2015-04-24
the United States. Approved for public release; distribution is unlimited. 1. INTRODUCTION An accurate modeling of the complex tire geometry and the...coordinate system o-12 with respect to the material frame o-xy UNCLASSIFIED: Distribution Statement A. Approved for public release. #26428 7...fiber coordinate system as 1111 1122 1122 2222 1212 0 0 0 0 p C C C C C C
A General-Coordinate Formulation For Boundary-Layer Flow
NASA Technical Reports Server (NTRS)
Steger, Joseph L.; Van Dalsem, William R.; Panaras, Argyris G.; Rao, K. V.
1991-01-01
Formulation for solution of equations of boundary-layer flow in general body-fitted curvilinear coordinates retains velocities in Cartesian coordinates. Increases stability of numerical simulations by avoiding coordinate source terms. In formulation, curvilinear coordinates do not have to be orthogonal, and much of software developed previously for use in numerical simulations of flow based on Navier-Stokes equations used.
Augmented weighted diamond form of the linear nodal scheme for Cartesian coordinate systems
Walters, W.F.
1985-01-01
The equations of the high order linear nodal numerical scheme are cast in an augmented weighted difference form for three-dimensional Cartesian nodes. The coupling exhibited by these equations indicate that this new algorithm is simpler and hence faster than previous nodal schemes of this degree of accuracy. A well-logging problem and a fast reactor problem are examined. The new scheme developed here is compared with the classical linear-linear nodal scheme and the diamond difference scheme. For the well-logging problem, it is found that the new scheme is both faster and simpler than the classical linear-linear nodal scheme while sacrificing little in accuracy. Even though the new scheme is more accurate than the diamond difference scheme for the reactor problem, the results indicate that state of the art acceleration methods are needed for nodal schemes.
Completed Beltrami-Michell Formulation in Polar Coordinates
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Hopkins, Dale A.
2005-01-01
A set of conditions had not been formulated on the boundary of an elastic continuum since the time of Saint-Venant. This limitation prevented the formulation of a direct stress calculation method in elasticity for a continuum with a displacement boundary condition. The missed condition, referred to as the boundary compatibility condition, is now formulated in polar coordinates. The augmentation of the new condition completes the Beltrami-Michell formulation in polar coordinates. The completed formulation that includes equilibrium equations and a compatibility condition in the field as well as the traction and boundary compatibility condition is derived from the stationary condition of the variational functional of the integrated force method. The new method is illustrated by solving an example of a mixed boundary value problem for mechanical as well as thermal loads.
Minimal Coordinate Formulation of Contact Dynamics in Operational Space
NASA Technical Reports Server (NTRS)
Jain, Abhinandan; Crean, Cory; Ku, Calvin; Myint, Steven; vonBremen, Hubertus
2012-01-01
In recent years, complementarity techniques have been developed for modeling non-smooth contact and collision dynamics problems for multi-link robotic systems. Normally, in this approach, a linear complementarity problem (LCP) is set up using 6n non-minimal coordinates for a system with n links together with all the unilateral constraints and inter-link bilateral constraints on the system. In this paper, we use operational space dynamics to develop a complementarity formulation for contact and collision dynamics that uses minimal coordinates. The use of such non-redundant coordinates results in much smaller size LCP problems and the automatic enforcement of the inter-link bilateral constraints. Furthermore, we exploit operational space low-order computational algorithms to overcome some of the bottlenecks in using minimal coordinates.
Kinematically redundant arm formulations for coordinated multiple arm implementations
NASA Technical Reports Server (NTRS)
Bailey, Robert W.; Quiocho, Leslie J.; Cleghorn, Timothy F.
1990-01-01
Although control laws for kinematically redundant robotic arms were presented as early as 1969, redundant arms have only recently become recognized as viable solutions to limitations inherent to kinematically sufficient arms. The advantages of run-time control optimization and arm reconfiguration are becoming increasingly attractive as the complexity and criticality of robotic systems continues to progress. A generalized control law for a spatial arm with 7 or more degrees of freedom (DOF) based on Whitney's resolved rate formulation is given. Results from a simulation implementation utilizing this control law are presented. Furthermore, results from a two arm simulation are presented to demonstrate the coordinated control of multiple arms using this formulation.
2014-03-07
the convergent solution in the case of the continuum mechanics based bi- linear shear deformable ANCF shell element. 5.3 Slit Annular Plate Subjected...UNCLASSIFIED: Distribution Statement A. Approved for public release. #24515 CONTINUUM MECHANICS BASED BI- LINEAR SHEAR DEFORMABLE SHELL ELEMENT...MAR 2014 2. REPORT TYPE Technical Report 3. DATES COVERED 07-01-2014 to 04-03-2014 4. TITLE AND SUBTITLE CONTINUUM MECHANICS BASED BI- LINEAR
General formulation of vibronic spectroscopy in internal coordinates.
Baiardi, Alberto; Bloino, Julien; Barone, Vincenzo
2016-02-28
Our general platform integrating time-independent and time-dependent evaluations of vibronic effects at the harmonic level for different kinds of absorption and emission one-photon, conventional and chiral spectroscopies has been extended to support various sets of internal coordinates. Thanks to the implementation of analytical first and second derivatives of different internal coordinates with respect to cartesian ones, both vertical and adiabatic models are available, with the inclusion of mode mixing and, possibly, Herzberg-Teller contributions. Furthermore, all supported non-redundant sets of coordinates are built from a fully automatized algorithm using only a primitive redundant set derived from a bond order-based molecular topology. Together with conventional stretching, bending, and torsion coordinates, the availability of additional coordinates (including linear and out-of-plane bendings) allows a proper treatment of specific systems, including, for instance, inter-molecular hydrogen bridges. A number of case studies are analysed, showing that cartesian and internal coordinates are nearly equivalent for semi-rigid systems not experiencing significant geometry distortions between initial and final electronic states. At variance, delocalized (possibly weighted) internal coordinates become much more effective than their cartesian counterparts for flexible systems and/or in the presence of significant geometry distortions accompanying electronic transitions.
General formulation of vibronic spectroscopy in internal coordinates
NASA Astrophysics Data System (ADS)
Baiardi, Alberto; Bloino, Julien; Barone, Vincenzo
2016-02-01
Our general platform integrating time-independent and time-dependent evaluations of vibronic effects at the harmonic level for different kinds of absorption and emission one-photon, conventional and chiral spectroscopies has been extended to support various sets of internal coordinates. Thanks to the implementation of analytical first and second derivatives of different internal coordinates with respect to cartesian ones, both vertical and adiabatic models are available, with the inclusion of mode mixing and, possibly, Herzberg-Teller contributions. Furthermore, all supported non-redundant sets of coordinates are built from a fully automatized algorithm using only a primitive redundant set derived from a bond order-based molecular topology. Together with conventional stretching, bending, and torsion coordinates, the availability of additional coordinates (including linear and out-of-plane bendings) allows a proper treatment of specific systems, including, for instance, inter-molecular hydrogen bridges. A number of case studies are analysed, showing that cartesian and internal coordinates are nearly equivalent for semi-rigid systems not experiencing significant geometry distortions between initial and final electronic states. At variance, delocalized (possibly weighted) internal coordinates become much more effective than their cartesian counterparts for flexible systems and/or in the presence of significant geometry distortions accompanying electronic transitions.
A formulation for the boundary-layer equations in general coordinates
NASA Technical Reports Server (NTRS)
Steger, Joseph L.; Vandalsem, William R.; Panaras, Argyris G.; Rao, K. V.
1988-01-01
This is a working paper in which a formulation is given for solving the boundary-layer equations in general body-fitted curvilinear coordinates while retaining the original Cartesian dependent variables. The solution procedure does not require that any of the coordinates be orthogonal, and much of the software developed for many Navier-Stokes schemes can be readily used. A limited number of calculations has been undertaken to validate the approach.
2012-08-01
otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the Department of...the Army (DoA). The opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or the DoA...higher pressure at the rear end of the track. Reece (1965) improved Bekker’s model by making the parameters dimensionless. This single equation
Finite element method formulation in polar coordinates for transient heat conduction problems
NASA Astrophysics Data System (ADS)
Duda, Piotr
2016-04-01
The aim of this paper is the formulation of the finite element method in polar coordinates to solve transient heat conduction problems. It is hard to find in the literature a formulation of the finite element method (FEM) in polar or cylindrical coordinates for the solution of heat transfer problems. This document shows how to apply the most often used boundary conditions. The global equation system is solved by the Crank-Nicolson method. The proposed algorithm is verified in three numerical tests. In the first example, the obtained transient temperature distribution is compared with the temperature obtained from the presented analytical solution. In the second numerical example, the variable boundary condition is assumed. In the last numerical example the component with the shape different than cylindrical is used. All examples show that the introduction of the polar coordinate system gives better results than in the Cartesian coordinate system. The finite element method formulation in polar coordinates is valuable since it provides a higher accuracy of the calculations without compacting the mesh in cylindrical or similar to tubular components. The proposed method can be applied for circular elements such as boiler drums, outlet headers, flux tubes. This algorithm can be useful during the solution of inverse problems, which do not allow for high density grid. This method can calculate the temperature distribution in the bodies of different properties in the circumferential and the radial direction. The presented algorithm can be developed for other coordinate systems. The examples demonstrate a good accuracy and stability of the proposed method.
Li, Sen; Zhang, Wei; Lian, Jianming; Kalsi, Karanjit
2016-03-01
This paper focuses on the coordination of a population of Thermostatically Controlled Loads (TCLs) with unknown parameters to achieve group objectives. The problem involves designing the bidding and market clearing strategy to motivate self-interested users to realize efficient energy allocation subject to a peak power constraint. Using the mechanism design approach, we propose a market-based coordination framework, which can effectively incorporate heterogeneous load dynamics, systematically deal with user preferences, account for the unknown load model parameters, and enable the real-world implementation with limited communication resources. This paper is divided into two parts. Part I presents a mathematical formulation of the problem and develops a coordination framework using the mechanism design approach. Part II presents a learning scheme to account for the unknown load model parameters, and evaluates the proposed framework through realistic simulations.
NASA Technical Reports Server (NTRS)
Avis, L. M.
1976-01-01
Tensor methods are used to express the continuum equations of motion in general curvilinear, moving, and deforming coordinate systems. The space-time tensor formulation is applicable to situations in which, for example, the boundaries move and deform. Placing a coordinate surface on such a boundary simplifies the boundary condition treatment. The space-time tensor formulation is also applicable to coordinate systems with coordinate surfaces defined as surfaces of constant pressure, density, temperature, or any other scalar continuum field function. The vanishing of the function gradient components along the coordinate surfaces may simplify the set of governing equations. In numerical integration of the equations of motion, the freedom of motion of the coordinate surfaces provides a potential for enhanced resolution of the continuum field function. An example problem of an incompressible, inviscid fluid with a top free surface is considered, where the surfaces of constant pressure (including the top free surface) are coordinate surfaces.
NASA Astrophysics Data System (ADS)
Baumgarte, Thomas W.; Montero, Pedro J.; Cordero-Carrión, Isabel; Müller, Ewald
2013-02-01
In the absence of symmetry assumptions most numerical relativity simulations adopt Cartesian coordinates. While Cartesian coordinates have some desirable properties, spherical polar coordinates appear better suited for certain applications, including gravitational collapse and supernova simulations. Development of numerical relativity codes in spherical polar coordinates has been hampered by the need to handle the coordinate singularities at the origin and on the axis, for example by careful regularization of the appropriate variables. Assuming spherical symmetry and adopting a covariant version of the Baumgarte-Shapiro-Shibata-Nakamura equations, Montero and Cordero-Carrión recently demonstrated that such a regularization is not necessary when a partially implicit Runge-Kutta method is used for the time evolution of the gravitational fields. Here we report on an implementation of the Baumgarte-Shapiro-Shibata-Nakamura equations in spherical polar coordinates without any symmetry assumptions. Using a partially implicit Runge-Kutta method we obtain stable simulations in three spatial dimensions without the need to regularize the origin or the axis. We perform and discuss a number of tests to assess the stability, accuracy and convergence of the code, namely weak gravitational waves, “hydro-without-hydro” evolutions of spherical and rotating relativistic stars in equilibrium, and single black holes.
NASA Astrophysics Data System (ADS)
Bzdušek, Tomáš; Wu, Quansheng; Rüegg, Andreas; Sigrist, Manfred; Soluyanov, Alexey A.
2016-10-01
The band theory of solids is arguably the most successful theory of condensed-matter physics, providing a description of the electronic energy levels in various materials. Electronic wavefunctions obtained from the band theory enable a topological characterization of metals for which the electronic spectrum may host robust, topologically protected, fermionic quasiparticles. Many of these quasiparticles are analogues of the elementary particles of the Standard Model, but others do not have a counterpart in relativistic high-energy theories. A complete list of possible quasiparticles in solids is lacking, even in the non-interacting case. Here we describe the possible existence of a hitherto unrecognized type of fermionic excitation in metals. This excitation forms a nodal chain—a chain of connected loops in momentum space—along which conduction and valence bands touch. We prove that the nodal chain is topologically distinct from previously reported excitations. We discuss the symmetry requirements for the appearance of this excitation and predict that it is realized in an existing material, iridium tetrafluoride (IrF4), as well as in other compounds of this class of materials. Using IrF4 as an example, we provide a discussion of the topological surface states associated with the nodal chain. We argue that the presence of the nodal-chain fermions will result in anomalous magnetotransport properties, distinct from those of materials exhibiting previously known excitations.
Sarvašová, Zuzana; Sálka, Jaroslav; Dobšinská, Zuzana
2013-09-01
Nature protection as a policy sector is not isolated and is directly or indirectly influenced by many other sectors (e.g. forestry, water management, rural development, energy, etc.). These policy sectors are neither completely segmented nor unaffected by the decisions taken in other policy sectors. Policy formulation in nature protection is therefore also influenced by different sectors. For that reason it is inevitable to stress the need for inter-sectoral coordination to assure their policy coherence. The aim of this article is to describe the mechanism and modes of cross-sectoral coordination and to analyze the relevant actors and their interaction, using the case of the Natura 2000 formulation process in Slovakia. The European Union (EU) set up an ecological network of special protected areas, known as Natura 2000 to ensure biodiversity by conserving natural habitats and wild fauna and flora in the territory of the Member States. An optimized nature protection must therefore carefully consider existing limits and crossdisciplinary relationships at the EU, national and regional levels. The relations between forestry and biodiversity protection are analyzed using the advocacy coalition framework (ACF). The ACF is used for analyzing how two coalitions, in this case ecological and forest owners' coalitions, advocate or pursue their beliefs from the nature protection and forestry policy field. The whole process is illustrated at the regional scale on the case study of Natura 2000 sites formulation in the Slovak Republic. For better reliability and validity of research, a combination of various empiric research methods was used, supported by existing theories. So called triangulation of sociological research or triangulation of methods consists of mutual results testing of individual methodological steps through identifying corresponding political-science theories, assessing their formal points using primary and secondary document analysis and assessing their
Topological nodal line semimetals
NASA Astrophysics Data System (ADS)
Fang, Chen; Weng, Hongming; Dai, Xi; Fang, Zhong
2016-11-01
We review the recent, mainly theoretical, progress in the study of topological nodal line semimetals in three dimensions. In these semimetals, the conduction and the valence bands cross each other along a one-dimensional curve in the three-dimensional Brillouin zone, and any perturbation that preserves a certain symmetry group (generated by either spatial symmetries or time-reversal symmetry) cannot remove this crossing line and open a full direct gap between the two bands. The nodal line(s) is hence topologically protected by the symmetry group, and can be associated with a topological invariant. In this review, (i) we enumerate the symmetry groups that may protect a topological nodal line; (ii) we write down the explicit form of the topological invariant for each of these symmetry groups in terms of the wave functions on the Fermi surface, establishing a topological classification; (iii) for certain classes, we review the proposals for the realization of these semimetals in real materials; (iv) we discuss different scenarios that when the protecting symmetry is broken, how a topological nodal line semimetal becomes Weyl semimetals, Dirac semimetals, and other topological phases; and (v) we discuss the possible physical effects accessible to experimental probes in these materials. Project partially supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0302400 and 2016YFA0300604), partially by the National Natural Science Foundation of China (Grant Nos. 11274359 and 11422428), the National Basic Research Program of China (Grant No. 2013CB921700), and the “Strategic Priority Research Program (B)” of the Chinese Academy of Sciences (Grant No. XDB07020100).
NASA Astrophysics Data System (ADS)
Suh, Kyoung Whoan
2007-02-01
This paper proposes an efficient and comprehensive algorithm for computing the protection ratio and illustrates some results applicable to the initial planning of frequency coordination for fixed wireless networks. A net filter discrimination depending upon transmitter spectrum mask and overall receiver filter characteristic is also examined to see the effect of adjacent channel interferences. Numerical simulations for cochannel and adjacent channel protection ratios are performed for the 6.2 GHz frequency band, including transmitter spectrum mask and receiver filter response. According to results for 64-QAM (quadrature amplitude modulation) and 60 km at bit error ratio 10-6, fade margin and cochannel protection ratio are 41.1 and 74.9 dB, respectively. In addition, it is shown that the net filter discrimination for 30 MHz channel bandwidth provides 26.5 dB at the first adjacent channel, which yields adjacent channel protection ratio of 48.4 dB. The proposed method gives an easy and systematic method to compute the protection ratio and can be applied to frequency coordination in fixed wireless networks up to the millimeter wave band.
Stream-potential formulation of atmospheric dynamics in pressure-related coordinates
NASA Astrophysics Data System (ADS)
Rõõm, Rein
2014-05-01
Departing from non-hydrostatic covariant equations of motion (1) in isobaric coordinates [1]: δv-= F, v = {dx /dt,dy/dt,dp/dt} = {vx,vy,vp} = {u,v,ω} δt (1) equations of motion for 3D velocity divergence ξ0 and curl ξ are derived 0 δξ- = downtriangle·F, δξ-= downtriangle ×F, ξ0 = downtriangle ·v = δαv α, ξ = downtriangle ×v leftrightarrow ξi = ɛiαβδαvβ δt δt (2) Presenting 3D-velocity v in terms of 4D stream-potential {ψ0,ψx,ψy,ψp} 0 i iα 0 αβγ v = downtriangle ψ + downtriangle × ψ leftrightarrow v = G δα ψ + ɛ δβψγ, where Gij is the metric tensor of pressure (p) or hybrid (η) curved space, subsequent application of div and curl to v yields elliptic equations for {ψ0,ψx,ψy,ψp} ( ) L0ψ0 = ξ0, Liαψα = ξj,L0 = δαG αβδβ, Lij = δα GiαG βj - GiβGαj δβ (3) In native pressure coordinates or for low orography, when G becomes diagonal with main elements 11 22 33 2 2 G = G = 1, G = p /H , (H = RT /g istheheightscale) system (3) can be reduced to three independent equations (4) for three fields - scalar flow potential ψ0, horizontal divergence Ξ = δxψx + δyψy of stream function and vertical pessure-velocity ω = δxψy - δyψx ≠¡ dp/dt: ( ) p2 p2 δ2 p2 δ2 L0ψ0 = ξ0, L0Ξ = δp p2ξp/H2 ,Lω = H2- (δyξx - δxξy)L0 = H2-δp2+ downtriangle2, L = H2-δp2+downtriangle2. (4) As the velocity v is specified by the triplet ω,Ξ,ψ0, in full, Eqs. (2) and (4) represent alternate to (1) equations of motion and constitute along with the scale-height (temperature) and surface pressure equations dH R H ω RQ δps δ« ps -dt = c-p- + -g-, δt- = downtriangle · vdp p 0 (5) a complete set for non-hydrostatic modelling of atmospheric dynamics. Equations for ξ0,ψ0,ps represent the 'acoustic loop', which withdraws to the external wave equation for surface pressure fluctuation at slow quasi-hydrostatic motion limit (QHL: ψ0 → 0). Equations for ξ,Ξ,ω,H constitute a non-linear, third
Long period nodal motion of sun synchronous orbits
NASA Technical Reports Server (NTRS)
Duck, K. I.
1975-01-01
An approximative model is formulated for assessing these perturbations that significantly affect long term modal motion of sun synchronous orbits. Computer simulations with several independent computer programs consider zonal and tesseral gravitational harmonics, third body gravitational disturbances induced by the sun and the moon, and atmospheric drag. A pendulum model consisting of evenzonal harmonics through order 4 and solar gravity dominated nodal motion approximation. This pendulum motion results from solar gravity inducing an inclination oscillation which couples into the nodal precession induced by the earth's oblateness. The pendulum model correlated well with simulations observed flight data.
Nodal line optimization and its application to violin top plate design
NASA Astrophysics Data System (ADS)
Yu, Yonggyun; Jang, In Gwun; Kim, In Kyum; Kwak, Byung Man
2010-10-01
In the literature, most problems of structural vibration have been formulated to adjust a specific natural frequency: for example, to maximize the first natural frequency. In musical instruments like a violin; however, mode shapes are equally important because they are related to sound quality in the way that natural frequencies are related to the octave. The shapes of nodal lines, which represent the natural mode shapes, are generally known to have a unique feature for good violins. Among the few studies on mode shape optimization, one typical study addresses the optimization of nodal point location for reducing vibration in a one-dimensional beam structure. However, nodal line optimization, which is required in violin plate design, has not yet been considered. In this paper, the central idea of controlling the shape of the nodal lines is proposed and then applied to violin top plate design. Finite element model for a violin top plate was constructed using shell elements. Then, optimization was performed to minimize the square sum of the displacement of selected nodes located along the target nodal lines by varying the thicknesses of the top plate. We conducted nodal line optimization for the second and the fifth modes together at the same time, and the results showed that the nodal lines obtained match well with the target nodal lines. The information on plate thickness distribution from nodal line optimization would be valuable for tailored trimming of a violin top plate for the given performances.
A composite nodal finite element for hexagons
Hennart, J.P.; Mund, E.H. |; Valle, E. Del
1997-10-01
A nodal algorithm for the solution of the multigroup diffusion equations in hexagonal arrays is analyzed. Basically, the method consists of dividing each hexagon into four quarters and mapping the hexagon quarters onto squares. The resulting boundary value problem on a quadrangular domain is solved in primal weak formulation. Nodal finite element methods like the Raviart-Thomas RTk schemes provide accurate analytical expansions of the solution in the hexagons. Transverse integration cannot be performed on the equations in the quadrangular domain as simply as it is usually done on squares because these equations have essentially variable coefficients. However, by considering an auxiliary problem with constant coefficients (on the same quadrangular domain) and by using a preconditioning approach, transverse integration can be performed as for rectangular geometry. A description of the algorithm is given for a one-group diffusion equation. Numerical results are presented for a simple model problem with a known analytical solution and for k{sub eff} evaluations of some benchmark problems proposed in the literature. For the analytical problem, the results indicate that the theoretical convergence orders of RTk schemes (k = 0,1) are obtained, yielding accurate solutions at the expense of a few preconditioning iterations.
Polymorphic nodal elements and their application in discontinuous Galerkin methods
NASA Astrophysics Data System (ADS)
Gassner, Gregor J.; Lörcher, Frieder; Munz, Claus-Dieter; Hesthaven, Jan S.
2009-03-01
In this work, we discuss two different but related aspects of the development of efficient discontinuous Galerkin methods on hybrid element grids for the computational modeling of gas dynamics in complex geometries or with adapted grids. In the first part, a recursive construction of different nodal sets for hp finite elements is presented. They share the property that the nodes along the sides of the two-dimensional elements and along the edges of the three-dimensional elements are the Legendre-Gauss-Lobatto points. The different nodal elements are evaluated by computing the Lebesgue constants of the corresponding Vandermonde matrix. In the second part, these nodal elements are applied within the modal discontinuous Galerkin framework. We still use a modal based formulation, but introduce a nodal based integration technique to reduce computational cost in the spirit of pseudospectral methods. We illustrate the performance of the scheme on several large scale applications and discuss its use in a recently developed space-time expansion discontinuous Galerkin scheme.
Preserving spherical symmetry in axisymmetric coordinates for diffusion problems
Brunner, T. A.; Kolev, T. V.; Bailey, T. S.; Till, A. T.
2013-07-01
Persevering symmetric solutions, even in the under-converged limit, is important to the robustness of production simulation codes. We explore the symmetry preservation in both a continuous nodal and a mixed finite element method. In their standard formulation, neither method preserves spherical solution symmetry in axisymmetric (RZ) coordinates. We propose two methods, one for each family of finite elements, that recover spherical symmetry for low-order finite elements on linear or curvilinear meshes. This is a first step toward understanding achieving symmetry for higher-order elements. (authors)
ANOVA-HDMR structure of the higher order nodal diffusion solution
Bokov, P. M.; Prinsloo, R. H.; Tomasevic, D. I.
2013-07-01
Nodal diffusion methods still represent a standard in global reactor calculations, but employ some ad-hoc approximations (such as the quadratic leakage approximation) which limit their accuracy in cases where reference quality solutions are sought. In this work we solve the nodal diffusion equations utilizing the so-called higher-order nodal methods to generate reference quality solutions and to decompose the obtained solutions via a technique known as High Dimensional Model Representation (HDMR). This representation and associated decomposition of the solution provides a new formulation of the transverse leakage term. The HDMR structure is investigated via the technique of Analysis of Variance (ANOVA), which indicates why the existing class of transversely-integrated nodal methods prove to be so successful. Furthermore, the analysis leads to a potential solution method for generating reference quality solutions at a much reduced calculational cost, by applying the ANOVA technique to the full higher order solution. (authors)
NASA Astrophysics Data System (ADS)
Kopp, Wassja A.; Leonhard, Kai
2016-12-01
We show how inverse metric tensors and rovibrational kinetic energy operators in terms of internal bond-angle coordinates can be obtained analytically following a factorization of the Jacobian worked out by Frederick and Woywod. The structure of these Jacobians is exploited in two ways: On one hand, the elements of the metric tensor as well as its determinant all have the form ∑rmsin (αn) cos (βo) . This form can be preserved by working with the adjugate metric tensor that can be obtained without divisions. On the other hand, the adjugate can be obtained with less effort by exploiting the lower triangular structure of the Jacobians. Together with a suitable choice of the wavefunction, we avoid singularities and show how to obtain analytical expressions for the rovibrational kinetic energy matrix elements.
Hejranfar, Kazem; Saadat, Mohammad Hossein; Taheri, Sina
2017-02-01
In this work, a high-order weighted essentially nonoscillatory (WENO) finite-difference lattice Boltzmann method (WENOLBM) is developed and assessed for an accurate simulation of incompressible flows. To handle curved geometries with nonuniform grids, the incompressible form of the discrete Boltzmann equation with the Bhatnagar-Gross-Krook (BGK) approximation is transformed into the generalized curvilinear coordinates and the spatial derivatives of the resulting lattice Boltzmann equation in the computational plane are solved using the fifth-order WENO scheme. The first-order implicit-explicit Runge-Kutta scheme and also the fourth-order Runge-Kutta explicit time integrating scheme are adopted for the discretization of the temporal term. To examine the accuracy and performance of the present solution procedure based on the WENOLBM developed, different benchmark test cases are simulated as follows: unsteady Taylor-Green vortex, unsteady doubly periodic shear layer flow, steady flow in a two-dimensional (2D) cavity, steady cylindrical Couette flow, steady flow over a 2D circular cylinder, and steady and unsteady flows over a NACA0012 hydrofoil at different flow conditions. Results of the present solution are compared with the existing numerical and experimental results which show good agreement. To show the efficiency and accuracy of the solution methodology, the results are also compared with the developed second-order central-difference finite-volume lattice Boltzmann method and the compact finite-difference lattice Boltzmann method. It is shown that the present numerical scheme is robust, efficient, and accurate for solving steady and unsteady incompressible flows even at high Reynolds number flows.
NASA Astrophysics Data System (ADS)
Hejranfar, Kazem; Saadat, Mohammad Hossein; Taheri, Sina
2017-02-01
In this work, a high-order weighted essentially nonoscillatory (WENO) finite-difference lattice Boltzmann method (WENOLBM) is developed and assessed for an accurate simulation of incompressible flows. To handle curved geometries with nonuniform grids, the incompressible form of the discrete Boltzmann equation with the Bhatnagar-Gross-Krook (BGK) approximation is transformed into the generalized curvilinear coordinates and the spatial derivatives of the resulting lattice Boltzmann equation in the computational plane are solved using the fifth-order WENO scheme. The first-order implicit-explicit Runge-Kutta scheme and also the fourth-order Runge-Kutta explicit time integrating scheme are adopted for the discretization of the temporal term. To examine the accuracy and performance of the present solution procedure based on the WENOLBM developed, different benchmark test cases are simulated as follows: unsteady Taylor-Green vortex, unsteady doubly periodic shear layer flow, steady flow in a two-dimensional (2D) cavity, steady cylindrical Couette flow, steady flow over a 2D circular cylinder, and steady and unsteady flows over a NACA0012 hydrofoil at different flow conditions. Results of the present solution are compared with the existing numerical and experimental results which show good agreement. To show the efficiency and accuracy of the solution methodology, the results are also compared with the developed second-order central-difference finite-volume lattice Boltzmann method and the compact finite-difference lattice Boltzmann method. It is shown that the present numerical scheme is robust, efficient, and accurate for solving steady and unsteady incompressible flows even at high Reynolds number flows.
Heterogeneous treatment in the variational nodal method
Fanning, T.H.; Palmiotti, G.
1995-06-01
The variational nodal transport method is reduced to its diffusion form and generalized for the treatment of heterogeneous nodes while maintaining nodal balances. Adapting variational methods to heterogeneous nodes requires the ability to integrate over a node with discontinuous cross sections. In this work, integrals are evaluated using composite gaussian quadrature rules, which permit accurate integration while minimizing computing time. Allowing structure within a nodal solution scheme avoids some of the necessity of cross section homogenization, and more accurately defines the intra-nodal flux shape. Ideally, any desired heterogeneity can be constructed within the node; but in reality, the finite set of basis functions limits the practical resolution to which fine detail can be defined within the node. Preliminary comparison tests show that the heterogeneous variational nodal method provides satisfactory results even if some improvements are needed for very difficult, configurations.
Optical conductivity of nodal metals
Homes, C. C.; Tu, J. J.; Li, J.; Gu, G. D.; Akrap, A.
2013-01-01
Fermi liquid theory is remarkably successful in describing the transport and optical properties of metals; at frequencies higher than the scattering rate, the optical conductivity adopts the well-known power law behavior σ1(ω) ∝ ω−2. We have observed an unusual non-Fermi liquid response σ1(ω) ∝ ω−1±0.2 in the ground states of several cuprate and iron-based materials which undergo electronic or magnetic phase transitions resulting in dramatically reduced or nodal Fermi surfaces. The identification of an inverse (or fractional) power-law behavior in the residual optical conductivity now permits the removal of this contribution, revealing the direct transitions across the gap and allowing the nature of the electron-boson coupling to be probed. The non-Fermi liquid behavior in these systems may be the result of a common Fermi surface topology of Dirac cone-like features in the electronic dispersion. PMID:24336241
Distributions of Nodal Prices in PJM Market
NASA Astrophysics Data System (ADS)
Kunio, Matsumoto; Yoshio, Ichida; Michiko, Makino; Hiroaki, Tanaka
As the deregulation of electric business proceeds, it is important to analyze the distributions of prices in the power market. In this paper, we analyze the nodal prices of the PJM market, which is representative of power markets in the US. First, we verify Weibull’s property of the distribution of nodal prices. Then we verify Poisson’s property of the interval of loss process.
Nodal network generator for CAVE3
NASA Technical Reports Server (NTRS)
Palmieri, J. V.; Rathjen, K. A.
1982-01-01
A new extension of CAVE3 code was developed that automates the creation of a finite difference math model in digital form ready for input to the CAVE3 code. The new software, Nodal Network Generator, is broken into two segments. One segment generates the model geometry using a Tektronix Tablet Digitizer and the other generates the actual finite difference model and allows for graphic verification using Tektronix 4014 Graphic Scope. Use of the Nodal Network Generator is described.
Nodal Quasiparticle in Pseudogapped Colossal Magnetoresistive Manganites
Mannella, N.
2010-06-02
A characteristic feature of the copper oxide high-temperature superconductors is the dichotomy between the electronic excitations along the nodal (diagonal) and antinodal (parallel to the Cu-O bonds) directions in momentum space, generally assumed to be linked to the d-wave symmetry of the superconducting state. Angle-resolved photoemission measurements in the superconducting state have revealed a quasiparticle spectrum with a d-wave gap structure that exhibits a maximum along the antinodal direction and vanishes along the nodal direction. Subsequent measurements have shown that, at low doping levels, this gap structure persists even in the high-temperature metallic state, although the nodal points of the superconducting state spread out in finite Fermi arcs. This is the so-called pseudogap phase, and it has been assumed that it is closely linked to the superconducting state, either by assigning it to fluctuating superconductivity or by invoking orders which are natural competitors of d-wave superconductors. Here we report experimental evidence that a very similar pseudogap state with a nodal-antinodal dichotomous character exists in a system that is markedly different from a superconductor: the ferromagnetic metallic groundstate of the colossal magnetoresistive bilayer manganite La{sub 1.2}Sr{sub 1.8}Mn{sub 2}O{sub 7}. Our findings therefore cast doubt on the assumption that the pseudogap state in the copper oxides and the nodal-antinodal dichotomy are hallmarks of the superconductivity state.
MURR nodal analysis with simple interactive simulation
NASA Astrophysics Data System (ADS)
Enani, Mohammad Abdulsamad
The main goal of this research is to design and produce computer codes that should do a NODAL analysis of the core of Missouri University Research Reactor 'MURR' with a simple neutron transient simulation. These codes should be executed on any of the family of the widely used modern IBM/PC (or IBM/PS) microcomputers (or compatibles). The nodal analysis code should find the power (or flux) distribution inside the reactor core and calculate fuel burnup for each of the fuel elements by using the nodal analysis technique described in chapter 3. The simulator code is a relatively simple, educational aid of MURR reactor kinetics simulation that uses one group point reactor model.
Fuerer, Christophe; Nostro, M. Cristina; Constam, Daniel B.
2014-01-01
The TGFβ family member Nodal is central to control pluripotent stem cell fate, but its use as a stem cell differentiation factor is limited by low specific activity. During development, Nodal depends on growth and differentiation factor (Gdf)-1 and on the shared co-receptor Cryptic to specify visceral left-right axis asymmetry. We therefore asked whether the functionality of Nodal can be augmented by Gdf1. Because Nodal and Gdf1 coimmunoprecipitate each other, they were predicted to form heterodimers, possibly to facilitate diffusion or to increase the affinity for signaling receptors. Here, we report that Gdf1 suppresses an unexpected dependence of Nodal on serum proteins and that it is critically required for non-autonomous signaling in cells expressing Cryptic. Nodal, Gdf1, and their cleaved propeptides copurified as a heterodimeric low molecular weight complex that stimulated Activin receptor (Acvr) signaling far more potently than Nodal alone. Although heterodimerization with Gdf1 did not increase binding of Nodal to Fc fusions of co-receptors or Acvr extracellular domains, it was essential for soluble Acvr2 to inhibit Nodal signaling. This implies that Gdf1 potentiates Nodal activity by stabilizing a low molecular weight fraction that is susceptible to neutralization by soluble Acvr2. Finally, in differentiating human ES cells, endodermal markers were more efficiently induced by Nodal·Gdf1 than by Nodal, suggesting that Nodal·Gdf1 is an attractive new reagent to direct stem cell differentiation. PMID:24798330
Pathology of extra-nodal non Hodgkin lymphomas.
Wright, D H
2012-06-01
In the management of extra-nodal lymphomas it is important to determine whether the tumour has disseminated and whether lymph nodes are involved. Some extra-nodal lymphomas may be the result of random spread of nodal lymphoma. Specific homing, however, determines the site of many extra-nodal lymphomas, as exemplified by cutaneous T-cell lymphomas, which seem to be derived from skin-homing T-cells and mucosa-associated lymphoid tissue lymphomas that show features of the mucosal immune system. Enteropathy-associated T-cell lymphoma is derived from mucosal T-cells in patients with coeliac disease. Immunological sanctuary accounts for the localisation of primary brain, eye and testicular lymphoma. Mantle cell lymphoma frequently causes tumours in the gastrointestinal tract. Random biopsies have shown that a high proportion of patients with this lymphoma have extensive occult involvement of the gastrointestinal tract at the time of first diagnosis. Follicular lymphoma occurs at both nodal and extra-nodal sites, but uncommonly at both sites at the same time. Extra-nodal follicular lymphomas frequently lack t(14;18)(q32;q21) and do not express bcl-2, which are characteristics of the nodal disease. At extra-nodal sites, follicular lymphoma is more likely to be curable than nodal follicular lymphoma. The behaviour of extra-nodal lymphomas cannot be assumed to follow that of their nodal counterparts.
NOKIN1D: one-dimensional neutron kinetics based on a nodal collocation method
NASA Astrophysics Data System (ADS)
Verdú, G.; Ginestar, D.; Miró, R.; Jambrina, A.; Barrachina, T.; Soler, Amparo; Concejal, Alberto
2014-06-01
The TRAC-BF1 one-dimensional kinetic model is a formulation of the neutron diffusion equation in the two energy groups' approximation, based on the analytical nodal method (ANM). The advantage compared with a zero-dimensional kinetic model is that the axial power profile may vary with time due to thermal-hydraulic parameter changes and/or actions of the control systems but at has the disadvantages that in unusual situations it fails to converge. The nodal collocation method developed for the neutron diffusion equation and applied to the kinetics resolution of TRAC-BF1 thermal-hydraulics, is an adaptation of the traditional collocation methods for the discretization of partial differential equations, based on the development of the solution as a linear combination of analytical functions. It has chosen to use a nodal collocation method based on a development of Legendre polynomials of neutron fluxes in each cell. The qualification is carried out by the analysis of the turbine trip transient from the NEA benchmark in Peach Bottom NPP using both the original 1D kinetics implemented in TRAC-BF1 and the 1D nodal collocation method.
State-Space Formulation for Circuit Analysis
ERIC Educational Resources Information Center
Martinez-Marin, T.
2010-01-01
This paper presents a new state-space approach for temporal analysis of electrical circuits. The method systematically obtains the state-space formulation of nondegenerate linear networks without using concepts of topology. It employs nodal/mesh systematic analysis to reduce the number of undesired variables. This approach helps students to…
Nodal resonance in a strong standing wave
NASA Astrophysics Data System (ADS)
Fernández C., David J.; Mielnik, Bogdan
1990-06-01
The motion of charged particles in a standing electromagnetic wave is considered. For amplitudes that are not too high, the wave causes an effect of attraction of particles to the nodal points, resembling the channeling effect reported by Salomon, Dalibard, Aspect, Metcalf, and Cohen-Tannoudji [Phys. Rev. Lett. 59, 1659 (1987)] consistent with the ``high-frequency potential'' of Kapitza [Zh. Eksp. Teor. Fiz. 21, 588 (1951)]. For high-field intensities, however, the nodal points undergo a qualitative metamorphosis, converting themselves from particle attractors into resonant centers. Some chaotic phenomena arise and the description of the oscillating field in terms of an ``effective potential'' becomes inappropriate. The question of a correct Floquet Hamiltonian that could describe the standing wave within this amplitude and frequency regime is open.
Drift Hamiltonian in magnetic coordinates
White, R.B.; Boozer, A.H.; Hay, R.
1982-02-01
A Hamiltonian formulation of the guiding-center drift in arbitrary, steady state, magnetic and electric fields is given. The canonical variables of this formulation are simply related to the magnetic coordinates. The modifications required to treat ergodic magnetic fields using magnetic coordinates are explicitly given in the Hamiltonian formulation.
NASA Technical Reports Server (NTRS)
Borsody, J.
1976-01-01
Mathematical equations are derived by using the Maximum Principle to obtain the maximum payload capability of a reusable tug for planetary missions. The mathematical formulation includes correction for nodal precession of the space shuttle orbit. The tug performs this nodal correction in returning to this precessed orbit. The sample case analyzed represents an inner planet mission as defined by the declination (fixed) and right ascension of the outgoing asymptote and the mission energy. Payload capability is derived for a typical cryogenic tug and the sample case with and without perigee propulsion. Optimal trajectory profiles and some important orbital elements are also discussed.
Filho, J. F. P.
2013-07-01
In this work, an analytical discrete ordinates method is used to solve a nodal formulation of a neutron transport problem in x, y-geometry. The proposed approach leads to an important reduction in the order of the associated eigenvalue systems, when combined with the classical level symmetric quadrature scheme. Auxiliary equations are proposed, as usually required for nodal methods, to express the unknown fluxes at the boundary introduced as additional unknowns in the integrated equations. Numerical results, for the problem defined by a two-dimensional region with a spatially constant and isotropically emitting source, are presented and compared with those available in the literature. (authors)
Arbitrarily high order nodal and characteristic methods
Azmy, Y.Y.
1994-09-01
The quest for higher computational efficiency initially led researchers in the neutron transport area to develop and implement high-order approximations for solving the linear Boltzmann equational. This drive aimed at achieving higher accuracy on coarse meshes, thereby resulting in a net savings of computational resources represented by execution time and memory. Many endeavors succeeded in reaching this goal, producing a variety of elegent, albeit complicated, formalisms, that proved extremely accurate and efficient in solving test, as well as practical applications, problems. The two main classes of high order transport methods that recieved the most attention are the Nodal and Characteristic methods. A de facto linear order standard for the spatial approximation (even though Quadratic Nodal Methods were also considered) was dictated by the algebraic complexity of the derivation of the discrete variable equations, the programming complexity of implementing and verifying them in codes, and limitations on computational resources available to run such codes. The significant advances in computational resources in terms of hardware capacity and speed, as well as architectural innovations such as vector and parallel processing, all but eliminated the third (above) obstacle towards the development and implementation of even higher order methods. The algebraic and programming complexities, on the other hand, were alleviated to some extent by the development of Arbitrarily High Order Transport methods of the Nodal and the Characteristic types, which are discussed in this report.
Multiple nodal locoregional recurrence of pheochromocytoma
Ramírez-Plaza, César Pablo; Cárdenas, Elena Margarita Sanchiz; Humanes, Rocío Soler
2015-01-01
Introduction Malignancy is present in 10% of pheochromocytomas (PCC) and is defined as local/vascular infiltration of surrounding tissues or the presence of chromaffin cells deposits in distant organs. The presence of isolated nodal recurrence is very rare and only 7 cases have been reported in the medical literature. Presentation of the case The case of a 32-y male with a symptomatic recurrence of a previously operated (2-years ago) PCC is presented. Radiological and functional imaging studies confirmed the presence of multiple nodules in the surgical site. A radical left nephrectomy with extensive lymphatic clearance in order to get an R0 resection was performed. The pathologist confirmed the diagnosis of massive locoregional nodal invasion. Discussion A detailed histological report and a thorough genetic study must be considered in every operated PCC in order to identify mutations and profiles of risk for malignancy. When recurrence or metastastic disease is suspected, imaging and functional exams are done in order to obtain a proper staging. Radical surgery for the metastatic disease is the only treatment that may provide prolonged survival. If an R0 resection is not possible, then a debulking surgery is a good option when the benefit/risk ratio is acceptable. Conclusion Isolated lymph nodal recurrence is very rare in malignant PCC, with only 7 cases previously published. The role of surgery is essential to get long-term survival because provides clinical and functional control of the disease. PMID:26117450
A nodal triangle-based spectral element method for the shallow water equations on the sphere
NASA Astrophysics Data System (ADS)
Giraldo, F. X.; Warburton, T.
2005-07-01
A nodal triangle-based spectral element (SE) method for the shallow water equations on the sphere is presented. The original SE method uses quadrilateral elements and high-order nodal Lagrange polynomials, constructed from a tensor-product of the Legendre-Gauss-Lobatto points. In this work, we construct the high-order Lagrange polynomials directly on the triangle using nodal sets obtained from the electrostatics principle [J.S. Hesthaven, From electrostatics to almost optimal nodal sets for polynomial interpolation in a simplex, SIAM Journal on Numerical Analysis 35 (1998) 655-676] and Fekete points [M.A. Taylor, B.A. Wingate, R.E. Vincent, An algorithm for computing Fekete points in the triangle, SIAM Journal on Numerical Analysis 38 (2000) 1707-1720]. These points have good approximation properties and far better Lebesgue constants than any other nodal set derived for the triangle. By employing triangular elements as the basic building-blocks of the SE method and the Cartesian coordinate form of the equations, we can use any grid imaginable including adaptive unstructured grids. Results for six test cases are presented to confirm the accuracy and stability of the method. The results show that the triangle-based SE method yields the expected exponential convergence and that it can be more accurate than the quadrilateral-based SE method even while using 30-60% fewer grid points especially when adaptive grids are used to align the grid with the flow direction. However, at the moment, the quadrilateral-based SE method is twice as fast as the triangle-based SE method because the latter does not yield a diagonal mass matrix.
Small renal tumor with lymph nodal enlargement: A histopathological surprise
Thottathil, Mujeeburahiman; Verma, Ashish; D’souza, Nischith; Khan, Altaf
2016-01-01
Renal cancer with lymph nodal mass on the investigation is clinically suggestive of an advanced tumor. Small renal cancers are not commonly associated with lymph nodal metastasis. Association of renal cell carcinoma with renal tuberculosis (TB) in the same kidney is also rare. We report here a case of small renal cancer with multiple hilar and paraaortic lymph nodes who underwent radical nephrectomy, and histopathology report showed renal and lymph nodal TB too. PMID:27453671
Plasticity underlies tumor progression: Role of Nodal signaling
Bodenstine, Thomas M.; Chandler, Grace S.; Seftor, Richard E. B.; Seftor, Elisabeth A.; Hendrix, Mary J. C.
2016-01-01
The transforming growth factor beta (TGFβ) superfamily member Nodal is an established regulator of early embryonic development, with primary roles in endoderm induction, left-right asymmetry and primitive streak formation. Nodal signals through TGFβ family receptors at the plasma membrane and induces signaling cascades leading to diverse transcriptional regulation. While conceptually simple, the regulation of Nodal and its molecular effects are profoundly complex and context dependent. Pioneering work by developmental biologists has characterized the signaling pathways, regulatory components, and provided detailed insight into the mechanisms by which Nodal mediates changes at the cellular and organismal levels. Nodal is also an important factor in maintaining pluripotency of embryonic stem cells through regulation of core transcriptional programs. Collectively, this work has led to an appreciation for Nodal as a powerful morphogen capable of orchestrating multiple cellular phenotypes. Although Nodal is not active in most adult tissues, its re-expression and signaling have been linked to multiple types of human cancer, and Nodal has emerged as a driver of tumor growth and cellular plasticity. In vitro and in vivo experimental evidence has demonstrated that inhibition of Nodal signaling reduces cancer cell aggressive characteristics, while clinical data have established associations with Nodal expression and patient outcomes. As a result, there is great interest in the potential targeting of Nodal activity in a therapeutic setting for cancer patients that may provide new avenues for suppressing tumor growth and metastasis. In this review, we evaluate our current understanding of the complexities of Nodal function in cancer and highlight recent experimental evidence that sheds light on the therapeutic potential of its inhibition. PMID:26951550
Topological surface states in nodal superconductors.
Schnyder, Andreas P; Brydon, Philip M R
2015-06-24
Topological superconductors have become a subject of intense research due to their potential use for technical applications in device fabrication and quantum information. Besides fully gapped superconductors, unconventional superconductors with point or line nodes in their order parameter can also exhibit nontrivial topological characteristics. This article reviews recent progress in the theoretical understanding of nodal topological superconductors, with a focus on Weyl and noncentrosymmetric superconductors and their protected surface states. Using selected examples, we review the bulk topological properties of these systems, study different types of topological surface states, and examine their unusual properties. Furthermore, we survey some candidate materials for topological superconductivity and discuss different experimental signatures of topological surface states.
Nodal lines and nodal loops in nonsymmorphic odd-parity superconductors
NASA Astrophysics Data System (ADS)
Micklitz, T.; Norman, M. R.
2017-01-01
We discuss the nodal structure of odd-parity superconductors in the presence of nonsymmorphic crystal symmetries, both with and without spin-orbit coupling, and with and without time-reversal symmetry. We comment on the relation of our work to previous work in the literature, and also the implications for unconventional superconductors such as UPt3.
New Anti-Nodal Monoclonal Antibodies Targeting the Nodal Pre-Helix Loop Involved in Cripto-1 Binding
Focà, Annalia; Sanguigno, Luca; Focà, Giuseppina; Strizzi, Luigi; Iannitti, Roberta; Palumbo, Rosanna; Hendrix, Mary J. C.; Leonardi, Antonio; Ruvo, Menotti; Sandomenico, Annamaria
2015-01-01
Nodal is a potent embryonic morphogen belonging to the TGF-β superfamily. Typically, it also binds to the ALK4/ActRIIB receptor complex in the presence of the co-receptor Cripto-1. Nodal expression is physiologically restricted to embryonic tissues and human embryonic stem cells, is absent in normal cells but re-emerges in several human cancers, including melanoma, breast, and colon cancer. Our aim was to obtain mAbs able to recognize Nodal on a major CBR (Cripto-Binding-Region) site and to block the Cripto-1-mediated signalling. To achieve this, antibodies were raised against hNodal(44–67) and mAbs generated by the hybridoma technology. We have selected one mAb, named 3D1, which strongly associates with full-length rhNodal (KD 1.4 nM) and recognizes the endogenous protein in a panel of human melanoma cell lines by western blot and FACS analyses. 3D1 inhibits the Nodal-Cripto-1 binding and blocks Smad2/3 phosphorylation. Data suggest that inhibition of the Nodal-Cripto-1 axis is a valid therapeutic approach against melanoma and 3D1 is a promising and interesting agent for blocking Nodal-Cripto mediated tumor development. These findings increase the interest for Nodal as both a diagnostic and prognostic marker and as a potential new target for therapeutic intervention. PMID:26370966
Nodal signaling and the evolution of deuterostome gastrulation.
Chea, Helen K; Wright, Christopher V; Swalla, Billie J
2005-10-01
Chordates, including vertebrates, evolved within a group of animals called the deuterostomes. All holoblastic deuterostomes gastrulate at the vegetal pole and the blastopore becomes the anus, while a mouth is formed at the anterior or to the oral side. Nodal is a member of the TGF-beta superfamily of signaling molecules that are important in signaling between cells during many embryonic processes in vertebrate embryos. Nodal has also been found in other invertebrate deuterostomes, such as ascidians and sea urchins, but, so far, is missing in protostomes. Nodal has been shown to be particularly important in determining left-right asymmetries in vertebrate embryos, but less information is available for its developmental role in the invertebrate deuterostomes. We review gastrulation in the deuterostomes, then examine nodal expression early during mesoderm formation and later during the establishment of asymmetries in both vertebrates and invertebrates. Nodal is expressed asymmetrically on the left side in chordates and on the presumptive oral side of the embryo in echinoid echinoderms. The expression of nodal is in different germ layers in embryos of different phyla. Expression is in the ectoderm in most of the invertebrate deuterostomes, and in the mesoderm in vertebrates. We summarize the work that has been published to date, especially nodal expression in the invertebrate deuterostomes, and suggest future experiments to better understand the evolution of nodal signaling and deuterostome gastrulation.
Market redesign and technology upgrade: a nodal implementation
Isemonger, Alan G.
2009-10-15
The California ISO and its market participants collectively cut over to a new nodal-based market on April 1, largely without incident and 11 years to the day from the initial startup in 1998. Thus far, the new nodal framework has proven robust, and the inevitable design and implementation issues that have emerged since cutover have been manageable. (author)
Radar response from vegetation with nodal structure
NASA Technical Reports Server (NTRS)
Blanchard, B. J.; Oneill, P. E.
1984-01-01
Radar images from the SEASAT synthetic aperture radar (SAR) produced unusually high returns from corn and sorghum fields, which seem to indicate a correlation between nodal separation in the stalk and the wavelength of the radar. These images also show no difference in return from standing or harvested corn. Further investigation using images from the Shuttle Imaging Radar (SIR-A) substantiated these observations and showed a degradation of the high return with time after harvest. From portions of corn and sweet sorghum stalks that were sampled to measure stalk water content, it was determined that near and after maturity the water becomes more concentrated in the stalk nodes. The stalk then becomes a linear sequence of alternating dielectrics as opposed to a long slender cylinder with uniform dielectric properties.
Experience with advanced nodal codes at YAEC
Cacciapouti, R.J.
1990-01-01
Yankee Atomic Electric Company (YAEC) has been performing reload licensing analysis since 1969. The basic pressurized water reactor (PWR) methodology involves the use of LEOPARD for cross-section generation, PDQ for radial power distributions and integral control rod worth, and SIMULATE for axial power distributions and differential control rod worth. In 1980, YAEC began performing reload licensing analysis for the Vermont Yankee boiling water reactor (BWR). The basic BWR methodology involves the use of CASMO for cross-section generation and SIMULATE for three-dimensional power distributions. In 1986, YAEC began investigating the use of CASMO-3 for cross-section generation and the advanced nodal code SIMULATE-3 for power distribution analysis. Based on the evaluation, the CASMO-3/SIMULATE-3 methodology satisfied all requirements. After careful consideration, the cost of implementing the new methodology is expected to be offset by reduced computing costs, improved engineering productivity, and fuel-cycle performance gains.
Santarelli, P; Sosa, E; Denes, P
1982-01-01
A case is described with clinical and electrocardiographic findings of incessant junctional reciprocating tachycardia. Electrophysiological study showed that longitudinal dissociation of the atrioventricular node into two pathways was responsible for the maintenance of the arrhythmia. The two intranodal pathways had different refractory periods but reciprocally related and overlapping conduction times (anterograde fast, retrograde slow, and vice versa). Induction and termination of the arrhythmia was related to the presence of a partial atrio-nodal bypass tract. Images PMID:7082510
Esquivies, Luis; Blackler, Alissa; Peran, Macarena; Rodriguez-Esteban, Concepcion; Izpisua Belmonte, Juan Carlos; Booker, Evan; Gray, Peter C.; Ahn, Chihoon; Kwiatkowski, Witek; Choe, Senyon
2014-01-01
Nodal, a member of the TGF-β superfamily, plays an important role in vertebrate and invertebrate early development. The biochemical study of Nodal and its signaling pathway has been a challenge, mainly because of difficulties in producing the protein in sufficient quantities. We have developed a library of stable, chemically refoldable Nodal/BMP2 chimeric ligands (NB2 library). Three chimeras, named NB250, NB260, and NB264, show Nodal-like signaling properties including dependence on the co-receptor Cripto and activation of the Smad2 pathway. NB250, like Nodal, alters heart looping during the establishment of embryonic left-right asymmetry, and both NB250 and NB260, as well as Nodal, induce chondrogenic differentiation of human adipose-derived stem cells. This Nodal-induced differentiation is shown to be more efficient than BPM2-induced differentiation. Interestingly, the crystal structure of NB250 shows a backbone scaffold similar to that of BMP2. Our results show that these chimeric ligands may have therapeutic implications in cartilage injuries. PMID:24311780
Nodal Solutions for Supercritical Laplace Equations
NASA Astrophysics Data System (ADS)
Dalbono, Francesca; Franca, Matteo
2016-11-01
In this paper we study radial solutions for the following equation Δ u(x)+f (u(x), |x|) = 0, where {x in {Rn}}, n > 2, f is subcritical for r small and u large and supercritical for r large and u small, with respect to the Sobolev critical exponent {2^{*} = 2n/n-2}. The solutions are classified and characterized by their asymptotic behaviour and nodal properties. In an appropriate super-linear setting, we give an asymptotic condition sufficient to guarantee the existence of at least one ground state with fast decay with exactly j zeroes for any j ≥ 0. Under the same assumptions, we also find uncountably many ground states with slow decay, singular ground states with fast decay and singular ground states with slow decay, all of them with exactly j zeroes. Our approach, based on Fowler transformation and invariant manifold theory, enables us to deal with a wide family of potentials allowing spatial inhomogeneity and a quite general dependence on u. In particular, for the Matukuma-type potential, we show a kind of structural stability.
The genetics of nodal marginal zone lymphoma
Spina, Valeria; Khiabanian, Hossein; Messina, Monica; Monti, Sara; Cascione, Luciano; Bruscaggin, Alessio; Spaccarotella, Elisa; Holmes, Antony B.; Arcaini, Luca; Lucioni, Marco; Tabbò, Fabrizio; Zairis, Sakellarios; Diop, Fary; Cerri, Michaela; Chiaretti, Sabina; Marasca, Roberto; Ponzoni, Maurilio; Deaglio, Silvia; Ramponi, Antonio; Tiacci, Enrico; Pasqualucci, Laura; Paulli, Marco; Falini, Brunangelo; Inghirami, Giorgio; Bertoni, Francesco; Foà, Robin; Rabadan, Raul; Gaidano, Gianluca
2016-01-01
Nodal marginal zone lymphoma (NMZL) is a rare, indolent B-cell tumor that is distinguished from splenic marginal zone lymphoma (SMZL) by the different pattern of dissemination. NMZL still lacks distinct markers and remains orphan of specific cancer gene lesions. By combining whole-exome sequencing, targeted sequencing of tumor-related genes, whole-transcriptome sequencing, and high-resolution single nucleotide polymorphism array analysis, we aimed at disclosing the pathways that are molecularly deregulated in NMZL and we compare the molecular profile of NMZL with that of SMZL. These analyses identified a distinctive pattern of nonsilent somatic lesions in NMZL. In 35 NMZL patients, 41 genes were found recurrently affected in ≥3 (9%) cases, including highly prevalent molecular lesions of MLL2 (also known as KMT2D; 34%), PTPRD (20%), NOTCH2 (20%), and KLF2 (17%). Mutations of PTPRD, a receptor-type protein tyrosine phosphatase regulating cell growth, were enriched in NMZL across mature B-cell tumors, functionally caused the loss of the phosphatase activity of PTPRD, and were associated with cell-cycle transcriptional program deregulation and increased proliferation index in NMZL. Although NMZL shared with SMZL a common mutation profile, NMZL harbored PTPRD lesions that were otherwise absent in SMZL. Collectively, these findings provide new insights into the genetics of NMZL, identify PTPRD lesions as a novel marker for this lymphoma across mature B-cell tumors, and support the distinction of NMZL as an independent clinicopathologic entity within the current lymphoma classification. PMID:27335277
Nodal aberration theory for wild-filed asymmetric optical systems
NASA Astrophysics Data System (ADS)
Chen, Yang; Cheng, Xuemin; Hao, Qun
2016-10-01
Nodal Aberration Theory (NAT) was used to calculate the zero field position in Full Field Display (FFD) for the given aberration term. Aiming at wide-filed non-rotational symmetric decentered optical systems, we have presented the nodal geography behavior of the family of third-order and fifth-order aberrations. Meanwhile, we have calculated the wavefront aberration expressions when one optical element in the system is tilted, which was not at the entrance pupil. By using a three-piece-cellphone lens example in optical design software CodeV, the nodal geography is testified under several situations; and the wavefront aberrations are calculated when the optical element is tilted. The properties of the nodal aberrations are analyzed by using Fringe Zernike coefficients, which are directly related with the wavefront aberration terms and usually obtained by real ray trace and wavefront surface fitting.
Nodal signalling and asymmetry of the nervous system.
Signore, Iskra A; Palma, Karina; Concha, Miguel L
2016-12-19
The role of Nodal signalling in nervous system asymmetry is still poorly understood. Here, we review and discuss how asymmetric Nodal signalling controls the ontogeny of nervous system asymmetry using a comparative developmental perspective. A detailed analysis of asymmetry in ascidians and fishes reveals a critical context-dependency of Nodal function and emphasizes that bilaterally paired and midline-unpaired structures/organs behave as different entities. We propose a conceptual framework to dissect the developmental function of Nodal as asymmetry inducer and laterality modulator in the nervous system, which can be used to study other types of body and visceral organ asymmetries. Using insights from developmental biology, we also present novel evolutionary hypotheses on how Nodal led the evolution of directional asymmetry in the brain, with a particular focus on the epithalamus. We intend this paper to provide a synthesis on how Nodal signalling controls left-right asymmetry of the nervous system.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.
Frederick N. Gleicher II; Abderrafi M. Ougouag
2009-09-01
A new diffusion-transport hybrid nodal method in R-Z is presented that can effectively treat non-multiplying zones in pebble bed reactors. The new method seamlessly combines the analytic coarse mesh finite difference (CMFD) diffusion formulation and a transport theory based response matrix formulation while retaining the properties and structure of the CMFD diffusion solver. The resulting combined formulation is utilized in selected non-multiplying nodes to capture angular effects on the flux. Test results indicate that the method has been implemented correctly into the CYNOD reactor kinetics code. This document also presents a status report on the development of a better source approximation for the Green’s function nodal solution in the radial direction of cylindrical geometry. The basic theory has been developed, including obtaining polynomials that are orthonormal over the domain of integration and the derivation of approximately half of the required matrix elements (single and double integrals in the source expansions).
On the Nodal Lines of Eisenstein Series on Schottky Surfaces
NASA Astrophysics Data System (ADS)
Jakobson, Dmitry; Naud, Frédéric
2017-04-01
On convex co-compact hyperbolic surfaces {X=Γ backslash H2}, we investigate the behavior of nodal curves of real valued Eisenstein series {F_λ(z,ξ)}, where {λ} is the spectral parameter, {ξ} the direction at infinity. Eisenstein series are (non-{L^2}) eigenfunctions of the Laplacian {Δ_X} satisfying {Δ_X F_λ=(1/4+λ^2)F_λ}. As {λ} goes to infinity (the high energy limit), we show that, for generic {ξ}, the number of intersections of nodal lines with any compact segment of geodesic grows like {λ}, up to multiplicative constants. Applications to the number of nodal domains inside the convex core of the surface are then derived.
Spin-Orbit Nodal Semimetals in the Layer Groups
NASA Astrophysics Data System (ADS)
Wieder, Benjamin; Kim, Youngkuk; Kane, Charles
Recent interest in point and line node semimetals has lead to the proposal and discovery of these phenomena in numerous systems. Frequently, though, these nodal systems are described in terms of individual properties reliant on specific space group intricacies or band-tuning conditions. Restricting ourselves to cases with strong spin-orbit interaction, we develop a more general framework which captures existing systems and predicts new examples of nodal materials. In many previously proposed systems, the three-dimensional nature of the space group has obscured key generalities. Therefore, we show how within our framework one can predict and characterize a diverse set of nodal phenomena even in two-dimensional systems constructed of three-dimensional sites, known as the ``Layer Groups''. Introducing a set of simple models, we characterize the allowed semimetallic structures in the layer groups and draw connections to analogous three-dimensional systems.
A computational study of nodal-based tetrahedral element behavior.
Gullerud, Arne S.
2010-09-01
This report explores the behavior of nodal-based tetrahedral elements on six sample problems, and compares their solution to that of a corresponding hexahedral mesh. The problems demonstrate that while certain aspects of the solution field for the nodal-based tetrahedrons provide good quality results, the pressure field tends to be of poor quality. Results appear to be strongly affected by the connectivity of the tetrahedral elements. Simulations that rely on the pressure field, such as those which use material models that are dependent on the pressure (e.g. equation-of-state models), can generate erroneous results. Remeshing can also be strongly affected by these issues. The nodal-based test elements as they currently stand need to be used with caution to ensure that their numerical deficiencies do not adversely affect critical values of interest.
Distant nodal metastasis: is it always an unresectable disease?
Celotti, Andrea; Molfino, Sarah; Baggi, Paolo; Tarasconi, Antonio; Baronio, Gianluca; Arru, Luca; Gheza, Federico; Tiberio, Guido; Portolani, Nazario
2017-01-01
This article aims at analyzing the published literature concerning the treatment of patients with gastric cancer and distant nodal metastases, actually considered metastatic disease. A systematic search was undertaken using Medline, Embase, Cochrane and Web-of-Science libraries. No specific restriction on year of publication was used; preference was given to English papers. Both clinical series and literature reviews were selected. Only 11 papers address the issue of surgery for nodal basins outside the D2 dissection area. From these papers, in selected cases extended surgery may prove useful in prolonging survival, when a comprehensive therapeutic pathway including chemotherapy is scheduled. In conclusion, in presence of nodal metastases outside the loco-regional nodes, surgery may be considered for metastatic nodes in stations 13 and 16, in selected cases. PMID:28217751
A transient, quadratic nodal method for triangular-Z geometry
DeLorey, T.F.
1993-06-01
Many systematically-derived nodal methods have been developed for Cartesian geometry due to the extensive interest in Light Water Reactors. These methods typically model the transverse-integrated flux as either an analytic or low order polynomial function of position within the node. Recently, quadratic nodal methods have been developed for R-Z and hexagonal geometry. A static and transient quadratic nodal method is developed for triangular-Z geometry. This development is particularly challenging because the quadratic expansion in each node must be performed between the node faces and the triangular points. As a consequence, in the 2-D plane, the flux and current at the points of the triangles must be treated. Quadratic nodal equations are solved using a non-linear iteration scheme, which utilizes the corrected, mesh-centered finite difference equations, and forces these equations to match the quadratic equations by computing discontinuity factors during the solution. Transient nodal equations are solved using the improved quasi-static method, which has been shown to be a very efficient solution method for transient problems. Several static problems are used to compare the quadratic nodal method to the Coarse Mesh Finite Difference (CMFD) method. The quadratic method is shown to give more accurate node-averaged fluxes. However, it appears that the method has difficulty predicting node leakages near reactor boundaries and severe material interfaces. The consequence is that the eigenvalue may be poorly predicted for certain reactor configurations. The transient methods are tested using a simple analytic test problem, a heterogeneous heavy water reactor benchmark problem, and three thermal hydraulic test problems. Results indicate that the transient methods have been implemented correctly.
Chiral Spin-Orbital Liquids with Nodal Lines
NASA Astrophysics Data System (ADS)
Natori, W. M. H.; Andrade, E. C.; Miranda, E.; Pereira, R. G.
2016-07-01
Strongly correlated materials with strong spin-orbit coupling hold promise for realizing topological phases with fractionalized excitations. Here, we propose a chiral spin-orbital liquid as a stable phase of a realistic model for heavy-element double perovskites. This spin liquid state has Majorana fermion excitations with a gapless spectrum characterized by nodal lines along the edges of the Brillouin zone. We show that the nodal lines are topological defects of a non-Abelian Berry connection and that the system exhibits dispersing surface states. We discuss some experimental signatures of this state and compare them with properties of the spin liquid candidate Ba2YMoO6.
Nodal metastases in thyroid cancer: prognostic implications and management.
Wang, Laura Y; Ganly, Ian
2016-04-01
The significance of cervical lymph node metastases in differentiated thyroid cancer has been controversial and continues to evolve. Current staging systems consider nodal metastases to confer a poorer prognosis, particularly in older patients. Increasingly, the literature suggests that characteristics of the metastatic lymph nodes such as size and number are also prognostic. There is a growing trend toward less aggressive treatment of low-volume nodal disease. The aim of this review is to summarize the current literature and discuss prognostic and management implications of lymph node metastases in differentiated thyroid cancer.
Preoperative staging of nodal status in gastric cancer
Berlth, Felix; Chon, Seung-Hun; Chevallay, Mickael; Jung, Minoa Karin
2017-01-01
An accurate preoperative staging of nodal status is crucial in gastric cancer, because it has a great impact on prognosis and therapeutic decision-making. Different staging methods have been evaluated for gastric cancer in order to predict nodal involvement. So far, no technique could meet the necessary requirements, which include a high detection rate of infiltrated lymph nodes and a low frequency of false-positive results. This article summarizes different staging methods used to assess lymph node status in patients with gastric cancer, evaluates the evidence, and proposes to establish new methods. PMID:28217758
PoroTomo Subtask 6.3 Nodal Seismometers Metadata
Lesley Parker
2016-03-28
Metadata for the nodal seismometer array deployed at the POROTOMO's Natural Laboratory in Brady Hot Spring, Nevada during the March 2016 testing. Metadata includes location and timing for each instrument as well as file lists of data to be uploaded in a separate submission.
Nodal Structure and the Partitioning of Equivalence Classes
ERIC Educational Resources Information Center
Fields, Lanny; Watanabe-Rose, Mari
2008-01-01
By definition, all of the stimuli in an equivalence class have to be functionally interchangeable with each other. The present experiment, however, demonstrated that this was not the case when using post-class-formation dual-option response transfer tests. With college students, two 4-node 6-member equivalence classes with nodal structures of…
The Penn State Nodal Expansion Transient Analysis Technique with thermal-hydraulic feedback
Borkowski, J.; Bandini, B.; Baratta, A. )
1989-11-01
The nuclear engineering department of the Pennsylvania State University has under development a nodal neutron kinetics code. The PEnn State Nodal Expansion TRansient Analysis TEchnique (PENETRATE) performs two-group, three-dimensional nodal kinetics calculations using the nodal expansion method (NEM). The focus of this discussion is its performance in the solution of the Langenbuch-Maurer-Werner light water rector (LMW LWR) problem. This transient requires an accurate model of both control rod motion and coupled thermal-hydraulic feedback.
Functional mathematical model of dual pathway AV nodal conduction.
Climent, A M; Guillem, M S; Zhang, Y; Millet, J; Mazgalev, T N
2011-04-01
Dual atrioventricular (AV) nodal pathway physiology is described as two different wave fronts that propagate from the atria to the His bundle: one with a longer effective refractory period [fast pathway (FP)] and a second with a shorter effective refractory period [slow pathway (SP)]. By using His electrogram alternance, we have developed a mathematical model of AV conduction that incorporates dual AV nodal pathway physiology. Experiments were performed on five rabbit atrial-AV nodal preparations to develop and test the presented model. His electrogram alternances from the inferior margin of the His bundle were used to identify fast and slow wave front propagations. The ability to predict AV conduction time and the interaction between FP and SP wave fronts have been analyzed during regular and irregular atrial rhythms (e.g., atrial fibrillation). In addition, the role of dual AV nodal pathway wave fronts in the generation of Wenckebach periodicities has been illustrated. Finally, AV node ablative modifications have been evaluated. The model accurately reproduced interactions between FP and SP during regular and irregular atrial pacing protocols. In all experiments, specificity and sensitivity higher than 85% were obtained in the prediction of the pathway responsible for conduction. It has been shown that, during atrial fibrillation, the SP ablation significantly increased the mean HH interval (204 ± 39 vs. 274 ± 50 ms, P < 0.05), whereas FP ablation did not produce significant slowing of ventricular rate. The presented mathematical model can help in understanding some of the intriguing AV node mechanisms and should be considered as a step forward in the studies of AV nodal conduction.
Phonon analog of topological nodal semimetals
NASA Astrophysics Data System (ADS)
Po, Hoi Chun; Bahri, Yasaman; Vishwanath, Ashvin
2016-05-01
Topological band structures in electronic systems like topological insulators and semimetals give rise to highly unusual physical properties. Analogous topological effects have also been discussed in bosonic systems, but the novel phenomena typically occur only when the system is excited by finite-frequency probes. A mapping recently proposed by C. L. Kane and T. C. Lubensky [Nat. Phys. 10, 39 (2014), 10.1038/nphys2835], however, establishes a closer correspondence. It relates the zero-frequency excitations of mechanical systems to topological zero modes of fermions that appear at the edges of an otherwise gapped system. Here we generalize the mapping to systems with an intrinsically gapless bulk. In particular, we construct mechanical counterparts of topological semimetals. The resulting gapless bulk modes are physically distinct from the usual acoustic Goldstone phonons and appear even in the absence of continuous translation invariance. Moreover, the zero-frequency phonon modes feature adjustable momenta and are topologically protected as long as the lattice coordination is unchanged. Such protected soft modes with tunable wave vector may be useful in designing mechanical structures with fault-tolerant properties.
Mitra, Nandita; Alonso-Basanta, Michelle; Adappa, Nithin D; Palmer, James N; O'Malley, Bert W; Rassekh, Christopher H; Chalian, Ara; Cohen, Roger B; Lin, Alexander
2016-01-01
Objective: Risk of nodal involvement in patients with sinonasal small-cell carcinoma and sinonasal undifferentiated carcinoma (SNUC) has not been well defined because of their rarity. We describe a population-based assessment of specific nodal level involvement in this group of rare neuroectodermal tumours. Methods: The Surveillance, Epidemiology and End Results (SEER) database from 2004 to 2011 identified patients with SNUC and sinonasal small-cell carcinoma. Overall neck involvement and individual nodal level involvement at presentation were assessed, and comparison was made with a contemporaneous cohort of patients with a borderline clinically significant risk of nodal involvement and recurrence. Results: Of 141 patients, 31 (22%) had gross nodal involvement at presentation (range 14–33% by site and histology). Non-nasal, non-ethmoid site with SNUC histology has the highest rates of initial nodal involvement, whereas higher stage and size do not predict for higher nodal involvement rates. Bilateral Levels 2–3 for all sinonasal small cell; Levels 2–3 for nasal or ethmoid SNUC; and bilateral Levels 1–3 in non-nasal/non-ethmoid SNUC have the highest rates of involvement compared with a clinical reference standard. Conclusion: We found high rates of initial nodal involvement in all SNUC and sinonasal small-cell carcinoma. We found higher initial involvement of Levels 2 and 3 and in certain cases to the Level 1 nodal levels, hypothesizing benefit for elective treatment to those levels. Advances in knowledge: With small single-institution series reporting conflicting nodal involvement rates, our data support high rates of nodal presentation at diagnosis, hypothesizing benefit for elective nodal treatment in this cohort. PMID:26559439
Nodal failure index approach to groundwater remediation design
Lee, J.; Reeves, H.W.; Dowding, C.H.
2008-01-01
Computer simulations often are used to design and to optimize groundwater remediation systems. We present a new computationally efficient approach that calculates the reliability of remedial design at every location in a model domain with a single simulation. The estimated reliability and other model information are used to select a best remedial option for given site conditions, conceptual model, and available data. To evaluate design performance, we introduce the nodal failure index (NFI) to determine the number of nodal locations at which the probability of success is below the design requirement. The strength of the NFI approach is that selected areas of interest can be specified for analysis and the best remedial design determined for this target region. An example application of the NFI approach using a hypothetical model shows how the spatial distribution of reliability can be used for a decision support system in groundwater remediation design. ?? 2008 ASCE.
Anomalous contagion and renormalization in networks with nodal mobility
NASA Astrophysics Data System (ADS)
Manrique, Pedro D.; Qi, Hong; Zheng, Minzhang; Xu, Chen; Hui, Pak Ming; Johnson, Neil F.
2016-07-01
A common occurrence in everyday human activity is where people join, leave and possibly rejoin clusters of other individuals —whether this be online (e.g. social media communities) or in real space (e.g. popular meeting places such as cafes). In the steady state, the resulting interaction network would appear static over time if the identities of the nodes are ignored. Here we show that even in this static steady-state limit, a non-zero nodal mobility leads to a diverse set of outbreak profiles that is dramatically different from known forms, and yet matches well with recent real-world social outbreaks. We show how this complication of nodal mobility can be renormalized away for a particular class of networks.
Off-diagonal Jacobian support for Nodal BCs
Peterson, John W.; Andrs, David; Gaston, Derek R.; Permann, Cody J.; Slaughter, Andrew E.
2015-01-01
In this brief note, we describe the implementation of o-diagonal Jacobian computations for nodal boundary conditions in the Multiphysics Object Oriented Simulation Environment (MOOSE) [1] framework. There are presently a number of applications [2{5] based on the MOOSE framework that solve complicated physical systems of partial dierential equations whose boundary conditions are often highly nonlinear. Accurately computing the on- and o-diagonal Jacobian and preconditioner entries associated to these constraints is crucial for enabling ecient numerical solvers in these applications. Two key ingredients are required for properly specifying the Jacobian contributions of nonlinear nodal boundary conditions in MOOSE and nite element codes in general: 1. The ability to zero out entire Jacobian matrix rows after \
Radial nodalization effects on BWR (boiling water reactor) stability calculations
March-Leuba, J.
1990-01-01
Computer simulations have shown that stability calculations in boiling water reactors (BWRs) are very sensitive to a number of input parameters and modeling assumptions. In particular, the number of thermohydraulic regions (i.e., channels) used in the calculation can affect the results of decay ratio calculations by as much as 30%. This paper presents the background theory behind the observed effects of radial nodalization in BWR stability calculations. The theory of how a radial power distribution can be simulated in time or frequency domain codes by using representative'' regions is developed. The approximations involved in this method of solution are reviewed, and some examples of the effect of radial nodalization are presented based on LAPUR code solutions. 2 refs., 4 figs., 2 tabs.
Ju, Guohao; Yan, Changxiang; Gu, Zhiyuan; Ma, Hongcai
2016-05-01
In active optics systems, one concern is how to quantitatively separate the effects of astigmatic and trefoil figure errors and misalignments that couple together in determining the total aberration fields when wavefront measurements are available at only a few field points. In this paper, we first quantitatively describe the impact of mount-induced trefoil deformation on the net aberration fields by proposing a modified theoretical formulation for the field-dependent aberration behavior of freeform surfaces based on the framework of nodal aberration theory. This formulation explicitly expresses the quantitative relationships between the magnitude of freeform surfaces and the induced aberration components where the freeform surfaces can be located away from the aperture stop and decentered from the optical axis. On this basis, and in combination with the mathematical presentation of nodal aberration theory for the effects of misalignments, we present the analytic expressions for the aberration fields of two-mirror telescopes in the presence of astigmatic primary mirror figure errors, mount-induced trefoil deformations on both mirrors, and misalignments. We quantitatively separate these effects using the analytical expressions with wavefront measurements at a few field points and pointing errors. Valuable insights are provided on how to separate these coupled effects in the computation process. Monte Carlo simulations are conducted to demonstrate the correctness and accuracy of the analytic method presented in this paper.
NASA Astrophysics Data System (ADS)
Tanaka, Satoyuki; Suzuki, Hirotaka; Sadamoto, Shota; Sannomaru, Shogo; Yu, Tiantang; Bui, Tinh Quoc
2016-08-01
Two-dimensional (2D) in-plane mixed-mode fracture mechanics problems are analyzed employing an efficient meshfree Galerkin method based on stabilized conforming nodal integration (SCNI). In this setting, the reproducing kernel function as meshfree interpolant is taken, while employing the SCNI for numerical integration of stiffness matrix in the Galerkin formulation. The strain components are smoothed and stabilized employing Gauss divergence theorem. The path-independent integral ( J-integral) is solved based on the nodal integration by summing the smoothed physical quantities and the segments of the contour integrals. In addition, mixed-mode stress intensity factors (SIFs) are extracted from the J-integral by decomposing the displacement and stress fields into symmetric and antisymmetric parts. The advantages and features of the present formulation and discretization in evaluation of the J-integral of in-plane 2D fracture problems are demonstrated through several representative numerical examples. The mixed-mode SIFs are evaluated and compared with reference solutions. The obtained results reveal high accuracy and good performance of the proposed meshfree method in the analysis of 2D fracture problems.
Nodal equivalence theory for hexagonal geometry, thermal reactor analysis
Zika, M.; Downar, T. )
1992-01-01
An important aspect of advanced nodal methods is the determination of equivalent few-group parameters for the relatively large homogenized regions used in the nodal flux solution. The theoretical foundation for light water reactor (LWR) assembly homogenization methods has been clearly established, and during the last several years, its successes have secured its position in the stable of dependable LWR analysis methods. Groupwise discontinuity factors that correct for assembly homogenization errors are routinely generated along with the group constants during lattice physics analysis. During the last several years, there has been interest in applying equivalence theory to other reactor types and other geometries. A notable effort has been the work at Argonne National Laboratory to incorporate nodal equivalence theory (NET) for hexagonal lattices into the nodal diffusion option of the DIF3D code. This work was originally intended to improve the neutronics methods used for the analysis of the Experimental Breeder Reactor II (EBR-II), and Ref. 4 discusses the success of that application. More recently, however, attempts were made to apply NET to advanced, thermal reactor designs such as the modular high-temperature gas reactor (MHTGR) and the new production heavy water reactor (NPR/HWR). The same methods that were successful for EBR-II have encountered problems for these reactors. Our preliminary analysis indicates that the sharp global flux gradients in these cores requires large discontinuity factors (greater than 4 or 5) to reproduce the reference solution. This disrupts the convergence of the iterative methods used to solve for the node-wise flux moments and partial currents. Several attempts to remedy the problem have been made over the last few years, including bounding the discontinuity factors and providing improved initial guesses for the flux solution, but nothing has been satisfactory.
NODAL PATHWAY GENES ARE DOWNREGULATED IN FACIAL ASYMMETRY
Nicot, Romain; Hottenstein, Molly; Raoul, Gwenael; Ferri, Joel; Horton, Michael; Tobias, John W.; Barton, Elisabeth; Gelé, Patrick; Sciote, James J.
2014-01-01
Purpose Facial asymmetry is a common comorbid condition in patients with jaw deformation malocclusion. Heritability of malocclusion is advancing rapidly, but very little is known regarding genetic contributions to asymmetry. This study identifies differences in expression of key asymmetry-producing genes which are down regulated in facial asymmetry patients. Material and Methods Masseter muscle samples were collected during BSSO orthognathic surgery to correct skeletal-based malocclusion. Patients were classified as Class II or III and open or deep bite malocclusion with or without facial asymmetry. Muscle samples were analyzed for gene expression differences on Affymetrix HT2.0 microarray global expression chips. Results Overall gene expression was different for asymmetric patients compared to other malocclusion classifications by principal component analysis (P<0.05). We identified differences in the nodal signaling pathway (NSP) which promotes development of mesoderm and endoderm and left-right patterning during embryogenesis. Nodal and Lefty expression was 1.39–1.84 fold greater (P<3.41×10−5) whereas integral membrane Nodal-modulators Nomo1,2,3 were −5.63 to −5.81 (P<3.05×10−4) less in asymmetry subjects. Fold differences among intracellular pathway members were negative in the range of −7.02 to −2.47 (P<0.003). Finally Pitx2, a upstream effector of Nodal known to influence the size of type II skeletal muscle fibers was also significantly decreased in facial asymmetry (P<0.05). Conclusions When facial asymmetry is part of skeletal malocclusion there are decreases of NSP genes in masseter muscle. This data suggests that the NSP is down regulated to help promote development of asymmetry. Pitx2 expression differences also contributed to both skeletal and muscle development in this condition. PMID:25364968
Topological phase transitions in line-nodal superconductors
NASA Astrophysics Data System (ADS)
Han, SangEun; Cho, Gil Young; Moon, Eun-Gook
2017-03-01
Fathoming interplay between symmetry and topology of many-electron wave functions has deepened our understanding of quantum many-body systems, particularly after the discovery of topological insulators. Topology of electron wave functions often enforces and protects emergent gapless excitation, and symmetry is intrinsically tied to the topological protection of the excitations. Namely, unless the symmetry is broken, the topological nature of the excitations is intact. We show intriguing phenomena of interplay between symmetry and topology in three-dimensional topological phase transitions associated with line-nodal superconductors. More specifically, we discover an exotic universality class out of topological line-nodal superconductors. The order parameter of broken symmetries is strongly correlated with underlying line-nodal fermions, and this gives rise to a large anomalous dimension in sharp contrast to that of the Landau-Ginzburg theory. Remarkably, hyperscaling violation and emergent relativistic scaling appear in spite of the presence of nonrelativistic fermionic excitation. We also propose characteristic experimental signatures around the phase transitions, for example, a linear phase boundary in a temperature-tuning parameter phase diagram, and discuss the implication of recent experiments in pnictides and heavy-fermion systems.
Anomalous scaling of the penetration depth in nodal superconductors
NASA Astrophysics Data System (ADS)
She, Jian-Huang; Lawler, Michael J.; Kim, Eun-Ah
2015-07-01
Recent findings of anomalous superlinear scaling of low-temperature (T ) penetration depth (PD) in several nodal superconductors near putative quantum critical points suggest that the low-temperature PD can be a useful probe of quantum critical fluctuations in a superconductor. On the other hand, cuprates, which are poster child nodal superconductors, have not shown any such anomalous scaling of PD, despite growing evidence of quantum critical points (QCP). Then it is natural to ask when and how can quantum critical fluctuations cause anomalous scaling of PD? Carrying out the renormalization group calculation for the problem of two-dimensional superconductors with point nodes, we show that quantum critical fluctuations associated with a point group symmetry reduction result in nonuniversal logarithmic corrections to the T dependence of the PD. The resulting apparent power law depends on the bare velocity anisotropy ratio. We then compare our results to data sets from two distinct nodal superconductors: YBa2Cu3O6.95 and CeCoIn5. Considering all symmetry-lowering possibilities of the point group of interest, C4 v, we find our results to be remarkably consistent with YBa2Cu3O6.95 being near a vertical nematic QCP and CeCoIn5 being near a diagonal nematic QCP. Our results motivate a search for diagonal nematic fluctuations in CeCoIn5.
A nodal domain theorem for integrable billiards in two dimensions
Samajdar, Rhine; Jain, Sudhir R.
2014-12-15
Eigenfunctions of integrable planar billiards are studied — in particular, the number of nodal domains, ν of the eigenfunctions with Dirichlet boundary conditions are considered. The billiards for which the time-independent Schrödinger equation (Helmholtz equation) is separable admit trivial expressions for the number of domains. Here, we discover that for all separable and non-separable integrable billiards, ν satisfies certain difference equations. This has been possible because the eigenfunctions can be classified in families labelled by the same value of mmodkn, given a particular k, for a set of quantum numbers, m,n. Further, we observe that the patterns in a family are similar and the algebraic representation of the geometrical nodal patterns is found. Instances of this representation are explained in detail to understand the beauty of the patterns. This paper therefore presents a mathematical connection between integrable systems and difference equations. - Highlights: • We find that the number of nodal domains of eigenfunctions of integrable, planar billiards satisfy a class of difference equations. • The eigenfunctions labelled by quantum numbers (m,n) can be classified in terms of mmodkn. • A theorem is presented, realising algebraic representations of geometrical patterns exhibited by the domains. • This work presents a connection between integrable systems and difference equations.
Histogenesis of metaplastic breast carcinoma and axillary nodal metastases.
Osako, Tomo; Horii, Rie; Ogiya, Akiko; Iijima, Kotaro; Iwase, Takuji; Akiyama, Futoshi
2009-02-01
A 40-year-old breast-feeding woman presented with left breast swelling. On physical examination a 7 cm mass was found in the breast. Because biopsy demonstrated malignant tissue, mastectomy with axillary nodal dissection was performed. Pathological findings were consistent with metaplastic breast carcinoma with nodal metastases. The primary tumor consisted of three types of invasion: ductal, squamous, and sarcomatous. Furthermore, three morphological transitions were observed: ductal-squamous, ductal-sarcomatous, and squamous-sarcomatous. Ductal-squamous (12/18 microscopy slides) and squamous-sarcomatous transitions (10/18) were more commonly observed than ductal-sarcomatous transition (3/18). Furthermore, immunohistochemistry showed loss of epithelial marker (cytokeratin) and acquisition of mesenchymal markers (vimentin and alpha-smooth muscle actin) in the sarcomatous component. These findings suggested that epithelial-mesenchymal transition had occurred in the tumor and that two pathways, ductal-squamous-sarcomatous and ductal-sarcomatous transition, were involved in progression of metaplastic breast carcinoma. The main pathway appeared to be ductal-squamous-sarcomatous transition. Regarding the nodal metastases, of 13 positive nodes, ductal, squamous, and sarcomatous components were observed in 13, seven, and two nodes, respectively. Moreover, as in the primary tumor, ductal-squamous and squamous-sarcomatous transitions were observed. This suggested that the ductal component metastasized to the nodes and that epithelial-mesenchymal transition subsequently occurred within the nodes.
Topological Phase Transitions in Line-nodal Superconductors
NASA Astrophysics Data System (ADS)
Cho, Gil Young; Han, Sangeun; Moon, Eun-Gook
Fathoming interplay between symmetry and topology of many-electron wave-functions deepens our understanding in quantum nature of many particle systems. Topology often protects zero-energy excitation, and in a certain class, symmetry is intrinsically tied to the topological protection. Namely, unless symmetry is broken, topological nature is intact. We study one specific case of such class, symmetry-protected line-nodal superconductors in three spatial dimensions (3d). Mismatch between phase spaces of order parameter fluctuation and line-nodal fermion excitation induces an exotic universality class in a drastic contrast to one of the conventional ϕ4 theory in 3d. Hyper-scaling violation and relativistic dynamic scaling with unusually large quantum critical region are main characteristics, and their implication in experiments is discussed. For example, continuous phase transition out of line-nodal superconductors has a linear phase boundary in a temperature-tuning parameter phase-diagram. This work was supported by the Brain Korea 21 PLUS Project of Korea Government and KAIST start-up funding.
NASA Astrophysics Data System (ADS)
Shukla, K.; Wang, Y.; Jaiswal, P.
2014-12-01
In a porous medium the seismic energy not only propagates through matrix but also through pore-fluids. The differential movement between sediment grains of the matrix and interstitial fluid generates a diffusive wave which is commonly referred to as the slow P-wave. A combined system of equation which includes both elastic and diffusive phases is known as the poroelasticity. Analyzing seismic data through poroelastic modeling results in accurate interpretation of amplitude and separation of wave modes, leading to more accurate estimation of geomehanical properties of rocks. Despite its obvious multi-scale application, from sedimentary reservoir characterization to deep-earth fractured crust, poroelasticity remains under-developed primarily due to the complex nature of its constituent equations. We present a detail formulation of poroleastic wave equations for isotropic media by combining the Biot's and Newtonian mechanics. System of poroelastic wave equation constitutes for eight time dependent hyperbolic PDEs in 2D whereas in case of 3D number goes up to thirteen. Eigen decomposition of Jacobian of these systems confirms the presence of an additional slow-P wave phase with velocity lower than shear wave, posing stability issues on numerical scheme. To circumvent the issue, we derived a numerical scheme using nodal discontinuous Galerkin approach by adopting the triangular meshes in 2D which is extended to tetrahedral for 3D problems. In our nodal DG approach the basis function over a triangular element is interpolated using Legendre-Gauss-Lobatto (LGL) function leading to a more accurate local solutions than in the case of simple DG. We have tested the numerical scheme for poroelastic media in 1D and 2D case, and solution obtained for the systems offers high accuracy in results over other methods such as finite difference , finite volume and pseudo-spectral. The nodal nature of our approach makes it easy to convert the application into a multi-threaded algorithm
High-order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem.
Hesthaven, J S; Warburton, T
2004-03-15
The Maxwell eigenvalue problem is known to pose difficulties for standard numerical methods, predominantly due to its large null space. As an alternative to the widespread use of Galerkin finite-element methods based on curl-conforming elements, we propose to use high-order nodal elements in a discontinuous element scheme. We consider both two- and three-dimensional problems and show the former to be without problems in a wide range of cases. Numerical experiments suggest the validity of this for general problems. For the three-dimensional eigenproblem, we encounter difficulties with a naive formulation of the scheme and propose minor modifications, intimately related to the discontinuous nature of the formulation, to overcome these concerns. We conclude by connecting the findings to time domain solution of Maxwell's equations. The discussion, analysis, and numerous computational experiments suggest that using discontinuous element schemes for solving Maxwell's equation in the frequency- or time-domain present a high-order accurate, efficient and robust alternative to classical Galerkin finite-element methods.
Cripto recruits Furin and PACE4 and controls Nodal trafficking during proteolytic maturation.
Blanchet, Marie-Hélène; Le Good, J Ann; Mesnard, Daniel; Oorschot, Viola; Baflast, Stéphane; Minchiotti, Gabriella; Klumperman, Judith; Constam, Daniel B
2008-10-08
The glycosylphosphatidylinositol (GPI)-anchored proteoglycan Cripto binds Nodal and its type I receptor Alk4 to activate Smad2,3 transcription factors, but a role during Nodal precursor processing has not been described. We show that Cripto also binds the proprotein convertases Furin and PACE4 and localizes Nodal processing at the cell surface. When coexpressed as in early embryonic cells, Cripto and uncleaved Nodal already associated during secretion, and a Cripto-interacting region in the Nodal propeptide potentiated the effect of proteolytic maturation on Nodal signalling. Disruption of the trans-Golgi network (TGN) by brefeldin A blocked secretion, but export of Cripto and Nodal to the cell surface was not inhibited, indicating that Nodal is exposed to extracellular convertases before entering the TGN/endosomal system. Density fractionation and antibody uptake experiments showed that Cripto guides the Nodal precursor in detergent-resistant membranes to endocytic microdomains marked by GFP-Flotillin. We conclude that Nodal processing and endocytosis are coupled in signal-receiving cells.
Guo, Qiang; Ning, Fen; Fang, Rui; Wang, Hong-Sheng; Zhang, Ge; Quan, Mei-Yu; Cai, Shao-Hui; Du, Jun
2015-01-01
Nodal, an important embryonic morphogen, has been reported to modulate tumorigenesis. Epithelial-mesenchymal transition (EMT) plays an important role in cancer metastasis. We have previously reported that recombinant Nodal treatment can promote melanoma undergoing EMT, but the effects of endogenous Nodal on EMT are still unknown. Here we generated both Nodal-overexpression and -knockdown stable cell lines to investigate the in vitro and in vivo characteristics of Nodal-induced EMT in murine melanoma cells. Nodal-overexpression cells displayed increased migration ability, accompanied by typical phenotype changes of EMT. In contrast, Nodal-knockdown stable cells repressed the EMT phenotype as well as reduced cell motility. Results of animal experiments confirmed that overexpression of Nodal can promote the metastasis of melanoma tumor in vivo. Mechanistically, we found that Nodal-induced expression of Snail and Slug involves its activation of ALK/Smads and PI3k/AKT pathways, which is an important process in the Nodal-induced EMT. However, we also found that the EMT phenotype was not completely inhibited by blocking the paracrine activity of Nodal in Nodal overexpression cell line suggesting the presence of additional mechanism(s) in the Nodal-induced EMT. This study provides a better understanding of Nodal function in melanoma, and suggests targeting Nodal as a potential strategy for melanoma therapey. PMID:26269769
Topological Dirac nodal lines and surface charges in fcc alkaline earth metals.
Hirayama, Motoaki; Okugawa, Ryo; Miyake, Takashi; Murakami, Shuichi
2017-01-11
In nodal-line semimetals, the gaps close along loops in k space, which are not at high-symmetry points. Typical mechanisms for the emergence of nodal lines involve mirror symmetry and the π Berry phase. Here we show via ab initio calculations that fcc calcium (Ca), strontium (Sr) and ytterbium (Yb) have topological nodal lines with the π Berry phase near the Fermi level, when spin-orbit interaction is neglected. In particular, Ca becomes a nodal-line semimetal at high pressure. Owing to nodal lines, the Zak phase becomes either π or 0, depending on the wavevector k, and the π Zak phase leads to surface polarization charge. Carriers eventually screen it, leaving behind large surface dipoles. In materials with nodal lines, both the large surface polarization charge and the emergent drumhead surface states enhance Rashba splitting when heavy adatoms are present, as we have shown to occur in Bi/Sr(111) and in Bi/Ag(111).
Topological Dirac nodal lines and surface charges in fcc alkaline earth metals
NASA Astrophysics Data System (ADS)
Hirayama, Motoaki; Okugawa, Ryo; Miyake, Takashi; Murakami, Shuichi
2017-01-01
In nodal-line semimetals, the gaps close along loops in k space, which are not at high-symmetry points. Typical mechanisms for the emergence of nodal lines involve mirror symmetry and the π Berry phase. Here we show via ab initio calculations that fcc calcium (Ca), strontium (Sr) and ytterbium (Yb) have topological nodal lines with the π Berry phase near the Fermi level, when spin-orbit interaction is neglected. In particular, Ca becomes a nodal-line semimetal at high pressure. Owing to nodal lines, the Zak phase becomes either π or 0, depending on the wavevector k, and the π Zak phase leads to surface polarization charge. Carriers eventually screen it, leaving behind large surface dipoles. In materials with nodal lines, both the large surface polarization charge and the emergent drumhead surface states enhance Rashba splitting when heavy adatoms are present, as we have shown to occur in Bi/Sr(111) and in Bi/Ag(111).
Topological nodal line semimetals with and without spin-orbital coupling
NASA Astrophysics Data System (ADS)
Fang, Chen; Chen, Yige; Kee, Hae-Young; Fu, Liang
2015-08-01
We theoretically study three-dimensional topological semimetals (TSMs) with nodal lines protected by crystalline symmetries. Compared to TSMs with point nodes, e.g., Weyl semimetals and Dirac semimetals, where the conduction and the valence bands touch at discrete points, in these TSMs the two bands cross at closed lines in the Brillouin zone. We propose two different classes of symmetry protected nodal lines in the absence and in the presence of spin-orbital coupling (SOC), respectively. In the former, we discuss nodal lines that are protected by a combination of inversion symmetry and time-reversal symmetry, yet, unlike previously studied nodal lines in the same symmetry class, each nodal line has a Z2 monopole charge and can only be created (annihilated) in pairs. In the second class, with SOC, we show that a nonsymmorphic symmetry (screw axis) protects a four-band crossing nodal line in systems having both inversion and time-reversal symmetries.
Park, C B; Dufort, D
2011-03-01
Nodal, a secreted signaling protein in the transforming growth factor-beta (TGF-β) superfamily, has established roles in vertebrate development. However, components of the Nodal signaling pathway are also expressed at the maternal-fetal interface and have been implicated in many processes of mammalian reproduction. Emerging evidence indicates that Nodal and its extracellular inhibitor Lefty are expressed in the uterus and complex interactions between the two proteins mediate menstruation, decidualization and embryo implantation. Furthermore, several studies have shown that Nodal from both fetal and maternal sources may regulate trophoblast cell fate and facilitate placentation as both embryonic and uterine-specific Nodal knockout mouse strains exhibit disrupted placenta morphology. Here we review the established and prospective roles of Nodal signaling in facilitating successful pregnancy, including recent evidence supporting a potential link to parturition and preterm birth.
A Nodal-independent and tissue-intrinsic mechanism controls heart-looping chirality
NASA Astrophysics Data System (ADS)
Noël, Emily S.; Verhoeven, Manon; Lagendijk, Anne Karine; Tessadori, Federico; Smith, Kelly; Choorapoikayil, Suma; den Hertog, Jeroen; Bakkers, Jeroen
2013-11-01
Breaking left-right symmetry in bilateria is a major event during embryo development that is required for asymmetric organ position, directional organ looping and lateralized organ function in the adult. Asymmetric expression of Nodal-related genes is hypothesized to be the driving force behind regulation of organ laterality. Here we identify a Nodal-independent mechanism that drives asymmetric heart looping in zebrafish embryos. In a unique mutant defective for the Nodal-related southpaw gene, preferential dextral looping in the heart is maintained, whereas gut and brain asymmetries are randomized. As genetic and pharmacological inhibition of Nodal signalling does not abolish heart asymmetry, a yet undiscovered mechanism controls heart chirality. This mechanism is tissue intrinsic, as explanted hearts maintain ex vivo retain chiral looping behaviour and require actin polymerization and myosin II activity. We find that Nodal signalling regulates actin gene expression, supporting a model in which Nodal signalling amplifies this tissue-intrinsic mechanism of heart looping.
Approximate Schur complement preconditioning of the lowest order nodal discretizations
Moulton, J.D.; Ascher, U.M.; Morel, J.E.
1996-12-31
Particular classes of nodal methods and mixed hybrid finite element methods lead to equivalent, robust and accurate discretizations of 2nd order elliptic PDEs. However, widespread popularity of these discretizations has been hindered by the awkward linear systems which result. The present work exploits this awkwardness, which provides a natural partitioning of the linear system, by defining two optimal preconditioners based on approximate Schur complements. Central to the optimal performance of these preconditioners is their sparsity structure which is compatible with Dendy`s black box multigrid code.
Topological insulating phases from two-dimensional nodal loop semimetals
NASA Astrophysics Data System (ADS)
Li, Linhu; Araújo, Miguel A. N.
2016-10-01
Starting from a minimal model for a two-dimensional nodal loop semimetal, we study the effect of chiral mass gap terms. The resulting Dirac loop anomalous Hall insulator's Chern number is the phase-winding number of the mass gap terms on the loop. We provide simple lattice models, analyze the topological phases, and generalize a previous index characterizing topological transitions. The responses of the Dirac loop anomalous Hall and quantum spin Hall insulators to a magnetic field's vector potential are also studied both in weak- and strong-field regimes, as well as the edge states in a ribbon geometry.
Radiotherapy studies and extra-nodal non-Hodgkin lymphomas, progress and challenges.
Specht, L
2012-06-01
Extra-nodal lymphomas may arise in any organ, and different histological subtypes occur in distinct patterns. Prognosis and treatment depend not only on the histological subtype and disease extent, but also on the particular involved extra-nodal organ. The clinical course and response to treatment for the more common extra-nodal organs, e.g. stomach, Waldeyer's ring, skin and brain, are fairly well known and show significant variation. A few randomised trials have been carried out testing the role of radiotherapy in these lymphomas. However, for most extra-nodal lymphomas, randomised trials have not been carried out, and treatment decisions are made on small patient series and extrapolations from nodal lymphomas. Hopefully, wide international collaboration will make controlled clinical trials possible in the less common extra-nodal lymphomas. Modern highly conformal radiotherapy allows better coverage of extra-nodal lymphomatous involvement with better sparing of normal tissues. The necessary radiation doses and volumes need to be defined for the different extra-nodal lymphoma entities. The challenge is to optimise the use of radiotherapy in the modern multimodality treatment of extra-nodal lymphomas.
Magnon nodal-line semimetals and drumhead surface states in anisotropic pyrochlore ferromagnets
NASA Astrophysics Data System (ADS)
Mook, Alexander; Henk, Jürgen; Mertig, Ingrid
2017-01-01
We introduce a type of topological magnon matter: the magnonic pendant to electronic nodal-line semimetals. Magnon spectra of anisotropic pyrochlore ferromagnets feature twofold degeneracies of magnon bands along a closed loop in reciprocal space. These magnon nodal lines are topologically protected by the coexistence of inversion and time-reversal symmetry; they require the absence of spin-orbit interaction (no Dzyaloshinskii-Moriya interaction). We calculate the topological invariants of the nodal lines and show that details of the associated magnon drumhead surface states depend strongly on the termination of the surface. Magnon nodal-line semimetals complete the family of topological magnons in three-dimensional ferromagnetic materials.
Evaluation of the use of nodal methods for MTR neutronic analysis
Reitsma, F.; Mueller, E.Z.
1997-08-01
Although modern nodal methods are used extensively in the nuclear power industry, their use for research reactor analysis has been very limited. The suitability of nodal methods for material testing reactor analysis is investigated with the emphasis on the modelling of the core region (fuel assemblies). The nodal approach`s performance is compared with that of the traditional finite-difference fine mesh approach. The advantages of using nodal methods coupled with integrated cross section generation systems are highlighted, especially with respect to data preparation, simplicity of use and the possibility of performing a great variety of reactor calculations subject to strict time limitations such as are required for the RERTR program.
Pseudospin Vortex Ring with a Nodal Line in Three Dimensions
NASA Astrophysics Data System (ADS)
Lim, Lih-King; Moessner, Roderich
2017-01-01
We present a model of a topological semimetal in three dimensions whose energy spectrum exhibits a nodal line acting as a vortex ring; this in turn is linked by a pseudospin structure akin to that of a smoke ring. Contrary to a Weyl point node spectrum, the vortex ring gives rise to Skyrmionic pseudospin patterns in cuts on both sides of the nodal ring plane; this pattern covers the full Brillouin zone, thus leading to a fully extended chiral Fermi arc and a new, "maximal," anomalous Hall effect in a 3D semimetal. Tuning a model parameter shrinks the vortex ring until it vanishes, giving way to a pair of Weyl nodes of opposite chirality. This establishes a connection between two distinct momentum-space topologies—that of a vortex ring (a circle of singularity) and a monopole-antimonopole pair (two point singularities). We present the model both as a low-energy continuum and a two-band tight-binding lattice model. Its simplicity permits an analytical computation of its Landau level spectrum.
Amyloid precursor protein at node of Ranvier modulates nodal formation
Xu, De-En; Zhang, Wen-Min; Yang, Zara Zhuyun; Zhu, Hong-Mei; Yan, Ke; Li, Shao; Bagnard, Dominique; Dawe, Gavin S; Ma, Quan-Hong; Xiao, Zhi-Cheng
2014-01-01
Amyloid precursor protein (APP), commonly associated with Alzheimer disease, is upregulated and distributes evenly along the injured axons, and therefore, also known as a marker of demyelinating axonal injury and axonal degeneration. However, the physiological distribution and function of APP along myelinated axons was unknown. We report that APP aggregates at nodes of Ranvier (NOR) in the myelinated central nervous system (CNS) axons but not in the peripheral nervous system (PNS). At CNS NORs, APP expression co-localizes with tenascin-R and is flanked by juxtaparanodal potassium channel expression demonstrating that APP localized to NOR. In APP-knockout (KO) mice, nodal length is significantly increased, while sodium channels are still clustered at NORs. Moreover, APP KO and APP-overexpressing transgenic (APP TG) mice exhibited a decreased and an increased thickness of myelin in spinal cords, respectively, although the changes are limited in comparison to their littermate WT mice. The thickness of myelin in APP KO sciatic nerve also increased in comparison to that in WT mice. Our observations indicate that APP acts as a novel component at CNS NORs, modulating nodal formation and has minor effects in promoting myelination. PMID:25482638
Nodal Diffusion Burnable Poison Treatment for Prismatic Reactor Cores
A. M. Ougouag; R. M. Ferrer
2010-10-01
The prismatic block version of the High Temperature Reactor (HTR) considered as a candidate Very High Temperature Reactor (VHTR)design may use burnable poison pins in locations at some corners of the fuel blocks (i.e., assembly equivalent structures). The presence of any highly absorbing materials, such as these burnable poisons, within fuel blocks for hexagonal geometry, graphite-moderated High Temperature Reactors (HTRs) causes a local inter-block flux depression that most nodal diffusion-based method have failed to properly model or otherwise represent. The location of these burnable poisons near vertices results in an asymmetry in the morphology of the assemblies (or blocks). Hence the resulting inadequacy of traditional homogenization methods, as these “spread” the actually local effect of the burnable poisons throughout the assembly. Furthermore, the actual effect of the burnable poison is primarily local with influence in its immediate vicinity, which happens to include a small region within the same assembly as well as similar regions in the adjacent assemblies. Traditional homogenization methods miss this artifact entirely. This paper presents a novel method for treating the local effect of the burnable poison explicitly in the context of a modern nodal method.
Symmetry Breaking in a Model for Nodal Cilia
NASA Astrophysics Data System (ADS)
Brokaw, Charles J.
2005-03-01
Nodal cilia are very short cilia found in the embryonic node on the ventral surface of early mammalian embryos. They create a right to left fluid flow that is responsible for determining the normal asymmetry of the internal organs of the mammalian body. To do this, the distal end of the cilium must circle in a counterclockwise sense. Computer simulations with 3-dimensional models of flagella allow examination of 3-dimensional movements such as those of nodal cilia. 3-dimensional circling motions of short cilia can be achieved with velocity controlled models, in which dynein activity is regulated by sliding velocity. If dyneins on one outer doublet are controlled by the sliding velocity experienced by that doublet, the system is symmetric, and the 3-dimensional models can show either clockwise or counterclockwise circling. My computer simulations have examined two possible symmetry breaking mechanisms: 1) dyneins on doublet N are regulated by a mixture of the sliding velocities experienced by doublets N and N+1 (numbered in a clockwise direction, looking from the base). or 2) symmetry is broken by an off-axis force that produces a right-handed twist of the axoneme, consistent with observations that some dyneins can rotate their substrate microtubules in a clockwise direction.
Li, Xian-Ying; Hu, Shi-Min
2013-02-01
Harmonic functions are the critical points of a Dirichlet energy functional, the linear projections of conformal maps. They play an important role in computer graphics, particularly for gradient-domain image processing and shape-preserving geometric computation. We propose Poisson coordinates, a novel transfinite interpolation scheme based on the Poisson integral formula, as a rapid way to estimate a harmonic function on a certain domain with desired boundary values. Poisson coordinates are an extension of the Mean Value coordinates (MVCs) which inherit their linear precision, smoothness, and kernel positivity. We give explicit formulas for Poisson coordinates in both continuous and 2D discrete forms. Superior to MVCs, Poisson coordinates are proved to be pseudoharmonic (i.e., they reproduce harmonic functions on n-dimensional balls). Our experimental results show that Poisson coordinates have lower Dirichlet energies than MVCs on a number of typical 2D domains (particularly convex domains). As well as presenting a formula, our approach provides useful insights for further studies on coordinates-based interpolation and fast estimation of harmonic functions.
Prevention of AV Nodal Reentry Tachycardia by Oral Amiodarone: An Alternative Mechanism of Action
Gold, Robert L.; Haffajee, Charles I.; Entes, Kenneth L.
1987-01-01
A 73-year-old man was noted to have atrioventricular (AV) nodal reentry tachycardia, which was induced during programmed electrical stimulation. After 1 month of oral amiodarone therapy, AV nodal reentry tachycardia was prevented by the prolongation of atrial refractoriness and not by direct action on the AV node itself. (Texas Heart Institute Journal 1987; 14:99-101) PMID:15227337
47 CFR 101.503 - Digital Electronic Message Service Nodal Stations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.503 Digital Electronic Message Service Nodal Stations. 10.6 GHz DEMS Nodal Stations may be... 47 Telecommunication 5 2014-10-01 2014-10-01 false Digital Electronic Message Service...
47 CFR 101.503 - Digital Electronic Message Service Nodal Stations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.503 Digital Electronic Message Service Nodal Stations. 10.6 GHz DEMS Nodal Stations may be... 47 Telecommunication 5 2012-10-01 2012-10-01 false Digital Electronic Message Service...
47 CFR 101.503 - Digital Electronic Message Service Nodal Stations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.503 Digital Electronic Message Service Nodal Stations. 10.6 GHz DEMS Nodal Stations may be... 47 Telecommunication 5 2013-10-01 2013-10-01 false Digital Electronic Message Service...
47 CFR 101.503 - Digital Electronic Message Service Nodal Stations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.503 Digital Electronic Message Service Nodal Stations. 10.6 GHz DEMS Nodal Stations may be... 47 Telecommunication 5 2011-10-01 2011-10-01 false Digital Electronic Message Service...
Gale, Robert Peter; Wang, Li; Xu, Ji; Qu, Xiao-Yan; Fan, Lei; Li, Tian-Lv; Li, Jian-Yong; Xu, Wei
2017-01-01
We analyzed data from 54 newly-diagnosed persons with extra-nodal natural killer/T-cell (NK/T) lymphoma, who had a pretreatment 18F-FDG PET/CT study, to determine whether the sum of SUVmax of all the nodal and extra-nodal lesions predicted progression-free survival (PFS) and/or overall survival (OS). Three models (WB1SUVmax, WB2SUVmax, WB3SUVmax) based on the basis of the sum of SUVmax of the whole-body SUVmax of 11 nodal and 10 extra-nodal lesions were tested. The discrimination value of these models was evaluated using time-dependent receiver-operator characteristic (ROC) curves and corresponding areas under the curve (AUC) in training and validation cohorts. Findings were validated in an independent cohort of 15 subjects. ROC curve analysis showed the optimal cut-off values for WB1SUVmax, WB2SUVmax and WB3SUVmax were 15.8 (sensitivity 92%, specificity 67%, AUC 0.811; P<0.001), 12.7 (sensitivity 96%; specificity 57%; AUC 0.785; P<0.001) and 15.8 (sensitivity 88%; specificity 70%; AUC 0.793; P<0.001). Multivariate analyses indicated WB3SUVmax was independently associated with PFS (hazard ratio [HR]=3.67, 95% confidence interval [95% CI]=1.19, 11.29; P=0.023) and OS (HR= 4.51 [1.02, 19.91]; P=0.047). WB3SUVmax calculated based of the sum of the SUVmax of 3 nodal and 10 extra-nodal lesions was significantly associated with PFS and OS. PMID:27974685
Von Neumann stability analysis of the u- p reproducing kernel formulation for saturated porous media
NASA Astrophysics Data System (ADS)
Chi, Sheng-Wei; Siriaksorn, Thanakorn; Lin, Shih-Po
2017-02-01
This paper introduces the von Neumann method to investigate the temporal stability of the displacement-pressure (u{-}p) reproducing kernel formulation for saturated porous media. Both dynamic and quasi-static formulations are considered and the critical time steps are derived. The effect of lumped and consistent matrices on temporal stability is analyzed under explicit temporal discretization. It is shown that lumped matrices have better temporal stability than consistent matrices. The study also shows that nodal support size greatly affects the critical time step size of the formulations. For consistent matrices, larger support size results in smaller critical time step size; however, opposite relation occurs if lumped scheme is used. The numerical study shows that stabilization parameter of the stabilized nodal integration methods reduces the critical time step size. Transient analyses are performed to verify the results from von Neumann analysis.
Magnetic susceptibility in three-dimensional nodal semimetals
NASA Astrophysics Data System (ADS)
Koshino, Mikito; Hizbullah, Intan Fatimah
2016-01-01
We study the magnetic susceptibility in various three-dimensional gapless systems, including Dirac and Weyl semimetals, and a line-node semimetal. The susceptibility is decomposed into the orbital term, the spin term and also the spin-orbit cross term, which is caused by the spin-orbit interaction. We show that the orbital susceptibility logarithmically diverges at the band touching energy in the point-node case, while it exhibits a stronger δ -function singularity in the line node case. The spin-orbit cross term is shown to be paramagnetic in the electron side while diamagnetic in the hole side, in contrast with other two terms which are both even functions in Fermi energy. The spin-orbit cross term in the nodal semimetal is found to be directly related to the chiral surface current induced by the topological surface modes.
Magnetic response in three-dimensional nodal semimetals
NASA Astrophysics Data System (ADS)
Koshino, Mikito; Hizbullah, Intan Fatimah
We study the magnetic response in various three-dimensional gapless systems, including Dirac and Weyl semimetals and a line-node semimetal. We show that the susceptibility is decomposed into the orbital term, the spin term and also the spin-orbit cross term which is caused by the spin-orbit interaction. We show that the orbital susceptibility logarithmically diverges at the band touching energy in the point-node case, while it exhibits a stronger delta-function singularity in the line node case. The spin-orbit cross term is shown to be paramagnetic in the electron side while diamagnetic in the hole side, in contrast with other two terms which are both even functions in Fermi energy. The spin-orbit cross term in the nodal semimetal is found to be directly related to the chiral surface current induced by the topological surface modes.
CAISO flicks switch on nodal scheme and lights stay on
2009-06-15
In 2000-01, two years after introducing a competitive wholesale power auction in California - with a separate day-ahead zonal market operated by the California Power Exchange and a zonal market for ancillary services and balancing energy operated by the California Independent System Operator (CAISO) - the California market collapsed from exorbitant prices, flagrant gaming, and abuse of market power. Nine years later, CAISO introduced a nodal pricing auction for the wholesale market in April, replacing the zonal scheme, which was among many causes of the original market's demise. With nearly 3,000 nodes on the network, high prices in one region do not affect prices everywhere on the system. After investing some $200 million to upgrade the software, countless delays, and 18 months of market simulation and testing, the new auction was introduced and nothing unusual happened.
Improving the Accuracy of High-Order Nodal Transport Methods
Azmy, Y.Y.; Buscaglia, G.C.; Zamonsky, O.M.
1999-09-27
This paper outlines some recent advances towards improving the accuracy of neutron transport calculations using the Arbitrarily High Order Transport-Nodal (AHOT-N) Method. These advances consist of several contributions: (a) A formula for the spatial weights that allows for the polynomial order to be raised arbitrarily high without suffering adverse effects from round-off error; (b) A reconstruction technique for the angular flux, based upon a recursive formula, that reduces the pointwise error by one ordeq (c) An a posterior error indicator that estimates the true error and its distribution throughout the domain, so that it can be used for adaptively refining the approximation. Present results are mainly for ID, extension to 2D-3D is in progress.
Improving the Accuracy of High-Order Nodal Transport Methods
Azmy, Y.Y.; Buscaglia, G.C.; Zamonsky, O.M.
1999-09-27
This paper outlines some recent advances towards improving the accuracy of neutron calculations using the Arbitrarily High Order Transport-Nodal (AHOT-N) Method. These transport advances consist of several contributions: (a) A formula for the spatial weights that allows for the polynomial order to be raised arbitrarily high without suffering from pollution from round-off, error; (b) A reconstruction technique for the angular flux, based upon a recursive formula, that reduces the pointwise error by one order; (c) An a posterior error indicator that estimates the true error and its distribution throughout the domain, so that it can be used for adaptively reftig the approximation. Present results are mainly for ID, extension to 2D-3D is in progress.
Nodal staging of colorectal carcinomas and sentinel nodes
Cserni, G
2003-01-01
This review surveys the staging systems used for the classification of colorectal carcinomas, including the TNM system, and focuses on the assessment of the nodal stage of the disease. It reviews the quantitative requirements for a regional metastatic work up, and some qualitative features of lymph nodes that may help in the selection of positive and negative lymph nodes. Identification of the sentinel lymph nodes (those lymph nodes that have direct drainage from the primary tumour site) is one such qualitative feature that is claimed to allow the upstaging of colorectal carcinomas via an oriented, enhanced pathological work up. Current evidence in favour of a change in the requisite of assessing as may lymph nodes as is possible, and concentrating the efforts on only a selected number of lymph nodes, is weak. PMID:12719450
Contemporary Management of Recurrent Nodal Disease in Differentiated Thyroid Carcinoma
Na’ara, Shorook; Amit, Moran; Fridman, Eran; Gil, Ziv
2016-01-01
Differentiated thyroid carcinoma (DTC) comprises over 90% of thyroid tumors and includes papillary and follicular carcinomas. Patients with DTC have an excellent prognosis, with a 10-year survival rate of over 90%. However, the risk of recurrent tumor ranges between 5% and 30% within 10 years of the initial diagnosis. Cervical lymph node disease accounts for the majority of recurrences and in most cases is detected during follow-up by ultrasound or elevated levels of serum thyroglobulin. Recurrent disease is accompanied by increased morbidity. The mainstay of treatment of nodal recurrence is surgical management. We provide an overview of the literature addressing surgical management of recurrent or persistent lymph node disease in patients with DTC. PMID:26886954
Static benchmarking of the NESTLE advanced nodal code
Mosteller, R.D.
1997-05-01
Results from the NESTLE advanced nodal code are presented for multidimensional numerical benchmarks representing four different types of reactors, and predictions from NESTLE are compared with measured data from pressurized water reactors (PWRs). The numerical benchmarks include cases representative of PWRs, boiling water reactors (BWRs), CANDU heavy water reactors (HWRs), and high-temperature gas-cooled reactors (HTGRs). The measured PWR data include critical soluble boron concentrations and isothermal temperature coefficients of reactivity. The results demonstrate that NESTLE correctly solves the multigroup diffusion equations for both Cartesian and hexagonal geometries, that it reliably calculates k{sub eff} and reactivity coefficients for PWRs, and that--subsequent to the incorporation of additional thermal-hydraulic models--it will be able to perform accurate calculations for the corresponding parameters in BWRs, HWRs, and HTGRs as well.
On-line application of the PANTHER advanced nodal code
Hutt, P.K.; Knight, M.P. )
1992-01-01
Over the last few years, Nuclear Electric has developed an integrated core performance code package for both light water reactors (LWRs) and advanced gas-cooled reactors (AGRs) that can perform a comprehensive range of calculations for fuel cycle design, safety analysis, and on-line operational support for such plants. The package consists of the following codes: WIMS for lattice physics, PANTHER whole reactor nodal flux and AGR thermal hydraulics, VIPRE for LWR thermal hydraulics, and ENIGMA for fuel performance. These codes are integrated within a UNIX-based interactive system called the Reactor Physics Workbench (RPW), which provides an interactive graphic user interface and quality assurance records/data management. The RPW can also control calculational sequences and data flows. The package has been designed to run both off-line and on-line accessing plant data through the RPW.
ProNodal acts via FGFR3 to govern duration of Shh expression in the prechordal mesoderm
Ellis, Pamela S.; Burbridge, Sarah; Soubes, Sandrine; Ohyama, Kyoji; Ben-Haim, Nadav; Chen, Canhe; Dale, Kim; Shen, Michael M.; Constam, Daniel; Placzek, Marysia
2015-01-01
The secreted glycoprotein sonic hedgehog (Shh) is expressed in the prechordal mesoderm, where it plays a crucial role in induction and patterning of the ventral forebrain. Currently little is known about how Shh is regulated in prechordal tissue. Here we show that in the embryonic chick, Shh is expressed transiently in prechordal mesoderm, and is governed by unprocessed Nodal. Exposure of prechordal mesoderm microcultures to Nodal-conditioned medium, the Nodal inhibitor CerS, or to an ALK4/5/7 inhibitor reveals that Nodal is required to maintain both Shh and Gsc expression, but whereas Gsc is largely maintained through canonical signalling, Nodal signals through a non-canonical route to maintain Shh. Further, Shh expression can be maintained by a recombinant Nodal cleavage mutant, proNodal, but not by purified mature Nodal. A number of lines of evidence suggest that proNodal acts via FGFR3. ProNodal and FGFR3 co-immunoprecipitate and proNodal increases FGFR3 tyrosine phosphorylation. In microcultures, soluble FGFR3 abolishes Shh without affecting Gsc expression. Further, prechordal mesoderm cells in which Fgfr3 expression is reduced by Fgfr3 siRNA fail to bind to proNodal. Finally, targeted electroporation of Fgfr3 siRNA to prechordal mesoderm in vivo results in premature Shh downregulation without affecting Gsc. We report an inverse correlation between proNodal-FGFR3 signalling and pSmad1/5/8, and show that proNodal-FGFR3 signalling antagonises BMP-mediated pSmad1/5/8 signalling, which is poised to downregulate Shh. Our studies suggest that proNodal/FGFR3 signalling governs Shh duration by repressing canonical BMP signalling, and that local BMPs rapidly silence Shh once endogenous Nodal-FGFR3 signalling is downregulated. PMID:26417042
ERIC Educational Resources Information Center
CLEAVES, PAUL C.; AND OTHERS
THE INSTRUCTIONAL MATERIALS CENTER IS LOCATED IN THE LOCAL HIGH SCHOOL AND SUPPLIES ALL SCHOOLS IN THE AREA. AUDIOVISUAL EQUIPMENT ORDERS, AFTER SELECTIONS ARE MADE BY THE CLASSROOM TEACHER, ARE PROCESSED BY THE CENTER, CONFIRMED AND DELIVERED BY TRUCK THREE TIMES EACH WEEK. EACH SCHOOL HAS A BUILDING COORDINATOR WHO CHECKS THE ORDERS INTO THE…
Liu, Xiuli; Ma, Yuanqing; Zhang, Congwei; Wei, Shi; Cao, Yu; Wang, Qiang
2013-10-20
Nodal, a member of the transforming growth factor β (TGF-β) superfamily, has been shown to play a role in mesendoderm induction and gastrulation movements. The activity of Nodal signaling can be modulated by microRNAs (miRNAs) as previously reported, but little is known about which miRNAs are regulated by Nodal during gastrulation. In the present study, we found that the expression of mir206, one of the most abundant miRNAs during zebrafish early embryo development, is regulated by Nodal signaling. Abrogation of Nodal signal activity results in defective convergence and extension (CE) movements, and these cell migration defects can be rescued by supplying an excess of mir206, suggesting that mir206 acts downstream of Nodal signaling to regulate CE movements. Furthermore, in mir206 morphants, the expression of cell adhesion molecule E-cadherin is significantly increased, while the key transcriptional repressor of E-cadherin, snail1a, is depressed. Our study uncovers a novel mechanism by which Nodal-regulated mir206 modulates gastrulation movements in connection with the Snail/E-cadherin pathway.
McAllister, Josephine C; Zhan, Qian; Weishaupt, Carsten; Hsu, Mei-Yu; Murphy, George F
2010-04-01
Formation of channel-like structures, also termed vasculogenic mimicry (VM), describes the ability of aggressive melanoma cells to form PAS-positive anastomosing structures that correlate with tumor virulence. This phenomenon may indicate differentiation plasticity, a feature melanoma cells may share with stem cells in the developing embryo. Recent studies have indicated that VM and tumorigenicity of human malignant melanoma may depend on the signaling pathways of an embryonic morphogen, Nodal. However, given the secretory nature of Nodal protein and melanoma cell heterogeneity, it remains unclear whether the Nodal-expressing cells participate directly or indirectly in VM that is potentially related to tumorigenic growth. We have developed a humanized murine xenograft model in which developing human melanomas may be sequentially studied during early stages of tumorigenic growth within a physiological human dermal microenvironment. Nodal protein localized diffusely to melanoma cell membranes, with occasional foci of accentuated reactivity in patterns suggestive of channel formation. Similar findings were detected in a limited number of patient-derived tumors. In situ hybridization confirmed Nodal mRNA to be restricted to tumor cells within xenografts that formed arborizing networks in patterns consistent with VM. These data indicate that Nodal gene expression is associated with formation of VM-like structures in a physiologically relevant model of human melanoma tumorigenesis, and further support a key role for Nodal expression in the formation of channel-like structures. The humanized xenograft model should be useful in future studies to define the mechanistic pathways responsible for VM and melanoma progression.
Nicalin and its binding partner Nomo are novel Nodal signaling antagonists.
Haffner, Christof; Frauli, Mélanie; Topp, Stephanie; Irmler, Martin; Hofmann, Kay; Regula, Jörg T; Bally-Cuif, Laure; Haass, Christian
2004-08-04
Nodals are signaling factors of the transforming growth factor-beta (TGFbeta) superfamily with a key role in vertebrate development. They control a variety of cell fate decisions required for the establishment of the embryonic body plan. We have identified two highly conserved transmembrane proteins, Nicalin and Nomo (Nodal modulator, previously known as pM5), as novel antagonists of Nodal signaling. Nicalin is distantly related to Nicastrin, a component of the Alzheimer's disease-associated gamma-secretase, and forms a complex with Nomo. Ectopic expression of both proteins in zebrafish embryos causes cyclopia, a phenotype that can arise from a defect in mesendoderm patterning mediated by the Nodal signaling pathway. Accordingly, downregulation of Nomo resulted in an increase in anterior axial mesendoderm and the development of an enlarged hatching gland. Inhibition of Nodal signaling by ectopic expression of Lefty was rescued by reducing Nomo levels. Furthermore, Nodal- as well as Activin-induced signaling was inhibited by Nicalin and Nomo in a cell-based reporter assay. Our data demonstrate that the Nicalin/Nomo complex antagonizes Nodal signaling during mesendodermal patterning in zebrafish.
Nicalin and its binding partner Nomo are novel Nodal signaling antagonists
Haffner, Christof; Frauli, Mélanie; Topp, Stephanie; Irmler, Martin; Hofmann, Kay; Regula, Jörg T; Bally-Cuif, Laure; Haass, Christian
2004-01-01
Nodals are signaling factors of the transforming growth factor-β (TGFβ) superfamily with a key role in vertebrate development. They control a variety of cell fate decisions required for the establishment of the embryonic body plan. We have identified two highly conserved transmembrane proteins, Nicalin and Nomo (Nodal modulator, previously known as pM5), as novel antagonists of Nodal signaling. Nicalin is distantly related to Nicastrin, a component of the Alzheimer's disease-associated γ-secretase, and forms a complex with Nomo. Ectopic expression of both proteins in zebrafish embryos causes cyclopia, a phenotype that can arise from a defect in mesendoderm patterning mediated by the Nodal signaling pathway. Accordingly, downregulation of Nomo resulted in an increase in anterior axial mesendoderm and the development of an enlarged hatching gland. Inhibition of Nodal signaling by ectopic expression of Lefty was rescued by reducing Nomo levels. Furthermore, Nodal- as well as Activin-induced signaling was inhibited by Nicalin and Nomo in a cell-based reporter assay. Our data demonstrate that the Nicalin/Nomo complex antagonizes Nodal signaling during mesendodermal patterning in zebrafish. PMID:15257293
Neutron-transport equation in a general curvelinear coordinate system
Takahashi, H
1981-01-01
Different from a fission reactor, a fusion reactor has complex geometry, such as toroidal geometry. Neutron transport equation for the toroidal coordinate system has been derived by using coordinate transformation from the cartesian coordinate. These methods require rather tedious calculations. Presented here is a simple method to formulate the neutron transport equation in the general curvelinear coordinate system. The equations for parabolic cylinder and toroidal coordinate systems are derived as an example.
Mohapatra, Bhagyalaxmi; Casey, Brett; Li, Hua; Ho-Dawson, Trang; Smith, Liana; Fernbach, Susan D.; Molinari, Laura; Niesh, Stephen R.; Jefferies, John Lynn; Craigen, William J.; Towbin, Jeffrey A.; Belmont, John W.; Ware, Stephanie M.
2009-01-01
NODAL and its signaling pathway are known to play a key role in specification and patterning of vertebrate embryos. Mutations in several genes encoding components of the NODAL signaling pathway have previously been implicated in the pathogenesis of human left–right (LR) patterning defects. Therefore, NODAL, a member of TGF-β superfamily of developmental regulators, is a strong candidate to be functionally involved in congenital LR axis patterning defects or heterotaxy. Here we have investigated whether variants in NODAL are present in patients with heterotaxy and/or isolated cardiovascular malformations (CVM) thought to be caused by abnormal heart tube looping. Analysis of a large cohort of cases (n = 269) affected with either classic heterotaxy or looping CVM revealed four different missense variants, one in-frame insertion/deletion and two conserved splice site variants in 14 unrelated subjects (14/269, 5.2%). Although similar with regard to other associated defects, individuals with the NODAL mutations had a significantly higher occurrence of pulmonary valve atresia (P = 0.001) compared with cases without a detectable NODAL mutation. Functional analyses demonstrate that the missense variant forms of NODAL exhibit significant impairment of signaling as measured by decreased Cripto (TDGF-1) co-receptor-mediated activation of artificial reporters. Expression of these NODAL proteins also led to reduced induction of Smad2 phosphorylation and impaired Smad2 nuclear import. Taken together, these results support a role for mutations and rare deleterious variants in NODAL as a cause for sporadic human LR patterning defects. PMID:19064609
Cerberus-Nodal-Lefty-Pitx signaling cascade controls left-right asymmetry in amphioxus.
Li, Guang; Liu, Xian; Xing, Chaofan; Zhang, Huayang; Shimeld, Sebastian M; Wang, Yiquan
2017-04-04
Many bilaterally symmetrical animals develop genetically programmed left-right asymmetries. In vertebrates, this process is under the control of Nodal signaling, which is restricted to the left side by Nodal antagonists Cerberus and Lefty. Amphioxus, the earliest diverging chordate lineage, has profound left-right asymmetry as a larva. We show that Cerberus, Nodal, Lefty, and their target transcription factor Pitx are sequentially activated in amphioxus embryos. We then address their function by transcription activator-like effector nucleases (TALEN)-based knockout and heat-shock promoter (HSP)-driven overexpression. Knockout of Cerberus leads to ectopic right-sided expression of Nodal, Lefty, and Pitx, whereas overexpression of Cerberus represses their left-sided expression. Overexpression of Nodal in turn represses Cerberus and activates Lefty and Pitx ectopically on the right side. We also show Lefty represses Nodal, whereas Pitx activates Nodal These data combine in a model in which Cerberus determines whether the left-sided gene expression cassette is activated or repressed. These regulatory steps are essential for normal left-right asymmetry to develop, as when they are disrupted embryos may instead form two phenotypic left sides or two phenotypic right sides. Our study shows the regulatory cassette controlling left-right asymmetry was in place in the ancestor of amphioxus and vertebrates. This includes the Nodal inhibitors Cerberus and Lefty, both of which operate in feedback loops with Nodal and combine to establish asymmetric Pitx expression. Cerberus and Lefty are missing from most invertebrate lineages, marking this mechanism as an innovation in the lineage leading to modern chordates.
Calvanese, Luisa; Sandomenico, Annamaria; Caporale, Andrea; Focà, Annalia; Focà, Giuseppina; D'Auria, Gabriella; Falcigno, Lucia; Ruvo, Menotti
2015-04-01
Nodal, a member of the TGF-β superfamily, is a potent embryonic morphogen also implicated in tumor progression. As for other TGF-βs, it triggers the signaling functions through the interaction with the extracellular domains of type I and type II serine/threonine kinase receptors and with the co-receptor Cripto. Recently, we reported the molecular models of Nodal in complex with its type I receptors (ALK4 and ALK7) as well as with Cripto, as obtained by homology modeling and docking simulations. From such models, potential binding epitopes have been identified. To validate such hypotheses, a series of mutated Nodal fragments have been synthesized. These peptide analogs encompass residues 44-67 of the Nodal protein, corresponding to the pre-helix loop and the H3 helix, and reproduce the wild-type sequence or bear some modifications to evaluate the hot-spot role of modified residues in the receptor binding. Here, we show the structural characterization in solution by CD and NMR of the Nodal peptides and the measurement of binding affinity toward Cripto by surface plasmon resonance. Data collected by both conformational analyses and binding measurements suggest a role for Y58 of Nodal in the recognition with Cripto and confirm that previously reported for E49 and E50. Surface plasmon resonance binding assays with recombinant proteins show that Nodal interacts in vitro also with ALK7 and ALK4 and preliminary data, generated using the Nodal synthetic fragments, suggest that Y58 of Nodal may also be involved in the recognition with these protein partners.
An boldsymbol{E} -based mixed formulation for a time-dependent eddy current problem
NASA Astrophysics Data System (ADS)
Acevedo, Ramiro; Meddahi, Salim; Rodriguez, Rodolfo
2009-12-01
In this paper, we analyze a mixed form of a time-dependent eddy current problem formulated in terms of the electric field boldsymbol{E} . We show that this formulation admits a well-posed saddle point structure when the constraints satisfied by the primary unknown in the dielectric material are handled by means of a Lagrange multiplier. We use Nedelec edge elements and standard nodal finite elements to define a semi-discrete Galerkin scheme. Furthermore, we introduce the corresponding backward-Euler fully-discrete formulation and prove error estimates.
Detection of 18.6 year nodal induced drought in the Patagonian Andes
NASA Astrophysics Data System (ADS)
Currie, Robert G.
1983-11-01
Analysis of tree-ring chronologies from the Patagonian Andes yields evidence for the 18.6 yr lunar nodal term in drought/flood. The mean discrepancy between epochs of drought/flood and the nodal tide since AD 1600 is 0.7 ± 2.2 yr, but the polarity of the signal is apparently bimodal. From nodal epoch 1750.0 through 1898.9 drought and tide were in phase, whereas prior to 1750.0 and subsequent to 1898.9 drought and tide were out of phase. There is evidence also for the solar cycle drought signal in the data.
Relation between finite element methods and nodal methods in transport theory
Walters, W.F.
1985-01-01
This paper examines the relationship between nodal methods and finite-element methods for solving the discrete-ordinates form of the transport equation in x-y geometry. Specifically, we will examine the relation of three finite-element schemes to the linear-linear (LL) and linear-nodal (LN) nodal schemes. The three finite-element schemes are the linear-continuous-diamond-difference (DD) scheme, the linear-discontinuous (LD) scheme, and the quadratic-discontinuous (QD) scheme. A brief derivation of the (LL) and (LN) nodal schemes is given in the third section of this paper. The approximations that cause the LL scheme to reduce to the DD, LD, and QD schemes are then indicated. An extremely simple method of deriving the finite-element schemes is then introduced.
Nodal Domain Statistics for Quantum Maps, Percolation, and Stochastic Loewner Evolution
Keating, J. P.; Marklof, J.; Williams, I. G.
2006-07-21
We develop a percolation model for nodal domains in the eigenvectors of quantum chaotic torus maps. Our model follows directly from the assumption that the quantum maps are described by random matrix theory. Its accuracy in predicting statistical properties of the nodal domains is demonstrated for perturbed cat maps and supports the use of percolation theory to describe the wave functions of general Hamiltonian systems. We also demonstrate that the nodal domains of the perturbed cat maps obey the Cardy crossing formula and find evidence that the boundaries of the nodal domains are described by stochastic Loewner evolution with diffusion constant {kappa} close to the expected value of 6, suggesting that quantum chaotic wave functions may exhibit conformal invariance in the semiclassical limit.
Dose-dependent Nodal/Smad signals pattern the early mouse embryo.
Robertson, Elizabeth J
2014-08-01
Nodal signals in the early post-implantation stage embryo are essential to establish initial proximal-distal (P-D) polarity and generate the final anterior-posterior (A-P) body axis. Nodal signaling in the epiblast results in the phosphorylation of Smad2 in the overlying visceral endoderm necessary to induce the AVE, in part via Smad2-dependent activation of the T-box gene Eomesodermin. Slightly later following mesoderm induction a continuum of dose-dependent Nodal signaling during the process of gastrulation underlies specification of mesodermal and definitive endoderm progenitors. Dynamic Nodal expression during the critical 72 h time window immediately following implantation, accomplished by a series of feed-back and feed-forward mechanisms serves to provide key positional cues required for establishment of the body plan and controls cell fate decisions in the early mammalian embryo.
Trichas, Georgios; Wilkins, Vivienne; Clements, Melanie; Tada, Masazumi; Rodriguez, Tristan A.; Srinivas, Shankar
2011-01-01
The anterior visceral endoderm (AVE), a signalling centre within the simple epithelium of the visceral endoderm (VE), is required for anterior-posterior axis specification in the mouse embryo. AVE cells migrate directionally within the VE, thereby properly positioning the future anterior of the embryo and orientating the primary body axis. AVE cells consistently come to an abrupt stop at the border between the anterior epiblast and extra-embryonic ectoderm, which represents an end-point to their proximal migration. Little is known about the underlying basis for this barrier and how surrounding cells in the VE respond to or influence AVE migration. We use high-resolution 3D reconstructions of protein localisation patterns and time-lapse microscopy to show that AVE cells move by exchanging neighbours within an intact epithelium. Cell movement and mixing is restricted to the VE overlying the epiblast, characterised by the enrichment of Dishevelled-2 (Dvl2) to the lateral plasma membrane, a hallmark of Planar Cell Polarity (PCP) signalling. AVE cells halt upon reaching the adjoining region of VE overlying the extra-embryonic ectoderm, which displays reduced neighbour exchange and in which Dvl2 is excluded specifically from the plasma membrane. Though a single continuous sheet, these two regions of VE show distinct patterns of F-actin localisation, in cortical rings and an apical shroud, respectively. We genetically perturb PCP signalling and show that this disrupts the localisation pattern of Dvl2 and F-actin and the normal migration of AVE cells. In Nodal null embryos, membrane localisation of Dvl2 is reduced, while in mutants for the Nodal inhibitor Lefty1, Dvl2 is ectopically membrane localised, establishing a role for Nodal in modulating PCP signalling. These results show that the limits of AVE migration are determined by regional differences in cell behaviour and protein localisation within an otherwise apparently uniform VE. In addition to coordinating global
NASA Astrophysics Data System (ADS)
Cohen, R. J.
2004-06-01
The Radio Regulations set out complex procedures to ensure that when new systems start to use the frequency bands allocated to them there is minimal disruption to existing systems using the same bands. The process of satellite coordination is described, and the issues for radio astronomy are discussed. In order to be protected by the ITU-R machinery radio telescopes need to be officially registered. The issue of paper satellites highlights the need for early registration to gain priority over incoming systems. Modern developments including the use of complex Monte-Carlo simulations to predict interference levels, and the issue of adjacent band interference, are discussed.
Dmitriy Y. Anistratov; Marvin L. Adams; Todd S. Palmer; Kord S. Smith; Kevin Clarno; Hikaru Hiruta; Razvan Nes
2003-08-04
OAK (B204) Final Report, NERI Project: ''An Innovative Reactor Analysis Methodology Based on a Quasidiffusion Nodal Core Model'' The present generation of reactor analysis methods uses few-group nodal diffusion approximations to calculate full-core eigenvalues and power distributions. The cross sections, diffusion coefficients, and discontinuity factors (collectively called ''group constants'') in the nodal diffusion equations are parameterized as functions of many variables, ranging from the obvious (temperature, boron concentration, etc.) to the more obscure (spectral index, moderator temperature history, etc.). These group constants, and their variations as functions of the many variables, are calculated by assembly-level transport codes. The current methodology has two main weaknesses that this project addressed. The first weakness is the diffusion approximation in the full-core calculation; this can be significantly inaccurate at interfaces between different assemblies. This project used the nodal diffusion framework to implement nodal quasidiffusion equations, which can capture transport effects to an arbitrary degree of accuracy. The second weakness is in the parameterization of the group constants; current models do not always perform well, especially at interfaces between unlike assemblies. The project developed a theoretical foundation for parameterization and homogenization models and used that theory to devise improved models. The new models were extended to tabulate information that the nodal quasidiffusion equations can use to capture transport effects in full-core calculations.
Topological Dirac nodal lines and surface charges in fcc alkaline earth metals
Hirayama, Motoaki; Okugawa, Ryo; Miyake, Takashi; Murakami, Shuichi
2017-01-01
In nodal-line semimetals, the gaps close along loops in k space, which are not at high-symmetry points. Typical mechanisms for the emergence of nodal lines involve mirror symmetry and the π Berry phase. Here we show via ab initio calculations that fcc calcium (Ca), strontium (Sr) and ytterbium (Yb) have topological nodal lines with the π Berry phase near the Fermi level, when spin–orbit interaction is neglected. In particular, Ca becomes a nodal-line semimetal at high pressure. Owing to nodal lines, the Zak phase becomes either π or 0, depending on the wavevector k, and the π Zak phase leads to surface polarization charge. Carriers eventually screen it, leaving behind large surface dipoles. In materials with nodal lines, both the large surface polarization charge and the emergent drumhead surface states enhance Rashba splitting when heavy adatoms are present, as we have shown to occur in Bi/Sr(111) and in Bi/Ag(111). PMID:28074835
The nodal inhibitor Coco is a critical target of leftward flow in Xenopus.
Schweickert, Axel; Vick, Philipp; Getwan, Maike; Weber, Thomas; Schneider, Isabelle; Eberhardt, Melanie; Beyer, Tina; Pachur, Anke; Blum, Martin
2010-04-27
Vertebrate laterality, which is manifested by asymmetrically placed organs [1], depends on asymmetric activation of the Nodal signaling cascade in the left lateral plate mesoderm [2]. In fish, amphibians, and mammals, a cilia-driven leftward flow of extracellular fluid acts upstream of the Nodal cascade [3-6]. The direct target of flow has remained elusive. In Xenopus, flow occurs at the gastrocoel roof plate (GRP) in the dorsal midline of the embryo [4, 7]. The GRP is bordered by a second, bilaterally symmetrical Nodal expression domain [8]. Here we identify the Nodal inhibitor Coco as a critical target of flow. Coco and Xenopus Nodal-related 1 (Xnr1) are coexpressed in the lateralmost ciliated GRP cells. Coco becomes downregulated on the left side of the GRP as a direct readout of flow. Ablation of flow prevented Coco repression, whereas Xnr1 expression was independent of flow. Loss of flow-induced laterality defects were rescued by knockdown of Coco on the left side. Parallel knockdown of Coco and Xnr1 in GRP cells restored laterality defects in flow-impaired embryos, demonstrating that Coco acted through GRP-expressed Xnr1. Coco thus acts as a critical target of flow, suggesting that symmetry is broken by flow-mediated left-asymmetric release of Nodal repression at the midline.
A quasi-static polynomial nodal method for nuclear reactor analysis
Gehin, J.C.
1992-09-01
Modern nodal methods are currently available which can accurately and efficiently solve the static and transient neutron diffusion equations. Most of the methods, however, are limited to two energy groups for practical application. The objective of this research is the development of a static and transient, multidimensional nodal method which allows more than two energy groups and uses a non-linear iterative method for efficient solution of the nodal equations. For both the static and transient methods, finite-difference equations which are corrected by the use of discontinuity factors are derived. The discontinuity factors are computed from a polynomial nodal method using a non-linear iteration technique. The polynomial nodal method is based upon a quartic approximation and utilizes a quadratic transverse-leakage approximation. The solution of the time-dependent equations is performed by the use of a quasi-static method in which the node-averaged fluxes are factored into shape and amplitude functions. The application of the quasi-static polynomial method to several benchmark problems demonstrates that the accuracy is consistent with that of other nodal methods. The use of the quasi-static method is shown to substantially reduce the computation time over the traditional fully-implicit time-integration method. Problems involving thermal-hydraulic feedback are accurately, and efficiently, solved by performing several reactivity/thermal-hydraulic updates per shape calculation.
Ougouag, Abderrafi Mohammed-El-Ami; Terry, William Knox
2002-04-01
The usual strategy for solving the neutron diffusion equation in two or three dimensions by nodal methods is to reduce the multidimensional partial differential equation to a set of ordinary differential equations (ODEs) in the separate spatial coordinates. This reduction is accomplished by “transverse integration” of the equation.1 For example, in three-dimensional Cartesian coordinates, the three-dimensional equation is first integrated over x and y to obtain an ODE in z, then over x and z to obtain an ODE in y, and finally over y and z to obtain an ODE in x. Then the ODEs are solved to obtain onedimensional solutions for the neutron fluxes averaged over the other two dimensions. These solutions are found in regions (“nodes”) small enough for the material properties and cross sections in them to be adequately represented by average values. Because the solution in each node is an exact analytical solution, the nodes can be much larger than the mesh elements used in finite-difference solutions. Then the solutions in the different nodes are coupled by applying interface conditions, ultimately fixing the solutions to the external boundary conditions.
TGF-β promotes glioma cell growth via activating Nodal expression through Smad and ERK1/2 pathways
Sun, Jing; Liu, Su-zhi; Lin, Yan; Cao, Xiao-pan; Liu, Jia-ming
2014-01-17
Highlights: •TGF-β promoted Nodal expression in glioma cells. •TGF-β promoted Nodal expression via activating Smad and ERK1/2 pathways. •TGF-β promotes glioma cell growth via activating Nodal expression. -- Abstract: While there were certain studies focusing on the mechanism of TGF-β promoting the growth of glioma cells, the present work revealed another novel mechanism that TGF-β may promote glioma cell growth via enhancing Nodal expression. Our results showed that Nodal expression was significantly upregulated in glioma cells when TGF-β was added, whereas the TGF-β-induced Nodal expression was evidently inhibited by transfection Smad2 or Smad3 siRNAs, and the suppression was especially significant when the Smad3 was downregulated. Another, the attenuation of TGF-β-induced Nodal expression was observed with blockade of the ERK1/2 pathway also. Further detection of the proliferation, apoptosis, and invasion of glioma cells indicated that Nodal overexpression promoted the proliferation and invasion of tumor cells and inhibited their apoptosis, resembling the effect of TGF-β addition. Downregulation of Nodal expression via transfection Nodal-specific siRNA in the presence of TGF-β weakened the promoting effect of the latter on glioma cells growth, and transfecting Nodal siRNA alone in the absence of exogenous TGF-β more profoundly inhibited the growth of glioma cells. These results demonstrated that while both TGF-β and Nodal promoted glioma cells growth, the former might exert such effect by enhancing Nodal expression, which may form a new target for glioma therapy.
NASA Astrophysics Data System (ADS)
Ilas, Germina
In the first part, an accurate and fast computational method is presented as an alternative to the Monte Carlo or deterministic transport theory codes currently used to determine the subcriticality of spent fuel storage lattices. The method is capable of analyzing storage configurations with simple or complex lattice cell geometry. It is developed based on two-group nodal diffusion theory, with the nodal cross sections and discontinuity factors determined from continuous-energy Monte Carlo simulations of each unique node (spent fuel assembly type). Three different approaches are developed to estimate the node-averaged diffusion coefficient. The applicability and the accuracy of the nodal method are assessed in two-dimensional geometry through several benchmark configurations typical at Savannah River Site. It is shown that the multiplication constant of the analyzed configurations is within 1% of the MCNP results. In the second part, the high-order cross section homogenization method, recently developed by McKinley and Rahnema, is implemented in the context of two-group nodal diffusion theory. The method corrects the generalized equivalence theory homogenization parameters for the effect of the core environment. The reconstructed fine-mesh (fuel pin) flux and power distributions are a natural byproduct of this method. The method was not tested for multigroup problems, where it was assumed that the multigroup flux expansion in terms of the perturbation parameter is a convergent series. Here the applicability of the method to two-group problems is studied, and it is shown that the perturbation expansion series converges for the multigroup case. A two-group nodal diffusion code with a bilinear intra-nodal flux shape is developed for the implementation of the high-order homogenization method in the context of the generalized equivalence theory. The method is tested by using as a benchmark a core configuration typical of a BWR in slab geometry, which has large
On Formulations of Discontinuous Galerkin and Related Methods for Conservation Laws
NASA Technical Reports Server (NTRS)
Huynh, H. T.
2014-01-01
A formulation for the discontinuous Galerkin (DG) method that leads to solutions using the differential form of the equation (as opposed to the standard integral form) is presented. The formulation includes (a) a derivative calculation that involves only data within each cell with no data interaction among cells, and (b) for each cell, corrections to this derivative that deal with the jumps in fluxes at the cell boundaries and allow data across cells to interact. The derivative with no interaction is obtained by a projection, but for nodal-type methods, evaluating this derivative by interpolation at the nodal points is more economical. The corrections are derived using the approximate (Dirac) delta functions. The formulation results in a family of schemes: different approximate delta functions give rise to different methods. It is shown that the current formulation is essentially equivalent to the flux reconstruction (FR) formulation. Due to the use of approximate delta functions, an energy stability proof simpler than that of Vincent, Castonguay, and Jameson (2011) for a family of schemes is derived. Accuracy and stability of resulting schemes are discussed via Fourier analyses. Similar to FR, the current formulation provides a unifying framework for high-order methods by recovering the DG, spectral difference (SD), and spectral volume (SV) schemes. It also yields stable, accurate, and economical methods.
Extra-nodal extension is a significant prognostic factor in lymph node positive breast cancer
Aziz, Sura; Wik, Elisabeth; Davidsen, Benedicte; Aas, Hans; Aas, Turid; Akslen, Lars A.
2017-01-01
Presence of lymph node (LN) metastasis is a strong prognostic factor in breast cancer, whereas the importance of extra-nodal extension and other nodal tumor features have not yet been fully recognized. Here, we examined microscopic features of lymph node metastases and their prognostic value in a population-based cohort of node positive breast cancer (n = 218), as part of the prospective Norwegian Breast Cancer Screening Program NBCSP (1996–2009). Sections were reviewed for the largest metastatic tumor diameter (TD-MET), nodal afferent and efferent vascular invasion (AVI and EVI), extra-nodal extension (ENE), number of ENE foci, as well as circumferential (CD-ENE) and perpendicular (PD-ENE) diameter of extra-nodal growth. Number of positive lymph nodes, EVI, and PD-ENE were significantly increased with larger primary tumor (PT) diameter. Univariate survival analysis showed that several features of nodal metastases were associated with disease-free (DFS) or breast cancer specific survival (BCSS). Multivariate analysis demonstrated an independent prognostic value of PD-ENE (with 3 mm as cut-off value) in predicting DFS and BCSS, along with number of positive nodes and histologic grade of the primary tumor (for DFS: P = 0.01, P = 0.02, P = 0.01, respectively; for BCSS: P = 0.02, P = 0.008, P = 0.02, respectively). To conclude, the extent of ENE by its perpendicular diameter was independently prognostic and should be considered in line with nodal tumor burden in treatment decisions of node positive breast cancer. PMID:28199370
Gong, Wenchen; Sun, Baocun; Sun, Huizhi; Zhao, Xiulan; Zhang, Danfang; Liu, Tieju; Zhao, Nan; Gu, Qiang; Dong, Xueyi; Liu, Fang
2017-01-01
Nodal signaling plays several vital roles in the embryogenesis process. However, its reexpression in breast cancer is correlated with cancer progression, metastasis and poor prognosis. Recently, Nodal has also been reported to regulate self-renewal capacity in pancreatic cancer. This study aimed to explore the role of Nodal in breast cancer stem cells (BCSCs) and the underlying mechanisms. Therefore, the immunohistochemistry staining of Nodal in 135 human breast cancer cases was performed to analyzed the relationship of Nodal signaling, clinical outcomes and BCSC marker. And the results showed that high Nodal expression was positively correlated with poor prognosis and BCSC marker expression in breast cancer samples. We further assessed the effects of Nodal in regulating the BCSC properties in breast cancer cell lines and xenografts. Then, SB431542 was administered in vitro and in vivo to explore the function of the Smad2/3 pathway. And we demonstrated that Nodal signaling up-regulated the expression of ALDH1, CD44, CD133, Sox2, Oct4 and Nanog by activating the Smad2/3 pathway, thereby enhancing the tumorigenicity and sphere-forming ability of breast cancer cells. Furthermore, treatment with SB431542 could inhibit the properties of BCSCs in vitro and in vivo. In conclusion, these findings indicate that Nodal signaling may play a vital role in maintaining the BCSC phenotype in breast cancer and serve as a potential target to explore BCSC-specific therapies.
Topological nodal-line fermions in spin-orbit metal PbTaSe2
Bian, Guang; Chang, Tay-Rong; Sankar, Raman; Xu, Su-Yang; Zheng, Hao; Neupert, Titus; Chiu, Ching-Kai; Huang, Shin-Ming; Chang, Guoqing; Belopolski, Ilya; Sanchez, Daniel S.; Neupane, Madhab; Alidoust, Nasser; Liu, Chang; Wang, BaoKai; Lee, Chi-Cheng; Jeng, Horng-Tay; Zhang, Chenglong; Yuan, Zhujun; Jia, Shuang; Bansil, Arun; Chou, Fangcheng; Lin, Hsin; Hasan, M. Zahid
2016-01-01
Topological semimetals can support one-dimensional Fermi lines or zero-dimensional Weyl points in momentum space, where the valence and conduction bands touch. While the degeneracy points in Weyl semimetals are robust against any perturbation that preserves translational symmetry, nodal lines require protection by additional crystalline symmetries such as mirror reflection. Here we report, based on a systematic theoretical study and a detailed experimental characterization, the existence of topological nodal-line states in the non-centrosymmetric compound PbTaSe2 with strong spin-orbit coupling. Remarkably, the spin-orbit nodal lines in PbTaSe2 are not only protected by the reflection symmetry but also characterized by an integer topological invariant. Our detailed angle-resolved photoemission measurements, first-principles simulations and theoretical topological analysis illustrate the physical mechanism underlying the formation of the topological nodal-line states and associated surface states for the first time, thus paving the way towards exploring the exotic properties of the topological nodal-line fermions in condensed matter systems. PMID:26829889
Role of Nodal-PITX2C signaling pathway in glucose-induced cardiomyocyte hypertrophy.
Su, Dongmei; Jing, Sun; Guan, Lina; Li, Qian; Zhang, Huiling; Gao, Xiaobo; Ma, Xu
2014-06-01
Pathological cardiac hypertrophy is a major cause of morbidity and mortality in cardiovascular disease. Recent studies have shown that cardiomyocytes, in response to high glucose (HG) stimuli, undergo hypertrophic growth. While much work still needs to be done to elucidate this important mechanism of hypertrophy, previous works have showed that some pathways or genes play important roles in hypertrophy. In this study, we showed that sublethal concentrations of glucose (25 mmol/L) could induce cardiomyocyte hypertrophy with an increase in the cellular surface area and the upregulation of the atrial natriuretic peptide (ANP) gene, a hypertrophic marker. High glucose (HG) treatments resulted in the upregulation of the Nodal gene, which is under-expressed in cardiomyocytes. We also determined that the knockdown of the Nodal gene resisted HG-induced cardiomyocyte hypertrophy. The overexpression of Nodal was able to induce hypertrophy in cardiomyocytes, which was associated with the upregulation of the PITX2C gene. We also showed that increases in the PITX2C expression, in response to Nodal, were mediated by the Smad4 signaling pathway. This study is highly relevant to the understanding of the effects of the Nodal-PITX2C pathway on HG-induced cardiomyocyte hypertrophy, as well as the related molecular mechanisms.
Topological nodal-line fermions in spin-orbit metal PbTaSe2
Bian, Guang; Chang, Tay-Rong; Sankar, Raman; Xu, Su-Yang; Zheng, Hao; Neupert, Titus; Chiu, Ching-Kai; Huang, Shin-Ming; Chang, Guoqing; Belopolski, Ilya; Sanchez, Daniel S.; Neupane, Madhab; Alidoust, Nasser; Liu, Chang; Wang, BaoKai; Lee, Chi-Cheng; Jeng, Horng-Tay; Zhang, Chenglong; Yuan, Zhujun; Jia, Shuang; Bansil, Arun; Chou, Fangcheng; Lin, Hsin; Hasan, M. Zahid
2016-02-02
Here we discuss how topological semimetals can support one-dimensional Fermi lines or zero-dimensional Weyl points in momentum space, where the valence and conduction bands touch. While the degeneracy points in Weyl semimetals are robust against any perturbation that preserves translational symmetry, nodal lines require protection by additional crystalline symmetries such as mirror reflection. Here we report, based on a systematic theoretical study and a detailed experimental characterization, the existence of topological nodal-line states in the non-centrosymmetric compound PbTaSe_{2} with strong spin-orbit coupling. Remarkably, the spin-orbit nodal lines in PbTaSe_{2} are not only protected by the reflection symmetry but also characterized by an integer topological invariant. Our detailed angle-resolved photoemission measurements, first-principles simulations and theoretical topological analysis illustrate the physical mechanism underlying the formation of the topological nodal-line states and associated surface states for the first time, thus paving the way towards exploring the exotic properties of the topological nodal-line fermions in condensed matter systems.
Topological nodal-line fermions in spin-orbit metal PbTaSe2
Bian, Guang; Chang, Tay-Rong; Sankar, Raman; ...
2016-02-02
Here we discuss how topological semimetals can support one-dimensional Fermi lines or zero-dimensional Weyl points in momentum space, where the valence and conduction bands touch. While the degeneracy points in Weyl semimetals are robust against any perturbation that preserves translational symmetry, nodal lines require protection by additional crystalline symmetries such as mirror reflection. Here we report, based on a systematic theoretical study and a detailed experimental characterization, the existence of topological nodal-line states in the non-centrosymmetric compound PbTaSe2 with strong spin-orbit coupling. Remarkably, the spin-orbit nodal lines in PbTaSe2 are not only protected by the reflection symmetry but also characterizedmore » by an integer topological invariant. Our detailed angle-resolved photoemission measurements, first-principles simulations and theoretical topological analysis illustrate the physical mechanism underlying the formation of the topological nodal-line states and associated surface states for the first time, thus paving the way towards exploring the exotic properties of the topological nodal-line fermions in condensed matter systems.« less
The impact of surgical technique on neck dissection nodal yield: making a difference.
Lörincz, Balazs B; Langwieder, Felix; Möckelmann, Nikolaus; Sehner, Susanne; Knecht, Rainald
2016-05-01
The nodal yield of neck dissections is an independent prognostic factor in several types of head and neck cancer. The authors aimed to determine whether the applied dissection technique has a significant impact on nodal yield. This is a single-institution, prospective study with internal control group (level of evidence: 2A). Data of 150 patients undergoing 223 neck dissections between February 2011 and March 2013 have been collected in a comprehensive cancer centre. Eighty-two patients underwent neck dissection with unwrapping the cervical fascia from lateral to medial, while 68 patients were operated without specifically unwrapping the fascia, in a caudal to cranial fashion. The standardised, horizontal neck dissection technique along the fascial planes resulted in a significantly higher nodal count in Levels I, II, III and IV, as well as in terms of overall nodal yield (mean: n = 22.53) than that of the vertical dissection applied in the control group (mean: n = 15.00). This is the first publication showing a direct correlation between neck dissection nodal yield and surgical technique. Therefore, it is paramount to optimise the applied surgical concept to maximise the oncological benefit.
Pitch-Angle Diffusion in Canonical Coordinates: A Theoretical Formulation.
1981-08-21
begenerated from the above set by procedures analogous to the Rayleigh- Schr ~ dinger perturbation theory used in quantum mechanics. The avail-ability...the time -independent Schrbdinger equation (d 2 gn/d 2 ) + k g n = 0. (30) This is achieved by introducing the new variable =f (Dzz/Dz,z,)dz’, (31) 0...Radiation Belts 20 VISTRACT (Continu, on reveres aide if neesseary and Identify by block numb.,) -4he equation for pitch-angle diffusion (at constant
A new formulation of the conservation equations of fluid dynamics
NASA Technical Reports Server (NTRS)
Vinokur, M.
1974-01-01
The computation of time-dependent flows has inspired a new, higher-dimensional formulation of the conservation equations of fluid dynamics in which time is treated as a fourth coordinate. The formulation is derived for a constant-density flow, and then extended to a variable-density flow by introducing a fifth, fictitious coordinate. This new coordinate can also act as a source coordinate, so that external source terms can be included. The analysis is carried out for both incompressible, stratified flow, and compressible equilibrium flow. The results are then extended to non-equilibrium and magnetohydrodynamic flows. Several applications of the new formulation to the computation of time-dependent flows are discussed.
Nonlinear finite element analysis: An alternative formulation
NASA Technical Reports Server (NTRS)
Merazzi, S.; Stehlin, P.
1980-01-01
A geometrical nonlinear analysis based on an alternative definition of strain is presented. Expressions for strain are obtained by computing the change in length of the base vectors in the curvilinear element coordinate system. The isoparametric element formulation is assumed in the global Cartesian coordinate system. The approach is based on the minimization of the strain energy, and the resulting nonlinear equations are solved by the modified Newton method. Integration of the first and second variation of the strain energy is performed numerically in the case of two and three dimensional elements. Application is made to a simple long cantilever beam.
Hu, Haili; Liu, Jianjun; Fan, Zhigang
2013-07-29
In this paper we succeeded in deriving changes in the nodal positions of aberrations that belong to the fifth-order class in pupil dependence by applying a system level pupil decentration vector. Our treatment is specifically for rotationally symmetric multi-mirror optical designs that simply use an offset pupil as a means of creating an unobscured optical design. When the pupil is offset, only the vectors to determine the node locations are modified by the pupil decentration vector, while the nodal properties originally developed for titled/decentered optical systems are retained. In general, the modifications to the nodal vectors for any particular aberration type are contributed only by terms of higher order pupil dependence.
Topological nodal line semimetals in the CaP3 family of materials
NASA Astrophysics Data System (ADS)
Xu, Qiunan; Yu, Rui; Fang, Zhong; Dai, Xi; Weng, Hongming
2017-01-01
By using first-principles calculations and a k .p model analysis, we propose that the three-dimensional topological nodal line semimetal state can be realized in the CaP3 family of materials, which includes CaP3,CaAs3,SrP3,SrAs3, and BaAs3, when spin-orbit coupling (SOC) is ignored. The closed topological nodal line near the Fermi energy is protected by time reversal symmetry and spatial inversion symmetry. Moreover, drumheadlike two-dimensional surface states are also obtained on the c -direction surface of these materials. When SOC is included, the gaps open along the nodal line and these materials become strong topological insulators with Z2 indices as (1 ;010 ) .
Potential for Infra-Nodal Heart Block and Cardiogenic Shock With Propofol Administration
Olson, Nicholas; Lim, Michael J.; Ferreira, Scott W.; Mehdirad, Ali A.
2013-01-01
We report a case of infra-nodal complete heart block and cardiogenic shock in a previously healthy 64-year-old man after administration of 180 mg of intravenous Propofol. Although bradycardia, hypotension, and heart block are commonly seen with propofol administration, such findings are transient and respond quickly to administration of vagolytic or sympathomimetic agents suggesting an AV nodal mechanism of heart block. Sustained left ventricular systolic dysfunction and cardiogenic shock by an alternative, non-autonomic mechanism has also been described in the setting of Propofol administration. Our case is the first to note sustained complete infra-nodal heart block in this setting. Early recognition of such a complication, restoration of atrio-ventricular (A-V) synchrony with dual chamber pacing, and aggressive circulatory support is essential in bridging such patients to recovery.
Doping-Dependent Nodal Fermi Velocity in Bi-2212 Revealed by High-Resolution ARPES
Vishik, I. M.
2011-08-19
The improved resolution of laser-based angle-resolved photoemission spectroscopy (ARPES) allows reliable access to fine structures in the spectrum. We present a systematic, doping-dependent study of a recently discovered low-energy kink in the nodal dispersion of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} (Bi-2212), which demonstrates the ubiquity and robustness of this kink in underdoped Bi-2212. The renormalization of the nodal velocity due to this kink becomes stronger with underdoping, revealing that the nodal Fermi velocity is non-universal, in contrast to assumed phenomenology. This is used together with laser-ARPES measurements of the gap velocity, v{sub 2}, to resolve discrepancies with thermal conductivity measurements.
The 18.6 yr nodal modulation in the tides of Southern European coasts
NASA Astrophysics Data System (ADS)
Shaw, A. G. P.; Tsimplis, M. N.
2010-02-01
The nodal modulation of the diurnal ( K1 and O1) and semi-diurnal ( M2 and K2) tidal constituents at the coasts of the Mediterranean Sea and the eastern Atlantic is estimated and its spatial variability mapped. Fourteen hourly tide gauge records each spanning more than 18 years are considered in this analysis. Ten tide gauges are located in the Mediterranean Sea and four in the Bay of Biscay. The nodal modulation of the most energetic tidal constituent ( M2) reaches up to 5 cm at the eastern Atlantic coasts, while within the Mediterranean Sea its modulation is in general less than 1.1 cm. The largest K2 nodal modulation found is 3.7 cm in the eastern Atlantic coasts. In the Mediterranean Sea, smaller modulation amplitudes, ranging between 0.4 and 1.4 cm are found. The K1 tide constituent has the largest amplitude nodal modulation within the Mediterranean Sea of 1.9 cm in the north Adriatic Sea, which is also larger than the modulation of this constituent at the eastern Atlantic coasts. The O1 tide constituent has the highest amplitude nodal modulation (1.4 cm) at the eastern Atlantic coasts. In the Mediterranean Sea the maximum value is 1 cm in the north Adriatic Sea. The derived nodal modulations of the diurnal and semi-diurnal constituents follow, in general, the equilibrium tidal theory. The tidal amplitudes for all four components do not indicate significant secular trends for most tide gauges. The tidal phases indicate significant negative trends for all four tidal constituents within the central and eastern Mediterranean Sea.
A predictive index of axillary nodal involvement in operable breast cancer.
De Laurentiis, M.; Gallo, C.; De Placido, S.; Perrone, F.; Pettinato, G.; Petrella, G.; Carlomagno, C.; Panico, L.; Delrio, P.; Bianco, A. R.
1996-01-01
We investigated the association between pathological characteristics of primary breast cancer and degree of axillary nodal involvement and obtained a predictive index of the latter from the former. In 2076 cases, 17 histological features, including primary tumour and local invasion variables, were recorded. The whole sample was randomly split in a training (75% of cases) and a test sample. Simple and multiple correspondence analysis were used to select the variables to enter in a multinomial logit model to build an index predictive of the degree of nodal involvement. The response variable was axillary nodal status coded in four classes (N0, N1-3, N4-9, N > or = 10). The predictive index was then evaluated by testing goodness-of-fit and classification accuracy. Covariates significantly associated with nodal status were tumour size (P < 0.0001), tumour type (P < 0.0001), type of border (P = 0.048), multicentricity (P = 0.003), invasion of lymphatic and blood vessels (P < 0.0001) and nipple invasion (P = 0.006). Goodness-of-fit was validated by high concordance between observed and expected number of cases in each decile of predicted probability in both training and test samples. Classification accuracy analysis showed that true node-positive cases were well recognised (84.5%), but there was no clear distinction among the classes of node-positive cases. However, 10 year survival analysis showed a superimposible prognostic behaviour between predicted and observed nodal classes. Moreover, misclassified node-negative patients (i.e. those who are predicted positive) showed an outcome closer to patients with 1-3 metastatic nodes than to node-negative ones. In conclusion, the index cannot completely substitute for axillary node information, but it is a predictor of prognosis as accurate as nodal involvement and identifies a subgroup of node-negative patients with unfavourable prognosis. PMID:8630286
Margaryan, Naira V; Gilgur, Alina; Seftor, Elisabeth A; Purnell, Chad; Arva, Nicoleta C; Gosain, Arun K; Hendrix, Mary J C; Strizzi, Luigi
2016-03-22
Expression of Nodal, a Transforming Growth Factor-beta (TGF-β) related growth factor, is associated with aggressive melanoma. Nodal expression in adult dysplastic nevi may predict the development of aggressive melanoma in some patients. A subset of pediatric patients diagnosed with giant or large congenital melanocytic nevi (LCMN) has shown increased risk for development of melanoma. Here, we investigate whether Nodal expression can help identify the rare cases of LCMN that develop melanoma and shed light on why the majority of these patients do not. Immunohistochemistry (IHC) staining results show varying degree of Nodal expression in pediatric dysplastic nevi and LCMN. Moreover, median scores from Nodal IHC expression analysis were not significantly different between these two groups. Additionally, none of the LCMN patients in this study developed melanoma, regardless of Nodal IHC levels. Co-culture experiments revealed reduced tumor growth and lower levels of Nodal and its signaling molecules P-SMAD2 and P-ERK1/2 when melanoma cells were grown in vivo or in vitro with normal melanocytes. The same was observed in melanoma cells cultured with melanocyte conditioned media containing pigmented melanocyte derived melanosomes (MDM). Since MDM contain molecules capable of inactivating radical oxygen species, to investigate potential anti-oxidant effect of MDM on Nodal expression and signaling in melanoma, melanoma cells were treated with either N-acetyl-l-cysteine (NAC), a component of the anti-oxidant glutathione or synthetic melanin, which in addition to providing pigmentation can also exert free radical scavenging activity. Melanoma cells treated with NAC or synthetic melanin showed reduced levels of Nodal, P-SMAD2 and P-ERK1/2 compared to untreated melanoma cells. Thus, the potential role for Nodal in melanoma development in LCMN is less evident than in adult dysplastic nevi possibly due to melanocyte cross-talk in LCMN capable of offsetting or delaying the pro
Psychiatrists' use of formulation
Hughes, Patricia M.
2016-01-01
Both psychologists and psychiatrists are trained to write formulations of their patients' illnesses, with some differences in how they do this. Psychologists focus on psychological understanding, while psychiatrists' formulation brings together aetiology, functioning and a management plan. Mohtashemi et al's study records how some psychiatrists understand formulation and its usefulness. Time pressure was an important barrier to making a full formulation, and some believed the medical role of the psychiatrist was a priority. The study illustrates some of the challenges facing psychiatrists working in the NHS in terms of maintaining high clinical standards and a holistic approach to patient care. PMID:27512593
[Lipid formulations of amphotericin].
Botero, Martha C; Puentes-Herrera, Marcela; Cortés, Jorge A
2014-10-01
Amphotericin B deoxycholate use has increased during the past years in parallel with the increase in the number of immunosuppressed patients suffering invasive fungal infections. This drug is associated with a high rate of side effects, especially renal toxicity. Lipid formulations (liposomal, lipid complex, colloidal suspension and the Indian liposomal formulation) have been developed, which share the same antifungal spectrum but differ in efficacy and toxicity. A review of amphotericin lipid formulations is presented, focusing on differences in efficacy and, especially renal toxicity. The main problem for use of these formulations in Latin America is their highcost.
Advanced Nodal P_{3}/SP_{3} Axial Transport Solvers for the MPACT 2D/1D Scheme
Stimpson, Shane G; Collins, Benjamin S
2015-01-01
As part of its initiative to provide multiphysics simulations of nuclear reactor cores, the Consortium for Advanced Simulation of Light Water Reactors (CASL) is developing the Virtual Environment for Reactor Applications Core Simulator (VERA-CS). The MPACT code, which is the primary neutron transport solver of VERA-CS, employs the two-dimensional/one-dimensional (2D/1D) method to solve 3-dimensional neutron transport problems and provide sub-pin-level resolution of the power distribution. While 2D method of characteristics is used to solve for the transport effects within each plane, 1D-nodal methods are used axially. There have been extensive studies of the 2D/1D method with a variety nodal methods, and the P_{3}/SP_{3} solver has proved to be an effective method of providing higher-fidelity solutions while maintaining a low computational burden.The current implementation in MPACT wraps a one-node nodal expansion method (NEM) kernel for each moment, iterating between them and performing multiple sweeps to resolve flux distributions. However, it has been observed that this approach is more sensitive to convergence problems. This paper documents the theory and application two new nodal P_{3}/SP_{3} approaches to be used within the 2D/1D method in MPACT. These two approaches aim to provide enhanced stability compared with the pre-existing one-node approach. Results from the HY-NEM-SP_{3} solver show that the accuracy is consistent with the one-node formulations and provides improved convergence for some problems; but the solver has issues with cases in thin planes. Although the 2N-SENM-SP_{3} solver is still under development, it is intended to resolve the issues with HY-NEM-SP_{3} but it will incur some additional computational burden by necessitating an additional 1D-CMFD-P_{3} solver to generate the second moment cell-averaged scalar flux.
On bistable phasing of 18.6 year nodal induced flood in India
NASA Astrophysics Data System (ADS)
Currie, Robert G.
1984-01-01
In agreement with Campbell (1983), Flood Area Indices (FAI) for India are interpreted as being modulated by tidal forcing at the 18.6 yr lunar nodal period. There is evidence maximum flood was approximately out of phase with nodal epoch 1898.9 whereas at epochs 1917.5, 1936,1, 1954.7, and 1973.3 maximum flood was approximately in phase. This interpretation implies that India should be experiencing widespread dryness in an interval ±2 to 3 years centered at mid-epoch 1982.6.
Nodal superconductivity in FeS: Evidence from quasiparticle heat transport
NASA Astrophysics Data System (ADS)
Ying, T. P.; Lai, X. F.; Hong, X. C.; Xu, Y.; He, L. P.; Zhang, J.; Wang, M. X.; Yu, Y. J.; Huang, F. Q.; Li, S. Y.
2016-09-01
We report low-temperature heat transport measurements on superconducting iron sulfide FeS with Tc≈5 K, which has the same crystal structure and similar electronic band structure to the superconducting iron selenide FeSe. In zero magnetic field, a significant residual linear term κ0/T is observed. At low field, κ0/T increases rapidly with increasing field. These results suggest a nodal superconducting gap in FeS. We compare it with the sister compound FeSe and other iron-based superconductors with nodal gaps.
Nodal Quasiparticle Meltdown in Ultra-High Resolution Pump-Probe Angle-Resolved Photoemission
Graf, Jeff; Jozwiak, Chris; Smallwood, Chris L.; Eisaki, H.; Kaindl, Robert A.; Lee, Dung-Hai; Lanzara, Alessandra
2011-06-03
High-T{sub c} cuprate superconductors are characterized by a strong momentum-dependent anisotropy between the low energy excitations along the Brillouin zone diagonal (nodal direction) and those along the Brillouin zone face (antinodal direction). Most obvious is the d-wave superconducting gap, with the largest magnitude found in the antinodal direction and no gap in the nodal direction. Additionally, while antin- odal quasiparticle excitations appear only below T{sub c}, superconductivity is thought to be indifferent to nodal excitations as they are regarded robust and insensitive to T{sub c}. Here we reveal an unexpected tie between nodal quasiparticles and superconductivity using high resolution time- and angle-resolved photoemission on optimally doped Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} . We observe a suppression of the nodal quasiparticle spectral weight following pump laser excitation and measure its recovery dynamics. This suppression is dramatically enhanced in the superconducting state. These results reduce the nodal-antinodal dichotomy and challenge the conventional view of nodal excitation neutrality in superconductivity. The electronic structures of high-Tc cuprates are strongly momentum-dependent. This is one reason why the momentum-resolved technique of angle-resolved photoemission spectroscopy (ARPES) has been a central tool in the field of high-temperature superconductivity. For example, coherent low energy excitations with momenta near the Brillouin zone face, or antinodal quasiparticles (QPs), are only observed below T{sub c} and have been linked to superfluid density. They have therefore been the primary focus of ARPES studies. In contrast, nodal QPs, with momenta along the Brillouin zone diagonal, have received less attention and are usually regarded as largely immune to the superconducting transition because they seem insensitive to perturbations such as disorder, doping, isotope exchange, charge ordering, and temperature. Clearly
Kimura, Tomoki; Togami, Taro; Nishiyama, Yoshihiro; Ohkawa, Motoomi; Takashima, Hitoshi
2010-06-01
Purpose: To evaluate the incidental irradiation dose to elective nodal regions in the treatment of advanced non-small-cell lung cancer with involved-field radiation therapy (IF-RT) and the pattern of elective nodal failure (ENF). Methods and Materials: Fifty patients with advanced non-small-cell lung cancer, who received IF-RT at Kagawa University were enrolled. To evaluate the dose of incidental irradiation, we delineated nodal regions with a Japanese map and the American Thoracic Society map (levels 1-11) in each patient retrospectively and calculated the dose parameters such as mean dose, D95, and V95 (40 Gy as the prescribed dose of elective nodal irradiation). Results: Using the Japanese map, the median mean dose was more than 40 Gy in most of the nodal regions, except at levels 1, 3, and 7. In particular, each dosimetric parameter of level 1 was significantly lower than those at other levels, and each dosimetric parameter of levels 10 to 11 ipsilateral (11I) was significantly higher than those in other nodal regions. Using the American Thoracic Society map, basically, the results were similar to those of the Japanese map. ENF was observed in 4 patients (8%), five nodal regions, and no mean dose to the nodal region exceeded 40 Gy. On the Japanese map, each parameter of these five nodal region was significantly lower than those of the other nodal regions. Conclusions: These results show that a high dose of incidental irradiation may contribute to the low incidence of ENF in patients who have received IF-RT.
ANS shell elements with improved transverse shear accuracy. [Assumed Natural Coordinate Strain
NASA Technical Reports Server (NTRS)
Jensen, Daniel D.; Park, K. C.
1992-01-01
A method of forming assumed natural coordinate strain (ANS) plate and shell elements is presented. The ANS method uses equilibrium based constraints and kinematic constraints to eliminate hierarchical degrees of freedom which results in lower order elements with improved stress recovery and displacement convergence. These techniques make it possible to easily implement the element into the standard finite element software structure, and a modified shape function matrix can be used to create consistent nodal loads.
Formulation of Complex Action Theory
NASA Astrophysics Data System (ADS)
Nagao, K.; Nielsen, H. B.
2011-12-01
We formulate a complex action theory which includes operators of coordinate and momentum hat{q} and hat{p} being replaced with non-hermitian operators hat{q}_{new} and hat{p}_{new}, and their eigenstates | q >_{new} and | p >_{new} with complex eigenvalues q and p. Introducing a philosophy of keeping the analyticity in path integration variables, we define a modified set of complex conjugate, real and imaginary parts, hermitian conjugates and bras, and explicitly construct hat{q}_{new}, hat{p}_{new}, |q >_{new} and |p >_{new} by formally squeezing coherent states. We also pose a theorem on the relation between functions on the phase space and the corresponding operators. Only in our formalism can we describe a complex action theory or a real action theory with complex saddle points in the tunneling effect etc. in terms of bras and kets in the functional integral. Furthermore, in a system with a non-hermitian diagonalizable bounded Hamiltonian, we show that the mechanism to obtain a hermitian Hamiltonian after a long time development proposed in our paper [Prog. Theor. Phys. 125 (2011), 633] works also in the complex coordinate formalism. If the hermitian Hamiltonian is given in a local form, a conserved probability current density can be constructed with two kinds of wave functions.
The 18.6 yr nodal cycle and its impact on tidal sedimentation
NASA Astrophysics Data System (ADS)
Oost, A. P.; de Haas, H.; Ijnsen, F.; van den Boogert, J. M.; de Boer, P. L.
1993-09-01
The 18.6 yr nodal cycle modulates tidal amplitudes and currents, and consequently sedimentation in tide-influenced sedimentary environments. Data are presented which show that such effects are obvious along the coast of the Dutch barrier islands and in the sedimentary fill of abandoned channels.
ERIC Educational Resources Information Center
Chatzarakis, G. E.
2009-01-01
This paper presents a new pedagogical method for nodal analysis optimization based on the use of virtual current sources, applicable to any linear electric circuit (LEC), regardless of its complexity. The proposed method leads to straightforward solutions, mostly arrived at by inspection. Furthermore, the method is easily adapted to computer…
Precision evaluation of lens systems using a nodal slide/MTF optical bench
NASA Astrophysics Data System (ADS)
Doherty, Victor J.; Chapnik, Philip D.
1992-01-01
A compact, self-contained production instrument designed to permit the rapid and precise performance characterization of a wide variety of lenses and optical systems has been developed by Eidolon Corporation. The Eidolon Production Nodal Slide/MTF Measurement System can be used to measure effective focal length (EFL), distortion, field curvature, chromatic aberration, spot size, and modulation transfer function (MTF).
Nodal surface approximations to the P, G, D and I-WP triply periodic minimal surfaces
NASA Astrophysics Data System (ADS)
Gandy, Paul J. F.; Bardhan, Sonny; Mackay, Alan L.; Klinowski, Jacek
2001-03-01
The cubic P, G, D and I-WP triply periodic minimal surfaces (TPMS) may be closely approximated using periodic nodal surfaces (PNS) with few Fourier terms, thus enabling easy generation of TPMS for use in various chemical and physical applications. The accuracy of such approximations is quantitatively discussed and represented visually using a colour coding.
Lee, Jonathan J; Granter, Scott R; Laga, Alvaro C; Saavedra, Arturo P; Zhan, Qian; Guo, Weimin; Xu, Shuyun; Murphy, George F; Lian, Christine G
2015-02-01
Sentinel lymph node biopsies are conducted to stage patients with newly diagnosed melanomas that have histopathological attributes conferring defined levels of metastatic potential. Because benign nevic cells may also form 'deposits' in lymph nodes (nodal nevus), the pathological evaluation for metastatic melanoma within sentinel lymph nodes can be challenging. Twenty-eight sentinel lymph node biopsy cases containing either metastatic melanoma (N=18) or nodal nevi (N=10) were retrieved from the archives of the Brigham and Women's Hospital, Department of Pathology (2011-2014). In addition, two sentinel lymph node cases that were favored to represent metastatic disease but whose histopathological features were viewed as equivocal, with melanoma favored, were also included. Dual labeling for the melanocyte lineage marker, MART-1, and the epigenetic marker, 5-hydroxymethylcytosine, a functionally significant indicator that has been shown to distinguish benign nevi from melanoma, was performed on all cases using immunohistochemistry and/or direct immunofluorescence. All (18 of 18) metastatic melanoma cases showed complete loss of 5-hydroxymethylcytosine nuclear staining in MART-1-positive cells, and all (10 of 10) nodal nevus cases demonstrated 5-hydroxymethylcytosine nuclear staining in MART-1-positive cells. In addition, 5-hydroxymethylcytosine staining confirmed the favored diagnoses of metastatic melanoma in the two 'equivocal' cases. Thus, 5-hydroxymethylcytosine may be a useful adjunctive marker to distinguish between benign nodal nevi and metastatic melanoma during the evaluation of sentinel lymph node biopsies for metastatic melanoma.
A.A. Bingham; R.M. Ferrer; A.M. ougouag
2009-09-01
An accurate and computationally efficient two or three-dimensional neutron diffusion model will be necessary for the development, safety parameters computation, and fuel cycle analysis of a prismatic Very High Temperature Reactor (VHTR) design under Next Generation Nuclear Plant Project (NGNP). For this purpose, an analytical nodal Green’s function solution for the transverse integrated neutron diffusion equation is developed in two and three-dimensional hexagonal geometry. This scheme is incorporated into HEXPEDITE, a code first developed by Fitzpatrick and Ougouag. HEXPEDITE neglects non-physical discontinuity terms that arise in the transverse leakage due to the transverse integration procedure application to hexagonal geometry and cannot account for the effects of burnable poisons across nodal boundaries. The test code being developed for this document accounts for these terms by maintaining an inventory of neutrons by using the nodal balance equation as a constraint of the neutron flux equation. The method developed in this report is intended to restore neutron conservation and increase the accuracy of the code by adding these terms to the transverse integrated flux solution and applying the nodal Green’s function solution to the resulting equation to derive a semi-analytical solution.
47 CFR 101.503 - Digital Electronic Message Service Nodal Stations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Digital Electronic Message Service Nodal Stations. 101.503 Section 101.503 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic...
A Developmentally Based Categorization of Branching in Trifolium repens L.: Influence of Nodal Roots
THOMAS, R. G.; HAY, M. J. M.; NEWTON, P. C. D.
2002-01-01
This study describes the successive stages of development of branches from axillary buds in fully rooted plants of Trifolium repens grown in near optimal conditions, and the way in which this developmental pathway differs when nodal root formation is prevented as plants grow out from a rooted base. Cuttings of a single genotype were established in a glasshouse with nodal root systems on the two basal phytomers and grown on so that nodal rooting was either permitted (+R) or prevented (–R). In +R plants, axillary tissues could be assigned to one of four developmental categories: unemerged buds, emerged buds, unbranched lateral branches or secondarily branched lateral branches. In –R plants, branch development was retarded, with the retardation becoming increasingly pronounced as the number of –R phytomers on the primary stolon increased. Retarded elongation of the internodes of lateral shoots on –R plants resulted in the formation of a distinct fifth developmental category: short shoots (defined as branches with two or more leaves but with mean internode length equal to, or less than, 10 % of that of the immediately proximal internode on the parent stolon) which had reduced phytomer appearance rates but retained the potential to develop into lateral branches. Transfer of +R plants to –R conditions, and vice versa, after 66 d demonstrated that subsequent branch development was wholly under the control of the youngest nodal root present, regardless of the age and number of root systems proximal to it. PMID:12234150
ERIC Educational Resources Information Center
Moss-Lourenco, Patricia; Fields, Lanny
2011-01-01
Three experiments used postclass formation within-class preference test performances to evaluate the effects of nodal distance on the relatedness of stimuli in equivalence classes. In Experiment 1, two 2-node four-member equivalence classes were established using the simultaneous protocol in which all of the baseline relations were trained…
NASA Astrophysics Data System (ADS)
Grootendorst, Diederik J.; Fratila, Raluca M.; Visscher, Martijn; Ten Haken, Bennie; van Wezel, Richard; Steenbergen, Wiendelt; Manohar, Srirang; Ruers, Theo J. M.
2013-02-01
Detection of tumor metastases in the lymphatic system is essential for accurate staging of various malignancies, however fast, accurate and cost-effective intra-operative evaluation of the nodal status remains difficult to perform with common available medical imaging techniques. In recent years, numerous studies have confirmed the additional value of superparamagnetic iron oxide dispersions (SPIOs) for nodal staging purposes, prompting the clearance of different SPIO dispersions for clinical practice. We evaluate whether a combination of photoacoustic (PA) imaging and a clinically approved SPIO dispersion, could be applied for intra-operative nodal staging. Metastatic adenocarcinoma was inoculated in Copenhagen rats for 5 or 8 days. After SPIO injection, the lymph nodes were photoacoustically imaged both in vivo and ex vivo whereafter imaging results were correlated with MR and histology. Results were compared to a control group without tumor inoculation. In the tumor groups clear irregularities, as small as 1 mm, were observed in the PA contrast pattern of the nodes together with an decrease of PA response. These irregularities could be correlated to the absence of contrast in the MR images and could be linked to metastatic deposits seen in the histological slides. The PA and MR images of the control animals did not show these features. We conclude that the combination of photoacoustic imaging with a clinically approved iron oxide nanoparticle dispersion is able to detect lymph node metastases in an animal model. This approach opens up new possibilities for fast intra-operative nodal staging in a clinical setting.
Anomalous nodal count and singularities in the dispersion relation of honeycomb graphs
NASA Astrophysics Data System (ADS)
Band, Ram; Berkolaiko, Gregory; Weyand, Tracy
2015-12-01
We study the nodal count of the so-called bi-dendral graphs and show that it exhibits an anomaly: the nodal surplus is never equal to 0 or β, the first Betti number of the graph. According to the nodal-magnetic theorem, this means that bands of the magnetic spectrum (dispersion relation) of such graphs do not have maxima or minima at the "usual" symmetry points of the fundamental domain of the reciprocal space of magnetic parameters. In search of the missing extrema, we prove a necessary condition for a smooth critical point to happen inside the reciprocal fundamental domain. Using this condition, we identify the extrema as the singularities in the dispersion relation of the maximal Abelian cover of the graph (the honeycomb graph being an important example). In particular, our results show that the anomalous nodal count is an indication of the presence of conical points in the dispersion relation of the maximal universal cover. We also discover that the conical points are present in the dispersion relation of graphs with much less symmetry than was required in previous investigations.
Lin, Pan; Yang, Yong; Jovicich, Jorge; De Pisapia, Nicola; Wang, Xiang; Zuo, Chun S; Levitt, James Jonathan
2016-03-01
Characterization of the default mode network (DMN) as a complex network of functionally interacting dynamic systems has received great interest for the study of DMN neural mechanisms. In particular, understanding the relationship of intrinsic resting-state DMN brain network with cognitive behaviors is an important issue in healthy cognition and mental disorders. However, it is still unclear how DMN functional connectivity links to cognitive behaviors during resting-state. In this study, we hypothesize that static and dynamic DMN nodal topology is associated with upcoming cognitive task performance. We used graph theory analysis in order to understand better the relationship between the DMN functional connectivity and cognitive behavior during resting-state and task performance. Nodal degree of the DMN was calculated as a metric of network topology. We found that the static and dynamic posterior cingulate cortex (PCC) nodal degree within the DMN was associated with task performance (Reaction Time). Our results show that the core node PCC nodal degree within the DMN was significantly correlated with reaction time, which suggests that the PCC plays a key role in supporting cognitive function.
Bohora, Shomu; Singh, Parvindar; Shah, Kaushal
2016-01-01
A 58 year old gentleman with complaints of palpitations and documented tachycardia was found to have a dilated right atrium, right ventricle and coronary sinus, which were due to partial unroofed coronary sinus without a left superior vena cava. He had upper septal ventricular tachycardia and atrio-ventricular nodal reentrant tachycardia, which was successfully treated by radiofrequency ablation. PMID:25852246
Analysis of nodal aberration properties in off-axis freeform system design.
Shi, Haodong; Jiang, Huilin; Zhang, Xin; Wang, Chao; Liu, Tao
2016-08-20
Freeform surfaces have the advantage of balancing off-axis aberration. In this paper, based on the framework of nodal aberration theory (NAT) applied to the coaxial system, the third-order astigmatism and coma wave aberration expressions of an off-axis system with Zernike polynomial surfaces are derived. The relationship between the off-axis and surface shape acting on the nodal distributions is revealed. The nodal aberration properties of the off-axis freeform system are analyzed and validated by using full-field displays (FFDs). It has been demonstrated that adding Zernike terms, up to nine, to the off-axis system modifies the nodal locations, but the field dependence of the third-order aberration does not change. On this basis, an off-axis two-mirror freeform system with 500 mm effective focal length (EFL) and 300 mm entrance pupil diameter (EPD) working in long-wave infrared is designed. The field constant aberrations induced by surface tilting are corrected by selecting specific Zernike terms. The design results show that the nodes of third-order astigmatism and coma move back into the field of view (FOV). The modulation transfer function (MTF) curves are above 0.4 at 20 line pairs per millimeter (lp/mm) which meets the infrared reconnaissance requirement. This work provides essential insight and guidance for aberration correction in off-axis freeform system design.
Reactive decontamination formulation
Giletto, Anthony; White, William; Cisar, Alan J.; Hitchens, G. Duncan; Fyffe, James
2003-05-27
The present invention provides a universal decontamination formulation and method for detoxifying chemical warfare agents (CWA's) and biological warfare agents (BWA's) without producing any toxic by-products, as well as, decontaminating surfaces that have come into contact with these agents. The formulation includes a sorbent material or gel, a peroxide source, a peroxide activator, and a compound containing a mixture of KHSO.sub.5, KHSO.sub.4 and K.sub.2 SO.sub.4. The formulation is self-decontaminating and once dried can easily be wiped from the surface being decontaminated. A method for decontaminating a surface exposed to chemical or biological agents is also disclosed.
Formulation techniques for nanofluids.
Rivera-Solorio, Carlos I; Payán-Rodríguez, Luis A; García-Cuéllar, Alejandro J; Ramón-Raygoza, E D; L Cadena-de-la-Peña, Natalia; Medina-Carreón, David
2013-11-01
Fluids with suspended nanoparticles, commonly known as nanofluids, may be formulated to improve the thermal performance of industrial heat transfer systems and applications. Nanofluids may show enhanced thermal and electrical properties such as thermal conductivity, viscosity, heat transfer coefficient, dielectric strength, etc. However, stability problems may arise as nanoparticles usually have the tendency to agglomerate and sediment producing deterioration in the increment of these properties. In this review, we discuss patents that report advances in the formulation of nanofluids including: production methods, selection of components (nanoparticles, base fluid and surfactants), their chemical compositions and morphologies, and characterization techniques. Finally, current and future directions in the development of nanofluid formulation are discussed.
An approach to model reactor core nodalization for deterministic safety analysis
Salim, Mohd Faiz Samsudin, Mohd Rafie; Mamat Ibrahim, Mohd Rizal; Roslan, Ridha Sadri, Abd Aziz; Farid, Mohd Fairus Abd
2016-01-22
Adopting good nodalization strategy is essential to produce an accurate and high quality input model for Deterministic Safety Analysis (DSA) using System Thermal-Hydraulic (SYS-TH) computer code. The purpose of such analysis is to demonstrate the compliance against regulatory requirements and to verify the behavior of the reactor during normal and accident conditions as it was originally designed. Numerous studies in the past have been devoted to the development of the nodalization strategy for small research reactor (e.g. 250kW) up to the bigger research reactor (e.g. 30MW). As such, this paper aims to discuss the state-of-arts thermal hydraulics channel to be employed in the nodalization for RTP-TRIGA Research Reactor specifically for the reactor core. At present, the required thermal-hydraulic parameters for reactor core, such as core geometrical data (length, coolant flow area, hydraulic diameters, and axial power profile) and material properties (including the UZrH{sub 1.6}, stainless steel clad, graphite reflector) have been collected, analyzed and consolidated in the Reference Database of RTP using standardized methodology, mainly derived from the available technical documentations. Based on the available information in the database, assumptions made on the nodalization approach and calculations performed will be discussed and presented. The development and identification of the thermal hydraulics channel for the reactor core will be implemented during the SYS-TH calculation using RELAP5-3D{sup ®} computer code. This activity presented in this paper is part of the development of overall nodalization description for RTP-TRIGA Research Reactor under the IAEA Norwegian Extra-Budgetary Programme (NOKEBP) mentoring project on Expertise Development through the Analysis of Reactor Thermal-Hydraulics for Malaysia, denoted as EARTH-M.
ARPES Study of Nodal Quasiparticles Using Low-Energy Tunable Photons
NASA Astrophysics Data System (ADS)
Ino, Akihiro
2006-03-01
Low-energy quasiparticle excitations govern the thermodynamic properties of a superconductor both in the zero-field and vortex-mixed states. For a d-wave superconductor, nodal quasiparticles are crucial excitations starting from zero energy. So far, however, the nodal quasiparticle dynamics of high-Tc cuprates has been controversial. For example, it has been reported by an angle-resolved-photoemission (ARPES) experiment that the marginal-Fermi-liquid behavior persists into the superconducting state without appreciable change in the scattering rate, while microwave conductivity increases upon the superconducting transition. Here, we show a new ARPES result that solves the controversies with unprecedented momentum-resolution. Low-energy tunable photons have enabled us to resolve a small nodal bilayer splitting clearly, and to reveal the detailed temperature- and energy-dependence of the scattering rate, indicating the behaviors unique to the nodal quasiparticles. Due to the opening of the d-wave gap, the nodal scattering rate is remarkably suppressed, and shows a linear energy dependence. The difference in the energy-linear term between the bilayer-resolved scattering rates hints the nature of impurities involved. This work was done in collaboration with T. Yamasaki, T. Kamo, K. Yamazaki, H. Anzai, M. Arita, H. Namatame, M. Taniguchi, Grad. Sch. of Science and Hiroshima Synchrotron Radiation Center, Hiroshima Univ., A. Fujimori, Dept. of Complexity Science and Engineering, Univ. of Tokyo, Z.-X. Shen, Dept. of Physics, Applied Physics and SSRL, Stanford Univ., M. Ishikado, K. Fujita, and S. Uchida, Dept. of Physics, Univ. of Tokyo.
Combined-modality therapy for patients with regional nodal metastases from melanoma
Ballo, Matthew T. . E-mail: mballo@mdanderson.org; Ross, Merrick I.; Cormier, Janice N.; Myers, Jeffrey N.; Lee, Jeffrey E.; Gershenwald, Jeffrey E.; Hwu, Patrick; Zagars, Gunar K.
2006-01-01
Purpose: To evaluate the outcome and patterns of failure for patients with nodal metastases from melanoma treated with combined-modality therapy. Methods and Materials: Between 1983 and 2003, 466 patients with nodal metastases from melanoma were managed with lymphadenectomy and radiation, with or without systemic therapy. Surgery was a therapeutic procedure for clinically apparent nodal disease in 434 patients (regionally advanced nodal disease). Adjuvant radiation was generally delivered with a hypofractionated regimen. Adjuvant systemic therapy was delivered to 154 patients. Results: With a median follow-up of 4.2 years, 252 patients relapsed and 203 patients died of progressive disease. The actuarial 5-year disease-specific, disease-free, and distant metastasis-free survival rates were 49%, 42%, and 44%, respectively. By multivariate analysis, increasing number of involved lymph nodes and primary ulceration were associated with an inferior 5-year actuarial disease-specific and distant metastasis-free survival. Also, the number of involved lymph nodes was associated with the development of brain metastases, whereas thickness was associated with lung metastases, and primary ulceration was associated with liver metastases. The actuarial 5-year regional (in-basin) control rate for all patients was 89%, and on multivariate analysis there were no patient or disease characteristics associated with inferior regional control. The risk of lymphedema was highest for those patients with groin lymph node metastases. Conclusions: Although regional nodal disease can be satisfactorily controlled with lymphadenectomy and radiation, the risk of distant metastases and melanoma death remains high. A management approach to these patients that accounts for the competing risks of distant metastases, regional failure, and long-term toxicity is needed.
An approach to model reactor core nodalization for deterministic safety analysis
NASA Astrophysics Data System (ADS)
Salim, Mohd Faiz; Samsudin, Mohd Rafie; Mamat @ Ibrahim, Mohd Rizal; Roslan, Ridha; Sadri, Abd Aziz; Farid, Mohd Fairus Abd
2016-01-01
Adopting good nodalization strategy is essential to produce an accurate and high quality input model for Deterministic Safety Analysis (DSA) using System Thermal-Hydraulic (SYS-TH) computer code. The purpose of such analysis is to demonstrate the compliance against regulatory requirements and to verify the behavior of the reactor during normal and accident conditions as it was originally designed. Numerous studies in the past have been devoted to the development of the nodalization strategy for small research reactor (e.g. 250kW) up to the bigger research reactor (e.g. 30MW). As such, this paper aims to discuss the state-of-arts thermal hydraulics channel to be employed in the nodalization for RTP-TRIGA Research Reactor specifically for the reactor core. At present, the required thermal-hydraulic parameters for reactor core, such as core geometrical data (length, coolant flow area, hydraulic diameters, and axial power profile) and material properties (including the UZrH1.6, stainless steel clad, graphite reflector) have been collected, analyzed and consolidated in the Reference Database of RTP using standardized methodology, mainly derived from the available technical documentations. Based on the available information in the database, assumptions made on the nodalization approach and calculations performed will be discussed and presented. The development and identification of the thermal hydraulics channel for the reactor core will be implemented during the SYS-TH calculation using RELAP5-3D® computer code. This activity presented in this paper is part of the development of overall nodalization description for RTP-TRIGA Research Reactor under the IAEA Norwegian Extra-Budgetary Programme (NOKEBP) mentoring project on Expertise Development through the Analysis of Reactor Thermal-Hydraulics for Malaysia, denoted as EARTH-M.
Noh, O Kyu; Lee, Sang-wook; Yoon, Sang Min; Kim, Sung Bae; Kim, Sang Yoon; Kim, Chang Jin; Jo, Kyung Ja; Choi, Eun Kyung; Song, Si Yeol; Kim, Jong Hoon; Ahn, Seung Do
2011-02-01
Purpose: The role of elective nodal irradiation (ENI) in radiotherapy for esthesioneuroblastoma (ENB) has not been clearly defined. We analyzed treatment outcomes of patients with ENB and the frequency of cervical nodal failure in the absence of ENI. Methods and Materials: Between August 1996 and December 2007, we consulted with 19 patients with ENB regarding radiotherapy. Initial treatment consisted of surgery alone in 2 patients; surgery and postoperative radiotherapy in 4; surgery and adjuvant chemotherapy in 1; surgery, postoperative radiotherapy, and chemotherapy in 3; and chemotherapy followed by radiotherapy or concurrent chemoradiotherapy in 5. Five patients did not receive planned radiotherapy because of disease progression. Including 2 patients who received salvage radiotherapy, 14 patients were treated with radiotherapy. Elective nodal irradiation was performed in 4 patients with high-risk factors, including 3 with cervical lymph node metastasis at presentation. Results: Fourteen patients were analyzable, with a median follow-up of 27 months (range, 7-64 months). The overall 3-year survival rate was 73.4%. Local failure occurred in 3 patients (21.4%), regional cervical failure in 3 (21.4%), and distant failure in 2 (14.3%). No cervical nodal failure occurred in patients treated with combined systemic chemotherapy regardless of ENI. Three cervical failures occurred in the 4 patients treated with ENI or neck dissection (75%), none of whom received systemic chemotherapy. Conclusions: ENI during radiotherapy for ENB seems to play a limited role in preventing cervical nodal failure. Omitting ENI may be an option if patients are treated with a combination of radiotherapy and chemotherapy.
Correlation effects and quantum oscillations in topological nodal-loop semimetals
NASA Astrophysics Data System (ADS)
Liu, Jianpeng; Balents, Leon
2017-02-01
We study the unique physical properties of topological nodal-loop semimetals protected by the coexistence of time-reversal and inversion symmetries with negligible spin-orbit coupling. We argue that strong correlation effects occur at the surface of such systems for relatively small Hubbard interaction U , due to the narrow bandwidth of the "drumhead" surface states. In the Hartree-Fock approximation, at small U we obtain a surface ferromagnetic phase through a continuous quantum phase transition characterized by the surface-mode divergence of the spin susceptibility, while the bulk states remain very robust against local interactions and remain nonordered. At slightly increased interaction strength, the system quickly changes from a surface ferromagnetic phase to a surface charge-ordered phase through a first-order transition. When Rashba-type spin-orbit coupling is applied to the surface states, a canted ferromagnetic phase occurs at the surface for intermediate values of U . The quantum critical behavior of the surface ferromagnetic transition is nontrivial in the sense that the surface spin order parameter couples to Fermi-surface excitations from both surface and bulk states. This leads to unconventional Landau damping and consequently a naïve dynamical critical exponent z ≈1 when the Fermi level is close to the bulk nodal energy. We also show that, already without interactions, quantum oscillations arise due to bulk states, despite the absence of a Fermi surface when the chemical potential is tuned to the energy of the nodal loop. The bulk magnetic susceptibility diverges logarithmically whenever the nodal loop exactly overlaps with a quantized magnetic orbit in the bulk Brillouin zone. These correlation and transport phenomena are unique signatures of nodal-loop states.
Mammographic Density and Prediction of Nodal Status in Breast Cancer Patients
Hack, C. C.; Häberle, L.; Geisler, K.; Schulz-Wendtland, R.; Hartmann, A.; Fasching, P. A.; Uder, M.; Wachter, D. L.; Jud, S. M.; Loehberg, C. R.; Lux, M. P.; Rauh, C.; Beckmann, M. W.; Heusinger, K.
2013-01-01
Aim: Nodal status remains one of the most important prognostic factors in breast cancer. The cellular and molecular reasons for the spread of tumor cells to the lymph nodes are not well understood and there are only few predictors in addition to tumor size and multifocality that give an insight into additional mechanisms of lymphatic spread. Aim of our study was therefore to investigate whether breast characteristics such as mammographic density (MD) add to the predictive value of the presence of lymph node metastases in patients with primary breast cancer. Methods: In this retrospective study we analyzed primary, metastasis-free breast cancer patients from one breast center for whom data on MD and staging information were available. A total of 1831 patients were included into this study. MD was assessed as percentage MD (PMD) using a semiautomated method and two readers for every patient. Multiple logistic regression analyses with nodal status as outcome were used to investigate the predictive value of PMD in addition to age, tumor size, Ki-67, estrogen receptor (ER), progesterone receptor (PR), grading, histology, and multi-focality. Results: Multifocality, tumor size, Ki-67 and grading were relevant predictors for nodal status. Adding PMD to a prediction model which included these factors did not significantly improve the prediction of nodal status (p = 0.24, likelihood ratio test). Conclusion: Nodal status could be predicted quite well with the factors multifocality, tumor size, Ki-67 and grading. PMD does not seem to play a role in the lymphatic spread of tumor cells. It could be concluded that the amount of extracellular matrix and stromal cell content of the breast which is reflected by MD does not influence the probability of malignant breast cells spreading from the primary tumor to the lymph nodes. PMID:24771910
Performance of mixed formulations for the particle finite element method in soil mechanics problems
NASA Astrophysics Data System (ADS)
Monforte, Lluís; Carbonell, Josep Maria; Arroyo, Marcos; Gens, Antonio
2016-11-01
This paper presents a computational framework for the numerical analysis of fluid-saturated porous media at large strains. The proposal relies, on one hand, on the particle finite element method (PFEM), known for its capability to tackle large deformations and rapid changing boundaries, and, on the other hand, on constitutive descriptions well established in current geotechnical analyses (Darcy's law; Modified Cam Clay; Houlsby hyperelasticity). An important feature of this kind of problem is that incompressibility may arise either from undrained conditions or as a consequence of material behaviour; incompressibility may lead to volumetric locking of the low-order elements that are typically used in PFEM. In this work, two different three-field mixed formulations for the coupled hydromechanical problem are presented, in which either the effective pressure or the Jacobian are considered as nodal variables, in addition to the solid skeleton displacement and water pressure. Additionally, several mixed formulations are described for the simplified single-phase problem due to its formal similitude to the poromechanical case and its relevance in geotechnics, since it may approximate the saturated soil behaviour under undrained conditions. In order to use equal-order interpolants in displacements and scalar fields, stabilization techniques are used in the mass conservation equation of the biphasic medium and in the rest of scalar equations. Finally, all mixed formulations are assessed in some benchmark problems and their performances are compared. It is found that mixed formulations that have the Jacobian as a nodal variable perform better.
Minimal formulation of joint motion for biomechanisms
Seth, Ajay; Sherman, Michael; Eastman, Peter; Delp, Scott
2010-01-01
Biomechanical systems share many properties with mechanically engineered systems, and researchers have successfully employed mechanical engineering simulation software to investigate the mechanical behavior of diverse biological mechanisms, ranging from biomolecules to human joints. Unlike their man-made counterparts, however, biomechanisms rarely exhibit the simple, uncoupled, pure-axial motion that is engineered into mechanical joints such as sliders, pins, and ball-and-socket joints. Current mechanical modeling software based on internal-coordinate multibody dynamics can formulate engineered joints directly in minimal coordinates, but requires additional coordinates restricted by constraints to model more complex motions. This approach can be inefficient, inaccurate, and difficult for biomechanists to customize. Since complex motion is the rule rather than the exception in biomechanisms, the benefits of minimal coordinate modeling are not fully realized in biomedical research. Here we introduce a practical implementation for empirically-defined internal-coordinate joints, which we call “mobilizers.” A mobilizer encapsulates the observations, measurement frame, and modeling requirements into a hinge specification of the permissible-motion manifold for a minimal set of internal coordinates. Mobilizers support nonlinear mappings that are mathematically equivalent to constraint manifolds but have the advantages of fewer coordinates, no constraints, and exact representation of the biomechanical motion-space—the benefits long enjoyed for internal-coordinate models of mechanical joints. Hinge matrices within the mobilizer are easily specified by user-supplied functions, and provide a direct means of mapping permissible motion derived from empirical data. We present computational results showing substantial performance and accuracy gains for mobilizers versus equivalent joints implemented with constraints. Examples of mobilizers for joints from human biomechanics
Röttinger, Eric; DuBuc, Timothy Q.; Amiel, Aldine R.; Martindale, Mark Q.
2015-01-01
ABSTRACT Nodal signaling plays crucial roles in vertebrate developmental processes such as endoderm and mesoderm formation, and axial patterning events along the anteroposterior, dorsoventral and left-right axes. In echinoderms, Nodal plays an essential role in the establishment of the dorsoventral axis and left-right asymmetry, but not in endoderm or mesoderm induction. In protostomes, Nodal signaling appears to be involved only in establishing left-right asymmetry. Hence, it is hypothesized that Nodal signaling has been co-opted to pattern the dorsoventral axis of deuterostomes and for endoderm, mesoderm formation as well as anteroposterior patterning in chordates. Hemichordata, together with echinoderms, represent the sister taxon to chordates. In this study, we analyze the role of Nodal signaling in the indirect developing hemichordate Ptychodera flava. In particular, we show that during gastrulation nodal transcripts are detected in a ring of cells at the vegetal pole that gives rise to endomesoderm and in the ventral ectoderm at later stages of development. Inhibition of Nodal function disrupts dorsoventral fates and also blocks formation of the larval mesoderm. Interestingly, molecular analysis reveals that only mesodermal, apical and ventral gene expression is affected while the dorsal side appears to be patterned correctly. Taken together, this study suggests that the co-option of Nodal signaling in mesoderm formation and potentially in anteroposterior patterning has occurred prior to the emergence of chordates and that Nodal signaling on the ventral side is uncoupled from BMP signaling on the dorsal side, representing a major difference from the molecular mechanisms of dorsoventral patterning events in echinoderms. PMID:25979707
Röttinger, Eric; DuBuc, Timothy Q; Amiel, Aldine R; Martindale, Mark Q
2015-05-15
Nodal signaling plays crucial roles in vertebrate developmental processes such as endoderm and mesoderm formation, and axial patterning events along the anteroposterior, dorsoventral and left-right axes. In echinoderms, Nodal plays an essential role in the establishment of the dorsoventral axis and left-right asymmetry, but not in endoderm or mesoderm induction. In protostomes, Nodal signaling appears to be involved only in establishing left-right asymmetry. Hence, it is hypothesized that Nodal signaling has been co-opted to pattern the dorsoventral axis of deuterostomes and for endoderm, mesoderm formation as well as anteroposterior patterning in chordates. Hemichordata, together with echinoderms, represent the sister taxon to chordates. In this study, we analyze the role of Nodal signaling in the indirect developing hemichordate Ptychodera flava. In particular, we show that during gastrulation nodal transcripts are detected in a ring of cells at the vegetal pole that gives rise to endomesoderm and in the ventral ectoderm at later stages of development. Inhibition of Nodal function disrupts dorsoventral fates and also blocks formation of the larval mesoderm. Interestingly, molecular analysis reveals that only mesodermal, apical and ventral gene expression is affected while the dorsal side appears to be patterned correctly. Taken together, this study suggests that the co-option of Nodal signaling in mesoderm formation and potentially in anteroposterior patterning has occurred prior to the emergence of chordates and that Nodal signaling on the ventral side is uncoupled from BMP signaling on the dorsal side, representing a major difference from the molecular mechanisms of dorsoventral patterning events in echinoderms.
Temporally coordinated signals progressively pattern the anteroposterior and dorsoventral body axes
Tuazon, Francesca B; Mullins, Mary C
2015-01-01
The vertebrate body plan is established through the precise spatiotemporal coordination morphogen signaling pathways that pattern the anteroposterior (AP) and dorsoventral (DV) axes. Patterning along the AP axis is directed by posteriorizing signals Wnt, fibroblast growth factor (FGF), Nodal, and retinoic acid (RA), while patterning along the DV axis is directed by bone morphogenetic proteins (BMP) ventralizing signals. This review addresses the current understanding of how Wnt, FGF, RA and BMP pattern distinct AP and DV cell fates during early development and how their signaling mechanisms are coordinated to concomitantly pattern AP and DV tissues. PMID:26123688
Motté, G; Belhassen, B; Bodereau, P
1979-03-01
In a series of 48 patients undergoing electrophysiological investigation for attacks of reciprocating tachycardia related to concealed or overt Wolff-Parkinson-White syndrome in sinus rhythm, 4 patients were found to have duality of nodal conduction. This association was responsible for several tachycardia circuits: in 2 patients the activation passed constantly retrogradely through the accessory pathway and then either through the slow nodal pathway or the rapid nodal pathway in the anterograde direction. In the other two patients, in addition to classical orthodromic tachycardia, purely intranodal reciprocating rhythms giving rise to sustained tachycardia in one case and to simple echos in the other, were observed.
Formulations and nebulizer performance.
O'Riordan, Thomas G
2002-11-01
To deliver a drug by nebulization, the drug must first be dispersed in a liquid (usually aqueous) medium. After application of a dispersing force (either a jet of gas or ultrasonic waves), the drug particles are contained within the aerosol droplets, which are then inhaled. Some drugs readily dissolve in water, whereas others need a cosolvent such as ethanol or propylene glycol. Some drugs are delivered as suspensions, and the efficiency of nebulizers can be different for solutions and suspensions. Solutions are delivered more efficiently with most devices. In general, conventional ultrasonic nebulizers should not be used to aerosolize suspensions, because of low efficiency. Newer strategies to improve the delivery of non-water-soluble drugs include the use of liposomes and the milling of the drug into very small "nanoparticles." In addition to the active therapeutic ingredient and solvents, drug formulations may include buffers (the solubility of some medications is influenced by pH), stabilizers, and, in the case of multi-dose preparations, antibacterial agents. Though formulations are designed to optimize drug solubility and stability, changes in formulation can also affect inhaled mass, particle size, and treatment time, though the differences between nebulizer brands probably have a greater impact than differences in formulation. Ultrasonic and jet nebulizers may damage protein and other complex agents through heat or shear stress. Additives to multi-dose formulations, especially antimicrobial and chelating agents, may cause adverse events, so there is a trend towards single-use, preservative-free vials.
NASA Technical Reports Server (NTRS)
Yu, Jr-Kai; Holland, Linda Z.; Holland, Nicholas D.
2002-01-01
The full-length sequence and zygotic expression of an amphioxus nodal gene are described. Expression is first detected in the early gastrula just within the dorsal lip of the blastopore in a region of hypoblast that is probably comparable with the vertebrate Spemann's organizer. In the late gastrula and early neurula, expression remains bilaterally symmetrical, limited to paraxial mesoderm and immediately overlying regions of the neural plate. Later in the neurula stage, all neural expression disappears, and mesodermal expression disappears from the right side. All along the left side of the neurula, mesodermal expression spreads into the left side of the gut endoderm. Soon thereafter, all expression is down-regulated except near the anterior and posterior ends of the animal, where transcripts are still found in the mesoderm and endoderm on the left side. At this time, expression also begins in the ectoderm on the left side of the head, in the region where the mouth later forms. These results suggest that amphioxus and vertebrate nodal genes play evolutionarily conserved roles in establishing Spemann's organizer, patterning the mesoderm rostrocaudally and setting up the asymmetrical left-right axis of the body.
Wang, Wei
2015-01-01
It is well recognized that protein product development is far more challenging than that for small-molecule drugs. The major challenges include inherent sensitivity to different types of stresses during the drug product manufacturing process, high rate of physical and chemical degradation during long-term storage, and enhanced aggregation and/or viscosity at high protein concentrations. In the past decade, many novel formulation concepts and technologies have been or are being developed to address these product development challenges for proteins. These concepts and technologies include use of uncommon/combination of formulation stabilizers, conjugation or fusion with potential stabilizers, site-specific mutagenesis, and preparation of nontraditional types of dosage forms—semiaqueous solutions, nonfreeze-dried solid formulations, suspensions, and other emerging concepts. No one technology appears to be mature, ideal, and/or adequate to address all the challenges. These gaps will likely remain in the foreseeable future and need significant efforts for ultimate resolution. PMID:25858529
Sunscreen product formulation.
Tanner, Paul R
2006-01-01
On the surface, sunscreen products are pretty simple. They consist of a delivery vehicle containing one or more sunscreen active ingredients. When applied to the skin, these sunscreen actives intercept solar ultraviolet (UV) rays before they can damage the underlying skin. However, while conceptually simple, a detailed analysis reveals that sunscreen formulations are quite complex, requiring careful selection of sunscreen active and vehicle components to control multiple performance and in-use parameters.Thus, to enable a better understanding and appreciation of sunscreen products, the typical steps in formulating a sunscreen product are described. Throughout this process, the key is to apply scientific principles together with a bit of formulation art to holistically create the best sunscreen product that meets the design targets--a sunscreen product that people will use regularly and properly.
Granulated decontamination formulations
Tucker, Mark D.
2007-10-02
A decontamination formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a sorbent additive, and water. A highly adsorbent sorbent additive (e.g., amorphous silica, sorbitol, mannitol, etc.) is used to "dry out" one or more liquid ingredients into a dry, free-flowing powder that has an extended shelf life, and is more convenient to handle and mix in the field.
Self-energy of a nodal fermion in a d -wave superconductor
NASA Astrophysics Data System (ADS)
Chubukov, A. V.; Tsvelik, A. M.
2006-06-01
We reconsider the self-energy of a nodal (Dirac) fermion in a two-dimensional d -wave superconductor. A conventional belief is that ImΣ(ω,T)˜max(ω3,T3) . We show that Σ(ω,k,T) for k along the nodal direction is actually a complex function of ω,T , and the deviation from the mass shell. In particular, the second-order self-energy diverges at a finite T when either ω or k-kF vanish. We show that the full summation of infinite diagrammatic series recovers a finite result for Σ , but the full angle-resolved photoemission spectroscopy spectral function is nonmonotonic and has a kink whose location compared to the mass shell differs qualitatively for spin-and charge-mediated interactions.
The ancestral role of nodal signalling in breaking L/R symmetry in the vertebrate forebrain.
Lagadec, Ronan; Laguerre, Laurent; Menuet, Arnaud; Amara, Anis; Rocancourt, Claire; Péricard, Pierre; Godard, Benoît G; Rodicio, Maria Celina; Rodriguez-Moldes, Isabel; Mayeur, Hélène; Rougemont, Quentin; Mazan, Sylvie; Boutet, Agnès
2015-03-30
Left-right asymmetries in the epithalamic region of the brain are widespread across vertebrates, but their magnitude and laterality varies among species. Whether these differences reflect independent origins of forebrain asymmetries or taxa-specific diversifications of an ancient vertebrate feature remains unknown. Here we show that the catshark Scyliorhinus canicula and the lampreys Petromyzon marinus and Lampetra planeri exhibit conserved molecular asymmetries between the left and right developing habenulae. Long-term pharmacological treatments in these species show that nodal signalling is essential to their generation, rather than their directionality as in teleosts. Moreover, in contrast to zebrafish, habenular left-right differences are observed in the absence of overt asymmetry of the adjacent pineal field. These data support an ancient origin of epithalamic asymmetry, and suggest that a nodal-dependent asymmetry programme operated in the forebrain of ancestral vertebrates before evolving into a variable trait in bony fish.
The effect of viscosity on steady transonic flow with a nodal solution topology
NASA Technical Reports Server (NTRS)
Owocki, Stanley P.; Zank, Gary P.
1991-01-01
The effect of viscosity on a steady, transonic flow for which the inviscid limit has a nodal solution topology near the critical point is investigated. For the accelerating case, viscous solutions tend to repel each other, so that a very delicate choice of initial conditions is required to prevent them from diverging. Only the two critical solutions extend to arbitrarily large distances into both the subsonic and supersonic flows. For the decelerating case, the solutions tend to attract, and so an entire two-parameter family of solutions now extends over large distances. The general effect of viscosity on the solution degeneracy of a nodal topology is thus to reduce or limit it for the accelerating case and to enhance it for the decelerating case. The astrophysical implications of these findings are addressed.
NASA Technical Reports Server (NTRS)
Harvey, Jason; Moore, Michael
2013-01-01
The General-Use Nodal Network Solver (GUNNS) is a modeling software package that combines nodal analysis and the hydraulic-electric analogy to simulate fluid, electrical, and thermal flow systems. GUNNS is developed by L-3 Communications under the TS21 (Training Systems for the 21st Century) project for NASA Johnson Space Center (JSC), primarily for use in space vehicle training simulators at JSC. It has sufficient compactness and fidelity to model the fluid, electrical, and thermal aspects of space vehicles in real-time simulations running on commodity workstations, for vehicle crew and flight controller training. It has a reusable and flexible component and system design, and a Graphical User Interface (GUI), providing capability for rapid GUI-based simulator development, ease of maintenance, and associated cost savings. GUNNS is optimized for NASA's Trick simulation environment, but can be run independently of Trick.
NASA Astrophysics Data System (ADS)
Vorontsov, Anton; Vekhter, Ilya
2006-03-01
We present a calculation of electronic specific heat and heat conductivity in a vortex state of quasi-two dimensional d-wave superconductors. We employ quasiclassical theory and use the Brand-Pesch-Tewordt approximation to model the superconducting state at moderate to high magnetic fields. Within this framework we investigate the dependence of heat capacity and heat conductivity on the angle of rotation of magnetic field with respect to the nodal directions. We find that the fourfold anisotropy due to nodal structure in both quantities changes sign in the temperature-field plane. This result helps resolve the apparent disagreement about the gap symmetry reached from the specific heat and the thermal conductivity measurements in CeCoIn5. We comment on the physics behind the difference between our results and those obtained in the Doppler shift approximation.
Lubrication in tablet formulations.
Wang, Jennifer; Wen, Hong; Desai, Divyakant
2010-05-01
Theoretical aspects and practical considerations of lubrication in tablet compression are reviewed in this paper. Properties of the materials that are often used as lubricants, such as magnesium stearate, in tablet dosage form are summarized. The manufacturing process factors that may affect tablet lubrication are discussed. As important as the lubricants in tablet formulations are, their presence can cause some changes to the tablet physical and chemical properties. Furthermore, a detailed review is provided on the methodologies used to characterize lubrication process during tablet compression with relevant process analytical technologies. Finally, the Quality-by-Design considerations for tablet formulation and process development in terms of lubrication are discussed.
Chen, Chuanben; Zhang, Mingwei; Xu, Yuanji; Yue, Qiuyuan; Bai, Penggang; Zhou, Lin; Xiao, Youping; Zheng, Dechun; Lin, Kongqi; Qiu, Sufang; Chen, Yunbin; Pan, Jianji
2016-01-01
Abstract The aim of the study was to evaluate whether short axis and long axis on axial and coronal magnetic resonance imaging planes would reflect the tumor burden or alteration in size after induction chemotherapy in nasopharyngeal carcinoma. Patients with pathologically confirmed nasopharyngeal carcinoma (n = 37) with at least 1 positive cervical lymph node (axial short axis ≥15 mm) were consecutively enrolled in this prospective study. Lymph nodal measurements were performed along its short axis and long axis in both axial and coronal magnetic resonance imaging planes at diagnosis and after 2 cycles of induction chemotherapy. In addition, lymph nodal volumes were automatically calculated in 3D treatment-planning system, which were used as reference standard. Student's t test or nonparametric Mann–Whitney U test was used to compare the continuous quantitative variables. Meanwhile, the κ statistic and McNemar's test were used to evaluate the degree of agreement and discordance in response categorization among different measurements. Axial short axis was significantly associated with volumes at diagnosis (P < 0.001). A good agreement (κ=0.583) was found between axial short axis and volumetric criteria. However, the inconsistent lymph nodal shrinkage in 4 directions was observed. Axial short-axis shrinking was more rapid than the other 3 parameters. Interestingly, when utilizing the alternative planes for unidimensional measurements to assess tumor response, coronal short-axis showed the best concordance (κ=0.792) to the volumes. Axial short axis may effectively reflect tumor burden or change in tumor size in the assessment of target lymph nodal response after induction chemotherapy for nasopharyngeal carcinoma. However, it should be noted that axial short axis may amplify the therapeutic response. In addition, the role of coronal short axis in the assessment of tumor response needs further evaluation. PMID:26945354
Masè, Michela; Glass, Leon; Disertori, Marcello; Ravelli, Flavia
2012-11-15
The genesis of complex ventricular rhythms during atrial tachyarrhythmias in humans is not fully understood. To clarify the dynamics of atrioventricular (AV) conduction in response to a regular high-rate atrial activation, 29 episodes of spontaneous or pacing-induced atrial flutter (AFL), covering a wide range of atrial rates (cycle lengths from 145 to 270 ms), were analyzed in 10 patients. AV patterns were identified by applying firing sequence and surrogate data analysis to atrial and ventricular activation series, whereas modular simulation with a difference-equation AV node model was used to correlate the patterns with specific nodal properties. AV node response at high atrial rate was characterized by 1) AV patterns of decreasing conduction ratios at the shortening of atrial cycle length (from 236.3 ± 32.4 to 172.6 ± 17.8 ms) according to a Farey sequence ordering (conduction ratio from 0.34 ± 0.12 to 0.23 ± 0.06; P < 0.01); 2) the appearance of high-order alternating Wenckebach rhythms, such as 6:2, 10:2, and 12:2, associated with ventricular interval oscillations of large amplitude (407.7 ± 150.4 ms); and 3) the deterioration of pattern stability at advanced levels of block, with the percentage of stable patterns decreasing from 64.3 ± 35.2% to 28.3 ± 34.5% (P < 0.01). Simulations suggested these patterns to originate from the combined effect of nodal recovery, dual pathway physiology, and concealed conduction. These results indicate that intrinsic nodal properties may account for the wide spectrum of AV block patterns occurring during regular atrial tachyarrhythmias. The characterization of AV nodal function during different AFL forms constitutes an intermediate step toward the understanding of complex ventricular rhythms during atrial fibrillation.
Numerical divergence effects of equivalence theory in the nodal expansion method
Zika, M.R.; Downar, T.J. )
1993-11-01
Accurate solutions of the advanced nodal equations require the use of discontinuity factors (DFs) to account for the homogenization errors that are inherent in all coarse-mesh nodal methods. During the last several years, nodal equivalence theory (NET) has successfully been implemented for the Cartesian geometry and has received widespread acceptance in the light water reactor industry. The extension of NET to other reactor types has had limited success. Recent efforts to implement NET within the framework of the nodal expansion method have successfully been applied to the fast breeder reactor. However, attempts to apply the same methods to thermal reactors such as the Modular High-Temperature Gas Reactor (MHTGR) have led to numerical divergence problems that can be attributed directly to the magnitude of the DFs. In the work performed here, it was found that the numerical problems occur in the inner and upscatter iterations of the solution algorithm. These iterations use a Gauss-Seidel iterative technique that is always convergent for problems with unity DFs. However, for an MHTGR model that requires large DFs, both the inner and upscatter iterations were divergent. Initial investigations into methods for bounding the DFs have proven unsatisfactory as a means of remedying the convergence problems. Although the DFs could be bounded to yield a convergent solution, several cases were encountered where the resulting flux solution was less accurate than the solution without DFs. For the specific case of problems without upscattering, an alternate numerical method for the inner iteration, an LU decomposition, was identified and shown to be feasible.
Gastroblastoma in a 28-year-old man with nodal metastasis: proof of the malignant potential.
Wey, Elizabeth A; Britton, Andrew J; Sferra, Joseph J; Kasunic, Tim; Pepe, Linda R; Appelman, Henry D
2012-08-01
Gastroblastoma is a newly defined neoplasm of children and young adults with only 4 reported cases to date. Morphologically, the tumor is a mixture of epithelial structures and stromal elements with minimal cytologic atypia. In these 4 reported cases, there were no metastases or postresection recurrences. We report a case of gastroblastoma in a 28-year-old man with a histologic nodal metastasis and clinical distant metastases.
Verdu, G.; Capilla, M.; Talavera, C. F.; Ginestar, D.
2012-07-01
PL equations are classical high order approximations to the transport equations which are based on the expansion of the angular dependence of the angular neutron flux and the nuclear cross sections in terms of spherical harmonics. A nodal collocation method is used to discretize the PL equations associated with a neutron source transport problem. The performance of the method is tested solving two 1D problems with analytical solution for the transport equation and a classical 2D problem. (authors)
NODAL in the uterus is necessary for proper placental development and maintenance of pregnancy.
Park, Craig B; DeMayo, Francesco J; Lydon, John P; Dufort, Daniel
2012-06-01
Preterm birth is the single leading cause of perinatal mortality in developed countries, affecting approximately 12% of pregnancies and accounting for 75% of neonatal loss in the United States. Despite the prevalence and severity of premature delivery, the causes and mechanisms that underlie spontaneous and idiopathic preterm birth remain unknown. Our inability to elucidate these fundamental causes has been attributed to a poor understanding of the signaling pathways associated with the premature induction of parturition and a lack of suitable animal models available for preterm birth research. In this study, we describe the generation and analysis of a novel conditional knockout of the transforming growth factor beta (TGFB) superfamily member, Nodal, from the maternal reproductive tract of mice. Strikingly, uterine Nodal knockout females exhibited a severe malformation of the maternal decidua basalis during placentation, leading to significant intrauterine growth restriction, and ultimately preterm birth and fetal loss on Day 17.5 of gestation. Using several approaches, we characterized aberrant placental development and demonstrated that reduced proliferation combined with increased apoptosis resulted in a diminished decidua basalis and compromised maternal-fetal interface. Last, we evaluated various components of the established parturition cascade and determined that preterm birth derived from the maternal Nodal knockout occurs prior to PTGS2 (COX-2) upregulation at the placental interface. Taken together, the results presented in this study highlight an in vivo role for maternal NODAL during placentation, present an interesting link between disrupted decidua basalis formation and premature parturition, and describe a potentially valuable model toward elucidating the complex processes that underlie preterm birth.
Nodal soliton solutions for generalized quasilinear Schrödinger equations
Deng, Yinbin Peng, Shuangjie; Wang, Jixiu
2014-05-15
This paper is concerned with constructing nodal radial solutions for generalized quasilinear Schrödinger equations in R{sup N} which arise from plasma physics, fluid mechanics, as well as high-power ultashort laser in matter. For any given integer k ⩾ 0, by using a change of variables and minimization argument, we obtain a sign-changing minimizer with k nodes of a minimization problem.
Zhao Kuaile; Ma Jinbo; Liu Guang; Wu Kailiang; Shi Xuehui; Jiang Guoliang
2010-02-01
Purpose: To evaluate the local control, survival, and toxicity associated with three-dimensional conformal radiotherapy (3D-CRT) for squamous cell carcinoma (SCC) of the esophagus, to determine the appropriate target volumes, and to determine whether elective nodal irradiation is necessary in these patients. Methods and Materials: A prospective study of 3D-CRT was undertaken in patients with esophageal SCC without distant metastases. Patients received 68.4 Gy in 41 fractions over 44 days using late-course accelerated hyperfractionated 3D-CRT. Only the primary tumor and positive lymph nodes were irradiated. Isolated out-of-field regional nodal recurrence was defined as a recurrence in an initially uninvolved regional lymph node. Results: All 53 patients who made up the study population tolerated the irradiation well. No acute or late Grade 4 or 5 toxicity was observed. The median survival time was 30 months (95% confidence interval, 17.7-41.8). The overall survival rate at 1, 2, and 3 years was 77%, 56%, and 41%, respectively. The local control rate at 1, 2, and 3 years was 83%, 74%, and 62%, respectively. Thirty-nine of the 53 patients (74%) showed treatment failure. Seventeen of the 39 (44%) developed an in-field recurrence, 18 (46%) distant metastasis with or without regional failure, and 3 (8%) an isolated out-of-field nodal recurrence only. One patient died of disease in an unknown location. Conclusions: In patients treated with 3D-CRT for esophageal SCC, the omission of elective nodal irradiation was not associated with a significant amount of failure in lymph node regions not included in the planning target volume. Local failure and distant metastases remained the predominant problems.
Disrupted Nodal and Hub Organization Account for Brain Network Abnormalities in Parkinson’s Disease
Koshimori, Yuko; Cho, Sang-Soo; Criaud, Marion; Christopher, Leigh; Jacobs, Mark; Ghadery, Christine; Coakeley, Sarah; Harris, Madeleine; Mizrahi, Romina; Hamani, Clement; Lang, Anthony E.; Houle, Sylvain; Strafella, Antonio P.
2016-01-01
The recent application of graph theory to brain networks promises to shed light on complex diseases such as Parkinson’s disease (PD). This study aimed to investigate functional changes in sensorimotor and cognitive networks in Parkinsonian patients, with a focus on inter- and intra-connectivity organization in the disease-associated nodal and hub regions using the graph theoretical analyses. Resting-state functional MRI data of a total of 65 participants, including 23 healthy controls (HCs) and 42 patients, were investigated in 120 nodes for local efficiency, betweenness centrality, and degree. Hub regions were identified in the HC and patient groups. We found nodal and hub changes in patients compared with HCs, including the right pre-supplementary motor area (SMA), left anterior insula, bilateral mid-insula, bilateral dorsolateral prefrontal cortex (DLPFC), and right caudate nucleus. In general, nodal regions within the sensorimotor network (i.e., right pre-SMA and right mid-insula) displayed weakened connectivity, with the former node associated with more severe bradykinesia, and impaired integration with default mode network regions. The left mid-insula also lost its hub properties in patients. Within the executive networks, the left anterior insular cortex lost its hub properties in patients, while a new hub region was identified in the right caudate nucleus, paralleled by an increased level of inter- and intra-connectivity in the bilateral DLPFC possibly representing compensatory mechanisms. These findings highlight the diffuse changes in nodal organization and regional hub disruption accounting for the distributed abnormalities across brain networks and the clinical manifestations of PD. PMID:27891090
EXTENSION OF THE 1D FOUR-GROUP ANALYTIC NODAL METHOD TO FULL MULTIGROUP
B. D. Ganapol; D. W. Nigg
2008-09-01
In the mid 80’s, a four-group/two-region, entirely analytical 1D nodal benchmark appeared. It was readily acknowledged that this special case was as far as one could go in terms of group number and still achieve an analytical solution. In this work, we show that by decomposing the solution to the multigroup diffusion equation into homogeneous and particular solutions, extension to any number of groups is a relatively straightforward exercise using the mathematics of linear algebra.
Atrioventricular Nodal Re-entry Tachycardia in Identical Twins: A Case Report and Literature Review
Barake, Walid; Caldwell, Jane; Baranchuk, Adrian
2013-01-01
This report details the case of 17 year old identical twins who both presented with paroxysmal supraventricular tachycardia (PSVT). Electrophysiological studies revealed atrioventricular nodal reentry tachycardia (AVNRT) in both twins. Successful but technically challenging slow pathway ablation was performed in both twins. This is the first reported case of confirmed AVNRT in identical twins which adds strong evidence to heritability of the dual AV node physiology and AVNRT. A review of the current literature regarding PSVT in monozygotic twins is provided. PMID:23329875
Ionic mechanisms involved in the nodal swelling of myelinated axons caused by marine toxins.
Benoit, Evelyne; Mattei, Cesar; Ouanounou, Gilles; Meunier, Frederic A; Suput, Dusan; Le Gall, Frederic; Marquais, Michel; Dechraoui, Marie Y; Molgo, Jordi
2002-01-01
This review describes the ionic mechanisms involved in the nodal swelling of frog myelinated axons caused by specific marine neurotoxins (ciguatoxins, brevetoxins, Conus consors toxin and equinatoxin-II), analysed using confocal laser scanning microscopy. We have focussed on toxins that either target neuronal voltage-dependent Na+ channels, or that form cation-selective pores and indirectly affect the functioning of the Na(+)-Ca(++)exchanger.
Raya, Ángel; Kawakami, Yasuhiko; Rodríguez-Esteban, Concepción; Büscher, Dirk; Koth, Christopher M.; Itoh, Tohru; Morita, Masanobu; Raya, R. Marina; Dubova, Ilir; Bessa, Joaquín Grego; de la Pompa, José Luis; Belmonte, Juan Carlos Izpisúa
2003-01-01
Left-sided expression of Nodal in the lateral plate mesoderm is a conserved feature necessary for the establishment of normal left–right asymmetry during vertebrate embryogenesis. By using gain- and loss-of-function experiments in zebrafish and mouse, we show that the activity of the Notch pathway is necessary and sufficient for Nodal expression around the node, and for proper left–right determination. We identify Notch-responsive elements in the Nodal promoter, and unveil a direct relationship between Notch activity and Nodal expression around the node. Our findings provide evidence for a mechanism involving Notch activity that translates an initial symmetry-breaking event into asymmetric gene expression. PMID:12730123
Uehara, Masayuki; Yashiro, Kenta; Takaoka, Katsuyoshi; Yamamoto, Masamichi; Hamada, Hiroshi
2009-01-01
The abundance of retinoic acid (RA) is determined by the balance between its synthesis by retinaldehyde dehydrogenase (RALDH) and its degradation by CYP26. In particular, the dynamic expression of three CYP26 genes controls the regional level of RA within the body. Pregastrulation mouse embryos express CYP26 but not RALDH. We now show that mice lacking all three CYP26 genes manifest duplication of the body axis as a result of expansion of the Nodal expression domain throughout the epiblast. Mouse Nodal was found to contain an RA-responsive element in intron 1 that is highly conserved among mammals. In the absence of CYP26, maternally derived RA activates Nodal expression in the entire epiblast of pregastrulation embryos via this element. These observations suggest that maternal RA must be removed by embryonic CYP26 for correct Nodal expression during embryonic patterning. PMID:19605690
A coarse-mesh nodal method-diffusive-mesh finite difference method
Joo, H.; Nichols, W.R.
1994-05-01
Modern nodal methods have been successfully used for conventional light water reactor core analyses where the homogenized, node average cross sections (XSs) and the flux discontinuity factors (DFs) based on equivalence theory can reliably predict core behavior. For other types of cores and other geometries characterized by tightly-coupled, heterogeneous core configurations, the intranodal flux shapes obtained from a homogenized nodal problem may not accurately portray steep flux gradients near fuel assembly interfaces or various reactivity control elements. This may require extreme values of DFs (either very large, very small, or even negative) to achieve a desired solution accuracy. Extreme values of DFs, however, can disrupt the convergence of the iterative methods used to solve for the node average fluxes, and can lead to a difficulty in interpolating adjacent DF values. Several attempts to remedy the problem have been made, but nothing has been satisfactory. A new coarse-mesh nodal scheme called the Diffusive-Mesh Finite Difference (DMFD) technique, as contrasted with the coarse-mesh finite difference (CMFD) technique, has been developed to resolve this problem. This new technique and the development of a few-group, multidimensional kinetics computer program are described in this paper.
NASA Astrophysics Data System (ADS)
Tsutsumi, Yasumasa; Nomoto, Takuya; Ikeda, Hiroaki; Machida, Kazushige
2016-12-01
We propose a spectroscopic method to identify the nodal gap structure in unconventional superconductors. This method is best suited for locating the horizontal line node and for pinpointing the isolated point nodes by measuring polar angle (θ ) resolved zero-energy density of states N (θ ) . This is measured by specific heat or thermal conductivity at low temperatures under a magnetic field. We examine a variety of uniaxially symmetric nodal structures, including point and/or line nodes with linear and quadratic dispersions, by solving the Eilenberger equation in vortex states. It is found that (a) the maxima of N (θ ) continuously shift from the antinodal to the nodal direction (θn) as a field increases accompanying the oscillation pattern reversal at low and high fields. Furthermore, (b) local minima emerge next to θn on both sides, except for the case of the linear point node. These features are robust and detectable experimentally. Experimental results of N (θ ) performed on several superconductors, UPd2Al3,URu2Si2,CuxBi2Se3 , and UPt3, are examined and commented on in light of the present theory.
Measurement of the Nodal Precession of WASP-33 b via Doppler Tomography
NASA Astrophysics Data System (ADS)
Johnson, Marshall C.; Cochran, William D.; Collier Cameron, Andrew; Bayliss, Daniel
2015-09-01
We have analyzed new and archival time series spectra taken six years apart during transits of the hot Jupiter WASP-33 b, and spectroscopically resolved the line profile perturbation caused by the Rossiter-McLaughlin effect. The motion of this line profile perturbation is determined by the path of the planet across the stellar disk, which we show to have changed between the two epochs due to nodal precession of the planetary orbit. We measured rates of change of the impact parameter and the sky-projected spin-orbit misalignment of {db}/{dt}={-0.0228}-0.0018+0.0050 {{yr}}-1 and dλ /{dt}={-0\\buildrel{\\circ}\\over{.} 487}-0.076+0.089 {{yr}}-1, respectively, corresponding to a rate of nodal precession of d{{Ω }}/{dt}=0\\buildrel{\\circ}\\over{.} {373}-0.083+0.031 {{yr}}-1. This is only the second measurement of nodal precession for a confirmed exoplanet transiting a single star. Finally, we used the rate of precession to set limits on the stellar gravitational quadrupole moment of 0.0054≤slant {J}2≤slant 0.035.
Anisotropic density fluctuations, plasmons, and Friedel oscillations in nodal line semimetal
NASA Astrophysics Data System (ADS)
Rhim, Jun-Won; Kim, Yong Baek
2016-04-01
Motivated by recent experimental efforts on three-dimensional semimetals, we investigate the static and dynamic density response of the nodal line semimetal by computing the polarizability for both undoped and doped cases. The nodal line semimetal in the absence of doping is characterized by a ring-shape zero energy contour in momentum space, which may be considered as a collection of Dirac points. In the doped case, the Fermi surface has a torus shape and two independent processes of the momentum transfer contribute to the singular features of the polarizability even though we only have a single Fermi surface. In the static limit, there exist two independent singularities in the second derivative of the static polarizability. This results in the highly anisotropic Friedel oscillations which show the angle-dependent algebraic power law and the beat phenomena in the oscillatory electron density near a charged impurity. Furthermore, the dynamical polarizability has two singular lines along {\\hslash }ω =γ p and {\\hslash }ω =γ p{sin}η , where η is the angle between the external momentum {p} and the plane where the nodal ring lies. From the dynamical polarizability, we obtain the plasmon modes in the doped case, which show anisotropic dispersions and angle-dependent plasma frequencies. Qualitative differences between the low and high doping regimes are discussed in light of future experiments.
Peng, Yingying; Meng, Jianqiao; Mou, Daixiang; He, Junfeng; Zhao, Lin; Wu, Yue; Liu, Guodong; Dong, Xiaoli; He, Shaolong; Zhang, Jun; Wang, Xiaoyang; Peng, Qinjun; Wang, Zhimin; Zhang, Shenjin; Yang, Feng; Chen, Chuangtian; Xu, Zuyan; Lee, T K; Zhou, X J
2013-01-01
The parent compound of the copper-oxide high-temperature superconductors is a Mott insulator. Superconductivity is realized by doping an appropriate amount of charge carriers. How a Mott insulator transforms into a superconductor is crucial in understanding the unusual physical properties of high-temperature superconductors and the superconductivity mechanism. Here we report high-resolution angle-resolved photoemission measurement on heavily underdoped Bi₂Sr₂-xLaxCuO(₆+δ) system. The electronic structure of the lightly doped samples exhibit a number of characteristics: existence of an energy gap along the nodal direction, d-wave-like anisotropic energy gap along the underlying Fermi surface, and coexistence of a coherence peak and a broad hump in the photoemission spectra. Our results reveal a clear insulator-superconductor transition at a critical doping level of ~0.10 where the nodal energy gap approaches zero, the three-dimensional antiferromagnetic order disappears, and superconductivity starts to emerge. These observations clearly signal a close connection between the nodal gap, antiferromagnetism and superconductivity.
Formin DAAM1 Organizes Actin Filaments in the Cytoplasmic Nodal Actin Network
Luo, Weiwei; Lieu, Zi Zhao; Manser, Ed; Bershadsky, Alexander D.; Sheetz, Michael P.
2016-01-01
A nodal cytoplasmic actin network underlies actin cytoplasm cohesion in the absence of stress fibers. We previously described such a network that forms upon Latrunculin A (LatA) treatment, in which formin DAAM1 was localized at these nodes. Knock down of DAAM1 reduced the mobility of actin nodes but the nodes remained. Here we have investigated DAAM1 containing nodes after LatA washout. DAAM1 was found to be distributed between the cytoplasm and the plasma membrane. The membrane binding likely occurs through an interaction with lipid rafts, but is not required for F-actin assembly. Interesting the forced interaction of DAAM1 with plasma membrane through a rapamycin-dependent linkage, enhanced F-actin assembly at the cell membrane (compared to the cytoplasm) after the LatA washout. However, immediately after addition of both rapamycin and LatA, the cytoplasmic actin nodes formed transiently, before DAAM1 moved to the membrane. This was consistent with the idea that DAAM1 was initially anchored to cytoplasmic actin nodes. Further, photoactivatable tracking of DAAM1 showed DAAM1 was immobilized at these actin nodes. Thus, we suggest that DAAM1 organizes actin filaments into a nodal complex, and such nodal complexes seed actin network recovery after actin depolymerization. PMID:27760153
Fuerschbach, Kyle; Rolland, Jannick P; Thompson, Kevin P
2012-08-27
This paper introduces the path forward for the integration of freeform optical surfaces, particularly those related to φ-polynomial surfaces, including Zernike polynomial surfaces, with nodal aberration theory. With this formalism, the performance of an optical system throughout the field of view can be anticipated analytically accounting for figure error, mount-induced errors, and misalignment. Previously, only misalignments had been described by nodal aberration theory, with the exception of one special case for figure error. As an example of these new results, three point mounting error that results in a Zernike trefoil deformation is studied for the secondary mirror of a two mirror and three mirror telescope. It is demonstrated that for the case of trefoil deformation applied to a surface not at the stop, there is the anticipated field constant contribution to elliptical coma (also called trefoil) as well as a newly identified field dependent contribution to astigmatism: field linear, field conjugate astigmatism. The magnitude of this astigmatic contribution varies linearly with the field of view; however, it has a unique variation in orientation with field that is described mathematically by a concept that is unique to nodal aberration theory known as the field conjugate vector.
Haissaguerre, M; Warin, J F; Lemetayer, P; Saoudi, N; Guillem, J P; Blanchot, P
1989-02-16
We applied a new technique of catheter ablation to treat atrioventricular nodal reentrant tachycardia and preserve anterograde conduction, performing this procedure in 21 patients with repetitive episodes of tachycardia refractory to antiarrhythmic drugs. Using atrial activation in the His-bundle lead as a reference, we selected the optimal site of ablation by positioning an electrode catheter so that atrial activation occurred simultaneously with or earlier than the reference activation during tachycardia. At this site, the His-bundle deflection was completely absent or was present only at a low amplitude (less than 0.1 mV). In the majority of patients, these criteria could be met by withdrawing the catheter 5 to 10 mm from the site of the His-bundle recording (adjacent to the reference catheter). Shocks of 160 or 240 J were delivered at this site (cumulative energy [mean +/- SD], 689 +/- 442 J). Treatment resulted in preferential abolition or impairment of retrograde nodal conduction. Anterograde conduction, although modified, was preserved in 19 patients; complete heart block persisted in 2 patients. Sixteen patients remained free of arrhythmia, without medication or implantation of a pacemaker, for a mean follow-up period of 14 +/- 8 months (range, 7 to 42). Tachycardia was not inducible in 14 patients in a follow-up electrophysiologic study performed 3.6 +/- 6 months after the procedure. We conclude that catheter ablation is an effective alternative for the treatment of atrioventricular nodal tachycardia in patients with drug-resistant tachycardia.
Nguyen, Dinh Q.; Sobczak, Henrik; Brandts, Bodo
2017-01-01
Most tachycardias in the pulmonary venous atrium are inaccessible by direct means and require either a retrograde approach or a transseptal approach for ablation. We present a case in which successful radiofrequency ablation of common atrioventricular nodal reentrant tachycardia was accomplished via a retrograde transaortic approach guided by nonfluoroscopic mapping with use of the NavX™ mapping system. The patient was a 49-year-old woman who at the age of 4 years had undergone Mustard repair for complete dextrotransposition of the great arteries. Three-dimensional reconstructions of the ascending aorta, right ventricle, systemic venous atrium, left ventricle, and superior vena cava–inferior vena cava baffle complex were created, and the left-sided His bundle was marked. After a failed attempt at ablation from the systemic venous side, we eliminated the atrioventricular nodal reentrant tachycardia by ablation from the pulmonary venous side. This case is, to our knowledge, the first report of successful radiofrequency ablation of common atrioventricular nodal reentrant tachycardia after Mustard repair for this congenital cardiac malformation in which ablation was guided by 3-dimensional nonfluoroscopic imaging. This imaging technique enabled accurate anatomic location of the ablation catheters in relation to the His bundle marked from the systemic venous side. PMID:28265215
Reticulin and NM23 staining in the interpretation of lymph nodal nevus rests.
Kanner, William A; Barry, Catherine I; Smart, Chandra N; Frishberg, David P; Binder, Scott W; Wick, Mark R
2013-06-01
Melanocytic nevus rests in lymph nodes are a known diagnostic challenge, especially in patients with a history of melanoma. Reticulin and NM23 have been studied in this context. The pattern of reticulin staining in melanomas surrounds groups/nests of melanocytes but individual cells in benign nevi. NM23, a metastasis-suppressor gene, has an association with metastatic potential in melanomas and some carcinomas. Twenty-eight cases (14 cases of metastatic melanoma to lymph nodes and 14 cases of lymph node nevus rests, all confirmed with Melan-A staining) were stained with reticulin and NM23. The pattern of reticulin staining was reported as surrounding groups if staining was noted in approximately 5-10 melanocytes in greater than 50% of the lesion but was otherwise reported as surrounding individual melanocytes. Cytoplasmic staining was considered to represent reactivity for NM23. Reticulin staining around groups of melanocytes was identified in all 14 cases of metastatic melanoma. Regarding nodal nevus rest cases, 12 of 14 cases (86%) demonstrated staining around individual melanocytes, whereas in 2 cases, reticulin surrounded melanocytic groups. NM23 staining was equivocal in all cases. Reticulin staining reliably invests groups of melanocytes in cases of metastatic melanoma, whereas in nodal nevus rests, it predominantly surrounds individual melanocytes. NM23 demonstrated no discriminatory value in this analysis. In cases in which a collection of melanocytes is present within a lymph node, reticulin deposition around individual melanocytes supports a diagnosis of lymph nodal nevus rest.
Developmental coordination disorder
... with visual or fine motor coordination (for example, writing, using scissors, tying shoelaces, or tapping one finger ... take notes may help children who have trouble writing. Children with developmental coordination disorder are more likely ...
Jani, S; Kishan, A; O'Connell, D; King, C; Steinberg, M; Low, D; Lamb, J
2014-06-01
Purpose: To investigate if pelvic nodal coverage for prostate patients undergoing intensity modulated radiotherapy (IMRT) can be predicted using mutual image information computed between planning and cone-beam CTs (CBCTs). Methods: Four patients with high-risk prostate adenocarcinoma were treated with IMRT on a Varian TrueBeam. Plans were designed such that 95% of the nodal planning target volume (PTV) received the prescription dose of 45 Gy (N=1) or 50.4 Gy (N=3). Weekly CBCTs (N=25) were acquired and the nodal clinical target volumes and organs at risk were contoured by a physician. The percent nodal volume receiving prescription dose was recorded as a ground truth. Using the recorded shifts performed by the radiation therapists at the time of image acquisition, CBCTs were aligned with the planning kVCT. Mutual image information (MI) was calculated between the CBCT and the aligned planning CT within the contour of the nodal PTV. Due to variable CBCT fields-of-view, CBCT images covering less than 90% of the nodal volume were excluded from the analysis, resulting in the removal of eight CBCTs. Results: A correlation coefficient of 0.40 was observed between the MI metric and the percent of the nodal target volume receiving the prescription dose. One patient's CBCTs had clear outliers from the rest of the patients. Upon further investigation, we discovered image artifacts that were present only in that patient's images. When those four images were excluded, the correlation improved to 0.81. Conclusion: This pilot study shows the potential of predicting pelvic nodal dosimetry by computing the mutual image information between planning CTs and patient setup CBCTs. Importantly, this technique does not involve manual or automatic contouring of the CBCT images. Additional patients and more robust exclusion criteria will help validate our findings.
Cognitive Personal Coordination Assistants
2005-03-01
of TÆMS [2, 7], DTC agent scheduling [16, 19, 12], GPGP agent coordination [2, 1, 6], and a similar approach to team coordination [17]. From the...a tactical TÆMS view, and how a Generalized Partial Global Planning ( GPGP ) coordination mechanism operates over the tactical views. Although we don’t...Norman Carver, Alan Garvey, Daniel Neiman, and Nagendra Prasad. Evolution of the GPGP Domain-Independent Coordination Framework. Computer Science
Bochev, Pavel Blagoveston
2011-06-01
We develop a new formulation of the Control Volume Finite Element Method (CVFEM) with a multidimensional Scharfetter-Gummel (SG) upwinding for the drift-diffusion equations. The formulation uses standard nodal elements for the concentrations and expands the flux in terms of the lowest-order Nedelec H(curl; {Omega})-compatible finite element basis. The SG formula is applied to the edges of the elements to express the Nedelec element degree of freedom on this edge in terms of the nodal degrees of freedom associated with the endpoints of the edge. The resulting upwind flux incorporates the upwind effects from all edges and is defined at the interior of the element. This allows for accurate evaluation of integrals on the boundaries of the control volumes for arbitrary quadrilateral elements. The new formulation admits efficient implementation through a standard loop over the elements in the mesh followed by loops over the element nodes (associated with control volume fractions in the element) and element edges (associated with flux degrees of freedom). The quantities required for the SG formula can be precomputed and stored for each edge in the mesh for additional efficiency gains. For clarity the details are presented for two-dimensional quadrilateral grids. Extension to other element shapes and three dimensions is straightforward.
Processing Coordination Ambiguity
ERIC Educational Resources Information Center
Engelhardt, Paul E.; Ferreira, Fernanda
2010-01-01
We examined temporarily ambiguous coordination structures such as "put the butter in the bowl and the pan on the towel." Minimal Attachment predicts that the ambiguous noun phrase "the pan" will be interpreted as a noun-phrase coordination structure because it is syntactically simpler than clausal coordination. Constraint-based…
NASA Technical Reports Server (NTRS)
Nothnagel, A.
2013-01-01
We present the IVS analysis coordination issues of 2012. The IVS Analysis Coordinator is responsible for generating and disseminating the official IVS products. This requires consistency of the input data by strict adherence to models and conventions. The term of the current IVS Analysis Coordinator will end on February 28, 2013.
Literacy Coordinators' Handbook.
ERIC Educational Resources Information Center
Department for Education and Skills, London (England).
This handbook is designed to provide support for England's National Literacy Strategy's Literacy Coordinators leading and coordinating literacy across the school. The handbook is designed as a working document and will contain additional materials, LEA (local education authorities) guidance, and additional papers which Coordinators may choose to…
New Variational Formulations of Hybrid Stress Elements
NASA Technical Reports Server (NTRS)
Pian, T. H. H.; Sumihara, K.; Kang, D.
1984-01-01
In the variational formulations of finite elements by the Hu-Washizu and Hellinger-Reissner principles the stress equilibrium condition is maintained by the inclusion of internal displacements which function as the Lagrange multipliers for the constraints. These versions permit the use of natural coordinates and the relaxation of the equilibrium conditions and render considerable improvements in the assumed stress hybrid elements. These include the derivation of invariant hybrid elements which possess the ideal qualities such as minimum sensitivity to geometric distortions, minimum number of independent stress parameters, rank sufficient, and ability to represent constant strain states and bending moments. Another application is the formulation of semiLoof thin shell elements which can yield excellent results for many severe test cases because the rigid body nodes, the momentless membrane strains, and the inextensional bending modes are all represented.
Formulation and application of Russell's method
NASA Technical Reports Server (NTRS)
Hou, J. W.
1985-01-01
It is shown that the numerical technique of Russell's momentum approach can be derived by using Hamilton's principle and Vance's numerical scheme. It results in a set of first order differnce equations for solving the angular velocities. The numerical examples show that the method is reliable. The algorithm is modified next to perform the analysis of N-body systems with closed loop topology. To increase the formulation flexibility, the equations of motion are represented by using Cartesian coordinates and Lagrange multipliers. The algorithm consists of two parts, Vance's scheme and an unconstrained minimization. The Vance's scheme is used to find the angular velocities, and the unconstrained minimization is applied to provide the correct angular displacements. The proposed scheme is further extended to find the design sensitivity of an N-body system with closed loop configuration, and to carry out the design optimization as well. The numerical example of a small-scaled mechanical system is presented to verify the proposed formulation.
Scale Invariant Gravity - a Simple Formulation
NASA Astrophysics Data System (ADS)
Wesson, P. S.
1981-09-01
Using the Cosmological Principle as justification, it is suggested that the scale-invariant theory of gravity be based on a Conspiracy Hypothesis (CH). The CH says: The matter parameters of a system (mass, density, pressure, etc.), the "constants" of physics and the coordinates occur together in dimensionless combinations (η-numbers) in which the components may vary but in such a manner that the variations conspire to keep the -numbers constant. This hypothesis yields a formulation of the scale-invariant theory that is simpler than other versions of it in which the Newtonian gravitational parameter G is treated as a field variable (Dirac, Hoyle/Narlikar, Canuto et al.). This simple formulation of scale-invariant gravity agrees with a recent reformulation of the (Perfect) Cosmological Principle. It also agrees with observations that have been made to date, and the equations suggest several new tests that can possibly be carried out.
Hypervelocity, minimum-radii, coordinated turns
NASA Technical Reports Server (NTRS)
Tauber, Michael E.
1990-01-01
An analytic solution is presented for the most basic powered-flight maneuver, consisting of a constant-altitude coordinated turn and expressions for minimum-turn radii; associated flight conditions are derived. It is shown that the formulation for hypervelocity turns differs from that for subsonic and hypersonic speeds. Illustrative calculations using approximate aerodynamics based on Newtonian theory are presented, and these demonstrate the differences of hypersonic flight conditions and their associated turning radii from those at lower speeds.
NASA Technical Reports Server (NTRS)
Song, Y. T.
1998-01-01
A Jacobian formulation of the pressure gradient force for use in models with topography following coordinates is proposed. It can be used in conjunction with any vertical coordinate system and is easily implemented.
Liposomal paclitaxel formulations.
Koudelka, Stěpán; Turánek, Jaroslav
2012-11-10
Over the past three decades, taxanes represent one of the most important new classes of drugs approved in oncology. Paclitaxel (PTX), the prototype of this class, is an anti-cancer drug approved for the treatment of breast and ovarian cancer. However, notwithstanding a suitable premedication, present-day chemotherapy employing a commercial preparation of PTX (Taxol®) is associated with serious side effects and hypersensitivity reactions. Liposomes represent advanced and versatile delivery systems for drugs. Generally, both in vivo mice tumor models and human clinical trials demonstrated that liposomal PTX formulations significantly increase a maximum tolerated dose (MTD) of PTX which outperform that for Taxol®. Liposomal PTX formulations are in various stages of clinical trials. LEP-ETU (NeoPharm) and EndoTAG®-1 (Medigene) have reached the phase II of the clinical trials; Lipusu® (Luye Pharma Group) has already been commercialized. Present achievements in the preparation of various liposomal formulations of PTX, the development of targeted liposomal PTX systems and the progress in clinical testing of liposomal PTX are discussed in this review summarizing about 30 years of liposomal PTX development.
Argañaraz, Martin Eduardo; Apichela, Silvana Andrea; Kenngott, Rebecca; Vermeheren, Margarethe; Rodler, Daniela; Palma, Gustavo Adolfo; Miceli, Dora Cristina; Sinowatz, Fred
2013-01-01
Members of TGF-β superfamily play a major role in the endometrial changes involved in the establishment and maintenance of pregnancy. Their deregulated expression and action could lead to absolute or partial failure of embryo implantation. Nonetheless, the precise function and mechanism of many of these cytokines remain unclear. Nodal, a transforming growth factor beta (TGF-β) superfamily member, was characterized in the human and rodent uterus and implicated in the tissue remodeling events during menstruation and embryo implantation. In order to study its possible role in the cattle reproductive process, we have analyzed Nodal expression pattern and localization in the oviduct and uterine horn during the oestrus cycle and early pregnancy (day 20). Nodal was detected both in oviduct and uterus during either the oestrus cycle or pregnancy; however, it shows a differential expression profile in the uterine horn at dioestrus and pregnancy, decreasing 1.5 and 1.4 folds in comparison with oestrus. Nodal immunostaining intensity was observed in stromal and in epithelial cells of the surface and the glandular epithelium. The staining pattern correlates with the RT-qPCR expression profile. This work is the first to evidence the presence of Nodal in the bovine reproductive tract; our data suggest that Nodal is a novel cytokine that would be involved in the remodelling occurring in the endometrium of cattle during the oestrus cycle and in the embryo implantation. The identification of new molecules that participate in endometrium cycling and/or pregnancy may be useful for predicting the ability of the uterine tissue to establish and maintain pregnancy or for detecting the infertility processes. These results highlight Nodal as a possible novel marker of the fertility process, nevertheless further studies should be done to determine its role in the reproductive system.
Integrated rate-dependent and dual pathway AV nodal functions: principles and assessment framework.
Billette, Jacques; Tadros, Rafik
2014-01-15
The atrioventricular (AV) node conducts slowly and has a long refractory period. These features sustain the filtering of atrial impulses and hence are often modulated to optimize ventricular rate during supraventricular tachyarrhythmias. The AV node is also the site of a clinically common reentrant arrhythmia. Its function is assessed for a variety of purposes from its responses to a premature protocol (S1S2, test beats introduced at different cycle lengths) repeatedly performed at different basic rates and/or to an incremental pacing protocol (increasingly faster rates). Puzzlingly, resulting data and interpretation differ with protocols as well as with chosen recovery and refractory indexes, and are further complicated by the presence of built-in fast and slow pathways. This problem applies to endocavitary investigations of arrhythmias as well as to many experimental functional studies. This review supports an integrated framework of rate-dependent and dual pathway AV nodal function that can account for these puzzling characteristics. The framework was established from AV nodal responses to S1S2S3 protocols that, compared with standard S1S2 protocols, allow for an orderly quantitative dissociation of the different factors involved in changes in AV nodal conduction and refractory indexes under rate-dependent and dual pathway function. Although largely based on data from experimental studies, the proposed framework may well apply to the human AV node. In conclusion, the rate-dependent and dual pathway properties of the AV node can be integrated within a common functional framework the contribution of which to individual responses can be quantitatively determined with properly designed protocols and analytic tools.
Scaling of Harmonic Oscillator Eigenfunctions and Their Nodal Sets Around the Caustic
NASA Astrophysics Data System (ADS)
Hanin, Boris; Zelditch, Steve; Zhou, Peng
2017-03-01
We study the scaling asymptotics of the eigenspace projection kernels Π_{hbar, E}(x,y) of the isotropic Harmonic Oscillator {hat{H}_{hbar} = - hbar^2 Δ +|x|^2} of eigenvalue {E = hbar(N + d/2)} in the semi-classical limit {hbar to 0} . The principal result is an explicit formula for the scaling asymptotics of Π_{hbar, E}(x,y) for x, y in a {hbar^{2/3}} neighborhood of the caustic C_E as {hbar → 0.} The scaling asymptotics are applied to the distribution of nodal sets of Gaussian random eigenfunctions around the caustic as {hbar to 0} . In previous work we proved that the density of zeros of Gaussian random eigenfunctions of {hat{H}_{hbar}} have different orders in the Planck constant {hbar} in the allowed and forbidden regions: In the allowed region the density is of order {hbar^{-1}} while it is {hbar^{-1/2}} in the forbidden region. Our main result on nodal sets is that the density of zeros is of order {hbar^{-2/3}} in an {hbar^{2/3}} -tube around the caustic. This tube radius is the `critical radius'. For annuli of larger inner and outer radii {hbar^{α}} with {0 < α < 2/3} we obtain density results that interpolate between this critical radius result and our prior ones in the allowed and forbidden region. We also show that the Hausdorff ( d-2)-dimensional measure of the intersection of the nodal set with the caustic is of order {hbar^{- 2/3}}.
Mirk, Paoletta; Treglia, Giorgio; Salsano, Marco; Basile, Pietro; Giordano, Alessandro; Bonomo, Lorenzo
2011-01-01
Aim. to compare 18F-Fluorodeoxyglucose positron emission tomography (FDG-PET) to sentinel lymph node biopsy (SLNB) for regional lymph nodal staging in patients with melanoma. Methods. We performed a literature review discussing original articles which compared FDG-PET to SLNB for regional lymph nodal staging in patients with melanoma. Results and Conclusions. There is consensus in the literature that FDG-PET cannot replace SLNB for regional lymph nodal staging in patients with melanoma. PMID:22242204
Formulations of entomopathogens as bioinsecticides
Technology Transfer Automated Retrieval System (TEKTRAN)
Developing a proper formulation is a necessary component for commercialization of entomopathogenic microbes as biological insecticides. The objective of this chapter is to present broad-ranging information about formulations to foster research toward developing commercial microbial-based insecticide...
NASA Technical Reports Server (NTRS)
Van Patten, R. A.; Everitt, C. W. F.
1975-01-01
In 1918, J. Lense and H. Thirring calculated that a moon in orbit around a massive rotating planet would experience a nodal dragging effect due to general relativity. We describe an experiment to measure this effect with two counter-orbiting drag-free satellites in polar earth orbit. For a 2 1/2 year experiment, the measurement accuracy should approach 1%. In addition to precision tracking data from existing ground stations, satellite-to-satellite Doppler ranging data are taken at points of passing near the poles. New geophysical information on both earth harmonics and tidal effects is inherent in the polar ranging data.
NASA Technical Reports Server (NTRS)
Wilson, Deborah A.; Weigel, Russell, C.; Wheeler, Raymond M.; Sager, John C.
1993-01-01
The effects of light spectral quality on the growth of in vitro nodal cutting of potato (Solanum tuberosum) cultivars Norland, Superior, Kennebec, and Denali were examined. The different light spectra were provided by Vita-Lite fluorescent (VF) (a white light control), blue fluorescent (BF), red fluorescent (RF), low-pressure sodium (LPS), and a combination of low-pressure sodium plus cool-white fluorescent lamp (LPS/CWF). Results suggested that shoot morphologic development of in vitro grown potato plants can be controlled by controlling irradiant spectral quality.
Evaluation of a Stirling engine heater bypass with the NASA Lewis nodal-analysis performance code
Sullivan, T.J.
1986-05-01
In support of the US Department of Energy's Stirling Engine Highway Vehicle Systems program, the NASA Lewis Research Center investigated whether bypassing the P-40 Stirling engine heater during regenerative cooling would improve the engine thermal efficiency. The investigation was accomplished by using the Lewis nodal-analysis Stirling engine computer model. Bypassing the P-40 Stirling engine heater at full power resulted in a rise in the indicated thermal efficiency from 40.6 to 41.0 percent. For the idealized (some losses not included) heater bypass that was analyzed, this benefit is not considered significant.
Statistics of nodal points of in-plane random waves in elastic media.
Maksimov, Dmitrii N; Sadreev, Almas F
2008-05-01
We consider the nodal points (NPs) u=0 and v=0 of the in-plane vectorial displacements u=(u,v) which obey the Navier-Cauchy equation. Similar to the Berry conjecture of quantum chaos, we present the in-plane eigenstates of chaotic billiards as the real part of the superposition of longitudinal and transverse plane waves with random phases. By an average over random phases we derive the mean density and correlation function of NPs. Consequently we consider the distribution of the nearest distances between NPs.
PoroTomo Subtask 6.3 Nodal Seismometer Earthquake Data
Kurt Feigl
2016-03-21
90-second records of data from 238 three-component nodal seismometer deployed at Bradys geothermal field. The time window catches an earthquake arrival. Earthquake data from USGS online catalog: Magnitude: 4.3 ml Â± 0.4 Location: 38.479Â°N 118.366Â°W Â± 0.7 km Depth: 9.9 km Â± 0.7 Date and Time: 2016-03-21 07:37:10.535 UTC http://earthquake.usgs.gov/earthquakes/eventpage/nn00536374#executive
Nodal quasiparticles and the onset of spin-density-wave order in cuprate superconductors.
Pelissetto, Andrea; Sachdev, Subir; Vicari, Ettore
2008-07-11
We present a theory for the onset of spin-density-wave order in the superconducting ground state of the cuprates. We compute the scaling dimensions of allowed perturbations of a "relativistic" fixed point with O4 x O(3) symmetry, including those associated with the fermionic nodal Bogoliubov quasiparticles. Analyses of up to six loops show that all perturbations with square lattice symmetry are likely irrelevant. We demonstrate that the fermion spectral functions are primarily damped by the coupling to fluctuations of a composite field with Ising nematic order. A number of other experimental implications are also discussed.
Shuttle program. MCC Level C formulation requirements: Entry guidance and entry autopilot
NASA Technical Reports Server (NTRS)
Harpold, J. C.; Hill, O.
1980-01-01
A set of preliminary entry guidance and autopilot software formulations is presented for use in the Mission Control Center (MCC) entry processor. These software formulations meet all level B requirements. Revision 2 incorporates the modifications required to functionally simulate optimal TAEM targeting capability (OTT). Implementation of this logic in the MCC must be coordinated with flight software OTT implementation and MCC TAEM guidance OTT. The entry guidance logic is based on the Orbiter avionics entry guidance software. This MCC requirements document contains a definition of coordinate systems, a list of parameter definitions for the software formulations, a description of the entry guidance detailed formulation requirements, a description of the detailed autopilot formulation requirements, a description of the targeting routine, and a set of formulation flow charts.
Analytical and Characterization Studies of Organic Chemicals, Drugs, and Drug Formulation
2011-11-21
of the bulk drugs, drug products, to determine their stability under defined conditions, to prepare formulations of bulk drugs for biological...testing, and to coordinate ongoing stability studies on an artesunate dosage form with a subcontractor. 15. SUBJECT TERMS Anti-Parasitic Drugs, Chemical...Defense Agents, Chemical Analyses, Stability Studies, Formulation Development 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18
Gong, Yuehua; Guo, Ying; Hai, Yanan; Yang, Hao; Liu, Yang; Yang, Shi; Zhang, Zhenzhen; Ma, Meng; Liu, Linhong; Li, Zheng; He, Zuping
2014-01-01
Colorectal cancer is one of the most common and fatal tumors. However, molecular mechanisms underlying carcinogenesis of colorectal cancer remain largely undefined. Here, we explored the expression and function of Nodal in colon cancer stem cells (CCSCs). Nodal and its receptors were present in numerous human colorectal cancer cell lines. NODAL and ALK-4 were coexpressed in human colon cancerous tissues, and NODAL, CD24, and CD44, markers for CCSCs, were expressed at higher levels in human colon cancerous tissues than adjacent noncancerous colon tissues. Human CCSCs were isolated by magnetic activated cell sorting using anti-CD24 and anti-CD44. Nodal transcript and protein were hardly detectable in CD44- or CD24-negative human colorectal cancer cell lines, whereas Nodal and its receptors were present in CCSCs. Notably, Nodal facilitated spheroid formation of human CCSCs, and phosphorylation of Smad2 and Smad3 was activated by Nodal in cells of spheres derived from human CCSCs. Collectively, these results suggest that Nodal promotes the self-renewal of human CCSCs and mediate carcinogenesis of human colorectal cancer via an autocrine manner through Smad2/3 pathway. This study provides a novel insight into molecular mechanisms controlling fate of human CCSCs and offers new targets for gene therapy of human colorectal cancer.
Brown, Stephanie; Teo, Adrian; Pauklin, Siim; Hannan, Nicholas; Cho, Candy H-H; Lim, Bing; Vardy, Leah; Dunn, N Ray; Trotter, Matthew; Pedersen, Roger; Vallier, Ludovic
2011-08-01
Activin/Nodal signaling is necessary to maintain pluripotency of human embryonic stem cells (hESCs) and to induce their differentiation toward endoderm. However, the mechanisms by which Activin/Nodal signaling achieves these opposite functions remain unclear. To unravel these mechanisms, we examined the transcriptional network controlled in hESCs by Smad2 and Smad3, which represent the direct effectors of Activin/Nodal signaling. These analyses reveal that Smad2/3 participate in the control of the core transcriptional network characterizing pluripotency, which includes Oct-4, Nanog, FoxD3, Dppa4, Tert, Myc, and UTF1. In addition, similar experiments performed on endoderm cells confirm that a broad part of the transcriptional network directing differentiation is downstream of Smad2/3. Therefore, Activin/Nodal signaling appears to control divergent transcriptional networks in hESCs and in endoderm. Importantly, we observed an overlap between the transcriptional network downstream of Nanog and Smad2/3 in hESCs; whereas, functional studies showed that both factors cooperate to control the expression of pluripotency genes. Therefore, the effect of Activin/Nodal signaling on pluripotency and differentiation could be dictated by tissue specific Smad2/3 partners such as Nanog, explaining the mechanisms by which signaling pathways can orchestrate divergent cell fate decisions.
Evidence of Topological Nodal-Line Fermions in ZrSiSe and ZrSiTe
NASA Astrophysics Data System (ADS)
Hu, Jin; Tang, Zhijie; Liu, Jinyu; Liu, Xue; Zhu, Yanglin; Graf, David; Myhro, Kevin; Tran, Son; Lau, Chun Ning; Wei, Jiang; Mao, Zhiqiang
2016-07-01
A Dirac nodal-line semimetal phase, which represents a new quantum state of topological materials, has been experimentally realized only in a few systems, including PbTaSe2 , PtSn4 , and ZrSiS. In this Letter, we report evidence of nodal-line fermions in ZrSiSe and ZrSiTe probed in de Haas-van Alphen quantum oscillations. Although ZrSiSe and ZrSiTe share a similar layered structure with ZrSiS, our studies show the Fermi surface (FS) enclosing a Dirac nodal line has a 2D character in ZrSiTe, in contrast with 3D-like FS in ZrSiSe and ZrSiS. Another important property revealed in our experiment is that the nodal-line fermion density in this family of materials (˜1020 cm-3 ) is much higher than the Dirac fermion density of other topological materials with discrete nodes. In addition, we have demonstrated ZrSiSe and ZrSiTe single crystals can be thinned down to 2D atomic thin layers through microexfoliation, which offers the first platform to explore exotic properties of topological nodal-line fermions in low dimensions.
Evidence of Topological Nodal-Line Fermions in ZrSiSe and ZrSiTe.
Hu, Jin; Tang, Zhijie; Liu, Jinyu; Liu, Xue; Zhu, Yanglin; Graf, David; Myhro, Kevin; Tran, Son; Lau, Chun Ning; Wei, Jiang; Mao, Zhiqiang
2016-07-01
A Dirac nodal-line semimetal phase, which represents a new quantum state of topological materials, has been experimentally realized only in a few systems, including PbTaSe_{2}, PtSn_{4}, and ZrSiS. In this Letter, we report evidence of nodal-line fermions in ZrSiSe and ZrSiTe probed in de Haas-van Alphen quantum oscillations. Although ZrSiSe and ZrSiTe share a similar layered structure with ZrSiS, our studies show the Fermi surface (FS) enclosing a Dirac nodal line has a 2D character in ZrSiTe, in contrast with 3D-like FS in ZrSiSe and ZrSiS. Another important property revealed in our experiment is that the nodal-line fermion density in this family of materials (∼10^{20} cm^{-3}) is much higher than the Dirac fermion density of other topological materials with discrete nodes. In addition, we have demonstrated ZrSiSe and ZrSiTe single crystals can be thinned down to 2D atomic thin layers through microexfoliation, which offers the first platform to explore exotic properties of topological nodal-line fermions in low dimensions.
Castellanos, A; Agha, A S; Mendoza, I J; Sung, R J
1977-01-01
Invasive electrophysiological studies were performed in 2 symptomatic patients with recurrent arrhythmias in which impulse formation presumably occured within atrioventricular nodal bypass tracts. Case 1 had ectopic beats arising within, or close to, the upper end of a left-sided atrioventricular nodal bypass tract of the type described by Brechenmacher. In addition, this conduction was 'concealed' during sinus rhythm and right atrial pacing because the relatively prolonged right-to-left atrial conduction time allowed right atrial impulses to reach the His bundle via the atrioventricular node before they could do so through the atrioventricular nodal bypass tract. Case 2 had ectopic beats arising in a right-sided atrioventricular nodal bypass tract which did not conduct in either forward or retrograde directions, its presence being detected only when initiating impulses. However, it could not be determined whether this tract was an 'abnormal' atrio-His connection or a 'normal' transitional (atrio-atrioventricular nodal) tract. Though intracardiac studies complement body surface recordings, they should be interpreted with knowledge of their inherent limitations. PMID:884022
Body-oriented coordinates applied to the finite-element method
Cook, W.A.
1986-10-01
The objective of this research is to increase the accuracy of the finite-element method using coordinates intrinsic to the shape of the body being analyzed. We refer to these coordinates as body coordinates. Existing finite elements use Cartesian coordinates and are more accurate for solving rectangular-shaped problems than for solving nonrectangular-shaped problems. To check the feasibility of this research, we developed finite-element codes that used both cylindrical and Cartesian coordinates to solve problems in which the bodies were cylindrical-shaped. We obtained the most accurate solutions using the code that used cylindrical coordinates. Body coordinates become Cartesian coordinates for rectangular-shaped bodies and cylindrical coordinates for circular-shaped bodies. The body coordinate's finite-element formulation uses coordinate transformations from the body to the Cartesian coordinates. These transformations are developed using blending functions and boundary functions. Gradients of the Cartesian coordinates, with respect to body coordinates, are needed for stiffness calculations. Thus, the criterion for the blending function derivation is ''the nearest boundaries dominate,'' both for coordinate transformations and for gradient of coordinate transformations. For our studies, we developed two codes, one that uses body coordinates and one that uses Cartesian coordinates. These codes have been used to solve six example problems. 7 refs., 14 figs.
A Finite Layer Formulation for Groundwater Flow to Horizontal Wells.
Xu, Jin; Wang, Xudong
2016-09-01
A finite layer approach for the general problem of three-dimensional (3D) flow to horizontal wells in multilayered aquifer systems is presented, in which the unconfined flow can be taken into account. The flow is approximated by an integration of the standard finite element method in vertical direction and the analytical techniques in the other spatial directions. Because only the vertical discretization is involved, the horizontal wells can be completely contained in one specific nodal plane without discretization. Moreover, due to the analytical eigenfunctions introduced in the formulation, the weighted residual equations can be decoupled, and the formulas for the global matrices and flow vector corresponding to horizontal wells can be obtained explicitly. Consequently, the bandwidth of the global matrices and computational cost rising from 3D analysis can be significantly reduced. Two comparisons to the existing solutions are made to verify the validity of the formulation, including transient flow to horizontal wells in confined and unconfined aquifers. Furthermore, an additional numerical application to horizontal wells in three-layered systems is presented to demonstrate the applicability of the present method in modeling flow in more complex aquifer systems.
Toxicity of agrochemical formulations.
Carmichael, Neil G
2005-01-01
Most agrochemicals have physicochemical properties that make it impractical to apply them directly to crops and other targets. It is necessary to provide a concentrate of the active ingredient, to which formulation agents have been added to allow dilution with water for spraying. These ingredients perform several functions, including emulsifying, solubilizing, antifoaming, and the like. The properties of these materials are not intended to include pesticidal activity. However, some of these materials may have intrinsic toxicologic properties that should be taken into account in an overall evaluation of the safety of the product. In agriculture, exposure to these materials is sporadic and seasonal. The testing of the complete formulation is based on the evaluation of this risk, and it is concentrated on the evaluation of the short-term exposure to the concentrated product. Many of these substances are rather banal and are generally regarded as safe. Exceptions to this rule do exist, particularly concerning solvents; in such cases a fuller data package is necessary to perform risk assessment.
Coordinate Structures in English.
ERIC Educational Resources Information Center
Meyer, Charles F.
1996-01-01
Examines comparable speech and writing samples in the British and American components of the International Corpus of English (ICE) to study properties of coordinate structures in English. Findings indicate that "and" is a primary coordinator, that "but" and "or" are more peripheral, and that the concept of…
The collective coordinates Jacobian
NASA Astrophysics Data System (ADS)
Schwartz, Moshe; Vinograd, Guy
2002-05-01
We develop an expansion for the Jacobian of the transformation from particle coordinates to collective coordinates. As a demonstration, we use the lowest order of the expansion in conjunction with a variational principle to obtain the Percus Yevick equation for a monodisperse hard sphere system and the Lebowitz equations for a polydisperse hard sphere system.
Gorman, Jamie C; Amazeen, Polemnia G; Cooke, Nancy J
2010-07-01
Team coordination consists of both the dynamics of team member interaction and the environmental dynamics to which a team is subjected. Focusing on dynamics, an approach is developed that contrasts with traditional aggregate-static concepts of team coordination as characterized by the shared mental model approach. A team coordination order parameter was developed to capture momentary fluctuations in coordination. Team coordination was observed in three-person uninhabited air vehicle teams across two experimental sessions. The dynamics of the order parameter were observed under changes of a team familiarity control parameter. Team members returned for the second session to either the same (Intact) or different (Mixed) team. 'Roadblock' perturbations, or novel changes in the task environment, were introduced in order to probe the stability of team coordination. Nonlinear dynamic methods revealed differences that a traditional approach did not: Intact and Mixed team coordination dynamics looked very different; Mixed teams were more stable than Intact teams and explored the space of solutions without the need for correction. Stability was positively correlated with the number of roadblock perturbations that were overcome successfully. The novel and non-intuitive contribution of a dynamical analysis was that Mixed teams, who did not have a long history working together, were more adaptive. Team coordination dynamics carries new implications for traditional problems such as training adaptive teams.
IVS Technology Coordinator Report
NASA Technical Reports Server (NTRS)
Whitney, Alan
2013-01-01
This report of the Technology Coordinator includes the following: 1) continued work to implement the new VLBI2010 system, 2) the 1st International VLBI Technology Workshop, 3) a VLBI Digital- Backend Intercomparison Workshop, 4) DiFX software correlator development for geodetic VLBI, 5) a review of progress towards global VLBI standards, and 6) a welcome to new IVS Technology Coordinator Bill Petrachenko.
ERIC Educational Resources Information Center
Varlet, Manuel; Marin, Ludovic; Lagarde, Julien; Bardy, Benoit G.
2011-01-01
The goal of the current study was to investigate whether a visual coupling between two people can produce spontaneous interpersonal postural coordination and change their intrapersonal postural coordination involved in the control of stance. We examined the front-to-back head displacements of participants and the angular motion of their hip and…
Transition Coordinators: Define Yourselves.
ERIC Educational Resources Information Center
Asselin, Susan B.; Todd-Allen, Mary; deFur, Sharon
1998-01-01
Describes a technique that was used successfully to identify the changing roles and responsibilities of special educators as transition coordinators. The Developing a Curriculum (DACUM) model uses people who are currently working in the occupation to define job responsibilities. The duties of a transition coordinator are identified. (CR)
Oyster Creek cycle 10 nodal model parameter optimization study using PSMS
Dougher, J.D.
1987-01-01
The power shape monitoring system (PSMS) is an on-line core monitoring system that uses a three-dimensional nodal code (NODE-B) to perform nodal power calculations and compute thermal margins. The PSMS contains a parameter optimization function that improves the ability of NODE-B to accurately monitor core power distributions. This functions iterates on the model normalization parameters (albedos and mixing factors) to obtain the best agreement between predicted and measured traversing in-core probe (TIP) reading on a statepoint-by-statepoint basis. Following several statepoint optimization runs, an average set of optimized normalization parameters can be determined and can be implemented into the current or subsequent cycle core model for on-line core monitoring. A statistical analysis of 19 high-power steady-state state-points throughout Oyster Creek cycle 10 operation has shown a consistently poor virgin model performance. The normalization parameters used in the cycle 10 NODE-B model were based on a cycle 8 study, which evaluated only Exxon fuel types. The introduction of General Electric (GE) fuel into cycle 10 (172 assemblies) was a significant fuel/core design change that could have altered the optimum set of normalization parameters. Based on the need to evaluate a potential change in the model normalization parameters for cycle 11 and in an attempt to account for the poor cycle 10 model performance, a parameter optimization study was performed.
Inland waterway ports nodal attraction indices relevant in development strategies on regional level
NASA Astrophysics Data System (ADS)
Dinu, O.; Burciu, Ş.; Oprea, C.; Ilie, A.; Rosca, M.
2016-08-01
Present paper aims to propose a set of ranking indices and related criteria, concerning mainly spatial analysis, for the inland waterway port, with special view on inland ports of Danube. Commonly, the attraction potential of a certain transport node is assessed by its spatial accessibility indices considering both spatial features of the location provided by the networks that connect into that node and its economic potential defining the level of traffic flows depending on the economic centers of its hinterland. Paper starts with a overview of the critical needs that are required for potential sites to become inland waterway ports and presents nodal functions that coexist at different levels, leading to a port hierarchy from the points of view of: capacity, connection to hinterland, traffic structure and volume. After a brief review of the key inland waterway port ranking criterion, a selection of nodal attraction measures is made. Particular considerations for the Danube inland port case follows proposed methodology concerning indices of performance for network scale and centrality. As expected, the shorter the distance from an inland port to the nearest access point the greater accessibility. Major differences in ranking, dependent on selected criterion, were registered.
Cooperative Wnt-Nodal Signals Regulate the Patterning of Anterior Neuroectoderm
Yaguchi, Junko; Takeda, Noriyo; Inaba, Kazuo; Yaguchi, Shunsuke
2016-01-01
When early canonical Wnt is experimentally inhibited, sea urchin embryos embody the concept of a Default Model in vivo because most of the ectodermal cell fates are specified as anterior neuroectoderm. Using this model, we describe here how the combination of orthogonally functioning anteroposterior Wnt and dorsoventral Nodal signals and their targeting transcription factors, FoxQ2 and Homeobrain, regulates the precise patterning of normal neuroectoderm, of which serotonergic neurons are differentiated only at the dorsal/lateral edge. Loss-of-function experiments revealed that ventral Nodal is required for suppressing the serotonergic neural fate in the ventral side of the neuroectoderm through the maintenance of foxQ2 and the repression of homeobrain expression. In addition, non-canonical Wnt suppressed homeobrain in the anterior end of the neuroectoderm, where serotonergic neurons are not differentiated. Canonical Wnt, however, suppresses foxQ2 to promote neural differentiation. Therefore, the three-dimensionally complex patterning of the neuroectoderm is created by cooperative signals, which are essential for the formation of primary and secondary body axes during embryogenesis. PMID:27101101
Misalignment-induced nodal aberration fields in two-mirror astronomical telescopes.
Schmid, Tobias; Thompson, Kevin P; Rolland, Jannick P
2010-06-01
We present the effects of misalignments on the field dependence of the third-order aberration fields of traditional, two-mirror astronomical telescopes in the context of nodal aberration theory, which we believe is the most general and extensible framework for describing and improving on-station performance. While many of the advantages of nodal aberration theory, compared to other, often power series expansion-based descriptions of misalignment effects on aberrations, become particularly important when analyzing telescopes with more than two mirrors, or in the presence of figure errors; this paper aims to provide and demonstrate the fundamental concepts needed to fully describe the state of correction of misaligned two-mirror telescopes. Importantly, it is shown that the assumption that perfect performance on axis ensures a fully aligned telescope is false, and we demonstrate that if Ritchey-Chrétien telescopes are aligned for zero coma on axis as the sole criterion, formidable misalignments will likely remain, leading to image quality degradation, particularly beyond midfield caused by astigmatism with binodal field dependence (i.e., astigmatism goes to zero at two points in the field).
Reflector modelling of small high leakage cores making use of multi-group nodal equivalence theory
Theron, S. A.; Reitsma, F.
2012-07-01
This research focuses on modelling reflectors in typical material testing reactors (MTRs). Equivalence theory is used to homogenise and collapse detailed transport solutions to generate equivalent nodal parameters and albedo boundary conditions for reflectors, for subsequent use in full core nodal diffusion codes. This approach to reflector modelling has been shown to be accurate for two-group large commercial light water reactor (LWR) analysis, but has not been investigated for MTRs. MTRs are smaller, with much larger leakage, environment sensitivity and multi-group spectrum dependencies than LWRs. This study aims to determine if this approach to reflector modelling is an accurate and plausible homogenisation technique for the modelling of small MTR cores. The successful implementation will result in simplified core models, better accuracy and improved efficiency of computer simulations. Codes used in this study include SCALE 6.1, OSCAR-4 and EQUIVA (the last two codes are developed and used at Necsa). The results show a five times reduction in calculational time for the proposed reduced reactor model compared to the traditional explicit model. The calculated equivalent parameters however show some sensitivity to the environment used to generate them. Differences in the results compared to the current explicit model, require more careful investigation including comparisons with a reference result, before its implementation can be recommended. (authors)
Deserno, Willem M.L.L.G.; Debats, Oscar A.; Rozema, Tom; Fortuin, Ansje S.; Heesakkers, Roel A.M.; Hoogeveen, Yvonne; Peer, Petronella G.M.; Barentsz, Jelle O.; Lin, Emile N.J.T. van
2011-09-01
Purpose: To compare the nodal risk formula (NRF) as a predictor for lymph node (LN) metastasis in patients with prostate cancer with magnetic resonance lymphography (MRL) using Ultrasmall Super-Paramagnetic particles of Iron Oxide (USPIO) and with histology as gold standard. Methods and Materials: Logistic regression analysis was performed with the results of histopathological evaluation of the LN as dependent variable and the nodal risk according to the NRF and the result of MRL as independent input variables. Receiver operating characteristic (ROC) analysis was performed to assess the performance of the models. Results: The analysis included 375 patients. In the single-predictor regression models, the NRF and MRL results were both significantly (p <0.001) predictive of the presence of LN metastasis. In the models with both predictors included, NRF was nonsignificant (p = 0.126), but MRL remained significant (p <0.001). For NRF, sensitivity was 0.79 and specificity was 0.38; for MRL, sensitivity was 0.82 and specificity was 0.93. After a negative MRL result, the probability of LN metastasis is 4% regardless of the NRF result. After a positive MRL, the probability of having LN metastasis is 68%. Conclusions: MRL is a better predictor of the presence of LN metastasis than NRF. Using only the NRF can lead to a significant overtreatment on the pelvic LN by radiation therapy. When the MRL result is available, the NRF is no longer of added value.
A generalized framework for nodal first derivative summation-by-parts operators
NASA Astrophysics Data System (ADS)
Del Rey Fernández, David C.; Boom, Pieter D.; Zingg, David W.
2014-06-01
A generalized framework is presented that extends the classical theory of finite-difference summation-by-parts (SBP) operators to include a wide range of operators, where the main extensions are (i) non-repeating interior point operators, (ii) nonuniform nodal distribution in the computational domain, (iii) operators that do not include one or both boundary nodes. Necessary and sufficient conditions are proven for the existence of nodal approximations to the first derivative with the SBP property. It is proven that the positive-definite norm matrix of each SBP operator must be associated with a quadrature rule; moreover, given a quadrature rule there exists a corresponding SBP operator, where for diagonal-norm SBP operators the weights of the quadrature rule must be positive. The generalized framework gives a straightforward means of posing many known approximations to the first derivative as SBP operators; several are surveyed, such as discontinuous Galerkin discretizations based on the Legendre-Gauss quadrature points, and shown to be SBP operators. Moreover, the new framework provides a method for constructing SBP operators by starting from quadrature rules; this is illustrated by constructing novel SBP operators from known quadrature rules. To demonstrate the utility of the generalization, the Legendre-Gauss and Legendre-Gauss-Radau quadrature points are used to construct SBP operators that do not include one or both boundary nodes.
Successful catheter ablation of a slow AV-nodal pathway from the left posteroseptal region.
Wieczorek, M; Höltgen, R; Djajadisastra, I
2005-08-01
We present the case of a 44 year old woman with recurrent episodes of supraventricular tachycardia due to AV-nodal reentry (AVNRT). She was refractory to conventional medical treatment and referred to our hospital with the view to catheter ablation of the slow AV-nodal pathway. AVNRT of the common type was easily induced performing stimulation from the high right atrium and proximal coronary sinus. Other forms of supraventricular tachycardia were definitely ruled out during further electrophysiologic study. Repetitive RF applications around the right posteroseptal region failed to cure the tachycardia which remained inducible with a typical jump in the AH interval. Extensive RF applications from posteroinferior to the midseptum including the area of the proximal coronary sinus and its os were ineffective as well.AVNRT was transiently but reproducibly eliminated while burns were applied to the high midseptum but AVNRT reoccured within 20 minutes. Finally after retrograde passage of the aortic valve with a 4 mm tip ablation catheter, RF was applied to the left postero to midseptal region. An accelerated junctional rhythm was immediately observed and AVNRT remained non-inducible from that time onwards. It is concluded that an atypical posterior extension of the AV node with predominant leftatrial course might be responsible for this unusual success of slow pathway elimination from left posteroseptal.
Conservation defines functional motifs in the squint/nodal-related 1 RNA dorsal localization element
Gilligan, Patrick C.; Kumari, Pooja; Lim, Shimin; Cheong, Albert; Chang, Alex; Sampath, Karuna
2011-01-01
RNA localization is emerging as a general principle of sub-cellular protein localization and cellular organization. However, the sequence and structural requirements in many RNA localization elements remain poorly understood. Whereas transcription factor-binding sites in DNA can be recognized as short degenerate motifs, and consensus binding sites readily inferred, protein-binding sites in RNA often contain structural features, and can be difficult to infer. We previously showed that zebrafish squint/nodal-related 1 (sqt/ndr1) RNA localizes to the future dorsal side of the embryo. Interestingly, mammalian nodal RNA can also localize to dorsal when injected into zebrafish embryos, suggesting that the sequence motif(s) may be conserved, even though the fish and mammal UTRs cannot be aligned. To define potential sequence and structural features, we obtained ndr1 3′-UTR sequences from approximately 50 fishes that are closely, or distantly, related to zebrafish, for high-resolution phylogenetic footprinting. We identify conserved sequence and structural motifs within the zebrafish/carp family and catfish. We find that two novel motifs, a single-stranded AGCAC motif and a small stem-loop, are required for efficient sqt RNA localization. These findings show that comparative sequencing in the zebrafish/carp family is an efficient approach for identifying weak consensus binding sites for RNA regulatory proteins. PMID:21149265
The lunar nodal tide and the distance to tne Moon during the Precambrian era
NASA Technical Reports Server (NTRS)
Walker, J. C. G.; Zahnle, K. J.
1986-01-01
The origin and early evolution of life on Earth occurred under physical and chemical conditions distinctly different from those of the present day. The broad goal of this research program is to characterize these conditions. One aspect involves the dynamics of the Earth-Moon system, the distance of the Moon from the Earth, and the length of the day. These have evolved during the course of Earth history as a result of the dissipation of tidal energy. As the moon has receded the amplitude of oceanic tides has decreased while the increasing length of the day should have influenced climate and the circulation of atmosphere and ocean. A 23.3 year periodicity preserved in a 2500 million year old banded iron-formation was interpreted as reflecting the climatic influence of the lunar nodal tide. The corresponding lunar distance would then have been approx. 52 Earth radii. The influence of the lunar nodal tide is also apparent in rocks with an age of 680 million years B.P. The derived value for lunar distance 2500 million years ago is the only datum on the dynamics of the Earth-Moon system during the Precambrian era of Earth history. The implied development of Precambrian tidal friction is in accord with more recent paleontological evidence as well as the long term stability of the lunar orbit.
Nodal bilayer-splitting controlled by spin-orbit interactions in underdoped high-Tc cuprates
Harrison, N.; Ramshaw, B. J.; Shekhter, A.
2015-01-01
The highest superconducting transition temperatures in the cuprates are achieved in bilayer and trilayer systems, highlighting the importance of interlayer interactions for high Tc. It has been argued that interlayer hybridization vanishes along the nodal directions by way of a specific pattern of orbital overlap. Recent quantum oscillation measurements in bilayer cuprates have provided evidence for a residual bilayer-splitting at the nodes that is sufficiently small to enable magnetic breakdown tunneling at the nodes. Here we show that several key features of the experimental data can be understood in terms of weak spin-orbit interactions naturally present in bilayer systems, whose primary effect is to cause the magnetic breakdown to be accompanied by a spin flip. These features can now be understood to include the equidistant set of three quantum oscillation frequencies, the asymmetry of the quantum oscillation amplitudes in c-axis transport compared to ab-plane transport, and the anomalous magnetic field angle dependence of the amplitude of the side frequencies suggestive of small effective g-factors. We suggest that spin-orbit interactions in bilayer systems can further affect the structure of the nodal quasiparticle spectrum in the superconducting phase. PACS numbers: 71.45.Lr, 71.20.Ps, 71.18.+y PMID:26039222
2012-01-01
Background Radiotherapy (RT) is widely used in the treatment of pancreatic cancer. Currently, recommendation has been given for the delineation of the clinical target volume (CTV) in adjuvant RT. Based on recently reviewed pathologic data, the aim of this study is to propose criteria for the CTV definition and delineation including elective nodal irradiation (ENI) in the preoperative and definitive treatment of pancreatic cancer. Methods The anatomical structures of interest, as well as the abdominal vasculature were identified on intravenous contrast-enhanced CT scans of two different patients with pancreatic cancer of the head and the body. To delineate the lymph node area, a margin of 10 mm was added to the arteries. Results We proposed a set of guidelines for elective treatment of high-risk nodal areas and CTV delineation. Reference CT images were provided. Conclusions The proposed guidelines could be used for preoperative or definitive RT for carcinoma of the head and body of the pancreas. Further clinical investigations are needed to validate the defined CTVs. PMID:22691275
Nodal bilayer-splitting controlled by spin-orbit interactions in underdoped high-Tc cuprates
Harrison, N.; Ramshaw, B. J.; Shekhter, A.
2015-06-03
The highest superconducting transition temperatures in the cuprates are achieved in bilayer and trilayer systems, highlighting the importance of interlayer interactions for high Tc. It has been argued that interlayer hybridization vanishes along the nodal directions by way of a specific pattern of orbital overlap. Recent quantum oscillation measurements in bilayer cuprates have provided evidence for a residual bilayer-splitting at the nodes that is sufficiently small to enable magnetic breakdown tunneling at the nodes. Here we show that several key features of the experimental data can be understood in terms of weak spin-orbit interactions naturally present in bilayer systems, whosemore » primary effect is to cause the magnetic breakdown to be accompanied by a spin flip. These features can now be understood to include the equidistant set of three quantum oscillation frequencies, the asymmetry of the quantum oscillation amplitudes in c-axis transport compared to ab-plane transport, and the anomalous magnetic field angle dependence of the amplitude of the side frequencies suggestive of small effective g-factors. We suggest that spin-orbit interactions in bilayer systems can further affect the structure of the nodal quasiparticle spectrum in the superconducting phase. PACS numbers: 71.45.Lr, 71.20.Ps, 71.18.+y« less
Observation of topological nodal fermion semimetal phase in ZrSiS
NASA Astrophysics Data System (ADS)
Neupane, Madhab; Belopolski, Ilya; Hosen, M. Mofazzel; Sanchez, Daniel S.; Sankar, Raman; Szlawska, Maria; Xu, Su-Yang; Dimitri, Klauss; Dhakal, Nagendra; Maldonado, Pablo; Oppeneer, Peter M.; Kaczorowski, Dariusz; Chou, Fangcheng; Hasan, M. Zahid; Durakiewicz, Tomasz
2016-05-01
Unveiling new topological phases of matter is one of the current objectives in condensed matter physics. Recent experimental discoveries of Dirac and Weyl semimetals prompt the search for other exotic phases of matter. Here we present a systematic angle-resolved photoemission spectroscopy study of ZrSiS, a prime topological nodal semimetal candidate. Our wider Brillouin zone (BZ) mapping shows multiple Fermi surface pockets such as the diamond-shaped Fermi surface, elliptical-shaped Fermi surface, and a small electron pocket encircling at the zone center (Γ ) point, the M point, and the X point of the BZ, respectively. We experimentally establish the spinless nodal fermion semimetal phase in ZrSiS, which is supported by our first-principles calculations. Our findings evidence that the ZrSiS-type of material family is a new platform on which to explore exotic states of quantum matter; these materials are expected to provide an avenue for engineering two-dimensional topological insulator systems.
NASA Astrophysics Data System (ADS)
Ahn, Kyo-Hoon; Lee, Kwan-Woo; Pickett, Warren E.
2015-09-01
NbP is one member of a new class of nodal loop semimetals characterized by the cooperative effects of spin-orbit coupling (SOC) and a lack of inversion center. Here transport and spectroscopic properties of NbP are evaluated using density functional theory methods. SOC together with the lack of inversion symmetry splits degeneracies, giving rise to "Russian doll nested" Fermi surfaces containing 4 ×10-4 electron (hole) carriers/f.u. Due to the modest SOC strength in Nb, the Fermi surfaces map out the Weyl nodal loops. Calculated structure around T*≈100 K in transport properties reproduces well the observed transport behavior only when SOC is included, attesting to the precision of the (delicate) calculations and the stoichiometry of the samples. Low-energy collective electron-hole excitations (plasmons) in the 20-60 meV range result from the nodal loop splitting.
NASA Astrophysics Data System (ADS)
Das, T.; Figueira de Morisson Faria, C.
2016-08-01
We analyze the imprint of nodal planes in high-order-harmonic spectra from aligned diatomic molecules in intense laser fields whose components exhibit orthogonal polarizations. We show that the typical suppression in the spectra associated to nodal planes is distorted, and that this distortion can be employed to map the electron's angle of return to its parent ion. This investigation is performed semianalytically at the single-molecule response and single-active orbital level, using the strong-field approximation and the steepest descent method. We show that the velocity form of the dipole operator is superior to the length form in providing information about this distortion. However, both forms introduce artifacts that are absent in the actual momentum-space wave function. Furthermore, elliptically polarized fields lead to larger distortions in comparison to two-color orthogonally polarized fields. These features are investigated in detail for O2, whose highest occupied molecular orbital provides two orthogonal nodal planes.
A p-adaptive LCP formulation for the compressible Navier-Stokes equations
NASA Astrophysics Data System (ADS)
Cagnone, J. S.; Vermeire, B. C.; Nadarajah, S.
2013-01-01
This paper presents a polynomial-adaptive lifting collocation penalty (LCP) formulation for the compressible Navier-Stokes equations. The LCP formulation is a high-order nodal scheme in differential form. This format, although computationally efficient, complicates the treatment of non-uniform polynomial approximations. In Cagnone and Nadarajah (2012) [9], we proposed to circumvent this difficulty by employing specially designed elements inserted at the interface where the interpolation degree varies. In the present study we examine the applicability of this approach to the discretization of the Navier-Stokes equations, with focus put on the treatment of the viscous fluxes. The stability of the scheme is analyzed with the scalar diffusion equation and the merits of the approach are demonstrated with various p-adaptive simulations.
Development of a standing-wave fluorescence microscope with high nodal plane flatness.
Freimann, R; Pentz, S; Hörler, H
1997-09-01
This article reports about the development and application of a standing-wave fluorescence microscope (SWFM) with high nodal plane flatness. As opposed to the uniform excitation field in conventional fluorescence microscopes as SWFM uses a standing-wave pattern of laser light. This pattern consists of alternating planar nodes and antinodes. By shifting it along the axis of the microscope a set of different fluorescent structures can be distinguished. Their axial separation may just be a fraction of a wavelength so that an SWFM allows distinction of structures which would appear axially unresolved in a conventional or confocal fluorescence microscope. An SWFM is most powerful when the axial extension of the specimen is comparable to the wavelength of light. Otherwise several planes are illuminated simultaneously and their separation is hardly feasible. The objective of this work was to develop a new SWFM instrument which allows standing-wave fluorescence microscopy with controlled high nodal plane flatness. Earlier SWFMs did not allow such a controlled flatness, which impeded image interpretation and processing. Another design goal was to build a compact, easy-to-use instrument to foster a more widespread use of this new technique. The instrument developed uses a green-emitting helium-neon laser as the light source, a piezoelectric movable beamsplitter to generate two mutually coherent laser beams of variable relative phase and two single-mode fibres to transmit these beams to the microscope. Each beam is passed on to the specimen by a planoconvex lens and an objective lens. The only reflective surface whose residual curvature could cause wavefront deformations is a dichroic beamsplitter. Nodal plane flatness is controlled via interference fringes by a procedure which is similar to the interferometric test of optical surfaces. The performance of the instrument was tested using dried and fluorescently labelled cardiac muscle cells of rats. The SWFM enabled the
Young, Amy V.; Wortham, Angela; Wernick, Iddo; Evans, Andrew; Ennis, Ronald D.
2011-03-01
Purpose: Accurate target delineation of the nodal volumes is essential for three-dimensional conformal and intensity-modulated radiotherapy planning for endometrial cancer adjuvant therapy. We hypothesized that atlas-based segmentation ('autocontouring') would lead to time savings and more consistent contours among physicians. Methods and Materials: A reference anatomy atlas was constructed using the data from 15 postoperative endometrial cancer patients by contouring the pelvic nodal clinical target volume on the simulation computed tomography scan according to the Radiation Therapy Oncology Group 0418 trial using commercially available software. On the simulation computed tomography scans from 10 additional endometrial cancer patients, the nodal clinical target volume autocontours were generated. Three radiation oncologists corrected the autocontours and delineated the manual nodal contours under timed conditions while unaware of the other contours. The time difference was determined, and the overlap of the contours was calculated using Dice's coefficient. Results: For all physicians, manual contouring of the pelvic nodal target volumes and editing the autocontours required a mean {+-} standard deviation of 32 {+-} 9 vs. 23 {+-} 7 minutes, respectively (p = .000001), a 26% time savings. For each physician, the time required to delineate the manual contours vs. correcting the autocontours was 30 {+-} 3 vs. 21 {+-} 5 min (p = .003), 39 {+-} 12 vs. 30 {+-} 5 min (p = .055), and 29 {+-} 5 vs. 20 {+-} 5 min (p = .0002). The mean overlap increased from manual contouring (0.77) to correcting the autocontours (0.79; p = .038). Conclusion: The results of our study have shown that autocontouring leads to increased consistency and time savings when contouring the nodal target volumes for adjuvant treatment of endometrial cancer, although the autocontours still required careful editing to ensure that the lymph nodes at risk of recurrence are properly included in the target
A Superspace Description of Chern-Simons Theory in Batalin-Vilkovisky Formulation
NASA Astrophysics Data System (ADS)
Upadhyay, Sudhaker; Dwivedi, Manoj Kumar; Mandal, Bhabani Prasad
2015-06-01
We discuss the extended BRST and anti-BRST symmetry (including shift symmetry) in the Batalin-Vilkovisky (BV) formulation for the Chern-Simons (CS) theories in (2 + 1) spacetime dimensions. Further we develop the superspace description of BV formulation for such theories. Interestingly, the extended BRST invariant CS theories can be described in superspace in covariant manner with the help of one more (Grassmann) coordinate. However, a superspace with two Grassmann coordinates are required for a manifestly covariant formulation of the extended BRST and extended anti-BRST invariant actions for these theories.
Zhou, Tao; Gao, Yi; Zhu, Jian -Xin
2015-03-07
Recenmore » tly it was revealed that the whole Fermi surface is fully gapped for several families of underdoped cuprates. The existence of the finite energy gap along the d-wave nodal lines (nodal gap) contrasts the common understanding of the d-wave pairing symmetry, which challenges the present theories for the high-Tcsuperconductors. Here we propose that the incommensurate diagonal spin-density-wave order can account for the above experimental observation. The Fermi surface and the local density of states are also studied. Our results are in good agreement with many important experiments in high-Tcsuperconductors.« less
NASA Astrophysics Data System (ADS)
Hurd, O.; Zoback, M. D.
2011-12-01
In this study we revisit the question of slip on faults in the New Madrid seismic zone in the context of the regional stress field. Specifically, we utilize newly available data to investigate whether fault slip is compatible with the regional stress field and laboratory-determined coefficients of friction (as originally argued by M.D. Zoback and M.L. Zoback, Science, 1981) or if there is evidence for either local sources of stress or anomalously low fault strength. Ten new, well-constrained earthquake focal plane mechanisms from the New Madrid seismic zone are available to update regional stress data and two earthquake focal plane mechanisms originally published in the 1970's have recently been revised. Utilizing these data, we demonstrate that the earthquakes occur on nodal planes which are optimally-oriented for shear failure in the current stress field assuming hydrostatic pore pressure in the brittle crust and coefficients of friction (μ) of about 0.6. The average SHmax orientation inferred from P-axes of the 12 focal mechanisms is N84E +/- 21°, which is consistent with the overall trend of SHmax in the region. In a manner similar to the study by M.L. Zoback (JGR, 1992), which utilized a slightly smaller (and in two cases, less reliable) set of focal mechanisms in this area, we use the orientation of the focal mechanism nodal planes combined with independent stress data to investigate the compatibility of slip on both nodal planes in the current stress field. First, the relative magnitudes of the three principal stresses are calculated from the nodal plane and stress orientations. Next, we utilize Mohr-Coulomb failure criterion to calculate the theoretically-optimal orientation of a fault plane for different coefficients of friction. Lastly, we calculate the difference in orientation between the theoretically-optimal planes and the focal mechanism nodal planes and identify the nodal plane with the smaller difference as the preferred nodal plane. For μ = 0
General curvilinear coordinate systems
NASA Technical Reports Server (NTRS)
Thompson, J. P.
1982-01-01
The basic ideas of the construction and use of numerically-generated boundary-fitted coordinate systems for the numerical solution of partial differential equations are discussed. With such coordinate systems, all computation can be done on a fixed square grid in the rectangular transformed region regardless of the shape or movement of the physical boundaries. A number of different types of configurations for the transformed region and the basic transformation relations from a cartesian system to a general curvilinear system are given. The material of this paper is applicable to all types of coordinate system generation.
Evans, H.T.
1963-01-01
A review of the known crystal structures containing the uranyl ion shows that plane-pentagon coordination is equally as prevalent as plane-square or plane-hexagon. It is suggested that puckered-hexagon configurations of OH - or H2O about the uranyl group will tend to revert to plane-pentagon coordination. The concept of pentagonal coordination is invoked for possible explanations of the complex crystallography of the natural uranyl hydroxides and the unusual behavior of polynuclear ions in hydrolyzed uranyl solutions.
Enhancing healthcare sector coordination through infrastructure and logistics support.
Zoraster, Richard M
2010-01-01
The International Response to the 2004 Southeast Asia Tsunami was noted to have multiple areas of poor coordination, and in 2005, the "Health Cluster"approach to coordination was formulated. However, the 2010 Haiti response suggests that many of the same problems continue and that there are significant limitations to the cluster meetings. These limitations include the inconsistent attendance, poor dissemination of information, and perceived lack of benefit to providers. This article proposes that healthcare coordination would be greatly improved with logistical support, leading to improved efficiency and outcomes for those affected by disasters.
Data Assimilation by delay-coordinate nudging
NASA Astrophysics Data System (ADS)
Pazo, Diego; Lopez, Juan Manuel; Carrassi, Alberto
2016-04-01
A new nudging method for data assimilation, delay-coordinate nudging, is presented. Delay-coordinate nudging makes explicit use of present and past observations in the formulation of the forcing driving the model evolution at each time-step. Numerical experiments with a low order chaotic system show that the new method systematically outperforms standard nudging in different model and observational scenarios, also when using an un-optimized formulation of the delay-nudging coefficients. A connection between the optimal delay and the dominant Lyapunov exponent of the dynamics is found based on heuristic arguments and is confirmed by the numerical results, providing a guideline for the practical implementation of the algorithm. Delay-coordinate nudging preserves the easiness of implementation, the intuitive functioning and the reduced computational cost of the standard nudging, making it a potential alternative especially in the field of seasonal-to-decadal predictions with large Earth system models that limit the use of more sophisticated data assimilation procedures.
Coordinated planning for science in communist europe.
Jordan, L F
1967-02-17
The Council is not engaged in the supranational formulation of policy and planning on scientific research and technology, but has made considerable progress in coordinating research policies and plans on a limited number of scientific and technical problems of priority interest and of common concern to all members. The establishment of national science-planning institutions in CEMA countries and the adoption of a uniform approach to the formulation of national science policies and plans must be considered basic procedures for achieving international coordination of their efforts. The creation of organizational units within CEMA to deal specifically with the coordination of science policies and plans represents a strengthening of the institutional framework that is necessary for coordination of an internationally cooperative effort in research and technology. Moreover, CEMA's 1-year plan for science and technology has probably been of considerable value as a pilot project for the formulation of the research plan for 1966-70. The delineation of a limited number of important scientific and technical problems of common interest to the members, and the allocation of research projects to a country having the highest capability to conduct them, hold considerable promise for financial savings and for improved utilization of the limited scientific manpower and research facilities of the CEMA countries. While all these measures are significant in CEMA's attempt to improve coordination of science policy and planning, only time will enable true assessment of their effectiveness. The Council's scheme for the specialization of labor in research and technology has met and will undoubtedly continue to meet, considerable opposition by various segments of the scientific communities because of deep-rooted and long-standing national prejudices, and reluctance of vested interests to give up research activities in which they are interested and to which their professional futures are
Hilbert, Sebastian; Kosiuk, Jedrzej; John, Silke; Hindricks, Gerhard; Bollmann, Andreas
2016-01-01
A 74-year old was considered for atrioventricular (AV) nodal ablation in view of atrial fibrillation (AF) with poorly controlled ventricular rate despite being on amiodarone. Targeted AV nodal ablation was successfully performed after identifying the target site for ablation by reviewing an ultra high-density map of the His region produced by automatic electrogram annotation. PMID:25852249
A new formulation of hybrid/mixed finite element
NASA Technical Reports Server (NTRS)
Pian, T. H. H.; Kang, D.; Chen, D.-P.
1983-01-01
A new formulation of finite element method is accomplished by the Hellinger-Reissner principle for which the stress equilibrium conditions are not introduced initially but are brought-in through the use of additional internal displacement parameters. The method can lead to the same result as the assumed stress hybrid model. However, it is more general and more flexible. The use of natural coordinates for stress assumptions leads to elements which are less sensitive to the choice of reference coordinates. Numerical solutions by 3-D solid element indicate that more efficient elements can be constructed by assumed stresses which only partially satisfy the equilibrium conditions.
Plutonium Immobilization Project Baseline Formulation
Ebbinghaus, B.
1999-02-01
A key milestone for the Immobilization Project (AOP Milestone 3.2a) in Fiscal Year 1998 (FY98) is the definition of the baseline composition or formulation for the plutonium ceramic form. The baseline formulation for the plutonium ceramic product must be finalized before the repository- and plant-related process specifications can be determined. The baseline formulation that is currently specified is given in Table 1.1. In addition to the baseline formulation specification, this report provides specifications for two alternative formulations, related compositional specifications (e.g., precursor compositions and mixing recipes), and other preliminary form and process specifications that are linked to the baseline formulation. The preliminary specifications, when finalized, are not expected to vary tremendously from the preliminary values given.
... the Word Shop AAP Find a Pediatrician Ages & Stages Prenatal Baby Toddler Fitness Nutrition Toilet Training Preschool Gradeschool Teen Young Adult Healthy Children > Ages & Stages > Toddler > Movement and Coordination Ages & Stages Listen Español ...
Explosive Formulation Code Naming SOP
Martz, H. E.
2014-09-19
The purpose of this SOP is to provide a procedure for giving individual HME formulations code names. A code name for an individual HME formulation consists of an explosive family code, given by the classified guide, followed by a dash, -, and a number. If the formulation requires preparation such as packing or aging, these add additional groups of symbols to the X-ray specimen name.
Geometry optimization of periodic systems using internal coordinates.
Bucko, Tomás; Hafner, Jürgen; Angyán, János G
2005-03-22
An algorithm is proposed for the structural optimization of periodic systems in internal (chemical) coordinates. Internal coordinates may include in addition to the usual bond lengths, bond angles, out-of-plane and dihedral angles, various "lattice internal coordinates" such as cell edge lengths, cell angles, cell volume, etc. The coordinate transformations between Cartesian (or fractional) and internal coordinates are performed by a generalized Wilson B-matrix, which in contrast to the previous formulation by Kudin et al. [J. Chem. Phys. 114, 2919 (2001)] includes the explicit dependence of the lattice parameters on the positions of all unit cell atoms. The performance of the method, including constrained optimizations, is demonstrated on several examples, such as layered and microporous materials (gibbsite and chabazite) as well as the urea molecular crystal. The calculations used energies and forces from the ab initio density functional theory plane wave method in the projector-augmented wave formalism.
Chapman-Fredricks, Jennifer; Sandoval-Sus, Jose; Vega, Francisco; Lossos, Izidore S
2014-08-01
Leukemic, non-nodal mantle cell lymphoma (MCL) is a relatively indolent disease characterized by asymptomatic leukemic presentation, non-nodal disease distribution, and slow disease progression, particularly in comparison to that of classic nodal MCL. We studied 3 cases of leukemic, non-nodal MCL in which TP53, ATM, and/or 13q14 deletions were identified. All three patients had disease progression leading to treatment requirements in two of the patients at 5 and 18 months after initial diagnosis. The third patient also clinically progressed 25 months after initial diagnosis but was lost to follow up despite recommendation for initiation of therapy. We present these cases as potential evidence that while leukemic non-nodal MCL is typically an indolent disease compared to classically defined mantle cell lymphoma, cytogenetic heterogeneity exists and cases with TP53, ATM, and/or 13q14 deletions may have a relatively aggressive clinical course.
Lithography overlay controller formulation
NASA Astrophysics Data System (ADS)
Bode, Christopher A.; Toprac, Anthony J.; Edwards, Richard D.; Edgar, Thomas F.
2000-08-01
Lithography overlay refers to the measurement of the alignment of successive patterns within the manufacture of semiconductor devices. Control of overlay has become of great importance in semiconductor manufacturing, as the tolerance for overlay error is continually shrinking in order to manufacture next-generation semiconductor products. Run-to-run control has become an attractive solution to many control problems within the industry, including overlay. The term run-to-run control refers to any automated procedure whereby recipe settings are updated between successive process runs in order to keep the process under control. The following discussion will present the formulation of such a controller by examining control of overlay. A brief introduction of overlay will be given, highlighting the control challenge overlay presents. A data management methodology that groups like processes together in order to improve controllability, referred to as control threads, will then be presented. Finally, a discussion of linear model predictive control will show its utility in feedback run-to-run control.
Nonrecursive formulations of multibody dynamics and concurrent multiprocessing
NASA Technical Reports Server (NTRS)
Kurdila, Andrew J.; Menon, Ramesh
1993-01-01
Since the late 1980's, research in recursive formulations of multibody dynamics has flourished. Historically, much of this research can be traced to applications of low dimensionality in mechanism and vehicle dynamics. Indeed, there is little doubt that recursive order N methods are the method of choice for this class of systems. This approach has the advantage that a minimal number of coordinates are utilized, parallelism can be induced for certain system topologies, and the method is of order N computational cost for systems of N rigid bodies. Despite the fact that many authors have dismissed redundant coordinate formulations as being of order N(exp 3), and hence less attractive than recursive formulations, we present recent research that demonstrates that at least three distinct classes of redundant, nonrecursive multibody formulations consistently achieve order N computational cost for systems of rigid and/or flexible bodies. These formulations are as follows: (1) the preconditioned range space formulation; (2) penalty methods; and (3) augmented Lagrangian methods for nonlinear multibody dynamics. The first method can be traced to its foundation in equality constrained quadratic optimization, while the last two methods have been studied extensively in the context of coercive variational boundary value problems in computational mechanics. Until recently, however, they have not been investigated in the context of multibody simulation, and present theoretical questions unique to nonlinear dynamics. All of these nonrecursive methods have additional advantages with respect to recursive order N methods: (1) the formalisms retain the highly desirable order N computational cost; (2) the techniques are amenable to concurrent simulation strategies; (3) the approaches do not depend upon system topology to induce concurrency; and (4) the methods can be derived to balance the computational load automatically on concurrent multiprocessors. In addition to the presentation of
Baseline LAW Glass Formulation Testing
Kruger, Albert A.; Mooers, Cavin; Bazemore, Gina; Pegg, Ian L.; Hight, Kenneth; Lai, Shan Tao; Buechele, Andrew; Rielley, Elizabeth; Gan, Hao; Muller, Isabelle S.; Cecil, Richard
2013-06-13
The major objective of the baseline glass formulation work was to develop and select glass formulations that are compliant with contractual and processing requirements for each of the LAW waste streams. Other objectives of the work included preparation and characterization of glasses with respect to the properties of interest, optimization of sulfate loading in the glasses, evaluation of ability to achieve waste loading limits, testing to demonstrate compatibility of glass melts with melter materials of construction, development of glass formulations to support ILAW qualification activities, and identification of glass formulation issues with respect to contract specifications and processing requirements.
NASA Astrophysics Data System (ADS)
Laundal, K. M.; Richmond, A. D.
2017-03-01
Geospace phenomena such as the aurora, plasma motion, ionospheric currents and associated magnetic field disturbances are highly organized by Earth's main magnetic field. This is due to the fact that the charged particles that comprise space plasma can move almost freely along magnetic field lines, but not across them. For this reason it is sensible to present such phenomena relative to Earth's magnetic field. A large variety of magnetic coordinate systems exist, designed for different purposes and regions, ranging from the magnetopause to the ionosphere. In this paper we review the most common magnetic coordinate systems and describe how they are defined, where they are used, and how to convert between them. The definitions are presented based on the spherical harmonic expansion coefficients of the International Geomagnetic Reference Field (IGRF) and, in some of the coordinate systems, the position of the Sun which we show how to calculate from the time and date. The most detailed coordinate systems take the full IGRF into account and define magnetic latitude and longitude such that they are constant along field lines. These coordinate systems, which are useful at ionospheric altitudes, are non-orthogonal. We show how to handle vectors and vector calculus in such coordinates, and discuss how systematic errors may appear if this is not done correctly.
NASA Astrophysics Data System (ADS)
Laundal, K. M.; Richmond, A. D.
2016-07-01
Geospace phenomena such as the aurora, plasma motion, ionospheric currents and associated magnetic field disturbances are highly organized by Earth's main magnetic field. This is due to the fact that the charged particles that comprise space plasma can move almost freely along magnetic field lines, but not across them. For this reason it is sensible to present such phenomena relative to Earth's magnetic field. A large variety of magnetic coordinate systems exist, designed for different purposes and regions, ranging from the magnetopause to the ionosphere. In this paper we review the most common magnetic coordinate systems and describe how they are defined, where they are used, and how to convert between them. The definitions are presented based on the spherical harmonic expansion coefficients of the International Geomagnetic Reference Field (IGRF) and, in some of the coordinate systems, the position of the Sun which we show how to calculate from the time and date. The most detailed coordinate systems take the full IGRF into account and define magnetic latitude and longitude such that they are constant along field lines. These coordinate systems, which are useful at ionospheric altitudes, are non-orthogonal. We show how to handle vectors and vector calculus in such coordinates, and discuss how systematic errors may appear if this is not done correctly.
Valence, Covalence, Hypervalence, Oxidation State, and Coordination Number
ERIC Educational Resources Information Center
Smith, Derek W.
2005-01-01
Valence as a numerical measure of an atom's combining power, expressed by the number of bonds it forms in a molecular formulation of the compound in question, was unable to cope with coordination compounds. The covalence of an atom is the nearest model equivalent, but is subject to ambiguity since it often depends on which bonding model is being…
Modelling and control of two coordinated robot arms
NASA Technical Reports Server (NTRS)
Tarn, T. J.; Yun, X.; Bejczy, A. K.
1988-01-01
Two coordinated robot arms are modeled by considering the two arms as working on the same object simultaneously and as a closed kinematic chain. In both formulations, a novel dynamic control method is used which is based on feedback linearization and simultaneous output decoupling.
NASA Astrophysics Data System (ADS)
Cao, Meng
The goal of this dissertation is to develop a generally covariant Hamiltonian approach to the generalized harmonic formulation of general relativity. As en route investigations, an important class of coordinate transformations in the context of the 3 + 1 decomposition, foliation preserving transformations, is defined; transformation rules of various 3 + 1 decomposition variables under this change of coordinates are investigated; the notion of covariant time derivative under foliation preserving transformations is defined; gauge conditions of various numerical relativity formulations are rewritten in generally covariant form. The Hamiltonian formulation of the generalized harmonic system is defined in the latter part of this dissertation. With the knowledge of covariant time derivative, the Hamiltonian formulation is extended to achieve general covariance. The Hamiltonian formulation is further proved to be symmetric hyperbolic.
MCC level C formulation requirements. Entry guidance and entry autopilot, optional TAEM targeting
NASA Technical Reports Server (NTRS)
Harpold, J. C.
1980-01-01
The level C software formulations requirements for the entry guidance and the simplified autopilot to be used by the Mission Control Center (MCC) entry processor are presented. The modifications required to functionally simulate optional Terminal Area Energy Management (TAEM) targeting capability (OTT) are incorporated. Implementation of this logic in the MCC must be coordinated with flight software OTT implementation and MCC TAEM guidance OTT. The entry guidance logic is based on the orbiter avionics entry guidance software. Descriptions of the entry guidance detailed formulation requirements, the detailed autopilot formulation requirements, and the targeting routine are given. Also included are a definition of coordinate systems, a list of parameter definitions for the software formulations, and a set of formulation flow charts.
High-latitude oceanic variability associated with the 18.6-year nodal tide
NASA Technical Reports Server (NTRS)
Royer, Thomas C.
1993-01-01
Water column temperature variations which indicate that the upper ocean is responding to 18.6-yr tidal forcing are presented. An enhanced high-latitude response to this forcing is predicted by equilibrium tide theory, and it should be most evident at latitudes poleward of about 50 deg. Critical information on regional climate variations might be found in the subsurface waters of the North Pacific and possibly other high-latitude oceans. The 18.6-yr nodal tidal cycle must be considered in circulation models of the ocean and atmosphere that examine time scales of decades or longer. Because the temperature range associated with the cycle is 0.5-1 C, short-term climate and biological populations could be affected.
Probing the Nodal Structure of Landau Level Wave Functions in Real Space.
Bindel, J R; Ulrich, J; Liebmann, M; Morgenstern, M
2017-01-06
The inversion layer of p-InSb(110) obtained by Cs adsorption of 1.8% of a monolayer is used to probe the Landau level wave functions within smooth potential valleys by scanning tunneling spectroscopy at 14 T. The nodal structure becomes apparent as a double peak structure of each spin polarized first Landau level, while the zeroth Landau level exhibits a single peak per spin level only. The real space data show single rings of the valley-confined drift states for the zeroth Landau level and double rings for the first Landau level. The result is reproduced by a recursive Green function algorithm using the potential landscape obtained experimentally. We show that the result is generic by comparing the local density of states from the Green function algorithm with results from a well-controlled analytic model based on the guiding center approach.
Response to Nodal morphogen gradient is determined by the kinetics of target gene induction
Dubrulle, Julien; Jordan, Benjamin M; Akhmetova, Laila; Farrell, Jeffrey A; Kim, Seok-Hyung; Solnica-Krezel, Lilianna; Schier, Alexander F
2015-01-01
Morphogen gradients expose cells to different signal concentrations and induce target genes with different ranges of expression. To determine how the Nodal morphogen gradient induces distinct gene expression patterns during zebrafish embryogenesis, we measured the activation dynamics of the signal transducer Smad2 and the expression kinetics of long- and short-range target genes. We found that threshold models based on ligand concentration are insufficient to predict the response of target genes. Instead, morphogen interpretation is shaped by the kinetics of target gene induction: the higher the rate of transcription and the earlier the onset of induction, the greater the spatial range of expression. Thus, the timing and magnitude of target gene expression can be used to modulate the range of expression and diversify the response to morphogen gradients. DOI: http://dx.doi.org/10.7554/eLife.05042.001 PMID:25869585
Majorana fermions in spin-singlet nodal superconductors with coexisting non-collinear magnetic order
NASA Astrophysics Data System (ADS)
Wang, Ziqiang; Lu, Yuan-Ming
2013-03-01
Realizations of Majorana fermions in solid state materials have attracted great interests recently in connection to topological order and quantum information processing. We propose a novel way to create Majorana fermions in superconductors. We show that an incipient non-collinear magnetic order turns a spin-singlet superconductor with nodes into a topological superconductor with a stable Majorana bound state (MBS) in the vortex core or on the edge. Moreover the topologically-stable point defect of non-collinear magnetic order also hosts a zero-energy MBS. We argue that such an exotic non-Abelian phase can be realized in extended t- J models on the triangular and square lattices. Our proposal suggests a new avenue for the search of Majorana fermions in correlated electron materials where nodal superconductivity and magnetism are two common caricatures.
Probing the Nodal Structure of Landau Level Wave Functions in Real Space
NASA Astrophysics Data System (ADS)
Bindel, J. R.; Ulrich, J.; Liebmann, M.; Morgenstern, M.
2017-01-01
The inversion layer of p -InSb (110 ) obtained by Cs adsorption of 1.8% of a monolayer is used to probe the Landau level wave functions within smooth potential valleys by scanning tunneling spectroscopy at 14 T. The nodal structure becomes apparent as a double peak structure of each spin polarized first Landau level, while the zeroth Landau level exhibits a single peak per spin level only. The real space data show single rings of the valley-confined drift states for the zeroth Landau level and double rings for the first Landau level. The result is reproduced by a recursive Green function algorithm using the potential landscape obtained experimentally. We show that the result is generic by comparing the local density of states from the Green function algorithm with results from a well-controlled analytic model based on the guiding center approach.
Pseudodiffusive transmission of nodal Dirac fermions through a clean d -wave superconductor
NASA Astrophysics Data System (ADS)
Asbóth, J. K.; Akhmerov, A. R.; Berceanu, A. C.; Beenakker, C. W. J.
2009-12-01
We calculate the transmission of electrons and holes between two normal-metal (N) electrodes, separated over a distance L by an impurity-free superconductor (S) with d -wave symmetry of the order parameter. Nodal lines of vanishing excitation gap form ballistic conduction channels for coupled electron-hole excitations, described by an anisotropic two-dimensional Dirac equation. We find that the transmitted electrical and thermal currents both have the pseudodiffusive 1/L scaling characteristic of massless Dirac fermions—regardless of the presence of tunnel barriers at the NS interfaces. Tunnel barriers reduce the slope of the 1/L scaling in the case of the electrical current while leaving the thermal current unaffected.
Quantum criticality and nodal superconductivity in the FeAs-based superconductor KFe2As2.
Dong, J K; Zhou, S Y; Guan, T Y; Zhang, H; Dai, Y F; Qiu, X; Wang, X F; He, Y; Chen, X H; Li, S Y
2010-02-26
The in-plane resistivity rho and thermal conductivity kappa of the FeAs-based superconductor KFe2As2 single crystal were measured down to 50 mK. We observe non-Fermi-liquid behavior rho(T) approximately T{1.5} at H{c{2}}=5 T, and the development of a Fermi liquid state with rho(T) approximately T{2} when further increasing the field. This suggests a field-induced quantum critical point, occurring at the superconducting upper critical field H{c{2}}. In zero field, there is a large residual linear term kappa{0}/T, and the field dependence of kappa_{0}/T mimics that in d-wave cuprate superconductors. This indicates that the superconducting gaps in KFe2As2 have nodes, likely d-wave symmetry. Such a nodal superconductivity is attributed to the antiferromagnetic spin fluctuations near the quantum critical point.
NASA Astrophysics Data System (ADS)
Trani, F.; Campagnano, G.; Tagliacozzo, A.; Lucignano, P.
2016-10-01
We study possible applications of high critical temperature nodal superconductors for the search for Majorana bound states in the DIII class. We propose a microscopic analysis of the proximity effect induced by d -wave superconductors on a semiconductor wire with strong spin-orbit coupling. We characterize the induced superconductivity on the wire employing a numerical self-consistent tight-binding Bogoliubov-de Gennes approach, and analytical considerations on the Green's function. The order parameter induced on the wire, the pair correlation function, and the renormalization of the Fermi points are analyzed in detail, as well as the topological phase diagram in the case of weak coupling. We highlight optimal Hamiltonian parameters to access the nontrivial topological phase which could display time-reversal invariant Majorana doublets at the boundaries of the wire.
A study of the radiative transfer equation using a spherical harmonics-nodal collocation method
NASA Astrophysics Data System (ADS)
Capilla, M. T.; Talavera, C. F.; Ginestar, D.; Verdú, G.
2017-03-01
Optical tomography has found many medical applications that need to know how the photons interact with the different tissues. The majority of the photon transport simulations are done using the diffusion approximation, but this approximation has a limited validity when optical properties of the different tissues present large gradients, when structures near the photons source are studied or when anisotropic scattering has to be taken into account. As an alternative to the diffusion model, the PL equations for the radiative transfer problem are studied. These equations are discretized in a rectangular mesh using a nodal collocation method. The performance of this model is studied by solving different 1D and 2D benchmark problems of light propagation in tissue having media with isotropic and anisotropic scattering.
Field-induced reentrant superconductivity in thin films of nodal superconductors
NASA Astrophysics Data System (ADS)
Hachiya, M.; Aoyama, K.; Ikeda, R.
2013-08-01
Previous work on nodal d-wave superconductors has shown that a Fulde-Ferrell-Larkin-Ovchinnikov- (FFLO-) like superconducting (SC) state, which is modulated along the film plane, can be realized with no magnetic field when quasiparticles acquire an additional linear term in the wave vector in their dispersion. In the present work, the stability of such a modulated SC state in an artificial film against an applied magnetic field is studied. As a reflection of the presence of two FFLO-like states of different origins, one close to zero field and the other at the high-field end, in a single field vs temperature phase diagram of thin films, the conventional SC state, which is uniform along the film plane, generally tends to appear as a reentrant ordered phase bounded by the normal phase in lower fields.
Lunar nodal tide and distance to the moon during the Precambrian
NASA Technical Reports Server (NTRS)
Walker, J. C. G.; Zahnle, K. J.
1986-01-01
The first direct determination of the lunar distance in the Precambrian is presented. A 23.3 + or - 0.3 yr periodicity preserved in 2500 Myr BP Australian banded iron formation is interpreted as reflecting the climatic influence of the lunar nodal tide, which has been detected with its modern 18.6-yr periodicity in some modern climate records. The lunar distance at 2500 Myr BP would then have been about 52 earth radii. The implied history of precambrian tidal friction is in accord with both the more recent paleontological evidence and the long-term stability of the lunar orbit. The length of the Milankovitch cycles that modulate the ice ages today also evolve with the earth-moon system. Their detection in the Precambrian sedimentary record would then permit an independent determination of the lunar distance.
Nodal Structure of Quasi-Two-Dimensional Superconductors Probed by a Magnetic Field
NASA Astrophysics Data System (ADS)
Vorontsov, A.; Vekhter, I.
2006-06-01
We consider a quasi-two-dimensional superconductor with line nodes in the presence of an in-plane magnetic field, and compute the dependence of the specific heat C and the in-plane heat conductivity κ on the angle between the field and the nodal direction in the vortex state. We use a variation of the microscopic Brandt-Pesch-Tewordt method that accounts for the scattering of quasiparticles off vortices, and analyze the signature of the nodes in C and κ. At low to moderate fields the specific heat anisotropy changes sign with increasing temperature. Comparison with measurements of C and κ in CeCoIn5 resolves the contradiction between the two in favor of the dx2-y2 gap.
Diagnosis of non-nodal paratracheobronchial lesions by linear endobronchial ultrasound.
Lourido, Tamara; Botana, Maribel; Leiro, Virginia; Núñez, Manuel; Fernández-Villar, Alberto
2013-08-01
Linear endobronchial ultrasound (EBUS) allows samples of lesions close to the airways to be obtained, as it enables aspiration to be performed under visual control in real time, opening new possibilities for minimally invasive examination of the mediastinum. While there are many publications on its usefulness in the study of mediastinal or hilar lymphadenopathies, there are few that analyse the role of EBUS-guided transbronchial needle aspiration for the diagnosis of other lesions adjacent to the airways or digestive tract. We describe the characteristics and results obtained in a series of 26 cases of non-nodal lesions of different aetiologies studied by EBUS- guided transbronchial needle aspiration through the airways or oesophagus, demonstrating the usefulness and safety of this technique in the diagnosis of these types of lesions.
Talipov, Marat R; Navale, Tushar S; Rathore, Rajendra
2015-11-23
Triptycenes spontaneously assemble into two-dimensional networks in which long-range charge transport is facilitated by the extensive electronic coupling through the triptycene framework (intramolecularly) and by cofacial π-stacking (intermolecularly). While designing and synthesizing next-generation triptycenes containing polyaromatic chromophores, the electronic coupling amongst the chromophores was observed to be highly dependent on the nature and position of the substituents. Herein, we demonstrate using hexaalkoxytriptycenes that the electronic coupling amongst the chromophores is switched on and off by a simple repositioning of the substituents, which alters the nodal arrangement of the HOMOs of the individual chromophores. A visual inspection of the HOMOs can thus provide a ready evaluation of the electronic coupling in polychromophoric molecules/assemblies, and will serve as an important tool for the rational design of modern charge-transport materials.
Tian, Ru-Hui; Yang, Shi; Zhu, Zi-Jue; Wang, Jun-Long; Liu, Yun; Yao, Chencheng; Ma, Meng; Guo, Ying; Yuan, Qingqing; Hai, Yanan; Huang, Yi-Ran; He, Zuping; Li, Zheng
2015-01-01
This study was designed to explore the regulatory effects of male germ cell secreting factor NODAL on Sertoli cell fate decisions from obstructive azoospermia (OA) and nonobstructive azoospermia (NOA) patients. Human Sertoli cells and male germ cells were isolated using two-step enzymatic digestion and SATPUT from testes of azoospermia patients. Expression of NODAL and its multiple receptors in human Sertoli cells and male germ cells were characterized by reverse transcription-polymerase chain reaction (RT-PCR) and immunochemistry. Human recombinant NODAL and its receptor inhibitor SB431542 were employed to probe their effect on the proliferation of Sertoli cells using the CCK-8 assay. Quantitative PCR and Western blots were utilized to assess the expression of Sertoli cell functional genes and proteins. NODAL was found to be expressed in male germ cells but not in Sertoli cells, whereas its receptors ALK4, ALK7, and ACTR-IIB were detected in Sertoli cells and germ cells, suggesting that NODAL plays a regulatory role in Sertoli cells and germ cells via a paracrine and autocrine pathway, respectively. Human recombinant NODAL could promote the proliferation of human Sertoli cells. The expression of cell cycle regulators, including CYCLIN A, CYCLIN D1 and CYCLIN E, was not remarkably affected by NODAL signaling. NODAL enhanced the expression of essential growth factors, including GDNF, SCF, and BMP4, whereas SB431542 decreased their levels. There was not homogeneity of genes changes by NODAL treatment in Sertoli cells from OA and Sertoli cell-only syndrome (SCO) patients. Collectively, this study demonstrates that NODAL produced by human male germ cells regulates proliferation and numerous gene expression of Sertoli cells. PMID:26289399
Theory of nodal s^{±}-wave pairing symmetry in the Pu-based 115 superconductor family
Das, Tanmoy; Zhu, Jian -Xin; Graf, Matthias J.
2015-02-27
The spin-fluctuation mechanism of superconductivity usually results in the presence of gapless or nodal quasiparticle states in the excitation spectrum. Nodal quasiparticle states are well established in copper-oxide, and heavy-fermion superconductors, but not in iron-based superconductors. Here, we study the pairing symmetry and mechanism of a new class of plutonium-based high-T_{c} superconductors and predict the presence of a nodal s⁺⁻ wave pairing symmetry in this family. Starting from a density-functional theory (DFT) based electronic structure calculation we predict several three-dimensional (3D) Fermi surfaces in this 115 superconductor family. We identify the dominant Fermi surface “hot-spots” in the inter-band scattering channel, which are aligned along the wavevector Q = (π, π, π), where degeneracy could induce sign-reversal of the pairing symmetry. Our calculation demonstrates that the s⁺⁻ wave pairing strength is stronger than the previously thought d-wave pairing; and more importantly, this pairing state allows for the existence of nodal quasiparticles. Finally, we predict the shape of the momentum- and energy-dependent magnetic resonance spectrum for the identification of this pairing symmetry.
Theory of nodal s±-wave pairing symmetry in the Pu-based 115 superconductor family
Das, Tanmoy; Zhu, Jian -Xin; Graf, Matthias J.
2015-02-27
The spin-fluctuation mechanism of superconductivity usually results in the presence of gapless or nodal quasiparticle states in the excitation spectrum. Nodal quasiparticle states are well established in copper-oxide, and heavy-fermion superconductors, but not in iron-based superconductors. Here, we study the pairing symmetry and mechanism of a new class of plutonium-based high-Tc superconductors and predict the presence of a nodal s⁺⁻ wave pairing symmetry in this family. Starting from a density-functional theory (DFT) based electronic structure calculation we predict several three-dimensional (3D) Fermi surfaces in this 115 superconductor family. We identify the dominant Fermi surface “hot-spots” in the inter-band scattering channel,more » which are aligned along the wavevector Q = (π, π, π), where degeneracy could induce sign-reversal of the pairing symmetry. Our calculation demonstrates that the s⁺⁻ wave pairing strength is stronger than the previously thought d-wave pairing; and more importantly, this pairing state allows for the existence of nodal quasiparticles. Finally, we predict the shape of the momentum- and energy-dependent magnetic resonance spectrum for the identification of this pairing symmetry.« less
Technology Transfer Automated Retrieval System (TEKTRAN)
The Smad proteins are essential components of the TGF-beta/activin/nodal family signaling pathway. We report the identification and characterization of transcripts representing 3 receptor Smads (Smad2a, Smad2b, Smad3), 2 common Smads (Smad4a, Smad4b) and one inhibitory Smad (Smad7). Phylogenetic an...
Theory of nodal s±-wave pairing symmetry in the Pu-based 115 superconductor family
Das, Tanmoy; Zhu, Jian-Xin; Graf, Matthias J.
2015-01-01
The spin-fluctuation mechanism of superconductivity usually results in the presence of gapless or nodal quasiparticle states in the excitation spectrum. Nodal quasiparticle states are well established in copper-oxide, and heavy-fermion superconductors, but not in iron-based superconductors. Here, we study the pairing symmetry and mechanism of a new class of plutonium-based high-Tc superconductors and predict the presence of a nodal s+− wave pairing symmetry in this family. Starting from a density-functional theory (DFT) based electronic structure calculation we predict several three-dimensional (3D) Fermi surfaces in this 115 superconductor family. We identify the dominant Fermi surface “hot-spots” in the inter-band scattering channel, which are aligned along the wavevector Q = (π, π, π), where degeneracy could induce sign-reversal of the pairing symmetry. Our calculation demonstrates that the s+− wave pairing strength is stronger than the previously thought d-wave pairing; and more importantly, this pairing state allows for the existence of nodal quasiparticles. Finally, we predict the shape of the momentum- and energy-dependent magnetic resonance spectrum for the identification of this pairing symmetry. PMID:25721375
Khori, Vahid; Alizadeh, Ali Mohammad; Moheimani, Hamid Reza; Zahedi, Mahdi; Aminolsharieh Najafi, Soroosh; Shakiba, Delaram; Nayebpour, Mohsen
2015-02-01
Simvastatin (SV) leads to reduction of ventricular rhythm during atrial fibrillation on rabbit atrioventricular (AV) nodes. The aim of our study was (i) to determine the frequency-dependent effects of SV in a functional model, and (ii) to assess the effects of SV to suppress experimental AV nodal reentrant tachycardia (AVNRT). Selective stimulation protocols were used with two different pacing protocols, His to atrial, and atrial to atrial (AA). An experimental AVNRT model with various cycle lengths was created in three groups of perfused rabbit AV nodal preparations (n = 24) including: SV 3 μm, SV 7 μm, and verapamil 0.1 μm. SV increased nodal conduction time and refractoriness by AA pacing. Different simulated models of slow/fast and fast/slow reentry were induced. SV caused inhibitory effects on the slow anterograde conduction (origin of refractoriness) more than on the fast anterograde conduction time, leading to an increase of tachycardia cycle length, tachycardia wavelength and termination of slow/fast reentrant tachyarrhythmia. Verapamil significantly suppressed the basic and frequency-dependent intrinsic nodal properties. In addition, SV decreased the incidence of gap and echo beats. The present study showed that SV in a concentration and rate-dependent manner increased the AV effective refractory period and reentrant tachycardia wavelength that lead to slowing or termination of experimental fast AVNRT. The direction-dependent inhibitory effect of SV on the anterograde and retrograde dual pathways explains its specific antireentrant actions.
Debunking the lunar nodal tide in sea level data from the Northwest European shelf
NASA Astrophysics Data System (ADS)
Schmith, Torben; Thejll, Peter; Nielsen, Jacob W.
2016-04-01
In a recent study (Hansen, et al, 2015. Sea-Level Forcing by Synchronization of 56- and 74-Year Oscillations with the Moon's Nodal Tide on the Northwest European Shelf (Eastern North Sea to Central Baltic Sea). Journal of Coastal Research, 31(5), 1041 - 1056, hereafter 'HAK'), the existence of an 18.6 year lunar nodal tide signal of considerable strength and other periodic signals in the North Sea -- Baltic Sea area is claimed. We criticize important aspects of the analysis presented in HAK and thereby cast doubt on their conclusions. HAK claim that 18.6 year variations in sea level are predicted by tidal theory, but this is not the case in general and therefore the existence of such variations must be explicitly shown. We calculate the amplitude spectrum of the annual sea level by harmonic analysis and find no significant peaks at the periods claimed by HAK. Next, we used the results given by HAK to reconstruct their decomposition, and formed the residuals by subtracting the decomposition from the original data. We found that a strong variability near 18.6 years in the residuals, showing that the decomposition by HAK overrepresents the variability at this period. This motivated us to redo HAK's analysis following their prescription and we found a seven times lower amplitude for the 18.6 year periodicity than claimed by HAK. Finally, we discuss HAK's mode selection-criteria, based on correlation coefficients of trending series and find them invalid. Therefore, we perform a significance test based on a Monte Carlo technique and conclude that none of the modes identified by HAK are statistically significant.
Theory of the nematic quantum critical point in a nodal superconductor
NASA Astrophysics Data System (ADS)
Kim, Eun-Ah
2008-03-01
In the last several years, experimental evidence has accumulated in a variety of highly correlated electronic systems of new quantum phases which (for purely electronic reasons) spontaneously break the rotational (point group) symmetry of the underlying crystal. Such electron ``nematic'' phases have been seen in quantum Hall systems[1], in the metamagnetic metal Sr3Ru2O7[2], and more recently in magnetic neutron scattering studies of the high temperature superconductor, YBCO[3]. In the case of a high Tc superconductor, the quantum dynamics of nematic order parameter naturally couples strongly to quasiparticle (qp) excitations. In this talk, I will discuss our recent results on the effects of the coupling between quantum critical nematic fluctuations and the nodal qp's of a d-wave superconductor in the vicinity of a putative quantum critical point inside the superconducting phase. We solve a model system with N flavors of quasiparticles in the large N limit[4]. To leading order in 1/N, quantum fluctuations enhance the dispersion anisotropy of the nodal excitations, and cause strong scattering which critically broadens the quasiparticle peaks in the spectral function, except in the vicinity of ``the tips of the banana,'' where the qp's remain sharp. We will discuss the possible implications of our results to ARPES and STM experiments. [1] M.P. Lilly, K.B. Cooper, J.P. Eisenstein, L.N. Pfeiffer, and K.W. West, PRL 83, 824 (1999). [2] R. A. Borzi and S. A. Grigera and J. Farrell and R. S. Perry and S. J. S. Lister and S. L. Lee and D. A. Tennant and Y. Maeno and A. P. Mackenzie, Science 315, 214 (2007). [3] V. Hinkov, D. Haug, B. Fauqu'e, P. Bourges, Y. Sidis, A. Ivanov, C. Bernhard, C. T. Lin, B. Keimer, unpublished. [4] E.-A. Kim, M. Lawler, P. Oreto, E. Fradkin, S. Kivelson, cond-mat/0705.4099.
Wo, Jennifer Y.; Taghian, Alphonse G.; Nguyen, Paul L.; Raad, Rita Abi; Sreedhara, Meera B.A.; Bellon, Jennifer R.; Wong, Julia S.; Gadd, Michele A.; Smith, Barbara L.; Harris, Jay R.
2010-05-01
Purpose: To evaluate the risk of isolated regional nodal failure (RNF) among women with invasive breast cancer treated with breast-conserving surgery (BCS) and radiation therapy (RT) and to determine factors, including biological subtype, associated with RNF. Methods and Materials: We retrospectively studied 1,000 consecutive women with invasive breast cancer who received breast-conserving surgery and RT from 1997 through 2002. Ninety percent of patients received adjuvant systemic therapy; none received trastuzumab. Sentinel lymph node biopsy was done in 617 patients (62%). Of patients with one to three positive nodes, 34% received regional nodal irradiation (RNI). Biological subtype classification into luminal A, luminal B, HER-2, and basal subtypes was based on estrogen receptor status-, progesterone receptor status-, and HER-2-status of the primary tumor. Results: Median follow-up was 77 months. Isolated RNF occurred in 6 patients (0.6%). On univariate analysis, biological subtype (p = 0.0002), lymph node involvement (p = 0.008), lymphovascular invasion (p = 0.02), and Grade 3 histology (p = 0.01) were associated with significantly higher RNF rates. Compared with luminal A, the HER-2 (p = 0.01) and basal (p = 0.08) subtypes were associated with higher RNF rates. The 5-year RNF rate among patients with one to three positive nodes treated with tangents alone was 2.4%; we could not identify a subset of these patients with a substantial risk of RNF. Conclusions: Isolated RNF is a rare occurrence after breast-conserving therapy. Patients with the HER-2 (not treated with trastuzumab) and basal subtypes appear to be at higher risk of developing RNF although this risk is not high enough to justify the addition of RNI. Low rates of RNF in patients with one to three positive nodes suggest that tangential RT without RNI is reasonable in most patients.
Zhang Yujing; Oh, Julia L.; Whitman, Gary J.
2010-07-15
Purpose: To investigate the incidence and local control of internal mammary lymph node metastases (IMN+) in patients with clinical N2 or N3 locally advanced breast cancer. Methods and Materials: We retrospectively reviewed the records of 809 breast cancer patients diagnosed with advanced nodal disease (clinical N2-3) who received radiation treatment at our institution from January 2000 December 2006. Patients were considered IMN+ on the basis of imaging studies. Results: We identified 112 of 809 patients who presented with IMN+ disease (13.8%) detected on ultrasound, computed tomography (CT), positron emission tomography/CT (PET/CT), and/or magnetic resonance imaging (MRI) studies. All 112 patients with IMN+ disease received anthracycline and taxane-based chemotherapy. Neoadjuvant chemotherapy (NCT) resulted in a complete response (CR) on imaging studies of IMN disease in 72.1% of patients. Excluding 16 patients with progressive disease, 96 patients received adjuvant radiation to the breast or the chest wall and the regional lymphatics including the IMN chain with a median dose of 60 Gy if the internal mammary lymph nodes normalized after chemotherapy and 66 Gy if they did not. The median follow-up of surviving patients was 41 months (8-118 months). For the 96 patients able to complete curative therapy, the actuarial 5-year IMN control rate, locoregional control, overall survival, and disease-free survival were 89%, 80%, 76%, and 56%. Conclusion: Over ten percent of patients with advanced nodal disease will have IMN metastases on imaging studies. Multimodality therapy including IMN irradiation achieves excellent rates of control in the IMN region and a DFS of more than 50% after curative treatment.
The nodal count {0,1,2,3,…} implies the graph is a tree
Band, Ram
2014-01-01
Sturm's oscillation theorem states that the nth eigenfunction of a Sturm–Liouville operator on the interval has n−1 zeros (nodes) (Sturm 1836 J. Math. Pures Appl. 1, 106–186; 373–444). This result was generalized for all metric tree graphs (Pokornyĭ et al. 1996 Mat. Zametki 60, 468–470 (doi:10.1007/BF02320380); Schapotschnikow 2006 Waves Random Complex Media 16, 167–178 (doi:10.1080/1745530600702535)) and an analogous theorem was proved for discrete tree graphs (Berkolaiko 2007 Commun. Math. Phys. 278, 803–819 (doi:10.1007/S00220-007-0391-3); Dhar & Ramaswamy 1985 Phys. Rev. Lett. 54, 1346–1349 (doi:10.1103/PhysRevLett.54.1346); Fiedler 1975 Czechoslovak Math. J. 25, 607–618). We prove the converse theorems for both discrete and metric graphs. Namely if for all n, the nth eigenfunction of the graph has n−1 zeros, then the graph is a tree. Our proofs use a recently obtained connection between the graph's nodal count and the magnetic stability of its eigenvalues (Berkolaiko 2013 Anal. PDE 6, 1213–1233 (doi:10.2140/apde.2013.6.1213); Berkolaiko & Weyand 2014 Phil. Trans. R. Soc. A 372, 20120522 (doi:10.1098/rsta.2012.0522); Colin de Verdière 2013 Anal. PDE 6, 1235–1242 (doi:10.2140/apde.2013.6.1235)). In the course of the proof, we show that it is not possible for all (or even almost all, in the metric case) the eigenvalues to exhibit a diamagnetic behaviour. In addition, we develop a notion of ‘discretized’ versions of a metric graph and prove that their nodal counts are related to those of the metric graph. PMID:24344337
Majorana vortex-bound states in three-dimensional nodal noncentrosymmetric superconductors
NASA Astrophysics Data System (ADS)
Chang, Po-Yao; Matsuura, Shunji; Schnyder, Andreas P.; Ryu, Shinsei
2014-11-01
Noncentrosymmetric superconductors (NCSs), characterized by antisymmetric spin-orbit coupling and a mixture of spin-singlet and spin-triplet pairing components, are promising candidate materials for topological superconductivity. An important hallmark of topological superconductors is the existence of protected zero-energy states at surfaces or in vortex cores. Here we investigate Majorana vortex-bound states in three-dimensional nodal and fully gapped NCSs by combining analytical solutions of Bogoliubov-de Gennes (BdG) equations in the continuum with exact diagonalization of BdG Hamiltonians. We show that depending on the crystal point-group symmetries and the topological properties of the bulk Bogoliubov-quasiparticle wave functions, different types of zero-energy Majorana modes can appear inside the vortex core. We find that for nodal NCSs with tetragonal point group C4 v the vortex states are dispersionless along the vortex line, forming one-dimensional Majorana flat bands, while for NCSs with D4 point-group symmetry the vortex modes are helical Majorana states with a linear dispersion along the vortex line. NCSs with monoclinic point group C2, on the other hand, do not exhibit any zero-energy vortex-bound states. We show that in the case of the C4 v (D4) point group the stability of these Majorana zero modes is guaranteed by a combination of reflection (π rotation), time-reversal, and particle-hole symmetry. Considering continuous deformations of the quasiparticle spectrum in the presence of vortices, we show that the flat-band vortex-bound states of C4 v point-group NCSs can be adiabatically connected to the dispersionless vortex-bound states of time-reversal symmetric Weyl superconductors. Experimental implications of our results for thermal transport and tunneling measurements are discussed.
Wolff, Sebastian; Bucher, Christian
2013-01-01
This article presents asynchronous collision integrators and a simple asynchronous method treating nodal restraints. Asynchronous discretizations allow individual time step sizes for each spatial region, improving the efficiency of explicit time stepping for finite element meshes with heterogeneous element sizes. The article first introduces asynchronous variational integration being expressed by drift and kick operators. Linear nodal restraint conditions are solved by a simple projection of the forces that is shown to be equivalent to RATTLE. Unilateral contact is solved by an asynchronous variant of decomposition contact response. Therein, velocities are modified avoiding penetrations. Although decomposition contact response is solving a large system of linear equations (being critical for the numerical efficiency of explicit time stepping schemes) and is needing special treatment regarding overconstraint and linear dependency of the contact constraints (for example from double-sided node-to-surface contact or self-contact), the asynchronous strategy handles these situations efficiently and robust. Only a single constraint involving a very small number of degrees of freedom is considered at once leading to a very efficient solution. The treatment of friction is exemplified for the Coulomb model. Special care needs the contact of nodes that are subject to restraints. Together with the aforementioned projection for restraints, a novel efficient solution scheme can be presented. The collision integrator does not influence the critical time step. Hence, the time step can be chosen independently from the underlying time-stepping scheme. The time step may be fixed or time-adaptive. New demands on global collision detection are discussed exemplified by position codes and node-to-segment integration. Numerical examples illustrate convergence and efficiency of the new contact algorithm. Copyright © 2013 The Authors. International Journal for Numerical Methods in
Nodal upstaging during lung cancer resection is associated with surgical approach
Martin, Jeremiah T.; Durbin, Eric B.; Chen, Li; Gal, Tamas; Mahan, Angela; Ferraris, Victor; Zwischenberger, Joseph
2015-01-01
Background Recent reports demonstrate that thoracoscopic lobectomy for lung cancer may be associated with lower rates of surgical upstaging. We queried a state-wide cancer registry for differences in upstaging rates and survival by surgical approach. Methods The Kentucky Cancer Registry (KCR) collects data, including centralized pathology reporting, on cancer patients treated statewide. We performed a retrospective review from 2010-2012 to examine clinical and pathologic stage. We assessed rates of upstaging and whether or not the surgical approach, thoracotomy (THOR) versus minimally invasive techniques (VATS), had an impact on final pathologic stage and survival. Results The KCR database from 2010 to 2012 contained information on 2830 lung cancer cases, 1964 having THOR and 500 having VATS resections. Preoperatively, 36.4% of THOR were clinically stage 1a vs. 47.4% % VATS (p=0.0002). Of these, final pathologic stage remained stage 1a in 30.5% of THOR and 38.0% of VATS (p=0.0002). The overall nodal upstaging rate for THOR was 9.9% and 4.8% for VATS (p=0.002). There was decreased nodal upstaging with VATS, independent of tumor size and extent of resection (OR 0.6, 95% CI 0.387-0.985, p=0.04). However there was improved survival with VATS compared with THOR (HR 0.733, 95% CI 0.592-0.907, p = 0.0042). Conclusions Consistent with other reports, we demonstrate a lower upstaging rate with VATS. Nevertheless, there is a survival advantage in VATS patients. Although selection bias may play a role in these observed differences, the improved quality of life measures associated with VATS, may explain survival improvement despite lower surgical upstaging. PMID:26428690
Risk factor analysis for central nodal metastasis in papillary thyroid carcinoma.
Mao, Ling-Na; Wang, Ping; Li, Zhi-Yu; Wang, Yong; Song, Zheng-Ya
2015-01-01
Lymph node involvement is associated with recurrence in papillary thyroid carcinoma (PTC). The central neck compartment (level VI) lymph nodes are at the greatest risk of metastases from PTC, but the role of central neck dissection (CND) remains controversial, particularly in PTC without clinical cervical lymph node metastasis (cN0). The present study aimed to identify risk factors of central cervical nodal metastasis and the safety of CND in patients with cN0 PTC. The current study retrospectively investigated 389 patients who had been followed up for 12.0-25.5 months after surgery, and were divided into positive or negative lymph node involvement groups according to the pathological results subsequent to this surgery. Univariate and multivariate analyses were used to study the risk factor of central node involvement. The mean tumor size was 0.71±0.35 cm (range, 0.1-2.0 cm). There was no significant difference in the rate of central lymph node involvement based on age (<45 or ≥45 years) or tumor focality (unifocal or multifocal). However, there were significant differences based on gender, extra-thyroid invasion and tumor size (P<0.05). The incidence of transient hypoparathyroidism and transient vocal cord paralysis following CND was 12.34 and 4.11%, respectively. No patient experienced permanent hypoparathyroidism or vocal cord paralysis. One patient (1/389; 0.23%) experienced disease recurrence during the follow-up. A larger tumor size and the male gender were significantly associated with the central nodal metastasis rate for cN0 PTC with a tumor size of <2.0 cm. CND for cN0 PTC patients was safe and the tumor-associated recurrence rate following CND plus total thyroidectomy was low. The present study suggests that CND should be conducted for male cN0 PTC patients with a larger tumor size (≥0.5 cm).
Tracking a maneuvering target in spherical coordinates
NASA Astrophysics Data System (ADS)
Douglas, Andrew P.; Blanchard, Jeffrey A.; Grabbe, Michael T.
2003-08-01
This paper presents an Extended Kalman Filter for tracking a maneuvering target, where the kinematics of a typical target aircraft maneuver have been incorporated into the filter state equations. Such a formulation allows the target's motion to be accurately determined through estimation of heading and lateral acceleration. This is an improvement over the the typical approach of modeling target motion with acceleration terms represented by random processes, such as that used in the Singer model. In the following pages, a three-dimensional target maneuver model is formulated in conjunction with the kinematic equations of a sensor tracking a target in spherical coordinates. Three degree-of-freedom simulation results of the proposed filter, simplified for planar target maneuvers, are compared to a filter modeling target motion with the Singer model.
Saltstone Clean Cap Formulation
Langton, C
2005-04-22
The current operation strategy for using Saltstone Vault 4 to receive 0.2 Ci/gallon salt solution waste involves pouring a clean grout layer over the radioactive grout prior to initiating pour into another cell. This will minimize the radiating surface area and reduce the dose rate at the vault and surrounding area. The Clean Cap will be used to shield about four feet of Saltstone poured into a Z-Area vault cell prior to moving to another cell. The minimum thickness of the Clean Cap layer will be determined by the cesium concentration and resulting dose levels and it is expected to be about one foot thick based on current calculations for 0.1 Ci Saltstone that is produced in the Saltstone process by stabilization of 0.2 Ci salt solution. This report documents experiments performed to identify a formulation for the Clean Cap. Thermal transient calculations, adiabatic temperature rise measurements, pour height, time between pour calculations and shielding calculations were beyond the scope and time limitations of this study. However, data required for shielding calculations (composition and specific gravity) are provided for shielding calculations. The approach used to design a Clean Cap formulation was to produce a slurry from the reference premix (10/45/45 weight percent cement/slag/fly ash) and domestic water that resembled as closely as possible the properties of the Saltstone slurry. In addition, options were investigated that may offer advantages such as less bleed water and less heat generation. The options with less bleed water required addition of dispersants. The options with lower heat contained more fly ash and less slag. A mix containing 10/45/45 weight percent cement/slag/fly ash with a water to premix ratio of 0.60 is recommended for the Clean Cap. Although this mix may generate more than 3 volume percent standing water (bleed water), it has rheological, mixing and flow properties that are similar to previously processed Saltstone. The recommended
NASA Technical Reports Server (NTRS)
Zheng, H. Q.; Staehelin, L. A.
2001-01-01
The endoplasmic reticulum (ER) of columella root cap cells has been postulated to play a role in gravity sensing. We have re-examined the ultrastructure of columella cells in tobacco (Nicotiana tabacum) root tips preserved by high-pressure freezing/freeze-substitution techniques to gain more precise information about the organization of the ER in such cells. The most notable findings are: the identification of a specialized form of ER, termed "nodal ER," which is found exclusively in columella cells; the demonstration that the bulk of the ER is organized in the form of a tubular network that is confined to a peripheral layer under the plasma membrane; and the discovery that this ER-rich peripheral region excludes Golgi stacks, vacuoles, and amyloplasts but not mitochondria. Nodal ER domains consist of an approximately 100-nm-diameter central rod composed of oblong subunits to which usually seven sheets of rough ER are attached along their margins. These domains form patches at the interface between the peripheral ER network and the ER-free central region of the cells, and they occupy defined positions within central and flanking columella cells. Over one-half of the nodal ER domains are located along the outer tangential walls of the flanking cells. Cytochalasin D and latrunculin A cause an increase in size and a decrease in numbers of nodal ER domains. We postulate that the nodal ER membranes locally modulate the gravisensing signals produced by the sedimenting amyloplasts, and that the confinement of all ER membranes to the cell periphery serves to enhance the sedimentability of the amyloplasts in the central region of columella cells.
Impact of FDG-PET/CT Imaging on Nodal Staging for Head-And-Neck Squamous Cell Carcinoma
Murakami, Ryuji . E-mail: murakami@kaiju.medic.kumamoto-u.ac.jp; Uozumi, Hideaki; Hirai, Toshinori; Nishimura, Ryuichi; Shiraishi, Shinya; Ota, Kazutoshi D.D.S.; Murakami, Daizo; Tomiguchi, Seiji; Oya, Natsuo; Katsuragawa, Shigehiko; Yamashita, Yasuyuki
2007-06-01
Purpose: To evaluate the impact of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) imaging on nodal staging for head-and-neck squamous cell carcinoma (SCC). Methods and Materials: The study population consisted of 23 patients with head-and-neck SCC who were evaluated with FDG-PET/CT and went on to neck dissection. Two observers consensually determined the lesion size and maximum standardized uptake value (SUV{sub max}) and compared the results with pathologic findings on nodal-level involvement. Two different observers (A and B) independently performed three protocols for clinical nodal staging. Methods 1, 2, and 3 were based on conventional modalities, additional visual information from FDG-PET/CT images, and FDG-PET/CT imaging alone with SUV data, respectively. Results: All primary tumors were visualized with FDG-PET/CT. Pathologically, 19 positive and 93 negative nodal levels were identified. The SUV{sub max} overlapped in negative and positive nodes <15 mm in diameter. According to receiver operating characteristics analysis, the size-based SUV{sub max} cutoff values were 1.9, 2.5, and 3.0 for lymph nodes <10 mm, 10-15 mm, and >15 mm, respectively. These cutoff values yielded 79% sensitivity and 99% specificity for nodal-level staging. For Observer A, the sensitivity and specificity in Methods 1, 2, and 3 were 68% and 94%, 68% and 99%, and 84% and 99%, respectively, and Method 3 yielded significantly higher accuracy than Method 1 (p = 0.0269). For Observer B, Method 3 yielded the highest sensitivity (84%) and specificity (99%); however, the difference among the three protocols was not statistically significant. Conclusion: Imaging with FDG-PET/CT with size-based SUV{sub max} cutoff values is an important modality for radiation therapy planning.
Dirix, Piet; Vandecaveye, Vincent; De Keyzer, Frederik; Op de beeck, Katya; Poorten, Vincent Vander; Delaere, Pierre; Verbeken, Eric; Hermans, Robert; Nuyts, Sandra
2010-03-01
Purpose: To evaluate the use of diffusion-weighted magnetic resonance imaging (DW-MRI) for nodal staging and its impact on radiotherapy (RT) planning. Methods and Materials: Twenty-two patients with locally advanced head and neck squamous cell carcinoma underwent contrast-enhanced computed tomography (CT), as well as MRI (with routine and DW sequences) prior to neck dissection. After topographic correlation, lymph nodes were evaluated microscopically with prekeratin immunostaining. Pathology results were correlated with imaging findings and an RT planning study was performed for these surgically treated patients. One set of target volumes was based on conventional imaging only, and another set was based on the corresponding DW-MRI images. A third reference set was contoured based solely on pathology results. Results: A sensitivity of 89% and a specificity of 97% per lymph node were found for DW-MRI. Nodal staging agreement between imaging and pathology was significantly stronger for DW-MRI (kappa = 0.97; 95% confidence interval [CI], 0.84-1.00) than for conventional imaging (kappa = 0.56; 95% CI, 0.16-0.96; p = 0.019, by McNemar's test). For both imaging modalities, the absolute differences between RT volumes and those obtained by pathology were calculated. Using an exact paired Wilcoxon test, the observed difference was significantly larger for conventional imaging than for DW-MRI for nodal gross tumor volume (p = 0.0013), as well as for nodal clinical target volume (p = 0.0415) delineation. Conclusions: These results suggest that DW-MRI is superior to conventional imaging for preradiotherapy nodal staging of head and neck squamous cell carcinoma, and provides a potential impact on organsparing and tumor control.
Barbuti, Andrea; Robinson, Richard B
2015-01-01
Since the first reports on the isolation and differentiation of stem cells, and in particular since the early success in driving these cells down a cardiac lineage, there has been interest in the potential of such preparations in cardiac regenerative therapy. Much of the focus of such research has been on improving mechanical function after myocardial infarction; however, electrophysiologic studies of these preparations have revealed a heterogeneous mix of action potential characteristics, including some described as "pacemaker" or "nodal-like," which in turn led to interest in the therapeutic potential of these preparations in the treatment of rhythm disorders; several proof-of-concept studies have used these cells to create a biologic alternative to electronic pacemakers. Further, there are additional potential applications of a preparation of pacemaker cells derived from stem cells, for example, in high-throughput screens of new chronotropic agents. All such applications require reasonably efficient methods for selecting or enriching the "nodal-like" cells, however, which in turn depends on first defining what constitutes a nodal-like cell since not all pacemaking cells are necessarily of nodal lineage. This review discusses the current state of the field in terms of characterizing sinoatrial-like cardiomyocytes derived from embryonic and induced pluripotent stem cells, markers that might be appropriate based on the current knowledge of the gene program leading to sinoatrial node development, what functional characteristics might be expected and desired based on studies of the sinoatrial node, and recent efforts at enrichment and selection of nodal-like cells.
Biopsychosocial Formulation: Recognizing Educational Shortcomings
ERIC Educational Resources Information Center
McClain, Tina; O'Sullivan, Patricia S.; Clardy, James A.
2004-01-01
Objective: Since Engel introduced the biopsychosocial model, it has been extensively examined. The authors expect psychiatrists to formulate cases using the biopsychosocial model. However, resident psychiatrists' ability to generate formulations using this model has received little attention. Methods: The authors evaluated resident biopsychosocial…
Operator Formulation of Classical Mechanics.
ERIC Educational Resources Information Center
Cohn, Jack
1980-01-01
Discusses the construction of an operator formulation of classical mechanics which is directly concerned with wave packets in configuration space and is more similar to that of convential quantum theory than other extant operator formulations of classical mechanics. (Author/HM)
Quantum mechanics with coordinate dependent noncommutativity
NASA Astrophysics Data System (ADS)
Kupriyanov, V. G.
2013-11-01
Noncommutative quantum mechanics can be considered as a first step in the construction of quantum field theory on noncommutative spaces of generic form, when the commutator between coordinates is a function of these coordinates. In this paper we discuss the mathematical framework of such a theory. The noncommutativity is treated as an external antisymmetric field satisfying the Jacobi identity. First, we propose a symplectic realization of a given Poisson manifold and construct the Darboux coordinates on the obtained symplectic manifold. Then we define the star product on a Poisson manifold and obtain the expression for the trace functional. The above ingredients are used to formulate a nonrelativistic quantum mechanics on noncommutative spaces of general form. All considered constructions are obtained as a formal series in the parameter of noncommutativity. In particular, the complete algebra of commutation relations between coordinates and conjugated momenta is a deformation of the standard Heisenberg algebra. As examples we consider a free particle and an isotropic harmonic oscillator on the rotational invariant noncommutative space.
Existence of frozen-in coordinate systems
NASA Technical Reports Server (NTRS)
Chertkov, A. D.
1995-01-01
The 'frozen-in' coordinate systems were first introduced in the works on 'reconnection' and 'magnetic barrier' theories (see review by M.l.Pudovkin and V.S.Semenov, Space Sci. Rev. 41,1 1985). The idea was to utilize the mathematical apparatus developed for 'general relativity' theory to simplify obtaining solutions to the ideal MHD equations set. Magnetic field (B), plasma velocity (v), and their vector product were used as coordinate vectors. But there exist no stationary solutions of ideal MHD set that satisfies the required boundary conditions at infinity (A.D.Chertkov, Solar Wind Seven Conf.,Pergamon Press,1992,165) having non-zero vector product of v and B where v and B originate from the same sphere. The existence of a solution is the hidden mine of the mentioned theories. The solution is constructed in the coordinate system, which is unknown and indeterminate before obtaining this solution. A substitution of the final solution must be done directly into the initial MHD set in order to check the method. One can demonstrate that 'solutions' of Petschek's problem, obtained by 'frozen-in' coordinate systems, does not satisfy just the 'frozen-in' equation, i.e. induction equation. It stems from the fact that Petschek's 're-connection' model, treated as a boundary problem, is over determined. This problem was incorrectly formulated.
Eulerian Formulation of Spatially Constrained Elastic Rods
NASA Astrophysics Data System (ADS)
Huynen, Alexandre
Slender elastic rods are ubiquitous in nature and technology. For a vast majority of applications, the rod deflection is restricted by an external constraint and a significant part of the elastic body is in contact with a stiff constraining surface. The research work presented in this doctoral dissertation formulates a computational model for the solution of elastic rods constrained inside or around frictionless tube-like surfaces. The segmentation strategy adopted to cope with this complex class of problems consists in sequencing the global problem into, comparatively simpler, elementary problems either in continuous contact with the constraint or contact-free between their extremities. Within the conventional Lagrangian formulation of elastic rods, this approach is however associated with two major drawbacks. First, the boundary conditions specifying the locations of the rod centerline at both extremities of each elementary problem lead to the establishment of isoperimetric constraints, i.e., integral constraints on the unknown length of the rod. Second, the assessment of the unilateral contact condition requires, in principle, the comparison of two curves parametrized by distinct curvilinear coordinates, viz. the rod centerline and the constraint axis. Both conspire to burden the computations associated with the method. To streamline the solution along the elementary problems and rationalize the assessment of the unilateral contact condition, the rod governing equations are reformulated within the Eulerian framework of the constraint. The methodical exploration of both types of elementary problems leads to specific formulations of the rod governing equations that stress the profound connection between the mechanics of the rod and the geometry of the constraint surface. The proposed Eulerian reformulation, which restates the rod local equilibrium in terms of the curvilinear coordinate associated with the constraint axis, describes the rod deformed configuration
Pindzola, Michael S; Schultz, David Robert
2008-01-01
Time-dependent lattice methods in both Cartesian and cylindrical coordinates are applied to calculate excitation cross sections for p+H collisions at 40 keV incident energy. The time-dependent Schroedinger equation is solved using a previously formulated Cartesian coordinate single-channel method on a full 3D lattice and a newly formulated cylindrical coordinate multichannel method on a set of coupled 2D lattices. Cartesian coordinate single-channel and cylindrical coordinate five-channel calculations are found to be in reasonable agreement for excitation cross sections from the 1s ground state to the 2s, 2p, 3s, 3p, and 3d excited states. For extension of the time-dependent lattice method to handle the two electron dynamics found in p+He collisions, the cylindrical coordinate multichannel method appears promising due to the reduced dimensionality of its lattice.
Shaitelman, Simona F.; Tereffe, Welela; Dogan, Basak E.; Hess, Kenneth R.; Caudle, Abigail S.; Valero, Vicente; Stauder, Michael C.; Krishnamurthy, Savitri; Candelaria, Rosalind P.; Strom, Eric A.; Woodward, Wendy A.; Hunt, Kelly K.; Buchholz, Thomas A.; Whitman, Gary J.
2015-09-01
Purpose: We sought to determine the rate at which regional nodal ultrasonography would increase the nodal disease stage in patients with triple-negative breast cancer (TNBC) beyond the clinical stage determined by physical examination and mammography alone, and significantly affect the treatments delivered to these patients. Methods and Materials: We retrospectively reviewed the charts of women with stages I to III TNBC who underwent physical examination, mammography, breast and regional nodal ultrasonography with needle biopsy of abnormal nodes, and definitive local-regional treatment at our institution between 2004 and 2011. The stages of these patients' disease with and without ultrasonography of the regional nodal basins were compared using the Pearson χ{sup 2} test. Definitive treatments of patients whose nodal disease was upstaged on the basis of ultrasonographic findings were compared to those of patients whose disease stage remained the same. Results: A total of 572 women met the study requirements. In 111 (19.4%) of these patients, regional nodal ultrasonography with needle biopsy resulted in an increase in disease stage from the original stage by physical examination and mammography alone. Significantly higher percentages of patients whose nodal disease was upstaged by ultrasonographic findings compared to that in patients whose disease was not upstaged underwent neoadjuvant systemic therapy (91.9% and 51.2%, respectively; P<.0001), axillary lymph node dissection (99.1% and 34.5%, respectively; P<.0001), and radiation to the regional nodal basins (88.2% and 29.1%, respectively; P<.0001). Conclusions: Regional nodal ultrasonography in TNBC frequently changes the initial clinical stage and plays an important role in treatment planning.
Novel Formulations for Antimicrobial Peptides
Carmona-Ribeiro, Ana Maria; Carrasco, Letícia Dias de Melo
2014-01-01
Peptides in general hold much promise as a major ingredient in novel supramolecular assemblies. They may become essential in vaccine design, antimicrobial chemotherapy, cancer immunotherapy, food preservation, organs transplants, design of novel materials for dentistry, formulations against diabetes and other important strategical applications. This review discusses how novel formulations may improve the therapeutic index of antimicrobial peptides by protecting their activity and improving their bioavailability. The diversity of novel formulations using lipids, liposomes, nanoparticles, polymers, micelles, etc., within the limits of nanotechnology may also provide novel applications going beyond antimicrobial chemotherapy. PMID:25302615
Novel formulations for antimicrobial peptides.
Carmona-Ribeiro, Ana Maria; de Melo Carrasco, Letícia Dias
2014-10-09
Peptides in general hold much promise as a major ingredient in novel supramolecular assemblies. They may become essential in vaccine design, antimicrobial chemotherapy, cancer immunotherapy, food preservation, organs transplants, design of novel materials for dentistry, formulations against diabetes and other important strategical applications. This review discusses how novel formulations may improve the therapeutic index of antimicrobial peptides by protecting their activity and improving their bioavailability. The diversity of novel formulations using lipids, liposomes, nanoparticles, polymers, micelles, etc., within the limits of nanotechnology may also provide novel applications going beyond antimicrobial chemotherapy.
ERIC Educational Resources Information Center
Friedlander, Alex; And Others
1982-01-01
Several methods of numerical mappings other than the usual cartesian coordinate system are considered. Some examples using parallel axes representation, which are seen to lead to aesthetically pleasing or interesting configurations, are presented. Exercises with alternative representations can stimulate pupil imagination and exploration in…
Koh, Kyoung Moo; Wong-Foy, Antek G.; Matzger, Adam J.; Benin, Annabelle I.; Willis, Richard R.
2012-12-04
The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.
Koh, Kyoung Moo; Wong-Foy, Antek G; Matzger, Adam J; Benin, Annabelle I; Willis, Richard R
2012-11-13
The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.
Koh, Kyoung Moo; Wong-Foy, Antek G; Matzger, Adam J; Benin, Annabelle I; Willis, Richard R
2014-11-11
The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.
[Civilian-military coordination].
de Montravel, G
2002-01-01
Current humanitarian emergencies create complex, mutidimensional situations that stimulate simultaneous responses from a wide variety of sources including governments, non-governmental organizations (NGO), United Nations agencies, and private individuals. As a result, it has become essential to establish a coherent framework in which each actor can contribute promptly and effectively to the overall effort. This is the role of the United Nations Office for the Coordination of Humanitarian Affairs. Regardless of the circumstances and level of coordination, cooperation and collaboration between humanitarian and military personnel, it is necessary to bear in mind their objectives. The purpose of humanitarian action is to reduce human suffering. The purpose of military intervention is to stop warfare. The author of this article will discuss the three major obstacles to civilian-military coordination (strategic, tactical, and operational). Operations cannot be conducted smoothly and differences cannot be ironed out without mutual respect between the two parties, an explicit definition of their respective duties and responsibilities, a clear understanding of their cultural differences, and the presence of an organization and facilities for coordination and arbitrage by a neutral referee.
Profiling Computing Coordinators.
ERIC Educational Resources Information Center
Edwards, Sigrid; Morton, Allan
The people responsible for managing school computing resources in Australia have become known as Computing Coordinators. To date there has been no large systematic study of the role, responsibilities and characteristics of this position. This paper represents a first attempt to provide information on the functions and attributes of the Computing…
Manual for Youth Coordinators.
ERIC Educational Resources Information Center
President's Council on Youth Opportunity, Washington, DC.
This manual was designed primarily for use by coordinators responsible for developing comprehensive community youth opportunity programs of employment, education, and recreation, but the material may also be of assistance to community and business leaders, educators, and others involved in expanding local opportunities for young people. Contents…
Origins of Coordinate Searching.
ERIC Educational Resources Information Center
Kilgour, Frederick G.
1997-01-01
Reviews the origins of post-coordinate searching and emphasizes that the focal point should be on the searcher, not on the item being indexed. Highlights include the history of the term information retrieval; edge notched punch cards; the "peek-a-boo" system; the Uniterm system; and using computers to search for information. (LRW)
Achliya, Girish S; Wadodkar, Sudhir G; Avinash, K Dorle
2004-05-01
A panchagavya Ayurvedic formulation containing E. officinalis, G. glabra, and cow's ghee was evaluated for its effect on pentobarbital-induced sleeping time, pentylenetetrazol-induced seizures, maximal electroshock-induced seizures, spontaneous motor activity, rota-rod performance (motor coordination) and antagonism to amphetamine in mice. The formulation (300, 500 mg/kg, po) produced a significant prolongation of pentobarbital-induced sleeping time and reduced spontaneous locomotor activity. The formulation also significantly antagonised the amphetamine induced hyper-locomotor activity (500, 750 mg/kg, po) and protected mice against tonic convulsions induced by maximal electroshock (500, 750 mg/kg, po). The formulation slightly prolonged the phases of seizure activity but did not protect mice against lethality induced by pentylenetetrazole. The formulation did not show neurotoxicity. The results suggest that the panchagavya formulation is sedative in nature.
Pesticide formulations and application systems
Kaneko; Spicer
1985-01-01
This book discusses pesticide formulations; spraying techniques and/or low and ultra low volume applications employing oil carriers, including subsurface drip irrigation and plant growth regulators; and granule technology.
Bioavailability of cefuroxime axetil formulations.
Donn, K H; James, N C; Powell, J R
1994-06-01
Cefuroxime axetil tablets have proved effective for the treatment of a variety of community-acquired infections. A suspension formulation has been developed for use in children. Two studies have been conducted to determine if the cefuroxime axetil formulations are bioequivalent. In the initial randomized, two-period crossover study, 24 healthy men received 250-mg doses of suspension and tablet formulations of cefuroxime axetil every 12 h after eating for seven doses. Each treatment period was separated by 4 days. Comparisons of serum and urine pharmacokinetic parameters indicated that the suspension and tablet formulations of cefuroxime axetil are not bioequivalent. Following the initial bioequivalency study, 0.1 % sodium lauryl sulfate (SLS) was added to the suspension to assure the homogeneity of the granules during the manufacturing process. In the subsequent randomized, three-period crossover study, 24 healthy men received single 250-mg doses of three cefuroxime axetil formulations: suspension without SLS, suspension with SLS, and tablet. Again each treatment period was separated by 4 days. Pharmacokinetic analyses demonstrated that while the suspension with SLS and suspension without SLS are bioequivalent, bioequivalence between the suspension with SLS and the tablet was not observed. Thus, the addition of the SLS surfactant to the suspension did not alter the bioavailability of the formulation.
Large-deformation modal coordinates for nonrigid vehicle dynamics
NASA Technical Reports Server (NTRS)
Likins, P. W.; Fleischer, G. E.
1972-01-01
The derivation of minimum-dimension sets of discrete-coordinate and hybrid-coordinate equations of motion of a system consisting of an arbitrary number of hinge-connected rigid bodies assembled in tree topology is presented. These equations are useful for the simulation of dynamical systems that can be idealized as tree-like arrangements of substructures, with each substructure consisting of either a rigid body or a collection of elastically interconnected rigid bodies restricted to small relative rotations at each connection. Thus, some of the substructures represent elastic bodies subjected to small strains or local deformations, but possibly large gross deformations, in the hybrid formulation, distributed coordinates referred to herein as large-deformation modal coordinates, are used for the deformations of these substructures. The equations are in a form suitable for incorporation into one or more computer programs to be used as multipurpose tools in the simulation of spacecraft and other complex electromechanical systems.
Optimum filtering of the coordinates of a mobile object
NASA Astrophysics Data System (ADS)
Kharisov, V. N.; Iakovlev, A. I.; Glushchenko, A. G.
1984-10-01
A problem of practical importance is the determination of the coordinates regarding the location of a mobile object on the basis of signals from synchronized radiation sources, the positions of which are known. Examples for such problems are related to radio navigation systems, satellite navigation systems of the Navstar type, and communication systems of the type JTIDS. Three different approaches exist for determining the coordinates of the mobile object. The present investigation is concerned with questions regarding the characteristics and the relative advantages of the approaches for the determination of these coordinates. The problem regarding the optimal determination of the coordinates of the mobile object is considered, taking into account the use of methods of the Markov theory of nonlinear filtering. Attention is given to details concerning the formulation of the problem, the characteristics of the processing algorithm, and the obtainable accuracy.
Nodal-line pairing with 1D-3D coupled Fermi surfaces: A model motivated by Cr-based superconductors
NASA Astrophysics Data System (ADS)
Wachtel, Gideon; Kim, Yong Baek
2016-09-01
Motivated by the recent discovery of a new family of chromium-based superconductors, we consider a two-band model, where a band of electrons dispersing only in one direction interacts with a band of electrons dispersing in all three directions. Strong 2 kf density fluctuations in the one-dimensional band induces attractive interactions between the three-dimensional electrons, which, in turn, makes the system superconducting. Solving the associated Eliashberg equations, we obtain a gap function which is peaked at the "poles" of the three-dimensional Fermi sphere, and decreases towards the "equator." When strong enough local repulsion is included, the gap actually changes sign around the equator and nodal rings are formed. These nodal rings manifest themselves in several experimentally observable quantities, some of which resemble unconventional observations in the newly discovered superconductors which motivated this work.
Jung, Julia Jeannine; Husse, Britta; Rimmbach, Christian; Krebs, Stefan; Stieber, Juliane; Steinhoff, Gustav; Dendorfer, Andreas; Franz, Wolfgang-Michael; David, Robert
2014-05-06
Therapeutic approaches for "sick sinus syndrome" rely on electrical pacemakers, which lack hormone responsiveness and bear hazards such as infection and battery failure. These issues may be overcome via "biological pacemakers" derived from pluripotent stem cells (PSCs). Here, we show that forward programming of PSCs with the nodal cell inducer TBX3 plus an additional Myh6-promoter-based antibiotic selection leads to cardiomyocyte aggregates consisting of >80% physiologically and pharmacologically functional pacemaker cells. These induced sinoatrial bodies (iSABs) exhibited highly increased beating rates (300-400 bpm), coming close to those found in mouse hearts, and were able to robustly pace myocardium ex vivo. Our study introduces iSABs as highly pure, functional nodal tissue that is derived from PSCs and may be important for future cell therapies and drug testing in vitro.
Jung, Julia Jeannine; Husse, Britta; Rimmbach, Christian; Krebs, Stefan; Stieber, Juliane; Steinhoff, Gustav; Dendorfer, Andreas; Franz, Wolfgang-Michael; David, Robert
2014-01-01
Summary Therapeutic approaches for “sick sinus syndrome” rely on electrical pacemakers, which lack hormone responsiveness and bear hazards such as infection and battery failure. These issues may be overcome via “biological pacemakers” derived from pluripotent stem cells (PSCs). Here, we show that forward programming of PSCs with the nodal cell inducer TBX3 plus an additional Myh6-promoter-based antibiotic selection leads to cardiomyocyte aggregates consisting of >80% physiologically and pharmacologically functional pacemaker cells. These induced sinoatrial bodies (iSABs) exhibited highly increased beating rates (300–400 bpm), coming close to those found in mouse hearts, and were able to robustly pace myocardium ex vivo. Our study introduces iSABs as highly pure, functional nodal tissue that is derived from PSCs and may be important for future cell therapies and drug testing in vitro. PMID:24936448
The 18.6-year lunar nodal cycle and surface temperature variability in the northeast Pacific
NASA Astrophysics Data System (ADS)
McKinnell, Stewart M.; Crawford, William R.
2007-02-01
The 18.6-year lunar nodal cycle (LNC) is a significant feature of winter (January) air and sea temperatures along the North American west coast over a 400-year period. Yet much of the recent temperature variation can also be explained by wind patterns associated with the PNA teleconnection. At Sitka, Alaska, (57°N) and nearby stations in northern British Columbia, the January PNA index accounts for over 70% of average January air temperatures in lengthy meteorological records. It appears that the LNC signal in January air temperatures in this region is not independent of the PNA, but is a component of it. The Sitka air temperature record, along with SSTs along the British Columbia coast and the PNA index have significant cross-correlations with the LNC that appear at a 2-year lag, LNC leading. The influence of the PNA pattern declines in winter with decreasing latitude but the LNC component does not. It appears as a significant feature of long-term SST variation at Scripps Pier and the California Current System. The LNC also appears over centennial-scales in proxy temperatures along western North America. The linkage of LNC-moderated surface temperatures to processes involving basin-scale teleconnections expands the possibility that the proximate mechanism may be located remotely from its expression in the northeast Pacific. Some of the largest potential sources of a diurnal tidal signal in the atmosphere are located in the western Pacific; the Sea of Okhotsk and the Indonesian archipelago.
High-latitude oceanic variability associated with the 18.6-year nodal tide
NASA Astrophysics Data System (ADS)
Royer, Thomas C.
1993-03-01
Ocean temperatures in the upper 250 m in the northern North Pacific (60°N, 149°W) increased by more than 1°C from 1972 to 1986 but are now decreasing. Subsurface temperature anomalies are well correlated (˜0.58) with the air temperature anomalies at Sitka, Alaska; hence the coastal air temperatures can be used as a proxy data set to extend the ocean temperature time series back to 1828. Up to 30% of the low-frequency variance can be accounted for with the 18.6-year nodal signal. Additionally, spectral analysis of these air temperature variations indicates a significant low-frequency peak in the range of the 18.6-year signal. Similar low-frequency signals have been reported for Hudson Bay air temperatures since 1700, for sea surface temperatures in the North Atlantic from 1876 to 1939, and for sea level in the high-latitude southern hemisphere. The water column temperature variations presented here are the first evidence that the upper ocean is responding to this very long period tidal forcing. An enhanced high-latitude response to the 18.6-year forcing is predicted by equilibrium tide theory, and it should be most evident at latitudes poleward of about 50°. These low-frequency ocean-atmosphere variations must be considered in high-latitude assessments of global climate change, since they are of the same magnitude as many of the predicted global changes.
CD20-Positive nodal natural killer/T-cell lymphoma with cutaneous involvement.
Tsai, Yi-Chiun; Chen, Chi-Kuan; Wu, Yu-Hung
2015-09-01
CD20-positive natural killer (NK)/T-cell lymphoma is extremely rare. We describe a case of a CD20-positive nodal NK/T-cell lymphoma with cutaneous involvement in a 32-year-old man. The patient presented with fever, night sweats, right inguinal lymphadenopathy and multiple violaceous to erythematous nodules and plaques on the back and bilateral legs. Immunohistochemical analysis showed diffusely and strongly positive staining for CD3, CD3 epsilon, CD43, CD56, TIA-1 and CD20 but negative staining for other B-cell markers, including CD79a and PAX-5 and T-cell markers CD5 and CD7. The tumor cell nuclei were diffusely positive for Epstein-Barr virus-encoded RNA in situ hybridization. A partial clinical response was observed after chemotherapy, indicated by the decreased size of the lymph nodes and skin lesions. It is a diagnostic challenge to deal with lymphoma cells that present with the surface proteins of both T- and B-cells.
Identification of cell-type-specific mutations in nodal T-cell lymphomas
Nguyen, T B; Sakata-Yanagimoto, M; Asabe, Y; Matsubara, D; Kano, J; Yoshida, K; Shiraishi, Y; Chiba, K; Tanaka, H; Miyano, S; Izutsu, K; Nakamura, N; Takeuchi, K; Miyoshi, H; Ohshima, K; Minowa, T; Ogawa, S; Noguchi, M; Chiba, S
2017-01-01
Recent genetic analysis has identified frequent mutations in ten-eleven translocation 2 (TET2), DNA methyltransferase 3A (DNMT3A), isocitrate dehydrogenase 2 (IDH2) and ras homolog family member A (RHOA) in nodal T-cell lymphomas, including angioimmunoblastic T-cell lymphoma and peripheral T-cell lymphoma, not otherwise specified. We examined the distribution of mutations in these subtypes of mature T-/natural killer cell neoplasms to determine their clonal architecture. Targeted sequencing was performed for 71 genes in tumor-derived DNA of 87 cases. The mutations were then analyzed in a programmed death-1 (PD1)-positive population enriched with tumor cells and CD20-positive B cells purified by laser microdissection from 19 cases. TET2 and DNMT3A mutations were identified in both the PD1+ cells and the CD20+ cells in 15/16 and 4/7 cases, respectively. All the RHOA and IDH2 mutations were confined to the PD1+ cells, indicating that some, including RHOA and IDH2 mutations, being specific events in tumor cells. Notably, we found that all NOTCH1 mutations were detected only in the CD20+ cells. In conclusion, we identified both B- as well as T-cell-specific mutations, and mutations common to both T and B cells. These findings indicate the expansion of a clone after multistep and multilineal acquisition of gene mutations. PMID:28157189
NASA Technical Reports Server (NTRS)
Wilson, Deborah A.; Weigel, Russell C.; Wheeler, Raymond M.; Sager, John C.
1993-01-01
The effects of light spectral quality on the growth of in vitro nodal cuttings of potato (Solanum tuberosum L.) cultivars Norland, Superior, Kennebec, and Denali were examined. The different light spectra were provided by Vita-Lite fluorescent (VF) (a white light control), blue fluorescent (BF), red fluorescent (RF), low-pressure sodium (LPS), and a combination of low-pressure sodium plus cool-white fluorescent lamps (LPS/CWF). For cultivars, stem lengths after 4 wks were longest under LPS, follow by RF, LPS/CWF, VF, and BF (in descending order). Microscopic studies revealed that cells were shortest when cultured in BF or VF environments, and were longest in RF or LPS lamp environments. The highest number axillary branches occurred on plantlets grown with LPS or LPS/CWF, whereas the lowest number occurred with BF. No leaf or stem edema (callus or gall-like growths) occurred iwth LPS or LPS/cwf lighting, and no edema occurred on cv. Norland plantlets, regardless of lighting. Results suggest that shoot morphologic development of in vitro grown potato plants can be controlled by controlling irradiant spectral quality.
Alignment of a three-mirror anastigmatic telescope using nodal aberration theory.
Gu, Zhiyuan; Yan, Changxiang; Wang, Yang
2015-09-21
Most computer-aided alignment methods for optical systems are based on numerical algorithms at present, which omit aberration theory. This paper presents a novel alignment algorithm for three-mirror anastigmatic (TMA) telescopes using Nodal Aberration Theory (NAT). The aberration field decenter vectors and boresight error of misaligned TMA telescopes are derived. Two alignment models based on 3rd and 5th order NAT are established successively and compared in the same alignment example. It is found that the average and the maximum RMS wavefront errors in the whole field of view of 0.3° × 0.15° are 0.063 λ (λ = 1 μm) and 0.068 λ respectively after the 4th alignment action with the 3rd order model, and 0.011 λ and 0.025 λ (nominal values) respectively after the 3rd alignment action with the 5th order model. Monte-Carlo alignment simulations are carried out with the 5th order model. It shows that the 5th order model still has good performance even when the misalignment variables are large (-1 mm≤linear misalignment≤1 mm, -0.1°≤angular misalignment≤0.1°), and multiple iterative alignments are needed when the misalignment variables increase.
Active optical alignment of off-axis telescopes based on nodal aberration theory.
Zhang, Xiaobin; Zhang, Dong; Xu, Shuyan; Ma, Hongcai
2016-11-14
Our paper mainly separates the specific aberration contributions of third-order astigmatism and third-order coma from the total aberration fields, on the framework of the modified nodal aberration theory (NAT), for the perturbed off-axis telescope. Based on the derived aberration functions, two alignment models for the same off-axis two-mirror telescope are established and compared. Among them, one is based on third-order NAT, the other is based on fifth-order NAT. By comparison, it is found that the calculated perturbations based on fifth-order NAT are more accurate. It illustrates that third-order astigmatism and third-order coma contributed from fifth-order aberrations can't be neglected in the alignment process. Then the fifth-order NAT is used for the alignment of off-axis three-mirror telescopes. After simulation, it is found that the perturbed off-axis three-mirror telescope can be perfectly aligned as well. To further demonstrate the application of the alignment method based on fifth-order NAT (simplified as NAT method), Monte-Carlo simulations for both off-axis two-mirror telescope and off-axis three-mirror telescope are conducted in the end. Meantime, a comparison between NAT method and sensitivity table method is also conducted. It is proven that the computation accuracy of NAT method is much higher, especially in poor conditions.
Boscoboinik, A. M.; Manzi, S. J.; Tysoe, W. T.; Pereyra, V. D.; Boscoboinik, J. A.
2015-09-10
The influence of directing agents in the self-assembly of molecular wires to produce two-dimensional electronic nanoarchitectures is studied here using a Monte Carlo approach to simulate the effect of arbitrarily locating nodal points on a surface, from which the growth of self-assembled molecular wires can be nucleated. This is compared to experimental results reported for the self-assembly of molecular wires when 1,4-phenylenediisocyanide (PDI) is adsorbed on Au(111). The latter results in the formation of (Au-PDI)_{n} organometallic chains, which were shown to be conductive when linked between gold nanoparticles on an insulating substrate. The present study analyzes, by means of stochastic methods, the influence of variables that affect the growth and design of self-assembled conductive nanoarchitectures, such as the distance between nodes, coverage of the monomeric units that leads to the formation of the desired architectures, and the interaction between the monomeric units. As a result, this study proposes an approach and sets the stage for the production of complex 2D nanoarchitectures using a bottom-up strategy but including the use of current state-of-the-art top-down technology as an integral part of the self-assembly strategy.
Boscoboinik, A. M.; Manzi, S. J.; Tysoe, W. T.; ...
2015-09-10
The influence of directing agents in the self-assembly of molecular wires to produce two-dimensional electronic nanoarchitectures is studied here using a Monte Carlo approach to simulate the effect of arbitrarily locating nodal points on a surface, from which the growth of self-assembled molecular wires can be nucleated. This is compared to experimental results reported for the self-assembly of molecular wires when 1,4-phenylenediisocyanide (PDI) is adsorbed on Au(111). The latter results in the formation of (Au-PDI)n organometallic chains, which were shown to be conductive when linked between gold nanoparticles on an insulating substrate. The present study analyzes, by means of stochasticmore » methods, the influence of variables that affect the growth and design of self-assembled conductive nanoarchitectures, such as the distance between nodes, coverage of the monomeric units that leads to the formation of the desired architectures, and the interaction between the monomeric units. As a result, this study proposes an approach and sets the stage for the production of complex 2D nanoarchitectures using a bottom-up strategy but including the use of current state-of-the-art top-down technology as an integral part of the self-assembly strategy.« less
A "gentle" nodal suspension for measurements of the acoustic attenuation in materials.
Cesarini, E; Lorenzini, M; Campagna, E; Martelli, F; Piergiovanni, F; Vetrano, F; Losurdo, G; Cagnoli, G
2009-05-01
Loss angle measurements in ultralow mechanical loss materials is normally affected by a large systematic error due to the excess losses introduced by the suspension system used to hold the samples. Crystals such as sapphire and silicon or amorphous materials such as fused silica can have loss angles in the range of 10(-10)-10(-7); such materials are of extreme interest in the detection of small displacements as it is required in quantum measurements, frequency stabilization, Micro Electro-Mechanical Systems (MEMS), and gravitational wave research. In the system proposed here the sample is suspended in equilibrium on top of a sphere, touching on one of the nodal points of vibration. The advantage of this system, as compared to others used so far, is twofold: (i) one surface only of the sample is touched and the contact surface is minimized because of the absence of applied forces; (ii) some relevant parameters of the suspension can be measured and eventually varied, giving the experimentalist the possibility to identify whether the measured loss is limited by the suspension system in use or it is an intrinsic property of the sample under investigation. The measurements of a 75 mm diameter and 3 mm thickness disk of Suprasil 311 gave a loss angle phi of 5x10(-8).
Nodal energy weighted transformation: A mistuning projection and its application to FLADE™ turbines
NASA Astrophysics Data System (ADS)
Fitzner, Colin; Epureanu, Bogdan I.; Filippi, Sergio
2014-01-01
In recent years, several researchers have developed reduced-order models (ROMs) to efficiently and accurately calculate the forced response of blisks with known small mistuning. Small mistuning consists of the small blade-to-blade structural differences which destroy the inherent cyclic symmetry of the structure. This paper presents a nodal energy weighted transformation (NEWT) which can be used to construct ROMs of mistuned blisks and dual flow path systems, such as FLADE™ turbines. The NEWT approach can be interpreted as a hybrid of two existing techniques: component mode mistuning (CMM) and the subset of nominal modes (SNM). Similar to the previous methods, NEWT assumes that the mistuned modes of the system are a linear combination of tuned modes. However, NEWT differs from its predecessors in the blisk substructuring and in the mistuning projection. Numerical results obtained using full order models, CMM, and NEWT are presented and compared over multiple frequency ranges for a finite element model of a blisk and that of a FLADE™ turbine. These results show that ROMs based on NEWT have several attractive features: (a) the accuracy of the ROMs is comparable to ROMs based on CMM, and can be improved by increasing the size of the projection mode subset; (b) no necessary modifications are needed to analyze FLADE™ turbines; and (c) the response of all modes can be predicted well even if they are not blade dominated.
Lunar nodal tide and distance to the Moon during the Precambrian.
Walker, J C; Zahnle, K J
1986-04-17
The pace of tidal evolution for the past approximately 450 Myr implies an Earth/Moon collision some 1,500-2,000 Myr BP, an event for which there is no corroborating evidence. Here we present the first direct determination of the lunar distance in the Precambrian. We interpret a 23.3 +/- 0.3-yr periodicity preserved in a 2,500 Myr BP Australian banded iron formation (BIF) as reflecting the climatic influence of the lunar nodal tide, which has been detected with its modern 18.6-yr periodicity in some modern climate records. The lunar distance at 2,500 Myr BP would then have been about 52 Earth radii. The implied history of Precambrian tidal friction is in accord with both the more recent palaeontological evidence and the long-term stability of the lunar orbit. The length of the Milankovitch cycles that modulate the ice ages today also evolve with the Earth-Moon system. Their detection in the Precambrian sedimentary record would then permit an independent determination of the lunar distance.
Uncompacted Myelin Lamellae and Nodal Ion Channel Disruption in POEMS Syndrome.
Hashimoto, Rina; Koike, Haruki; Takahashi, Mie; Ohyama, Ken; Kawagashira, Yuichi; Iijima, Masahiro; Sobue, Gen
2015-12-01
To elucidate the significance of uncompacted myelin lamellae (UML) and ion channel disruption at the nodes of Ranvier in the polyneuropathy, organomegaly, endocrinopathy, monoclonal gammopathy, and skin changes (POEMS) syndrome, we evaluated sural nerve biopsy specimens from 33 patients with POEMS syndrome and from 7 control patients. Uncompacted myelin lamellae distribution was assessed by electron microscopy and immunofluorescence microscopy. In the POEMS patient biopsies, UML were seen more frequently in small versus large myelinated fibers. Paranodes and Schmidt-Lanterman incisures, where normal physiologic UM is located, were frequently associated with UM. Widening of the nodes of Ranvier (i.e. segmental demyelination) was not associated with UML. There was axonal hollowing with neurofilament condensation at Schmidt-Lanterman incisures with abnormal UML, suggesting axonal damage at those sites in the POEMS patient biopsies. Myelin sheath irregularity was conspicuous in large myelinated fibers and was associated with abnormally widened bizarrely shaped Schmidt-Lanterman incisures. Indirect immunofluorescent studies revealed abnormalities of sodium (pan sodium) and potassium (KCNQ2) channels, even at nonwidened nodes of Ranvier. Thus, UML was not apparently associated with segmental demyelination but seemed to be associated with axonal damage. These observations suggest that nodal ion channel disruption may be associated with functional deficits in POEMS syndrome patient nerves.
Anisotropic softening of magnetic excitations along the nodal direction in superconducting cuprates
NASA Astrophysics Data System (ADS)
Guarise, M.; Piazza, B. Dalla; Berger, H.; Giannini, E.; Schmitt, T.; Rønnow, H. M.; Sawatzky, G. A.; van den Brink, J.; Altenfeld, D.; Eremin, I.; Grioni, M.
2014-12-01
The high-Tc cuprate superconductors are close to antiferromagnetic order. Recent measurements of magnetic excitations have reported an intriguing similarity to the spin waves—magnons—of the antiferromagnetic insulating parent compounds, suggesting that magnons may survive in damped, broadened form throughout the phase diagram. Here we show by resonant inelastic X-ray scattering on Bi2Sr2CaCu2O8+δ (Bi-2212) that the analogy with spin waves is only partial. The magnon-like features collapse along the nodal direction in momentum space and exhibit a photon energy dependence markedly different from the Mott-insulating case. These observations can be naturally described by the continuum of charge and spin excitations of correlated electrons. The persistence of damped magnons could favour scenarios for superconductivity built from quasiparticles coupled to spin fluctuations. However, excitation spectra composed of particle-hole excitations suggest that superconductivity emerges from a coherent treatment of electronic spin and charge in the form of quasiparticles with very strong magnetic correlations.
Nagamoto, Yasutsugu; Inage, Tomohito; Yoshida, Teruhisa; Takeuchi, Tomohiro; Gondo, Takeki; Fukuda, Yujiro; Takii, Eiichi; Murotani, Kenta; Imaizumi, Tsutomu
2012-03-01
Patients often require antiarrhythmic drugs to control tachycardia after permanent pacemaker implantation (PMI) for bradycardia-tachycardia syndrome. We compared atrioventricular nodal ablation (AVNA) to antiarrhythmic drugs after PMI for bradycardia-tachycardia syndrome. Twenty-eight symptomatic patients with bradycardia-tachycardia syndrome, all of which had a long pause after termination of paroxysmal atrial fibrillation, underwent PMI with RV lead placement at the mid-septum site. Among these patients, 14 underwent PMI and AVNA (AVNA group). The remaining 14 patients underwent PMI only, and continued to take anti-arrhythmic drugs (drug group). We compared cardiac function (cardio-thoracic ratio on chest X-ray, left atrial diameter, left ventricular end-diastolic dimension, and left ventricular-ejection fraction by echocardiography), exercise tolerance (6-min walking distance), symptoms, and the number of antiarrhythmic drugs just before and 6 months after PMI. Baseline characteristics were similar between the two groups, except for the number of antiarrhythmic drugs. Six months after PMI, cardiac function, exercise tolerance, and symptoms did not differ significantly between the two groups. Compared to the drug group (p < 0.01), the number of antiarrhythmic drugs was significantly smaller in the AVNA group 6 months after PMI. Patients who underwent AVNA concurrently with PMI with RV lead placement at the mid-septum site for bradycardia-tachycardia syndrome were able to reduce the intake of drugs and improve their tachycardia-related symptoms while maintaining cardiac function and exercise tolerance.
A nodal discontinuous Galerkin finite element method for nonlinear elastic wave propagation.
Bou Matar, Olivier; Guerder, Pierre-Yves; Li, YiFeng; Vandewoestyne, Bart; Van Den Abeele, Koen
2012-05-01
A nodal discontinuous Galerkin finite element method (DG-FEM) to solve the linear and nonlinear elastic wave equation in heterogeneous media with arbitrary high order accuracy in space on unstructured triangular or quadrilateral meshes is presented. This DG-FEM method combines the geometrical flexibility of the finite element method, and the high parallelization potentiality and strongly nonlinear wave phenomena simulation capability of the finite volume method, required for nonlinear elastodynamics simulations. In order to facilitate the implementation based on a numerical scheme developed for electromagnetic applications, the equations of nonlinear elastodynamics have been written in a conservative form. The adopted formalism allows the introduction of different kinds of elastic nonlinearities, such as the classical quadratic and cubic nonlinearities, or the quadratic hysteretic nonlinearities. Absorbing layers perfectly matched to the calculation domain of the nearly perfectly matched layers type have been introduced to simulate, when needed, semi-infinite or infinite media. The developed DG-FEM scheme has been verified by means of a comparison with analytical solutions and numerical results already published in the literature for simple geometrical configurations: Lamb's problem and plane wave nonlinear propagation.
Hodges, Joseph C.; Das, Prajnan; Eng, Cathy; Reish, Andrew G.; Beddar, A. Sam; Delclos, Marc E.; Krishnan, Sunil; Crane, Christopher H.
2009-11-01
Purpose: To determine the rates of toxicity, locoregional control, distant control, and survival in anal cancer patients with para-aortic nodal involvement, treated with intensity-modulated radiotherapy (IMRT) and concurrent chemotherapy at a single institution. Methods and Materials: Between 2001 and 2007, 6 patients with squamous cell anal cancer and para-aortic nodal involvement were treated with IMRT and concurrent infusional 5-fluorouracil and cisplatin. The primary tumor was treated with a median dose of 57.5 Gy (range, 54-60 Gy), involved para-aortic, pelvic, and inguinal lymph nodes were treated with a median dose of 55 Gy (range, 50.5-55 Gy), and noninvolved nodal regions were treated with a median dose of 45 Gy (range, 43.5-45 Gy). Results: After a median follow-up of 25 months, none of the patients had a recurrence at the primary tumor, pelvic/inguinal nodes, or para-aortic nodes, whereas 2 patients developed distant metastases to the liver. Four of the 6 patients are alive. The 3-year actuarial locoregional control, distant control, and overall survival rates were 100%, 56%, and 63%, respectively. Four of the 6 patients developed Grade 3 acute gastrointestinal toxicity during chemoradiation. Conclusions: Intensity-modulated radiotherapy and concurrent chemotherapy could potentially serve as definitive therapy in anal cancer patients with para-aortic nodal involvement. Adjuvant chemotherapy may be indicated in these patients, as demonstrated by the distant failure rates. These patients need to be followed carefully because of the potential for treatment-related toxicities.
NASA Technical Reports Server (NTRS)
Elsner, R. F.; O'Dell, S. L.; Ramsey, B. D.; Weisskopf, M. C.
2011-01-01
We provide a mathematical formalism for optimizing the mirror nodal positions along the optical axis and the tilt of a commonly employed detector configuration at the focus of a x-ray telescope consisting of nested mirror shells with known mirror surface prescriptions. We adopt the spatial resolution averaged over the field-of-view as the figure of merit M. A more complete description appears in our paper in these proceedings.
Laurent, Camille; Do, Catherine; Gourraud, Pierre-Antoine; de Paiva, Geisilene Russano; Valmary, Séverine; Brousset, Pierre
2015-01-01
Abstract Non-Hodgkin lymphoma (NHL) and Hodgkin lymphoma (HL) represent a heterogeneous group of malignant lymphoid tumors, which have distinct histological and/or biological characteristics with preferential nodal involvement. However, none of the previous studies have assessed the prevalence of common NHL and HL subtypes at each nodal site of involvement. The aim of our study was to determine the prevalence of HL and NHL subtypes depending on their nodal sites of involvement. We conducted a single-center retrospective study of 938 lymphoma cases diagnosed in the Pathology Department of Toulouse Purpan Hospital in France between 2001 and 2008, taking into account the site that corresponded to the diagnostic biopsy. The most frequent sites were cervical lymph nodes (36.8% of all cases), inguinal lymph nodes (16.4%), axillary lymph nodes (11.9%), and supraclavicular lymph nodes (11%). We found an unexpected association between intraparotid nodes and nodular lymphocyte predominant Hodgkin lymphoma (NLPHL) and between inguinal nodes and follicular lymphoma. The risk of having classical Hodgkin lymphoma (CHL) was 15 times greater in patients with mediastinal lymphoma compared to those with other sites of involvement. Regarding HL, nodal and extranodal mediastinal sites and supraclavicular nodes were more likely to be involved by nodular sclerosis Hodgkin lymphoma (NSCHL). In addition, intra-abdominal lymph nodes were more frequently involved by lymphocyte depleted Hodgkin lymphoma compared to inguinal nodes where NLPHL predominated. Our study shows that some lymph node sites have a disproportionate prevalence of specific subtypes of lymphoma. Identifying these sites may aid to diagnose and better elucidate the pathogenesis of these tumors. PMID:26107683
1985-02-01
Time in hours at Oh UT is GAST (hours) = GMST + E (41) GAST in radians is GASTo (radians) = GAST (hours) L (42) The angle e required for transforming...inertial coordinates to ECEF is- 6(radians) GASTo + 6.3003880.99 (ti - th) (43) o ~ooUT Mod ( E 27) where St.i - tohLjT = (JD -2.4 106). (JDOE -2.4 x
Information Theoretic Causal Coordination
2013-09-12
his 1969 paper, Clive Granger , British economist and Nobel laureate, proposed a statistical def- inition of causality between stochastic processes. It...showed that the directed infor- mation, an information theoretic quantity, quantifies Granger causality . We also explored a more pessimistic setup...Final Technical Report Project Title: Information Theoretic Causal Coordination AFOSR Award Number: AF FA9550-10-1-0345 Reporting Period: July 15
Xu, Chen; Zhang, Yan; Wang, Qiaoling; Xu, Zhenyu; Jiang, Junfeng; Gao, Yuping; Gao, Minzhi; Kang, Jiuhong; Wu, Minjuan; Xiong, Jun; Ji, Kaihong; Yuan, Wen; Wang, Yue; Liu, Houqi
2016-01-01
Long non-coding RNAs (lncRNAs) are known players in the regulatory circuitry of the self-renewal in human embryonic stem cells (hESCs). However, most hESC-specific lncRNAs remain uncharacterized. Here we demonstrate that growth-arrest-specific transcript 5 (GAS5), a known tumour suppressor and growth arrest-related lncRNA, is highly expressed and directly regulated by pluripotency factors OCT4 and SOX2 in hESCs. Phenotypic analysis shows that GAS5 knockdown significantly impairs hESC self-renewal, but its overexpression significantly promotes hESC self-renewal. Using RNA sequencing and functional analysis, we demonstrate that GAS5 maintains NODAL signalling by protecting NODAL expression from miRNA-mediated degradation. Therefore, we propose that the above pluripotency factors, GAS5 and NODAL form a feed-forward signalling loop that maintains hESC self-renewal. As this regulatory function of GAS5 is stem cell specific, our findings also indicate that the functions of lncRNAs may vary in different cell types due to competing endogenous mechanisms. PMID:27811843
Weeks, D A; Beckwith, J B; Mierau, G W
1990-12-01
Regional lymph node status is a key factor in the staging of pediatric renal tumors on the National Wilms' Tumor Study (NWTS). A review of cases entered on the NWTS has uncovered a number of cases where benign lymph node findings were mistaken for metastases. Most frequently, this was due to the presence of complexes of epithelial cells and Tamm-Horsfall protein within nodal sinuses. The epithelial cells were derived from damaged nephrons, usually resulting from obstruction by tumor. Another epithelial pseudometastic lesion, intranodal squamous epithelial cells, was found to originate from metaplastic calyceal urothelium. Benign mesothelial or coelomic inclusions similar to those previously described in pelvic and periaortic lymph nodes of adult females were found in nodes of four patients, including two boys, who are, to our knowledge, the first to be described with this finding. Other sources of confusion included protrusion of lymphoid follicles or germinal centers into nodal sinuses, thick endothelial cells of postcapillary venules mimicking epithelial tubules, nodal megakaryocytes resembling anaplastic nuclear changes, and histiocytic granulomas. Immunocytochemical methods were useful in evaluating some of these phenomena. Recognition of these pseudometastatic lesions is essential in order to avoid unnecessary and potentially hazardous therapeutic intensification.
Deb, Chitta Ranjan; Arenmongla, T
2012-11-01
Adventitious shoot buds formation from axillary buds of nodal segments of S. flaccidifolious was achieved on MS medium containing sucrose (3%, w/v), and a-naphthalene acetic acid (NAA; 3 microM) and benzyl adenine (3 microM) in combination. The nodal segments were primed on 'Growtak Sieve' for 48 h on MS medium containing sucrose (2%), polyvinyl pyrollidone (200 mgL(-1)) as antioxidant. About 80% of primed nodal segments responded positively and formed approximately 12 adventitious shoot buds per explants from explants collected during October-November months of every year. The shoot buds converted into plantlets on MS medium containing sucrose (3%) and kinetin (3 microM) where approximately 7 micro shoots developed per subculture after 8 weeks of culture. The regenerated micro shoots induced average 14 roots/plant on medium containing NAA (3 microM). The regenerates were hardened for 6-7 weeks on medium with 1/2MS salt solution and sucrose (2%) under normal laboratory condition before transferring to potting mix. About 70% transplants survived after two months of transfer.
Coda, Davide M; Gaarenstroom, Tessa; East, Philip; Patel, Harshil; Miller, Daniel S J; Lobley, Anna; Matthews, Nik; Stewart, Aengus; Hill, Caroline S
2017-01-01
NODAL/Activin signaling orchestrates key processes during embryonic development via SMAD2. How SMAD2 activates programs of gene expression that are modulated over time however, is not known. Here we delineate the sequence of events that occur from SMAD2 binding to transcriptional activation, and the mechanisms underlying them. NODAL/Activin signaling induces dramatic chromatin landscape changes, and a dynamic transcriptional network regulated by SMAD2, acting via multiple mechanisms. Crucially we have discovered two modes of SMAD2 binding. SMAD2 can bind pre-acetylated nucleosome-depleted sites. However, it also binds to unacetylated, closed chromatin, independently of pioneer factors, where it induces nucleosome displacement and histone acetylation. For a subset of genes, this requires SMARCA4. We find that long term modulation of the transcriptional responses requires continued NODAL/Activin signaling. Thus SMAD2 binding does not linearly equate with transcriptional kinetics, and our data suggest that SMAD2 recruits multiple co-factors during sustained signaling to shape the downstream transcriptional program. DOI: http://dx.doi.org/10.7554/eLife.22474.001 PMID:28191871
Coordinating Shared Activities
NASA Technical Reports Server (NTRS)
Clement, Bradley
2004-01-01
Shared Activity Coordination (ShAC) is a computer program for planning and scheduling the activities of an autonomous team of interacting spacecraft and exploratory robots. ShAC could also be adapted to such terrestrial uses as helping multiple factory managers work toward competing goals while sharing such common resources as floor space, raw materials, and transports. ShAC iteratively invokes the Continuous Activity Scheduling Planning Execution and Replanning (CASPER) program to replan and propagate changes to other planning programs in an effort to resolve conflicts. A domain-expert specifies which activities and parameters thereof are shared and reports the expected conditions and effects of these activities on the environment. By specifying these conditions and effects differently for each planning program, the domain-expert subprogram defines roles that each spacecraft plays in a coordinated activity. The domain-expert subprogram also specifies which planning program has scheduling control over each shared activity. ShAC enables sharing of information, consensus over the scheduling of collaborative activities, and distributed conflict resolution. As the other planning programs incorporate new goals and alter their schedules in the changing environment, ShAC continually coordinates to respond to unexpected events.
Universal mechatronics coordinator
NASA Astrophysics Data System (ADS)
Muir, Patrick F.
1999-11-01
Mechatronic systems incorporate multiple actuators and sensor which must be properly coordinated to achieve the desired system functionality. Many mechatronic systems are designed as one-of-a-kind custom projects without consideration for facilitating future system or alterations and extensions to the current syste. Thus, subsequent changes to the system are slow, different, and costly. It has become apparent that manufacturing processes, and thus the mechatronics which embody them, need to be agile in order to more quickly and easily respond to changing customer demands or market pressures. To achieve agility, both the hardware and software of the system need to be designed such that the creation of new system and the alteration and extension of current system is fast and easy. This paper describes the design of a Universal Mechatronics Coordinator (UMC) which facilitates agile setup and changeover of coordination software for mechatronic systems. The UMC is capable of sequencing continuous and discrete actions that are programmed as stimulus-response pairs, as state machines, or a combination of the two. It facilitates the modular, reusable programing of continuous actions such as servo control algorithms, data collection code, and safety checking routines; and discrete actions such as reporting achieved states, and turning on/off binary devices. The UMC has been applied to the control of a z- theta assembly robot for the Minifactory project and is applicable to a spectrum of widely differing mechatronic systems.
Calculating Robot-Joint Coordinates From Image Coordinates
NASA Technical Reports Server (NTRS)
1988-01-01
Detailed knowledge of robot joints not required. Algorithm generates approximate mathematical models of coordinates of joints of robot as functions of coordinates of points in images of work region viewed by television cameras. Joint coordinates necessary to position and orient end effector calculated by mathematical models fitted to experimentally determined data on positions, orientations, and joint coordinates. Generates models as functions of desired location of end effector of robot. Does not require priori knowledge of kinematic equations of robot.
Wang, C.Y.
1985-01-01
This taper describes an implicit three-dimensional finite-element formulation for the structural analysis of reactor piping system. The numerical algorithm considers hoop, flexural, axial, and torsion modes of the piping structures. It is unconditionally stable and can be used for calculation of piping response under static or long duration dynamic loads. The method uses a predictor-corrector, successive iterative scheme which satisfies the equilibrium equations. A set of stiffness equations representing the discretized equations of motion are derived to predict the displacement increments. The calculated displacement increments are then used to correct the element nodal forces. The algorithm is fairly general, and is capable of treating large displacements and elastic-plastic materials with thermal and strain-rate effects. 7 refs., 7 figs.
Xyce parallel electronic simulator design : mathematical formulation, version 2.0.
Hoekstra, Robert John; Waters, Lon J.; Hutchinson, Scott Alan; Keiter, Eric Richard; Russo, Thomas V.
2004-06-01
This document is intended to contain a detailed description of the mathematical formulation of Xyce, a massively parallel SPICE-style circuit simulator developed at Sandia National Laboratories. The target audience of this document are people in the role of 'service provider'. An example of such a person would be a linear solver expert who is spending a small fraction of his time developing solver algorithms for Xyce. Such a person probably is not an expert in circuit simulation, and would benefit from an description of the equations solved by Xyce. In this document, modified nodal analysis (MNA) is described in detail, with a number of examples. Issues that are unique to circuit simulation, such as voltage limiting, are also described in detail.
Vo, BaoHan T; Cody, Bianca; Cao, Yang; Khan, Shafiq A
2012-11-01
Transforming growth factor-beta (TGF-β) signaling pathways contain both tumor suppressor and tumor promoting activities. We have demonstrated that Nodal, another member of the TGF-β superfamily, and its receptors are expressed in prostate cancer cells. Nodal and TGF-β exerted similar biological effects on prostate cells; both inhibited proliferation in WPE, RWPE1 and DU145 cells, whereas neither had any effect on the proliferation of LNCaP or PC3 cells. Interestingly, Nodal and TGF-β induced migration in PC3 cells, but not in DU145 cells. TGF-β induced predominantly phosphorylation of Smad3, whereas Nodal induced phosphorylation of only Smad2. We also determined the expression and differential role of Ski, a corepressor of Smad2/3, in Nodal and TGF-β signaling in prostate cancer cells. Similar levels of Ski mRNA were found in several established prostate cell lines; however, high levels of Ski protein were only detected in prostate cancer cells and prostate cancer tissue samples. Exogenous Nodal and TGF-β had no effects on Ski mRNA levels. On the other hand, TGF-β induced a rapid degradation of Ski protein mediated by the proteasomal pathway, whereas Nodal had no effect on Ski protein. Reduced Ski levels correlated with increased basal and TGF-β-induced Smad2/3 phosphorylation. Knockdown of endogenous Ski reduced proliferation in DU145 cells and enhanced migration of PC3 cells. We conclude that high levels of Ski expression in prostate cancer cells may be responsible for repression of TGF-β and Smad3 signaling, but Ski protein levels do not influence Nodal and Smad2 signaling.
Loon, Judith van; De Ruysscher, Dirk; Wanders, Rinus; Boersma, Liesbeth; Simons, Jean; Oellers, Michel; Dingemans, Anne-Marie C.; Hochstenbag, Monique; Bootsma, Gerben; Geraedts, Wiel; Pitz, Cordula; Teule, Jaap; Rhami, Ali; Thimister, Willy; Snoep, Gabriel; Dehing-Oberije, Cary; Lambin, Philippe
2010-06-01
Purpose: To evaluate the results of selective nodal irradiation on basis of {sup 18}F-deoxyglucose positron emission tomography (PET) scans in patients with limited-disease small-cell lung cancer (LD-SCLC) on isolated nodal failure. Methods and Materials: A prospective study was performed of 60 patients with LD-SCLC. Radiotherapy was given to a dose of 45 Gy in twice-daily fractions of 1.5 Gy, concurrent with carboplatin and etoposide chemotherapy. Only the primary tumor and the mediastinal lymph nodes involved on the pretreatment PET scan were irradiated. A chest computed tomography (CT) scan was performed 3 months after radiotherapy completion and every 6 months thereafter. Results: A difference was seen in the involved nodal stations between the pretreatment {sup 18}F-deoxyglucose PET scans and computed tomography scans in 30% of patients (95% confidence interval, 20-43%). Of the 60 patients, 39 (65%; 95% confidence interval [CI], 52-76%) developed a recurrence; 2 patients (3%, 95% CI, 1-11%) experienced isolated regional failure. The median actuarial overall survival was 19 months (95% CI, 17-21). The median actuarial progression-free survival was 14 months (95% CI, 12-16). 12% (95% CI, 6-22%) of patients experienced acute Grade 3 (Common Terminology Criteria for Adverse Events, version 3.0) esophagitis. Conclusion: PET-based selective nodal irradiation for LD-SCLC resulted in a low rate of isolated nodal failures (3%), with a low percentage of acute esophagitis. These findings are in contrast to those from our prospective study of CT-based selective nodal irradiation, which resulted in an unexpectedly high percentage of isolated nodal failures (11%). Because of the low rate of isolated nodal failures and toxicity, we believe that our data support the use of PET-based SNI for LD-SCLC.
Computer transformation of partial differential equations into any coordinate system
NASA Technical Reports Server (NTRS)
Sullivan, R. D.
1977-01-01
The use of tensors to provide a compact way of writing partial differential equations in a form valid in all coordinate systems is discussed. In order to find solutions to the equations with their boundary conditions they must be expressed in terms of the coordinate system under consideration. The process of arriving at these expressions from the tensor formulation was automated by a software system, TENSR. An allied system that analyzes the resulting expressions term by term and drops those that are negligible is also described.
Formulations of Amlodipine: A Review
Ahsan, Syed Furqan; Khan, Marium Fatima
2016-01-01
Amlodipine (AD) is a calcium channel blocker that is mainly used in the treatment of hypertension and angina. However, latest findings have revealed that its efficacy is not only limited to the treatment of cardiovascular diseases as it has shown to possess antioxidant activity and plays an important role in apoptosis. Therefore, it is also employed in the treatment of cerebrovascular stroke, neurodegenerative diseases, leukemia, breast cancer, and so forth either alone or in combination with other drugs. AD is a photosensitive drug and requires protection from light. A number of workers have tried to formulate various conventional and nonconventional dosage forms of AD. This review highlights all the formulations that have been developed to achieve maximum stability with the desired therapeutic action for the delivery of AD such as fast dissolving tablets, floating tablets, layered tablets, single-pill combinations, capsules, oral and transdermal films, suspensions, emulsions, mucoadhesive microspheres, gels, transdermal patches, and liposomal formulations. PMID:27822402
Decontamination formulation with sorbent additive
Tucker; Mark D. , Comstock; Robert H.
2007-10-16
A decontamination formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a bleaching activator, a sorbent additive, and water. The highly adsorbent, water-soluble sorbent additive (e.g., sorbitol or mannitol) is used to "dry out" one or more liquid ingredients, such as the liquid bleaching activator (e.g., propylene glycol diacetate or glycerol diacetate) and convert the activator into a dry, free-flowing powder that has an extended shelf life, and is more convenient to handle and mix in the field.
Industrial Combustion Coordinated Rulemaking.
Melton, Lula H
1996-08-01
The following article is excerpted from the document Industrial Combustion Coordinated Rulemaking - Proposed Organizational Structure and Process, which is available from the Technology Transfer Network (TTN), a computer bulletin board. To access the TTN, call (919) 541-5742; to obtain help with the TTN, call (919) 541-5384. The Industrial Combustion Coordinated Rulemaking (ICCR) document is evolving, reflecting an ongoing dialogue with various stakeholders; therefore, there may be changes between this article and the ICCR as it is implemented. EPA would like to thank all stakeholders (e.g., representatives from various companies and trade associations, state and local air pollution control agencies, and environmental organizations) who have offered suggestions and comments on development of the ICCR. As mentioned in the implications statement, the overall goal of the ICCR is to develop a unified set of federal air emissions regulations. The proposed ICCR will achieve this goal by: • Obtaining active participation from stakeholders, including environmental groups, regulated industries, and state and local regulatory agencies in all phases of regulatory development. • Coordinating the schedule and approach for development of regulations under Sections 111, 112, and 129 of the Clean Air Act that affect ICI combustion. • Determining the most effective ways to address the environmental issues associated with toxic and criteria pollutants from the range of combustion sources. • More effectively considering interactions among the regulations by analyzing the combined benefits and economic impacts of the group of Section 111, 112, and 129 regulations. • Considering strategies to simplify the regulations and allow flexibility in the methods of compliance while maintaining full environmental benefits.
NASA Technical Reports Server (NTRS)
Zendejas, Silvino; Bui, Tung; Bui, Bach; Malhotra, Shantanu; Chen, Fannie; Kim, Rachel; Allen, Christopher; Luong, Ivy; Chang, George; Sadaqathulla, Syed
2009-01-01
The Work Coordination Engine (WCE) is a Java application integrated into the Service Management Database (SMDB), which coordinates the dispatching and monitoring of a work order system. WCE de-queues work orders from SMDB and orchestrates the dispatching of work to a registered set of software worker applications distributed over a set of local, or remote, heterogeneous computing systems. WCE monitors the execution of work orders once dispatched, and accepts the results of the work order by storing to the SMDB persistent store. The software leverages the use of a relational database, Java Messaging System (JMS), and Web Services using Simple Object Access Protocol (SOAP) technologies to implement an efficient work-order dispatching mechanism capable of coordinating the work of multiple computer servers on various platforms working concurrently on different, or similar, types of data or algorithmic processing. Existing (legacy) applications can be wrapped with a proxy object so that no changes to the application are needed to make them available for integration into the work order system as "workers." WCE automatically reschedules work orders that fail to be executed by one server to a different server if available. From initiation to completion, the system manages the execution state of work orders and workers via a well-defined set of events, states, and actions. It allows for configurable work-order execution timeouts by work-order type. This innovation eliminates a current processing bottleneck by providing a highly scalable, distributed work-order system used to quickly generate products needed by the Deep Space Network (DSN) to support space flight operations. WCE is driven by asynchronous messages delivered via JMS indicating the availability of new work or workers. It runs completely unattended in support of the lights-out operations concept in the DSN.
A stabilised nodal spectral element method for fully nonlinear water waves
NASA Astrophysics Data System (ADS)
Engsig-Karup, A. P.; Eskilsson, C.; Bigoni, D.
2016-08-01
We present an arbitrary-order spectral element method for general-purpose simulation of non-overturning water waves, described by fully nonlinear potential theory. The method can be viewed as a high-order extension of the classical finite element method proposed by Cai et al. (1998) [5], although the numerical implementation differs greatly. Features of the proposed spectral element method include: nodal Lagrange basis functions, a general quadrature-free approach and gradient recovery using global L2 projections. The quartic nonlinear terms present in the Zakharov form of the free surface conditions can cause severe aliasing problems and consequently numerical instability for marginally resolved or very steep waves. We show how the scheme can be stabilised through a combination of over-integration of the Galerkin projections and a mild spectral filtering on a per element basis. This effectively removes any aliasing driven instabilities while retaining the high-order accuracy of the numerical scheme. The additional computational cost of the over-integration is found insignificant compared to the cost of solving the Laplace problem. The model is applied to several benchmark cases in two dimensions. The results confirm the high order accuracy of the model (exponential convergence), and demonstrate the potential for accuracy and speedup. The results of numerical experiments are in excellent agreement with both analytical and experimental results for strongly nonlinear and irregular dispersive wave propagation. The benefit of using a high-order - possibly adapted - spatial discretisation for accurate water wave propagation over long times and distances is particularly attractive for marine hydrodynamics applications.
Mehta, D.; Gomes, J. A.
1995-01-01
OBJECTIVE--To assess immediate and long term success of "fast" pathway catheter ablation with graded use of radiofrequency energy in patients with classic atrioventricular nodal reentrant tachycardia (AVNRT) and evaluate clinical, procedure related, and electrophysiological features affecting long term results. DESIGN--31 consecutive patients with classic AVNRT at electrophysiological study, who were candidates for radiofrequency ablation. Patients were followed for an average of 24 months after ablation. SETTING--All studies and ablations were performed in an electrophysiological laboratory under fluoroscopic guidance using standard electrophysiological techniques. INTERVENTION--Radiofrequency application was performed at the site of proximal His bundle electrogram with A:V ratio of > 1. It was started at 10 W with increment of 5 W to a maximum of 25 W at 60 s. With the onset of junctional rhythm, atrial pacing was begun in order to monitor the PR interval. Application was terminated prematurely with a non-conducted P wave, continued prolongation of the PR interval beyond 50% of the baseline, or a threefold rise in impedance. RESULTS--Successful ablation was possible in 30/31 patients (97%) with an average of seven applications (range 1-10). It was associated with significant prolongation of PR interval (P < 0.001) and AV Wenckebach cycle length (P = 0.01). Ventriculo-atrial conduction was abolished in 24/30 patients (82%) with successful ablation. Two patients developed transient complete heart block (3 and 12 min) and one persistent right branch block. Four patients had late recurrence. Presence of ventriculo-atrial block was the only electrophysiological index predictive of long term success (P = 0.01). CONCLUSIONS--Graded use of radiofrequency energy and atrial pacing to monitor PR interval decreases the risk of atrioventricular block in patients undergoing fast pathway ablation for AVNRT. Ventriculo-atrial block is predictive of long term success and should
Louissaint, Abner; Schafernak, Kristian T; Geyer, Julia T; Kovach, Alexandra E; Ghandi, Mahmoud; Gratzinger, Dita; Roth, Christine G; Paxton, Christian N; Kim, Sunhee; Namgyal, Chungdak; Morin, Ryan; Morgan, Elizabeth A; Neuberg, Donna S; South, Sarah T; Harris, Marian H; Hasserjian, Robert P; Hochberg, Ephraim P; Garraway, Levi A; Harris, Nancy Lee; Weinstock, David M
2016-08-25
Pediatric-type nodal follicular lymphoma (PTNFL) is a variant of follicular lymphoma (FL) characterized by limited-stage presentation and invariably benign behavior despite often high-grade histological appearance. It is important to distinguish PTNFL from typical FL in order to avoid unnecessary treatment; however, this distinction relies solely on clinical and pathological criteria, which may be variably applied. To define the genetic landscape of PTNFL, we performed copy number analysis and exome and/or targeted sequencing of 26 PTNFLs (16 pediatric and 10 adult). The most commonly mutated gene in PTNFL was MAP2K1, encoding MEK1, with a mutation frequency of 43%. All MAP2K1 mutations were activating missense mutations localized to exons 2 and 3, which encode negative regulatory and catalytic domains, respectively. Missense mutations in MAPK1 (2/22) and RRAS (1/22) were identified in cases that lacked MAP2K1 mutations. The second most commonly mutated gene in PTNFL was TNFRSF14, with a mutation frequency of 29%, similar to that seen in limited-stage typical FL (P = .35). PTNFL was otherwise genomically bland and specifically lacked recurrent mutations in epigenetic modifiers (eg, CREBBP, KMT2D). Copy number aberrations affected a mean of only 0.5% of PTNFL genomes, compared with 10% of limited-stage typical FL genomes (P < .02). Importantly, the mutational profiles of PTNFLs in children and adults were highly similar. Together, these findings define PTNFL as a biologically and clinically distinct indolent lymphoma of children and adults characterized by a high prevalence of MAPK pathway mutations and a near absence of mutations in epigenetic modifiers.
Respiratory Organ Motion and Dosimetric Impact on Breast and Nodal Irradiation
Qi, X. Sharon; White, Julia; Rabinovitch, Rachel; Merrell, Kenneth; Sood, Amit; Bauer, Anderson; Wilson, J. Frank; Miften, Moyed; Li, X. Allen
2010-10-01
Purpose: To examine the respiratory motion for target and normal structures during whole breast and nodal irradiation and the resulting dosimetric impact. Methods and Materials: Four-dimensional CT data sets of 18 patients with early-stage breast cancer were analyzed retrospectively. A three-dimensional conformal dosimetric plan designed to irradiate the breast was generated on the basis of CT images at 20% respiratory phase (reference phase). The reference plans were copied to other respiratory phases at 0% (end of inspiration) and 50% (end of expiration) to simulate the effects of breathing motion on whole breast irradiation. Dose-volume histograms, equivalent uniform dose, and normal tissue complication probability were evaluated and compared. Results: Organ motion of up to 8.8 mm was observed during free breathing. A large lung centroid movement was typically associated with a large shift of other organs. The variation of planning target volume coverage during a free breathing cycle is generally within 1%-5% (17 of 18 patients) compared with the reference plan. However, up to 28% of V{sub 45} variation for the internal mammary nodes was observed. Interphase mean dose variations of 2.2%, 1.2%, and 1.4% were observed for planning target volume, ipsilateral lung, and heart, respectively. Dose variations for the axillary nodes and brachial plexus were minimal. Conclusions: The doses delivered to the target and normal structures are different from the planned dose based on the reference phase. During normal breathing, the dosimetric impact of respiratory motion is clinically insignificant with the exception of internal mammary nodes. However, noticeable degradation in dosimetric plan quality may be expected for the patients with large respiratory motion.
Schafernak, Kristian T.; Geyer, Julia T.; Kovach, Alexandra E.; Ghandi, Mahmoud; Gratzinger, Dita; Roth, Christine G.; Paxton, Christian N.; Kim, Sunhee; Namgyal, Chungdak; Morin, Ryan; Morgan, Elizabeth A.; Neuberg, Donna S.; South, Sarah T.; Harris, Marian H.; Hasserjian, Robert P.; Hochberg, Ephraim P.; Garraway, Levi A.; Harris, Nancy Lee; Weinstock, David M.
2016-01-01
Pediatric-type nodal follicular lymphoma (PTNFL) is a variant of follicular lymphoma (FL) characterized by limited-stage presentation and invariably benign behavior despite often high-grade histological appearance. It is important to distinguish PTNFL from typical FL in order to avoid unnecessary treatment; however, this distinction relies solely on clinical and pathological criteria, which may be variably applied. To define the genetic landscape of PTNFL, we performed copy number analysis and exome and/or targeted sequencing of 26 PTNFLs (16 pediatric and 10 adult). The most commonly mutated gene in PTNFL was MAP2K1, encoding MEK1, with a mutation frequency of 43%. All MAP2K1 mutations were activating missense mutations localized to exons 2 and 3, which encode negative regulatory and catalytic domains, respectively. Missense mutations in MAPK1 (2/22) and RRAS (1/22) were identified in cases that lacked MAP2K1 mutations. The second most commonly mutated gene in PTNFL was TNFRSF14, with a mutation frequency of 29%, similar to that seen in limited-stage typical FL (P = .35). PTNFL was otherwise genomically bland and specifically lacked recurrent mutations in epigenetic modifiers (eg, CREBBP, KMT2D). Copy number aberrations affected a mean of only 0.5% of PTNFL genomes, compared with 10% of limited-stage typical FL genomes (P < .02). Importantly, the mutational profiles of PTNFLs in children and adults were highly similar. Together, these findings define PTNFL as a biologically and clinically distinct indolent lymphoma of children and adults characterized by a high prevalence of MAPK pathway mutations and a near absence of mutations in epigenetic modifiers. PMID:27325104
Nanoscale coordination polymers for anticancer drug delivery
NASA Astrophysics Data System (ADS)
Phillips, Rachel Huxford
This dissertation reports the synthesis and characterization of nanoscale coordination polymers (NCPs) for anticancer drug delivery. Nanoparticles have been explored in order to address the limitations of small molecule chemotherapeutics. NCPs have been investigated as drug delivery vehicles as they can exhibit the same beneficial properties as the bulk metal-organic frameworks as well as interesting characteristics that are unique to nanomaterials. Gd-MTX (MTX = methotrexate) NCPs with a MTX loading of 71.6 wt% were synthesized and stabilized by encapsulation within a lipid bilayer containing anisamide (AA), a small molecule that targets sigma receptors which are overexpressed in many cancer tissues. Functionalization with AA allows for targeted delivery and controlled release to cancer cells, as shown by enhanced efficacy against leukemia cells. The NCPs were doped with Ru(bpy)32+ (bpy = 2,2'-bipyridine), and this formulation was utilized as an optical imaging agent by confocal microscopy. NCPs containing the chemotherapeutic pemetrexed (PMX) were synthesized using different binding metals. Zr-based materials could not be stabilized by encapsulation with a lipid bilayer, and Gd-based materials showed that PMX had degraded during synthesis. However, Hf-based NCPs containing 19.7 wt% PMX were stabilized by a lipid coating and showed in vitro efficacy against non-small cell lung cancer (NSCLC) cell lines. Enhanced efficacy was observed for formulations containing AA. Additionally, NCP formulations containing the cisplatin prodrug disuccinatocisplatin were prepared; one of these formulations could be stabilized by encapsulation within a lipid layer. Coating with a lipid layer doped with AA rendered this formulation an active targeting agent. The resulting formulation proved more potent than free cisplatin in NSCLC cell lines. Improved NCP uptake was demonstrated by confocal microscopy and competitive binding assays. Finally, a Pt(IV) oxaliplatin prodrug was
Markov stochasticity coordinates
NASA Astrophysics Data System (ADS)
Eliazar, Iddo
2017-01-01
Markov dynamics constitute one of the most fundamental models of random motion between the states of a system of interest. Markov dynamics have diverse applications in many fields of science and engineering, and are particularly applicable in the context of random motion in networks. In this paper we present a two-dimensional gauging method of the randomness of Markov dynamics. The method-termed Markov Stochasticity Coordinates-is established, discussed, and exemplified. Also, the method is tweaked to quantify the stochasticity of the first-passage-times of Markov dynamics, and the socioeconomic equality and mobility in human societies.
Reference pressure changes and available potential energy in isobaric coordinates
NASA Technical Reports Server (NTRS)
Robertson, F. R.
1985-01-01
A formulation of the available potential energy (APE) equation in isobaric coordinates which alleviates the need for computing temporal derivatives of reference pressure and describes how work done relates to changes in the APE of a limited region is presented. The APE budget equation possesses terms analogous to those in Johnson's (1970) isentropic version. It is shown that APE changes result from either mechanical work inside the domain or an exchange of energy via boundary processes with the surrounding environment.
Formulating Policy for Summer Schools.
ERIC Educational Resources Information Center
Marriot, Helen
1991-01-01
Explores issues relating to the formulation of policy for summer programs for language learning, describing one university's experience with student demand, student motivation and progress, course timing and structure, academic staffing, administrative organization, student and staff evaluation, and funding. (three references) (CB)
Covariant Formulation of Hooke's Law.
ERIC Educational Resources Information Center
Gron, O.
1981-01-01
Introducing a four-vector strain and a four-force stress, Hooke's law is written as a four-vector equation. This formulation is shown to clarify seemingly paradoxical results in connection with uniformly accelerated motion, and rotational motion with angular acceleration. (Author/JN)
General formulation of transverse hydrodynamics
Ryblewski, Radoslaw; Florkowski, Wojciech
2008-06-15
General formulation of hydrodynamics describing transversally thermalized matter created at the early stages of ultrarelativistic heavy-ion collisions is presented. Similarities and differences with the standard three-dimensionally thermalized relativistic hydrodynamics are discussed. The role of the conservation laws as well as the thermodynamic consistency of two-dimensional thermodynamic variables characterizing transversally thermalized matter is emphasized.
Dai, Liang; Pajer, Enrico; Schmidt, Fabian E-mail: Enrico.pajer@gmail.com
2015-11-01
Fermi Normal Coordinates (FNC) are a useful frame for isolating the locally observable, physical effects of a long-wavelength spacetime perturbation. Their cosmological application, however, is hampered by the fact that they are only valid on scales much smaller than the horizon. We introduce a generalization that we call Conformal Fermi Coordinates (CFC). CFC preserve all the advantages of FNC, but in addition are valid outside the horizon. They allow us to calculate the coupling of long- and short-wavelength modes on all scales larger than the sound horizon of the cosmological fluid, starting from the epoch of inflation until today, by removing the complications of the second order Einstein equations to a large extent, and eliminating all gauge ambiguities. As an application, we present a calculation of the effect of long-wavelength tensor modes on small scale density fluctuations. We recover previous results, but clarify the physical content of the individual contributions in terms of locally measurable effects and ''projection'' terms.
Noncommuting spherical coordinates
Bander, Myron
2004-10-15
Restricting the states of a charged particle to the lowest Landau level introduces a noncommutativity between Cartesian coordinate operators. This idea is extended to the motion of a charged particle on a sphere in the presence of a magnetic monopole. Restricting the dynamics to the lowest energy level results in noncommutativity for angular variables and to a definition of a noncommuting spherical product. The values of the commutators of various angular variables are not arbitrary but are restricted by the discrete magnitude of the magnetic monopole charge. An algebra, isomorphic to angular momentum, appears. This algebra is used to define a spherical star product. Solutions are obtained for dynamics in the presence of additional angular dependent potentials.
NASA Technical Reports Server (NTRS)
Himwich, Ed; Strand, Richard
2013-01-01
This report includes an assessment of the network performance in terms of lost observing time for the 2012 calendar year. Overall, the observing time loss was about 12.3%, which is in-line with previous years. A table of relative incidence of problems with various subsystems is presented. The most significant identified causes of loss were electronics rack problems (accounting for about 21.8% of losses), antenna reliability (18.1%), RFI (11.8%), and receiver problems (11.7%). About 14.2% of the losses occurred for unknown reasons. New antennas are under development in the USA, Germany, and Spain. There are plans for new telescopes in Norway and Sweden. Other activities of the Network Coordinator are summarized.
NASA Technical Reports Server (NTRS)
Song, Y.; Wright, D.
1998-01-01
A formulation of the pressure gradient force for use in models with topography-following coordinates is proposed and diagnostically analyzed by Song. We investigate numerical consistency with respect to global energy conservation, depth-integrated momentum changes, and the represent of the bottom pressure torque.
Not Available
1994-01-01
In December 1992, western governors and four federal agencies established a Federal Advisory Committee to Develop On-site Innovative Technologies for Environmental Restoration and Waste Management (the DOIT Committee). The purpose of the Committee is to advise the federal government on ways to improve waste cleanup technology development and the cleanup of federal sites in the West. The Committee directed in January 1993 that information be collected from a wide range of potential stakeholders and that innovative technology candidate projects be identified, organized, set in motion, and evaluated to test new partnerships, regulatory approaches, and technologies which will lead to improve site cleanup. Five working groups were organized, one to develop broad project selection and evaluation criteria and four to focus on specific contaminant problems. A Coordinating Group comprised of working group spokesmen and federal and state representatives, was set up to plan and organize the routine functioning of these working groups. The working groups were charged with defining particular contaminant problems; identifying shortcomings in technology development, stakeholder involvement, regulatory review, and commercialization which impede the resolution of these problems; and identifying candidate sites or technologies which could serve as regional innovative demonstration projects to test new approaches to overcome the shortcomings. This report from the Coordinating Group to the DOIT Committee highlights the key findings and opportunities uncovered by these fact-finding working groups. It provides a basis from which recommendations from the DOIT Committee to the federal government can be made. It also includes observations from two public roundtables, one on commercialization and another on regulatory and institutional barriers impeding technology development and cleanup.
Tsikolia, Nikoloz; Schröder, Silke; Schwartz, Peter; Viebahn, Christoph
2012-12-01
A common element during early left-right patterning of the vertebrate body is left-sided nodal expression in the early-somite stage lateral plate mesoderm. Leftward cell movements near the node of the gastrulating chick embryo recently offered a plausible mechanism for breaking the presomite-stage molecular symmetry in those vertebrates which lack rotating cilia on the notochord or equivalent tissues. However, the temporal and functional relationships between generation of the known morphological node asymmetry, onset of leftward cell movements and establishment of stable molecular asymmetry in the chick remain unresolved. This study uses high-resolution light microscopy and in situ gene expression analysis to show that intranodal cell rearrangement during the phase of counter-clockwise node torsion at stage 4+ is immediately followed by symmetry loss and rearrangement of shh and fgf8 expression in node epiblast between stages 5- and 5+. Surprisingly, left-sided nodal expression starts at stage 5-, too, but lies in the paraxial mesoderm next to the forming notochordal plate, and can be rendered symmetrical by minimal mechanical disturbance of distant tissue integrity at stage 4. The "premature" paraxial nodal expression together with morphological and molecular asymmetries in, and near, midline compartments occurring at defined substages of early gastrulation help to identify a new narrow time window for early steps in left-right patterning in the chick and support the concept of a causal relationship between a-still enigmatic-chiral (motor) protein, cell movements and incipient left-right asymmetry in the amniote embryo.
Mattei, César; Molgó, Jordi; Benoit, Evelyne
2014-10-01
Ciguatoxins, mainly produced by benthic dinoflagellate Gambierdiscus species, are responsible for a complex human poisoning known as ciguatera. Previous pharmacological studies revealed that these toxins activate voltage-gated Na+ channels. In frog nodes of Ranvier, ciguatoxins induce spontaneous and repetitive action potentials (APs) and increase axonal volume that may explain alterations of nerve functioning in intoxicated humans. The present study aimed determining the ionic mechanisms involved in Pacific ciguatoxin-1B (P-CTX-1B)-induced membrane hyperexcitability and subsequent volume increase in frog nodes of Ranvier, using electrophysiology and confocal microscopy. The results reveal that P-CTX-1B action is not dependent on external Cl- ions since it was not affected by substituting Cl- by methylsulfate ions. In contrast, substitution of external Na+ by Li+ ions suppressed spontaneous APs and prevented nodal swelling. This suggests that P-CTX-1B-modified Na+ channels are not selective to Li+ ions and/or are blocked by these ions, and that Na+ influx through Na+ channels opened during spontaneous APs is required for axonal swelling. The fact that the K+ channel blocker tetraethylammonium modified, but did not suppress, spontaneous APs and greatly reduced nodal swelling induced by P-CTX-1B indicates that K+ efflux might also be involved. This is supported by the fact that P-CTX-1B, when tested in the presence of both tetraethylammonium and the K+ ionophore valinomycin, produced the characteristic nodal swelling. It is concluded that, during the action of P-CTX-1B, water movements responsible for axonal swelling depend on both Na+ influx and K+ efflux. These results pave the way for further studies regarding ciguatera treatment.
Braam, Petra M. . E-mail: P.M.Braam@umcutrecht.nl; Raaijmakers, Cornelis P.J.; Terhaard, Chris
2007-02-01
Purpose: To analyze the cranial distribution of level II lymph nodes in patients with laryngeal cancer to optimize the elective radiation nodal target volume delineation. Methods and Materials: The most cranially located metastatic lymph node was delineated in 67 diagnostic CT data sets. The minimum distance from the base of the skull (BOS) to the lymph node was determined. Results: A total of 98 lymph nodes were delineated including 62 ipsilateral and 36 contralateral lymph nodes. The mean ipsilateral and contralateral distance from the top of the most cranial metastatic lymph node to the BOS was 36 mm (range, -9-120; standard deviation [SD], 17.9) and 35 mm (range, 14-78; SD 15.0), respectively. Only 5% and 12% of the ipsilateral and 3% and 9% of the contralateral metastatic lymph nodes were located within 15 mm and 20 mm below the BOS, respectively. No significant differences were found between patients with only ipsilateral metastatic lymph nodes and patients with bilateral metastatic lymph nodes. Between tumors that do cross the midline and those that do not, no significant difference was found in the distance of the most cranial lymph node to the BOS and the occurrence ipsilateral or contralateral. Conclusions: Setting the cranial border of the nodal target volume 1.5 cm below the base of the skull covers 95% of the lymph nodes and should be considered in elective nodal irradiation for laryngeal cancer. Bilateral neck irradiation is mandatory, including patients with unilateral laryngeal cancer, when elective irradiation is advised.
JAM-C promotes lymphangiogenesis and nodal metastasis in non-small cell lung cancer.
Hao, SongNan; Yang, YanMei; Liu, Yan; Yang, ShuCai; Wang, Geng; Xiao, JianBing; Liu, HuiDong
2014-06-01
This study aims to investigate lymphatic metastasis-related genes in non-small cell lung carcinomas (NSCLC). NSCLC tissue was analyzed for expression of junctional adhesion molecule-C (JAM-C) protein. Our data revealed novel associations between JAM-C overexpression in primary tumors and lymphatic microvessel density (LMVD), lymph node metastasis, and poorer overall survival and recurrence-free survival. We used the highly metastatic human lung adenocarcinoma cell line Anip973 and its parental line AGZY83-a, which has a low metastatic capacity, in vivo and vitro. We found that JAM-C played an important role in different metastasis capacity of lymph node. JAM-C affected tumor growth, LNM, JAM-C, VEGF-C, vasculature, and ERK1/2 phosphorylation (p-ERK1/2). β1 integrin was involved in lymph node metastasis. Moreover, JAM-C knockdown in highly metastatic Anip973 decreased cell migration in scratch-wound assays. The JAM-C knockdown in Anip973 cells and JAM-C cDNA in AGZY83-a cells regulated the vascular endothelial growth factor C (VEGF-C) expression. Immunofluorescence showed that blocked VEGF-C expression in JAM-C shRNA Anip973 cells were restored after JAM-C treatment. JAM-C-induced VEGF-C in JAM-C cDNA AGZY83-a cells was also effectively inhibited by treatment with an antibody specifically against JAM-C. Use of media from Anip973 cells, AGZY83-a, and A549cells lung cancer cells that overexpressed or downregulated JAM-C was demonstrated to affect activity of VEGF-C-induced β1 integrin subunit or ERK activity in human dermal lymphatic endothelial cells (HDLEC) treated with VEGF-C or inhibitory antibody to JAM-C. Overall, these results indicate that JAM-C could mediate metastasis as it contributes to VEGF-C expression in cancer cells. JAM-C affects β1and ERK activation in HDLEC, thus promoting lymphangiogenesis and nodal metastasis. Our findings indicate that JAM-C may be a therapeutic target for preventing and treating lymphatic metastases.
Anatomical Variations in the Sinoatrial Nodal Artery: A Meta-Analysis and Clinical Considerations
Roy, Joyeeta; Ramakrishnan, Piravin Kumar; Hsieh, Wan Chin; Walocha, Jerzy A.; Tomaszewski, Krzysztof A.
2016-01-01
Background and Objective The sinoatrial nodal artery (SANa) is a highly variable vessel which supplies blood to the sinoatrial node (SAN). Due to its variability and susceptibility to iatrogenic injury, our study aimed to assess the anatomy of the SANa and determine the prevalence of its anatomical variations. Study Design An extensive search of major electronic databases was performed to identify all articles reporting anatomical data on the SANa. No lower date limit or language restrictions were applied. Anatomical data regarding the artery were extracted and pooled into a meta-analysis. Results Sixty-six studies (n = 21455 hearts) were included in the meta-analysis. The SANa usually arose as a single vessel with a pooled prevalence of 95.5% (95%CI:93.6–96.9). Duplication and triplication of the artery were also observed with pooled prevalence of 4.3% (95%CI:2.8–6.0) and 0.3% (95%CI:0–0.7), respectively. The most common origin of the SANa was from the right coronary artery (RCA), found in 68.0% (95%CI:55.6–68.9) of cases, followed by origin from the left circumflex artery, and origin from the left coronary artery with pooled prevalence of 22.1% (95%CI:15.0–26.2) and 2.7 (95%CI:0.7–5.2), respectively. A retrocaval course of the SANa was the most common course of the artery with a pooled prevalence of 47.1% (95%CI:36.0–55.5). The pooled prevalence of an S-shaped SANa was 7.6% (95%CI:2.9–14.1). Conclusions The SANa is most commonly reported as a single vessel, originating from the RCA, and taking a retrocaval course to reach the SAN. Knowledge of high risk anatomical variants of the SANa, such as an S-shaped artery, must be taken into account by surgeons to prevent iatrogenic injuries. Specifically, interventional or cardiosurgical procedures, such as the Cox maze procedure for atrial fibrillation, open heart surgeries through the right atrium or intraoperative cross-clamping or dissection procedures during mitral valve surgery using the septal
Luo, Yangkun; Ren, Jing; Zhou, Peng; Gao, Yang; Yang, Guangquan; Lang, Jinyi
2016-01-01
Purpose Most nasopharyngeal carcinoma (NPC) patients present with locoregionally advanced disease at the time of diagnosis; however, there is a lack of consensus on specific prognostic factors potentially improving overall survival, especially in late-stage disease. Herein, we conducted a retrospective study to evaluate various potential prognostic factors in order to provide useful information for clinical treatment of T3/T4-stage NPC. Patients and methods A total of 189 previously untreated NPC patients were enrolled in the current study. All patients received intensity-modulated radiotherapy. Survival, death, relapse-free survival (both local and regional), and metastasis were recorded during follow-up. Factors affecting patient survival were assessed by using univariate and multivariate analyses. Results The median follow-up time was 69 months. The 5-year local-regional recurrence-free survival, distant metastasis-free survival, progression-free survival (PFS), and overall survival (OS) of the entire group were 89.8%, 71.5%, 66.3%, and 68.9%, respectively. Univariate analysis revealed significant differences in the 5-year PFS (58.5% vs 72.5%, P=0.015) and OS (59.5% vs 75.8%, P=0.033) rates of patients with and without cervical nodal necrosis (CNN). Subgroup analyses revealed that CNN was associated with poorer distant metastasis-free survival and PFS among patients with N2 stage (P=0.046 and P=0.005) and with poorer PFS among patients with T3 or III stage (all P=0.022). Multivariate analysis revealed CNN to be an independent prognostic factor for PFS and OS (PFS: adjusted hazard ratio, 1.860; 95% CI: 1.134–3.051; P=0.014; OS: adjusted hazard ratio, 1.754; 95% CI: 1.061–2.899; P=0.028). Conclusion CNN is a potential independent negative prognostic factor in NPC patients. Our results suggest that stratification of NPC patients based on their CNN status should be considered as part of NPC disease management. PMID:27843328
78 FR 73819 - Forest Resource Coordinating Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-09
... Forest Service Forest Resource Coordinating Committee AGENCY: Forest Service, USDA. ACTION: Notice of...-18, 2013 meeting of the Forest Resource Coordinating Committee due to the Government partial shutdown... INFORMATION CONTACT: Maya Solomon, Forest Resource Coordinating Committee Program Coordinator; by phone...
Multiple signaling pathways coordinate to induce a threshold response in a chordate embryo.
Ohta, Naoyuki; Satou, Yutaka
2013-01-01
In animal development, secreted signaling molecules evoke all-or-none threshold responses of target gene transcription to specify cell fates. In the chordate Ciona intestinalis, the neural markers Otx and Nodal are induced at early embryonic stages by Fgf9/16/20 signaling. Here we show that three additional signaling molecules act negatively to generate a sharp expression boundary for neural genes. EphrinA signaling antagonizes FGF signaling by inhibiting ERK phosphorylation more strongly in epidermal cells than in neural cells, which accentuates differences in the strength of ERK activation. However, even weakly activated ERK activates Otx and Nodal transcription occasionally, probably because of the inherently stochastic nature of signal transduction processes and binding of transcription factors to target sequences. This occasional and undesirable activation of neural genes by weak residual ERK activity is directly repressed by Smad transcription factors activated by Admp and Gdf1/3-like signaling, further sharpening the differential responses of cells to FGF signaling. Thus, these signaling pathways coordinate to evoke a threshold response that delineates a sharp expression boundary.
Evidence for 18.6-year lunar nodal drought in Western North America during the past millennium
NASA Astrophysics Data System (ADS)
Currie, Robert G.
1984-02-01
Analysis of 38 tree ring chronologies yields evidence for enhanced drought conditions every 18.6 years in the North American interior for the past millenium. Cross spectra between a drought area index and 26 temperature records confirm the analysis of Currie (1979, 1981d) as regards a lunar nodal MN term in these data. Discussion of the MN tidal constituent, which appreciably modulate amplitude and phase of four main constituents (M2, K1, O1, Mf), is presented, and implications for agriculture are surveyed.
NASA Technical Reports Server (NTRS)
Williams, Jacob; Davis, Elizabeth C.; Lee, David E.; Condon, Gerald L.; Dawn, Tim
2009-01-01
The Orion spacecraft will be required to perform a three-burn trans-Earth injection (TEI) maneuver sequence to return to Earth from low lunar orbit. The origin of this approach lies in the Constellation Program requirements for access to any lunar landing site location combined with anytime lunar departure. This paper documents the development of optimized databases used to rapidly model the performance requirements of the TEI three-burn sequence for an extremely large number of mission cases. It also discusses performance results for lunar departures covering a complete 18.6 year lunar nodal cycle as well as general characteristics of the optimized three-burn TEI sequence.
Goodenough, Jenny; Cozon, Caroline Louise; Liew, Se Hwang
2014-06-03
We report the case of an 84-year-old woman who had a nodal recurrence of melanoma 45 years after the primary diagnosis of an extremity cutaneous melanoma. It is believed to be the longest disease-free latency period reported between primary melanoma diagnosis and recurrence to date. Late recurrences of melanoma are rare and recurrence after four decades extremely rare. This article suggests melanoma is a disease with a potentially lifelong risk of recurrence and thus clinicians and patients must be vigilant and aware of this risk, particularly if late recurrences are to be recognised early and management optimised.
Basavarajappa, Manjunath Anekonda; Pathan, Sana; Raheem, Ahmed Mujib Bangalore; Godavarthy, Divyasri
2016-01-01
Lymphomas occurring in the oral cavity are rare. They account only for about 2% of extra-nodal sites. Most of the lymphomas occur in the lymph nodes and in the oral cavity, the most commonly affected region is the Waldeyer’s ring. Its occurrence in the mandibular gingiva is rare. Here, we describe a case of Diffuse Large B-cell Lymphoma manifested as a non-healing extraction socket in the mandibular right posterior region in a 62-year-old male patient. PMID:27656575
Varlotto, John M.; Yao, Aaron N.; DeCamp, Malcolm M.; Ramakrishna, Satvik; Recht, Abe; Flickinger, John; Andrei, Adin; Reed, Michael F.; Toth, Jennifer W.; Fizgerald, Thomas J.; Higgins, Kristin; Zheng, Xiao; Shelkey, Julie; and others
2015-03-15
Purpose: Current National Comprehensive Cancer Network guidelines recommend postoperative radiation therapy (PORT) for patients with resected non-small cell lung cancer (NSCLC) with N2 involvement. We investigated the relationship between nodal stage and local-regional recurrence (LR), distant recurrence (DR) and overall survival (OS) for patients having an R0 resection. Methods and Materials: A multi-institutional database of consecutive patients undergoing R0 resection for stage I-IIIA NSCLC from 1995 to 2008 was used. Patients receiving any radiation therapy before relapse were excluded. A total of 1241, 202, and 125 patients were identified with N0, N1, and N2 involvement, respectively; 161 patients received chemotherapy. Cumulative incidence rates were calculated for LR and DR as first sites of failure, and Kaplan-Meier estimates were made for OS. Competing risk analysis and proportional hazards models were used to examine LR, DR, and OS. Independent variables included age, sex, surgical procedure, extent of lymph node sampling, histology, lymphatic or vascular invasion, tumor size, tumor grade, chemotherapy, nodal stage, and visceral pleural invasion. Results: The median follow-up time was 28.7 months. Patients with N1 or N2 nodal stage had rates of LR similar to those of patients with N0 disease, but were at significantly increased risk for both DR (N1, hazard ratio [HR] = 1.84, 95% confidence interval [CI]: 1.30-2.59; P=.001; N2, HR = 2.32, 95% CI: 1.55-3.48; P<.001) and death (N1, HR = 1.46, 95% CI: 1.18-1.81; P<.001; N2, HR = 2.33, 95% CI: 1.78-3.04; P<.001). LR was associated with squamous histology, visceral pleural involvement, tumor size, age, wedge resection, and segmentectomy. The most frequent site of LR was the mediastinum. Conclusions: Our investigation demonstrated that nodal stage is directly associated with DR and OS but not with LR. Thus, even some patients with, N0-N1 disease are at relatively high risk of local recurrence. Prospective
Formulation and Stability of Solutions.
Akers, Michael J
2016-01-01
Ready-to-use solutions are the most preferable and most common dosage forms for injectable and topical ophthalmic products. Drugs formulated as solution almost always have chemical and physical stability challenges as well as solubility limitations and the need to prevent inadvertent microbial contamination issues. This article, which takes us through a discussion of optimizing the physical stability of solutions, represents the first of a series of articles discussing how these challenges and issues are addressed.
NASA Astrophysics Data System (ADS)
Pérez-Aparicio, José L.; Sosa, Horacio
2004-06-01
Magnetostriction is a phenomenon observed in all ferromagnetic materials. It couples elastic, electric, magnetic and in some situations also thermal fields and is of great industrial interest for use in sensors, actuators, adaptive or functional structures, robotics, transducers and MEMS. In this work, the governing equations of the three-field problem (i.e., the interactions of elastic, electric and magnetic effects) are formulated in three dimensions, accounting for non-linear (through magnetic body forces represented by the Maxwell tensor) and dynamic effects, and with constitutive equations resembling those of piezoelectricity. Through manipulation of Maxwell equations it is possible to find suitable expressions for developing the numerical weak, Galerkin and matrix forms in a natural way, including seven residuals (one for each nodal degree of freedom) and non-symmetric tangent, 'capacity' and mass consistent matrices. Simple backward Euler and central difference schemes can be used for the time domain integration. The only assumption made in this work for simplification is that the time variation of electric induction is negligible. This is justified by the relatively low frequencies ({\\ll }1 GHz) under which magnetostrictive materials usually work. The principal feature of the equations is the use of a magnetic potential (without much physical meaning) that allows a complete 'displacement' finite element formulation: all elastic, electric and magnetic nodal unknowns are zero derivatives. This allows the algorithm to be treated in a standard way, and important effects such as eddy currents can be obtained naturally. The formulation is implemented in the research finite element code FEAP. Although seven degrees of freedom per node is computer expensive to solve (especially for 3D problems), the current trend in the performance of computers, even personal ones, makes it worthwhile to build complete finite elements following the well-established (in mechanics
Koh, Ye Xin; Tay, Timothy Kwang Yong; Xu, Sheng; Lee, Chee Meng; Teo, Melissa Ching Ching
2015-01-01
We describe a series of five patients with extramammary Paget disease of the scrotum with inguinal nodal metastases. These patients underwent combined groin dissection. All patients experienced invasion to the dermis. One patient had invasion of the dartos muscle, another had tumor invading into the skeletal muscle and femoral vein. Four patients had positive Cloquet node involvement on frozen section and formal histology, but only one patient had positive pelvic nodal disease. Another patient with pelvic nodal metastases seen on computed tomography scan had no Cloquet node identified intraoperatively but had positive pelvic nodal metastases. The mean disease-free survival and the overall survival were 28.6 months (range: 2-60 months) and 33.4 months (range: 2-60 months), respectively, for all patients. Three patients developed distant metastases and two patients were disease free to date. No locoregional recurrences were observed. Aggressive lymphadenectomy in selected cases can provide a long-term survival benefit. The use of Cloquet node in the prediction of pelvic nodal disease should be considered. Based on the literature review, sentinel lymph node biopsy can potentially diagnose occult metastases in otherwise nonenlarged nodes.
Painleve-gullstrand-type Coordinates for the Five-dimensional Myers-Perry Black Hole
NASA Technical Reports Server (NTRS)
Finch, Tehani Kahi
2013-01-01
The Painleve-Gullstrand coordinates provide a convenient framework for presenting the Schwarzschild geometry because of their flat constant-time hypersurfaces, and the fact that they are free of coordinate singularities outside r=0. Generalizations of Painlev´e-Gullstrand coordinates suitable for the Kerr geometry have been presented by Doran and Nat´ario. These coordinate systems feature a time coordinate identical to the proper time of zero-angular-momentum observers that are dropped from infinity. Here, the methods of Doran and Nat´ario are extended to the five-dimensional rotating black hole found by Myers and Perry. The result is a new formulation of the Myers-Perry metric. The properties and physical significance of these new coordinates are discussed.
NASA Technical Reports Server (NTRS)
Levy, R.; Mcdonald, H.; Briley, W. R.; Kreskovsky, J. P.
1981-01-01
An approximate analysis is presented which is applicable to nonorthogonal coordinate systems having a curved centerline and planar transverse coordinate surfaces normal to the centerline. The primary flow direction is taken to coincide with the local direction of the duct centerline and is hence normal to transverse coordinate planes. The formulation utilizes vector components (velocity, vorticity, transport equations) defined in terms of local Cartesian directions aligned with the centerline tangent, although the governing equations themselves are expressed in general nonorthogonal coordinates. For curved centerlines, these vector quantities are redefined in new local Cartesian directions at each streamwise location. The use of local Cartesian variables and fluxes leads to governing equations which require only first derivatives of the coordinate transformation, and this provides for the aforementioned ease in using constructed coordinates.
NASA Technical Reports Server (NTRS)
Suarez, M. J.; Arakawa, A.; Randall, D. A.
1983-01-01
A planetary boundary layer (PBL) parameterization for general circulation models (GCMs) is presented. It uses a mixed-layer approach in which the PBL is assumed to be capped by discontinuities in the mean vertical profiles. Both clear and cloud-topped boundary layers are parameterized. Particular emphasis is placed on the formulation of the coupling between the PBL and both the free atmosphere and cumulus convection. For this purpose a modified sigma-coordinate is introduced in which the PBL top and the lower boundary are both coordinate surfaces. The use of a bulk PBL formulation with this coordinate is extensively discussed. Results are presented from a July simulation produced by the UCLA GCM. PBL-related variables are shown, to illustrate the various regimes the parameterization is capable of simulating.
The Neural Network In Coordinate Transformation
NASA Astrophysics Data System (ADS)
Urusan, Ahmet Yucel
2011-12-01
In international literature, Coordinate operations is divided into two categories. They are coordinate conversion and coordinate transformation. Coordinates converted from coordinate system A to coordinate system B in the same datum (mean origine, scale and axis directions are same) by coordinate conversion. There are two different datum in coordinate transformation. The basis of each datum to a different coordinate reference system. In Coordinate transformation, coordinates are transformed from coordinate reference system A to coordinate referance system B. Geodetic studies based on physical measurements. Coordinate transformation needs identical points which were measured in each coordinate reference system (A and B). However it is difficult (and need a big reserved budget) to measure in some places like as top of mountain, boundry of countries and seaside. In this study, this sample problem solution was researched. The method of learning which is one of the neural network methods, was used for solution of this problem.
Generalized source method in curvilinear coordinates for 2D grating diffraction simulation
NASA Astrophysics Data System (ADS)
Shcherbakov, Alexey A.; Tishchenko, Alexandre V.
2017-01-01
The article presents a curvilinear coordinate Fourier space integral method for linear optical rigorous grating diffraction simulation in 3D (crossed grating diffraction). The presented formulation extends our previous work on a related method for 1D periodic grating diffraction. Following this previous work we exploit a concept of the generalized metric sources to efficiently solve the Maxwell's equations. The article provides a general description of the method together with a detailed formulation and analysis of sinusoidal corrugation crossed grating diffraction.
NASA Astrophysics Data System (ADS)
Dellar, Oliver; Jones, Bryn; ACSE Collaboration
2016-11-01
The use of feedback control is looking increasingly attractive as a means of reducing the pressure drag which acts upon bluff body vehicles such as heavy goods vehicles, and thus reducing both fuel consumption and CO2 emissions. Motivated by the need to efficiently obtain low-order models of such flows in order to utilise model based control theory, we consider the effect on system dynamics of basing the plant model on different formulations of the linearised Navier-Stokes equations. The dynamics of a single computational node's subsystem which arises upon spatial discretisation of the governing equations in both primitive variables and pressure Poisson equation formulations are considered, revealing fundamental differences at the nodal level. The effects of these differences on system dynamics at the full fluid flow system level are exemplified by considering the corresponding formulations of a two-dimensional channel flow, subjected to a number different of boundary conditions. This ultimately reveals which formulations of the governing equations are suitable for feedback control design, and which should be avoided.
Ulysses: UVCS Coordinated Observations
NASA Technical Reports Server (NTRS)
Suess, S. T.; Poletto, G.; Corti, G.; Simnett, G.; Noci, G.; Romoli, M.; Kohl, J.; Goldstein, B.
1998-01-01
We present results from coordinated observations in which instruments on Solar and Heliospheric Observatory (SOHO) and Ulysses were used to measure the density and flow speed of plasma at the Sun and to again measure the same properties of essentially the same plasma in the solar wind. Plasma was sampled by Ultraviolet Coronagraph Spectrometer (UVCS) at 3.5 and 4.5 solar radii and by Ulysses/SWOOPS at 5 AU. Data were acquired during a nearly 2 week period in May-June 1997 at a latitude of 9-10 degrees north of the equator, on the east limb and, hence, in the streamer belt and the source location of slow wind. Density and outflow speed are compared, in order to check for preservation of the near Sun characteristics in the interplanetary medium. By chance, Ulysses was at the very northern edge of the visible streamer belt. Nevertheless, no evidence of fast wind, or mixing with fast wind coming from the northern polar coronal hole, was evident at Ulysses. The morphology of the streamer belt was similar at the beginning and end of the observation period, but was markedly different during the middle of the period. A corresponding change in density (but not flow speed) was noted at Ulysses.
New formulation of the laws of reflection of light
NASA Astrophysics Data System (ADS)
Pérez, Ángel Luis; Martínez, Guadalupe; Suero, María. Isabel
2013-11-01
A new formulation of the laws of reflection of light based on the particle model is presented, and it is shown the equivalence between the new and the classic formulations. The proposed formulation has a significant educational value, as it allows drawing analogies between the phenomena of light reflection and elastic collisions, which are very well known by students. The proposed formulation is: "If at one point on a surface whose orientation in space is defined by a unit vector k, strikes an incident ray corresponding to a plane wave (propagating through a homogeneous and isotropic medium) whose direction of propagation coincides with that from a unit vector ui [expressed in terms of its components with respect to an orthonormal coordinate system, with one of its axis coinciding with the direction of k (ui = uix i + uiy j + uiz k)], it will be reflected so that the unit vector whose direction coincides with that from the reflected ray, ur, will only differ from the unit vector whose direction coincides with that from the incident ray, in the change of the sign of the component in the direction of k (ur = uix i + uiy j - uiz k)". Stated in everyday language, is equivalent of saying that the reflection of light occurs as if the photons underwent perfectly elastic collisions with the surface in question. As an example, this formulation is applied for the resolution of the classic reflection problem of the three plane mirrors forming a trirectangular trihedron.
Bidecadal variability in the Bering Sea and the relation with 18.6 year period nodal tidal cycle
NASA Astrophysics Data System (ADS)
Osafune, S.; Yasuda, I.
2010-02-01
Bidecadal variations are investigated in the Bering Sea, especially in the southeastern basin adjacent to the Aleutian passes, where vertical mixing may be strong because of the diurnal tide. Those variations found in this region are synchronized with the 18.6 year period nodal tidal cycle, and the temporal patterns are similar to ones around the northwestern subarctic Pacific near the Kuril Straits reported by a previous study. Salinity and density in the upper layer are high in the periods when the diurnal tide is strong. In the intermediate layer, layer thickness is large, and isopycnal potential temperature and apparent oxygen utilization are low in the same periods. It is shown that these variations are consistent with the patterns expected from the nodal modulation of vertical mixing, and a simple two-dimensional model, assuming a balance between anomalous vertical mixing and advection of anomaly by the mean current, succeeds to some extent in explaining the variations of the upper layer salinity and isopycnal temperature and apparent oxygen utilization in the intermediate layer.
Shekhawat, Mahipal S.; Manokari, M.; Ravindran, C. P.
2015-01-01
A procedure for rapid clonal propagation of Passiflora edulis Sims. f. flavicarpa Deg. (Passifloraceae) has been developed in this study. Nodal explants were sterilized with 0.1% HgCl2 and inoculated on Murashige and Skoog (MS) basal medium. The addition of 2.0 mgL−1 6-benzylaminopurine (BAP) to MS medium caused an extensive proliferation of multiple shoots (8.21 ± 1.13) primordial from the nodal meristems. Subculturing of these multiple shoots on the MS medium augmented with 1.0 mgL−1 of each BAP and Kinetin (Kin) was successful for the multiplication of the shoots in vitro with maximum numbers of shoots (25.73 ± 0.06) within four weeks of incubation. Shoots were rooted best (7.13 ± 0.56 roots/shoots) on half strength MS medium supplemented with 2.0 mgL−1 indole-3 butyric acid (IBA). All in vitro regenerated shoots were rooted by ex vitro method, and this has achieved 6-7 roots per shoot by pulsing of cut ends of the shoots using 200 as well as 300 mgL−1 IBA. The plantlets were hardened in the greenhouse for 4-5 weeks. The hardened plantlets were shifted to manure containing nursery polybags after five weeks and then transferred to a sand bed for another four weeks for acclimatization before field planting with 88% survival rate. PMID:26273489
van Galen, Joost C; Muris, Jettie J F; Oudejans, Joost J; Vos, Wim; Giroth, Cindy P E; Ossenkoppele, Gert J; Otte, Arie P; Raaphorst, Frank M; Meijer, Chris J L M
2007-01-01
Background Clinical outcome in patients with diffuse large B cell lymphomas (DLBCL) is highly variable and poorly predictable. Microarray studies showed that patients with DLBCL with a germinal centre B cell‐like (GCB) phenotype have a better prognosis than those with an activated B cell‐like (ABC) phenotype. The BMI1 proto‐oncogene was identified as one of the genes present in the signature of the ABC type of DLBCL, associated with a poor prognosis. Objectives (1) To investigate, in primary nodal DLBCL, the expression of BMI1 and its association with clinical outcome and DLBCL signature; (2) to look for an association between BMI1 expression and the expression of its putative downstream targets p14ARF and p16INK4a. Results BMI1 expression was found to be associated with poor clinical outcome, but not clearly with an ABC‐like phenotype of DLBCL. Expression of BMI1 was frequently, but not always, related to low levels of expression of p14ARF and p16INK4a. Conclusion Expression of BMI1 is associated with an unfavourable clinical outcome of primary nodal DLBCL. PMID:16837630
Nodal bilayer-splitting controlled by spin-orbit interactions in underdoped high-T_{c} cuprates
Harrison, N.; Ramshaw, B. J.; Shekhter, A.
2015-06-03
The highest superconducting transition temperatures in the cuprates are achieved in bilayer and trilayer systems, highlighting the importance of interlayer interactions for high T_{c}. It has been argued that interlayer hybridization vanishes along the nodal directions by way of a specific pattern of orbital overlap. Recent quantum oscillation measurements in bilayer cuprates have provided evidence for a residual bilayer-splitting at the nodes that is sufficiently small to enable magnetic breakdown tunneling at the nodes. Here we show that several key features of the experimental data can be understood in terms of weak spin-orbit interactions naturally present in bilayer systems, whose primary effect is to cause the magnetic breakdown to be accompanied by a spin flip. These features can now be understood to include the equidistant set of three quantum oscillation frequencies, the asymmetry of the quantum oscillation amplitudes in c-axis transport compared to ab-plane transport, and the anomalous magnetic field angle dependence of the amplitude of the side frequencies suggestive of small effective g-factors. We suggest that spin-orbit interactions in bilayer systems can further affect the structure of the nodal quasiparticle spectrum in the superconducting phase. PACS numbers: 71.45.Lr, 71.20.Ps, 71.18.+y
Enhanced A-V nodal conduction (Lown-Ganong-Levine syndrome) by congenitally hypoplastic A-V node.
Ometto, R; Thiene, G; Corrado, D; Vincenzi, M; Rossi, L
1992-11-01
The basic anatomical substrate of enhanced A-V nodal conduction, manifesting or not as Lown-Ganong-Levine syndrome, is still a controversial issue. We describe the case of a 34-year-old man who presented episodes of ventricular fibrillation. Electrophysiological studies showed that the AH interval was 55 ms, and increased by only 20 ms at paced cycle lengths of 300 ms; atrial pacing induced atrial fibrillation, with a shortest RR interval of 240 ms. Despite verapamil therapy, this patient died suddenly at home. Histological study disclosed a severe A-V node hypoplasia that was evidently congenital in nature; the rest of the conduction system was normal, and no accessory A-V pathways were present. We suggest that enhanced A-V nodal conduction in this patient was due to the developmental defect in the A-V node; this abnormality caused a loss of specific impulse-delaying function, and thus allowed rapid, unfiltered atrial impulses to reach the lower A-V junction and ventricles.
Haffner, Christof; Dettmer, Ulf; Weiler, Timotheus; Haass, Christian
2007-04-06
The assembly of the gamma-secretase complex, an Alzheimer disease-related protease required for beta-amyloid generation, is tightly regulated and predominantly limited by the stoichiometrical availability of its components. We have identified a novel endoplasmic reticulum-located protein complex that is regulated in a similar fashion. It contains the recently identified Nodal signaling antagonists Nicalin (a distant homolog of the gamma-secretase component Nicastrin) and NOMO (Nodal modulator). Using an RNA interference approach, we found that Nicalin and NOMO became unstable in the absence of the respective binding partner, suggesting that complex formation has a stabilizing effect. Overexpression of Nicalin resulted in an increase in NOMO, whereas endogenous Nicalin was reduced below the detection limit. Both effects were shown to occur at a post-transcriptional level. Thus, NOMO is most likely produced in excess amounts and either stabilized by Nicalin or rapidly degraded. In contrast, Nicalin levels are limited independently of NOMO. We, therefore, propose that Nicalin controls the assembly and stability of the Nicalin-NOMO complex.
Portaluri, Maurizio . E-mail: portaluri@hotmail.com; Bambace, Santa; Perez, Celeste; Angone, Grazia
2005-11-15
Purpose: To demonstrate that margins of each pelvic chain may be derived by verifying the bony and soft tissue structures around abnormal nodes on computed tomography (CT) slices. Methods and Materials: Twenty consecutive patients (16 males, 4 females; mean age, 66 years; range, 43-80 years) with radiologic diagnosis of nodal involvement by histologically proved cervix carcinoma (two), rectum carcinoma (three), prostate carcinoma (four), lymphoma (five), penis carcinoma (one), corpus uteri carcinoma (one), bladder carcinoma (two), cutis tumor (one), and soft-tissue sarcoma (one) were retrospectively reviewed. One hundred CT scans showing 85 enlarged pelvic nodes were reviewed by two radiation oncologists (M.P., S.B.), and two radiologists (C.P., G.A.). Results: The more proximal structures to each enlarged node or group of nodes were thus recorded in a clockwise direction. Conclusion: According to their frequency and visibility, craniocaudal, anterior, lateral, posterior and medial margins of common iliac, external and internal iliac nodal chains, obturator and pudendal nodes, and deep and superficial inguinal nodes were derived from CT observations.
Pursit-evasion game analysis in a line of sight coordinate system
NASA Technical Reports Server (NTRS)
Shinar, J.; Davidovitz, A.
1985-01-01
The paper proposes to use line of sight coordinates for the analysis of pursuit-evasion games. The advantage of this method for two-target games is shown to be evident. As a demonstrative example the game of two identical cars is formulated and solved in such coordinate systems. A new type of singular surface, overlooked in a previous study of the same problem, is discovered as a consequence of the simplicity of the solution.
2009-03-01
Density . 6 B. X-Z TO X-σZ COORDINATE SYSTEM TRANSFORM . . . . 7 1. Gal-Chen and Somerville . . . . . . . . . . . . . . . . . . 7 2. Basic...system [3] use a variation of the x-σ coordinate transformation. By studying the works of Gal-Chen and Somerville [4] and analyzing the transforma...now used in contemporary NWP models (i.e. this is the formulation used by WRF) and uses density, momentum, and potential temperature as the pri- mary
Opening a nodal gap by fluctuating spin-density wave in lightly doped La2 -xSrxCuO4
NASA Astrophysics Data System (ADS)
Kapon, Itzik; Ellis, David S.; Drachuck, Gil; Bazalitski, Galina; Weschke, Eugen; Schierle, Enrico; Strempfer, Jörg; Niedermayer, Christof; Keren, Amit
2017-03-01
We investigate whether the spin or charge degrees of freedom are responsible for the nodal gap in underdoped cuprates by performing inelastic neutron scattering and x-ray diffraction measurements on La2 -xSrxCuO4 , which is on the edge of the antiferromagnetic phase. We found that a fluctuating incommensurate spin-density wave (SDW) with a bottom part of an hourglass dispersion exists even in this magnetic sample. The strongest component of these fluctuations diminishes at the same temperature where the nodal gap opens. X-ray scattering measurements on the same crystal show no signature of a charge-density wave (CDW). Therefore, we suggest that the nodal gap in the electronic band of this cuprate opens due to fluctuating SDW with no contribution from CDW.
Chen, I L; Chen, J T; Kuo, S R; Liang, M T
2001-03-01
Integral equation methods have been widely used to solve interior eigenproblems and exterior acoustic problems (radiation and scattering). It was recently found that the real-part boundary element method (BEM) for the interior problem results in spurious eigensolutions if the singular (UT) or the hypersingular (LM) equation is used alone. The real-part BEM results in spurious solutions for interior problems in a similar way that the singular integral equation (UT method) results in fictitious solutions for the exterior problem. To solve this problem, a Combined Helmholtz Exterior integral Equation Formulation method (CHEEF) is proposed. Based on the CHEEF method, the spurious solutions can be filtered out if additional constraints from the exterior points are chosen carefully. Finally, two examples for the eigensolutions of circular and rectangular cavities are considered. The optimum numbers and proper positions for selecting the points in the exterior domain are analytically studied. Also, numerical experiments were designed to verify the analytical results. It is worth pointing out that the nodal line of radiation mode of a circle can be rotated due to symmetry, while the nodal line of the rectangular is on a fixed position.
The K-12 Technology Coordinator
ERIC Educational Resources Information Center
Lesisko, Lee James
2005-01-01
The Pennsylvania Department of Education requires Technology Coordinators employed by public school districts in the Commonwealth to be properly certified. The Technology Coordinator is responsible to implement instructional technology for the district, provide leadership in the use of technological delivery systems, and routinely work directly…
Sensory Coordination of Insect Flight
2010-10-22
sources in the fruit fly, Drosophila melanogaster. 3) Wing-haltere coordination in the soldier fly, Hermetia illucens . 4) Landing behavior in the housefly...coordination in the soldier fly, Hermetia illucens . 4) Landing behavior in the housefly, Musca domestica. We have also recently established an
Fuzzy coordinator in control problems
NASA Technical Reports Server (NTRS)
Rueda, A.; Pedrycz, W.
1992-01-01
In this paper a hierarchical control structure using a fuzzy system for coordination of the control actions is studied. The architecture involves two levels of control: a coordination level and an execution level. Numerical experiments will be utilized to illustrate the behavior of the controller when it is applied to a nonlinear plant.
Perfume formulation: words and chats.
Ellena, Céline
2008-06-01
What does it mean to create fragrances with materials from chemistry and/or from nature? How are they used to display their characteristic differences, their own personality? Is it easier to create with synthetic raw materials or with essential oils? This review explains why a perfume formulation corresponds in fact to a conversation, an interplay between synthetic and natural perfumery materials. A synthetic raw material carries a single information, and usually is very linear. Its smell is uniform, clear, and faithful. Natural raw materials, on the contrary, provide a strong, complex and generous image. While a synthetic material can be seen as a single word, a natural one such as rose oil could be compared to chatting: cold, warm, sticky, heavy, transparent, pepper, green, metallic, smooth, watery, fruity... full of information. Yet, if a very small amount of the natural material is used, nothing happens, the fragrance will not change. However, if a large amount is used, the rose oil will swallow up everything else. The fragrance will smell of nothing else except rose! To formulate a perfume is not to create a culinary recipe, with only dosing the ingredients in well-balanced amounts. To formulate rather means to flexibly knit materials together with a lively stitch, meeting or repelling each other, building a pleasant form, which is neither fixed, nor solid, nor rigid. A fragrance has an overall structure, which ranges from a clear sound, made up of stable, unique, and linear items, to a background chat, comfortable and reassuring. But that does, of course, not mean that there is only one way of creating a fragrance!
NASA Astrophysics Data System (ADS)
Jiang, Ya-Hui; Wu, Wei-Ping; Yang, Guo-Ping; Jin, Jun-Cheng; Xi, Zheng-Ping; Wang, Yao-Yu
2015-07-01
Three new coordination polymers (CPs) based on rigid ligand 5-Aminonicotinic acid (5-anaH), [Cd(5-ana)2]·(H2O)2 (1), [Cd(5-ana)(HCOO) ] (2) and [Cu(5-ana)2] (3), have been synthesized under different solvent media and temperatures. All CPs are characterized by single crystal X-ray diffraction, elemental analysis, IR spectroscopy, powder X-ray diffraction and thermogravimetric analysis. Compound 1 is a two-dimensional (2D) (4,4)-connected layered structure contains 1D open channels. 2 shows a 2-nodal (3,5)-connected three-dimensional (3D) framework with {52·6}{53·63·73·8} topology. While 3 displays a 3D (3,6)-connected homochiral framework with {42·6}2{44·62·85·104} topology. The solid-state photoluminescence for 1 and 2 were also studied.
Formulation and Stability of Solutions.
Akers, Michael J
2016-01-01
Ready-to-use solutions are the most preferable and most common dosage forms for injectable and topical ophthalmic products. Drugs formulated as solution almost always have chemical and physical stability challenges as well as solubility limitations and the need to prevent inadvertent microbial contamination issues. The first in this series of articles took us through a discussion of optimizing the physical stability of solutions. This article concludes this series of articles with a discussion on foreign particles, protein aggregation, and immunogenicity; optimizing microbiological activity; and osmolality (tonicity) agents, and discusses how these challenges and issues are addressed.
Controlled release liquid dosage formulation
Benton, Ben F.; Gardner, David L.
1989-01-01
A liquid dual coated dosage formulation sustained release pharmaceutic having substantial shelf life prior to ingestion is disclosed. A dual coating is applied over controlled release cores to form dosage forms and the coatings comprise fats melting at less than approximately 101.degree. F. overcoated with cellulose acetate phthalate or zein. The dual coated dosage forms are dispersed in a sugar based acidic liquid carrier such as high fructose corn syrup and display a shelf life of up to approximately at least 45 days while still retaining their release profiles following ingestion. Cellulose acetate phthalate coated dosage form cores can in addition be dispersed in aqueous liquids of pH <5.
Formulation, Preparation, and Characterization of Polyurethane Foams
ERIC Educational Resources Information Center
Pinto, Moises L.
2010-01-01
Preparation of laboratory-scale polyurethane foams is described with formulations that are easy to implement in experiments for undergraduate students. Particular attention is given to formulation aspects that are based on the main chemical reactions occurring in polyurethane production. This allows students to develop alternative formulations to…
ANTI-RHEUMATIC FORMULATIONS FROM AYURVEDA
Raut, A. A.; Joshi, A. D.; Antarkar, D. S.; Joshi, V. R.; Vaidya, A. B.
1991-01-01
Rheumatic disorders like Amavata, Sandhivata and Vatarakta are elaborately described in ayurvedic literature. Preliminary survey of literature shows that about 247 formulations are recommended for these rheumatic disorders. These formulations generally include guggulu compounds, compounds of plant powders, decoctions, medicated ghees, oils, electuaries etc. Therapeutic potential of ayurvedic concepts and a brief review of Ayurvedic formulations are also discussed. PMID:22556565
Nonlinear theoretical formulation of elastic stability criterion of crystal solids
NASA Astrophysics Data System (ADS)
Wang, Hao; Li, Mo
2012-03-01
An elastic stability criterion is generally formulated based on local elasticity, where the second-order elastic constants of a crystalline system in an arbitrary deformed state are required. While simple in formalism, such a formulation demands extensive computational effort in either an ab initio calculation or an atomistic simulation and often lacks clear physical interpretation. Here, we present a nonlinear theoretical formulation employing higher-order elastic constants beyond the second-order ones; the elastic constants needed in the theory are those at a zero stress state or in any arbitrary deformed state, many of which are now available. We use the published second- and higher-order elastic constants of several cubic crystals, including Au, Al, and Cu, as well as diamond-structure Si, with transcription under different coordinate frames, to test the stability conditions of these crystals under uniaxial and hydrostatic loading. The stability region, ideal strength, and potential bifurcation mode of those cubic crystals under loading are obtained using this theory. The results obtained are in good agreement with the results from the ab initio calculation or embedded atom method. The overall good quality of the results confirms the desired utility of this new approach to predict elastic stability and related properties of crystalline materials without involving intense computation.
Keep meaning in conversational coordination
Cuffari, Elena C.
2014-01-01
Coordination is a widely employed term across recent quantitative and qualitative approaches to intersubjectivity, particularly approaches that give embodiment and enaction central explanatory roles. With a focus on linguistic and bodily coordination in conversational contexts, I review the operational meaning of coordination in recent empirical research and related theorizing of embodied intersubjectivity. This discussion articulates what must be involved in treating linguistic meaning as dynamic processes of coordination. The coordination approach presents languaging as a set of dynamic self-organizing processes and actions on multiple timescales and across multiple modalities that come about and work in certain domains (those jointly constructed in social, interactive, high-order sense-making). These processes go beyond meaning at the level that is available to first-person experience. I take one crucial consequence of this to be the ubiquitously moral nature of languaging with others. Languaging coordinates experience, among other levels of behavior and event. Ethical effort is called for by the automatic autonomy-influencing forces of languaging as coordination. PMID:25520693
2006-01-01
U0.00 ~ __ -0.03 i.1 . -0.06 ....rnc .... ..alesatT. boy . .... h fi ur Zee d ......... 1Hb i -)p r 4.. ....... heR t tin Fig. 10). Thedifrnen R values...applications have been tested in the North Atlantic, East Asian Seas, Intra-Americas Seas, Gulf of Mexico , and US west coast regions. Analyses of these
Hamiltonian formulation of teleparallel gravity
NASA Astrophysics Data System (ADS)
Ferraro, Rafael; Guzmán, María José
2016-11-01
The Hamiltonian formulation of the teleparallel equivalent of general relativity is developed from an ordinary second-order Lagrangian, which is written as a quadratic form of the coefficients of anholonomy of the orthonormal frames (vielbeins). We analyze the structure of eigenvalues of the multi-index matrix entering the (linear) relation between canonical velocities and momenta to obtain the set of primary constraints. The canonical Hamiltonian is then built with the Moore-Penrose pseudoinverse of that matrix. The set of constraints, including the subsequent secondary constraints, completes a first-class algebra. This means that all of them generate gauge transformations. The gauge freedoms are basically the diffeomorphisms and the (local) Lorentz transformations of the vielbein. In particular, the Arnowitt, Deser, and Misner algebra of general relativity is recovered as a subalgebra.
Liposomal formulations of cytotoxic drugs.
Janknegt, R
1996-07-01
Liposomes are microscopic particles of lipid bilayer membrane that enclose aqueous internal compartments. These drug-delivery systems offer a very interesting opportunity for delivering cytotoxic drugs with equal or improved clinical efficacy and reduced toxicity. The most important clinical application of liposomes until now has been the inclusion of amphotericin B. At the same dose level, liposomal amphotericin B is as effective or slightly less effective than the conventional formulation, but much higher dosages, up to 5-7 mg kg-1day-1, can be given with acceptable toxicity. There are three preparations of cytotoxic drugs in an advanced stage of commercial development. Two of these (Doxil and TLD D99) contain doxorubicin and the other (DaunoXome) contains daunorubicin. The cardiac toxicity of the three preparations under clinical evaluation appears to be low in comparison with conventional doxorubicin or daunorubicin. No direct comparisons between the new formulations are available, so it is not yet possible to make any statements concerning their relative efficacy and toxicity. DaunoXome is the only drug that is approved in any country, and is also the best documented. It is too early to make recommendations concerning the place of these drugs in therapy. The marked increase in concentrations at the site of the tumour has yet to lead to increased therapeutic efficacy. These findings need further investigation. The efficacy of liposomal preparations in Kaposi's sarcoma appears to be similar to that of standard therapy and the clinical tolerance is good. Perhaps combination therapy with other cytotoxic agents could result in improved clinical efficacy. Their cost will probably be high in comparison with standard therapies.
Hamiltonian formulation of general relativity.
NASA Astrophysics Data System (ADS)
Teitelboim, Claudio
The following sections are included: * INTRODUCTION * HAMILTONIAN FORMULATION OF GAUGE THEORIES (PRE-BRST) * BRST HAMILTONIAN FORMULATION OF GAUGE THEORIES * DYNAMICS OF GRAVITATIONAL FIELD * DOES THE HAMILTONIAN VANISH? GENERAL COVARIANCE AS AN "ORDINARY" GAUGE INVARIANCE * GENERALLY COVARIANT SYSTEMS * TIME AS A CANONICAL VARIABLE. ZERO HAMILTONIAN * Parametrized Systems * Zero Hamiltonian * Parametrization and Explicit Time Dependence * TIME REPARAMETRIZATION INVARIANCE * Form of Gauge Transformations * Must the Hamiltonian be Zero for a Generally Covariant System? * Simple Example of a Generally Covariant System with a Nonzero Hamiltonian * "TRUE DYNAMICS" VERSUS GAUGE TRANSFORMATIONS * Interpretation of the Formalism * Reduced Phase Space * MUST TIME FLOW? * GAUGE INDEPENDENCE OF PATH INTEGRAL FOR A PARAMETRIZED SYSTEM ILLUSTRATED. EQUIVALENCE OF THE GAUGES t = τ AND t = 0 * Reduced Phase Space Transition Amplitude as a Reduced Phase Space Path Integral * Canonical Gauge Conditions * Gauge
Ellipsoidal analysis of coordination polyhedra
NASA Astrophysics Data System (ADS)
Cumby, James; Attfield, J. Paul
2017-02-01
The idea of the coordination polyhedron is essential to understanding chemical structure. Simple polyhedra in crystalline compounds are often deformed due to structural complexity or electronic instabilities so distortion analysis methods are useful. Here we demonstrate that analysis of the minimum bounding ellipsoid of a coordination polyhedron provides a general method for studying distortion, yielding parameters that are sensitive to various orders in metal oxide examples. Ellipsoidal analysis leads to discovery of a general switching of polyhedral distortions at symmetry-disallowed transitions in perovskites that may evidence underlying coordination bistability, and reveals a weak off-centre `d5 effect' for Fe3+ ions that could be exploited in multiferroics. Separating electronic distortions from intrinsic deformations within the low temperature superstructure of magnetite provides new insights into the charge and trimeron orders. Ellipsoidal analysis can be useful for exploring local structure in many materials such as coordination complexes and frameworks, organometallics and organic molecules.
Markov Tracking for Agent Coordination
NASA Technical Reports Server (NTRS)
Washington, Richard; Lau, Sonie (Technical Monitor)
1998-01-01
Partially observable Markov decision processes (POMDPs) axe an attractive representation for representing agent behavior, since they capture uncertainty in both the agent's state and its actions. However, finding an optimal policy for POMDPs in general is computationally difficult. In this paper we present Markov Tracking, a restricted problem of coordinating actions with an agent or process represented as a POMDP Because the actions coordinate with the agent rather than influence its behavior, the optimal solution to this problem can be computed locally and quickly. We also demonstrate the use of the technique on sequential POMDPs, which can be used to model a behavior that follows a linear, acyclic trajectory through a series of states. By imposing a "windowing" restriction that restricts the number of possible alternatives considered at any moment to a fixed size, a coordinating action can be calculated in constant time, making this amenable to coordination with complex agents.
Ellipsoidal analysis of coordination polyhedra
Cumby, James; Attfield, J. Paul
2017-01-01
The idea of the coordination polyhedron is essential to understanding chemical structure. Simple polyhedra in crystalline compounds are often deformed due to structural complexity or electronic instabilities so distortion analysis methods are useful. Here we demonstrate that analysis of the minimum bounding ellipsoid of a coordination polyhedron provides a general method for studying distortion, yielding parameters that are sensitive to various orders in metal oxide examples. Ellipsoidal analysis leads to discovery of a general switching of polyhedral distortions at symmetry-disallowed transitions in perovskites that may evidence underlying coordination bistability, and reveals a weak off-centre ‘d5 effect' for Fe3+ ions that could be exploited in multiferroics. Separating electronic distortions from intrinsic deformations within the low temperature superstructure of magnetite provides new insights into the charge and trimeron orders. Ellipsoidal analysis can be useful for exploring local structure in many materials such as coordination complexes and frameworks, organometallics and organic molecules. PMID:28146146
Aqil, Barina; Merritt, Brian Y; Elghetany, M Tarek; Kamdar, Kala Y; Lu, Xinyan Y; Curry, Choladda V
2015-01-01
Nodal marginal zone lymphoma (NMZL) is a B-cell lymphoma that shares morphologic and immunophenotypic features with extranodal and splenic marginal zone lymphomas but lacks extranodal or splenic involvement at presentation. NMZL occurs mostly in adults with no sex predilection, at advanced stage (III or IV), with frequent relapses and a high incidence of tumoral genetic abnormalities including trisomies 3 and 18 and gain of 7q. Pediatric NMZL, however, is a rare but distinct variant of NMZL with characteristic features including male predominance, asymptomatic and localized (stage I) disease, low relapse rates with excellent outcomes, and a lower incidence of essentially similar genetic aberrations compared to adult NMZL. Here we describe a unique case of childhood NMZL with unusual clinicopathologic features for the pediatric variant including generalized lymphadenopathy, high-stage disease with persistence after therapy, unusual immunophenotype (CD5, CD23, and BCL6 positive), and unique chromosomal abnormalities including monosomy 20 and add(10)(p11.2).
NASA Astrophysics Data System (ADS)
Liu, Jian; Kriegner, D.; Horak, L.; Puggioni, D.; Rayan Serrao, C.; Chen, R.; Yi, D.; Frontera, C.; Holy, V.; Vishwanath, A.; Rondinelli, J. M.; Marti, X.; Ramesh, R.
2016-02-01
By using a combination of heteroepitaxial growth, structure refinement based on synchrotron x-ray diffraction, and first-principles calculations, we show that the symmetry-protected Dirac line nodes in the topological semimetallic perovskite SrIrO3 can be lifted simply by applying epitaxial constraints. In particular, the Dirac gap opens without breaking the P b n m mirror symmetry. In virtue of a symmetry-breaking analysis, we demonstrate that the original symmetry protection is related to the n -glide operation, which can be selectively broken by different heteroepitaxial structures. This symmetry protection renders the nodal line a nonsymmorphic Dirac semimetallic state. The results highlight the vital role of crystal symmetry in spin-orbit-coupled correlated oxides and provide a foundation for experimental realization of topological insulators in iridate-based heterostructures.
Lupe, Krystine; Truong, Pauline T.; Alexander, Cheryl; Speers, Caroline; Tyldesley, Scott
2011-12-01
Purpose: To compare the locoregional recurrence (LRR) rates in patients with nodal mirometastases (pNmic) with those in patients with node-negative (pN0) and macroscopic node-positive (pNmac) breast cancer; and to evaluate the LRR rates according to locoregional treatment of pNmic disease. Methods and Materials: The subjects were 9,616 women diagnosed between 1989 and 1999 with Stage pT1-T2, pN0, pNmic, or pNmac, M0 breast cancer. All women had undergone axillary dissection. The Kaplan-Meier local recurrence, regional recurrence, and LRR rates were compared among those with pN0 (n = 7,977), pNmic (n = 490) and pNmac (n = 1,149) and according to locoregional treatment. Multivariate analysis was performed to identify the significant factors associated with LRR. Results: The median follow-up was 11 years. The 10-year Kaplan-Meier recurrence rate in the pN0, pNmic, and pNmac cohorts was 6.1%, 6.8%, and 8.7% for local recurrence; 3.1%, 6.2%, and 10.3% for regional recurrence; and 8.0%, 11.6%, and 15.2% for LRR, respectively (all p < .001). In the pNmic patients, the 10-year regional recurrence rate was 6.4% with breast-conserving surgery plus breast radiotherapy (RT), 5.4% with breast-conserving surgery plus locoregional RT, 4.6% with mastectomy alone, 11.1% with mastectomy plus chest wall RT, and 10.7% with mastectomy plus locoregional RT. In patients with pNmic disease and age <45 years, Grade 3 histologic features, lymphovascular invasion, nodal ratio >0.25, and estrogen receptor-negative disease, the 10-year LRR rates were 15-20%. On multivariate analysis of the entire cohort, pNmic was associated with greater LRR than Stage pN0 (hazard ratio [HR], 1.6; p = .002). On multivariate analysis of pNmic patients only, age <45 years was associated with significantly greater LRR (HR, 1.9; p = .03), and trends for greater LRR were observed with a nodal ratio >0.25 (HR, 2.0; p = .07) and lymphovascular invasion (HR, 1.7; p = .07). Conclusion: Women with pNmic had a greater
NASA Technical Reports Server (NTRS)
Elsner, R. F.; O'Dell, S. L.; Ramsey, B. D.; Weisskopf, M. C.
2011-01-01
We describe a mathematical formalism for determining the mirror shell nodal positions and detector tilts that optimize the spatial resolution averaged over a field-of-view for a nested x-ray telescope, assuming known mirror segment surface prescriptions and known detector focal surface. The results are expressed in terms of ensemble averages over variable combinations of the ray positions and wave vectors in the flat focal plane intersecting the optical axis at the nominal on-axis focus, which can be determined by Monte-Carlo ray traces of the individual mirror shells. This work is part of our continuing efforts to provide analytical tools to aid in the design process for wide-field survey x-ray astronomy missions.
NASA Astrophysics Data System (ADS)
Nedelcu, O.; Salisteanu, C. I.; Popa, F.; Salisteanu, B.; Oprescu, C. V.; Dogaru, V.
2017-01-01
The complexity of electrical circuits or of equivalent thermal circuits that were considered to be analyzed and solved requires taking into account the method that is used for their solving. Choosing the method of solving determines the amount of calculation necessary for applying one of the methods. The heating and ventilation systems of electrical machines that have to be modeled result in complex equivalent electrical circuits of large dimensions, which requires the use of the most efficient methods of solving them. The purpose of the thermal calculation of electrical machines is to establish the heating, the overruns of temperatures or over-temperatures in some parts of the machine compared to the temperature of the ambient, in a given operating mode of the machine. The paper presents the application of the modified nodal analysis method for the modeling of the thermal circuit of an asynchronous machine.
Bertacchi, Michele; Lupo, Giuseppe; Pandolfini, Luca; Casarosa, Simona; D’Onofrio, Mara; Pedersen, Roger A.; Harris, William A.; Cremisi, Federico
2015-01-01
Summary Retinal progenitors are initially found in the anterior neural plate region known as the eye field, whereas neighboring areas undertake telencephalic or hypothalamic development. Eye field cells become specified by switching on a network of eye field transcription factors, but the extracellular cues activating this network remain unclear. In this study, we used chemically defined media to induce in vitro differentiation of mouse embryonic stem cells (ESCs) toward eye field fates. Inhibition of Wnt/β-catenin signaling was sufficient to drive ESCs to telencephalic, but not retinal, fates. Instead, retinal progenitors could be generated from competent differentiating mouse ESCs by activation of Activin/Nodal signaling within a narrow temporal window corresponding to the emergence of primitive anterior neural progenitors. Activin also promoted eye field gene expression in differentiating human ESCs. Our results reveal insights into the mechanisms of eye field specification and open new avenues toward the generation of retinal progenitors for translational medicine. PMID:26388287
NASA Technical Reports Server (NTRS)
Elsner, Ronald; O'Dell, Stephen; Ramsey, Brian; Weisskopf, Martin
2011-01-01
We describe a mathematical formalism for determining the mirror shell nodal positions and detector tilts that optimize the spatial resolution averaged over a field-of-view for a nested x-ray telescope, assuming known mirror segment surface prescriptions and known detector focal surface. The results are expressed in terms of ensemble averages over variable combinations of the ray positions and wavevectors in the flat focal plane intersecting the optical axis at the nominal on-axis focus, which can be determined by Monte-Carlo ray traces of the individual mirror shells. This work is part of our continuing efforts to provide analytical tools to aid in the design process for wide-field survey x-ray astronomy missions.
Sensory Coordination of Insect Flight
2009-12-29
flies ( Hermetia Illucens ) to elicit controlled take-off and landing in free flight (Pilot experiments completed. Follow- up experiments in progress...neerii. 2) Location of odor sources in the fruit fly, Drosophila melanogaster. 3) Wing-haltere coordination in the soldier fly, Hermetia illucens ...coordination in the soldier fly, Hermetia illucens (Tanvi Deora): One of the key sensory inputs for flight stability in Diptera comes from the haltere
Reymen, Bart; Van Loon, Judith; Baardwijk, Angela van; Wanders, Rinus; Borger, Jacques; Dingemans, Anne-Marie C.; Bootsma, Gerben; Pitz, Cordula; Lunde, Ragnar; Geraedts, Wiel; Lambin, Philippe; De Ruysscher, Dirk
2013-04-01
Purpose: In non-small cell lung cancer, gross tumor volume (GTV) influences survival more than other risk factors. This could also apply to small cell lung cancer. Methods and Materials: Analysis of our prospective database with stage I to III SCLC patients referred for concurrent chemo radiation therapy. Standard treatment was 45 Gy in 1.5-Gy fractions twice daily concurrently with carboplatin-etoposide, followed by prophylactic cranial irradiation (PCI) in case of non-progression. Only fluorodeoxyglucose (FDG)-positron emission tomography (PET)-positive or pathologically proven nodal sites were included in the target volume. Total GTV consisted of post chemotherapy tumor volume and pre chemotherapy nodal volume. Survival was calculated from diagnosis (Kaplan-Meier ). Results: A total of 119 patients were included between May 2004 and June 2009. Median total GTV was 93 ± 152 cc (7.5-895 cc). Isolated elective nodal failure occurred in 2 patients (1.7%). Median follow-up was 38 months, median overall survival 20 months (95% confidence interval = 17.8-22.1 months), and 2-year survival 38.4%. In multivariate analysis, only total GTV (P=.026) and performance status (P=.016) significantly influenced survival. Conclusions: In this series of stage I to III small cell lung cancer patients treated with FDG-PET-based selective nodal irradiation total GTV is an independent risk factor for survival.
Kim, Christine H.; Khoury-Collado, Fady; Barber, Emma L.; Soslow, Robert A.; Makker, Vicky; Leitao, Mario M.; Sonoda, Yukio; Alektiar, Kaled M.; Barakat, Richard R.; Abu-Rustum, Nadeem R.
2013-01-01
Objective To report the incidence of nodal metastases in patients presenting with presumed low-grade endometrioid adenocarcinomas using a sentinel lymph node (SLN) mapping protocol including pathologic ultrastaging. Methods All patients from 9/2005-12/2011 who underwent endometrial cancer staging surgery with attempted SLN mapping for preoperative grade 1 (G1) or grade 2 (G2) tumors with <50% invasion on final pathology, were included. All lymph nodes were examined with hematoxylin and eosin (H&E). Negative SLNs were further examined using an ultrastaging protocol to detect micrometastases and isolated tumor cells. Results Of 425 patients, lymph node metastasis was found in 25 patients (5.9%) on final pathology—13 cases on routine H&E, 12 cases after ultrastaging. Patients whose tumors had a DMI <50% were more likely to have positive SLNs on routine H&E (p<0.005) or after ultrastaging (p=0.01) compared to those without myoinvasion. Conclusions Applying a standardized SLN mapping algorithm with ultrastaging allows for the detection of nodal disease in a presumably low-risk group of patients who in some practices may not undergo any nodal evaluation. Ultrastaging of SLNs can likely be eliminated in endometrioid adenocarcinoma with no myoinvasion. The long-term clinical significance of ultrastage-detected nodal disease requires further investigation as recurrences were noted in some of these cases. PMID:24099838
Surber, Ralf; Kühnert, Helmut; Heinke, Matthias; Malur, Frank-Michael; Sigusch, Holger H; Figulla, Hans R
2002-06-01
The only inducible arrhythmia in a patient with exclusive antegrade conducting left anterolateral accessory pathway, consists of slow/fast atrioventricular nodal reentrant tachycardia. After radiofrequency catheter ablation of the slow pathway, true antidromic AV reentrant tachycardia was easily induced by atrial pacing. Following ablation of the accessory pathway no arrhythmia could be induced.
Li, Jue; Inada, Shin; Schneider, Jurgen E.; Zhang, Henggui; Dobrzynski, Halina; Boyett, Mark R.
2014-01-01
The aim of the study was to develop a three-dimensional (3D) anatomically-detailed model of the rabbit right atrium containing the sinoatrial and atrioventricular nodes to study the electrophysiology of the nodes. A model was generated based on 3D images of a rabbit heart (atria and part of ventricles), obtained using high-resolution magnetic resonance imaging. Segmentation was carried out semi-manually. A 3D right atrium array model (∼3.16 million elements), including eighteen objects, was constructed. For description of cellular electrophysiology, the Rogers-modified FitzHugh-Nagumo model was further modified to allow control of the major characteristics of the action potential with relatively low computational resource requirements. Model parameters were chosen to simulate the action potentials in the sinoatrial node, atrial muscle, inferior nodal extension and penetrating bundle. The block zone was simulated as passive tissue. The sinoatrial node, crista terminalis, main branch and roof bundle were considered as anisotropic. We have simulated normal and abnormal electrophysiology of the two nodes. In accordance with experimental findings: (i) during sinus rhythm, conduction occurs down the interatrial septum and into the atrioventricular node via the fast pathway (conduction down the crista terminalis and into the atrioventricular node via the slow pathway is slower); (ii) during atrial fibrillation, the sinoatrial node is protected from overdrive by its long refractory period; and (iii) during atrial fibrillation, the atrioventricular node reduces the frequency of action potentials reaching the ventricles. The model is able to simulate ventricular echo beats. In summary, a 3D anatomical model of the right atrium containing the cardiac conduction system is able to simulate a wide range of classical nodal behaviours. PMID:25380074