Science.gov

Sample records for noctuid moth agrotis

  1. Trapping noctuid moths with synthetic floral volatile lures

    USDA-ARS?s Scientific Manuscript database

    Male and female noctuid moths were collected from plastic bucket traps that were baited with different synthetic floral chemicals and placed in peanut fields. Traps baited with phenylacetaldehyde, benzyl acetate, and a blend of phenylacetaldehyde, benzyl acetate, and benzaldehyde collected more soyb...

  2. "From freeze with moths": first discovery of a habitat in Andean salars for noctuid moths.

    PubMed

    Angulo, Andrés O; Camaño, Andrés; Angulo, Gino A

    2006-01-01

    Noctuid moths flutter in the high Andes nights at 4,000 m. s. n. m. Their larvae feed on aerial or underground parts of succulent plants. Many of these species are new to science. Strategies and adaptations of the moths for survival in the high Andes mountains are: a circulatory system that includes an abdominal thoracic countercurrent heat exchanger, and they are insulated from the environment by a coat of dense hair like scales. Recently, during January and July 2004, in the northern desert of Chile, called Salar de Punta Negra, under the salt crust we found a large number of pupae and larvae that correspond to three new species of noctuid moth - this pupation site is located in a 10 m wide area surrounding a water body; the mean observed density is 13 to 15 pupae per 100 cm(2). This is a new extreme habitat conquered by noctuid moths.

  3. Tympanal mechanics and neural responses in the ears of a noctuid moth

    NASA Astrophysics Data System (ADS)

    Ter Hofstede, Hannah M.; Goerlitz, Holger R.; Montealegre-Z, Fernando; Robert, Daniel; Holderied, Marc W.

    2011-12-01

    Ears evolved in many groups of moths to detect the echolocation calls of predatory bats. Although the neurophysiology of bat detection has been intensively studied in moths for decades, the relationship between sound-induced movement of the noctuid tympanic membrane and action potentials in the auditory sensory cells (A1 and A2) has received little attention. Using laser Doppler vibrometry, we measured the velocity and displacement of the tympanum in response to pure tone pulses for moths that were intact or prepared for neural recording. When recording from the auditory nerve, the displacement of the tympanum at the neural threshold remained constant across frequencies, whereas velocity varied with frequency. This suggests that the key biophysical parameter for triggering action potentials in the sensory cells of noctuid moths is tympanum displacement, not velocity. The validity of studies on the neurophysiology of moth hearing rests on the assumption that the dissection and recording procedures do not affect the biomechanics of the ear. There were no consistent differences in tympanal velocity or displacement when moths were intact or prepared for neural recordings for sound levels close to neural threshold, indicating that this and other neurophysiological studies provide good estimates of what intact moths hear at threshold.

  4. Tympanal mechanics and neural responses in the ears of a noctuid moth.

    PubMed

    ter Hofstede, Hannah M; Goerlitz, Holger R; Montealegre-Z, Fernando; Robert, Daniel; Holderied, Marc W

    2011-12-01

    Ears evolved in many groups of moths to detect the echolocation calls of predatory bats. Although the neurophysiology of bat detection has been intensively studied in moths for decades, the relationship between sound-induced movement of the noctuid tympanic membrane and action potentials in the auditory sensory cells (A1 and A2) has received little attention. Using laser Doppler vibrometry, we measured the velocity and displacement of the tympanum in response to pure tone pulses for moths that were intact or prepared for neural recording. When recording from the auditory nerve, the displacement of the tympanum at the neural threshold remained constant across frequencies, whereas velocity varied with frequency. This suggests that the key biophysical parameter for triggering action potentials in the sensory cells of noctuid moths is tympanum displacement, not velocity. The validity of studies on the neurophysiology of moth hearing rests on the assumption that the dissection and recording procedures do not affect the biomechanics of the ear. There were no consistent differences in tympanal velocity or displacement when moths were intact or prepared for neural recordings for sound levels close to neural threshold, indicating that this and other neurophysiological studies provide good estimates of what intact moths hear at threshold.

  5. Convergent patterns of long-distance nocturnal migration in noctuid moths and passerine birds.

    PubMed

    Alerstam, Thomas; Chapman, Jason W; Bäckman, Johan; Smith, Alan D; Karlsson, Håkan; Nilsson, Cecilia; Reynolds, Don R; Klaassen, Raymond H G; Hill, Jane K

    2011-10-22

    Vast numbers of insects and passerines achieve long-distance migrations between summer and winter locations by undertaking high-altitude nocturnal flights. Insects such as noctuid moths fly relatively slowly in relation to the surrounding air, with airspeeds approximately one-third of that of passerines. Thus, it has been widely assumed that windborne insect migrants will have comparatively little control over their migration speed and direction compared with migrant birds. We used radar to carry out the first comparative analyses of the flight behaviour and migratory strategies of insects and birds under nearly equivalent natural conditions. Contrary to expectations, noctuid moths attained almost identical ground speeds and travel directions compared with passerines, despite their very different flight powers and sensory capacities. Moths achieved fast travel speeds in seasonally appropriate migration directions by exploiting favourably directed winds and selecting flight altitudes that coincided with the fastest air streams. By contrast, passerines were less selective of wind conditions, relying on self-powered flight in their seasonally preferred direction, often with little or no tailwind assistance. Our results demonstrate that noctuid moths and passerines show contrasting risk-prone and risk-averse migratory strategies in relation to wind. Comparative studies of the flight behaviours of distantly related taxa are critically important for understanding the evolution of animal migration strategies.

  6. Convergent patterns of long-distance nocturnal migration in noctuid moths and passerine birds

    PubMed Central

    Alerstam, Thomas; Chapman, Jason W.; Bäckman, Johan; Smith, Alan D.; Karlsson, Håkan; Nilsson, Cecilia; Reynolds, Don R.; Klaassen, Raymond H. G.; Hill, Jane K.

    2011-01-01

    Vast numbers of insects and passerines achieve long-distance migrations between summer and winter locations by undertaking high-altitude nocturnal flights. Insects such as noctuid moths fly relatively slowly in relation to the surrounding air, with airspeeds approximately one-third of that of passerines. Thus, it has been widely assumed that windborne insect migrants will have comparatively little control over their migration speed and direction compared with migrant birds. We used radar to carry out the first comparative analyses of the flight behaviour and migratory strategies of insects and birds under nearly equivalent natural conditions. Contrary to expectations, noctuid moths attained almost identical ground speeds and travel directions compared with passerines, despite their very different flight powers and sensory capacities. Moths achieved fast travel speeds in seasonally appropriate migration directions by exploiting favourably directed winds and selecting flight altitudes that coincided with the fastest air streams. By contrast, passerines were less selective of wind conditions, relying on self-powered flight in their seasonally preferred direction, often with little or no tailwind assistance. Our results demonstrate that noctuid moths and passerines show contrasting risk-prone and risk-averse migratory strategies in relation to wind. Comparative studies of the flight behaviours of distantly related taxa are critically important for understanding the evolution of animal migration strategies. PMID:21389024

  7. Organization of the auditory pathway in the thoracic ganglia of noctuid moths.

    PubMed

    Boyan, G; Williams, L; Fullard, J

    1990-05-08

    We describe the neuroarchitecture of the noctuid thoracic nerve cord and use this framework to interpret the organization of the auditory pathway responsible for escape behaviour in noctuid moths. Noctuid moths possess only two auditory receptors (A1, A2), in each ear. The axon of the A1 cell projects initially to a glomerulus located ventrally and medially in the metathoracic ganglion, where it bifurcates. One branch ascends in the ventral intermediate tract to the brain, the other descends in the ventral intermediate tract into abdominal neuromeres of the metathoracic ganglion. Both axons arborize in the median ventral and ring tracts in each neuromere. The central projections of the A2 cell remain largely within the metathoracic ganglion. The axon bifurcates at the midline and directs arborizations dorsally to the dorsal intermediate and median dorsal tracts, and ventrally into the ring tract where the arborizations overlap those of the A1 afferent. The afferent projections remain ipsilateral to the ear of origin. We describe a posterior auditory association area in the metathoracic ganglion in which the major arborizations of several identified interneurones overlap those of the A1 afferent and make monosynaptic connections with it. These interneurones all respond tonically to sound stimuli. We have also identified the projections of the A1 afferent, interneurones, and motor neurones in the segmentally equivalent anterior auditory association area of the mesothoracic ganglion. An interneurone with major arborizations in the same tracts as the A1 afferent, and receiving monosynaptic input from it, is described. The arborizations of higher order interneurones lie mainly in dorsal tracts along with those of flight motor neurones. All the interneurones in this anterior centre respond phasically or phasic/tonically to sound stimuli. The relevance of this anatomical organization for predator avoidance behaviour is considered and the organization of auditory pathways

  8. The Australian Bogong Moth Agrotis infusa: A Long-Distance Nocturnal Navigator

    PubMed Central

    Warrant, Eric; Frost, Barrie; Green, Ken; Mouritsen, Henrik; Dreyer, David; Adden, Andrea; Brauburger, Kristina; Heinze, Stanley

    2016-01-01

    The nocturnal Bogong moth (Agrotis infusa) is an iconic and well-known Australian insect that is also a remarkable nocturnal navigator. Like the Monarch butterflies of North America, Bogong moths make a yearly migration over enormous distances, from southern Queensland, western and northwestern New South Wales (NSW) and western Victoria, to the alpine regions of NSW and Victoria. After emerging from their pupae in early spring, adult Bogong moths embark on a long nocturnal journey towards the Australian Alps, a journey that can take many days or even weeks and cover over 1000 km. Once in the Alps (from the end of September), Bogong moths seek out the shelter of selected and isolated high ridge-top caves and rock crevices (typically at elevations above 1800 m). In hundreds of thousands, moths line the interior walls of these cool alpine caves where they “hibernate” over the summer months (referred to as “estivation”). Towards the end of the summer (February and March), the same individuals that arrived months earlier leave the caves and begin their long return trip to their breeding grounds. Once there, moths mate, lay eggs and die. The moths that hatch in the following spring then repeat the migratory cycle afresh. Despite having had no previous experience of the migratory route, these moths find their way to the Alps and locate their estivation caves that are dotted along the high alpine ridges of southeastern Australia. How naïve moths manage this remarkable migratory feat still remains a mystery, although there are many potential sensory cues along the migratory route that moths might rely on during their journey, including visual, olfactory, mechanical and magnetic cues. Here we review our current knowledge of the Bogong moth, including its natural history, its ecology, its cultural importance to the Australian Aborigines and what we understand about the sensory basis of its long-distance nocturnal migration. From this analysis it becomes clear that

  9. The Australian Bogong Moth Agrotis infusa: A Long-Distance Nocturnal Navigator.

    PubMed

    Warrant, Eric; Frost, Barrie; Green, Ken; Mouritsen, Henrik; Dreyer, David; Adden, Andrea; Brauburger, Kristina; Heinze, Stanley

    2016-01-01

    The nocturnal Bogong moth (Agrotis infusa) is an iconic and well-known Australian insect that is also a remarkable nocturnal navigator. Like the Monarch butterflies of North America, Bogong moths make a yearly migration over enormous distances, from southern Queensland, western and northwestern New South Wales (NSW) and western Victoria, to the alpine regions of NSW and Victoria. After emerging from their pupae in early spring, adult Bogong moths embark on a long nocturnal journey towards the Australian Alps, a journey that can take many days or even weeks and cover over 1000 km. Once in the Alps (from the end of September), Bogong moths seek out the shelter of selected and isolated high ridge-top caves and rock crevices (typically at elevations above 1800 m). In hundreds of thousands, moths line the interior walls of these cool alpine caves where they "hibernate" over the summer months (referred to as "estivation"). Towards the end of the summer (February and March), the same individuals that arrived months earlier leave the caves and begin their long return trip to their breeding grounds. Once there, moths mate, lay eggs and die. The moths that hatch in the following spring then repeat the migratory cycle afresh. Despite having had no previous experience of the migratory route, these moths find their way to the Alps and locate their estivation caves that are dotted along the high alpine ridges of southeastern Australia. How naïve moths manage this remarkable migratory feat still remains a mystery, although there are many potential sensory cues along the migratory route that moths might rely on during their journey, including visual, olfactory, mechanical and magnetic cues. Here we review our current knowledge of the Bogong moth, including its natural history, its ecology, its cultural importance to the Australian Aborigines and what we understand about the sensory basis of its long-distance nocturnal migration. From this analysis it becomes clear that the Bogong

  10. Quantifying interspecific variation in dispersal ability of noctuid moths using an advanced tethered flight technique.

    PubMed

    Jones, Hayley B C; Lim, Ka S; Bell, James R; Hill, Jane K; Chapman, Jason W

    2016-01-01

    Dispersal plays a crucial role in many aspects of species' life histories, yet is often difficult to measure directly. This is particularly true for many insects, especially nocturnal species (e.g. moths) that cannot be easily observed under natural field conditions. Consequently, over the past five decades, laboratory tethered flight techniques have been developed as a means of measuring insect flight duration and speed. However, these previous designs have tended to focus on single species (typically migrant pests), and here we describe an improved apparatus that allows the study of flight ability in a wide range of insect body sizes and types. Obtaining dispersal information from a range of species is crucial for understanding insect population dynamics and range shifts. Our new laboratory tethered flight apparatus automatically records flight duration, speed, and distance of individual insects. The rotational tethered flight mill has very low friction and the arm to which flying insects are attached is extremely lightweight while remaining rigid and strong, permitting both small and large insects to be studied. The apparatus is compact and thus allows many individuals to be studied simultaneously under controlled laboratory conditions. We demonstrate the performance of the apparatus by using the mills to assess the flight capability of 24 species of British noctuid moths, ranging in size from 12-27 mm forewing length (~40-660 mg body mass). We validate the new technique by comparing our tethered flight data with existing information on dispersal ability of noctuids from the published literature and expert opinion. Values for tethered flight variables were in agreement with existing knowledge of dispersal ability in these species, supporting the use of this method to quantify dispersal in insects. Importantly, this new technology opens up the potential to investigate genetic and environmental factors affecting insect dispersal among a wide range of species.

  11. Variable coloration is associated with dampened population fluctuations in noctuid moths

    PubMed Central

    Forsman, Anders; Betzholtz, Per-Eric; Franzén, Markus

    2015-01-01

    Theory and recent reviews state that greater genetic and phenotypic variation should be beneficial for population abundance and stability. Experimental evaluations of this prediction are rare, of short duration and conducted under controlled environmental settings. The question whether greater diversity in functionally important traits stabilizes populations under more complex ecological conditions in the wild has not been systematically evaluated. Moths are mainly nocturnal, with a large variation in colour patterns among species, and constitute an important food source for many types of organisms. Here, we report the results of a long-term (2003–2013) monitoring study of 115 100 noctuid moths from 246 species. Analysis of time-series data provide rare evidence that species with higher levels of inter-individual variation in colour pattern have higher average abundances and undergo smaller between-year fluctuations compared with species having less variable colour patterns. The signature of interspecific temporal synchronization of abundance fluctuations was weak, suggesting that the dynamics were driven by species-specific biotic interactions rather than by some common, density-independent factor(s). We conclude that individual variation in colour patterns dampens population abundance fluctuations, and suggest that this may partly reflect that colour pattern polymorphism provides protection from visually oriented predators and parasitoids. PMID:25972462

  12. The complete mitochondrial genome of the pink stem borer, Sesamia inferens, in comparison with four other Noctuid moths.

    PubMed

    Chai, Huan-Na; Du, Yu-Zhou

    2012-01-01

    The complete 15,413-bp mitochondrial genome (mitogenome) of Sesamia inferens (Walker) (Lepidoptera: Noctuidae) was sequenced and compared with those of four other noctuid moths. All of the mitogenomes analyzed displayed similar characteristics with respect to gene content, genome organization, nucleotide comparison, and codon usages. Twelve-one protein-coding genes (PCGs) utilized the standard ATN, but the cox1 gene used CGA as the initiation codon; cox1, cox2, and nad4 genes had the truncated termination codon T in the S. inferens mitogenome. All of the tRNA genes had typical cloverleaf secondary structures except for trnS1(AGN), in which the dihydrouridine (DHU) arm did not form a stable stem-loop structure. Both the secondary structures of rrnL and rrnS genes inferred from the S. inferens mitogenome closely resembled those of other noctuid moths. In the A+T-rich region, the conserved motif "ATAGA" followed by a long T-stretch was observed in all noctuid moths, but other specific tandem-repeat elements were more variable. Additionally, the S. inferens mitogenome contained a potential stem-loop structure, a duplicated 17-bp repeat element, a decuplicated segment, and a microsatellite "(AT)(7)", without a poly-A element upstream of the trnM in the A+T-rich region. Finally, the phylogenetic relationships were reconstructed based on amino acid sequences of mitochondrial 13 PCGs, which support the traditional morphologically based view of relationships within the Noctuidae.

  13. Bacterial, but not baculoviral infections stimulate Hemolin expression in noctuid moths.

    PubMed

    Terenius, Olle; Popham, Holly J R; Shelby, Kent S

    2009-11-01

    Lepidopteran larvae are regularly infected by baculoviruses during feeding on infected plants. The differences in sensitivity to these infections can be substantial, even among closely related species. For example, the noctuids Cotton bollworm (Helicoverpa zea) and Tobacco budworm (Heliothis virescens), have a 1000-fold difference in sensitivity to Autographa californica multiple nucleopolyhedrovirus (AcMNPV) infection. Recent data were interpreted to indicate that the lepidopteran immunoglobulin protein, Hemolin, is synthesized upon viral injection and therefore to participate in anti-viral responses. To investigate whether Hemolin synthesis is affected by a natural viral infection, specific transcription in fat bodies and hemocytes of H. zea and H. virescens larvae was monitored following per os infection with the baculovirus HzSNPV (H. zea single nucleopolyhedrovirus). Both moths showed the same expression pattern as seen in uninfected animals and coincided with ecdysone responses, previously known to induce Hemolin expression. In contrast, injection of lyophilized Micrococcus luteus resulted in increased Hemolin expression supporting a role for Hemolin as an immuno-responsive protein in these species. The combined data are consistent with the suggestion that while Hemolin seems to participate in the response to virus infection in the superfamily Bombycoidea, this is not true in the Noctuoidea.

  14. Candidate chemosensory Genes in Female Antennae of the Noctuid Moth Spodoptera littoralis

    PubMed Central

    Jacquin-Joly, Emmanuelle; Legeai, Fabrice; Montagné, Nicolas; Monsempes, Christelle; François, Marie-Christine; Poulain, Julie; Gavory, Frédéric; Walker III, William B.; Hansson, Bill S.; Larsson, Mattias C.

    2012-01-01

    Chemical senses are crucial for all organisms to detect various environmental information. Different protein families, expressed in chemosensory organs, are involved in the detection of this information, such as odorant-binding proteins, olfactory and gustatory receptors, and ionotropic receptors. We recently reported an Expressed Sequence Tag (EST) approach on male antennae of the noctuid moth, Spodoptera littoralis, with which we could identify a large array of chemosensory genes in a species for which no genomic data are available. Here we describe a complementary EST project on female antennae in the same species. 18,342 ESTs were sequenced and their assembly with our previous male ESTs led to a total of 13,685 unigenes, greatly improving our description of the S. littoralis antennal transcriptome. Gene ontology comparison between male and female data suggested a similar complexity of antennae of both sexes. Focusing on chemosensation, we identified 26 odorant-binding proteins, 36 olfactory and 5 gustatory receptors, expressed in the antennae of S. littoralis. One of the newly identified gustatory receptors appeared as female-enriched. Together with its atypical tissue-distribution, this suggests a role in oviposition. The compilation of male and female antennal ESTs represents a valuable resource for exploring the mechanisms of olfaction in S. littoralis. PMID:22904672

  15. Comparison of Navigation-Related Brain Regions in Migratory versus Non-Migratory Noctuid Moths.

    PubMed

    de Vries, Liv; Pfeiffer, Keram; Trebels, Björn; Adden, Andrea K; Green, Ken; Warrant, Eric; Heinze, Stanley

    2017-01-01

    Brain structure and function are tightly correlated across all animals. While these relations are ultimately manifestations of differently wired neurons, many changes in neural circuit architecture lead to larger-scale alterations visible already at the level of brain regions. Locating such differences has served as a beacon for identifying brain areas that are strongly associated with the ecological needs of a species-thus guiding the way towards more detailed investigations of how brains underlie species-specific behaviors. Particularly in relation to sensory requirements, volume-differences in neural tissue between closely related species reflect evolutionary investments that correspond to sensory abilities. Likewise, memory-demands imposed by lifestyle have revealed similar adaptations in regions associated with learning. Whether this is also the case for species that differ in their navigational strategy is currently unknown. While the brain regions associated with navigational control in insects have been identified (central complex (CX), lateral complex (LX) and anterior optic tubercles (AOTU)), it remains unknown in what way evolutionary investments have been made to accommodate particularly demanding navigational strategies. We have thus generated average-shape atlases of navigation-related brain regions of a migratory and a non-migratory noctuid moth and used volumetric analysis to identify differences. We further compared the results to identical data from Monarch butterflies. Whereas we found differences in the size of the nodular unit of the AOTU, the LX and the protocerebral bridge (PB) between the two moths, these did not unambiguously reflect migratory behavior across all three species. We conclude that navigational strategy, at least in the case of long-distance migration in lepidopteran insects, is not easily deductible from overall neuropil anatomy. This suggests that the adaptations needed to ensure successful migratory behavior are found in the

  16. Comparison of Navigation-Related Brain Regions in Migratory versus Non-Migratory Noctuid Moths

    PubMed Central

    de Vries, Liv; Pfeiffer, Keram; Trebels, Björn; Adden, Andrea K.; Green, Ken; Warrant, Eric; Heinze, Stanley

    2017-01-01

    Brain structure and function are tightly correlated across all animals. While these relations are ultimately manifestations of differently wired neurons, many changes in neural circuit architecture lead to larger-scale alterations visible already at the level of brain regions. Locating such differences has served as a beacon for identifying brain areas that are strongly associated with the ecological needs of a species—thus guiding the way towards more detailed investigations of how brains underlie species-specific behaviors. Particularly in relation to sensory requirements, volume-differences in neural tissue between closely related species reflect evolutionary investments that correspond to sensory abilities. Likewise, memory-demands imposed by lifestyle have revealed similar adaptations in regions associated with learning. Whether this is also the case for species that differ in their navigational strategy is currently unknown. While the brain regions associated with navigational control in insects have been identified (central complex (CX), lateral complex (LX) and anterior optic tubercles (AOTU)), it remains unknown in what way evolutionary investments have been made to accommodate particularly demanding navigational strategies. We have thus generated average-shape atlases of navigation-related brain regions of a migratory and a non-migratory noctuid moth and used volumetric analysis to identify differences. We further compared the results to identical data from Monarch butterflies. Whereas we found differences in the size of the nodular unit of the AOTU, the LX and the protocerebral bridge (PB) between the two moths, these did not unambiguously reflect migratory behavior across all three species. We conclude that navigational strategy, at least in the case of long-distance migration in lepidopteran insects, is not easily deductible from overall neuropil anatomy. This suggests that the adaptations needed to ensure successful migratory behavior are found in

  17. Pathogenicity of a microsporidium isolate from the diamondback moth against Noctuid moths: characterization and implications for microbiological pest management.

    PubMed

    Ghani, Idris Abd; Dieng, Hamady; Abu Hassan, Zainal Abidin; Ramli, Norazsida; Kermani, Nadia; Satho, Tomomitsu; Ahmad, Hamdan; Abang, Fatimah Bt; Fukumitsu, Yuki; Ahmad, Abu Hassan

    2013-01-01

    Due to problems with chemical control, there is increasing interest in the use of microsporidia for control of lepidopteran pests. However, there have been few studies to evaluate the susceptibility of exotic species to microsporidia from indigenous Lepidoptera. We investigated some biological characteristics of the microsporidian parasite isolated from wild Plutella xylostella (PX) and evaluated its pathogenicity on the laboratory responses of sympatric invasive and resident noctuid moths. There were significant differences in spore size and morphology between PX and Spodoptera litura (SL) isolates. Spores of PX isolate were ovocylindrical, while those of SL were oval. PX spores were 1.05 times longer than those of SL, which in turn were 1.49 times wider than those of the PX. The timing of infection peaks was much shorter in SL and resulted in earlier larval death. There were no noticeable differences in amplicon size (two DNA fragments were each about 1200 base pairs in length). Phylogenetic analysis revealed that the small subunit (SSU) rRNA gene sequences of the two isolates shared a clade with Nosema/Vairimorpha sequences. The absence of octospores in infected spodopteran tissues suggested that PX and SL spores are closely related to Nosema plutellae and N. bombycis, respectively. Both SL and S. exigua (SE) exhibited susceptibility to the PX isolate infection, but showed different infection patterns. Tissular infection was more diverse in the former and resulted in much greater spore production and larval mortality. Microsporidium-infected larvae pupated among both infected and control larvae, but adult emergence occurred only in the second group. The PX isolate infection prevented completion of development of most leafworm and beet armyworm larvae. The ability of the microsporidian isolate to severely infect and kill larvae of both native and introduced spodopterans makes it a valuable candidate for biocontrol against lepidopteran pests.

  18. Pathogenicity of a Microsporidium Isolate from the Diamondback Moth against Noctuid Moths:Characterization and Implications for Microbiological Pest Management

    PubMed Central

    Ghani, Idris Abd; Dieng, Hamady; Abu Hassan, Zainal Abidin; Ramli, Norazsida; Kermani, Nadia; Satho, Tomomitsu; Ahmad, Hamdan; Abang, Fatimah Bt; Fukumitsu, Yuki; Ahmad, Abu Hassan

    2013-01-01

    Background Due to problems with chemical control, there is increasing interest in the use of microsporidia for control of lepidopteran pests. However, there have been few studies to evaluate the susceptibility of exotic species to microsporidia from indigenous Lepidoptera. Methodology/Principal Findings We investigated some biological characteristics of the microsporidian parasite isolated from wild Plutella xylostella (PX) and evaluated its pathogenicity on the laboratory responses of sympatric invasive and resident noctuid moths. There were significant differences in spore size and morphology between PX and Spodoptera litura (SL) isolates. Spores of PX isolate were ovocylindrical, while those of SL were oval. PX spores were 1.05 times longer than those of SL, which in turn were 1.49 times wider than those of the PX. The timing of infection peaks was much shorter in SL and resulted in earlier larval death. There were no noticeable differences in amplicon size (two DNA fragments were each about 1200 base pairs in length). Phylogenetic analysis revealed that the small subunit (SSU) rRNA gene sequences of the two isolates shared a clade with Nosema/Vairimorpha sequences. The absence of octospores in infected spodopteran tissues suggested that PX and SL spores are closely related to Nosema plutellae and N. bombycis, respectively. Both SL and S. exigua (SE) exhibited susceptibility to the PX isolate infection, but showed different infection patterns. Tissular infection was more diverse in the former and resulted in much greater spore production and larval mortality. Microsporidium-infected larvae pupated among both infected and control larvae, but adult emergence occurred only in the second group. Conclusion/Significance The PX isolate infection prevented completion of development of most leafworm and beet armyworm larvae. The ability of the microsporidian isolate to severely infect and kill larvae of both native and introduced spodopterans makes it a valuable

  19. A Challenge for a Male Noctuid Moth? Discerning the Female Sex Pheromone against the Background of Plant Volatiles

    PubMed Central

    Badeke, Elisa; Haverkamp, Alexander; Hansson, Bill S.; Sachse, Silke

    2016-01-01

    Finding a partner is an essential task for members of all species. Like many insects, females of the noctuid moth Heliothis virescens release chemical cues consisting of a species-specific pheromone blend to attract conspecific males. While tracking these blends, male moths are also continuously confronted with a wide range of other odor molecules, many of which are plant volatiles. Therefore, we analyzed how background plant odors influence the degree of male moth attraction to pheromones. In order to mimic a natural situation, we tracked pheromone-guided behavior when males were presented with the headspaces of each of two host plants in addition to the female pheromone blend. Since volatile emissions are also dependent on the physiological state of the plant, we compared pheromone attraction in the background of both damaged and intact plants. Surprisingly, our results show that a natural odor bouquet does not influence flight behavior at all, although previous studies had shown a suppressive effect at the sensory level. We also chose different concentrations of single plant-emitted volatiles, which have previously been shown to be neurophysiologically relevant, and compared their influence on pheromone attraction. We observed that pheromone attraction in male moths was significantly impaired in a concentration-dependent manner when single plant volatiles were added. Finally, we quantified the amounts of volatile emission in our experiments using gas chromatography. Notably, when the natural emissions of host plants were compared with those of the tested single plant compounds, we found that host plants do not release volatiles at concentrations that impact pheromone-guided flight behavior of the moth. Hence, our results lead to the conclusion that pheromone-plant interactions in Heliothis virescens might be an effect of stimulation with supra-natural plant odor concentrations, whereas under more natural conditions the olfactory system of the male moth appears

  20. Field Evaluation of Agrotis ipsilon (Lepidoptera: Noctuidae) Pheromone Blends and Their Application to Monitoring Moth Populations in China.

    PubMed

    Du, Yongjun; Feng, Bo; Li, Hongguang; Liu, Chunming; Zeng, Juan; Pan, Lieming; Yu, Qing

    2015-06-01

    The attractiveness of a series of mixtures of (Z)-7-dodecenyl acetate (Z7-12:Ac), (Z)-9-tetradecenyl acetate (Z9-14:Ac), and (Z)-11-hexadecenyl acetate (Z11-16:Ac), the Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae) pheromone, were evaluated in four locations in China. The ternary blend of Z7-12:Ac, Z9-14:Ac, and Z11-16:Ac was the complete pheromone blend for A. ipsilon and the ratio of Z7-12:Ac and Z9-14:Ac was optimal at 3:1. The most attractive ratio of Z11-16:Ac to the other components depended on geographic location. The optimal ratio was 3:1:6 in Yunnan and Shanxi, 3:1:2 in Sichuan and ranged from 3:1:2 to 3:1:12 in Shanghai, which differs significantly from the ratio of 3:1:16 in Japan. The dose of the blend in the pheromone lure influenced attractiveness to male moths and was related to the temperature in the test locations. Attractiveness of sugar-acetic acid-baited and pheromone-baited traps to male and female moths was different before and after the start of flowering of the oilseed rape crop; large numbers of female moths were attracted to sugar-acetic acid traps before flowering but none after flowering had started. This was similar for male moths and there was no synergistic effect when sugar-acetic acid solutions and pheromone were used together. These studies suggest that pheromone trapping based on the blends of three components can be an effective tool to improve the efficiency of monitoring of this pest in China.

  1. Shedding light on moths: shorter wavelengths attract noctuids more than geometrids.

    PubMed

    Somers-Yeates, Robin; Hodgson, David; McGregor, Peter K; Spalding, Adrian; Ffrench-Constant, Richard H

    2013-08-23

    With moth declines reported across Europe, and parallel changes in the amount and spectra of street lighting, it is important to understand exactly how artificial lights affect moth populations. We therefore compared the relative attractiveness of shorter wavelength (SW) and longer wavelength (LW) lighting to macromoths. SW light attracted significantly more individuals and species of moth, either when used alone or in competition with LW lighting. We also found striking differences in the relative attractiveness of different wavelengths to different moth groups. SW lighting attracted significantly more Noctuidae than LW, whereas both wavelengths were equally attractive to Geometridae. Understanding the extent to which different groups of moth are attracted to different wavelengths of light will be useful in determining the impact of artificial light on moth populations.

  2. A moth pheromone brewery: production of (Z)-11-hexadecenol by heterologous co-expression of two biosynthetic genes from a noctuid moth in a yeast cell factory

    PubMed Central

    2013-01-01

    Background Moths (Lepidoptera) are highly dependent on chemical communication to find a mate. Compared to conventional unselective insecticides, synthetic pheromones have successfully served to lure male moths as a specific and environmentally friendly way to control important pest species. However, the chemical synthesis and purification of the sex pheromone components in large amounts is a difficult and costly task. The repertoire of enzymes involved in moth pheromone biosynthesis in insecta can be seen as a library of specific catalysts that can be used to facilitate the synthesis of a particular chemical component. In this study, we present a novel approach to effectively aid in the preparation of semi-synthetic pheromone components using an engineered vector co-expressing two key biosynthetic enzymes in a simple yeast cell factory. Results We first identified and functionally characterized a ∆11 Fatty-Acyl Desaturase and a Fatty-Acyl Reductase from the Turnip moth, Agrotis segetum. The ∆11-desaturase produced predominantly Z11-16:acyl, a common pheromone component precursor, from the abundant yeast palmitic acid and the FAR transformed a series of saturated and unsaturated fatty acids into their corresponding alcohols which may serve as pheromone components in many moth species. Secondly, when we co-expressed the genes in the Brewer’s yeast Saccharomyces cerevisiae, a set of long-chain fatty acids and alcohols that are not naturally occurring in yeast were produced from inherent yeast fatty acids, and the presence of (Z)-11-hexadecenol (Z11-16:OH), demonstrated that both heterologous enzymes were active in concert. A 100 ml batch yeast culture produced on average 19.5 μg Z11-16:OH. Finally, we demonstrated that oxidized extracts from the yeast cells containing (Z)-11-hexadecenal and other aldehyde pheromone compounds elicited specific electrophysiological activity from male antennae of the Tobacco budworm, Heliothis virescens, supporting the idea that

  3. A moth pheromone brewery: production of (Z)-11-hexadecenol by heterologous co-expression of two biosynthetic genes from a noctuid moth in a yeast cell factory.

    PubMed

    Hagström, Åsa K; Wang, Hong-Lei; Liénard, Marjorie A; Lassance, Jean-Marc; Johansson, Tomas; Löfstedt, Christer

    2013-12-13

    Moths (Lepidoptera) are highly dependent on chemical communication to find a mate. Compared to conventional unselective insecticides, synthetic pheromones have successfully served to lure male moths as a specific and environmentally friendly way to control important pest species. However, the chemical synthesis and purification of the sex pheromone components in large amounts is a difficult and costly task. The repertoire of enzymes involved in moth pheromone biosynthesis in insecta can be seen as a library of specific catalysts that can be used to facilitate the synthesis of a particular chemical component. In this study, we present a novel approach to effectively aid in the preparation of semi-synthetic pheromone components using an engineered vector co-expressing two key biosynthetic enzymes in a simple yeast cell factory. We first identified and functionally characterized a ∆11 Fatty-Acyl Desaturase and a Fatty-Acyl Reductase from the Turnip moth, Agrotis segetum. The ∆11-desaturase produced predominantly Z11-16:acyl, a common pheromone component precursor, from the abundant yeast palmitic acid and the FAR transformed a series of saturated and unsaturated fatty acids into their corresponding alcohols which may serve as pheromone components in many moth species. Secondly, when we co-expressed the genes in the Brewer's yeast Saccharomyces cerevisiae, a set of long-chain fatty acids and alcohols that are not naturally occurring in yeast were produced from inherent yeast fatty acids, and the presence of (Z)-11-hexadecenol (Z11-16:OH), demonstrated that both heterologous enzymes were active in concert. A 100 ml batch yeast culture produced on average 19.5 μg Z11-16:OH. Finally, we demonstrated that oxidized extracts from the yeast cells containing (Z)-11-hexadecenal and other aldehyde pheromone compounds elicited specific electrophysiological activity from male antennae of the Tobacco budworm, Heliothis virescens, supporting the idea that genes from different

  4. Host Plants Identification for Adult Agrotis ipsilon, a Long-Distance Migratory Insect

    PubMed Central

    Liu, Yongqiang; Fu, Xiaowei; Mao, Limi; Xing, Zhenlong; Wu, Kongming

    2016-01-01

    In this study, we determined the host relationship of Agrotis ipsilon moths by identifying pollen species adhering them during their long-distance migration. Pollen carried by A. ipsilon moths was collected from 2012 to 2014 on a small island in the center of the Bohai Strait, which is a seasonal migration pathway of this pest species. Genomic DNA of single pollen grains was amplified by using whole genome amplification technology, and a portion of the chloroplast rbcL sequence was then amplified from this material. Pollen species were identified by a combination of DNA barcoding and pollen morphology. We found 28 species of pollen from 18 families on the tested moths, mainly from Angiosperm, Dicotyledoneae. From this, we were able to determine that these moths visit woody plants more than herbaceous plants that they carry more pollen in the early and late stages of the migration season, and that the amounts of pollen transportation were related to moth sex, moth body part, and plant species. In general, 31% of female and 26% of male moths were found to be carrying pollen. Amounts of pollen on the proboscis was higher for female than male moths, while the reverse was true for pollen loads on the antennae. This work provides a new approach to study the interactions between noctuid moth and their host plants. Identification of plant hosts for adult moths furthers understanding of the coevolution processes between moths and their host plants. PMID:27271592

  5. Local Abundance Patterns of Noctuid Moths in Olive Orchards: Life-History Traits, Distribution Type and Habitat Interactions

    PubMed Central

    Pérez-Guerrero, Sergio; Redondo, Alberto José; Yela, José Luis

    2011-01-01

    Local species abundance is related to range size, habitat characteristics, distribution type, body size, and life-history variables. In general, habitat generalists and polyphagous species are more abundant in broad geographical areas. Underlying this, local abundance may be explained from the interactions between life-history traits, chorological pattern, and the local habitat characteristics. The relationship within taxa between life-history traits, distribution area, habitat characteristics, and local abundance of the noctuid moth (Lepidoptera: Noctuidae) assemblage in an olive orchard, one of the most important agro-ecosystems in the Mediterranean basin, was analyzed. A total of 66 species were detected over three years of year-round weekly samplings using the light-trap method. The life-history traits examined and the distribution type were found to be related to the habitat-species association, but none of the biological strategies defined from the association to the different habitats were linked with abundance. In contrast to general patterns, dispersal ability and number of generations per year explained differences in abundance. The relationships were positive, with opportunistic taxa that have high mobility and several generations being locally more abundant. In addition, when the effect of migrant species was removed, the distribution type explained abundance differences, with Mediterranean taxa (whose baricenter is closer to the studied area) being more abundant. PMID:21529251

  6. Function and central projections of gustatory receptor neurons on the antenna of the noctuid moth Spodoptera littoralis.

    PubMed

    Popescu, Alexandra; Couton, Louise; Almaas, Tor-Jørgen; Rospars, Jean-Pierre; Wright, Geraldine A; Marion-Poll, Frédéric; Anton, Sylvia

    2013-05-01

    Chemosensory information is crucial for most insects to feed and reproduce. Olfactory signals are mainly used at a distance, whereas gustatory stimuli play an important role when insects directly contact chemical substrates. In noctuid moths, although the antennae are the main olfactory organ, they also bear taste sensilla. These taste sensilla detect sugars and hence are involved in appetitive learning but could also play an important role in food evaluation by detecting salts and bitter substances. To investigate this, we measured the responses of individual taste sensilla on the antennae of Spodoptera littoralis to sugars and salts using tip recordings. We also traced the projections of their neuronal axons into the brain. In each sensillum, we found one or two neurons responding to sugars: one NaCl-responsive and one water-sensitive neuron. Responses of these neurons were dose-dependent and similar across different locations on the antenna. Responses were dependent on the sex for sucrose and on both sex and location for glucose and fructose. We did not observe a spatial map for the projections from specific regions of the antennae to the deutocerebrum or the tritocerebrum/suboesophageal ganglion complex. In accordance with physiological recordings, back-fills from individual sensilla revealed up to four axons, in most cases targeting different projection zones.

  7. Molecular Characterization and Differential Expression of Olfactory Genes in the Antennae of the Black Cutworm Moth Agrotis ipsilon

    PubMed Central

    Gu, Shao-Hua; Sun, Liang; Yang, Ruo-Nan; Wu, Kong-Ming; Guo, Yu-Yuan; Li, Xian-Chun; Zhou, Jing-Jiang; Zhang, Yong-Jun

    2014-01-01

    Insects use their sensitive and selective olfactory system to detect outside chemical odorants, such as female sex pheromones and host plant volatiles. Several groups of olfactory proteins participate in the odorant detection process, including odorant binding proteins (OBPs), chemosensory proteins (CSPs), odorant receptors (ORs), ionotropic receptors (IRs) and sensory neuron membrane proteins (SNMPs). The identification and functional characterization of these olfactory proteins will enhance our knowledge of the molecular basis of insect chemoreception. In this study, we report the identification and differential expression profiles of these olfactory genes in the black cutworm moth Agrotis ipsilon. In total, 33 OBPs, 12 CSPs, 42 ORs, 24 IRs, 2 SNMPs and 1 gustatory receptor (GR) were annotated from the A. ipsilon antennal transcriptomes, and further RT-PCR and RT-qPCR revealed that 22 OBPs, 3 CSPs, 35 ORs, 14 IRs and the 2 SNMPs are uniquely or primarily expressed in the male and female antennae. Furthermore, one OBP (AipsOBP6) and one CSP (AipsCSP2) were exclusively expressed in the female sex pheromone gland. These antennae-enriched OBPs, CSPs, ORs, IRs and SNMPs were suggested to be responsible for pheromone and general odorant detection and thus could be meaningful target genes for us to study their biological functions in vivo and in vitro. PMID:25083706

  8. Antennal-lobe tracts in the noctuid moth, Heliothis virescens: new anatomical findings.

    PubMed

    Ian, Elena; Berg, Aleksander; Lillevoll, Siri Corneliussen; Berg, Bente Gunnveig

    2016-10-01

    As in other insects, three main tracts in the moth brain form parallel connections between the antennal lobe and the protocerebrum. These tracts, which consist of the antennal-lobe projection-neuron axons, target two main areas in the protocerebrum, the calyces of the mushroom bodies and the lateral horn. In spite of the solid neuroanatomical knowledge already established, there are still unresolved issues regarding the antennal-lobe tracts of the moth. One is the proportion of lateral-tract neurons targeting the calyces. In the study presented here, we have performed both retrograde and anterograde labeling of the antennal-lobe projection neurons in the brain of the moth, Heliothis virescens. The results from the retrograde staining, obtained by applying dye in the calyces, demonstrated that the direct connection between the antennal lobe and this neuropil is maintained primarily by the medial antennal-lobe tract; only a few axons confined to the lateral tract were found to innervate the calyces. In addition, these staining experiments, which allowed us to explore the arborization pattern of labeled neurons within the antennal lobe, resulted in new findings regarding anatomical arrangement of roots and cell body clusters linked to the medial tract. The results from the anterograde staining, obtained by applying dye into the antennal lobe, visualized the total assembly of axons passing along the antennal-lobe tracts. In addition to the three classical tracts, we found a transverse antennal-lobe tract not previously described in the moth. Also, these staining experiments revealed an organized neuropil in the lateral horn formed by terminals of the four antennal-lobe tracts.

  9. The influence of the atmospheric boundary layer on nocturnal layers of noctuids and other moths migrating over southern Britain.

    PubMed

    Wood, Curtis R; Chapman, Jason W; Reynolds, Donald R; Barlow, Janet F; Smith, Alan D; Woiwod, Ian P

    2006-03-01

    Insects migrating at high altitude over southern Britain have been continuously monitored by automatically operating, vertical-looking radars over a period of several years. During some occasions in the summer months, the migrants were observed to form well-defined layer concentrations, typically at heights of 200-400 m, in the stable night-time atmosphere. Under these conditions, insects are likely to have control over their vertical movements and are selecting flight heights that are favourable for long-range migration. We therefore investigated the factors influencing the formation of these insect layers by comparing radar measurements of the vertical distribution of insect density with meteorological profiles generated by the UK Meteorological Office's (UKMO) Unified Model (UM). Radar-derived measurements of mass and displacement speed, along with data from Rothamsted Insect Survey light traps, provided information on the identity of the migrants. We present here three case studies where noctuid and pyralid moths contributed substantially to the observed layers. The major meteorological factors influencing the layer concentrations appeared to be: (a) the altitude of the warmest air, (b) heights corresponding to temperature preferences or thresholds for sustained migration and (c) on nights when air temperatures are relatively high, wind-speed maxima associated with the nocturnal jet. Back-trajectories indicated that layer duration may have been determined by the distance to the coast. Overall, the unique combination of meteorological data from the UM and insect data from entomological radar described here show considerable promise for systematic studies of high-altitude insect layering.

  10. Functional evolution of a multigene family: orthologous and paralogous pheromone receptor genes in the turnip moth, Agrotis segetum.

    PubMed

    Zhang, Dan-Dan; Löfstedt, Christer

    2013-01-01

    Lepidopteran pheromone receptors (PRs), for which orthologies are evident among closely related species, provide an intriguing example of gene family evolution in terms of how new functions may arise. However, only a limited number of PRs have been functionally characterized so far and thus evolutionary scenarios suffer from elements of speculation. In this study we investigated the turnip moth Agrotis segetum, in which female moths produce a mixture of chemically related pheromone components that elicit specific responses from receptor cells on male antennae. We cloned nine A. segetum PR genes and the Orco gene by degenerate primer based RT-PCR. The nine PR genes, named as AsegOR1 and AsegOR3-10, fall into four distinct orthologous clusters of known lepidopteran PRs, of which one contains six paralogues. The paralogues are under relaxed selective pressure, contrasting with the purifying selection on other clusters. We identified the receptors AsegOR9, AsegOR4 and AsegOR5, specific for the respective homologous pheromone components (Z)-5-decenyl, (Z)-7-dodecenyl and (Z)-9-tetradecenyl acetates, by two-electrode voltage clamp recording from Xenopus laevis oocytes co-expressing Orco and each PR candidate. These receptors occur in three different orthologous clusters. We also found that the six paralogues with high sequence similarity vary dramatically in ligand selectivity and sensitivity. Different from AsegOR9, AsegOR6 showed a relatively large response to the behavioural antagonist (Z)-5-decenol, and a small response to (Z)-5-decenyl acetate. AsegOR1 was broadly tuned, but most responsive to (Z)-5-decenyl acetate, (Z)-7-dodecenyl acetate and the behavioural antagonist (Z)-8-dodecenyl acetate. AsegOR8 and AsegOR7, which differ from AsegOR6 and AsegOR1 by 7 and 10 aa respectively, showed much lower sensitivities. AsegOR10 showed only small responses to all the tested compounds. These results suggest that new receptors arise through gene duplication, and relaxed

  11. Functional Evolution of a Multigene Family: Orthologous and Paralogous Pheromone Receptor Genes in the Turnip Moth, Agrotis segetum

    PubMed Central

    Zhang, Dan-Dan; Löfstedt, Christer

    2013-01-01

    Lepidopteran pheromone receptors (PRs), for which orthologies are evident among closely related species, provide an intriguing example of gene family evolution in terms of how new functions may arise. However, only a limited number of PRs have been functionally characterized so far and thus evolutionary scenarios suffer from elements of speculation. In this study we investigated the turnip moth Agrotis segetum, in which female moths produce a mixture of chemically related pheromone components that elicit specific responses from receptor cells on male antennae. We cloned nine A. segetum PR genes and the Orco gene by degenerate primer based RT-PCR. The nine PR genes, named as AsegOR1 and AsegOR3-10, fall into four distinct orthologous clusters of known lepidopteran PRs, of which one contains six paralogues. The paralogues are under relaxed selective pressure, contrasting with the purifying selection on other clusters. We identified the receptors AsegOR9, AsegOR4 and AsegOR5, specific for the respective homologous pheromone components (Z)-5-decenyl, (Z)-7-dodecenyl and (Z)-9-tetradecenyl acetates, by two-electrode voltage clamp recording from Xenopus laevis oocytes co-expressing Orco and each PR candidate. These receptors occur in three different orthologous clusters. We also found that the six paralogues with high sequence similarity vary dramatically in ligand selectivity and sensitivity. Different from AsegOR9, AsegOR6 showed a relatively large response to the behavioural antagonist (Z)-5-decenol, and a small response to (Z)-5-decenyl acetate. AsegOR1 was broadly tuned, but most responsive to (Z)-5-decenyl acetate, (Z)-7-dodecenyl acetate and the behavioural antagonist (Z)-8-dodecenyl acetate. AsegOR8 and AsegOR7, which differ from AsegOR6 and AsegOR1 by 7 and 10 aa respectively, showed much lower sensitivities. AsegOR10 showed only small responses to all the tested compounds. These results suggest that new receptors arise through gene duplication, and relaxed

  12. A comparative microbiological study of clinically healthy eyes and those affected by ophthalmia in cattle and the association of noctuid eye-frequenting moths.

    PubMed

    Gouws, J J; Coetzer, J A; Howell, P G

    1995-09-01

    The eyes of clinically healthy Simmentaler cattle and those affected by ophthalmia were sampled once a month over a continuous period of 12 months for bacterial, mycoplasmal and ureaplasmal infections. In total 478 eyes, representing from a clinical viewpoint 414 healthy and 64 affected eyes, were swabbed. Bacteria were isolated from 201 (48.6%) healthy eyes and 56 (87.5%) affected eyes. No bacteria were isolated from the remaining eyes. Eleven genera of bacteria were isolated from healthy eyes and 8 genera from affected eyes. The majority of isolates were classified in the genera Moraxella, Neisseria and Staphylococcus. Mycoplasmas were isolated from 247 (50.7%) healthy eyes and 27 (42.2%) affected eyes. No mycoplasmas were isolated from the remaining eyes. Ureaplasmas were not isolated from any animal. Eye-frequenting moths were collected on 3 occasions during the investigation and bacterial and mycoplasmal isolation techniques were performed on a total of 21 moths. Twelve different genera of bacteria, mostly Nocardia, Corynebacterium, Staphylococcus, Moraxella, and mycoplasmas were isolated from various eye-frequenting moths. Scanning electron microscopical studies of the proboscis of the moths showed it to contain various sensillae and short triangular denticles that could possibly cause damage to the mucous membranes of the eyes and predispose to ophthalmia in cattle.

  13. A survey of the Agrotis of Iran.

    PubMed

    Feizpoor, Sh; Shirvani, A; Rashki, M

    2014-01-01

    The present study reviews the genus Agrotis Ochsenheimer, 1816 (Lepidoptera: Noctuidae: Noctuinae) in Iran from a taxonomic and faunistic point of view. An identification key of external features is presented for 16 Iranian species and subspecies. A description of each taxon is presented based on external male and female genital characteristics. Diagnostic features and comparisons with the closest relatives are given for each species. Original combination and citation with the synonymy of each species or subspecies are expounded as well as their distribution and bionomy. Adult moths and male genitalia are illustrated.

  14. A Survey of the Agrotis of Iran

    PubMed Central

    Feizpoor, Sh.; Shirvani, A.; Rashki, M.

    2014-01-01

    The present study reviews the genus Agrotis Ochsenheimer, 1816 (Lepidoptera: Noctuidae: Noctuinae) in Iran from a taxonomic and faunistic point of view. An identification key of external features is presented for 16 Iranian species and subspecies. A description of each taxon is presented based on external male and female genital characteristics. Diagnostic features and comparisons with the closest relatives are given for each species. Original combination and citation with the synonymy of each species or subspecies are expounded as well as their distribution and bionomy. Adult moths and male genitalia are illustrated. PMID:25368051

  15. Disease status and population origin effects on floral scent:: potential consequences for oviposition and fruit predation in a complex interaction between a plant, fungus, and noctuid moth.

    PubMed

    Dötterl, S; Jürgens, A; Wolfe, L; Biere, A

    2009-03-01

    In the Silene latifolia-Hadena bicruris nursery pollination system, the Hadena moth is both pollinator and seed predator of its host plant. Floral scent, which differs among S. latifolia individuals and populations, is important for adult Hadena to locate its host. However, the success of moth larvae is strongly reduced if hosts are infected by the anther smut fungus Microbotryum violaceum, a pathogen that is transmitted by flower visitors. There were no qualitative differences between the scent of flowers from healthy and diseased plants. In addition, electroantennographic measurements showed that Hadena responded to the same subset of 19 compounds in samples collected from healthy and diseased plants. However, there were significant quantitative differences in scent profiles. Flowers from diseased plants emitted both a lower absolute amount of floral scent and had a different scent pattern, mainly due to their lower absolute amount of lilac aldehyde, whereas their amount of (E)-beta-ocimene was similar to that in healthy flowers. Dual choice behavioral wind tunnel tests using differently scented flowers confirmed that moths respond to both qualitative and quantitative aspects of floral scent, suggesting that they could use differences in floral scent between healthy and infected plants to discriminate against diseased plants. Population mean fruit predation rates significantly increased with population mean levels of the emission rates of lilac aldehyde per flower, indicating that selection on floral scent compounds may not only be driven by effects on pollinator attraction but also by effects on fruit predation. However, variation in mean emission rates of scent compounds per flower generally could not explain the higher fruit predation in populations originating from the introduced North American range compared to populations native to Europe.

  16. Molecular characterization of Agrotis segetum nucleopolyhedrovirus from Poland.

    PubMed

    Jakubowska, Agata; van Oers, Monique M; Ziemnicka, Jadwiga; Lipa, Jerzy J; Vlak, Just M

    2005-09-01

    The turnip moth, Agrotis segetum (Lepidoptera, Noctuidae), is an important pest insect in Europe, Asia, and Africa. We have genetically characterized and classified a nucleopolyhedrovirus isolated from A. segetum larvae in Poland (AgseNPV-P). The restriction pattern of AgseNPV-P was distinct from an isolate from England/France (AgseNPV-UK and AgseNPV-F). Sequence analysis of three conserved baculovirus genes, polyhedrin, lef-8 and pif-2, revealed that AgseNPV-P differs substantially from the already described NPVs isolated from A. segetum and possibly represents a new NPV species. Phylogenetic analysis placed AgseNPV-P among group II NPVs and showed the closest relationship to Agrotis ipsilon (Agip) NPV and Spodoptera exigua (Se) MNPV.

  17. Receptor for detection of a Type II sex pheromone in the winter moth Operophtera brumata.

    PubMed

    Zhang, Dan-Dan; Wang, Hong-Lei; Schultze, Anna; Froß, Heidrun; Francke, Wittko; Krieger, Jürgen; Löfstedt, Christer

    2016-01-05

    How signal diversity evolves under stabilizing selection in a pheromone-based mate recognition system is a conundrum. Female moths produce two major types of sex pheromones, i.e., long-chain acetates, alcohols and aldehydes (Type I) and polyenic hydrocarbons and epoxides (Type II), along different biosynthetic pathways. Little is known on how male pheromone receptor (PR) genes evolved to perceive the different pheromones. We report the identification of the first PR tuned to Type II pheromones, namely ObruOR1 from the winter moth, Operophtera brumata (Geometridae). ObruOR1 clusters together with previously ligand-unknown orthologues in the PR subfamily for the ancestral Type I pheromones, suggesting that O. brumata did not evolve a new type of PR to match the novel Type II signal but recruited receptors within an existing PR subfamily. AsegOR3, the ObruOR1 orthologue previously cloned from the noctuid Agrotis segetum that has Type I acetate pheromone components, responded significantly to another Type II hydrocarbon, suggesting that a common ancestor with Type I pheromones had receptors for both types of pheromones, a preadaptation for detection of Type II sex pheromone.

  18. Receptor for detection of a Type II sex pheromone in the winter moth Operophtera brumata

    PubMed Central

    Zhang, Dan-Dan; Wang, Hong-Lei; Schultze, Anna; Froß, Heidrun; Francke, Wittko; Krieger, Jürgen; Löfstedt, Christer

    2016-01-01

    How signal diversity evolves under stabilizing selection in a pheromone-based mate recognition system is a conundrum. Female moths produce two major types of sex pheromones, i.e., long-chain acetates, alcohols and aldehydes (Type I) and polyenic hydrocarbons and epoxides (Type II), along different biosynthetic pathways. Little is known on how male pheromone receptor (PR) genes evolved to perceive the different pheromones. We report the identification of the first PR tuned to Type II pheromones, namely ObruOR1 from the winter moth, Operophtera brumata (Geometridae). ObruOR1 clusters together with previously ligand-unknown orthologues in the PR subfamily for the ancestral Type I pheromones, suggesting that O. brumata did not evolve a new type of PR to match the novel Type II signal but recruited receptors within an existing PR subfamily. AsegOR3, the ObruOR1 orthologue previously cloned from the noctuid Agrotis segetum that has Type I acetate pheromone components, responded significantly to another Type II hydrocarbon, suggesting that a common ancestor with Type I pheromones had receptors for both types of pheromones, a preadaptation for detection of Type II sex pheromone. PMID:26729427

  19. Effect of temperature on the rate of pupal-adult development of the noctuid moth,Mamestra configurata Wlk.: evidence for differential effects on the initiation of development and subsequent metamorphic development.

    PubMed

    Turnock, W J; Bodnaryk, R P; Abramson, D

    1986-09-01

    Moths eclosed earlier from pupae of the bertha armyworm,Mamestra configurata, that were exposed briefly (1 to 5 days) to a warm temperature (15 or 20°C) at the beginning of postdiapause pupal-adult metamorphosis and then incubated at 10 or 12.5°C than from pupae incubated at 10 or 12.5°C throughout metamorphosis. The differences were greater than could be explained by the additional thermal units received at the higher temperature. Analyses of the times of peak concentrations of ecdysteroids (insect growth and development hormones) in metamorphosing pupae and of moth eclosion after exposure to various combinations of temperatures indicated that the 'warm termperature effect' was not on the rate metamorphic development but on an earlier neuroendocrine process concerned with the initiation of development.The magnitude of the difference in eclosion time between pupac receiving a brief warm temperature "trigger" and the control suggests that the differential effect of temperature on the initiation of development and subsequent metamorphic development is of biological significance and should be considered in the construction of models of insect development under natural conditions.

  20. Attraction of the orange mint moth and false celery leaftier moth (Lepidoptera: Crambidae) to floral chemical lures

    USDA-ARS?s Scientific Manuscript database

    Orange mint moths, Pyrausta orphisalis (Walker) (Crambidae) were initially trapped in a study of noctuid moth attraction to floral volatiles. A subsequent series of trapping experiments in commercial mint fields determined that phenylacetaldehyde and 4-oxoisophorone are attractive to P. orphisalis, ...

  1. Differential interactions of sex pheromone and plant odour in the olfactory pathway of a male moth.

    PubMed

    Deisig, Nina; Kropf, Jan; Vitecek, Simon; Pevergne, Delphine; Rouyar, Angela; Sandoz, Jean-Christophe; Lucas, Philippe; Gadenne, Christophe; Anton, Sylvia; Barrozo, Romina

    2012-01-01

    Most animals rely on olfaction to find sexual partners, food or a habitat. The olfactory system faces the challenge of extracting meaningful information from a noisy odorous environment. In most moth species, males respond to sex pheromone emitted by females in an environment with abundant plant volatiles. Plant odours could either facilitate the localization of females (females calling on host plants), mask the female pheromone or they could be neutral without any effect on the pheromone. Here we studied how mixtures of a behaviourally-attractive floral odour, heptanal, and the sex pheromone are encoded at different levels of the olfactory pathway in males of the noctuid moth Agrotis ipsilon. In addition, we asked how interactions between the two odorants change as a function of the males' mating status. We investigated mixture detection in both the pheromone-specific and in the general odorant pathway. We used a) recordings from individual sensilla to study responses of olfactory receptor neurons, b) in vivo calcium imaging with a bath-applied dye to characterize the global input response in the primary olfactory centre, the antennal lobe and c) intracellular recordings of antennal lobe output neurons, projection neurons, in virgin and newly-mated males. Our results show that heptanal reduces pheromone sensitivity at the peripheral and central olfactory level independently of the mating status. Contrarily, heptanal-responding olfactory receptor neurons are not influenced by pheromone in a mixture, although some post-mating modulation occurs at the input of the sexually isomorphic ordinary glomeruli, where general odours are processed within the antennal lobe. The results are discussed in the context of mate localization.

  2. Differential Interactions of Sex Pheromone and Plant Odour in the Olfactory Pathway of a Male Moth

    PubMed Central

    Deisig, Nina; Kropf, Jan; Vitecek, Simon; Pevergne, Delphine; Rouyar, Angela; Sandoz, Jean-Christophe; Lucas, Philippe; Gadenne, Christophe

    2012-01-01

    Most animals rely on olfaction to find sexual partners, food or a habitat. The olfactory system faces the challenge of extracting meaningful information from a noisy odorous environment. In most moth species, males respond to sex pheromone emitted by females in an environment with abundant plant volatiles. Plant odours could either facilitate the localization of females (females calling on host plants), mask the female pheromone or they could be neutral without any effect on the pheromone. Here we studied how mixtures of a behaviourally-attractive floral odour, heptanal, and the sex pheromone are encoded at different levels of the olfactory pathway in males of the noctuid moth Agrotis ipsilon. In addition, we asked how interactions between the two odorants change as a function of the males' mating status. We investigated mixture detection in both the pheromone-specific and in the general odorant pathway. We used a) recordings from individual sensilla to study responses of olfactory receptor neurons, b) in vivo calcium imaging with a bath-applied dye to characterize the global input response in the primary olfactory centre, the antennal lobe and c) intracellular recordings of antennal lobe output neurons, projection neurons, in virgin and newly-mated males. Our results show that heptanal reduces pheromone sensitivity at the peripheral and central olfactory level independently of the mating status. Contrarily, heptanal-responding olfactory receptor neurons are not influenced by pheromone in a mixture, although some post-mating modulation occurs at the input of the sexually isomorphic ordinary glomeruli, where general odours are processed within the antennal lobe. The results are discussed in the context of mate localization. PMID:22427979

  3. Interaction between gypsy moth (Lymantria dispar L.) and some competitive defoliators

    Treesearch

    Milka M. Glavendeki& #263; ; Ljubodrag S. Mihajlovi& #263

    2007-01-01

    Insect defoliators liable to frequent or occasional outbreaks can endanger forestry production and disturb the stability of forest ecosystems. There were studied life cycles, parasitoids, predators and population dynamics of leaf rollers, the winter moths, noctuids and gypsy moth, which occur in oak forests.

  4. Attractiveness of floral compounds to male and female moths in Florida

    USDA-ARS?s Scientific Manuscript database

    Evaluation of combinations of flower odor compounds in the field revealed several chemicals that were attractive or co-attractive with phenylacetaldehyde (PAA) to pest noctuid and pyralid moths. A number of moth species responded positively to PAA. The floral odorants cis-jasmone, linalool, benzyl a...

  5. Attractiveness of binary blends of floral odorant compounds to moths in Florida, USA

    USDA-ARS?s Scientific Manuscript database

    Evaluation of combinations of flower odor compounds in the field revealed several chemicals that were attractive or co-attractive with phenylacetaldehyde (PAA) to pest noctuid and pyralid moths. A number of moth species responded positively to PAA. The floral odorants cis-jasmone, linalool, benzyl...

  6. A Background of a Volatile Plant Compound Alters Neural and Behavioral Responses to the Sex Pheromone Blend in a Moth

    PubMed Central

    Dupuy, Fabienne; Rouyar, Angéla; Deisig, Nina; Bourgeois, Thomas; Limousin, Denis; Wycke, Marie-Anne; Anton, Sylvia; Renou, Michel

    2017-01-01

    Recognition of intra-specific olfactory signals within a complex environment of plant-related volatiles is crucial for reproduction in male moths. Sex pheromone information is detected by specific olfactory receptor neurons (Phe-ORNs), highly abundant on the male antenna. The information is then transmitted to the pheromone processing macroglomerular complex (MGC) within the primary olfactory center, the antennal lobe, where it is processed by local interneurons and projection neurons. Ultimately a behavioral response, orientation toward the pheromone source, is elicited. Volatile plant compounds (VPCs) are detected by other functional types of olfactory receptor neurons (ORNs) projecting in another area of the antennal lobe. However, Phe-ORNs also respond to some VPCs. Female-produced sex pheromones are emitted within a rich environment of VPCs, some of which have been shown to interfere with the detection and processing of sex pheromone information. As interference between the different odor sources might depend on the spatial and temporal features of the two types of stimuli, we investigated here behavioral and neuronal responses to a brief sex pheromone blend pulse in a VPC background as compared to a control background in the male noctuid moth Agrotis ipsilon. We observed male orientation behavior in a wind tunnel and recorded responses of Phe-ORNs and MGC neurons to a brief sex pheromone pulse within a background of individual VPCs. We also recorded the global input signal to the MGC using in vivo calcium imaging with the same stimulation protocol. We found that VPCs eliciting a response in Phe-ORNs and MGC neurons masked responses to the pheromone and decreased the contrast between background odor and the sex pheromone at both levels, whereas α-pinene did not interfere with first order processing. The calcium signal produced in response to a VPC background was tonic, lasting longer than the VPC stimulus duration, and masked entirely the pheromone response

  7. A Background of a Volatile Plant Compound Alters Neural and Behavioral Responses to the Sex Pheromone Blend in a Moth.

    PubMed

    Dupuy, Fabienne; Rouyar, Angéla; Deisig, Nina; Bourgeois, Thomas; Limousin, Denis; Wycke, Marie-Anne; Anton, Sylvia; Renou, Michel

    2017-01-01

    Recognition of intra-specific olfactory signals within a complex environment of plant-related volatiles is crucial for reproduction in male moths. Sex pheromone information is detected by specific olfactory receptor neurons (Phe-ORNs), highly abundant on the male antenna. The information is then transmitted to the pheromone processing macroglomerular complex (MGC) within the primary olfactory center, the antennal lobe, where it is processed by local interneurons and projection neurons. Ultimately a behavioral response, orientation toward the pheromone source, is elicited. Volatile plant compounds (VPCs) are detected by other functional types of olfactory receptor neurons (ORNs) projecting in another area of the antennal lobe. However, Phe-ORNs also respond to some VPCs. Female-produced sex pheromones are emitted within a rich environment of VPCs, some of which have been shown to interfere with the detection and processing of sex pheromone information. As interference between the different odor sources might depend on the spatial and temporal features of the two types of stimuli, we investigated here behavioral and neuronal responses to a brief sex pheromone blend pulse in a VPC background as compared to a control background in the male noctuid moth Agrotis ipsilon. We observed male orientation behavior in a wind tunnel and recorded responses of Phe-ORNs and MGC neurons to a brief sex pheromone pulse within a background of individual VPCs. We also recorded the global input signal to the MGC using in vivo calcium imaging with the same stimulation protocol. We found that VPCs eliciting a response in Phe-ORNs and MGC neurons masked responses to the pheromone and decreased the contrast between background odor and the sex pheromone at both levels, whereas α-pinene did not interfere with first order processing. The calcium signal produced in response to a VPC background was tonic, lasting longer than the VPC stimulus duration, and masked entirely the pheromone response

  8. Two psammophilic noctuids newly associated with beach plum, Prunus maritima (Rosaceae): The Dune Noctuid (Sympistis riparia) and Coastal Heathland Cutworm (Abagrotis benjamini) in Northeastern North America (Lepidoptera, Noctuidae)

    PubMed Central

    Goldstein, Paul Z.; Nelson, Michael W.

    2017-01-01

    Abstract Beach plum, Prunus maritima Marshall, 1785 not Wangenh., 1787 (Rosaceae), currently under development as a potential crop, represents an under-acknowledged host plant for several Lepidoptera that have undergone declines in the northeastern USA. The Coastal Heathland Cutworm, Abagrotis nefascia (Smith, 1908), and the Dune Noctuid, Sympistis riparia (Morrison, 1875), are unrelated species of psammophilic noctuines (Lepidoptera: Noctuidae) regularly encountered on a localized basis in coastal southern New England and New York, and whose precise life history requirements are undocumented. We inferred and, based on field observation and rearing, corroborated beach plum as a larval host for these species in Massachusetts; the plant’s role in sustaining other moths with limited or contracting regional distributions is discussed. Sympistis riparia, belonging to a widely distributed complex of closely related species, has been associated specifically with both maritime and freshwater dunes. The eastern populations of Abagrotis nefascia represent a conspicuous range disjunction, separated from the nearest western populations by more than 2000 miles, and originally described by Franclemont as race benjamini of Abagrotis crumbi, both later synonymized with Abagrotis nefascia. Following examination of types and other material, an evaluation of putatively diagnostic features from both the original description and our own observations, genitalic characters, and the results of provisional barcode analyses, Abagrotis benjamini Franclemont, stat. rev., is elevated to the rank of a valid species rather than representing eastern populations of Abagrotis nefascia (=crumbi) to which it originally referred. PMID:28769603

  9. Maximizing in vivo production of Agrotis ipsilon (Hufnagel) baculovirus

    USDA-ARS?s Scientific Manuscript database

    The black cutworm, Agrotis ipsilon (Hufnagel), is a pest causing damage to a variety plants of from turf to row crops. A recently discovered baculovirus has the potential to be developed as a biological pesticide to provide targeted control of this insect pest. Initial field trials in turf grass and...

  10. Agrotis Ochsenheimer (Lepidoptera, Noctuidae): a systematic analysis of South American species.

    PubMed

    San Blas, Germán

    2014-03-03

    The genus Agrotis Ochsenheimer, 1816 (Lepidoptera, Noctuidae) contains about 300 described species distributed worldwide, excepting the Poles. For South America 93 species have been described. Different diagnostic characters have been proposed for species from the northern Hemisphere, mostly from male genitalia. Recently, numerous South American species of the genus have been transferred to other genera. In this work, a systematic revision was undertaken of the South American species of Agrotis, restricting to 20 the number of species of this genus for the region and transferring the other species to different genera and/or synonymizing with other species.Based on a detailed study of the external morphology and genitalia of both sexes, several nomen clatural changes are proposed. New generic synonymy: Mesembreuxoa Hampson = Feltia Walker. New Agrotis synonymies include: Scotia forsteri Köhler = A. propriens (Dyar); Agrotis peruviana hampsoni Draudt, Rhizagrotis triclava Draudt, and Euxoa andina Köhler = A. peruviana (Hampson); Lycophotia achromatica Hampson, Feltia malefida patagiata Aurivillius, Prout and Meyrick, Agrotis psammophila Köhler, and Scotia (Feltia) canietensis Köhler = A. malefida Guenée; Chorizagrotis benefida Draudt = A. experta (Walker); Agrotis livens Köhler and Agrotis capayana Köhler = A. araucaria (Hampson). Species transferred to Feltia Walker tent. include: Scotia aspersula Köhler, n. comb.; Porosagrotis brachystria Hampson, n. comb.; Agrotis carrascoi Köhler, n. comb.; Mesembreuxoa chilensis Hampson, n. comb.; Euxoa clavisigna Dognin, n. comb.; Euxoa conifrons Draudt, n. comb.; Agrotis consternans Hayes, n. comb.; Euxoa coquimbensis Hampson, n. comb.; Mesembreuxoa fasicola Dyar, n. comb.; Chorizagrotis forasmicans Köhler, n. comb.; Agrotis giselae León, n. comb.; Agrotis gypaetina Guenée, n. comb.; Agrotis hispidula Guenée, n. comb.; Euxoa incarum Cockerell, n. comb.; Agrotis india Köhler, n. comb.; Scotia mansa Köhler, n

  11. Functional Specialization of Olfactory Glomeruli in a Moth

    NASA Astrophysics Data System (ADS)

    Hansson, Bill S.; Ljungberg, Hakan; Hallberg, Eric; Lofstedt, Christer

    1992-05-01

    The specific function of the glomerular structures present in the antennal lobes or olfactory bulbs of organisms ranging from insects to humans has been obscure because of limitations in neuronal marking methods. By tracing individual neurons in the moth Agrotis segetum, it was determined that physiologically distinct types of pheromone receptor neurons project axons to different regions of the macroglomerular complex (MGC). Each glomerulus making up the MGC has a specific functional identity, initially processing information about one specific pheromone component. This indicates that, at least through the first stage of synapses, olfactory information moves through labeled lines.

  12. The genome sequence of Agrotis segetum nucleopolyhedrovirus B (AgseNPV-B) reveals a new baculovirus species within the Agrotis baculovirus complex.

    PubMed

    Wennmann, Jörg T; Gueli Alletti, Gianpiero; Jehle, Johannes A

    2015-04-01

    The genome of Agrotis segetum nucleopolyhedrovirus B (AgseNPV-B) was completely sequenced and compared with whole genome sequences of the Agrotis segetum nucleopolyhedrovirus A (AgseNPV-A) and Agrotis ipsilon nucleopolyhedrovirus (AgipNPV). The AgseNPV-B genome is 148,981 bp in length and encodes 150 putative open reading frames. AgseNPV-B contains two copies of the gene viral enhancing factor (vef), making the Agrotis nucleopolyhedroviruses and A. segetum granulovirus (AgseGV) very rich in vef in comparison to other baculoviruses. Genome alignments of AgseNPV-B, AgseNPV-A and AgipNPV showed a very high genome co-linearity interspersed with variable regions, which are considered as putative sites of genomic recombination. Phylogenetic analyses revealed that all three viruses are distinct. However, AgseNPV-B is more closely related to AgipNPV suggesting that both viruses are at an early stage of phylogenetic divergence. It is proposed that AgseNPV-B belongs to a third Alphabaculovirus species of the Agrotis baculovirus complex. The Agrotis exclamationis nucleopolyhedrovirus (AgexNPV) shared high nucleotide sequence identities with AgseNPV-B, suggesting it is actually an AgseNPV-B isolate.

  13. Pathogenesis of Helicosporidium sp. (Chlorophyta: Trebouxiophyceae) in susceptible noctuid larvae.

    PubMed

    Bläske-Lietze, Verena-Ulrike; Boucias, Drion G

    2005-11-01

    Helicosporidium sp. is a unique, achlorophyllous green alga that has been reported to infect various insect orders, including Lepidoptera, Diptera, and Coleoptera. The infectious cyst stage is ingested by the host, ruptures in the midgut lumen, and releases a filamentous cell. Histopathological examinations using larvae of a susceptible noctuid host, Spodoptera exigua, showed both cysts and filamentous cells affiliated with the microvillar lining of the midgut epithelium. A considerable proportion of the ingested cysts (22-39%) were recovered in feces collected 24 h after ingestion. A small number of filamentous cells passed the midgut epithelium and entered the hemocoel within 4-24 h after cyst ingestion. After 48 h, vegetative cell stages were detected in the hemolymph, followed by a 4- to 5-day period of increasing multiplication. Cyst differentiation in the colonized hemolymph began 6-7 days after the treatment.

  14. Detection and quantitation of Agrotis baculoviruses in mixed infections.

    PubMed

    Wennmann, Jörg T; Jehle, Johannes A

    2014-03-01

    At least four distinct baculoviruses, namely the Agrotis segetum nucleopolyhedrovirus A (AgseNPV-A), the A. segetum nucleopolyhedrovirus B (AgseNPV-B), the Agrotis ipsilon nucleopolyhedrovirus (AgipNPV) and the A. segetum granulovirus (AgseGV) have been isolated from larval stages (cutworms) of the species A. segetum and A. ipsilon (Lepidoptera: Noctuidae), which are serious soil pests in agriculture. Cutworms can become infected by at least one of these four baculoviruses and also co-infections of A. segetum larvae with AgseNPV-B and AgseGV are observed under laboratory conditions. Because of their adaption to common hosts and the occurrence in mixed infections, these viruses have a considerable potential as biological control agents of cutworms and are suitable objects to decipher the co-evolution and population dynamics of baculoviruses in mixed infections. However, to facilitate studies on these viruses a reliable tool for detection and identification is essential. A method based on highly specific oligonucleotide primers for multiplex polymerase chain reaction (PCR) that led to the amplification of discriminating fragments of the polyhedrin (polh) and granulin (gran) gene of AgseNPV-A, AgseNPV-B, AgipNPV and AgseGV, was established. Furthermore, the AgseNPV-B and AgseGV specific pairs of primers were applied in real-time PCR (qPCR) for AgseNPV-B/AgseGV ratio determination in samples of mixed infections. It is demonstrated further that for quantifying NPVs and GVs in mixed infections, the method of occlusion body isolation is most crucial and significantly influences the results. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Sound-sensitive neurons innervate the ventro-lateral protocerebrum of the heliothine moth brain.

    PubMed

    Pfuhl, Gerit; Zhao, Xin-Cheng; Ian, Elena; Surlykke, Annemarie; Berg, Bente G

    2014-02-01

    Many noctuid moth species perceive ultrasound via tympanic ears that are located at the metathorax. Whereas the neural processing of auditory information is well studied at the peripheral and first synaptic level, little is known about the features characterizing higher order sound-sensitive neurons in the moth brain. During intracellular recordings from the lateral protocerebrum in the brain of three noctuid moth species, Heliothis virescens, Helicoverpa armigera and Helicoverpa assulta, we found an assembly of neurons responding to transient sound pulses of broad bandwidth. The majority of the auditory neurons ascended from the ventral cord and ramified densely within the anterior region of the ventro-lateral protocerebrum. The physiological and morphological characteristics of these auditory neurons were similar. We detected one additional sound-sensitive neuron, a brain interneuron with its soma positioned near the calyces of mushroom bodies and with numerous neuronal processes in the ventro-lateral protocerebrum. Mass-staining of ventral-cord neurons supported the assumption that the ventro-lateral region of the moth brain was the main target for the auditory projections ascending from the ventral cord.

  16. Heritable genome editing with CRISPR/Cas9 induces anosmia in a crop pest moth.

    PubMed

    Koutroumpa, Fotini A; Monsempes, Christelle; François, Marie-Christine; de Cian, Anne; Royer, Corinne; Concordet, Jean-Paul; Jacquin-Joly, Emmanuelle

    2016-07-12

    Lepidoptera suffer critical lack of genetic tools and heritable genome edition has been achieved only in a few model species. Here we demonstrate that the CRISPR/Cas9 system is highly efficient for genome editing in a non-model crop pest Lepidoptera, the noctuid moth Spodoptera littoralis. We knocked-out the olfactory receptor co-receptor Orco gene to investigate its function in Lepidoptera olfaction. We find that 89.6% of the injected individuals carried Orco mutations, 70% of which transmitted them to the next generation. CRISPR/Cas9-mediated Orco knockout caused defects in plant odor and sex pheromone olfactory detection in homozygous individuals. Our work genetically defines Orco as an essential OR partner for both host and mate detection in Lepidoptera, and demonstrates that CRISPR/Cas9 is a simple and highly efficient genome editing technique in noctuid pests opening new routes for gene function analysis and the development of novel pest control strategies.

  17. Gypsy moth

    Treesearch

    William Wallner

    1989-01-01

    The gypsy moth is the most important hardwood defoliating insect in North America. Since its inadvertent introduction into Massachusetts in 1869, it has spread naturally south and west at approximately 5 miles per year. Long distance spread has occurred from human activities such as moving household belongings, camping equipment, motor homes, or other articles...

  18. The simple ears of noctuoid moths are tuned to the calls of their sympatric bat community.

    PubMed

    ter Hofstede, Hannah M; Goerlitz, Holger R; Ratcliffe, John M; Holderied, Marc W; Surlykke, Annemarie

    2013-11-01

    Insects with bat-detecting ears are ideal animals for investigating sensory system adaptations to predator cues. Noctuid moths have two auditory receptors (A1 and A2) sensitive to the ultrasonic echolocation calls of insectivorous bats. Larger moths are detected at greater distances by bats than smaller moths. Larger moths also have lower A1 best thresholds, allowing them to detect bats at greater distances and possibly compensating for their increased conspicuousness. Interestingly, the sound frequency at the lowest threshold is lower in larger than in smaller moths, suggesting that the relationship between threshold and size might vary across frequencies used by different bat species. Here, we demonstrate that the relationships between threshold and size in moths were only significant at some frequencies, and these frequencies differed between three locations (UK, Canada and Denmark). The relationships were more likely to be significant at call frequencies used by proportionately more bat species in the moths' specific bat community, suggesting an association between the tuning of moth ears and the cues provided by sympatric predators. Additionally, we found that the best threshold and best frequency of the less sensitive A2 receptor are also related to size, and that these relationships hold when controlling for evolutionary relationships. The slopes of best threshold versus size differ, however, such that the difference in threshold between A1 and A2 is greater for larger than for smaller moths. The shorter time from A1 to A2 excitation in smaller than in larger moths could potentially compensate for shorter absolute detection distances in smaller moths.

  19. Experimental evidence for chemical mate guarding in a moth.

    PubMed

    Hosseini, Seyed Ali; van Wijk, Michiel; Ke, Gao; Goldansaz, Seyed Hossein; Schal, Coby; Groot, Astrid T

    2016-12-09

    In polyandrous species, males seek to maximize their reproductive output by monopolizing their mate. Often the male transfers substances to the female that suppress her sexual receptivity or antagonize the behavior of competing males; both are usually transferred in seminal fluids and represent forms of chemical mate guarding. In moths, more long-range female sex pheromones have been identified than in any other animal group, and males often display with close-range sex pheromones, yet odor-based post-copulatory mate guarding has not been described in moths so far. We tested the hypothesis that the male sex pheromone in the noctuid moth Heliothis virescens perfumes the female and functions as an anti-aphrodisiac. Indeed, virgin females perfumed with male pheromone extract, or with its main component, mated significantly less than control virgin females, and this effect persisted for two successive nights. This chemical mate guarding strategy was disadvantageous for H. virescens females, because the reproductive output of twice-mated females was significantly higher than that of once-mated females. Since the female and male sex pheromones are biosynthetically related in this and other moth species, chemical mate guarding may also impose selection pressure on the long-range female sex pheromone channel and consequently affect the evolution of sexual communication.

  20. Experimental evidence for chemical mate guarding in a moth

    PubMed Central

    Hosseini, Seyed Ali; van Wijk, Michiel; Ke, Gao; Goldansaz, Seyed Hossein; Schal, Coby; Groot, Astrid T.

    2016-01-01

    In polyandrous species, males seek to maximize their reproductive output by monopolizing their mate. Often the male transfers substances to the female that suppress her sexual receptivity or antagonize the behavior of competing males; both are usually transferred in seminal fluids and represent forms of chemical mate guarding. In moths, more long-range female sex pheromones have been identified than in any other animal group, and males often display with close-range sex pheromones, yet odor-based post-copulatory mate guarding has not been described in moths so far. We tested the hypothesis that the male sex pheromone in the noctuid moth Heliothis virescens perfumes the female and functions as an anti-aphrodisiac. Indeed, virgin females perfumed with male pheromone extract, or with its main component, mated significantly less than control virgin females, and this effect persisted for two successive nights. This chemical mate guarding strategy was disadvantageous for H. virescens females, because the reproductive output of twice-mated females was significantly higher than that of once-mated females. Since the female and male sex pheromones are biosynthetically related in this and other moth species, chemical mate guarding may also impose selection pressure on the long-range female sex pheromone channel and consequently affect the evolution of sexual communication. PMID:27934963

  1. Seasonal variation in leaf characteristics and food selectionby larval noctuids on an evergreen Mediterranean shrub

    NASA Astrophysics Data System (ADS)

    Alonso, Conchita; Herrera, Carlos M.

    2000-07-01

    Despite year round availability of foliage, abundance of generalist noctuid larvae (Lepidoptera: Noctuidae) in evergreen-dominated Mediterranean forests has a narrow, distinct spring peak. This restricted larval period has been suggested to result in part from avoidance of the nutritionally poor mature foliage, and preference for nutritionally superior spring-produced young leaves. This study examines this hypothesis by (i) documenting differences in nutritional characteristics between expanding (April) and mature (June) young leaves of the evergreen Mediterranean shrub Daphne laureola L. (Thymelaeaceae), and (ii) experimentally studying the feeding preferences of noctuid larvae for young leaves, old leaves (≥ 1 yr old), and developing fruits of this species in one south-eastern Spanish locality. Young leaves of D. laureola declined in nutrient concentration and specific dry mass from April to June. The responses of noctuid larvae, in terms of both relative preference and total consumption, to this seasonal variation in chemical and physical features of young leaves were also investigated. When noctuid larvae were simultaneously offered young leaves, old leaves and developing fruits, they exhibited similar preferences for young leaves and developing fruits, and rejected old leaves developed during the previous year. Noctuid larvae did not modify their consumption of young leaves relative to old leaves and developing fruits in response to seasonal changes. Food selection patterns exhibited by D. laureola noctuid herbivores, notably the rejection of old leaves in favour of young ones, are consistent with the hypothesis relating restricted larval periods of these generalist consumers with the low food value of the previous season leaves of evergreen Mediterranean plants.

  2. Post-mating sexual abstinence in a male moth.

    PubMed

    Barrozo, Romina B; Gadenne, Christophe; Anton, Sylvia

    2010-11-01

    In most animals, male copulation is dependent on the detection and processing of female-produced sex pheromones. In males, a refractory postejaculatory interval (PEI) follows copulation, allowing them to avoid direct remating until they have replenished their reproductive tracts. In the moth Agrotis ipsilon, newly mated males show a transient inhibition of behavioral and central nervous responses to sex pheromone. Using non-pheromonal (plant) odors, pheromones and their mixture, we now show that the observed lack of pheromone response originates from differential post-mating odor processing in the brain. Although mated males still respond to plant odors alone, their response to mixtures depends on the added pheromone concentration. Below a specific threshold, sex pheromone is not detected at the brain level; above this threshold, it becomes inhibitory. This PEI can thus be interpreted as a «refusal to respond», which contradicts the generally accepted paradigm of sleep-like/exhaustion behavior during PEI.

  3. Functional opsin retrogene in nocturnal moth.

    PubMed

    Xu, Pengjun; Feuda, Roberto; Lu, Bin; Xiao, Haijun; Graham, Robert I; Wu, Kongming

    2016-01-01

    Retrotransposed genes are different to other types of genes as they originate from a processed mRNA and are then inserted back into the genome. For a long time, the contribution of this mechanism to the origin of new genes, and hence to the evolutionary process, has been questioned as retrogenes usually lose their regulatory sequences upon insertion and generally decay into pseudogenes. In recent years, there is growing evidence, notably in mammals, that retrotransposition is an important process driving the origin of new genes, but the evidence in insects remains largely restricted to a few model species. By sequencing the messenger RNA of three developmental stages (first and fifth instar larvae and adults) of the pest Helicoverpa armigera, we identified a second, intronless, long-wavelength sensitive opsin (that we called LWS2). We then amplified the partial CDS of LWS2 retrogenes from another six noctuid moths, and investigate the phylogenetic distribution of LWS2 in 15 complete Lepidoptera and 1 Trichoptera genomes. Our results suggests that LWS2 evolved within the noctuid. Furthermore, we found that all the LWS2 opsins have an intact ORF, and have an ω-value (ω = 0.08202) relatively higher compared to their paralog LWS1 (ω = 0.02536), suggesting that LWS2 opsins were under relaxed purifying selection. Finally, the LWS2 shows temporal compartmentalization of expression. LWS2 in H. armigera in adult is expressed at a significantly lower level compared to all other opsins in adults; while in the in 1(st) instar stage larvae, it is expressed at a significantly higher level compared to other opsins. Together the results of our evolutionary sequence analyses and gene expression data suggest that LWS2 is a functional gene, however, the relatively low level of expression in adults suggests that LWS2 is most likely not involved in mediating the visual process.

  4. Learning about Moths.

    ERIC Educational Resources Information Center

    Albrecht, Kay; Walsh, Katherine

    1996-01-01

    Describes an early childhood classroom project involving moths that teaches children about moths' development from egg to adult stage. Includes information about the moth's enemies, care, and feeding. Outlines reading, art, music and movement, science, and math activities centering around moths. (BGC)

  5. Learning about Moths.

    ERIC Educational Resources Information Center

    Albrecht, Kay; Walsh, Katherine

    1996-01-01

    Describes an early childhood classroom project involving moths that teaches children about moths' development from egg to adult stage. Includes information about the moth's enemies, care, and feeding. Outlines reading, art, music and movement, science, and math activities centering around moths. (BGC)

  6. Mortality of Cutworm Larvae Is Not Enhanced by Agrotis segetum Granulovirus and Agrotis segetum Nucleopolyhedrovirus B Coinfection Relative to Single Infection by Either Virus

    PubMed Central

    Wennmann, Jörg T.; Köhler, Tim; Gueli Alletti, Gianpiero

    2015-01-01

    Mixed infections of insect larvae with different baculoviruses are occasionally found. They are of interest from an evolutionary as well as from a practical point of view when baculoviruses are applied as biocontrol agents. Here, we report mixed-infection studies of neonate larvae of the common cutworm, Agrotis segetum, with two baculoviruses, Agrotis segetum nucleopolyhedrovirus B (AgseNPV-B) and Agrotis segetum granulovirus (AgseGV). By applying quantitative PCR (qPCR) analysis, coinfections of individual larvae were demonstrated, and occlusion body (OB) production within singly infected and coinfected larvae was determined in individual larvae. Mixtures of viruses did not lead to changes in mortality rates compared with rates of single-virus treatments, indicating an independent action within host larvae under our experimental conditions. AgseNPV-B-infected larvae showed an increase in OB production during 2 weeks of infection, whereas the number of AgseGV OBs did not change from the first week to the second week. Fewer OBs of both viruses were produced in coinfections than in singly infected larvae, suggesting a competition of the two viruses for larval resources. Hence, no functional or economic advantage could be inferred from larval mortality and OB production from mixed infections of A. segetum larvae with AgseNPV-B and AgseGV. PMID:25681187

  7. Mortality of cutworm larvae is not enhanced by Agrotis segetum granulovirus and Agrotis segetum nucleopolyhedrovirus B coinfection relative to single infection by either virus.

    PubMed

    Wennmann, Jörg T; Köhler, Tim; Gueli Alletti, Gianpiero; Jehle, Johannes A

    2015-04-01

    Mixed infections of insect larvae with different baculoviruses are occasionally found. They are of interest from an evolutionary as well as from a practical point of view when baculoviruses are applied as biocontrol agents. Here, we report mixed-infection studies of neonate larvae of the common cutworm, Agrotis segetum, with two baculoviruses, Agrotis segetum nucleopolyhedrovirus B (AgseNPV-B) and Agrotis segetum granulovirus (AgseGV). By applying quantitative PCR (qPCR) analysis, coinfections of individual larvae were demonstrated, and occlusion body (OB) production within singly infected and coinfected larvae was determined in individual larvae. Mixtures of viruses did not lead to changes in mortality rates compared with rates of single-virus treatments, indicating an independent action within host larvae under our experimental conditions. AgseNPV-B-infected larvae showed an increase in OB production during 2 weeks of infection, whereas the number of AgseGV OBs did not change from the first week to the second week. Fewer OBs of both viruses were produced in coinfections than in singly infected larvae, suggesting a competition of the two viruses for larval resources. Hence, no functional or economic advantage could be inferred from larval mortality and OB production from mixed infections of A. segetum larvae with AgseNPV-B and AgseGV. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Genomic sequence analysis of the Illinois strain of the Agrotis ipsilon multiple nucleopolyhedrovirus

    USDA-ARS?s Scientific Manuscript database

    The Agrotis ipsilon multiple nucleopolyhedrovirus (AgipMNPV) is a group II nucleopolyhedrovirus (NPV) from the black cutworm, A. ipsilon, with potential as a biopesticide to control infestations of cutworm larvae. The genome of the Illinois strain of AgipMNPV was completely sequenced. The AgipMNPV...

  9. Weather-driven dynamics in a dual-migrant system: moths and bats.

    PubMed

    Krauel, Jennifer J; Westbrook, John K; McCracken, Gary F

    2015-05-01

    Animal migrations generate large spatial and temporal fluctuations in biomass that provide a resource base for many predator-prey interactions. These interactions are often driven by continent-scale weather patterns and are difficult to study. Few studies have included migratory animals on more than a single trophic level or for periods spanning multiple entire seasons. We tracked migrations of three species of agricultural pest noctuid moths over the 2010-2012 autumn seasons as the moths travelled past a large colony of migratory Brazilian free-tailed bats (Tadarida brasiliensis) in Texas. Increases in moth abundance, mass of bats and duration of bat activity outside of the cave were correlated with passage of cold fronts over the study area and related increases in northerly wind. Moth responses to weather patterns varied among species and seasons, but overall moth abundances were low in late summer and spiked after one or more cold front passages in September and October. Changes in bat mass and behaviour appear to be consequences of bat migration, as cave use transitioned from summer maternity roost to autumn migratory stopover sites. Weather-driven migration is at considerable risk from climate change, and bat and moth responses to that change may have marked impacts on agricultural systems and bat ecosystem services. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  10. Tone-deaf ears in moths may limit the acoustic detection of two-tone bats.

    PubMed

    Mora, Emanuel C; Fernández, Yohami; Hechavarría, Julio; Pérez, Martha

    2014-01-01

    Frequency alternation in the echolocation of insectivorous bats has been interpreted in relation to ranging and duty cycle, i.e. advantages for echolocation. The shifts in frequency of the calls of these so-called two-tone bats, however, may also play its role in the success of their hunting behavior for a preferred prey, the tympanate moth. How the auditory receptors (e.g. the A1 and A2 cells) in the moth's ear detect such frequency shifts is currently unknown. Here, we measured the auditory responses of the A1 cell in the noctuid Spodoptera frugiperda to the echolocation hunting sequence of Molossus molossus, a two-tone bat. We also manipulated the bat calls to control for the frequency shifts by lowering the frequency band of the search and approach calls. The firing response of the A1 receptor cell significantly decreases with the shift to higher frequencies during the search and approach phases of the hunting sequence of M. molossus; this could be explained by the receptor's threshold curve. The frequency dependence of the decrease in the receptor's response is supported by the results attained with the manipulated sequence: search and approach calls with the same minimum frequency are detected by the moth at the same threshold intensity. The two-tone bat M. molossus shows a call frequency alternation behavior that may enable it to overcome moth audition even in the mid-frequency range (i.e. 20-50 kHz) where moths hear best.

  11. Is the ecological belt zonation of the Swiss Alps relevant for moth diversity and turnover?

    NASA Astrophysics Data System (ADS)

    Beck, Jan; Rüdlinger, Cecil M.; McCain, Christy M.

    2017-04-01

    Mountain ecosystems are traditionally envisioned as elevational belts of homogenous vegetation, separated by intervening ecotones. Recent research has cast doubt on such predictable layering at least in animal communities. We test the link of two a priori defined ecological belt zonations to noctuid moth distributions in the Swiss Alps. Predictions, in particular, were a coincidence of proposed ecotones with increased range endpoint frequencies and with increased species turnover or species richness between equidistant elevational bands. Using >320,000 distributional records for >500 noctuid species, we found no support for these three predictions despite several contrasting analytical approaches. Concurrent with recently published vertebrate data, we conclude that simple ecological belt zonations are unrelated to the moth communities found along mountain slopes. Rather, species are distributed idiosyncratically following their specific niche requirements. Additional rigorous evidence, particularly comparing insect clades spanning a spectrum of host-plant relationships, may be required to support the relevance of the ecological belt concept in structuring mountain ecosystems beyond tree and plant communities.

  12. Unexpected plant odor responses in a moth pheromone system

    PubMed Central

    Rouyar, Angéla; Deisig, Nina; Dupuy, Fabienne; Limousin, Denis; Wycke, Marie-Anne; Renou, Michel; Anton, Sylvia

    2015-01-01

    Male moths rely on olfactory cues to find females for reproduction. Males also use volatile plant compounds (VPCs) to find food sources and might use host-plant odor cues to identify the habitat of calling females. Both the sex pheromone released by conspecific females and VPCs trigger well-described oriented flight behavior toward the odor source. Whereas detection and central processing of pheromones and VPCs have been thought for a long time to be highly separated from each other, recent studies have shown that interactions of both types of odors occur already early at the periphery of the olfactory pathway. Here we show that detection and early processing of VPCs and pheromone can overlap between the two sub-systems. Using complementary approaches, i.e., single-sensillum recording of olfactory receptor neurons, in vivo calcium imaging in the antennal lobe, intracellular recordings of neurons in the macroglomerular complex (MGC) and flight tracking in a wind tunnel, we show that some plant odorants alone, such as heptanal, activate the pheromone-specific pathway in male Agrotis ipsilon at peripheral and central levels. To our knowledge, this is the first report of a plant odorant with no chemical similarity to the molecular structure of the pheromone, acting as a partial agonist of a moth sex pheromone. PMID:26029117

  13. 75 FR 62484 - Importation of Shepherd's Purse With Roots From the Republic of Korea Into the United States

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ... horticola) Turnip moth (Agrotis segetum) American bollworm moth (Helicoverpa armigera) Cabbage webworm moth (Hellula undalis, Fabricius) The cabbage moth (Mamestra brassicae) Oriental leafworm moth...

  14. Alkenyl sex pheromone analogs in the hemolymph of an arctiid Eilema japonica and several non-arctiid moths.

    PubMed

    Fujii, Takeshi; Yamamoto, Masanobu; Nakano, Ryo; Nirazawa, Takuya; Rong, Yu; Dong, Shuang-Lin; Ishikawa, Yukio

    2015-11-01

    The majority of moth species utilize compounds derived from de novo synthesized fatty acids as their sex pheromones (type I). In contrast, species belonging to two recently diverged moth families, Arctiidae and Geometridae, utilize alkenes and their epoxides, which are derived from dietary essential fatty acids (EFAs), as their sex pheromones (type II). In the latter species, EFAs are considered to be converted into alkenes, often after chain elongation, in specialized cells called oenocytes. These alkenes are transported through the hemolymph to the pheromone gland, from which they are secreted with or without further modifications. We confirmed that the appearance of EFA-derived alkenes in the hemolymph was closely associated with the completion of pheromone gland formation in an arctiid moth Eilema japonica. Analyses of the hemolymph of several moth species utilizing type-I sex pheromones demonstrated the occurrence of (Z,Z,Z)-3,6,9-tricosatriene (T23), a typical type-II component, in the hemolymph of a noctuid Mamestra brassicae and two crambids Ostrinia furnacalis and Ostrinia scapulalis. Our results demonstrated that moths utilizing type-I pheromones have the ability to synthesize type-II sex pheromones, and suggested that recently diverged groups of moths may have secondarily exploited EFA-derived alkenes as sex pheromones.

  15. Relationships of Reproductive Traits With the Phylogeny of the African Noctuid Stem Borers.

    PubMed

    Calatayud, Paul-André; Dupas, Stéphane; Frérot, Brigitte; Genestier, Gilles; Ahuya, Peter; Capdevielle-Dulac, Claire; Le Ru, Bruno

    2016-01-01

    The display of the reproductive behavior in most noctuid Lepidoptera follows a diel periodicity and is limited to a precise period of either the day or the night. These behavioral traits and the sex pheromone chemistry can be species specific and thus might be linked to the phylogeny. The objective of this study was to test the relationship of these reproductive traits with phylogeny. The study was undertaken using eight closely related species of noctuid stem borers, which are easy to rear under artificial conditions, namely, Busseola fusca, B. nairobica, B. sp. nr. segeta, Manga melanodonta, M. sp. nr. nubifera, Pirateolea piscator, Sesamia calamistis, and S. nonagrioides. For each species, the adult emergence period, the mating time, and the oviposition period were estimated, referred as biological traits. The components of the sex pheromones emitted by the females of each species were also analyzed by gas chromatography-mass spectrometry. Among the biological traits measured, only those linked to the oviposition pattern (timing and egg loads per night) were significantly correlated with the phylogeny of these species. For the sex pheromone components, among the 13 components identified in all species, only four, namely, Z9-tetradecenyl acetate (Z9-TDA), Z11-TDA, E11-TDA, and Z11-hexadecenyl acetate (Z11-HDA), showed the highest significant correlations with the phylogeny. These results suggest that among the different reproductive traits evaluated, only few are phylogenetically constrained. Their involvement in the reinforcement of ecological speciation in noctuid stem borers is discussed.

  16. Relationships of Reproductive Traits With the Phylogeny of the African Noctuid Stem Borers

    PubMed Central

    Calatayud, Paul-André; Dupas, Stéphane; Frérot, Brigitte; Genestier, Gilles; Ahuya, Peter; Capdevielle-Dulac, Claire; Le Ru, Bruno

    2016-01-01

    The display of the reproductive behavior in most noctuid Lepidoptera follows a diel periodicity and is limited to a precise period of either the day or the night. These behavioral traits and the sex pheromone chemistry can be species specific and thus might be linked to the phylogeny. The objective of this study was to test the relationship of these reproductive traits with phylogeny. The study was undertaken using eight closely related species of noctuid stem borers, which are easy to rear under artificial conditions, namely, Busseola fusca, B. nairobica, B. sp. nr. segeta, Manga melanodonta, M. sp. nr. nubifera, Pirateolea piscator, Sesamia calamistis, and S. nonagrioides. For each species, the adult emergence period, the mating time, and the oviposition period were estimated, referred as biological traits. The components of the sex pheromones emitted by the females of each species were also analyzed by gas chromatography–mass spectrometry. Among the biological traits measured, only those linked to the oviposition pattern (timing and egg loads per night) were significantly correlated with the phylogeny of these species. For the sex pheromone components, among the 13 components identified in all species, only four, namely, Z9-tetradecenyl acetate (Z9-TDA), Z11-TDA, E11-TDA, and Z11-hexadecenyl acetate (Z11-HDA), showed the highest significant correlations with the phylogeny. These results suggest that among the different reproductive traits evaluated, only few are phylogenetically constrained. Their involvement in the reinforcement of ecological speciation in noctuid stem borers is discussed. PMID:27867304

  17. Two fatty acyl reductases involved in moth pheromone biosynthesis

    PubMed Central

    Antony, Binu; Ding, Bao-Jian; Moto, Ken’Ichi; Aldosari, Saleh A.; Aldawood, Abdulrahman S.

    2016-01-01

    Fatty acyl reductases (FARs) constitute an evolutionarily conserved gene family found in all kingdoms of life. Members of the FAR gene family play diverse roles, including seed oil synthesis, insect pheromone biosynthesis, and mammalian wax biosynthesis. In insects, FAR genes dedicated to sex pheromone biosynthesis (pheromone-gland-specific fatty acyl reductase, pgFAR) form a unique clade that exhibits substantial modifications in gene structure and possesses unique specificity and selectivity for fatty acyl substrates. Highly selective and semi-selective ‘single pgFARs’ produce single and multicomponent pheromone signals in bombycid, pyralid, yponomeutid and noctuid moths. An intriguing question is how a ‘single reductase’ can direct the synthesis of several fatty alcohols of various chain lengths and isomeric forms. Here, we report two active pgFARs in the pheromone gland of Spodoptera, namely a semi-selective, C14:acyl-specific pgFAR and a highly selective, C16:acyl-specific pgFAR, and demonstrate that these pgFARs play a pivotal role in the formation of species-specific signals, a finding that is strongly supported by functional gene expression data. The study envisages a new area of research for disclosing evolutionary changes associated with C14- and C16-specific FARs in moth pheromone biosynthesis. PMID:27427355

  18. Wind selection and drift compensation optimize migratory pathways in a high-flying moth.

    PubMed

    Chapman, Jason W; Reynolds, Don R; Mouritsen, Henrik; Hill, Jane K; Riley, Joe R; Sivell, Duncan; Smith, Alan D; Woiwod, Ian P

    2008-04-08

    Numerous insect species undertake regular seasonal migrations in order to exploit temporary breeding habitats [1]. These migrations are often achieved by high-altitude windborne movement at night [2-6], facilitating rapid long-distance transport, but seemingly at the cost of frequent displacement in highly disadvantageous directions (the so-called "pied piper" phenomenon [7]). This has lead to uncertainty about the mechanisms migrant insects use to control their migratory directions [8, 9]. Here we show that, far from being at the mercy of the wind, nocturnal moths have unexpectedly complex behavioral mechanisms that guide their migratory flight paths in seasonally-favorable directions. Using entomological radar, we demonstrate that free-flying individuals of the migratory noctuid moth Autographa gamma actively select fast, high-altitude airstreams moving in a direction that is highly beneficial for their autumn migration. They also exhibit common orientation close to the downwind direction, thus maximizing the rectilinear distance traveled. Most unexpectedly, we find that when winds are not closely aligned with the moth's preferred heading (toward the SSW), they compensate for cross-wind drift, thus increasing the probability of reaching their overwintering range. We conclude that nocturnally migrating moths use a compass and an inherited preferred direction to optimize their migratory track.

  19. A Comparison of the Olfactory Gene Repertoires of Adults and Larvae in the Noctuid Moth Spodoptera littoralis

    PubMed Central

    Poivet, Erwan; Gallot, Aurore; Montagné, Nicolas; Glaser, Nicolas; Legeai, Fabrice; Jacquin-Joly, Emmanuelle

    2013-01-01

    To better understand the olfactory mechanisms in a lepidopteran pest model species, the cotton leafworm Spodoptera littoralis, we have recently established a partial transcriptome from adult antennae. Here, we completed this transcriptome using next generation sequencing technologies, namely 454 and Illumina, on both adult antennae and larval tissues, including caterpillar antennae and maxillary palps. All sequences were assembled in 77,643 contigs. Their analysis greatly enriched the repertoire of chemosensory genes in this species, with a total of 57 candidate odorant-binding and chemosensory proteins, 47 olfactory receptors, 6 gustatory receptors and 17 ionotropic receptors. Using RT-PCR, we conducted the first exhaustive comparison of olfactory gene expression between larvae and adults in a lepidopteran species. All the 127 candidate olfactory genes were profiled for expression in male and female adult antennae and in caterpillar antennae and maxillary palps. We found that caterpillars expressed a smaller set of olfactory genes than adults, with a large overlap between these two developmental stages. Two binding proteins appeared to be larvae-specific and two others were adult-specific. Interestingly, comparison between caterpillar antennae and maxillary palps revealed numerous organ-specific transcripts, suggesting the complementary involvement of these two organs in larval chemosensory detection. Adult males and females shared the same set of olfactory transcripts, except two male-specific candidate pheromone receptors, two male-specific and two female-specific odorant-binding proteins. This study identified transcripts that may be important for sex-specific or developmental stage-specific chemosensory behaviors. PMID:23565215

  20. Susceptibility to Bt proteins is not required for Agrotis ipsilon aversion to Bt maize.

    PubMed

    Binning, Rachel R; Coats, Joel; Kong, Xiaoxiao; Hellmich, Richard L

    2015-04-01

    Although Bacillus thuringiensis (Bt) maize has been widely adopted in diverse regions around the world, relatively little is known about the susceptibility and behavioral response of certain insect pests to Bt maize in countries where this maize is not currently cultivated. These are important factors to consider as management plans are developed. These factors were investigated for Agrotis ipsilon, a global pest of maize, with Cry1F and Cry34Ab1/Cry35Ab1 maize. Agrotis ipsilon demonstrated an initial, post-ingestive aversive response to Cry1F maize. Development and mortality were also affected - survival on Cry1F maize tissue was 40% and weight gain of survivors of Cry1F exposure was significantly reduced. A post-ingestive aversive response was also seen for Cry34Ab1/Cry35Ab1 maize; however, longer-term feeding, weight gain and survival were not affected. Agrotis ipsilon showed aversion to both Bt treatments. Aversion to Cry34Ab1/Cry35Ab1 maize was unexpected because these proteins have no known insecticidal effect against Lepidoptera; however, results confirm that this aversion was temporary and did not affect growth or development. The Cry1F results suggest that A. ipsilon will abandon Cry1F maize in the field before any selection for resistance. These data support the use of refuge to delay Cry1F resistance development in A. ipsilon populations. © 2014 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  1. Gypsy Moth (FIDL)

    Treesearch

    M. McManus; N. Schneeberger; R. Reardon; G. Mason

    1989-01-01

    The gypsy moth, Lymantria dispar Linnaeus, is one of the most notorious pests of hardwood trees in the Eastern United States. Since 1980, the gypsy moth has defoliated close to a million or more forested acres each year. In 1981, a record 12.9 million acres were defoliated. This is an area larger than Rhode Island, Massachusetts, and Connecticut combined.

  2. Southwestern Pine Tip Moth

    Treesearch

    Daniel T. Jennings; Robert E. Stevens

    1982-01-01

    The southwestern pine tip moth, Rhyacionia neomexicana (Dyar), injures young ponderosa pines (Pinus ponderosa Dougl. ex Laws) in the Southwest, central Rockies, and midwestern plains. Larvae feed on and destroy new, expanding shoots, often seriously reducing terminal growth of both naturally regenerated and planted pines. The tip moth is especially damaging to trees on...

  3. Browntail Moth Pest Alert

    Treesearch

    USDA Forest Service; Maine Forest Service; National Park Service

    2002-01-01

    The browntail moth, Euproctis chrysorrhoea, a native of Europe, was first found in North America in Somerville, Massachusetts, in the spring of 1897. The lack of natural control agents contributed to its rapid spread throughout the Northeast. By 1915, the moth's range included most of the area east of the Connecticut River and as far north as Nova Scotia....

  4. Nantucket Pine Tip Moth

    Treesearch

    Harry O. III Yates; Nell A. Overgaard; Thomas W. Koerber

    1981-01-01

    The Nantucket pine tip moth, Rhyacionia frustrana (Comstock),4 is a major forest insect pest in the United States. Its range extends from Massachusetts to Florida and west to Texas. It was found in San Diego County, California, in 1971 and traced to infested pine seedlings shipped from Georgia in 1967. The moth has since spread north and east in California and is now...

  5. Pheromone modulates plant odor responses in the antennal lobe of a moth.

    PubMed

    Chaffiol, Antoine; Dupuy, Fabienne; Barrozo, Romina B; Kropf, Jan; Renou, Michel; Rospars, Jean-Pierre; Anton, Sylvia

    2014-06-01

    In nature, male moths are exposed to a complex plant odorant environment when they fly upwind to a sex pheromone source in their search for mates. Plant odors have been shown to affect responses to pheromone at various levels but how does pheromone affects plant odor perception? We recorded responses from neurons within the non-pheromonal "ordinary glome ruli" of the primary olfactory center, the antennal lobe (AL), to single and pulsed stimulations with the plant odorant heptanal, the pheromone, and their mixture in the male moth Agrotis ipsilon. We identified 3 physiological types of neurons according to their activity patterns combining excitatory and inhibitory phases. Both local and projection neurons were identified in each physiological type. Neurons with excitatory responses to heptanal responded also frequently to the pheromone and showed additive responses to the mixture. Moreover, the neuron's ability of resolving successive pulses generally improved with the mixture. Only some neurons with combined excitatory/inhibitory, or purely inhibitory responses to heptanal, also responded to the pheromone. Although individual mixture responses were not significantly different from heptanal responses in these neurons, pulse resolution was improved with the mixture as compared with heptanal alone. These results demonstrate that the pheromone and the general odorant subsystems interact more intensely in the moth AL than previously thought.

  6. Concentration- and time-response characteristics of plaque isolates of Agrotis ipsilon multiple nucleopolyhedrovirus derived from a field isolate

    USDA-ARS?s Scientific Manuscript database

    Plaque isolates derived from the Illinois field isolate of Agrotis ipsilon multiple nucleopolyhedrovirus are distinguished by the presence or absence of a small deletion in the baculovirus egt (ecdysteroid UDP-glucosyltransferase) coding sequence. Dose-response and time-response bioassays were perf...

  7. Chlorantraniliprole as a candidate pesticide used in combination with the attracticides for lepidopteran moths

    PubMed Central

    Liu, Yongqiang; Gao, Yu; Liang, Gemei

    2017-01-01

    Methomyl is currently used as a toxicant for the attracticide BioAttract in cotton and vegetables in China. However, methomyl is highly toxic to non-target organisms and a more environmental friendly acceptable alternative is required. Larvae of three lepidopteran insects Helicoverpa armigera, Agrotis ipsilon and Spodoptera litura are important pests of these crops in China. In the present study, the toxicity of 23 commonly used insecticides were tested on H. armigera, then tested the susceptibility of A. ipsilon and S. litura moths to the insecticides which were the most toxic to H. armigera, and the acute toxicity of the most efficacious insecticides were further investigated under laboratory conditions. Chlorantraniliprole, emamectin benzoate, spinetoram, spinosad and methomyl exhibited high levels of toxicity to H. armigera moths with a mortality of 86.67%, 91.11%, 73.33%, 57.78% and 80.00%, respectively, during 24 h period at the concentration of 1 mg a.i. L-1. Among these five insecticides, A. ipsilon and S. litura moths were more sensitive to chlorantraniliprole, emamectin benzoate and methomyl. The lethal time (LT50) values of chlorantraniliprole and methomyl were shorter than emamectin benzoate for all three lepidopteran moth species at 1000 mg a.i. L-1 compared to concentrations of 500, 100 and 1 mg a.i L-1. Chlorantraniliprole was found to have similar levels of toxicity and lethal time on the three lepidopteran moths tested to the standard methomyl, and therefore, can be used as an alternative insecticide to methomyl in the attracticide for controlling these pest species. PMID:28658277

  8. Chlorantraniliprole as a candidate pesticide used in combination with the attracticides for lepidopteran moths.

    PubMed

    Liu, Yongqiang; Gao, Yu; Liang, Gemei; Lu, Yanhui

    2017-01-01

    Methomyl is currently used as a toxicant for the attracticide BioAttract in cotton and vegetables in China. However, methomyl is highly toxic to non-target organisms and a more environmental friendly acceptable alternative is required. Larvae of three lepidopteran insects Helicoverpa armigera, Agrotis ipsilon and Spodoptera litura are important pests of these crops in China. In the present study, the toxicity of 23 commonly used insecticides were tested on H. armigera, then tested the susceptibility of A. ipsilon and S. litura moths to the insecticides which were the most toxic to H. armigera, and the acute toxicity of the most efficacious insecticides were further investigated under laboratory conditions. Chlorantraniliprole, emamectin benzoate, spinetoram, spinosad and methomyl exhibited high levels of toxicity to H. armigera moths with a mortality of 86.67%, 91.11%, 73.33%, 57.78% and 80.00%, respectively, during 24 h period at the concentration of 1 mg a.i. L-1. Among these five insecticides, A. ipsilon and S. litura moths were more sensitive to chlorantraniliprole, emamectin benzoate and methomyl. The lethal time (LT50) values of chlorantraniliprole and methomyl were shorter than emamectin benzoate for all three lepidopteran moth species at 1000 mg a.i. L-1 compared to concentrations of 500, 100 and 1 mg a.i L-1. Chlorantraniliprole was found to have similar levels of toxicity and lethal time on the three lepidopteran moths tested to the standard methomyl, and therefore, can be used as an alternative insecticide to methomyl in the attracticide for controlling these pest species.

  9. Designing of a Recombinant Agip Bacmid Construct with Infectious Properties Against Black Cutworm Agrotis ipsilon Larvae.

    PubMed

    Abdallah, Naglaa A; El-Menofy, Wael; Abdelhadi, Abdelhadi Abdallah

    2017-03-10

    In this study, Agrotis ipsilon nucleopolyhedrovirus bacmid has been constructed as an infectious bacmid in an attempt to allow genome recombination and generation of virus mutants. Since the FseI, a unique restriction site, is located in a viral coding region (ORF_119), PCR was performed to partially amplify the ORF_119 fragment containing the FseI site to facilitate the bacmid construction in a proper way without interrupting the ORF expression. Construction with repeated fragments at the end of the cloned viral was carried out in an attempt to facilitate circulation during infection in insect cells. The amplified gp_119 fragment was cloned into the BAC_Bsu361 plasmid derived from the AcMNPV Bac-to-Bac® system. Recombinant plasmid was used to subclone the Agrotis ipsilon nucleopolyhedrovirus (AgipNPV)-linearized genome using the FseI unique site. The Agip bacmid DNA extracted from Escherichia coli was used to transfect A. ipsilon third instar larvae by injection into the hemolymph. The produced occlusion bodies were purified from infected larvae and used to feed healthy larvae for amplifying the virus, and infectivity was recorded. Using bacmid technology will facilitate manipulation of the AgipNPV genome and help in determining the genetic factors involved in virus virulence and biology.

  10. Heritable genome editing with CRISPR/Cas9 induces anosmia in a crop pest moth

    PubMed Central

    Koutroumpa, Fotini A.; Monsempes, Christelle; François, Marie-Christine; de Cian, Anne; Royer, Corinne; Concordet, Jean-Paul; Jacquin-Joly, Emmanuelle

    2016-01-01

    Lepidoptera suffer critical lack of genetic tools and heritable genome edition has been achieved only in a few model species. Here we demonstrate that the CRISPR/Cas9 system is highly efficient for genome editing in a non-model crop pest Lepidoptera, the noctuid moth Spodoptera littoralis. We knocked-out the olfactory receptor co-receptor Orco gene to investigate its function in Lepidoptera olfaction. We find that 89.6% of the injected individuals carried Orco mutations, 70% of which transmitted them to the next generation. CRISPR/Cas9-mediated Orco knockout caused defects in plant odor and sex pheromone olfactory detection in homozygous individuals. Our work genetically defines Orco as an essential OR partner for both host and mate detection in Lepidoptera, and demonstrates that CRISPR/Cas9 is a simple and highly efficient genome editing technique in noctuid pests opening new routes for gene function analysis and the development of novel pest control strategies. PMID:27403935

  11. The De Havilland "Moth"

    NASA Technical Reports Server (NTRS)

    1926-01-01

    Officially designated D.H. 60, De Havilland's Moth is a small, simply made, 770 lb. aircraft. It has had it's fittings reduced in number to assist in this, seats 2 (including pilot) and uses a Cirrus 60 HP. engine.

  12. Moth hearing in response to bat echolocation calls manipulated independently in time and frequency.

    PubMed Central

    Jones, G; Waters, D A

    2000-01-01

    We measured the auditory responses of the noctuid moth Noctua pronuba to bat echolocation calls which were manipulated independently in time and frequency. Such manipulations are important in understanding how insect hearing influences the evolution of echolocation call characteristics. We manipulated the calls of three bat species (Rhinolophus hipposideros, Myotis nattereri and Pipistrellus pipistrellus) that use different echolocation call features by doubling their duration or reducing their frequency, and measured the auditory thresholds from the A1 cells of the moths. Knowing the auditory responses of the moth we tested three predictions. (i) The ranking of the audibility of unmanipulated calls to the moths should be predictable from their temporal and/or frequency structure. This was supported. (ii) Doubling the duration of the calls should increase their audibility by ca. 3 dB for all species. Their audibility did indeed increase by 2.1-3.5 dB. (iii) Reducing the frequency of the calls would increase their audibility for all species. Reducing the frequency had small effects for the two bat species which used short duration (2.7-3.6 ms) calls. However, the relatively long-duration (50 ms), largely constant-frequency calls of R. hipposideros increased in audibility by 21.6 dB when their frequency was halved. Time and frequency changes influence the audibility of calls to tympanate moths in different ways according to call design. Large changes in frequency and time had relatively small changes on the audibility of calls for short, largely broadband calls. Channelling energy into the second harmonic of the call substantially decreased the audibility of calls for bats which use long-duration, constant-frequency components in echolocation calls. We discuss our findings in the contexts of the evolution of both bat echolocation call design and the potential responses of insects which hear ultrasound. PMID:11467425

  13. Effects of Fertilizers on Suppression of Black Cutworm (Agrotis ipsilon) Damage with Steinernema carpocapsae

    PubMed Central

    Shapiro, David I.; Lewis, Leslie C.; Obrycki, John J.; Abbas, Michael

    1999-01-01

    The ability of Steinernema carpocapsae to reduce damage to seedling corn by the black cutworm, Agrotis ipsilon, in soil amended with three fertilizers (fresh cow manure, composted manure, and urea) was determined. Total nitrogen was standardized among the fertilizers at 280 kg/ha and 560 kg/ha. Black cutworm damage was assessed by the percentage of cut corn plants in small field plots. Relative to a control (no nematodes), nematode applications resulted in reduced black cutworm damage in all treatments except in the higher rate of fresh manure. Black cutworm damage in nematodetreated plots was greater in plots with fresh manure than in plots without fertilizer. Other amendments (urea and composted manure) did not have a detrimental effect on suppression of the black cutworm by S. carpocapsae. PMID:19270937

  14. Microbial control of black cutworm (Lepidoptera: Noctuidae) in turfgrass using Agrotis ipsilon multiple nucleopolyhedrovirus.

    PubMed

    Prater, Callie A; Redmond, Carl T; Barney, Walter; Bonning, Bryony C; Potter, Daniel A

    2006-08-01

    Agrotis ipsilon multiple nucleopolyhedrovirus (family Baculoviridae, genus Nucleopolyhedrovirus, AgipMNPV), a naturally occurring baculovirus, was found infecting black cutworm, Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae), on central Kentucky golf courses. Laboratory, greenhouse, and field studies investigated the potential of AgipMNPV for managing black cutworms in turfgrass. The virus was highly active against first instars (LC50 = 73 occlusion bodies [OBs] per microl with 2-microl dose; 95% confidence intervals, 55-98). First instars that ingested a high lethal dose stopped feeding and died in 3-6 d as early second instars, whereas lethally infected fourth instars continued to feed and grow for 4-9 d until death. Sublethal doses consumed by third or fifth instars had little or no effect on subsequent developmental rate or pupal weight. Horizontal transmission of AgipMNPV in turfgrass plots was shown. Sprayed suspensions of AgipMNPV (5 x 10(8) - 6 x 10(9) OBs/m2) resulted in 75 to > 93% lethal infection of third or fourth instars in field plots of fairway-height creeping bentgrass, Agrostis stolonifera (Huds.), and on a golf course putting green collar. Virus spray residues (7 x 10(9) OBs/m2) allowed to weather on mowed and irrigated creeping bentgrass field plots significantly increased lethal infection of implanted larvae for at least 4 wk. This study, the first to evaluate a virus against a pest in turfgrass, suggests that AgipMNPV has potential as a preventive bioinsecticide targeting early instar black cutworms. Establishing a virus reservoir in the thatch and soil could suppress successive generations of that key pest on golf courses and sport fields.

  15. TOXIC ACTIVITY AND DELAYED EFFECTS OF FIVE BOTANICAL OILS ON THE FOLLOWING GENERATIONS OF AGROTIS IPSILON (HUFNAGEL) (INSECTA: LEPIDOPTERA: NOCTUIDAE) AFTER PARENTS TREATMENT.

    PubMed

    Mesbah, H A; El-Sayed, N A; El-Kady, M B; Mourad, A K; Kordy, A M; Henaidy, Z M

    2014-01-01

    The present study is carried out to evaluate the toxic efficiency and delayed effects of five botanical oils on the greasy cut worm Agrotis ipsilon (Lepidoptera: Noctuidae), as a trial for the attainment of a possible use of an alternative safe and effective phytochemicals against the insect-pest. So as to minimize or prevent the repeated usage of conventional insecticides, then reduce the environmental pollution as well as the occurring hazards to man and domestic animal due to the use of the pesticides alone. Four tested concentrations (0.5, 1.0, 1.5 and 2.5% v/v) from each of camphor, red basil, menthol, rose and anise oils, were bioassayed by treating the offered castor oil bean leaves, to the 4th instar larvae along 48h, under the laboratory higrothermic conditions of 25±2 °C and 65±5% R.H. The obtained results showed that the five tested oils were found to have more or less toxic activity and drastic effects on the inspected parameters of fitness components of the treated parent generation of the insect, in particular, pupae, emerged adult moths and laid eggs/female. In this respect camphor and red basil oils were highly effective, followed by menthol oil, anise oil and the least effective one was rose oil. Moreover, the assessed unprofitable delayed effects on the going on of the biological performance within the treated insects showed the adverse effects on the fitness components of the consequent generations (fs) post (p) one treatment with each of the bioassyed oils. The prevalence of adverse effects and disturbance in the going on biological performance through the period of (p) generation; which is followed by the distinct failure of insect development in (f1) generation were recorded for each of the tested menthol oil at 0.5 and 1.5% (v/v); camphor oil at 1.5 and 2.5% and red basil oil at 2.5% (v/v). While anise and rose oils were somewhat less efficient causing the distinct failure of the following generations up to the 3rd and/or the 6th ones

  16. Banded Sunflower Moth

    USDA-ARS?s Scientific Manuscript database

    The banded sunflower moth, Cochylis hospes Walsingham, is an important insect pest of cultivated sunflower. Eggs are deposited on the bracts of sunflower heads. Larvae develop through five instars within the heads and are present in fields from mid-July to mid-September. Larvae feed initially on the...

  17. Gypsy Moth Workbook.

    ERIC Educational Resources Information Center

    Hamel, Dennis R.

    The gypsy moth is probably the most sociologically if not biologically important insect pest of hardwoods (especially oak). Many people cannot recognize the insect. In addition, they do not understand how much damage it can do, how to control it, or how to stop it from invading new areas. This booklet provides teachers, parents, and leaders of…

  18. Gypsy Moth (Pest Alert)

    Treesearch

    USDA Forest Service Northern Area State & Private Forestry and Region 8; Region 8

    1995-01-01

    The gypsy moth has been a primary defoliator of hardwoods in the Northeastern United States since its introduction in 1869. Although Pennsylvania, New Jersey, New York, and New England are generally infested, isolated infestations have been noted in some North Central, Southern, and Western Seacoast States and are now subject to eradication by the USDA Animal and Plant...

  19. European Pine Shoot Moth

    Treesearch

    William E. Miller; Arthur R. Hastings; John F. Wootten

    1961-01-01

    In the United States, the European pine shoot moth has caused much damage in young, plantations of red pine. It has been responsible for reduced planting of red pine in many areas. Although attacked trees rarely if ever die, their growth is inhibited and many are, deformed. Scotch pine and Austrian pine (Pinus nigra Arnold) are usually not so badly damaged. Swiss...

  20. Chemistry of Moth Repellents

    ERIC Educational Resources Information Center

    Pinto, Gabriel

    2005-01-01

    An effective way to teach chemistry is to examine the substances used in daily life from a pedagogical viewpoint, from the overlap of science, technology, and society (STS). A study aims to engage students in the topic of moth repellents and to encourage them to investigate the chemistry in this familiar product using a set of questions.

  1. Red Pine Shoot Moth

    Treesearch

    John Hainze; David Hall

    The red pine shoot moth recently caused significant damage to red pine plantations in Minnesota, Wisconsin and Michigan. Trees of all ages have been attacked, but the most severe damage has occurred in 20-40 year old plantations growing on sandy soils.

  2. Chemistry of Moth Repellents

    ERIC Educational Resources Information Center

    Pinto, Gabriel

    2005-01-01

    An effective way to teach chemistry is to examine the substances used in daily life from a pedagogical viewpoint, from the overlap of science, technology, and society (STS). A study aims to engage students in the topic of moth repellents and to encourage them to investigate the chemistry in this familiar product using a set of questions.

  3. Gypsy Moth Workbook.

    ERIC Educational Resources Information Center

    Hamel, Dennis R.

    The gypsy moth is probably the most sociologically if not biologically important insect pest of hardwoods (especially oak). Many people cannot recognize the insect. In addition, they do not understand how much damage it can do, how to control it, or how to stop it from invading new areas. This booklet provides teachers, parents, and leaders of…

  4. Ignoring the irrelevant: auditory tolerance of audible but innocuous sounds in the bat-detecting ears of moths

    NASA Astrophysics Data System (ADS)

    Fullard, James H.; Ratcliffe, John M.; Jacobs, David S.

    2008-03-01

    Noctuid moths listen for the echolocation calls of hunting bats and respond to these predator cues with evasive flight. The African bollworm moth, Helicoverpa armigera, feeds at flowers near intensely singing cicadas, Platypleura capensis, yet does not avoid them. We determined that the moth can hear the cicada by observing that both of its auditory receptors (A1 and A2 cells) respond to the cicada’s song. The firing response of the A1 cell rapidly adapts to the song and develops spike periods in less than a second that are in excess of those reported to elicit avoidance flight to bats in earlier studies. The possibility also exists that for at least part of the day, sensory input in the form of olfaction or vision overrides the moth’s auditory responses. While auditory tolerance appears to allow H. armigera to exploit a food resource in close proximity to acoustic interference, it may render their hearing defence ineffective and make them vulnerable to predation by bats during the evening when cicadas continue to sing. Our study describes the first field observation of an eared insect ignoring audible but innocuous sounds.

  5. Susceptibility of Agrotis segetum (noctuidae) to Bacillus thuringiensis and analysis of midgut proteinases.

    PubMed

    Ben Hamadou-Charfi, Dorra; Sauer, Annette Juliane; Abdelkefi-Mesrati, Lobna; Tounsi, Slim; Jaoua, Samir; Stephan, Dietrich

    2015-01-01

    Seventy-eight Bacillus thuringiensis isolates were selected for a screening against the Lepidoptera species Agrotis segetum to search the higher insecticidal activity. In a preliminary bioassay, the spore-crystal mixture of 78 B. thuringiensis isolates was tested against L1 larvae of A. segetum. Fifty-two isolates had more than 60% corrected mortality after 3 days. Seven isolates caused a corrected mortality of 100% on A. segetum. Twelve isolates were selected for a second bioassay investigating the effect of the vegetative insecticidal protein (Vip) against third-instar larvae. After 7 days, the weight gain and the larval stage of each larva were recorded. This bioassay showed an aberration in larval growth increases, morphology, and weight gain. After plasmid pattern analysis, the most active strains are most likely B. thuringiensis kurstaki strains expressing the Vip3A toxin. The absence of two proteinase activities observed in the case of Cry1Ac would be the consequence of the difference in susceptibility of A. segetum to the toxins used.

  6. Characterization of the complete mitochondrial genome of the black cutworm Agrotis ipsilon (Lepidoptera: Noctuidae).

    PubMed

    Wu, Qiu-Ling; Cui, Wen-Xia; Wei, Shu-Jun

    2015-02-01

    The complete mitochondrial genome of the black cutworm Agrotis ipsilon (Lepidoptera: Noctuidae) was determined (GenBank accession No. KF163965). The length of this mitochondrial genome is 15,377 bp with an A + T content of 82.5%. There are 37 typical animal mitochondrial genes, that is, 13 protein-coding, 2 rRNA and 22 tRNA gene and an A + T-rich region. The tRNA gene trnM was rearranged to the upstream of the trnI-trnQ-trnM cluster compared with the pupative ancestral arrangement of insects. All protein-coding genes start with ATN start codon except for the gene cox1, which uses CGA as in other lepidopteran species. Ten protein-coding genes stop with termination codon TAA, whereas three protein-coding gene use incomplete stop codon T. The A + T-region is located between rrnS and trnM with a length of 332 bp and A + T content of 94.88%.

  7. Variability of Bacterial Communities in the Moth Heliothis virescens Indicates Transient Association with the Host

    PubMed Central

    Staudacher, Heike; Kaltenpoth, Martin; Breeuwer, Johannes A. J.; Menken, Steph B. J.; Heckel, David G.; Groot, Astrid T.

    2016-01-01

    Microbes associated with insects can confer a wide range of ecologically relevant benefits to their hosts. Since insect-associated bacteria often increase the nutritive value of their hosts' diets, the study of bacterial communities is especially interesting in species that are important agricultural pests. We investigated the composition of bacterial communities in the noctuid moth Heliothis virescens and its variability in relation to developmental stage, diet and population (field and laboratory), using bacterial tag-encoded FLX pyrosequencing of 16S rRNA amplicons. In larvae, bacterial communities differed depending on the food plant on which they had been reared, although the within-group variation between biological replicates was high as well. Moreover, larvae originating from a field or laboratory population did not share any OTUs. Interestingly, Enterococcus sp. was found to be the dominant taxon in laboratory-reared larvae, but was completely absent from field larvae, indicating dramatic shifts in microbial community profiles upon cultivation of the moths in the laboratory. Furthermore, microbiota composition varied strongly across developmental stages in individuals of the field population, and we found no evidence for vertical transmission of bacteria from mothers to offspring. Since sample sizes in our study were small due to pooling of samples for sequencing, we cautiously conclude that the high variability in bacterial communities suggests a loose and temporary association of the identified bacteria with H. virescens. PMID:27139886

  8. Pheromone Transduction in Moths

    PubMed Central

    Stengl, Monika

    2010-01-01

    Calling female moths attract their mates late at night with intermittent release of a species-specific sex-pheromone blend. Mean frequency of pheromone filaments encodes distance to the calling female. In their zig-zagging upwind search male moths encounter turbulent pheromone blend filaments at highly variable concentrations and frequencies. The male moth antennae are delicately designed to detect and distinguish even traces of these sex pheromones amongst the abundance of other odors. Its olfactory receptor neurons sense even single pheromone molecules and track intermittent pheromone filaments of highly variable frequencies up to about 30 Hz over a wide concentration range. In the hawkmoth Manduca sexta brief, weak pheromone stimuli as encountered during flight are detected via a metabotropic PLCβ-dependent signal transduction cascade which leads to transient changes in intracellular Ca2+ concentrations. Strong or long pheromone stimuli, which are possibly perceived in direct contact with the female, activate receptor-guanylyl cyclases causing long-term adaptation. In addition, depending on endogenous rhythms of the moth's physiological state, hormones such as the stress hormone octopamine modulate second messenger levels in sensory neurons. High octopamine levels during the activity phase maximize temporal resolution cAMP-dependently as a prerequisite to mate location. Thus, I suggest that sliding adjustment of odor response threshold and kinetics is based upon relative concentration ratios of intracellular Ca2+ and cyclic nucleotide levels which gate different ion channels synergistically. In addition, I propose a new hypothesis for the cyclic nucleotide-dependent ion channel formed by insect olfactory receptor/coreceptor complexes. Instead of being employed for an ionotropic mechanism of odor detection it is proposed to control subthreshold membrane potential oscillation of sensory neurons, as a basis for temporal encoding of odors. PMID:21228914

  9. Defoliation potential of gypsy moth

    Treesearch

    David A. Gansner; David A. Drake; Stanford L. Arner; Rachel R. Hershey; Susan L. King; Susan L. King

    1993-01-01

    A model that uses forest stand characteristics to estimate the likelihood of gypsy moth (Lymantria dispar L.) defoliation has been developed. It was applied to recent forest inventory plot data to produce susceptibility ratings and maps showing current defoliation potential in a seven-state area where gypsy moth is an immediate threat.

  10. Douglas-Fir Tussock Moth

    Treesearch

    Boyd E. Wickman; Richard R. Mason; Galen C. Trostle

    1981-01-01

    The Douglas-fir tussock moth (Orgyia pseudotsugata McDunnough) is an important defoliator of true firs and Douglas-fir in Western North America. Severe tussock moth outbreaks have occurred in British Columbia, Idaho, Washington, Oregon, Nevada, California, Arizona, and New Mexico, but the area subject to attack is more extensive

  11. Structure-activity relationship of adipokinetic hormone analogs in the striped hawk moth, Hippotion eson.

    PubMed

    Marco, Heather G; Gäde, Gerd

    2015-06-01

    We showed previously that the sphingid moth Hippotion eson synthesizes the highest number of adipokinetic hormones (AKHs) ever recorded, viz. five, in its corpus cardiacum: two octa-, two nona- and one decapeptide. Further, the endogenous decapeptide (Manse-AKH-II) and the other four AKHs are all active in lipid mobilization, whereas a non-lepidopteran decapeptide (Lacsp-AKH, five amino acid substitutions compared with Manse-AKH-II), was inactive in H. eson. We tested the decapeptide, Lacol-AKH, from a noctuid moth for the first time in a bioassay and it shows a maximal AKH effect in H. eson. Lacol-AKH differs from Manse-AKH-II in three places and from Lacsp-AKH in four places. We, thus, used Lacol-AKH as a lead peptide on which a series of AKH analogs are based to represent: (a) single amino acid replacements (according to the substitutions in Lacsp-AKH), (b) shorter chain lengths, (c) modified termini, and (d) a replacement of Trp in position 8. These analogs, as well as a few naturally occurring AKHs from other lepidopterans were tested in in vivo adipokinetic assays to gain insight into the ligand-receptor interaction in H. eson. Our results show that the second and third amino acids are important for biological activity in the sphingid moth. Analogs with an N-[acetylated]Glu(1) (instead of a pyroGlu), or a free C-terminus, or Ala(8) were not active in the bioassays, while shortened Lacol-AKH analogs and the undecapeptide, non-amidated Vanca-AKH showed very reduced activity (below 25%). This information is important for the consideration of peptide mimetics to combat specific lepidopteran pest insects.

  12. Plant odour stimuli reshape pheromonal representation in neurons of the antennal lobe macroglomerular complex of a male moth.

    PubMed

    Chaffiol, Antoine; Kropf, Jan; Barrozo, Romina B; Gadenne, Christophe; Rospars, Jean-Pierre; Anton, Sylvia

    2012-05-15

    Male moths are confronted with complex odour mixtures in a natural environment when flying towards a female-emitted sex pheromone source. Whereas synergistic effects of sex pheromones and plant odours have been observed at the behavioural level, most investigations at the peripheral level have shown an inhibition of pheromone responses by plant volatiles, suggesting a potential role of the central nervous system in reshaping the peripheral information. We thus investigated the interactions between sex pheromone and a behaviourally active plant volatile, heptanal, and their effects on responses of neurons in the pheromone-processing centre of the antennal lobe, the macroglomerular complex, in the moth Agrotis ipsilon. Our results show that most of these pheromone-sensitive neurons responded to the plant odour. Most neurons responded to the pheromone with a multiphasic pattern and were anatomically identified as projection neurons. They responded either with excitation or pure inhibition to heptanal, and the response to the mixture pheromone + heptanal was generally weaker than to the pheromone alone, showing a suppressive effect of heptanal. However, these neurons responded with a better resolution to pulsed stimuli. The other neurons with either purely excitatory or inhibitory responses to all three stimuli did not exhibit significant differences in responses between stimuli. Although the suppression of the pheromone responses in AL neurons by the plant odour is counter-intuitive at first glance, the observed better resolution of pulsed stimuli is probably more important than high sensitivity to the localization of a calling female.

  13. Single-stranded DNA fragments of insect-specific nuclear polyhedrosis virus act as selective DNA insecticides for gypsy moth control.

    PubMed

    Oberemok, Volodymyr V; Skorokhod, Oleksii A

    2014-07-01

    This paper focuses on the DNA insecticides as a novel preparation against gypsy moth (Lymantria dispar) based on DNA fragments of the anti-apoptotic gene of its nuclear polyhedrosis virus. It was found that the external application of a solution with two single-stranded DNA fragments from BIR and RING domains of LdMNPV (L.dispar multicapsid nuclear polyhedrosis virus) IAP-3 (inhibitor of apoptosis) gene induces a significantly higher mortality of gypsy moth caterpillars in comparison with the application of the control solutions. This effect does not depend on the infection of caterpillars with LdMNPV. The results also show that DNA insecticides based on LdMNPV IAP-3 gene fragments can be selective in action, and at least are not harmful to tobacco hornworm (Manduca sexta) and black cutworm (Agrotis ipsilon). Part of the gypsy moth genome cloned with the fragments of BIR and RING domains of LdMNPV IAP-3 gene as primers, has an overlap with the corresponding part of the LdMNPV IAP-3 gene and L.dispar IAP-1 mRNA for an inhibitor of apoptosis protein with the high cover by query, allows assuming that we cloned a part of gypsy moth anti-apoptosis gene. This finding gives the grounding that proposed here DNA insecticides might act through the blocking of the mechanisms involved in post transcriptional expression of insect anti-apoptosis genes. The results show the insecticidal potential of the viral genome fragments that can be used to create safe and relatively fast-acting DNA insecticides to control the quantity of gypsy moth populations, important task for forestry and agriculture.

  14. Moth hearing and sound communication.

    PubMed

    Nakano, Ryo; Takanashi, Takuma; Surlykke, Annemarie

    2015-01-01

    Active echolocation enables bats to orient and hunt the night sky for insects. As a counter-measure against the severe predation pressure many nocturnal insects have evolved ears sensitive to ultrasonic bat calls. In moths bat-detection was the principal purpose of hearing, as evidenced by comparable hearing physiology with best sensitivity in the bat echolocation range, 20-60 kHz, across moths in spite of diverse ear morphology. Some eared moths subsequently developed sound-producing organs to warn/startle/jam attacking bats and/or to communicate intraspecifically with sound. Not only the sounds for interaction with bats, but also mating signals are within the frequency range where bats echolocate, indicating that sound communication developed after hearing by "sensory exploitation". Recent findings on moth sound communication reveal that close-range (~ a few cm) communication with low-intensity ultrasounds "whispered" by males during courtship is not uncommon, contrary to the general notion of moths predominantly being silent. Sexual sound communication in moths may apply to many eared moths, perhaps even a majority. The low intensities and high frequencies explain that this was overlooked, revealing a bias towards what humans can sense, when studying (acoustic) communication in animals.

  15. Moths smell with their antennae

    NASA Astrophysics Data System (ADS)

    Spencer, Thomas; Ballard, Matthew; Alexeev, Alexander; Hu, David

    2015-11-01

    Moths are reported to smell each other from over 6 miles away, locating each other with just 200 airborne molecules. In this study, we investigate how the structure of the antennae influences particle capture. We measure the branching patterns of over 40 species of moths, across two orders of magnitude in weight. We find that moth antennae have 3 levels of hierarchy, with dimensions on each level scaling with body size. We perform lattice-Boltzman simulations to determine optimal flow patterns around antennae branches allowing for capture of small particles.

  16. Mating-induced differential coding of plant odour and sex pheromone in a male moth.

    PubMed

    Barrozo, Romina B; Jarriault, David; Deisig, Nina; Gemeno, Cesar; Monsempes, Christelle; Lucas, Philippe; Gadenne, Christophe; Anton, Sylvia

    2011-05-01

    Innate behaviours in animals can be influenced by several factors, such as the environment, experience, or physiological status. This behavioural plasticity originates from changes in the underlying neuronal substrate. A well-described form of plasticity is induced by mating. In both vertebrates and invertebrates, males experience a post-ejaculatory refractory period, during which they avoid new females. In the male moth Agrotis ipsilon, mating induces a transient inhibition of responses to the female-produced sex pheromone. To understand the neural bases of this inhibition and its possible odour specificity, we carried out a detailed analysis of the response characteristics of the different neuron types from the periphery to the central level. We examined the response patterns of pheromone-sensitive and plant volatile-sensitive neurons in virgin and mated male moths. By using intracellular recordings, we showed that mating changes the response characteristics of pheromone-sensitive antennal lobe (AL) neurons, and thus decreases their sensitivity to sex pheromone. Individual olfactory receptor neuron (ORN) recordings and calcium imaging experiments indicated that pheromone sensory input remains constant. On the other hand, calcium responses to non-pheromonal odours (plant volatiles) increased after mating, as reflected by increased firing frequencies of plant-sensitive AL neurons, although ORN responses to heptanal remained unchanged. We suggest that differential processing of pheromone and plant odours allows mated males to transiently block their central pheromone detection system, and increase non-pheromonal odour detection in order to efficiently locate food sources. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  17. Gypsy moth life system model

    Treesearch

    J. J. Colbert; G. E. Racin

    1991-01-01

    The model is composed of four major subsystems that are driven by weather. The stand subsystem incorporates the effects of damage by the gypsy moth into annual tree diameter and height growth as well as tree mortality.

  18. Cherry Scallop Shell Moth Pest Alert

    Treesearch

    John Omer; Debra Allen-Reid

    1996-01-01

    The cherry scallop shell moth, Hydria prunivorata (Ferguson) is a defoliator of black cherry, and occasional other native cherries throughout its range in eastern North America. The moth?s name is derived from the pattern of alternating dark and light scalloped lines on the wings. The adults which emerge from late May to early August, have a wingspread of about 37mm....

  19. Disposable Polydimethylsiloxane (PDMS)-Coated Fused Silica Optical Fibers for Sampling Pheromones of Moths

    PubMed Central

    Lievers, Rik; Groot, Astrid T.

    2016-01-01

    In the past decades, the sex pheromone composition in female moths has been analyzed by different methods, ranging from volatile collections to gland extractions, which all have some disadvantage: volatile collections can generally only be conducted on (small) groups of females to detect the minor pheromone compounds, whereas gland extractions are destructive. Direct-contact SPME overcomes some of these disadvantages, but is expensive, the SPME fiber coating can be damaged due to repeated usage, and samples need to be analyzed relatively quickly after sampling. In this study, we assessed the suitability of cheap and disposable fused silica optical fibers coated with 100 μm polydimethylsiloxane (PDMS) by sampling the pheromone of two noctuid moths, Heliothis virescens and Heliothis subflexa. By rubbing the disposable PDMS fibers over the pheromone glands of females that had called for at least 15 minutes and subsequently extracting the PDMS fibers in hexane, we collected all known pheromone compounds, and we found a strong positive correlation for most pheromone compounds between the disposable PDMS fiber rubs and the corresponding gland extracts of the same females. When comparing this method to volatile collections and the corresponding gland extracts, we generally found comparable percentages between the three techniques, with some differences that likely stem from the chemical properties of the individual pheromone compounds. Hexane extraction of cheap, disposable, PDMS coated fused silica optical fibers allows for sampling large quantities of individual females in a short time, eliminates the need for immediate sample analysis, and enables to use the same sample for multiple chemical analyses. PMID:27533064

  20. Functional characterization of a sex pheromone receptor in the pest moth Spodoptera littoralis by heterologous expression in Drosophila.

    PubMed

    Montagné, Nicolas; Chertemps, Thomas; Brigaud, Isabelle; François, Adrien; François, Marie-Christine; de Fouchier, Arthur; Lucas, Philippe; Larsson, Mattias C; Jacquin-Joly, Emmanuelle

    2012-09-01

    Moth sex pheromone communication is recognised as a long-standing model for insect olfaction studies, and a widespread knowledge has been accumulated on this subject thanks to numerous chemical, electrophysiological and behavioural studies. A key step has been the identification of candidate sex pheromone receptors, opening new routes to understanding the specificity and sensitivity of this communication system, but only few of these receptors have as yet been functionally characterised. In this context, we aim at unravelling the molecular bases of pheromone reception in the noctuid moth Spodoptera littoralis. Taking advantage of a collection of antennal-expressed sequence tags, we previously identified three fragments of candidate pheromone receptors in this species. Here, we report full-length cloning of one of these receptors, named SlitOR6. Both sequence and expression pattern analyses were consistent with its annotation as a pheromone receptor, which we further confirmed by functional characterization. Using Drosophila antennae as a heterologous expression system, we identified a single component of the pheromone blend of S. littoralis, (Z,E)-9,12-tetradecadienyl acetate, as the ligand of SlitOR6. Two strategies were employed: (i) expressing SlitOR6 in the majority of Drosophila olfactory neurons, in addition to endogenous receptors, and monitoring the responses to pheromone stimuli by electroantennography; (ii) replacing the Drosophila pheromone receptor OR67d with SlitOR6 and monitoring the response by single sensillum recordings. Results were fully congruent and responses to (Z,E)-9,12-tetradecadienyl acetate were highly specific in both heterologous systems. This approach appears to be efficient and reliable for studying moth pheromone receptors in an in vivo context.

  1. Private ultrasonic whispering in moths

    PubMed Central

    Nakano, Ryo; Ishikawa, Yukio; Tatsuki, Sadahiro; Skals, Niels; Surlykke, Annemarie

    2009-01-01

    Sound-producing moths have evolved a range of mechanisms to emit loud conspicuous ultrasounds directed toward mates, competitors and predators. We recently discovered a novel mechanism of sound production, i.e., stridulation of specialized scales on the wing and thorax, in the Asian corn borer moth, Ostrinia furnacalis, the male of which produces ultrasonic courtship songs in close proximity to a female (<2 cm). The signal is very quiet, being exclusively adapted for private communication. A quiet signal is advantageous in that it prevents eavesdropping by competitors and/or predators. We argue that communication via quiet ultrasound, which has not been reported previously, is probably common in moths and other insects. PMID:20835290

  2. Moth caterpillar solicits for homopteran honeydew.

    PubMed

    Komatsu, Takashi; Itino, Takao

    2014-01-29

    A life-history in which an organism depends on ants is called myrmecophily. Among Lepidoptera (moths and butterflies), many species of lycaenid butterflies are known to show myrmecophily at the larval stage. Descriptions of myrmecophily among moth species, however, are very few and fragmentary. Here, we report the ant-associated behaviour of the tiny Japanese arctiid moth, Nudina artaxidia. Field observations revealed that the moth larvae associate with the jet black ant, Lasius (Dendrolasius) spp. The larvae, which we observed only near ant trails, showed an ability to follow the trails. Further, they solicit honeydew from ant-attended scale insects, without suffering attacks by the ants protecting the scale insects. These suggest that N. artaxidia is a myrmecophilous moth wholly dependent on ants and ant-attended homopterans. Considering the overwhelmingly plant-feeding habits of moth caterpillars, this discovery ranks in novelty with the discovery of the Hawaiian carnivorous moth larvae that stalk snails.

  3. Gypsy moths get sick too!

    Treesearch

    Leah S. Bauer

    1999-01-01

    In June, those large, black, hairy caterpillars really begin to get your attention as they devour your trees, pelt you car with unpleasent dropping, and lounge about on your porch. I am describing the gysy moth, of course, an annoying caterpillar because of its voracious appette, large size, and abundance in many parts of eastern North America.

  4. Gypsy Moth (Pest Alert-2001)

    Treesearch

    USDA Forest Service Southern Region and Northern Area State & Private Forestry

    2001-01-01

    The gypsy moth has been an important pest of hardwoods in the Northeastern United States since its introduction in 1869. Established populations exist in all or parts of 19 states from Maine to Wisconsin and south to Illinois and generally in a southeasterly line from Illinois to northeastern North Carolina.

  5. Spear-Marked Black Moth

    Treesearch

    Richard A. Werner; Bruce H. Baker

    1977-01-01

    The spear-marked black moth, Rheumaptera hastata (L.) (Lepidoptera: Geometridae) is a serious defoliator of paper birch (Betula papyrifera Marsh.) in interior Alaska. Epidemic populations have occurred at 15- to 17- year intervals, persisted for 2 years, and then collapsed. Recorded outbreaks occurred in 1941, acreage unknown; from 1957 to 1958, 5 million acres (2...

  6. How do tiger moths jam bat sonar?

    PubMed

    Corcoran, Aaron J; Barber, Jesse R; Hristov, Nickolay I; Conner, William E

    2011-07-15

    The tiger moth Bertholdia trigona is the only animal in nature known to defend itself by jamming the sonar of its predators - bats. In this study we analyzed the three-dimensional flight paths and echolocation behavior of big brown bats (Eptesicus fuscus) attacking B. trigona in a flight room over seven consecutive nights to determine the acoustic mechanism of the sonar-jamming defense. Three mechanisms have been proposed: (1) the phantom echo hypothesis, which states that bats misinterpret moth clicks as echoes; (2) the ranging interference hypothesis, which states that moth clicks degrade the bats' precision in determining target distance; and (3) the masking hypothesis, which states that moth clicks mask the moth echoes entirely, making the moth temporarily invisible. On nights one and two of the experiment, the bats appeared startled by the clicks; however, on nights three through seven, the bats frequently missed their prey by a distance predicted by the ranging interference hypothesis (∼15-20 cm). Three-dimensional simulations show that bats did not avoid phantom targets, and the bats' ability to track clicking prey contradicts the predictions of the masking hypothesis. The moth clicks also forced the bats to reverse their stereotyped pattern of echolocation emissions during attack, even while bats continued pursuit of the moths. This likely further hinders the bats' ability to track prey. These results have implications for the evolution of sonar jamming in tiger moths, and we suggest evolutionary pathways by which sonar jamming may have evolved from other tiger moth defense mechanisms.

  7. Gene knockout demonstrates that vip3A contributes to the pathogenesis of Bacillus thuringiensis toward Agrotis ipsilon and Spodoptera exigua.

    PubMed

    Donovan, W P; Donovan, J C; Engleman, J T

    2001-07-01

    Vip3A is an 89-kDa protein secreted by Bacillus thuringiensis during vegetative growth. To determine the importance of Vip3A for the insect pathogenicity of B. thuringiensis the vip3A gene was deleted from strain HD1, yielding strain HD1Deltavip3A. Compared with HD1, strain HD1Deltavip3A was one-fourth as toxic to Agrotis ipsilon larvae and less than one-tenth as toxic to Spodoptera exigua larvae. When streptomycin was included in the S. exigua diet the toxicity of HD1Deltavip3A was approximately half that of HD1. Addition of HD1 spores increased the toxicity of purified Cry1 protein more than 600-fold against S. exigua, whereas addition of HD1Deltavip3A spores increased toxicity of Cry1 protein approximately 10-fold. These results demonstrate that an important component of B. thuringiensis insecticidal activity against S. exigua is the synthesis of Vip3A protein by B. thuringiensis cells after ingestion of spores and crystal proteins by insect larvae.

  8. Optimal control of gypsy moth populations.

    PubMed

    Whittle, Andrew; Lenhart, Suzanne; White, K A J

    2008-02-01

    This study investigates an optimal strategy for the cost effective control of gypsy moth populations. Gypsy moth populations cycle between low sparse numbers to high outbreak levels and it is during the outbreak levels that the moths cause extensive damage to plant foliage which can lead to deforestation. Deforestation can result in significant economic damage to infested areas, and consequently, there have been many efforts to control moth populations. One effective method of control is the use of the biocontrol agent, Gypchek, but its production is costly. We develop a mathematical model which combines population dynamics and optimal control of the moth population to explore strategies by which the total cost of the gypsy moth problem (economic damage and cost of Gypchek) can be minimized.

  9. Lymantria monacha (nun moth) and L. dispar (gypsy moth) survival and development on improved Pinus radiata

    Treesearch

    T.M. Withers; M.A. Keena

    2001-01-01

    The lymantriid forest defoliators, Lymantria monacha L. (nun moth) and Lymantria dispar L. (gypsy moth) are particularly severe pests in other countries in the world, but the ability of these moths to utilise and complete development on Pinus radiata D. Don had never been established. In laboratory trials, colonies of central European L. monacha and Russian far east (...

  10. Effects of an ascovirus (HvAV-3e) on diamondback moth, Plutella xylostella, and evidence for virus transmission by a larval parasitoid.

    PubMed

    Furlong, Michael J; Asgari, Sassan

    2010-02-01

    Ascoviruses (AVs) are pathogenic to lepidopteran larvae, and most commonly attack species in the Noctuidae. The unique pathology includes cleavage of host cells into virion-containing vesicles which leads to the milky white colouration of the hemolymph as opposed to the clear hemolymph of healthy larvae. Recently, we showed that a Heliothis virescens AV (HvAV-3e) isolate is able to induce disease in Crocidolomia pavonana F. (Lepidoptera: Crambidae), affecting feeding, growth and survival of infected larvae. In this study, we investigated the effect of different variants of HvAV-3e on diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) larvae, another non-noctuid host. In hemolymph inoculation bioassays fourth instar larvae showed a significant dose response to each of the HvAV-3e variants and significant differences between the virulence of the three variants were detected. Both second and fourth instars were readily infected with the virus and infected individuals demonstrated significant reductions in food consumption and growth. The majority of infected individuals died at the larval or pupal stage and individuals which developed into adults were usually deformed, less fecund than non-infected controls and died shortly after emergence. In transmission studies, Diadegmasemiclausum (Hymenoptera: Ichneumonidae), a key parasitoid of diamondback moth, infected healthy host larvae during oviposition following previous attack of HvAV-3e infected hosts. In choice tests D. semiclausum did not discriminate between infected individuals but host infection had no detectable impact on the development of immature D. semiclausum or on subsequent adults.

  11. Climate constraints for siberian moth distribution in Europe

    Treesearch

    Yuri Baranchikov; Nadezda Tschebakova; Elena Parfenova; Natalia. Kirichenko

    2010-01-01

    A simplistic bioclimatic model of the Siberian moth Dendrolimus sibiricus Tschtvrk. (Lepidoptera: Lasiocampidae) is based on the moth's basic biological requirements, expressed through summer thermal conditions...

  12. Historical Gypsy Moth Defoliation Frequency

    EPA Pesticide Factsheets

    Gypsy moth populations may exist for many years at low densities such that it may be difficult to find any life stages. Then, for reasons that are not completely understood, populations may rise to very high densities and substantial defoliation of the canopy may occur. These data shows the historical frequency (1972-2002) pattern of gypsy moth defoliation as it spreads south and west from the New England states. forested areas with repeated annual defoliation become more stressed and are at increased risk of permanent damage. More information about these resources, including the variables used in this study, may be found here: https://edg.epa.gov/data/Public/ORD/NERL/ReVA/ReVA_Data.zip.

  13. Leading edge gypsy moth population dynamics

    Treesearch

    M. R. Carter; F. W. Ravlin; M. L. McManus

    1991-01-01

    Leading edge gypsy moth populations have been the focus of several intervention programs (MDIPM, AIPM). Knowledge of gypsy moth population dynamics in leading edge area is crucial for effective management. Populations in these areas tend to reach outbreak levels (noticeable defoliation) within three to four years after egg masses are first detected. Pheromone traps...

  14. Forest susceptibility to the gypsy moth

    Treesearch

    Andrew M. Liebhold; Kurt W. Gottschalk; Douglas A. Mason; Renate R. Bush

    1997-01-01

    Since 1868 or 1869, when it was introduced near Boston, the gypsy moth has been slowly expanding its range to include the entire northeastern United States and portions of Virginia, West Virginia, North Carolina, Ohio, and Michigan (Liebhold et al. 1992, 1996). It is inevitable that the gypsy moth will continue to spread south and west over the next century.

  15. Forecasting gypsy moth egg-mass density

    Treesearch

    Robert W. Campbell; Robert W. Campbell

    1973-01-01

    Several multiple regression models for gypsy moth egg-mass density were developed from data accumulated in eastern New England between 1911 and 1931. Analysis of these models indicates that: (1) The gypsy moth population system was relatively stable in either the OUTBREAK phase or the INNOCUOUS one; (2) Several naturally occurring processes that could terminate the...

  16. Using silviculture to minimize gypsy moth impacts

    Treesearch

    Kurt W. Gottschalk

    1989-01-01

    Silvicultural treatments can be used to minimize gypsy moth impacts on hardwood stands. There are two major strategies of these treatments: (1) to decrease susceptibility to defoliation by gypsy moth and (2) to strengthen the stand against mortality and encourage growth after defoliation.

  17. Using silviculture to minimize gypsy moth impacts

    Treesearch

    Kurt W. Gottschalk

    1991-01-01

    Several studies are underway to test and evaluate the use of silvicultural treatments to minimize gypsy moth impacts. Treatment objectives are to change stand susceptibility to gypsy moth defoliation or stand vulnerability to damage after defoliation. Decision charts have been developed to help forest and land managers to select the appropriate treatment for their...

  18. Does thinning affect gypsy moth dynamics?

    Treesearch

    Andrew M. Liebhold; Rose-Marie Muzika; Kurt W. Gottschalk

    1998-01-01

    In northeastern U.S. forests there is considerable variation in susceptibility (defoliation potential) and vulnerability (tree mortality) to gypsy moth (Lymantria dispar [L.]). Thinning has been suggested as a way to reduce susceptibility and/or vulnerability. We evaluated how thinning affected the dynamics of gypsy moth populations by experimentally...

  19. Gypsy moth impacts on oak acorn production

    Treesearch

    Kurt W. Gottschalk

    1991-01-01

    Gypsy moth outbreaks can have drastic effects on many f a s t resources and uses. Because gypsy moth prefers oak foliage, oak stands are the most susceptible to defoliation and resultant damage. The value of oak mast for many wildlife species is high. The high carbohydrate content of acorns provides the energy necessary for winter survival. Loss of mast crops due to...

  20. Sampling low-density gypsy moth populations

    Treesearch

    William E. Wallner; Clive G. Jones; Joseph S. Elkinton; Bruce L. Parker

    1991-01-01

    The techniques and methodology for sampling gypsy moth, Lymantria dispar L., at low densities, less than 100 egg masses/ha (EM/ha), are compared. Forest managers have constraints of time and cost, and need a useful, simple predictable means to assist them in sampling gypsy moth populations. A comparison of various techniques coupled with results of...

  1. Hazard rating forest stands for gypsy moth

    Treesearch

    Ray R., Jr. Hicks

    1991-01-01

    A gypsy moth hazard exists when forest conditions prevail that are conducive to extensive damage from gypsy moth. Combining forest hazard rating with information on insect population trends provides the basis for predicting the probability (risk) of an event occurring. The likelihood of defoliation is termed susceptibility and the probability of damage (mortality,...

  2. Bt: One Option for Gypsy Moth Management

    Treesearch

    Deborah C. Mccullough; Leah S. Bauer

    2000-01-01

    Though the gypsy moth will never go away, you have a variety of options to help manage this pest during outbreaks. One option involves the use of Bt to protect tree foliage and reduce the annoyance caused by gypsy moth caterpillars during an outbreak. Bt or Btk refers to a microorganism called Bacillus Thuringeniesis var. kurstaki. Bt has been widely adopted for...

  3. Gypsy moth effects on mast production

    Treesearch

    Kurt W. Gottschalk

    1990-01-01

    Gypsy moth outbreaks can have drastic effects on many forest resources and uses. Because the gypsy moth prefers oak foliage, oak stands are the most susceptible to defoliation and resultant damage. The value of oak mast for many wildlife species is high. The high carbohydrate content of acorns provides the energy necessary for winter survival. Loss of mast crops due to...

  4. The Genetic Architecture of a Complex Ecological Trait: Host Plant Use in the Specialist Moth, Heliothis subflexa

    PubMed Central

    Oppenheim, Sara J.; Gould, Fred; Hopper, Keith R.

    2012-01-01

    We used genetic mapping to examine the genetic architecture of differences in host plant use between two species of noctuid moths, Heliothis subflexa, a specialist on Physalis spp., and its close relative, the broad generalist H. virescens. We introgressed H. subflexa chromosomes into the H. virescens background and analyzed 1,462 backcross insects. The effects of H. subflexa-origin chromosomes were small when measured as the percent variation explained in backcross populations (0.2 to 5%), but were larger when considered in relation to the interspecific difference explained (1.5 to 165%). Most significant chromosomes had effects on more than one trait, and their effects varied between years, sexes, and genetic backgrounds. Different chromosomes could produce similar phenotypes, suggesting that the same trait might be controlled by different chromosomes in different backcross populations. It appears that many loci of small effect contribute to the use of Physalis by H. subflexa. We hypothesize that behavioral changes may have paved the way for physiological adaptation to Physalis by the generalist ancestor of H. subflexa and H. virescens. PMID:23106701

  5. Artificial night lighting inhibits feeding in moths.

    PubMed

    van Langevelde, Frank; van Grunsven, Roy H A; Veenendaal, Elmar M; Fijen, Thijs P M

    2017-03-01

    One major, yet poorly studied, change in the environment is nocturnal light pollution, which strongly alters habitats of nocturnally active species. Artificial night lighting is often considered as driving force behind rapid moth population declines in severely illuminated countries. To understand these declines, the question remains whether artificial light causes only increased mortality or also sublethal effects. We show that moths subjected to artificial night lighting spend less time feeding than moths in darkness, with the shortest time under light conditions rich in short wavelength radiation. These findings provide evidence for sublethal effects contributing to moth population declines. Because effects are strong under various types of light compared with dark conditions, the potential of spectral alterations as a conservation tool may be overestimated. Therefore, restoration and maintenance of darkness in illuminated areas is essential for reversing declines of moth populations.

  6. A plant factory for moth pheromone production

    PubMed Central

    Ding, Bao-Jian; Hofvander, Per; Wang, Hong-Lei; Durrett, Timothy P.; Stymne, Sten; Löfstedt, Christer

    2014-01-01

    Moths depend on pheromone communication for mate finding and synthetic pheromones are used for monitoring or disruption of pheromone communication in pest insects. Here we produce moth sex pheromone, using Nicotiana benthamiana as a plant factory, by transient expression of up to four genes coding for consecutive biosynthetic steps. We specifically produce multicomponent sex pheromones for two species. The fatty alcohol fractions from the genetically modified plants are acetylated to mimic the respective sex pheromones of the small ermine moths Yponomeuta evonymella and Y. padella. These mixtures are very efficient and specific for trapping of male moths, matching the activity of conventionally produced pheromones. Our long-term vision is to design tailor-made production of any moth pheromone component in genetically modified plants. Such semisynthetic preparation of sex pheromones is a novel and cost-effective way of producing moderate to large quantities of pheromones with high purity and a minimum of hazardous waste. PMID:24569486

  7. A plant factory for moth pheromone production.

    PubMed

    Ding, Bao-Jian; Hofvander, Per; Wang, Hong-Lei; Durrett, Timothy P; Stymne, Sten; Löfstedt, Christer

    2014-02-25

    Moths depend on pheromone communication for mate finding and synthetic pheromones are used for monitoring or disruption of pheromone communication in pest insects. Here we produce moth sex pheromone, using Nicotiana benthamiana as a plant factory, by transient expression of up to four genes coding for consecutive biosynthetic steps. We specifically produce multicomponent sex pheromones for two species. The fatty alcohol fractions from the genetically modified plants are acetylated to mimic the respective sex pheromones of the small ermine moths Yponomeuta evonymella and Y. padella. These mixtures are very efficient and specific for trapping of male moths, matching the activity of conventionally produced pheromones. Our long-term vision is to design tailor-made production of any moth pheromone component in genetically modified plants. Such semisynthetic preparation of sex pheromones is a novel and cost-effective way of producing moderate to large quantities of pheromones with high purity and a minimum of hazardous waste.

  8. The genome sequence of Agrotis segetum granulovirus, isolate AgseGV-DA, reveals a new Betabaculovirus species of a slow killing granulovirus.

    PubMed

    Gueli Alletti, Gianpiero; Eigenbrod, Marina; Carstens, Eric B; Kleespies, Regina G; Jehle, Johannes A

    2017-06-01

    The European isolate Agrotis segetum granulovirus DA (AgseGV-DA) is a slow killing, type I granulovirus due to low dose-mortality responses within seven days post infection and a tissue tropism of infection restricted solely to the fat body of infected Agrotis segetum host larvae. The genome of AgseGV-DA was completely sequenced and compared to the whole genome sequences of the Chinese isolates AgseGV-XJ and AgseGV-L1. All three isolates share highly conserved genomes. The AgseGV-DA genome is 131,557bp in length and encodes for 149 putative open reading frames, including 37 baculovirus core genes and the per os infectivity factor ac110. Comprehensive investigations of repeat regions identified one putative non-hr like origin of replication in AgseGV-DA. Phylogenetic analysis based on concatenated amino acid alignments of 37 baculovirus core genes as well as pairwise distances based on the nucleotide alignments of partial granulin, lef-8 and lef-9 sequences with deposited betabaculoviruses confirmed AgseGV-DA, AgseGV-XJ and AgseGV-L1 as representative isolates of the same Betabaculovirus species. AgseGV encodes for a distinct putative enhancin, distantly related to enhancins from other granuloviruses. Copyright © 2017. Published by Elsevier Inc.

  9. DNA barcoding of gypsy moths from China (Lepidoptera: Erebidae) reveals new haplotypes and divergence patterns within gypsy moth subspecies

    Treesearch

    Fang Chen; Youqing Luo; Melody A. Keena; Ying Wu; Peng Wu; Juan Shi

    2015-01-01

    The gypsy moth from Asia (two subspecies) is considered a greater threat to North America than European gypsy moth, because of a broader host range and females being capable of flight. Variation within and among gypsy moths from China (nine locations), one of the native countries of Asian gypsy moth, were compared using DNA barcode sequences (658 bp of mtDNA cytochrome...

  10. Host Plant Resistance and Insect Pest Management in Chickpea

    USDA-ARS?s Scientific Manuscript database

    Nearly 60 insect species feed on chickpea worldwide, of which cutworms (black cutworm - Agrotis ipsilon and turnip moth - Agrotis segetum), leaf feeding caterpillars (leaf caterpillar - Spodoptera exigua and hairy caterpillar - Spilarctia oblique), leaf miners (Liriomyza cicerina), aphids (Aphis cr...

  11. Antennal mechanosensors mediate flight control in moths.

    PubMed

    Sane, Sanjay P; Dieudonné, Alexandre; Willis, Mark A; Daniel, Thomas L

    2007-02-09

    Flying insects have evolved sophisticated sensory capabilities to achieve rapid course control during aerial maneuvers. Among two-winged insects such as houseflies and their relatives, the hind wings are modified into club-shaped, mechanosensory halteres, which detect Coriolis forces and thereby mediate flight stability during maneuvers. Here, we show that mechanosensory input from the antennae serves a similar role during flight in hawk moths, which are four-winged insects. The antennae of flying moths vibrate and experience Coriolis forces during aerial maneuvers. The antennal vibrations are transduced by individual units of Johnston's organs at the base of their antennae in a frequency range characteristic of the Coriolis input. Reduction of the mechanical input to Johnston's organs by removing the antennal flagellum of these moths severely disrupted their flight stability, but reattachment of the flagellum restored their flight control. The antennae thus play a crucial role in maintaining flight stability of moths.

  12. General and specific gypsy moth predators

    Treesearch

    Ronald M. Weseloh

    1991-01-01

    General larval predators of low-density gypsy moth, Lymantria dispar (L.), populations have been assessed by exposing caterpillars tethered by threads. Most mortality occurred on tree trunks and in leaf litter.

  13. Sex stimulant and attractant in the Indian meal moth and in the almond moth.

    PubMed

    Brady, U E; Tumlinson, J H; Brownlee, R G; Silverstein, R M

    1971-02-26

    cis-9, trans-12-Tetradecadien-1-yl acetate was isolated from the female Indian meal moth, Plodia interpunctella (Hübner), and the female almond moth, Cadra cautella (Walker). It is the major if not the sole component of the sex stimulatory and attractant pheromone of female Plodia. It is present in the pheromone of the female Cadra along with at least one synergist.

  14. Monitoring oriental fruit moth and codling moth (Lepidoptera: Tortricidae) with combinations of pheromones and kairomoness

    USDA-ARS?s Scientific Manuscript database

    Experiments were conducted in North and South America during 2012-2013 to evaluate the use of lure combinations of sex pheromones (PH), host plant volatiles (HPV), and food baits in traps to capture the oriental fruit moth, Grapholita molesta (Busck) and codling moth, Cydia pomonella (L.) in pome an...

  15. Seven invasive owlet moths (Lepidoptera: Noctuidae) in Israel and their potential parasitoids (Hymenoptera: Chalcidoidea)

    USDA-ARS?s Scientific Manuscript database

    Over a 10 year period, collections from light traps placed at 88 locations throughout Israel were examined for tropical species of noctuid pest species and associated parasitoids. Tropical noctuidae pest species collected included Spodoptera mauritia (Boisduval), Trichoplusia vittata (Wallengren), A...

  16. A diversity of moths (Lepidoptera) trapped with two feeding attractants

    USDA-ARS?s Scientific Manuscript database

    Feeding attractants for moths are useful as survey tools to assess moth species diversity, and for monitoring of the relative abundance of certain pest species. We assessed the relative breadth of attractiveness of two such lures to moths, at sites with varied habitats during 2006. Eighty-six of the...

  17. Relative potencies of gypsy moth nucleopolyhedrovirus genotypes isolated from Gypchek

    Treesearch

    J.D. Podgwaite; R.T. Zerillo; J.M. Slavicek; N. Hayes-Plazolles

    2011-01-01

    Gypchek is a gypsy moth (Lymantria dispar L.) - specific biopesticide whose primary use is for treating areas where environmental concerns outweigh the use of broad-spectrum pesticides for gypsy moth management. Gypchek is a lyophilized powder produced from larvae that have been infected with the gypsy moth nucleopolyhedrovirus (LdMNPV). The product...

  18. 78 FR 23740 - Gypsy Moth Program; Record of Decision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-22

    ... Animal and Plant Health Inspection Service Gypsy Moth Program; Record of Decision AGENCY: Animal and... of decision for the final supplemental environmental impact statement for the Gypsy Moth Program... name Mimic) to their list of treatments for the control of gypsy moth. In addition to the proposal...

  19. Codling moth management and chemical ecology.

    PubMed

    Witzgall, Peter; Stelinski, Lukasz; Gut, Larry; Thomson, Don

    2008-01-01

    Lepidopteran insects use sex pheromones to communicate for mating. Olfactory communication and mate-finding can be prevented by permeating the atmosphere with synthetic pheromone. Pheromone-mediated mating disruption has become a commercially viable pest management technique and is used to control the codling moth, Cydia pomonella, a key insect pest of apple, on 160,000 ha worldwide. The codling moth sex pheromone, codlemone, is species specific and nontoxic. Orchard treatments with up to 100 grams of synthetic codlemone per hectare effectively control codling moth populations over the entire growing season. Practical implementation of the mating disruption technique has been realized at an opportune time, as codling moth has become resistant to many insecticides. We review codling moth chemical ecology and factors underlying the behavioral mechanisms and practical implementation of mating disruption. Area-wide programs are the result of collaborative efforts between academic research institutions, extension, chemical industries, and grower organizations, and they demonstrate the environmental and economic relevance of pheromone research.

  20. A highly conserved nuclear gene for low-level phylogenetics: elongation factor-1 alpha recovers morphology-based tree for heliothine moths.

    PubMed

    Cho, S; Mitchell, A; Regier, J C; Mitter, C; Poole, R W; Friedlander, T P; Zhao, S

    1995-07-01

    Molecular systematists need increased access to nuclear genes. Highly conserved, low copy number protein-encoding nuclear genes have attractive features for phylogenetic inference but have heretofore been applied mostly to very ancient divergences. By virtue of their synonymous substitutions, such genes should contain a wealth of information about lower-level taxonomic relationships as well, with the advantage that amino acid conservatism makes both alignment and primer definition straightforward. We tested this postulate for the elongation factor-1 alpha (EF-1 alpha) gene in the noctuid moth subfamily Heliothinae, which has probably diversified since the middle Tertiary. We sequenced 1,240 bp in 18 taxa representing heliothine groupings strongly supported by previous morphological and allozyme studies. The single most parsimonious gene tree and the neighbor-joining tree for all nucleotides show almost complete concordance with the morphological tree. Homoplasy and pairwise divergence levels are low, transition/transversion ratios are high, and phylogenetic information is spread evenly across gene regions. The EF-1 alpha gene and presumably other highly conserved genes hold much promise for phylogenetics of Tertiary age eukaryote groups.

  1. Mapping the defoliation potential of gypsy moth

    Treesearch

    David A. Gansner; Stanford L. Arner; Rachel Riemann Hershey; Susan L. King

    1993-01-01

    A model that uses forest stand characteristics to estimate the likelihood of gypsy moth (Lymantria dispar) defoliation has been developed. It was applied to recent forest inventory plot data to produce susceptibility ratings and a map showing defoliation potential for counties in Pennsylvania and six adjacent states on new frontiers of infestation.

  2. Effects of defoliation by gypsy moth

    Treesearch

    Mark J. Twery

    1991-01-01

    Defoliation of trees by the gypsy moth (Lymantria dispar L.) has many and varied effects. It causes economic losses through lost forest production and reduced aesthetic qualities of the forest. However, defoliation may improve habitat for many species of wildlife and contribute to increased diversity of eastern forests. Effects on water resources,...

  3. Anthropogenic drivers of gypsy moth spread

    Treesearch

    Kevin M. Bigsby; Patrick C. Tobin; Erin O. Sills

    2011-01-01

    The gypsy moth, Lymantria dispar (L.), is a polyphagous defoliator introduced to Medford, Massachusetts in 1869. It has spread to over 860,000 km2 in North America, but this still only represents 1/4 of its susceptible host range in the United States. To delay defoliation in the remaining susceptible host range, the government...

  4. Floral attractants for monitoring pest moths

    USDA-ARS?s Scientific Manuscript database

    Many species of moths, including pest species, are known to be attracted to volatile compounds emitted by flowers. Some of the flower species studied included glossy abelia, night-blooming jessamine, three species of Gaura, honeysuckle, lesser butterfly orchid, and Oregongrape. The volatiles relea...

  5. Epizootiology of gypsy moth nuclear polyhedrosis virus

    Treesearch

    Joseph S. Elkinton; John P. Burand; Kathleen D. Murray; Stephen A. Woods

    1991-01-01

    Recent experimental findings demonstrate that two distinct waves of mortality of gypsy moth larvae from nuclear polyhedrosis virus (NPV) occurs during larval development. The evidence suggests that early instars acquire lethal doses of NPV from the surface of the egg mass and the cadavers of these larvae produce inoculum that causes a second wave of mortality among...

  6. Predicting tree mortality following gypsy moth defoliation

    Treesearch

    D.E. Fosbroke; R.R. Hicks; K.W. Gottschalk

    1991-01-01

    Appropriate application of gypsy moth control strategies requires an accurate prediction of the distribution and intensity of tree mortality prior to defoliation. This prior information is necessary to better target investments in control activities where they are needed. This poster lays the groundwork for developing hazard-rating systems for forests of the...

  7. A monitoring system for gypsy moth management

    Treesearch

    F. William Ravlin; S. J. Fleischer; M. R. Carter; E. A. Roberts; M. L. McManus

    1991-01-01

    Within the last ten years considerable research has been directed toward the development of a gypsy moth monitoring system for project planning at a regional level and for making control decisions at a local level. Pheromones and pheromone-baited traps have been developed and widely used and several egg mass sampling techniques have also been developed. Recently these...

  8. Evolution of Moth Sex Pheromone Desaturases

    USDA-ARS?s Scientific Manuscript database

    Moth sex pheromone communication has evolved to make use of complex blends of relatively simple long-chain fatty acid precursors. Species specificity is derived from the unique stereochemistry of double bonds introduced into exact locations along the hydrocarbon backbone of fatty acids, which are r...

  9. Microsporidian pathogens in European gypsy moth populations

    Treesearch

    Michael L. McManus; Leellen Solter

    2003-01-01

    The significance of microsporidian pathogens as mortality agents of gypsy moth (Lymantria dispar L.) in Europe frequently is overlooked. Collections of isolates from 10 different countries suggest that three genera and several biotypes are extant. It is important that the taxonomic placement and phylogeny of currently described genera and species be...

  10. Codling Moth has a New Calendar

    USDA-ARS?s Scientific Manuscript database

    Studies were conducted in 10 apple orchards in Washington State from 2003-2006 to characterize the seasonal cumulative curves of codling moth flight and the occurrence of fruit injury. Data from each generation were fit to logistic curves and these data were compared to a current widely-used model. ...

  11. Rating forest stands for gypsy moth defoliation

    Treesearch

    Owen W. Herrick; David A. Gansner; David A. Gansner

    1986-01-01

    The severity of future defoliation can be estimated from the percentages of basal area in oaks (Quercus), black oak (Q. velutina) and chestnut oak (a prinus), and in trees with good crowns, along with the average diameter of the stand. With information on these variables, the defoliation potential of any hardwood forest stand in an approaching gypsy moth (Lymantria...

  12. Mesoscale landscape model of gypsy moth phenology

    Treesearch

    Joseph M. Russo; John G. W. Kelley; Andrew M. Liebhold

    1991-01-01

    A recently-developed high resolution climatological temperature data base was input into a gypsy moth phenology model. The high resolution data were created from a coupling of 30-year averages of station observations and digital elevation data. The resultant maximum and minimum temperatures have about a 1 km resolution which represents meteorologically the mesoscale....

  13. Nun Moth: Potential New Pest (Pest Alert)

    Treesearch

    Melody Keena; Kathleen Shields

    1998-01-01

    The nun moth, Lymantria monacha (L.)(Lymantriidae), is a Eurasian pest of conifers that could be accidentally introduced into North America. Its establishment in this country would be disastrous because it feeds on a variety of vegetation and can migrate and colonize a variety of sites.

  14. Reed Watkins: A Passion for Plume Moths

    USDA-ARS?s Scientific Manuscript database

    Reed Watkins has curated the nationl Pterophordiae or plume moth collection at the National Museum of Natural History, Smithsonian Institution, for the past 13 years. He has decreased the number of specimens of unsorted and unidentified material and has expanded the collection from 3 to 6 cabinets....

  15. Moth pheromone receptors and deceitful parapheromones

    USDA-ARS?s Scientific Manuscript database

    The insect’s olfactory system is so selective that male moths, for example, can discriminate female-produced sex pheromones from compounds with minimal structural modifications. Yet, there is an exception for this “lock-and-key” tight selectivity. Formate analogs can be used as replacement for less ...

  16. Expression profiles of the heat shock protein 70 gene in response to heat stress in Agrotis c-nigrum (Lepidoptera: Noctuidae).

    PubMed

    Wang, Ling; Yang, Shuai; Zhao, Kuijun; Han, Lanlan

    2015-01-01

    Heat shock proteins (HSPs) are molecular chaperones, and their overexpression enhances the survivability and stress tolerance of the cell. To understand the characteristics of HSP70 in Agrotis c-nigrum Linnaeus larvae, the coding sequence of this protein was cloned, and the effect of heat stress on transcription and protein properties was assessed. The obtained cDNA sequence of HSP70 was 2,213 bp, which contained an ORF of 1,965 bp and encoded 654 amino acid residues. Isolated HSP70 cDNA demonstrated more than 80% identity with the sequences of other known insect HSP70s. Next, HSP70 was expressed in Escherichia coli BL21 (DE3) cells and identified using SDS-PAGE and western blotting analyses. In addition, anti-HSP70-specific antisera were prepared using a recombinant HSP70 protein, and the results showed that this antisera was very specific to AcHSP70. Real-time quantitative polymerase chain reaction detected the relative transcription of the HSP70 gene in larvae and the transcription of A. c-nigrum in response to high temperatures. Induction of HSP70 was up-regulated to peak expression at 36°C.

  17. Effects of Sublethal Concentrations of Cyantraniliprole on the Development, Fecundity and Nutritional Physiology of the Black Cutworm Agrotis ipsilon (Lepidoptera: Noctuidae)

    PubMed Central

    Xu, Chunmei; Zhang, Zhengqun; Cui, Kaidi; Zhao, Yunhe; Han, Jingkun; Liu, Feng; Mu, Wei

    2016-01-01

    To better understand the sublethal effects of cyantraniliprole on the black cutworm Agrotis ipsilon (Lepidoptera: Noctuidae), several studies were carried out to investigate sublethal effects on development stages, population parameters, feeding indices and nutrient content of A. ipsilon. The result of a bioassay showed that cyantraniliprole had high toxicity against A. ipsilon fourth-instar larvae with an LC50 of 0.354 μg.g−1 using an artificial diet. Compared with controls, sublethal doses of cyantraniliprole at LC5, LC20 and LC40 levels prolonged larval and pupal duration and extended mean generation time and total preovipositional period. In addition, survival rate, reproductive value, intrinsic and finite rates of increase and net reproduction rate declined significantly. Meanwhile, cyantraniliprole had markedly antifeedant effects; decreased the relative growth rate (RGR), the relative consumption rate (RCR), the efficiency of conversion of ingested food (ECI), the efficiency of conversion of digested food (ECD); and increased the approximate digestibility (AD) significantly. This phenomenon contributed to the decrease of nutrient contents, including lipids, protein and carbohydrates, to the point that insufficient energy was available for normal growth. Therefore, sublethal concentrations of cyantraniliprole decreased growth speed and reduced population reproduction of A. ipsilon. This result provides information useful in integrated pest management (IPM) programs for A. ipsilon. PMID:27249654

  18. Expression Profiles of the Heat Shock Protein 70 Gene in Response to Heat Stress in Agrotis c-nigrum (Lepidoptera: Noctuidae)

    PubMed Central

    Wang, Ling; Yang, Shuai; Zhao, Kuijun; Han, Lanlan

    2015-01-01

    Heat shock proteins (HSPs) are molecular chaperones, and their overexpression enhances the survivability and stress tolerance of the cell. To understand the characteristics of HSP70 in Agrotis c-nigrum Linnaeus larvae, the coding sequence of this protein was cloned, and the effect of heat stress on transcription and protein properties was assessed. The obtained cDNA sequence of HSP70 was 2,213 bp, which contained an ORF of 1,965 bp and encoded 654 amino acid residues. Isolated HSP70 cDNA demonstrated more than 80% identity with the sequences of other known insect HSP70s. Next, HSP70 was expressed in Escherichia coli BL21 (DE3) cells and identified using SDS-PAGE and western blotting analyses. In addition, anti-HSP70-specific antisera were prepared using a recombinant HSP70 protein, and the results showed that this antisera was very specific to AcHSP70. Real-time quantitative polymerase chain reaction detected the relative transcription of the HSP70 gene in larvae and the transcription of A. c-nigrum in response to high temperatures. Induction of HSP70 was up-regulated to peak expression at 36°C. PMID:25688087

  19. High duty cycle pulses suppress orientation flights of crambid moths.

    PubMed

    Nakano, Ryo; Ihara, Fumio; Mishiro, Koji; Toyama, Masatoshi; Toda, Satoshi

    2015-12-01

    Bat-and-moth is a good model system for understanding predator-prey interactions resulting from interspecific coevolution. Night-flying insects have been under predation pressure from echolocating bats for 65Myr, pressuring vulnerable moths to evolve ultrasound detection and evasive maneuvers as counter tactics. Past studies of defensive behaviors against attacking bats have been biased toward noctuoid moth responses to short duration pulses of low-duty-cycle (LDC) bat calls. Depending on the region, however, moths have been exposed to predation pressure from high-duty-cycle (HDC) bats as well. Here, we reveal that long duration pulse of the sympatric HDC bat (e.g., greater horseshoe bat) is easily detected by the auditory nerve of Japanese crambid moths (yellow peach moth and Asian corn borer) and suppress both mate-finding flights of virgin males and host-finding flights of mated females. The hearing sensitivities for the duration of pulse stimuli significantly dropped non-linearly in both the two moth species as the pulse duration shortened. These hearing properties support the energy integrator model; however, the threshold reduction per doubling the duration has slightly larger than those of other moth species hitherto reported. And also, Asian corn borer showed a lower auditory sensitivity and a lower flight suppression to short duration pulse than yellow peach moth did. Therefore, flight disruption of moth might be more frequently achieved by the pulse structure of HDC calls. The combination of long pulses and inter-pulse intervals, which moths can readily continue detecting, will be useful for repelling moth pests. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Jumping mechanisms and strategies in moths (Lepidoptera).

    PubMed

    Burrows, Malcolm; Dorosenko, Marina

    2015-06-01

    To test whether jumping launches moths into the air, take-off by 58 species, ranging in mass from 0.1 to 220 mg, was captured in videos at 1000 frames s(-1). Three strategies for jumping were identified. First, rapid movements of both middle and hind legs provided propulsion while the wings remained closed. Second, middle and hind legs again provided propulsion but the wings now opened and flapped after take-off. Third, wing and leg movements both began before take-off and led to an earlier transition to powered flight. The middle and hind legs were of similar lengths and were between 10 and 130% longer than the front legs. The rapid depression of the trochantera and extension of the middle tibiae began some 3 ms before similar movements of the hind legs, but their tarsi lost contact with the ground before take-off. Acceleration times ranged from 10 ms in the lightest moths to 25 ms in the heaviest ones. Peak take-off velocities varied from 0.6 to 0.9 m s(-1) in all moths, with the fastest jump achieving a velocity of 1.2 m s(-1). The energy required to generate the fastest jumps was 1.1 µJ in lighter moths but rose to 62.1 µJ in heavier ones. Mean accelerations ranged from 26 to 90 m s(-2) and a maximum force of 9 G: was experienced. The highest power output was within the capability of normal muscle so that jumps were powered by direct contractions of muscles without catapult mechanisms or energy storage. © 2015. Published by The Company of Biologists Ltd.

  1. Future Risk of Gypsy Moth Defoliation

    EPA Pesticide Factsheets

    Data from the suitable habitat combined with forest density, and adjusted by prefered species basal area and the predicited geographic pattern of defoliation can be used to predict future potential for gypsy moth defoliation. More information about these resources, including the variables used in this study, may be found here: https://edg.epa.gov/data/Public/ORD/NERL/ReVA/ReVA_Data.zip.

  2. Multimodal Floral Signals and Moth Foraging Decisions

    PubMed Central

    Riffell, Jeffrey A.; Alarcón, Ruben

    2013-01-01

    Background Combinations of floral traits – which operate as attractive signals to pollinators – act on multiple sensory modalities. For Manduca sexta hawkmoths, how learning modifies foraging decisions in response to those traits remains untested, and the contribution of visual and olfactory floral displays on behavior remains unclear. Methodology/Principal Findings Using M. sexta and the floral traits of two important nectar resources in southwestern USA, Datura wrightii and Agave palmeri, we examined the relative importance of olfactory and visual signals. Natural visual and olfactory cues from D. wrightii and A. palmeri flowers permits testing the cues at their native intensities and composition – a contrast to many studies that have used artificial stimuli (essential oils, single odorants) that are less ecologically relevant. Results from a series of two-choice assays where the olfactory and visual floral displays were manipulated showed that naïve hawkmoths preferred flowers displaying both olfactory and visual cues. Furthermore, experiments using A. palmeri flowers – a species that is not very attractive to hawkmoths – showed that the visual and olfactory displays did not have synergistic effects. The combination of olfactory and visual display of D. wrightii, however – a flower that is highly attractive to naïve hawkmoths – did influence the time moths spent feeding from the flowers. The importance of the olfactory and visual signals were further demonstrated in learning experiments in which experienced moths, when exposed to uncoupled floral displays, ultimately chose flowers based on the previously experienced olfactory, and not visual, signals. These moths, however, had significantly longer decision times than moths exposed to coupled floral displays. Conclusions/Significance These results highlight the importance of specific sensory modalities for foraging hawkmoths while also suggesting that they learn the floral displays as

  3. Modeling seasonal migration of fall armyworm moths.

    PubMed

    Westbrook, J K; Nagoshi, R N; Meagher, R L; Fleischer, S J; Jairam, S

    2016-02-01

    Fall armyworm, Spodoptera frugiperda (J.E. Smith), is a highly mobile insect pest of a wide range of host crops. However, this pest of tropical origin cannot survive extended periods of freezing temperature but must migrate northward each spring if it is to re-infest cropping areas in temperate regions. The northward limit of the winter-breeding region for North America extends to southern regions of Texas and Florida, but infestations are regularly reported as far north as Québec and Ontario provinces in Canada by the end of summer. Recent genetic analyses have characterized migratory pathways from these winter-breeding regions, but knowledge is lacking on the atmosphere's role in influencing the timing, distance, and direction of migratory flights. The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used to simulate migratory flight of fall armyworm moths from distinct winter-breeding source areas. Model simulations identified regions of dominant immigration from the Florida and Texas source areas and overlapping immigrant populations in the Alabama-Georgia and Pennsylvania-Mid-Atlantic regions. This simulated migratory pattern corroborates a previous migratory map based on the distribution of fall armyworm haplotype profiles. We found a significant regression between the simulated first week of moth immigration and first week of moth capture (for locations which captured ≥ 10 moths), which on average indicated that the model simulated first immigration 2 weeks before first captures in pheromone traps. The results contribute to knowledge of fall armyworm population ecology on a continental scale and will aid in the prediction and interpretation of inter-annual variability of insect migration patterns including those in response to climatic change and adoption rates of transgenic cultivars.

  4. Modeling seasonal migration of fall armyworm moths

    NASA Astrophysics Data System (ADS)

    Westbrook, J. K.; Nagoshi, R. N.; Meagher, R. L.; Fleischer, S. J.; Jairam, S.

    2016-02-01

    Fall armyworm, Spodoptera frugiperda (J.E. Smith), is a highly mobile insect pest of a wide range of host crops. However, this pest of tropical origin cannot survive extended periods of freezing temperature but must migrate northward each spring if it is to re-infest cropping areas in temperate regions. The northward limit of the winter-breeding region for North America extends to southern regions of Texas and Florida, but infestations are regularly reported as far north as Québec and Ontario provinces in Canada by the end of summer. Recent genetic analyses have characterized migratory pathways from these winter-breeding regions, but knowledge is lacking on the atmosphere's role in influencing the timing, distance, and direction of migratory flights. The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used to simulate migratory flight of fall armyworm moths from distinct winter-breeding source areas. Model simulations identified regions of dominant immigration from the Florida and Texas source areas and overlapping immigrant populations in the Alabama-Georgia and Pennsylvania-Mid-Atlantic regions. This simulated migratory pattern corroborates a previous migratory map based on the distribution of fall armyworm haplotype profiles. We found a significant regression between the simulated first week of moth immigration and first week of moth capture (for locations which captured ≥10 moths), which on average indicated that the model simulated first immigration 2 weeks before first captures in pheromone traps. The results contribute to knowledge of fall armyworm population ecology on a continental scale and will aid in the prediction and interpretation of inter-annual variability of insect migration patterns including those in response to climatic change and adoption rates of transgenic cultivars.

  5. Habitat Impact on Ultraviolet Reflectance in Moths.

    PubMed

    Zapletalová, L; Zapletal, M; Konvička, M

    2016-10-01

    A comparison of 95 species of Central European moths, representing 11 families and inhabiting various habitats, was carried out in order to detect the potential impact of biotope on the ultraviolet (UV) light reflectance of their wings. Based on digitized photographs taken under UV light conditions, a phylogeny-controlled redundancy analysis relating UV reflectance to preferred habitat type (xerophilous, mesophilous, and hygrophilous) and habitat openness (open, semiopen, and closed) was carried out. Species preferring hygrophilous habitats displayed significantly higher UV wing reflectance than species inhabiting xerothermic and mesic habitats, and this pattern remained significant even after controlling for phyletic relationships. In contrast, UV wing reflectance displayed no pattern related to habitat openness. Given the higher UV reflectance of water and humid surfaces, we interpret these results, which are based on the first comprehensive sampling of UV reflectance in Central European moths, in terms of predator avoidance under habitat-specific light conditions. We conclude that the moisture content of the environment may markedly contribute to the variation of appearance of moth wings for better imitation habitat characteristics and therefore to increase protection. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Agrotis segetum midgut putative receptor of Bacillus thuringiensis vegetative insecticidal protein Vip3Aa16 differs from that of Cry1Ac toxin.

    PubMed

    Ben Hamadou-Charfi, Dorra; Boukedi, Hanen; Abdelkefi-Mesrati, Lobna; Tounsi, Slim; Jaoua, Samir

    2013-10-01

    Considering the fact that Agrotis segetum is one of the most pathogenic insects to vegetables and cereals in the world, particularly in Africa, the mode of action of Vip3Aa16 of Bacillus thuringiensis BUPM95 and Cry1Ac of the recombinant strain BNS3Cry-(pHTcry1Ac) has been examined in this crop pest. A. segetum proteases activated the Vip3Aa16 protoxin (90kDa) yielding three bands of about 62, 45, 22kDa and the activated form of the toxin was active against this pest with an LC50 of about 86ng/cm(2). To be active against A. segetum, Cry1Ac protoxin was activated to three close bands of about 60-65kDa. Homologous and heterologous competition binding experiments demonstrated that Vip3Aa16 bound specifically to brush border membrane vesicles (BBMV) prepared from A. segetum midgut and that it does not inhibit the binding of Cry1Ac. Moreover, BBMV protein blotting experiments showed that the receptor of Vip3Aa16 toxin in A. segetum midgut differs from that of Cry1Ac. In fact, the latter binds to a 120kDa protein whereas the Vip3Aa16 binds to a 65kDa putative receptor. The midgut histopathology of Vip3Aa16 fed larvae showed vacuolization of the cytoplasm, brush border membrane lysis, vesicle formation in the goblet cells and disintegration of the apical membrane. The distinct binding properties and the unique protein sequence of Vip3Aa16 support its use as a novel insecticidal agent to control the crop pest A. segetum.

  7. Life stage toxicity and residual activity of insecticides to codling moth and oriental fruit moth (Lepidoptera: Tortricidae).

    PubMed

    Magalhaes, Leonardo C; Walgenbach, James F

    2011-12-01

    The codling moth, Cydia pomonella (L.), and oriental fruit moth, Grapholita molesta (Busck), are two key pests of apple (Malus domestica Borkh.) in North Carolina. Growers extensively relied on organophosphate insecticides, primarily azinphosmethyl, for > 40 yr to manage these pests. Because of organophosphate resistance development and regulatory actions, growers are transitioning to management programs that use new, reduced-risk, and OP-replacement insecticides. This study evaluated the toxicity of a diversity of replacement insecticides to eggs, larvae, and adults, as well as an assessment of their residual activity, to codling moth and oriental fruit moth. Laboratory-susceptible strains of both species were used for all bioassays. Fresh field-harvested apples were used as a media for assessing the ovicidal activity of insecticides. For larval studies, insecticides were topically applied to the surface of lima bean-based diet, onto which neonates were placed. Toxicity was based on two measures of mortality; 5-d mortality and development to adult stage. Ovicidal bioassays showed that oriental fruit moth eggs were generally more tolerant than codling moth eggs to insecticides, with novaluron, acetamiprid, and azinphoshmethyl having the highest levels of toxicity to eggs of both species. In contrast, codling moth larvae generally were more tolerant than oriental fruit moth to most insecticides. Methoxyfenozide and pyriproxyfen were the only insecticides with lower LC50 values against codling moth than oriental fruit moth neonates. Moreover, a number of insecticides, particularly the IGRs methoxyfenozide and novaluron, the anthranilic diamide chlorantriliprole, and the spinosyn spinetoram, provided equal or longer residual activity against codling moth compared with azinphosmethyl in field studies. Results are discussed in relation to their use in devising field use patterns of insecticides and for insecticide resistance monitoring programs.

  8. Tip moth parasitoids and pesticides: Are they compatible?

    Treesearch

    Kenneth W. McCravy; Mark J. Dalusky; C. Wayne Berisford

    1999-01-01

    Effects of herbicide and insecticide applications on parasitism of the Nantucket pine tip moth, Rhyacionia frustrana (Comstock) were examined in 2-yr-old loblolly pine (Pinus taeda L.) plantations in Georgia. Total parasitism rates varied significantly among tip moth generations, but there were no differences in parasitism rates between herbicide-treated and untreated...

  9. Allee effects and pulsed invasion by the gypsy moth

    Treesearch

    Derk M. Johnson; Andrew M. Liebhold; Patrick C. Tobin; Ottar N. Bjornstad

    2006-01-01

    Biological invasions pose considerable threats to the world's ecosystems and cause substantial economic losses. A prime example is the invasion of the gypsy moth in the United States, for which more than $194 million was spent on management and monitoring between 1985 and 2004 alone. The spread of the gypsy moth across eastern North America is, perhaps, the most...

  10. Effects of short photoperiod on codling moth diapause and survival

    USDA-ARS?s Scientific Manuscript database

    The potential presence of codling moth, Cydia pomonella L., in apples shipped to countries within the 30th latitudes has raised concerns that this pest could establish and spread in these countries. Previous research demonstrated that codling moth in apples handled under simulated commercial cold st...

  11. HOW to Identify and Minimize Red Pine Shoot Moth Damage

    Treesearch

    Steven Katovich; David J. Hall

    1992-01-01

    The red pine shoot moth, Dioryctria resinosella, feeds on newly expanding shoots and cones of red pine, Pinus resinosa. Damage has been reported from Maine, Michigan, Minnesota, Wisconsin, and southern Ontario. The red pine shoot moth is now considered a pest due to the large increase in the number and overall acreage of red pine plantations greater than 20 years of...

  12. Moth tails divert bat attack: evolution of acoustic deflection.

    PubMed

    Barber, Jesse R; Leavell, Brian C; Keener, Adam L; Breinholt, Jesse W; Chadwell, Brad A; McClure, Christopher J W; Hill, Geena M; Kawahara, Akito Y

    2015-03-03

    Adaptations to divert the attacks of visually guided predators have evolved repeatedly in animals. Using high-speed infrared videography, we show that luna moths (Actias luna) generate an acoustic diversion with spinning hindwing tails to deflect echolocating bat attacks away from their body and toward these nonessential appendages. We pit luna moths against big brown bats (Eptesicus fuscus) and demonstrate a survival advantage of ∼ 47% for moths with tails versus those that had their tails removed. The benefit of hindwing tails is equivalent to the advantage conferred to moths by bat-detecting ears. Moth tails lured bat attacks to these wing regions during 55% of interactions between bats and intact luna moths. We analyzed flight kinematics of moths with and without hindwing tails and suggest that tails have a minimal role in flight performance. Using a robust phylogeny, we find that long spatulate tails have independently evolved four times in saturniid moths, further supporting the selective advantage of this anti-bat strategy. Diversionary tactics are perhaps more common than appreciated in predator-prey interactions. Our finding suggests that focusing on the sensory ecologies of key predators will reveal such countermeasures in prey.

  13. Spatial analysis of harmonic oscillation of gypsy moth outbreak intensity

    Treesearch

    Kyle J. Haynes; Andrew M. Liebhold; Derek M. Johnson

    2009-01-01

    Outbreaks of many forest-defoliating insects are synchronous over broad geographic areas and occur with a period of approximately 10 years. Within the range of the gypsy moth in North America, however, there is considerable geographic heterogeneity in strength of periodicity and the frequency of outbreaks. Furthermore, gypsy moth outbreaks exhibit two significant...

  14. Landscape ecology of gypsy moth in the Northeastern United States

    Treesearch

    Andrew Liebhold; Joel Halverson; Gregory Elmes; Jay Hutchinson

    1991-01-01

    The gypsy moth was accidentally introduced to North America near Boston by E. Leopold Trouvelot in 1869. Since that time, the range of the gypsy moth has slowly spread and the generally infested region presently extends as far as Ohio, West Virginia, Virginia and North Carolina. A separate isolated but expanding population exists in Michigan. The goal of this study was...

  15. The Homeowner and the Gypsy Moth: Guidelines for Control

    Treesearch

    Michael L. McManus; David R. Houston; William E. Wallner

    1979-01-01

    The gypsy moth is the most important defoliating insect of hardwood trees in the Eastern United States (fig. 1). Since the turn of the century, millions of dollars have been spent in efforts to control or eliminate gypsy moth populations and to retard natural and artificial spread. In the early decades of this century, outbreaks occurred only in New England; today...

  16. What causes the patterns of gypsy moth defoliation?

    Treesearch

    Clive G. Jones

    1991-01-01

    Gypsy moth defoliation is typically observed to occur on xeric ridge tops before more mesic, lowland forest, in oak-dominated habitats in the Northeast. In subsequent years defoliation may also occur in mesic forests. What causes this pattern of defoliation? Differences in the degree of defoliation may be due to differences in the density of gypsy moth populations in...

  17. Characteristics of Stands Susceptible and Resistant to Gypsy Moth Defoliation

    Treesearch

    David R. Houston

    1983-01-01

    Site conditions strongly influence where gypsy moth defohation will occur. In New England, where gypsy moths and foresta have interacted for over a century, some foreats have had a history of repeated defoliation while others have been defo1iated only rarely. The often defohated or susceptible forests characteristically grow on dry sitea such as rocky ridges or...

  18. RNA Interference in Moths: Mechanisms, Applications, and Progress

    PubMed Central

    Xu, Jin; Wang, Xia-Fei; Chen, Peng; Liu, Fang-Tao; Zheng, Shuai-Chao; Ye, Hui; Mo, Ming-He

    2016-01-01

    The vast majority of lepidopterans, about 90%, are moths. Some moths, particularly their caterpillars, are major agricultural and forestry pests in many parts of the world. However, some other members of moths, such as the silkworm Bombyx mori, are famous for their economic value. Fire et al. in 1998 initially found that exogenous double-stranded RNA (dsRNA) can silence the homolog endogenous mRNA in organisms, which is called RNA interference (RNAi). Soon after, the RNAi technique proved to be very promising not only in gene function determination but also in pest control. However, later studies demonstrate that performing RNAi in moths is not as straightforward as shown in other insect taxa. Nevertheless, since 2007, especially after 2010, an increasing number of reports have been published that describe successful RNAi experiments in different moth species either on gene function analysis or on pest management exploration. So far, more than 100 peer-reviewed papers have reported successful RNAi experiments in moths, covering 10 families and 25 species. By using classic and novel dsRNA delivery methods, these studies effectively silence the expression of various target genes and determine their function in larval development, reproduction, immunology, resistance against chemicals, and other biological processes. In addition, a number of laboratory and field trials have demonstrated that RNAi is also a potential strategy for moth pest management. In this review, therefore, we summarize and discuss the mechanisms and applications of the RNAi technique in moths by focusing on recent progresses. PMID:27775569

  19. Status and trends in gypsy moth defoliation hazard in Tennessee

    Treesearch

    Dennis M. May; Bruce W. Kauffman

    1990-01-01

    The gypsy moth, Lymantria dispar (L.), a major defoliator of eastern hardwood forests, has become established in Virginia and is moving towards Tennessee. In preparation for its inevitable arrival, Tennessee’s timberlands are hazard rated to identify those areas most susceptible to gypsy moth defoliation. Tree, stand, and site characteristics...

  20. Don't Squash That Gypsy Moth . . . Yet!

    ERIC Educational Resources Information Center

    Hershkowitz, Gerald

    1979-01-01

    Although the gypsy moth defoliates over 2 million trees annually, it can serve as an extremely valuable tool for promoting environmental awareness. The gypsy moth can illustrate insect life cycles, sexual dimorphism, scent attraction, many stimulus response experiments, evolution, natural controls, and pesticide uses and dangers. (SB)

  1. Impact of pine tip moth attack on loblolly pine

    Treesearch

    Roy Hedden

    1999-01-01

    Data on the impact of Nantucket pine tip moth, Rhyacionia frustrana, attack on the height of loblolly pine, Pinus taeda, in the first three growing seasons after planting from three locations in eastern North Carolina (U.S.A.) was used to develop multiple linear regression models relating tree height to tip moth infestation level in each growing season. These models...

  2. Mortality Risks for Forest Trees Threatened with Gypsy Moth Infestation

    Treesearch

    Owen W. Herrick; David A. Gansner; David A. Gansner

    1987-01-01

    Presents guidelines for estimating potential tree mortality associated with gypsy moth defoliation. A tree's crown condition, crown position, and species group can be used to assign probabilities of death. Forest-land managers need such information to develop marking guides and implement silvicultural treatments for forest trees threatened with gypsy moth...

  3. Susceptibility of regeneration in clearcuts to defoliation by gypsy moth

    Treesearch

    Ray R., Jr. Hicks; Robert M. Fultineer; Barbara S. Ware; Kurt W. Gottschalk

    1993-01-01

    In 1991 and 1992, we observed gypsy moth defoliation of oak regeneration in clearcuts of varying sizes and ages. We established plots in the surrounding mature forests to document ambient gypsy moth population levels and placed subplots within the clearcuts designed to examine the effect of location relative to the clearcut edge. We found that the levels of defoliation...

  4. The effects of gypsy moth defoliation on soil water chemistry

    Treesearch

    Thomas R., Jr. Eagle; Ray R., Jr. Hicks

    1993-01-01

    Twenty-eight plots were established in oak stands along the leading edge of gypsy moth migration into north-central West Virginia. Plots were arranged in a 3-chain square grid pattern in areas of varying aspect, percent slope, elevation, site index and species composition. Soft water, gypsy moth frass and leaf fragments generated by larval feeding were collected weekly...

  5. Selection of active strains of the gypsy moth nuclearpolyhedrosis virus

    Treesearch

    M. Shapiro; E. Dougherty

    1985-01-01

    The gypsy moth Lymantria dispar (Linnaeus) has grown in economic importance as an insect pest over the past 75 years. From a localized infestation of a small geographical area of New England, the gypsy moth has spread to such an extent that is now found over much of the United States. Control measures are varied, but effective biological control is...

  6. Enzyme immunoassays for detection of gypsy moth nuclear polyhedrosis virus

    Treesearch

    Michael Ma

    1985-01-01

    Enzyme-linked immunosorbent assays (ELISA) were developed for detecting gypsy moth (Lymantria dispar L.) nuclear polyhedrosis virus (NPV). They were used to detect the presence of NPV in hemoplymph samples collected from infected larvae. The incorporation of hybridoma antibodies with these procedures would make them even more specific for gypsy moth...

  7. Moth tails divert bat attack: Evolution of acoustic deflection

    PubMed Central

    Barber, Jesse R.; Leavell, Brian C.; Keener, Adam L.; Breinholt, Jesse W.; Chadwell, Brad A.; McClure, Christopher J. W.; Hill, Geena M.; Kawahara, Akito Y.

    2015-01-01

    Adaptations to divert the attacks of visually guided predators have evolved repeatedly in animals. Using high-speed infrared videography, we show that luna moths (Actias luna) generate an acoustic diversion with spinning hindwing tails to deflect echolocating bat attacks away from their body and toward these nonessential appendages. We pit luna moths against big brown bats (Eptesicus fuscus) and demonstrate a survival advantage of ∼47% for moths with tails versus those that had their tails removed. The benefit of hindwing tails is equivalent to the advantage conferred to moths by bat-detecting ears. Moth tails lured bat attacks to these wing regions during 55% of interactions between bats and intact luna moths. We analyzed flight kinematics of moths with and without hindwing tails and suggest that tails have a minimal role in flight performance. Using a robust phylogeny, we find that long spatulate tails have independently evolved four times in saturniid moths, further supporting the selective advantage of this anti-bat strategy. Diversionary tactics are perhaps more common than appreciated in predator–prey interactions. Our finding suggests that focusing on the sensory ecologies of key predators will reveal such countermeasures in prey. PMID:25730869

  8. Silvicultural treatments and logging costs for minimizing gypsy moth impacts

    Treesearch

    Michael D. Erickson; Curt C. Hassler; Chris B. LeDoux

    1991-01-01

    Gypsy moth defoliation is a serious threat to eastern hardwood forests. Felling and skidding costs for harvesting timber in silvicultural thinnings designed to reduce the impacts of the moth were evaluated. Cost of felling the nonmerchantable component of the thinnings to achieve treatment objectives are reported, along with a discussion of the economic feasibility of...

  9. Worldwide Variability of Insecticide Resistance Mechanisms in the Codling Moth

    USDA-ARS?s Scientific Manuscript database

    Known resistance mechanisms including the action of detoxifying enzymes and insensitive variants of target proteins were examined in individual male and female moths from 29 populations of codling moth, Cydia pomonella L collected in 11 countries in Africa, Europe, North America and the Australian c...

  10. Silvicultural guidelines for forest stands threatened by the gypsy moth

    Treesearch

    Kurt W. Gottschalk

    1993-01-01

    Ecological and silvicultural information on the interaction of gypsy moth and its host forest types is incorporated into silvicultural guidelines for minimizing the impacts of gypsy moth on forest stands threatened by the insect. Decision charts are used to match stand and insect conditions to the proper prescription that includes instructions for implementing it....

  11. Effects of gypsy moth outbreaks on North American woodpeckers

    Treesearch

    Walter D. Koenig; Eric L. Walters; Andrew M. Liebhold

    2011-01-01

    We examined the effects of the introduced gypsy moth (Lymantria dispar) on seven species of North American woodpeckers by matching spatially explicit data on gypsy moth outbreaks with data on breeding and wintering populations. In general, we detected modest effects during outbreaks: during the breeding season one species, the Red-headed Woodpecker...

  12. Monitoring and Managing Codling Moth Clearly and Precisely

    USDA-ARS?s Scientific Manuscript database

    Studies were conducted in two ‘Comice’ pear orchards treated with sex pheromone in southern Oregon to implement the use of site-specific management practices for codling moth. The density of monitoring traps was increased and insecticide sprays were applied based on moth catch thresholds. Only porti...

  13. Forest stand conditions after 13 years of gypsy moth infestation

    Treesearch

    David L. Feicht; Sandra L. C. Fosbroke; Mark J. Twery

    1993-01-01

    Of 603 central Pennsylvania plots that were established in 1978 to measure the short-term impact of repeated gypsy moth (Lymantria dispar) defoliation, 228 were selected for continued study in 1985. Individual observations of defoliation and tree vigor were continued through 1992. Although two gypsy moth outbreaks occurred across central Pennsylvania...

  14. Biology and population dynamics of the cactus moth, Cactoblastis cactorum

    USDA-ARS?s Scientific Manuscript database

    The cactus moth, Cactoblastis cactorum, was a successful biological control agent against prickly pear cacti in Australia in the 1920’s. Since then, it was introduced to other countries including the Carribean islands. In 1989, the cactus moth was reported in Florida and has continued to spread nort...

  15. The cactus moth, Cactoblastis cactorum: Lessons in Biological Control

    USDA-ARS?s Scientific Manuscript database

    The cactus moth was one of the success stories in classical biological control. In the 1920s, the prickly pear cactus was a serious pest in Australia. The cactus moth was imported from its native habitat in South America and proved so successful in controlling cactus that it was mass reared and exp...

  16. Analysis of spatial density dependence in gypsy moth mortality

    Treesearch

    Andrew Liebhold; Joseph S. Elkinton

    1991-01-01

    The gypsy moth is perhaps the most widely studied forest insect in the world and much of this research has focused on various aspects of population dynamics. But despite this voluminous amount of research we still lack a good understanding of which, if any, natural enemy species regulate gypsy moth populations. The classical approach to analyzing insect population...

  17. Multiple occurrences of mutualism in the yucca moth lineage.

    PubMed Central

    Pellmyr, O; Thompson, J N

    1992-01-01

    The complex mutualism between yuccas and the moths that pollinate their flowers is regarded as one of the most obvious cases of coevolution. Studies of related genera show that at least two of the critical behavioral and life history traits suggested to have resulted from coevolved mutualism in yucca moths are plesiomorphic to the family. Another trait, oviposition into flowers, has evolved repeatedly within the family. One species with these traits, Greya politella, feeds on and pollinates plants of a different family, but pollination occurs through a different component of the oviposition behavior than in the yucca moths. Major differences compared with yucca moths and their hosts are that G. politella only passively pollinates its host and that copollinators often contribute to pollination. This analysis suggests that evolution of mutualism between yuccas and yucca moths may have required few behavioral and life history changes in the moths. The truly coevolved features of this interaction appear to be the evolution of active pollination by the moths, the associated morphological structures in the moths for carrying pollen, and the exclusion of copollinators by yuccas. Images PMID:11607287

  18. Don't Squash That Gypsy Moth . . . Yet!

    ERIC Educational Resources Information Center

    Hershkowitz, Gerald

    1979-01-01

    Although the gypsy moth defoliates over 2 million trees annually, it can serve as an extremely valuable tool for promoting environmental awareness. The gypsy moth can illustrate insect life cycles, sexual dimorphism, scent attraction, many stimulus response experiments, evolution, natural controls, and pesticide uses and dangers. (SB)

  19. Douglas-fir tussock moth: an annotated bibliography.

    Treesearch

    Robert W. Campbell; Lorna C. Youngs

    1978-01-01

    This annotated bibliography includes references to 338 papers. Each deals in some way with either the Douglas-fir tussock moth, Orgyia pseudotsugata (McDunnough), or a related species. Specifically, 210 publications and 82 unpublished documents make some reference, at least, to the Douglas-fir tussock moth; 55 are concerned with other species in...

  20. The North Kaibab pandora moth outbreak, 1978-1984

    Treesearch

    J. M. Schmid; D. D. Bennett

    1988-01-01

    A pandora moth outbreak in Arizona was studied from 1979 to 1985 to determine the moth's life cycle, densities, and distribution of life stages, larval and adult behavior, effects of the defoliation, sampling procedures, importance of biotic mortality factors, and the effectiveness of insecticides. This report summarizes the available published and unpublished...

  1. Sex Attractant Pheromone of the Luna Moth, Actias luna (Linnaeus).

    PubMed

    Millar, Jocelyn G; Haynes, Kenneth F; Dossey, Aaron T; McElfresh, J Steven; Allison, Jeremy D

    2016-09-01

    Giant silk moths (Lepidoptera: Saturniidae) typically are not well represented as larvae or adults in community level inventories of Lepidoptera, and as a result, little is known about their population dynamics. Furthermore, in recent years, many species of silk moths appear to have experienced population declines. Volatile sex pheromones are powerful sampling tools that can be used in operational conservation and monitoring programs for insects. Here, we describe the identification of the sex attractant pheromone of a giant silk moth, the luna moth Actias luna. Coupled gas chromatography-electroantennographic detection and gas chromatography-mass spectrometric analyses of extracts from pheromone glands of female luna moths supported the identification of (6E,11Z)-6,11-octadecadienal (E6,Z11-18:Ald), (6E)-6-octadecenal (E6-18:Ald), and (11Z)-11-octadecenal (Z11-18:Ald) as the compounds in extracts that elicited responses from antennae of male moths. These identifications were confirmed by synthesis, followed by testing of blends of the synthetic compounds in field trials in Ontario, Canada, and Kentucky, USA. Male moths were attracted to synthetic E6,Z11-18:Ald as a single component. Attraction appeared to be enhanced by addition of E6-18:Ald but not Z11-18:Ald, suggesting that the luna moth pheromone consists of a blend of E6,Z11-18:Ald and E6-18:Ald.

  2. Response of Adult Lymantriid Moths to Illumination Devices in the Russian Far East

    Treesearch

    William E. Wallner; Lee M. Humble; Robert E. Levin; Yuri N. Baranchikov; Ring T. Carde; Ring T. Carde

    1995-01-01

    In field studies in the Russian Far East, five types of illuminating devices were evaluated for attracting adult gypsy moth, Lymantria dispar (L.), pink gypsy moth, L. mathura Moore, and nun moth, L. monacha (L.). Our objective was to determine if light from commercial lamps suited to out-of-doors floodlighting could be modified to reduce their attractiveness to moths...

  3. The Gypsy Moth Event Monitor for FVS: a tool for forest and pest managers

    Treesearch

    Kurt W. Gottschalk; Anthony W. Courter

    2007-01-01

    The Gypsy Moth Event Monitor is a program that simulates the effects of gypsy moth, Lymantria dispar (L.), within the confines of the Forest Vegetation Simulator (FVS). Individual stands are evaluated with a susceptibility index system to determine the vulnerability of the stand to the effects of gypsy moth. A gypsy moth outbreak is scheduled in the...

  4. Management of shoot boring moths from genera Rhyacionia and Eucosma with attract and kill technology

    Treesearch

    R. Hoffman; D. Czokajlo; G. Daterman; J. McLaughlin; J. Webster; < i> et. al.< /i>

    2003-01-01

    LastCall™ (LC), an attract and kill bait matrix, was deployed for the management of shoot boring moths in pine plantations and seed orchards. The targeted moths were the Western pine shoot borer, Eucosma sonomana (WPSB), European pine shoot moth, Rhyacionia buoliana (EPSM), Ponderosa pine tip moth, Rhyacionia...

  5. Parasitoids of the nantucket pine tip moth (Lepidoptera: Tortricidae) in the coastal plain of Georgia

    Treesearch

    Kenneth W. McCravy; C. Wayne Berisford

    2000-01-01

    Parasitism of the Nantucket pine tip moth, Rhyacionia frustrana (Comstock), was studied for four consecutive generations in the Georgia coastal plain by collecting tip moth-infested shoots and rearing adult moths and parasitoids. Nineteen species of parasitoids were collected. Based on numbers of emerging adults, the overall tip moth parasitism rate...

  6. Impact of Kairomones on Moth Pest Management: Pear Ester and the Codling Moth

    USDA-ARS?s Scientific Manuscript database

    Codling moth (CM) is the major pest of apples, pears, and walnuts worldwide. Our focus is to develop novel, species-specific monitoring and control systems based on host-plant odors, kairomones. In 1998 ‘pear ester’ (PE), ethyl (2E, 4Z)-2,4-decadienoate, was identified as a powerful kairomonal attra...

  7. DNA Barcoding of Gypsy Moths From China (Lepidoptera: Erebidae) Reveals New Haplotypes and Divergence Patterns Within Gypsy Moth Subspecies.

    PubMed

    Chen, Fang; Luo, Youqing; Keena, Melody A; Wu, Ying; Wu, Peng; Shi, Juan

    2016-02-01

    The gypsy moth from Asia (two subspecies) is considered a greater threat to North America than European gypsy moth, because of a broader host range and females being capable of flight. Variation within and among gypsy moths from China (nine locations), one of the native countries of Asian gypsy moth, were compared using DNA barcode sequences (658 bp of mtDNA cytochrome c oxidase subunit 1 [COI] sequence), together with two restriction site mtDNA markers (NlaIII and BamHI in COI), which is the standard system used to distinguish European gypsy moths from Asian gypsy moths. Relatedness of these populations to gypsy moths from seven other world areas was also examined. The restriction site markers showed that two Chinese populations had both Asian and European haplotypes. DNA barcode sequence divergence between the Asian populations and the European populations was three times greater than the variation within each group. Using Bayesian and parsimonious network analyses, nine previously unknown barcode haplotypes were documented from China and a single haplotype was found to be shared by 55% of the Chinese and some Far Eastern Russian and Japanese individuals. Some gypsy moths from two Chinese populations showed genetic affinity with mtDNA haplotypes from Siberia, Russia, suggesting there could be a cryptic new subspecies in Lymantria dispar (L.) or human-aided movement of moths between these two locations at an earlier point in time. The previously unknown haplotype patterns may complicate efforts to identify Asian gypsy moth introductions and require changes in monitoring and exclusion programs.

  8. Spatial analysis of harmonic oscillation of gypsy moth outbreak intensity.

    PubMed

    Haynes, Kyle J; Liebhold, Andrew M; Johnson, Derek M

    2009-03-01

    Outbreaks of many forest-defoliating insects are synchronous over broad geographic areas and occur with a period of approximately 10 years. Within the range of the gypsy moth in North America, however, there is considerable geographic heterogeneity in strength of periodicity and the frequency of outbreaks. Furthermore, gypsy moth outbreaks exhibit two significant periodicities: a dominant period of 8-10 years and a subdominant period of 4-5 years. In this study, we used a simulation model and spatially referenced time series of outbreak intensity data from the Northeastern United States to show that the bimodal periodicity in the intensity of gypsy moth outbreaks is largely a result of harmonic oscillations in gypsy moth abundance at and above a 4 km(2) scale of resolution. We also used geographically weighted regression models to explore the effects of gypsy moth host-tree abundance on the periodicity of gypsy moths. We found that the strength of 5-year cycles increased relative to the strength of 10-year cycles with increasing host tree abundance. We suggest that this pattern emerges because high host-tree availability enhances the growth rates of gypsy moth populations.

  9. Multiple origins of the yucca-yucca moth association.

    PubMed Central

    Bogler, D J; Neff, J L; Simpson, B B

    1995-01-01

    The association of species of yucca and their pollinating moths is considered one of the two classic cases of obligate mutualism between floral hosts and their pollinators. The system involves the active collection of pollen by females of two prodoxid moth genera and the subsequent purposeful placement of the pollen on conspecific stigmas of species of Yucca. Yuccas essentially depend on the moths for pollination and the moths require Yucca ovaries for oviposition. Because of the specificity involved, it has been assumed that the association arose once, although it has been suggested that within the prodoxid moths as a whole, pollinators have arisen from seed predators more than once. We show, by using phylogenies generated from three molecular data sets, that the supposed restriction of the yucca moths and their allies to the Agavaceae is an artifact caused by an incorrect circumscription of this family. In addition we provide evidence that Yucca is not monophyletic, leading to the conclusion that the modern Yucca-yucca moth relationship developed independently more than once by colonization of a new host. PMID:7624333

  10. Effects of short photoperiod on codling moth diapause and survival.

    PubMed

    Neven, Lisa G

    2013-02-01

    The potential presence of codling moth, Cydia pomonella L., in apples shipped to countries within the 30th latitudes has raised concerns that this pest could establish and spread in these countries. Previous research demonstrated that codling moth in apples handled under simulated commercial cold storage conditions and held under short day lengths could not break diapause and emerge in sufficient numbers to establish a minimum viable population. This study expands the in-fruit work by examining the ability of codling moth to establish a laboratory population under a short photoperiod of 12:12 (L:D) h, as compared with a long photoperiod of 16:8 (L:D) h. Codling moth larvae were collected from field infested fruits in 2010 and 2011. Moths were collected from the infested fruits and separated into two groups representing the two daylength conditions. In total, 1,004 larvae were monitored for adult emergence and ability to generate a subsequent population. Larvae held under the photoperiod of 12:12 (L:D) h generated only one moth in the 2 yr period, whereas larvae held under the photoperiod of 16:8 (L:D) h generated 186 females and 179 males, that sustained subsequent generations on artificial diet under laboratory conditions. These results indicate that under controlled environmental conditions, codling moth cannot complete diapause and emerge in sufficient numbers to sustain a viable population when held under a short photoperiod.

  11. Angel lichen moth abundance and morphology data

    USGS Publications Warehouse

    Metcalfe, Anya; Kennedy, Theodore A.; Muehlbauer, Jeffrey D.

    2016-01-01

    Two unique datasets on the abundance and morphology of the angel lichen moth ( Cisthene angelus) in Grand Canyon, Arizona, USA were compiled to describe the phenology and life history of this common, but poorly known, species. The abundance data were collected from 2012 to 2013 through a collaboration with river runners in Grand Canyon National Park. These citizen scientists deployed light traps from their campsites for one hour each night of their expedition. Insects were preserved in ethanol on site, and returned to the Southwest Biological Science Center in Flagstaff, Arizona for analysis in the laboratory. A total of 2,437 light trap samples were sorted through, 903 of which contained C. angelus. In total, 73,841 C. angelus were identified and enumerated to create the abundance data set. The morphology dataset is based on a subset of 28 light trap samples from sampling year 2012 (14 from spring and 14 from fall.) It includes gender and forewing lengths for 2,674 individual moths and dry weights for 1,102 of those individuals.

  12. [Thermal tolerance of diamondback moth Plutella xylostella].

    PubMed

    Chang, Xiang-Qian; Ma, Chun-Sen; Zhang, Shu; Lü, Liang

    2012-03-01

    Diamondback moth Plutella xylostella is a worldwide important pest on cruciferous vegetables. Critical thermal maximum (CTMax) is often used as an index for the thermal tolerance of insects. By the method of dynamic heating, this paper measured the CTMax of P. xylostella in a self-assembled device, and studied the effects of development stage, rearing temperature, generation, sex, and heat shock on the thermal tolerance of P. xylostella based on the CTMax values. Reared at 25 degrees C, the mean CTMax of the 4th larva (50.31 degrees C) was significantly higher than that of the 1st larva (43.03 degrees C), 2nd larva (46.39 degrees C), 3rd larva (49.67 degrees C), female adult (45.76 degrees C), and male adult (47.73 degrees C); reared at 20, 25, and 30 degrees C, the adults had no significant difference in their CTMax; reared at 30 degrees C for 1-, 3-, and 6 generations, the CTMax of the adults also had no significant difference. In all the treatments, the CTMax of the female and male adults had less difference. Heat shock with 40 degrees C for 45 minutes could make the CTMax of 5 day-old male moth increased from 45.51 degrees C to 46.49 degrees C.

  13. Different Effects of Bacillus thuringiensis Toxin Cry1Ab on Midgut Cell Transmembrane Potential of Mythimna separata and Agrotis ipsilon Larvae

    PubMed Central

    Wang, Yingying; Hu, Zhaonong; Wu, Wenjun

    2015-01-01

    Bacillus thuringiensis (Bt) Cry toxins from the Cry1A family demonstrate significantly different toxicities against members of the family Noctuidae for unknown reasons. In this study, membrane potential was measured and analyzed in freshly isolated midgut samples from Mythimna separata and Agrotis ipsilon larvae under oral administration and in vitro incubation with Bt toxin Cry1Ab to elucidate the mechanism of action for further control of these pests. Bioassay results showed that the larvae of M. separata achieved a LD50 of 258.84 ng/larva at 24 h after ingestion; M. separata larvae were at least eightfold more sensitive than A. ipsilon larvae to Cry1Ab. Force-feeding showed that the observed midgut apical-membrane potential (Vam) of M. separata larvae was significantly depolarized from −82.9 ± 6.6 mV to −19.9 ± 7.2 mV at 8 h after ingestion of 1 μg activated Cry1Ab, whereas no obvious changes were detected in A. ipsilon larvae with dosage of 5 μg Cry1Ab. The activated Cry1Ab caused a distinct concentration-dependent depolarization of the apical membrane; Vam was reduced by 50% after 14.7 ± 0.2, 9.8 ± 0.4, and 7.6 ± 0.6 min of treatment with 1, 5, and 10 μg/mL Cry1Ab, respectively. Cry1Ab showed a minimal effect on A. ipsilon larvae even at 20 μg/mL, and Vam decreased by 26.3% ± 2.3% after 15 min. The concentrations of Cry1Ab displayed no significant effect on the basolateral side of the epithelium. The Vam of A. ipsilon (−33.19 ± 6.29 mV, n = 51) was only half that of M. separata (−80.94 ± 6.95 mV, n = 75). The different degrees of sensitivity to Cry1Ab were speculatively associated with various habits, as well as the diverse physiological or biochemical characteristics of the midgut cell membranes. PMID:26694463

  14. Moths behaving like butterflies. Evolutionary loss of long range attractant pheromones in castniid moths: a Paysandisia archon model.

    PubMed

    Sarto i Monteys, Víctor; Acín, Patricia; Rosell, Glòria; Quero, Carmen; Jiménez, Miquel A; Guerrero, Angel

    2012-01-01

    In the course of evolution butterflies and moths developed two different reproductive behaviors. Whereas butterflies rely on visual stimuli for mate location, moths use the 'female calling plus male seduction' system, in which females release long-range sex pheromones to attract conspecific males. There are few exceptions from this pattern but in all cases known female moths possess sex pheromone glands which apparently have been lost in female butterflies. In the day-flying moth family Castniidae ("butterfly-moths"), which includes some important crop pests, no pheromones have been found so far. Using a multidisciplinary approach we described the steps involved in the courtship of P. archon, showing that visual cues are the only ones used for mate location; showed that the morphology and fine structure of the antennae of this moth are strikingly similar to those of butterflies, with male sensilla apparently not suited to detect female-released long range pheromones; showed that its females lack pheromone-producing glands, and identified three compounds as putative male sex pheromone (MSP) components of P. archon, released from the proximal halves of male forewings and hindwings. This study provides evidence for the first time in Lepidoptera that females of a moth do not produce any pheromone to attract males, and that mate location is achieved only visually by patrolling males, which may release a pheromone at short distance, putatively a mixture of Z,E-farnesal, E,E-farnesal, and (E,Z)-2,13-octadecadienol. The outlined behavior, long thought to be unique to butterflies, is likely to be widespread in Castniidae implying a novel, unparalleled butterfly-like reproductive behavior in moths. This will also have practical implications in applied entomology since it signifies that the monitoring/control of castniid pests should not be based on the use of female-produced pheromones, as it is usually done in many moths.

  15. Characterizing the interaction between the bogus yucca moth and yuccas: do bogus yucca moths impact yucca reproductive success?

    PubMed

    Althoff, David M; Segraves, Kari A; Sparks, Jed P

    2004-07-01

    Yucca moths are most well known for their obligate pollination mutualism with yuccas, where pollinator moths provide yuccas with pollen and, in exchange, the moth larvae feed on a subset of the developing yucca seeds. The pollinators, however, comprise only two of the three genera of yucca moths. Members of the third genus, Prodoxus, are the "bogus yucca moths" and are sister to the pollinator moths. Adult Prodoxus lack the specialized mouthparts used for pollination and the larvae feed on plant tissues other than seeds. Prodoxus larvae feed within the same plants as pollinator larvae and have the potential to influence yucca reproductive success directly by drawing resources away from flowers and fruit, or indirectly by modifying the costs of the mutualism with pollinators. We examined the interaction between the scape-feeding bogus yucca moth, Prodoxus decipiens, and one of its yucca hosts, Yucca filamentosa, by comparing female reproductive success of plants with and without moth larvae. We determined reproductive success by measuring a set of common reproductive traits such as flowering characteristics, seed set, and seed germination. In addition, we also quantified the percent total nitrogen in the seeds to determine whether the presence of larvae could potentially reduce seed quality. Flowering characteristics, seed set, and seed germination were not significantly different between plants with and without bogus yucca moth larvae. In contrast, the percent total nitrogen content of seeds was significantly lower in plants with P. decipiens larvae, and nitrogen content was negatively correlated with the number of larvae feeding within the inflorescence scape. Surveys of percent total nitrogen at three time periods during the flowering and fruiting of Y. filamentosa also showed that larval feeding decreased the amount of nitrogen in fruit tissue. Taken together, the results suggest that although P. decipiens influences nitrogen distribution in Y. filamentosa, this

  16. Carpenterworm Moths and Cerambycid Hardwood Borers Caught in Light Traps

    Treesearch

    J. D. Solomon; L. Newsome; W. N. Darwin

    1972-01-01

    A portable, battery-operated light trap was used in hardwood stands in Mississippi. Ten species of hardwood borers were captured with carpenterworm moths being taken in the greatest numbers. Many cerambycid borers were also captured.

  17. Forecasting defoliation by the gypsy moth in oak stands

    Treesearch

    Robert W. Campbell; Joseph P. Standaert

    1974-01-01

    A multiple-regression model is presented that reflects statistically significant correlations between defoliation by the gypsy moth, the dependent variable, and a series of biotic and physical independent variables. Both possible uses and shortcomings of this model are discussed.

  18. The Gypsy Moth as an Environmental Education Resource.

    ERIC Educational Resources Information Center

    Briggs, James

    1984-01-01

    Several ecological concepts--such as population dynamics, the impact of exotic species, integrated pest management, and predation--can be demonstrated utilizing the Gypsy Moth. Suggested materials and procedure for the lessons are provided. (ERB)

  19. Evolution of deceptive and true courtship songs in moths.

    PubMed

    Nakano, Ryo; Takanashi, Takuma; Surlykke, Annemarie; Skals, Niels; Ishikawa, Yukio

    2013-01-01

    Ultrasonic mating signals in moths are argued to have evolved via exploitation of the receivers' sensory bias towards bat echolocation calls. We have demonstrated that female moths of the Asian corn borer are unable to distinguish between the male courtship song and bat calls. Females react to both the male song and bat calls by "freezing", which males take advantage of in mating (deceptive courtship song). In contrast, females of the Japanese lichen moth are able to distinguish between the male song and bat calls by the structure of the sounds; females emit warning clicks against bats, but accept males (true courtship song). Here, we propose a hypothesis that deceptive and true signals evolved independently from slightly different precursory sounds; deceptive/true courtship songs in moths evolved from the sounds males incidentally emitted in a sexual context, which females could not/could distinguish, respectively, from bat calls.

  20. Gypsy moth larval defense mechanisms against pathogenic microorganisms

    Treesearch

    Kathleen S. Shields; Tariq M. Butt

    1991-01-01

    We investigated the response of gypsy moth, Lymantria dispar, larval hemocytes to L. dispar nuclear polyhedrosis virus (LdMNPV) administered per os and by injection, and to injected hyphal bodies and natural protoplasts of some entomopathogenic, entomophthoralean fungi.

  1. The Gypsy Moth as an Environmental Education Resource.

    ERIC Educational Resources Information Center

    Briggs, James

    1984-01-01

    Several ecological concepts--such as population dynamics, the impact of exotic species, integrated pest management, and predation--can be demonstrated utilizing the Gypsy Moth. Suggested materials and procedure for the lessons are provided. (ERB)

  2. Impact of small mammal predators on gypsy moth

    Treesearch

    Joseph S. Elkinton; Harvey R. Smith; Andrew M. Liebhold

    1991-01-01

    Research in western Massachusetts, on Cape Cod, and on Bryant Mountain in Vermont conducted over the past decade has confirmed the importance of mortality during the late larval and pupal stages to gypsy moth population dynamics.

  3. History of research on modelling gypsy moth population ecology

    Treesearch

    J. J. Colbert

    1991-01-01

    History of research to develop models of gypsy moth population dynamics and some related studies are described. Empirical regression-based models are reviewed, and then the more comprehensive process models are discussed. Current model- related research efforts are introduced.

  4. Evolution of deceptive and true courtship songs in moths

    PubMed Central

    Nakano, Ryo; Takanashi, Takuma; Surlykke, Annemarie; Skals, Niels; Ishikawa, Yukio

    2013-01-01

    Ultrasonic mating signals in moths are argued to have evolved via exploitation of the receivers' sensory bias towards bat echolocation calls. We have demonstrated that female moths of the Asian corn borer are unable to distinguish between the male courtship song and bat calls. Females react to both the male song and bat calls by “freezing”, which males take advantage of in mating (deceptive courtship song). In contrast, females of the Japanese lichen moth are able to distinguish between the male song and bat calls by the structure of the sounds; females emit warning clicks against bats, but accept males (true courtship song). Here, we propose a hypothesis that deceptive and true signals evolved independently from slightly different precursory sounds; deceptive/true courtship songs in moths evolved from the sounds males incidentally emitted in a sexual context, which females could not/could distinguish, respectively, from bat calls. PMID:23788180

  5. Moths are not silent, but whisper ultrasonic courtship songs.

    PubMed

    Nakano, R; Takanashi, T; Fujii, T; Skals, N; Surlykke, A; Ishikawa, Y

    2009-12-01

    Ultrasonic hearing is widespread among moths, but very few moth species have been reported to produce ultrasounds for sexual communication. In those that do, the signals are intense and thus well matched for long distance communication. By contrast, males of the Asian corn borer moth (Crambidae) were recently shown to whisper extremely low-intensity ultrasonic courtship songs close to females. Since low sound levels will prevent eavesdropping by predators, parasites and conspecific rivals, we predicted low intensity ultrasound communication to be widespread among moths. Here we tested 13 species of moths including members of the Noctuidae, Arctiidae, Geometridae and Crambidae. Males of nine species, 70%, produced broadband ultrasound close to females. Peak frequencies ranged from 38 to above 100 kHz. All sounds were of low intensity, 43-76 dB SPL at 1 cm [64+/-10 dB peSPL (mean +/- s.d.), N=9 species]. These quiet and/or hyper-frequency ultrasounds are audible to nearby mates, but inaudible to unintended receivers. Although largely unknown because it is so inconspicuous, acoustic communication using low intensity ultrasound appears to be widespread among hearing moths. Thus, acoustic communication may be the norm rather than the exception.

  6. Behaviourally mediated crypsis in two nocturnal moths with contrasting appearance

    PubMed Central

    Webster, Richard J.; Callahan, Alison; Godin, Jean-Guy J.; Sherratt, Thomas N.

    2008-01-01

    The natural resting orientations of several species of nocturnal moth on tree trunks were recorded over a three-month period in eastern Ontario, Canada. Moths from certain genera exhibited resting orientation distributions that differed significantly from random, whereas others did not. In particular, Catocala spp. collectively tended to orient vertically, whereas subfamily Larentiinae representatives showed a variety of orientations that did not differ significantly from random. To understand why different moth species adopted different orientations, we presented human subjects with a computer-based detection task of finding and ‘attacking’ Catocala cerogama and Euphyia intermediata target images at different orientations when superimposed on images of sugar maple (Acer saccharum) trees. For both C. cerogama and E. intermediata, orientation had a significant effect on survivorship, although the effect was more pronounced in C. cerogama. When the tree background images were flipped horizontally the optimal orientation changed accordingly, indicating that the detection rates were dependent on the interaction between certain directional appearance features of the moth and its background. Collectively, our results suggest that the contrasting wing patterns of the moths are involved in background matching, and that the moths are able to improve their crypsis through appropriate behavioural orientation. PMID:19000977

  7. Ancient diversification of Hyposmocoma moths in Hawaii.

    PubMed

    Haines, William P; Schmitz, Patrick; Rubinoff, Daniel

    2014-03-20

    Island biogeography is fundamental to understanding colonization, speciation and extinction. Remote volcanic archipelagoes represent ideal natural laboratories to study biogeography because they offer a discrete temporal and spatial context for colonization and speciation. The moth genus Hyposmocoma is one of very few lineages that diversified across the entire Hawaiian Archipelago, giving rise to over 400 species, including many restricted to the remote northwestern atolls and pinnacles, remnants of extinct volcanoes. Here, we report that Hyposmocoma is ~15 million years old, in contrast with previous studies of the Hawaiian biota, which have suggested that most lineages colonized the archipelago after the emergence of the current high islands (~5 Myr ago). We show that Hyposmocoma has dispersed from the remote Northwestern Hawaiian Islands to the current high islands more than 20 times. The ecological requirements of extant groups of Hyposmocoma provide insights into vanished ecosystems on islands that have long since eroded.

  8. Economic Analysis of the Gypsy Moth Problem in the Northeast: IV. Forest Stand Hazard Ratings for Gypsy Moth

    Treesearch

    David A. Gansner; Owen W. Herrick; William B. White

    1978-01-01

    Provides a practical method for rating the potential hazard of impending gypsy moth attacks to forest stands. Stepwise multiple regression analysis is used to develop equations for estimating tree mortality from easy-to-measure key characteristics of stand condition.

  9. Moths Behaving like Butterflies. Evolutionary Loss of Long Range Attractant Pheromones in Castniid Moths: A Paysandisia archon Model

    PubMed Central

    Sarto i Monteys, Víctor; Acín, Patricia; Rosell, Glòria; Quero, Carmen; Jiménez, Miquel A.; Guerrero, Angel

    2012-01-01

    Background In the course of evolution butterflies and moths developed two different reproductive behaviors. Whereas butterflies rely on visual stimuli for mate location, moths use the ‘female calling plus male seduction’ system, in which females release long-range sex pheromones to attract conspecific males. There are few exceptions from this pattern but in all cases known female moths possess sex pheromone glands which apparently have been lost in female butterflies. In the day-flying moth family Castniidae (“butterfly-moths”), which includes some important crop pests, no pheromones have been found so far. Methodology/Principal Findings Using a multidisciplinary approach we described the steps involved in the courtship of P. archon, showing that visual cues are the only ones used for mate location; showed that the morphology and fine structure of the antennae of this moth are strikingly similar to those of butterflies, with male sensilla apparently not suited to detect female-released long range pheromones; showed that its females lack pheromone-producing glands, and identified three compounds as putative male sex pheromone (MSP) components of P. archon, released from the proximal halves of male forewings and hindwings. Conclusions/Significance This study provides evidence for the first time in Lepidoptera that females of a moth do not produce any pheromone to attract males, and that mate location is achieved only visually by patrolling males, which may release a pheromone at short distance, putatively a mixture of Z,E-farnesal, E,E-farnesal, and (E,Z)-2,13-octadecadienol. The outlined behavior, long thought to be unique to butterflies, is likely to be widespread in Castniidae implying a novel, unparalleled butterfly-like reproductive behavior in moths. This will also have practical implications in applied entomology since it signifies that the monitoring/control of castniid pests should not be based on the use of female-produced pheromones, as it is

  10. Proceedings, U. S. Department of Agriculture interagency gypsy moth research review 1990

    Treesearch

    Kurt W. Gottschalk; Mark J. Twery; Shirley I. Smith; [Editors

    1991-01-01

    Eight invited papers and 68 abstracts of volunteer presentations on gypsy moth biology, ecology, impacts, and management presented at the U. S. Department of Agriculture Interagency Gypsy Moth Research Review.

  11. 76 FR 60358 - Gypsy Moth Generally Infested Areas; Additions in Indiana, Maine, Ohio, Virginia, West Virginia...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-29

    ... Animal and Plant Health Inspection Service 7 CFR Part 301 Gypsy Moth Generally Infested Areas; Additions... detection of infestations of gypsy moth in those areas. The interim rule was necessary to prevent the artificial spread of the gypsy moth to noninfested areas of the United States. DATES: Effective on September...

  12. Multi-year evaluation of mating disruption treatments against gypsy moth

    Treesearch

    Patrick C. Tobin; Kevin W. Thorpe; Laura M. Blackburn

    2007-01-01

    Mating disruption is the use of synthetic pheromone flakes that are aerially applied to foliage with the goal of interfering with male gypsy moths? ability to locate females and mate. Mating disruption is the primary tactic against gypsy moth used in the Gypsy Moth Slow-the-Spread Project (STS) [Tobin et al. 2004. Amer. Entomol. 50:200].

  13. 76 FR 21613 - Gypsy Moth Generally Infested Areas; Additions in Indiana, Maine, Ohio, Virginia, West Virginia...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-18

    ... Inspection Service 7 CFR Part 301 Gypsy Moth Generally Infested Areas; Additions in Indiana, Maine, Ohio...: Interim rule and request for comments. SUMMARY: We are amending the gypsy moth regulations by adding areas... areas based on the detection of infestations of gypsy moth in those areas. As a result of this action...

  14. 78 FR 24665 - Gypsy Moth Generally Infested Areas; Additions in Wisconsin

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-26

    ... Inspection Service 7 CFR Part 301 Gypsy Moth Generally Infested Areas; Additions in Wisconsin AGENCY: Animal... are amending the gypsy moth regulations by adding areas in Wisconsin to the list of generally infested areas based on the detection of infestations of gypsy moth in those areas. As a result of this action...

  15. Long-distance dispersal of the gypsy moth (Lepidoptera: Lymantriidae) facilitated its initial invasion of Wisconsin

    Treesearch

    Patrick C. Tobin; Laura M. Blackburn

    2008-01-01

    Gypsy moth (Lymantria dispar L.) spread is dominated by stratified dispersal, and, although spread rates are variable in space and time, the gypsy moth has invaded Wisconsin at a consistently higher rate than in other regions. Allee effects, which act on low-density populations ahead of the moving population that contribute to gypsy moth spread, have...

  16. 75 FR 78587 - Gypsy Moth Generally Infested Areas; Illinois, Indiana, Maine, Ohio, and Virginia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-16

    ... Health Inspection Service 7 CFR Part 301 Gypsy Moth Generally Infested Areas; Illinois, Indiana, Maine... areas based on the detection of infestations of gypsy moth in those areas. This document corrects errors... necessary to prevent the artificial spread of the gypsy moth to noninfested areas of the United States...

  17. 78 FR 63369 - Gypsy Moth Generally Infested Areas; Additions in Wisconsin

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ... Health Inspection Service 7 CFR Part 301 Gypsy Moth Generally Infested Areas; Additions in Wisconsin... infestations of gypsy moth in those areas. The interim rule was necessary to prevent the artificial spread of the gypsy moth to noninfested areas of the United States. DATES: Effective on October 24, 2013, we are...

  18. Effect of nucleopolyhedrosis virus on two avian predators of the gypsy moth

    Treesearch

    J. D. Podgwaite; P. R. Galipeau

    1978-01-01

    The nucleopolyhedrosis virus (NPV) of the gypsy moth was fed to black-capped chickadees and house sparrows in the form of NPV-infected gypsy moth larvae. Body weight and results of histological examination of organs of treated and control birds indicated that NPV had no apparent short term effect on these two important predators of the gypsy moth.

  19. What causes male-biased sex ratios in the gypsy moth parasitoid Glyptapanteles flavicoxis?

    Treesearch

    R. W. Fuester; K. S. Swan; G. Ramaseshiah

    2007-01-01

    Glyptapanteles flavicoxis (Marsh) is an oligophagous, gregarious larval parasitoid of the Indian gypsy moth, Lymantria obfuscata (Walker), that readily attacks the European gypsy moth, Lymantria dispar (L.). This species is believed to have potential for inundative releases against gypsy moth populations, because...

  20. The potential for trichogramma releases to suppress tip moth populations in pine plantations

    Treesearch

    David B. Orr; Charles P.-C Suh; Michael Philip; Kenneth W. McCravy; Gary L. DeBarr

    1999-01-01

    Because the Nantucket pine tip moth is a native pest, augmentation (mass-release) of native natural enemies may be the most promising method of tip moth biocontrol. The tip moth has several important egg, larval, and pupal parasitoids. Egg parasitoids are most effective as biocontrol agents because they eliminate the host before it reaches a damaging stage....

  1. Development of restriction enzyme analyses to distinguish winter moth from bruce spanworm and hybrids between them

    Treesearch

    Marinko Sremac; Joseph Elkinton; Adam. Porter

    2011-01-01

    Elkinton et. al. recently completed a survey of northeastern North America for the newly invasive winter moth, Operophtera brumata L. The survey used traps baited with the winter moth pheromone, which consists of a single compound also used by Bruce spanworm, O. bruceata (Hulst), the North American congener of winter moth. Our...

  2. Gypsy moth role in forest ecosystems: the good, the bad, and the indifferent

    Treesearch

    Rose-Marie Muzika; Kurt W. Gottschalk

    1995-01-01

    Despite a century of attempts to control populations of the gypsy moth, it remains one of the most destructive forest pests introduced to North America. Research has yielded valuable, albeit sometimes conflicting information about the effects of gypsy moth on forests. Anecdotal accounts and scientific data indicate that impacts of gypsy moth defoliation can range from...

  3. Evaluation of pheromone-baited traps for Winter Moth, Operophtera brumata L. (Lepidoptera: Geometridae

    USDA-ARS?s Scientific Manuscript database

    We tested different pheromone-baited traps for surveying winter moth, Operophtera brumata L. populations in eastern North America. We compared male catch at Pherocon® 1C sticky traps with various large capacity traps and showed that Universal moth traps with white bottoms caught more winter moths th...

  4. DNA analysis of the origins of winter moth in New England

    Treesearch

    Joseph Elkinton; Rodger Gwiazdowski; Marinko Sremac; Roy Hunkins; George. Boettner

    2011-01-01

    Elkinton et al recently completed a survey of northeastern North America for the newly invasive winter moth, Operophtera brumata L. The survey used traps baited with the winter moth pheromone, which, as far as it is known, consists of a single compound that is also used by Bruce spanworm, the North American congener of winter moth, O....

  5. 7 CFR 301.45-10 - Movement of live gypsy moths.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 5 2013-01-01 2013-01-01 false Movement of live gypsy moths. 301.45-10 Section 301.45... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Gypsy Moth § 301.45-10 Movement of live gypsy moths. Regulations requiring a permit for, and otherwise governing the movement of,...

  6. 7 CFR 319.77-3 - Gypsy moth infested areas in Canada.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 5 2012-01-01 2012-01-01 false Gypsy moth infested areas in Canada. 319.77-3 Section... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Gypsy Moth Host Material from Canada § 319.77-3 Gypsy moth infested areas in Canada. The following areas in Canada are known to be...

  7. 7 CFR 319.77-3 - Gypsy moth infested areas in Canada.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 5 2014-01-01 2014-01-01 false Gypsy moth infested areas in Canada. 319.77-3 Section... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Gypsy Moth Host Material from Canada § 319.77-3 Gypsy moth infested areas in Canada. The following areas in Canada are known to be...

  8. 7 CFR 301.45-10 - Movement of live gypsy moths.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 5 2011-01-01 2011-01-01 false Movement of live gypsy moths. 301.45-10 Section 301.45... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Gypsy Moth § 301.45-10 Movement of live gypsy moths. Regulations requiring a permit for, and otherwise governing the movement of,...

  9. 7 CFR 301.45-10 - Movement of live gypsy moths.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Movement of live gypsy moths. 301.45-10 Section 301.45... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Gypsy Moth § 301.45-10 Movement of live gypsy moths. Regulations requiring a permit for, and otherwise governing the movement of,...

  10. 7 CFR 319.77-3 - Gypsy moth infested areas in Canada.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 5 2013-01-01 2013-01-01 false Gypsy moth infested areas in Canada. 319.77-3 Section... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Gypsy Moth Host Material from Canada § 319.77-3 Gypsy moth infested areas in Canada. The following areas in Canada are known to be...

  11. 7 CFR 301.45-10 - Movement of live gypsy moths.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 5 2014-01-01 2014-01-01 false Movement of live gypsy moths. 301.45-10 Section 301.45... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Gypsy Moth § 301.45-10 Movement of live gypsy moths. Regulations requiring a permit for, and otherwise governing the movement of,...

  12. 7 CFR 319.77-3 - Gypsy moth infested areas in Canada.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 5 2011-01-01 2011-01-01 false Gypsy moth infested areas in Canada. 319.77-3 Section... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Gypsy Moth Host Material from Canada § 319.77-3 Gypsy moth infested areas in Canada. The following areas in Canada are known to be...

  13. 75 FR 81087 - South American Cactus Moth Quarantine; Addition of the State of Louisiana

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    ... Health Inspection Service 7 CFR Part 301 South American Cactus Moth Quarantine; Addition of the State of... South American cactus moth regulations by adding the entire State of Louisiana to the list of... American cactus moth to noninfested areas of the United States. DATES: Effective on December 27, 2010,...

  14. 7 CFR 301.45-10 - Movement of live gypsy moths.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 5 2012-01-01 2012-01-01 false Movement of live gypsy moths. 301.45-10 Section 301.45... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Gypsy Moth § 301.45-10 Movement of live gypsy moths. Regulations requiring a permit for, and otherwise governing the movement of,...

  15. Male Fishia yosemitae (Grote)(Lepidoptera: Noctuidae) captured in traps baited with (Z)-7-dodecenyl acetate and (Z)-9-tetradecenyl acetate

    USDA-ARS?s Scientific Manuscript database

    Traps baited with sex pheromone lures for the noctuid moths Chrysodeixis eriosoma (Doubleday) and Feltia jaculifera (Guenee) captured males of another noctuid moth Fishia yosemitae (Grote). These lures included both (Z)-7-dodecenyl acetate (Z7-12Ac) and (Z)-9-tetradecenyl acetate (Z9-14AC). When the...

  16. The Evolution and Expression of the Moth Visual Opsin Family

    PubMed Central

    Fu, Xiaowei; Murphy, Robert W.; Wu, Kongming

    2013-01-01

    Because visual genes likely evolved in response to their ambient photic environment, the dichotomy between closely related nocturnal moths and diurnal butterflies forms an ideal basis for investigating their evolution. To investigate whether the visual genes of moths are associated with nocturnal dim-light environments or not, we cloned long-wavelength (R), blue (B) and ultraviolet (UV) opsin genes from 12 species of wild-captured moths and examined their evolutionary functions. Strong purifying selection appeared to constrain the functions of the genes. Dark-treatment altered the levels of mRNA expression in Helicoverpa armigera such that R and UV opsins were up-regulated after dark-treatment, the latter faster than the former. In contrast, B opsins were not significantly up-regulated. Diel changes of opsin mRNA levels in both wild-captured and lab-reared individuals showed no significant fluctuation within the same group. However, the former group had significantly elevated levels of expression compared with the latter. Consequently, environmental conditions appeared to affect the patterns of expression. These findings and the proportional expression of opsins suggested that moths potentially possessed color vision and the visual system played a more important role in the ecology of moths than previously appreciated. This aspect did not differ much from that of diurnal butterflies. PMID:24205129

  17. The evolution and expression of the moth visual opsin family.

    PubMed

    Xu, Pengjun; Lu, Bin; Xiao, Haijun; Fu, Xiaowei; Murphy, Robert W; Wu, Kongming

    2013-01-01

    Because visual genes likely evolved in response to their ambient photic environment, the dichotomy between closely related nocturnal moths and diurnal butterflies forms an ideal basis for investigating their evolution. To investigate whether the visual genes of moths are associated with nocturnal dim-light environments or not, we cloned long-wavelength (R), blue (B) and ultraviolet (UV) opsin genes from 12 species of wild-captured moths and examined their evolutionary functions. Strong purifying selection appeared to constrain the functions of the genes. Dark-treatment altered the levels of mRNA expression in Helicoverpa armigera such that R and UV opsins were up-regulated after dark-treatment, the latter faster than the former. In contrast, B opsins were not significantly up-regulated. Diel changes of opsin mRNA levels in both wild-captured and lab-reared individuals showed no significant fluctuation within the same group. However, the former group had significantly elevated levels of expression compared with the latter. Consequently, environmental conditions appeared to affect the patterns of expression. These findings and the proportional expression of opsins suggested that moths potentially possessed color vision and the visual system played a more important role in the ecology of moths than previously appreciated. This aspect did not differ much from that of diurnal butterflies.

  18. [Biosynthesis and endocrine regulation of sex pheromones in moth].

    PubMed

    Wang, Bo; Lin, Xin-da; Du, Yong-jun

    2015-10-01

    The crucial importance of sex pheromones in driving mating behaviors in moths has been well demonstrated in the process of sexual communication between individuals that produce and recognize species specific pheromones. Sex-pheromone molecules from different moth species are chemically characteristic, showing different terminal functional groups, various carbon chain lengths, different position and configuration of double bond system. This review summarized information on the biosynthetic pathways and enzymes involved in producing pheromone molecules in different moths. Then we listed the components and their ratios in the sex pheromones of 15 moth species belonging to different subfamilies in Noctuidae. We also discussed the various viewpoints regarding how sex pheromones with specific ratios are produced. In the discussion we attempted to classify the pheromone molecules based on their producers, characteristics of their functional groups and carbon chain lengths. In particular, composition and ratio variations of pheromones in closely related species or within a species were compared, and the possible molecular mechanisms for these variations and their evolutionary significance were discussed. Finally, we reviewed the endocrine regulation and signal transduction pathways, in which the pheromone biosynthesis activating neuropeptide (PBAN) is involved. Comparing the biosynthetic pathways of sex pheromones among different species, this article aimed to reveal the common principles in pheromone biosynthesis among moth species and the characteristic features associated with the evolutionary course of individual species. Subsequently, some future research directions were proposed.

  19. Systematics and biology of Cotesia typhae sp. n. (Hymenoptera, Braconidae, Microgastrinae), a potential biological control agent against the noctuid Mediterranean corn borer, Sesamia nonagrioides.

    PubMed

    Kaiser, Laure; Fernandez-Triana, Jose; Capdevielle-Dulac, Claire; Chantre, Célina; Bodet, Matthieu; Kaoula, Ferial; Benoist, Romain; Calatayud, Paul-André; Dupas, Stéphane; Herniou, Elisabeth A; Jeannette, Rémi; Obonyo, Julius; Silvain, Jean-François; Ru, Bruno Le

    2017-01-01

    Many parasitoid species are subjected to strong selective pressures from their host, and their adaptive response may result in the formation of genetically differentiated populations, called host races. When environmental factors and reproduction traits prevent gene flow, host races become distinct species. Such a process has recently been documented within the Cotesia flavipes species complex, all of which are larval parasitoids of moth species whose larvae are stem borers of Poales. A previous study on the African species C. sesamiae, incorporating molecular, ecological and biological data on various samples, showed that a particular population could be considered as a distinct species, because it was specialized at both host (Sesamia nonagrioides) and plant (Typha domingensis) levels, and reproductively isolated from other C. sesamiae. Due to its potential for the biological control of S. nonagrioides, a serious corn pest in Mediterranean countries and even in Iran, we describe here Cotesia typhae Fernandez-Triana sp. n. The new species is characterized on the basis of morphological, molecular, ecological and geographical data, which proved to be useful for future collection and rapid identification of the species within the species complex. Fecundity traits and parasitism success on African and European S. nonagrioides populations, estimated by laboratory studies, are also included.

  20. Systematics and biology of Cotesia typhae sp. n. (Hymenoptera, Braconidae, Microgastrinae), a potential biological control agent against the noctuid Mediterranean corn borer, Sesamia nonagrioides

    PubMed Central

    Kaiser, Laure; Fernandez-Triana, Jose; Capdevielle-Dulac, Claire; Chantre, Célina; Bodet, Matthieu; Kaoula, Ferial; Benoist, Romain; Calatayud, Paul-André; Dupas, Stéphane; Herniou, Elisabeth A.; Jeannette, Rémi; Obonyo, Julius; Silvain, Jean-François; Ru, Bruno Le

    2017-01-01

    Abstract Many parasitoid species are subjected to strong selective pressures from their host, and their adaptive response may result in the formation of genetically differentiated populations, called host races. When environmental factors and reproduction traits prevent gene flow, host races become distinct species. Such a process has recently been documented within the Cotesia flavipes species complex, all of which are larval parasitoids of moth species whose larvae are stem borers of Poales. A previous study on the African species C. sesamiae, incorporating molecular, ecological and biological data on various samples, showed that a particular population could be considered as a distinct species, because it was specialized at both host (Sesamia nonagrioides) and plant (Typha domingensis) levels, and reproductively isolated from other C. sesamiae. Due to its potential for the biological control of S. nonagrioides, a serious corn pest in Mediterranean countries and even in Iran, we describe here Cotesia typhae Fernandez-Triana sp. n. The new species is characterized on the basis of morphological, molecular, ecological and geographical data, which proved to be useful for future collection and rapid identification of the species within the species complex. Fecundity traits and parasitism success on African and European S. nonagrioides populations, estimated by laboratory studies, are also included. PMID:28769725

  1. An epidemiologic study of gypsy moth rash.

    PubMed

    Tuthill, R W; Canada, A T; Wilcock, K; Etkind, P H; O'Dell, T M; Shama, S K

    1984-08-01

    In 1981, outbreaks of itchy skin rashes were reported accompanying the heavy infestation of gypsy moths (GM) in the Northeastern United States. The rash problem was widespread and a considerable public annoyance. In the spring of 1982, during the period of greatest contact with the caterpillars, a telephone survey was carried out in a highly infested community (HI) and a minimally infested community (LO). Information was collected from 1,000 persons, representing more than 90 per cent of those selected for study. The one-week risk of rash was 10.4 per cent in the HI area and 1.6 per cent in the LO area, for a risk ratio (RR) of 6.5. The occurrence of rash was strongly related to a history of having had a rash in the previous year or having had a caterpillar crawl on the affected area. The combination of both factors additively increased the risk of rash. Hay fever and hanging the wash outside were other related variables. History of allergies other than hay fever since childhood and the use of insecticides were unrelated to rash occurrence.

  2. RESOLVING THE MOTH AT MILLIMETER WAVELENGTHS

    SciTech Connect

    Ricarte, Angelo; Moldvai, Noel; Hughes, A. Meredith; Duchene, Gaspard; Williams, Jonathan P.; Andrews, Sean M.; Wilner, David J.

    2013-09-01

    HD 61005, also known as ''The Moth'', is one of only a handful of debris disks that exhibit swept-back ''wings'' thought to be caused by interaction with the ambient interstellar medium (ISM). We present 1.3 mm Submillimeter Array observations of the debris disk around HD 61005 at a spatial resolution of 1.''9 that resolve the emission from large grains for the first time. The disk exhibits a double-peaked morphology at millimeter wavelengths, consistent with an optically thin ring viewed close to edge-on. To investigate the disk structure and the properties of the dust grains we simultaneously model the spatially resolved 1.3 mm visibilities and the unresolved spectral energy distribution (SED). The temperatures indicated by the SED are consistent with expected temperatures for grains close to the blowout size located at radii commensurate with the millimeter and scattered light data. We also perform a visibility-domain analysis of the spatial distribution of millimeter-wavelength flux, incorporating constraints on the disk geometry from scattered light imaging, and find suggestive evidence of wavelength-dependent structure. The millimeter-wavelength emission apparently originates predominantly from the thin ring component rather than tracing the ''wings'' observed in scattered light. The implied segregation of large dust grains in the ring is consistent with an ISM-driven origin for the scattered light wings.

  3. Confirmation and efficacy tests against codling moth and oriental fruit moth in apples using combination heat and controlled atmosphere treatments.

    PubMed

    Neven, Lisa G; Rehfield-Ray, Linda

    2006-10-01

    Codling moth, Cydia pomonella (L.), and oriental fruit moth, Grapholita molesta (Busck), are serious pests of apples (Malus spp.) grown in the United States and other countries. In countries where these species are not found, there are strict quarantine restrictions in place to prevent their accidental introduction. The treatment used in this study consisted of hot, forced, moist air with a linear heating rate of 12 degrees C/h to a final chamber temperature of 46 degrees C under a 1% oxygen and 15% carbon dioxide environment. We found that the fourth instar of both species was the most tolerant to the treatment, with equal tolerance between the species. Efficacy tests against the fourth instar of both oriental fruit moth and codling moth by using a commercial controlled atmosphere temperature treatment system chamber resulted in > 5,000 individuals of each species being controlled using the combination treatment. Confirmation tests against codling moth resulted in mortality of > 30,000 fourth instars. These treatments may be used to meet quarantine restrictions for organic apples where fumigation with methyl bromide is not desirable.

  4. Moth's eye anti-reflection gratings on germanium freeform surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Meng; Shultz, Jason A.; Owen, Joseph D.; Davies, Matthew A.; Suleski, Thomas J.

    2014-09-01

    Germanium is commonly used for optical components in the infrared, but the high refractive index of germanium causes significant losses due to Fresnel reflections. Anti-reflection (AR) surfaces based on subwavelength "moth's eye" gratings provide one means to significantly increase optical transmission. As found in nature, these gratings are conformal to the curved surfaces of lenslets in the eye of the moth. Engineered optical systems inspired by biological examples offer possibilities for increased performance and system miniaturization, but also introduce significant challenges to both design and fabrication. In this paper, we consider the design and fabrication of conformal moth's eye AR structures on germanium freeform optical surfaces, including lens arrays and Alvarez lenses. Fabrication approaches and limitations based on both lithography and multi-axis diamond machining are considered. Rigorous simulations of grating performance and approaches for simulation of conformal, multi-scale optical systems are discussed.

  5. Hymenopteran parasitoids of diamondback moth (Lepidoptera: Ypeunomutidae) in northern Thailand.

    PubMed

    Rowell, Brent; Bunsong, Nittayaporn; Satthaporn, Kosin; Phithamma, Sompian; Doungsa-Ard, Charnnarong

    2005-04-01

    Larvae of the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Ypeunomutidae), cause severe economic damage to cabbage, Brassica oleracea L. variety capitata (Brassicaceae) and related vegetables in Thailand. Overuse of broad-spectrum insecticides for diamondback moth control is a serious problem and has obscured the contributions of indigenous parasitoids. Our objectives were to identify indigenous diamondback moth parasitoids in northern Thailand and to assess their potential for natural control. Six parasitoid species were reared from diamondback moth larvae and pupae collected in 1990 and in 2003-2004. These included the larval parasitoid Cotesia plutellae Kurdjumov (Braconidae), a larval-pupal parasitoid Macromalon orientale Kerrich (Ichneumonidae), and pupal parasitoids Diadromus collaris Gravenhorst (Ichneumonidae) and Brachymeria excarinata Gahan (Chalcididae). Single specimens of Isotima sp. Forster (Ichneumonidae) and Brachymeria lasus Walker (Chalcididae) also were reared from diamondback moth hosts. C. plutellae was the dominant larval parasitoid and was often reared from host larvae collected from fields sprayed regularly with insecticides; parasitism ranged from 14 to 78%. Average parasitism by M. orientale was only 0.5-6%. Parasitism of host pupae by D. collaris ranged from 9 to 31%, whereas B. excarinata pupal parasitism ranged from 9 to 25%. An integrated pest management (IPM) protocol using simple presence-absence sampling for lepidopterous larvae and the exclusive use of Bacillus thuringiensis (Bt) or neem resulted in the highest yields of undamaged cabbage compared with a control or weekly sprays of cypermethrin (local farmer practice). IPM programs focused on conservation of local diamondback moth parasitoids and on greater implementation of biological control will help alleviate growing public concerns regarding the effects of pesticides on vegetable growers and consumers.

  6. Bombykol receptors in the silkworm moth and the fruit fly.

    PubMed

    Syed, Zainulabeuddin; Kopp, Artyom; Kimbrell, Deborah A; Leal, Walter S

    2010-05-18

    Male moths are endowed with odorant receptors (ORs) to detect species-specific sex pheromones with remarkable sensitivity and selectivity. We serendipitously discovered that an endogenous OR in the fruit fly, Drosophila melanogaster, is highly sensitive to the sex pheromone of the silkworm moth, bombykol. Intriguingly, the fruit fly detectors are more sensitive than the receptors of the silkworm moth, although its ecological significance is unknown. By expression in the "empty neuron" system, we identified the fruit fly bombykol-sensitive OR as DmelOR7a (= DmOR7a). The profiles of this receptor in response to bombykol in the native sensilla (ab4) or expressed in the empty neuron system (ab3 sensilla) are indistinguishable. Both WT and transgenic flies responded with high sensitivity, in a dose-dependent manner, and with rapid signal termination. In contrast, the same empty neuron expressing the moth bombykol receptor, BmorOR1, demonstrated low sensitivity and slow signal inactivation. When expressed in the trichoid sensilla T1 of the fruit fly, the neuron housing BmorOR1 responded with sensitivity comparable to that of the native trichoid sensilla in the silkworm moth. By challenging the native bombykol receptor in the fruit fly with high doses of another odorant to which the receptor responds with the highest sensitivity, we demonstrate that slow signal termination is induced by overdose of a stimulus. As opposed to the empty neuron system in the basiconic sensilla, the structural, biochemical, and/or biophysical features of the sensilla make the T1 trichoid system of the fly a better surrogate for the moth receptor.

  7. Bombykol receptors in the silkworm moth and the fruit fly

    PubMed Central

    Syed, Zainulabeuddin; Kopp, Artyom; Kimbrell, Deborah A.; Leal, Walter S.

    2010-01-01

    Male moths are endowed with odorant receptors (ORs) to detect species-specific sex pheromones with remarkable sensitivity and selectivity. We serendipitously discovered that an endogenous OR in the fruit fly, Drosophila melanogaster, is highly sensitive to the sex pheromone of the silkworm moth, bombykol. Intriguingly, the fruit fly detectors are more sensitive than the receptors of the silkworm moth, although its ecological significance is unknown. By expression in the “empty neuron” system, we identified the fruit fly bombykol-sensitive OR as DmelOR7a (= DmOR7a). The profiles of this receptor in response to bombykol in the native sensilla (ab4) or expressed in the empty neuron system (ab3 sensilla) are indistinguishable. Both WT and transgenic flies responded with high sensitivity, in a dose-dependent manner, and with rapid signal termination. In contrast, the same empty neuron expressing the moth bombykol receptor, BmorOR1, demonstrated low sensitivity and slow signal inactivation. When expressed in the trichoid sensilla T1 of the fruit fly, the neuron housing BmorOR1 responded with sensitivity comparable to that of the native trichoid sensilla in the silkworm moth. By challenging the native bombykol receptor in the fruit fly with high doses of another odorant to which the receptor responds with the highest sensitivity, we demonstrate that slow signal termination is induced by overdose of a stimulus. As opposed to the empty neuron system in the basiconic sensilla, the structural, biochemical, and/or biophysical features of the sensilla make the T1 trichoid system of the fly a better surrogate for the moth receptor. PMID:20439725

  8. The distribution of European corn borer (Lepidoptera: Crambidae) moths in pivot-irrigated corn.

    PubMed

    Merrill, Scott C; Walter, Shawn M; Peairs, Frank B; Schleip, Erin M

    2013-10-01

    The European corn borer, Ostrinia nubilalis (Hübner), is a damaging pest of numerous crops including corn, potato, and cotton. An understanding of the interaction between O. nubilalis and its spatial environment may aid in developing pest management strategy. Over a 2-yr period, approximately 8,000 pheromone trap catches of O. nubilalis were recorded on pivot-irrigated corn in northeastern Colorado. The highest weekly moth capture per pivot-irrigated field occurred on the week of 15 July 1997 at 1,803 moths captured. The lowest peak moth capture per pivot-irrigated field was recorded on the week of 4 June 1998 at 220 moths captured. Average trap catch per field ranged from approximately 1.6 moths captured per trap per week in 1997 to approximately 0.3 moths captured per trap per week in 1998. Using pheromone trap moth capture data, we developed a quantified understanding of the spatial distribution of adult male moths. Our findings suggest strong correlations between moth density and adjacent corn crops, prevailing wind direction, and an edge effect. In addition, directional component effects suggest that more moths were attracted to the southwestern portion of the crop, which has the greatest insolation potential. In addition to the tested predictor variables, we found a strong spatial autocorrelation signal indicating positive aggregations of these moths and that males from both inside and outside of the field are being attracted to within-field pheromone traps, which has implications for refuge strategy management.

  9. Gypsy moths and American dog ticks: Space partners

    NASA Technical Reports Server (NTRS)

    Hayes, D. K.; Morgan, N. O.; Webb, R. E.; Goans, M. D.

    1984-01-01

    An experiment intended for the space shuttle and designed to investigate the effects of weightlessness and total darkness on gypsy moth eggs and engorged American dog ticks is described. The objectives are: (1) to reevaluate the effects of zero gravity on the termination of diapause/hibernation of embryonated gypsy moth eggs, (2) to determine the effect of zero gravity on the ovipositions and subsequent hatch from engorged female American dog ticks that have been induced to diapause in the laboratory, and (3) to determine whether morphological or biochemical changes occur in the insects under examination. Results will be compared with those from a similar experiment conducted on Skylab 4.

  10. Street lighting: sex-independent impacts on moth movement.

    PubMed

    Degen, Tobias; Mitesser, Oliver; Perkin, Elizabeth K; Weiß, Nina-Sophie; Oehlert, Martin; Mattig, Emily; Hölker, Franz

    2016-09-01

    Artificial lights have become an integral and welcome part of our urban and peri-urban environments. However, recent research has highlighted the potentially negative ecological consequences of ubiquitous artificial light. In particular, insects, especially moths, are expected to be negatively impacted by the presence of artificial lights. Previous research with light traps has shown a male-biased attraction to light in moths. In this study, we sought to determine whether street lights could limit moth dispersal and whether there was any sex bias in attraction to light. More specifically, we aimed to determine sex-specific attraction radii for moths to street lights. We tested these hypotheses by collecting moths for 2 years at an experimental set-up. To estimate the attraction radii, we developed a Markov model and related it to the acquired data. Utilizing multinomial statistics, we found that attraction rates to lights in the middle of the matrix were substantially lower than predicted by the null hypothesis of equal attraction level (0·44 times). With the Markov model, we estimated that a corner light was 2·77 times more attractive than a wing light with an equivalentre attraction radius of c. 23 m around each light. We found neither sexual differences in the attraction rate nor in the attraction radius of males and females. Since we captured three times more males than females, we conclude that sex ratios are representative of operational sex ratios or of different flight activities. These results provide evidence for street lights to limit moth dispersal, and that they seem to act equally on male and female moths. Consequently, public lighting might divide a suitable landscape into many small habitats. Therefore, it is reasonable to assume (i) that public lighting near hedges and bushes or field margins reduces the quality of these important habitat structures and (ii) that public lighting may affect moth movement between patches. © 2016 The Authors

  11. Innate preference and learning of colour in the male cotton bollworm moth, Helicoverpa armigera.

    PubMed

    Satoh, Aya; Kinoshita, Michiyo; Arikawa, Kentaro

    2016-12-15

    We investigated colour discrimination and learning in adult males of the nocturnal cotton bollworm moth, Helicoverpa armigera, under a dim light condition. The naive moths preferred blue and discriminated the innately preferred blue from several shades of grey, indicating that the moths have colour vision. After being trained for 2 days to take nectar at a yellow disc, an innately non-preferred colour, moths learned to select yellow over blue. The choice distribution between yellow and blue changed significantly from that of naive moths. However, the dual-choice distribution of the trained moths was not significantly biased to yellow: the preference for blue is robust. We also tried to train moths to grey, which was not successful. The limited ability to learn colours suggests that H armigera may not strongly rely on colours when searching for flowers in the field, although they have the basic property of colour vision. © 2016. Published by The Company of Biologists Ltd.

  12. Temporal patterns in Saturnidae (silk moth) and Sphingidae (hawk moth) assemblages in protected forests of central Uganda

    PubMed Central

    Akite, Perpetra; Telford, Richard J; Waring, Paul; Akol, Anne M; Vandvik, Vigdis

    2015-01-01

    Forest-dependent biodiversity is threatened throughout the tropics by habitat loss and land-use intensification of the matrix habitats. We resampled historic data on two moth families, known to play central roles in many ecosystem processes, to evaluate temporal changes in species richness and community structure in three protected forests in central Uganda in a rapidly changing matrix. Our results show some significant declines in the moth species richness and the relative abundance and richness of forest-dependent species over the last 20–40 years. The observed changes in species richness and composition among different forests, ecological types, and moth groups highlight the need to repeatedly monitor biodiversity even within protected and relatively intact forests. PMID:25937916

  13. Is the expansion of the pine processionary moth, due to global warming, impacting the endangered Spanish moon moth through an induced change in food quality?

    PubMed

    Imbert, Charles-Edouard; Goussard, Francis; Roques, Alain

    2012-06-01

    Recent climate change is known to affect the distribution of a number of insect species, resulting in a modification of their range boundaries. In newly colonized areas, novel interactions become apparent between expanding and endemic species sharing the same host. The pine processionary moth is a highly damaging pine defoliator, extending its range northwards and upwards in response to winter warming. Its expansion in the Alps has resulted in an invasion into the range of the Spanish moon moth, a red listed species developing on Scots pine. Pine processionary moth larvae develop during winter, preceding those of the moon moth, which hatch in late spring. Using pine trees planted in a clonal design, we experimentally tested the effect of previous winter defoliation by pine processionary moth larvae upon the survival and development of moon moth larvae. Feeding on foliage of heavily defoliated trees (>50%) resulted in a significant increase in the development time of moon moth larvae and a decrease in relative growth rate compared to feeding on foliage of undefoliated trees. Dry weight of pupae also decreased when larvae were fed with foliage of defoliated trees, and might, therefore, affect imago performances. However, lower defoliation degrees did not result in significant differences in larval performances compared to the control. Because a high degree of defoliation by pine processionary moth is to be expected during the colonization phase, its arrival in subalpine pine stands might affect the populations of the endangered moon moth. © 2012 ISZS, Blackwell Publishing and IOZ/CAS.

  14. Maximizing pine tip moth control: Timing is everything

    Treesearch

    Christopher J. Fetting

    1999-01-01

    The impact of the Nantucket pine tip moth, Rhyacionia frustrana (Comstock), has become of increasing concern as standard silvicultural practices have intensified in southern pine production. The associated silvicultural manipulations of site preparation, herbaceous weed control, release, bedding and fertilization have shortened rotation lengths and increased volume...

  15. Recent field research using microbial insecticides against gypsy moth

    Treesearch

    Lawrence P. Abrahamson; Donald A. Eggen

    1985-01-01

    Field research since 1978 using different formulations, dosages, and spray volumes of Bacillus thuringiensis Berliner (Bt) against the gypsy moth are reviewed. Problems associated with inconsistent results are discussed, with an emphasis on timing of application. Recommendations for proper use of Bt are presented along with suggestions for further...

  16. Pupal abnormalities among laboratory-reared gypsy moths

    Treesearch

    Richard W. Hansen

    1991-01-01

    Gypsy moth cohorts from 10 near-wild strains (one to six previous generations in culture), six wild strains (field-collected egg masses), and the standard "New Jersey" lab strain (34th and 35th generation in culture) were reared on Otis wheat germ-based artificial diet, in a constant environment. Rearings were begun with newly-hatched first instars; pupae...

  17. Interactions between microbial agents and gypsy moth parasites

    Treesearch

    Ronald M. Weseloh

    1985-01-01

    The parasite Cotesia melanoscelus attacks small gypsy moth larvae more successfully than large ones, and Bacillus thuringiensis retards the growth of caterpillars it does not kill. Together, both factors lead to higher parasitism by C. melanoscelus in areas sprayed with B. thuringiensis than...

  18. Monitoring Indianmeal moth in the presence of mating disruption

    USDA-ARS?s Scientific Manuscript database

    Mating disruption with female sex pheromone offers a least-toxic, worker-friendly alternative to fumigation and fogging for control of the Indianmeal moth, an important postharvest pest. Commercial formulations are available for control of this pest with mating disruption, but loss of information fr...

  19. Coping with the gypsy moth on new frontiers of infestation

    Treesearch

    David A. Gansner; Owen W. Herrick; Garland N. Mason; Kurt W. Gottschalk

    1987-01-01

    Forest managers on new frontiers of infestation are searching for better ways to cope with the gypsy moth (Lymantria dispar). Presented herea are information and guidelines for remedial action to minimize future losses. Methods for assessing potential stand defoliation (susceptibility) and mortality (vulnerability), monitoring insect populations, and...

  20. 75 FR 41073 - South American Cactus Moth Regulations; Quarantined Areas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ...;having general applicability and legal effect, most of which are keyed #0;to and codified in the Code of... potential economic effects of this action on small entities. South American cactus moth is a pest that... emergency forage for cattle during periods of drought and as wildlife feed for game animals. This...

  1. Variation in gypsy moth, with comparisons to other Lymantria spp.

    Treesearch

    Paul W. Schaefer

    1991-01-01

    Specimens of gypsy moth, Lymantria dispar (L.) sensu lato were displayed in museum trays. Many specimens were quarantine laboratory reared during the 1989 season to provide samples (wing venation, frozen adults, prepupal haemolymph, larval feeding behavior, egg mass hair color, head capsule coloration and larval development) for...

  2. Gypsy moth egg-mass density and subsequent defoliation

    Treesearch

    Robert W. Campbell

    1966-01-01

    The relationship between insect density and subsequent defoliation is usually important among the many factors involved in deciding if, when, and where to take control action against a defoliator such as the gypsy moth. Unfortunately, the proportion of the foliage that will be removed by a defoliator in any given place and year depends not only upon the number of...

  3. Tree condition and mortality following defoliation by the gypsy moth

    Treesearch

    Robert W. Campbell; Harry T. Valentine; Harry T. Valentine

    1972-01-01

    Relationships between expected defoliation and the subsequent condition and mortality rate among the defoliated trees are almost always important factors in deciding if, when, and where to take control action against a defoliator such as the gypsy moth, Porthetria dispar (L. )

  4. The disease complex of the gypsy moth. 1. Major components

    Treesearch

    R.W. Campbell; J.D. Podgwaite

    1971-01-01

    A study was undertaken to elucidate the impact of the various components of disease on natural populations of the gypsy moth, Porthetria dispar. Diseased larvae from both sparse and dense populations were examined and categorized on the basis of etiologic and nonetiologic mortality factors. Results indicated a significantly higher incidence of...

  5. Geographical variation in the periodicity of gypsy moth outbreaks

    Treesearch

    Derek M. Johnson; Andrew M. Liebhold; Ottar N. Bj& #248rnstad

    2006-01-01

    The existence of periodic oscillations in populations of forest Lepidoptera is well known. While information exists on how the periods of oscillations vary among different species, there is little prior evidence of variation in periodicity within the range of a single Lepidopteran species. The exotic gypsy moth is an introduced foliage-feeding insect in North America....

  6. Pheromone trap for the eastern tent caterpillar moth.

    PubMed

    Haynes, Kenneth F; McLaughlin, John; Stamper, Shelby; Rucker, Charlene; Webster, Francis X; Czokajlo, Darek; Kirsch, Philipp

    2007-10-01

    The discovery that the eastern tent caterpillar Malacosoma americanum (F.) causes mare reproductive loss syndrome (MRLS), and thus has the potential to continue to result in major economic losses to the equine industry of Kentucky, has resulted in an intensive effort to identify practical means to monitor and control this defoliator, including these experiments to optimize a sex pheromone trap for this pest. A pheromone-baited delta trap with a large opening, such as InterceptST Delta, was more effective than other tested traps. Orange delta traps caught more moths than other tested colors. ETC males are caught at all tested heights within the tree canopy. For monitoring flights, setting traps at 1.5 m would allow easy counting of moths. A 9:1 blend of (E,Z)-5,7-dodecadienal (ETC-Ald) and (E,Z)-5,7-dodecadienol (ETC-OH) was most effective in capturing males. Increasing loading doses of a 3:1 blend (Ald:OH) resulted in the capture of increasing numbers of moths, but a 9:1 blend was more effective than 3:1 blend even at a nine-fold lower loading rate. Pheromone-impregnated white septa caught more moths than gray septa at the same loading dose. The advantages and limitations of using pheromone traps for monitoring M. americanum are discussed.

  7. Pennsylvania's experiences with microbial control of the gypsy moth

    Treesearch

    James O. Nichols

    1985-01-01

    Pennsylvania's first experience with using Bt on insect control occurred in 1964. For the next 17 years, various projects were conducted, in cooperation with the USFS and industry, in an effort to secure operational status of Bt for gypsy moth suppression. This point was reached in 1982, and the Governor was convinced that the time was right to convert most gypsy...

  8. Entomophaga maimaiga panzootic in northeastern gypsy moth populations

    Treesearch

    Ann E. Hajek; Joseph S. Elkinton

    1991-01-01

    The fungal pathogen causing extensive mortality in gypsy moth larval populations during the 1989 field season has been identified as Entomophaga maimaiga. Identification was based on morphology and in vitro culture requirements, as well as results from allozyme and restriction fragment linked polymorphism analyses. E....

  9. Global gypsy--the moth that gets around

    Treesearch

    W.E. Wallner

    1998-01-01

    It is difficult to document the total economic impacts of exotic insect pests on eastern U.S. forests. Annual losses to a single introduced pest, the gypsy moth, Lymantria dispar L., have exceeded $30 million from 1980 to 1996. The complicated behavior and actions of humans in accelerating the spread of this "global gypsy" are discussed....

  10. Phenology of blue cactus moth Melitara prodenialis (Lepidoptera: Pyralidae)

    USDA-ARS?s Scientific Manuscript database

    Native cactus plants (Opuntia stricta Haw. [Cactaceae]) were sampled weekly at St. Marks National Wildlife Refuge, St. Marks, Florida (30.16 - 30° 1' N, -84.21 - 84° 1' W) from September 2006 to September 2007 for the native blue cactus moth, Melitara prodenialis Walker (Lepidoptera: Pyralidae) Meli...

  11. Gypcheck environmentally safe viral insecticide for gypsy moth control

    Treesearch

    Richard Reardon; John Podgwaite; Roger. Zerillo

    2012-01-01

    This handbook is an update of handbook FHTET-2009-01, Gypchek - Bioinsecticide for the Gypsy Moth, printed in July, 2009. This update contains information on virus production, safety evaluations, results of efficacy and deposition evaluations, commercial production, and a copy of the revised registration label, material safety data sheet, and...

  12. Response of light brown apple moth to oxygenated phosphine fumigation

    USDA-ARS?s Scientific Manuscript database

    The light brown apple moth (LBAM), Epiphyas postvittana (Walker), poses a serious threat to California agriculture and is currently quarantined by several major trading partners. Fumigation is the only tool to assure pest-free postharvest vegetable and fruit products. However, current fumigants for ...

  13. The cost of gypsy moth sex in the city

    Treesearch

    Kevin M. Bigsby; Mark J. Ambrose; Patrick C. Tobin; Erin O. Sills

    2014-01-01

    Since its introduction in the 1860s, gypsy moth, Lymantria dispar (L.), has periodically defoliated large swaths of forest in the eastern United States. Prior research has suggested that the greatest costs and losses from these outbreaks accrue in residential areas, but these impacts have not been well quantified. We addressed this lacuna with a case...

  14. Gypsy moth impacts in pine-hardwood mixtures

    Treesearch

    Kurt W. Gottschalk; Mark J. Twery

    1989-01-01

    Gypsy moth has affected pine-hardwood mixtures, especially oak-pine stands, since the late 1800's. Several old and new studies on impacts in mixed stands are reviewed. When pines are heavily defoliated, considerable growth loss and mortality can occur. Mortality is heaviest in understory white pine trees, Impact information is used to suggest silvicultural...

  15. Identification of a nucleopolyhedrovirus in winter moth populations from Massachusetts

    Treesearch

    John P. Burand; Anna Welch; Woojin Kim; Vince D' Amico; Joseph S. Elkinton

    2011-01-01

    The winter moth, Operophtera brumata, originally from Europe, has recently invaded eastern Massachusetts. This insect has caused widespread defoliation of many deciduous tree species and severely damaged a variety of crop plants in the infested area including apple, strawberry, and especially blueberry.

  16. Contact toxicity of 40 insecticides tested on pandora moth larvae

    Treesearch

    Robert L. Lyon

    1971-01-01

    Forty insecticides and an antifeeding compound were tested on pandora moth larvae (Coloradia pandora Blake) in the second and third instars. A total of 21 insecticides were more toxic at LD90 than DDT, providing a good choice of candidates for field testing. Ten exceeded DDT in toxicity tenfold or more. These were, in...

  17. Olethreutinae Moths of the Midwestern United States, An Identification Guide

    USDA-ARS?s Scientific Manuscript database

    Larvae of the moth family known as “leaf-rollers” cause millions of dollars of damage annually to forest, ornamental, and crop plants. This manuscript provides a review of a new book on the leaf-rollers of the Midwestern United States. Numerous pest species are included in this work, along with deta...

  18. Development of an artificial diet for winter moth, Operophtera brumata

    Treesearch

    Emily Hibbard; Joseph Elkinton; George. Boettner

    2011-01-01

    The winter moth, Operophtera brumata, is an invasive pest that was introduced to North America in the 1930s. First identified in Nova Scotia, this small geometrid native to Europe has spread to New England. It has caused extensive defoliation of deciduous trees and shrubs.

  19. Managing Codling Moth Clearly and Precisely with Semiochemicals

    USDA-ARS?s Scientific Manuscript database

    Site-specific management practices for codling moth were implemented in ‘Comice’ pear orchards treated with aerosol puffers releasing sex pheromone in southern Oregon during 2008 and 2009. The density of monitoring traps baited with sex pheromone and pear ester was increased and insecticide sprays w...

  20. Forest stand losses to gypsy moth in the Poconos

    Treesearch

    David A. Gansner; Owen W. Herrick

    1978-01-01

    A Study of forest stand losses associated with the gypsy moth outbreak of the early 1970's in the Pocono Mountain Region of northeastern Pennsylvania, showed that while most of the stands incurred little or no loss, a few suffered heavy damage

  1. Mapping forest risk associated with the gypsy moth

    Treesearch

    Andrew M. Liebhold; Randall S. Morin; Andrew Lister; Kurt W. Gottschalk; Eugene Luzader; Daniel Twardus

    2003-01-01

    The gypsy moth was originally introduced near Boston in 1868 or 1869; it has been slowly expanding its range mostly to the south and west. Its slow spread through the Northeast can be attributed to the limited dispersal capabilities of this insect (females do not fly).

  2. Persistence of bat defence reactions in high Arctic moths (Lepidoptera).

    PubMed

    Rydell, J; Roininen, H; Philip, K W

    2000-03-22

    We investigated the bat defence reactions of three species of moths (Gynaephora groenlandica, Gynaephora rossi (Lymantriidae) and Psychophora sabini (Geometridae)) in the Canadian Arctic archipelago. Since these moths inhabit the Arctic tundra and, therefore, are most probably spatially isolated from bats, their hearing and associated defensive reactions are probably useless and would therefore be expected to disappear with ongoing adaptation to Arctic conditions. When exposed to bat-like ultrasound (26 kHz and 110 dB sound pressure level root mean square at 1 m) flying male Gynaephora spp. always reacted defensively by rapidly reversing their flight course. They could hear the sound and reacted at least 15-25 m away. Psychophora sabini walking on a surface froze at distances of at least 5-7 m from the sound source. However, two out of three individuals of this species (all males) did not respond in any way to the sound while in flight. Hence, we found evidence of degeneration of bat defence reactions, i.e. adaptation to the bat-free environment, in P. sabini but not in Gynaephora spp. Some Arctic moths (Gynaephora spp.) still possess defensive reactions against bats, possibly because the selection pressure for the loss of the trait is such that it declines only very slowly (perhaps by genetic drift; and there may not have been enough time for the trait to disappear. One possible reason may be that Arctic moths have long generation times.

  3. Combining Pear Ester with Codlemone Improves Management of Codling Moth

    USDA-ARS?s Scientific Manuscript database

    Several management approaches utilizing pear ester combined with codlemone have been developed in the first 10 years after the discovery of this ripe pear fruit volatile’s kairomonal activity for larvae and both sexes of codling moth. These include a lure that consistently outperforms other high loa...

  4. Young Scientists Explore Butterflies and Moths. Book 4 Primary Level.

    ERIC Educational Resources Information Center

    Penn, Linda

    Designed to present interesting facts about science and to heighten the curiosity of primary age students, this book contains activities about the natural world and numerous black and white illustrations. The activities focus on butterflies and moths and their stages of development. The first section contains exercises on recognizing insect body…

  5. Persistence of bat defence reactions in high Arctic moths (Lepidoptera).

    PubMed Central

    Rydell, J; Roininen, H; Philip, K W

    2000-01-01

    We investigated the bat defence reactions of three species of moths (Gynaephora groenlandica, Gynaephora rossi (Lymantriidae) and Psychophora sabini (Geometridae)) in the Canadian Arctic archipelago. Since these moths inhabit the Arctic tundra and, therefore, are most probably spatially isolated from bats, their hearing and associated defensive reactions are probably useless and would therefore be expected to disappear with ongoing adaptation to Arctic conditions. When exposed to bat-like ultrasound (26 kHz and 110 dB sound pressure level root mean square at 1 m) flying male Gynaephora spp. always reacted defensively by rapidly reversing their flight course. They could hear the sound and reacted at least 15-25 m away. Psychophora sabini walking on a surface froze at distances of at least 5-7 m from the sound source. However, two out of three individuals of this species (all males) did not respond in any way to the sound while in flight. Hence, we found evidence of degeneration of bat defence reactions, i.e. adaptation to the bat-free environment, in P. sabini but not in Gynaephora spp. Some Arctic moths (Gynaephora spp.) still possess defensive reactions against bats, possibly because the selection pressure for the loss of the trait is such that it declines only very slowly (perhaps by genetic drift; and there may not have been enough time for the trait to disappear. One possible reason may be that Arctic moths have long generation times. PMID:10787157

  6. New turf for gypsy moth; there's more at risk downrange

    Treesearch

    David A. Gansner; Owen W. Herrick; Paul S. DeBald; Jesus A. Cota

    1983-01-01

    Data collected from 600 field plots in central Pennsylvania forests threatened by gypsy moth point to a greater potential for damage downrange. Though greater than in the Poconos, losses are not expected to be spectacular. Still, some forest landowners will suffer heavy tree mortality to the pest.

  7. Estimating the Benefits of Gypsy Moth Control on Timberland

    Treesearch

    David A. Gansner; Owen W. Herrick; Owen W. Herrick

    1987-01-01

    A recent study of forest stand losses to gypsy moth has provided basic information for evaluating the benefits of control on new frontiers of infestation. Protecting highly susceptible trees from impending attack can prevent a potential loss of 15 percent in their timber value and 2.8 percent in their compound rate of value growth.

  8. Rapid Assessment of the Sex of Codling Moth, Cydia pomonella

    USDA-ARS?s Scientific Manuscript database

    Two different methods were tested to identify the sex of the early developmental stages of the codling moth Cydia pomonella (Linnaeus) (Lepidoptera: Tortricidae) with a WZ/ZZ (female/male) sex chromosome system. Firstly, it was shown that the sex of all larval stages can be easily determined by the ...

  9. Tree mortality risk of oak due to gypsy moth

    Treesearch

    K.W. Gottschalk; J.J. Colbert; D.L. Feicht

    1998-01-01

    We present prediction models for estimating tree mortality resulting from gypsy moth, Lymantria dispar, defoliation in mixed oak, Quercus sp., forests. These models differ from previous work by including defoliation as a factor in the analysis. Defoliation intensity, initial tree crown condition (crown vigour), crown position, and...

  10. Interactions of forest management practices and tip moth damage

    Treesearch

    John T. Nowak

    1999-01-01

    Intensive forest management practices have been shown to increase tree growth and shorten rotation time. However, they may also increase the need for insect pest management because of higher infestation levels and lower action thresholds. The Nantucket pine tip moth (Rhyacionia frustrana [Comstock]) is one insect that is expected to become more important with more...

  11. Forest type affects predation on gypsy moth pupae

    Treesearch

    A.M. Liebhold; K.F. Raffa; A.L. Diss; A.L. Diss

    2005-01-01

    Predation by small mammals has previously been shown to be the largest source of mortality in low-density gypsy moth, Lymantria dispar (L.), populations in established populations in north-eastern North America. Fluctuations in predation levels are critical in determining changes in population densities. We compared small mammal communities and levels of predation on...

  12. Parasite records for the Douglas-fir tussock moth.

    Treesearch

    Torolf R. Torgersen

    1981-01-01

    This is an annotated assemblage of parasite and hyperparasite records for the Douglas-fir tussock moth. Species in more than 50 genera in the Hymenoptera and Diptera are included. These records are from published literature, unpublished reports, and other miscellaneous sources. These last sources include specimens reared by the author, species identification files (...

  13. Effects of Temperature and Controlled Atmospheres on Codling Moth Metabolism

    USDA-ARS?s Scientific Manuscript database

    Although controlled atmosphere temperature treatments are effective in controlling codling moth in fruit, the mechanism by which this combination treatment kills the larvae is unknown. Differential scanning calorimetry was used to determine the effects of elevated temperatures, low oxygen, and high ...

  14. Young Scientists Explore Butterflies and Moths. Book 4 Primary Level.

    ERIC Educational Resources Information Center

    Penn, Linda

    Designed to present interesting facts about science and to heighten the curiosity of primary age students, this book contains activities about the natural world and numerous black and white illustrations. The activities focus on butterflies and moths and their stages of development. The first section contains exercises on recognizing insect body…

  15. The De Havilland "Tiger Moth"a low wing monoplane

    NASA Technical Reports Server (NTRS)

    1927-01-01

    With a speed of 186.5 M.P.H. and an operational altitude of 20,000 feet the De Havilland Tiger Moth has caused comment as it was introduced just before the King's Cup race of 1927. It is a single seater with unusual control configuration due to the cramped cockpit area.

  16. Codling Moth (Lepidoptera: Tortricidae) Establishment in China: Stages of Invasion and Potential Future Distribution

    PubMed Central

    Zhu, Hongyu; Kumar, Sunil

    2017-01-01

    Abstract Codling moth (Cydia pomonella L.) is an internal feeding pest of apples and can cause substantial economic losses to fruit growers due to larval feeding which in turn degrades fruit quality and can result in complete crop loss if left uncontrolled. Although this pest originally developed in central Asia, it was not known to occur in China until 1953. For the first three decades the spread of codling moth within China was slow. Within the last three decades, addition of new commercial apple orchards and improved transportation, this pest has spread to over 131 counties in seven provinces in China. We developed regional (China) and global ecological niche models using MaxEnt to identify areas at highest potential risk of codling moth establishment and spread. Our objectives were to 1) predict the potential distribution of codling moth in China, 2) identify the important environmental factors associated with codling moth distribution in China, and 3) identify the different stages of invasion of codling moth in China. Human footprint, annual temperature range, precipitation of wettest quarter, and degree days ≥10 °C were the most important predictors associated with codling moth distribution. Our analysis identified areas where codling moth has the potential to establish, and mapped the different stages of invasion (i.e., potential for population stabilization, colonization, adaptation, and sink) of codling moth in China. Our results can be used in effective monitoring and management to stem the spread of codling moth in China.

  17. Selenium-tolerant diamondback moth disarms hyperaccumulator plantdefense

    SciTech Connect

    Freeman, J.L.; Quinn, C.F.; Marcus, M.A.; Fakra, S.; Pilon-Smits,E.A.H.

    2006-11-20

    Background Some plants hyperaccumulate the toxic element selenium (Se) to extreme levels, up to 1% of dry weight. The function of this intriguing phenomenon is obscure. Results Here, we show that the Se in the hyperaccumulator prince's plume (Stanleya pinnata) protects it from caterpillar herbivory because of deterrence and toxicity. In its natural habitat, however, a newly discovered variety of the invasive diamondback moth (Plutella xylostella) has disarmed this elemental defense. It thrives on plants containing highly toxic Se levels and shows no oviposition or feeding deterrence, in contrast to related varieties. Interestingly, a Se-tolerant wasp (Diadegma insulare) was found to parasitize the tolerant moth. The insect's Se tolerance mechanism was revealed by X-ray absorption spectroscopy and liquid chromatography--mass spectroscopy, which showed that the Se-tolerant moth and its parasite both accumulate methylselenocysteine, the same form found in the hyperaccumulator plant, whereas related sensitive moths accumulate selenocysteine. The latter is toxic because of its nonspecific incorporation into proteins. Indeed, the Se-tolerant diamondback moth incorporated less Se into protein. Additionally, the tolerant variety sequestered Se in distinct abdominal areas, potentially involved in detoxification and larval defense to predators. Conclusions Although Se hyperaccumulation protects plants from herbivory by some invertebrates, it can give rise to the evolution of unique Se-tolerant herbivores and thus provide a portal for Se into the local ecosystem. In a broader context, this study provides insight into the possible ecological implications of using Se-enriched crops as a source of anti-carcinogenic selenocompounds and for the remediation of Se-polluted environments.

  18. Estimating the Effect of Gypsy Moth Defloiation Using MODIS

    NASA Technical Reports Server (NTRS)

    deBeurs, K. M.; Townsend, P. A.

    2008-01-01

    The area of North American forests affected by gypsy moth defoliation continues to expand despite efforts to slow the spread. With the increased area of infestation, ecological, environmental and economic concerns about gypsy moth disturbance remain significant, necessitating coordinated, repeatable and comprehensive monitoring of the areas affected. In this study, our primary objective was to estimate the magnitude of defoliation using Moderate Resolution Imaging Spectroradiometer (MODIS) imagery for a gypsy moth outbreak that occurred in the US central Appalachian Mountains in 2000 and 2001. We focused on determining the appropriate spectral MODIS indices and temporal compositing method to best monitor the effects of gypsy moth defoliation. We tested MODIS-based Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Normalized Difference Water Index (NDWI), and two versions of the Normalized Difference Infrared index (NDIIb6 and NDIIb7, using the channels centered on 1640 nm and 2130 nm respectively) for their capacity to map defoliation as estimated by ground observations. In addition, we evaluated three temporal resolutions: daily, 8-day and 16-day data. We validated the results through quantitative comparison to Landsat based defoliation estimates and traditional sketch maps. Our MODIS based defoliation estimates based on NDIIb6 and NDIIb7 closely matched Landsat defoliation estimates derived from field data as well as sketch maps. We conclude that daily MODIS data can be used with confidence to monitor insect defoliation on an annual time scale, at least for larger patches (greater than 0.63 km2). Eight-day and 16-day MODIS composites may be of lesser use due to the ephemeral character of disturbance by the gypsy moth.

  19. Persistence of invading gypsy moth populations in the United States.

    PubMed

    Whitmire, Stefanie L; Tobin, Patrick C

    2006-03-01

    Exotic invasive species are a mounting threat to native biodiversity, and their effects are gaining more public attention as each new species is detected. Equally important are the dynamics of exotic invasives that are previously well established. While the literature reports many examples of the ability of a newly arrived exotic invader to persist prior to detection and population growth, we focused on the persistence dynamics of an established invader, the European gypsy moth (Lymantria dispar) in the United States. The spread of gypsy moth is largely thought to be the result of the growth and coalescence of isolated colonies in a transition zone ahead of the generally infested area. One important question is thus the ability of these isolated colonies to persist when subject to Allee effects and inimical stochastic events. We analyzed the US gypsy moth survey data and identified isolated colonies of gypsy moth using the local indicator of spatial autocorrelation. We then determined region-specific probabilities of colony persistence given the population abundance in the previous year and its relationship to a suite of ecological factors. We observed that colonies in Wisconsin, US, were significantly more likely to persist in the following year than in other geographic regions of the transition zone, and in all regions, the abundance of preferred host tree species and land use category did not appear to influence persistence. We propose that differences in region-specific rates of persistence may be attributed to Allee effects that are differentially expressed in space, and that the inclusion of geographically varying Allee effects into colony-invasion models may provide an improved paradigm for addressing the establishment and spread of gypsy moth and other invasive exotic species.

  20. Estimating the Effect of Gypsy Moth Defloiation Using MODIS

    NASA Technical Reports Server (NTRS)

    deBeurs, K. M.; Townsend, P. A.

    2008-01-01

    The area of North American forests affected by gypsy moth defoliation continues to expand despite efforts to slow the spread. With the increased area of infestation, ecological, environmental and economic concerns about gypsy moth disturbance remain significant, necessitating coordinated, repeatable and comprehensive monitoring of the areas affected. In this study, our primary objective was to estimate the magnitude of defoliation using Moderate Resolution Imaging Spectroradiometer (MODIS) imagery for a gypsy moth outbreak that occurred in the US central Appalachian Mountains in 2000 and 2001. We focused on determining the appropriate spectral MODIS indices and temporal compositing method to best monitor the effects of gypsy moth defoliation. We tested MODIS-based Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Normalized Difference Water Index (NDWI), and two versions of the Normalized Difference Infrared index (NDIIb6 and NDIIb7, using the channels centered on 1640 nm and 2130 nm respectively) for their capacity to map defoliation as estimated by ground observations. In addition, we evaluated three temporal resolutions: daily, 8-day and 16-day data. We validated the results through quantitative comparison to Landsat based defoliation estimates and traditional sketch maps. Our MODIS based defoliation estimates based on NDIIb6 and NDIIb7 closely matched Landsat defoliation estimates derived from field data as well as sketch maps. We conclude that daily MODIS data can be used with confidence to monitor insect defoliation on an annual time scale, at least for larger patches (greater than 0.63 km2). Eight-day and 16-day MODIS composites may be of lesser use due to the ephemeral character of disturbance by the gypsy moth.

  1. Enantiomers of methyl substituted analogs of (Z)-5-decenyl acetate as probes for the chirality and complementarity of its receptor inAgrotis segetum 1: Synthesis and structure-activity relationships.

    PubMed

    Jönsson, S; Malmström, T; Liljefors, T; Hansson, B S

    1993-03-01

    The enantiomers of analogs of (Z)-5-decenyl acetate, a pheromone component ofAgrotis segetum, substituted by a methyl group in the 2, 3, 4, 7, and 8 positions and dimethyl substituted in the 4,7 positions, have been synthesized and studied by an electrophysiological single-cell technique and by molecular mechanics calculations. The results demonstrate that the electrophysiological activity as well as the ability of the (Z)-5-decenyl acetate receptor to differentiate between enantiomers depends on the position of the methyl substituent. For analogs methyl substituted in the 2, 4, or 8 position, no differences in the activities of the enantiomers could be observed. In contrast, the enantiomers of the 3- and 7-methyl analogs display a significant difference in the activities, theR-enantiomers being more active than theS-enantiomers. From an analysis of the structure-activity results of the enantiomers of the 4,7-dimethyl-substituted analogs, the chiral sense of the alkylchain of the natural pheromone component on binding to its receptor could be deduced.

  2. Effects of Invasive Winter Moth Defoliation on Tree Radial Growth in Eastern Massachusetts, USA

    PubMed Central

    Simmons, Michael J.; Lee, Thomas D.; Ducey, Mark J.; Elkinton, Joseph S.; Boettner, George H.; Dodds, Kevin J.

    2014-01-01

    Winter moth, Operophtera brumata L. (Lepidoptera: Geometridae), has been defoliating hardwood trees in eastern Massachusetts since the 1990s. Native to Europe, winter moth has also been detected in Rhode Island, Connecticut, eastern Long Island (NY), New Hampshire, and Maine. Individual tree impacts of winter moth defoliation in New England are currently unknown. Using dendroecological techniques, this study related annual radial growth of individual host (Quercus spp. and Acer spp.) trees to detailed defoliation estimates. Winter moth defoliation was associated with up to a 47% reduction in annual radial growth of Quercus trees. Latewood production of Quercus was reduced by up to 67% in the same year as defoliation, while earlywood production was reduced by up to 24% in the year following defoliation. Winter moth defoliation was not a strong predictor of radial growth in Acer species. This study is the first to document impacts of novel invasions of winter moth into New England. PMID:26462685

  3. Environmental Assessment for Aerial Application of Pesticide for Gypsy Moth Control, Andrews Air Force Base, Maryland

    DTIC Science & Technology

    2008-04-01

    ENVIRONMENTAL ASSESSMENT FOR AERIAL APPLICATION OF PESTICIDE FOR GYPSY MOTH CONTROL ANDREWS AIR FORCE BASE...to 00-00-2008 4. TITLE AND SUBTITLE Environmental Assessment for Aerial Application of Pesticide for Gypsy Moth Control Andrews Air Force Base...of gypsy moths at Andrews Air Force Base (AFB), Maryland (MD). The EA is prepared in compliance with the National Environmental Policy Act (NEPA) of

  4. Neurophysiological and Behavioral Responses of Gypsy Moth Larvae to Insect Repellents: DEET, IR3535, and Picaridin

    DTIC Science & Technology

    2014-06-23

    Neurophysiological and Behavioral Responses of Gypsy Moth Larvae to Insect Repellents: DEET, IR3535, and Picaridin Jillian L. Sanford1, Sharon A...the maxillary palps of gypsy moth larvae, and known to be sensitive to feeding deterrents, also responds to the insect repellents DEET, IR3535, and...JC, Shields VDC (2014) Neurophysiological and Behavioral Responses of Gypsy Moth Larvae to Insect Repellents: DEET, IR3535, and Picaridin. PLOS ONE 9

  5. Sex Pheromones: (E,E)-8,10-Dodecadien-1-ol in the Codling Moth.

    PubMed

    Beroza, M; Bierl, B A; Moffitt, H R

    1974-01-11

    Although (E,E)-8,10-Dodecadien-l-ol was reported to be a sex pheromone of the codling moth [Laspeyresia pomonella (L.)], its presence in the moth was questioned, mainly because it has not been isolated. A computerized search of data from gas chromatography-mass spectrometry of a partially purified extract equivalent to 45 abdominal tips of female moths produced a mass spectrum that matched that of the authentic coinpound. Other data also confirmed the presence of the compound.

  6. Evaluation of pheromone-baited traps for winter moth and Bruce spanworm (Lepidoptera: Geometridae).

    PubMed

    Elkinton, Joseph S; Lance, David; Boettner, George; Khrimian, Ashot; Leva, Natalie

    2011-04-01

    We tested different pheromone-baited traps for surveying winter moth, Operophtera brumata (L.) (Lepidoptera: Geometridae), populations in eastern North America. We compared male catch at Pherocon 1C sticky traps with various large capacity traps and showed that Universal Moth traps with white bottoms caught more winter moths than any other trap type. We ran the experiment on Cape Cod, MA, where we caught only winter moth, and in western Massachusetts, where we caught only Bruce spanworm, Operophtera bruceata (Hulst) (Lepidoptera: Geometridae), a congener of winter moth native to North America that uses the same pheromone compound [(Z,Z,Z)-1,3,6,9-nonadecatetraene] and is difficult to distinguish from adult male winter moths. With Bruce spanworm, the Pherocon 1C sticky traps caught by far the most moths. We tested an isomer of the pheromone [(E,Z,Z)-1,3,6,9-nonadecatetraene] that previous work had suggested would inhibit captures of Bruce spanworm but not winter moths. We found that the different doses and placements of the isomer suppressed captures of both species to a similar degree. We are thus doubtful that we can use the isomer to trap winter moths without also catching Bruce spanworm. Pheromone-baited survey traps will catch both species.

  7. Predator Mimicry: Metalmark Moths Mimic Their Jumping Spider Predators

    PubMed Central

    Rota, Jadranka; Wagner, David L.

    2006-01-01

    Cases of mimicry provide many of the nature's most convincing examples of natural selection. Here we report evidence for a case of predator mimicry in which metalmark moths in the genus Brenthia mimic jumping spiders, one of their predators. In controlled trials, Brenthia had higher survival rates than other similarly sized moths in the presence of jumping spiders and jumping spiders responded to Brenthia with territorial displays, indicating that Brenthia were sometimes mistaken for jumping spiders, and not recognized as prey. Our experimental results and a review of wing patterns of other insects indicate that jumping spider mimicry is more widespread than heretofore appreciated, and that jumping spiders are probably an important selective pressure shaping the evolution of diurnal insects that perch on vegetation. PMID:17183674

  8. Pheromone reception in moths: from molecules to behaviors.

    PubMed

    Zhang, Jin; Walker, William B; Wang, Guirong

    2015-01-01

    Male moths detect and find their mates using species-specific sex pheromones emitted by conspecific females. Olfaction plays a vital role in this behavior. Since the first discovery of an insect sex pheromone from the silkmoth Bombyx mori, great efforts have been spent on understanding the sensing of the pheromones in vivo. Much progress has been made in elucidating the molecular mechanisms that mediate chemoreception in insects in the past few decades. In this review, we focus on pheromone reception and detection in moths, from the molecular to the behavioral level. We trace the information pathway from the capture of pheromone by male antennae, binding and transportation to olfactory receptor neurons, receptor activation, signal transduction, molecule inactivation, through brain processing and behavioral response. We highlight the impact of recent studies and also provide our insights into pheromone processing.

  9. Processing of Pheromone Information in Related Species of Heliothine Moths

    PubMed Central

    Berg, Bente G.; Zhao, Xin-Cheng; Wang, Guirong

    2014-01-01

    In heliothine moths, the male-specific olfactory system is activated by a few odor molecules, each of which is associated with an easily identifiable glomerulus in the primary olfactory center of the brain. This arrangement is linked to two well-defined behavioral responses, one ensuring attraction and mating behavior by carrying information about pheromones released by conspecific females and the other inhibition of attraction via signal information emitted from heterospecifics. The chance of comparing the characteristic properties of pheromone receptor proteins, male-specific sensory neurons and macroglomerular complex (MGC)-units in closely-related species is especially intriguing. Here, we review studies on the male-specific olfactory system of heliothine moths with particular emphasis on five closely related species, i.e., Heliothis virescens, Heliothis subflexa, Helicoverpa zea, Helicoverpa assulta and Helicoverpa armigera. PMID:26462937

  10. New pheromone components of the grapevine moth Lobesia botrana.

    PubMed

    Witzgall, Peter; Tasin, Marco; Buser, Hans-Ruedi; Wegner-Kiss, Gertrud; Mancebón, Vicente S Marco; Ioriatti, Claudio; Bäckman, Anna-Carin; Bengtsson, Marie; Lehmann, Lutz; Francke, Wittko

    2005-12-01

    Analysis of extracts of sex pheromone glands of grapevine moth females Lobesia botrana showed three previously unidentified compounds, (E)-7-dodecenyl acetate and the (E,E)- and (Z,E)-isomers of 7,9,11-dodecatrienyl acetate. This is the first account of a triply unsaturated pheromone component in a tortricid moth. The monoenic acetate (E)-7-dodecenyl acetate and the trienic acetate (7Z,9E,11)-dodecatrienyl acetate significantly enhanced responses of males to the main pheromone compound, (7E,9Z)-7,9-dodecadienyl acetate, in the wind tunnel. The identification of sex pheromone synergists in L. botrana may be of practical importance for the development of integrated pest management systems.

  11. CHARACTERIZATION OF THE GLYCOSYLATED ECDYSTEROIDS IN THE HEMOLYMPH OF BACULOVIRUS-INFECTED GYPSY MOTH LARVAE AND CELLS IN CULTURE

    EPA Science Inventory

    Fourth-instar gypsy moth (Lymantria dispar; Lepidoptera: Lymantriidae) larvae, infected with the gypsy moth baculovirus (LdNPV), show an elevated and prolonged extension of the hemolymph ecdysteroid titer peak associated with molting. The ecdysteroid immunoreactivity associated w...

  12. Proceedings U. S. Department of Agriculture Interagency gypsy moth research forum 1992; 1992 January 13-16; Annapolis, MD.

    Treesearch

    Kurt W. Gottschalk; Mark J. Twery; [Editors

    1992-01-01

    Contains abstracts and papers of oral and poster presentations on gypsy moth and other invasive species biology, molecular biology, ecology, impacts, and management presented at the annual U.S. Department of Agriculture interagency research forum on gypsy moth.

  13. Detection and monitoring of pink bollworm moths and invasive insects using pheromone traps and encounter rate models

    USDA-ARS?s Scientific Manuscript database

    The pink bollworm moth, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), is one of the most destructive pests in agriculture. An ongoing eradication program using a combination of sex pheromone monitoring and mating disruption, irradiated sterile moth releases, genetically-modified Bt...

  14. CHARACTERIZATION OF THE GLYCOSYLATED ECDYSTEROIDS IN THE HEMOLYMPH OF BACULOVIRUS-INFECTED GYPSY MOTH LARVAE AND CELLS IN CULTURE

    EPA Science Inventory

    Fourth-instar gypsy moth (Lymantria dispar; Lepidoptera: Lymantriidae) larvae, infected with the gypsy moth baculovirus (LdNPV), show an elevated and prolonged extension of the hemolymph ecdysteroid titer peak associated with molting. The ecdysteroid immunoreactivity associated w...

  15. No impact of pupal predation on the altitudinal distribution of autumnal moth and winter moth (Lepidoptera: Geometridae) in sub-arctic birch forest.

    PubMed

    Hansen, Norun M; Ims, Rolf A; Hagen, Snorre B

    2009-06-01

    We tested the hypothesis that pupal predation by shrews underlies the altitudinal distribution pattern of the geometrid moth species Operophtera brumata L. (winter moth) and Epirrita autumnata Bkh (autumnal moth) in a sub-arctic birch forest in northern Fennoscandia. In particular, we predicted more intense pupal predation at low altitudes where the two moth species normally do not reach outbreak densities. Predation of pupae of both moth species was estimated along 10 parallel altitudinal transects, spanning from sea level to the altitudinal tree-limit in a coastal birch forest in northern Norway. Shrew abundance and the abundance and population growth rate of the two moth species were assessed in the same transects. Our study provided no support for the hypothesis that pupal predation by shrews can account for the altitudinal distribution of the two moth species. Despite high densities of common shrews (Sorex araneus L.) and an observed predation rate of approximately 90%, there was no difference in the rate of pupal predation either between the two geometrid species or between the various altitudes. These results narrow down the range of possible explanations for the altitudinal distribution pattern of these insects in northern birch forests.

  16. Moths on the Flatbed Scanner: The Art of Joseph Scheer

    PubMed Central

    Buchmann, Stephen L.

    2011-01-01

    During the past decade a few artists and even fewer entomologists discovered flatbed scanning technology, using extreme resolution graphical arts scanners for acquiring high magnification digital images of plants, animals and inanimate objects. They are not just for trip receipts anymore. The special attributes of certain scanners, to image thick objects is discussed along with the technical features of the scanners including magnification, color depth and shadow detail. The work of pioneering scanner artist, Joseph Scheer from New York's Alfred University is highlighted. Representative flatbed-scanned images of moths are illustrated along with techniques to produce them. Collecting and preparing moths, and other objects, for scanning are described. Highlights of the Fulbright sabbatical year of professor Scheer in Arizona and Sonora, Mexico are presented, along with comments on moths in science, folklore, art and pop culture. The use of flatbed scanners is offered as a relatively new method for visualizing small objects while acquiring large files for creating archival inkjet prints for display and sale. PMID:26467835

  17. Imprinted moth-eye antireflection patterns on glass substrate

    NASA Astrophysics Data System (ADS)

    Hong, Sung-Hoon; Bae, Byeong-Ju; Han, Kang-Soo; Hong, Eun-Ju; Lee, Heon; Choi, Kyung-Woo

    2009-03-01

    Sub-micron sized, conical shaped moth-eye structure was transferred to thermoplastic polymer film, such as polyvinyl chloride (PVC) using hot embossing process. Since master template was made of polycarbonate, embossing temperature and pressure were carefully maintained to 100°C and 10 atm. Conical shaped moth-eye pattern was reversed to tapered hole pattern on PVC film. Hot embossed PVC film was then used as transparent template for subsequent UV nanoimprint process, in order to form the conical shaped sub-micron moth-eye structure on glass substrate. After thin layer of Si oxide and monolayer of self-assembled, silane based molecules was coated on hot embossed PVC film. UV nanoimprint process was done on the glass substrate using hot embossed PVC film. As a result, the transmittance of glass substrate was increased from 91 to 94% for single side patterned and 96% for both side patterned glass substrate for the spectral range of 350 to 800 nm.

  18. Space travel shortens diapause in gypsy moth eggs.

    PubMed

    Hayes, D K; Morgan, N O; Webb, R E; Bell, R A

    1991-02-01

    Field-collected and laboratory-reared gypsy moth eggs were exposed to microgravity, cosmic radiation, sub-freezing temperatures, unusual vibrations, and other extraterrestrial phenomena while they were sealed for 6 days, in January, in a Get-Away-Special (GAS) canister in the open bay of a NASA earth-orbiting spacecraft, the Columbia. Insects were not exposed to light after preparation for and during space flight. Under field conditions, out-of-doors, the eggs should have hatched in April, after 3-4 months of chilling temperatures and should not have hatched after the 6 days of chilling to -11 degrees C during flight in the Columbia spacecraft. However by April 1, more than 4000 larvae had hatched from eggs that had travelled in space, as opposed to approximately 350 from a similar number of control, earthbound eggs. These results indicate that the period of a circannual rhythm in field- and lab-reared insects had been shortened, presumably as result of exposure to microgravity, other factors associated with space flight, and/or conditions of outer space. These results suggest that it may be possible to develop methods for rearing the gypsy moth year round, without the necessity of three months chilling interspersed in the development process. This, in turn, would facilitate production of large numbers of insects for sterile male release or for use as a rearing medium for parasites, predators and pathogens of the gypsy moth.

  19. Essential host plant cues in the grapevine moth.

    PubMed

    Tasin, Marco; Bäckman, Anna-Carin; Bengtsson, Marie; Ioriatti, Claudio; Witzgall, Peter

    2006-03-01

    Host plant odours attract gravid insect females for oviposition. The identification of these plant volatile compounds is essential for our understanding of plant-insect relationships and contributes to plant breeding for improved resistance against insects. Chemical analysis of grape headspace and subsequent behavioural studies in the wind tunnel show that host finding in grapevine moth Lobesia botrana is encoded by a ratio-specific blend of three ubiquitous plant volatiles. The odour signal that attracts mated females to grape consists of the terpenoids (E)-beta-caryophyllene, (E)-beta-farnesene and (E)-4,8-dimethyl-1,3,7-nonatriene. These compounds represent only a fraction of the volatiles released by grapes, and they are widespread compounds known throughout the plant kingdom. Specificity may be achieved by the blend ratio, which was 100:78:9 in grape headspace. This blend elicited anemotactic behaviour in moths at remarkably small amounts. Females were attracted at release rates of only a few nanograms per minute, at levels nearly as low as those known for the attraction of male moths to the female sex pheromones.

  20. Proteomic analysis of peach fruit moth larvae treated with phosphine.

    PubMed

    Liu, Tao; Li, Li; Li, Baishu; Zhang, Fanhua; Wang, Yuejin

    2012-01-01

    Phosphine has been used worldwide for the control of stored-product insects for many years. However, the molecular mechanism of its toxicity is not clearly understood. In the current study, larvae of the peach fruit moth were fumigated with phosphine. Proteomic analysis was then performed to identify the regulated proteins. Our results confirmed the phosphine toxicity on the peach fruit moth. The median lethal time LT50 was 38.5 h at 330 ppm at 25 degrees C. During fumigation, the respiration of the peach fruit moth was extremely inhibited. Of the 26 regulated proteins, 16 were identified by MALDI-TOF mass spectrometry after a 24 h treatment. The proteins were classified as related to metabolism (25 %), anti-oxidation (6 %), signal transduction (38 %), or defense (19 %). The rest (13 %) were unclassified. Phosphine regulation of ATP and glutathione contents, as well as of ATP synthase and glutathione S-transferase 2 activities were confirmed by enzyme activity analysis. These results demonstrate that complex transcriptional regulations underlie phosphine fumigation. New theories on the mechanism of phosphine toxicity may also be established based on these results.

  1. Double meaning of courtship song in a moth

    PubMed Central

    Nakano, Ryo; Ihara, Fumio; Mishiro, Koji; Toyama, Masatoshi; Toda, Satoshi

    2014-01-01

    Males use courtship signals to inform a conspecific female of their presence and/or quality, or, alternatively, to ‘cheat’ females by imitating the cues of a prey or predator. These signals have the single function of advertising for mating. Here, we show the dual functions of the courtship song in the yellow peach moth, Conogethes punctiferalis, whose males generate a series of short pulses and a subsequent long pulse in a song bout. Repulsive short pulses mimic the echolocation calls of sympatric horseshoe bats and disrupt the approach of male rivals to a female. The attractive long pulse does not mimic bat calls and specifically induces mate acceptance in the female, who raises her wings to facilitate copulation. These results demonstrate that moths can evolve both attractive acoustic signals and repulsive ones from cues that were originally used to identify predators and non-predators, because the bat-like sounds disrupt rivals, and also support a hypothesis of signal evolution via receiver bias in moth acoustic communication that was driven by the initial evolution of hearing to perceive echolocating bat predators. PMID:25009064

  2. Double meaning of courtship song in a moth.

    PubMed

    Nakano, Ryo; Ihara, Fumio; Mishiro, Koji; Toyama, Masatoshi; Toda, Satoshi

    2014-08-22

    Males use courtship signals to inform a conspecific female of their presence and/or quality, or, alternatively, to 'cheat' females by imitating the cues of a prey or predator. These signals have the single function of advertising for mating. Here, we show the dual functions of the courtship song in the yellow peach moth, Conogethes punctiferalis, whose males generate a series of short pulses and a subsequent long pulse in a song bout. Repulsive short pulses mimic the echolocation calls of sympatric horseshoe bats and disrupt the approach of male rivals to a female. The attractive long pulse does not mimic bat calls and specifically induces mate acceptance in the female, who raises her wings to facilitate copulation. These results demonstrate that moths can evolve both attractive acoustic signals and repulsive ones from cues that were originally used to identify predators and non-predators, because the bat-like sounds disrupt rivals, and also support a hypothesis of signal evolution via receiver bias in moth acoustic communication that was driven by the initial evolution of hearing to perceive echolocating bat predators.

  3. Essential host plant cues in the grapevine moth

    NASA Astrophysics Data System (ADS)

    Tasin, Marco; Bäckman, Anna-Carin; Bengtsson, Marie; Ioriatti, Claudio; Witzgall, Peter

    2006-03-01

    Host plant odours attract gravid insect females for oviposition. The identification of these plant volatile compounds is essential for our understanding of plant insect relationships and contributes to plant breeding for improved resistance against insects. Chemical analysis of grape headspace and subsequent behavioural studies in the wind tunnel show that host finding in grapevine moth Lobesia botrana is encoded by a ratio-specific blend of three ubiquitous plant volatiles. The odour signal that attracts mated females to grape consists of the terpenoids ( E)-β-caryophyllene, ( E)-β-farnesene and ( E)-4,8-dimethyl-1,3,7-nonatriene. These compounds represent only a fraction of the volatiles released by grapes, and they are widespread compounds known throughout the plant kingdom. Specificity may be achieved by the blend ratio, which was 100:78:9 in grape headspace. This blend elicited anemotactic behaviour in moths at remarkably small amounts. Females were attracted at release rates of only a few nanograms per minute, at levels nearly as low as those known for the attraction of male moths to the female sex pheromones.

  4. Population Explosions of Tiger Moth Lead to Lepidopterism Mimicking Infectious Fever Outbreaks

    PubMed Central

    Wills, Pallara Janardhanan; Anjana, Mohan; Nitin, Mohan; Varun, Raghuveeran; Sachidanandan, Parayil; Jacob, Tharaniyil Mani; Lilly, Madhavan; Thampan, Raghava Varman; Karthikeya Varma, Koyikkal

    2016-01-01

    Lepidopterism is a disease caused by the urticating scales and toxic fluids of adult moths, butterflies or its caterpillars. The resulting cutaneous eruptions and systemic problems progress to clinical complications sometimes leading to death. High incidence of fever epidemics were associated with massive outbreaks of tiger moth Asota caricae adult populations during monsoon in Kerala, India. A significant number of monsoon related fever characteristic to lepidopterism was erroneously treated as infectious fevers due to lookalike symptoms. To diagnose tiger moth lepidopterism, we conducted immunoblots for tiger moth specific IgE in fever patients’ sera. We selected a cohort of patients (n = 155) with hallmark symptoms of infectious fevers but were tested negative to infectious fevers. In these cases, the total IgE was elevated and was detected positive (78.6%) for tiger moth specific IgE allergens. Chemical characterization of caterpillar and adult moth fluids was performed by HPLC and GC-MS analysis and structural identification of moth scales was performed by SEM analysis. The body fluids and chitinous scales were found to be highly toxic and inflammatory in nature. To replicate the disease in experimental model, wistar rats were exposed to live tiger moths in a dose dependant manner and observed similar clinico-pathological complications reported during the fever epidemics. Further, to link larval abundance and fever epidemics we conducted cointegration test for the period 2009 to 2012 and physical presence of the tiger moths were found to be cointegrated with fever epidemics. In conclusion, our experiments demonstrate that inhalation of aerosols containing tiger moth fluids, scales and hairs cause systemic reactions that can be fatal to human. All these evidences points to the possible involvement of tiger moth disease as a major cause to the massive and fatal fever epidemics observed in Kerala. PMID:27073878

  5. HOST SPECIFICITY AND THE GENETIC STRUCTURE OF TWO YUCCA MOTH SPECIES IN A YUCCA HYBRID ZONE.

    PubMed

    Leebens-Mack, Jim; Pellmyr, Olle; Brock, Marcus

    1998-10-01

    Host specialization is an important mechanism of diversification among phytophagous insects, especially when they are tightly associated with their hosts. The well-known obligate pollination mutualism between yucca moths and yuccas represent such an association, but the degree of host specificity and modes of specialization in moth evolution is unclear. Here we use molecular tools to test the morphology-based hypothesis that the moths pollinating two yuccas, Yucca baccata and Y. schidigera, are distinct species. Host specificity was assessed in a zone of sympatry where the hosts are known to hybridize. Because the moths are the only pollinators, the plant hybrids are evidence that the moths occasionally perform heterospecific pollination. Nucleotide variation was assessed in a portion of the mitochondrial gene COI, and in an intron within a nuclear lysozyme gene. Moths pollinating Y. baccata and Y. schidigera were inferred to be genetically isolated because there was no overlap in alleles at either locus, and all but one of the moths was found on their native host in the hybrid zone. Moreover, genetic structure was very weak across the range of each moth species: estimates of FST for the lysozyme intron were 0.043 (SE = ± 0.004) and 0.021 (SE = ± 0.006) for the baccata and schidigera pollinators, respectively; estimated FST for COI in the baccata moths was 0.228 (± 0.012), whereas schidigera pollinators were fixed for a single allele. These results reveal a high level of migration among widely separated moth populations. We predict that pollen-mediated gene flow among conspecific yuccas is considerable and hypothesize that geographic separation is a limited barrier both for yuccas and for yucca moths. © 1998 The Society for the Study of Evolution.

  6. Population Explosions of Tiger Moth Lead to Lepidopterism Mimicking Infectious Fever Outbreaks.

    PubMed

    Wills, Pallara Janardhanan; Anjana, Mohan; Nitin, Mohan; Varun, Raghuveeran; Sachidanandan, Parayil; Jacob, Tharaniyil Mani; Lilly, Madhavan; Thampan, Raghava Varman; Karthikeya Varma, Koyikkal

    2016-01-01

    Lepidopterism is a disease caused by the urticating scales and toxic fluids of adult moths, butterflies or its caterpillars. The resulting cutaneous eruptions and systemic problems progress to clinical complications sometimes leading to death. High incidence of fever epidemics were associated with massive outbreaks of tiger moth Asota caricae adult populations during monsoon in Kerala, India. A significant number of monsoon related fever characteristic to lepidopterism was erroneously treated as infectious fevers due to lookalike symptoms. To diagnose tiger moth lepidopterism, we conducted immunoblots for tiger moth specific IgE in fever patients' sera. We selected a cohort of patients (n = 155) with hallmark symptoms of infectious fevers but were tested negative to infectious fevers. In these cases, the total IgE was elevated and was detected positive (78.6%) for tiger moth specific IgE allergens. Chemical characterization of caterpillar and adult moth fluids was performed by HPLC and GC-MS analysis and structural identification of moth scales was performed by SEM analysis. The body fluids and chitinous scales were found to be highly toxic and inflammatory in nature. To replicate the disease in experimental model, wistar rats were exposed to live tiger moths in a dose dependant manner and observed similar clinico-pathological complications reported during the fever epidemics. Further, to link larval abundance and fever epidemics we conducted cointegration test for the period 2009 to 2012 and physical presence of the tiger moths were found to be cointegrated with fever epidemics. In conclusion, our experiments demonstrate that inhalation of aerosols containing tiger moth fluids, scales and hairs cause systemic reactions that can be fatal to human. All these evidences points to the possible involvement of tiger moth disease as a major cause to the massive and fatal fever epidemics observed in Kerala.

  7. Identification and characterization of a RAPD-PCR marker for distinguishing Asian and North American gypsy moths

    Treesearch

    K.J. Garner; J.M. Slavicek

    1996-01-01

    The recent introduction of the Asian gypsy moth (Lymantria dispar L.) into North America has necessitated the development of genetic markers to distinguish Asian moths from the established North American population, which originated in Europe. We used RAPD-PCR to identify a DNA length polymorphism that is diagnostic for the two moth strains. The...

  8. Hourly and seasonable variation in catch of winter moths and bruce spanworm in pheromone-baited traps

    Treesearch

    Joseph Elkinton; Natalie Leva; George Boettner; Roy Hunkins; Marinko. Sremac

    2011-01-01

    Elkinton et al. recently completed a survey of northeastern North America for the newly invasive winter moth, Operophtera brumata L. The survey used traps baited with the winter moth pheromone, which, as far as it is known, consists of a single compound that is also used by Bruce spanworm, the North American congener of winter moth, O....

  9. 40 CFR 180.1218 - Indian Meal Moth Granulosis Virus; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Indian Meal Moth Granulosis Virus... RESIDUES IN FOOD Exemptions From Tolerances § 180.1218 Indian Meal Moth Granulosis Virus; exemption from... residues of the microbial pesticide Indian Meal Moth Granulosis Virus when used in or on all food...

  10. N-butyl sulfide as an attractant and co-attractant for male and female codling moth (Lepidoptera: Tortricidae)

    USDA-ARS?s Scientific Manuscript database

    Research to discover and develop attractants for the codling moth (CM), Cydia pomonella L., has involved identification of the chemicals eliciting moth orientation to conspecific female moths, host fruits, fermented baits, and species of microbes. Pear eester, acetic acid, and N-butyl sulfide are am...

  11. Odorants of the Flowers of Butterfly Bush, Buddleia davidii as Possible Attractants of Pest Species of Moths

    USDA-ARS?s Scientific Manuscript database

    Flowers of the butterfly bush, Buddleia davidii Franch., are visited by butterflies and moths, as well as other insects. Moths captured in traps over flowers were 21 species of Geometridae, Noctuidae, Pyralidae, and Tortricidae. The most abundant moths trapped at these flowers were the cabbage loop...

  12. 40 CFR 180.1218 - Indian Meal Moth Granulosis Virus; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Indian Meal Moth Granulosis Virus... RESIDUES IN FOOD Exemptions From Tolerances § 180.1218 Indian Meal Moth Granulosis Virus; exemption from... residues of the microbial pesticide Indian Meal Moth Granulosis Virus when used in or on all...

  13. Cryptically patterned moths perceive bark structure when choosing body orientations that match wing color pattern to the bark pattern.

    PubMed

    Kang, Chang-Ku; Moon, Jong-Yeol; Lee, Sang-Im; Jablonski, Piotr G

    2013-01-01

    Many moths have wing patterns that resemble bark of trees on which they rest. The wing patterns help moths to become camouflaged and to avoid predation because the moths are able to assume specific body orientations that produce a very good match between the pattern on the bark and the pattern on the wings. Furthermore, after landing on a bark moths are able to perceive stimuli that correlate with their crypticity and are able to re-position their bodies to new more cryptic locations and body orientations. However, the proximate mechanisms, i.e. how a moth finds an appropriate resting position and orientation, are poorly studied. Here, we used a geometrid moth Jankowskia fuscaria to examine i) whether a choice of resting orientation by moths depends on the properties of natural background, and ii) what sensory cues moths use. We studied moths' behavior on natural (a tree log) and artificial backgrounds, each of which was designed to mimic one of the hypothetical cues that moths may perceive on a tree trunk (visual pattern, directional furrow structure, and curvature). We found that moths mainly used structural cues from the background when choosing their resting position and orientation. Our findings highlight the possibility that moths use information from one type of sensory modality (structure of furrows is probably detected through tactile channel) to achieve crypticity in another sensory modality (visual). This study extends our knowledge of how behavior, sensory systems and morphology of animals interact to produce crypsis.

  14. 40 CFR 180.1218 - Indian Meal Moth Granulosis Virus; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Indian Meal Moth Granulosis Virus... RESIDUES IN FOOD Exemptions From Tolerances § 180.1218 Indian Meal Moth Granulosis Virus; exemption from... residues of the microbial pesticide Indian Meal Moth Granulosis Virus when used in or on all...

  15. 40 CFR 180.1218 - Indian Meal Moth Granulosis Virus; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Indian Meal Moth Granulosis Virus... RESIDUES IN FOOD Exemptions From Tolerances § 180.1218 Indian Meal Moth Granulosis Virus; exemption from... residues of the microbial pesticide Indian Meal Moth Granulosis Virus when used in or on all...

  16. 40 CFR 180.1218 - Indian Meal Moth Granulosis Virus; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Indian Meal Moth Granulosis Virus... RESIDUES IN FOOD Exemptions From Tolerances § 180.1218 Indian Meal Moth Granulosis Virus; exemption from... residues of the microbial pesticide Indian Meal Moth Granulosis Virus when used in or on all...

  17. Integrated pest management of the banded sunflower moth in cultivated sunflower in North Dakota

    USDA-ARS?s Scientific Manuscript database

    Banded sunflower moth, Cochylis hospes Walsingham (Lepidoptera: Tortricidae), is a key insect pest of cultivated sunflowers in North Dakota. We investigated pest management strategies to reduce feeding injury caused by the banded sunflower moth in commercial oilseed and confection sunflower fields l...

  18. “This is not an apple”–yeast mutualism in codling moth

    USDA-ARS?s Scientific Manuscript database

    1. The larva of codling moth Cydia pomonella (Tortricidae, Lepidoptera) is known as the worm in the apple, mining the fruit for food. We show that codling moth larvae are closely associated with yeasts of the genus Metschnikowia. Yeast is an essential part of the larval diet and further promotes lar...

  19. Moth wing scales slightly increase the absorbance of bat echolocation calls.

    PubMed

    Zeng, Jinyao; Xiang, Ning; Jiang, Lei; Jones, Gareth; Zheng, Yongmei; Liu, Bingwan; Zhang, Shuyi

    2011-01-01

    Coevolutionary arms races between predators and prey can lead to a diverse range of foraging and defense strategies, such as countermeasures between nocturnal insects and echolocating bats. Here, we show how the fine structure of wing scales may help moths by slightly increasing sound absorbance at frequencies typically used in bat echolocation. Using four widespread species of moths and butterflies, we found that moth scales are composed of honeycomb-like hollows similar to sound-absorbing material, but these were absent from butterfly scales. Micro-reverberation chamber experiments revealed that moth wings were more absorbent at the frequencies emitted by many echolocating bats (40-60 kHz) than butterfly wings. Furthermore, moth wings lost absorbance at these frequencies when scales were removed, which suggests that some moths have evolved stealth tactics to reduce their conspicuousness to echolocating bats. Although the benefits to moths are relatively small in terms of reducing their target strengths, scales may nonetheless confer survival advantages by reducing the detection distances of moths by bats by 5-6%.

  20. Parasitoid complex of the bird cherry ermine moth, Yponomeuta evonymellus, in Korea

    USDA-ARS?s Scientific Manuscript database

    The parasitoid complex of Yponomeuta evonymellus L. (Lepidoptera: Yponomeutidae), the bird cherry ermine moth, was sought in the Republic of Korea (South Korea) with the goal of identifying potential biological controls of the moth. 13 primary and two secondary parasitoids were found. Diadegma armil...

  1. Assessment of MODIS NDVI time series data products for detecting forest defoliation by gypsy moth outbreaks

    Treesearch

    Joseph P. Spruce; Steven Sader; Robert E. Ryan; James Smoot; Philip Kuper; al. et.

    2011-01-01

    This paper discusses an assessment of Moderate Resolution Imaging Spectroradiometer (MODIS) time-series data products for detecting forest defoliation from European gypsy moth (Lymantria dispar). This paper describes an effort to aid the United States Department of Agriculture (USDA) Forest Service in developing and assessing MODIS-based gypsy moth defoliation...

  2. Relationships between overstory composition and gypsy moth egg-mass density

    Treesearch

    Robert W. Campbell

    1974-01-01

    Most of the silvicultural recommendations for reducing the hazard of gypsy moth outbreaks have been based in part on the premise that gypsy moth density levels are related closely to the proportion of favored food trees in the overstory. This premise did not prove to be true for a series of plots observed in eastern New England between 1911 and 1931.

  3. Slow the Spread: a national program to manage the gypsy moth

    Treesearch

    Patrick C. Tobin; Laura M. Blackburn

    2007-01-01

    The gypsy moth is a destructive, nonindigenous pest of forest, shade, and fruit trees that was introduced into the United States in 1869, and is currently established throughout the Northeast and upper Midwest. The Slow the Spread Program is a regional integrated pest management strategy that aims to minimize the rate of gypsy moth spread into uninfested areas. The...

  4. The effects of tree species and site conditions on gypsy moth survival and growth in Michigan

    Treesearch

    John A. Witter; Michael E. Montgomery; Charley A. Chilcote; Jennifer L. Stoyenoff

    1991-01-01

    In 1987, we began a study to determine the relationships between gypsy moth growth and survival and forest site factors. The major objectives of this study were to determine the (1) relationships between gypsy moth survival and growth and different ecosystem conditions, (2) relationships among egg hatch, host phenology, and distribution of small larvae in the...

  5. Gypsy moth in the southeastern U.S.: Biology, ecology, and forest management strategies

    Treesearch

    Bruce W. ​Kauffman; Wayne K. Clatterbuck; Andrew M. Liebhold; David R. Coyle

    2017-01-01

    The European gypsy moth (Lymantria dispar L.) is a non-native insect that was accidentally introduced to North America in 1869 when it escaped cultivation by a French amateur entomologist living near Boston, MA. Despite early efforts to eradicate the species, it became established throughout eastern Massachusetts. Since then, the gypsy moth has...

  6. Tracking changes in the susceptibility of forest land infested with gypsy moth

    Treesearch

    David A. Gansner; John W. Quimby; Susan L. King; Stanford L. Arner; David A. Drake

    1994-01-01

    Does forest land subject to intensive outbreaks of gypsy moth (Lymantria dispar L.) become less susceptible to defoliation? A model for estimating the likelihood of gypsy moth defoliation has been developed and validated. It was applied to forest-inventory plot data to quantify trends in the susceptibility of forest land in south-central Pennsylvania during a period of...

  7. Potency of nucleopolyhedrovirus genotypes for European and Asian gypsy moth (Lepidoptera: Lymantriidae)

    Treesearch

    J.D. Podgwaite; V.V. Martemyanov; J.M. Slavicek; S.A. Bakhavalov; S.V. Pavlushin; N. Hayes-Plazolles; R.T. Zerillo

    2013-01-01

    Gypchek is a gypsy nucleopolyhedrovirus (LdMNPV) product used for management of European gypsy moth (Lymantria dispar dispar L.) in the Unlted States, primarily in areas where the use of broad-spectrum pesticides is not appropriate. Similar LdMNPV products are used in Russia for control of a flighted-female strain of Asian gypsy moth (...

  8. Outcrossing colonies of the Otis New Jersey gypsy moth strain and its effect on progeny development

    Treesearch

    John Allen Tanner; Charles P. Schwalbe

    1991-01-01

    The Otis New Jersey gypsy moth (Lymantria dispar L.) strain is considered the "white rat" of gypsy moth research. This strain has been laboratory reared for 34 generations. It currently consists of 35 subcolonies or cohorts that have been genetically isolated from one another for several generations. Usually, larvae that hatch at the same...

  9. Cost analysis and biological ramifications for implementing the gypsy moth Slow the Spread Program

    Treesearch

    Patrick C. Tobin

    2008-01-01

    The gypsy moth Slow the Spread Program aims to reduce the rate of gypsy moth, Lymantria dispar (L.), spread into new areas in the United States. The annual budget for this program has ranged from $10-13 million. Changes in funding levels can have important ramifications to the implementation of this program, and consequently affect the rate of gypsy...

  10. Introduction and establishment of Entomophaga maimaiga, a fungal pathogen of gypsy moth (Lepidoptera: Lymantriidae) in Michigan

    Treesearch

    D. R. Smitley; L. S. Bauer; A. E. Hajek; F. J. Sapio; R. A. Humber

    1995-01-01

    In 1991, late instars of gypsy moth, Lymantria dispar (L.), were sampled and diagnosed for infections of the pathogenic fungus Entomophaga maimaiga Humber, Shimazu & Soper and for gypsy moth nuclear polyhedrosis virus (NPV) at 50 sites in Michigan. Approximately 1,500 larvae were collected and reared from these sites, and no...

  11. Effects of gypsy moth-oriented silvicultural treatments on vertebrate predator communities

    Treesearch

    Richard D. Greer; Robert C. Whitmore

    1991-01-01

    The impact of forest thinning, as an alternative gypsy moth management technique, on insectivorous birds and small mammals is being investigated in the West Virginia University Forest. The effects of thinning on predation of gypsy moth larvae and pupae by vertebrates are also being examined. Pre-thinning studies were conducted during the spring, summer, and fall of...

  12. Preliminary results on predation of gypsy moth pupae during a period of latency in Slovakia

    Treesearch

    Marek Turcani; Andrew M. Liebhold; Michael McManus; J& #250; lius Novotn& #253

    2003-01-01

    Predation of gypsy moth pupae was studied from 2000 -2003 in Slovakia. Predation on artificially reared pupae was recorded and linear regression was used to test the hypothesis that predation follows a type II vs. type III functional response. The role of pupal predation in gypsy moth population dynamics was also investigated. The relative importance of predation of...

  13. An aerial-hawking bat uses stealth echolocation to counter moth hearing.

    PubMed

    Goerlitz, Holger R; ter Hofstede, Hannah M; Zeale, Matt R K; Jones, Gareth; Holderied, Marc W

    2010-09-14

    Ears evolved in many nocturnal insects, including some moths, to detect bat echolocation calls and evade capture [1, 2]. Although there is evidence that some bats emit echolocation calls that are inconspicuous to eared moths, it is difficult to determine whether this was an adaptation to moth hearing or originally evolved for a different purpose [2, 3]. Aerial-hawking bats generally emit high-amplitude echolocation calls to maximize detection range [4, 5]. Here we present the first example of an echolocation counterstrategy to overcome prey hearing at the cost of reduced detection distance. We combined comparative bat flight-path tracking and moth neurophysiology with fecal DNA analysis to show that the barbastelle, Barbastella barbastellus, emits calls that are 10 to 100 times lower in amplitude than those of other aerial-hawking bats, remains undetected by moths until close, and captures mainly eared moths. Model calculations demonstrate that only bats emitting such low-amplitude calls hear moth echoes before their calls are conspicuous to moths. This stealth echolocation allows the barbastelle to exploit food resources that are difficult to catch for other aerial-hawking bats emitting calls of greater amplitude.

  14. An experimental burn to restore a moth-killed boreal conifer forest, Krasnoyarsk Region, Russia

    Treesearch

    E.N. Valendik; J.C. Brissette; Ye. K. Kisilyakhov; R.J. Lasko; S.V. Verkhovets; S.T. Eubanks; I.V. Kosov; A. Yu. Lantukh

    2006-01-01

    Mechanical treatment and prescribed fire were used to restore a mixed conifer stand (Picea-Abies-Pinus) following mortality from an outbreak of Siberian moth (Dendrolimus superans sibiricus). Moth-killed stands often become dominated by Calamagrostis, a sod-forming grass. The large amount of woody debris and the sod hinder coniferous seedling establishment and...

  15. DEVELOPMENT OF CONTROL TACTICS AGAINST THE INVASIVE CACTUS MOTH, CACTOBLASTIS CACTORUM, IN NORTH AMERICA

    USDA-ARS?s Scientific Manuscript database

    The most successful classical biocontrol of weeds program has been the control of invasive prickly-pears (Opuntia spp.) by the Argentine cactus moth Cactoblastis cactorum. However, the moth has invaded North America and its ability to control its host plant raises concerns for the safety and surviva...

  16. Biology, Distribution And Control Of The Cactus Moth, Cactoblastis Cactorum (Berg) (Lepidoptera: Pyralide)

    USDA-ARS?s Scientific Manuscript database

    The cactus moth, Cactoblastis cactorum (Berg) (Lepidoptera: Pyralidae) became a textbook example of successful classical biological control after it was imported from Argentina into Australia in 1926 to control invasive Opuntia cacti. To date, the moth continues to play an active role in controlling...

  17. Fine structure of selected mouthpart sensory organs of gypsy moth larvae

    Treesearch

    Vonnie D.C. Shields

    2011-01-01

    Gypsy moth larvae, Lymantria dispar (L.), are major pest defoliators in most of the United States and destroy millions of acres of trees annually. They are highly polyphagous and display a wide host plant preference, feeding on the foliage of hundreds of plants, such as oak, maple, and sweet gum. Lepidopteran larvae, such as the gypsy moth, depend...

  18. Gut content analysis of arthropod predators of codling moth in Washington apple orchards

    USDA-ARS?s Scientific Manuscript database

    More than 70% of pome fruits in the USA are produced in central Washington State. The codling moth, Cydia pomonella (L.) is consistently the most damaging pest. We used polymerase chain reaction (PCR) to amplify codling moth DNA in 2591 field-collected arthropod predators to estimate predation in s...

  19. Persistent effects of aerial applications of disparlure on gypsy moth: trap catch and mating success

    Treesearch

    Kevin W. Thorpe; Ksenia S. Tcheslavskaia; Patrick C. Tobin; Laura M. Blackburn; Donna S. Leonard; E. Anderson Roberts

    2007-01-01

    In forest plots treated aerially with a plastic laminated flake formulation (Disrupt® II) of the gypsy moth sex pheromone disparlure to disrupt gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae), mating was monitored the year of treatment and 1-2 years after treatment to determine the effects of the treatment on suppression of...

  20. Combining mutualistic yeast and pathogenic virus - a novel method for control for codling moth control

    USDA-ARS?s Scientific Manuscript database

    Studies evaluated the lethal effectiveness of combining yeasts isolated from larvae of codling moth, Cydia pomonella (L.) with the codling moth granulosis virus (CpGV). Apples were treated with CpGV and three yeast species, including Metschnikowia pulcherrima Pitt and Miller, Cryptococcus tephrensis...

  1. Predicting infestation levels of the nantucket pine tip moth (Lepidoptera: Tortricidae) using pheromone traps

    Treesearch

    Christopher Asaro; C. Wayne Berisford

    2001-01-01

    There is considerable interest in using pheromone trap catches of the Nantucket pine tip moth, Rhyacionia frustrana (Conistock), to estimate or predict population density and damage. At six sites in the Georgia Piedmont, adult tip moths were monitored through one or more years using pheromone traps while population density and damage for each tip...

  2. Nantucket pine tip moth phenology and timing of insecticide spray applications in seven Southeastern States

    Treesearch

    Christopher J. Fettig; Mark J. Dalusky; C. Wayne Berisford

    2000-01-01

    The Nantucket pine tip moth, Rhyacionia frustrana (Comstock) (Lepidoptera: Tortricidae), is a common pest of Christmas tree and pine plantations throughout much of the Eastern United States. The moth completes two to five generations annually, and insecticide spray timing models are currently available for controlling populations where three or...

  3. Effect of Nucleopolyhedrosis Virus on Selected Mammalian Predators of the Gypsy Moth

    Treesearch

    R.A. Lautenschlager; C.H. Kircher; J.D. Podgwaite

    1977-01-01

    Nucleopolyhedrosis virus (NPV) of the gypsy moth was fed to three mammalian predators of the insect: the white-footed mouse, the short-tailed shrew, and the Virginia opposum in the form of NPV-infected 5th instar gypsy moth larvae, polyhedral inclusion bodies (PIB's) mixed in dog food and PIB's mixed in a standard spray formulation. The total amount of NPV...

  4. Interactions between nuclear polyhedrosis virus and Nosema sp. infecting gypsy moth

    Treesearch

    L. S. Bauer; M. McManus; J. Maddox

    1991-01-01

    Nuclear polyhedrosis virus (NPV) is the only entomopathogen that plays an important role in the natural regulation of North American gypsy moth populations. Recent European studies suggest that populations of gypsy moth in Eurasia are regulated primarily by the interactions between NPV and several species of microsporidia. Researchers have proposed that the...

  5. Passage of nucleopolyhedrosis virus by avian and mammalian predators of the gypsy moth, Lymantria dispar

    Treesearch

    R.A. Lautenschlager; J.D. Podgwaite

    1979-01-01

    Five species of mammals and 3 species of birds passed polyhedral inclusion bodies (PIB) of the gypsy moth nucleopolyhedrosis virus (NPV) through their alimentary tracts in amounts great enough to kIll gypsy moth larvae. In bioassays. Opossums and raccoons passed roughly 5% of the PIB administered by intubation while white-footed mice, a short-tailed shrew, and southern...

  6. Monitoring codling moth (Lepidoptera: Tortricidae) in orchards treated with pear ester and sex pheromone combo dispensers

    USDA-ARS?s Scientific Manuscript database

    Lures for monitoring codling moth, Cydia pomonella (L.), were tested in apple and walnut blocks treated with Cidetrak CM-DA Combo dispensers loaded with pear ester, ethyl (E, Z)-2,4-decadienoate (PE), and sex pheromone (E,E)-8,10-dodecadien-1-ol (codlemone). Total and female moth catches with combin...

  7. A comparison of tree crown condition in areas with and without gypsy moth activity

    Treesearch

    KaDonna C. Randolph

    2007-01-01

    This study compared the crown condition of trees within and outside areas of gypsy moth defoliation in Virginia via hypothesis tests of mean differences for five U.S. Department of Agriculture (USDA) Forest Service Forest Inventory and Analysis phase 3 crown condition indicators. Significant differences were found between the trees located within and outside gypsy moth...

  8. Forecasting outbreaks of the Douglas-fir tussock moth from lower crown cocoon samples.

    Treesearch

    Richard R. Mason; Donald W. Scott; H. Gene. Paul

    1993-01-01

    A predictive technique using a simple linear regression was developed to forecast the midcrown density of small tussock moth larvae from estimates of cocoon density in the previous generation. The regression estimator was derived from field samples of cocoons and larvae taken from a wide range of nonoutbreak tussock moth populations. The accuracy of the predictions was...

  9. Moth Wing Scales Slightly Increase the Absorbance of Bat Echolocation Calls

    PubMed Central

    Zeng, Jinyao; Xiang, Ning; Jiang, Lei; Jones, Gareth; Zheng, Yongmei; Liu, Bingwan; Zhang, Shuyi

    2011-01-01

    Coevolutionary arms races between predators and prey can lead to a diverse range of foraging and defense strategies, such as countermeasures between nocturnal insects and echolocating bats. Here, we show how the fine structure of wing scales may help moths by slightly increasing sound absorbance at frequencies typically used in bat echolocation. Using four widespread species of moths and butterflies, we found that moth scales are composed of honeycomb-like hollows similar to sound-absorbing material, but these were absent from butterfly scales. Micro-reverberation chamber experiments revealed that moth wings were more absorbent at the frequencies emitted by many echolocating bats (40–60 kHz) than butterfly wings. Furthermore, moth wings lost absorbance at these frequencies when scales were removed, which suggests that some moths have evolved stealth tactics to reduce their conspicuousness to echolocating bats. Although the benefits to moths are relatively small in terms of reducing their target strengths, scales may nonetheless confer survival advantages by reducing the detection distances of moths by bats by 5–6%. PMID:22096534

  10. Documentation of the Douglas-fir tussock moth outbreak-population model.

    Treesearch

    J.J. Colbert; W. Scott Overton; Curtis. White

    1979-01-01

    Documentation of three model versions: the Douglas-fir tussock moth population-branch model on (1) daily temporal resolution, (2) instart temporal resolution, and (3) the Douglas-fir tussock moth stand-outbreak model; the hierarchical framework and the conceptual paradigm used are described. The coupling of the model with a normal-stand model is discussed. The modeling...

  11. Felling and skidding cost estimates for thinnings to reduce gypsy moth impacts

    Treesearch

    Michael D. Erickson; Curt C. Hassler; Chris B. LeDoux

    1991-01-01

    The gypsy moth is a serious threat to the hardwood forests of the eastern United States. Although chemical treatments currently exist which can be used to help control the impacts of the moth, silvicultural control measures are just now being proposed and tested. Felling and skidding cost estimates for harvesting merchantable timber under two such proposed...

  12. Determining the economic feasibility of salvaging gypsy moth-killed hardwoods

    Treesearch

    Chris B. LeDoux

    1990-01-01

    Oak sawlog and pulpwood losses in stands defoliated by gypsy moths have become a critical problem for some forest landowners. The salvage of gypsy moth-killed hardwoods can become an important source of pulpwood and sawlogs. This study documents a methodology and provides guidelines to determine defoliated oak stands that are economically salvageable. Stand data from...

  13. The chemosensory receptors of codling moth Cydia pomonella – expression in larvae and adults

    USDA-ARS?s Scientific Manuscript database

    Background: Codling moth, Cydia pomonella, is a worldwide key pest of apple and pear. Behavior-modifying semiochemicals are successfully used and are being further developed for environmentally safe control of codling moth. The chemical senses, olfaction and gustation, play critically important role...

  14. Spread of Gypsy Moth (Lepidoptera: Lymantriidae) and Its Relationship to Defoliation

    Treesearch

    Patrick C. Tobin; Stefanie L. Whitmire

    2005-01-01

    Gypsy moth management is divided into three components: eradication, suppression, and transition zone management. All three components require knowledge of the boundaries that delimit these areas. Additional interest is also placed on the relationship between population spread and defoliation to prepare for the gypsy moth advance in new areas and minimize its impact....

  15. Preparing for the gypsy moth - design and analysis for stand management Dorr Run, Wayne National Forest

    Treesearch

    J. J. Colbert; Phil Perry; Bradley Onken

    1997-01-01

    As the advancing front of the gypsy moth continues its spread throughout Ohio, silviculturists on the Wayne National Forest are preparing themselves for potential gypsy moth outbreaks in the coming decade. Through a cooperative effort between the Northeastern Forest Experiment Station and Northeastern Area, Forest Health Protection, the Wayne National Forest, Ohio, is...

  16. Ecology and control of an invasive pest, the cactus moth, Cactoblastis cactorum (Lepidoptera)

    USDA-ARS?s Scientific Manuscript database

    The cactus moth, Cactoblastis cactorum, was one of the success stories in classical biological control. In the 1920s, the prickly pear cactus was a serious pest in Australia. The cactus moth was imported from its native habitat in South America and proved so successful in controlling cactus that it ...

  17. Preliminary results on predation of gypsy moth egg masses in Slovakia

    Treesearch

    Marek Turcani; Andrew Liebhold; Michael McManus; Julius Novotny

    2003-01-01

    Predation of gypsy moth egg masses was studied in Slovakia from 1999-2002. Predation on naturally laid egg masses was recorded and linear regression was used to test the hypothesis that predation follows a type II vs. type III functional response. We also investigated the role of egg mass predation in gypsy moth population dynamics. The relative contribution of...

  18. Forty million years of mutualism: Evidence for Eocene origin of the yucca-yucca moth association

    PubMed Central

    Pellmyr, Olle; Leebens-Mack, James

    1999-01-01

    The obligate mutualism between yuccas and yucca moths is a major model system for the study of coevolving species interactions. Exploration of the processes that have generated current diversity and associations within this mutualism requires robust phylogenies and timelines for both moths and yuccas. Here we establish a molecular clock for the moths based on mtDNA and use it to estimate the time of major life history events within the yucca moths. Colonization of yuccas had occurred by 41.5 ± 9.8 million years ago (Mya), with rapid life history diversification and the emergence of pollinators within 0–6 My after yucca colonization. A subsequent burst of diversification 3.2 ± 1.8 Mya coincided with evolution of arid habitats in western North America. Derived nonpollinating cheater yucca moths evolved 1.26 ± 0.96 Mya. The estimated age of the moths far predates the host fossil record, but is consistent with suggested host age based on paleobotanical, climatological, biogeographical, and geological data, and a tentative estimation from an rbcL-based molecular clock for yuccas. The moth data are used to establish three alternative scenarios of how the moths and plants have coevolved. They yield specific predictions that can be tested once a robust plant phylogeny becomes available. PMID:10430916

  19. Sexual communication in day-flying Lepidoptera with special reference to castniids or 'butterfly-moths'.

    PubMed

    Sarto I Monteys, V; Quero, C; Santa-Cruz, M C; Rosell, G; Guerrero, A

    2016-04-05

    Butterflies and moths are subject to different evolutionary pressures that affect several aspects of their behaviour and physiology, particularly sexual communication. Butterflies are day-flying insects (excluding hedylids) whose partner-finding strategy is mainly based on visual cues and female butterflies having apparently lost the typical sex pheromone glands. Moths, in contrast, are mostly night-flyers and use female-released long-range pheromones for partner-finding. However, some moth families are exclusively day-flyers, and therefore subject to evolutionary pressures similar to those endured by butterflies. Among them, the Castniidae, also called 'butterfly-moths' or 'sun-moths', behave like butterflies and, thus, castniid females appear to have also lost their pheromone glands, an unparallel attribute in the world of moths. In this paper, we review the sexual communication strategy in day-flying Lepidoptera, mainly butterflies (superfamily Papilionoidea), Zygaenidae and Castniidae moths, and compare their mating behaviour with that of moth families of nocturnal habits, paying particular attention to the recently discovered butterfly-like partner-finding strategy of castniids and the fascinating facts and debates that led to its discovery.

  20. Interaction of acetic acid and phenylacetaldehyde as attractants for trapping pest species of moths (Lepidoptera: Noctuidae)

    USDA-ARS?s Scientific Manuscript database

    Phenylacetaldehyde is a flower volatile and attractant for many nectar-seeking moths. Acetic acid is a microbial fermentation product that is present in insect sweet baits. It is weakly attractive to some moths and other insects, but can be additive or synergistic with other compounds to make more p...

  1. Unique synteny and alternate splicing of the chitin synthases in closely related heliothine moths

    USDA-ARS?s Scientific Manuscript database

    Two chitin synthase genes were characterized in the genomes of two heliothine moths: the corn earworm/cotton bollworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) and the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). In both moths, the coding sequences for the two ge...

  2. Guidelines for the use of GYPCHEK to control the gypsy moth

    Treesearch

    Franklin B. Lewis; Michael L. McManus; Noel F. Schneeberger

    1979-01-01

    This paper presents positive and negative attributes of GYPCHEK for evaluation by land managers contemplating gypsy moth control. Special precautions and procedures are outlined. Environmental and ecological considerations are discussed and results to be expected from the use of GYPCHEK in gypsy moth control are presented.

  3. Geographic isolation trumps coevolution as a driver of yucca and yucca moth diversification.

    PubMed

    Althoff, David M; Segraves, Kari A; Smith, Christopher I; Leebens-Mack, James; Pellmyr, Olle

    2012-03-01

    Coevolution is thought to be especially important in diversification of obligate mutualistic interactions such as the one between yuccas and pollinating yucca moths. We took a three-step approach to examine if plant and pollinator speciation events were likely driven by coevolution. First, we tested whether there has been co-speciation between yuccas and pollinator yucca moths in the genus Tegeticula (Prodoxidae). Second, we tested whether co-speciation also occurred between yuccas and commensalistic yucca moths in the genus Prodoxus (Prodoxidae) in which reciprocal evolutionary change is unlikely. Finally, we examined the current range distributions of yuccas in relationship to pollinator speciation events to determine if plant and moth speciation events likely occurred in sympatry or allopatry. Co-speciation analyses of yuccas with their coexisting Tegeticula pollinator and commensalistic Prodoxus lineages demonstrated phylogenetic congruence between both groups of moths and yuccas, even though moth lineages differ in the type of interaction with yuccas. Furthermore, Yucca species within a lineage occur primarily in allopatry rather than sympatry. We conclude that biogeographic factors are the overriding force in plant and pollinator moth speciation and significant phylogenetic congruence between the moth and plant lineages is likely due to shared biogeography rather than coevolution.

  4. Silvicultural guidelines for forest stands threatened by the Gypsy moth. Forest Service general technical report (Final)

    SciTech Connect

    Gottschalk, K.W.

    1993-02-02

    The ecological and silvicultural information on the interaction of gypsy moth and its host forest types is incorporated into silvicultural guidelines for minimizing the impacts of gypsy moth on forest stands threatened by the insect. Decision charts are used to match stand and insect conditions to the proper prescription that includes instructions for implementing it.

  5. Identification of the sex pheromone of the diurnal hawk moth, Hemaris affinis.

    PubMed

    Uehara, Takuya; Naka, Hideshi; Matsuyama, Shigeru; Ando, Tetsu; Honda, Hiroshi

    2015-01-01

    Sex pheromones of nocturnal hawk moths have been identified previously, but not those of diurnal hawk moths. Here, we report laboratory analyses and field testing of the sex pheromone of the diurnal hawk moth, Hemaris affinis (Bremer 1861) (Lepidoptera: Sphingidae). Sex pheromone glands were removed and extracted in hexane during peak calling activity of virgin female moths. Analysis of gland extracts by gas chromatography (GC) with electroantennographic detection revealed three components that elicited responses from male moth antennae. These components were identified, based on their mass spectra and retention indices on two GC columns, as (Z)-11-hexadecenal and (10E, 12Z)- and (10E,12E)-10,12-hexadecadienals with a ratio of 45:20:35. In a field experiment, traps baited with the three-component synthetic blend, but none of the single- or two-component blends, caught male moths. All three pheromone components have been identified previously in pheromones of other Lepidoptera, including Sphingid moths, and thus the ternary blend is probably responsible for the species specificity of the pheromone of this moth.

  6. Attraction of the gypsy moth to volatile organic compounds (VOCs) of damaged Dahurian larch.

    PubMed

    Li, Jing; Valimaki, Sanna; Shi, Juan; Zong, Shixiang; Luo, Youqing; Heliovaara, Kari

    2012-01-01

    Olfactory responses of the gypsy moth Lymantria dispar (L.) (Lepidoptera: Lymantriidae), a major defoliator of deciduous trees, were examined in Inner Mongolia, China. We studied whether the gypsy moth adults are attracted by the major volatile organic compounds (VOCs) of damaged Larix gmelinii (Dahurian larch) foliage and compared the attractiveness of the plant volatiles with that of the synthetic sex pheromone. Our results indicated that the VOCs of the Dahurian larch were effective in attracting gypsy moth males especially during the peak flight period. The VOCs also attracted moths significantly better than the sex pheromone of the moth. Our study is the first trial to show the responses of adult gypsy moths to volatile compounds emitted from a host plant. Electroantennogram responses of L. gmelinii volatiles on gypsy moths supported our field observations. A synergistic effect between host plant volatiles and sex pheromone was also obvious, and both can be jointly applied as a new attractant method or population management strategy of the gypsy moth.

  7. Revisiting an old question: Is the natural blend best for disruption of pheromone communication in moths?

    USDA-ARS?s Scientific Manuscript database

    Short-lived microlepidoptera must, by force, be very good at finding their mate and reproducing. Insects are very good at this and moths, in particular, are highly evolved to use volatile signals (pheromones) to communicate and locate conspecifics. The chemical structures of many pheromones of moths...

  8. Fabrication of moth-eye structures on silicon by direct six-beam laser interference lithography

    SciTech Connect

    Xu, Jia; Zhang, Ziang; Weng, Zhankun; Wang, Zuobin Wang, Dapeng

    2014-05-28

    This paper presents a new method for the generation of cross-scale laser interference patterns and the fabrication of moth-eye structures on silicon. In the method, moth-eye structures were produced on a surface of silicon wafer using direct six-beam laser interference lithography to improve the antireflection performance of the material surface. The periodic dot arrays of the moth-eye structures were formed due to the ablation of the irradiance distribution of interference patterns on the wafer surface. The shape, size, and distribution of the moth-eye structures can be adjusted by controlling the wavelength, incidence angles, and exposure doses in a direct six-beam laser interference lithography setup. The theoretical and experimental results have shown that direct six-beam laser interference lithography can provide a way to fabricate cross-scale moth-eye structures for antireflection applications.

  9. A computer model for simulating population development of the Indianmeal moth (Lepidoptera: Pyralidae) in stored corn.

    PubMed

    Throne, James E; Arbogast, Richard T

    2010-08-01

    The Indianmeal moth, Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae), is a common pest of stored corn, Zea mays L. We developed a computer model to simulate population development of the Indianmeal moth in stored corn by using previously published data describing immature developmental times and survivorship, and adult longevity and fecundity. The model accurately simulated population development of Indianmeal moths in corn stored during fall and into winter of three separate storage seasons in South Carolina. This is the period when the Indianmeal moth is a pest in stored corn in South Carolina. The model predicted that populations would increase after winter as grain temperatures rose, but observed populations in the grain bins never increased after winter. Despite this, the model should be useful from a management perspective because the corn is being sold off or used up after winter, and the observed Indianmeal moth populations never reached damaging levels after winter.

  10. Grizzly bear use of army cutworm moths in the Yellowstone Ecosystem

    USGS Publications Warehouse

    French, Steven P.; French, Marilynn G.; Knight, Richard R.

    1994-01-01

    The ecology of alpine aggregations of army cutworm moths (Euxoa auxiliaris) and the feeding behavior of grizzly bears (Ursus arctos horribilis) at these areas were studied in the Yellowstone ecosystem from 1988 to 1991. Army cutworm moths migrate to mountain regions each summer to feed at night on the nectar of alpine and subalpine flowers, and during the day they seek shelter under various rock formations. Grizzly bears were observed feeding almost exclusively on moths up to 3 months each summer at the 10 moth-aggregation areas we identified. Fifty-one different grizzly bears were observed feeding at 4 of these areas during a single day in August 1991. Army cutworm moths are a preferred source of nutrition for many grizzly bears in the Yellowstone ecosystem and represent a high quality food that is available during hyperphagia.

  11. The moth Hylesia metabus and French Guiana lepidopterism: centenary of a public health concern

    PubMed Central

    Jourdain, F.; Girod, R.; Vassal, J.M.; Chandre, F.; Lagneau, C.; Fouque, F.; Guiral, D.; Raude, J.; Robert, V.

    2012-01-01

    The females of the moths Hylesia metabus have their abdomens covered by urticating hairs looking like micro-arrows and causing a puriginous dermatitis to humans known as “papillonite” in French Guiana and also called yellowtail moth dermatitis or Caripito itch. The densities of the moths show great seasonal and annual variations depending on mechanisms mostly unknown. When H. metabus infestations occur, numerous cases of dermatologic manifestations are reported from people living near the mangrove swamps where the moths are developing. One hundred years after the first “papillonite” epidemic reported from French Guiana in 1912, the data presented herein summarize the actual state of knowledge on H. metabus biology and ecology and on the lepidopterism. Some recommendations are proposed for the surveillance and warning systems of H. metabus infestations and to avoid contact with the moths. Research priorities are suggested to improve the control against this problem emerging between nuisance and public health. PMID:22550622

  12. Caterpillars and moths: Part I. Dermatologic manifestations of encounters with Lepidoptera.

    PubMed

    Hossler, Eric W

    2010-01-01

    Caterpillars are the larval forms of moths and butterflies and belong to the order Lepidoptera. Caterpillars, and occasionally moths, have evolved defense mechanisms, including irritating hairs, spines, venoms, and toxins that may cause human disease. The pathologic mechanisms underlying reactions to Lepidoptera are poorly understood. Lepidoptera are uncommonly recognized causes of localized stings, eczematous or papular dermatitis, and urticaria. Part I of this two-part series on caterpillars and moths reviews Lepidopteran life cycles, terminology, and the epidemiology of caterpillar and moth envenomation. It also reviews the known pathomechanisms of disease caused by Lepidopteran exposures and how they relate to diagnosis and management. Part II discusses the specific clinical patterns caused by Lepidopteran exposures, with particular emphasis on groups of caterpillars and moths that cause a similar pattern of disease. It also discusses current therapeutic options regarding each pattern of disease.

  13. Olfactory cues from different plant species in host selection by female pea moths.

    PubMed

    Thöming, Gunda; Norli, Hans Ragnar

    2015-03-04

    In herbivorous insects specialized on few plant species, attraction to host odor may be mediated by volatiles common to all host species, by specific compounds, or combinations of both. The pea moth Cydia nigricana is an important pest of the pea. Volatile signatures of four host plant species were studied to identify compounds involved in pea moth host selection and to improve previously reported attractive volatile blends. P. sativum and alternative Fabaceae host species were compared regarding female attraction, oviposition, and larval performance. Pea moth females were strongly attracted to the sweet pea Lathyrus odoratus, but larval performance on that species was moderate. Chemical analyses of sweet pea odor and electrophysiological responses of moth antennae led to identification of seven sweet-pea-specific compounds and ten compounds common to all tested host species. Blends of these specific and common cues were highly attractive to mated pea moth females in wind tunnel and field experiments.

  14. Fabrication of moth-eye structures on silicon by direct six-beam laser interference lithography

    NASA Astrophysics Data System (ADS)

    Xu, Jia; Wang, Zuobin; Zhang, Ziang; Wang, Dapeng; Weng, Zhankun

    2014-05-01

    This paper presents a new method for the generation of cross-scale laser interference patterns and the fabrication of moth-eye structures on silicon. In the method, moth-eye structures were produced on a surface of silicon wafer using direct six-beam laser interference lithography to improve the antireflection performance of the material surface. The periodic dot arrays of the moth-eye structures were formed due to the ablation of the irradiance distribution of interference patterns on the wafer surface. The shape, size, and distribution of the moth-eye structures can be adjusted by controlling the wavelength, incidence angles, and exposure doses in a direct six-beam laser interference lithography setup. The theoretical and experimental results have shown that direct six-beam laser interference lithography can provide a way to fabricate cross-scale moth-eye structures for antireflection applications.

  15. The moth Hylesia metabus and French Guiana lepidopterism: centenary of a public health concern.

    PubMed

    Jourdain, F; Girod, R; Vassal, J M; Chandre, F; Lagneau, C; Fouque, F; Guiral, D; Raude, J; Robert, V

    2012-05-01

    The females of the moths Hylesia metabus have their abdomens covered by urticating hairs looking like micro-arrows and causing a puriginous dermatitis to humans known as "papillonite" in French Guiana and also called yellowtail moth dermatitis or Caripito itch. The densities of the moths show great seasonal and annual variations depending on mechanisms mostly unknown. When H. metabus infestations occur, numerous cases of dermatologic manifestations are reported from people living near the mangrove swamps where the moths are developing. One hundred years after the first "papillonite" epidemic reported from French Guiana in 1912, the data presented herein summarize the actual state of knowledge on H. metabus biology and ecology and on the lepidopterism. Some recommendations are proposed for the surveillance and warning systems of H. metabus infestations and to avoid contact with the moths. Research priorities are suggested to improve the control against this problem emerging between nuisance and public health.

  16. Plant diversity enhances moth diversity in an intensive forest management experiment.

    PubMed

    Root, Heather T; Verschuyl, Jake; Stokely, Thomas; Hammond, Paul; Scherr, Melissa A; Betts, Matthew G

    2017-01-01

    Intensive forest management (IFM) promises to help satisfy increasing global demand for wood but may come at the cost of local reductions to forest biodiversity. IFM often reduces early seral plant diversity as a result of efforts to eliminate plant competition with crop trees. If diversity is a function of bottom-up drivers, theory predicts that specialists at lower trophic levels (e.g., insect herbivores) should be particularly sensitive to reductions in plant diversity. We conducted a stand-level experiment to test bottom-up controls on moth community structure, as mediated by degrees of forest management intensity. Using a dataset of 12,003 moths representing 316 moth species, moth richness decreased only slightly, if at all, as herbicide intensity increased (P = 0.062); the moderate treatment, which is most commonly applied in the northwestern USA, was estimated to have 4.72 (±2.14 SE, P = 0.039) fewer species than the control. Structural equation modeling revealed strong support for an effect of herbicide on plant abundance, which influenced plant species richness and subsequently moth species richness. Moth species richness was associated with plant species richness and followed a power law function (z = 0.42, P = 0.006), which is surprisingly consistent with a recent large-scale experiment in agricultural systems, and provides support for bottom-up drivers of moth community structure. Moth abundance was not influenced by the direct effects of silvicultural herbicide treatments. Site-level effects and variation in pre-harvest vegetation communities resulted in residual broadleaf and herbaceous vegetation in even the most intensive treatment. Even at low densities, these residual deciduous and herbaceous plants supported higher than expected moth abundance and richness. We conclude that forest management practices that retain early seral vegetation diversity are the most likely to conserve moth communities. © 2016 by the Ecological Society of

  17. Variation in the costs and benefits of mutualism: the interaction between yuccas and yucca moths.

    PubMed

    Addicott, John F

    1986-11-01

    Yucca moths are both obligate pollinators and obligate seed predators of yuccas. I measured the costs and net benefits per fruit arising for eight species of yuccas from their interaction with the yucca moth Tegeticula yuccasella. Yucca moths decrease the production of viable seeds as a result of oviposition by adults and feeding by larvae. Oviposition through the ovary wall caused 2.3-28.6% of ovules per locule to fail to develop, leaving fruit with constrictions, and overall, 0.6-6.6% of ovules per fruit were lost to oviposition by yucca moths. Individual yucca moth larvae ate 18.0-43.6% of the ovules in a locule. However, because of the number of larvae per fruit and the proportion of viable seeds, yucca moth larvae consumed only 0.0-13.6% of potentially viable ovules per fruit. Given both oviposition and feeding effects, yucca moths decreased viable seed production by 0.6-19.5%. The ratio of costs to (gross) benefits varied from 0% to 30%, indicating that up to 30% of the benefits available to yuccas are subsequently lost to yucca moths. The costs are both lower and more variable than in a similar pollinator-seed predator mutualism involving figs and fig wasps.There were differences between species of yuccas in the costs of associating with yucca moths. Yuccas with baccate fruit experienced lower costs than species with capsular fruit. There were also differences in costs between populations within species and high variation in costs between fruit within populations. High variability was the result of no yucca moth larvae being present in over 50% of the fruit in some populations, while other fruit produced up to 24 larvae. I present hypotheses explaining both the absence and high numbers of larvae per fruit.

  18. Current temporal trends in moth abundance are counter to predicted effects of climate change in an assemblage of subarctic forest moths.

    PubMed

    Hunter, Mark D; Kozlov, Mikhail V; Itämies, Juhani; Pulliainen, Erkki; Bäck, Jaana; Kyrö, Ella-Maria; Niemelä, Pekka

    2014-06-01

    Changes in climate are influencing the distribution and abundance of the world's biota, with significant consequences for biological diversity and ecosystem processes. Recent work has raised concern that populations of moths and butterflies (Lepidoptera) may be particularly susceptible to population declines under environmental change. Moreover, effects of climate change may be especially pronounced in high latitude ecosystems. Here, we examine population dynamics in an assemblage of subarctic forest moths in Finnish Lapland to assess current trajectories of population change. Moth counts were made continuously over a period of 32 years using light traps. From 456 species recorded, 80 were sufficiently abundant for detailed analyses of their population dynamics. Climate records indicated rapid increases in temperature and winter precipitation at our study site during the sampling period. However, 90% of moth populations were stable (57%) or increasing (33%) over the same period of study. Nonetheless, current population trends do not appear to reflect positive responses to climate change. Rather, time-series models illustrated that the per capita rates of change of moth species were more frequently associated negatively than positively with climate change variables, even as their populations were increasing. For example, the per capita rates of change of 35% of microlepidoptera were associated negatively with climate change variables. Moth life-history traits were not generally strong predictors of current population change or associations with climate change variables. However, 60% of moth species that fed as larvae on resources other than living vascular plants (e.g. litter, lichen, mosses) were associated negatively with climate change variables in time-series models, suggesting that such species may be particularly vulnerable to climate change. Overall, populations of subarctic forest moths in Finland are performing better than expected, and their populations

  19. Cryptically Patterned Moths Perceive Bark Structure When Choosing Body Orientations That Match Wing Color Pattern to the Bark Pattern

    PubMed Central

    Kang, Chang-ku; Moon, Jong-yeol; Lee, Sang-im; Jablonski, Piotr G.

    2013-01-01

    Many moths have wing patterns that resemble bark of trees on which they rest. The wing patterns help moths to become camouflaged and to avoid predation because the moths are able to assume specific body orientations that produce a very good match between the pattern on the bark and the pattern on the wings. Furthermore, after landing on a bark moths are able to perceive stimuli that correlate with their crypticity and are able to re-position their bodies to new more cryptic locations and body orientations. However, the proximate mechanisms, i.e. how a moth finds an appropriate resting position and orientation, are poorly studied. Here, we used a geometrid moth Jankowskia fuscaria to examine i) whether a choice of resting orientation by moths depends on the properties of natural background, and ii) what sensory cues moths use. We studied moths’ behavior on natural (a tree log) and artificial backgrounds, each of which was designed to mimic one of the hypothetical cues that moths may perceive on a tree trunk (visual pattern, directional furrow structure, and curvature). We found that moths mainly used structural cues from the background when choosing their resting position and orientation. Our findings highlight the possibility that moths use information from one type of sensory modality (structure of furrows is probably detected through tactile channel) to achieve crypticity in another sensory modality (visual). This study extends our knowledge of how behavior, sensory systems and morphology of animals interact to produce crypsis. PMID:24205118

  20. Chlorantraniliprole resistance in the diamondback moth (Lepidoptera: Plutellidae).

    PubMed

    Gong, Wei; Yan, Hui-Hui; Gao, Li; Guo, Yun-Yun; Xue, Chao-Bin

    2014-04-01

    The wide application of chlorantraniliprole, which selectively targets insect ryanodine receptors (RyR), for control of the diamondback moth, Plutella xylostella (L.), has led to increasingly prominent development of resistance to this insecticide. Although much work has been carried out on the structure and function of RyR, the molecular mechanisms of resistance to chlorantraniliprole in diamondback moth still needs further investigation. P. xylostella strains with medium and high resistance to chlorantraniliprole were obtained by laboratory selection and field collection. The biological activity of chlorantraniliprole against the third-instar larvae of susceptible and resistant strains was tested, and resistance development and biological fitness were investigated. The realized heritability (h2) of resistance showed the diamondback moth has a high risk of resistance to chlorantraniliprole. RyR transcript levels were lower in resistant strains than in susceptible strains, indicating that decreased expression of PxRyR may be associated with chlorantraniliprole resistance in P. xylostella. A 4,400 bp fragment of the RyR cDNA, which encodes most of the functional domains of RyR, was cloned and characterized from four strains (S, F18, BY, and ZC). A 14 amino acid (Q4546-S4559) deletion was found in three resistant strains (F18, BY, and ZC). A point mutation resulting in a glycine to glutamate substitution, as reported in a previously published article, was also found in the carboxyl-terminal region of two resistant strains (BY and ZC). These results indicated that decreased transcriptional level of RyR mRNA and combined with the site mutation might be related to chlorantraniliprole resistance in P. xylostella.

  1. Attraction of pea moth Cydia nigricana to pea flower volatiles.

    PubMed

    Thöming, Gunda; Knudsen, Geir K

    2014-04-01

    The pea moth Cydia nigricana causes major crop losses in pea (Pisum sativum) production. We investigated attraction of C. nigricana females to synthetic pea flower volatiles in a wind tunnel and in the field. We performed electroantennogram analysis on 27 previously identified pea plant volatiles, which confirmed antennal responses to nine of the compounds identified in pea flowers. A dose-dependent response was found to eight of the compounds. Various blends of the nine pea flower volatiles eliciting antennal responses were subsequently studied in a wind tunnel. A four-compound blend comprising hexan-1-ol, (E)-2-hexen-1-ol, (Z)-β-ocimene and (E)-β-ocimene was equally attractive to mated C. nigricana females as the full pea flower mimic blend. We conducted wind-tunnel tests on different blends of these four pea flower compounds mixed with a headspace sample of non-flowering pea plants. By considering the effects of such green leaf background odour, we were able to identify (Z)- and (E)-β-ocimene as fundamental for host location by the pea moths, and hexan-1-ol and (E)-2-hexen-1-ol as being of secondary importance in that context. In the field, the two isomers of β-ocimene resulted in trap catches similar to those obtained with the full pea flower mimic and the four-compound blend, which clearly demonstrated the prime significance of the β-ocimenes as attractants of C. nigricana. The high level of the trap catches of female C. nigricana noted in this first field experiment gives a first indication of the potential use of such artificial kairomones in pea moth control. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Aerosol emitters disrupt codling moth, Cydia pomonella, competitively.

    PubMed

    McGhee, Peter S; Gut, Larry J; Miller, James R

    2014-12-01

    Isomate(®) CM MIST aerosol emitters (Pacific BioControl Corp, Vancouver, WA) containing 36 g of codlemone, (E,E)-8,10-dodecadien-1-ol, were deployed at various densities in a commercial apple orchard to generate dosage-response profiles in order to elucidate the behavioral mechanism of disruption. Moth captures decreased asymptotically as Isomate(®) CM MIST densities increased. Data fitting to Miller-Gut and Miller-de Lame plots yielded straight lines, with positive and negative slopes respectively. Catch of male moths decreased from 28 trap(-1) in the control to 0.9 trap(-1) at the highest emitter density. Disruption of >90% was realized at emitter densities greater than 5 units ha(-1) . The resulting set of profiles explicitly matched the predictions for competitive rather than non-competitive disruption. Thus, these devices probably disrupt by inducing false-plume following rather than by camouflaging traps and females. The use of 5 MIST units ha(-1) would be necessary to achieve the same level of codling moth control provided by a standard pheromone treatment with passive reservoir dispensers. The need for only a few aerosol emitters, 2.5-5 units ha(-1) , mitigates the cost of labor required to hand-apply hundreds of passive reservoir dispensers; however, a potential weakness in using this technology is that the low deployment density may leave areas of little or no pheromone coverage, where mate finding may occur. This technology is likely to benefit substantially from treatment of large contiguous blocks of crop. © 2014 Society of Chemical Industry.

  3. Diamondback moth in Ukraine: current status and potential for use biological control agents.

    PubMed

    Likar, Y; Stefanovska, T

    2009-01-01

    The Diamondback moth (DBM), Plutella xillostella (Linnaeus) (Lepidoptera: Plutellidae) is the insect pest damaging cabbage in Ukraine, especially in the Southern region. Biology, damage, population dynamics of diamondback moth and effect of natural enemies on the level of infestation of this pest by parasitoids and pathogens were studied in 2004-2007 in the laboratory and field conditions. Obtained results show that in general the pest has 2-3 generations, although up to 5-6 can evolve in the South. Fecundity and life longevity of Diamondback were studied on white cabbage, red cabbage, broccoli, cauliflower and two basic weeds: shepherd's purse and wild mustard. The host plant affects fecundity and life span of the diamondback moth. Fecundity differs significantly and is highest with white cabbage. Fauna of Diamondback moth parasitoids is quite rich. All stages are affected by numerous parasitoids and predators. Around 22 parasitoid species were recorded during the study. Overall parasitism ranged from 18% to 60% varying essentially between the areas. Apanteles (Cotesia) sp., Diadegma sp., Trichogramma sp. were most common in all areas. Steinernema sp., entomopathogenic nematodes are found to be natural enemies of diamondback moth. The range of natural enemies contributes significantly to the control of Diamondback moth. Conservation and augmentation of natural enemies should be used in IPM systems in order to control diamondback moth on cabbage. Entomopathogenic nematodes are prominent biocontrol agents.

  4. Camouflage through an active choice of a resting spot and body orientation in moths.

    PubMed

    Kang, C-K; Moon, J-Y; Lee, S-I; Jablonski, P G

    2012-09-01

    Cryptic colour patterns in prey are classical examples of adaptations to avoid predation, but we still know little about behaviours that reinforce the match between animal body and the background. For example, moths avoid predators by matching their colour patterns with the background. Active choice of a species-specific body orientation has been suggested as an important function of body positioning behaviour performed by moths after landing on the bark. However, the contribution of this behaviour to moths' crypticity has not been directly measured. From observations of geometrid moths, Hypomecis roboraria and Jankowskia fuscaria, we determined that the positioning behaviour, which consists of walking and turning the body while repeatedly lifting and lowering the wings, resulted in new resting spots and body orientations in J. fuscaria and in new resting spots in H. roboraria. The body positioning behaviour of the two species significantly decreased the probability of visual detection by humans, who viewed photographs of the moths taken before and after the positioning behaviour. This implies that body positioning significantly increases the camouflage effect provided by moth's cryptic colour pattern regardless of whether the behaviour involves a new body orientation or not. Our study demonstrates that the evolution of morphological adaptations, such as colour pattern of moths, cannot be fully understood without taking into account a behavioural phenotype that coevolved with the morphology for increasing the adaptive value of the morphological trait. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.

  5. Can sunspot activity and ultraviolet-B radiation explain cyclic outbreaks of forest moth pest species?

    PubMed

    Selås, Vidar; Hogstad, Olav; Kobro, Sverre; Rafoss, Trond

    2004-09-22

    Cyclic outbreaks of forest moth pest species have long remained a puzzle for foresters and ecologists. This paper presents time-series exhibiting a strong negative relationship between sunspot numbers and population indices of autumnal and winter moths, both in a mountain birch forest in central Norway and in a mixed lowland forest in southern Norway. In the latter area, also the population level of a moth species feeding entirely on lichens was negatively related to sunspot numbers. Low sunspot activity leads to a thinner ozone layer and thus higher surface ultraviolet (UV)-B radiation. As winter moth larvae prefer leaves subjected to enhanced UV-B radiation, we suggest that the causal relationship between sunspots and moths is that the metabolic costs of producing UV-B-protective pigments during periods of low sunspot activity reduce trees' and lichens' resistance to herbivores, and thus increase the survival of moth larvae. Higher peak densities of moth cycles in mountain forests could be explained by the general higher UV-B radiation at higher altitudes.

  6. Pheromone-trapping the nun moth, Lymantria monacha (Lepidoptera: Lymantriidae) in Inner Mongolia, China.

    PubMed

    Wang, Peng; Chen, Guo-Fa; Zhang, Jun-Sheng; Xue, Qi; Zhang, Jin-Hua; Chen, Chao; Zhang, Qing-He

    2017-08-01

    The nun moth, Lymantria monacha L., is one of the most important defoliators of Eurasian coniferous forests. Outbreaks during 2011-2015 in the natural/planted larch, and larch-birch mixed forests of the Greater Khingan Range in Inner Mongolia, China, caused tremendous timber losses from severe defoliation and tree mortality. A series of trapping experiments were conducted in these outbreak areas to evaluate the efficacy of a synthetic species-specific pheromone lure based on the female pheromone blend of European nun moth populations. Our results clearly show that the nun moth in Inner Mongolia is highly and specifically attracted to this synthetic pheromone, with few gypsy moths (Lymantria dispar) captured. Flight activity monitoring of L. monacha male moths using pheromone-baited Unitraps at 2 locations during the summer of 2015 indicated that the flight period started in mid-July, peaking in early August at both locations. Based on male moth captures, there was a strong diurnal rhythm of flight activity throughout the entire scotophase, peaking between 22:00 and 24:00. Unitraps and wing traps had significantly and surprisingly higher catches than the gypsy moth traps. Unitraps fastened to tree trunks 2 m above ground caught significantly more male moths than those at the ground level or at 5 m height. Male L. monacha moths can be attracted to pheromone-baited traps in open areas 150-200 m distant from the infested forest edge. Our data should allow improvement on the performance of pheromone-baited traps for monitoring or mass-trapping to combat outbreaks of this pest in northeastern China. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  7. Peripheral and central olfactory tuning in a moth.

    PubMed

    Ong, Rose C; Stopfer, Mark

    2012-06-01

    Animals can be innately attracted to certain odorants. Because these attractants are particularly salient, they might be expected to induce relatively strong responses throughout the olfactory pathway, helping animals detect the most relevant odors but limiting flexibility to respond to other odors. Alternatively, specific neural wiring might link innately preferred odors to appropriate behaviors without a need for intensity biases. How nonpheromonal attractants are processed by the general olfactory system remains largely unknown. In the moth Manduca sexta, we studied this with a set of innately preferred host plant odors and other, neutral odors. Electroantennogram recordings showed that, as a population, olfactory receptor neurons (ORNs) did not respond with greater intensity to host plant odors, and further local field potential recordings showed that no specific amplification of signals induced by host plant odors occurred between the first olfactory center and the second. Moreover, when odorants were mutually diluted to elicit equally intense output from the ORNs, moths were able to learn to associate all tested odorants equally well with food reward. Together, these results suggest that, although nonpheromonal host plant odors activate broadly distributed responses, they may be linked to attractive behaviors mainly through specific wiring in the brain.

  8. Sex Pheromone Components of Pink Gypsy Moth, Lymantria mathura

    NASA Astrophysics Data System (ADS)

    Gries, Gerhard; Gries, Regine; Schaefer, Paul W.; Gotoh, Tadao; Higashiura, Yasutomo

    Pheromone extract of female pink gypsy moth, Lymantria mathura, was analyzed by coupled gas chromatographic-electroantennographic detection (GC-EAD) and coupled GC-mass spectrometry (MS), employing fused silica columns coated with DB-5, DB-210, or DB-23 and a custom-made GC column that separated enantiomers of unsaturated epoxides. These analyses revealed (9R,10S)-cis-9,10-epoxy-Z3,Z6-nonadecadiene [termed here (+)-mathuralure] and (9S,10R)-cis-9,10-epoxy-Z3,Z6-nonadecadiene [termed here (-)-mathuralure] at a 1 : 4 ratio as major candidate pheromone components. In field experiments in northern Japan (Morioka, Iwate Prefecture and Bibai, Hokkaido Prefecture), (+)- and (-)-mathuralure at a ratio of 1 : 4, but not 1 : 1 or singly, were attractive to male L. mathura. This is the first demonstration that attraction of male moths required the very same ratio of pheromone enantiomers as produced by conspecific females. Whether L. mathura employ different blend ratios in different geographic areas, and the role of five additional candidate pheromone components identified in this study remains to be investigated.

  9. Allee effects and pulsed invasion by the gypsy moth.

    PubMed

    Johnson, Derek M; Liebhold, Andrew M; Tobin, Patrick C; Bjørnstad, Ottar N

    2006-11-16

    Biological invasions pose considerable threats to the world's ecosystems and cause substantial economic losses. A prime example is the invasion of the gypsy moth in the United States, for which more than $194 million was spent on management and monitoring between 1985 and 2004 alone. The spread of the gypsy moth across eastern North America is, perhaps, the most thoroughly studied biological invasion in the world, providing a unique opportunity to explore spatiotemporal variability in rates of spread. Here we describe evidence for periodic pulsed invasions, defined as regularly punctuated range expansions interspersed among periods of range stasis. We use a theoretical model with parameter values estimated from long-term monitoring data to show how an interaction between strong Allee effects (negative population growth at low densities) and stratified diffusion (most individuals disperse locally, but a few seed new colonies by long-range movement) can explain the invasion pulses. Our results indicate that suppressing population peaks along range borders might greatly slow invasion.

  10. Sex pheromone components of Indian gypsy moth, Lymantria obfuscata.

    PubMed

    Gries, Regine; Schaefer, Paul W; Hahn, Roger; Khaskin, Grigori; Ramaseshiah, Gujjandadu; Singh, Balbir; Hehar, Gagandeep K; Gries, Gerhard

    2007-09-01

    The Indian gypsy moth, Lymantria obfuscata (Lepidoptera: Lymantriidae), has been recognized as a distinct species since 1865 but closely resembles a diminutive form of gypsy moth, Lymantria dispar. We tested the hypothesis that the sex pheromones of L. obfuscata and L. dispar are similar. In laboratory mate acceptance studies, very few male L. dispar made copulatory attempts when paired with female L. obfuscata, suggesting that female L. obfuscata emit one or more pheromone components antagonistic to male L. dispar. In coupled gas chromatographic-electroantennographic detection (GC-EAD) analyses of pheromone gland extract of female L. obfuscata, (Z)-2-methyloctadec-7-ene (2Me-7Z-18Hy) and (7R,8S)-cis-7,8-epoxy-2-methyloctadecane [(+)-disparlure] were most abundant and elicited the strongest responses from male L. obfuscata antennae. In field experiments near Solan (Himachal Pradesh, India), 2Me-7Z-18Hy and (+)-disparlure in combination attracted more male L. obfuscata than did either component alone. This two-component sex pheromone contrasts with the single-component sex pheromone [(+)-disparlure] of L. dispar. The contrasting composition of the lymantriid communities inhabited by L. obfuscata and L. dispar may explain why 2Me-7Z-18Hy is a pheromone component in L. obfuscata and a pheromone antagonist in L. dispar and why (-)-disparlure reduces pheromonal attraction of male L. dispar but not male L. obfuscata.

  11. Utilization of pheromones in the population management of moth pests.

    PubMed Central

    Cardé, R T

    1976-01-01

    Pheromones are substances emitted by one individual of a species and eliciting a specific response in a second individual of the same species. In moths (Lepidoptera) generally females lure males for mating by emission of a sex attractant pheromone comprised of either one or more components. Since 1966 the identification of the pheromone blends of many moth pests has allowed investigations into the use of these messengers for population manipulation. Pheromone-baited traps may be used both to detect pest presence and to estimate population density, so that conventional control tactics can be employed only as required and timed precisely for maximum effectiveness. Attractant traps also can be utilized for direct population suppression when the traps are deployed at a density effective in reducing mating success sufficiently to achieve control. A third use pattern of pheromones and related compounds is disruption of pheromone communication via atmospheric permeation with synthetic disruptants. The behavioral modifications involved in disruption of communication may include habituation of the normal response sequence (alteration of the pheromone response threshold) and "confusion" (inability of the organism to perceive and orient to the naturally emitted lure). Disruption of communication employing the natural pheromone components as the disruptant has been most successful, although nonattractant behavioral modifiers structurally similar to the pheromone components also may prove useful. Possible future resistance to direct pheromone manipulation may be expected to involve the evolution of behavioral and sensory changes that minimize the informational overlap between the natural pheromone system and the pheromone control technique. PMID:789060

  12. Extracellular transduction events under pulsed stimulation in moth olfactory sensilla.

    PubMed

    Rospars, Jean-Pierre; Lánský, Petr; Krivan, Vlastimil

    2003-07-01

    In natural conditions, pheromones released continuously by female moths are broken in discontinuous clumps and filaments. These discontinuities are perceived by flying male moths as periodic variations in the concentration of the stimulus, which have been shown to be essential for location of females. We study analytically and numerically the evolution in time of the activated pheromone-receptor (signaling) complex in response to periodic pulses of pheromone. The 13-reaction model considered takes into account the transport of pheromone molecules by pheromone binding proteins (PBP), their enzymatic deactivation in the perireceptor space and their interaction with receptors at the dendritic membrane of neurons in Antheraea polyphemus sensitive to the main pheromone component. The time-averaged and periodic properties of the temporal evolution of the signaling complex are presented, in both transient and steady states. The same time-averaged response is shown to result from many different pulse trains and to depend hyperbolically on the time-averaged pheromone concentration in air. The dependency of the amplitude of the oscillations of the signaling complex on pulse characteristics, especially frequency, suggests that the model can account for the ability of the studied type of neuron to resolve repetitive pulses up to 2 Hz, as experimentally observed. Modifications of the model for resolving pulses up to 10 Hz, as found in other neuron types sensitive to the minor pheromone components, are discussed.

  13. DBM-DB: the diamondback moth genome database.

    PubMed

    Tang, Weiqi; Yu, Liying; He, Weiyi; Yang, Guang; Ke, Fushi; Baxter, Simon W; You, Shijun; Douglas, Carl J; You, Minsheng

    2014-01-01

    The diamondback moth Genome Database (DBM-DB) is a central online repository for storing and integrating genomic data of diamondback moth (DBM), Plutella xylostella (L.). It provides comprehensive search tools and downloadable datasets for scientists to study comparative genomics, biological interpretation and gene annotation of this insect pest. DBM-DB contains assembled transcriptome datasets from multiple DBM strains and developmental stages, and the annotated genome of P. xylostella (version 2). We have also integrated publically available ESTs from NCBI and a putative gene set from a second DBM genome (KONAGbase) to enable users to compare different gene models. DBM-DB was developed with the capacity to incorporate future data resources, and will serve as a long-term and open-access database that can be conveniently used for research on the biology, distribution and evolution of DBM. This resource aims to help reduce the impact DBM has on agriculture using genomic and molecular tools. Database URL: http://iae.fafu.edu.cn/DBM/

  14. Phylogenomics provides strong evidence for relationships of butterflies and moths.

    PubMed

    Kawahara, Akito Y; Breinholt, Jesse W

    2014-08-07

    Butterflies and moths constitute some of the most popular and charismatic insects. Lepidoptera include approximately 160 000 described species, many of which are important model organisms. Previous studies on the evolution of Lepidoptera did not confidently place butterflies, and many relationships among superfamilies in the megadiverse clade Ditrysia remain largely uncertain. We generated a molecular dataset with 46 taxa, combining 33 new transcriptomes with 13 available genomes, transcriptomes and expressed sequence tags (ESTs). Using HaMStR with a Lepidoptera-specific core-orthologue set of single copy loci, we identified 2696 genes for inclusion into the phylogenomic analysis. Nucleotides and amino acids of the all-gene, all-taxon dataset yielded nearly identical, well-supported trees. Monophyly of butterflies (Papilionoidea) was strongly supported, and the group included skippers (Hesperiidae) and the enigmatic butterfly-moths (Hedylidae). Butterflies were placed sister to the remaining obtectomeran Lepidoptera, and the latter was grouped with greater than or equal to 87% bootstrap support. Establishing confident relationships among the four most diverse macroheteroceran superfamilies was previously challenging, but we recovered 100% bootstrap support for the following relationships: ((Geometroidea, Noctuoidea), (Bombycoidea, Lasiocampoidea)). We present the first robust, transcriptome-based tree of Lepidoptera that strongly contradicts historical placement of butterflies, and provide an evolutionary framework for genomic, developmental and ecological studies on this diverse insect order. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  15. Defense strategies used by two sympatric vineyard moth pests.

    PubMed

    Vogelweith, Fanny; Thiéry, Denis; Moret, Yannick; Colin, Eloïse; Motreuil, Sébastien; Moreau, Jérôme

    2014-05-01

    Natural enemies including parasitoids are the major biological cause of mortality among phytophagous insects. In response to parasitism, these insects have evolved a set of defenses to protect themselves, including behavioral, morphological, physiological and immunological barriers. According to life history theory, resources are partitioned to various functions including defense, implying trade-offs among defense mechanisms. In this study we characterized the relative investment in behavioral, physical and immunological defense systems in two sympatric species of Tortricidae (Eupoecilia ambiguella, Lobesia botrana) which are important grapevine moth pests. We also estimated the parasitism by parasitoids in natural populations of both species, to infer the relative success of the investment strategies used by each moth. We demonstrated that larvae invest differently in defense systems according to the species. Relative to L. botrana, E. ambiguella larvae invested more into morphological defenses and less into behavioral defenses, and exhibited lower basal levels of immune defense but strongly responded to immune challenge. L. botrana larvae in a natural population were more heavily parasitized by various parasitoid species than E. ambiguella, suggesting that the efficacy of defense strategies against parasitoids is not equal among species. These results have implications for understanding of regulation in communities, and in the development of biological control strategies for these two grapevine pests. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. DBM-DB: the diamondback moth genome database

    PubMed Central

    Tang, Weiqi; Yu, Liying; He, Weiyi; Yang, Guang; Ke, Fushi; Baxter, Simon W.; You, Shijun; Douglas, Carl J.; You, Minsheng

    2014-01-01

    The diamondback moth Genome Database (DBM-DB) is a central online repository for storing and integrating genomic data of diamondback moth (DBM), Plutella xylostella (L.). It provides comprehensive search tools and downloadable datasets for scientists to study comparative genomics, biological interpretation and gene annotation of this insect pest. DBM-DB contains assembled transcriptome datasets from multiple DBM strains and developmental stages, and the annotated genome of P. xylostella (version 2). We have also integrated publically available ESTs from NCBI and a putative gene set from a second DBM genome (KONAGbase) to enable users to compare different gene models. DBM-DB was developed with the capacity to incorporate future data resources, and will serve as a long-term and open-access database that can be conveniently used for research on the biology, distribution and evolution of DBM. This resource aims to help reduce the impact DBM has on agriculture using genomic and molecular tools. Database URL: http://iae.fafu.edu.cn/DBM/ PMID:24434032

  17. Phylogenomics provides strong evidence for relationships of butterflies and moths

    PubMed Central

    Kawahara, Akito Y.; Breinholt, Jesse W.

    2014-01-01

    Butterflies and moths constitute some of the most popular and charismatic insects. Lepidoptera include approximately 160 000 described species, many of which are important model organisms. Previous studies on the evolution of Lepidoptera did not confidently place butterflies, and many relationships among superfamilies in the megadiverse clade Ditrysia remain largely uncertain. We generated a molecular dataset with 46 taxa, combining 33 new transcriptomes with 13 available genomes, transcriptomes and expressed sequence tags (ESTs). Using HaMStR with a Lepidoptera-specific core-orthologue set of single copy loci, we identified 2696 genes for inclusion into the phylogenomic analysis. Nucleotides and amino acids of the all-gene, all-taxon dataset yielded nearly identical, well-supported trees. Monophyly of butterflies (Papilionoidea) was strongly supported, and the group included skippers (Hesperiidae) and the enigmatic butterfly–moths (Hedylidae). Butterflies were placed sister to the remaining obtectomeran Lepidoptera, and the latter was grouped with greater than or equal to 87% bootstrap support. Establishing confident relationships among the four most diverse macroheteroceran superfamilies was previously challenging, but we recovered 100% bootstrap support for the following relationships: ((Geometroidea, Noctuoidea), (Bombycoidea, Lasiocampoidea)). We present the first robust, transcriptome-based tree of Lepidoptera that strongly contradicts historical placement of butterflies, and provide an evolutionary framework for genomic, developmental and ecological studies on this diverse insect order. PMID:24966318

  18. Moth-Inspired Chemical Plume Tracing on an Autonomous Underwater Vehicle

    DTIC Science & Technology

    2005-07-01

    Missouri [12]. C.H. Fernald also demonstrated evident location of distant females in the gypsy moth (Lymantria dispar) in New England: a few males...and R. T. Cardé, “Pheromone puff trajectory and upwind flight of male gypsy moths in a forest,” Physio- logic. Entomol., vol. 12, pp. 399–406, 1987. [12...R. T. Carde, “Pheromone-mediated upwind flight of male gypsy moths , Lymantria dispar, in a forest,” Physiolog. Entomol., vol. 16, pp. 507–521, 1991

  19. [Gypsy moth Lymantria dispar L. in the South Urals: Patterns in population dynamics and modelling].

    PubMed

    Soukhovolsky, V G; Ponomarev, V I; Sokolov, G I; Tarasova, O V; Krasnoperova, P A

    2015-01-01

    The analysis is conducted on population dynamics of gypsy moth from different habitats of the South Urals. The pattern of cyclic changes in population density is examined, the assessment of temporal conjugation in time series of gypsy moth population dynamics from separate habitats of the South Urals is carried out, the relationships between population density and weather conditions are studied. Based on the results obtained, a statistical model of gypsy moth population dynamics in the South Urals is designed, and estimations are given of regulatory and modifying factors effects on the population dynamics.

  20. Genetic transformation of the codling moth, Cydia pomonella L., with piggyBac EGFP.

    PubMed

    Ferguson, Holly J; Neven, Lisa G; Thibault, Stephen T; Mohammed, Ahmed; Fraser, Malcolm

    2011-02-01

    Genetic transformation of the codling moth, Cydia pomonella, was accomplished through embryo microinjection with a plasmid-based piggyBac vector containing the enhanced green fluorescent protein (EGFP) gene. Sequencing of the flanking regions around the inserted construct resulted in identification of insect genomic sequences, not plasmid sequences, thus providing evidence that the piggyBac EGFP cassette had integrated into the codling moth genome. EGFP-positive moths were confirmed in the 28th and earlier generations post injection through PCR and Southern blot analyses, indicating heritability of the transgene.

  1. Regulatory Role of PBAN in Sex Pheromone Biosynthesis of Heliothine Moths

    PubMed Central

    Jurenka, Russell; Rafaeli, Ada

    2011-01-01

    Both males and females of heliothine moths utilize sex-pheromones during the mating process. Females produce and release a sex pheromone for the long–range attraction of males for mating. Production of sex pheromone in females is controlled by the peptide hormone (pheromone biosynthesis activating neuropeptide, PBAN). This review will highlight what is known about the role PBAN plays in controlling pheromone production in female moths. Male moths produce compounds associated with a hairpencil structure associated with the aedaegus that are used as short-range aphrodisiacs during the mating process. We will discuss the role that PBAN plays in regulating male production of hairpencil pheromones. PMID:22654810

  2. Desaturases from the spotted fireworm moth (Choristoneura parallela) shed light on the evolutionary origins of novel moth sex pheromone desaturases.

    PubMed

    Liu, Weitian; Rooney, Alejandro P; Xue, Bingye; Roelofs, Wendell L

    2004-11-24

    Six acyl-CoA desaturase-encoding cDNAs from mRNA isolated from the spotted fireworm moth, Choristoneura parallela (Lepidoptera: Tortricidae) were characterized and assayed for functionality. The expression levels of these cDNAs were determined in the pheromone gland and fat body by real-time PCR and the resulting patterns are in line with results from published studies on other moth sex pheromone desaturases. The cDNAs were found to correspond to six genes. Using both biochemical and phylogenetic analyses, four of these were found to belong to previously characterized desaturase functional groups [the Delta 10,11, the Delta 9 (16>18) and the Delta 9 (18>16) groups]. A desaturase highly expressed in the pheromone gland was a novel E11 desaturase that was specific to 14-carbon precursor acids. The fifth gene [CpaZ9(14-26)] was found to display a novel Z9 activity indicating that it belongs to a new Delta 9 functional group, whereas the sixth gene was determined to be nonfunctional with respect to desaturase activity. In accordance with previous studies, we find that desaturases of the Delta 10,11 and Delta 14 groups, which are the fastest evolving desaturases and possess the novel pheromone biosynthetic function, are expressed primarily in the pheromone gland whereas all other desaturases, which do not possess the novel reproductive function, evolve more slowly and display the ancestral metabolic function and pattern of gene expression.

  3. Mapping and recombination analysis of two moth colour mutations, Black moth and Wild wing spot, in the silkworm Bombyx mori

    PubMed Central

    Ito, K; Katsuma, S; Kuwazaki, S; Jouraku, A; Fujimoto, T; Sahara, K; Yasukochi, Y; Yamamoto, K; Tabunoki, H; Yokoyama, T; Kadono-Okuda, K; Shimada, T

    2016-01-01

    Many lepidopteran insects exhibit body colour variations, where the high phenotypic diversity observed in the wings and bodies of adults provides opportunities for studying adaptive morphological evolution. In the silkworm Bombyx mori, two genes responsible for moth colour mutation, Bm and Ws, have been mapped to 0.0 and 14.7 cM of the B. mori genetic linkage group 17; however, these genes have not been identified at the molecular level. We performed positional cloning of both genes to elucidate the molecular mechanisms that underlie the moth wing- and body-colour patterns in B. mori. We successfully narrowed down Bm and Ws to ~2-Mb-long and 100-kb-long regions on the same scaffold Bm_scaf33. Gene prediction analysis of this region identified 77 candidate genes in the Bm region, whereas there were no candidate genes in the Ws region. Fluorescence in-situ hybridisation analysis in Bm mutant detected chromosome inversion, which explains why there are no recombination in the corresponding region. The comparative genomic analysis demonstrated that the candidate regions of both genes shared synteny with a region associated with wing- and body-colour variations in other lepidopteran species including Biston betularia and Heliconius butterflies. These results suggest that the genes responsible for wing and body colour in B. mori may be associated with similar genes in other Lepidoptera. PMID:26219230

  4. Ionizing irradiation of adults of Angoumois grain moth (Lepidoptera: Gelechiidae) and Indianmeal moth (Lepidoptera: Pyralidae) to prevent reproduction, and implications for a generic irradiation treatment for insects.

    PubMed

    Hallman, Guy J; Phillips, Thomas W

    2008-08-01

    Ionizing irradiation is used as a phytosanitary treatment against quarantine pests. A generic treatment of 400 Gy has been approved for commodities entering the United States against all insects except pupae and adults of Lepidoptera because some literature citations indicate that a few insects, namely, the Angoumois grain moth, Sitotroga cerealella (Olivier) (Lepidoptera: Gelechiidae), and the Indianmeal moth, Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae), are not completely controlled at that dose. Radiotolerance in insects increases as the insects develop, so the minimum absorbed dose to prevent F1 egg hatch for these two species when irradiated as adults was examined. Also, because hypoxia is known to increase radiotolerance in insects, Angoumois grain moth radiotolerance was tested in a hypoxic atmosphere. A dose range of 336-388 Gy prevented F1 egg hatch from a total of 22,083 adult Indianmeal moths. Dose ranges of 443-505 and 590-674 Gy, respectively, prevented F1 egg hatch from a total of 15,264 and 13,677 adult Angoumois grain moths irradiated in ambient and hypoxic atmospheres. A generic dose of 600 Gy for all insects in ambient atmospheres might be efficacious, although many fresh commodities may not tolerate it when applied on a commercial scale.

  5. Microbial control of the gypsy moth in recently infested states: experiences and expectations

    Treesearch

    Timothy C. Tigner

    1985-01-01

    Experiences and expectations concerning microbial control of the gypsy moth in recently infested states are summarized. Initial experience included mixed results, but expectations remain optimistic. Public sentiment assures continued pressure for improvement in microbial control technology.

  6. A simple technique for collecting chyle from the gypsy moth, Lymantria dispar L.

    Treesearch

    Frank S. Kaczmarek; Normand R. Dubois

    1979-01-01

    A procedure for rapidly obtaining significant quantities of chyle is described. The amount and composition of chyle collected from larvae of the gypsy moth, Lymantria dispar (L.), varied according to the instar examined and the age within the instar.

  7. Volatiles associated with preferred and nonpreferred hosts of the nantucket pine tip moth, Rhyacionia frustrana

    Treesearch

    Christopher Asaro; Brian T. Sullivan; M.J. Dalusky; C. Wayne Berisford

    2004-01-01

    Ovipositing female Nantucket pine tip moth, Rhyacionia frustrana, prefer loblolly pine, Pinus taeda L., to slash pine, Pinus elliottii Englem. except during the first spring following planting of seedlings. Host discrimination by R. frustrana increases as seedlings develop, suggesting that...

  8. Cracking complex taxonomy of Costa Rican moths: Anacrusis Zeller (Lepidoptera: Tortricidae)

    USDA-ARS?s Scientific Manuscript database

    Remarkably similar forewing patterns, striking sexual dimorphism, and rampant sympatry all combine to present a taxonomically and morphologically bewildering complex of five species of Anacrusis tortricid moths in Central America: Anacrusis turrialbae Razowski, Anacrusis piriferana (Zeller), Anacrus...

  9. Low volume undiluted Btk application against heavy gypsy moth population densities in southern Corsica

    Treesearch

    Robert A. Fusco; Jean-Claude Martin

    2003-01-01

    Low volume undiluted applications of Bacillus thuringiensis are common and efficacious against coniferous forest pests such as pine processionary moth and spruce budworm, but have not been common practice against deciduous forest pests due to coverage issues.

  10. DDT spray for control of the ponderosa pine tip moth (Rhyacionia zozana [Kearfott])

    Treesearch

    Robert E. Stevens

    1965-01-01

    A water emulsion spray of DDT applied by hand sprayer to young trees infested with eggs and early-instar larvae of the ponderosa pine tip moth halted further larval activity and effectively prevented all damage.

  11. Sex pheromone biosynthetic pathways are conserved between moths and the butterfly Bicyclus anynana

    PubMed Central

    Liénard, Marjorie A; Wang, Hong-Lei; Lassance, Jean-Marc; Löfstedt, Christer

    2014-01-01

    Although phylogenetically nested within the moths, butterflies have diverged extensively in a number of life history traits. Whereas moths rely greatly on chemical signals, visual advertisement is the hallmark of mate finding in butterflies. In the context of courtship, however, male chemical signals are widespread in both groups although they likely have multiple evolutionary origins. Here, we report that in males of the butterfly Bicyclus anynana, courtship scents are produced de novo via biosynthetic pathways shared with females of many moth species. We show that two of the pheromone components that play a major role in mate choice, namely the (Z)-9-tetradecenol and hexadecanal, are produced through the activity of a fatty acyl Δ11-desaturase and two specialized alcohol-forming fatty acyl reductases. Our study provides the first evidence of conservation and sharing of ancestral genetic modules for the production of FA-derived pheromones over a long evolutionary timeframe thereby reconciling mate communication in moths and butterflies. PMID:24862548

  12. Sex pheromone biosynthetic pathways are conserved between moths and the butterfly Bicyclus anynana.

    PubMed

    Liénard, Marjorie A; Wang, Hong-Lei; Lassance, Jean-Marc; Löfstedt, Christer

    2014-05-27

    Although phylogenetically nested within the moths, butterflies have diverged extensively in a number of life history traits. Whereas moths rely greatly on chemical signals, visual advertisement is the hallmark of mate finding in butterflies. In the context of courtship, however, male chemical signals are widespread in both groups although they likely have multiple evolutionary origins. Here, we report that in males of the butterfly Bicyclus anynana, courtship scents are produced de novo via biosynthetic pathways shared with females of many moth species. We show that two of the pheromone components that play a major role in mate choice, namely the (Z)-9-tetradecenol and hexadecanal, are produced through the activity of a fatty acyl Δ11-desaturase and two specialized alcohol-forming fatty acyl reductases. Our study provides the first evidence of conservation and sharing of ancestral genetic modules for the production of FA-derived pheromones over a long evolutionary timeframe thereby reconciling mate communication in moths and butterflies.

  13. Susceptibility of the Strawberry Crown Moth Synanthedon bibionipennis (Lepidoptera: Sesiidae) to Entomopathogenic Nematodes

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to determine the susceptibility of the strawberry crown moth, Synanthedon bibionipennis (Lepidoptera: Sesiidae) larvae to two species of entomopathogenic nematodes(Steinernema carpocapsae (Weiser) Agriotos and Heterorhabditis bacteriophora (Steiner) Oswego). Nematodes...

  14. Discovery of Entomophaga maimaiga in North American gypsy moth, Lymantria dispar.

    PubMed Central

    Andreadis, T G; Weseloh, R M

    1990-01-01

    An entomopathogenic fungus, Entomophaga maimaiga, was found causing an extensive epizootic in outbreak populations of the gypsy moth, Lymantria dispar, throughout many forested and residential areas of the northeastern United States. This is the first recognized occurrence of this or any entomophthoralean fungus in North American gypsy moths, and its appearance was coincident with an abnormally wet spring. Most fungal-infected gypsy moth larvae were killed in mass during the fourth and fifth stadium and were characteristically found clinging to the trunks of trees with their heads pointed downward. The fungus produces thick-walled resistant resting spores within dried gypsy moth cadavers and infectious conidia when freshly killed larvae are held in a wet environment. The morphology and development of the fungus are described. The fungus appears to have had its origin in Japan, and the current epizootic may have resulted from the survival and inapparent spread of an early introduction in 1910-1911. Images PMID:11607071

  15. Shortleaf pine hybrids: growth and tip moth damage in southeast Mississippi

    Treesearch

    Larry H. Lott; Maxine T. Highsmith; C. Dana Nelson

    2007-01-01

    It is well known that shortleaf pine (Pinus echinata Mill.), loblolly pine (Pinus taeda L.), and Virginia pine (Pinus virginiana Mill.) sustain significantly more Nantucket pine tip moth (Rhyacionia frustrana Comst.) damage than do slash pine (Pinus elliotti var. ...

  16. Selective flower abortion maintains moth cooperation in a newly discovered pollination mutualism.

    PubMed

    Goto, Ryutaro; Okamoto, Tomoko; Kiers, E Toby; Kawakita, Atsushi; Kato, Makoto

    2010-03-01

    The evolutionary stability of mutualisms is enhanced when partners possess mechanisms to prevent overexploitation by one another. In obligate pollination-seed consumption mutualisms, selective abortion of flowers containing excessive eggs represents one such mechanism, but empirical tests have long been limited to the yucca-yucca moth mutualism. We present evidence for selective abortion in the recently discovered mutualism between Glochidion trees and Epicephala moths. In Glochidion acuminatum, proportion of aborted flowers progressively increased both with higher egg load and increased ovule damage. Selective abortion resulted in a 16% seed production increase compared with expectations under random abortion, and moths suffered fitness losses as high as 62% when ovipositing into pre-infested flowers. Moth eggs were laid singly more often than expected under random oviposition, thus avoiding potential disadvantages from multiple infestations. As new pollination mutualisms are being discovered, selective abortion mechanisms may prove to be more widespread than previously thought.

  17. Processionary Moths and Associated Urtication Risk: Global Change-Driven Effects.

    PubMed

    Battisti, Andrea; Larsson, Stig; Roques, Alain

    2017-01-31

    Processionary moths carry urticating setae, which cause health problems in humans and other warm-blooded animals. The pine processionary moth Thaumetopoea pityocampa has responded to global change (climate warming and increased global trade) by extending its distribution range. The subfamily Thaumetopoeinae consists of approximately 100 species. An important question is whether other processionary moth species will similarly respond to these specific dimensions of global change and thus introduce health hazards into new areas. We describe, for the first time, how setae are distributed on different life stages (adult, larva) of major groups within the subfamily. Using the available data, we conclude that there is little evidence that processionary moths as a group will behave like T. pityocampa and expand their distributional range. The health problems caused by setae strongly relate to population density, which may, or may not, be connected to global change.

  18. Radiographing puparia of tachinid parasites of the gypsy moth, and application in parasite-release programs

    Treesearch

    T. M. Odell; P. A. Godwin; W. B. White

    1974-01-01

    A radiographic technique has been developed for observing and quantifying development and mortality of Blepharipa scutellata ( Robineau-Desvoidy), Parasetigena agilis (Robineau-Desvoidy), and Compsilura concinnata (Meigen), tachinid parasites of the gypsy moth, Porthetria dispar (L.). Puparia...

  19. Oviposition preference of Oriental fruit moth [Grapholita molesta (Busck), Lepidoptera: Tortricidae] for apple cultivars

    USDA-ARS?s Scientific Manuscript database

    Oviposition preferences and apple cultivar selection by fruit pests may impact integrated pest management in apple orchards. Experiments were conducted to study oviposition preferences of Oriental fruit moth ( Grapholita molesta [Busck], Lepidoptera: Tortricidae) on ten commercially important apple ...

  20. INSECT FLIGHT. Luminance-dependent visual processing enables moth flight in low light.

    PubMed

    Sponberg, Simon; Dyhr, Jonathan P; Hall, Robert W; Daniel, Thomas L

    2015-06-12

    Animals must operate under an enormous range of light intensities. Nocturnal and twilight flying insects are hypothesized to compensate for dim conditions by integrating light over longer times. This slowing of visual processing would increase light sensitivity but should also reduce movement response times. Using freely hovering moths tracking robotic moving flowers, we showed that the moth's visual processing does slow in dim light. These longer response times are consistent with models of how visual neurons enhance sensitivity at low light intensities, but they could pose a challenge for moths feeding from swaying flowers. Dusk-foraging moths avoid this sensorimotor tradeoff; their nervous systems slow down but not so much as to interfere with their ability to track the movements of real wind-blown flowers.

  1. Organochlorine pesticide residues in moths from the Baltimore, MD-Washington, DC area

    USGS Publications Warehouse

    Beyer, W.N.; Kaiser, T.E.

    1984-01-01

    Moths were collected with a light trap from 15 sites in the Baltimore, Maryland - Washington, D.C. area and analyzed for organochlorine pesticide residues. On the average, the species sampled contained 0.33 ppm heptachlor-chlordane compounds, 0.25 ppm DDE, and 0.11 ppm dieldrin. There were large differences in the concentrations detected in different species. Concentrations were especially high in moths whose larvae were cutworms, and were virtually absent from moths whose larvae fed on tree leaves. It was concluded that at least some species sampled could be an important source of insecticides to insectivorous wildlife. In some instances moths may be useful indicators of environmental contamination, especially when insectivorous wildlife species cannot be collected. However, the differences in residues observed among species means that only similar species should be compared, and this limits their potential for monitoring.

  2. Moth eye antireflection coated GaInP/GaAs/GaInNAs solar cell

    NASA Astrophysics Data System (ADS)

    Aho, Arto; Tommila, Juha; Tukiainen, Antti; Polojärvi, Ville; Niemi, Tapio; Guina, Mircea

    2014-09-01

    The performance of a GaInP/GaAs/GaInNAs solar cell incorporating AlInP moth eye antireflection coating is reported and compared with the performance of a similar cell comprising TiO2/SiO2 antireflection coating. The moth eye coating exhibits an average reflectance of only 2% within the spectral range from 400 nm to 1600 nm. EQE measurements revealed absorption-related losses in the AlInP moth eye coating at wavelengths below 510 nm. Short wavelength absorption decreases the current generation in the top GaInP junction by 10%. Despite the absorption losses, the moth eye patterned GaInP/GaAs/GaInNAs solar cell exhibited higher current generation under AM1.5G real sun illumination.

  3. The effect of various doses of pheromone on mating disruption in gypsy moth population

    Treesearch

    Ksenia Tcheslavskaia; Alexei A. Sharov; Kevin W. Thorpe; Carlyle C. Brewster

    2003-01-01

    An experiment was conducted in June-August 2001 in the Cumberland and Appomattox- Buckingham State Forests, Virginia to evaluate the effects of various doses of synthetic pheromone (racemic disparlure) on mating disruption of the gypsy moth, Lymantria dispar (L.).

  4. Monitoring codling moth (Lepidoptera: Tortricidae) with passive interception traps in sex pheromone-treated apple orchards.

    PubMed

    Knight, A L

    2000-12-01

    Male and female codling moth, Cydia pomonella (L.), were monitored with passive interception traps (PI-traps) in apple orchards treated with sex pheromone dispensers. The proportion of mated females recaptured by PI-traps was significantly higher than the proportion released after the release of both sexes into a codling moth-infested orchard. However, no significant difference occurred between the proportion of mated females recaptured and released when only females were released into uninfested orchards. Replicated nine-tree apple plots situated either on the edge or in the center ofpheromone-treated apple orchards were monitored with PI-traps during first moth flight in 1995 and during both flights in 1996. Moths caught on PI-traps were predominately males. The first male moths were captured 7-10 d before females during the first flight in both years. Initial capture of virgin and mated females on PI-traps coincided in 1995. Mated females were captured 14 d after the first virgin females in 1996. The mean proportion of females that were mated ranged from 32 to 55% during the first flight and 85 to 92% during the second flight. Moth catch and fruit injury were significantly higher in the edge versus the center plots. The numbers of total and female moths caught with PI-traps were significantly correlated with fruit injury for each generation. The percentage of female moths caught on PI-traps that were mated was 32% lower and the mean oocyte load of all females was 42% higher in a pheromone-treated apple orchard than in the untreated crabapple grove monitored during May and June 1997.

  5. Descending protocerebral neurons related to the mating dance of the male silkworm moth.

    PubMed

    Kanzaki, R; Shibuya, T

    1986-07-09

    Descending protocerebral neurons in the male silkworm moth brain responding to the sexual pheromone (Bombykol) were identified. The neurons responded well with a tonic type of response and the high-frequency spikes evoked continued even after the end of the stimulus. Characteristics of the dose-response curves of the neurons to the pheromone remarkably resembled those of the wing vibration which is one of the mating behavioral components of the male moths.

  6. q-deformations and the dynamics of the larch bud-moth population cycles

    NASA Astrophysics Data System (ADS)

    Iyengar, Sudharsana V.; Balakrishnan, J.

    2014-07-01

    The concept of q-deformation of numbers is applied here to improve and modify a tritrophic population dynamics model to understand defoliation of the coniferous larch trees due to outbreaks of the larch bud-moth insect population. The results are in qualitative agreement with observed behavior, with the larch needle lengths, bud-moth population and parasitoid populations all showing 9-period cycles which are mutually synchronized.

  7. Effects of gamma irradiation as a quarantine treatment on development of codling moth larvae

    SciTech Connect

    Burditt, A.K. Jr.; Moffitt, H.R.; Hungate, F.P.

    1985-03-01

    Codling moth, Cydia pomonella (L.), larvae were exposed to gamma radiation at doses upto 160 Gy. Following irradiation the larvae were permited further development, pupation and adult emergence. The number of adults emerging, mature larvae and pupae present were determined. Data from these studies will be used to predict doses of gamma irradiation required as a quarantine treatment to prevent emergence of codling moth adults from fruit infested by larvae. 5 refs., 1 tab.

  8. Communication disruption of guava moth (Coscinoptycha improbana) using a pheromone analog based on chain length.

    PubMed

    Suckling, D M; Dymock, J J; Park, K C; Wakelin, R H; Jamieson, L E

    2013-09-01

    The guava moth, Coscinoptycha improbana, an Australian species that infests fruit crops in commercial and home orchards, was first detected in New Zealand in 1997. A four-component pheromone blend was identified but is not yet commercially available. Using single sensillum recordings from male antennae, we established that the same olfactory receptor neurons responded to two guava moth sex pheromone components, (Z)-11-octadecen-8-one and (Z)-12-nonadecen-9-one, and to a chain length analog, (Z)-13-eicosen-10-one, the sex pheromone of the related peach fruit moth, Carposina sasakii. We then field tested whether this non-specificity of the olfactory neurons might enable disruption of sexual communication by the commercially available analog, using male catch to synthetic lures in traps in single-tree, nine-tree and 2-ha plots. A disruptive pheromone analog, based on chain length, is reported for the first time. Trap catches for guava moth were disrupted by three polyethylene tubing dispensers releasing the analog in single-tree plots (86% disruption of control catches) and in a plots of nine trees (99% disruption). Where peach fruit moth pheromone dispensers were deployed at a density of 1000/ha in two 2-ha areas, pheromone traps for guava moth were completely disrupted for an extended period (up to 470 days in peri-urban gardens in Mangonui and 422 days in macadamia nut orchards in Kerikeri). In contrast, traps in untreated areas over 100 m away caught 302.8 ± 128.1 moths/trap in Mangonui and 327.5 ± 78.5 moths/ trap in Kerikeri. The longer chain length in the pheromone analog has greater longevity than the natural pheromone due to its lower volatility. Chain length analogs may warrant further investigation for mating disruption in Lepidoptera, and screening using single-sensillum recording is recommended.

  9. Gypsy moths: Geographic distribution and control. (Latest citations from the Biobusiness database). Published Search

    SciTech Connect

    Not Available

    1994-03-01

    The bibliography contains citations concerning the forest pest, Lymantria dispar (gypsy moth). The occurrence, population dynamics, reproduction, environmental impact, and controls of gypsy moths are considered. Methods of control include use of insecticide, natural predators, introduced diseases, and local trapping. Economic impacts as well as environmental disruption due to major infestation in hardwood forests by this introduced pest are discussed. (Contains a minimum of 209 citations and includes a subject term index and title list.)

  10. Gypsy moth in the United States: An atlas. Forest Service general technical report (Final)

    SciTech Connect

    Liebhold, A.M.; Gottschalk, K.W.; Luzader, E.R.; Mason, D.A.; Bush, R.

    1997-02-01

    This atlas includes 52 maps that doucment the historical spread of gypsy moth from 1900 to the present, historical forest defoliation in the Northeast from 1984 to the present, and the distribution of susceptible forests in the conterminous United States. These maps should be useful for planning activities to limit the spread of gypsy moth and mitigate the effects of this forest insect pest in areas that have not yet been invaded.

  11. Life histories and fitness of two tuber moth species feeding on native Andean potatoes.

    PubMed

    Horgan, F G; Quiring, D T; Lagnaoui, A; Pelletier, Y

    2012-08-01

    In the inter-Andean valleys of central Perú, two species of tuber moth, Phthorimaea operculella (Zeller) and Symmetrischema tangolias (Gyen), often occur simultaneously in stored potatoes. Traditional farming communities in the region produce a variety of native potatoes for local consumption. These include Solanum tuberosum subsp. andigena, the presumed predecessor of commercial potatoes, S. tuberosum subsp. tuberosum. In this study, we examined resistance against P. operculella in ten native Peruvian potato varieties (Casa blanca, Chispiadita, Madre de vaca, Mamaco negro, Misha, Chorisa, Mamaco rosado, Occa papa, Vacapa jayllo, and Yana tornasol). We also compared resistance in the first five of these varieties against S. tangolias. Varieties with pigmented periderms showed moderate resistance (30-40% against P. operculella in Mamaco negro, Mamaco rosado, and Yana tornasol and 55% against S. tangolias in Mamaco negro). All the other varieties were susceptible to both moth species. Small tubers tended to be the most resistant to the attack by both moths; however, this was not related to the availability of food for developing larvae, since pupal weight and development time were unaffected by the size of tubers. Similar responses by the two moths to native potatoes indicate that tuber resistance could be used to control the complex of tuber moths that damage potatoes in the Andes. We suggest that native potatoes, which are often easily introgressed with commercial potatoes, are a potential source of resistance against tuber moths.

  12. Attraction of male gypsy and nun moths to disparlure and some of its chemical analogues.

    PubMed

    Schneider, D; Lange, R; Schwarz, F; Beroza, M; Bierl, B A

    1974-03-01

    The attractive power of disparlure-the sex attractant of the gypsy moth (Lymantria/Porthetria dispar)-vs. four synthetic analogous epoxides was tested in 1972 in a pine forest near Heidelberg. With two levels of concentration in the traps (2 and 20 μg), a total of 1112 nun moths (Lymantria/Porthetria monacha) and 257 gypsy moths were caught in 9 experiments. Approximately equal percentages of the two species were caught with a given compound. Disparlure was by far the most effective attractant. The other substances were between three and twenty times less effective. These experiments support the assumption that disparlure is also at least part of the sexual attractant of the nun moth. In two additional experiments, moth captures by a series of increasing disparlure concentrations (2-100 μg/trap) were determined. The catches of both species increased nonlinearly with the bait concentration. The experiments are discussed with respect to new (unpublished) electrophysiological recordings from disparlure receptor cells in both species. Special attention is given to the supposed masking effect of the disparlure precursor (an olefin). This substance is ineffective as an attractant, but has been reported to reduce the attraction of gypsy moth males to disparlure or to live females. However, the olefin elicits excitatory reactions in the same type of receptor cell that responds to disparlure and the related epoxides. Furthermore, no masking of the electrophysiological response was observed with the receptor cells when the olefin was added to disparlure.

  13. Reduced egg viability in codling moth Cydia pomonella (L.) (Lepidoptera: Tortricidae) following adult exposure to novaluron.

    PubMed

    Gökçe, Ayhan; Kim, Soo-Hoon S; Wise, John C; Whalon, Mark E

    2009-03-01

    The codling moth, Cydia pomonella (L.), is one of the principal pests of pome fruits in the world. The effects of novaluron, a benzoylurea chitin synthesis inhibitor insecticide registered for use on apples in the USA, on fecundity and egg viability in codling moth were studied under laboratory conditions. Three different exposure methods were investigated: ingestion, contact and topical spray. Additionally, the duration of novaluron sublethal effects was measured subsequent to the three modes of exposure. The fecundity of codling moth adults was not significantly affected by novaluron with any of the exposure methods. However, novaluron did cause significant reductions in the proportion of egg hatch with all three exposure methods. The duration of sublethal effects was 9 days or more for all modes of exposure, but with the topical spray these effects began to diminish after 6 days. Novaluron does not affect fecundity in codling moth, but has significant sublethal activity by reducing egg viability subsequent to adult exposure. The topical, contact and ingestion exposures all induce sublethal effects after exposure, and these persist to various degrees throughout codling moth oviposition. A more complete understanding of novaluron's lethal and sublethal activities will help IPM practitioners optimize its use for management of the codling moth. 2008 Society of Chemical Industry.

  14. Development of a rapid resistance monitoring bioassay for codling moth larvae.

    PubMed

    Magalhaes, Leonardo C; Van Kretschmar, Jaap B; Barlow, Vonny M; Roe, R Michael; Walgenbach, James F

    2012-06-01

    The codling moth, Cydia pomonella (L.), is one of the most important pests of apple worldwide. Use of insecticides for management of this insect has been extensive and has resulted in resistance development. There are a number of different bioassay methods to monitor for codling moth resistance; however, many are not applicable to new insecticides and most are time consuming. A novel 16-well plasticware bioassay plate containing lyophilized diet was developed for rapid resistance monitoring of codling moth. The contact insecticides acetamiprid and azinphosmethyl were significantly more toxic to neonates than to fourth instars. However, there was no significant difference in LC(50) values between neonates and fourth instars to the ingestion insecticides chlorantraniliprole, methoxyfenozide, novaluron and spinetoram. Field colonies of codling moth were significantly more resistant to methoxyfenozide than susceptible populations. A diagnostic dose of 20 µg mL(-1) (LC(99) ) was established to monitor for codling moth resistance to methoxyfenozide. The results presented here demonstrate that a novel and rapid bioassay can be used to monitor for codling moth resistance to methoxyfenozide. The bioassay method is relevant to both ingestion and contact insecticides, but a single diagnostic dose, regardless of larval age, is only relevant to ingestion insecticides. Age-dependent diagnostic doses are likely necessary for contact insecticides. Copyright © 2011 Society of Chemical Industry.

  15. Suppression of backscattered diffraction from sub-wavelength 'moth-eye' arrays.

    PubMed

    Stavroulakis, Petros I; Boden, Stuart A; Johnson, Thomas; Bagnall, Darren M

    2013-01-14

    The eyes and wings of some species of moth are covered with arrays of nanoscale features that dramatically reduce reflection of light. There have been multiple examples where this approach has been adapted for use in antireflection and antiglare technologies with the fabrication of artificial moth-eye surfaces. In this work, the suppression of iridescence caused by the diffraction of light from such artificial regular moth-eye arrays at high angles of incidence is achieved with the use of a new tiled domain design, inspired by the arrangement of features on natural moth-eye surfaces. This bio-mimetic pillar architecture contains high optical rotational symmetry and can achieve high levels of diffraction order power reduction. For example, a tiled design fabricated in silicon and consisting of domains with 9 different orientations of the traditional hexagonal array exhibited a ~96% reduction in the intensity of the -1 diffraction order. It is suggested natural moth-eye surfaces have evolved a tiled domain structure as it confers efficient antireflection whilst avoiding problems with high angle diffraction. This combination of antireflection and stealth properties increases chances of survival by reducing the risk of the insect being spotted by a predator. Furthermore, the tiled domain design could lead to more effective artificial moth-eye arrays for antiglare and stealth applications.

  16. Germline transformation of the diamondback moth, Plutella xylostella L., using the piggyBac transposable element.

    PubMed

    Martins, S; Naish, N; Walker, A S; Morrison, N I; Scaife, S; Fu, G; Dafa'alla, T; Alphey, L

    2012-08-01

    The diamondback moth, Plutella xylostella, is one of the most economically important agricultural pests. The larvae of this moth cause damage by feeding on the foliage of cruciferous vegetables such as cabbage, broccoli, cauliflower and rapeseed. Control generally comprises chemical treatment; however, the diamondback moth is renowned for rapid development of resistance to pesticides. Other methods, such as biological control, have not been able to provide adequate protection. Germline transformation of pest insects has become available in recent years as an enabling technology for new genetics-based control methods, such as the Release of Insects carrying a Dominant Lethal (RIDL(®) ). In the present study, we report the first transformation of the diamondback moth, using the piggyBac transposable element, by embryo microinjection. In generating transgenic strains using four different constructs, the function of three regulatory sequences in this moth was demonstrated in driving expression of fluorescent proteins. The transformation rates achieved, 0.48-0.68%, are relatively low compared with those described in other Lepidoptera, but not prohibitive, and are likely to increase with experience. We anticipate that germline transformation of the diamondback moth will permit the development of RIDL strains for use against this pest and facilitate the wider use of this species as a model organism for basic studies.

  17. Geographic variation in diapause induction: the grape berry moth (Lepidoptera: Tortricidae).

    PubMed

    Timer, Jody; Tobin, Patrick C; Saunders, Michael C

    2010-12-01

    Diapause in insects occurs in response to environmental cues, such as changes in photoperiod, and it is a major adaptation by which insects synchronize their activity with biotic resources and environmental constraints. For multivoltine agricultural insect pests, diapause initiation is an important consideration in management decisions, particularly toward the end of the growing season. The grape berry moth, Paralobesia viteana (Clemens), is the main insect pest affecting viticulture, and this insect responds to postsummer solstice photoperiods to initiate diapause. Because the range of grape berry moth extends from southern Canada to the southern United States, different populations are exposed to different photoperiodic regimes. We quantified the diapause response in grape berry moth populations from Arkansas, Michigan, New York, Pennsylvania, Texas, and Virginia, and observed latitudinal variation in diapause initiation. Populations from Michigan, New York, and Pennsylvania responded significantly different than those from Arkansas, Texas, and Virginia. We also observed, as a consequence of our experiments, that the timing of our laboratory studies influenced grape berry moth's response to photoperiod, ceteris paribus. Experiments that were conducted when grape berry moth would be naturally in diapause resulted in a significant higher proportion of diapausing pupae at photoperiods (i.e., >15 h) that generally do not induce diapause, suggesting that attention should be paid to the timing of behavioral and physiological experiments on insects. This relationship between photoperiod and diapause induction in grape berry moth across geographic regions will provide applicable knowledge to improve pest management decisions. © 2010 Entomological Society of America

  18. The brain organization of the lichen moth Eilema japonica, which secretes an alkenyl sex pheromone.

    PubMed

    Namiki, Shigehiro; Fujii, Takeshi; Ishikawa, Yukio; Kanzaki, Ryohei

    2012-10-03

    The neuroanatomy of the brain is important for the functional analysis of sex pheromone recognition in moths. Most moths use either of two types of compounds, aliphatic or alkenyl compounds, as sex pheromones. As previous studies on the neuroanatomy of moths have mostly been carried out using moths that use aliphatic compounds, information on the brain of moths that use alkenyl compounds is scarce. Here, we describe the brain anatomy of the male lichen-feeding moth Eilema japonica (Lepidoptera: Arctiidae), which uses a mixture of alkenyl compounds as a sex pheromone. We reconstructed the major neuropils in the midbrain of E. japonica and compared them with those of the silkmoth, which uses an aliphatic derivative as a sex pheromone. The brain organization of the two species was basically similar, except for the size of the macroglomerular complex, where pheromone information is processed. The macroglomerular complex in E. japonica consisted of four large glomeruli, which were positioned along dorsoventral and anterior-posterior axes. The glomerulus at the site of entry of the antennal nerve was shown to have the largest volume. The number of glomeruli was equal to the number of pheromone components that are crucial for orientation behavior in E. japonica.

  19. "This is not an apple"-yeast mutualism in codling moth.

    PubMed

    Witzgall, Peter; Proffit, Magali; Rozpedowska, Elzbieta; Becher, Paul G; Andreadis, Stefanos; Coracini, Miryan; Lindblom, Tobias U T; Ream, Lee J; Hagman, Arne; Bengtsson, Marie; Kurtzman, Cletus P; Piskur, Jure; Knight, Alan

    2012-08-01

    The larva of codling moth Cydia pomonella (Tortricidae, Lepidoptera) is known as the worm in the apple, mining the fruit for food. We here show that codling moth larvae are closely associated with yeasts of the genus Metschnikowia. Yeast is an essential part of the larval diet and further promotes larval survival by reducing the incidence of fungal infestations in the apple. Larval feeding, on the other hand, enables yeast proliferation on unripe fruit. Chemical, physiological and behavioral analyses demonstrate that codling moth senses and responds to yeast aroma. Female moths are attracted to fermenting yeast and lay more eggs on yeast-inoculated than on yeast-free apples. An olfactory response to yeast volatiles strongly suggests a contributing role of yeast in host finding, in addition to plant volatiles. Codling moth is a widely studied insect of worldwide economic importance, and it is noteworthy that its association with yeasts has gone unnoticed. Tripartite relationships between moths, plants, and microorganisms may, accordingly, be more widespread than previously thought. It, therefore, is important to study the impact of microorganisms on host plant ecology and their contribution to the signals that mediate host plant finding and recognition. A better comprehension of host volatile signatures also will facilitate further development of semiochemicals for sustainable insect control.

  20. Unexpected dynamic up-tuning of auditory organs in day-flying moths.

    PubMed

    Mora, Emanuel C; Cobo-Cuan, Ariadna; Macías-Escrivá, Frank; Kössl, Manfred

    2015-07-01

    In certain nocturnal moth species the frequency range of best hearing shifts to higher frequencies during repeated sound stimulation. This could provide the moths with a mechanism to better detect approaching echolocating bats. However, such a dynamic up-tuning would be of little value for day-flying moths that use intra-specific acoustic communication. Here we examined if the ears of day-flying moths provide stable tuning during longer sound stimulation. Contrary to our expectations, dynamic up-tuning was found in the ear of the day-flying species Urania boisduvalii and Empyreuma pugione. Audiograms were measured with distortion-product otoacoustic emissions (DPOAEs). The level of the dominant distortion product (i.e. 2f1-f2) varied as a function of time by as much as 45 dB during ongoing acoustic stimulation, showing a systematic decrease at low frequencies and an increase at high frequencies. As a consequence, within about 2 s of acoustic stimulation, the DPOAEs audiogram shifted from low to high frequencies. Despite the up-tuning, the range of best audition still fell within the frequency band of the species-specific communication signals, suggesting that intra-specific communication should not be affected adversely. Up-tuning could be an ancestral condition in moth ears that in day-flying moths does not underlie larger selection pressure.