hybridization upon adsorption on noble metal (Rh, Pt, Pd) decorated PNG. Consequently, the noble metal (Rh, Pt, Pd) decorated PNG can transform the existence of CH4, CO2, H2, H2S, N2, and O2 molecules into electrical signal and they could potentially be used as ideal sensors for detection of biogas in ambient situation.

  6. Noble gas isotopic composition, cosmic ray exposure history, and terrestrial age of the meteorite Allan Hills A81005 from the moon

    NASA Astrophysics Data System (ADS)

    Eugster, O.; Geiss, J.; Kraehenbuehl, U.; Niedermann, S.

    1986-06-01

    A comprehensive study of the elemental and isotopic abundances of the noble gases He, Ne, Ar, Kr, and Xe in the meteorite Allan Hills A81005 from the moon is presented. In addition to a bulk sample, five grain-size fractions were analyzed. Chemical abundances relevant to the interpretation of the cosmic-ray-produced noble gases were determined and indicate that the grain size fractions are chemically uniform. Except for the fact that the trapped noble gas concentrations appear to be grain size correlated, the isotopic and elemental pattern of the trapped solar wind noble gases in A81005 are very similar to those observed in lunar soils and breccias. The A81005 material resided during (580 + or - 180) Myr in the nuclear active zone of the lunar regolith at an average shielding depth of about 40 g/sq cm. From literature data, it is concluded that the moon-earth transit time lasted less than a few million years. Finally, A81005 was captured by the earth more than 140,000 years ago, as indicated by the abundance of cosmic-ray-produced Kr-81.

  7. The Noble Gas Fingerprint in a UK Unconventional Gas Reservoir

    NASA Astrophysics Data System (ADS)

    McKavney, Rory; Gilfillan, Stuart; Györe, Domokos; Stuart, Fin

    2016-04-01

    In the last decade, there has been an unprecedented expansion in the development of unconventional hydrocarbon resources. Concerns have arisen about the effect of this new industry on groundwater quality, particularly focussing on hydraulic fracturing, the technique used to increase the permeability of the targeted tight shale formations. Methane contamination of groundwater has been documented in areas of gas production1 but conclusively linking this to fugitive emissions from unconventional hydrocarbon production has been controversial2. A lack of baseline measurements taken before drilling, and the equivocal interpretation of geochemical data hamper the determination of possible contamination. Common techniques for "fingerprinting" gas from discrete sources rely on gas composition and isotopic ratios of elements within hydrocarbons (e.g. δ13CCH4), but the original signatures can be masked by biological and gas transport processes. The noble gases (He, Ne, Ar, Kr, Xe) are inert and controlled only by their physical properties. They exist in trace quantities in natural gases and are sourced from 3 isotopically distinct environments (atmosphere, crust and mantle)3. They are decoupled from the biosphere, and provide a separate toolbox to investigate the numerous sources and migration pathways of natural gases, and have found recent utility in the CCS4 and unconventional gas5 industries. Here we present a brief overview of noble gas data obtained from a new coal bed methane (CBM) field, Central Scotland. We show that the high concentration of helium is an ideal fingerprint for tracing fugitive gas migration to a shallow groundwater. The wells show variation in the noble gas signatures that can be attributed to differences in formation water pumping from the coal seams as the field has been explored for future commercial development. Dewatering the seams alters the gas/water ratio and the degree to which noble gases degas from the formation water. Additionally the helium and neon isotopic signatures exhibit a small but resolvable mantle input previously unseen onshore in the United Kingdom. We will outline the potential sources of this mantle input. 1. Osborn et al. (2011). Proc. Natl. Acad. Sci. U. S. A. 108, 10.1073/pnas.1100682108 2. Baldassare et al. (2014). Am. Assoc. Pet. Geol. Bull. 98, 10.1306/06111312178 3 .Ballentine et al. (2002). Rev. Min. Geochem. 47, 10.2138/rmg.2002.47.13 4. Gilfillan & Wilkinson (2011). Int. J. 5, 10.1016/j.ijggc.2011.08.008 5. Darrah et al. (2014). Proc. Natl. Acad. Sci. 111, 10.1073/pnas.1322107111

  8. 77 FR 58372 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    .... Docket Numbers: ER12-2621-000. Applicants: Wolverine Power Supply Cooperative, Inc. Description: Wolverine Power Supply Cooperative, Inc. submits tariff filing per 35: Re-File -Amend Filing FERC Rate...-2200-002; ER12-1716-001. Applicants: Noble Americas Gas & Power Corp., Noble Americas Energy Solutions...

  9. Primordial and cosmogenic noble gases in the Sutter's Mill CM chondrite

    NASA Astrophysics Data System (ADS)

    Okazaki, Ryuji; Nagao, Keisuke

    2017-04-01

    The Sutter's Mill (SM) CM chondrite fell in California in 2012. The CM chondrite group is one of the most primitive, consisting of unequilibrated minerals, but some of them have experienced complex processes occurring on their parent body, such as aqueous alteration, thermal metamorphism, brecciation, and solar wind implantation. We have determined noble gas concentrations and isotopic compositions for SM samples using a stepped heating gas extraction method, in addition to mineralogical observation of the specimens. The primordial noble gas abundances, especially the P3 component trapped in presolar diamonds, confirm the classification of SM as a CM chondrite. The mineralogical features of SM indicate that it experienced mild thermal alteration after aqueous alteration. The heating temperature is estimated to be <350 °C based on the release profile of primordial 36Ar. The presence of a Ni-rich Fe-Ni metal suggests that a minor part of SM has experienced heating at >500 °C. The variation in the heating temperature of thermal alteration is consistent with the texture as a breccia. The heterogeneous distribution of solar wind noble gases is also consistent with it. The cosmic-ray exposure (CRE) age for SM is calculated to be 0.059 ± 0.023 Myr based on cosmogenic 21Ne by considering trapped noble gases as solar wind, the terrestrial atmosphere, P1 (or Q), P3, A2, and G components. The CRE age lies at the shorter end of the CRE age distribution of the CM chondrite group.

  10. Growth responses of Neurospora crassa to increased partial pressures of the noble gases and nitrogen.

    PubMed

    Buchheit, R G; Schreiner, H R; Doebbler, G F

    1966-02-01

    Buchheit, R. G. (Union Carbide Corp., Tonawanda, N.Y.), H. R. Schreiner, and G. F. Doebbler. Growth responses of Neurospora crassa to increased partial pressures of the noble gases and nitrogen. J. Bacteriol. 91:622-627. 1966.-Growth rate of the fungus Neurospora crassa depends in part on the nature of metabolically "inert gas" present in its environment. At high partial pressures, the noble gas elements (helium, neon, argon, krypton, and xenon) inhibit growth in the order: Xe > Kr> Ar > Ne > He. Nitrogen (N(2)) closely resembles He in inhibitory effectiveness. Partial pressures required for 50% inhibition of growth were: Xe (0.8 atm), Kr (1.6 atm), Ar (3.8 atm), Ne (35 atm), and He ( approximately 300 atm). With respect to inhibition of growth, the noble gases and N(2) differ qualitatively and quantitatively from the order of effectiveness found with other biological effects, i.e., narcosis, inhibition of insect development, depression of O(2)-dependent radiation sensitivity, and effects on tissue-slice glycolysis and respiration. Partial pressures giving 50% inhibition of N. crassa growth parallel various physical properties (i.e., solubilities, solubility ratios, etc.) of the noble gases. Linear correlation of 50% inhibition pressures to the polarizability and of the logarithm of pressure to the first and second ionization potentials suggests the involvement of weak intermolecular interactions or charge-transfer in the biological activity of the noble gases.

  11. Kinetics, Energetics and Infrared Lasing in High Energy Rocket Propellant Ingredients at Cryogenic Temperatures

    DTIC Science & Technology

    1977-03-01

    below 183 K and it can be transferred through glassware in vacuum rack manipulations, a white polymer is al- ways left behind where the ketone had been...produced a white solid, stable at room temperature, from red gaseous PtF6 and colorless Xe. It was XePtf6 -_ the first confirmed noble gas compound. As...compound phase of our synthesis research was reluctantly discontinued.. It is interesting however to note thot exciplexes formed from noble .gas atoms are

  12. Non-Adiabatic Atomic Transitions: Computational Cross Section Calculations of Alkali Metal-Noble Gas Collisions

    DTIC Science & Technology

    2011-09-01

    there a one time transfer of prob- ability between Coriolis coupled states. One possible way to answer this question would be to literally create and... time -dependent numerical algorithm was developed using FORTRAN 90 to predict S-Matrix elements for alkali metal - noble gas (MNg) collisions. The...committee and the physics department for their time and effort to see me through the completion of my doctorate degree. Charlton D. Lewis, II v Table of

  13. Calorimetric gas sensor

    DOEpatents

    Ricco, A.J.; Hughes, R.C.; Smith, J.H.; Moreno, D.J.; Manginell, R.P.; Senturia, S.D.; Huber, R.J.

    1998-11-10

    A combustible gas sensor is described that uses a resistively heated, noble metal-coated, micromachined polycrystalline Si filament to calorimetrically detect the presence and concentration of combustible gases. The filaments tested to date are 2 {micro}m thick {times} 10{micro}m wide {times} 100, 250, 500, or 1000 {micro}m-long polycrystalline Si; some are overcoated with a 0.25 {micro}m-thick protective CVD Si{sub 3}N{sub 4} layer. A thin catalytic Pt film was deposited by CVD from the precursor Pt(acac){sub 2} onto microfilaments resistively heated to approximately 500 C; Pt deposits only on the hot filament. Using a constant-resistance-mode feedback circuit, Pt-coated filaments operating at ca. 300 C (35 mW input power) respond linearly, in terms of the change in supply current required to maintain constant resistance (temperature), to H{sub 2} concentrations between 100 ppm and 1% in an 80/20 N{sub 2}/O{sub 2} mixture. Other catalytic materials can also be used. 11 figs.

  14. Emissions and performance of catalysts for gas turbine catalytic combustors. [automobile engines

    NASA Technical Reports Server (NTRS)

    Anderson, D. N.

    1977-01-01

    Three noble-metal monolithic catalysts were tested in a 12-cm-dia. combustion test rig to obtain emissions and performance data at conditions simulating the operation of a catalytic combustor for an automotive gas turbine engine. Tests with one of the catalysts at 800 K inlet mixture temperature, 3 x 10 to the 5th Pa pressure, and a reference velocity (catalyst bed inlet velocity) of 10 m/sec demonstrated greater than 99 percent combustion efficiency for reaction temperatures higher than 1300 K. With a reference velocity of 25 m/sec the reaction temperature required to achieve the same combustion-efficiency increased to 1380 K. The exit temperature pattern factors for all three catalysts were below 0.1 when adiabatic reaction temperatures were higher than 1400 K. The highest pressure drop was 4.5 percent at 25 m/sec reference velocity. Nitrogen oxides emissions were less than 0.1 g NO2/kg fuel for all test conditions.

  15. Calorimetric gas sensor

    DOEpatents

    Ricco, Antonio J.; Hughes, Robert C.; Smith, James H.; Moreno, Daniel J.; Manginell, Ronald P.; Senturia, Stephen D.; Huber, Robert J.

    1998-01-01

    A combustible gas sensor that uses a resistively heated, noble metal-coated, micromachined polycrystalline Si filament to calorimetrically detect the presence and concentration of combustible gases. The filaments tested to date are 2 .mu.m thick.times.10 .mu.m wide.times.100, 250, 500, or 1000 .mu.m-long polycrystalline Si; some are overcoated with a 0.25 .mu.m-thick protective CVD Si.sub.3 N.sub.4 layer. A thin catalytic Pt film was deposited by CVD from the precursor Pt(acac).sub.2 onto microfilaments resistively heated to approximately 500.degree. C.; Pt deposits only on the hot filament. Using a constant-resistance-mode feedback circuit, Pt-coated filaments operating at ca. 300.degree. C. (35 mW input power) respond linearly, in terms of the change in supply current required to maintain constant resistance (temperature), to H.sub.2 concentrations between 100 ppm and 1% in an 80/20 N.sub.2 /O.sub.2 mixture. Other catalytic materials can also be used.

  16. Noble Gas Proxy Evidence Of Holocene Climate Fluctuations In The Elwha Watershed, Olympic Mountains, Washington

    EPA Science Inventory

    Paleotempertures retrieved from the groundwater archives in the largest watershed (≈800 km2) in the Olympic Mountains suggest asynchronous Olympic Peninsula climate responses during the Everson interstade period after the last continental glacial maximum. Dissolved noble gases fr...

  17. HIMU-type Mid-Ocean Ridge Basalts Incorporate a Primitive Component

    NASA Astrophysics Data System (ADS)

    Tucker, J.; Mukhopadhyay, S.; Schilling, J. E.

    2011-12-01

    Samples from 5°N to 7°S along the MAR axis span a range of compositions from depleted MORB (La/SmN ~0.5, 206Pb/204Pb ~18) to very enriched MORB (La/SmN ~3, 206Pb/204Pb ~20). The measured 206Pb/204Pb in the enriched samples are among the highest measured MORB values and are thought to represent a HIMU type mantle (high μ where μ is the U/Pb ratio). Therefore, the enriched samples provide a unique opportunity to characterize the heavy noble gas composition of the HIMU mantle. If HIMU mantle is related to recycled crust, then the noble gas measurements can also provide insights into recycling of atmospheric noble gases back into the mantle. Additionally, the depleted equatorial samples provide an opportunity to characterize the Ar and Xe composition of the N-MORB source for comparison to the 14°N E-MORB popping rock. Finally, the large variations in lithophile isotopes over a geographically short distance affords the opportunity to study the nature of coupling between the noble gases and lithophile tracers, and understand the origin of the heterogeneities in the MORB source. Stepwise crushing and rare gas analysis (He, Ne, Ar, Xe) was undertaken for both enriched and depleted samples. Many of the crushing steps yielded 20Ne/22Ne > 12, and good correlations between Ne, Ar, and Xe isotopes allow for mantle source compositions of Ar and Xe to be determined by extrapolating the measured values to a mantle 20Ne/22Ne of 12.5. The highest measured values of Ar and Xe in a depleted N-MORB are comparable to measured values of the E-MORB popping rock (40Ar/36Ar ~28,000, 129Xe/130Xe ~7.7). When extrapolated to a mantle 20Ne/22Ne of 12.5, the depleted MORB sample indicates a 40Ar/36Ar of ~43,000 (higher than popping rock) and 129Xe/130Xe of ~7.8. Enriched MORB samples from this suite, thought to represent the HIMU mantle, have the same He and Ne characteristics as HIMU basalts from the Cook and Austral Islands; more radiogenic He than MORBs is accompanied by less nucleogenic Ne than MORBs. Additionally, the enriched MORB samples also constrain the HIMU mantle 40Ar/36Ar to ~20,000 and 129Xe/130Xe ~7.3-7.5, significantly lower than the depleted MORBs. Like the HIMU basalts from the Cook and Austral Islands, a less degassed reservoir than the MORB source must be invoked to explain the He and Ne systematics in the HIMU-type MORBs. If HIMU represents recycled crust, then it must have entrained or been entrained by a less degassed mantle from the deep interior. This less degassed reservoir would also explain the good correspondence between low 21Ne/22Ne, low 40Ar/36Ar and low 129Xe/130Xe in the HIMU-type samples. While we cannot rule out recycling of atmospheric noble gases to explain the low 40Ar/36Ar and 129Xe/130Xe, involvement of a source less degassed in He and Ne would also be accompanied by a less degassed Ar and Xe isotopic signature. Therefore the simplest explanation of the covariation between the noble gases and lithophile isotopes involves a mixture of a less processed and hence more primitive component, a degassed recycled component, and depleted MORB mantle beneath the equatorial Mid-Atlantic Ridge.

  18. The Experimental Study of Characterized Noble Gas Puffs Irradiated by Ultra-Short Laser Pulses Compared with X-Pinches as an X-Ray Source

    NASA Astrophysics Data System (ADS)

    Schultz, Kimberly Ann

    The goal of this dissertation is to study the basic physics and X-ray emission (1-10 keV) of two X-ray sources: X-pinch plasmas and a clustered gas-puff irradiated by an ultrashort laser pulse. X-pinches and other typical X-ray sources using solid targets create hot debris that can damage sensitive equipment. Therefore, to perform sensitive backlighting or X-ray effects testing, debris-free sources of radiation must be investigated. In this work, the author presents a broad study of clustered noble gas puffs including characterization measurements and laser heating experiments using several gas nozzles and multiple gases. Ultimately, the goal is to compare the laser-irradiated gas-puff and X-pinch plasmas as X-ray sources. Characterization of the gas puffs is performed at the Radiation Physics Laboratory at the University of Nevada, Reno (UNR) Physics Department using optical interferometry and Rayleigh scattering to determine density and cluster radius. By changing the gas-puff variables control of both the density and cluster size of the gas jets is obtained. Two laser systems provide the high intensities desired for the laser-irradiated gas puff experiments: the UNR Leopard Laser (1-2x1019 W/cm2) and the Lawrence Livermore National Laboratory's Titan Laser (7x1019 W/cm2). X-ray emission is studied as a function of laser pulse parameters, gas target type, gas puff density, and the gas-delay timing between puff initiation and laser interaction with the puff. The tested gases are Ar, Kr, Xe, and four mixtures of the noble gases. Time-resolved X-ray measurements are captured with Silicon diodes and photoconducting diamond detectors. Electron beam detectors include Faraday cups and a high-energy (> 1 MeV) electron spectrometer. Modeling of spectra from X-ray crystal spectrometers provides plasma density and temperature measurement and a molecular dynamics (MD) code describes cluster interactions with the laser pulse. The conversion of laser energy into X rays is also measured. Laser beam transmission through and absorption by the gas puff reveal the complexity of using laser-irradiated gas puffs as X-ray sources. A strong anisotropy of X-ray and electron emissions were observed at both laser facilities. X-pinch plasmas can provide intense hard X rays and strong electron beams originating from small sources with many applications. Recent research has been conducted into four-wire X-pinches at the UNR Zebra machine, a 1-MA pulsed power generator. Two different wire materials are considered in this study, Ag and Mo. We observe a relatively linear correlation between load mass and implosion time for Mo X-pinches; in fact, this relationship also extends to include Ag. Interestingly, X-ray burst features drastically change in shape when the load mass is varied. Advantages of laser-irradiated gas puffs include a lack of damaging debris, high repetition rate, and ease of control. Its disadvantages include its inefficiency at converting electrical energy to X-rays, which is mostly limited by laser efficiency, and relatively low total energy yield. X-pinches, on the other hand, produced kJ of energy in a broad spectral region. However, they create a large amount of debris, have a low repetition rate, and, at 1-MA, have hard-to-predict implosion times.

  19. Hydration of the Atlantis Massif: Halogen, Noble Gas and In-Situ δ18O Constraints

    NASA Astrophysics Data System (ADS)

    Williams, M. J.; Kendrick, M. A.; Rubatto, D.

    2017-12-01

    A combination of halogen (Cl, Br, I), noble gases (He, Ne, Ar, Kr and Xe) and in situ oxygen isotope analysis have been utilized to investigate the fluid-mobile element record of hydration and alteration processes at the Atlantis Massif (30°N on the Mid-Atlantic Ridge). The sample suite investigated includes serpentinite, talc-amphibole ± chlorite schist and hydrated gabbro recovered by seafloor drilling undertaken at sites on a transect across the Atlantis Massif during IODP Expedition 357. Serpentine mesh and veins analysed in-situ by SHRIMP SI exhibit δ18O from 6‰ down to ≈0‰, suggesting serpentinization temperatures of 150 to >280°C and water/rock ratios >5. Differences of 1.5-2.5‰ are observed between adjacent generations of serpentine, but the δ18O range is similar at each investigated drilling site. Halogen and noble gas abundances in serpentinites, talc-amphibole schist and hydrated gabbro have been measured by noble gas mass spectrometry of both irradiated and non-irradiated samples. Serpentinites contain low abundances of halogens and noble gases (e.g. 70-430 ppm Cl, 4.7-12.2 x 10-14 mol/g 36Ar) relative to other seafloor serpentinites. The samples have systematically different Br/Cl and I/Cl ratios related to their mineralogy. Serpentinites retain mantle-like Br/Cl with a wide variation in I/Cl that stretches toward seawater values. Talc-amphibole schists exhibit depletion of Br and I relative to Cl with increasing Cl abundances, suggesting tremolite exerts strong control on halogen abundance ratios. Serpentinites show no evidence of interaction with halogen-rich sedimentary pore fluids. Iodine abundances are variable across serpentinites, and are decoupled from Br and Cl; iodine enrichment (up to 530 ppb) is observed within relatively oxidised and clay-bearing samples. Serpentinized harzburgites exhibit distinct depletion of Kr and Xe relative to atmospheric 36Ar in seawater. Oxygen isotope compositions and low abundances of both halogens and noble gases are consistent with high water/rock ratios. Successive generations of serpentine have δ18O trends suggesting exposure to higher W/R ratios during exhumation and deformation of the massif. Low noble gas abundances of may also be influenced by thermal loss related to impregnation and intrusion of the Massif by gabbros and dolerites.

  20. Observation of the Kaiser Effect Using Noble Gas Release Signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Stephen J.

    The Kaiser effect was defined in the early 1950s (Kaiser 1953) and was extensively reviewed and evaluated by Lavrov (2002) with a view toward understanding stress estimations. The Kaiser effect is a stress memory phenomenon which has most often been demonstrated in rock using acoustic emissions. During cyclic loading–unloading–reloading, the acoustic emissions are near zero until the load exceeds the level of the previous load cycle. Here, we sought to explore the Kaiser effect in rock using real-time noble gas release. Laboratory studies using real-time mass spectrometry measurements during deformation have quantified, to a degree, the types of gases releasedmore » (Bauer et al. 2016a, b), their release rates and amounts during deformation, estimates of permeability created from pore structure modifications during deformation (Gardner et al. 2017) and the impact of mineral plasticity upon gas release. We found that noble gases contained in brittle crystalline rock are readily released during deformation.« less

  1. Observation of the Kaiser Effect Using Noble Gas Release Signals

    DOE PAGES

    Bauer, Stephen J.

    2017-10-24

    The Kaiser effect was defined in the early 1950s (Kaiser 1953) and was extensively reviewed and evaluated by Lavrov (2002) with a view toward understanding stress estimations. The Kaiser effect is a stress memory phenomenon which has most often been demonstrated in rock using acoustic emissions. During cyclic loading–unloading–reloading, the acoustic emissions are near zero until the load exceeds the level of the previous load cycle. Here, we sought to explore the Kaiser effect in rock using real-time noble gas release. Laboratory studies using real-time mass spectrometry measurements during deformation have quantified, to a degree, the types of gases releasedmore » (Bauer et al. 2016a, b), their release rates and amounts during deformation, estimates of permeability created from pore structure modifications during deformation (Gardner et al. 2017) and the impact of mineral plasticity upon gas release. We found that noble gases contained in brittle crystalline rock are readily released during deformation.« less

  2. Efficient conversion of 3He(n,tp) and 10B(n, α7Li) reaction energies into far-ultraviolet radiation by noble gas excimers

    NASA Astrophysics Data System (ADS)

    Hughes, Patrick P.; Coplan, Michael A.; Thompson, Alan K.; Vest, Robert E.; Clark, Charles W.

    2011-03-01

    Previous work showed that the 3He(n , tp) reaction in a cell of 3He at atmospheric pressure generated tens of far-ultraviolet (FUV) photons per reacted neutron. Here we report amplification of that signal by factors of 1000 when noble gases are added to the cell. Calibrated filter-detector measurements show that this large signal is due to noble-gas excimer emissions, and that the nuclear reaction energy is converted to FUV radiation with efficiencies of up to 30 % . Our results have been placed on an absolute scale through calibrations at the NIST SURF III Synchrotron and Center for Neutron Research. We have also seen large neutron-induced FUV signals when the 3He gas in our system is replaced with a 10B film target; an experiment on substituting 3He with BF3 is underway. Our results suggest possibilities for high-efficiency, non-3He neutron detectors as an alternative to existing proportional counters.

  3. Noble gas bond and the behaviour of XeO3 under pressure.

    PubMed

    Hou, Chunju; Wang, Xianlong; Botana, Jorge; Miao, Maosheng

    2017-10-18

    Over the past few decades, the concept of hydrogen bonds, in which hydrogen is electrophilic, has been extended to halogen bonds, chalcogen bonds and pnicogen bonds. Herein, we show that such a non-covalent bonding also exists in noble gas compounds. Using first principles calculations, we illustrate the OXe-O bond in molecular crystal XeO 3 and its effect on the behavior of this compound under pressure. Our calculations show that the covalent Xe-O bond lengths were elongated with increasing pressure and correspondingly the Xe-O stretching vibration frequencies were red shifted, which is similar to the change of H-bonds under pressure. The OXe-O bond and related hopping of O between neighboring Xe sites also correspond to the structural changes in the XeO 3 compounds at about 2 GPa. Our study extends the concept of hydrogen bonding to include all p-block elements and show a new bonding type for Noble gas elements in which it acts as an electrophilic species.

  4. Apparatus for preparing a solution of a hyperpolarized noble gas for NMR and MRI analysis

    DOEpatents

    Pines, Alexander [Berkeley, CA; Budinger, Thomas [Berkeley, CA; Navon, Gil [Ramat Gan, IL; Song, Yi-Qiao [Berkeley, CA; Appelt, Stephan [Waiblingen, DE; Bifone, Angelo [Rome, IT; Taylor, Rebecca [Berkeley, CA; Goodson, Boyd [Berkeley, CA; Seydoux, Roberto [Berkeley, CA; Room, Toomas [Albany, CA; Pietrass, Tanja [Socorro, NM

    2008-06-10

    The present invention relates generally to nuclear magnetic resonance (NMR) techniques for both spectroscopy and imaging. More particularly, the present invention relates to methods in which hyperpolarized noble gases (e.g., Xe and He) are used to enhance and improve NMR and MRI. Additionally, the hyperpolarized gas solutions of the invention are useful both in vitro and in vivo to study the dynamics or structure of a system. When used with biological systems, either in vivo or in vitro, it is within the scope of the invention to target the hyperpolarized gas and deliver it to specific regions within the system.

  5. Understanding the interaction of injected CO2 and reservoir fluids in the Cranfield enhanced oil recovery (EOR) field (MS, USA) by non-radiogenic noble gas isotopes

    NASA Astrophysics Data System (ADS)

    Gyore, Domokos; Stuart, Finlay; Gilfillan, Stuart

    2016-04-01

    Identifying the mechanism by which the injected CO2 is stored in underground reservoirs is a key challenge for carbon sequestration. Developing tracing tools that are universally deployable will increase confidence that CO2 remains safely stored. CO2 has been injected into the Cranfield enhanced oil recovery (EOR) field (MS, USA) since 2008 and significant amount of CO2 has remained (stored) in the reservoir. Noble gases (He, Ne, Ar, Kr, Xe) are present as minor natural components in the injected CO2. He, Ne and Ar previously have been shown to be powerful tracers of the CO2 injected in the field (Györe et al., 2015). It also has been implied that interaction with the formation water might have been responsible for the observed CO2 loss. Here we will present work, which examines the role of reservoir fluids as a CO2 sink by examining non-radiogenic noble gas isotopes (20Ne, 36Ar, 84Kr, 132Xe). Gas samples from injection and production wells were taken 18 and 45 months after the start of injection. We will show that the fractionation of noble gases relative to Ar is consistent with the different degrees of CO2 - fluid interaction in the individual samples. The early injection samples indicate that the CO2 injected is in contact with the formation water. The spatial distribution of the data reveal significant heterogeneity in the reservoir with some wells exhibiting a relatively free flow path, where little formation water is contacted. Significantly, in the samples, where CO2 loss has been previously identified show active and ongoing contact. Data from the later stage of the injection shows that the CO2 - oil interaction has became more important than the CO2 - formation water interaction in controlling the noble gas fingerprint. This potentially provides a means to estimate the oil displacement efficiency. This dataset is a demonstration that noble gases can resolve CO2 storage mechanisms and its interaction with the reservoir fluids with high resolution. References: Györe, D., Stuart, F.M., Gilfillan, S.M.V., Waldron, S., 2015. Tracing injected CO2 in the Cranfield enhanced oil recovery field (MS, USA) using He, Ne and Ar isotopes. Int. J. Greenh. Gas Con. 42, 554-561.

  6. On non-equilibrium atmospheric pressure plasma jets and plasma bullet

    NASA Astrophysics Data System (ADS)

    Lu, Xinpei

    2012-10-01

    Because of the enhanced plasma chemistry, atmospheric pressure nonequilibrium plasmas (APNPs) have been widely studied for several emerging applications such as biomedical applications. For the biomedical applications, plasma jet devices, which generate plasma in open space (surrounding air) rather than in confined discharge gaps only, have lots of advantages over the traditional dielectric barrier discharge (DBD) devices. For example, it can be used for root canal disinfection, which can't be realized by the traditional plasma device. On the other hand, currently, the working gases of most of the plasma jet devices are noble gases or the mixtures of the noble gases with small amount of O2, or air. If ambient air is used as the working gas, several serious difficulties are encountered in the plasma generation process. Amongst these are high gas temperatures and disrupting instabilities. In this presentation, firstly, a brief review of the different cold plasma jets developed to date is presented. Secondly, several different plasma jet devices developed in our lab are reported. The effects of various parameters on the plasma jets are discussed. Finally, one of the most interesting phenomena of APNP-Js, the plasma bullet is discussed and its behavior is described. References: [1] X. Lu, M. Laroussi, V. Puech, Plasma Sources Sci. Technol. 21, 034005 (2012); [2] Y. Xian, X. Lu, S. Wu, P. Chu, and Y. Pan, Appl. Phys. Lett. 100, 123702 (2012); [3] X. Pei, X. Lu, J. Liu, D. Liu, Y. Yang, K. Ostrikov, P. Chu, and Y. Pan, J. Phys. D 45, 165205 (2012).

  7. Martian fluid and Martian weathering signatures identified in Nakhla, NWA 998 and MIL 03346 by halogen and noble gas analysis

    NASA Astrophysics Data System (ADS)

    Cartwright, J. A.; Gilmour, J. D.; Burgess, R.

    2013-03-01

    We report argon (Ar) noble gas, Ar-Ar ages and halogen abundances (Cl, Br, I) of Martian nakhlites Nakhla, NWA 998 and MIL 03346 to determine the presence of Martian hydrous fluids and weathering products. Neutron-irradiated samples were either crushed and step-heated (Nakhla only), or simply step-heated using a laser or furnace, and analysed for noble gases using an extension of the 40Ar-39Ar technique to determine halogen abundances. The data obtained provide the first isotopic evidence for a trapped fluid that is Cl-rich, has a strong correlation with 40ArXS (40ArXS = 40Armeasured - 40Arradiogenic) and displays 40ArXS/36Ar of ˜1000 - consistent with the Martian atmosphere. This component was released predominantly in the low temperature and crush experiments, which may suggest a fluid inclusion host. For the halogens, we observe similar Br/Cl and I/Cl ratios between the nakhlites and terrestrial reservoirs, which is surprising given the absence of crustal recycling, organic matter and frequent fluid activity on Mars. In particular, Br/Cl ratios in our Nakhla samples (especially olivine) are consistent with previously analysed Martian weathering products, and both low temperature and crush analyses show a similar trend to the evaporation of seawater. This may indicate that surface brines play an important role on Mars and on halogen assemblages within Martian meteorites and rocks. Elevated I/Cl ratios in the low temperature NWA 998 and MIL 03346 releases may relate to in situ terrestrial contamination, though we are unable to distinguish between low temperature terrestrial or Martian components. Whilst estimates of the amount of water present based on the 36Ar concentrations are too high to be explained by a fluid component alone, they are consistent with a mixed-phase inclusion (gas and fluid) or with shock-implanted Martian atmospheric argon. The observed fluid is dilute (low salinity, but high Br/Cl and I/Cl ratios), contains a Martian atmospheric component, and may represent a mixture of a shallow fluid with one derived from fluid circulation within the nakhlite cumulate pile - with heat for fluid circulation supplied by either the igneous intrusion or by an impact event.

  8. Radiation Counters

    DOEpatents

    Simpson, Jr, J A

    1950-01-31

    Geiger-Mueller and proportional counters operating at low potentials (about 125-300 v) obtained by utilizing certain ratios of diameters of the electrodes and particular mixtures of noble gases as the ionizing medium are covered in this application.

  9. A Rapid, Low-Cost Method to Determine Travel Times at Managed Aquifer Recharge Operations Using Noble Gas Tracers

    NASA Astrophysics Data System (ADS)

    Moran, J. E.; Visser, A.; Singleton, M. J.; Esser, B. K.; Halliwell, M.; Hillegonds, D. J.

    2012-12-01

    Managed aquifer recharge is a key component for the sustainable use of surface water and groundwater in the arid western U.S. When recycled water is a recharge water source, subsurface residence time, required for bacteria and virus deactivation, is best verified by application of an extrinsic tracer. Desirable tracer properties include: no real or perceived health risk, inexpensive even for a large volume of tagged water, large dynamic range, efficient introduction, convenient sampling methods, and rapid, low-cost analysis. We have developed and tested a dissolved noble gas tracer technique ideally suited for tracing large water volumes at managed aquifer recharge facilities. In an application of the method at a water district's facilities in the San Francisco Bay area, Xenon was introduced into a 106 m3 pond over a period of 7 days using a 300 m length of gas-permeable silicone tubing. Samples from the pond, near-field shallow monitoring wells, and production wells about 400 m from the recharge pond were analyzed for dissolved Xe by noble gas membrane inlet mass spectrometry (NGMIMS). The NGMIMS uses a syringe pump, gas-permeable membrane inlet, and quadrupole residual gas analyzer for measurement of noble gas concentrations. Samples are collected in VOA vials, and analysis can be carried out in real-time, with a measurement uncertainty of about 5% for Xe. Tracer first appeared in a production well 136 days after starting the tracer introduction at 0.7% (C/C0) of the peak pond xenon concentration. The cost of the tracer is about US650/106 m3 water, and the NGMIMS was assembled with parts totaling approximately US50,000, making application of the tracer method feasible for most managed aquifer recharge projects. This project is part of the California State Water Resources Control Board Groundwater Ambient Monitoring and Assessment (GAMA) Program.

  10. Investigation of Lung Structure-Function Relationships Using Hyperpolarized Noble Gases

    NASA Astrophysics Data System (ADS)

    Thomen, Robert P.

    Magnetic Resonance Imaging (MRI) is an application of the nuclear magnetic resonance (NMR) phenomenon to non-invasively generate 3D tomographic images. MRI is an emerging modality for the lung, but it suffers from low sensitivity due to inherent low tissue density and short T(*/2) . Hyperpolarization is a process by which the nuclear contribution to NMR signal is greatly enhanced to more than 100,000 times that of samples in thermal equilibrium. The noble gases 3He and 129Xe are most often hyperpolarized by transfer of light angular momentum through the electron of a vaporized alkali metal to the noble gas nucleus (called Spin Exchange Optical Pumping). The enhancement in NMR signal is so great that the gas itself can be imaged via MRI, and because noble gases are chemically inert, they can be safely inhaled by a subject, and the gas distribution within the interior of the lung can be imaged. The mechanics of respiration is an elegant physical process by which air is is brought into the distal airspaces of the lungs for oxygen/carbon dioxide gas exchange with blood. Therefore proper description of lung function is intricately related to its physical structure , and the basic mechanical operation of healthy lungs -- from pressure driven airflow, to alveolar airspace gas kinetics, to gas exchange by blood/gas concentration gradients, to elastic contraction of parenchymal tissue -- is a process decidedly governed by the laws of physics. This dissertation will describe experiments investigating the relationship of lung structure and function using hyperpolarized (HP) noble gas MRI. In particular HP gases will be applied to the study of several pulmonary diseases each of which demonstrates unique structure-function abnormalities: asthma, cystic fibrosis, and chronic obstructive pulmonary disease. Successful implementation of an HP gas acquisition protocol for pulmonary studies is an involved and stratified undertaking which requires a solid theoretical foundation in NMR and hyperpolarization theory, construction of dedicated hardware, development of dedicated software, and appropriate image analysis techniques for all acquired data. The author has been actively involved in each of these and has dedicated specific chapters of this dissertation to their description. First, a brief description of lung structure-function investigations and pulmonary imaging will be given (chapter 1). Brief discussions of basic NMR, MRI, and hyperpolarization theory will be given (chapters 2 and 3) followed by their particular methods of implementation in this work (chapters 4 and 5). Analysis of acquired HP gas images will be discussed (chapter 6), and the investigational procedures and results for each lung disease examined will be detailed (chapter 7). Finally, a quick digression on the strengths and limitations of HP gas MRI will be provided (chapter 8).

  11. The degassing history of the Earth: Noble gas studies of Archaean cherts and zero age glassy submarine basalts

    NASA Technical Reports Server (NTRS)

    Hart, R.; Hogan, L.

    1985-01-01

    Recent noble gas studies suggests the Earth's atmosphere outgassed from the Earth's upper mantle synchronous with sea floor spreading, ocean ridge hydrothermal activity and the formation of continents by partial melting in subduction zones. The evidence for formation of the atmosphere by outgassing of the mantle is the presence of radionuclides H3.-4, Ar-040 and 136 Xe-136 in the atmosphere that were produced from K-40, U and Th in the mantle. How these radionuclides were formed is reviewed.

  12. Ab initio molecular orbital studies of the vibrational spectra of the van der Waals complexes of boron trifluoride with the noble gases.

    PubMed

    Ford, Thomas A

    2005-05-01

    The molecular structures, interaction energies, charge transfer properties and vibrational spectra of the van der Waals complexes formed between boron trifluoride and the noble gases neon, argon, krypton and xenon have been computed using second and fourth order Møller-Plesset perturbation theory and the Los Alamos National Laboratory LANL2DZ basis set. The complexes are all symmetric tops, with the noble gas atom acting as a sigma electron donor along the C3 axis of the BF3 molecule. The interaction energies are all vanishingly small, and the amount of charge transferred in each case is of the order of 0.01e. The directions of the wavenumber shifts of the symmetric bending (nu2) and antisymmetric stretching (nu3) modes of the BF3 fragment confirm those determined experimentally, and the shifts are shown to correlate well with the polarizability of the noble gas atom and the inverse sixth power of the intermonomer separation. The nu2 mode is substantially more sensitive to complexation than the nu3 vibration.

  13. Methods and apparatus for cleaning objects in a chamber of an optical instrument by generating reactive ions using photon radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klebanoff, Leonard E.; Delgado, Gildardo R.; Hollenshead, Jeromy T.

    An optical instrument, including a chamber, an object exposed to an interior of the chamber, a source of low-pressure gas, the gas comprising at least one of low-pressure molecular hydrogen gas, low-pressure molecular oxygen and a low-pressure noble gas, the source of low pressure gas being fluidly coupled to the chamber, a low voltage source electrically coupled between the object and a remaining portion of the instrument that is exposed to the interior of the chamber so as to maintain the object at a low voltage relative to the remaining portion, and an EUV/VUV light source adapted to direct EUV/VUVmore » light through the low pressure gas in the chamber onto the object. In such a system, when the EUV/VUV light source is activated ions of the low-pressure gas are formed and directed to the object. The ions may be ions of Hydrogen, Oxygen or a noble gas.« less

  14. Process for treating fission waste

    DOEpatents

    Rohrmann, Charles A.; Wick, Oswald J.

    1983-01-01

    A method is described for the treatment of fission waste. A glass forming agent, a metal oxide, and a reducing agent are mixed with the fission waste and the mixture is heated. After melting, the mixture separates into a glass phase and a metal phase. The glass phase may be used to safely store the fission waste, while the metal phase contains noble metals recovered from the fission waste.

  15. On Noble Gas Processing in the Solar Accretion Disk

    NASA Astrophysics Data System (ADS)

    Pepin, R. O.

    2003-04-01

    Two fractionation models are applied to the problem of generating the widely distributed “Q-component” noble gases in meteorites from the solar-like isotopic and elemental compositions that presumably characterized the early solar accretion disk. Noble gas fractionation by mass-dependent dissipation of the solar nebula, as suggested by Ozima et al. (1998), is examined in the context of a model developed by Johnstone et al. (1998) for accretion disk photoevaporation driven by intense UV radiation from a neighboring giant star. Hydrodynamic escape of heavier species entrained in hydrogen outflow from the UV-heated outer regions of the disk can generate substantial noble gas fractionations, but they do not match the observed Q-component isotopic pattern and moreover require the physically unrealistic assumption that the fractionated gases are confined to the heated disk boundary zone, without mixing with the interior nebula, for long periods of time. It seems more likely that hydrodynamic outflow is actually established below this zone, in the body of the disk. In this case fractionations are governed by Rayleigh distillation of the entire remaining nebula, and are negligible at the time when disk erosion is halted by the gravitational potential of the young sun embedded in the disk. A “local” model of noble gas fractionation by hydrodynamic blowoff of transient, methane-rich atmospheres outgassed from the interiors of large primitive planetesimals (Pepin, 1991) is updated and assessed against current data. Degassed atmospheres are assumed to contain isotopically solar noble gases except for an additional nucleogenic Xe component that contributes primarily to the two heaviest isotopes; there is evidence that this same component is present at varying levels in other solar-system volatile reservoirs, possibly reflecting a compositional change with time in the solar nebula. Single fixed values for the two free parameters in the blowoff modeling equations can generate fractionated Xe, Kr, Ar and Ne compositions in the residual atmosphere that closely match observed meteoritic isotopic distributions, and Q-gas elemental ratios are approximated by adsorption of fractionated gases on planetesimal surface grains using plausible values of relative Henry Law constants. Additional requirements for adsorption of sufficient absolute amounts of Q-gases on carrier grains, and their subsequent ejection to space, mixing in the nebula, and dispersal into meteorite bodies, are examined in the context of current models for body sizes and dynamical evolution in an early mass-rich asteroid belt (Chambers and Wetherill, 2001). Despite its ability to replicate isotopic compositions, uncertainties about the environments in which the blowoff model can successfully operate suggest that there is, as yet, no entirely satisfactory understanding of how the Q-component noble gases might have evolved from solar-like precursor compositions.

  16. Disruption mitigation by injection of small quantities of noble gas in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Pautasso, G.; Bernert, M.; Dibon, M.; Duval, B.; Dux, R.; Fable, E.; Fuchs, J. C.; Conway, G. D.; Giannone, L.; Gude, A.; Herrmann, A.; Hoelzl, M.; McCarthy, P. J.; Mlynek, A.; Maraschek, M.; Nardon, E.; Papp, G.; Potzel, S.; Rapson, C.; Sieglin, B.; Suttrop, W.; Treutterer, W.; The ASDEX Upgrade Team; The EUROfusion MST1 Team

    2017-01-01

    The most recent experiments of disruption mitigation by massive gas injection in ASDEX Upgrade have concentrated on small—relatively to the past—quantities of noble gas injected, and on the search for the minimum amount of gas necessary for the mitigation of the thermal loads on the divertor and for a significant reduction of the vertical force during the current quench. A scenario for the generation of a long-lived runaway electron beam has been established; this allows the study of runaway current dissipation by moderate quantities of argon injected. This paper presents these recent results and discusses them in the more general context of physical models and extrapolation, and of the open questions, relevant for the realization of the ITER disruption mitigation system.

  17. Issues Involving The OSI Concept of Operation For Noble Gas Radionuclide Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrigan, C R; Sun, Y

    2011-01-21

    The development of a technically sound protocol for detecting the subsurface release of noble gas radionuclides is critical to the successful operation of an on site inspection (OSI) under the CTBT and has broad ramifications for all aspects of the OSI regime including the setting of specifications for both sampling and analysis equipment used during an OSI. With NA-24 support, we are investigating a variety of issues and concerns that have significant bearing on policy development and technical guidance regarding the detection of noble gases and the creation of a technically justifiable OSI concept of operation. The work at LLNLmore » focuses on optimizing the ability to capture radioactive noble gases subject to the constraints of possible OSI scenarios. This focus results from recognizing the difficulty of detecting gas releases in geologic environments - a lesson we learned previously from the LLNL Non-Proliferation Experiment (NPE). Evaluation of a number of important noble gas detection issues, potentially affecting OSI policy, has awaited the US re-engagement with the OSI technical community. Thus, there have been numerous issues to address during the past 18 months. Most of our evaluations of a sampling or transport issue necessarily involve computer simulations. This is partly due to the lack of OSI-relevant field data, such as that provided by the NPE, and partly a result of the ability of LLNL computer-based models to test a range of geologic and atmospheric scenarios far beyond what could ever be studied in the field making this approach very highly cost effective. We review some highlights of the transport and sampling issues we have investigated during the past year. We complete the discussion of these issues with a description of a preliminary design for subsurface sampling that is intended to be a practical solution to most if not all the challenges addressed here.« less

  18. Noble Gases in Two Fragments of Different Lithologies from the Almahata Sitta Meteorite

    NASA Technical Reports Server (NTRS)

    Nagao, K.; Haba, M. K.; Zolensky, M.; Jenniskens, P.; Shaddad, M. H.

    2014-01-01

    The Almahata Sitta meteorite, whose preat-mospheric body was the asteroid 2008 TC3, fell on October 7, 2008 in the Nubian Desert in northern Sudan [e.g., 1, 2]. Numer-ous fragments have been recovered during several expeditions organized from December 2008 [2]. The meteorite was classified as an anomalous polymict ureilite with several different kinds of chondritic fragments [e.g., 3-5]. Noble gas studies performed on several fragments from the meteorite showed cosmic-ray expo-sure ages of about 20 My [e.g., 6-8], although slightly shorter ages were also reported in [9, 10]. Concentrations of trapped heavy noble gases are variable among the fragments of different lithologies [9, 10]. We report noble gas data on two samples from the #1 and #47 fragments [2], which were the same as those re-ported by Ott et al. [9]. Experimental Procedure: Weights of bulk samples #1 and #47 used in this work were 16.1 mg and 17.6 mg, respectively. Noble gases were extracted by stepwise heating at the tempera-tures of 800, 1200 and 1800°C for #1 and 600, 800, 1000, 1200, 1400, 1600 and 1800°C for #47. Concentrations and isotopic ra-tios of noble gases were measured with a modified-VG5400/MS-III at the Geochemical Research Center, University of Tokyo. Results and Discussion: Cosmogenic He and Ne are domi-nant in both #1 and #47, but trapped Ar, Kr and Xe concentra-tions are much higher in #47 than in #1, showing that noble gas compositions in #47 are similar to those of ureilites. 3He/21Ne and 22Ne/21Ne of cosmogenic He and Ne are 4.8 and 1.12 for #1 and 3.6 and 1.06 for #47, respectively, both of which plot on a Bern line [11]. This indicates negligible loss of cosmogenic 3He from #1 in our sample, unlike the low 3He/21Ne of 3.1 for #1 by Ott et al. [9]. Concentrations of cosmogenic 3He and 21Ne (10-8 cc/g) are 30 and 6.3 for #1 and 32 and 9.0 for #47, respectively, which are higher than those in [9] and give cosmic-ray exposure ages of ca. 20 My depending on assumed production rates. Rela-tive abundances of trapped 36Ar, 84Kr and 132Xe for #1 resemble those of Q-component, which is a dominant trapped noble gas component in chondrites. In contrast to #1, #47 plots below a trend for ureilites [12] as well as Q, which implies a partial loss of trapped 36Ar from the lithology of #47.

  19. Noble gases in twenty Yamato H-chondrites: Comparison with Allan Hills chondrites and modern falls

    NASA Technical Reports Server (NTRS)

    Loeken, TH.; Scherer, P.; Schultz, L.

    1993-01-01

    Concentration and isotopic composition of noble gases have been measured in 20 H-chrondrites found on the Yamato Mountains ice fields in Antarctica. The distribution of exposure ages as well as of radiogenic He-4 contents is similar to that of H-chrondrites collected at the Allan Hills site. Furthermore, a comparison of the noble gas record of Antarctic H-chrondrites and finds or falls from non-Antarctic areas gives no support to the suggestion that Antarctic H-chrondrites and modern falls derive from differing interplanetary meteorite populations.

  20. The noble gases: how their electronegativity and hardness determines their chemistry.

    PubMed

    Furtado, Jonathan; De Proft, Frank; Geerlings, Paul

    2015-02-26

    The establishment of an internally consistent scale of noble gas electronegativities is a long-standing problem. In the present study, the problem is attacked via the Mulliken definition, which in recent years gained widespread use to its natural appearance in the context of conceptual density functional theory. Basic ingredients of this scale are the electron affinity and the ionization potential. Whereas the latter can be computed routinely, the instability of the anion makes the judicious choice of computational technique for evaluating electron affinities much more tricky. We opted for Puiatti's approach, extrapolating the energy of high ε solvent stabilized anions to the ε = 1 (gas phase) case. The results give negative electron affinity values, monotonically increasing (except for helium which is an outlier in most of the story) to almost zero at eka-radon in agreement with high level calculations. The stability of the B3LYP results is successfully tested both via improving the level of theory (CCSD(T)) and expanding the basis set. Combined with the ionization energies (in good agreement with experiment), an electronegativity scale is obtained displaying (1) a monotonic decrease of χ when going down the periodic table, (2) top values not for the noble gases but for the halogens, as opposed to most (extrapolation) procedures of existing scales, invariably placing the noble gases on top, and (3) noble gases having electronegativities close to the chalcogens. In the accompanying hardness scale (hardly, if ever, discussed in the literature) the noble gases turn out to be by far the farthest the hardest elements, again with a continuous decrease with increasing Z. Combining χ value of the halogens and the noble gases the Ng(δ+)F(δ-) bond polarity emerging from ab initio calculations naturally emerges. In conclusion, the chemistry of the noble gases is for a large part determined by their extreme hardness, equivalent to a high resistance to change in its electronic population coupled to their high electronegativity.

  1. Is xenon eldest?

    NASA Technical Reports Server (NTRS)

    Zahnle, K.

    1994-01-01

    It is well known that the solubility of noble gases in magmas decreases with increasing atomic weight. Xenon, the weightiest of the stable noble gases, is the least soluble atmospheric gas in magma. It is not unreasonable to suppose that the noble gases should have degassed from (or equilibrated with) a bubbling mantle in order of increasing solubility, such that xenon was the most rapidly degassed and helium the least. The apparent relative ages of the famous radiogenic noble gas isotopes agrees, at least qualitatively, with this premise. When atmospheric loss processes are assigned their proper place, several long-standing xenonological puzzles become added evidence for xenon's relative antiquity. Xenon being the afore-mentioned sense the oldest atmospheric gas, will have been most greatly subject to escape, be it impact-driven or EUV-driven. Nonradiogenic xenon's pronounced isotopic fractionation has already been attributed to escape; why it should be more fractionated than krypton would be assigned to xenon's greater atmospheric age. The small atmospheric inventory of xenon relative to the other nonradiogenic noblegases, known as the 'missing xenon' problem, could easily be explained by differential escape. The relatively tiny atmospheric inventories of the radiogenic daughter products of 129 Iodine and 244 Plutonium, both much smaller than would be expected from the inferred abundances of the parents in meteorites, offer a third and fourth data to support the hypothesis that Earth has lost most of its xenon.

  2. Detection of Noble Gas Radionuclides from an Underground Nuclear Explosion During a CTBT On-Site Inspection

    NASA Astrophysics Data System (ADS)

    Carrigan, Charles R.; Sun, Yunwei

    2014-03-01

    The development of a technically sound approach to detecting the subsurface release of noble gas radionuclides is a critical component of the on-site inspection (OSI) protocol under the Comprehensive Nuclear Test Ban Treaty. In this context, we are investigating a variety of technical challenges that have a significant bearing on policy development and technical guidance regarding the detection of noble gases and the creation of a technically justifiable OSI concept of operation. The work focuses on optimizing the ability to capture radioactive noble gases subject to the constraints of possible OSI scenarios. This focus results from recognizing the difficulty of detecting gas releases in geologic environments—a lesson we learned previously from the non-proliferation experiment (NPE). Most of our evaluations of a sampling or transport issue necessarily involve computer simulations. This is partly due to the lack of OSI-relevant field data, such as that provided by the NPE, and partly a result of the ability of computer-based models to test a range of geologic and atmospheric scenarios far beyond what could ever be studied by field experiments, making this approach very highly cost effective. We review some highlights of the transport and sampling issues we have investigated and complete the discussion of these issues with a description of a preliminary design for subsurface sampling that addresses some of the sampling challenges discussed here.

  3. VRA Modeling, phase 1

    NASA Technical Reports Server (NTRS)

    Kindt, Louis M.; Mullins, Michael E.; Hand, David W.; Kline, Andrew A.

    1995-01-01

    The destruction of organic contaminants in waste water for closed systems, such as that of Space Station, is crucial due to the need for recycling the waste water. A co-current upflow bubble column using oxygen as the gas phase oxidant and packed with catalyst particles consisting of a noble metal on an alumina substrate is being developed for this process. The objective of this study is to develop a plug-flow model that will predict the performance of this three phase reactor system in destroying a multicomponent mixture of organic contaminants in water. Mass balances on a series of contaminants and oxygen in both the liquid and gas phases are used to develop this model. These mass balances incorporate the gas-to-liquid and liquid-to-particle mass transfer coefficients, the catalyst effectiveness factor, and intrinsic reaction rate. To validate this model, a bench scale reactor has been tested at Michigan Technological University at elevated pressures (50-83 psig,) and a temperature range of 200 to 290 F. Feeds consisting of five dilute solutions of ethanol (approx. 10 ppm), chlorobenzene (approx. 20 ppb), formaldehyde (approx. 100 ppb), dimethyl sulfoxide (DMSO approx. 300 ppb), and urea (approx. 20 ppm) in water were tested individually with an oxygen mass flow rate of 0.009 lb/h. The results from these individual tests were used to develop the kinetic parameter inputs necessary for the computer model. The computer simulated results are compared to the experimental data obtained for all 5 components run in a mixture on the differential test column for a range of reactor contact times.

  4. Non-solar noble gas abundances in the atmosphere of Jupiter

    NASA Technical Reports Server (NTRS)

    Lunine, Jonathan I.; Stevenson, David J.

    1986-01-01

    The thermodynamic stability of clathrate hydrate is calculated to predict the formation conditions corresponding to a range of solar system parameters. The calculations were performed using the statistical mechanical theory developed by van der Waals and Platteeuw (1959) and existing experimental data concerning clathrate hydrate and its components. Dissociation pressures and partition functions (Langmuir constants) are predicted at low pressure for CO clathrate (hydrate) using the properties of chemicals similar to CO. It is argued that nonsolar but well constrained noble gas abundances may be measurable by the Galileo spacecraft in the Jovian atmosphere if the observed carbon enhancement is due to bombardment of the atmosphere by clathrate-bearing planetesimals sometime after planetary formation. The noble gas abundances of the Jovian satellite Titan are predicted, assuming that most of the methane in Titan is accreted as clathrate. It is suggested that under thermodynamically appropriate conditions, complete clathration of water ice could have occurred in high-pressure nebulas around giant planets, but probably not in the outer solar nebula. The stability of clathrate in other pressure ranges is also discussed.

  5. Cosmic ray exposure histories of Apollo 14, Apollo 15, and Apollo 16 rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eugster, O.; Eberhardt, P.

    1984-02-15

    The regolith exposure history of six rocks returned by the Apollo 14, 15, and 16 missions is studied based on the cosmogenic noble gas isotopes. For each sample, the complete set of all stable noble gas isotopes and the radiaoctive isotope Kr-81 were measured. Kr-81-Kr exposure ages are calculated for rocks for which a single-stage exposure can be demonstrated. A two-stage model exposure history is derived for multistage-exposure basalt 14310 based on the amounts and isotopic ratios of the cosmogenic noble gases. The apparent Kr-81-Kr age, the depth-sensitive isostopic ratios, and fission Xe-136 results lead to the conclusion that thismore » sample was preexposed 1.75 AE ago to cosmic rays for a duration of 350 m.y. Basalt 15058 and anorthosite 15415 also reveal multistage exposures. 44 references.« less

  6. Elemental and isotopic compositions of noble gases in the mantle: Pete's path

    NASA Astrophysics Data System (ADS)

    Moreira, Manuel; Péron, Sandrine; Colin, Aurélia

    2016-04-01

    Noble gases are tracers of the origin of the volatiles on Earth and other terrestrial planets. The determination of their isotopic compositions in oceanic basalts allows discriminating between different possible scenarios for the origin of volatiles (chondritic, solar, cometary). However, oceanic basalts show a ubiquitous component having atmospheric noble gas compositions, which reflects a shallow air contamination. This component masks the mantle composition and only step crushing is able to (partially) remove it. Nevertheless, the exact mantle composition is always unconstrained due to the uncertainty on its complete removal. Developed by Pete Burnard (Burnard et al., 1997; Burnard, 1999), single vesicle analysis using laser ablation is a challenging technique to determine the mantle composition, free of atmospheric contamination. We have used this technique to measure He, Ne, Ar isotopes and CO2 in single vesicles from both MORB and OIB (Galapagos, Iceland). Vesicles are located using microtomography and the noble gases are measured using the Noblesse mass spectrometer from IPGP using an Excimer laser to open the vesicles. Both Galapagos and Iceland samples show that the 20Ne/22Ne ratio is limited to ~12.8 in the primitive mantle, suggesting that the origin of the light noble gases can be attributed to irradiated material instead of a simple dissolution of solar gases into a magma ocean (Moreira and Charnoz, 2016). Such a scenario of incorporation of light noble gases by irradiation also explains the terrestrial argon isotopic composition. However, the Kr and Xe contribution of implanted solar wind is small and these two noble gases were carried on Earth by chondrites and/or cometary material. Burnard, P., D. Graham and G. Turner (1997). "Vesicle-specific noble gas analyses of « popping rock »: implications for primordial noble gases in the Earth." Science 276: 568-571. Burnard, P. (1999). "The bubble-by-bubble volatile evolution of two mid-ocean ridge basalts." Earth and Planetary Science Letters 174: 199-211. Moreira, M. and S. Charnoz (2016). "The origin of the neon isotopes in chondrites and Earth." Earth and Planetary Science Letters 433: 249-256.

  7. Sorption of noble gases by solids, with reference to meteorites. II - Chromite and carbon. III - Sulfides, spinels, and other substances; on the origin of planetary gases

    NASA Technical Reports Server (NTRS)

    Yang, J.; Anders, E.

    1982-01-01

    The trapping of noble gases by chromite and carbon, two putative carriers of primordial noble gases in meteorites, was studied by synthesizing 19 samples in a Ne-Ar-Kr-Xe atmosphere at 440-720 K. Noble gas contents are found to approximately obey Henry's Law, but only slight correlations are found with composition, surface area, or adsorption temperature. Geometric mean distribution coefficients for bulk samples and HCl residues in 10 cu cm STP/g atm are: Xe 100, Kr 15, Ar 3.5, and Ne 0.62. Elemental fractionation data support the suggestion of Lewis et al. (1977) that chromite and carbon in C2 and C3 chondrites were formed by the reaction: Fe, Cr + 4CO yields (Fe, Cr)3O4 + 4C + carbides. In contrast to meteoritic minerals, the synthetic specimens show no isotopic fractionation of noble gases. In a subsequent study, attention is given to the cases of sulfides and spinels, on the way to consideration of the origin of planetary gases. Sulfides showed three distinctive trends relative to chromite or magnetite. The elemental fractionation pattern of Ar, Kr and Xe in meteorites, terrestrial rocks and planets resembles the adsorption patterns on the carbons, spinels, sulfides, and other solids studied. The high release temperature of meteoritic noble gases may be explained by transformation of the physisorbed or chemisorbed gas. The ready loss of meteoritic heavy gases on surficial oxidation is consistent with adsorption, as is the high abundance.

  8. Process for treating fission waste. [Patent application

    DOEpatents

    Rohrmann, C.A.; Wick, O.J.

    1981-11-17

    A method is described for the treatment of fission waste. A glass forming agent, a metal oxide, and a reducing agent are mixed with the fission waste and the mixture is heated. After melting, the mixture separates into a glass phase and a metal phase. The glass phase may be used to safely store the fission waste, while the metal phase contains noble metals recovered from the fission waste.

  9. The atmospheric inventory of Xenon and noble cases in shales The plastic bag experiment

    NASA Technical Reports Server (NTRS)

    Bernatowicz, T. J.; Podosek, F. A.; Honda, M.; Kramer, F. E.

    1984-01-01

    A novel trapped gas analysis protocol is applied to five shales in which the samples are sealed in air to eliminate the possibility of gas loss in the preanalysis laboratory vacuum exposure of a conventional protocol. The test is aimed at a determination concerning the hypothesis that atmospheric noble gases occur in the same proportion as planetary gases in meteorites, and that the factor-of-23 deficiency of air Xe relative to planetary Xe is made up by Xe stored in shales or other sedimentary rocks. The results obtained do not support the shale hypothesis.

  10. Mixed noble gas effect on cut green peppers

    NASA Astrophysics Data System (ADS)

    Raymond, L. V.; Zhang, M.; Karangwa, E.; Chesereka, M. J.

    2013-01-01

    Increasing attempts at using gas which leads to hydrate formation as a preservative tool in fresh-cut fruits and vegetables have been reported. In this study, changes in some physical and biochemical properties of fresh-cut green peppers under compressed noble gas treatments were examined. Mixed argonkrypton and argon treatments were performed before cold storage at 5°C for 15 days. Mass loss and cell membrane permeability were found to be the lowest in mixed argon-krypton samples. Besides, a lower CO2 concentration and vitamin C loss were detected in gastreated samples compared to untreated samples (control). While the total phenol degradation was moderately reduced, the effect of the treatment on polyphenoloxidase activity was better at the beginning of the storage period. The minimum changes in quality observed in cut peppers resulted from both mixed and gas treatment alone.

  11. Subsurface Noble Gas Sampling Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrigan, C. R.; Sun, Y.

    2017-09-18

    The intent of this document is to provide information about best available approaches for performing subsurface soil gas sampling during an On Site Inspection or OSI. This information is based on field sampling experiments, computer simulations and data from the NA-22 Noble Gas Signature Experiment Test Bed at the Nevada Nuclear Security Site (NNSS). The approaches should optimize the gas concentration from the subsurface cavity or chimney regime while simultaneously minimizing the potential for atmospheric radioxenon and near-surface Argon-37 contamination. Where possible, we quantitatively assess differences in sampling practices for the same sets of environmental conditions. We recognize that allmore » sampling scenarios cannot be addressed. However, if this document helps to inform the intuition of the reader about addressing the challenges resulting from the inevitable deviations from the scenario assumed here, it will have achieved its goal.« less

  12. Hyperpolarized 131Xe NMR spectroscopy

    PubMed Central

    Stupic, Karl F.; Cleveland, Zackary I.; Pavlovskaya, Galina E.; Meersmann, Thomas

    2011-01-01

    Hyperpolarized (hp) 131Xe with up to 2.2% spin polarization (i.e., 5000-fold signal enhancement at 9.4 T) was obtained after separation from the rubidium vapor of the spin-exchange optical pumping (SEOP) process. The SEOP was applied for several minutes in a stopped-flow mode, and the fast, quadrupolar-driven T1 relaxation of this spin I = 3/2 noble gas isotope required a rapid subsequent rubidium removal and swift transfer into the high magnetic field region for NMR detection. Because of the xenon density dependent 131Xe quadrupolar relaxation in the gas phase, the SEOP polarization build-up exhibits an even more pronounced dependence on xenon partial pressure than that observed in 129Xe SEOP. 131Xe is the only stable noble gas isotope with a positive gyromagnetic ratio and shows therefore a different relative phase between hp signal and thermal signal compared to all other noble gases. The gas phase 131Xe NMR spectrum displays a surface and magnetic field dependent quadrupolar splitting that was found to have additional gas pressure and gas composition dependence. The splitting was reduced by the presence of water vapor that presumably influences xenon-surface interactions. The hp 131Xe spectrum shows differential line broadening, suggesting the presence of strong adsorption sites. Beyond hp 131Xe NMR spectroscopy studies, a general equation for the high temperature, thermal spin polarization, P, for spin I⩾1/2 nuclei is presented. PMID:21051249

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achey, R.; Rivera, O.; Wellons, M.

    Microporous zeolite adsorbent materials are widely used as a medium for separating gases. Adsorbent gas separation systems can run at ambient temperature and require minimal pressure to flow the input gas stream across the adsorbent bed. This allows for low energy consumption relative to other types of separation systems. Specific zeolites also have a high capacity and selectivity for the gases of interest, leading to compact and efficient separation systems. These characteristics are particularly advantageous for the application of signatures detection for non-proliferation, which often requires portable systems with low power draw. Savannah River National Laboratory currently is the leadermore » in using zeolites for noble gas sampling for non-proliferation detection platforms. However, there is a constant customer need for improved sampling capabilities. Development of improved zeolite materials will lead to improved sampling technology. Microwave-assisted and conventional hydrothermal synthesis have been used to make a variety of zeolites tailored for noble gas separation. Materials characterization data collected in this project has been used to help guide the synthesis of improved zeolite materials. Candidate materials have been down-selected based on highest available surface area, maximum overall capacity for gas adsorption and highest selectivity. The creation of improved adsorbent materials initiated in this project will lead to development of more compact, efficient and effective noble gas collectors and concentrators. The work performed in this project will be used as a foundation for funding proposals for further material development as well as possible industrial applications.« less

  14. MRI of the lung gas-space at very low-field using hyperpolarized noble gases

    NASA Technical Reports Server (NTRS)

    Venkatesh, Arvind K.; Zhang, Adelaide X.; Mansour, Joey; Kubatina, Lyubov; Oh, Chang Hyun; Blasche, Gregory; Selim Unlu, M.; Balamore, Dilip; Jolesz, Ferenc A.; Goldberg, Bennett B.; hide

    2003-01-01

    In hyperpolarized (HP) noble-gas magnetic resonance imaging, large nuclear spin polarizations, about 100,000 times that ordinarily obtainable at thermal equilibrium, are created in 3He and 129Xe. The enhanced signal that results can be employed in high-resolution MRI studies of void spaces such as in the lungs. In HP gas MRI the signal-to-noise ratio (SNR) depends only weakly on the static magnetic field (B(0)), making very low-field (VLF) MRI possible; indeed, it is possible to contemplate portable MRI using light-weight solenoids or permanent magnets. This article reports the first in vivo VLF MR images of the lungs in humans and in rats, obtained at a field of only 15 millitesla (150 Gauss).

  15. A Philippinite with an Unusually Large Bubble: Gas Pressure and Noble Gas Composition

    NASA Astrophysics Data System (ADS)

    Matsuda, J.; Maruoka, T.; Pinti, D. L.; Koeberl, C.

    1995-09-01

    Bubbles are common in tektites, but usually their sizes range up to only a few mm. They are most abundant in Muong Nong-type tektites. The gases contained in these bubbles are of terrestrial atmospheric composition, with pressures below 1 atm (e.g., [1]). The abundances of light noble gases (He, Ne) are controlled by diffusion from the atmosphere [2], and noble gases dissolved in tektite glass indicate that the glass solidified at atmospheric pressures equivalent to about 40 km altitude [3]. Large bubbles in splash-form tektites are rather rare. Thus, the finding that a philippinite (size: 6.0 x 4.5 cm; weight: 199.6 g) contains an unusually large bubble justified a detailed study. The volume of the bubble, which was confirmed by X-ray photography, was estimated at 5.4 cm^3, by comparing the density of this tektite (2.288 g/cm^3) to that of normal philippinites (2.438 g/cm^3). A device was specifically constructed for crushing the present sample under vacuum. The 10x10 cm cylindrical device has a piston that allows to gently crush the sample by turning a handle. Various disk spacers can be used to adjust the inner height to that of the sample. The device is made of stainless steel, yielding a low noble gas blank. The crushing device is connected to a purification line and a noble gas sector-type mass spectrometer (VG 5400) [4]. Before crushing, the complete tektite was wrapped in aluminum foil. A first crushing attempt, using stainless steel disk spacers, failed and resulted in damage to the steel spacers, indicating a high strength of the tektite. Using iron disk spacers resulted in an ambient pressure increase (probably due to hydrogen from the Fe) in the sample chamber. However, the noble gas blanks were negligible. The background pressure, at 2 x 10-4 Torr, increased to 3 x 10-4 Torr when the sample was crushed. From the volume of the crushing device and that of the bubble in the tektite, the total gas pressure in the bubble was estimated at about 1 x 10-4 atm. Part of the extracted gas was kept for total gas analysis, while the remainder has been purified for the noble gas measurements. Total amounts and isotopic ratios of all noble gases were measured. The amounts of Ar, Kr, and Xe close to the blank level, while those of He and Ne were about 3 to 4 orders of magnitude larger than the blank. The ^20Ne/^36Ar ratio in the bubble gas is more than 4 orders of magnitude higher than the atmospheric value, which is similar to the pattern previously observed in tektites [2,3,5]. The isotopic ratios of Ar, Kr and Xe were, within uncertainties, similar to those of the terrestrial atmosphere. However, the Ne isotopic ratios were significantly different from atmospheric values, and differ from the results reported in previous studies [2,5]. The Ne isotope data seem to lie on the mass fractionation line from the atmosphere in a ^20Ne/^22Ne vs. ^21Ne/^22Ne three isotope plot, suggesting that the Ne in the bubble has diffused in from the atmosphere. However, it is generally believed that the isotopic fractionation during a steady state is very small, and the observed Ne values are higher than those calculated from simple mass fractionation [6]. The high isotopic fractionation is likely to be associated with the non-equilibrium conditions prevailing during tektite formation. Acknowledgments: We are grateful to D. Heinlein for bringing the precious sample to our attention and for allowing its analysis. References: [1] Jessberger E. K. and Gentner W. (1972) EPSL, 14, 221-225. [2] Matsubara K. and Matsuda J. (1991) Meteoritics, 26, 217-220. [3] Matsuda J. et al. (1993) Meteoritics, 28, 586-599. [4] Maruoka T. and Matsuda J. (1995) J. Mass Spectrom. Soc. Jpn., 43, 1-8. [5] Hennecke et al. (1975) JGR, 80, 2931-2934. [6] Kaneoka I., EPSL, 48, 284-292.

  16. Genesis Noble Gas Measurements

    NASA Technical Reports Server (NTRS)

    Hohenberg, Charles M.

    2005-01-01

    The original thrust of our Genesis funding was to extend and refine the noble gas analytical capabilities of this laboratory to improve the precision and accuracy of noble gas measurements in order to optimize the scientific return from the Genesis Mission. This process involved both instrumental improvement (supplemented by a SRLIDAP instrument grant) and refinement of technique. The Genesis landing mishap shifted our emphasis to the irregular aluminum heat shield material from the flat collector wafers. This has required redesign of our laser extraction cells to accommodate the longer focal lengths required for laser extraction from non-flat surfaces. Extraction of noble gases from solid aluminum surfaces, rather than thin coatings on transparent substrates has required refinement of controlled-depth laser ablation techniques. Both of these bring new problems, both with potentially higher blanks form larger laser cells and the larger quantities of evaporated aluminum which can coat the sapphire entrance ports. This is mainly a problem for the heavy noble gases where larger extraction areas are required, necessitating the new aluminum vapor containment techniques described below. With the Genesis Mission came three new multiple multiplier noble gas mass spectrometers to this laboratory, one built solely by us (Supergnome-M), one built in collaboration with Nu-Instruments (Noblesse), and one built in collaboration with GVI (Helix). All of these have multiple multiplier detection sections with the Nu-Instruments using a pair of electrostatic quad lenses for isotope spacing and the other two using mechanically adjustable positions for the electron multipliers. The Supergnome-M and Noblesse are installed and running. The GVI instrument was delivered a year late (in March 2005) and is yet to be installed by GVI. As with all new instruments there were some initial development issues, some of which are still outstanding. The most serious of these are performance issues with the miniature channel electron multipliers. The delayed installation of Helix by the GVI is partly due to failure of the initial batch of Burle channel multipliers to perform as expected. A number of the channel multipliers designed for Noblesse by Burle have also failed upon baking. Burle has now refined the design of these and we have installed two of the new multipliers and are assessing their performance. The remaining multipliers Will be upgraded to the new design from Burle once we confirm that the problem has been fixed.

  17. Angular correlation studies in noble gases

    NASA Technical Reports Server (NTRS)

    Coleman, P. G.

    1990-01-01

    There has been a recent revival of interest in the measurement of angular correlation of annihilation photons from the decay of positrons and positronium in gases. This revival has been stimulated by the possibility offered by the technique to shed new light on the apparently low positronium formation fraction in the heavier noble gases and to provide information on positronium quenching processes in gases such as oxygen. There is also the potential for learning about positronium slowing down in gases. This review focuses on experimental noble gas work and considers what new information has been, and may be, gained from these studies.

  18. Laboratory simulation of meteoritic noble gases. III - Sorption of neon, argon, krypton, and xenon on carbon - Elemental fractionation

    NASA Technical Reports Server (NTRS)

    Wacker, John F.

    1989-01-01

    The sorption of Ne, Ar, Kr, and Xe was studied in carbon black, acridine carbon, and diamond in an attempt to understand the origin of trapped noble gases in meteorites. The results support a model in which gases are physically adsorbed on interior surfaces formed by a pore labyrinth within amorphous carbons. The data show that: (1) the adsorption/desorption times are controlled by choke points that restrict the movement of noble gas atoms within the pore labyrinth, and (2) the physical adsorption controls the temperature behavior and elemental fractionation patterns.

  19. Noble gases as cardioprotectants – translatability and mechanism

    PubMed Central

    Smit, Kirsten F; Weber, Nina C; Hollmann, Markus W; Preckel, Benedikt

    2015-01-01

    Several noble gases, although classified as inert substances, exert a tissue-protective effect in different experimental models when applied before organ ischaemia as an early or late preconditioning stimulus, after ischaemia as a post-conditioning stimulus or when given in combination before, during and/or after ischaemia. A wide range of organs can be protected by these inert substances, in particular cardiac and neuronal tissue. In this review we summarize the data on noble gas-induced cardioprotection, focusing on the underlying protective mechanisms. We will also look at translatability of experimental data to the clinical situation. PMID:25363501

  20. Evaluation of the Efficacy of the Plasma Pencil Against Cancer Cells

    NASA Astrophysics Data System (ADS)

    Mohades, Soheila; Barekzi, Nazir; Razavi, Hamid; Laroussi, Mounir

    2014-10-01

    The plasma pencil generates low temperature and atmospheric pressure plasma. To generate the plasma, high voltage pulses with short width (from nanosecond to microsecond) are applied to a noble gas. The working gas can be helium, argon or a mixture of these with air or oxygen. Generating plasma with helium provides a tolerable temperature for biological cells and tissues. Diagnostic measurements on the plasma plume has revealed the presence of active agents such as reactive oxygen species (ROS) and nitrogen reactive species (RNS), which are known to have biological implications. Recently, low temperature plasma has drawn attention to its potential in cancer therapy. In our lab, the plasma pencil has been used to treat leukemia, prostate and epithelial cancer cells. The cancer cell line used here is the SCaBER (ATCC®HTB3™) cell line originating from a human bladder cancer. The results indicate that specific species induce the molecular mechanisms associated with cell death. The death of cells after plasma treatment will be studied using assays, such as DNA laddering and Caspase-3 activation, to elucidate the mechanism of the apoptotic or necrotic pathways.

  1. Wigner Distribution Functions as a Tool for Studying Gas Phase Alkali Metal Plus Noble Gas Collisions

    DTIC Science & Technology

    2014-03-27

    ii List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii I...t, E) Wigner Distribution Function ii List of Acronyms Acronym Definition WDF Wigner Distribution Function PES Potential Energy Surface DPAL Diode

  2. Looking for a correlation between terrestrial age and noble gas record of H chondrites

    NASA Astrophysics Data System (ADS)

    Loeken, Th.; Schultz, L.

    1994-07-01

    On the basis of statistically significant concentration differences of some trace elements, it has been suggested that H chondrites found in Antarctica and Modern Falls represent members of different extraterrestrial populations with different thermal histories. It was also concluded that H chondrites found in Victoria Land (Allan Hills) differ chemically from those found in Queen Maud Land (Yamato Mountains), an effect that could be based on the different terrestrial age distribution of both groups. This would imply a change of the meteoroid flux hitting the Earth on a timescale that is comparable to typical terrestrial ages of Antarctic chondrites. A comparison of the noble gas record of H chondrites from the Allan Hills icefields and Modern Fall shows that the distributions of cosmic-ray exposure ages and the concentrations of radiogenic He-4 and Ar-40 are very similar. In an earlier paper we compared the noble gas measurements of 20 Yamato H contents with meteorites from the Allan Hills region and Modern Falls. Similar distributions were found. The distribution of cosmic-ray exposure ages and radiogenic He-4 and Ar-40 gas contents as a function of the terrestrial age is investigated in these chondrites. The distribution shows the well-known 7-Ma-cluster indicating that about 40% of the H chondrites were excavated from their parent body in a single event. Both populations, Antarctic Meteorites and Modern Falls, exhibit the same characteristic feature: a major meteoroid-producing event about 7 Ma. This indicates that one H-group population delivers H chondrites to Antarctica and the rest of the world. Cosmic-ray exposure ages and thermal-history indicaters like radiogenic noble gases show no evidence of a change in the H chondrite meteoroid population during the last 200,000 years.

  3. Noble gas isotopes and halogens in volatile-rich inclusions in diamonds

    NASA Technical Reports Server (NTRS)

    Burgess, Raymond; Turner, Grenville

    1994-01-01

    Application of the (40)Ar-(39)Ar method and noble gas studies to diamonds has increased our understanding of their age relationships to the host kimberlite or lamproite, and of the source and composition of volatile-rich fluids in the upper mantle. The properties of diamond (inert, high mechanical strength and low gas diffusivities) means they are especially useful samples for studying gases trapped deep within the earth (less than 150 km) as they are unlikely to have undergone loss or exchange of entrapped material since formation. Volatile-rich fluids (H2O-CO2) are important agents for metasomatic processes in the upper mantle, and the noble gases and halogens preferentially partition into this phase leading to a strong geochemical coherence between these groups of elements. The abundances of the halogens in the major reservoirs of the Earth shows a marked progression from chlorine, concentrated in the oceans, through to iodine which, through its affinity to organic material, is concentrated mainly in sediments. Abundances in the upper mantle are low. This is particularly true for iodine which is of special interest in view of its potential significance as an indicator of sediment recycling and by way of its link to (129)Xe amomalies in the mantle through the low extinct isotope (129)I. Extensions of the (40)Ar-(39)Ar technique enable measurements of halogens and other elements (K, Ca, Ba, U) by production of noble gas isotopes from these species during neutron irradiation. Samples analyzed in this way include 15 coated stones from an unknown source in Zaire, 3 boarts from the Jwaneng and 1 boart from the Orapa kimberlites, both in Botswana.

  4. Prediction of neutral noble gas insertion compounds with heavier pnictides: FNgY (Ng = Kr and Xe; Y = As, Sb and Bi).

    PubMed

    Ghosh, Ayan; Manna, Debashree; Ghanty, Tapan K

    2016-04-28

    A novel class of interesting insertion compounds obtained through the insertion of a noble gas atom into the heavier pnictides have been explored by various ab initio quantum chemical techniques. Recently, the first neutral noble gas insertion compounds, FXeY (Y = P, N), were theoretically predicted to be stable; the triplet state was found to be the most stable state, with a high triplet-singlet energy gap, by our group. In this study, we investigated another noble gas inserted compound, FNgY (Ng = Kr and Xe; Y = As, Sb and Bi), with a triplet ground state. Density functional theory (DFT), second order Møller-Plesset perturbation theory (MP2), coupled-cluster theory (CCSD(T)) and multi-reference configuration interaction (MRCI) based techniques have been utilized to investigate the structures, stabilities, harmonic vibrational frequencies, charge distributions and topological properties of these compounds. These predicted species, FNgY (Ng = Kr and Xe; Y = As, Sb and Bi) are found to be energetically stable with respect to all the probable 2-body and 3-body dissociation pathways, except for the 2-body channel leading to the global minimum products (FY + Ng). Nevertheless, the finite barrier height corresponding to the saddle points of the compounds connected to their respective global minima products indicates that these compounds are kinetically stable. The structural parameters, energetics, and charge distribution results as well as atoms-in-molecules (AIM) analysis suggest that these predicted molecules can be best represented as F(-)[(3)NgY](+). Thus, all the aforementioned computed results clearly indicate that it may be possible to experimentally prepare the most stable triplet state of FNgY molecules under cryogenic conditions through a matrix isolation technique.

  5. Volatile elements - water, carbon, nitrogen, noble gases - on Earth

    NASA Astrophysics Data System (ADS)

    Marty, B.

    2017-12-01

    Understanding the origin and evolution of life-bearing volatile elements (water, carbon, nitrogen) on Earth is a fruitful and debated area of research. In his pioneering work, W.W. Rubey inferred that the terrestrial atmosphere and the oceans formed from degassing of the mantle through geological periods of time. Early works on noble gas isotopes were consistent with this view and proposed a catastrophic event of mantle degassing early in Earth's history. We now have evidence, mainly from noble gas isotopes, that several cosmochemical sources contributed water and other volatiles at different stages of Earth's accretion. Potential contributors include the protosolar nebula gas that equilibrated with magma oceans, inner solar system bodies now represented by chondrites, and comets. Stable isotope ratios suggest volatiles where primarily sourced by planetary bodies from the inner solar system. However, recent measurements by the European Space Agency Rosetta probe on the coma of Comet 67P/Churyumov-Gerasimenko permit to set quantitative constraints on the cometary contribution to the surface of our planet. The surface and mantle reservoirs volatile elements exchanged volatile elements through time, with rates that are still uncertain. Some mantle regions remained isolated from whole mantle convection within the first tens to hundreds million years after start of solar system formation. These regions, now sampled by some mantle plumes (e.g., Iceland, Eifel) preserved their volatile load, as indicated by extinct and extant radioactivity systems. The abundance of volatile elements in the mantle is still not well known. Different approaches, such as high pressure experimental petrology, noble gas geochemistry, modelling, resulted in somewhat contrasted estimates, varying over one order of magnitude for water. Comparative planetology, that is, the study of volatiles on the Moon, Venus, Mars, Vesta, will shed light on the sources and strengths of these elements in the inner solar system.

  6. Dissolved gas concentrations of the geothermal fluids in Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Ai-Ti; Yang, Tsanyao Frank

    2010-05-01

    Taiwan, a geologically active island, is located on the boundary of the Philippine Sea Plate and the Eurasian Plate. High heat flow and geothermal gradient generated by the complex collision and orogeny, warm up the meteoric water and/or the ground water. The heated water becomes geothermal fluids. In previous studies, researchers tried to categorize hot springs based on the appearance, chemical compositions and lithological areas. Because of the chemical inertness, the concentrations and isotopic composition of dissolved noble gases are good indicators of the mantle degassing, geothermal conditions, and so on. In this study, 55 hot springs were collected from different tectonic units. It is the first time to systematically study the hot springs in Taiwan in terms of dissolved gases. Hot spring water is sampled and stored in pre-evacuated glass bottles for analyzing gas compositions. The abundances of noble gases were determined by a quadrupole mass spectrometer based on the isotope dilution technique. Samples with glass vials are introduced to RAD 7 and GC for dissolved Rn and major dissolved gases analyses. Furthermore, helium isotopic ratios and helium-neon ratios are measured on a conventional noble gas mass spectrometer. For hydrochemistry analysis, water samples are analyzed by IC, ICP-MS and titration. We can classify the hot springs samples into three major groups from main anion concentration data; and then, subdivide them into nine minor groups by cation concentration data. Moreover, according to major dissolved gases compositions, three major gas components: CH4, N2 and CO2, are identified. Dissolved noble gases provided more detailed clues about hot springs sources in Taiwan, such as the degree of mixing between meteoric water and deep-source water, which will be further discussed in this study.

  7. Adsorption properties of fission gases Xe and Kr on pristine and doped graphene: A first principle DFT study

    NASA Astrophysics Data System (ADS)

    Vazhappilly, Tijo; Ghanty, Tapan K.; Jagatap, B. N.

    2017-07-01

    Graphene has excellent adsorption properties due to large surface area and has been used in applications related to gas sorption and separation. The separation of radioactive noble gases using graphene is an interesting area of research relevant to nuclear waste management. Radioactive noble gases Xe and Kr are present in the off-gas streams from nuclear fission reactors and spent nuclear fuel reprocessing plants. The entrapment of these volatile fission gases is important in the context of nuclear safety. The separation of Xe from Kr is extremely difficult, and energy intensive cryogenic distillation is generally employed. Physisorption based separation techniques using porous materials is a cost effective alternative to expensive cryogenic distillation. Thus, adsorption of noble gases on graphene is relevant for fundamental understanding of physisorption process. The properties of graphene can be tuned by doping and incorporation of defects. In this regard, we study the binding affinity of Xe and Kr in pristine and doped graphene sheets. We employ first principle calculations using density functional theory, corrected for dispersion interactions. The structural parameters obtained from the current study show excellent agreement with the available theoretical and experimental observations on similar systems. Noble gas adsorption energies on pristine graphene match very well with the available literature. Our results show that the binding energy of fission gases Xe and Kr on graphene can be considerably improved through doping the lattice with a heteroatom.

  8. Origin and Processes Highlighted By Noble Gases Geochemistry of Submarine Gas Emissions from Seeps at the Aquitaine Shelf (Bay of Biscay):

    NASA Astrophysics Data System (ADS)

    Battani, A.; Ruffine, L.; Donval, J. P.; Bignon, L.; Pujol, M.; Levaché, D.

    2014-12-01

    Noble gases are widely used as tracers to both determine fluid origin and identify transfer processes governing fluid flow in natural systems. This work presents the preliminary results and interpretations from submarine gas samples collected during the GAZCOGNE2 cruise (2013). The seepage activity and the spatial distribution of the widespread emission sites encountered at this area are described by (Dupré et al. 2014). Gas composition shows that methane is the dominant species compared to the C2+. The associated δ13C and δD signatures point to a biogenic origin- through CO2 reduction- of the gas. Helium concentrations are very low, ranging from 0.1 and 2.3 ppm, indicating a low residence time of the fluids in the subsurface. However, the resulting helium isotopic ratios are mostly crustal fingerprinted (around 0.02). The R/Ra values sometimes exhibit higher value of 0.2, indicative either an ASW (air saturated water) value, or the fingerprint of ancient mantle helium, the later in agreement with the geological structural context of the Parentis Basin. Most of the samples exhibit a mixing between ASW and air, probably by excess air addition to the initial ASW concentration. The elemental Ne/Ar ratio is remarkably constant for the totality of the samples, with a value typical of ASW (0.2). This result implies that the migrating gas phase is "stripping" the original water matrix from its noble gas content, as described by Gillfillian et al., 2008. This further indicates that an intermediate reservoir of biogenic gas should be present at depth. The GAZCOGNE study is co-funded by TOTAL and IFREMER as part of the PAMELA (Passive Margin Exploration Laboratories) scientific project. References: Dupré, S., L. Berger, N. Le Bouffant, C. Scalabrin, and J. F. Bourillet (2014), Fluid emissions at the Aquitaine Shelf (Bay of Biscay, France): a biogenic origin or the expression of hydrocarbon leakage?, Continental Shelf Research, doi:10.1016/j.csr.2014.07.004. Gilfillan S. M.V., Ballentine C. J. Holland G. a, Blagburn D.Sherwood Lollar B., Stevens S., Schoell, M., Cassidy, M. (2008) The noble gas geochemistry of natural CO2 gas reservoirs from the Colorado Plateau and Rocky Mountain provinces, USA

  9. Kinetics and equilibria of redox systems at temperatures as low as 300°C

    NASA Astrophysics Data System (ADS)

    Burkhard, Dorothee J. M.; Ulmer, Gene C.

    1995-05-01

    ZrO 2 oxygen sensors, gas mixtures, and conventional solid buffers have been used for decades to either control or measure oxygen fugacity (ƒ O 2) at high temperatures. In dry systems below ca. 700°C these techniques were used cautiously, if at all, due to doubt that there was any equilibration at lower temperatures. We have re-investigated these three types of redox systems in a study where each system (two different Y 2O 3ZrO 2 cells, four different gas mixtures, and four different dry solid buffers) was simultaneously cross-checked with the other to temperatures below 300°C and compared to JANAF data, extrapolated down to low temperatures. Steady and reproducible readings were observed down to T ≤ 300°C, from which we infer fast kinetics for all three systems. Specifically, we find equilibration of various CO 2H 2 gas mixtures over the entire temperature range and to much lower temperature than previously predicted. We assign the reactivity (decomposition) of CO 2 at low T to the catalytic action of Pt, whereby chemisorption of H 2 on the platinum surface enhances the reactivity with CO 2. This catalytic reactivity is diminished over time due to a long-term irreversible reaction of Pt with H 2. Subsequent embrittling and aging after prolonged exposure to H 2 explains erroneously high emf readings. Oxygen sensing of ZrO 2 cells is linear in 1/ T-log ƒ O 2 space and Nernstian at high temperatures. However, for cells with a specific and complex trace element chemistry, one may observe a non-Nernstian behavior in the low T range, i.e., below 470° or lower, probably caused by partially blocked O 2- migration, dependent on the H 2 content in the gas mixture. Linearity and reproducibility of this deviation still allows, however, a useable calibration. Solid buffers of the metal-metal oxide type are known to alloy with noble metals and we therefore used AgPd electrodes, for consistency in all studies, including (IW), (IM), (FMQ), and (NNO). Whereas (IW) and (IM) can be used in the temperature range of consideration, (FMQ) and (NNO) react sluggishly. Complex defect structure of (FMQ) and age alteration of Ni surfaces by chemisorption of oxygen and/or AgNi alloying of (NNO) may be the reason. Fast kinetics and successful redox sensing of CO 2H 2 gas mixtures, of ZrO 2 cells and of at least some solid buffers are therefore promising for future research on low- T redox equilibria.

  10. The solubility of noble gases in crude oil at 25-100°C

    USGS Publications Warehouse

    Kharaka, Yousif K.; Specht, Daniel J.

    1988-01-01

    The solubility of the noble gases He, Ne, Ar, Kr and Xe was measured in two typical crude oils at temperatures of 25–100°C. The oil samples were obtained from the Elk Hills oil field located in southern San Joaquin Valley, California. The experimental procedure consisted of placing a known amount of gas with a known volume of crude oil in a stainless steel hydrothermal pressure vessel. The vessel was housed inside an oven and the entire unit rotates providing continuous mixing. The amount of gas dissolved in oil at a measured temperature and partial pressure of gas was used to calculate the solubility constants for these gases. Results show that the solubility of He and Ne in both oils is approximately the same; solubility then increases with atomic mass, with the solubility of Xe at 25°C being two orders of magnitude higher than that of He. The gas solubilities are somewhat higher in the lower density (higher API gravity) oil. The solubility of Ar is approximately constant in the range of temperatures of this study. The solubilities of He and Ne increase, but those of Kr and Xe decrease with increasing temperatures. Solubilities of noble gases in crude oil are significantly higher than their solubilities in water. For example, the solubilities of He and Xe at 25°C in the light oil of this study are, respectively, 3 and 24 times higher than their solubilities in pure water, and they are 15 and 300 times higher than in a brine with a salinity of 350,000 mg/l dissolved solids. These large and variable differences in the solubilities of noble gases in oil and water indicate that, in sedimentary basins with oil, these gases must be partitioned between oil, water and natural gas before they are used to deduce the origin and residence time of these fluids.

  11. Detection of gas atoms with carbon nanotubes

    PubMed Central

    Arash, B.; Wang, Q.

    2013-01-01

    Owning to their unparalleled sensitivity resolution, nanomechanical resonators have excellent capabilities in design of nano-sensors for gas detection. The current challenge is to develop new designs of the resonators for differentiating distinct gas atoms with a recognizably high sensitivity. In this work, the characteristics of impulse wave propagation in carbon nanotube-based sensors are investigated using molecular dynamics simulations to provide a new method for detection of noble gases. A sensitivity index based on wave velocity shifts in a single-walled carbon nanotube, induced by surrounding gas atoms, is defined to explore the efficiency of the nano-sensor. The simulation results indicate that the nano-sensor is able to differentiate distinct noble gases at the same environmental temperature and pressure. The inertia and the strengthening effects by the gases on wave characteristics of carbon nanotubes are particularly discussed, and a continuum mechanics shell model is developed to interpret the effects.

  12. Investigating the Origin and Evolution of Venus with In Situ Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Trainer, M. G.; Mahaffy, P. R.; Brinckerhoff, W. B.; Johnson, N. M.; Glaze, L. S.

    2015-01-01

    Measurement of noble gas abundances on Venus remain a high priority for planetary science. These studies are only possible through in situ measurement, and can be accomplished by a modern neutral mass spectrometer (NMS) such as that developed at NASA Goddard, based on flight-proven technology. Here we show how the measurement of noble gases can be secured using demonstrated enrichment techniques.

  13. Neutral Mass Spectrometry for Venus Atmosphere and Surface

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul

    2005-01-01

    The assignment is to make precise (better than 1 %) measurements of isotope ratios and accurate (5-10%) measurements of abundances of noble gas and to obtain vertical profiles of trace chemically active gases from above the clouds all the way down to the surface. Science measurement objectives are as follows: 1) Determine the composition of Venus atmosphere, including trace gas species and light stable isotopes; 2) Accurately measure noble-gas isotopic abundance in the atmosphere; 3) Provide descent, surface, and ascent meteorological data; 4) Measure zonal cloud-level winds over several Earth days; 5) Obtain near-IR descent images of the surface from 10-km altitude to the surface; 6) Accurately measure elemental abundances & mineralogy of a core from the surface; and 7) Evaluate the texture of surface materials to constrain weathering environment.

  14. Pressure disequilibria induced by rapid valve closure in noble gas extraction lines

    USGS Publications Warehouse

    Morgan, Leah; Davidheiser-Kroll, Brett

    2015-01-01

    Pressure disequilibria during rapid valve closures can affect calculated molar quantities for a range of gas abundance measurements (e.g., K-Ar geochronology, (U-Th)/He geochronology, noble gas cosmogenic chronology). Modeling indicates this effect in a system with a 10 L reservoir reaches a bias of 1% before 1000 pipette aliquants have been removed from the system, and a bias of 10% before 10,000 aliquants. Herein we explore the causes and effects of this problem, which is the result of volume changes during valve closure. We also present a solution in the form of an electropneumatic pressure regulator that can precisely control valve motion. This solution reduces the effect to ∼0.3% even after 10,000 aliquants have been removed from a 10 L reservoir.

  15. Pressure disequilibria induced by rapid valve closure in noble gas extraction lines

    NASA Astrophysics Data System (ADS)

    Morgan, Leah E.; Davidheiser-Kroll, Brett

    2015-06-01

    Pressure disequilibria during rapid valve closures can affect calculated molar quantities for a range of gas abundance measurements (e.g., K-Ar geochronology, (U-Th)/He geochronology, noble gas cosmogenic chronology). Modeling indicates this effect in a system with a 10 L reservoir reaches a bias of 1% before 1000 pipette aliquants have been removed from the system, and a bias of 10% before 10,000 aliquants. Herein we explore the causes and effects of this problem, which is the result of volume changes during valve closure. We also present a solution in the form of an electropneumatic pressure regulator that can precisely control valve motion. This solution reduces the effect to ˜0.3% even after 10,000 aliquants have been removed from a 10 L reservoir.

  16. Postcollision interaction in noble gas clusters: observation of differences in surface and bulk line shapes.

    PubMed

    Lindblad, A; Fink, R F; Bergersen, H; Lundwall, M; Rander, T; Feifel, R; Ohrwall, G; Tchaplyguine, M; Hergenhahn, U; Svensson, S; Björneholm, O

    2005-12-01

    The surface and bulk components of the x-ray photoelectron spectra of free noble gas clusters are shown to display differences in the influence of postcollision interaction between the photoelectron and the Auger electron on the spectral line shape; the bulk component is observed to be less affected than the surface and atomic parts of the spectra. A model for postcollision interaction in nonmetallic solids and clusters is also provided which takes the polarization screening into account. Core-level photoelectron spectra of Ar, Kr, and Xe have been recorded to verify the dependence of the postcollision interaction effect on the polarizability of the sample.

  17. Enhancement of NMR and MRI in the presence of hyperpolarized noble gases

    DOEpatents

    Pines, Alexander; Budinger, Thomas; Navon, Gil; Song, Yi-Qiao; Appelt, Stephan; Bifone, Angelo; Taylor, Rebecca; Goodson, Boyd; Seydoux, Roberto; Room, Toomas; Pietrass, Tanja

    2004-11-16

    The present invention relates generally to nuclear magnetic resonance (NMR) techniques for both spectroscopy and imaging. More particularly, the present invention relates to methods in which hyperpolarized noble gases (e.g., Xe and He) are used to enhance and improve NMR and MRI. Additionally, the hyperpolarized gas solutions of the invention are useful both in vitro and in vivo to study the dynamics or structure of a system. When used with biological systems, either in vivo or in vitro, it is within the scope of the invention to target the hyperpolarized gas and deliver it to specific regions within the system.

  18. Mineralogical and geochemical anomalous data of the K-T boundary samples

    NASA Technical Reports Server (NTRS)

    Miura, Y.; Shibya, G.; Imai, M.; Takaoka, N.; Saito, S.

    1988-01-01

    Cretaceous-Tertiary boundary problem has been discussed previously from the geological research, mainly by fossil changes. Although geochemical bulk data of Ir anomaly suggest the extraterrestrial origin of the K-T boundary, the exact formation process discussed mainly by mineralogical and geochemical study has been started recently, together with noble gas contents. The K-T boundary sample at Kawaruppu River, Hokkaido was collected, in order to compare with the typical K-T boundary samples of Bubbio, Italy, Stevns Klint, Denmark, and El Kef, Tunisia. The experimental data of the silicas and calcites in these K-T boundary samples were obtained from the X-ray unit-cell dimension (i.e., density), ESR signal and total linear absorption coefficient, as well as He and Ne contents. The K-T boundary samples are usually complex mixture of the terrestrial activities after the K-T boundary event. The mineralogical and geochemical anomalous data indicate special terrestrial atmosphere at the K-T boundary formation probably induced by asteroid impact, followed the many various terrestrial activities (especially the strong role of sea-water mixture, compared with terrestrial highland impact and impact craters in the other earth-type planetary bodies).

  19. Adsorption of Dissolved Gases (CH4, CO2, H2, Noble Gases) by Water-Saturated Smectite Clay Minerals

    NASA Astrophysics Data System (ADS)

    Bourg, I. C.; Gadikota, G.; Dazas, B.

    2016-12-01

    Adsorption of dissolved gases by water-saturated clay minerals plays important roles in a range of fields. For example, gas adsorption in on clay minerals may significantly impact the formation of CH4 hydrates in fine-grained sediments, the behavior of CH4 in shale, CO2 leakage across caprocks of geologic CO2 sequestration sites, H2 leakage across engineered clay barriers of high-level radioactive waste repositories, and noble gas geochemistry reconstructions of hydrocarbon migration in the subsurface. Despite its importance, the adsorption of gases on clay minerals remains poorly understood. For example, some studies have suggested that clay surfaces promote the formation of CH4 hydrates, whereas others indicate that clay surfaces inhibit the formation of CH4 hydrates. Here, we present molecular dynamics (MD) simulations of the adsorption of a range of gases (CH4, CO2, H2, noble gases) on clay mineral surfaces. Our results indicate that the affinity of dissolved gases for clay mineral surfaces has a non-monotone dependence on the hydrated radius of the gas molecules. This non-monotone dependence arises from a combination of two effects: the polar nature of certain gas molecules (in particular, CO2) and the templating of interfacial water structure by the clay basal surface, which results in the presence of interfacial water "cages" of optimal size for intermediate-size gas molecules (such as Ne or Ar).

  20. Effect of feed-gas humidity on nitrogen atmospheric-pressure plasma jet for biological applications.

    PubMed

    Stephan, Karl D; McLean, Robert J C; DeLeon, Gian; Melnikov, Vadim

    2016-11-14

    We investigate the effect of feed-gas humidity on the oxidative properties of an atmospheric-pressure plasma jet using nitrogen gas. Plasma jets operating at atmospheric pressure are finding uses in medical and biological settings for sterilization and other applications involving oxidative stress applied to organisms. Most jets use noble gases, but some researchers use less expensive nitrogen gas. The feed-gas water content (humidity) has been found to influence the performance of noble-gas plasma jets, but has not yet been systematically investigated for jets using nitrogen gas. Low-humidity and high-humidity feed gases were used in a nitrogen plasma jet, and the oxidation effect of the jet was measured quantitatively using a chemical dosimeter known as FBX (ferrous sulfate-benzoic acid-xylenol orange). The plasma jet using high humidity was found to have about ten times the oxidation effect of the low-humidity jet, as measured by comparison with the addition of measured amounts of hydrogen peroxide to the FBX dosimeter. Atmospheric-pressure plasma jets using nitrogen as a feed gas have a greater oxidizing effect with a high level of humidity added to the feed gas.

  1. Trapped noble gases indicate lunar origin for Antarctic meteorite

    NASA Technical Reports Server (NTRS)

    Bogard, D. D.; Johnson, P.

    1983-01-01

    The isotopic abundances of the noble gases (He, Ne, Ar, Kr, Xe) are reported for Antarctic ALHA 81005. It contains solar wind-implanted gases whose absolute and relative concentrations are quite similar to lunar regolith samples but not to other meteorites. ALHA 81005 also contains a large excess Ar-40 component which is identical to the component in lunar fines implanted from the lunar atmosphere. Large concentrations of cosmogenic Ne-21, Kr-82, and Xe-126 in ALHA 81005 indicate a total cosmic ray exposure age of at least 200 million years. The noble gas data alone are strong evidence for a lunar origin of this meteorite.

  2. Noble gases in submarine pillow basalt glasses from Loihi and Kilauea, Hawaii: A solar component in the Earth

    USGS Publications Warehouse

    Honda, M.; McDougall, I.; Patterson, D.B.; Doulgeris, A.; Clague, D.A.

    1993-01-01

    Noble gas elemental and isotopic abundances have been analysed in twenty-two samples of basaltic glass dredged from the submarine flanks of two currently active Hawaiian volcanoes, Loihi Seamount and Kilauea. Neon isotopic ratios are enriched in 20Ne and 21Ne by as much as 16% with respect to atmospheric ratios. All the Hawaiian basalt glass samples show relatively high 3He 4He ratios. The high 20Ne 22Ne values in some of the Hawaiian samples, together with correlations between neon and helium systematics, suggest the presence of a solar component in the source regions of the Hawaiian mantle plume. The solar hypothesis for the Earth's primordial noble gas composition can account for helium and neon isotopic ratios observed in basaltic glasses from both plume and spreading systems, in fluids in continental hydrothermal systems, in CO2 well gases, and in ancient diamonds. These results provide new insights into the origin and evolution of the Earth's atmosphere. ?? 1993.

  3. Noble gas isotopes in mineral springs and wells within the Cascadia forearc, Washington, Oregon, and California

    USGS Publications Warehouse

    McCrory, Patricia A.; Constantz, James E.; Hunt, Andrew G.

    2017-01-31

    IntroductionThis U.S. Geological Survey report presents laboratory analyses along with field notes for an exploratory study to document the relative abundance of noble gases in mineral springs and water wells within the Cascadia forearc of Washington, Oregon, and California (fig. 1). This report describes 14 samples collected in 2014 and 2015 and complements a previous report that describes 9 samples collected in 2012 and 2013 (McCrory and others, 2014b). Estimates of the depth to the underlying Juan de Fuca oceanic plate beneath sample sites are derived from the McCrory and others (2012) slab model. Some of the springs have been previously sampled for chemical analyses (Mariner and others, 2006), but none of the springs or wells currently has publicly available noble gas data. The helium and neon isotope values and ratios presented below are used to determine the sources and mixing history of these mineral and well waters (for example, McCrory and others, 2016).

  4. Noble gas composition of subcontinental lithospheric mantle: An extensively degassed reservoir beneath Southern Patagonia

    NASA Astrophysics Data System (ADS)

    Jalowitzki, Tiago; Sumino, Hirochika; Conceição, Rommulo V.; Orihashi, Yuji; Nagao, Keisuke; Bertotto, Gustavo W.; Balbinot, Eduardo; Schilling, Manuel E.; Gervasoni, Fernanda

    2016-09-01

    Patagonia, in the Southern Andes, is one of the few locations where interactions between the oceanic and continental lithosphere can be studied due to subduction of an active spreading ridge beneath the continent. In order to characterize the noble gas composition of Patagonian subcontinental lithospheric mantle (SCLM), we present the first noble gas data alongside new lithophile (Sr-Nd-Pb) isotopic data for mantle xenoliths from Pali-Aike Volcanic Field and Gobernador Gregores, Southern Patagonia. Based on noble gas isotopic compositions, Pali-Aike mantle xenoliths represent intrinsic SCLM with higher (U + Th + K)/(3He, 22Ne, 36Ar) ratios than the mid-ocean ridge basalt (MORB) source. This reservoir shows slightly radiogenic helium (3He/4He = 6.84-6.90 RA), coupled with a strongly nucleogenic neon signature (mantle source 21Ne/22Ne = 0.085-0.094). The 40Ar/36Ar ratios vary from a near-atmospheric ratio of 510 up to 17700, with mantle source 40Ar/36Ar between 31100-6800+9400 and 54000-9600+14200. In addition, the 3He/22Ne ratios for the local SCLM endmember, at 12.03 ± 0.15 to 13.66 ± 0.37, are higher than depleted MORBs, at 3He/22Ne = 8.31-9.75. Although asthenospheric mantle upwelling through the Patagonian slab window would result in a MORB-like metasomatism after collision of the South Chile Ridge with the Chile trench ca. 14 Ma, this mantle reservoir could have remained unhomogenized after rapid passage and northward migration of the Chile Triple Junction. The mantle endmember xenon isotopic ratios of Pali-Aike mantle xenoliths, which is first defined for any SCLM-derived samples, show values indistinguishable from the MORB source (129Xe/132Xe =1.0833-0.0053+0.0216 and 136Xe/132Xe =0.3761-0.0034+0.0246). The noble gas component observed in Gobernador Gregores mantle xenoliths is characterized by isotopic compositions in the MORB range in terms of helium (3He/4He = 7.17-7.37 RA), but with slightly nucleogenic neon (mantle source 21Ne/22Ne = 0.065-0.079). We suggest that this MORB-like metasomatism was capable of overprinting the noble gas composition of Gobernador Gregores due to recent metasomatism of the SCLM because of asthenospheric mantle upwelling in response to opening of the Patagonian slab window. The 40Ar/36Ar ratios vary from a near-atmospheric ratio of 380 up to 6560, with mantle source 40Ar/36Ar between 8100-700+1400 and 17700-3100+4400. The lower 40Ar/36Ar ratio of the Gobernador Gregores mantle source, compared with that of Pali-Aike, attests that the Patagonia SCLM was affected significantly by atmospheric contamination associated with the recycled oceanic lithosphere.

  5. Rare resource supply crisis and solution technology for semiconductor manufacturing

    NASA Astrophysics Data System (ADS)

    Fukuda, Hitomi; Hu, Sophia; Yoo, Youngsun; Takahisa, Kenji; Enami, Tatsuo

    2016-03-01

    There are growing concerns over future environmental impact and earth resource shortage throughout the world and in many industries. Our semiconductor industry is not excluded. "Green" has become an important topic as production volume become larger and more powerful. Especially, the rare gases are widely used in semiconductor manufacturing because of its inertness and extreme chemical stability. One major component of an Excimer laser system is Neon. It is used as a buffer gas for Argon (Ar) and Krypton (Kr) gases used in deep ultraviolet (DUV) lithography laser systems. Since Neon gas accounting for more than 96% of the laser gas mixture, a fairly large amount of neon gas is consumed to run these DUV lasers. However, due to country's instability both in politics and economics in Ukraine, the main producer of neon gas today, supply reduction has become an issue and is causing increasing concern. This concern is not only based on price increases, but has escalated to the point of supply shortages in 2015. This poses a critical situation for the semiconductor industry, which represents the leading consumer of neon gas in the world. Helium is another noble gas used for Excimer laser operation. It is used as a purge gas for optical component modules to prevent from being damaged by active gases and impurities. Helium has been used in various industries, including for medical equipment, linear motor cars, and semiconductors, and is indispensable for modern life. But consumption of helium in manufacturing has been increased dramatically, and its unstable supply and price rise has been a serious issue today. In this article, recent global supply issue of rare resources, especially Neon gas and Helium gas, and its solution technology to support semiconductor industry will be discussed.

  6. On the siting of gases shock-emplaced from internal cavities in basalt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiens, R.C.

    1988-12-01

    Noble gases were extracted by stepped combustion and crushing from basalts which contained gas-filled cavities of controlled sizes prior to shock at 40 GPa. Analysis of fractions enriched and depleted in shock glass from a single sample gave a factor of 2 higher gas abundances in the glass-rich separate. Release patterns were nearly identical, suggesting similar siting (in glass) in both fractions. Crushing of a sample released {approximately}45% of implanted noble gases, but only {approximately}17% of N{sub 2}, indicating that most or all of the noble gas was trapped in vesicles. Analysis by SEM/EDS confirmed the presence of vesicles inmore » glassy areas, with an average diameter of {approximately}10 {mu}m. Samples with relatively large pre-shock cavities were found to consist of up to 70-80% glass locally and generally exhibit greater local shock effects than solid and densely-packed particulate targets at the same shock pressure, though the latter give higher glass emplacement efficiencies. The petrographic results indicate that in situ production of glassy pockets grossly similar to those in the shergottite EETA 79001 is possible from shock reverberations in the vicinity of a vug. However, the siting of the gases points to a more complex scenario, in which SPB gas and melt material were probably injected into EETA 79001.« less

  7. rotational Raman spectroscopy methods for probing energy thermalisation processes during spin-exchange optical pumping

    NASA Astrophysics Data System (ADS)

    Newton, Hayley; Walkup, Laura L.; Whiting, Nicholas; West, Linda; Carriere, James; Havermeyer, Frank; Ho, Lawrence; Morris, Peter; Goodson, Boyd M.; Barlow, Michael J.

    2014-05-01

    Spin-exchange optical pumping (SEOP) has been widely used to produce enhancements in nuclear spin polarisation for hyperpolarised noble gases. However, some key fundamental physical processes underlying SEOP remain poorly understood, particularly in regards to how pump laser energy absorbed during SEOP is thermalised, distributed and dissipated. This study uses in situ ultra-low frequency Raman spectroscopy to probe rotational temperatures of nitrogen buffer gas during optical pumping under conditions of high resonant laser flux and binary Xe/N2 gas mixtures. We compare two methods of collecting the Raman scattering signal from the SEOP cell: a conventional orthogonal arrangement combining intrinsic spatial filtering with the utilisation of the internal baffles of the Raman spectrometer, eliminating probe laser light and Rayleigh scattering, versus a new in-line modular design that uses ultra-narrowband notch filters to remove such unwanted contributions. We report a ~23-fold improvement in detection sensitivity using the in-line module, which leads to faster data acquisition and more accurate real-time monitoring of energy transport processes during optical pumping. The utility of this approach is demonstrated via measurements of the local internal gas temperature (which can greatly exceed the externally measured temperature) as a function of incident laser power and position within the cell.

  8. Clast Selection and Metallographic Cooling Rates: Initial Results on Type 1A and 2A Mesosiderites

    NASA Technical Reports Server (NTRS)

    Baecker, B.; Cohen, B. A.; Rubin, A. E.; Frasl, B.; Corrigan, C. M.

    2017-01-01

    We initiated a comprehensive study on selected clasts and metal of mesosiderites using SEM, electron microprobe and the complete suite of noble gases. Here we report initial results on the petrography of selected clasts and metallographic cooling rates using the central Ni method used in sev-eral publications. We focus on the approach of selecting grains in least recrystallized mesosiderites. Hence, especially (lithic) clasts in type 1A, 1B, 2A and 2B are the first choice. They provide highest primitive-ness and least annealing/metamorphism. All grains selected should be in close proximity to each other. Lithic clasts in mesosiderites are of high interest be-cause of their igneous texture and similarity to eucrites and howardite petrography. We find pyrox-enes (px) and plagioclase (plag) attached to each other which implies a common formation history. It will be interesting to see differences and similarities in their noble gas inventory (CRE ages, trapped components and closure temperature). In addition, we will investi-gate variations of the lithic clasts toward similar grains in the thick sections which are not igneous. Plag grains are the best bases for noble gas measurements con-cerning He to Ar and Ar-Ar dating since it delivers im-portant target elements. We focus on plag grains in close contact to olivine (olv) / px grains to assess weth-er both grains show noble gas patterns being similar or different. Phosphate grains are suitable for Kr and Xe measurements since they yield REE abundances (tar-get elements).

  9. Reconstructing temperatures in the Maritime Alps, Italy, since the Last Glacial Maximum using cosmogenic noble gas paleothermometry

    NASA Astrophysics Data System (ADS)

    Tremblay, Marissa; Spagnolo, Matteo; Ribolini, Adriano; Shuster, David

    2016-04-01

    The Gesso Valley, located in the southwestern-most, Maritime portion of the European Alps, contains an exceptionally well-preserved record of glacial advances during the late Pleistocene and Holocene. Detailed geomorphic mapping, geochronology of glacial deposits, and glacier reconstructions indicate that glaciers in this Mediterranean region responded to millennial scale climate variability differently than glaciers in the interior of the European Alps. This suggests that the Mediterranean Sea somehow modulated the climate of this region. However, since glaciers respond to changes in temperature and precipitation, both variables were potentially influenced by proximity to the Sea. To disentangle the competing effects of temperature and precipitation changes on glacier size, we are constraining past temperature variations in the Gesso Valley since the Last Glacial Maximum (LGM) using cosmogenic noble gas paleothermometry. The cosmogenic noble gases 3He and 21Ne experience diffusive loss from common minerals like quartz and feldspars at Earth surface temperatures. Cosmogenic noble gas paleothermometry utilizes this open-system behavior to quantitatively constrain thermal histories of rocks during exposure to cosmic ray particles at the Earth's surface. We will present measurements of cosmogenic 3He in quartz sampled from moraines in the Gesso Valley with LGM, Bühl stadial, and Younger Dryas ages. With these 3He measurements and experimental data quantifying the diffusion kinetics of 3He in quartz, we will provide a preliminary temperature reconstruction for the Gesso Valley since the LGM. Future work on samples from younger moraines in the valley system will be used to fill in details of the more recent temperature history.

  10. Catalytic process for formaldehyde oxidation

    NASA Technical Reports Server (NTRS)

    Kielin, Erik J. (Inventor); Brown, Kenneth G. (Inventor); D'Ambrosia, Christine M. (Inventor)

    1996-01-01

    Disclosed is a process for oxidizing formaldehyde to carbon dioxide and water without the addition of energy. A mixture of formaldehyde and an oxidizing agent (e.g., ambient air containing formaldehyde) is exposed to a catalyst which includes a noble metal dispersed on a metal oxide which possesses more than one oxidation state. Especially good results are obtained when the noble metal is platinum, and the metal oxide which possesses more than one oxidation state is tin oxide. A promoter (i.e., a small amount of an oxide of a transition series metal) may be used in association with the tin oxide to provide very beneficial results.

  11. Extraterrestrial Helium (He@C60) Trapped in Fullerenes in the Sudbury Impact Structure

    NASA Technical Reports Server (NTRS)

    Becker, L.; Bada, J. L.; Poreda, R. J.; Bunch, T. E.

    1997-01-01

    Fullerenes (C60 and C70) have recently been identified in a shock-produced breccia (Onaping Formation) associated with the 1.85-Ga Sudbury Impact Crater. The presence of parts-per-million levels of fullerenes in this impact structure raises interesting questions about the processes that led to the formation of fullerenes and the potential for delivery of intact organic material to the Earth by a large bolide (e.g., asteroid or comet). Two possible scenarios for the presence of fullerenes in the Sudbury impact deposits are that (1) fullerenes are synthesized within the impact plume from the C contained in the bolide; or (2) fullerenes are already present in the bolide and survived the impact event. The correlation of C and trapped noble gas atoms in meteorites is well established. Primitive meteorites contain several trapped noble gas components that have anomalous isotopic compositions, some of which may have a presolar origin. Several C-bearing phases, including SiC, graphite, and diamond, have been recognized as carriers of trapped noble gases. It has also been suggested that fullerenes (C60 and C70) might be a carrier of noble gas components in carbonaceous chondrites. Recently, fullerenes have been detected in separate samples in the Allende meteorite. Carbon-60 is large enough to enclose the noble gases He, Ne, Ar, Kr, and Xe, but it is too small to contain diatomic gases such as N2 or triatomic gases such as CO2. Recent experimental work has demonstrated that noble gases of a specific isotopic composition can be introduced into synthetic fullerenes at high temperatures and pressures; these encapsulated gases can then be released by the breaking of one or more C bonds during step-heating under vacuum. These thermal-release patterns for He encapsulated within the C60 molecule (He@C60) are similar to the patterns for acid residues of carbonaceous chondrites, suggesting that fullerenes could be an additional carrier of trapped noble gases in acid residues of meteorites. Analysis and Results: In order to characterize the noble gas compositions of the Sudbury fullerenes, we undertook a systematic study of acid-resistant residues throughout the C-rich layer (Black member) of the Onaping Formation. Samples were demineralized and extracted using standard techniques. The Onaping extracts were analyzed using several techniques, including UV-Vis adsorption, electro spray mass spectrometry, and laser desorption (linear and reflectron) time-of-flight (TOF) mass spectrometry (LDMS). The Sudbury fullerenes were then separated and purified using HPLC coupled with a photo diode array detector. The HPLC extracts containing the purified fullerenes were loaded into a metal tube furnace within a glove box under a N atmosphere in preparation for noble gas analyses. The 3-He and 4-He content of the fullerene extracts was measured using previously reported standard techniques . Discussion: Fullerenes (C60 and C70) in the Sudbury Impact Structure have been found to contain trapped He with a 3-He/4-He ratio greater than 5 x 10(exp -4). The 3-He/4-He ratio exceeds the accepted solar value by more than 30% and is more than 10x higher than the maximum reported mantle value. Terrestrial nuclear reactions or cosmic-my bombardment are not sufficient to generate such a high ratio. The 3-He/4-He ratios in the Sudbury fullerenes are similar to those determined for interplanetary dust particles. The greater-than-solar ratios of 3-He/4-He in the Sudbury fullerenes may indicate a presolar origin, although alternative mechanisms occurring in the ISM to explain these high ratios (e.g., spallation reactions, selective He implantation, etc.) cannot be entirely ruled out. We are currently attempting to isolate enough fullerene material to measure anomalous Ne (or Kr or Xe) contained within the C60 (e.g., the "pure" 22-Ne component) and thus determine whether the Sudbury fullerenes are indeed presolar in origin.

  12. Demonstration of neutron detection utilizing open cell foam and noble gas scintillation

    NASA Astrophysics Data System (ADS)

    Lavelle, C. M.; Coplan, M.; Miller, E. C.; Thompson, Alan K.; Kowler, A. L.; Vest, Robert E.; Yue, A. T.; Koeth, T.; Al-Sheikhly, M.; Clark, Charles W.

    2015-03-01

    We present results demonstrating neutron detection via a closely spaced converter structure coupled to low pressure noble gas scintillation instrumented by a single photo-multiplier tube (PMT). The converter is dispersed throughout the gas volume using a reticulated vitreous carbon foam coated with boron carbide (B4C). A calibrated cold neutron beam is used to measure the neutron detection properties, using a thin film of enriched 10B as a reference standard. Monte Carlo computations of the ion energy deposition are discussed, including treatment of the foam random network. Results from this study indicate that the foam shadows a significant portion of the scintillation light from the PMT. The high scintillation yield of Xe appears to overcome the light loss, facilitating neutron detection and presenting interesting opportunities for neutron detector design.

  13. Demonstration of neutron detection utilizing open cell foam and noble gas scintillation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavelle, C. M., E-mail: christopher.lavelle@jhuapl.edu; Miller, E. C.; Coplan, M.

    2015-03-02

    We present results demonstrating neutron detection via a closely spaced converter structure coupled to low pressure noble gas scintillation instrumented by a single photo-multiplier tube (PMT). The converter is dispersed throughout the gas volume using a reticulated vitreous carbon foam coated with boron carbide (B{sub 4}C). A calibrated cold neutron beam is used to measure the neutron detection properties, using a thin film of enriched {sup 10}B as a reference standard. Monte Carlo computations of the ion energy deposition are discussed, including treatment of the foam random network. Results from this study indicate that the foam shadows a significant portionmore » of the scintillation light from the PMT. The high scintillation yield of Xe appears to overcome the light loss, facilitating neutron detection and presenting interesting opportunities for neutron detector design.« less

  14. A feasibility study of ion implantation techniques for mass spectrometer calibration

    NASA Technical Reports Server (NTRS)

    Koslin, M. E.; Krycuk, G. A.; Schatz, J. G., Jr.; White, F. A.; Wood, G. M.

    1978-01-01

    An experimental study was undertaken to examine the feasibility of using ion-implanted filaments doped with either an alkali metal or noble gas for in situ recalibration of onboard mass spectrometers during extended space missions. Implants of rubidium and krypton in rhenium ribbon filaments were subsequently tested in a bakeable 60 deg sector mass spectrometer operating in the static mode. Surface ionization and electron impact ion sources were both used, each yielding satisfactory results. The metallic implant with subsequent ionization provided a means of mass scale calibration and determination of system operating parameters, whereas the noble gas thermally desorbed into the system was more suited for partial pressure and sensitivity determinations.

  15. Noble gas cluster ions

    NASA Astrophysics Data System (ADS)

    Kaya, Yunus; Kalkan, Yalçin; Veenhof, Rob

    2018-02-01

    In this work, a reaction mechanism of formation of noble gas (Ng) cluster ions has been theoretically investigated in detail. The kinetic studies of formation of Xe+Xe cluster in Xe, Ar+Ar cluster ions in Ar, and Ne+Ne cluster ions in Ne have been made as theoretically. The optimized structures in the ground state were calculated using the density functional theory (DFT) by the B3LYP method combined with the Stuttgart/Dresden effective core potential basis set (SDD). In addition, we calculated the rate constants of all cluster formations. The results are 1.15 × 10-31, 3.58 × 10-31, 0.23 × 10-31cm6/s, respectively for Neon, Argon, Xenon cluster ions.

  16. CO-oxidation catalysts: Low-temperature CO oxidation over Noble-Metal Reducible Oxide (NMRO) catalysts

    NASA Technical Reports Server (NTRS)

    Herz, Richard K.

    1990-01-01

    Oxidation of CO to CO2 is an important reaction technologically and environmentally and a complex and interesting reaction scientifically. In most cases, the reaction is carried out in order to remove CO as an environmental hazard. A major application of heterogeneous catalysts is catalytic oxidation of CO in the exhaust of combustion devices. The reaction over catalysts in exhaust gas is fast and often mass-transfer-limited since exhaust gases are hot and O2/CO ratios are high. The main challenges to catalyst designers are to control thermal sintering and chemical poisoning of the active materials. The effect of the noble metal on the oxide is discussed, followed by the effect of the oxide on the noble metal, the interaction of the noble metal and oxide to form unique catalytic sites, and the possible ways in which the CO oxidation reaction is catalyzed by the NMRO materials.

  17. Solubilities of noble gases in magnetite - Implications for planetary gases in meteorites.

    NASA Technical Reports Server (NTRS)

    Lancet, M. S.; Anders, E.

    1973-01-01

    Solubilities of noble gases in magnetite were determined by growing magnetite in a noble-gas atmosphere between 450 and 700 K. Henry's law is obeyed at pressures up to .01 atm for He, Ne, Ar and up to .00001 atm for Kr, Xe, with the following distribution coefficients at 500 K: He 0.042, Ne 0.016, Ar 3.6, Kr 1.3, Xe 0.88, some 100 to 100,000 times higher than previous determinations on silicate and fluoride melts. Apparent heats of solution are in sharp contrast with earlier determinations on melts which were small and positive, but are comparable to the values for clathrates. Presumably the gases are held in anion vacancies.

  18. High energy primary knock-on process in metal deuterium systems initiated by bombardment with noble gas ions

    NASA Astrophysics Data System (ADS)

    Gann, V. V.; Tolstolutskaya, G. D.

    2008-08-01

    An experimental study confirms the possibility of nuclear fusion reactions initiating in metal-deuterium targets by bombarding them with ions that are not the reagents of the fusion reaction, in particular, with noble gas ions. The yields of (d,d) and (d,t) reactions were measured as functions of energy (0.4-3.2 MeV) and mass of incident ions (He +, Ne +, Ar +, Kr + and Xe +). Irradiation by heavy ions produced a number of energetic deuterium atoms in the deuteride and deuterium + tritium metal targets. At ion energies of ˜0.1-1 MeV the d-d reaction yields are relatively high. A model of nuclear fusion reaction cross-sections in atomic collision cascades initiated by noble gas ion beam in metal-deuterium target is developed. The method for calculation tritium or deuterium recoil fluxes and the yield of d-d fusion reaction in subsequent collisions was proposed. It was shown that D(d,p)t and D(t,n) 4He reactions mainly occur in energy region of the recoiled D-atom from 10 keV to 250 keV. The calculated probabilities of d-d and d-t fusion reactions were found to be in a good agreement with the experimental data.

  19. Circumventing shallow air contamination in Mid Ocean Ridge Basalts

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sujoy; Parai, Rita; Tucker, Jonathan; Middleton, Jennifer; Langmuir, Charles

    2016-04-01

    Noble gases in mantle-derived basalts provide a rich portrait of mantle degassing and surface-interior volatile exchange. However, the ubiquity of shallow-level air contamination frequently obscures the mantle noble gas signal. In a majority of samples, shallow air contamination dominates the noble gas budget. As a result, reconstructing the variability in heavy noble gas mantle source compositions and inferring the history of deep recycling of atmospheric noble gases is difficult. For example, in the gas-rich popping rock 2ΠD43, 129Xe/130Xe ratios reach 7.7±0.23 in individual step-crushes, but the bulk composition of the sample is close to air (129Xe/130Xe of 6.7). Here, we present results from experiments designed to elucidate the source of shallow air contamination in MORBs. Step-crushes were carried out to measure He, Ne, Ar and Xe isotopic compositions on two aliquots of a depleted popping glass that was dredged from between the Kane and Atlantis Fracture Zones of the Mid-Atlantic Ridge in May 2012. One aliquot was sealed in ultrapure N2 after dredge retrieval, while the other aliquot was left exposed to air for 3.5 years. The bulk 20Ne/22Ne and 129Xe/130Xe ratios measured in the aliquot bottled in ultrapure N2 are 12.3 and 7.6, respectively, and are nearly identical to the estimated mantle source values. On the other hand, step crushes in the aliquot left exposed to air for several years show Ne isotopic compositions that are shifted towards air, with a bulk 20Ne/22Ne of 11.5; the bulk 129Xe/130Xe, however, was close to 7.6. These results indicate that lighter noble gases exchange more efficiently between the bubbles trapped in basalt glass and air, suggesting a diffusive or kinetic mechanism for the incorporation of the shallow air contamination. Importantly, in Ne-Ar or Ar-Xe space, step-crushes from the bottled aliquot display a trend that can be easily fit with a simple two-component hyperbolic mixing between mantle and atmosphere noble gases. Step-crushes in the aliquot left exposed to air display significantly more scatter, which makes it difficult to fit a two-component mixing hyperbola and obtain the mantle source value for this aliquot. In summary, our simple and inexpensive experiment demonstrates that at least in some samples, significant air contamination is added after dredge retrieval from the ocean floor. Bottling samples in ultrapure N2 upon dredge retrieval can largely eliminate this component of shallow-level air contamination. As a result, the number of step crushes required to characterize a sample decreases and estimating the mantle source compositions of the basalts becomes significantly easier, which in turn leads to more refined estimates of mantle degassing and regassing rates.

  20. Plasma Processing of Materials

    DTIC Science & Technology

    1985-02-22

    inert gas or in a reduced pressure environment) one can obtain rapidly solidified metastable (i.e., amorphous, microcrystalline, and supersaturated...integrated circuits dnd thus is an area of’vital : importance to our electronics industry. Applications utilizing noble gas plasmas, such as ion-plating...phenomena and probably will not benefit -ubstantially from acditional basic research. Applications utilizing molecular gas plasmas, where reactive species

  1. Developing Optimal Parameters for Hyperpolarized Noble Gas and Inert Fluorinated Gas MRI of Lung Disorders

    ClinicalTrials.gov

    2018-06-21

    Lung Transplant; Lung Resection; Lung Cancer; Asthma; Cystic Fibrosis; Chronic Obstructive Pulmonary Disease; Emphysema; Mesothelioma; Asbestosis; Pulmonary Embolism; Interstitial Lung Disease; Pulmonary Fibrosis; Bronchiectasis; Seasonal Allergies; Cold Virus; Lung Infection; Pulmonary Hypertension; Pulmonary Dysplasia; Obstructive Sleep Apnea

  2. Size versus polarizability in protein-ligand interactions: binding of noble gases within engineered cavities in phage T4 lysozyme.

    PubMed

    Quillin, M L; Breyer, W A; Griswold, I J; Matthews, B W

    2000-09-29

    To investigate the relative importance of size and polarizability in ligand binding within proteins, we have determined the crystal structures of pseudo wild-type and cavity-containing mutant phage T4 lysozymes in the presence of argon, krypton, and xenon. These proteins provide a representative sample of predominantly apolar cavities of varying size and shape. Even though the volumes of these cavities range up to the equivalent of five xenon atoms, the noble gases bind preferentially at highly localized sites that appear to be defined by constrictions in the walls of the cavities, coupled with the relatively large radii of the noble gases. The cavities within pseudo wild-type and L121A lysozymes each bind only a single atom of noble gas, while the cavities within mutants L133A and F153A have two independent binding sites, and the L99A cavity has three interacting sites. The binding of noble gases within two double mutants was studied to characterize the additivity of binding at such sites. In general, when a cavity in a protein is created by a "large-to-small" substitution, the surrounding residues relax somewhat to reduce the volume of the cavity. The binding of xenon and, to a lesser degree, krypton and argon, tend to expand the volume of the cavity and to return it closer to what it would have been had no relaxation occurred. In nearly all cases, the extent of binding of the noble gases follows the trend xenon>krypton>argon. Pressure titrations of the L99A mutant have confirmed that the crystallographic occupancies accurately reflect fractional saturation of the binding sites. The trend in noble gas affinity can be understood in terms of the effects of size and polarizability on the intermolecular potential. The plasticity of the protein matrix permits repulsion due to increased ligand size to be more than compensated for by attraction due to increased ligand polarizability. These results have implications for the mechanism of general anesthesia, the migration of small ligands within proteins, the detection of water molecules within apolar cavities and the determination of crystallographic phases. Copyright 2000 Academic Press.

  3. Late Impacts and the Origins of the Atmospheres on the Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S.; Stewart, S. T.; Lock, S. J.; Parai, R.; Tucker, J. M.

    2014-12-01

    Models for the origin of terrestrial atmospheres typically require an intricate sequence of events, including hydrodynamic escape, outgassing of mantle volatiles and late delivery. Here we discuss the origin of the atmospheres on the terrestrial planets in light of new ideas about the formation of the Moon, giant impact induced atmospheric loss and recent noble gas measurements. Our new measurements indicate that noble gases in the Earth's atmosphere cannot be derived from any combination of fractionation of a nebular-derived atmosphere followed by outgassing of deep or shallow mantle volatiles. While Ne in the mantle retains a nebular component, the present-day atmosphere has no memory of nebular gases. Rather, atmospheric noble gases have a close affinity to chondrites. On the other hand, Venus's atmosphere has 20 and 70 times higher abundance of 20Ne and 36Ar, respectively, and a 20Ne/22Ne ratio closer to the solar value than Earth's atmosphere. While the present atmosphere of Mars is significantly fractionated in the lighter noble gases due to long term atmospheric escape, the Kr isotopic ratios in Martian atmosphere are identical to solar. Thus, while Earth's atmosphere has no memory of accretion of nebular gases, atmospheres on both Venus and Mars preserve at least a component of nebular gases. To explain the above observations, we propose that a common set of processes operated on the terrestrial planets, and that their subsequent evolutionary divergence is simply explained by planetary size and the stochastic nature of giant impacts. We present geochemical observations and simulations of giant impacts to show that most of Earth's mantle was degassed and the outgassed volatiles were largely lost during the final sequence of giant impacts onto Earth. Earth's noble gases were therefore dominantly derived from late-accreting planetesimals. In contrast, Venus did not suffer substantial atmospheric loss by a late giant impact and retains a higher abundance of both nebular and chondritic noble gases compared to Earth. Fast-accreting Mars has a noble gas signature inherited from the solar nebula, and its low mass allowed for gravitational escape of the volatile components in late accreting planetesimals due to vaporization upon impact.

  4. a Study of the Interferences with the On-Line Radioiodine Measurement Under Nuclear Accident Conditions

    NASA Astrophysics Data System (ADS)

    Tseng, Tung-Tse

    In this research the interferences with the on -line detection of radioiodines, under nuclear accident conditions, were studied. The special tool employed for this research is the developed on-line radioiodine monitor (the Penn State Radioiodine Monitor), which is capable of detecting low levels of radioiodine on-line in air containing orders of magnitude higher levels of radioactive noble gases. Most of the data reported in this thesis were collected during a series of experiments called "Source -Term Experiment Program (STEP)." The experiments were conducted at the Argonne National Laboratory's TREAT reactor located at the Idaho National Engineering Laboratory (INEL). In these tests, fission products were released from the Light Water Reactor (LWR) test fuels as a result of simulating a reactor accident. The Penn State Monitor was then used to sample the fission products accumulated in a large container which simulated the reactor containment building. The test results proved that the Penn State Monitor was not affected significantly by the passage of large amounts of noble gases through the system. Also, it confirmed the predicted results that the operation of conventional on-line radioiodine detectors would, under nuclear accident conditions, be seriously impaired by the passage of high concentrations of radioactive noble gases through such systems. This work also demonstrated that under conditions of high noble gas concentrations and low radioiodine concentrations, the formation of noble-gas-decayed alkali metals can seriously interfere with the on-line detection of radioiodine, especially during the 24 hours immediately after the accident. The decayed alkali metal particulates were also found to be much more penetrating than the ordinary type of particulates, since a large fraction (15%) of the particulates were found to penetrate through the commonly used High Efficiency Particulate Air (HEPA) filter (rated >99.97% for 0.3 (mu)m particulate). Also, a significant fraction ((TURN)40%) of these particles became deposited on silver zeolite iodine filters inside the counting chamber. Finally, the Penn State Monitor proved itself to be a powerful research tool for the on-line source term studies since it can easily produce near noble-gas-free spectra during the real time studies occurring under simulated nuclear accident conditions.

  5. Mantle Noble Gas Contents Controlled by Subduction of Serpentinite

    NASA Astrophysics Data System (ADS)

    Krantz, J. A.; Parman, S. W.; Kelley, S. P.; Smye, A.; Jackson, C.

    2017-12-01

    Geochemical analyses of exhumed subduction zone material1, well gases2, MORB, and OIBs3 indicate that noble gases are being recycled from the surface of the earth into the mantle. However, the path taken by these noble gases is unclear. To estimate the distribution and quantity of Ar, Kr, and Xe in subducting slabs, a model consisting of layers of sediments, altered oceanic crust (AOC), and serpentinite (hydrously altered mantle) has been developed. The noble gas contents of sediments and AOC were calculated using the least air-like and most gas-rich analyses from natural systems4,5, while serpentinite was modelled using both data from natural systems1 and experimentally determined solubilities. Layer thicknesses were assessed over a range of values: 1 to 12 km of sediments, 5 to 9 km of AOC, and 1 to 30 km of serpentinite. In all cases, the serpentinite layer contains at least an order of magnitude more Ar and Kr than the other layers. For realistic layer thicknesses (1 km of sediments, 6 km of AOC, and 3 km of serpentinite), Xe is distributed roughly equally between the three layers. By incorporating global subduction rates6, fluxes of the heavy noble gases into the mantle have been calculated as 4 · 1012 mol/Ma for 36Ar, 6 · 1011 mol/Ma for 84Kr, and 8 · 109 mol/Ma for 130Xe. These fluxes are equivalent to the total 84Kr and 130Xe contents of the depleted and bulk mantle over 1 and 10 Ma7. Similarly, the flux of 36Ar is equivalent over 1 and 100 Ma. Since the Kr and Xe have not been completely overprinted by recycling, the large majority of subducted noble gases must escape in the subduction zone. However, even the small amounts that are subducted deeper have affected the mantle as measured in both MORB and OIBs. 1. Kendrick, M.A. et al., Nature Geoscience, 4, 807-812, 2011 2. Holland, G. and Ballentine, C.J., Nature, 441, 186-191, 2006 3. Parai, R. and Mukhopadhyay, S., G3, 16, 719-735, 2015 4. Matsuda, J. and Nagao, K., Geochemical Journal, 20, 71-80, 1986 5. Chavrit, D. et al., GCA, 183, 106-124, 2016 6. Hacker, B.R., G3, 9, 1-24,2008 7. Marty, B., EPSL, 313-314, 56-66, 2012

  6. Noble Gases in the LEW 88663 L7 Chondrite

    NASA Astrophysics Data System (ADS)

    Miura, Y. N.; Sugiura, N.; Nagao, K.

    1995-09-01

    LEW88663 and some meteorites (e.g. Shaw) are the most highly metamorphosed meteorites among L group chondrites. Although the abundances of lithophile elements and oxygen isotopic compositions of the L7 chondrite LEW88663 (total recovered mass: 14.5g) are close to those of the range for L chondrites [1,2], metallic iron is absent and concentrations of siderophile elements are about half of typical values for L chondrites [3,4]. Petrographical and geochemical observation suggested that this meteorite has experienced partial melting [5]. As a part of our study on differentiated meteorites, we also investigated noble gases in this meteorite. We present here noble gas compositions of LEW88663 and discuss history of this meteorite. In addition, we will consider whether there is any evidence for bridging between chondrites and achondrites. Noble gases were extracted from a whole rock sample weighing 66.31 mg by total fusion, and all stable noble gas isotopes as well as cosmogenic radioactive 81Kr were analyzed using a mass spectrometer at ISEI, Okayama University. The results are summarized in the table. The concentrations of cosmogenic ^3He, ^21Ne, and ^38Ar are 7.3, 1.6 and 3.1x10^-8 cm^3STP/g, respectively. The cosmic-ray exposure ages based on them are calculated to be 4.7, 6.9 and 8.8 m.y., respectively, using the production rates proposed by [6, 7] and mean chemical compositions of L chondrites. The shorter cosmic-ray exposure ages T(sub)3 and T(sub)21 than T(sub)38 would be due to diffusive loss of lighter noble gases from the meteorite. The concentrations of trapped Kr and Xe in LEW88663 are lower than those for L6 chondrites [8], supporting thermal metamorphism for the meteorite higher than that for L6 chondrites. The Kr and Xe are isotopically close to those of the terrestrial atmospheric Kr and Xe, and elemental abundance ratios for Ar, Kr and Xe suggest adsorbed noble gas patterns of the terrestrial atmosphere. The terrestrial atmospheric Ar, Kr and Xe (most likely terrestrial contamination in origin) rather than chondritic ones seem to be dominant in LEW88663. A K-Ar age of 4.3 +/- 0.2 b.y. is obtained assuming K content of 660 ppm by [9], implying radiogenic ^40Ar is almost retained. Because of low abundance of trapped Xe in the meteorite compared with the abundances in other chondrites, ^244Pu-derived fission Xe could be evaluated more precisely. According to the measured Xe data (for this, three isotope plots such as ^134Xe/^130Xe versus ^136Xe/^130Xe are useful), we conclude that Xe in LEW88663 is the mixture of ^244Pu-derived fission Xe and the terrestrial atmospheric Xe with possibility that a small amount of chondritic Xe is contained. Using the same procedure described in [10], we obtained excess ^136Xe concentration, 1.4 x 10^-12 cm^3STP/g with about 20% uncertainty, of which about 3% is from contribution of ^238U-derived ^136Xe if average U content for L chondrite (14 ppb) is assumed. The calculated Pu abundance of 0.21 ppb is slightly higher than those reported for L chondrites Barwell (0.11 +/- 0.05 ppb [11]) and Marion (0.10+/-0.40 ppb [11]). Acknowledgments: We thank Meteorite Working Group for providing the sample. We are also grateful to Dr. D. Mittlefehldt for showing us his chemical composition data. This work is supported by Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists. References: [1] Mason B. et al. (1992) Antarc. Meteorite Newsletter, 15(2), 30. [2] Mason B. and Marlow R. (1992) Antarc. Meteorite Newsletter, 15(1), 16. [3] Davis A. M. et al. (1993) LPS XXIV, 375-376. [4] Mittlefehldt D. W. (1993) Meteoritics, 28, 401-402. [5] Hervey R. P. (1993) Meteoritics, 28, 360. [6] Eugster O. (1988) GCA, 52, 1649-1662. [7] Marti K. and Graf T.(1992) Annu. Rev. Earth Planet Sci., 20, 221-243. [8] E.g. Marti K. (1967) EPSL, 2, 193-196. [9] Mittlefehldt D. W., personal communication. [10] Miura Y. et al. (1993) GCA, 57, 1857-1866. [11] Hagee B. et al. (1990) GCA, 54, 2847-2858. Table 1 shows noble gases in L7 chondrite LEW88663 (66.31 mg).

  7. Research and Development of Non-Spectroscopic MEMS-Based Sensor Arrays for Targeted Gas Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loui, A; McCall, S K

    2011-10-24

    The ability to monitor the integrity of gas volumes is of interest to the stockpile surveillance community. Specifically, the leak detection of noble gases, at relevant concentration ranges and distinguished from other chemical species that may be simultaneously present, is particularly challenging. Aside from the laboratory-based method of gas chromatography-mass spectrometry (GC-MS), where samples may be collected by solid-phase microextraction (SPME) or cryofocusing, the other major approaches for gas-phase detection employ lasers typically operating in the mid-infrared wavelength region. While mass spectrometry can readily detect noble gases - the helium leak detector is an obvious example - laser-based methods suchmore » as infrared (IR) or Raman spectroscopy are completely insensitive to them as their monatomic nature precludes a non-zero dipole moment or changes in polarizability upon excitation. Therefore, noble gases can only be detected by one of two methods: (1) atomic emission spectroscopies which require the generation of plasmas through laser-induced breakdown, electrical arcing, or similar means; (2) non-spectroscopic methods which measure one or more physical properties (e.g., mass, thermal conductivity, density). In this report, we present our progress during Fiscal Year 2011 (FY11) in the research and development of a non-spectroscopic method for noble gas detection. During Fiscal Year 2010 (FY10), we demonstrated via proof-of-concept experiments that the combination of thermal conductivity detection (TCD) and coating-free damped resonance detection (CFDRD) using micro-electromechanical systems (MEMS) could provide selective sensing of these inert species. Since the MEMS-based TCD technology was directly adapted from a brassboard prototype commissioned by a previous chemical sensing project, FY11 efforts focused on advancing the state of the newer CFDRD method. This work, guided by observations previously reported in the open literature, has not only resulted in a substantially measureable increase in selectivity but has also revealed a potential method for mitigating or eliminating thermal drift that does not require a secondary reference sensor. The design of an apparatus to test this drift compensation scheme will be described. We will conclude this report with a discussion of planned efforts in Fiscal Year 2012 (FY12).« less

  8. Using Noble Gas Tracers to Estimate CO2 Saturation in the Field: Results from the 2014 CO2CRC Otway Repeat Residual Saturation Test

    NASA Astrophysics Data System (ADS)

    LaForce, T.; Ennis-King, J.; Boreham, C.; Serno, S.; Cook, P. J.; Freifeld, B. M.; Gilfillan, S.; Jarrett, A.; Johnson, G.; Myers, M.; Paterson, L.

    2015-12-01

    Residual trapping efficiency is a critical parameter in the design of secure subsurface CO2 storage. Residual saturation is also a key parameter in oil and gas production when a field is under consideration for enhanced oil recovery. Tracers are an important tool that can be used to estimate saturation in field tests. A series of measurements of CO2 saturation in an aquifer were undertaken as part of the Otway stage 2B extension field project in Dec. 2014. These tests were a repeat of similar tests in the same well in 2011 with improvements to the data collection and handling method. Two single-well tracer tests using noble gas tracers were conducted. In the first test krypton and xenon are injected into the water-saturated formation to establish dispersivity of the tracers in single-phase flow. Near-residual CO2 saturation is then established near the well. In the second test krypton and xenon are injected with CO2-saturated water to measure the final CO2 saturation. The recovery rate of the tracers is similar to predicted rates using recently published partitioning coefficients. Due to technical difficulties, there was mobile CO2 in the reservoir throughout the second tracer test in 2014. As a consequence, it is necessary to use a variation of the previous simulation procedure to interpret the second tracer test. One-dimensional, radial simulations are used to estimate average saturation of CO2 near the well. Estimates of final average CO2 saturation are computed using two relative permeability models, thermal and isothermal simulations, and three sets of coefficients for the partitioning of the tracers between phases. Four of the partitioning coefficients used were not previously available in the literature. The noble gas tracer field test and analysis of the 2011 and 2014 data both give an average CO2 saturation that is consistent with other field measurements. This study has demonstrated the repeatability of the methodology for noble gas tracer tests in the field.

  9. Using noble gas tracers to estimate residual CO2 saturation in the field: results from the CO2CRC Otway residual saturation and dissolution test

    NASA Astrophysics Data System (ADS)

    LaForce, T.; Ennis-King, J.; Paterson, L.

    2013-12-01

    Residual CO2 saturation is a critically important parameter in CO2 storage as it can have a large impact on the available secure storage volume and post-injection CO2 migration. A suite of single-well tests to measure residual trapping was conducted at the Otway test site in Victoria, Australia during 2011. One or more of these tests could be conducted at a prospective CO2 storage site before large-scale injection. The test involved injection of 150 tonnes of pure carbon dioxide followed by 454 tonnes of CO2-saturated formation water to drive the carbon dioxide to residual saturation. This work presents a brief overview of the full test sequence, followed by the analysis and interpretation of the tests using noble gas tracers. Prior to CO2 injection krypton (Kr) and xenon (Xe) tracers were injected and back-produced to characterise the aquifer under single-phase conditions. After CO2 had been driven to residual the two tracers were injected and produced again. The noble gases act as non-partitioning aqueous-phase tracers in the undisturbed aquifer and as partitioning tracers in the presence of residual CO2. To estimate residual saturation from the tracer test data a one-dimensional radial model of the near-well region is used. In the model there are only two independent parameters: the apparent dispersivity of each tracer and the residual CO2 saturation. Independent analysis of the Kr and Xe tracer production curves gives the same estimate of residual saturation to within the accuracy of the method. Furthermore the residual from the noble gas tracer tests is consistent with other measurements in the sequence of tests.

  10. Highly Concentrated Nebular Noble Gases in Porous Nanocarbon Separates from the Saratov (L4) Meteorite

    NASA Astrophysics Data System (ADS)

    Amari, Sachiko; Matsuda, Jun-ichi; Stroud, Rhonda M.; Chisholm, Matthew F.

    2013-11-01

    The majority of heavy noble gases (Ar, Kr, and Xe) in primitive meteorites are stored in a poorly understood phase called Q. Although Q is thought to be carbonaceous, the full identity of the phase has remained elusive for almost four decades. In order to better characterize phase Q and, in turn, the early solar nebula, we separated carbon-rich fractions from the Saratov (L4) meteorite. We chose this meteorite because Q is most resistant in thermal alteration among carbonaceous noble gas carriers in meteorites and we hoped that, in this highly metamorphosed meteorite, Q would be present but not diamond: these two phases are very difficult to separate from each other. One of the fractions, AJ, has the highest 132Xe concentration of 2.1 × 10-6 cm3 STP g-1, exceeding any Q-rich fractions that have yet been analyzed. Transmission electron microscopy studies of the fraction AJ and a less Q-rich fraction AI indicate that they both are primarily porous carbon that consists of domains with short-range graphene orders, with variable packing in three dimensions, but no long-range graphitic order. The relative abundance of Xe and C atoms (6:109) in the separates indicates that individual noble gas atoms are associated with only a minor component of the porous carbon, possibly one or more specific arrangements of the nanoparticulate graphene.

  11. Nanocomposite Strain Gauges Having Small TCRs

    NASA Technical Reports Server (NTRS)

    Gregory, Otto; Chen, Ximing

    2009-01-01

    Ceramic strain gauges in which the strain-sensitive electrically conductive strips made from nanocomposites of noble metal and indium tin oxide (ITO) are being developed for use in gas turbine engines and other power-generation systems in which gas temperatures can exceed 1,500 F (about 816 C). In general, strain gauges exhibit spurious thermally induced components of response denoted apparent strain. When temperature varies, a strain-gauge material that has a nonzero temperature coefficient of resistance (TCR) exhibits an undesired change in electrical resistance that can be mistaken for the change in resistance caused by a change in strain. It would be desirable to formulate straingauge materials having TCRs as small as possible so as to minimize apparent strain. Most metals exhibit positive TCRs, while most semiconductors, including ITO, exhibit negative TCRs. The present development is based on the idea of using the negative TCR of ITO to counter the positive TCRs of noble metals and of obtaining the benefit of the ability of both ITO and noble metals to endure high temperatures. The noble metal used in this development thus far has been platinum. Combinatorial libraries of many ceramic strain gauges containing nanocomposites of various proportions of ITO and platinum were fabricated by reactive co-sputtering from ITO and platinum targets onto alumina- and zirconia-based substrates mounted at various positions between the targets.

  12. A 220Rn source for the calibration of low-background experiments

    NASA Astrophysics Data System (ADS)

    Lang, R. F.; Brown, A.; Brown, E.; Cervantes, M.; Macmullin, S.; Masson, D.; Schreiner, J.; Simgen, H.

    2016-04-01

    We characterize two 40 kBq sources of electrodeposited 228Th for use in low-background experiments. The sources efficiently emanate 220Rn, a noble gas that can diffuse in a detector volume. 220Rn and its daughter isotopes produce α-, β-, and γ-radiation, which may used to calibrate a variety of detector responses and features, before decaying completely in only a few days. We perform various tests to place limits on the release of other long-lived isotopes. In particular, we find an emanation of < 0.008 atoms/min/kBq (90% CL) for 228Th and (1.53 ± 0.04) atoms/min/kBq for 224Ra. The sources lend themselves in particular to the calibration of detectors employing liquid noble elements such as argon and xenon. With the source mounted in a noble gas system, we demonstrate that filters are highly efficient in reducing the activity of these longer-lived isotopes further. We thus confirm the suitability of these sources even for use in next-generation experiments, such as XENON1T/XENONnT, LZ, and nEXO.

  13. Noble gases in submarine pillow basalt glasses from Loihi and Kilauea, Hawaii: A solar component in the Earth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honda, M.; McDougall, I.; Patterson, D.B.

    1993-02-01

    Noble gas elemental and isotopic abundances have been analysed in twenty-two samples of basaltic glass dredged from the submarine flanks of two currently active Hawaiian volcanoes, Loihi Seamount and Kilauea. Neon isotopic ratios are enriched in [sup 20]Ne and [sup 21]Ne by as much as 16% with respect to atmospheric ratios. All the Hawaiian basalt glass samples show relatively high [sup 3]He/[sup 4]He ratios. The high [sup 20]Ne/[sup 22]Ne values in some of the Hawaiian samples, together with correlations between neon and helium systematics, suggest the presence of a solar component in the source regions of the Hawaiian mantle plume.more » The solar hypothesis for the Earth's primordial noble gas composition can account for helium and neon isotopic ratios observed in basaltic glasses from both plume and spreading systems, in fluids in continental hydrothermal systems, in CO[sub 2] well gases, and in ancient diamonds. These results provide new insights into the origin and evolution of the Earth's atmosphere.« less

  14. Catalyst for Oxidation of Volatile Organic Compounds

    NASA Technical Reports Server (NTRS)

    Wood, George M. (Inventor); Upchurch, Billy T. (Inventor); Schryer, David R. (Inventor); Davis, Patricia P. (Inventor); Kielin, Erik J. (Inventor); Brown, Kenneth G. (Inventor); Schyryer, Jacqueline L. (Inventor); DAmbrosia, Christine M. (Inventor)

    2000-01-01

    Disclosed is a process for oxidizing volatile organic compounds to carbon dioxide and water with the minimal addition of energy. A mixture of the volatile organic compound and an oxidizing agent (e.g. ambient air containing the volatile organic compound) is exposed to a catalyst which includes a noble metal dispersed on a metal oxide which possesses more than one oxidation state. Especially good results are obtained when the noble metal is platinum, and the metal oxide which possesses more than one oxidation state is tin oxide. A promoter (i.e., a small amount of an oxide of a transition series metal) may be used in association with the tin oxide to provide very beneficial results.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debasisbanerjee, Debasis; Simon, Cory; Elsaidi, Sameh

    The global demand for Xe, a noble gas with applications in electronics, lighting, and the medical industry, is expected to rise significantly over the coming decades. However, the low abundance of Xe in the earth’s atmosphere and the costly cryogenic distillation process that is used to obtain Xe commercially via air separation have limited the scale of applications of Xe. A physisorption-based separation using porous materials may be a viable and cost-effective alternative to cryogenic distillation. In particular, metal-organic frameworks (MOFs) have shown promise as highly Xe-selective, porous solids. In this review, we detail the recent advances of MOFs asmore » adsorbents for noble gas adsorption/separation and the role of computer simulation in finding optimal materials for Xe adsorption.« less

  16. In Situ Noble-Gas Based Chronology on Mars

    NASA Technical Reports Server (NTRS)

    Swindle, T. D.

    2000-01-01

    Determining radiometric ages in situ on another planet's surface has never been done, and there are good reasons to think that it will be extremely difficult. It is certainly hard to imagine that such ages could be measured as precisely as they could be measured on returned samples in state-of-the-art terrestrial laboratories. However, it may be possible, by using simple noble-gas-based chronology techniques, to determine ages on Mars to a precision that is scientifically useful. This abstract will: (1) describe the techniques we envision; (2) give some examples of how such information might be scientifically useful; and (3) describe the system we are developing, including the requirements in terms of mass, power, volume, and sample selection and preparation.

  17. Development of a Liquefied Noble Gas Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Lesser, Ezra; White, Aaron; Aidala, Christine

    2015-10-01

    Liquefied noble gas detectors have been used for various applications in recent years for detecting neutrinos, neutrons, photons, and potentially dark matter. The University of Michigan is developing a detector with liquid argon to produce scintillation light and ionization electrons. Our data collection method will allow high-resolution energy measurement and spatial reconstruction of detected particles by using multi-pixel silicon photomultipliers (SiPM) and a cylindrical time projection chamber (TPC) with a multi-wire endplate. We have already designed a liquid argon condenser and purification unit surrounded by an insulating vacuum, constructed circuitry for temperature and pressure sensors, and created software to obtain high-accuracy sensor readouts. The status of detector development will be presented. Funded through the Michigan Memorial Phoenix Project.

  18. The Induction of Noble Rot (Botrytis cinerea) Infection during Postharvest Withering Changes the Metabolome of Grapevine Berries (Vitis vinifera L., cv. Garganega)

    PubMed Central

    Negri, Stefano; Lovato, Arianna; Boscaini, Filippo; Salvetti, Elisa; Torriani, Sandra; Commisso, Mauro; Danzi, Roberta; Ugliano, Maurizio; Polverari, Annalisa; Tornielli, Giovanni B.; Guzzo, Flavia

    2017-01-01

    The natural or induced development of noble rot caused by the fungus Botrytis cinerea during the late stages of grapevine (Vitis vinifera L.) berry ripening is used in some traditional viticulture areas to produce high-quality wines such as Sauternes and Tokaji. In this research, we wanted to verify if by changing the environmental conditions during post-harvest withering we could induce the noble rot development on harvested berries in order to positively change the wine produced from withered Garganega berries. Therefore, we exposed the berries to postharvest withering under normal or artificially humid conditions, the latter to induce noble rot. The presence of noble rot symptoms was associated with the development of B. cinerea in the berries maintained under humid conditions. The composition of infected and non-infected berries was investigated by untargeted metabolomics using liquid chromatography/mass spectrometry. We also explored the effects of the two withering methods on the abundance of volatile organic compounds in wine by yeast-inoculated micro-fermentation followed by targeted gas chromatography/mass spectrometry. These experiments revealed significant metabolic differences between berries withered under normal and humid conditions, indicating that noble rot affects berry metabolism and composition. As well as well-known botrytization markers, we detected two novel lipids that have not been observed before in berries infected with noble rot. Unraveling the specific metabolic profile of berries infected with noble rot may help to determine the compounds responsible for the organoleptic quality traits of botrytized Garganega wines. PMID:28680428

  19. Perspectives of hyperpolarized noble gas MRI beyond 3He

    PubMed Central

    Lilburn, David M.L.; Pavlovskaya, Galina E.; Meersmann, Thomas

    2013-01-01

    Nuclear Magnetic Resonance (NMR) studies with hyperpolarized (hp) noble gases are at an exciting interface between physics, chemistry, materials science and biomedical sciences. This paper intends to provide a brief overview and outlook of magnetic resonance imaging (MRI) with hp noble gases other than hp 3He. A particular focus are the many intriguing experiments with 129Xe, some of which have already matured to useful MRI protocols, while others display high potential for future MRI applications. Quite naturally for MRI applications the major usage so far has been for biomedical research but perspectives for engineering and materials science studies are also provided. In addition, the prospects for surface sensitive contrast with hp 83Kr MRI is discussed. PMID:23290627

  20. Noble gas models of mantle structure and reservoir mass transfer

    NASA Astrophysics Data System (ADS)

    Harrison, Darrell; Ballentine, Chris J.

    Noble gas observations from different mantle samples have provided some of the key observational data used to develop and support the geochemical "layered" mantle model. This model has dominated our conceptual understanding of mantle structure and evolution for the last quarter of a century. Refinement in seismic tomography and numerical models of mantle convection have clearly shown that geochemical layering, at least at the 670 km phase change in the mantle, is no longer tenable. Recent adaptations of the mantle-layering model that more successfully reconcile whole-mantle convection with the simplest data have two common features: (i) the requirement for the noble gases in the convecting mantle to be sourced, or "fluxed", by a deep long-lived volatile-rich mantle reservoir; and (ii) the requirement for the deep mantle reservoirs to be seismically invisible. The fluxing requirement is derived from the low mid-ocean ridge basalt (MORB)-source mantle 3He concentration, in turn calculated from the present day 3He flux from mid-ocean ridges into the oceans (T½ ˜ 1,000 yr) and the ocean crust generation rate (T½ ˜ 108 yr). Because of these very different residence times we consider the 3He concentration constraint to be weak. Furthermore, data show 3He/22Ne ratios derived from different mantle reservoirs to be distinct and require additional complexities to be added to any model advocating fluxing of the convecting mantle from a volatile-rich mantle reservoir. Recent work also shows that the convecting mantle 20Ne/22Ne isotopic composition is derived from an implanted meteoritic source and is distinct from at least one plume source system. If Ne isotope heterogeneity between convecting mantle and plume source mantle is confirmed, this result then excludes all mantle fluxing models. While isotopic heterogeneity requires further quantification, it has been shown that higher 3He concentrations in the convecting mantle, by a factor of 3.5, remove the need for the noble gases in the convecting mantle to be sourced from such a deep hidden reservoir. This "zero paradox" concentration [Ballentine et al., 2002] is then consistent with the different mantle source 3He/22Ne and 20Ne/22Ne heterogeneities. Higher convecting mantle noble gas concentrations also eliminate the requirement for a hidden mantle 40Ar rich-reservoir and enables the heat/4He imbalance to be explained by temporal variance in the different mechanisms of heat vs. He removal from the mantle system—two other key arguments for mantle layering. Confirmation of higher average convecting mantle noble gas concentrations remains the key test of such a concept.

  1. Using integrated noble gas and hydrocarbon geochemistry to constrain the source of hydrocarbon gases in shallow aquifers in the northern Appalachian Basin

    EPA Pesticide Factsheets

    Rising demands for domestic energy sources, mandates for cleaner burning fuels for electricity generation, and the approach of peak global hydrocarbon production are driving the transformation from coal to natural gas from unconventional energy resources.

  2. Method for the purification of noble gases, nitrogen and hydrogen

    DOEpatents

    Baker, J.D.; Meikrantz, D.H.; Tuggle, D.G.

    1997-09-23

    A method and apparatus are disclosed for the purification and collection of hydrogen isotopes in a flowing inert gaseous mixture containing impurities, wherein metal alloy getters having the capability of sorbing non-hydrogen impurities such as oxygen, carbon dioxide, carbon monoxide, methane, ammonia, nitrogen and water vapor are utilized to purify the gaseous mixture of impurities. After purification hydrogen isotopes may be more efficiently collected. A plurality of parallel process lines utilizing metal getter alloys can be used to provide for the continuous purification and collection of the hydrogen isotopes. 15 figs.

  3. Method for the purification of noble gases, nitrogen and hydrogen

    DOEpatents

    Baker, John D.; Meikrantz, David H.; Tuggle, Dale G.

    1997-01-01

    A method and apparatus for the purification and collection of hydrogen isotopes in a flowing inert gaseous mixture containing impurities, wherein metal alloy getters having the capability of sorbing non-hydrogen impurities such as oxygen, carbon dioxide, carbon monoxide, methane, ammonia, nitrogen and water vapor are utilized to purify the gaseous mixture of impurities. After purification hydrogen isotopes may be more efficiently collected. A plurality of parallel process lines utilizing metal getter alloys can be used to provide for the continuous purification and collection of the hydrogen isotopes.

  4. Using Heavy Noble Gases to Help Determine Mantle vs Lithospheric Contributions and CO2 Residence Times in Southwestern US Hot Springs

    NASA Astrophysics Data System (ADS)

    Whyte, C. J.; Karlstrom, K. E.; Crossey, L. J.; Darrah, T.

    2017-12-01

    Climate change has placed a particular importance on the understanding of carbon cycling, especially on continental scales, resulting in the necessity to quantify the rates and timing on which CO2 is released into the atmosphere by volcanic and tectonic processes. Recent studies have identified mantle-derived 3He and excess CO2 in springs and groundwaters across the conterminous US, suggesting that there may be great unknowns in the rates and scales of magmatic CO2 release in the global carbon budget. Further, it remains uncertain if these fluids are merely passive remnants of past magmatic events or instead result from ongoing mantle degassing. Understanding these processes and timescales by studying CO2 fluxes alone can be challenging because CO2 is highly reactive in the subsurface. CO2 is both formed and degraded by microbial processes, rapidly dissolves into waters, and can be readily released from carbonate-rich lithologies by water-rock interactions. By comparison, chemically-inert tracers such as noble gases provide one potential technique for identifying and constraining fluid sources and migration histories in the subsurface. Primordial isotopes (e.g., 3He and 129Xe) provide unambiguous indications of mantle-derived fluids, and heavier noble gases (e.g., Ne, Ar, Kr, Xe) provide a suite of potential tracers that can help de-convolve the extent of mixing between crust and mantle and discern between lithospheric and asthenospheric mantle fluids. Additionally, the low production rate of the radiogenic xenon isotopes (e.g., 134Xe, 136Xe) may help determine the relative residence time of mantle CO2 degassing in continental settings, providing important constraints on CO2 storage in the mantle and lithosphere in quiescent tectonic settings. To test these hypotheses, we analyzed a suite of noble gas isotopic compositions in hot springs in the Colorado Plateau and Rocky Mountains, US. Many samples display resolvable excesses in 3He and 129Xe relative to air-saturated water with variable excesses in 40Ar* and radiogenic xenon isotopes. Excess 3He and 129Xe are consistent with mantle contributions, while variable abundances of radiogenic gases reflect the relative mixtures of air-saturated water, mantle, lithosphere, and the crust providing insight on their history during crustal emplacement.

  5. The temperature and precipitation reconstructions on Swiss stalagmites with a special emphasis on altitude gradient using noble-gases, δO-18 and δD of fluid inclusions

    NASA Astrophysics Data System (ADS)

    Ghadiri, Elaheh; Brennwald, Matthias; Kipfer, Rolf

    2017-04-01

    We present the results of an application of 'Combined Vacuum Crushing and Sieving (CVCS)' system (e.g., allowing to crush samples to defined grain size in vacuum) for the first time to stalagmites grown in cold climates during the last glacial-interglacial transition, but at different altitudes. Recently, concentrations of dissolved atmospheric noble gases in fluid inclusions of stalagmites were used to reconstruct past ambient cave temperatures, the annual mean temperature and hydrological conditions when the water was trapped. To reconstruct temperatures from noble gases (noble gas temperature: NGT) in water-filled inclusions, we processed samples from Swiss stalagmites M6 from Milandre cave (400 m.a.s.l) and GEF1 from Grotte aux Fées cave (895 m.a.s.l) covering the climatic transitions Allerød-Younger Dryas-Holocene. Water content. The amount of water extracted per unit mass of calcite fabric (e.g., 'water yield': WT) was shown to be a measure of the total water content. The data shows that the WT systematically changes with δ18Ocalcite of the calcite. We therefore conclude that WT records can be linked on changes in drip rates and thus can be used to track changes of past precipitation even in cold regions. Noble gases. Noble gas analysis shows that the annual mean temperatures in Milandre cave were 2.2±2.0°C during the late Allerød and dropped to 0±2°C at the Younger Dryas. Such temperatures close 0°C indicate that drip water supply stopped in response to the formation of permafrost conditions around the cave preventing further stalagmite growth. However, one late Holocene sample gave a cave temperature of 8.7±1.4°C agreeing generally with present day annual mean temperature. The annual mean temperature of 5.7±1.3°C from GEF1 was determined for the early Holocene. The observed data show systematic variations with sample elevation, e.g., higher temperature from lower altitude and vice versa. Combining the isotopic composition of water in fluid inclusions (δ18Owater, δDwater) and the NGTs allows determining the δ18O-T relation ('laps rate') in the past as both δ18O and T scale with altitude. This calibration is key as paleo-temperatures are often reconstructed from δ18O, δD data whereby it is implicitly assumed that the modern Δ(δ18Owater, δDwater)-ΔT relation is also valid for the past. Our study makes an argument that noble gas analysis in stalagmites can also be a new route to address this fundamental hypothesis of past climate reconstruction.

  6. Gas geochemistry studies at the gas hydrate occurrence in the permafrost environment of Mallik (NWT, Canada)

    NASA Astrophysics Data System (ADS)

    Wiersberg, T.; Erzinger, J.; Zimmer, M.; Schicks, J.; Dahms, E.; Mallik Working Group

    2003-04-01

    We present real-time mud gas monitoring data as well as results of noble gas and isotope investigations from the Mallik 2002 Production Research Well Program, an international research project on Gas Hydrates in the Northwest Territories of Canada. The program participants include 8 partners; The Geological Survey of Canada (GSC), The Japan National Oil Corporation (JNOC), GeoForschungsZentrum Potsdam (GFZ), United States Geological Survey (USGS), United States Department of the Energy (USDOE), India Ministry of Petroleum and Natural Gas (MOPNG)/Gas Authority of India (GAIL) and the Chevron-BP-Burlington joint venture group. Mud gas monitoring (extraction of gas dissolved in the drill mud followed by real-time analysis) revealed more or less complete gas depth profiles of Mallik 4L-38 and Mallik 5L-38 wells for N_2, O_2, Ar, He, CO_2, H_2, CH_4, C_2H_6, C_3H_8, C_4H10, and 222Rn; both wells are approx. 1150 m deep. Based on the molecular and and isotopic composition, hydrocarbons occurring at shallow depth (down to ˜400 m) are mostly of microbial origin. Below 400 m, the gas wetness parameter (CH_4/(C_2H_6 + C_3H_8)) and isotopes indicate mixing with thermogenic gas. Gas accumulation at the base of permafrost (˜650 m) as well as δ13C and helium isotopic data implies that the permafrost inhibits gas flux from below. Gas hydrate occurrence at Mallik is known in a depth between ˜890 m and 1100 m. The upper section of the hydrate bearing zone (890 m--920 m) consists predominantly of methane bearing gas hydrates. Between 920 m and 1050 m, concentration of C_2H_6, C_3H_8, and C_4H10 increases due to the occurrence of organic rich sediment layers. Below that interval, the gas composition is similar to the upper section of the hydrate zone. At the base of the hydrate bearing zone (˜1100 m), elevated helium and methane concentrations and their isotopic composition leads to the assumption that gas hydrates act as a barrier for gas migration from below. In mud gas samples from the hydrate zone, the concentrations of all noble gases are lower than in air. Using Ne as a tracer for air contamination, the air-normalized abundances of Ar, Ke and Xe in those samples increase with their mass. Non-atmospheric elemental ratios of the heavier noble gases are most possible the result of elemental fractionation during hydrate formation.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golyatina, R. I.; Maiorov, S. A., E-mail: mayorov-sa@mail.ru

    The drift velocities of noble-gas and mercury ions in a constant homogeneous electric field are calculated using Monte Carlo simulations. The ion mobility is analyzed as a function of the field strength and gas temperature. The fitting parameters for calculating the drift velocity by the Frost formula at gas temperatures of 4.2, 77, 300, 1000, and 2000 K are obtained. A general approximate formula for the drift velocity as a function of the reduced field and gas temperature is derived.

  8. Estimating the recharge properties of the deep ocean using noble gases and helium isotopes

    NASA Astrophysics Data System (ADS)

    Loose, Brice; Jenkins, William J.; Moriarty, Roisin; Brown, Peter; Jullion, Loic; Naveira Garabato, Alberto C.; Torres Valdes, Sinhue; Hoppema, Mario; Ballentine, Chris; Meredith, Michael P.

    2016-08-01

    The distribution of noble gases and helium isotopes in the dense shelf waters of Antarctica reflects the boundary conditions near the ocean surface: air-sea exchange, sea ice formation, and subsurface ice melt. We use a nonlinear least squares solution to determine the value of the recharge temperature and salinity, as well as the excess air injection and glacial meltwater content throughout the water column and in the precursor to Antarctic Bottom Water. The noble gas-derived recharge temperature and salinity in the Weddell Gyre are -1.95°C and 34.95 psu near 5500 m; these cold, salty recharge values are a result of surface cooling as well as brine rejection during sea ice formation in Antarctic polynyas. In comparison, the global value for deep water recharge temperature is -0.44°C at 5500 m, which is 1.5°C warmer than the southern hemisphere deep water recharge temperature, reflecting a distinct contribution from the north Atlantic. The contrast between northern and southern hemisphere recharge properties highlights the impact of sea ice formation on setting the gas properties in southern sourced deep water. Below 1000 m, glacial meltwater averages 3.5‰ by volume and represents greater than 50% of the excess neon and argon found in the water column. These results indicate glacial melt has a nonnegligible impact on the atmospheric gas content of Antarctic Bottom Water.

  9. Resonance bonding in XNgY (X = F, Cl, Br, I; Ng = Kr or Xe; Y = CN or NC) molecules: an NBO/NRT investigation.

    PubMed

    Song, Junjie; Su, Yue; Jia, Yanping; Chen, Lusheng; Zhang, Guiqiu

    2018-05-07

    Several noble-gas-containing molecules XNgY were observed experimentally. However, the bonding in such systems is still not understood. Using natural bond orbital and natural resonance theory (NBO/NRT) methods, the present work investigated bonding of the title molecules. The results show that each of the studied XNgY molecules should be better described as a resonance hybrid of ω-bonding and [Formula: see text]-type long-bonding structures: X: - Ng +  - Y, X - Ng + : Y - , and X ^ Y. The ω-bonding and long-bonding make competing contributions to the composite resonance hybrid due to the accurately preserved bond order conservation principle. We find that the resonance bonding is highly tunable for these noble-gas-containing molecules due to its dependence on the nature of the halogen X or the central noble-gas atoms Ng. When the molecule XNgY consists of a relatively lighter Ng atom, a relatively low-electronegative X atom, and the CN fragment rather than NC, the long-bonding structure X ^ Y tends to be highlighted. In contrast, the heavy Ng atom and high-electronegative X atom will enhance the ω-bonding structure. Overall, the present work provides electronic principles and chemical insights that help understand the bonding in these XNgY species.

  10. Molecular-dynamics study on characteristics of energy and tangential momentum accommodation coefficients

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hiroki; Matsuda, Yu; Niimi, Tomohide

    2017-07-01

    Gas-surface interaction is studied by the molecular dynamics method to investigate qualitatively characteristics of accommodation coefficients. A large number of trajectories of gas molecules colliding to and scattering from a surface are statistically analyzed to calculate the energy (thermal) accommodation coefficient (EAC) and the tangential momentum accommodation coefficient (TMAC). Considering experimental measurements of the accommodation coefficients, the incident velocities are stochastically sampled to represent a bulk condition. The accommodation coefficients for noble gases show qualitative coincidence with experimental values. To investigate characteristics of these accommodation coefficients in detail, the gas-surface interaction is parametrically studied by varying the molecular mass of gas, the gas-surface interaction strength, and the molecular size of gas, one by one. EAC increases with increasing every parameter, while TMAC increases with increasing the interaction strength, but decreases with increasing the molecular mass and the molecular size. Thus, contradictory results in experimentally measured TMAC for noble gases could result from the difference between the surface conditions employed in the measurements in the balance among the effective parameters of molecular mass, interaction strength, and molecular size, due to surface roughness and/or adsorbed molecules. The accommodation coefficients for a thermo-fluid dynamics field with a temperature difference between gas and surface and a bulk flow at the same time are also investigated.

  11. High-temperature Ionization-induced Synthesis of Biologically Relevant Molecules in the Protosolar Nebula

    NASA Astrophysics Data System (ADS)

    Bekaert, David V.; Derenne, Sylvie; Tissandier, Laurent; Marrocchi, Yves; Charnoz, Sebastien; Anquetil, Christelle; Marty, Bernard

    2018-06-01

    Biologically relevant molecules (hereafter biomolecules) have been commonly observed in extraterrestrial samples, but the mechanisms accounting for their synthesis in space are not well understood. While electron-driven production of organic solids from gas mixtures reminiscent of the photosphere of the protosolar nebula (PSN; i.e., dominated by CO–N2–H2) successfully reproduced key specific features of the chondritic insoluble organic matter (e.g., elementary and isotopic signatures of chondritic noble gases), the molecular diversity of organic materials has never been investigated. Here, we report that a large range of biomolecules detected in meteorites and comets can be synthesized under conditions typical of the irradiated gas phase of the PSN at temperatures = 800 K. Our results suggest that organic materials—including biomolecules—produced within the photosphere would have been widely dispersed in the protoplanetary disk through turbulent diffusion, providing a mechanism for the distribution of organic meteoritic precursors prior to any thermal/photoprocessing and subsequent modification by secondary parent body processes. Using a numerical model of dust transport in a turbulent disk, we propose that organic materials produced in the photosphere of the disk would likely be associated with small dust particles, which are coupled to the motion of gas within the disk and therefore preferentially lofted into the upper layers of the disk where organosynthesis occurs.

  12. Near transferable phenomenological n-body potentials for noble metals

    NASA Astrophysics Data System (ADS)

    Pontikis, Vassilis; Baldinozzi, Gianguido; Luneville, Laurence; Simeone, David

    2017-09-01

    We present a semi-empirical model of cohesion in noble metals with suitable parameters reproducing a selected set of experimental properties of perfect and defective lattices in noble metals. It consists of two short-range, n-body terms accounting respectively for attractive and repulsive interactions, the former deriving from the second moment approximation of the tight-binding scheme and the latter from the gas approximation of the kinetic energy of electrons. The stability of the face centred cubic versus the hexagonal compact stacking is obtained via a long-range, pairwise function of customary use with ionic pseudo-potentials. Lattice dynamics, molecular statics, molecular dynamics and nudged elastic band calculations show that, unlike previous potentials, this cohesion model reproduces and predicts quite accurately thermodynamic properties in noble metals. In particular, computed surface energies, largely underestimated by existing empirical cohesion models, compare favourably with measured values, whereas predicted unstable stacking-fault energy profiles fit almost perfectly ab initio evaluations from the literature. All together the results suggest that this semi-empirical model is nearly transferable.

  13. Near transferable phenomenological n-body potentials for noble metals.

    PubMed

    Pontikis, Vassilis; Baldinozzi, Gianguido; Luneville, Laurence; Simeone, David

    2017-09-06

    We present a semi-empirical model of cohesion in noble metals with suitable parameters reproducing a selected set of experimental properties of perfect and defective lattices in noble metals. It consists of two short-range, n-body terms accounting respectively for attractive and repulsive interactions, the former deriving from the second moment approximation of the tight-binding scheme and the latter from the gas approximation of the kinetic energy of electrons. The stability of the face centred cubic versus the hexagonal compact stacking is obtained via a long-range, pairwise function of customary use with ionic pseudo-potentials. Lattice dynamics, molecular statics, molecular dynamics and nudged elastic band calculations show that, unlike previous potentials, this cohesion model reproduces and predicts quite accurately thermodynamic properties in noble metals. In particular, computed surface energies, largely underestimated by existing empirical cohesion models, compare favourably with measured values, whereas predicted unstable stacking-fault energy profiles fit almost perfectly ab initio evaluations from the literature. All together the results suggest that this semi-empirical model is nearly transferable.

  14. A Decade of Xenon Chemistry

    ERIC Educational Resources Information Center

    Moody, G. J.

    1974-01-01

    Presents reactions for the formation of xenon compounds and compounds of the other inert gases. Provides bonding and structure theories for noble gas compounds and speculates on possible applications. (GS)

  15. Characterization of Noble Gas Ion Beam Fabricated Single Molecule Nanopore Detectors

    NASA Astrophysics Data System (ADS)

    Rollings, Ryan; Ledden, Bradley; Shultz, John; Fologea, Daniel; Li, Jiali; Chervinsky, John; Golovchenko, Jene

    2006-03-01

    Nanopores fabricated with low energy noble gas ion beams in a silicon nitride membrane can be employed as the fundamental element of single biomolecule detection and characterization devices [1,2]. With the help of X-ray Photoelectron Spectroscopy (XPS) and Rutherford Backscattering (RBS), we demonstrate that the electrical noise properties, and hence ultimate sensitivity of nanopore single molecule detectors depends on ion beam species and nanopore annealing conditions. .1. Li, J., D. Stein, C. McMullan, D. Branton, M.J. Aziz, and J.A. Golovchenko, Ion-beam sculpting at nanometre length scales. Nature, 2001. 412(12 July): p. 166-169. 2. Li, J., M. Gershow, D. Stein, E. Brandin, and J.A. Golovchenko, DNA Molecules and Configurations in a Solid-state Nanopore Microscope. Nature Materials, 2003. 2: p. 611-615.

  16. The self-consistent calculation of pseudo-molecule energy levels, construction of energy level correlation diagrams and an automated computation system for SCF-X(Alpha)-SW calculations

    NASA Technical Reports Server (NTRS)

    Schlosser, H.

    1981-01-01

    The self consistent calculation of the electronic energy levels of noble gas pseudomolecules formed when a metal surface is bombarded by noble gas ions is discussed along with the construction of energy level correlation diagrams as a function of interatomic spacing. The self consistent field x alpha scattered wave (SCF-Xalpha-SW) method is utilized. Preliminary results on the Ne-Mg system are given. An interactive x alpha programming system, implemented on the LeRC IBM 370 computer, is described in detail. This automated system makes use of special PROCDEFS (procedure definitions) to minimize the data to be entered manually at a remote terminal. Listings of the special PROCDEFS and of typical input data are given.

  17. Highly concentrated nebular noble gases in porous nanocarbon separates from the Saratov (L4) meteorite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amari, Sachiko; Matsuda, Jun-ichi; Stroud, Rhonda M.

    2013-11-20

    The majority of heavy noble gases (Ar, Kr, and Xe) in primitive meteorites are stored in a poorly understood phase called Q. Although Q is thought to be carbonaceous, the full identity of the phase has remained elusive for almost four decades. In order to better characterize phase Q and, in turn, the early solar nebula, we separated carbon-rich fractions from the Saratov (L4) meteorite. We chose this meteorite because Q is most resistant in thermal alteration among carbonaceous noble gas carriers in meteorites and we hoped that, in this highly metamorphosed meteorite, Q would be present but not diamond:more » these two phases are very difficult to separate from each other. One of the fractions, AJ, has the highest {sup 132}Xe concentration of 2.1 × 10{sup –6} cm{sup 3} STP g{sup –1}, exceeding any Q-rich fractions that have yet been analyzed. Transmission electron microscopy studies of the fraction AJ and a less Q-rich fraction AI indicate that they both are primarily porous carbon that consists of domains with short-range graphene orders, with variable packing in three dimensions, but no long-range graphitic order. The relative abundance of Xe and C atoms (6:10{sup 9}) in the separates indicates that individual noble gas atoms are associated with only a minor component of the porous carbon, possibly one or more specific arrangements of the nanoparticulate graphene.« less

  18. Submarine Alkalic Lavas Around the Hawaiian Hotspot; Plume and Non-Plume Signatures Determined by Noble Gases

    NASA Astrophysics Data System (ADS)

    Hanyu, T.; Clague, D. A.; Kaneoka, I.; Dunai, T. J.; Davies, G. R.

    2004-12-01

    Noble gas isotopic ratios were determined for submarine alkalic volcanic rocks distributed around the Hawaiian islands to constrain the origin of such alkalic volcanism. Samples were collected by dredging or using submersibles from the Kauai Channel between Oahu and Kauai, north of Molokai, northwest of Niihau, Southwest Oahu, South Arch and North Arch volcanic fields. Sites located downstream from the center of the hotspot have 3He/4He ratios close to MORB at about 8 Ra, demonstrating that the magmas erupted at these sites had minimum contribution of volatiles from a mantle plume. In contrast, the South Arch, located upstream of the hotspot on the Hawaiian Arch, has 3He/4He ratios between 17 and 21 Ra, indicating a strong plume influence. Differences in noble gas isotopic characteristics between alkalic volcanism downstream and upstream of the hotspot imply that upstream volcanism contains incipient melts from an upwelling mantle plume, having primitive 3He/4He. In combination with lithophile element isotopic data, we conclude that the most likely source of the upstream magmatism is depleted asthenospheric mantle that has been metasomatised by incipient melt from a mantle plume. After major melt extraction from the mantle plume during production of magmas for the shield stage, the plume material is highly depleted in noble gases and moderately depleted in lithophile elements. Partial melting of the depleted mantle impregnated by melts derived from this volatile depleted plume source may explain the isotopic characteristics of the downstream alkalic magmatism.

  19. In situ Synthesis of Metal Nanoparticle Embedded Free Standing Multifunctional PDMS Films.

    PubMed

    Goyal, Anubha; Kumar, Ashavani; Patra, Prabir K; Mahendra, Shaily; Tabatabaei, Salomeh; Alvarez, Pedro J J; John, George; Ajayan, Pulickel M

    2009-07-01

    We demonstrate a simple one-step method for synthesizing noble metal nanoparticle embedded free standing polydimethylsiloxane (PDMS) composite films. The process involves preparing a homogenous mixture of metal salt (silver, gold and platinum), silicone elastomer and the curing agent (hardener) followed by curing. During the curing process, the hardener crosslinks the elastomer and simultaneously reduces the metal salt to form nanoparticles. This in situ method avoids the use of any external reducing agent/stabilizing agent and leads to a uniform distribution of nanoparticles in the PDMS matrix. The films were characterized using UV-Vis spectroscopy, transmission electron microscopy and X-ray photoemission spectroscopy. The nanoparticle-PDMS films have a higher Young's modulus than pure PDMS films and also show enhanced antibacterial properties. The metal nanoparticle-PDMS films could be used for a number of applications such as for catalysis, optical and biomedical devices and gas separation membranes. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Applications of the 308-nm excimer laser in dermatology

    NASA Astrophysics Data System (ADS)

    Farkas, A.; Kemeny, L.

    2006-05-01

    Excimer lasers contain a mixture of a noble inert gas and a halogen, which form excited dimers only in the activated state. High-energy current is used to produce these dimers, which have a very short lifetime, and after their fast dissociation they release the excitation energy through ultraviolet photons. The application of these lasers proved to be successful in medicine, including the field of ophthalmology, cardiology, angiology, dentistry, orthopaedics, and, in recent years, dermatology. For medical purposes, the 193-nm argon fluoride, the 248-nm krypton fluoride, the 351-nm xenon fluoride, and the 308-nm xenon chloride lasers are used. Recently, the 308-nm xenon chloride laser has gained much attention as a very effective treatment modality in dermatological disorders. It was successfully utilized in psoriasis; later, it proved to be useful in handling other lightsensitive skin disorders and even in the treatment of allergic rhinitis. This review summarizes the possible applications of this promising tool in dermatology.

  1. First results from the NEWS-G direct dark matter search experiment at the LSM

    NASA Astrophysics Data System (ADS)

    Arnaud, Q.; Asner, D.; Bard, J.-P.; Brossard, A.; Cai, B.; Chapellier, M.; Clark, M.; Corcoran, E. C.; Dandl, T.; Dastgheibi-Fard, A.; Dering, K.; Di Stefano, P.; Durnford, D.; Gerbier, G.; Giomataris, I.; Gorel, P.; Gros, M.; Guillaudin, O.; Hoppe, E. W.; Kamaha, A.; Katsioulas, I.; Kelly, D. G.; Martin, R. D.; McDonald, J.; Muraz, J.-F.; Mols, J.-P.; Navick, X.-F.; Papaevangelou, T.; Piquemal, F.; Roth, S.; Santos, D.; Savvidis, I.; Ulrich, A.; Vazquez de Sola Fernandez, F.; Zampaolo, M.

    2018-01-01

    New Experiments With Spheres-Gas (NEWS-G) is a direct dark matter detection experiment using Spherical Proportional Counters (SPCs) with light noble gases to search for low-mass Weakly Interacting Massive Particles (WIMPs). We report the results from the first physics run taken at the Laboratoire Souterrain de Modane (LSM) with SEDINE, a 60 cm diameter prototype SPC operated with a mixture of Ne + CH4 (0.7%) at 3.1 bars for a total exposure of 9.6 kg · days. New constraints are set on the spin-independent WIMP-nucleon scattering cross-section in the sub-GeV/c2 mass region. We exclude cross-sections above 4.4 ×10-37cm2 at 90% confidence level (C.L.) for a 0.5 GeV/c2 WIMP. The competitive results obtained with SEDINE are promising for the next phase of the NEWS-G experiment: a 140 cm diameter SPC to be installed at SNOLAB by summer 2018.

  2. Noble Gas Plasmas with Metallic Conductivity: A New Light Source from a New State of Matter

    DTIC Science & Technology

    2015-11-01

    light, Applied Physics Letters, (12 2014): 223501. doi: A. Bataller, B. Kappus , C. Camara, S. Putterman. Collision Time Measurements in a...Plasma Extremes Seen through Gas Bubble, Physics, (07 2014): 0. doi: 10.1103/Physics.7.72 A. Bataller, G.?R. Plateau, B. Kappus , S. Putterman

  3. Diagnostics of an AC driven atmospheric pressure non-thermal plasma jet and its use for radially directed jet array

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Wang, R.

    2017-08-01

    An alternating current atmospheric pressure plasma jet is generated with noble gas or noble gas/oxygen admixture as working gas. A "core plasma filament" is observed at the center of the dielectric tube and extends to the plasma jet at higher peak-to-peak voltages. This type of plasma jet is believed to be of the same nature with the reported plasma bullet driven by pulsed DC power sources. Double current probes are used to assess the speed of the plasma bullet and show that the speed is around 104-105 m/s. The time dependence of the downstream bullet speed is attributed to the gas heating and in turn the increase of the reduced electric field E/N. Optical emission spectra show the dependence of helium and oxygen emission intensities on the concentration of oxygen additive in the carrier gas, with peak values found at 0.5% O2. Multiple radial jets are realized on dielectric tubes of different sizes. As a case study, one of these multi-jet devices is used to treat B. aureus on the inner surface of a plastic beaker and is shown to be more effective than a single jet.

  4. Volatiles (H, C, N, O, noble gases) in comets as tracers of early solar system events (Invited)

    NASA Astrophysics Data System (ADS)

    Marty, B.

    2013-12-01

    Volatiles (H, C, N, O, noble gases) present the largest variations in their relative abundances and, importantly, in their isotopic ratios, among solar system elements. The original composition of the protosolar nebula has been investigated through the measurements of primitive meteorites and of in-situ (e.g. Galileo probe analysis of the Jupiter's atmosphere) and sample-return (Genesis, recovery and analysis of solar wind) missions. The protosolar gas was poor in deuterium, in 15N and in 17,18O. Variations among solar system reservoir reach several hundreds of percents for the D/H and 15N/14N ratios. These variations are possibly : (i) due to interactions between XUV photons of the proto-Sun and the-dust, (ii) result from low temperature ion-molecule reactions, or (iii) constitute an heritage on interstellar volatiles trapped in dust (e.g., organics). Likewise, noble gases are elementally and isotopically (1% per amu for xenon) fractionated with respect to the composition of the solar wind (our best proxy for the protosolar nebula composition). Cometary matter directly measured on coma, or in Stardust material, or in IDPs, seems to present among the largest heterogeneities in their stable isotope compositions but knowledge on their precise compositions of the different phases and species is partial and mosty lacking. Among the several important issues requiring a better knowledge of cometary volatiles are the origin(s) of volatile elements on Earth and Moon, on Mars and on Venus, understanding large scale circulation of matter between hot and frozen zones, and the possibility of interstellar heritage for organics. Critical measurements to be made by the next cometary missions include the value of the D/H ratio in water ice, in NH3 and organics. Nitrogen is particularly interesting as cometary HCN and CN are rich in 15N, but an isotoppe mass balance will require to measure the main host species (N2 ?). Noble gases are excellent tracers of physical processes, including the delivery of volatile elements onto planets and atmospheric escape processes, but their cometary inventory is almost not known. The only noble gas (helium and neon) measurement in cometary matter from Stardust suggests that they may be genetically linked to organic matter found in primitive meteorites rather than to the proto-solar gas. Trapping of noble gases in comets is an important issue not only for the physical conditions of cometary formation and evolution, but also for better understanding the possible contribution of cometary matter to Earth and Moon.

  5. Perovskite nanoparticle-sensitized Ga 2O 3 nanorod arrays for CO detection at high temperature

    DOE PAGES

    Lin, Hui -Jan; Baltrus, John P.; Gao, Haiyong; ...

    2016-04-04

    Here, noble metal nanoparticles are extensively used for sensitizing metal oxide chemical sensors through the catalytic spillover mechanism. However, due to earth-scarcity and high cost of noble metals, finding replacements presents a great economic benefit. Besides, high temperature and harsh environment sensor applications demand material stability under conditions approaching thermal and chemical stability limits of noble metals. In this study, we employed thermally stable perovskite-type La 0.8Sr 0.2FeO 3 (LSFO) nanoparticle surface decoration on Ga 2O 3 nanorod array gas sensors and discovered an order of magnitude enhanced sensitivity to carbon monoxide at 500 °C. The LSFO nanoparticle catalysts wasmore » of comparable performance to that achieved by Pt nanoparticles, with a much lower weight loading than Pt. Detailed electron microscopy and X-ray photoelectron spectroscopy studies suggested the LSFO nanoparticle sensitization effect is attributed to a spillover-like effect associated with the gas-LSFO-Ga 2O 3 triple-interfaces that spread the negatively charged surface oxygen ions from LSFO nanoparticles surfaces over to β-Ga 2O 3 nanorod surfaces with faster surface CO oxidation reactions.« less

  6. Perovskite Nanoparticle-Sensitized Ga2O3 Nanorod Arrays for CO Detection at High Temperature.

    PubMed

    Lin, Hui-Jan; Baltrus, John P; Gao, Haiyong; Ding, Yong; Nam, Chang-Yong; Ohodnicki, Paul; Gao, Pu-Xian

    2016-04-13

    Noble metal nanoparticles are extensively used for sensitizing metal oxide chemical sensors through the catalytic spillover mechanism. However, due to earth-scarcity and high cost of noble metals, finding replacements presents a great economic benefit. Besides, high temperature and harsh environment sensor applications demand material stability under conditions approaching thermal and chemical stability limits of noble metals. In this study, we employed thermally stable perovskite-type La(0.8)Sr(0.2)FeO3 (LSFO) nanoparticle surface decoration on Ga2O3 nanorod array gas sensors and discovered an order of magnitude enhanced sensitivity to carbon monoxide at 500 °C. The LSFO nanoparticle catalysts was of comparable performance to that achieved by Pt nanoparticles, with a much lower weight loading than Pt. Detailed electron microscopy and X-ray photoelectron spectroscopy studies suggested the LSFO nanoparticle sensitization effect is attributed to a spillover-like effect associated with the gas-LSFO-Ga2O3 triple-interfaces that spread the negatively charged surface oxygen ions from LSFO nanoparticles surfaces over to β-Ga2O3 nanorod surfaces with faster surface CO oxidation reactions.

  7. Laser Polarized 129Xe Magnetic Resonance Imaging and Spectroscopy Studies: Development of a New Modality of Functional Imaging

    NASA Astrophysics Data System (ADS)

    Rosen, M.; Coulter, K. P.; Chupp, T. E.; Swanson, S. D.; Agranoff, B. W.

    1996-05-01

    One of the most exciting prospects for the application of laser polarized noble gas magnetic resonance imaging and spectroscopy of ^129Xe is the quantitative measurement of cerebral blood flow changes in response to various stimuli. Development of this new modality of functional imaging requires tracking the transport of inspirated laser polarized ^129Xe from the lungs to the blood and to the brain. We describe a series of experiments with rats that include producing noble gas magnetic resonance images and study of the uptake and transport of polarized ^129Xe in the blood and to the head. We have observed spectral components of the ^129Xe at about -200 ppm relative to the free gas and confirmed their transport to the head. The time dependence of this component in the head has been studied. Current efforts are to spatially localize the polarized ^129Xe and image the magnetization in the steady state.

  8. Laboratory Studies of Fischer-Tropsch-Type Reactions and their Implications for Organics in Asteroids and Comets

    NASA Astrophysics Data System (ADS)

    Nuth, J.

    2011-12-01

    We have been studying Fischer-Tropsch type (FTT) reactions as a source for organic materials both in the gas phase of the solar nebula and incorporated into primitive comets and asteroids for almost 10 years, and over this time our concept has evolved greatly from the standard "catalytic" model to a much more robust chemical scenario. Our simulations have been conducted at temperatures that are much higher than we like, primarily for practical reasons such as the timescale of individual reactions, and we are just starting a series of measurements to allow us to measure reaction rates at temperatures from 873K down to as low as 373K. We have preliminary data on the carbon (d13C = -50) & nitrogen (d15N = +9.5) isotopic fractionation at 873K, but not on materials produced at lower temperature. Isotope values are on the VPDB scale for carbon and vs. Air for nitrogen. We have also investigated the noble gas trapping efficiency of the FTT process by adding a small amount of a noble gas mix to our standard synthesis mix. The noble gas ratio is 49:49:1:1::Ne:Ar:Kr:Xe. Xe and Kr are trapped at 873K and are more efficiently trapped at 673K with no isotopic fractionation at either temperature. Ar trapping is detected at 673K, but not at 873K. Ne has not yet been observed in our samples. The solar nebula was an extremely complex system, mixing materials from the innermost regions out to well into the zones where comets formed and thus mixing highly processed nebular materials with grains and coatings formed before the nebula began to collapse. Laboratory studies may provide the means to separate such diverse components based on carbon or nitrogen isotopic fractionation or the quantities of noble gases trapped in grain coatings and their thermal release patterns, among other observables. The ultimate goal of laboratory synthesis of nebular analogs is to provide the means to identify the conditions under which natural samples were formed and the signitures of subsequent metamorphic events.

  9. 3c/4e [small sigma, Greek, circumflex]-type long-bonding competes with ω-bonding in noble-gas hydrides HNgY (Ng = He, Ne, Ar, Kr, Xe, Rn; Y = F, Cl, Br, I): a NBO/NRT perspective.

    PubMed

    Zhang, Guiqiu; Li, Hong; Weinhold, Frank; Chen, Dezhan

    2016-03-21

    Noble-gas hydrides HNgY are frequently described as a single ionic form (H-Ng)(+)Y(-). We apply natural bond orbital (NBO) and natural resonance theory (NRT) analyses to a series of noble-gas hydrides HNgY (Ng = He, Ne, Ar, Kr, Xe, Rn; Y = F, Cl, Br, I) to gain quantitative insight into the resonance bonding of these hypervalent molecules. We find that each of the studied species should be better represented as a resonance hybrid of three leading resonance structures, namely, H-Ng(+ -):Y (I), H:(- +)Ng-Y (II), and H^Y (III), in which the "ω-bonded" structures I and II arise from the complementary donor-acceptor interactions nY → σ*HNg and nH → σ*NgY, while the "long-bond" ([small sigma, Greek, circumflex]-type) structure III arises from the nNg → [small sigma, Greek, circumflex]*HY/[small sigma, Greek, circumflex]HY interaction. The bonding for all of the studied molecules can be well described in terms of the continuously variable resonance weightings of 3c/4e ω-bonding and [small sigma, Greek, circumflex]-type long-bonding motifs. Furthermore, we find that the calculated bond orders satisfy a generalized form of "conservation of bond order" that incorporates both ω-bonding and long-bonding contributions [viz., (bHNg + bNgY) + bHY = bω-bonding + blong-bonding = 1]. Such "conservation" throughout the title series implies a competitive relationship between ω-bonding and [small sigma, Greek, circumflex]-type long-bonding, whose variations are found to depend in a chemically reasonable manner on the electronegativity of Y and the outer valence-shell character of the central Ng atom. The calculated bond orders are also found to exhibit chemically reasonable correlations with bond lengths, vibrational frequencies, and bond dissociation energies, in accord with Badger's rule and related empirical relationships. Overall, the results provide electronic principles and chemical insight that may prove useful in the rational design of noble-gas hydrides of technological interest.

  10. Shockwave compression of Ar gas at several initial densities

    NASA Astrophysics Data System (ADS)

    Dattelbaum, Dana M.; Goodwin, Peter M.; Garcia, Daniel B.; Gustavsen, Richard L.; Lang, John M.; Aslam, Tariq D.; Sheffield, Stephen A.; Gibson, Lloyd L.; Morris, John S.

    2017-01-01

    Experimental data of the principal Hugoniot locus of variable density gas-phase noble and molecular gases are rare. The majority of shock Hugoniot data is either from shock tube experiments on low-pressure gases or from plate impact experiments on cryogenic, liquefied gases. In both cases, physics regarding shock compressibility, thresholds for the on-set of shock-driven ionization, and even dissociation chemistry are difficult to infer for gases at intermediate densities. We have developed an experimental target design for gas gun-driven plate impact experiments on noble gases at initial pressures between 200-1000 psi. Using optical velocimetry, we are able to directly determine both the shock and particle velocities of the gas on the principal Hugoniot locus, as well as clearly differentiate ionization thresholds. The target design also results in multiply shocking the gas in a quasi-isentropic fashion yielding off-Hugoniot compression data. We describe the results of a series of plate impact experiments on Ar with starting densities between 0.02-0.05 g/cm3 at room temperature. Furthermore, by coupling optical fibers to the targets, we have measured the time-resolved optical emission from the shocked gas using a spectrometer coupled to an optical streak camera to spectrally-resolve the emission, and with a 5-color optical pyrometer for temperature determination.

  11. Noble metal (Pt or Au)-doped monolayer MoS2 as a promising adsorbent and gas-sensing material to SO2, SOF2 and SO2F2: a DFT study

    NASA Astrophysics Data System (ADS)

    Chen, Dachang; Zhang, Xiaoxing; Tang, Ju; Cui, Hao; Li, Yi

    2018-02-01

    We explored the adsorption of SO2, SOF2, and SO2F2 on Pt- or Au-doped MoS2 monolayer based on density functional theory. The adsorption energy, adsorption distance, charge transfer as well as density of states were discussed. SO2 and SOF2 exhibit strong chemical interactions with Pt-doped MoS2 based on large adsorption energy, charge transfer, and changes of electron orbitals in gas molecule. SO2 also shows obvious chemisorption on Au-doped MoS2 with apparent magnetism transfer from Au to gas molecules. The adsorption of SO2F2 on Pt-MoS2 and SOF2 on Au-MoS2 exhibits weaker chemical interactions and SO2F2 losses electrons when adsorbed on Pt-MoS2 which is different from other gas adsorption. The adsorption of SO2F2 on Au-MoS2 represents no obvious chemical interaction but physisorption. The gas-sensing properties are also evaluated based on DFT results. This work could provide prospects and application value for typical noble metal-doped MoS2 as gas-sensing materials.

  12. Bremsstrahlung of nitrogen and noble gases in single-bubble sonoluminescence

    NASA Astrophysics Data System (ADS)

    Xu, Ning; Wang, Long; Hu, Xiwei

    2000-03-01

    A hydrodynamic model, discussing neutral gases as well as plasmas, is applied to simulate single-bubble sonoluminescence. In this model, thermal conduction and various inelastic impact processes such as dissociation, ionization, and recombination are considered. Bremsstrahlung is assumed as the mechanism of the picosecond light pulse in sonoluminescence. Diatomic nitrogen and noble gas bubbles are studied. The results show that the sonoluminescing bubbles are completely optically thin for bremsstrahlung. The calculated spectra agree with previous observations, and can explain the observed differences in spectra of different gases.

  13. Carbynes - Carriers of primordial noble gases in meteorites

    NASA Technical Reports Server (NTRS)

    Whittaker, A. G.; Watts, E. J.; Lewis, R. S.; Anders, E.

    1980-01-01

    Five carbynes (triply bonded allotropes of carbon) have been found by electron diffraction in the Allende and Murchison carbonaceous chondrites: carbon VI, VIII, X, XI, and (tentatively) XII. From the isotopic composition of the associated noble-gas components, it appears that the carbynes in Allende (C3V chondrite) are local condensates from the solar nebula, whereas at least two carbynes in Murchison (C2 chondrite) are of exotic, presolar origin. They may be dust grains that condensed in stellar envelopes and trapped isotropically anomalous matter from stellar nucleosynthesis.

  14. Improving Students' Understanding of the Connections between the Concepts of Real-Gas Mixtures, Gas Ideal-Solutions, and Perfect-Gas Mixtures

    ERIC Educational Resources Information Center

    Privat, Romain; Jaubert, Jean-Noël; Moine, Edouard

    2016-01-01

    In many textbooks of chemical-engineering thermodynamics, a gas mixture obeying the fundamental law pV[subscript m] = RT is most often called ideal-gas mixture (in some rare cases, the term perfect-gas mixture can be found). These textbooks also define the fundamental concept of ideal solution which in theory, can be applied indifferently to…

  15. On studies of 3He and isobutane mixture as neutron proportional counter gas

    NASA Astrophysics Data System (ADS)

    Desai, S. S.; Shaikh, A. M.

    2006-02-01

    The performance of neutron detectors filled with 3He+iC 4H 10 (isobutane) gas mixtures has been studied and compared with the performance of detectors filled with 3He+Kr gas mixtures. The investigations are made to determine suitable concentration of isobutane in the gas mixture to design neutron proportional counters and linear position sensitive neutron detectors (1-D PSDs). Energy resolution, range of proportionality, plateau and gas gain characteristics are studied for various gas mixtures of 3He and isobutane. The values for various gas constants are determined by fitting the gas gains to Diethorn and Bateman's equations and their variation with isobutane concentration in the fill gas mixture is studied.

  16. The strong reactions of Lewis-base noble-metals with vanadium and other acidic transition metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebbinghaus, B.B.

    1991-05-01

    The noble metals often thought of as unreactive solids,react strongly with nearly 40% of the elements in the periodictable: group IIIB-VB transition metals, lanthanides, theactinides, and group IIIA-IVA non-transition metals. These strong reactions arise from increased bonding/electron transfer fromnonbonding electrons d electron pairs on the noble metal tovacant orbitals on V, etc. This effect is a generalized Lewis acid-base interaction. The partial Gibbs energy of V in the noblemetals has been measured as a function of concentration at a temperature near 1000C. Thermodynamics of the intermetallics are determined by ternary oxide equilibria, ternary carbide equilibria, and the high-temperature galvanic cellmore » technique. These experimental methods use equilibrated solid composite mixtures in which grains of V oxides or of V carbides are interspersed with grains of V-NM(noble-metal) alloys. In equilibrium the activity of V in the oxide or the carbide equals the activity in the alloy. Consequently, the thermodynamics available in the literature for the V oxides and V carbides are reviewed. Test runs on the galvanic cell were attempted. The V oxide electrode reacts with CaF[sub 2], ThO[sub 2], YDT(0.85ThO[sub 2]-0.15YO[sub 1.5]), and LDT(0.85ThO[sub 2]- 0.15LaO[sub 1.5]) to interfere with the measured data observed toward the beginning of a galvanic cell experiment are the most accurate. The interaction of vanadium at infinite dilution in the noble-metals was determined.« less

  17. The strong reactions of Lewis-base noble-metals with vanadium and other acidic transition metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebbinghaus, Bartley B.

    1991-05-01

    The noble metals often thought of as unreactive solids,react strongly with nearly 40% of the elements in the periodictable: group IIIB-VB transition metals, lanthanides, theactinides, and group IIIA-IVA non-transition metals. These strong reactions arise from increased bonding/electron transfer fromnonbonding electrons d electron pairs on the noble metal tovacant orbitals on V, etc. This effect is a generalized Lewis acid-base interaction. The partial Gibbs energy of V in the noblemetals has been measured as a function of concentration at a temperature near 1000C. Thermodynamics of the intermetallics are determined by ternary oxide equilibria, ternary carbide equilibria, and the high-temperature galvanic cellmore » technique. These experimental methods use equilibrated solid composite mixtures in which grains of V oxides or of V carbides are interspersed with grains of V-NM(noble-metal) alloys. In equilibrium the activity of V in the oxide or the carbide equals the activity in the alloy. Consequently, the thermodynamics available in the literature for the V oxides and V carbides are reviewed. Test runs on the galvanic cell were attempted. The V oxide electrode reacts with CaF 2, ThO 2, YDT(0.85ThO 2-0.15YO 1.5), and LDT(0.85ThO 2- 0.15LaO 1.5) to interfere with the measured data observed toward the beginning of a galvanic cell experiment are the most accurate. The interaction of vanadium at infinite dilution in the noble-metals was determined.« less

  18. Method of depositing a high-emissivity layer

    DOEpatents

    Wickersham, Charles E.; Foster, Ellis L.

    1983-01-01

    A method of depositing a high-emissivity layer on a substrate comprising RF sputter deposition of a carbide-containing target in an atmosphere of a hydrocarbon gas and a noble gas. As the carbide is deposited on the substrate the hydrocarbon gas decomposes to hydrogen and carbon. The carbon deposits on the target and substrate causing a carbide/carbon composition gradient to form on the substrate. At a sufficiently high partial pressure of hydrocarbon gas, a film of high-emissivity pure carbon will eventually form over the substrate.

  19. The evolution of Devonian hydrocarbon gases in shallow aquifers of the northern Appalachian Basin: Insights from integrating noble gas and hydrocarbon geochemistry

    NASA Astrophysics Data System (ADS)

    Darrah, Thomas H.; Jackson, Robert B.; Vengosh, Avner; Warner, Nathaniel R.; Whyte, Colin J.; Walsh, Talor B.; Kondash, Andrew J.; Poreda, Robert J.

    2015-12-01

    The last decade has seen a dramatic increase in domestic energy production from unconventional reservoirs. This energy boom has generated marked economic benefits, but simultaneously evoked significant concerns regarding the potential for drinking-water contamination in shallow aquifers. Presently, efforts to evaluate the environmental impacts of shale gas development in the northern Appalachian Basin (NAB), located in the northeastern US, are limited by: (1) a lack of comprehensive ;pre-drill; data for groundwater composition (water and gas); (2) uncertainty in the hydrogeological factors that control the occurrence of naturally present CH4 and brines in shallow Upper Devonian (UD) aquifers; and (3) limited geochemical techniques to quantify the sources and migration of crustal fluids (specifically methane) at various time scales. To address these questions, we analyzed the noble gas, dissolved ion, and hydrocarbon gas geochemistry of 72 drinking-water wells and one natural methane seep all located ≫1 km from shale gas drill sites in the NAB. In the present study, we consciously avoided groundwater wells from areas near active or recent drilling to ensure shale gas development would not bias the results. We also intentionally targeted areas with naturally occurring CH4 to characterize the geochemical signature and geological context of gas-phase hydrocarbons in shallow aquifers of the NAB. Our data display a positive relationship between elevated [CH4], [C2H6], [Cl], and [Ba] that co-occur with high [4He]. Although four groundwater samples show mantle contributions ranging from 1.2% to 11.6%, the majority of samples have [He] ranging from solubility levels (∼45 × 10-6 cm3 STP/L) with below-detectable [CH4] and minor amounts of tritiogenic 3He in low [Cl] and [Ba] waters, up to high [4He] = 0.4 cm3 STP/L with a purely crustal helium isotopic end-member (3He/4He = ∼0.02 times the atmospheric ratio (R/Ra)) in samples with CH4 near saturation for shallow groundwater (P(CH4) = ∼1 atmosphere) and elevated [Cl] and [Ba]. These data suggest that 4He is dominated by an exogenous (i.e., migrated) crustal source for these hydrocarbon gas- and salt-rich fluids. In combination with published inorganic geochemistry (e.g., 87Sr/86Sr, Sr/Ba, Br-/Cl-), new noble gas and hydrocarbon isotopic data (e.g., 20Ne/36Ar, C2+/C1, δ13C-CH4) suggest that a hydrocarbon-rich brine likely migrated from the Marcellus Formation (via primary hydrocarbon migration) as a dual-phase fluid (gas + liquid) and was fractionated by solubility partitioning during fluid migration and emplacement into conventional UD traps (via secondary hydrocarbon migration). Based on the highly fractionated 4He/CH4 data relative to Marcellus and UD production gases, we propose an additional phase of hydrocarbon gas migration where natural gas previously emplaced in UD hydrocarbon traps actively diffuses out into and equilibrates with modern shallow groundwater (via tertiary hydrocarbon migration) following uplift, denudation, and neotectonic fracturing. These data suggest that by integrating noble gas geochemistry with hydrocarbon and dissolved ion chemistry, one can better determine the source and migration processes of natural gas in the Earth's crust, which are two critical factors for understanding the presence of hydrocarbon gases in shallow aquifers.

  20. Detection of a noble gas molecular ion, 36ArH+, in the Crab Nebula.

    PubMed

    Barlow, M J; Swinyard, B M; Owen, P J; Cernicharo, J; Gomez, H L; Ivison, R J; Krause, O; Lim, T L; Matsuura, M; Miller, S; Olofsson, G; Polehampton, E T

    2013-12-13

    Noble gas molecules have not hitherto been detected in space. From spectra obtained with the Herschel Space Observatory, we report the detection of emission in the 617.5- and 1234.6-gigahertz J = 1-0 and 2-1 rotational lines of (36)ArH(+) at several positions in the Crab Nebula, a supernova remnant known to contain both molecular hydrogen and regions of enhanced ionized argon emission. Argon-36 is believed to have originated from explosive nucleosynthesis in massive stars during core-collapse supernova events. Its detection in the Crab Nebula, the product of such a supernova event, confirms this expectation. The likely excitation mechanism for the observed (36)ArH(+) emission lines is electron collisions in partially ionized regions with electron densities of a few hundred per centimeter cubed.

  1. The influence of the dispersion corrections on the performance of DFT method in modeling HNgY noble gas molecules and their complexes

    NASA Astrophysics Data System (ADS)

    Cukras, Janusz; Sadlej, Joanna

    2018-01-01

    The letter reports a comparative assessment of the usefulness of the two different Grimme's corrections for evaluating dispersion interaction (DFT-D3 and DFT-D3BJ) for the representative molecules of the family of noble-gas hydrides HXeY and their complexes with the HZ molecules, where Y and Z are F/Cl/OH/SH. with special regard to the dispersion term calculated by means of the symmetry-adapted perturbation theory (at the SAPT0 level). The results indicate that despite differences in the total interactions energy (DFT + corrections) versus SAPT0 results, the sequence of contributions of the individual dispersion terms is still maintained. Both dispersion corrections perform similarly and they improve the results suggesting that it is worthwhile to include them in calculations.

  2. Infrared Spectroscopic and Electronic Structure Investigations of Beryllium Halide Molecules, Cations, and Anions in Noble Gas Matrices.

    PubMed

    Yu, Wenjie; Andrews, Lester; Wang, Xuefeng

    2017-11-22

    Laser-ablated Be atoms, cations, and electrons were reacted with F 2 , ClF, Cl 2 , NF 3 , CCl 4 , CF 2 Cl 2 , HCl, DCl, and SiCl 4 diluted in noble gases. The major products were the dihalides BeF 2 , BeClF, BeCl 2 , and the hydride chloride HBeCl, whose identities were confirmed by comparison with previous evaporative work, deuterium substitution, and vibrational frequency calculations. The matrix-isolated fundamental frequency of the BeF molecule is higher, and the frequency of BeCl is lower, than that determined for the gas-phase molecules. The BeF + and BeCl + cations formed strong dipole-induced dipole complexes in solid Ne, Ar, Kr, and Xe with stepwise increase in computed noble gas dissociation energies. Going down the family NgBeF + and NgBeCl + series (Ng = Ne, Ar, Kr, Xe) the Mulliken charges q(Be) decrease, while q(Ng) increases, and the dipole moments decrease, which suggests covalent bonding in the xenon species. We find that the largest intramatrix shift is Ne to Ar which follows the largest factor increase for the Ng atomic polarizabilities. Extra electrons produce Cl - , which reacts with HCl to form the stable HCl 2 - anion and possibly with BeCl 2 to give BeCl 3 - . A weak band observed in neon experiments with F 2 is probably due to BeF 3 - .

  3. Simultaneous detection of xenon and krypton in equine plasma by gas chromatography-tandem mass spectrometry for doping control.

    PubMed

    Kwok, Wai Him; Choi, Timmy L S; So, Pui-Kin; Yao, Zhong-Ping; Wan, Terence S M

    2017-02-01

    Xenon can activate the hypoxia-inducible factors (HIFs). As such, it has been allegedly used in human sports for increasing erythropoiesis. Krypton, another noble gas with reported narcosis effect, can also be expected to be a potential and less expensive erythropoiesis stimulating agent. This has raised concern about the misuse of noble gases as doping agents in equine sports. The aim of the present study is to establish a method for the simultaneous detection of xenon and krypton in equine plasma for the purpose of doping control. Xenon- or krypton-fortified equine plasma samples were prepared according to reported protocols. The target noble gases were simultaneously detected by gas chromatography-triple quadrupole mass spectrometry using headspace injection. Three xenon isotopes at m/z 129, 131, and 132, and four krypton isotopes at m/z 82, 83, 84, and 86 were targeted in selected reaction monitoring mode (with the precursor ions and product ions at identical mass settings), allowing unambiguous identification of the target analytes. Limits of detection for xenon and krypton were about 19 pmol/mL and 98 pmol/mL, respectively. Precision for both analytes was less than 15%. The method has good specificity as background analyte signals were not observed in negative equine plasma samples (n = 73). Loss of analytes under different storage temperatures has also been evaluated. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Noble gas and hydrocarbon tracers in multiphase unconventional hydrocarbon systems: Toward integrated advanced reservoir simulators

    NASA Astrophysics Data System (ADS)

    Darrah, T.; Moortgat, J.; Poreda, R. J.; Muehlenbachs, K.; Whyte, C. J.

    2015-12-01

    Although hydrocarbon production from unconventional energy resources has increased dramatically in the last decade, total unconventional oil and gas recovery from black shales is still less than 25% and 9% of the totals in place, respectively. Further, the majority of increased hydrocarbon production results from increasing the lengths of laterals, the number of hydraulic fracturing stages, and the volume of consumptive water usage. These strategies all reduce the economic efficiency of hydrocarbon extraction. The poor recovery statistics result from an insufficient understanding of some of the key physical processes in complex, organic-rich, low porosity formations (e.g., phase behavior, fluid-rock interactions, and flow mechanisms at nano-scale confinement and the role of natural fractures and faults as conduits for flow). Noble gases and other hydrocarbon tracers are capably of recording subsurface fluid-rock interactions on a variety of geological scales (micro-, meso-, to macro-scale) and provide analogs for the movement of hydrocarbons in the subsurface. As such geochemical data enrich the input for the numerical modeling of multi-phase (e.g., oil, gas, and brine) fluid flow in highly heterogeneous, low permeability formations Herein we will present a combination of noble gas (He, Ne, Ar, Kr, and Xe abundances and isotope ratios) and molecular and isotopic hydrocarbon data from a geographically and geologically diverse set of unconventional hydrocarbon reservoirs in North America. Specifically, we will include data from the Marcellus, Utica, Barnett, Eagle Ford, formations and the Illinois basin. Our presentation will include geochemical and geological interpretation and our perspective on the first steps toward building an advanced reservoir simulator for tracer transport in multicomponent multiphase compositional flow (presented separately, in Moortgat et al., 2015).

  5. Abstract - Cooperative Research and Development Agreement between Oxergy, Inc. and National Energy Technology Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chorpening, Benjamin T.; Kamler, Jonathan

    The Raman Gas Analyzer (RGA) has been demonstrated to have an extremely fast response (<1 second), pressurized, multi-gas analysis capability. All but the noble gases are Raman active, although the Raman interaction is weak. The RGA uses a reflectively lined capillary as the optical cell, providing both a small sample volume for fast gas exchange, and a much greater Raman signal collection than traditional instrument configurations.

  6. Atmospheric Ar and Ne returned from mantle depths to the Earth's surface by forearc recycling.

    PubMed

    Baldwin, Suzanne L; Das, J P

    2015-11-17

    In subduction zones, sediments, hydrothermally altered lithosphere, fluids, and atmospheric gases are transported into the mantle, where ultrahigh-pressure (UHP) metamorphism takes place. However, the extent to which atmospheric noble gases are trapped in minerals crystallized during UHP metamorphism is unknown. We measured Ar and Ne trapped in phengite and omphacite from the youngest known UHP terrane on Earth to determine the composition of Ar and Ne returned from mantle depths to the surface by forearc recycling. An (40)Ar/(39)Ar age [7.93 ± 0.10 My (1σ)] for phengite is interpreted as the timing of crystallization at mantle depths and indicates that (40)Ar/(39)Ar phengite ages reliably record the timing of UHP metamorphism. Both phengite and omphacite yielded atmospheric (38)Ar/(36)Ar and (20)Ne/(22)Ne. Our study provides the first documentation, to our knowledge, of entrapment of atmospheric Ar and Ne in phengite and omphacite. Results indicate that a subduction barrier for atmospheric-derived noble gases does not exist at mantle depths associated with UHP metamorphism. We show that the crystallization age together with the isotopic composition of nonradiogenic noble gases trapped in minerals formed during subsolidus crystallization at mantle depths can be used to unambiguously assess forearc recycling of atmospheric noble gases. The flux of atmospheric noble gas entering the deep Earth through subduction and returning to the surface cannot be fully realized until the abundances of atmospheric noble gases trapped in exhumed UHP rocks are known.

  7. Growth Responses of Neurospora crassa to Increased Partial Pressures of the Noble Gases and Nitrogen

    PubMed Central

    Buchheit, R. G.; Schreiner, H. R.; Doebbler, G. F.

    1966-01-01

    Buchheit, R. G. (Union Carbide Corp., Tonawanda, N.Y.), H. R. Schreiner, and G. F. Doebbler. Growth responses of Neurospora crassa to increased partial pressures of the noble gases and nitrogen. J. Bacteriol. 91:622–627. 1966.—Growth rate of the fungus Neurospora crassa depends in part on the nature of metabolically “inert gas” present in its environment. At high partial pressures, the noble gas elements (helium, neon, argon, krypton, and xenon) inhibit growth in the order: Xe > Kr> Ar ≫ Ne ≫ He. Nitrogen (N2) closely resembles He in inhibitory effectiveness. Partial pressures required for 50% inhibition of growth were: Xe (0.8 atm), Kr (1.6 atm), Ar (3.8 atm), Ne (35 atm), and He (∼ 300 atm). With respect to inhibition of growth, the noble gases and N2 differ qualitatively and quantitatively from the order of effectiveness found with other biological effects, i.e., narcosis, inhibition of insect development, depression of O2-dependent radiation sensitivity, and effects on tissue-slice glycolysis and respiration. Partial pressures giving 50% inhibition of N. crassa growth parallel various physical properties (i.e., solubilities, solubility ratios, etc.) of the noble gases. Linear correlation of 50% inhibition pressures to the polarizability and of the logarithm of pressure to the first and second ionization potentials suggests the involvement of weak intermolecular interactions or charge-transfer in the biological activity of the noble gases. PMID:5883104

  8. Slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures

    DOEpatents

    Aines, Roger D.; Bourcier, William L.; Viani, Brian

    2013-01-29

    A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.

  9. Proceedings of the fifteenth DOE nuclear air cleaning conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    First, M.W.

    1979-02-01

    Papers presented are grouped under the following topics: noble gas separation, damage control, aerosols, test methods, new air cleaning technology from Europe, open-end, and filtration. A separate abstract was prepared for each paper.

  10. Improved wire chamber

    DOEpatents

    Atac, M.

    1987-05-12

    An improved gas mixture for use with proportional counter devices, such as Geiger-Mueller tubes and drift chambers. The improved gas mixture provides a stable drift velocity while eliminating wire aging caused by prior art gas mixtures. The new gas mixture is comprised of equal parts argon and ethane gas and having approximately 0.25% isopropyl alcohol vapor. 2 figs.

  11. Gas mixtures for gas-filled particle detectors

    DOEpatents

    Christophorou, Loucas G.; McCorkle, Dennis L.; Maxey, David V.; Carter, James G.

    1980-01-01

    Improved binary and tertiary gas mixtures for gas-filled particle detectors are provided. The components are chosen on the basis of the principle that the first component is one gas or mixture of two gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a gas (Ar) having a very small cross section at and below aout 0.5 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electron field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  12. Improved gas mixtures for gas-filled particle detectors

    DOEpatents

    Christophorou, L.G.; McCorkle, D.L.; Maxey, D.V.; Carter, J.G.

    Improved binary and tertiary gas mixture for gas-filled particle detectors are provided. The components are chosen on the basis of the principle that the first component is one gas or mixture of two gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a gas (Ar) having a very small cross section at and below about 0.5 eV; whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electron field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  13. Excimer Emission from Alkali Diatomic and Alkaline-Earth-Noble-Gas Molecules

    DTIC Science & Technology

    1989-10-01

    line at 792 nm is also shown as a solid line for 1.18 ami . respectively. The oven temperature and buffer gas comparison. The oven contained pure sodium...Hasselbrink, and G. Hillrichs. Chem. Phys. Lett. 30J. Huennekens, H. J. Park, T. Colbert , and S. C. McClain. 112,441 (1984). Phys. Rev. A 35, 2892 (1987). 15R

  14. Escape and fractionation of volatiles and noble gases from Mars-sized planetary embryos and growing protoplanets

    NASA Astrophysics Data System (ADS)

    Odert, P.; Lammer, H.; Erkaev, N. V.; Nikolaou, A.; Lichtenegger, H. I. M.; Johnstone, C. P.; Kislyakova, K. G.; Leitzinger, M.; Tosi, N.

    2018-06-01

    Planetary embryos form protoplanets via mutual collisions, which can lead to the development of magma oceans. During their solidification, significant amounts of the mantles' volatile contents may be outgassed. The resulting H2O/CO2 dominated steam atmospheres may be lost efficiently via hydrodynamic escape due to the low gravity of these Moon- to Mars-sized objects and the high stellar EUV luminosities of the young host stars. Protoplanets forming from such degassed building blocks after nebula dissipation could therefore be drier than previously expected. We model the outgassing and subsequent hydrodynamic escape of steam atmospheres from such embryos. The efficient outflow of H drags along heavier species like O, CO2, and noble gases. The full range of possible EUV evolution tracks of a young solar-mass star is taken into account to investigate the atmospheric escape from Mars-sized planetary embryos at different orbital distances. The estimated envelopes are typically lost within a few to a few tens of Myr. Furthermore, we study the influence on protoplanetary evolution, exemplified by Venus. In particular, we investigate different early evolution scenarios and constrain realistic cases by comparing modeled noble gas isotope ratios with present observations. Isotope ratios of Ne and Ar can be reproduced, starting from solar values, under hydrodynamic escape conditions. Solutions can be found for different solar EUV histories, as well as assumptions about the initial atmosphere, assuming either a pure steam atmosphere or a mixture with accreted hydrogen from the protoplanetary nebula. Our results generally favor an early accretion scenario with a small amount of residual hydrogen from the protoplanetary nebula and a low-activity Sun, because in other cases too much CO2 is lost during evolution, which is inconsistent with Venus' present atmosphere. Important issues are likely the time at which the initial steam atmosphere is outgassed and/or the amount of CO2 which may still be delivered at later evolutionary stages. A late accretion scenario can only reproduce present isotope ratios for a highly active young Sun, but then unrealistically massive steam atmospheres (few kbar) would be required.

  15. Trapping of Noble Gases by Radiative Association with H3 + in the Protosolar Nebula

    NASA Astrophysics Data System (ADS)

    Pauzat, F.; Bacchus-Montabonel, M.-C.; Ellinger, Y.; Mousis, O.

    2016-04-01

    The heavy noble gas deficiencies observed in Titan’s atmosphere and in comets have been proposed to be related to a sequestration process by {{{H}}}3+ in the gas phase at the early protosolar nebula. Chemical thermodynamics and astrophysics modeling are favorable to this hypothesis, as presented in preceding papers. However, there is a point still to be raised, I.e., that no dynamical study of the efficiency of the collisional processes had been performed so far. Here, we show that, apart from the expected exception of Ne, the rate constants obtained, I.e., 0.7 × 10-18, 0.5 × 10-16, and 10-16 (cm3 s-1) for Ar, Kr, and Xe, respectively, are reasonably high for such processes, particularly in the case of Kr and Xe. The temperature dependence is also considered, showing a similar behavior for all noble gases with a peak efficiency in the range 50-60 K. Globally, we can conclude that the scenario of sequestration by {{{H}}}3+ is definitively comforted by the results of our quantum dynamical treatment. This process may also be responsible of the Ar impoverishment just measured in comet 67P/Churyumov-Gerasimenko by the ROSINA mass spectrometer on board the Rosetta spacecraft.

  16. Sequential two-photon double ionization of noble gases by circularly polarized XUV radiation

    NASA Astrophysics Data System (ADS)

    Gryzlova, E. V.; Grum-Grzhimailo, A. N.; Kuzmina, E. I.; Strakhova, S. I.

    2014-10-01

    Photoelectron angular distributions (PADs) and angular correlations between two emitted electrons in sequential two-photon double ionization (2PDI) of atoms by circularly polarized radiation are studied theoretically. In particular, the sequential 2PDI of the valence n{{p}6} shell in noble gas atoms (neon, argon, krypton) is analyzed, accounting for the first-order corrections to the dipole approximation. Due to different selection rules in ionization transitions, the circular polarization of photons causes some new features of the cross sections, PADs and angular correlation functions in comparison with the case of linearly polarized photons.

  17. Silicon PIN diode based electron-gamma coincidence detector system for Noble Gases monitoring.

    PubMed

    Khrustalev, K; Popov, V Yu; Popov, Yu S

    2017-08-01

    We present a new second generation SiPIN based electron-photon coincidence detector system developed by Lares Ltd. for use in the Noble Gas measurement systems of the International Monitoring System and the On-site Inspection verification regimes of the Comprehensive Nuclear-Test Ban Treaty (CTBT). The SiPIN provide superior energy resolution for electrons. Our work describes the improvements made in the second generation detector cells and the potential use of such detector systems for other applications such as In-Situ Kr-85 measurements for non-proliferation purposes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Ultrabright multikilovolt x-ray source: saturated amplification on noble gas transition arrays from hollow atom states

    DOEpatents

    Rhodes, Charles K.; Boyer, Keith

    2004-02-17

    An apparatus and method for the generation of ultrabright multikilovolt x-rays from saturated amplification on noble gas transition arrays from hollow atom states is described. Conditions for x-ray amplification in this spectral region combine the production of cold, high-Z matter, with the direct, selective multiphoton excitation of hollow atoms from clusters using ultraviolet radiation and a nonlinear mode of confined, self-channeled propagation in plasmas. Data obtained is consistent with the presence of saturated amplification on several transition arrays of the hollow atom Xe(L) spectrum (.lambda..about.2.9 .ANG.). An estimate of the peak brightness achieved is .about.10.sup.29 .gamma..multidot.s.sup.-1.multidot.mm.sup.-2.multidot.mr.sup.-2 (0.1% Bandwidth).sup.-1, that is .about.10.sup.5 -fold higher than presently available synchotron technology.

  19. Communication: Nuclear quadrupole moment-induced Cotton-Mouton effect in noble gas atoms

    NASA Astrophysics Data System (ADS)

    Fu, Li-juan; Rizzo, Antonio; Vaara, Juha

    2013-11-01

    New, high-sensitivity and high-resolution spectroscopic and imaging methods may be developed by exploiting nuclear magneto-optic effects. A first-principles electronic structure formulation of nuclear electric quadrupole moment-induced Cotton-Mouton effect (NQCME) is presented for closed-shell atoms. In NQCME, aligned quadrupole moments alter the index of refraction of the medium along with and perpendicular to the direction of nuclear alignment. The roles of basis-set convergence, electron correlation, and relativistic effects are investigated for three quadrupolar noble gas isotopes: 21Ne, 83Kr, and 131Xe. The magnitude of the resulting ellipticities is predicted to be 10-4-10-6 rad/(M cm) for fully spin-polarized nuclei. These should be detectable in the Voigt setup. Particularly interesting is the case of 131Xe, in which a high degree of spin polarization can be achieved via spin-exchange optical hyperpolarization.

  20. Light propagation in gas-filled kagomé hollow core photonic crystal fibres

    NASA Astrophysics Data System (ADS)

    Rodrigues, Sílvia M. G.; Facão, Margarida; Ferreira, Mário F. S.

    2018-04-01

    We study the propagation of light in kagomé hollow core photonic crystal fibres (HC-PCFs) filled with three different noble gases, namely, helium, xenon and argon. Various properties, including the guided modes, the group-velocity dispersion, and the nonlinear parameter were determined. The zero dispersion wavelength and the nonlinear parameter vary with the gas pressure which may be used to tune the generation of new frequencies using the same pump laser and the same fibre. In the case of the kagomé HC-PCF filled with xenon, the zero dispersion wavelength shifts from 693 to 1973 nm when the pressure is increased from 1 to 150bar, while the effective Kerr nonlinearity becomes comparable to that of silica. We have simulated the propagation of femtosecond pulses launched at 790 nm in order to study the generation of supercontinuum and UV light in kagomé HC-PCFs filled with the noble gases.

  1. Infrared and density functional theory studies of isoprene-water complexes in noble gas matrices

    NASA Astrophysics Data System (ADS)

    Ito, Fumiyuki

    2017-11-01

    The interaction of 2-methyl-1,3-butadiene (isoprene) with a H2O molecule in low-temperature noble gas matrices (Ar or Kr) was investigated using infrared absorption spectroscopy. Vibrational peaks arising from 1:1 isoprene-H2O adducts were assigned and compared with the results of quantum chemical calculations. The comparison led to the conclusion that the H2O molecule in the complex preferentially H-bonds to one of the two unsaturated Cdbnd C bonds, and that the binding energy of the complex is comparable to that of the C6H6-H2O complex. The present study suggests that the change in the charge distribution of isoprene due to the formation of a complex with H2O may lead to alteration of the reactivity with respect to the insertion of OH radicals, thereby influencing the formation of aerosols in the atmosphere.

  2. Extreme Confinement of Xenon by Cryptophane-111 in the Solid State

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph, Akil I.; Lapidus, Saul H.; Kane, Christopher M.

    2014-12-11

    Solids that sorb, capture and/or store the heavier noble gases are of interest because of their potential for transformative rare gas separation/production, storage, or recovery technologies. Herein, we report the isolation, crystal structures, and thermal stabilities of a series of xenon and krypton clathrates of (±)-cryptophane-111 (111). One trigonal crystal form, Xe@111•y(solvent), is exceptionally stable, retaining xenon at temperatures of up to about 300 °C. The high kinetic stability is attributable not only to the high xenon affinity and cage-like nature of the host, but also to the crystal packing of the clathrate, wherein each window of the molecular containermore » is blocked by the bridges of adjacent containers, effectively imprisoning the noble gas in the solid state. The results highlight the potential of discrete molecule materials exhibiting intrinsic microcavities or zero-dimensional pores.« less

  3. Thermally driven advection for radioxenon transport from an underground nuclear explosion

    NASA Astrophysics Data System (ADS)

    Sun, Yunwei; Carrigan, Charles R.

    2016-05-01

    Barometric pumping is a ubiquitous process resulting in migration of gases in the subsurface that has been studied as the primary mechanism for noble gas transport from an underground nuclear explosion (UNE). However, at early times following a UNE, advection driven by explosion residual heat is relevant to noble gas transport. A rigorous measure is needed for demonstrating how, when, and where advection is important. In this paper three physical processes of uncertain magnitude (oscillatory advection, matrix diffusion, and thermally driven advection) are parameterized by using boundary conditions, system properties, and source term strength. Sobol' sensitivity analysis is conducted to evaluate the importance of all physical processes influencing the xenon signals. This study indicates that thermally driven advection plays a more important role in producing xenon signals than oscillatory advection and matrix diffusion at early times following a UNE, and xenon isotopic ratios are observed to have both time and spatial dependence.

  4. Post-Explosion Tracer Gas Study in Fractured Granite

    NASA Astrophysics Data System (ADS)

    Avendano, S.; Horne, M.; Herrera, C.; Person, M. A.; Gorman, E.; Stroujkova, A. F.; Gomez-Velez, J. D.

    2017-12-01

    Radioactive noble gas detection at suspected underground nuclear test sites is the only proven way to confirm that a nuclear test has occurred. However, the migration of gas effluent through fracture networks is still poorly understood. A pilot field study of the gas migration through rock damaged by explosions was conducted in a rock quarry in New Hampshire in the summer of 2017. Tracer gas (SF6), used as a proxy for the noble gas, was released into a cavity created by an explosion (63 kg of TNT at a depth of 13 m) conducted during the summer of 2016. The upper 5 m of borehole were grouted with stainless steel tubing sealed in the concrete and the gas was pumped through the tubing. Before the gas release, we conducted a series of geophysical and hydrologic tests: a pump test, several slug tests, a salt tracer release in two boreholes, and TEM and ERT surveys. Pressure and electrical conductivity transducers were placed in the surrounding boreholes to monitor the pressure changes and tracer arrival during the pumping. The results of the pump test show that the rock is well connected and has high permeability. Interestingly, the injection of gas resulted in a substantial increase of the local hydraulic conductivity, as evidenced by slug test results before and after injection. The pressure changes in the surrounding boreholes were also monitored during the gas release. We observed gas breakthrough immediately after the release. During the first minute after injection, a pressure wave was observed in two boreholes suggestive of inertial effects and hydraulic fracturing after gas release. The concentrations observed at each monitoring site are consistent with the pump testing. The results of this study will be used in our upcoming experiments and to test detailed mathematical models.

  5. Nano-structured noble metal catalysts based on hexametallate architecture for the reforming of hydrocarbon fuels

    DOEpatents

    Gardner, Todd H.

    2015-09-15

    Nano-structured noble metal catalysts based on hexametallate lattices, of a spinel block type, and which are resistant to carbon deposition and metal sulfide formation are provided. The catalysts are designed for the reforming of hydrocarbon fuels to synthesis gas. The hexametallate lattices are doped with noble metals (Au, Pt, Rh, Ru) which are atomically dispersed as isolated sites throughout the lattice and take the place of hexametallate metal ions such as Cr, Ga, In, and/or Nb. Mirror cations in the crystal lattice are selected from alkali metals, alkaline earth metals, and the lanthanide metals, so as to reduce the acidity of the catalyst crystal lattice and enhance the desorption of carbon deposit forming moieties such as aromatics. The catalysts can be used at temperatures as high as 1000.degree. C. and pressures up to 30 atmospheres. A method for producing these catalysts and applications of their use also is provided.

  6. Calculation and characteristic analysis on synergistic effect of CF3I gas mixtures

    NASA Astrophysics Data System (ADS)

    Su, ZHAO; Yunkun, DENG; Yuhao, GAO; Dengming, XIAO

    2018-06-01

    CF3I is a potential SF6 alternative gas. In order to study the insulation properties and synergistic effects of CF3I/N2 and CF3I/CO2 gas mixtures, two-term approximate Boltzmann equations were used to obtain the ionization coefficient α, attachment coefficient η and the critical equivalent electrical field strength (E/N)cr. The results show that the (E/N)cr of CF3I gas at 300 K is 1.2 times that of SF6 gas, and CF3I/N2 and CF3I/CO2 gas mixtures both have synergistic effect occurred. The synergistic effect coefficient of CF3I/CO2 gas mixture was higher than that of CF3I/N2 gas mixture. But the (E/N)cr of CF3I/N2 is higher than that of CF3I/CO2 under the same conditions. When the content of CF3I exceeds 20%, the (E/N)cr of CF3I/N2 and CF3I/CO2 gas mixture increase linearly with the increasing of CF3I gas content. The breakdown voltage of CF3I/N2 gas mixture is also higher than that of CF3I/CO2 gas mixture in slightly non-uniform electrical field under power frequency voltage, but the synergistic effect coefficients of the two gas mixtures are basically the same.

  7. The role of hyperpolarized 129xenon in MR imaging of pulmonary function

    PubMed Central

    Ebner, Lukas; Kammerman, Jeff; Driehuys, Bastiaan; Schiebler, Mark L.; Cadman, Robert V.; Fain, Sean B.

    2016-01-01

    In the last two decades, functional imaging of the lungs using hyperpolarized noble gases has entered the clinical stage. Both helium (3 He) and xenon (129Xe) gas have been thoroughly investigated for their ability to assess both the global and regional patterns of lung ventilation. With advances in polarizer technology and the current transition towards the widely available 129Xe gas, this method is ready for translation to the clinic. Currently, hyperpolarized (HP) noble gas lung MRI is limited to selected academic institutions; yet, the promising results from initial clinical trials have drawn the attention of the pulmonary medicine community. HP 129Xe MRI provides not only 3-dimensional ventilation imaging, but also unique capabilities for probing regional lung physiology. In this review article, we aim to (1) provide a brief overview of current ventilation MR imaging techniques, (2) emphasize the role of HP 129Xe MRI within the array of different imaging strategies, (3) discuss the unique imaging possibilities with HP 129Xe MRI, and (4) propose clinical applications. PMID:27707585

  8. Sonoluminescence and acoustic cavitation

    NASA Astrophysics Data System (ADS)

    Choi, Pak-Kon

    2017-07-01

    Sonoluminescence (SL) is light emission under high-temperature and high-pressure conditions of a cavitating bubble under intense ultrasound in liquid. In this review, the fundamentals of the interactions between the sound field and the bubble, and between bubbles are explained. Experimental results on high-speed shadowgraphy of bubble dynamics and multibubble SL are shown, demonstrating that the SL intensity is closely related to the bubble dynamics. SL studies of alkali-metal atom (Na and K) emission are summarized. The spectral measurements in solutions with different noble-gas dissolutions and in surfactant solutions, and the results of spatiotemporal separation of SL distribution strongly suggested that the site of alkali-metal atom emission is the gas phase inside bubbles. The spectral studies indicated that alkali-metal atom lines are composed of two kinds of lines: a component that is broadened and shifted from the original D lines arises from van der Waals molecules formed between alkali-metal atoms and noble-gas atoms under extreme conditions at bubble collapse. The other spectral component exhibiting no broadening and no shift was suggested to originate from higher temperature bubbles than those producing the broadened component.

  9. Atmospheric Ar and Ne returned from mantle depths to the Earth’s surface by forearc recycling

    PubMed Central

    Baldwin, Suzanne L.; Das, J. P.

    2015-01-01

    In subduction zones, sediments, hydrothermally altered lithosphere, fluids, and atmospheric gases are transported into the mantle, where ultrahigh-pressure (UHP) metamorphism takes place. However, the extent to which atmospheric noble gases are trapped in minerals crystallized during UHP metamorphism is unknown. We measured Ar and Ne trapped in phengite and omphacite from the youngest known UHP terrane on Earth to determine the composition of Ar and Ne returned from mantle depths to the surface by forearc recycling. An 40Ar/39Ar age [7.93 ± 0.10 My (1σ)] for phengite is interpreted as the timing of crystallization at mantle depths and indicates that 40Ar/39Ar phengite ages reliably record the timing of UHP metamorphism. Both phengite and omphacite yielded atmospheric 38Ar/36Ar and 20Ne/22Ne. Our study provides the first documentation, to our knowledge, of entrapment of atmospheric Ar and Ne in phengite and omphacite. Results indicate that a subduction barrier for atmospheric-derived noble gases does not exist at mantle depths associated with UHP metamorphism. We show that the crystallization age together with the isotopic composition of nonradiogenic noble gases trapped in minerals formed during subsolidus crystallization at mantle depths can be used to unambiguously assess forearc recycling of atmospheric noble gases. The flux of atmospheric noble gas entering the deep Earth through subduction and returning to the surface cannot be fully realized until the abundances of atmospheric noble gases trapped in exhumed UHP rocks are known. PMID:26542683

  10. Using chromatography – desorption method of manufacturing gas mixtures for analytical instruments calibration

    NASA Astrophysics Data System (ADS)

    Platonov, I. A.; Kolesnichenko, I. N.; Lange, P. K.

    2018-05-01

    In this paper, the chromatography desorption method of obtaining gas mixtures of known compositions stable for a time sufficient to calibrate analytical instruments is considered. The comparative analysis results of the preparation accuracy of gas mixtures with volatile organic compounds using diffusion, polyabarbotage and chromatography desorption methods are presented. It is shown that the application of chromatography desorption devices allows one to obtain gas mixtures that are stable for 10...60 hours in a dynamic condition. These gas mixtures contain volatile aliphatic and aromatic hydrocarbons with a concentration error of no more than 7%. It is shown that it is expedient to use such gas mixtures for analytical instruments calibration (chromatographs, spectrophotometers, etc.)

  11. Groundwater noble gas, age, and temperature signatures in an Alpine watershed: Valuable tools in conceptual model development

    USGS Publications Warehouse

    Manning, Andrew H.; Caine, Jonathan S.

    2007-01-01

    Bedrock groundwater in alpine watersheds is poorly understood, mainly because of a scarcity of wells in alpine settings. Groundwater noble gas, age, and temperature data were collected from springs and wells with depths of 3–342 m in Handcart Gulch, an alpine watershed in Colorado. Temperature profiles indicate active groundwater circulation to a maximum depth (aquifer thickness) of about 200 m, or about 150 m below the water table. Dissolved noble gas data show unusually high excess air concentrations (>0.02 cm3 STP/g, ΔNe > 170%) in the bedrock, consistent with unusually large seasonal water table fluctuations (up to 50 m) observed in the upper part of the watershed. Apparent 3H/3He ages are positively correlated with sample depth and excess air concentrations. Integrated samples were collected from artesian bedrock wells near the trunk stream and are assumed to approximate flow‐weighted samples reflecting bedrock aquifer mean residence times. Exponential mean ages for these integrated samples are remarkably consistent along the stream, four of five being from 8 to 11 years. The tracer data in combination with other hydrologic and geologic data support a relatively simple conceptual model of groundwater flow in the watershed in which (1) permeability is primarily a function of depth; (2) water table fluctuations increase with distance from the stream; and (3) recharge, aquifer thickness, and porosity are relatively uniform throughout the watershed in spite of the geological complexity of the Proterozoic crystalline rocks that underlie it.

  12. Buffer gas cooling and mixture analysis

    DOEpatents

    Patterson, David S.; Doyle, John M.

    2018-03-06

    An apparatus for spectroscopy of a gas mixture is described. Such an apparatus includes a gas mixing system configured to mix a hot analyte gas that includes at least one analyte species in a gas phase into a cold buffer gas, thereby forming a supersaturated mixture to be provided for spectroscopic analysis.

  13. The genetic source and timing of hydrocarbon formation in gas hydrate reservoirs in Green Canyon, Block GC955

    NASA Astrophysics Data System (ADS)

    Moore, M. T.; Darrah, T.; Cook, A.; Sawyer, D.; Phillips, S.; Whyte, C. J.; Lary, B. A.

    2017-12-01

    Although large volumes of gas hydrates are known to exist along continental slopes and below permafrost, their role in the energy sector and the global carbon cycle remains uncertain. Investigations regarding the genetic source(s) (i.e., biogenic, thermogenic, mixed sources of hydrocarbon gases), the location of hydrocarbon generation, (whether hydrocarbons formed within the current reservoir formations or underwent migration), rates of clathrate formation, and the timing of natural gas formation/accumulation within clathrates are vital to evaluate economic potential and enhance our understanding of geologic processes. Previous studies addressed some of these questions through analysis of conventional hydrocarbon molecular (C1/C2+) and stable isotopic (e.g., δ13C-CH4, δ2H-CH4, δ13C-CO2) composition of gases, water chemistry and isotopes (e.g., major and trace elements, δ2H-H2O, δ18O-H2O), and dissolved inorganic carbon (δ13C-DIC) of natural gas hydrate systems to determine proportions of biogenic and thermogenic gas. However, the effects from contributions of mixing, transport/migration, methanogenesis, and oxidation in the subsurface can complicate the first-order application of these techniques. Because the original noble gas composition of a fluid is preserved independent of microbial activity, chemical reactions, or changes in oxygen fugacity, the integration of noble gas data can provide both a geochemical fingerprint for sources of fluids and an additional insight as to the uncertainty between effects of mixing versus post-genetic modification. Here, we integrate inert noble gases (He, Ne, Ar, and associated isotopes) with these conventional approaches to better constrain the source of gas hydrate formation and the residence time of fluids (porewaters and natural gases) using radiogenic 4He ingrowth techniques in cores from two boreholes collected as part of the University of Texas led UT-GOM2-01 drilling project. Pressurized cores were extracted from coarse silt/sand reservoirs 600 m below the seafloor within the GC955 block of the Green Canyon protraction area at the edge of the Sigsbee escarpment. Preliminary results suggest that hydrocarbons gases from this study area are dominantly formed by biogenic processes with residence time estimates ranging from 6.2-49.8 kyr.

  14. Method and means of monitoring the effluent from nuclear facilities

    DOEpatents

    Lattin, Kenneth R.; Erickson, Gerald L.

    1976-01-01

    Radioactive iodine is detected in the effluent cooling gas from a nuclear reactor or nuclear facility by passing the effluent gas through a continuously moving adsorbent filter material which is then purged of noble gases and conveyed continuously to a detector of radioactivity. The purging operation has little or no effect upon the concentration of radioactive iodine which is adsorbed on the filter material.

  15. Noble gas partitioning behavior in the Sleipner Vest hydrocarbon field

    NASA Astrophysics Data System (ADS)

    Barry, P. H.; Lawson, M.; Warr, O.; Mabry, J.; Byrne, D. J.; Meurer, W. P.; Ballentine, C. J.

    2015-12-01

    Noble gases are chemically inert and variably soluble in crustal fluids. They are primarily introduced into hydrocarbon reservoirs through exchange with formation waters, and can be used to assess migration pathways, mechanisms and reservoir storage. Of particular interest is the role groundwater plays in hydrocarbon transport, which is reflected in hydrocarbon-water volume ratios. We present compositional, stable isotope and noble gas isotope and abundance data from the Sleipner Vest field, in the Norwegian North Sea. Sleipner gases are generated from primary cracking of kerogen and the thermal cracking of oil, sourced from type II marine source, with relatively homogeneous maturities and a range in vitrinite reflectance (1.2-1.7%). Gases are hosted in the lower shoreface sandstones of the Jurassic Hugin formation, which is sealed by the Jurassic Upper Draupne and Heather formations. Gases are composed of N2 (0.6-0.9%), CO2 (5.4-15.3%) and hydrocarbons (69-80%). Helium isotopes (3He/4He) are radiogenic and range from 0.065 to 0.116 RA, showing a small mantle contribution, consistent with Ne isotopes (20Ne/22Ne from 9.70-9.91; 21Ne/22Ne from 0.0290-0.0344) and Ar isotopes (40Ar/36Ar from 315-489). 20Ne/36Ar, 84Kr/36Ar and 132Xe/36Ar values are systematically higher relative to air saturated water ratios. These data are discussed within the framework of several conceptual models: i) Total gas-stripping model, which defines the minimum volume of water to have interacted with the hydrocarbon phase; ii) Equilibrium model, assuming simple equilibration between groundwater and hydrocarbon phase at reservoir P,T and salinity; and iii) Open and closed system gas-stripping models. Using Ne-Ar, we estimate gas-water ratios for the Sleipner system of 0.02-0.09, which compare with geologic gas-water estimates of ~0.24, and suggest more groundwater interaction than a static system estimate. Kr and Xe show evidence for an additional source or process involving oil or sediments.

  16. Noble gas as tracers for CO2 deep input in petroleum reservoirs

    NASA Astrophysics Data System (ADS)

    Pujol, Magali; Stuart, Finlay; Gilfillan, Stuart; Montel, François; Masini, Emmanuel

    2016-04-01

    The sub-salt hydrocarbon reservoirs in the deep offshore part of the Atlantic Ocean passive margins are a new key target for frontier oil and gas exploration. Type I source rocks locally rich in TOC (Total Organic Carbon) combined with an important secondary connected porosity of carbonate reservoirs overlain by an impermeable salt layer gives rise to reservoirs with high petroleum potential. However, some target structures have been found to be mainly filled with CO2 rich fluids. δ13C of the CO2 is generally between -9 and -4 permil, compatible with a deep source (metamorphic or mantle). Understanding the origin of the CO2 and the relative timing of its input into reservoir layers in regard to the geodynamic context appears to be a key issue for CO2 risk evaluation. The inertness and ubiquity of noble gases in crustal fluids make them powerful tools to trace the origin and migration of mixed fluids (Ballentine and Burnard 2002). The isotopic signature of He, Ne and Ar and the elemental pattern (He to Xe) of reservoir fluid from pressurized bottom hole samples provide an insight into fluid source influences at each reservoir depth. Three main end-members can be mixed into reservoir fluids (e.g. Gilfillan et al., 2008): atmospheric signature due to aquifer recharge, radiogenic component from organic fluid ± metamorphic influence, and mantle input. Their relative fractionation provides insights into the nature of fluid transport (Burnard et al., 2012)and its relative migration timing. In the studied offshore passive margin reservoirs, from both sides of South Atlantic margin, a strong MORB-like magmatic CO2 influence is clear. Hence, CO2 charge must have occurred during or after lithospheric break-up. CO2 charge(s) history appears to be complex, and in some cases requires several inputs to generate the observed noble gas pattern. Combining the knowledge obtained from noble gas (origin, relative timing, number of charges) with organic geochemical and thermodynamic understanding of the fluid, in regards with the geodynamical context, helps us to unravel the complex fluid history of these deep environments. Ballentine C.J. and Burnard P.G. (2002). Rev. Mineral. Geochem., vol. 47, pp 481-538. Burnard P et al. (2012) EPSL 341, pp 68-78. Gilfillan, S.M.V. et al. (2008) GCA, vol. 72, pp 1174-1198.

  17. Constraints on the composition of the ancient terrestrial atmosphere and hydrosphere from fluid inclusion analysis

    NASA Astrophysics Data System (ADS)

    Marty, B.; Avice, G.; Burgess, R.

    2016-12-01

    The evolution of the hydrosphere and atmosphere during the first half of Earth's history is still largely unknown. We are currently investigating the compositions of these reservoirs from the analysis of fluid inclusions trapped in 3.5-2.7 Ga-old hydrothermal quartz. We specifically analyze noble gases and nitrogen which are conservative enough to have survived the long history of their host phases. The samples come from Archean terranes situated in North Pole, the Pilbara, NW Australia, and in the Barberton greenstone belt, South Africa. Their morphologies suggest that the quartz deposition was contemporary with terrane formation. They were selected on the basis of their ages determined by the Ar-Ar method. The results published by our group show that the noble gas isotopic composition of the Archean atmosphere was similar to the modern one, with the outstanding exception of xenon. This heavy noble gas experienced gradual isotopic fractionation through time, as a result of its preferential escape to space, which mechanism remains to be elucidated. In contrast, the isotope composition of atmospheric N was similar to the modern one, suggesting little, if any, loss of this element from the terrestrial atmosphere from 3.5 Ga to Present. The atmospheric partial pressure of N2 was likely to be comparable to, or lower than, the modern one, casting doubt on the possibility of enhanced pN2 as a mean to counterbalance the faint Sun energy flux. Here we shall newly report data on chlorine and potassium in fluid inclusions with, together with noble gases, suggest that the salinity of the Archean oceans was not very different from that of the modern seawater.

  18. Not all Primordial Noble Gas Signatures are Associated with OIBs and Mantle Plumes - Mantle Heterogeneity, Primordial Shallow Sources and a Solar-like He, Ne Signature in an Ancient North American Craton

    NASA Astrophysics Data System (ADS)

    Ma, L.; Castro, M. C.; Hall, C. M.

    2007-12-01

    The presence of primordial He and Ne components in ocean island basalts (OIBs) as well as a mantle He/heat flux ratio lower than the production ratio near mid-ocean ridges have historically been used to support the existence of a two-layer mantle convection model. This would comprise a lower, primordial, undegassed reservoir from which He removal to the upper degassed mantle would be impeded. Arguments based on He and heat transport have been recently invalidated by Castro et al. (2005) and should no longer be used to justify the presence of two such distinct mantle reservoirs. Indeed, it was shown that such low He/heat flux ratios are expected and do not reflect a He deficit in the original crust or mantle reservoir. By contrast, the occurrence of a He/heat flux ratio greater than the radiogenic production ratio can only result from a past mantle thermal event in which the released heat has already escaped while the released He remains, and is slowly rising to the surface. Such a high He/heat flux ratio is present in shallow groundwaters of the Michigan Basin. We now present results of a new noble gas study conducted in the Michigan Basin, in which 38 deep (0.5-3.6km) brine samples were collected and analyzed for all noble gas abundances and isotopic ratios. As expected from previously computed shallow high He/heat flux ratios, both He and Ne isotopic ratios clearly indicate the presence of a mantle component. Of greater significance is the primordial, solar-like signature, of this mantle component. It is also the first primordial signature ever recorded in crustal fluids in a continental region. Because no hotspots or hotspot tracks are known in the area, it is highly unlikely for such primordial, solar-like signature to result from a mantle plume-related mechanism originating deep in the mantle. We argue that such a primordial signature can be explained by a shallow noble gas reservoir in the subcontinental lithospheric mantle (SCLM) beneath the Michigan Basin, possibly created by a mechanism similar to that proposed by Anderson (1998) for oceanic regions. Indeed, the Michigan Basin, located within the ancient North American craton (~1.1->2.5Ga), lies on a very thick U-Th depleted SCLM, possibly allowing preservation of a primordial, residual, mantle reservoir beneath the continental crust. Recent reactivation of the old mid-continent rift transecting the crystalline basement is likely responsible for the release of this primordial signature into the basin. The solar-like He and Ne signatures present in the Michigan Basin fluids not only suggest that a deep primordial mantle reservoir is not required to explain the presence of such components, they also point to a very heterogeneous mantle as previously suggested by Anderson (1998), Albarede (2005), and others. Consequently, the presence of a primordial noble gas signature, at least if observed in a continental region, should not be used to conclude at the existence of a deep mantle source and thus, of a hotspot as typically defined. The SCLM underneath ancient cratons is a great candidate for hosting primitive ancient mantle reservoirs. Arguments based on He/heat flux ratios as well as the presence of a primordial noble gas signature should not be used to support the existence of a lower, primordial, versus an upper, degassed mantle reservoir. Our study provides the first observational case for long-term primordial lithospheric storage. Anderson, 1998, Proc. Natl. Acad. Sci. USA, 95, 9087-9092. Albarede, 2005, AGU Monograph, 160, 27-46. Castro et al., 2005, EPSL, 237, 893-910.

  19. Escape and fractionation of volatiles and noble gases: from Mars-sized planetary embryos to growing protoplanets

    NASA Astrophysics Data System (ADS)

    Odert, Petra; Lammer, Helmut; Erkaev, Nikolai V.; Nikolaou, Athanasia; Lichtenegger, Herbert I. M.; Johnstone, Colin P.; Kislyakova, Kristina G.; Leitzinger, Martin; Tosi, Nicola

    2017-04-01

    Planetary embryos form larger planetary objects via collisions. Such Moon- to Mars-sized bodies can have magma oceans. During the solidification of their magma oceans planetary embryos may therefore degas significant amounts of their volatiles, forming H2O/CO2 dominated steam atmospheres. Such atmospheres may escape efficiently due to the low gravity of these objects and the high EUV emission of the young host star. Planets forming from such building blocks could therefore be drier than expected. We model the energy-limited outflow of hydrogen which is able to drag along heavier species such as O and CO2. We take into account different stellar EUV evolution tracks to investigate the loss of steam atmospheres from Mars-sized planetary embryos at different orbital distances. We find that the estimated envelopes are typically lost within a few to a few tens of Myr. Moreover, we address the influence on protoplanet evolution using Venus as an example. We investigate different early evolution scenarios and constrain realistic cases by comparing modeled noble gas isotope ratios with presently observed ones. We are able to reproduce current ratios by assuming either a pure steam atmosphere or a mixture with accreted hydrogen from the protoplanetary nebula. Despite being able to find solutions for different parameter combinations, our results favor a low-activity Sun with possibly a small amount of residual H from the protoplanetary nebula. In other cases too much CO2 is lost during evolution, which is inconsistent with Venus' present atmosphere. A critical issue is likely the time at which the initial steam atmosphere is outgassed.

  20. Combination Rules for Morse-Based van der Waals Force Fields.

    PubMed

    Yang, Li; Sun, Lei; Deng, Wei-Qiao

    2018-02-15

    In traditional force fields (FFs), van der Waals interactions have been usually described by the Lennard-Jones potentials. Conventional combination rules for the parameters of van der Waals (VDW) cross-termed interactions were developed for the Lennard-Jones based FFs. Here, we report that the Morse potentials were a better function to describe VDW interactions calculated by highly precise quantum mechanics methods. A new set of combination rules was developed for Morse-based FFs, in which VDW interactions were described by Morse potentials. The new set of combination rules has been verified by comparing the second virial coefficients of 11 noble gas mixtures. For all of the mixed binaries considered in this work, the combination rules work very well and are superior to all three other existing sets of combination rules reported in the literature. We further used the Morse-based FF by using the combination rules to simulate the adsorption isotherms of CH 4 at 298 K in four covalent-organic frameworks (COFs). The overall agreement is great, which supports the further applications of this new set of combination rules in more realistic simulation systems.

  1. Method of dehydrating natural gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wells, R. E.

    1985-01-01

    A method for dehydration of natural gas is provided wherein well head gas is supplied to a three-phase inlet separator, the vapor mixture of natural gas and water removed from that inlet separator means is supplied to a turboexpander, and the resulting refrigerated mixture of natural gas and condensed water vapor is supplied to a multi-phase outlet separator. The turboexpander may have integral means for subsequent compression of the refrigerated mixture and may be coupled through reduction gears to a means for generating electricity. A portion of the refrigerated mixture may be connected to a heat exchanger for cooling themore » well head natural gas prior to entry into the inlet separator. The flow of refrigerated mixture to this heat exchanger may be controlled by a temperature sensitive valve downstream of the heat exchanger. Methanol may be injected into the vapor mixture prior to entry into the turboexpander. The flow of methanol into the vapor mixture may be controlled by a valve sensitive to the flow rate of the vapor mixture and the water vapor content of the refrigerated mixture. Natural gas vapor from the outlet separator may be recirculated through the turboexpander if the output water vapor content of the natural gas vapor stream is too high.« less

  2. New approach in direct-simulation of gas mixtures

    NASA Technical Reports Server (NTRS)

    Chung, Chan-Hong; De Witt, Kenneth J.; Jeng, Duen-Ren

    1991-01-01

    Results are reported for an investigation of a new direct-simulation Monte Carlo method by which energy transfer and chemical reactions are calculated. The new method, which reduces to the variable cross-section hard sphere model as a special case, allows different viscosity-temperature exponents for each species in a gas mixture when combined with a modified Larsen-Borgnakke phenomenological model. This removes the most serious limitation of the usefulness of the model for engineering simulations. The necessary kinetic theory for the application of the new method to mixtures of monatomic or polyatomic gases is presented, including gas mixtures involving chemical reactions. Calculations are made for the relaxation of a diatomic gas mixture, a plane shock wave in a gas mixture, and a chemically reacting gas flow along the stagnation streamline in front of a hypersonic vehicle. Calculated results show that the introduction of different molecular interactions for each species in a gas mixture produces significant differences in comparison with a common molecular interaction for all species in the mixture. This effect should not be neglected for accurate DSMC simulations in an engineering context.

  3. Solar composition from the Genesis Discovery Mission

    PubMed Central

    Burnett, D. S.; Team, Genesis Science

    2011-01-01

    Science results from the Genesis Mission illustrate the major advantages of sample return missions. (i) Important results not otherwise obtainable except by analysis in terrestrial laboratories: the isotopic compositions of O, N, and noble gases differ in the Sun from other inner solar system objects. The N isotopic composition is the same as that of Jupiter. Genesis has resolved discrepancies in the noble gas data from solar wind implanted in lunar soils. (ii) The most advanced analytical instruments have been applied to Genesis samples, including some developed specifically for the mission. (iii) The N isotope result has been replicated with four different instruments. PMID:21555545

  4. Noble metals in ferromanganese crusts from marginal seas of the Northwest Pacific

    NASA Astrophysics Data System (ADS)

    Astakhova, N. V.

    2017-07-01

    Based on data on the concentration of noble metals (Au, Ag, Pt, Os, Ir, and Ru) in bulk samples of ferromanganese crusts, the presence of inclusions of micro- and nanosized grains of Ag, Au, Pd, and Pt, often with impurities of other elements, as well as their chaotic distribution, three sources of incorporation of these metals into ore crusts of Far Eastern seas are suggested: seawater, postvolcanic gas-hydrothermal fluids, and hydrothermal plumes. The presence of grains of platinoids and gold in ferromanganese crusts on only some mounts may result from peculiarities in the formation of volcanic rocks on the ancient continental basement.

  5. Where is the Earth's missing xenon?

    NASA Technical Reports Server (NTRS)

    Wacker, J. F.; Anders, E.

    1984-01-01

    Highly volatile elements (e.g., T1, Pb, B, C1, Br, etc.) in the Earth's crust occur in C-chondrite proportions, and so do the atmospheric noble gases Ne, Ar, and Kr. This has led to the suggestion that the Earth acquired its volatiles from a late veneer of C-chondrite-like material. A glaring exception is Xe, which is depleted approx. 20x relative to Ne, Ar, Kr. Three explanations are discussed for the depletion: (1) Xe is preferentially trapped in the crust, either in sediments (3) or in Antarctic ice (4); (2) the Earth's noble gas inventory is non-chondritic (5); or (3) Xe is incompletely outgassed from the mantle.

  6. Method for localized deposition of noble metal catalysts with control of morphology

    DOEpatents

    Ricco, Antonio J.; Manginell, Ronald P.; Huber, Robert J.

    1998-01-01

    A combustible gas sensor that uses a resistively heated, noble metal-coated, micromachined polycrystalline Si filament to calorimetrically detect the presence and concentration of combustible gases. A thin catalytic Pt film was deposited by CVD from the precursor Pt(acac).sub.2 onto microfilaments resistively heated to approximately 500 .degree. C.; Pt deposits only on the hot filament. The filaments tested to date are 2 .mu.m thick .times.10 .mu.m wide .times.100, 250, 500, or 1000 .mu.m-long polycrystalline Si; some are overcoated with a 0.25 .mu.m-thick protective CVD Si.sub.3 N.sub.4 layer.

  7. Conference on Deep Earth and Planetary Volatiles

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The following topics are covered in the presented papers: (1) rare gases systematics and mantle structure; (2) volatiles in the earth; (3) impact degassing of water and noble gases from silicates; (4) D/H ratios and H2O contents of mantle-derived amphibole megacrysts; (5) thermochemistry of dense hydrous magnesium silicates; (6) modeling of the effect of water on mantle rheology; (7) noble gas isotopes and halogens in volatile-rich inclusions in diamonds; (8) origin and loss of the volatiles of the terrestrial planets; (9) structure and the stability of hydrous minerals at high pressure; (10) recycling of volatiles at subduction zones and various other topics.

  8. Evaluation of a High Pressure Proportional Counter for the Detection of Radioactive Noble Gases

    DTIC Science & Technology

    1987-01-01

    Multiplication Curves Compared to Reconstructed Literature Curves .. .. ............ .81 6.4 Resolution .... . .. ......................... .... 90 v Figure...with 57 ~/57 energy resolution to 12% fwhm for Co photopeaks (-122 keV),sing argon fill gas at fifty atmospheres. Subsequent effects 0f a contami- nant...internal gas proportional counters for measuring low-level environmental radionuclides, resolutions to 27% fwhm and intrinsic efficiencies to 3 75

  9. Fast Conversion of Ionic Liquids and Poly(Ionic Liquid)s into Porous Nitrogen-Doped Carbons in Air

    PubMed Central

    Men, Yongjun; Ambrogi, Martina; Han, Baohang; Yuan, Jiayin

    2016-01-01

    Ionic liquids and poly(ionic liquid)s have been successfully converted into nitrogen-doped porous carbons with tunable surface area up to 1200 m2/g at high temperatures in air. Compared to conventional carbonization process conducted under inert gas to produce nitrogen-doped carbons, the new production method was completed in a rather shorter time without noble gas protection. PMID:27070588

  10. Fast Conversion of Ionic Liquids and Poly(Ionic Liquid)s into Porous Nitrogen-Doped Carbons in Air.

    PubMed

    Men, Yongjun; Ambrogi, Martina; Han, Baohang; Yuan, Jiayin

    2016-04-08

    Ionic liquids and poly(ionic liquid)s have been successfully converted into nitrogen-doped porous carbons with tunable surface area up to 1200 m²/g at high temperatures in air. Compared to conventional carbonization process conducted under inert gas to produce nitrogen-doped carbons, the new production method was completed in a rather shorter time without noble gas protection.

  11. Recovery of nitrogen and light hydrocarbons from polyalkene purge gas

    DOEpatents

    Zwilling, Daniel Patrick; Golden, Timothy Christoph; Weist, Jr., Edward Landis; Ludwig, Keith Alan

    2003-06-10

    A method for the separation of a gas mixture comprises (a) obtaining a feed gas mixture comprising nitrogen and at least one hydrocarbon having two to six carbon atoms; (b) introducing the feed gas mixture at a temperature of about 60.degree. F. to about 105.degree. F. into an adsorbent bed containing adsorbent material which selectively adsorbs the hydrocarbon, and withdrawing from the adsorbent bed an effluent gas enriched in nitrogen; (c) discontinuing the flow of the feed gas mixture into the adsorbent bed and depressurizing the adsorbent bed by withdrawing depressurization gas therefrom; (d) purging the adsorbent bed by introducing a purge gas into the bed and withdrawing therefrom an effluent gas comprising the hydrocarbon, wherein the purge gas contains nitrogen at a concentration higher than that of the nitrogen in the feed gas mixture; (e) pressurizing the adsorbent bed by introducing pressurization gas into the bed; and (f) repeating (b) through (e) in a cyclic manner.

  12. Gas mixtures for spark gap closing switches

    DOEpatents

    Christophorou, L.G.; McCorkle, D.L.; Hunter, S.R.

    1987-02-20

    Gas mixtures for use in spark gap closing switches comprised of fluorocarbons and low molecular weight, inert buffer gases. To this can be added a third gas having a low ionization potential relative to the buffer gas. The gas mixtures presented possess properties that optimized the efficiency spark gap closing switches. 6 figs.

  13. Irreversible adsorption of atmospheric helium on olivine: A lobster pot analogy

    NASA Astrophysics Data System (ADS)

    Protin, Marie; Blard, Pierre-Henri; Marrocchi, Yves; Mathon, François

    2016-04-01

    This study reports new experimental results that demonstrate that large amounts of atmospheric helium may be adsorbed onto the surfaces of olivine grains. This behavior is surface-area-related in that this contamination preferentially affects grains that are smaller than 125 μm in size. One of the most striking results of our study is that in vacuo heating at 900 °C for 15 min is not sufficient to completely remove the atmospheric contamination. This suggests that the adsorption of helium may involve high-energy trapping of helium through irreversible anomalous adsorption. This trapping process of helium can thus be compared to a ;lobster pot; adsorption: atmospheric helium easily gets in, but hardly gets out. While this type of behavior has previously been reported for heavy noble gases (Ar, Kr, Xe), this is the first time that it has been observed for helium. Adsorption of helium has, until now, generally been considered to be negligible on silicate surfaces. Our findings have significant implications for helium and noble gas analysis of natural silicate samples, such as for cosmic-ray exposure dating or noble gas characterization of extraterrestrial material. Analytical procedures in future studies should be adapted in order to avoid this contamination. The results of this study also allow us to propose an alternative explanation for previously described matrix loss of cosmogenic 3He.

  14. A novel fast-neutron detector concept for energy-selective imaging and imaging spectroscopy.

    PubMed

    Cortesi, M; Dangendorf, V; Zboray, R; Prasser, H-M

    2014-07-01

    We present and discuss the operational principle of a new fast-neutron detector concept suitable for either energy-selective imaging or for imaging spectroscopy. The detector is comprised of a series of energy-selective stacks of converter foils immersed in a noble-gas based mixture, coupled to a position-sensitive charge readout. Each foil in the various stacks is made of two layers of different thicknesses, fastened together: a hydrogen-rich (plastic) layer for neutron-to-proton conversion, and a hydrogen-free coating to selectively stop/absorb the recoil protons below a certain energy cut-off. The neutron-induced recoil protons, that escape the converter foils, release ionization electrons in the gas gaps between consecutive foils. The electrons are then drifted towards and localized by a position-sensitive charge amplification and readout stage. Comparison of the images detected by stacks with different energy cut-offs allows energy-selective imaging. Neutron energy spectrometry is realized by analyzing the responses of a sufficient large number of stacks of different energy response and unfolding techniques. In this paper, we present the results of computer simulation studies and discuss the expected performance of the new detector concept. Potential applications in various fields are also briefly discussed, in particularly, the application of energy-selective fast-neutron imaging for nuclear safeguards application, with the aim of determining the plutonium content in Mixed Oxide (MOX) fuels.

  15. Diverging effects of isotopic fractionation upon molecular diffusion of noble gases in water: mechanistic insights through ab initio molecular dynamics simulations.

    PubMed

    Pinto de Magalhães, Halua; Brennwald, Matthias S; Kipfer, Rolf

    2017-03-22

    Atmospheric noble gases are routinely used as natural tracers to analyze gas transfer processes in aquatic systems. Their isotopic ratios can be employed to discriminate between different physical transport mechanisms by comparison to the unfractionated atmospheric isotope composition. In many applications of aquatic systems molecular diffusion was thought to cause a mass dependent fractionation of noble gases and their isotopes according to the square root ratio of their masses. However, recent experiments focusing on isotopic fractionation within a single element challenged this broadly accepted assumption. The determined fractionation factors of Ne, Ar, Kr and Xe isotopes revealed that only Ar follows the prediction of the so-called square root relation, whereas within the Ne, Kr and Xe elements no mass-dependence was found. The reason for this unexpected divergence of Ar is not yet understood. The aim of our computational exercise is to establish the molecular-resolved mechanisms behind molecular diffusion of noble gases in water. We make the hypothesis that weak intermolecular interactions are relevant for the dynamical properties of noble gases dissolved in water. Therefore, we used ab initio molecular dynamics to explicitly account for the electronic degrees of freedom. Depending on the size and polarizability of the hydrophobic particles such as noble gases, their motion in dense and polar liquids like water is subject to different diffusive regimes: the inter-cavity hopping mechanism of small particles (He, Ne) breaks down if a critical particle size achieved. For the case of large particles (Kr, Xe), the motion through the water solvent is governed by mass-independent viscous friction leading to hydrodynamical diffusion. Finally, Ar falls in between the two diffusive regimes, where particle dispersion is propagated at the molecular collision time scale of the surrounding water molecules.

  16. High pressure gas spheres for neutron and photon experiments

    NASA Astrophysics Data System (ADS)

    Rupp, G.; Petrich, D.; Käppeler, F.; Kaltenbaek, J.; Leugers, B.; Reifarth, R.

    2009-09-01

    High pressure gas spheres have been designed and successfully used in several nuclear physics experiments on noble gases. The pros and cons of this solution are the simple design and the high reliability versus the fact that the density is limited to 40-60% of liquid or solid gas samples. Originally produced for neutron capture studies at keV energies, the comparably small mass of the gas spheres were an important advantage, which turned out to be of relevance for other applications as well. The construction, performance, and operation of the spheres are described and examples for their use are presented.

  17. NG09 And CTBT On-Site Inspection Noble Gas Sampling and Analysis Requirements

    NASA Astrophysics Data System (ADS)

    Carrigan, Charles R.; Tanaka, Junichi

    2010-05-01

    A provision of the Comprehensive Test Ban Treaty (CTBT) allows on-site inspections (OSIs) of suspect nuclear sites to determine if the occurrence of a detected event is nuclear in origin. For an underground nuclear explosion (UNE), the potential success of an OSI depends significantly on the containment scenario of the alleged event as well as the application of air and soil-gas radionuclide sampling techniques in a manner that takes into account both the suspect site geology and the gas transport physics. UNE scenarios may be broadly divided into categories involving the level of containment. The simplest to detect is a UNE that vents a significant portion of its radionuclide inventory and is readily detectable at distance by the International Monitoring System (IMS). The most well contained subsurface events will only be detectable during an OSI. In such cases, 37 Ar and radioactive xenon cavity gases may reach the surface through either "micro-seepage" or the barometric pumping process and only the careful siting of sampling locations, timing of sampling and application of the most site-appropriate atmospheric and soil-gas capturing methods will result in a confirmatory signal. The OSI noble gas field tests NG09 was recently held in Stupava, Slovakia to consider, in addition to other field sampling and analysis techniques, drilling and subsurface noble gas extraction methods that might be applied during an OSI. One of the experiments focused on challenges to soil-gas sampling near the soil-atmosphere interface. During withdrawal of soil gas from shallow, subsurface sample points, atmospheric dilution of the sample and the potential for introduction of unwanted atmospheric gases were considered. Tests were designed to evaluate surface infiltration and the ability of inflatable well-packers to seal out atmospheric gases during sample acquisition. We discuss these tests along with some model-based predictions regarding infiltration under different near-surface hydrologic conditions. We also consider how naturally occurring as well as introduced (e.g., SF6) soil-gas tracers might be used to guard against the possibility of atmospheric contamination of soil gases while sampling during an actual OSI. The views expressed here do not necessarily reflect the opinion of the United States Government, the United States Department of Energy, or Lawrence Livermore National Laboratory. This work has been performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-418791

  18. Paloma: In-situ Measurement of The Elemental and Isotopic Composition of The Mars Atmosphere

    NASA Astrophysics Data System (ADS)

    Chassefiere, E.; Jambon, A.; Berthelier, J.-J.; Correia, J.-J.; Covinhes, J.; Goulpeau, G.; Leblanc, F.; Malique, Ch.; Sarda, P.; Schaetzel, P.; Sabroux, J.-C.; Ferry, C.; Richon, P.; Pineau, J.-F.; Desjean, M.-C.

    The PALOMA instrument, presently under study in the frame of the NASA/CNES Mars exploration program, is devoted to the accurate measurement of isotopic and el- emental ratios in Mars atmosphere. It consists of a mass spectrometer coupled with a gas preparation line for separation of reactive and noble gas species, and noble gas species (and reactive gases) from each other, by chemical and cryogenic trapping, and possibly permeation techniques. This instrument, ranked among the most important four types of measurement recommended by the US Committee on Planetary and Lu- nar Exploration (COMPLEX), will be proposed as a part of the payload of the 07 NASA smart landers. The general objectives of PALOMA are to provide instanta- neous and time-varying patterns of noble gas isotopic spectra, and stable isotopes. Such measurements will allow to improve our general understanding of volatile cy- cles on Mars, and to better decipher the history of the atmosphere and climate. Past escape processes, exchanges between solid planet and atmosphere, post-accretional addition of volatil-rich matter from comets, are expected to have imprinted specific isotopic signatures. Although these signatures are strongly interlocked, a compara- tive Earth-Mars approach may allow to discriminate between them, and therefore to reconstruct the history of Martian volatiles. The evolution of atmospheric mass and composition may have had a major impact on climate evolution, e.g. through massive escape of carbon dioxide and water. In addition, precise measurements of isotopes in the present Mars atmosphere are the most promising way on the short term to confirm that SNC meteorites are from Martian origin. PALOMA also includes a small separate device for measuring ambient natural radioactivity, which might provide information about the presence of a near subsurface permafrost, possible residual volcanic activity, vertical mixing rate in the boundary layer.

  19. Waste gas storage

    NASA Technical Reports Server (NTRS)

    Vickers, Brian D. (Inventor)

    1994-01-01

    Method for storing a waste gas mixture comprised of nitrogen, oxygen, carbon dioxide, and inert gases, the gas mixture containing corrosive contaminants including inorganic acids and bases and organic solvents, and derived from space station operations. The gas mixture is stored under pressure in a vessel formed of a filament wound composite overwrap on a metal liner, the metal liner being pre-stressed in compression by the overwrap, thereby avoiding any tensile stress in the liner, and preventing stress corrosion cracking of the liner during gas mixture storage.

  20. Fullerenes and interplanetary dust at the Permian-Triassic boundary.

    PubMed

    Poreda, Robert J; Becker, Luann

    2003-01-01

    We recently presented new evidence that an impact occurred approximately 250 million years ago at the Permian-Triassic boundary (PTB), triggering the most severe mass extinction in the history of life on Earth. We used a new extraterrestrial tracer, fullerene, a third carbon carrier of noble gases besides diamond and graphite. By exploiting the unique properties of this molecule to trap noble gases inside of its caged structure (helium, neon, argon), the origin of the fullerenes can be determined. Here, we present new evidence for fullerenes with extraterrestrial noble gases in the PTB at Graphite Peak, Antarctica, similar to PTB fullerenes from Meishan, China and Sasayama, Japan. In addition, we isolated a (3)He-rich magnetic carrier phase in three fractions from the Graphite Peak section. The noble gases in this magnetic fraction were similar to zero-age deep-sea interplanetary dust particles (IDPs) and some magnetic grains isolated from the Cretaceous-Tertiary boundary. The helium and neon isotopic compositions for both the bulk Graphite Peak sediments and an isolated magnetic fraction from the bulk material are consistent with solar-type gases measured in zero-age deep-sea sediments and point to a common source, namely, the flux of IDPs to the Earth's surface. In this instance, the IDP noble gas signature for the bulk sediment can be uniquely decoupled from fullerene, demonstrating that two separate tracers are present (direct flux of IDPs for (3)He vs. giant impact for fullerene).

  1. Modelling of noble anaesthetic gases and high hydrostatic pressure effects in lipid bilayers

    DOE PAGES

    Moskovitz, Yevgeny; Yang, Hui

    2015-01-08

    Our objective was to study molecular processes that might be responsible for inert gas narcosis and high-pressure nervous syndrome. The classical molecular dynamics trajectories (200 ns-long) of dioleoylphosphatidylcholine (DOPC) bilayers simulated by the Berger force field were evaluated for water and the atomic distribution of noble gases around DOPC molecules at a pressure range of 1 - 1000 bar and temperature of 310 Kelvin. Xenon and argon have been tested as model gases for general anesthetics, and neon has been investigated for distortions that are potentially responsible for neurological tremor at hyperbaric conditions. The analysis of stacked radial pair distributionmore » functions of DOPC headgroup atoms revealed the explicit solvation potential of gas molecules, which correlates with their dimensions. The orientational dynamics of water molecules at the biomolecular interface should be considered as an influential factor; while excessive solvation effects appearing in the lumen of membrane-embedded ion channels could be a possible cause of inert gas narcosis. All the noble gases tested exhibit similar patterns of the order parameter for both DOPC acyl chains, which is opposite to the patterns found for the order parameter curve at high hydrostatic pressures in intact bilayers. This finding supports the ‘critical volume’ hypothesis of anesthesia pressure reversal. The irregular lipid headgroup-water boundary observed in DOPC bilayers saturated with neon in the pressure range of 1 - 100 bar could be associated with the possible manifestation of neurological tremor at the atomic scale. The non-immobilizer neon also demonstrated the highest momentum impact on the normal component of the DOPC diffusion coefficient representing monolayers undulations rate, which indicates enhanced diffusivity, rather than atom size, as the key factor.« less

  2. Reservoir Characterization using geostatistical and numerical modeling in GIS with noble gas geochemistry

    NASA Astrophysics Data System (ADS)

    Vasquez, D. A.; Swift, J. N.; Tan, S.; Darrah, T. H.

    2013-12-01

    The integration of precise geochemical analyses with quantitative engineering modeling into an interactive GIS system allows for a sophisticated and efficient method of reservoir engineering and characterization. Geographic Information Systems (GIS) is utilized as an advanced technique for oil field reservoir analysis by combining field engineering and geological/geochemical spatial datasets with the available systematic modeling and mapping methods to integrate the information into a spatially correlated first-hand approach in defining surface and subsurface characteristics. Three key methods of analysis include: 1) Geostatistical modeling to create a static and volumetric 3-dimensional representation of the geological body, 2) Numerical modeling to develop a dynamic and interactive 2-dimensional model of fluid flow across the reservoir and 3) Noble gas geochemistry to further define the physical conditions, components and history of the geologic system. Results thus far include using engineering algorithms for interpolating electrical well log properties across the field (spontaneous potential, resistivity) yielding a highly accurate and high-resolution 3D model of rock properties. Results so far also include using numerical finite difference methods (crank-nicholson) to solve for equations describing the distribution of pressure across field yielding a 2D simulation model of fluid flow across reservoir. Ongoing noble gas geochemistry results will also include determination of the source, thermal maturity and the extent/style of fluid migration (connectivity, continuity and directionality). Future work will include developing an inverse engineering algorithm to model for permeability, porosity and water saturation.This combination of new and efficient technological and analytical capabilities is geared to provide a better understanding of the field geology and hydrocarbon dynamics system with applications to determine the presence of hydrocarbon pay zones (or other reserves) and improve oil field management (e.g. perforating, drilling, EOR and reserves estimation)

  3. Using dissolved noble gas and isotopic tracers to evaluate the vulnerability of groundwater resources in a small, high elevation catchment to predicted climate changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singleton, M J; Moran, J E

    2009-10-02

    We use noble gas concentrations and multiple isotopic tracers in groundwater and stream water in a small high elevation catchment to provide a snapshot of temperature, altitude, and physical processes at the time of recharge; and to determine subsurface residence times of different groundwater components. They identify three sources that contribute to groundwater flow: (1) seasonal groundwater recharge with short travel times, (2) water from bedrock aquifers that have elevated radiogenic {sup 4}He, and (3) upwelling of deep fluids that have 'mantle' helium and hydrothermal carbon isotope signatures. Although a bimodal distribution in apparent groundwater age indicates that groundwater storagemore » times range from less than a year to several decades, water that recharges seasonally is the largest likely contributor to stream baseflow. Under climate change scnearios with earlier snowmelt, the groundwater that moves through the alluvial aquifer seasonally will be depleted earlier, providing less baseflow and possible extreme low flows in the creek during summer and fall. Dissolved noble gas measurements indciate recharge temperatures are 5 to 11 degrees higher than would be expected for direct influx of snowmelt, and that excess air concentrations are lower than would be expected for recharge through bedrock fractures. Instead, recharge likely occurs over diffuse vegetated areas, as indicated by {delta}{sup 13}C-DIC values that are consistent with incorporation of CO{sub 2} from soil respiration. Recharge temperatures are close to or slightly higher than mean annual air temperature, and are consistent with recharge during May and June, when snowpack melting occurs.« less

  4. The noble gas xenon provides protection and trophic stimulation to midbrain dopamine neurons.

    PubMed

    Lavaur, Jérémie; Le Nogue, Déborah; Lemaire, Marc; Pype, Jan; Farjot, Géraldine; Hirsch, Etienne C; Michel, Patrick P

    2017-07-01

    Despite its low chemical reactivity, the noble gas xenon possesses a remarkable spectrum of biological effects. In particular, xenon is a strong neuroprotectant in preclinical models of hypoxic-ischemic brain injury. In this study, we wished to determine whether xenon retained its neuroprotective potential in experimental settings that model the progressive loss of midbrain dopamine (DA) neurons in Parkinson's disease. Using rat midbrain cultures, we established that xenon was partially protective for DA neurons through either direct or indirect effects on these neurons. So, when DA neurons were exposed to l-trans-pyrrolidine-2,4-dicarboxylic acid so as to increase ambient glutamate levels and generate slow and sustained excitotoxicity, the effect of xenon on DA neurons was direct. The vitamin E analog Trolox also partially rescued DA neurons in this setting and enhanced neuroprotection by xenon. However, in the situation where DA cell death was spontaneous, the protection of DA neurons by xenon appeared indirect as it occurred through the repression of a mechanism mediated by proliferating glial cells, presumably astrocytes and their precursor cells. Xenon also exerted trophic effects for DA neurons in this paradigm. The effects of xenon were mimicked and improved by the N-methyl-d-aspartate glutamate receptor antagonist memantine and xenon itself appeared to work by antagonizing N-methyl-d-aspartate receptors. Note that another noble gas argon could not reproduce xenon effects. Overall, present data indicate that xenon can provide protection and trophic support to DA neurons that are vulnerable in Parkinson's disease. This suggests that xenon might have some therapeutic value for this disorder. © 2017 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry.

  5. Noble gas, iodine, and cesium transport in a postulated loss of decay heat removal accident at Browns Ferry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wichner, R.P.; Hodge, S.A.; Weber, C.F.

    1984-08-01

    This report presents an analysis of the movement of noble gas, iodine, and cesium fission products within the Mark-I containment BWR reactor system represented by Browns Ferry Unit 1 during a postulated accident sequence initiated by a loss of decay heat removal capability following a scram. The event analysis showed that this accident could be brought under control by various means, but the sequence with no operator action ultimately leads to containment (drywell) failure followed by loss of water from the reactor vessel, core degradation due to overheating, and reactor vessel failure with attendant movement of core debris onto themore » drywell floor. The analysis of fission product transport presented in this report is based on the no-operator-action sequence and provides an estimate of fission product inventories, as a function of time, within 14 control volumes outside the core, with the atmosphere considered as the final control volume in the transport sequence. As in the case of accident sequences previously studied, we find small barrier for noble gas ejection to air, these gases being effectively purged from the drywell and reactor building by steam and concrete degradation gases. However, significant decay of krypton isotopes occurs during the long delay times involved in this sequence. In contrast, large degrees of holdup for iodine and cesium are projected due to the chemical reactivity of these elements. Only about 2 x 10/sup -4/% of the initial iodine and cesium activity are predicted to be released to the atmosphere. Principal barriers for release are deposition on reactor vessel and containment walls. A significant amount of iodine is captured in the water pool formed in the reactor building basement after actuation of the fire protection system.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khinkis, Mark J.; Kozlov, Aleksandr P.

    A radiant, non-catalytic recuperative reformer has a flue gas flow path for conducting hot exhaust gas from a thermal process and a reforming mixture flow path for conducting a reforming mixture. At least a portion of the reforming mixture flow path is positioned adjacent to the flue gas flow path to permit heat transfer from the hot exhaust gas to the reforming mixture. The reforming mixture flow path contains substantially no material commonly used as a catalyst for reforming hydrocarbon fuel (e.g., nickel oxide, platinum group elements or rhenium), but instead the reforming mixture is reformed into a higher calorificmore » fuel via reactions due to the heat transfer and residence time. In a preferred embodiment, a portion of the reforming mixture flow path is positioned outside of flue gas flow path for a relatively large residence time.« less

  7. Design and Preliminary Performance Testing of Electronegative Gas Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Liu, Thomas M.; Schloeder, Natalie R.; Walker, Mitchell L. R.; Polzin, Kurt A.; Dankanich, John W.; Aanesland, Ane

    2014-01-01

    In classical gridded electrostatic ion thrusters, positively charged ions are generated from a plasma discharge of noble gas propellant and accelerated to provide thrust. To maintain overall charge balance on the propulsion system, a separate electron source is required to neutralize the ion beam as it exits the thruster. However, if high-electronegativity propellant gases (e.g., sulfur hexafluoride) are instead used, a plasma discharge can result consisting of both positively and negatively charged ions. Extracting such electronegative plasma species for thrust generation (e.g., with time-varying, bipolar ion optics) would eliminate the need for a separate neutralizer cathode subsystem. In addition for thrusters utilizing a RF plasma discharge, further simplification of the ion thruster power system may be possible by also using the RF power supply to bias the ion optics. Recently, the PEGASES (Plasma propulsion with Electronegative gases) thruster prototype successfully demonstrated proof-of-concept operations in alternatively accelerating positively and negatively charged ions from a RF discharge of a mixture of argon and sulfur hexafluoride.i In collaboration with NASA Marshall Space Flight Center (MSFC), the Georgia Institute of Technology High-Power Electric Propulsion Laboratory (HPEPL) is applying the lessons learned from PEGASES design and testing to develop a new thruster prototype. This prototype will incorporate design improvements and undergo gridless operational testing and diagnostics checkout at HPEPL in April 2014. Performance mapping with ion optics will be conducted at NASA MSFC starting in May 2014. The proposed paper discusses the design and preliminary performance testing of this electronegative gas plasma thruster prototype.

  8. 30 CFR 36.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... through it. Flammable mixture. A mixture of gas, such as methane, natural gas, or similar hydrocarbon gas... constructed and protected by an enclosure and/or flame arrester (s) that if a flammable mixture of gas is... is: (1) Used for transporting the product being mined or excavated, or for transporting materials and...

  9. 30 CFR 36.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... through it. Flammable mixture. A mixture of gas, such as methane, natural gas, or similar hydrocarbon gas... constructed and protected by an enclosure and/or flame arrester (s) that if a flammable mixture of gas is... is: (1) Used for transporting the product being mined or excavated, or for transporting materials and...

  10. 30 CFR 36.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... through it. Flammable mixture. A mixture of gas, such as methane, natural gas, or similar hydrocarbon gas... constructed and protected by an enclosure and/or flame arrester (s) that if a flammable mixture of gas is... is: (1) Used for transporting the product being mined or excavated, or for transporting materials and...

  11. 30 CFR 36.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... through it. Flammable mixture. A mixture of gas, such as methane, natural gas, or similar hydrocarbon gas... constructed and protected by an enclosure and/or flame arrester (s) that if a flammable mixture of gas is... is: (1) Used for transporting the product being mined or excavated, or for transporting materials and...

  12. Wire chamber

    DOEpatents

    Atac, Muzaffer

    1989-01-01

    A wire chamber or proportional counter device, such as Geiger-Mueller tube or drift chamber, improved with a gas mixture providing a stable drift velocity while eliminating wire aging caused by prior art gas mixtures. The new gas mixture is comprised of equal parts argon and ethane gas and having approximately 0.25% isopropyl alcohol vapor.

  13. The regolith history of 14307. [lunar breccia

    NASA Technical Reports Server (NTRS)

    Bernatowicz, T.; Hohenberg, C. M.; Morgan, C. J.; Podosek, F. A.; Drozd, R. J.; Lugmair, G.

    1977-01-01

    Noble gas and trace element analyses of matrix and a clast from breccia 14307 are reported. This sample was exposed to a large neutron fluence, as seen by an elevated Sm-150/Sm-149 ratio and by noble gases, particularly Xe-136 from neutron fission of U-235. Strong constraints on the exposure history result from combined consideration of Sm-150, Xe-136, and spallation noble gases. Both clast and matrix were irradiated for about 1 AE under substantial shielding beginning at least 2 AE ago, probably more than 3 AE ago. The manifestations of soil exposure seen in the matrix - solar wind gases, glass formation, etc. - thus must have been acquired in an ancient epoch. The matrix has had a longer exposure to cosmic rays than the clast, presumably during its prebrecciation history as a soil. Brecciation probably occurred more than 1 AE ago, perhaps more than 3 AE ago, but at least 0.4 AE after the formation of the matrix constituents.

  14. Noble Gas Inventory of Micrometeorites Collected at the Transantarctic Mountains (TAM) and Indications for Their Provenance

    NASA Technical Reports Server (NTRS)

    Ott, U.; Baecker, B.; Folco, L.; Cordier, C.

    2016-01-01

    A variety of processes have been considered possibly contributing the volatiles including noble gases to the atmospheres of the terrestrial planets (e.g., [1-3]). Special consideration has been given to the concept of accretion of volatile-rich materials by the forming planets. This might include infalling planetesimals and dust, and could include material from the outer asteroid belt, as well as cometary material from the outer solar system. Currently, the dominant source of extraterrestrial material accreted by the Earth is represented by micrometeorites (MMs) with sizes mostly in the 100-300 micron range [3, 4]). Their role has been assessed by [3], who conclude that accretion of early micrometeorites played a major role in the formation of the terrestrial atmosphere and oceans. We have therefore set out to investigate in more detail the inventory of noble gases in MMs. Here we summarize some of our results obtained on MMs collected in micrometeorite traps of the Transantarctic Mountains [5].

  15. Temperature dependence of alpha-induced scintillation in the 1,1,4,4-tetraphenyl-1,3-butadiene wavelength shifter

    NASA Astrophysics Data System (ADS)

    Veloce, L. M.; Kuźniak, M.; Di Stefano, P. C. F.; Noble, A. J.; Boulay, M. G.; Nadeau, P.; Pollmann, T.; Clark, M.; Piquemal, M.; Schreiner, K.

    2016-06-01

    Liquid noble based particle detectors often use the organic wavelength shifter 1,1,4,4-tetraphenyl-1,3-butadiene (TPB) which shifts UV scintillation light to the visible regime, facilitating its detection, but which also can scintillate on its own. Dark matter searches based on this type of detector commonly rely on pulse-shape discrimination (PSD) for background mitigation. Alpha-induced scintillation therefore represents a possible background source in dark matter searches. The timing characteristics of this scintillation determine whether this background can be mitigated through PSD. We have therefore characterized the pulse shape and light yield of alpha induced TPB scintillation at temperatures ranging from 300 K down to 4 K, with special attention given to liquid noble gas temperatures. We find that the pulse shapes and light yield depend strongly on temperature. In addition, the significant contribution of long time constants above ~50 K provides an avenue for discrimination between alpha decay events in TPB and nuclear-recoil events in noble liquid detectors.

  16. Polarizability of Helium, Neon, and Argon: New Perspectives for Gas Metrology

    NASA Astrophysics Data System (ADS)

    Gaiser, Christof; Fellmuth, Bernd

    2018-03-01

    With dielectric-constant gas thermometry, the molar polarizability of helium, neon, and argon has been determined with relative standard uncertainties of about 2 parts per million. A series of isotherms measured with the three noble gases and two different experimental setups led to this unprecedented level of uncertainty. These data are crucial for scientists in the field of gas metrology, working on pressure and temperature standards. Furthermore, with the new benchmark values for neon and argon, theoretical calculations, today about 3 orders of magnitude larger in uncertainty, can be checked and improved.

  17. Polarizability of Helium, Neon, and Argon: New Perspectives for Gas Metrology.

    PubMed

    Gaiser, Christof; Fellmuth, Bernd

    2018-03-23

    With dielectric-constant gas thermometry, the molar polarizability of helium, neon, and argon has been determined with relative standard uncertainties of about 2 parts per million. A series of isotherms measured with the three noble gases and two different experimental setups led to this unprecedented level of uncertainty. These data are crucial for scientists in the field of gas metrology, working on pressure and temperature standards. Furthermore, with the new benchmark values for neon and argon, theoretical calculations, today about 3 orders of magnitude larger in uncertainty, can be checked and improved.

  18. Band-structure calculations of noble-gas and alkali halide solids using accurate Kohn-Sham potentials with self-interaction correction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y.; Krieger, J.B.; Norman, M.R.

    1991-11-15

    The optimized-effective-potential (OEP) method and a method developed recently by Krieger, Li, and Iafrate (KLI) are applied to the band-structure calculations of noble-gas and alkali halide solids employing the self-interaction-corrected (SIC) local-spin-density (LSD) approximation for the exchange-correlation energy functional. The resulting band gaps from both calculations are found to be in fair agreement with the experimental values. The discrepancies are typically within a few percent with results that are nearly the same as those of previously published orbital-dependent multipotential SIC calculations, whereas the LSD results underestimate the band gaps by as much as 40%. As in the LSD---and it ismore » believed to be the case even for the exact Kohn-Sham potential---both the OEP and KLI predict valence-band widths which are narrower than those of experiment. In all cases, the KLI method yields essentially the same results as the OEP.« less

  19. Communication: Nuclear quadrupole moment-induced Cotton-Mouton effect in noble gas atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Li-juan; Vaara, Juha, E-mail: juha.vaara@iki.fi; Rizzo, Antonio

    New, high-sensitivity and high-resolution spectroscopic and imaging methods may be developed by exploiting nuclear magneto-optic effects. A first-principles electronic structure formulation of nuclear electric quadrupole moment-induced Cotton-Mouton effect (NQCME) is presented for closed-shell atoms. In NQCME, aligned quadrupole moments alter the index of refraction of the medium along with and perpendicular to the direction of nuclear alignment. The roles of basis-set convergence, electron correlation, and relativistic effects are investigated for three quadrupolar noble gas isotopes: {sup 21}Ne, {sup 83}Kr, and {sup 131}Xe. The magnitude of the resulting ellipticities is predicted to be 10{sup −4}–10{sup −6} rad/(M cm) for fully spin-polarized nuclei.more » These should be detectable in the Voigt setup. Particularly interesting is the case of {sup 131}Xe, in which a high degree of spin polarization can be achieved via spin-exchange optical hyperpolarization.« less

  20. Binary and ternary gas mixtures for use in glow discharge closing switches

    DOEpatents

    Hunter, Scott R.; Christophorou, Loucas G.

    1990-01-01

    Highly efficient binary and ternary gas mixtures for use in diffuse glow discharge closing switches are disclosed. The binary mixtures are combinations of helium or neon and selected perfluorides. The ternary mixtures are combinations of helium, neon, or argon, a selected perfluoride, and a small amount of gas that exhibits enhanced ionization characteristics. These mixtures are shown to be the optimum choices for use in diffuse glow discharge closing switches by virtue of the combined physio-electric properties of the mixture components.

  1. The nonlinear model for emergence of stable conditions in gas mixture in force field

    NASA Astrophysics Data System (ADS)

    Kalutskov, Oleg; Uvarova, Liudmila

    2016-06-01

    The case of M-component liquid evaporation from the straight cylindrical capillary into N - component gas mixture in presence of external forces was reviewed. It is assumed that the gas mixture is not ideal. The stable states in gas phase can be formed during the evaporation process for the certain model parameter valuesbecause of the mass transfer initial equationsnonlinearity. The critical concentrations of the resulting gas mixture components (the critical component concentrations at which the stable states occur in mixture) were determined mathematically for the case of single-component fluid evaporation into two-component atmosphere. It was concluded that this equilibrium concentration ratio of the mixture components can be achieved by external force influence on the mass transfer processes. It is one of the ways to create sustainable gas clusters that can be used effectively in modern nanotechnology.

  2. Synthesis of Ti3AuC2, Ti3Au2C2 and Ti3IrC2 by noble metal substitution reaction in Ti3SiC2 for high-temperature-stable Ohmic contacts to SiC

    NASA Astrophysics Data System (ADS)

    Fashandi, Hossein; Dahlqvist, Martin; Lu, Jun; Palisaitis, Justinas; Simak, Sergei I.; Abrikosov, Igor A.; Rosen, Johanna; Hultman, Lars; Andersson, Mike; Lloyd Spetz, Anita; Eklund, Per

    2017-08-01

    The large class of layered ceramics encompasses both van der Waals (vdW) and non-vdW solids. While intercalation of noble metals in vdW solids is known, formation of compounds by incorporation of noble-metal layers in non-vdW layered solids is largely unexplored. Here, we show formation of Ti3AuC2 and Ti3Au2C2 phases with up to 31% lattice swelling by a substitutional solid-state reaction of Au into Ti3SiC2 single-crystal thin films with simultaneous out-diffusion of Si. Ti3IrC2 is subsequently produced by a substitution reaction of Ir for Au in Ti3Au2C2. These phases form Ohmic electrical contacts to SiC and remain stable after 1,000 h of ageing at 600 °C in air. The present results, by combined analytical electron microscopy and ab initio calculations, open avenues for processing of noble-metal-containing layered ceramics that have not been synthesized from elemental sources, along with tunable properties such as stable electrical contacts for high-temperature power electronics or gas sensors.

  3. Inferential determination of various properties of a gas mixture

    DOEpatents

    Morrow, Thomas B.; Behring, II, Kendricks A.

    2007-03-27

    Methods for inferentially determining various properties of a gas mixture, when the speed of sound in the gas is known at an arbitrary temperature and pressure. The method can be applied to natural gas mixtures, where the known parameters are the sound speed, temperature, pressure, and concentrations of any dilute components of the gas. The method uses a set of reference gases and their calculated density and speed of sound values to estimate the density of the subject gas. Additional calculations can be made to estimate the molecular weight of the subject gas, which can then be used as the basis for heating value calculations. The method may also be applied to inferentially determine density and molecular weight for gas mixtures other than natural gases.

  4. Mixture optimization for mixed gas Joule-Thomson cycle

    NASA Astrophysics Data System (ADS)

    Detlor, J.; Pfotenhauer, J.; Nellis, G.

    2017-12-01

    An appropriate gas mixture can provide lower temperatures and higher cooling power when used in a Joule-Thomson (JT) cycle than is possible with a pure fluid. However, selecting gas mixtures to meet specific cooling loads and cycle parameters is a challenging design problem. This study focuses on the development of a computational tool to optimize gas mixture compositions for specific operating parameters. This study expands on prior research by exploring higher heat rejection temperatures and lower pressure ratios. A mixture optimization model has been developed which determines an optimal three-component mixture based on the analysis of the maximum value of the minimum value of isothermal enthalpy change, ΔhT , that occurs over the temperature range. This allows optimal mixture compositions to be determined for a mixed gas JT system with load temperatures down to 110 K and supply temperatures above room temperature for pressure ratios as small as 3:1. The mixture optimization model has been paired with a separate evaluation of the percent of the heat exchanger that exists in a two-phase range in order to begin the process of selecting a mixture for experimental investigation.

  5. XENON-133 IN CALIFORNIA, NEVADA, AND UTAH FROM THE CHERNOBYL ACCIDENT (JOURNAL VERSION)

    EPA Science Inventory

    The accident at the Chernobyl nuclear reactor in the USSR introduced numerous radioactive nuclides into the atmosphere, including the noble gas xenon-133. EPA's Environmental Monitoring Systems Laboratory, Las Vegas, NV, detected xenon-133 from the Chernobyl accident in air sampl...

  6. Quantitative analysis of multi-component gas mixture based on AOTF-NIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Hao, Huimin; Zhang, Yong; Liu, Junhua

    2007-12-01

    Near Infrared (NIR) spectroscopy analysis technology has attracted many eyes and has wide application in many domains in recent years because of its remarkable advantages. But the NIR spectrometer can only be used for liquid and solid analysis by now. In this paper, a new quantitative analysis method of gas mixture by using new generation NIR spectrometer is explored. To collect the NIR spectra of gas mixtures, a vacuumable gas cell was designed and assembled to Luminar 5030-731 Acousto-Optic Tunable Filter (AOTF)-NIR spectrometer. Standard gas samples of methane (CH 4), ethane (C IIH 6) and propane (C 3H 8) are diluted with super pure nitrogen via precision volumetric gas flow controllers to obtain gas mixture samples of different concentrations dynamically. The gas mixtures were injected into the gas cell and the spectra of wavelength between 1100nm-2300nm were collected. The feature components extracted from gas mixture spectra by using Partial Least Squares (PLS) were used as the inputs of the Support Vector Regress Machine (SVR) to establish the quantitative analysis model. The effectiveness of the model is tested by the samples of predicting set. The prediction Root Mean Square Error (RMSE) of CH 4, C IIH 6 and C 3H 8 is respectively 1.27%, 0.89%, and 1.20% when the concentrations of component gas are over 0.5%. It shows that the AOTF-NIR spectrometer with gas cell can be used for gas mixture analysis. PLS combining with SVR has a good performance in NIR spectroscopy analysis. This paper provides the bases for extending the application of NIR spectroscopy analysis to gas detection.

  7. Binary and ternary gas mixtures for use in glow discharge closing switches

    DOEpatents

    Hunter, S.R.; Christophorou, L.G.

    1988-04-27

    Highly efficient binary and ternary gas mixtures for use in diffuse glow discharge closing switches are disclosed. The binary mixtures are combinations of helium or neon and selected perfluorides. The ternary mixtures are combinations of helium, neon, or argon, a selected perfluoride, and a small amount of gas that exhibits enhanced ionization characteristics. These mixtures are shown to be the optimum choices for use in diffuse glow discharge closing switches by virtue if the combines physio-electric properties of the mixture components. 9 figs.

  8. Radionuclide data analysis in connection of DPRK event in May 2009

    NASA Astrophysics Data System (ADS)

    Nikkinen, Mika; Becker, Andreas; Zähringer, Matthias; Polphong, Pornsri; Pires, Carla; Assef, Thierry; Han, Dongmei

    2010-05-01

    The seismic event detected in DPRK on 25.5.2009 was triggering a series of actions within CTBTO/PTS to ensure its preparedness to detect any radionuclide emissions possibly linked with the event. Despite meticulous work to detect and verify, traces linked to the DPRK event were not found. After three weeks of high alert the PTS resumed back to normal operational routine. This case illuminates the importance of objectivity and procedural approach in the data evaluation. All the data coming from particulate and noble gas stations were evaluated daily, some of the samples even outside of office hours and during the weekends. Standard procedures were used to determine the network detection thresholds of the key (CTBT relevant) radionuclides achieved across the DPRK event area and for the assessment of radionuclides typically occurring at IMS stations (background history). Noble gas system has sometimes detections that are typical for the sites due to legitimate non-nuclear test related activities. Therefore, set of hypothesis were used to see if the detection is consistent with event time and location through atmospheric transport modelling. Also the consistency of event timing and isotopic ratios was used in the evaluation work. As a result it was concluded that if even 1/1000 of noble gasses from a nuclear detonation would had leaked, the IMS system would not had problems to detect it. This case also showed the importance of on-site inspections to verify the nuclear traces of possible tests.

  9. Modeling of carbon monoxide oxidation kinetics over NASA carbon dioxide laser catalysts

    NASA Technical Reports Server (NTRS)

    Herz, Richard K.

    1989-01-01

    The recombination of CO and O2 formed by the dissociation of CO2 in a sealed CO2 laser discharge zone is examined. Conventional base-metal-oxide catalysts and conventional noble-metal catalysts are not effective in recombining the low O2/CO ratio at the low temperatures used by the lasers. The use of Pt/SnO2 as the noble-metal reducible-oxide (NMRO), or other related materials from Group VIIIA and IB and SnO2 interact synergistically to produce a catalytic activity that is substantially higher than either componet separately. The Pt/SnO2 and Pd/SnO2 were reported to have significant reaction rates at temperatures as low as -27 C, conditions under which conventional catalysts are inactive. The gas temperature range of lasers is 0 + or - 40 C. There are three general ways in which the NMRO composite materials can interact synergistically: one component altering the properties of another component; the two components each providing independent catalytic functions in a complex reaction mechanism; and the formation of catalytic sites through the combination of two components at the atomic level. All three of these interactions may be important in low temperature CO oxidation over NMRO catalysts. The effect of the noble metal on the oxide is discussed first, followed by the effect of the oxide on the noble metal, the interaction of the noble metal and oxide to form catalytic sites, and the possible ways in which the CO oxidation reaction is catalyzed by the NMRO materials.

  10. Nitrogen-Noble Gas Static Mass Sepectrometry of Genesis Collector Materials

    NASA Astrophysics Data System (ADS)

    Marty, B.; Burnard, P.; Zimmermann, L.; Robert, P.

    2005-03-01

    Gases (N, Ne, Ar) are extracted from Au-coated sapphire and diamond-like carbon collectors using an F2 excimer laser, without blank contributions the substrate. N is purified using a low blank CuO/Cu cycle prior to analysis by high resolution multicollector mass spectrometer.

  11. Chemical pump study

    NASA Technical Reports Server (NTRS)

    Bergquist, L. E.

    1973-01-01

    Sorption pumps applicable to the Pioneer Venus Mass Spectrometer Experiment were investigated. The pump requirements are discussed, and a survey of the existing pumps presented. Zirconium and zirconium graphite products were found to be the most promising among the getter materials surveyed. A preliminary pump design for the noble gas experiment is discussed.

  12. Sayama CM2 Chondrite: Fresh but Heavily Altered

    NASA Technical Reports Server (NTRS)

    Takaoka, N.; Nakamura, T.; Noguchi, T.; Tonui, E.; Gounelle, M.; Zolensky, M. E.; Ebisawa, N.; Osawa, T.; Okazaki, R.; Nagao, K.; hide

    2001-01-01

    Noble gas composition and mineralogy of Sayama meteorite, that fell in Japan and recently identified as a CM2 chondrite, revealed many unique features, indicating that it experienced extensive aqueous alteration under highly oxidized condition compared with typical CMs. Additional information is contained in the original extended abstract.

  13. Using noble gases and 87Sr/86Sr to constrain heat sources and fluid evolution at the Los Azufres Geothermal Field, Mexico

    NASA Astrophysics Data System (ADS)

    Wen, T.; Pinti, D. L.; Castro, M. C.; Lopez Hernandez, A.; Hall, C. M.; Shouakar-Stash, O.; Sandoval-Medina, F.

    2017-12-01

    Geothermal wells and hot springs were sampled for noble gases' volume fraction and isotopic measurements and 87Sr/86Sr in the Los Azufres Geothermal Field (LAGF), Mexico, to understand the evolution of fluid circulation following three decades of exploitation and re-injection of used brines. The LAGF, divided into the Southern Production Zone (SPZ) and the Northern Production Zone (NPZ), is hosted in a Miocene to Pliocene andesitic volcanic complex covered by Quaternary rhyolitic-dacitic units. Air contamination corrected 3He/4He ratios (Rc) normalized to the atmospheric ratio (Ra=1.384 x 10-6), show a median value of 6.58 indicating a dominant mantle helium component. Contributions of crustal helium up to 53% and 18% are observed in NPZ and SPZ, respectively. Observations based on Rc/Ra and 87Sr/86Sr ratios points to the mixing of three magmatic sources supplying mantle helium to the LAGF: (1) a pure mantle He (Rc/Ra = 8) and Sr (87Sr/86Sr = 0.7035) source; (2) a pure mantle helium (Rc/Ra = 8) with some radiogenic Sr (87Sr/86Sr = 0.7049) source possibly resulting from Quaternary rhyolitic volcanism; and (3) a fossil mantle He component (Rc/Ra = 3.8) with some radiogenic Sr (87Sr/86Sr = 0.7038), corresponding possibly to the Miocene andesite reservoir. Intrusions within the last 50 kyrs from sources (1) and (2) are likely responsible for the addition of mantle volatiles and heat to the hydrothermal system of Los Azufres. He and Ar isotopes indicate that heat flow is transported by both convection and conduction. Atmospheric noble gas elemental ratios suggest that geothermal wells located closer to the western re-injection zone are beginning to be dominated by re-injection of used brines (injectate). The area affected by boiling in LAGF has further extended to the north and west since the last noble gas sampling campaign in 2009.

  14. Dielectric gas mixtures containing sulfur hexafluoride

    DOEpatents

    Cooke, Chathan M.

    1979-01-01

    Electrically insulating gaseous media of unexpectedly high dielectric strength comprised of mixtures of two or more dielectric gases are disclosed wherein the dielectric strength of at least one gas in each mixture increases at less than a linear rate with increasing pressure and the mixture gases are present in such proportions that the sum of their electrical discharge voltages at their respective partial pressures exceeds the electrical discharge voltage of each individual gas at the same temperature and pressure as that of the mixture.

  15. 10 CFR 503.38 - Permanent exemption for certain fuel mixtures containing natural gas or petroleum.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... natural gas or petroleum. 503.38 Section 503.38 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS... mixtures containing natural gas or petroleum. (a) Eligibility. Section 212(d) of the Act provides for a... proposes to use a mixture of natural gas or petroleum and an alternate fuel as a primary energy source; (2...

  16. Non-catalytic recuperative reformer

    DOEpatents

    Khinkis, Mark J.; Kozlov, Aleksandr P.; Kurek, Harry

    2015-12-22

    A non-catalytic recuperative reformer has a flue gas flow path for conducting hot flue gas from a thermal process and a reforming mixture flow path for conducting a reforming mixture. At least a portion of the reforming mixture flow path is embedded in the flue gas flow path to permit heat transfer from the hot flue gas to the reforming mixture. The reforming mixture flow path contains substantially no material commonly used as a catalyst for reforming hydrocarbon fuel (e.g., nickel oxide, platinum group elements or rhenium), but instead the reforming mixture is reformed into a higher calorific fuel via reactions due to the heat transfer and residence time. In a preferred embodiment, extended surfaces of metal material such as stainless steel or metal alloy that are high in nickel content are included within at least a portion of the reforming mixture flow path.

  17. Online ^{222}Rn removal by cryogenic distillation in the XENON100 experiment

    NASA Astrophysics Data System (ADS)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; Gangi, P. Di; Giovanni, A. Di; Diglio, S.; Duchovni, E.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Franco, D.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Grandi, L.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Itay, R.; Kaminsky, B.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Calloch, M. Le; Lin, Q.; Lindemann, S.; Lindner, M.; Lopes, J. A. M.; Manfredini, A.; Maris, I.; Undagoitia, T. Marrodán; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Meng, Y.; Messina, M.; Micheneau, K.; Miguez, B.; Molinario, A.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Orrigo, S. E. A.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Piro, M.-C.; Pizzella, V.; Plante, G.; Priel, N.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; Rupp, N.; Saldanha, R.; dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Lavina, L. Scotto; Selvi, M.; Shagin, P.; Shockley, E.; Silva, M.; Simgen, H.; Sivers, M. v.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Upole, N.; Wang, H.; Wei, Y.; Weinheimer, C.; Wulf, J.; Ye, J.; Zhang, Y.; Cristescu, I.

    2017-06-01

    We describe the purification of xenon from traces of the radioactive noble gas radon using a cryogenic distillation column. The distillation column was integrated into the gas purification loop of the XENON100 detector for online radon removal. This enabled us to significantly reduce the constant ^{222}Rn background originating from radon emanation. After inserting an auxiliary ^{222}Rn emanation source in the gas loop, we determined a radon reduction factor of R > 27 (95% C.L.) for the distillation column by monitoring the ^{222}Rn activity concentration inside the XENON100 detector.

  18. Indirect measurement of diluents in a multi-component natural gas

    DOEpatents

    Morrow, Thomas B.; Owen, Thomas E.

    2006-03-07

    A method of indirectly measuring the diluent (nitrogen and carbon dioxide) concentrations in a natural gas mixture. The molecular weight of the gas is modeled as a function of the speed of sound in the gas, the diluent concentrations in the gas, and constant values, resulting in a model equation. A set of reference gas mixtures with known molecular weights and diluent concentrations is used to calculate the constant values. For the gas in question, if the speed of sound in the gas is measured at three states, the three resulting expressions of molecular weight can be solved for the nitrogen and carbon dioxide concentrations in the gas mixture.

  19. Determining CO2 storage potential during miscible CO2 enhanced oil recovery: Noble gas and stable isotope tracers

    USGS Publications Warehouse

    Shelton, Jenna L.; McIntosh, Jennifer C.; Hunt, Andrew; Beebe, Thomas L; Parker, Andrew D; Warwick, Peter D.; Drake, Ronald; McCray, John E.

    2016-01-01

    Rising atmospheric carbon dioxide (CO2) concentrations are fueling anthropogenic climate change. Geologic sequestration of anthropogenic CO2 in depleted oil reservoirs is one option for reducing CO2 emissions to the atmosphere while enhancing oil recovery. In order to evaluate the feasibility of using enhanced oil recovery (EOR) sites in the United States for permanent CO2 storage, an active multi-stage miscible CO2flooding project in the Permian Basin (North Ward Estes Field, near Wickett, Texas) was investigated. In addition, two major natural CO2 reservoirs in the southeastern Paradox Basin (McElmo Dome and Doe Canyon) were also investigated as they provide CO2 for EOR operations in the Permian Basin. Produced gas and water were collected from three different CO2 flooding phases (with different start dates) within the North Ward Estes Field to evaluate possible CO2 storage mechanisms and amounts of total CO2retention. McElmo Dome and Doe Canyon were sampled for produced gas to determine the noble gas and stable isotope signature of the original injected EOR gas and to confirm the source of this naturally-occurring CO2. As expected, the natural CO2produced from McElmo Dome and Doe Canyon is a mix of mantle and crustal sources. When comparing CO2 injection and production rates for the CO2 floods in the North Ward Estes Field, it appears that CO2 retention in the reservoir decreased over the course of the three injections, retaining 39%, 49% and 61% of the injected CO2 for the 2008, 2010, and 2013 projects, respectively, characteristic of maturing CO2 miscible flood projects. Noble gas isotopic composition of the injected and produced gas for the flood projects suggest no active fractionation, while δ13CCO2 values suggest no active CO2dissolution into formation water, or mineralization. CO2 volumes capable of dissolving in residual formation fluids were also estimated along with the potential to store pure-phase supercritical CO2. Using a combination of dissolution trapping and residual trapping, both volumes of CO2 currently retained in the 2008 and 2013 projects could be justified, suggesting no major leakage is occurring. These subsurface reservoirs, jointly considered, have the capacity to store up to 9 years of CO2 emissions from an average US powerplant.

  20. Venus, Earth, Xenon

    NASA Astrophysics Data System (ADS)

    Zahnle, K. J.

    2013-12-01

    Xenon has been regarded as an important goal of many proposed missions to Venus. This talk is intended to explain why. Despite its being the heaviest gas found in natural planetary atmospheres, there is more evidence that Xe escaped from Earth than for any element apart from helium: (i) Atmospheric Xe is very strongly mass fractionated (at about 4% per amu) from any known solar system source. This suggests fractionating escape that preferentially left the heavy Xe isotopes behind. (ii) Xe is underabundant compared to Kr, a lighter noble gas that is not strongly mass fractionated in air. (iii) Radiogenic Xe is strongly depleted by factors of several to ~100 compared to the quantities expected from radioactive decay of primordial solar system materials. In these respects Xe on Mars is similar to Xe on Earth, but with one key difference: Xe on Mars is readily explained by a simple process like hydrodynamic escape that acts on an initially solar or meteoritic Xe. This is not so for Earth. Earth's Xe cannot be derived by an uncontrived mass fractionating process acting on any known type of Solar System Xe. Earth is a stranger, made from different stuff than any known meteorite or Mars or even the Sun. Who else is in Earth's family? Comets? We know nothing. Father Zeus? Data from Jupiter are good enough to show that jovian Xe is not strongly mass-fractionated but not good enough to determine whether Jupiter resembles the Earth or the Sun. Sister Venus? Noble gas data from Venus are incomplete, with Kr uncertain and Xe unmeasured. Krypton was measured by several instruments on several spacecraft. The reported Kr abundances are discrepant and were once highly controversial. These discrepancies appear to have been not so much resolved as forgotten. Xenon was not detected on Venus. Upper limits were reported for the two most abundant xenon isotopes 129Xe and 132Xe. From the limited data it is not possible to tell whether Venus's affinities lie with the solar wind, or with the chondrites, with Earth, or with none of the above. Modern spacecraft mass spectrometers are at least 100-fold more sensitive to noble gases. Sending such an instrument to Venus may be the last best hope for decrypting what Earth's noble gases have been trying to tell us.

  1. Electrochemical separation of hydrogen from reformate using PEM fuel cell technology

    NASA Astrophysics Data System (ADS)

    Gardner, C. L.; Ternan, M.

    This article is an examination of the feasibility of electrochemically separating hydrogen obtained by steam reforming a hydrocarbon or alcohol source. A potential advantage of this process is that the carbon dioxide rich exhaust stream should be able to be captured and stored thereby reducing greenhouse gas emissions. Results are presented for the performance of the anode of proton exchange membrane (PEM) electrochemical cell for the separation of hydrogen from a H 2-CO 2 gas mixture and from a H 2-CO 2-CO gas mixture. Experiments were carried out using a single cell state-of-the-art PEM fuel cell. The anode was fed with either a H 2-CO 2 gas mixture or a H 2-CO 2-CO gas mixture and hydrogen was evolved at the cathode. All experiments were performed at room temperature and atmospheric pressure. With the H 2-CO 2 gas mixture the hydrogen extraction efficiency is quite high. When the gas mixture included CO, however, the hydrogen extraction efficiency is relatively poor. To improve the efficiency for the separation of the gas mixture containing CO, the effect of periodic pulsing on the anode potential was examined. Results show that pulsing can substantially reduce the anode potential thereby improving the overall efficiency of the separation process although the anode potential of the CO poisoned and pulsed cell still lies above that of an unpoisoned cell.

  2. Devices for the Production of Reference Gas Mixtures.

    PubMed

    Fijało, Cyprian; Dymerski, Tomasz; Gębicki, Jacek; Namieśnik, Jacek

    2016-09-02

    For many years there has been growing demand for gaseous reference materials, which is connected with development in many fields of science and technology. As a result, new methodological and instrumental solutions appear that can be used for this purpose. Appropriate quality assurance/quality control (QA/QC) must be used to make sure that measurement data are a reliable source of information. Reference materials are a significant element of such systems. In the case of gas samples, such materials are generally called reference gas mixtures. This article presents the application and classification of reference gas mixtures, which are a specific type of reference materials, and the methods for obtaining them are described. Construction solutions of devices for the production of reference gas mixtures are detailed, and a description of a prototype device for dynamic production of reference gas mixtures containing aroma compounds is presented.

  3. Negative Ion Drift Velocity and Longitudinal Diffusion in Mixtures of Carbon Disulfide and Methane

    NASA Technical Reports Server (NTRS)

    Dion, Michael P.; Son, S.; Hunter, S. D.; deNolfo, G. A.

    2011-01-01

    Negative ion drift velocity and longitudinal diffusion has been measured for gas mixtures of carbon disulfide (CS2) and methane (CH4)' Measurements were made as a function of total pressure, CS2 partial pressure and electric field. Constant mobility and thermal-limit longitudinal diffusion is observed for all gas mixtures tested. Gas gain for some of the mixtures is also included.

  4. Electron temperature and density measurement of tungsten inert gas arcs with Ar-He shielding gas mixture

    NASA Astrophysics Data System (ADS)

    Kühn-Kauffeldt, M.; Marques, J.-L.; Forster, G.; Schein, J.

    2013-10-01

    The diagnostics of atmospheric welding plasma is a well-established technology. In most cases the measurements are limited to processes using pure shielding gas. However in many applications shielding gas is a mixture of various components including metal vapor in gas metal arc welding (GMAW). Shielding gas mixtures are intentionally used for tungsten inert gas (TIG) welding in order to improve the welding performance. For example adding Helium to Argon shielding gas allows the weld geometry and porosity to be influenced. Yet thermal plasmas produced with gas mixtures or metal vapor still require further experimental investigation. In this work coherent Thomson scattering is used to measure electron temperature and density in these plasmas, since this technique allows independent measurements of electron and ion temperature. Here thermal plasmas generated by a TIG process with 50% Argon and 50% Helium shielding gas mixture have been investigated. Electron temperature and density measured by coherent Thomson scattering have been compared to the results of spectroscopic measurements of the plasma density using Stark broadening of the 696.5 nm Argon spectral line. Further investigations of MIG processes using Thomson scattering technique are planned.

  5. Tracing ancient hydrogeological fracture network age and compartmentalisation using noble gases

    NASA Astrophysics Data System (ADS)

    Warr, Oliver; Sherwood Lollar, Barbara; Fellowes, Jonathan; Sutcliffe, Chelsea N.; McDermott, Jill M.; Holland, Greg; Mabry, Jennifer C.; Ballentine, Christopher J.

    2018-02-01

    We show that fluid volumes residing within the Precambrian crystalline basement account for ca 30% of the total groundwater inventory of the Earth (> 30 million km3). The residence times and scientific importance of this groundwater are only now receiving attention with ancient fracture fluids identified in Canada and South Africa showing: (1) microbial life which has existed in isolation for millions of years; (2) significant hydrogen and hydrocarbon production via water-rock reactions; and (3) preserving noble gas components from the early atmosphere. Noble gas (He, Ne, Ar, Kr, Xe) abundance and isotopic compositions provide the primary evidence for fluid mean residence time (MRT). Here we extend the noble gas data from the Kidd Creek Mine in Timmins Ontario Canada, a volcanogenic massive sulfide (VMS) deposit formed at 2.7 Ga, in which fracture fluids with MRTs of 1.1-1.7 Ga were identified at 2.4 km depth (Holland et al., 2013); to fracture fluids at 2.9 km depth. We compare here the Kidd Creek Mine study with noble gas compositions determined in fracture fluids taken from two mines (Mine 1 & Mine 2) at 1.7 and 1.4 km depth below surface in the Sudbury Basin formed by a meteorite impact at 1.849 Ga. The 2.9 km samples at Kidd Creek Mine show the highest radiogenic isotopic ratios observed to date in free fluids (e.g. 21Ne/22Ne = 0.6 and 40Ar/36Ar = 102,000) and have MRTs of 1.0-2.2 Ga. In contrast, resampled 2.4 km fluids indicated a less ancient MRT (0.2-0.6 Ga) compared with the previous study (1.1-1.7 Ga). This is consistent with a change in the age distribution of fluids feeding the fractures as they drain, with a decreasing proportion of the most ancient end-member fluids. 129Xe/136Xe ratios for these fluids confirm that boreholes at 2.4 km versus 2.9 km are sourced from hydrogeologically distinct systems. In contrast, results for the Sudbury mines have MRTs of 0.2-0.6 and 0.2-0.9 Ga for Mines 1 and 2 respectively. While still old compared to almost all groundwaters reported in the literature to date, these younger residence times compared to Kidd Creek Mine are consistent with significant fracturing created by the impact event, facilitating more hydrogeologic connection and mixing of fluids in the basin. In all samples from both Kidd Creek Mine and Sudbury, a 124-128Xe excess is identified over modern air values. This is attributed to an early atmospheric xenon component, previously identified at Kidd Creek Mine but which has to date not been observed in fluids with a residence time as recent as 0.2-0.6 Ga. The temporal and spatial sampling at Kidd Creek Mine is also used to verify our proposed conceptual model which provides key constraints regarding distribution, volumes and residence times of fracture fluids on the smaller, regional, scale.

  6. Monolayer adsorption of noble gases on graphene

    NASA Astrophysics Data System (ADS)

    Maiga, Sidi M.; Gatica, Silvina M.

    2018-02-01

    We report our results of simulations of the adsorption of noble gases (Kr, Ar, Xe) on graphene. For Kr, we consider two configurations: supported and free-standing graphene, where atoms are adsorbed only on one or two sides of the graphene. For Ar and Xe, we studied only the case of supported graphene. For the single-side adsorption, we calculated the two-dimensional gas-liquid critical temperature for each adsorbate. We determined the different phases of the monolayers and constructed the phase diagrams. We found two-dimensional incommensurate solid phases for krypton, argon and xenon, and a two-dimensional commensurate solid phase for krypton. For double side adsorption of Kr, we do not see evidence of an ordering transition driven by the interlayer forces.

  7. VARIATION OF THE VISCOSITY OF CERTAIN GAS-OXYGEN MIXTURES UNDER THE INFLUENCE OF MAGNETIC FIELD; Variatia Viscozitatii unor Amestecuri de Gaze cu Oxigen sub Influenta unui Cimp Magnetic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ursu, I.

    1958-01-01

    The paramagnetic effects of oxygen and gas-oxygen mixtures are discussed. One of the paramagnetic effect the varistion of viscosity during the viscous flow in a magnetic field. The viscosity of gaseous oxygen and certain gas-oxygen mixtures decreased when the flow occurred in a magnetic field. The dependence of this effect on the size of the capillaries and porous materials was investigated. The viscosity was also found to vary with the concentration of oxygen and the other components forming the mixture. The results of the investigations with various gas mixtures are graphically shown. (A.C.)

  8. Micrometric BN powders used as catalyst support: influence of the precursor on the properties of the BN ceramic

    NASA Astrophysics Data System (ADS)

    Perdigon-Melon, José Antonio; Auroux, Aline; Guimon, Claude; Bonnetot, Bernard

    2004-02-01

    Thin powders and foams of boron nitride have been prepared from molecular precursors for use as noble metal supports in the catalytic conversion of methane. Different precursors originating from borazines have been tested. The best results were obtained using a precursor derived from trichloroborazine (TCB) which, after reacting with ammonia at room temperature and then thermolyzing up to 1800°C, led to BN powders with a specific area of more than 300 m 2 g -1 and a micrometric spherical texture. Comparable results were obtained using polyborazylene under similar conditions. Aminoborazine-derived precursors did not yield such high specific area ceramics but the BN microstructure resembled a foam with a crystallized skin and amorphous internal part. These differences were related to the chemical mechanism of the conversion of the precursor into BN. Polyhaloborazines and polyborazines yielded BN through gas-solid reactions whereas aminoborazine polymers could be kept waxy up to high temperatures, which favored the glassy foam. Catalysts composed of BN support and platinum have been prepared using two routes: from a mixture of precursor or by impregnation of a BN powder leading to very different catalysts.

  9. Influence of ion source configuration and its operation parameters on the target sputtering and implantation process.

    PubMed

    Shalnov, K V; Kukhta, V R; Uemura, K; Ito, Y

    2012-06-01

    In the work, investigation of the features and operation regimes of sputter enhanced ion-plasma source are presented. The source is based on the target sputtering with the dense plasma formed in the crossed electric and magnetic fields. It allows operation with noble or reactive gases at low pressure discharge regimes, and, the resulting ion beam is the mixture of ions from the working gas and sputtering target. Any conductive material, such as metals, alloys, or compounds, can be used as the sputtering target. Effectiveness of target sputtering process with the plasma was investigated dependently on the gun geometry, plasma parameters, and the target bias voltage. With the applied accelerating voltage from 0 to 20 kV, the source can be operated in regimes of thin film deposition, ion-beam mixing, and ion implantation. Multi-component ion beam implantation was applied to α-Fe, which leads to the surface hardness increasing from 2 GPa in the initial condition up to 3.5 GPa in case of combined N(2)-C implantation. Projected range of the implanted elements is up to 20 nm with the implantation energy 20 keV that was obtained with XPS depth profiling.

  10. Solubilities of nitrogen and noble gases in basalt melt

    NASA Technical Reports Server (NTRS)

    Miyazaki, A.; Hiyagon, H.; Sugiura, N.

    1994-01-01

    Nitrogen and noble gases are important tracers in geochemistry and chosmochemistry. Compared to noble gases, however, physicochemical properties of nitrogen, such as solubility in melt or melt/silicate partition, are not well known. Solubility of nitrogen in basalt melt depends on redox condition of the atmosphere. For example, solubility of nitrogen in E chondrite melt under reducing conditions is as high as 2 mol percent at 1500 C, suggesting that nitrogen is chemically dissolved in silicate melts, i.e., being dissolved as free anions or replacing oxygen sites in silicate network. However, the solubility and the dissolution mechanism of nitrogen under oxidizing conditions are not well investigated. To obtain nitrogen solubility in silicate melts under various redox conditions and to understand its mechanism, we are conducting experiments by using (15)N(15)N-labeled nitrogen gas. This makes it easy to distinguish dissolved nitrogen from later contamination of atmospheric nitrogen, and hence enables us to measure the nitrogen solubility accurately. As a preliminary experiment, we have measured solubility of nitrogen in basalt melt under the atmospheric oxygen pressure.

  11. Sensor for oxygen-combustibles gas mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isenberg, A.O.

    1981-08-25

    A molten carbonate electrochemical cell is described which operates at a temperature between 400/sup 0/ and 700/sup 0/ C. It used to remove O/sub 2/ in combination with CO/sub 2/ from an oxygen/combustibles gas mixture to provide a low temperature measurement of the oxygen content of the gas mixture.

  12. Improvement of In-Flight Alumina Spheroidization Process Using a Small Power Argon DC-RF Hybrid Plasma Flow System by Helium Mixture

    NASA Astrophysics Data System (ADS)

    Takana, Hidemasa; Jang, Juyong; Igawa, Junji; Nakajima, Tomoki; Solonenko, Oleg P.; Nishiyama, Hideya

    2011-03-01

    For the further improvement of in-flight alumina spheroidization process with a low-power direct-current radiofrequency (DC-RF) hybrid plasma flow system, the effect of a small amount of helium gas mixture in argon main gas and also the effect of increasing DC nozzle diameter on powder spheroidization ratio have been experimentally clarified with correlating helium gas mixture percentage, plasma enthalpy, powder in-flight velocity, and temperature. The alumina spheroidization ratio increases by helium gas mixture as a result of enhancement of plasma enthalpy. The highest spheroidization ratio is obtained by 4% mixture of helium in central gas with enlarging nozzle diameter from 3 to 4 mm, even under the constant low input electric power given to a DC-RF hybrid plasma flow system.

  13. Gas geochemistry of Sierra Negra volcano, Galapagos hot spot

    NASA Astrophysics Data System (ADS)

    Taran, Y.; Christenson, B.; Sumino, H.; Kennedy, B.

    2010-12-01

    We report chemical and isotopic compositions of gases from the Mina Azufral fumarolic field of Sierra Negra volcano, Isabela Island, Galápagos, collected in 2004 and compare our data with the data by Giggenbach (unpublished) collected in 1990 and Goff et al. (2000) collected in 1995. New results include the noble gas elemental and isotope abundances and nitrogen isotope ratios for the discharges. Maximum fumarole temperatures and ratios of major components (C/S/Cl/N) changed very little between 1995 and 2004, but the water fraction varied significantly over this period (39 mol% in 1990; 77% in 1995 and 52% in 2004). Carbon and helium isotopic compositions were stable (-3 to -4‰ and 16-18Ra, respectively), and water isotopic composition showed a notable negative oxygen shift from the local meteoric water value depending on the relative water content and thus controlled by the H2O-CO2 oxygen isotope fractionation. In terms of the noble gas abundances and isotopic ratios, heavy noble gases (Kr and Xe) are mainly of the atmospheric origin. Ne isotopic ratios also show strong meteoric signatures, but fall along the 20Ne/22Ne - 21Ne/22Ne air-deep mantle mixing trend for Fernandina glasses (Kurz et al., 2009). 40Ar/36Ar ratios up to 400 show a notable contribution of radiogenic Ar, and 40Ar*/4He ~ 0.3 ratios are consistent with un-degassed upper mantle values. Despite the high He/Ne ratios in gases collected in 2004, and only trace air contamination attributable to sampling, the nitrogen isotope ratios (~ -1 ‰) show a high fraction of the air-saturated water in the volcanic vapor. The chemical composition of the parent magmatic gas is difficult to characterise due to significant interaction between magmatic and hydrothermal system fluids beneath the Sierra Negra caldera. Never-the-less, some important indicators can be estimated: CO2/3He ≈ 3.5x10^9; N2/He <30; CO2/N2 >500. The last value is much higher than the accepted value of ~ 100 for the upper mantle.

  14. Reconstructing mantle volatile contents through the veil of degassing

    NASA Astrophysics Data System (ADS)

    Tucker, J.; Mukhopadhyay, S.; Gonnermann, H. M.

    2014-12-01

    The abundance of volatile elements in the mantle reveals critical information about the Earth's origin and evolution such as the chemical constituents that built the Earth and material exchange between the mantle and exosphere. However, due to magmatic degassing, volatile element abundances measured in basalts usually do not represent those in undegassed magmas and hence in the mantle source of the basalts. While estimates of average mantle concentrations of some volatile species can be obtained, such as from the 3He flux into the oceans, volatile element variability within the mantle remains poorly constrained. Here, we use CO2-He-Ne-Ar-Xe measurements in basalts and a new degassing model to reconstruct the initial volatile contents of 8 MORBs from the Mid-Atlantic Ridge and Southwest Indian Ridge that span a wide geochemical range from depleted to enriched MORBs. We first show that equilibrium degassing (e.g. Rayleigh degassing), cannot simultaneously fit the measured CO2-He-Ne-Ar-Xe compositions in MORBs and argue that kinetic fractionation between bubbles and melt lowers the dissolved ratios of light to heavy noble gas species in the melt from that expected at equilibrium. We present a degassing model (after Gonnermann and Mukhopadhyay, 2007) that explicitly accounts for diffusive fractionation between melt and bubbles. The model computes the degassed composition based on an initial volatile composition and a diffusive timescale. To reconstruct the undegassed volatile content of a sample, we find the initial composition and degassing timescale which minimize the misfit between predicted and measured degassed compositions. Initial 3He contents calculated for the 8 MORB samples vary by a factor of ~7. We observe a correlation between initial 3He and CO2 contents, indicating relatively constant CO2/3He ratios despite the geochemical diversity and variable gas content in the basalts. Importantly, the gas-rich popping rock from the North Atlantic, as well as the average mantle ratio computed from the ridge 3He flux and independently estimated CO2 content fall along the same correlation. This observation suggests that undegassed CO2 and noble gas concentrations can be reconstructed in individual samples through measurement of noble gases and CO2 in erupted basalts.

  15. Environmental isotope investigation of groundwater flow in the Honey Lake Basin, California and Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, T.P.; Davisson, M.L.; Hudson, G.B.

    The hydrology of Honey Lake Basin was studied using environmental isotope measurements of approximately 130 water samples collected during 1995 and 1996. The principal analytical methods included hydrogen, oxygen and carbon stable isotope ratio measurements, radiocarbon and tritium dating, and measurements of dissolved noble gas abundances.

  16. Proceedings of a Workshop on Cosmogenic Nuclide Production Rates

    NASA Technical Reports Server (NTRS)

    Englert, Peter A. J. (Editor); Reedy, Robert C. (Editor); Michel, Rolf (Editor)

    1989-01-01

    Abstracts of reports from the proceedings are presented. The presentations were divided into discussion topics. The following general topic areas were used: (1) measured cosmogenic noble gas and radionuclide production rates in meteorite and planetary surface samples; (2) cross-section measurements and simulation experiments; and (3) interpretation of sample studies and simulation experiments.

  17. Nonperturbative theory for the dispersion self-energy of atoms

    NASA Astrophysics Data System (ADS)

    Thiyam, Priyadarshini; Persson, C.; Brevik, I.; Sernelius, Bo E.; Boström, Mathias

    2014-11-01

    We go beyond the approximate series expansions used in the dispersion theory of finite-size atoms. We demonstrate that a correct, and nonperturbative, theory dramatically alters the dispersion self-energies of atoms. The nonperturbed theory gives as much as 100 % corrections compared to the traditional series-expanded theory for the smaller noble gas atoms.

  18. Non-noble electrocatalysts for alkaline fuel cells

    NASA Technical Reports Server (NTRS)

    Sarangapani, S.; Lessner, P.; Manoukian, M.; Giner, J.

    1989-01-01

    The doping of solid phase precursors followed by pyrolysis or the copyrolysis of gas phase precursors has allowed us to produce catalysts with good activity toward oxygen reduction. Efforts are currently underway to better understand the reasons for the catalytic activity of the bulk doped catalysts with a view toward further improving their activity.

  19. Kinetic Energy and Angular Distributions of He and Ar Atoms Evaporating from Liquid Dodecane.

    PubMed

    Patel, Enamul-Hasan; Williams, Mark A; Koehler, Sven P K

    2017-01-12

    We report both kinetic energy and angular distributions for He and Ar atoms evaporating from C 12 H 26 . All results were obtained by performing molecular dynamics simulations of liquid C 12 H 26 with around 10-20 noble gas atoms dissolved in the liquid and by subsequently following the trajectories of the noble gas atoms after evaporation from the liquid. Whereas He evaporates with a kinetic energy distribution of (1.05 ± 0.03) × 2RT (corrected for the geometry used in experiments: (1.08 ± 0.03) × 2RT, experimentally obtained value: (1.14 ± 0.01) × 2RT), Ar displays a kinetic energy distribution that better matches a Maxwell-Boltzmann distribution at the temperature of the liquid ((0.99 ± 0.04) × 2RT). This behavior is also reflected in the angular distributions, which are close to a cosine distribution for Ar but slightly narrower, especially for faster atoms, in the case of He. This behavior of He is most likely due to the weak interaction potential between He and the liquid hydrocarbon.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Anupam; Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076; Higham, Jonathan

    A range of methods are presented to calculate a solute’s hydration shell from computer simulations of dilute solutions of monatomic ions and noble gas atoms. The methods are designed to be parameter-free and instantaneous so as to make them more general, accurate, and consequently applicable to disordered systems. One method is a modified nearest-neighbor method, another considers solute-water Lennard-Jones overlap followed by hydrogen-bond rearrangement, while three methods compare various combinations of water-solute and water-water forces. The methods are tested on a series of monatomic ions and solutes and compared with the values from cutoffs in the radial distribution function, themore » nearest-neighbor distribution functions, and the strongest-acceptor hydrogen bond definition for anions. The Lennard-Jones overlap method and one of the force-comparison methods are found to give a hydration shell for cations which is in reasonable agreement with that using a cutoff in the radial distribution function. Further modifications would be required, though, to make them capture the neighboring water molecules of noble-gas solutes if these weakly interacting molecules are considered to constitute the hydration shell.« less

  1. Comparing Meteorite and Spacecraft Noble Gas Measurements to Trace Processes in the Martian Crust and Atmosphere

    NASA Astrophysics Data System (ADS)

    Swindle, T. D.

    2014-12-01

    Our knowledge of the noble gas abundances and isotopic compositions in the Martian crust and atmosphere come from two sources, measurements of meteorites from Mars and in situ measurements by spacecraft. Measurements by the Viking landers had large uncertainties, but were precise enough to tie the meteorites to Mars. Hence most of the questions we have are currently defined by meteorite measurements. Curiosity's SAM has confirmed that the Ar isotopic composition of the atmosphere is highly fractionated, presumably representing atmospheric loss that can now be modeled with more confidence. What turns out to be a more difficult trait to explain is the fact that the ratio of Kr/Xe in nakhlites, chassignites and ALH84001 is distinct from the atmospheric ratio, as defined by measurements from shergottites. This discrepancy has been suggested to be a result of atmosphere/groundwater/rock interaction, polar clathrate formation, or perhaps local temperature conditions. More detailed atmospheric measurements, along with targeted simulation experiments, will be needed to make full use of this anomaly.

  2. Thermodynamics of clathrate hydrate at low and high pressures with application to the outer solar system

    NASA Technical Reports Server (NTRS)

    Lunine, J. I.; Stevenson, D. J.

    1985-01-01

    The thermodynamic stability of clathrate hydrate is calculated to predict the formation conditions corresponding to a range of solar system parameters. The calculations were performed using the statistical mechanical theory developed by van der Waals and Platteeuw (1959) and existing experimental data concerning clathrate hydrate and its components. Dissociation pressures and partition functions (Langmuir constants) are predicted at low pressure for CO clathrate (hydrate) using the properties of chemicals similar to CO. It is argued that nonsolar but well constrained noble gas abundances may be measurable by the Galileo spacecraft in the Jovian atmosphere if the observed carbon enhancement is due to bombardment of the atmosphere by clathrate-bearing planetesimals sometime after planetary formation. The noble gas abundances of the Jovian satellite Titan are predicted, assuming that most of the methane in Titan is accreted as clathrate. It is suggested that under thermodynamically appropriate conditions, complete clathration of water ice could have occurred in high-pressure nebulas around giant planets, but probably not in the outer solar nebula. The stability of clathrate in other pressure ranges is also discussed.

  3. Groundwater helium anomaly reflects strain change during the 2016 Kumamoto earthquake in Southwest Japan

    NASA Astrophysics Data System (ADS)

    Sano, Yuji; Takahata, Naoto; Kagoshima, Takanori; Shibata, Tomo; Onoue, Tetsuji; Zhao, Dapeng

    2016-11-01

    Geochemical monitoring of groundwater and soil gas emission pointed out precursor and/or coseismic anomalies of noble gases associated with earthquakes, but there was lack of plausible physico-chemical basis. A laboratory experiment of rock fracturing and noble gas emission was conducted, but there is no quantitative connection between the laboratory results and observation in field. We report here deep groundwater helium anomalies related to the 2016 Kumamoto earthquake, which is an inland crustal earthquake with a strike-slip fault and a shallow hypocenter (10 km depth) close to highly populated areas in Southwest Japan. The observed helium isotope changes, soon after the earthquake, are quantitatively coupled with volumetric strain changes estimated from a fault model, which can be explained by experimental studies of helium degassing during compressional loading of rock samples. Groundwater helium is considered as an effective strain gauge. This suggests the first quantitative linkage between geochemical and seismological observations and may open the possibility to develop a new monitoring system to detect a possible strain change prior to a hazardous earthquake in regions where conventional borehole strain meter is not available.

  4. The ATTA-Hefei Instrument for Radioactive Noble-gas Dating

    NASA Astrophysics Data System (ADS)

    Hu, S.; Cheng, C.; Cheng, G.; Sun, Y. R.; Tu, L.; Yang, G.

    2013-12-01

    Long-lived noble-gas isotopes 85Kr (10.8 y), 39Ar (269 y) and 81Kr (229 ky) are ideal tracers for dating environmental samples such as groundwater and ice. Together with 14C, these nuclides can be used to cover the whole range of 100-106 y. Atom Trap Trace Analysis (ATTA) is an emerging method for the analysis of these isotopes at an isotopic abundance level as low as 10^-16 [1,2]. The ATTA instrument built in Hefei, China, can determine the isotopic abundances of 85Kr and 81Kr with typically 5-10% accuracy using krypton gas samples of a few micro-liters (STP) krypton gas [3]. The krypton gas sample can be extracted from several liters of air using a distillation-chromatograph setup with a typical efficiency of 85%, while the air sample can be extracted from groundwater or ices. The typical sample size for ATTA measurement is 100L groundwater or 40Kg ices. One such ATTA beamline can handle about 100 samples per year. [1] Chen, C. Y. et al. Ultrasensitive isotope trace analyses with a magneto-optical trap. Science 286, 1139-1141 (1999). [2] Jiang, W. et al. 39Ar detection at the 10-16 isotopic abundance level with atom trap trace analysis. Phys. Rev. Lett. 106, 103001 (2011). [3] Yang, G. -M. et al. Analysis of 85Kr: a comparison at the 10-14 level using micro-liter samples, Sci. Rep. 3, 1596 (2013). Relative uncertainty of the determined 85Kr abundance by the ATTA-Hefei instrument.

  5. MRI using hyperpolarized noble gases.

    PubMed

    Kauczor, H; Surkau, R; Roberts, T

    1998-01-01

    The aim of this study was to review the physical basis of MRI using hyperpolarized noble gases as well as the present status of preclinical and clinical applications. Non-radioactive noble gases with a nuclear spin 1/2 (He-3, Xe-129) can be hyperpolarized by optical pumping. Polarization is transferred from circularly polarized laser light to the noble-gas atoms via alkali-metal vapors (spin exchange) or metastable atoms (metastability exchange). Hyperpolarization results in a non-equilibrium polarization five orders of magnitude higher than the Boltzmann equilibrium compensating for the several 1000 times lower density of noble gases as compared with liquid state hydrogen concentrations in tissue and allows for short imaging times. Hyperpolarization can be stored sufficiently long (3 h to 6 days) to allow for transport and application. Magnetic resonance systems require a broadband radio-frequency system - which is generally available for MR spectroscopy - and dedicated coils. The hyperpolarized gases are administered as inhalative "contrast agents" allowing for imaging of the airways and airspaces. Besides the known anesthetic effect of xenon, no adverse effects are observed in volunteers or patients. Pulse sequences are optimized to effectively use the non-renewable hyperpolarization before it decays or is destroyed, using fast low-flip-angles strategies to allow for dynamic/breath-hold imaging of highly diffusible (He) or soluble (Xe) gases with in vivo T1-times well below 1 min. Since helium is not absorbed in considerable amounts, its application is restricted to the lung. Xe-129 is also under investigation for imaging of white matter disease and functional studies of cerebral perfusion. Magnetic resonance imaging using hyperpolarized gases is emerging as a technical challenge and opportunity for the MR community. Preliminary experience suggests potential for functional imaging of pulmonary ventilation and cerebral perfusion.

  6. Uranium chloride extraction of transuranium elements from LWR fuel

    DOEpatents

    Miller, W.E.; Ackerman, J.P.; Battles, J.E.; Johnson, T.R.; Pierce, R.D.

    1992-08-25

    A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels containing rare earth and noble metal fission products as well as other fission products is disclosed. The oxide fuel is reduced with Ca metal in the presence of Ca chloride and a U-Fe alloy which is liquid at about 800 C to dissolve uranium metal and the noble metal fission product metals and transuranium actinide metals and rare earth fission product metals leaving Ca chloride having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein. The Ca chloride and CaO and the fission products contained therein are separated from the U-Fe alloy and the metal values dissolved therein. The U-Fe alloy having dissolved therein reduced metals from the spent nuclear fuel is contacted with a mixture of one or more alkali metal or alkaline earth metal halides selected from the class consisting of alkali metal or alkaline earth metal and Fe or U halide or a combination thereof to transfer transuranium actinide metals and rare earth metals to the halide salt leaving the uranium and some noble metal fission products in the U-Fe alloy and thereafter separating the halide salt and the transuranium metals dissolved therein from the U-Fe alloy and the metals dissolved therein. 1 figure.

  7. Uranium chloride extraction of transuranium elements from LWR fuel

    DOEpatents

    Miller, William E.; Ackerman, John P.; Battles, James E.; Johnson, Terry R.; Pierce, R. Dean

    1992-01-01

    A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels containing rare earth and noble metal fission products as well as other fission products is disclosed. The oxide fuel is reduced with Ca metal in the presence of Ca chloride and a U-Fe alloy which is liquid at about 800.degree. C. to dissolve uranium metal and the noble metal fission product metals and transuranium actinide metals and rare earth fission product metals leaving Ca chloride having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein. The Ca chloride and CaO and the fission products contained therein are separated from the U-Fe alloy and the metal values dissolved therein. The U-Fe alloy having dissolved therein reduced metals from the spent nuclear fuel is contacted with a mixture of one or more alkali metal or alkaline earth metal halides selected from the class consisting of alkali metal or alkaline earth metal and Fe or U halide or a combination thereof to transfer transuranium actinide metals and rare earth metals to the halide salt leaving the uranium and some noble metal fission products in the U-Fe alloy and thereafter separating the halide salt and the transuranium metals dissolved therein from the U-Fe alloy and the metals dissolved therein.

  8. 78 FR 41768 - Chemical Substances and Mixtures Used in Oil and Gas Exploration or Production; TSCA Section 21...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-11

    ... Substances and Mixtures Used in Oil and Gas Exploration or Production; TSCA Section 21 Petition; Reasons for... processors of oil and gas exploration and production (E&P) chemical substances and mixtures to maintain... interest to you if you manufacture (including import), process, or distribute chemical substances or...

  9. An experimental approach aiming the production of a gas mixture composed of hydrogen and methane from biomass as natural gas substitute in industrial applications.

    PubMed

    Kraussler, Michael; Schindler, Philipp; Hofbauer, Hermann

    2017-08-01

    This work presents an experimental approach aiming the production of a gas mixture composed of H 2 and CH 4 , which should serve as natural gas substitute in industrial applications. Therefore, a lab-scale process chain employing a water gas shift unit, scrubbing units, and a pressure swing adsorption unit was operated with tar-rich product gas extracted from a commercial dual fluidized bed biomass steam gasification plant. A gas mixture with a volumetric fraction of about 80% H 2 and 19% CH 4 and with minor fractions of CO and CO 2 was produced by employing carbon molecular sieve as adsorbent. Moreover, the produced gas mixture had a lower heating value of about 15.5MJ·m -3 and a lower Wobbe index of about 43.4MJ·m -3 , which is similar to the typical Wobbe index of natural gas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Combined centrifugal force/gravity gas/liquid separator system

    NASA Astrophysics Data System (ADS)

    Lema, Luis E.

    1993-04-01

    A gas/liquid separator system has an outer enclosing tank filled with a demisting packing material. The tank has a gas outlet port and a liquid outlet port located at its top and bottom, respectively. At least one cylindrical, centrifugal force gas/liquid separator is vertically aligned and centrally located within the tank and is surrounded by the packing material. The cylindrical separator receives a gas/liquid mixture, separates the mixture into respective substantially gas and substantially liquid components, and allows the substantially gas components to exit its gas escape port. It also allows the substantially liquid components to exit its liquid escape port. The packing material in the tank further separates the substantially gas and liquid components as they rise and fall, respectively, through the packing material. An inflow line introduces the mixture into the cylindrical separator. The inflow line is upwardly inclined in a direction of flow of the mixture at a point where the inflow line communicates with the cylindrical separator.

  11. Groundwater residence time and paleohydrology in the Baltic Artesian basin:isotope geochemical data

    NASA Astrophysics Data System (ADS)

    Vaikmae, R.; Gerber, C.; Purtschert, R.; Aeschbach, W.; Raidla, V., Sr.; Lu, Z. T.; Zappala, J. C.; Mueller, P.; Mokrik, R., Sr.; Jiang, W.

    2016-12-01

    In this study of the Cambrian aquifer system(CAS) in the Baltic Artesian Basin(BAS) (, chemistry, stable isotopes, noble gas measurements, and dating tracers were combined for study the flow and recharge dynamics of the system over the last million years We find that the variability in chemical composition, stable isotopes and noble gas content in the basin is predominately controlled by mixing of three distinct water masses: Holocene and Pleistocene interglacial water, glacial meltwater, and brine. 81Kr is a nearly ideal dating tracer for such old systems. The radiogenic 4He and 40Ar provide additional information, but are more difficult to interpret in terms of groundwater age. In this study, we did not consider diffusive loss of 81Kr to stagnant water, which might result in an overestimation of groundwater ages ). However, the relatively high porosity and large thickness of the CAS, together with the presumed high salinity and low Kr content of the stagnant water all diminish the effect of diffusive 81Kr loss on age estimates. Our results confirm that under normal conditions, underground production of 81Kr is not affecting the dating results. 81Kr, 4He, and 40Ar all indicate a residence time of the brine of more than 1-3 Ma. Some uncertainty about the brine formation process remains, but the combination of chemical and stable isotope composition of the brine, noble gas concentrations and dating results favors evaporative enrichment of seawater. Tracer ages of interglacial water and glacial meltwater are on the order of several hundred thousand years, which means that several reversals of the flow direction in the CAS as a result of the paleoclimatology of the area have to be taken into account. Under such conditions, small vertical leakage, through fracture zones for example, might considerably impact the net flow pattern. Due to the cyclic flow direction reversals, the aquifer was probably in a transient state over most of the last 1 Ma period.

  12. Noble Gas Recycling: Experimental Constraints on Ar, Kr, and Xe Solubility in Serpentinite

    NASA Astrophysics Data System (ADS)

    Krantz, J. A.; Parman, S. W.; Kelley, S. P.; Smye, A.; Jackson, C.; Cooper, R. F.

    2016-12-01

    To constrain the rate of noble gas (NG) recycling at subduction zones, experiments have been performed to constrain the solubility of NG in natural antigorite. Geochemical analyses of exhumed subduction zone material1, well gases2, OIB and MORB3 indicate that NG are recycled from the surface of the earth into the mantle. The mechanism by which uncharged atoms can be bound to a mineral and subsequently recycled remains unclear, but experimental work suggests that ring structures in silicate minerals are ideal sites for NG4. Serpentine contains such ring structures and is abundant in subducting slabs, providing significant potential for control of the recycling of NG. Developing an understanding of how NG are transported may shed light on the large scale mantle dynamics associated with subduction, convection, and mantle heterogeneity. Experiments were performed in a cold seal pressure vessel at 350°C using a mix of either equal parts He, Ne, and Ar or Ar, Kr, and Xe as the pressure medium. Pressures varied from 0.15 to 1.13 kbar total pressure and durations varied from 20 to 188 hours. Samples were analyzed by UV laser ablation, noble gas mass spectrometry at The Open University, UK. White light interferometry was used to determine the volume of laser ablation pits from which concentrations were calculated. The data indicate that solubilities of NG in serpentinite are high in antigorite, and that variations in the solubility of NG could fractionate NG during recycling. 1. Kendrick, M.A., Scambelluri, M., Honda, M., Phillips, D., Nature Geoscience, 4, 807-812, 2011 2. Holland, G., and Ballentine, C.J., Nature, 441, 186-191, 2006 3. Parai, R. and Mukhopadhyay, S., GGG, 16, 719-735, 2015 4. Jackson, C.R.M., Parman, S.W., Kelley, S.P., Cooper, R.F., GCA, 159, 1-15, 2015

  13. Noble gas isotopes as low-budget exploration and monitoring tool for high- and low-temperature geothermal systems in extensional tectonic regimes

    NASA Astrophysics Data System (ADS)

    Kraml, Michael; Jodocy, Marco; Aeschbach, Werner; Kreuter, Horst

    2017-04-01

    Since viable geothermal systems in extensional settings are sparse compared to those situated in subduction zone environments, a specifically adapted exploration methodology of the former is currently not fully established. Standardized exploration methods applicable to geothermal systems related to subduction zones do not always deliver reliable or even deliver misleading results (e.g. Ochmann et al. 2010). The identification of promising prospects at the beginning of surface exploration studies is saving time and money of the project developer and investor. Noble gas isotope analyses can provide a low-budget tool for assessing the quality of the prospect in a very early exploration phase. Case studies of high- and low-temperature prospects situated in the East African Rift System and the Upper Rhine Graben, Germany will be presented and compared to other extensional areas like the Basin and Range Province, U.S.A. (Kraml et al. 2016a,b). Noble gas isotopes are also a versatile tool for monitoring of geothermal reservoirs during the production/exploitation phase. References Kraml, M., Jodocy, M., Reinecker, J., Leible, D., Freundt, F., Al Najem, S., Schmidt, G., Aeschbach, W., and Isenbeck-Schroeter, M. (2016a): TRACE: Detection of Permeable Deep-Reaching Fault Zone Sections in the Upper Rhine Graben, Germany, During Low-Budget Isotope-Geochemical Surface Exploration. Proceedings European Geothermal Congress 2016, Strasbourg, France, 19-24 Sept 2016 Kraml, M., Kaudse, T., Aeschbach, W. and Tanzanian Exploration Team (2016b): The search for volcanic heat sources in Tanzania: A helium isotope perspective. Proceedings 6th African Rift Geothermal Conference, Addis Ababa, Ethiopia, 2nd-4th November 2016 Ochmann, N., Kraml, M., Lindenfeld, M., Yakovlev, A., Rümpker, G., Babirye, P. (2010): Microearthquake Survey at the Buranga Geothermal Prospect (Western Uganda). Proceedings World Geothermal Congress, 25-29 April 2010, Bali, Indonesia (paper number 1126)

  14. THE FORMATION OF DETONATION IN SATURATED MIXTURES OF KNALLGAS-STEAM AND IN STOICHIOMETRIC MIXTURES OF DEUTERIUM-OXYGEN (HEAVY WATER). Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luker, J.A.; Adler, L.B.; Hobaica, E.C.

    1959-01-23

    The purpose of this investigation was to determine the reaction characteristics of satuated mixtures of knall gas (stoichiometric mixture of hydrogen and oxygen) --steam and mixtures of heavy knall gas (stoichm-ometric mixture of deuterion and oxygen) saturated with heavy water. These mixtues were studied experimentally over composition ranges from no reaction limit to enriched compositions which supported detonations. (auth)

  15. The ‘ideal selectivity’ vs ‘true selectivity’ for permeation of gas mixture in nanoporous membranes

    NASA Astrophysics Data System (ADS)

    He, Zhou; Wang, Kean

    2018-03-01

    In this study, we proposed and validated a novel and non-destructive experimental technology for measuring the permeation of binary gas mixture in nanoporous membranes. The traditional time lag rig was modified to examine the permeation characteristics of each gas component as well as that of the binary gas mixtures. The difference in boiling points of each species were explored. Binary gas mixtures of CO2/He were permeated through the nanoporous carbon molecular sieve membrane (CMSM). The results showed that, due to the strong interaction among different molecules and with the porous network of the membrane, the measured perm-selectivity or ‘true selectivity’ of a binary mixture can significantly deviate from the ‘ideal selectivity’ calculated form the permeation flux of each pure species, and this deviation is a complicated function of the molecular properties and operation conditions.

  16. Rapid gas hydrate formation process

    DOEpatents

    Brown, Thomas D.; Taylor, Charles E.; Unione, Alfred J.

    2013-01-15

    The disclosure provides a method and apparatus for forming gas hydrates from a two-phase mixture of water and a hydrate forming gas. The two-phase mixture is created in a mixing zone which may be wholly included within the body of a spray nozzle. The two-phase mixture is subsequently sprayed into a reaction zone, where the reaction zone is under pressure and temperature conditions suitable for formation of the gas hydrate. The reaction zone pressure is less than the mixing zone pressure so that expansion of the hydrate-forming gas in the mixture provides a degree of cooling by the Joule-Thompson effect and provides more intimate mixing between the water and the hydrate-forming gas. The result of the process is the formation of gas hydrates continuously and with a greatly reduced induction time. An apparatus for conduct of the method is further provided.

  17. 30 CFR 75.1106-6 - Exemption of small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Exemption of small low pressure gas cylinders... STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1106-6 Exemption of small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures. Small low pressure gas cylinders containing...

  18. 30 CFR 75.1106-6 - Exemption of small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Exemption of small low pressure gas cylinders... STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1106-6 Exemption of small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures. Small low pressure gas cylinders containing...

  19. 30 CFR 75.1106-6 - Exemption of small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Exemption of small low pressure gas cylinders... STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1106-6 Exemption of small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures. Small low pressure gas cylinders containing...

  20. 30 CFR 75.1106-6 - Exemption of small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Exemption of small low pressure gas cylinders... STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1106-6 Exemption of small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures. Small low pressure gas cylinders containing...

Top