Sample records for node-centered finite volume

  1. Comparison of Node-Centered and Cell-Centered Unstructured Finite-Volume Discretizations. Part 1; Viscous Fluxes

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.; Nielsen, Eric J.; Nishikawa, Hiroaki; White, Jeffery A.

    2009-01-01

    Discretization of the viscous terms in current finite-volume unstructured-grid schemes are compared using node-centered and cell-centered approaches in two dimensions. Accuracy and efficiency are studied for six nominally second-order accurate schemes: a node-centered scheme, cell-centered node-averaging schemes with and without clipping, and cell-centered schemes with unweighted, weighted, and approximately mapped least-square face gradient reconstruction. The grids considered range from structured (regular) grids to irregular grids composed of arbitrary mixtures of triangles and quadrilaterals, including random perturbations of the grid points to bring out the worst possible behavior of the solution. Two classes of tests are considered. The first class of tests involves smooth manufactured solutions on both isotropic and highly anisotropic grids with discontinuous metrics, typical of those encountered in grid adaptation. The second class concerns solutions and grids varying strongly anisotropically over a curved body, typical of those encountered in high-Reynolds number turbulent flow simulations. Results from the first class indicate the face least-square methods, the node-averaging method without clipping, and the node-centered method demonstrate second-order convergence of discretization errors with very similar accuracies per degree of freedom. The second class of tests are more discriminating. The node-centered scheme is always second order with an accuracy and complexity in linearization comparable to the best of the cell-centered schemes. In comparison, the cell-centered node-averaging schemes are less accurate, have a higher complexity in linearization, and can fail to converge to the exact solution when clipping of the node-averaged values is used. The cell-centered schemes using least-square face gradient reconstruction have more compact stencils with a complexity similar to the complexity of the node-centered scheme. For simulations on highly anisotropic curved grids, the least-square methods have to be amended either by introducing a local mapping of the surface anisotropy or modifying the scheme stencil to reflect the direction of strong coupling.

  2. Comparison of Node-Centered and Cell-Centered Unstructured Finite-Volume Discretizations: Viscous Fluxes

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.; Nielsen, Eric J.; Nishikawa, Hiroaki; White, Jeffery A.

    2010-01-01

    Discretization of the viscous terms in current finite-volume unstructured-grid schemes are compared using node-centered and cell-centered approaches in two dimensions. Accuracy and complexity are studied for four nominally second-order accurate schemes: a node-centered scheme and three cell-centered schemes - a node-averaging scheme and two schemes with nearest-neighbor and adaptive compact stencils for least-square face gradient reconstruction. The grids considered range from structured (regular) grids to irregular grids composed of arbitrary mixtures of triangles and quadrilaterals, including random perturbations of the grid points to bring out the worst possible behavior of the solution. Two classes of tests are considered. The first class of tests involves smooth manufactured solutions on both isotropic and highly anisotropic grids with discontinuous metrics, typical of those encountered in grid adaptation. The second class concerns solutions and grids varying strongly anisotropically over a curved body, typical of those encountered in high-Reynolds number turbulent flow simulations. Tests from the first class indicate the face least-square methods, the node-averaging method without clipping, and the node-centered method demonstrate second-order convergence of discretization errors with very similar accuracies per degree of freedom. The tests of the second class are more discriminating. The node-centered scheme is always second order with an accuracy and complexity in linearization comparable to the best of the cell-centered schemes. In comparison, the cell-centered node-averaging schemes may degenerate on mixed grids, have a higher complexity in linearization, and can fail to converge to the exact solution when clipping of the node-averaged values is used. The cell-centered schemes using least-square face gradient reconstruction have more compact stencils with a complexity similar to that of the node-centered scheme. For simulations on highly anisotropic curved grids, the least-square methods have to be amended either by introducing a local mapping based on a distance function commonly available in practical schemes or modifying the scheme stencil to reflect the direction of strong coupling. The major conclusion is that accuracies of the node centered and the best cell-centered schemes are comparable at equivalent number of degrees of freedom.

  3. Cell-centered high-order hyperbolic finite volume method for diffusion equation on unstructured grids

    NASA Astrophysics Data System (ADS)

    Lee, Euntaek; Ahn, Hyung Taek; Luo, Hong

    2018-02-01

    We apply a hyperbolic cell-centered finite volume method to solve a steady diffusion equation on unstructured meshes. This method, originally proposed by Nishikawa using a node-centered finite volume method, reformulates the elliptic nature of viscous fluxes into a set of augmented equations that makes the entire system hyperbolic. We introduce an efficient and accurate solution strategy for the cell-centered finite volume method. To obtain high-order accuracy for both solution and gradient variables, we use a successive order solution reconstruction: constant, linear, and quadratic (k-exact) reconstruction with an efficient reconstruction stencil, a so-called wrapping stencil. By the virtue of the cell-centered scheme, the source term evaluation was greatly simplified regardless of the solution order. For uniform schemes, we obtain the same order of accuracy, i.e., first, second, and third orders, for both the solution and its gradient variables. For hybrid schemes, recycling the gradient variable information for solution variable reconstruction makes one order of additional accuracy, i.e., second, third, and fourth orders, possible for the solution variable with less computational work than needed for uniform schemes. In general, the hyperbolic method can be an effective solution technique for diffusion problems, but instability is also observed for the discontinuous diffusion coefficient cases, which brings necessity for further investigation about the monotonicity preserving hyperbolic diffusion method.

  4. Comparison of Node-Centered and Cell-Centered Unstructured Finite-Volume Discretizations: Inviscid Fluxes

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.

    2010-01-01

    Cell-centered and node-centered approaches have been compared for unstructured finite-volume discretization of inviscid fluxes. The grids range from regular grids to irregular grids, including mixed-element grids and grids with random perturbations of nodes. Accuracy, complexity, and convergence rates of defect-correction iterations are studied for eight nominally second-order accurate schemes: two node-centered schemes with weighted and unweighted least-squares (LSQ) methods for gradient reconstruction and six cell-centered schemes two node-averaging with and without clipping and four schemes that employ different stencils for LSQ gradient reconstruction. The cell-centered nearest-neighbor (CC-NN) scheme has the lowest complexity; a version of the scheme that involves smart augmentation of the LSQ stencil (CC-SA) has only marginal complexity increase. All other schemes have larger complexity; complexity of node-centered (NC) schemes are somewhat lower than complexity of cell-centered node-averaging (CC-NA) and full-augmentation (CC-FA) schemes. On highly anisotropic grids typical of those encountered in grid adaptation, discretization errors of five of the six cell-centered schemes converge with second order on all tested grids; the CC-NA scheme with clipping degrades solution accuracy to first order. The NC schemes converge with second order on regular and/or triangular grids and with first order on perturbed quadrilaterals and mixed-element grids. All schemes may produce large relative errors in gradient reconstruction on grids with perturbed nodes. Defect-correction iterations for schemes employing weighted least-square gradient reconstruction diverge on perturbed stretched grids. Overall, the CC-NN and CC-SA schemes offer the best options of the lowest complexity and secondorder discretization errors. On anisotropic grids over a curved body typical of turbulent flow simulations, the discretization errors converge with second order and are small for the CC-NN, CC-SA, and CC-FA schemes on all grids and for NC schemes on triangular grids; the discretization errors of the CC-NA scheme without clipping do not converge on irregular grids. Accurate gradient reconstruction can be achieved by introducing a local approximate mapping; without approximate mapping, only the NC scheme with weighted LSQ method provides accurate gradients. Defect correction iterations for the CC-NA scheme without clipping diverge; for the NC scheme with weighted LSQ method, the iterations either diverge or converge very slowly. The best option in curved geometries is the CC-SA scheme that offers low complexity, second-order discretization errors, and fast convergence.

  5. The application of finite volume methods for modelling three-dimensional incompressible flow on an unstructured mesh

    NASA Astrophysics Data System (ADS)

    Lonsdale, R. D.; Webster, R.

    This paper demonstrates the application of a simple finite volume approach to a finite element mesh, combining the economy of the former with the geometrical flexibility of the latter. The procedure is used to model a three-dimensional flow on a mesh of linear eight-node brick (hexahedra). Simulations are performed for a wide range of flow problems, some in excess of 94,000 nodes. The resulting computer code ASTEC that incorporates these procedures is described.

  6. Effects of Mesh Irregularities on Accuracy of Finite-Volume Discretization Schemes

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.

    2012-01-01

    The effects of mesh irregularities on accuracy of unstructured node-centered finite-volume discretizations are considered. The focus is on an edge-based approach that uses unweighted least-squares gradient reconstruction with a quadratic fit. For inviscid fluxes, the discretization is nominally third order accurate on general triangular meshes. For viscous fluxes, the scheme is an average-least-squares formulation that is nominally second order accurate and contrasted with a common Green-Gauss discretization scheme. Gradient errors, truncation errors, and discretization errors are separately studied according to a previously introduced comprehensive methodology. The methodology considers three classes of grids: isotropic grids in a rectangular geometry, anisotropic grids typical of adapted grids, and anisotropic grids over a curved surface typical of advancing layer grids. The meshes within the classes range from regular to extremely irregular including meshes with random perturbation of nodes. Recommendations are made concerning the discretization schemes that are expected to be least sensitive to mesh irregularities in applications to turbulent flows in complex geometries.

  7. Stable Artificial Dissipation Operators for Finite Volume Schemes on Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Svard, Magnus; Gong, Jing; Nordstrom, Jan

    2006-01-01

    Our objective is to derive stable first-, second- and fourth-order artificial dissipation operators for node based finite volume schemes. Of particular interest are general unstructured grids where the strength of the finite volume method is fully utilized. A commonly used finite volume approximation of the Laplacian will be the basis in the construction of the artificial dissipation. Both a homogeneous dissipation acting in all directions with equal strength and a modification that allows different amount of dissipation in different directions are derived. Stability and accuracy of the new operators are proved and the theoretical results are supported by numerical computations.

  8. Method of modifying a volume mesh using sheet extraction

    DOEpatents

    Borden, Michael J [Albuquerque, NM; Shepherd, Jason F [Albuquerque, NM

    2007-02-20

    A method and machine-readable medium provide a technique to modify a hexahedral finite element volume mesh using dual generation and sheet extraction. After generating a dual of a volume stack (mesh), a predetermined algorithm may be followed to modify the volume mesh of hexahedral elements. The predetermined algorithm may include the steps of determining a sheet of hexahedral mesh elements, generating nodes for merging, and merging the nodes to delete the sheet of hexahedral mesh elements and modify the volume mesh.

  9. Accurate Analysis of the Change in Volume, Location, and Shape of Metastatic Cervical Lymph Nodes During Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takao, Seishin, E-mail: takao@mech-me.eng.hokudai.ac.jp; Tadano, Shigeru; Taguchi, Hiroshi

    2011-11-01

    Purpose: To establish a method for the accurate acquisition and analysis of the variations in tumor volume, location, and three-dimensional (3D) shape of tumors during radiotherapy in the era of image-guided radiotherapy. Methods and Materials: Finite element models of lymph nodes were developed based on computed tomography (CT) images taken before the start of treatment and every week during the treatment period. A surface geometry map with a volumetric scale was adopted and used for the analysis. Six metastatic cervical lymph nodes, 3.5 to 55.1 cm{sup 3} before treatment, in 6 patients with head and neck carcinomas were analyzed inmore » this study. Three fiducial markers implanted in mouthpieces were used for the fusion of CT images. Changes in the location of the lymph nodes were measured on the basis of these fiducial markers. Results: The surface geometry maps showed convex regions in red and concave regions in blue to ensure that the characteristics of the 3D tumor geometries are simply understood visually. After the irradiation of 66 to 70 Gy in 2 Gy daily doses, the patterns of the colors had not changed significantly, and the maps before and during treatment were strongly correlated (average correlation coefficient was 0.808), suggesting that the tumors shrank uniformly, maintaining the original characteristics of the shapes in all 6 patients. The movement of the gravitational center of the lymph nodes during the treatment period was everywhere less than {+-}5 mm except in 1 patient, in whom the change reached nearly 10 mm. Conclusions: The surface geometry map was useful for an accurate evaluation of the changes in volume and 3D shapes of metastatic lymph nodes. The fusion of the initial and follow-up CT images based on fiducial markers enabled an analysis of changes in the location of the targets. Metastatic cervical lymph nodes in patients were suggested to decrease in size without significant changes in the 3D shape during radiotherapy. The movements of the gravitational center of the lymph nodes were almost all less than {+-}5 mm.« less

  10. Solution of the Average-Passage Equations for the Incompressible Flow through Multiple-Blade-Row Turbomachinery

    DTIC Science & Technology

    1994-02-01

    numerical treatment. An explicit numerical procedure based on Runqe-Kutta time stepping for cell-centered, hexahedral finite volumes is...An explicit numerical procedure based on Runge-Kutta time stepping for cell-centered, hexahedral finite volumes is outlined for the approximate...Discretization 16 3.1 Cell-Centered Finite -Volume Discretization in Space 16 3.2 Artificial Dissipation 17 3.3 Time Integration 21 3.4 Convergence

  11. Accuracy Analysis for Finite-Volume Discretization Schemes on Irregular Grids

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.

    2010-01-01

    A new computational analysis tool, downscaling test, is introduced and applied for studying the convergence rates of truncation and discretization errors of nite-volume discretization schemes on general irregular (e.g., unstructured) grids. The study shows that the design-order convergence of discretization errors can be achieved even when truncation errors exhibit a lower-order convergence or, in some cases, do not converge at all. The downscaling test is a general, efficient, accurate, and practical tool, enabling straightforward extension of verification and validation to general unstructured grid formulations. It also allows separate analysis of the interior, boundaries, and singularities that could be useful even in structured-grid settings. There are several new findings arising from the use of the downscaling test analysis. It is shown that the discretization accuracy of a common node-centered nite-volume scheme, known to be second-order accurate for inviscid equations on triangular grids, degenerates to first order for mixed grids. Alternative node-centered schemes are presented and demonstrated to provide second and third order accuracies on general mixed grids. The local accuracy deterioration at intersections of tangency and in flow/outflow boundaries is demonstrated using the DS tests tailored to examining the local behavior of the boundary conditions. The discretization-error order reduction within inviscid stagnation regions is demonstrated. The accuracy deterioration is local, affecting mainly the velocity components, but applies to any order scheme.

  12. A grid-doubling finite-element technique for calculating dynamic three-dimensional spontaneous rupture on an earthquake fault

    USGS Publications Warehouse

    Barall, Michael

    2009-01-01

    We present a new finite-element technique for calculating dynamic 3-D spontaneous rupture on an earthquake fault, which can reduce the required computational resources by a factor of six or more, without loss of accuracy. The grid-doubling technique employs small cells in a thin layer surrounding the fault. The remainder of the modelling volume is filled with larger cells, typically two or four times as large as the small cells. In the resulting non-conforming mesh, an interpolation method is used to join the thin layer of smaller cells to the volume of larger cells. Grid-doubling is effective because spontaneous rupture calculations typically require higher spatial resolution on and near the fault than elsewhere in the model volume. The technique can be applied to non-planar faults by morphing, or smoothly distorting, the entire mesh to produce the desired 3-D fault geometry. Using our FaultMod finite-element software, we have tested grid-doubling with both slip-weakening and rate-and-state friction laws, by running the SCEC/USGS 3-D dynamic rupture benchmark problems. We have also applied it to a model of the Hayward fault, Northern California, which uses realistic fault geometry and rock properties. FaultMod implements fault slip using common nodes, which represent motion common to both sides of the fault, and differential nodes, which represent motion of one side of the fault relative to the other side. We describe how to modify the traction-at-split-nodes method to work with common and differential nodes, using an implicit time stepping algorithm.

  13. Comparison of three explicit multigrid methods for the Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Chima, Rodrick V.; Turkel, Eli; Schaffer, Steve

    1987-01-01

    Three explicit multigrid methods, Ni's method, Jameson's finite-volume method, and a finite-difference method based on Brandt's work, are described and compared for two model problems. All three methods use an explicit multistage Runge-Kutta scheme on the fine grid, and this scheme is also described. Convergence histories for inviscid flow over a bump in a channel for the fine-grid scheme alone show that convergence rate is proportional to Courant number and that implicit residual smoothing can significantly accelerate the scheme. Ni's method was slightly slower than the implicitly-smoothed scheme alone. Brandt's and Jameson's methods are shown to be equivalent in form but differ in their node versus cell-centered implementations. They are about 8.5 times faster than Ni's method in terms of CPU time. Results for an oblique shock/boundary layer interaction problem verify the accuracy of the finite-difference code. All methods slowed considerably on the stretched viscous grid but Brandt's method was still 2.1 times faster than Ni's method.

  14. Convergence studies in meshfree peridynamic simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seleson, Pablo; Littlewood, David J.

    2016-04-15

    Meshfree methods are commonly applied to discretize peridynamic models, particularly in numerical simulations of engineering problems. Such methods discretize peridynamic bodies using a set of nodes with characteristic volume, leading to particle-based descriptions of systems. In this article, we perform convergence studies of static peridynamic problems. We show that commonly used meshfree methods in peridynamics suffer from accuracy and convergence issues, due to a rough approximation of the contribution to the internal force density of nodes near the boundary of the neighborhood of a given node. We propose two methods to improve meshfree peridynamic simulations. The first method uses accuratemore » computations of volumes of intersections between neighbor cells and the neighborhood of a given node, referred to as partial volumes. The second method employs smooth influence functions with a finite support within peridynamic kernels. Numerical results demonstrate great improvements in accuracy and convergence of peridynamic numerical solutions, when using the proposed methods.« less

  15. A direct Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and non-conservative hyperbolic systems in 3D

    NASA Astrophysics Data System (ADS)

    Boscheri, Walter; Dumbser, Michael

    2014-10-01

    In this paper we present a new family of high order accurate Arbitrary-Lagrangian-Eulerian (ALE) one-step ADER-WENO finite volume schemes for the solution of nonlinear systems of conservative and non-conservative hyperbolic partial differential equations with stiff source terms on moving tetrahedral meshes in three space dimensions. A WENO reconstruction technique is used to achieve high order of accuracy in space, while an element-local space-time Discontinuous Galerkin finite element predictor on moving curved meshes is used to obtain a high order accurate one-step time discretization. Within the space-time predictor the physical element is mapped onto a reference element using a high order isoparametric approach, where the space-time basis and test functions are given by the Lagrange interpolation polynomials passing through a predefined set of space-time nodes. Since our algorithm is cell-centered, the final mesh motion is computed by using a suitable node solver algorithm. A rezoning step as well as a flattener strategy are used in some of the test problems to avoid mesh tangling or excessive element deformations that may occur when the computation involves strong shocks or shear waves. The ALE algorithm presented in this article belongs to the so-called direct ALE methods because the final Lagrangian finite volume scheme is based directly on a space-time conservation formulation of the governing PDE system, with the rezoned geometry taken already into account during the computation of the fluxes. We apply our new high order unstructured ALE schemes to the 3D Euler equations of compressible gas dynamics, for which a set of classical numerical test problems has been solved and for which convergence rates up to sixth order of accuracy in space and time have been obtained. We furthermore consider the equations of classical ideal magnetohydrodynamics (MHD) as well as the non-conservative seven-equation Baer-Nunziato model of compressible multi-phase flows with stiff relaxation source terms.

  16. A Fluid Structure Algorithm with Lagrange Multipliers to Model Free Swimming

    NASA Astrophysics Data System (ADS)

    Sahin, Mehmet; Dilek, Ezgi

    2017-11-01

    A new monolithic approach is prosed to solve the fluid-structure interaction (FSI) problem with Lagrange multipliers in order to model free swimming/flying. In the present approach, the fluid domain is modeled by the incompressible Navier-Stokes equations and discretized using an Arbitrary Lagrangian-Eulerian (ALE) formulation based on the stable side-centered unstructured finite volume method. The solid domain is modeled by the constitutive laws for the nonlinear Saint Venant-Kirchhoff material and the classical Galerkin finite element method is used to discretize the governing equations in a Lagrangian frame. In order to impose the body motion/deformation, the distance between the constraint pair nodes is imposed using the Lagrange multipliers, which is independent from the frame of reference. The resulting algebraic linear equations are solved in a fully coupled manner using a dual approach (null space method). The present numerical algorithm is initially validated for the classical FSI benchmark problems and then applied to the free swimming of three linked ellipses. The authors are grateful for the use of the computing resources provided by the National Center for High Performance Computing (UYBHM) under Grant Number 10752009 and the computing facilities at TUBITAK-ULAKBIM, High Performance and Grid Computing Center.

  17. A point-centered arbitrary Lagrangian Eulerian hydrodynamic approach for tetrahedral meshes

    DOE PAGES

    Morgan, Nathaniel R.; Waltz, Jacob I.; Burton, Donald E.; ...

    2015-02-24

    We present a three dimensional (3D) arbitrary Lagrangian Eulerian (ALE) hydrodynamic scheme suitable for modeling complex compressible flows on tetrahedral meshes. The new approach stores the conserved variables (mass, momentum, and total energy) at the nodes of the mesh and solves the conservation equations on a control volume surrounding the point. This type of an approach is termed a point-centered hydrodynamic (PCH) method. The conservation equations are discretized using an edge-based finite element (FE) approach with linear basis functions. All fluxes in the new approach are calculated at the center of each tetrahedron. A multidirectional Riemann-like problem is solved atmore » the center of the tetrahedron. The advective fluxes are calculated by solving a 1D Riemann problem on each face of the nodal control volume. A 2-stage Runge–Kutta method is used to evolve the solution forward in time, where the advective fluxes are part of the temporal integration. The mesh velocity is smoothed by solving a Laplacian equation. The details of the new ALE hydrodynamic scheme are discussed. Results from a range of numerical test problems are presented.« less

  18. Comments on the Diffusive Behavior of Two Upwind Schemes

    NASA Technical Reports Server (NTRS)

    Wood, William A.; Kleb, William L.

    1998-01-01

    The diffusive characteristics of two upwind schemes, multi-dimensional fluctuation splitting and locally one-dimensional finite volume, are compared for scalar advection-diffusion problems. Algorithms for the two schemes are developed for node-based data representation on median-dual meshes associated with unstructured triangulations in two spatial dimensions. Four model equations are considered: linear advection, non-linear advection, diffusion, and advection-diffusion. Modular coding is employed to isolate the effects of the two approaches for upwind flux evaluation, allowing for head-to-head accuracy and efficiency comparisons. Both the stability of compressive limiters and the amount of artificial diffusion generated by the schemes is found to be grid-orientation dependent, with the fluctuation splitting scheme producing less artificial diffusion than the finite volume scheme. Convergence rates are compared for the combined advection-diffusion problem, with a speedup of 2.5 seen for fluctuation splitting versus finite volume when solved on the same mesh. However, accurate solutions to problems with small diffusion coefficients can be achieved on coarser meshes using fluctuation splitting rather than finite volume, so that when comparing convergence rates to reach a given accuracy, fluctuation splitting shows a speedup of 29 over finite volume.

  19. Diffusion Characteristics of Upwind Schemes on Unstructured Triangulations

    NASA Technical Reports Server (NTRS)

    Wood, William A.; Kleb, William L.

    1998-01-01

    The diffusive characteristics of two upwind schemes, multi-dimensional fluctuation splitting and dimensionally-split finite volume, are compared for scalar advection-diffusion problems. Algorithms for the two schemes are developed for node-based data representation on median-dual meshes associated with unstructured triangulations in two spatial dimensions. Four model equations are considered: linear advection, non-linear advection, diffusion, and advection-diffusion. Modular coding is employed to isolate the effects of the two approaches for upwind flux evaluation, allowing for head-to-head accuracy and efficiency comparisons. Both the stability of compressive limiters and the amount of artificial diffusion generated by the schemes is found to be grid-orientation dependent, with the fluctuation splitting scheme producing less artificial diffusion than the dimensionally-split finite volume scheme. Convergence rates are compared for the combined advection-diffusion problem, with a speedup of 2-3 seen for fluctuation splitting versus finite volume when solved on the same mesh. However, accurate solutions to problems with small diffusion coefficients can be achieved on coarser meshes using fluctuation splitting rather than finite volume, so that when comparing convergence rates to reach a given accuracy, fluctuation splitting shows a 20-25 speedup over finite volume.

  20. Three-dimensional local grid refinement for block-centered finite-difference groundwater models using iteratively coupled shared nodes: A new method of interpolation and analysis of errors

    USGS Publications Warehouse

    Mehl, S.; Hill, M.C.

    2004-01-01

    This paper describes work that extends to three dimensions the two-dimensional local-grid refinement method for block-centered finite-difference groundwater models of Mehl and Hill [Development and evaluation of a local grid refinement method for block-centered finite-difference groundwater models using shared nodes. Adv Water Resour 2002;25(5):497-511]. In this approach, the (parent) finite-difference grid is discretized more finely within a (child) sub-region. The grid refinement method sequentially solves each grid and uses specified flux (parent) and specified head (child) boundary conditions to couple the grids. Iteration achieves convergence between heads and fluxes of both grids. Of most concern is how to interpolate heads onto the boundary of the child grid such that the physics of the parent-grid flow is retained in three dimensions. We develop a new two-step, "cage-shell" interpolation method based on the solution of the flow equation on the boundary of the child between nodes shared with the parent grid. Error analysis using a test case indicates that the shared-node local grid refinement method with cage-shell boundary head interpolation is accurate and robust, and the resulting code is used to investigate three-dimensional local grid refinement of stream-aquifer interactions. Results reveal that (1) the parent and child grids interact to shift the true head and flux solution to a different solution where the heads and fluxes of both grids are in equilibrium, (2) the locally refined model provided a solution for both heads and fluxes in the region of the refinement that was more accurate than a model without refinement only if iterations are performed so that both heads and fluxes are in equilibrium, and (3) the accuracy of the coupling is limited by the parent-grid size - A coarse parent grid limits correct representation of the hydraulics in the feedback from the child grid.

  1. Order of accuracy of QUICK and related convection-diffusion schemes

    NASA Technical Reports Server (NTRS)

    Leonard, B. P.

    1993-01-01

    This report attempts to correct some misunderstandings that have appeared in the literature concerning the order of accuracy of the QUICK scheme for steady-state convective modeling. Other related convection-diffusion schemes are also considered. The original one-dimensional QUICK scheme written in terms of nodal-point values of the convected variable (with a 1/8-factor multiplying the 'curvature' term) is indeed a third-order representation of the finite volume formulation of the convection operator average across the control volume, written naturally in flux-difference form. An alternative single-point upwind difference scheme (SPUDS) using node values (with a 1/6-factor) is a third-order representation of the finite difference single-point formulation; this can be written in a pseudo-flux difference form. These are both third-order convection schemes; however, the QUICK finite volume convection operator is 33 percent more accurate than the single-point implementation of SPUDS. Another finite volume scheme, writing convective fluxes in terms of cell-average values, requires a 1/6-factor for third-order accuracy. For completeness, one can also write a single-point formulation of the convective derivative in terms of cell averages, and then express this in pseudo-flux difference form; for third-order accuracy, this requires a curvature factor of 5/24. Diffusion operators are also considered in both single-point and finite volume formulations. Finite volume formulations are found to be significantly more accurate. For example, classical second-order central differencing for the second derivative is exactly twice as accurate in a finite volume formulation as it is in single-point.

  2. Adaptive finite-volume WENO schemes on dynamically redistributed grids for compressible Euler equations

    NASA Astrophysics Data System (ADS)

    Pathak, Harshavardhana S.; Shukla, Ratnesh K.

    2016-08-01

    A high-order adaptive finite-volume method is presented for simulating inviscid compressible flows on time-dependent redistributed grids. The method achieves dynamic adaptation through a combination of time-dependent mesh node clustering in regions characterized by strong solution gradients and an optimal selection of the order of accuracy and the associated reconstruction stencil in a conservative finite-volume framework. This combined approach maximizes spatial resolution in discontinuous regions that require low-order approximations for oscillation-free shock capturing. Over smooth regions, high-order discretization through finite-volume WENO schemes minimizes numerical dissipation and provides excellent resolution of intricate flow features. The method including the moving mesh equations and the compressible flow solver is formulated entirely on a transformed time-independent computational domain discretized using a simple uniform Cartesian mesh. Approximations for the metric terms that enforce discrete geometric conservation law while preserving the fourth-order accuracy of the two-point Gaussian quadrature rule are developed. Spurious Cartesian grid induced shock instabilities such as carbuncles that feature in a local one-dimensional contact capturing treatment along the cell face normals are effectively eliminated through upwind flux calculation using a rotated Hartex-Lax-van Leer contact resolving (HLLC) approximate Riemann solver for the Euler equations in generalized coordinates. Numerical experiments with the fifth and ninth-order WENO reconstructions at the two-point Gaussian quadrature nodes, over a range of challenging test cases, indicate that the redistributed mesh effectively adapts to the dynamic flow gradients thereby improving the solution accuracy substantially even when the initial starting mesh is non-adaptive. The high adaptivity combined with the fifth and especially the ninth-order WENO reconstruction allows remarkably sharp capture of discontinuous propagating shocks with simultaneous resolution of smooth yet complex small scale unsteady flow features to an exceptional detail.

  3. Elastic-plastic mixed-iterative finite element analysis: Implementation and performance assessment

    NASA Technical Reports Server (NTRS)

    Sutjahjo, Edhi; Chamis, Christos C.

    1993-01-01

    An elastic-plastic algorithm based on Von Mises and associative flow criteria is implemented in MHOST-a mixed iterative finite element analysis computer program developed by NASA Lewis Research Center. The performance of the resulting elastic-plastic mixed-iterative analysis is examined through a set of convergence studies. Membrane and bending behaviors of 4-node quadrilateral shell finite elements are tested for elastic-plastic performance. Generally, the membrane results are excellent, indicating the implementation of elastic-plastic mixed-iterative analysis is appropriate.

  4. Role of geomechanically grown fractures on dispersive transport in heterogeneous geological formations.

    PubMed

    Nick, H M; Paluszny, A; Blunt, M J; Matthai, S K

    2011-11-01

    A second order in space accurate implicit scheme for time-dependent advection-dispersion equations and a discrete fracture propagation model are employed to model solute transport in porous media. We study the impact of the fractures on mass transport and dispersion. To model flow and transport, pressure and transport equations are integrated using a finite-element, node-centered finite-volume approach. Fracture geometries are incrementally developed from a random distributions of material flaws using an adoptive geomechanical finite-element model that also produces fracture aperture distributions. This quasistatic propagation assumes a linear elastic rock matrix, and crack propagation is governed by a subcritical crack growth failure criterion. Fracture propagation, intersection, and closure are handled geometrically. The flow and transport simulations are separately conducted for a range of fracture densities that are generated by the geomechanical finite-element model. These computations show that the most influential parameters for solute transport in fractured porous media are as follows: fracture density and fracture-matrix flux ratio that is influenced by matrix permeability. Using an equivalent fracture aperture size, computed on the basis of equivalent permeability of the system, we also obtain an acceptable prediction of the macrodispersion of poorly interconnected fracture networks. The results hold for fractures at relatively low density.

  5. The Impact of Varying the Physics Grid Resolution Relative to the Dynamical Core Resolution in CAM-SE-CSLAM

    NASA Astrophysics Data System (ADS)

    Herrington, A. R.; Lauritzen, P. H.; Reed, K. A.

    2017-12-01

    The spectral element dynamical core of the Community Atmosphere Model (CAM) has recently been coupled to an approximately isotropic, finite-volume grid per implementation of the conservative semi-Lagrangian multi-tracer transport scheme (CAM-SE-CSLAM; Lauritzen et al. 2017). In this framework, the semi-Lagrangian transport of tracers are computed on the finite-volume grid, while the adiabatic dynamics are solved using the spectral element grid. The physical parameterizations are evaluated on the finite-volume grid, as opposed to the unevenly spaced Gauss-Lobatto-Legendre nodes of the spectral element grid. Computing the physics on the finite-volume grid reduces numerical artifacts such as grid imprinting, possibly because the forcing terms are no longer computed at element boundaries where the resolved dynamics are least smooth. The separation of the physics grid and the dynamics grid allows for a unique opportunity to understand the resolution sensitivity in CAM-SE-CSLAM. The observed large sensitivity of CAM to horizontal resolution is a poorly understood impediment to improved simulations of regional climate using global, variable resolution grids. Here, a series of idealized moist simulations are presented in which the finite-volume grid resolution is varied relative to the spectral element grid resolution in CAM-SE-CSLAM. The simulations are carried out at multiple spectral element grid resolutions, in part to provide a companion set of simulations, in which the spectral element grid resolution is varied relative to the finite-volume grid resolution, but more generally to understand if the sensitivity to the finite-volume grid resolution is consistent across a wider spectrum of resolved scales. Results are interpreted in the context of prior ideas regarding resolution sensitivity of global atmospheric models.

  6. Is the Distance Worth It? Patients With Rectal Cancer Traveling to High-Volume Centers Experience Improved Outcomes.

    PubMed

    Xu, Zhaomin; Becerra, Adan Z; Justiniano, Carla F; Boodry, Courtney I; Aquina, Christopher T; Swanger, Alex A; Temple, Larissa K; Fleming, Fergal J

    2017-12-01

    It is unclear whether traveling long distances to high-volume centers would compensate for travel burden among patients undergoing rectal cancer resection. The purpose of this study was to determine whether operative volume outweighs the advantages of being treated locally by comparing the outcomes of patients with rectal cancer treated at local, low-volume centers versus far, high-volume centers. This was a population-based study. The National Cancer Database was queried for patients with rectal cancer. Patients with stage II or III rectal cancer who underwent surgical resection between 2006 and 2012 were included. The outcomes of interest were margins, lymph node yield, receipt of neoadjuvant chemoradiation, adjuvant chemotherapy, readmission within 30 days, 30-day and 90-day mortality, and 5-year overall survival. A total of 18,605 patients met inclusion criteria; 2067 patients were in the long-distance/high-volume group and 1362 in the short-distance/low-volume group. The median travel distance was 62.6 miles for the long-distance/high-volume group and 2.3 miles for the short-distance/low-volume group. Patients who were younger, white, privately insured, and stage III were more likely to have traveled to a high-volume center. When controlled for patient factors, stage, and hospital factors, patients in the short-distance/low-volume group had lower odds of a lymph node yield ≥12 (OR = 0.51) and neoadjuvant chemoradiation (OR = 0.67) and higher 30-day (OR = 3.38) and 90-day mortality (OR = 2.07) compared with those in the long-distance/high-volume group. The short-distance/low-volume group had a 34% high risk of overall mortality at 5 years compared with the long-distance/high-volume group. We lacked data regarding patient and physician decision making and surgeon-specific factors. Our results indicate that when controlled for patient, tumor, and hospital factors, patients who traveled a long distance to a high-volume center had improved lymph node yield, neoadjuvant chemoradiation receipt, and 30- and 90-day mortality compared with those who traveled a short distance to a low-volume center. They also had improved 5-year survival. See Video Abstract at http://links.lww.com/DCR/A446.

  7. An 8-node tetrahedral finite element suitable for explicit transient dynamic simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Key, S.W.; Heinstein, M.W.; Stone, C.M.

    1997-12-31

    Considerable effort has been expended in perfecting the algorithmic properties of 8-node hexahedral finite elements. Today the element is well understood and performs exceptionally well when used in modeling three-dimensional explicit transient dynamic events. However, the automatic generation of all-hexahedral meshes remains an elusive achievement. The alternative of automatic generation for all-tetrahedral finite element is a notoriously poor performer, and the 10-node quadratic tetrahedral finite element while a better performer numerically is computationally expensive. To use the all-tetrahedral mesh generation extant today, the authors have explored the creation of a quality 8-node tetrahedral finite element (a four-node tetrahedral finite elementmore » enriched with four midface nodal points). The derivation of the element`s gradient operator, studies in obtaining a suitable mass lumping and the element`s performance in applications are presented. In particular, they examine the 80node tetrahedral finite element`s behavior in longitudinal plane wave propagation, in transverse cylindrical wave propagation, and in simulating Taylor bar impacts. The element only samples constant strain states and, therefore, has 12 hourglass modes. In this regard, it bears similarities to the 8-node, mean-quadrature hexahedral finite element. Given automatic all-tetrahedral meshing, the 8-node, constant-strain tetrahedral finite element is a suitable replacement for the 8-node hexahedral finite element and handbuilt meshes.« less

  8. A new ghost-node method for linking different models and initial investigations of heterogeneity and nonmatching grids

    USGS Publications Warehouse

    Dickinson, J.E.; James, S.C.; Mehl, S.; Hill, M.C.; Leake, S.A.; Zyvoloski, G.A.; Faunt, C.C.; Eddebbarh, A.-A.

    2007-01-01

    A flexible, robust method for linking parent (regional-scale) and child (local-scale) grids of locally refined models that use different numerical methods is developed based on a new, iterative ghost-node method. Tests are presented for two-dimensional and three-dimensional pumped systems that are homogeneous or that have simple heterogeneity. The parent and child grids are simulated using the block-centered finite-difference MODFLOW and control-volume finite-element FEHM models, respectively. The models are solved iteratively through head-dependent (child model) and specified-flow (parent model) boundary conditions. Boundary conditions for models with nonmatching grids or zones of different hydraulic conductivity are derived and tested against heads and flows from analytical or globally-refined models. Results indicate that for homogeneous two- and three-dimensional models with matched grids (integer number of child cells per parent cell), the new method is nearly as accurate as the coupling of two MODFLOW models using the shared-node method and, surprisingly, errors are slightly lower for nonmatching grids (noninteger number of child cells per parent cell). For heterogeneous three-dimensional systems, this paper compares two methods for each of the two sets of boundary conditions: external heads at head-dependent boundary conditions for the child model are calculated using bilinear interpolation or a Darcy-weighted interpolation; specified-flow boundary conditions for the parent model are calculated using model-grid or hydrogeologic-unit hydraulic conductivities. Results suggest that significantly more accurate heads and flows are produced when both Darcy-weighted interpolation and hydrogeologic-unit hydraulic conductivities are used, while the other methods produce larger errors at the boundary between the regional and local models. The tests suggest that, if posed correctly, the ghost-node method performs well. Additional testing is needed for highly heterogeneous systems. ?? 2007 Elsevier Ltd. All rights reserved.

  9. Improved Design of Tunnel Supports : Volume 3 : Finite Element Analysis of the Peachtree Center Station in Atlanta

    DOT National Transportation Integrated Search

    1980-06-01

    Volume 3 contains the application of the three-dimensional (3-D) finite element program, Automatic Dynamic Incremental Nonlinear Analysis (ADINA), which was designed to replace the traditional 2-D plane strain analysis, to a specific location. The lo...

  10. Process metallurgy simulation for metal drawing process optimization by using two-scale finite element method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamachi, Eiji; Yoshida, Takashi; Yamaguchi, Toshihiko

    2014-10-06

    We developed two-scale FE analysis procedure based on the crystallographic homogenization method by considering the hierarchical structure of poly-crystal aluminium alloy metal. It can be characterized as the combination of two-scale structure, such as the microscopic polycrystal structure and the macroscopic elastic plastic continuum. Micro polycrystal structure can be modeled as a three dimensional representative volume element (RVE). RVE is featured as by 3×3×3 eight-nodes solid finite elements, which has 216 crystal orientations. This FE analysis code can predict the deformation, strain and stress evolutions in the wire drawing processes in the macro- scales, and further the crystal texture andmore » hardening evolutions in the micro-scale. In this study, we analyzed the texture evolution in the wire drawing processes by our two-scale FE analysis code under conditions of various drawing angles of dice. We evaluates the texture evolution in the surface and center regions of the wire cross section, and to clarify the effects of processing conditions on the texture evolution.« less

  11. Process metallurgy simulation for metal drawing process optimization by using two-scale finite element method

    NASA Astrophysics Data System (ADS)

    Nakamachi, Eiji; Yoshida, Takashi; Kuramae, Hiroyuki; Morimoto, Hideo; Yamaguchi, Toshihiko; Morita, Yusuke

    2014-10-01

    We developed two-scale FE analysis procedure based on the crystallographic homogenization method by considering the hierarchical structure of poly-crystal aluminium alloy metal. It can be characterized as the combination of two-scale structure, such as the microscopic polycrystal structure and the macroscopic elastic plastic continuum. Micro polycrystal structure can be modeled as a three dimensional representative volume element (RVE). RVE is featured as by 3×3×3 eight-nodes solid finite elements, which has 216 crystal orientations. This FE analysis code can predict the deformation, strain and stress evolutions in the wire drawing processes in the macro- scales, and further the crystal texture and hardening evolutions in the micro-scale. In this study, we analyzed the texture evolution in the wire drawing processes by our two-scale FE analysis code under conditions of various drawing angles of dice. We evaluates the texture evolution in the surface and center regions of the wire cross section, and to clarify the effects of processing conditions on the texture evolution.

  12. A New Finite Element Supersonic Kernel Function Method in Lifting Surface Theory. Volume 2. User’s Manual

    DTIC Science & Technology

    1976-04-01

    node. A schematic flow chart of the program is shown i& Fig. 1. Description of Variables BETA COEF IANGLE 1BUF ICHECK IMAX INFO JMAX KMAX ß...MAXINT DEL IMAX JMAX XLAMDA NMODE NP NELEM ICHECK Mach number Reduced frequency Mesh spacing as measured by the length of the side of the...Number of nodes Number of elements Option parameter used to check the mesh correctness. For ICHECK = 1, a quick run is performed to print out the

  13. A Godunov-like point-centered essentially Lagrangian hydrodynamic approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, Nathaniel R.; Waltz, Jacob I.; Burton, Donald E.

    We present an essentially Lagrangian hydrodynamic scheme suitable for modeling complex compressible flows on tetrahedron meshes. The scheme reduces to a purely Lagrangian approach when the flow is linear or if the mesh size is equal to zero; as a result, we use the term essentially Lagrangian for the proposed approach. The motivation for developing a hydrodynamic method for tetrahedron meshes is because tetrahedron meshes have some advantages over other mesh topologies. Notable advantages include reduced complexity in generating conformal meshes, reduced complexity in mesh reconnection, and preserving tetrahedron cells with automatic mesh refinement. A challenge, however, is tetrahedron meshesmore » do not correctly deform with a lower order (i.e. piecewise constant) staggered-grid hydrodynamic scheme (SGH) or with a cell-centered hydrodynamic (CCH) scheme. The SGH and CCH approaches calculate the strain via the tetrahedron, which can cause artificial stiffness on large deformation problems. To resolve the stiffness problem, we adopt the point-centered hydrodynamic approach (PCH) and calculate the evolution of the flow via an integration path around the node. The PCH approach stores the conserved variables (mass, momentum, and total energy) at the node. The evolution equations for momentum and total energy are discretized using an edge-based finite element (FE) approach with linear basis functions. A multidirectional Riemann-like problem is introduced at the center of the tetrahedron to account for discontinuities in the flow such as a shock. Conservation is enforced at each tetrahedron center. The multidimensional Riemann-like problem used here is based on Lagrangian CCH work [8, 19, 37, 38, 44] and recent Lagrangian SGH work [33-35, 39, 45]. In addition, an approximate 1D Riemann problem is solved on each face of the nodal control volume to advect mass, momentum, and total energy. The 1D Riemann problem produces fluxes [18] that remove a volume error in the PCH discretization. A 2-stage Runge–Kutta method is used to evolve the solution in time. The details of the new hydrodynamic scheme are discussed; likewise, results from numerical test problems are presented.« less

  14. A Godunov-like point-centered essentially Lagrangian hydrodynamic approach

    DOE PAGES

    Morgan, Nathaniel R.; Waltz, Jacob I.; Burton, Donald E.; ...

    2014-10-28

    We present an essentially Lagrangian hydrodynamic scheme suitable for modeling complex compressible flows on tetrahedron meshes. The scheme reduces to a purely Lagrangian approach when the flow is linear or if the mesh size is equal to zero; as a result, we use the term essentially Lagrangian for the proposed approach. The motivation for developing a hydrodynamic method for tetrahedron meshes is because tetrahedron meshes have some advantages over other mesh topologies. Notable advantages include reduced complexity in generating conformal meshes, reduced complexity in mesh reconnection, and preserving tetrahedron cells with automatic mesh refinement. A challenge, however, is tetrahedron meshesmore » do not correctly deform with a lower order (i.e. piecewise constant) staggered-grid hydrodynamic scheme (SGH) or with a cell-centered hydrodynamic (CCH) scheme. The SGH and CCH approaches calculate the strain via the tetrahedron, which can cause artificial stiffness on large deformation problems. To resolve the stiffness problem, we adopt the point-centered hydrodynamic approach (PCH) and calculate the evolution of the flow via an integration path around the node. The PCH approach stores the conserved variables (mass, momentum, and total energy) at the node. The evolution equations for momentum and total energy are discretized using an edge-based finite element (FE) approach with linear basis functions. A multidirectional Riemann-like problem is introduced at the center of the tetrahedron to account for discontinuities in the flow such as a shock. Conservation is enforced at each tetrahedron center. The multidimensional Riemann-like problem used here is based on Lagrangian CCH work [8, 19, 37, 38, 44] and recent Lagrangian SGH work [33-35, 39, 45]. In addition, an approximate 1D Riemann problem is solved on each face of the nodal control volume to advect mass, momentum, and total energy. The 1D Riemann problem produces fluxes [18] that remove a volume error in the PCH discretization. A 2-stage Runge–Kutta method is used to evolve the solution in time. The details of the new hydrodynamic scheme are discussed; likewise, results from numerical test problems are presented.« less

  15. Frequency-domain optical tomographic image reconstruction algorithm with the simplified spherical harmonics (SP3) light propagation model.

    PubMed

    Kim, Hyun Keol; Montejo, Ludguier D; Jia, Jingfei; Hielscher, Andreas H

    2017-06-01

    We introduce here the finite volume formulation of the frequency-domain simplified spherical harmonics model with n -th order absorption coefficients (FD-SP N ) that approximates the frequency-domain equation of radiative transfer (FD-ERT). We then present the FD-SP N based reconstruction algorithm that recovers absorption and scattering coefficients in biological tissue. The FD-SP N model with 3 rd order absorption coefficient (i.e., FD-SP 3 ) is used as a forward model to solve the inverse problem. The FD-SP 3 is discretized with a node-centered finite volume scheme and solved with a restarted generalized minimum residual (GMRES) algorithm. The absorption and scattering coefficients are retrieved using a limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm. Finally, the forward and inverse algorithms are evaluated using numerical phantoms with optical properties and size that mimic small-volume tissue such as finger joints and small animals. The forward results show that the FD-SP 3 model approximates the FD-ERT (S 12 ) solution within relatively high accuracy; the average error in the phase (<3.7%) and the amplitude (<7.1%) of the partial current at the boundary are reported. From the inverse results we find that the absorption and scattering coefficient maps are more accurately reconstructed with the SP 3 model than those with the SP 1 model. Therefore, this work shows that the FD-SP 3 is an efficient model for optical tomographic imaging of small-volume media with non-diffuse properties both in terms of computational time and accuracy as it requires significantly lower CPU time than the FD-ERT (S 12 ) and also it is more accurate than the FD-SP 1 .

  16. Hurricane Forecasting with the High-resolution NASA Finite-volume General Circulation Model

    NASA Technical Reports Server (NTRS)

    Atlas, R.; Reale, O.; Shen, B.-W.; Lin, S.-J.; Chern, J.-D.; Putman, W.; Lee, T.; Yeh, K.-S.; Bosilovich, M.; Radakovich, J.

    2004-01-01

    A high-resolution finite-volume General Circulation Model (fvGCM), resulting from a development effort of more than ten years, is now being run operationally at the NASA Goddard Space Flight Center and Ames Research Center. The model is based on a finite-volume dynamical core with terrain-following Lagrangian control-volume discretization and performs efficiently on massive parallel architectures. The computational efficiency allows simulations at a resolution of a quarter of a degree, which is double the resolution currently adopted by most global models in operational weather centers. Such fine global resolution brings us closer to overcoming a fundamental barrier in global atmospheric modeling for both weather and climate, because tropical cyclones and even tropical convective clusters can be more realistically represented. In this work, preliminary results of the fvGCM are shown. Fifteen simulations of four Atlantic tropical cyclones in 2002 and 2004 are chosen because of strong and varied difficulties presented to numerical weather forecasting. It is shown that the fvGCM, run at the resolution of a quarter of a degree, can produce very good forecasts of these tropical systems, adequately resolving problems like erratic track, abrupt recurvature, intense extratropical transition, multiple landfall and reintensification, and interaction among vortices.

  17. Conformation and Dynamics of a Flexible Sheet in Solvent Media by Monte Carlo Simulations

    NASA Astrophysics Data System (ADS)

    Pandey, Ras; Anderson, Kelly; Heinz, Hendrik; Farmer, Barry

    2005-03-01

    Flexibility of the clay sheet is limited even in the ex-foliated state in some solvent media. A coarse grained model is used to investigate dynamics and conformation of a flexible sheet to model such a clay platelet in an effective solvent medium on a cubic lattice of size L^3 with lattice constant a. The undeformed sheet is described by a square lattice of size Ls^2, where, each node of the sheet is represented by the unit cube of the cubic lattice and 2a is the minimum distance between the nearest neighbor nodes to incorporate the excluded volume constraints. Additionally, each node interacts with neighboring nodes and solvent (empty) sites within a range ri. Each node execute their stochastic motion with the Metropolis algorithm subject to bond length fluctuation and excluded volume constraints. Mean square displacements of the center node and that of its center of mass are investigated as a function of time step for a set of these parameters. The radius of gyration (Rg) is also examined concurrently to understand its relaxation. Multi-scale segmental dynamics of the sheet is studied by identifying the power-law dependence in various time regimes. Relaxation of Rg and its dependence of temperature are planned to be discussed.

  18. Implementation of Finite Volume based Navier Stokes Algorithm Within General Purpose Flow Network Code

    NASA Technical Reports Server (NTRS)

    Schallhorn, Paul; Majumdar, Alok

    2012-01-01

    This paper describes a finite volume based numerical algorithm that allows multi-dimensional computation of fluid flow within a system level network flow analysis. There are several thermo-fluid engineering problems where higher fidelity solutions are needed that are not within the capacity of system level codes. The proposed algorithm will allow NASA's Generalized Fluid System Simulation Program (GFSSP) to perform multi-dimensional flow calculation within the framework of GFSSP s typical system level flow network consisting of fluid nodes and branches. The paper presents several classical two-dimensional fluid dynamics problems that have been solved by GFSSP's multi-dimensional flow solver. The numerical solutions are compared with the analytical and benchmark solution of Poiseulle, Couette and flow in a driven cavity.

  19. An Embedded Statistical Method for Coupling Molecular Dynamics and Finite Element Analyses

    NASA Technical Reports Server (NTRS)

    Saether, E.; Glaessgen, E.H.; Yamakov, V.

    2008-01-01

    The coupling of molecular dynamics (MD) simulations with finite element methods (FEM) yields computationally efficient models that link fundamental material processes at the atomistic level with continuum field responses at higher length scales. The theoretical challenge involves developing a seamless connection along an interface between two inherently different simulation frameworks. Various specialized methods have been developed to solve particular classes of problems. Many of these methods link the kinematics of individual MD atoms with FEM nodes at their common interface, necessarily requiring that the finite element mesh be refined to atomic resolution. Some of these coupling approaches also require simulations to be carried out at 0 K and restrict modeling to two-dimensional material domains due to difficulties in simulating full three-dimensional material processes. In the present work, a new approach to MD-FEM coupling is developed based on a restatement of the standard boundary value problem used to define a coupled domain. The method replaces a direct linkage of individual MD atoms and finite element (FE) nodes with a statistical averaging of atomistic displacements in local atomic volumes associated with each FE node in an interface region. The FEM and MD computational systems are effectively independent and communicate only through an iterative update of their boundary conditions. With the use of statistical averages of the atomistic quantities to couple the two computational schemes, the developed approach is referred to as an embedded statistical coupling method (ESCM). ESCM provides an enhanced coupling methodology that is inherently applicable to three-dimensional domains, avoids discretization of the continuum model to atomic scale resolution, and permits finite temperature states to be applied.

  20. A New Concurrent Multiscale Methodology for Coupling Molecular Dynamics and Finite Element Analyses

    NASA Technical Reports Server (NTRS)

    Yamakov, Vesselin; Saether, Erik; Glaessgen, Edward H/.

    2008-01-01

    The coupling of molecular dynamics (MD) simulations with finite element methods (FEM) yields computationally efficient models that link fundamental material processes at the atomistic level with continuum field responses at higher length scales. The theoretical challenge involves developing a seamless connection along an interface between two inherently different simulation frameworks. Various specialized methods have been developed to solve particular classes of problems. Many of these methods link the kinematics of individual MD atoms with FEM nodes at their common interface, necessarily requiring that the finite element mesh be refined to atomic resolution. Some of these coupling approaches also require simulations to be carried out at 0 K and restrict modeling to two-dimensional material domains due to difficulties in simulating full three-dimensional material processes. In the present work, a new approach to MD-FEM coupling is developed based on a restatement of the standard boundary value problem used to define a coupled domain. The method replaces a direct linkage of individual MD atoms and finite element (FE) nodes with a statistical averaging of atomistic displacements in local atomic volumes associated with each FE node in an interface region. The FEM and MD computational systems are effectively independent and communicate only through an iterative update of their boundary conditions. With the use of statistical averages of the atomistic quantities to couple the two computational schemes, the developed approach is referred to as an embedded statistical coupling method (ESCM). ESCM provides an enhanced coupling methodology that is inherently applicable to three-dimensional domains, avoids discretization of the continuum model to atomic scale resolution, and permits finite temperature states to be applied.

  1. SIERRA/Aero Theory Manual Version 4.46.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sierra Thermal/Fluid Team

    2017-09-01

    SIERRA/Aero is a two and three dimensional, node-centered, edge-based finite volume code that approximates the compressible Navier-Stokes equations on unstructured meshes. It is applicable to inviscid and high Reynolds number laminar and turbulent flows. Currently, two classes of turbulence models are provided: Reynolds Averaged Navier-Stokes (RANS) and hybrid methods such as Detached Eddy Simulation (DES). Large Eddy Simulation (LES) models are currently under development. The gas may be modeled either as ideal, or as a non-equilibrium, chemically reacting mixture of ideal gases. This document describes the mathematical models contained in the code, as well as certain implementation details. First, themore » governing equations are presented, followed by a description of the spatial discretization. Next, the time discretization is described, and finally the boundary conditions. Throughout the document, SIERRA/ Aero is referred to simply as Aero for brevity.« less

  2. SIERRA/Aero Theory Manual Version 4.44

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sierra Thermal /Fluid Team

    2017-04-01

    SIERRA/Aero is a two and three dimensional, node-centered, edge-based finite volume code that approximates the compressible Navier-Stokes equations on unstructured meshes. It is applicable to inviscid and high Reynolds number laminar and turbulent flows. Currently, two classes of turbulence models are provided: Reynolds Averaged Navier-Stokes (RANS) and hybrid methods such as Detached Eddy Simulation (DES). Large Eddy Simulation (LES) models are currently under development. The gas may be modeled either as ideal, or as a non-equilibrium, chemically reacting mixture of ideal gases. This document describes the mathematical models contained in the code, as well as certain implementation details. First, themore » governing equations are presented, followed by a description of the spatial discretization. Next, the time discretization is described, and finally the boundary conditions. Throughout the document, SIERRA/ Aero is referred to simply as Aero for brevity.« less

  3. Application of CHAD hydrodynamics to shock-wave problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trease, H.E.; O`Rourke, P.J.; Sahota, M.S.

    1997-12-31

    CHAD is the latest in a sequence of continually evolving computer codes written to effectively utilize massively parallel computer architectures and the latest grid generators for unstructured meshes. Its applications range from automotive design issues such as in-cylinder and manifold flows of internal combustion engines, vehicle aerodynamics, underhood cooling and passenger compartment heating, ventilation, and air conditioning to shock hydrodynamics and materials modeling. CHAD solves the full unsteady Navier-Stoke equations with the k-epsilon turbulence model in three space dimensions. The code has four major features that distinguish it from the earlier KIVA code, also developed at Los Alamos. First, itmore » is based on a node-centered, finite-volume method in which, like finite element methods, all fluid variables are located at computational nodes. The computational mesh efficiently and accurately handles all element shapes ranging from tetrahedra to hexahedra. Second, it is written in standard Fortran 90 and relies on automatic domain decomposition and a universal communication library written in standard C and MPI for unstructured grids to effectively exploit distributed-memory parallel architectures. Thus the code is fully portable to a variety of computing platforms such as uniprocessor workstations, symmetric multiprocessors, clusters of workstations, and massively parallel platforms. Third, CHAD utilizes a variable explicit/implicit upwind method for convection that improves computational efficiency in flows that have large velocity Courant number variations due to velocity of mesh size variations. Fourth, CHAD is designed to also simulate shock hydrodynamics involving multimaterial anisotropic behavior under high shear. The authors will discuss CHAD capabilities and show several sample calculations showing the strengths and weaknesses of CHAD.« less

  4. Structure of the Nucleon and its Excitations

    NASA Astrophysics Data System (ADS)

    Kamleh, Waseem; Leinweber, Derek; Liu, Zhan-wei; Stokes, Finn; Thomas, Anthony; Thomas, Samuel; Wu, Jia-jun

    2018-03-01

    The structure of the ground state nucleon and its finite-volume excitations are examined from three different perspectives. Using new techniques to extract the relativistic components of the nucleon wave function, the node structure of both the upper and lower components of the nucleon wave function are illustrated. A non-trivial role for gluonic components is manifest. In the second approach, the parity-expanded variational analysis (PEVA) technique is utilised to isolate states at finite momenta, enabling a novel examination of the electric and magnetic form factors of nucleon excitations. Here the magnetic form factors of low-lying odd-parity nucleons are particularly interesting. Finally, the structure of the nucleon spectrum is examined in a Hamiltonian effective field theory analysis incorporating recent lattice-QCD determinations of low-lying two-particle scattering-state energies in the finite volume. The Roper resonance of Nature is observed to originate from multi-particle coupled-channel interactions while the first radial excitation of the nucleon sits much higher at approximately 1.9 GeV.

  5. An interpolation-free ALE scheme for unsteady inviscid flows computations with large boundary displacements over three-dimensional adaptive grids

    NASA Astrophysics Data System (ADS)

    Re, B.; Dobrzynski, C.; Guardone, A.

    2017-07-01

    A novel strategy to solve the finite volume discretization of the unsteady Euler equations within the Arbitrary Lagrangian-Eulerian framework over tetrahedral adaptive grids is proposed. The volume changes due to local mesh adaptation are treated as continuous deformations of the finite volumes and they are taken into account by adding fictitious numerical fluxes to the governing equation. This peculiar interpretation enables to avoid any explicit interpolation of the solution between different grids and to compute grid velocities so that the Geometric Conservation Law is automatically fulfilled also for connectivity changes. The solution on the new grid is obtained through standard ALE techniques, thus preserving the underlying scheme properties, such as conservativeness, stability and monotonicity. The adaptation procedure includes node insertion, node deletion, edge swapping and points relocation and it is exploited both to enhance grid quality after the boundary movement and to modify the grid spacing to increase solution accuracy. The presented approach is assessed by three-dimensional simulations of steady and unsteady flow fields. The capability of dealing with large boundary displacements is demonstrated by computing the flow around the translating infinite- and finite-span NACA 0012 wing moving through the domain at the flight speed. The proposed adaptive scheme is applied also to the simulation of a pitching infinite-span wing, where the bi-dimensional character of the flow is well reproduced despite the three-dimensional unstructured grid. Finally, the scheme is exploited in a piston-induced shock-tube problem to take into account simultaneously the large deformation of the domain and the shock wave. In all tests, mesh adaptation plays a crucial role.

  6. Multi-scale dynamics and relaxation of a tethered membrane in a solvent by Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Pandey, Ras; Anderson, Kelly; Farmer, Barry

    2006-03-01

    A tethered membrane modeled by a flexible sheet dissipates entropy as it wrinkles and crumples. Nodes of a coarse grained membrane are connected via multiple pathways for dynamical modes to propagate. We consider a sheet with nodes connected by fluctuating bonds on a cubic lattice. The empty lattice sites constitute an effective solvent medium via node-solvent interaction. Each node execute its stochastic motion with the Metropolis algorithm subject to bond fluctuations, excluded volume constraints, and interaction energy. Dynamics and conformation of the sheet are examined at a low and a high temperature with attractive and repulsive node-node interactions for the contrast in an attractive solvent medium. Variations of the mean square displacement of the center node of the sheet and that of its center of mass with the time steps are examined in detail which show different power-law motion from short to long time regimes. Relaxation of the gyration radius and scaling of its asymptotic value with the molecular weight are examined.

  7. A nominally second-order cell-centered Lagrangian scheme for simulating elastic-plastic flows on two-dimensional unstructured grids

    NASA Astrophysics Data System (ADS)

    Maire, Pierre-Henri; Abgrall, Rémi; Breil, Jérôme; Loubère, Raphaël; Rebourcet, Bernard

    2013-02-01

    In this paper, we describe a cell-centered Lagrangian scheme devoted to the numerical simulation of solid dynamics on two-dimensional unstructured grids in planar geometry. This numerical method, utilizes the classical elastic-perfectly plastic material model initially proposed by Wilkins [M.L. Wilkins, Calculation of elastic-plastic flow, Meth. Comput. Phys. (1964)]. In this model, the Cauchy stress tensor is decomposed into the sum of its deviatoric part and the thermodynamic pressure which is defined by means of an equation of state. Regarding the deviatoric stress, its time evolution is governed by a classical constitutive law for isotropic material. The plasticity model employs the von Mises yield criterion and is implemented by means of the radial return algorithm. The numerical scheme relies on a finite volume cell-centered method wherein numerical fluxes are expressed in terms of sub-cell force. The generic form of the sub-cell force is obtained by requiring the scheme to satisfy a semi-discrete dissipation inequality. Sub-cell force and nodal velocity to move the grid are computed consistently with cell volume variation by means of a node-centered solver, which results from total energy conservation. The nominally second-order extension is achieved by developing a two-dimensional extension in the Lagrangian framework of the Generalized Riemann Problem methodology, introduced by Ben-Artzi and Falcovitz [M. Ben-Artzi, J. Falcovitz, Generalized Riemann Problems in Computational Fluid Dynamics, Cambridge Monogr. Appl. Comput. Math. (2003)]. Finally, the robustness and the accuracy of the numerical scheme are assessed through the computation of several test cases.

  8. Numerical solution of the Saint-Venant equations by an efficient hybrid finite-volume/finite-difference method

    NASA Astrophysics Data System (ADS)

    Lai, Wencong; Khan, Abdul A.

    2018-04-01

    A computationally efficient hybrid finite-volume/finite-difference method is proposed for the numerical solution of Saint-Venant equations in one-dimensional open channel flows. The method adopts a mass-conservative finite volume discretization for the continuity equation and a semi-implicit finite difference discretization for the dynamic-wave momentum equation. The spatial discretization of the convective flux term in the momentum equation employs an upwind scheme and the water-surface gradient term is discretized using three different schemes. The performance of the numerical method is investigated in terms of efficiency and accuracy using various examples, including steady flow over a bump, dam-break flow over wet and dry downstream channels, wetting and drying in a parabolic bowl, and dam-break floods in laboratory physical models. Numerical solutions from the hybrid method are compared with solutions from a finite volume method along with analytic solutions or experimental measurements. Comparisons demonstrates that the hybrid method is efficient, accurate, and robust in modeling various flow scenarios, including subcritical, supercritical, and transcritical flows. In this method, the QUICK scheme for the surface slope discretization is more accurate and less diffusive than the center difference and the weighted average schemes.

  9. Nonlocal birth-death competitive dynamics with volume exclusion

    NASA Astrophysics Data System (ADS)

    Khalil, Nagi; López, Cristóbal; Hernández-García, Emilio

    2017-06-01

    A stochastic birth-death competition model for particles with excluded volume is proposed. The particles move, reproduce, and die on a regular lattice. While the death rate is constant, the birth rate is spatially nonlocal and implements inter-particle competition by a dependence on the number of particles within a finite distance. The finite volume of particles is accounted for by fixing an upper value to the number of particles that can occupy a lattice node, compromising births and movements. We derive closed macroscopic equations for the density of particles and spatial correlation at two adjacent sites. Under different conditions, the description is further reduced to a single equation for the particle density that contains three terms: diffusion, a linear death, and a highly nonlinear and nonlocal birth term. Steady-state homogeneous solutions, their stability which reveals spatial pattern formation, and the dynamics of time-dependent homogeneous solutions are discussed and compared, in the one-dimensional case, with numerical simulations of the particle system.

  10. Numerical Modeling of Self-Pressurization and Pressure Control by Thermodynamic Vent System in a Cryogenic Tank

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; Valenzuela, Juan; LeClair, Andre; Moder, Jeff

    2015-01-01

    This paper presents a numerical model of a system-level test bed - the multipurpose hydrogen test bed (MHTB) using Generalized Fluid System Simulation Program (GFSSP). MHTB is representative in size and shape of a fully integrated space transportation vehicle liquid hydrogen (LH2) propellant tank and was tested at Marshall Space Flight Center (MSFC) to generate data for cryogenic storage. GFSSP is a finite volume based network flow analysis software developed at MSFC and used for thermo-fluid analysis of propulsion systems. GFSSP has been used to model the self-pressurization and ullage pressure control by Thermodynamic Vent System (TVS). A TVS typically includes a Joule-Thompson (J-T) expansion device, a two-phase heat exchanger, and a mixing pump and spray to extract thermal energy from the tank without significant loss of liquid propellant. Two GFSSP models (Self-Pressurization & TVS) were separately developed and tested and then integrated to simulate the entire system. Self-Pressurization model consists of multiple ullage nodes, propellant node and solid nodes; it computes the heat transfer through Multi-Layer Insulation blankets and calculates heat and mass transfer between ullage and liquid propellant and ullage and tank wall. TVS model calculates the flow through J-T valve, heat exchanger and spray and vent systems. Two models are integrated by exchanging data through User Subroutines of both models. The integrated models results have been compared with MHTB test data of 50% fill level. Satisfactory comparison was observed between test and numerical predictions.

  11. A multigrid method for steady Euler equations on unstructured adaptive grids

    NASA Technical Reports Server (NTRS)

    Riemslagh, Kris; Dick, Erik

    1993-01-01

    A flux-difference splitting type algorithm is formulated for the steady Euler equations on unstructured grids. The polynomial flux-difference splitting technique is used. A vertex-centered finite volume method is employed on a triangular mesh. The multigrid method is in defect-correction form. A relaxation procedure with a first order accurate inner iteration and a second-order correction performed only on the finest grid, is used. A multi-stage Jacobi relaxation method is employed as a smoother. Since the grid is unstructured a Jacobi type is chosen. The multi-staging is necessary to provide sufficient smoothing properties. The domain is discretized using a Delaunay triangular mesh generator. Three grids with more or less uniform distribution of nodes but with different resolution are generated by successive refinement of the coarsest grid. Nodes of coarser grids appear in the finer grids. The multigrid method is started on these grids. As soon as the residual drops below a threshold value, an adaptive refinement is started. The solution on the adaptively refined grid is accelerated by a multigrid procedure. The coarser multigrid grids are generated by successive coarsening through point removement. The adaption cycle is repeated a few times. Results are given for the transonic flow over a NACA-0012 airfoil.

  12. Sensitivity analysis on the effective stiffness properties of 3-D orthotropic honeycomb cores

    NASA Astrophysics Data System (ADS)

    Karakoç, Alp

    2018-01-01

    The present study investigates the influences of representative volume element RVE mesh and material parameters, here cell wall elastic moduli, on the effective stiffness properties of three dimensional orthotropic honeycomb cores through strain driven computational homogenization in the finite element framework. For this purpose, case studies were carried out, for which hexagonal cellular RVEs were generated, meshed with eight node linear brick finite elements of varying numbers. Periodic boundary conditions were then implemented on the RVE boundaries by using one-to-one nodal match for the corresponding corners, edges and surfaces for the imposed macroscopic strains. As a novelty, orthotropic material properties were assigned for each cell wall by means of the transformation matrices following the cell wall orientations. Thereafter, simulations were conducted and volume averaged macroscopic stresses were obtained. Eventually, effective stiffness properties were obtained, through which RVE sensitivity analysis was carried out. The investigations indicate that there is a strong relation between number of finite elements and most of the effective stiffness parameters. In addition to this, cell wall elastic moduli also play critical role on the effective properties of the investigated materials.

  13. Simulation of Detecting Damage in Composite Stiffened Panel Using Lamb Waves

    NASA Technical Reports Server (NTRS)

    Wang, John T.; Ross, Richard W.; Huang, Guo L.; Yuan, Fuh G.

    2013-01-01

    Lamb wave damage detection in a composite stiffened panel is simulated by performing explicit transient dynamic finite element analyses and using signal imaging techniques. This virtual test process does not need to use real structures, actuators/sensors, or laboratory equipment. Quasi-isotropic laminates are used for the stiffened panels. Two types of damage are studied. One type is a damage in the skin bay and the other type is a debond between the stiffener flange and the skin. Innovative approaches for identifying the damage location and imaging the damage were developed. The damage location is identified by finding the intersection of the damage locus and the path of the time reversal wave packet re-emitted from the sensor nodes. The damage locus is a circle that envelops the potential damage locations. Its center is at the actuator location and its radius is computed by multiplying the group velocity by the time of flight to damage. To create a damage image for estimating the size of damage, a group of nodes in the neighborhood of the damage location is identified for applying an image condition. The image condition, computed at a finite element node, is the zero-lag cross-correlation (ZLCC) of the time-reversed incident wave signal and the time reversal wave signal from the sensor nodes. This damage imaging process is computationally efficient since only the ZLCC values of a small amount of nodes in the neighborhood of the identified damage location are computed instead of those of the full model.

  14. A nominally second-order cell-centered Lagrangian scheme for simulating elastic–plastic flows on two-dimensional unstructured grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maire, Pierre-Henri, E-mail: maire@celia.u-bordeaux1.fr; Abgrall, Rémi, E-mail: remi.abgrall@math.u-bordeau1.fr; Breil, Jérôme, E-mail: breil@celia.u-bordeaux1.fr

    2013-02-15

    In this paper, we describe a cell-centered Lagrangian scheme devoted to the numerical simulation of solid dynamics on two-dimensional unstructured grids in planar geometry. This numerical method, utilizes the classical elastic-perfectly plastic material model initially proposed by Wilkins [M.L. Wilkins, Calculation of elastic–plastic flow, Meth. Comput. Phys. (1964)]. In this model, the Cauchy stress tensor is decomposed into the sum of its deviatoric part and the thermodynamic pressure which is defined by means of an equation of state. Regarding the deviatoric stress, its time evolution is governed by a classical constitutive law for isotropic material. The plasticity model employs themore » von Mises yield criterion and is implemented by means of the radial return algorithm. The numerical scheme relies on a finite volume cell-centered method wherein numerical fluxes are expressed in terms of sub-cell force. The generic form of the sub-cell force is obtained by requiring the scheme to satisfy a semi-discrete dissipation inequality. Sub-cell force and nodal velocity to move the grid are computed consistently with cell volume variation by means of a node-centered solver, which results from total energy conservation. The nominally second-order extension is achieved by developing a two-dimensional extension in the Lagrangian framework of the Generalized Riemann Problem methodology, introduced by Ben-Artzi and Falcovitz [M. Ben-Artzi, J. Falcovitz, Generalized Riemann Problems in Computational Fluid Dynamics, Cambridge Monogr. Appl. Comput. Math. (2003)]. Finally, the robustness and the accuracy of the numerical scheme are assessed through the computation of several test cases.« less

  15. A Mixed Finite Volume Element Method for Flow Calculations in Porous Media

    NASA Technical Reports Server (NTRS)

    Jones, Jim E.

    1996-01-01

    A key ingredient in the simulation of flow in porous media is the accurate determination of the velocities that drive the flow. The large scale irregularities of the geology, such as faults, fractures, and layers suggest the use of irregular grids in the simulation. Work has been done in applying the finite volume element (FVE) methodology as developed by McCormick in conjunction with mixed methods which were developed by Raviart and Thomas. The resulting mixed finite volume element discretization scheme has the potential to generate more accurate solutions than standard approaches. The focus of this paper is on a multilevel algorithm for solving the discrete mixed FVE equations. The algorithm uses a standard cell centered finite difference scheme as the 'coarse' level and the more accurate mixed FVE scheme as the 'fine' level. The algorithm appears to have potential as a fast solver for large size simulations of flow in porous media.

  16. Accuracy of Gradient Reconstruction on Grids with High Aspect Ratio

    NASA Technical Reports Server (NTRS)

    Thomas, James

    2008-01-01

    Gradient approximation methods commonly used in unstructured-grid finite-volume schemes intended for solutions of high Reynolds number flow equations are studied comprehensively. The accuracy of gradients within cells and within faces is evaluated systematically for both node-centered and cell-centered formulations. Computational and analytical evaluations are made on a series of high-aspect-ratio grids with different primal elements, including quadrilateral, triangular, and mixed element grids, with and without random perturbations to the mesh. Both rectangular and cylindrical geometries are considered; the latter serves to study the effects of geometric curvature. The study shows that the accuracy of gradient reconstruction on high-aspect-ratio grids is determined by a combination of the grid and the solution. The contributors to the error are identified and approaches to reduce errors are given, including the addition of higher-order terms in the direction of larger mesh spacing. A parameter GAMMA characterizing accuracy on curved high-aspect-ratio grids is discussed and an approximate-mapped-least-square method using a commonly-available distance function is presented; the method provides accurate gradient reconstruction on general grids. The study is intended to be a reference guide accompanying the construction of accurate and efficient methods for high Reynolds number applications

  17. Modeling Two-Phase Flow and Vapor Cycles Using the Generalized Fluid System Simulation Program

    NASA Technical Reports Server (NTRS)

    Smith, Amanda D.; Majumdar, Alok K.

    2017-01-01

    This work presents three new applications for the general purpose fluid network solver code GFSSP developed at NASA's Marshall Space Flight Center: (1) cooling tower, (2) vapor-compression refrigeration system, and (3) vapor-expansion power generation system. These systems are widely used across engineering disciplines in a variety of energy systems, and these models expand the capabilities and the use of GFSSP to include fluids and features that are not part of its present set of provided examples. GFSSP provides pressure, temperature, and species concentrations at designated locations, or nodes, within a fluid network based on a finite volume formulation of thermodynamics and conservation laws. This paper describes the theoretical basis for the construction of the models, their implementation in the current GFSSP modeling system, and a brief evaluation of the usefulness of the model results, as well as their applicability toward a broader spectrum of analytical problems in both university teaching and engineering research.

  18. User's Guide for ENSAERO_FE Parallel Finite Element Solver

    NASA Technical Reports Server (NTRS)

    Eldred, Lloyd B.; Guruswamy, Guru P.

    1999-01-01

    A high fidelity parallel static structural analysis capability is created and interfaced to the multidisciplinary analysis package ENSAERO-MPI of Ames Research Center. This new module replaces ENSAERO's lower fidelity simple finite element and modal modules. Full aircraft structures may be more accurately modeled using the new finite element capability. Parallel computation is performed by breaking the full structure into multiple substructures. This approach is conceptually similar to ENSAERO's multizonal fluid analysis capability. The new substructure code is used to solve the structural finite element equations for each substructure in parallel. NASTRANKOSMIC is utilized as a front end for this code. Its full library of elements can be used to create an accurate and realistic aircraft model. It is used to create the stiffness matrices for each substructure. The new parallel code then uses an iterative preconditioned conjugate gradient method to solve the global structural equations for the substructure boundary nodes.

  19. Minimized Bolus-Type Wireless Sensor Node with a Built-In Three-Axis Acceleration Meter for Monitoring a Cow’s Rumen Conditions

    PubMed Central

    Nogami, Hirofumi; Arai, Shozo; Okada, Hironao; Zhan, Lan; Itoh, Toshihiro

    2017-01-01

    Monitoring rumen conditions in cows is important because a dysfunctional rumen system may cause death. Sub-acute ruminal acidosis (SARA) is a typical disease in cows, and is characterized by repeated periods of low ruminal pH. SARA is regarded as a trigger for rumen atony, rumenitis, and abomasal displacement, which may cause death. In previous studies, rumen conditions were evaluated by wireless sensor nodes with pH measurement capability. The primary advantage of the pH sensor is its ability to continuously measure ruminal pH. However, these sensor nodes have short lifetimes since they are limited by the finite volume of the internal liquid of the reference electrode. Mimicking rumen atony, we attempt to evaluate the rumen condition using wireless sensor nodes with three-axis accelerometers. The theoretical life span of such sensor nodes depends mainly on the transmission frequency of acceleration data and the size of the battery, and the proposed sensor nodes are 30.0 mm in diameter and 70.0 mm in length and have a life span of over 600 days. Using the sensor nodes, we compare the rumen motility of the force transducer measurement with the three-axis accelerometer data. As a result, we can detect discriminative movement of rumen atony. PMID:28346374

  20. Minimized Bolus-Type Wireless Sensor Node with a Built-In Three-Axis Acceleration Meter for Monitoring a Cow's Rumen Conditions.

    PubMed

    Nogami, Hirofumi; Arai, Shozo; Okada, Hironao; Zhan, Lan; Itoh, Toshihiro

    2017-03-27

    Monitoring rumen conditions in cows is important because a dysfunctional rumen system may cause death. Sub-acute ruminal acidosis (SARA) is a typical disease in cows, and is characterized by repeated periods of low ruminal pH. SARA is regarded as a trigger for rumen atony, rumenitis, and abomasal displacement, which may cause death. In previous studies, rumen conditions were evaluated by wireless sensor nodes with pH measurement capability. The primary advantage of the pH sensor is its ability to continuously measure ruminal pH. However, these sensor nodes have short lifetimes since they are limited by the finite volume of the internal liquid of the reference electrode. Mimicking rumen atony, we attempt to evaluate the rumen condition using wireless sensor nodes with three-axis accelerometers. The theoretical life span of such sensor nodes depends mainly on the transmission frequency of acceleration data and the size of the battery, and the proposed sensor nodes are 30.0 mm in diameter and 70.0 mm in length and have a life span of over 600 days. Using the sensor nodes, we compare the rumen motility of the force transducer measurement with the three-axis accelerometer data. As a result, we can detect discriminative movement of rumen atony.

  1. Calibration of International Space Station (ISS) Node 1 Vibro-Acoustic Model

    NASA Technical Reports Server (NTRS)

    Zhang, Weiguo; Raveendra, Ravi

    2014-01-01

    Reported here is the ability of utilizing the Energy Finite Element Method (E-FEM) to predict the vibro-acoustic sound fields within the International Space Station (ISS) Node 1 and to compare the results with actual measurements of leak sounds made by a one atmosphere to vacuum leak through a small hole in the pressure wall of the Node 1 STA module during its period of storage at Stennis Space Center (SSC). While the E-FEM method represents a reverberant sound field calculation, of importance to this application is the requirement to also handle the direct field effect of the sound generation. It was also important to be able to compute the sound fields in the ultrasonic frequency range. This report demonstrates the capability of this technology as applied to this type of application.

  2. An Autonomous Connectivity Restoration Algorithm Based on Finite State Machine for Wireless Sensor-Actor Networks.

    PubMed

    Zhang, Ying; Wang, Jun; Hao, Guan

    2018-01-08

    With the development of autonomous unmanned intelligent systems, such as the unmanned boats, unmanned planes and autonomous underwater vehicles, studies on Wireless Sensor-Actor Networks (WSANs) have attracted more attention. Network connectivity algorithms play an important role in data exchange, collaborative detection and information fusion. Due to the harsh application environment, abnormal nodes often appear, and the network connectivity will be prone to be lost. Network self-healing mechanisms have become critical for these systems. In order to decrease the movement overhead of the sensor-actor nodes, an autonomous connectivity restoration algorithm based on finite state machine is proposed. The idea is to identify whether a node is a critical node by using a finite state machine, and update the connected dominating set in a timely way. If an abnormal node is a critical node, the nearest non-critical node will be relocated to replace the abnormal node. In the case of multiple node abnormality, a regional network restoration algorithm is introduced. It is designed to reduce the overhead of node movements while restoration happens. Simulation results indicate the proposed algorithm has better performance on the total moving distance and the number of total relocated nodes compared with some other representative restoration algorithms.

  3. An Autonomous Connectivity Restoration Algorithm Based on Finite State Machine for Wireless Sensor-Actor Networks

    PubMed Central

    Zhang, Ying; Wang, Jun; Hao, Guan

    2018-01-01

    With the development of autonomous unmanned intelligent systems, such as the unmanned boats, unmanned planes and autonomous underwater vehicles, studies on Wireless Sensor-Actor Networks (WSANs) have attracted more attention. Network connectivity algorithms play an important role in data exchange, collaborative detection and information fusion. Due to the harsh application environment, abnormal nodes often appear, and the network connectivity will be prone to be lost. Network self-healing mechanisms have become critical for these systems. In order to decrease the movement overhead of the sensor-actor nodes, an autonomous connectivity restoration algorithm based on finite state machine is proposed. The idea is to identify whether a node is a critical node by using a finite state machine, and update the connected dominating set in a timely way. If an abnormal node is a critical node, the nearest non-critical node will be relocated to replace the abnormal node. In the case of multiple node abnormality, a regional network restoration algorithm is introduced. It is designed to reduce the overhead of node movements while restoration happens. Simulation results indicate the proposed algorithm has better performance on the total moving distance and the number of total relocated nodes compared with some other representative restoration algorithms. PMID:29316702

  4. Development and evaluation of a local grid refinement method for block-centered finite-difference groundwater models using shared nodes

    USGS Publications Warehouse

    Mehl, S.; Hill, M.C.

    2002-01-01

    A new method of local grid refinement for two-dimensional block-centered finite-difference meshes is presented in the context of steady-state groundwater-flow modeling. The method uses an iteration-based feedback with shared nodes to couple two separate grids. The new method is evaluated by comparison with results using a uniform fine mesh, a variably spaced mesh, and a traditional method of local grid refinement without a feedback. Results indicate: (1) The new method exhibits quadratic convergence for homogeneous systems and convergence equivalent to uniform-grid refinement for heterogeneous systems. (2) Coupling the coarse grid with the refined grid in a numerically rigorous way allowed for improvement in the coarse-grid results. (3) For heterogeneous systems, commonly used linear interpolation of heads from the large model onto the boundary of the refined model produced heads that are inconsistent with the physics of the flow field. (4) The traditional method works well in situations where the better resolution of the locally refined grid has little influence on the overall flow-system dynamics, but if this is not true, lack of a feedback mechanism produced errors in head up to 3.6% and errors in cell-to-cell flows up to 25%. ?? 2002 Elsevier Science Ltd. All rights reserved.

  5. A numerical model for predicting crack path and modes of damage in unidirectional metal matrix composites

    NASA Technical Reports Server (NTRS)

    Bakuckas, J. G.; Tan, T. M.; Lau, A. C. W.; Awerbuch, J.

    1993-01-01

    A finite element-based numerical technique has been developed to simulate damage growth in unidirectional composites. This technique incorporates elastic-plastic analysis, micromechanics analysis, failure criteria, and a node splitting and node force relaxation algorithm to create crack surfaces. Any combination of fiber and matrix properties can be used. One of the salient features of this technique is that damage growth can be simulated without pre-specifying a crack path. In addition, multiple damage mechanisms in the forms of matrix cracking, fiber breakage, fiber-matrix debonding and plastic deformation are capable of occurring simultaneously. The prevailing failure mechanism and the damage (crack) growth direction are dictated by the instantaneous near-tip stress and strain fields. Once the failure mechanism and crack direction are determined, the crack is advanced via the node splitting and node force relaxation algorithm. Simulations of the damage growth process in center-slit boron/aluminum and silicon carbide/titanium unidirectional specimens were performed. The simulation results agreed quite well with the experimental observations.

  6. Comparisons of node-based and element-based approaches of assigning bone material properties onto subject-specific finite element models.

    PubMed

    Chen, G; Wu, F Y; Liu, Z C; Yang, K; Cui, F

    2015-08-01

    Subject-specific finite element (FE) models can be generated from computed tomography (CT) datasets of a bone. A key step is assigning material properties automatically onto finite element models, which remains a great challenge. This paper proposes a node-based assignment approach and also compares it with the element-based approach in the literature. Both approaches were implemented using ABAQUS. The assignment procedure is divided into two steps: generating the data file of the image intensity of a bone in a MATLAB program and reading the data file into ABAQUS via user subroutines. The node-based approach assigns the material properties to each node of the finite element mesh, while the element-based approach assigns the material properties directly to each integration point of an element. Both approaches are independent from the type of elements. A number of FE meshes are tested and both give accurate solutions; comparatively the node-based approach involves less programming effort. The node-based approach is also independent from the type of analyses; it has been tested on the nonlinear analysis of a Sawbone femur. The node-based approach substantially improves the level of automation of the assignment procedure of bone material properties. It is the simplest and most powerful approach that is applicable to many types of analyses and elements. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  7. Cyberinfrastructure for the Unified Study of Earth Structure and Earthquake Sources in Complex Geologic Environments

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Chen, P.; Jordan, T. H.; Olsen, K. B.; Maechling, P.; Faerman, M.

    2004-12-01

    The Southern California Earthquake Center (SCEC) is developing a Community Modeling Environment (CME) to facilitate the computational pathways of physics-based seismic hazard analysis (Maechling et al., this meeting). Major goals are to facilitate the forward modeling of seismic wavefields in complex geologic environments, including the strong ground motions that cause earthquake damage, and the inversion of observed waveform data for improved models of Earth structure and fault rupture. Here we report on a unified approach to these coupled inverse problems that is based on the ability to generate and manipulate wavefields in densely gridded 3D Earth models. A main element of this approach is a database of receiver Green tensors (RGT) for the seismic stations, which comprises all of the spatial-temporal displacement fields produced by the three orthogonal unit impulsive point forces acting at each of the station locations. Once the RGT database is established, synthetic seismograms for any earthquake can be simply calculated by extracting a small, source-centered volume of the RGT from the database and applying the reciprocity principle. The partial derivatives needed for point- and finite-source inversions can be generated in the same way. Moreover, the RGT database can be employed in full-wave tomographic inversions launched from a 3D starting model, because the sensitivity (Fréchet) kernels for travel-time and amplitude anomalies observed at seismic stations in the database can be computed by convolving the earthquake-induced displacement field with the station RGTs. We illustrate all elements of this unified analysis with an RGT database for 33 stations of the California Integrated Seismic Network in and around the Los Angeles Basin, which we computed for the 3D SCEC Community Velocity Model (SCEC CVM3.0) using a fourth-order staggered-grid finite-difference code. For a spatial grid spacing of 200 m and a time resolution of 10 ms, the calculations took ~19,000 node-hours on the Linux cluster at USC's High-Performance Computing Center. The 33-station database with a volume of ~23.5 TB was archived in the SCEC digital library at the San Diego Supercomputer Center using the Storage Resource Broker (SRB). From a laptop, anyone with access to this SRB collection can compute synthetic seismograms for an arbitrary source in the CVM in a matter of minutes. Efficient approaches have been implemented to use this RGT database in the inversions of waveforms for centroid and finite moment tensors and tomographic inversions to improve the CVM. Our experience with these large problems suggests areas where the cyberinfrastructure currently available for geoscience computation needs to be improved.

  8. A locally conservative non-negative finite element formulation for anisotropic advective-diffusive-reactive systems

    NASA Astrophysics Data System (ADS)

    Mudunuru, M. K.; Shabouei, M.; Nakshatrala, K.

    2015-12-01

    Advection-diffusion-reaction (ADR) equations appear in various areas of life sciences, hydrogeological systems, and contaminant transport. Obtaining stable and accurate numerical solutions can be challenging as the underlying equations are coupled, nonlinear, and non-self-adjoint. Currently, there is neither a robust computational framework available nor a reliable commercial package known that can handle various complex situations. Herein, the objective of this poster presentation is to present a novel locally conservative non-negative finite element formulation that preserves the underlying physical and mathematical properties of a general linear transient anisotropic ADR equation. In continuous setting, governing equations for ADR systems possess various important properties. In general, all these properties are not inherited during finite difference, finite volume, and finite element discretizations. The objective of this poster presentation is two fold: First, we analyze whether the existing numerical formulations (such as SUPG and GLS) and commercial packages provide physically meaningful values for the concentration of the chemical species for various realistic benchmark problems. Furthermore, we also quantify the errors incurred in satisfying the local and global species balance for two popular chemical kinetics schemes: CDIMA (chlorine dioxide-iodine-malonic acid) and BZ (Belousov--Zhabotinsky). Based on these numerical simulations, we show that SUPG and GLS produce unphysical values for concentration of chemical species due to the violation of the non-negative constraint, contain spurious node-to-node oscillations, and have large errors in local and global species balance. Second, we proposed a novel finite element formulation to overcome the above difficulties. The proposed locally conservative non-negative computational framework based on low-order least-squares finite elements is able to preserve these underlying physical and mathematical properties. Several representative numerical examples are discussed to illustrate the importance of the proposed numerical formulations to accurately describe various aspects of mixing process in chaotic flows and to simulate transport in highly heterogeneous anisotropic media.

  9. Improving sub-grid scale accuracy of boundary features in regional finite-difference models

    USGS Publications Warehouse

    Panday, Sorab; Langevin, Christian D.

    2012-01-01

    As an alternative to grid refinement, the concept of a ghost node, which was developed for nested grid applications, has been extended towards improving sub-grid scale accuracy of flow to conduits, wells, rivers or other boundary features that interact with a finite-difference groundwater flow model. The formulation is presented for correcting the regular finite-difference groundwater flow equations for confined and unconfined cases, with or without Newton Raphson linearization of the nonlinearities, to include the Ghost Node Correction (GNC) for location displacement. The correction may be applied on the right-hand side vector for a symmetric finite-difference Picard implementation, or on the left-hand side matrix for an implicit but asymmetric implementation. The finite-difference matrix connectivity structure may be maintained for an implicit implementation by only selecting contributing nodes that are a part of the finite-difference connectivity. Proof of concept example problems are provided to demonstrate the improved accuracy that may be achieved through sub-grid scale corrections using the GNC schemes.

  10. The association of lymph node volume with cervical metastatic lesions in head and neck cancer patients.

    PubMed

    Liang, Ming-Tai; Chen, Clayton Chi-Chang; Wang, Ching-Ping; Wang, Chen-Chi; Lin, Whe-Dar; Liu, Shih-An

    2009-06-01

    The aim of this study was to determine if volume of cervical lymph node measured via computed tomography (CT) could differentiate metastatic from benign lesions in head and neck cancer patients. We conducted a retrospective review of chart and images in a tertiary referring center in Taiwan. Patients with head and neck cancers underwent radical, modified radical or functional neck dissection were enrolled. The CT images before operation were reassessed by a radiologist and were compared with the results of pathological examination. A total of 102 patients were included for final analyses. Most patients were male (n = 96, 94%) and average age was 50.1 years. Although the average nodal volume in patients with cervical metastases was higher than those of patients without cervical metastases, it was not an independent factor associated with cervical metastasis after controlling for other variables; however, central nodal necrosis on enhanced CT image [odds ratio (OR) 18.95, P = 0.008) and minimal axial diameter >7.5 mm (OR 6.868, P = 0.001) were independent factors correlated with cervical metastasis. Therefore, the volume of cervical lymph node measured from CT images cannot predict cervical metastases in head and neck cancer patients. Measurement of minimal axial diameter of the largest lymph node is a simple and more accurate way to predict cervical metastasis instead.

  11. Hybrid simulation combining two space-time discretization of the discrete-velocity Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Horstmann, Jan Tobias; Le Garrec, Thomas; Mincu, Daniel-Ciprian; Lévêque, Emmanuel

    2017-11-01

    Despite the efficiency and low dissipation of the stream-collide scheme of the discrete-velocity Boltzmann equation, which is nowadays implemented in many lattice Boltzmann solvers, a major drawback exists over alternative discretization schemes, i.e. finite-volume or finite-difference, that is the limitation to Cartesian uniform grids. In this paper, an algorithm is presented that combines the positive features of each scheme in a hybrid lattice Boltzmann method. In particular, the node-based streaming of the distribution functions is coupled with a second-order finite-volume discretization of the advection term of the Boltzmann equation under the Bhatnagar-Gross-Krook approximation. The algorithm is established on a multi-domain configuration, with the individual schemes being solved on separate sub-domains and connected by an overlapping interface of at least 2 grid cells. A critical parameter in the coupling is the CFL number equal to unity, which is imposed by the stream-collide algorithm. Nevertheless, a semi-implicit treatment of the collision term in the finite-volume formulation allows us to obtain a stable solution for this condition. The algorithm is validated in the scope of three different test cases on a 2D periodic mesh. It is shown that the accuracy of the combined discretization schemes agrees with the order of each separate scheme involved. The overall numerical error of the hybrid algorithm in the macroscopic quantities is contained between the error of the two individual algorithms. Finally, we demonstrate how such a coupling can be used to adapt to anisotropic flows with some gradual mesh refinement in the FV domain.

  12. Numerical Modeling of Saturated Boiling in a Heated Tube

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; LeClair, Andre; Hartwig, Jason

    2017-01-01

    This paper describes a mathematical formulation and numerical solution of boiling in a heated tube. The mathematical formulation involves a discretization of the tube into a flow network consisting of fluid nodes and branches and a thermal network consisting of solid nodes and conductors. In the fluid network, the mass, momentum and energy conservation equations are solved and in the thermal network, the energy conservation equation of solids is solved. A pressure-based, finite-volume formulation has been used to solve the equations in the fluid network. The system of equations is solved by a hybrid numerical scheme which solves the mass and momentum conservation equations by a simultaneous Newton-Raphson method and the energy conservation equation by a successive substitution method. The fluid network and thermal network are coupled through heat transfer between the solid and fluid nodes which is computed by Chen's correlation of saturated boiling heat transfer. The computer model is developed using the Generalized Fluid System Simulation Program and the numerical predictions are compared with test data.

  13. Numerical modeling of self-pressurization and pressure control by a thermodynamic vent system in a cryogenic tank

    NASA Astrophysics Data System (ADS)

    Majumdar, Alok; Valenzuela, Juan; LeClair, Andre; Moder, Jeff

    2016-03-01

    This paper presents a numerical model of a system-level test bed-the multipurpose hydrogen test bed (MHTB) using the Generalized Fluid System Simulation Program (GFSSP). MHTB is representative in size and shape of a space transportation vehicle liquid hydrogen propellant tank, and ground-based testing was performed at NASA Marshall Space Flight Center (MSFC) to generate data for cryogenic storage. GFSSP is a finite volume-based network flow analysis software developed at MSFC and used for thermofluid analysis of propulsion systems. GFSSP has been used to model the self-pressurization and ullage pressure control by the Thermodynamic Vent System (TVS). A TVS typically includes a Joule-Thompson (J-T) expansion device, a two-phase heat exchanger (HEX), and a mixing pump and liquid injector to extract thermal energy from the tank without significant loss of liquid propellant. For the MHTB tank, the HEX and liquid injector are combined into a vertical spray bar assembly. Two GFSSP models (Self-Pressurization and TVS) were separately developed and tested and then integrated to simulate the entire system. The Self-Pressurization model consists of multiple ullage nodes, a propellant node, and solid nodes; it computes the heat transfer through multilayer insulation blankets and calculates heat and mass transfer between the ullage and liquid propellant and the ullage and tank wall. A TVS model calculates the flow through a J-T valve, HEX, and spray and vent systems. Two models are integrated by exchanging data through User Subroutines of both models. Results of the integrated models have been compared with MHTB test data at a 50% fill level. Satisfactory comparison was observed between tests and numerical predictions.

  14. Computational methods for vortex dominated compressible flows

    NASA Technical Reports Server (NTRS)

    Murman, Earll M.

    1987-01-01

    The principal objectives were to: understand the mechanisms by which Euler equation computations model leading edge vortex flows; understand the vortical and shock wave structures that may exist for different wing shapes, angles of incidence, and Mach numbers; and compare calculations with experiments in order to ascertain the limitations and advantages of Euler equation models. The initial approach utilized the cell centered finite volume Jameson scheme. The final calculation utilized a cell vertex finite volume method on an unstructured grid. Both methods used Runge-Kutta four stage schemes for integrating the equations. The principal findings are briefly summarized.

  15. Glide dislocation nucleation from dislocation nodes at semi-coherent {111} Cu–Ni interfaces

    DOE PAGES

    Shao, Shuai; Wang, Jian; Beyerlein, Irene J.; ...

    2015-07-23

    Using atomistic simulations and dislocation theory on a model system of semi-coherent {1 1 1} interfaces, we show that misfit dislocation nodes adopt multiple atomic arrangements corresponding to the creation and redistribution of excess volume at the nodes. We identified four distinctive node structures: volume-smeared nodes with (i) spiral or (ii) straight dislocation patterns, and volume-condensed nodes with (iii) triangular or (iv) hexagonal dislocation patterns. Volume-smeared nodes contain interfacial dislocations lying in the Cu–Ni interface but volume-condensed nodes contain two sets of interfacial dislocations in the two adjacent interfaces and jogs across the atomic layer between the two adjacent interfaces.more » Finally, under biaxial tension/compression applied parallel to the interface, we show that the nucleation of lattice dislocations is preferred at the nodes and is correlated with the reduction of excess volume at the nodes.« less

  16. A second-order cell-centered Lagrangian ADER-MOOD finite volume scheme on multidimensional unstructured meshes for hydrodynamics

    NASA Astrophysics Data System (ADS)

    Boscheri, Walter; Dumbser, Michael; Loubère, Raphaël; Maire, Pierre-Henri

    2018-04-01

    In this paper we develop a conservative cell-centered Lagrangian finite volume scheme for the solution of the hydrodynamics equations on unstructured multidimensional grids. The method is derived from the Eucclhyd scheme discussed in [47,43,45]. It is second-order accurate in space and is combined with the a posteriori Multidimensional Optimal Order Detection (MOOD) limiting strategy to ensure robustness and stability at shock waves. Second-order of accuracy in time is achieved via the ADER (Arbitrary high order schemes using DERivatives) approach. A large set of numerical test cases is proposed to assess the ability of the method to achieve effective second order of accuracy on smooth flows, maintaining an essentially non-oscillatory behavior on discontinuous profiles, general robustness ensuring physical admissibility of the numerical solution, and precision where appropriate.

  17. Finite Volume Numerical Methods for Aeroheating Rate Calculations from Infrared Thermographic Data

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Berry, Scott A.; Horvath, Thomas J.; Nowak, Robert J.

    2003-01-01

    The use of multi-dimensional finite volume numerical techniques with finite thickness models for calculating aeroheating rates from measured global surface temperatures on hypersonic wind tunnel models was investigated. Both direct and inverse finite volume techniques were investigated and compared with the one-dimensional semi -infinite technique. Global transient surface temperatures were measured using an infrared thermographic technique on a 0.333-scale model of the Hyper-X forebody in the Langley Research Center 20-Inch Mach 6 Air tunnel. In these tests the effectiveness of vortices generated via gas injection for initiating hypersonic transition on the Hyper-X forebody were investigated. An array of streamwise orientated heating striations were generated and visualized downstream of the gas injection sites. In regions without significant spatial temperature gradients, one-dimensional techniques provided accurate aeroheating rates. In regions with sharp temperature gradients due to the striation patterns two-dimensional heat transfer techniques were necessary to obtain accurate heating rates. The use of the one-dimensional technique resulted in differences of 20% in the calculated heating rates because it did not account for lateral heat conduction in the model.

  18. Morphological analysis of lymph nodes in Odontocetes from north and northeast coast of Brazil.

    PubMed

    De Oliveira e Silva, Fernanda Menezes; Guimarães, Juliana Plácido; Vergara-Parente, Jociery Einhardt; Carvalho, Vitor Luz; De Meirelles, Ana Carolina Oliveira; Marmontel, Miriam; Ferrão, Juliana Shimara Pires; Miglino, Maria Angelica

    2014-05-01

    The morphology and location of lymph nodes from seven species of Odontocetes, of both sexes and different age groups, were described. All animals were derived from stranding events along the North and Northeastern coasts of Brazil. After the identification of lymph nodes in situ, tissue samples were analyzed for light and electron microscopy. Vascular volume density (VVD) and vascular length density (VLD) were evaluated in the mesenteric lymph nodes. Lymph nodes occurred as solitary nodules or in groups, varying in shape and size. In addition to using the nomenclature recommended by Nomina Anatomica Veterinaria, new nomenclatures were suggested based on the lymph nodes topography. Lymph nodes were covered by a highly vascularized and innervated capsule of dense connective tissue, below which muscle fibers were observed, inconsistently, in all studied species. There was no difference in VLD among different age groups. However, VVD was higher in adults. Lymph nodes parenchyma was divided into an outer cortex, containing lymph nodules and germinal centers; a paracortical region, transition zone with dense lymphoid tissue; and an inner medulla, composed of small irregular cords of lymphatic tissue, blood vessels, and diffuse lymphoid tissue. Abundant collagen fibers were observed around arteries and arterioles. Germinal centers were more evident and developed in calves and young animals, being more discrete and sparse in adults. The morphology of lymph nodes in Odontocetes was typical of that observed in other terrestrial mammals. However, new groups of lymph nodes were described for seven species occurring in the Brazilian coast. Copyright © 2014 Wiley Periodicals, Inc.

  19. Isolation and Connectivity in Random Geometric Graphs with Self-similar Intensity Measures

    NASA Astrophysics Data System (ADS)

    Dettmann, Carl P.

    2018-05-01

    Random geometric graphs consist of randomly distributed nodes (points), with pairs of nodes within a given mutual distance linked. In the usual model the distribution of nodes is uniform on a square, and in the limit of infinitely many nodes and shrinking linking range, the number of isolated nodes is Poisson distributed, and the probability of no isolated nodes is equal to the probability the whole graph is connected. Here we examine these properties for several self-similar node distributions, including smooth and fractal, uniform and nonuniform, and finitely ramified or otherwise. We show that nonuniformity can break the Poisson distribution property, but it strengthens the link between isolation and connectivity. It also stretches out the connectivity transition. Finite ramification is another mechanism for lack of connectivity. The same considerations apply to fractal distributions as smooth, with some technical differences in evaluation of the integrals and analytical arguments.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frayce, D.; Khayat, R.E.; Derdouri, A.

    The dual reciprocity boundary element method (DRBEM) is implemented to solve three-dimensional transient heat conduction problems in the presence of arbitrary sources, typically as these problems arise in materials processing. The DRBEM has a major advantage over conventional BEM, since it avoids the computation of volume integrals. These integrals stem from transient, nonlinear, and/or source terms. Thus there is no need to discretize the inner domain, since only a number of internal points are needed for the computation. The validity of the method is assessed upon comparison with results from benchmark problems where analytical solutions exist. There is generally goodmore » agreement. Comparison against finite element results is also favorable. Calculations are carried out in order to assess the influence of the number and location of internal nodes. The influence of the ratio of the numbers of internal to boundary nodes is also examined.« less

  1. Role of FDG-PET in the Implementation of Involved-Node Radiation Therapy for Hodgkin Lymphoma Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girinsky, Théodore; Aupérin, Anne; Ribrag, Vincent

    2014-08-01

    Purpose: This study examines the role of {sup 18}F-labeled fluorodeoxyglucose positron emission tomography (FDG-PET) in the implementation of involved-node radiation therapy (INRT) in patients treated for clinical stages (CS) I/II supradiaphragmatic Hodgkin lymphoma (HL). Methods and Material: Patients with untreated CS I/II HL enrolled in the randomized EORTC/LYSA/FIL Intergroup H10 trial and participating in a real-time prospective quality assurance program were prospectively included in this study. Data were electronically obtained from 18 French cancer centers. All patients underwent APET-computed tomography (PET-CT) and a post-chemotherapy planning CT scanning. The pre-chemotherapy gross tumor volume (GTV) and the postchemotherapy clinical target volume (CTV) weremore » first delineated on CT only by the radiation oncologist. The planning PET was then co-registered, and the delineated volumes were jointly analyzed by the radiation oncologist and the nuclear medicine physician. Lymph nodes undetected on CT but FDG-avid were recorded, and the previously determined GTV and CTV were modified according to FDG-PET results. Results: From March 2007 to February 2010, 135 patients were included in the study. PET-CT identified at least 1 additional FDG-avid lymph node in 95 of 135 patients (70.4%; 95% confidence interval [CI]: 61.9%-77.9%) and 1 additional lymph node area in 55 of 135 patients (40.7%; 95% CI: 32.4%-49.5%). The mean increases in the GTV and CTV were 8.8% and 7.1%, respectively. The systematic addition of PET to CT led to a CTV increase in 60% of the patients. Conclusions: Pre-chemotherapy FDG-PET leads to significantly better INRT delineation without necessarily increasing radiation volumes.« less

  2. Free Mesh Method: fundamental conception, algorithms and accuracy study

    PubMed Central

    YAGAWA, Genki

    2011-01-01

    The finite element method (FEM) has been commonly employed in a variety of fields as a computer simulation method to solve such problems as solid, fluid, electro-magnetic phenomena and so on. However, creation of a quality mesh for the problem domain is a prerequisite when using FEM, which becomes a major part of the cost of a simulation. It is natural that the concept of meshless method has evolved. The free mesh method (FMM) is among the typical meshless methods intended for particle-like finite element analysis of problems that are difficult to handle using global mesh generation, especially on parallel processors. FMM is an efficient node-based finite element method that employs a local mesh generation technique and a node-by-node algorithm for the finite element calculations. In this paper, FMM and its variation are reviewed focusing on their fundamental conception, algorithms and accuracy. PMID:21558752

  3. Space transportation nodes assumptions and requirements: Lunar base systems study task 2.1

    NASA Technical Reports Server (NTRS)

    Kahn, Taher Ali; Simonds, Charles H.; Stump, William R.

    1988-01-01

    The Space Transportation Nodes Assumptions and Requirements task was performed as part of the Advanced Space Transportation Support Contract, a NASA Johnson Space Center (JSC) study intended to provide planning for a Lunar Base near the year 2000. The original task statement has been revised to satisfy the following queries: (1) What vehicles are to be processed at the transportation node; (2) What is the flow of activities involved in a vehicle passing through the node; and (3) What node support resources are necessary to support a lunar scenario traffic model composed of a mix of vehicles in an active flight schedule. The Lunar Base Systems Study is concentrating on the initial years of the Phase 2 Lunar Base Scenario. The study will develop the first five years of that phase in order to define the transportation and surface systems (including mass, volumes, power requirements, and designs).

  4. Biomechanics Simulations Using Cubic Hermite Meshes with Extraordinary Nodes for Isogeometric Cardiac Modeling

    PubMed Central

    Gonzales, Matthew J.; Sturgeon, Gregory; Segars, W. Paul; McCulloch, Andrew D.

    2016-01-01

    Cubic Hermite hexahedral finite element meshes have some well-known advantages over linear tetrahedral finite element meshes in biomechanical and anatomic modeling using isogeometric analysis. These include faster convergence rates as well as the ability to easily model rule-based anatomic features such as cardiac fiber directions. However, it is not possible to create closed complex objects with only regular nodes; these objects require the presence of extraordinary nodes (nodes with 3 or >= 5 adjacent elements in 2D) in the mesh. The presence of extraordinary nodes requires new constraints on the derivatives of adjacent elements to maintain continuity. We have developed a new method that uses an ensemble coordinate frame at the nodes and a local-to-global mapping to maintain continuity. In this paper, we make use of this mapping to create cubic Hermite models of the human ventricles and a four-chamber heart. We also extend the methods to the finite element equations to perform biomechanics simulations using these meshes. The new methods are validated using simple test models and applied to anatomically accurate ventricular meshes with valve annuli to simulate complete cardiac cycle simulations. PMID:27182096

  5. Model Uncertainty and Test of a Segmented Mirror Telescope

    DTIC Science & Technology

    2014-03-01

    Optical Telescope project EOM: equation of motion FCA: fine control actuator FCD: Face-Centered Cubic Design FEA: finite element analysis FEM: finite...housed in a dark tent to isolate the telescope from stray light, air currents, or dust and other debris. However, the closed volume is prone to...is composed of six hexagonal segments that each have six coarse control actuators (CCA) for segment phasing control, three fine control actuators

  6. Extended precision data types for the development of the original computer aided engineering applications

    NASA Astrophysics Data System (ADS)

    Pescaru, A.; Oanta, E.; Axinte, T.; Dascalescu, A.-D.

    2015-11-01

    Computer aided engineering is based on models of the phenomena which are expressed as algorithms. The implementations of the algorithms are usually software applications which are processing a large volume of numerical data, regardless the size of the input data. In this way, the finite element method applications used to have an input data generator which was creating the entire volume of geometrical data, starting from the initial geometrical information and the parameters stored in the input data file. Moreover, there were several data processing stages, such as: renumbering of the nodes meant to minimize the size of the band length of the system of equations to be solved, computation of the equivalent nodal forces, computation of the element stiffness matrix, assemblation of system of equations, solving the system of equations, computation of the secondary variables. The modern software application use pre-processing and post-processing programs to easily handle the information. Beside this example, CAE applications use various stages of complex computation, being very interesting the accuracy of the final results. Along time, the development of CAE applications was a constant concern of the authors and the accuracy of the results was a very important target. The paper presents the various computing techniques which were imagined and implemented in the resulting applications: finite element method programs, finite difference element method programs, applied general numerical methods applications, data generators, graphical applications, experimental data reduction programs. In this context, the use of the extended precision data types was one of the solutions, the limitations being imposed by the size of the memory which may be allocated. To avoid the memory-related problems the data was stored in files. To minimize the execution time, part of the file was accessed using the dynamic memory allocation facilities. One of the most important consequences of the paper is the design of a library which includes the optimized solutions previously tested, that may be used for the easily development of original CAE cross-platform applications. Last but not least, beside the generality of the data type solutions, there is targeted the development of a software library which may be used for the easily development of node-based CAE applications, each node having several known or unknown parameters, the system of equations being automatically generated and solved.

  7. Magnetic Resonance Lymphography-Guided Selective High-Dose Lymph Node Irradiation in Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meijer, Hanneke J.M., E-mail: H.Meijer@rther.umcn.nl; Debats, Oscar A.; Kunze-Busch, Martina

    2012-01-01

    Purpose: To demonstrate the feasibility of magnetic resonance lymphography (MRL) -guided delineation of a boost volume and an elective target volume for pelvic lymph node irradiation in patients with prostate cancer. The feasibility of irradiating these volumes with a high-dose boost to the MRL-positive lymph nodes in conjunction with irradiation of the prostate using intensity-modulated radiotherapy (IMRT) was also investigated. Methods and Materials: In 4 prostate cancer patients with a high risk of lymph node involvement but no enlarged lymph nodes on CT and/or MRI, MRL detected pathological lymph nodes in the pelvis. These lymph nodes were identified and delineatedmore » on a radiotherapy planning CT to create a boost volume. Based on the location of the MRL-positive lymph nodes, the standard elective pelvic target volume was individualized. An IMRT plan with a simultaneous integrated boost (SIB) was created with dose prescriptions of 42 Gy to the pelvic target volume, a boost to 60 Gy to the MRL-positive lymph nodes, and 72 Gy to the prostate. Results: All MRL-positive lymph nodes could be identified on the planning CT. This information could be used to delineate a boost volume and to individualize the pelvic target volume for elective irradiation. IMRT planning delivered highly acceptable radiotherapy plans with regard to the prescribed dose levels and the dose to the organs at risk (OARs). Conclusion: MRL can be used to select patients with limited lymph node involvement for pelvic radiotherapy. MRL-guided delineation of a boost volume and an elective pelvic target volume for selective high-dose lymph node irradiation with IMRT is feasible. Whether this approach will result in improved outcome for these patients needs to be investigated in further clinical studies.« less

  8. Calibration of International Space Station (ISS) Node 1 Vibro-Acoustic Model-Report 2

    NASA Technical Reports Server (NTRS)

    Zhang, Weiguo; Raveendra, Ravi

    2014-01-01

    Reported here is the capability of the Energy Finite Element Method (E-FEM) to predict the vibro-acoustic sound fields within the International Space Station (ISS) Node 1 and to compare the results with simulated leak sounds. A series of electronically generated structural ultrasonic noise sources were created in the pressure wall to emulate leak signals at different locations of the Node 1 STA module during its period of storage at Stennis Space Center (SSC). The exact sound source profiles created within the pressure wall at the source were unknown, but were estimated from the closest sensor measurement. The E-FEM method represents a reverberant sound field calculation, and of importance to this application is the requirement to correctly handle the direct field effect of the sound generation. It was also important to be able to compute the sound energy fields in the ultrasonic frequency range. This report demonstrates the capability of this technology as applied to this type of application.

  9. A contact algorithm for shell problems via Delaunay-based meshing of the contact domain

    NASA Astrophysics Data System (ADS)

    Kamran, K.; Rossi, R.; Oñate, E.

    2013-07-01

    The simulation of the contact within shells, with all of its different facets, represents still an open challenge in Computational Mechanics. Despite the effort spent in the development of techniques for the simulation of general contact problems, an all-seasons algorithm applicable to complex shell contact problems is yet to be developed. This work focuses on the solution of the contact between thin shells by using a technique derived from the particle finite element method together with a rotation-free shell triangle. The key concept is to define a discretization of the contact domain (CD) by constructing a finite element mesh of four-noded tetrahedra that describes the potential contact volume. The problem is completed by using an assumed-strain approach to define an elastic contact strain over the CD.

  10. Method and apparatus for connecting finite element meshes and performing simulations therewith

    DOEpatents

    Dohrmann, Clark R.; Key, Samuel W.; Heinstein, Martin W.

    2003-05-06

    The present invention provides a method of connecting dissimilar finite element meshes. A first mesh, designated the master mesh, and a second mesh, designated the slave mesh, each have interface surfaces proximal the other. Each interface surface has a corresponding interface mesh comprising a plurality of interface nodes. Each slave interface node is assigned new coordinates locating the interface node on the interface surface of the master mesh. The slave interface surface is further redefined to be the projection of the slave interface mesh onto the master interface surface.

  11. Three-body spectrum in a finite volume: The role of cubic symmetry

    DOE PAGES

    Doring, M.; Hammer, H. -W.; Mai, M.; ...

    2018-06-15

    The three-particle quantization condition is partially diagonalized in the center-of-mass frame by using cubic symmetry on the lattice. To this end, instead of spherical harmonics, the kernel of the Bethe-Salpeter equation for particle-dimer scattering is expanded in the basis functions of different irreducible representations of the octahedral group. Such a projection is of particular importance for the three-body problem in the finite volume due to the occurrence of three-body singularities above breakup. Additionally, we study the numerical solution and properties of such a projected quantization condition in a simple model. It is shown that, for large volumes, these solutions allowmore » for an instructive interpretation of the energy eigenvalues in terms of bound and scattering states.« less

  12. Three-body spectrum in a finite volume: The role of cubic symmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doring, M.; Hammer, H. -W.; Mai, M.

    The three-particle quantization condition is partially diagonalized in the center-of-mass frame by using cubic symmetry on the lattice. To this end, instead of spherical harmonics, the kernel of the Bethe-Salpeter equation for particle-dimer scattering is expanded in the basis functions of different irreducible representations of the octahedral group. Such a projection is of particular importance for the three-body problem in the finite volume due to the occurrence of three-body singularities above breakup. Additionally, we study the numerical solution and properties of such a projected quantization condition in a simple model. It is shown that, for large volumes, these solutions allowmore » for an instructive interpretation of the energy eigenvalues in terms of bound and scattering states.« less

  13. Relating the finite-volume spectrum and the two-and-three-particle S matrix for relativistic systems of identical scalar particles

    DOE PAGES

    Briceño, Raúl A.; Hansen, Maxwell T.; Sharpe, Stephen R.

    2017-04-18

    Working in relativistic quantum field theory, we derive the quantization condition satisfied by coupled two- and three-particle systems of identical scalar particles confined to a cubic spatial volume with periodicitymore » $L$. This gives the relation between the finite-volume spectrum and the infinite-volume $$\\textbf 2 \\to \\textbf 2$$, $$\\textbf 2 \\to \\textbf 3$$ and $$\\textbf 3 \\to \\textbf 3$$ scattering amplitudes for such theories. The result holds for relativistic systems composed of scalar particles with nonzero mass $m$, whose center of mass energy lies below the four-particle threshold, and for which the two-particle K-matrix has no singularities below the three-particle threshold. Finally, the quantization condition is exact up to corrections of the order $$\\mathcal{O}(e^{-mL})$$ and holds for any choice of total momenta satisfying the boundary conditions.« less

  14. Relating the finite-volume spectrum and the two-and-three-particle S matrix for relativistic systems of identical scalar particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briceño, Raúl A.; Hansen, Maxwell T.; Sharpe, Stephen R.

    Working in relativistic quantum field theory, we derive the quantization condition satisfied by coupled two- and three-particle systems of identical scalar particles confined to a cubic spatial volume with periodicitymore » $L$. This gives the relation between the finite-volume spectrum and the infinite-volume $$\\textbf 2 \\to \\textbf 2$$, $$\\textbf 2 \\to \\textbf 3$$ and $$\\textbf 3 \\to \\textbf 3$$ scattering amplitudes for such theories. The result holds for relativistic systems composed of scalar particles with nonzero mass $m$, whose center of mass energy lies below the four-particle threshold, and for which the two-particle K-matrix has no singularities below the three-particle threshold. Finally, the quantization condition is exact up to corrections of the order $$\\mathcal{O}(e^{-mL})$$ and holds for any choice of total momenta satisfying the boundary conditions.« less

  15. Performance of a parallel thermal-hydraulics code TEMPEST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fann, G.I.; Trent, D.S.

    The authors describe the parallelization of the Tempest thermal-hydraulics code. The serial version of this code is used for production quality 3-D thermal-hydraulics simulations. Good speedup was obtained with a parallel diagonally preconditioned BiCGStab non-symmetric linear solver, using a spatial domain decomposition approach for the semi-iterative pressure-based and mass-conserved algorithm. The test case used here to illustrate the performance of the BiCGStab solver is a 3-D natural convection problem modeled using finite volume discretization in cylindrical coordinates. The BiCGStab solver replaced the LSOR-ADI method for solving the pressure equation in TEMPEST. BiCGStab also solves the coupled thermal energy equation. Scalingmore » performance of 3 problem sizes (221220 nodes, 358120 nodes, and 701220 nodes) are presented. These problems were run on 2 different parallel machines: IBM-SP and SGI PowerChallenge. The largest problem attains a speedup of 68 on an 128 processor IBM-SP. In real terms, this is over 34 times faster than the fastest serial production time using the LSOR-ADI solver.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnack, D.D.; Lottati, I.; Mikic, Z.

    The authors describe TRIM, a MHD code which uses finite volume discretization of the MHD equations on an unstructured adaptive grid of triangles in the poloidal plane. They apply it to problems related to modeling tokamak toroidal plasmas. The toroidal direction is treated by a pseudospectral method. Care was taken to center variables appropriately on the mesh and to construct a self adjoint diffusion operator for cell centered variables.

  17. Numerical modelling of flow through foam's node.

    PubMed

    Anazadehsayed, Abdolhamid; Rezaee, Nastaran; Naser, Jamal

    2017-10-15

    In this work, for the first time, a three-dimensional model to describe the dynamics of flow through geometric Plateau border and node components of foam is presented. The model involves a microscopic-scale structure of one interior node and four Plateau borders with an angle of 109.5 from each other. The majority of the surfaces in the model make a liquid-gas interface where the boundary condition of stress balance between the surface and bulk is applied. The three-dimensional Navier-Stoke equation, along with continuity equation, is solved using the finite volume approach. The numerical results are validated against the available experimental results for the flow velocity and resistance in the interior nodes and Plateau borders. A qualitative illustration of flow in a node in different orientations is shown. The scaled resistance against the flow for different liquid-gas interface mobility is studied and the geometrical characteristics of the node and Plateau border components of the system are compared to investigate the Plateau border and node dominated flow regimes numerically. The findings show the values of the resistance in each component, in addition to the exact point where the flow regimes switch. Furthermore, a more accurate effect of the liquid-gas interface on the foam flow, particularly in the presence of a node in the foam network is obtained. The comparison of the available numerical results with our numerical results shows that the velocity of the node-PB system is lower than the velocity of single PB system for mobile interfaces. That is owing to the fact that despite the more relaxed geometrical structure of the node, constraining effect of merging and mixing of flow and increased viscous damping in the node component result in the node-dominated regime. Moreover, we obtain an accurate updated correlation for the dependence of the scaled average velocity of the node-Plateau border system on the liquid-gas interface mobility described by Boussinesq number. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. RTOG GU Radiation Oncology Specialists Reach Consensus on Pelvic Lymph Node Volumes for High-Risk Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawton, Colleen A.F.; Michalski, Jeff; El-Naqa, Issam

    2009-06-01

    Purpose: Radiation therapy to the pelvic lymph nodes in high-risk prostate cancer is required on several Radiation Therapy Oncology Group (RTOG) clinical trials. Based on a prior lymph node contouring project, we have shown significant disagreement in the definition of pelvic lymph node volumes among genitourinary radiation oncology specialists involved in developing and executing current RTOG trials. Materials and Methods: A consensus meeting was held on October 3, 2007, to reach agreement on pelvic lymph node volumes. Data were presented to address the lymph node drainage of the prostate. Extensive discussion ensued to develop clinical target volume (CTV) pelvic lymphmore » node consensus. Results: Consensus was obtained resulting in computed tomography image-based pelvic lymph node CTVs. Based on this consensus, the pelvic lymph node volumes to be irradiated include: distal common iliac, presacral lymph nodes (S{sub 1}-S{sub 3}), external iliac lymph nodes, internal iliac lymph nodes, and obturator lymph nodes. Lymph node CTVs include the vessels (artery and vein) and a 7-mm radial margin being careful to 'carve out' bowel, bladder, bone, and muscle. Volumes begin at the L5/S1 interspace and end at the superior aspect of the pubic bone. Consensus on dose-volume histogram constraints for OARs was also attained. Conclusions: Consensus on pelvic lymph node CTVs for radiation therapy to address high-risk prostate cancer was attained and is available as web-based computed tomography images as well as a descriptive format through the RTOG. This will allow for uniformity in evaluating the benefit and risk of such treatment.« less

  19. Numerical Modeling of Flow Distribution in Micro-Fluidics Systems

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; Cole, Helen; Chen, C. P.

    2005-01-01

    This paper describes an application of a general purpose computer program, GFSSP (Generalized Fluid System Simulation Program) for calculating flow distribution in a network of micro-channels. GFSSP employs a finite volume formulation of mass and momentum conservation equations in a network consisting of nodes and branches. Mass conservation equation is solved for pressures at the nodes while the momentum conservation equation is solved at the branches to calculate flowrate. The system of equations describing the fluid network is solved by a numerical method that is a combination of the Newton-Raphson and successive substitution methods. The numerical results have been compared with test data and detailed CFD (computational Fluid Dynamics) calculations. The agreement between test data and predictions is satisfactory. The discrepancies between the predictions and test data can be attributed to the frictional correlation which does not include the effect of surface tension or electro-kinetic effect.

  20. Predictive Flow Control to Minimize Convective Time Delays

    DTIC Science & Technology

    2013-08-19

    simulation. The CFO solver used is Cobalt, an unstructured finite-volume code developed for the solution of the compress- ible Navier-Stokes...cell-centered fin ite volume approach applicable to arbitrary cell topologies (e.g, hexahedra, prisms, tetrahedra). The spatial operator uses a Riemann ... solver , least squares gradient calculations using QR factorizati on to provide second order accuracy in space. A point implicit method using

  1. High-Order Entropy Stable Formulations for Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Fisher, Travis C.

    2013-01-01

    A systematic approach is presented for developing entropy stable (SS) formulations of any order for the Navier-Stokes equations. These SS formulations discretely conserve mass, momentum, energy and satisfy a mathematical entropy inequality. They are valid for smooth as well as discontinuous flows provided sufficient dissipation is added at shocks and discontinuities. Entropy stable formulations exist for all diagonal norm, summation-by-parts (SBP) operators, including all centered finite-difference operators, Legendre collocation finite-element operators, and certain finite-volume operators. Examples are presented using various entropy stable formulations that demonstrate the current state-of-the-art of these schemes.

  2. A mixed-penalty biphasic finite element formulation incorporating viscous fluids and material interfaces.

    PubMed

    Chan, B; Donzelli, P S; Spilker, R L

    2000-06-01

    The fluid viscosity term of the fluid phase constitutive equation and the interface boundary conditions between biphasic, solid and fluid domains have been incorporated into a mixed-penalty finite element formulation of the linear biphasic theory for hydrated soft tissue. The finite element code can now model a single-phase viscous incompressible fluid, or a single-phase elastic solid, as limiting cases of a biphasic material. Interface boundary conditions allow the solution of problems involving combinations of biphasic, fluid and solid regions. To incorporate these conditions, the volume-weighted mixture velocity is introduced as a degree of freedom at interface nodes so that the kinematic continuity conditions are satisfied by conventional finite element assembly techniques. Results comparing our numerical method with an independent, analytic solution for the problem of Couette flow over rigid and deformable porous biphasic layers show that the finite element code accurately predicts the viscous fluid flows and deformation in the porous biphasic region. Thus, the analysis can be used to model the interface between synovial fluid and articular cartilage in diarthrodial joints. This is an important step toward modeling and understanding the mechanisms of joint lubrication and another step toward fully modeling the in vivo behavior of a diarthrodial joint.

  3. Use of edge-based finite elements for solving three dimensional scattering problems

    NASA Technical Reports Server (NTRS)

    Chatterjee, A.; Jin, J. M.; Volakis, John L.

    1991-01-01

    Edge based finite elements are free from drawbacks associated with node based vectorial finite elements and are, therefore, ideal for solving 3-D scattering problems. The finite element discretization using edge elements is checked by solving for the resonant frequencies of a closed inhomogeneously filled metallic cavity. Great improvements in accuracy are observed when compared to the classical node based approach with no penalty in terms of computational time and with the expected absence of spurious modes. A performance comparison between the edge based tetrahedra and rectangular brick elements is carried out and tetrahedral elements are found to be more accurate than rectangular bricks for a given storage intensity. A detailed formulation for the scattering problem with various approaches for terminating the finite element mesh is also presented.

  4. Going the Extra Mile: Improved Survival for Pancreatic Cancer Patients Traveling to High-volume Centers.

    PubMed

    Lidsky, Michael E; Sun, Zhifei; Nussbaum, Daniel P; Adam, Mohamed A; Speicher, Paul J; Blazer, Dan G

    2017-08-01

    This study compares outcomes following pancreaticoduodenectomy (PD) for patients treated at local, low-volume centers and those traveling to high-volume centers. Although outcomes for PD are superior at high-volume institutions, not all patients live in proximity to major medical centers. Theoretical advantages for undergoing surgery locally exist. The 1998 to 2012 National Cancer Data Base was queried for T1-3N0-1M0 pancreatic adenocarcinoma patients who underwent PD. Travel distances to treatment centers were calculated. Overlaying the upper and lower quartiles of travel distance with institutional volume established short travel/low-volume (ST/LV) and long travel/high-volume (LT/HV) cohorts. Overall survival was evaluated. Of 7086 patients, 773 ST/LV patients traveled ≤6.3 (median 3.2) miles to centers performing ≤3.3 PDs yearly, and 758 LT/HV patients traveled ≥45 (median 97.3) miles to centers performing ≥16 PDs yearly. LT/HV patients had higher stage disease (P < 0.001), but lower margin positivity (20.5% vs 25.9%, P = 0.01) and improved lymphadenectomy (16 vs 11 nodes, P < 0.01). Moreover, LT/HV patients had shorter hospitalizations (9 vs 12 days, P < 0.01) and lower 30-day mortality (2.0% vs 6.3%, P < 0.01) with similar 30-day readmission rates (10.1% vs 9.8%, P = 0.83). Despite more advanced disease, LT/HV patients had superior unadjusted survival (20.3 vs 15.7 months). After adjustment, travel to a high-volume center remained associated with reduced long-term mortality (hazard ratio 0.75, P < 0.01). Despite an increased travel burden, patients treated at high-volume centers had improved perioperative outcomes, short-term mortality, and overall survival. These data support ongoing efforts to centralize care for patients undergoing PD.

  5. A finite element study of the EIDI system. [Electro-Impulse De-Icing System

    NASA Technical Reports Server (NTRS)

    Khatkhate, A. A.; Scavuzzo, R. J.; Chu, M. L.

    1988-01-01

    This paper presents a method for modeling the structural dynamics of an Electro-Impulse De-Icing System, using finite element analyses procedures. A guideline for building a representative finite element model is discussed. Modeling was done initially using four noded cubic elements, four noded isoparametric plate elements and eight noded isoparametric shell elements. Due to the size of the problem and due to the underestimation of shear stress results when compared to previous analytical work an approximate model was created to predict possible areas of shedding of ice. There appears to be good agreement with the test data provided by The Boeing Commercial Airplane Company. Thus these initial results of this method were found to be encouraging. Additional analytical work and comparison with experiment is needed in order to completely evaluate this approach.

  6. Finite-time synchronization of complex networks with non-identical nodes and impulsive disturbances

    NASA Astrophysics Data System (ADS)

    Zhang, Wanli; Li, Chuandong; He, Xing; Li, Hongfei

    2018-01-01

    This paper investigates the finite-time synchronization of complex networks (CNs) with non-identical nodes and impulsive disturbances. By utilizing stability theories, new 1-norm-based analytical techniques and suitable comparison, systems, several sufficient conditions are obtained to realize the synchronization goal in finite time. State feedback controllers with and without the sign function are designed. Results show that the controllers with sign function can reduce the conservativeness of control gains and the controllers without sign function can overcome the chattering phenomenon. Numerical simulations are offered to verify the effectiveness of the theoretical analysis.

  7. European Science Notes, Volume 41, Number 1.

    DTIC Science & Technology

    1987-01-01

    extract which also *body, HNKI, stains dorsal root ganglion exhibited a trophic effect could be re- (DRG) cells and is selective for neural placed by... effect on central as well as peripheral to migrate just after the neural tube neurons. closes and that these cells migrate Neuronal Development...viscous effects which are ex- tions used pseudounsteady, cell -centered cluded from the computation-. In some finite volume methods. Quite different

  8. Finite Element Simulation of Articular Contact Mechanics with Quadratic Tetrahedral Elements

    PubMed Central

    Maas, Steve A.; Ellis, Benjamin J.; Rawlins, David S.; Weiss, Jeffrey A.

    2016-01-01

    Although it is easier to generate finite element discretizations with tetrahedral elements, trilinear hexahedral (HEX8) elements are more often used in simulations of articular contact mechanics. This is due to numerical shortcomings of linear tetrahedral (TET4) elements, limited availability of quadratic tetrahedron elements in combination with effective contact algorithms, and the perceived increased computational expense of quadratic finite elements. In this study we implemented both ten-node (TET10) and fifteen-node (TET15) quadratic tetrahedral elements in FEBio (www.febio.org) and compared their accuracy, robustness in terms of convergence behavior and computational cost for simulations relevant to articular contact mechanics. Suitable volume integration and surface integration rules were determined by comparing the results of several benchmark contact problems. The results demonstrated that the surface integration rule used to evaluate the contact integrals for quadratic elements affected both convergence behavior and accuracy of predicted stresses. The computational expense and robustness of both quadratic tetrahedral formulations compared favorably to the HEX8 models. Of note, the TET15 element demonstrated superior convergence behavior and lower computational cost than both the TET10 and HEX8 elements for meshes with similar numbers of degrees of freedom in the contact problems that we examined. Finally, the excellent accuracy and relative efficiency of these quadratic tetrahedral elements was illustrated by comparing their predictions with those for a HEX8 mesh for simulation of articular contact in a fully validated model of the hip. These results demonstrate that TET10 and TET15 elements provide viable alternatives to HEX8 elements for simulation of articular contact mechanics. PMID:26900037

  9. The International Space Station Assembly on Schedule

    NASA Technical Reports Server (NTRS)

    1997-01-01

    As engineers continue to prepare the International Space Station (ISS) for in-orbit assembly in the year 2002, ANSYS software has proven instrumental in resolving a structural problem in the project's two primary station modules -- Nodes 1 and 2. Proof pressure tests performed in May revealed "low temperature, post-yield creep" in some of the Nodes' gussets, which were designed to reinforce ports for loads from station keeping and reboost motion of the entire space station. An extensive effort was undertaken to characterize the creep behavior of the 2219-T851 aluminum forging material from which the gussets were made. Engineers at Sverdrup Technology, Inc. (Huntsville, AL) were responsible for conducting a combined elastic-plastic-creep analysis of the gussets to determine the amount of residual compressive stress which existed in the gussets following the proof pressure tests, and to determine the stress-strain history in the gussets while on-orbit. Boeing, NASA's Space Station prime contractor, supplied the Finite Element Analysis (FEA) model geometry and developed the creep equations from the experimental data taken by NASA's Marshall Space Flight Center and Langley Research Center. The goal of this effort was to implement the uniaxial creep equations into a three dimensional finite element program, and to determine analytically whether or not the creep was something that the space station program could live with. The objective was to show analytically that either the creep rate was at an acceptable level, or that the node module had to be modified to lower the stress levels to where creep did not occur. The elastic-plastic-creep analysis was performed using the ANSYS finite element program of ANSYS, Inc. (Houston, PA). The analysis revealed that the gussets encountered a compressive stress of approximately 30,000 pounds per square inch (psi) when unloaded. This compressive residual stress significantly lowered the maximum tension stress in the gussets which decreased the creep strain rate. The analysis also showed that the gussets would not experience a great deal of creep from future pressure tests if braces or struts proposed by Boeing were installed to redistribute stress away from them. Subsequent analysis of on-orbit station keeping and reboost loads convinced Boeing that the gussets should be removed altogether.

  10. Toroidal figures of equilibrium from a second-order accurate, accelerated SCF method with subgrid approach

    NASA Astrophysics Data System (ADS)

    Huré, J.-M.; Hersant, F.

    2017-02-01

    We compute the structure of a self-gravitating torus with polytropic equation of state (EOS) rotating in an imposed centrifugal potential. The Poisson solver is based on isotropic multigrid with optimal covering factor (fluid section-to-grid area ratio). We work at second order in the grid resolution for both finite difference and quadrature schemes. For soft EOS (I.e. polytropic index n ≥ 1), the underlying second order is naturally recovered for boundary values and any other integrated quantity sensitive to the mass density (mass, angular momentum, volume, virial parameter, etc.), I.e. errors vary with the number N of nodes per direction as ˜1/N2. This is, however, not observed for purely geometrical quantities (surface area, meridional section area, volume), unless a subgrid approach is considered (I.e. boundary detection). Equilibrium sequences are also much better described, especially close to critical rotation. Yet another technical effort is required for hard EOS (n < 1), due to infinite mass density gradients at the fluid surface. We fix the problem by using kernel splitting. Finally, we propose an accelerated version of the self-consistent field (SCF) algorithm based on a node-by-node pre-conditioning of the mass density at each step. The computing time is reduced by a factor of 2 typically, regardless of the polytropic index. There is a priori no obstacle to applying these results and techniques to ellipsoidal configurations and even to 3D configurations.

  11. Application of Local Discretization Methods in the NASA Finite-Volume General Circulation Model

    NASA Technical Reports Server (NTRS)

    Yeh, Kao-San; Lin, Shian-Jiann; Rood, Richard B.

    2002-01-01

    We present the basic ideas of the dynamics system of the finite-volume General Circulation Model developed at NASA Goddard Space Flight Center for climate simulations and other applications in meteorology. The dynamics of this model is designed with emphases on conservative and monotonic transport, where the property of Lagrangian conservation is used to maintain the physical consistency of the computational fluid for long-term simulations. As the model benefits from the noise-free solutions of monotonic finite-volume transport schemes, the property of Lagrangian conservation also partly compensates the accuracy of transport for the diffusion effects due to the treatment of monotonicity. By faithfully maintaining the fundamental laws of physics during the computation, this model is able to achieve sufficient accuracy for the global consistency of climate processes. Because the computing algorithms are based on local memory, this model has the advantage of efficiency in parallel computation with distributed memory. Further research is yet desirable to reduce the diffusion effects of monotonic transport for better accuracy, and to mitigate the limitation due to fast-moving gravity waves for better efficiency.

  12. Reissner-Mindlin Legendre Spectral Finite Elements with Mixed Reduced Quadrature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brito, K. D.; Sprague, M. A.

    2012-10-01

    Legendre spectral finite elements (LSFEs) are examined through numerical experiments for static and dynamic Reissner-Mindlin plate bending and a mixed-quadrature scheme is proposed. LSFEs are high-order Lagrangian-interpolant finite elements with nodes located at the Gauss-Lobatto-Legendre quadrature points. Solutions on unstructured meshes are examined in terms of accuracy as a function of the number of model nodes and total operations. While nodal-quadrature LSFEs have been shown elsewhere to be free of shear locking on structured grids, locking is demonstrated here on unstructured grids. LSFEs with mixed quadrature are, however, locking free and are significantly more accurate than low-order finite-elements for amore » given model size or total computation time.« less

  13. Communication Dynamics in Finite Capacity Social Networks

    NASA Astrophysics Data System (ADS)

    Haerter, Jan O.; Jamtveit, Bjørn; Mathiesen, Joachim

    2012-10-01

    In communication networks, structure and dynamics are tightly coupled. The structure controls the flow of information and is itself shaped by the dynamical process of information exchanged between nodes. In order to reconcile structure and dynamics, a generic model, based on the local interaction between nodes, is considered for the communication in large social networks. In agreement with data from a large human organization, we show that the flow is non-Markovian and controlled by the temporal limitations of individuals. We confirm the versatility of our model by predicting simultaneously the degree-dependent node activity, the balance between information input and output of nodes, and the degree distribution. Finally, we quantify the limitations to network analysis when it is based on data sampled over a finite period of time.

  14. A parallel algorithm for generation and assembly of finite element stiffness and mass matrices

    NASA Technical Reports Server (NTRS)

    Storaasli, O. O.; Carmona, E. A.; Nguyen, D. T.; Baddourah, M. A.

    1991-01-01

    A new algorithm is proposed for parallel generation and assembly of the finite element stiffness and mass matrices. The proposed assembly algorithm is based on a node-by-node approach rather than the more conventional element-by-element approach. The new algorithm's generality and computation speed-up when using multiple processors are demonstrated for several practical applications on multi-processor Cray Y-MP and Cray 2 supercomputers.

  15. Effects of Pore Distributions on Ductility of Thin-Walled High Pressure Die-Cast Magnesium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Kyoo Sil; Li, Dongsheng; Sun, Xin

    2013-06-01

    In this paper, a microstructure-based three-dimensional (3D) finite element modeling method is adopted to investigate the effects of porosity in thin-walled high pressure die-cast (HPDC) Magnesium alloys on their ductility. For this purpose, the cross-sections of AM60 casting samples are first examined using optical microscope and X-ray tomography to obtain the general information on the pore distribution features. The experimentally observed pore distribution features are then used to generate a series of synthetic microstructure-based 3D finite element models with different pore volume fractions and pore distribution features. Shear and ductile damage models are adopted in the finite element analyses tomore » induce the fracture by element removal, leading to the prediction of ductility. The results in this study show that the ductility monotonically decreases as the pore volume fraction increases and that the effect of ‘skin region’ on the ductility is noticeable under the condition of same local pore volume fraction in the center region of the sample and its existence can be beneficial for the improvement of ductility. The further synthetic microstructure-based 3D finite element analyses are planned to investigate the effects of pore size and pore size distribution.« less

  16. A Novel Polygonal Finite Element Method: Virtual Node Method

    NASA Astrophysics Data System (ADS)

    Tang, X. H.; Zheng, C.; Zhang, J. H.

    2010-05-01

    Polygonal finite element method (PFEM), which can construct shape functions on polygonal elements, provides greater flexibility in mesh generation. However, the non-polynomial form of traditional PFEM, such as Wachspress method and Mean Value method, leads to inexact numerical integration. Since the integration technique for non-polynomial functions is immature. To overcome this shortcoming, a great number of integration points have to be used to obtain sufficiently exact results, which increases computational cost. In this paper, a novel polygonal finite element method is proposed and called as virtual node method (VNM). The features of present method can be list as: (1) It is a PFEM with polynomial form. Thereby, Hammer integral and Gauss integral can be naturally used to obtain exact numerical integration; (2) Shape functions of VNM satisfy all the requirements of finite element method. To test the performance of VNM, intensive numerical tests are carried out. It found that, in standard patch test, VNM can achieve significantly better results than Wachspress method and Mean Value method. Moreover, it is observed that VNM can achieve better results than triangular 3-node elements in the accuracy test.

  17. Analysis of Flexible Bars and Frames with Large Displacements of Nodes By Finite Element Method in the Form of Classical Mixed Method

    NASA Astrophysics Data System (ADS)

    Ignatyev, A. V.; Ignatyev, V. A.; Onischenko, E. V.

    2017-11-01

    This article is the continuation of the work made bt the authors on the development of the algorithms that implement the finite element method in the form of a classical mixed method for the analysis of geometrically nonlinear bar systems [1-3]. The paper describes an improved algorithm of the formation of the nonlinear governing equations system for flexible plane frames and bars with large displacements of nodes based on the finite element method in a mixed classical form and the use of the procedure of step-by-step loading. An example of the analysis is given.

  18. An adjoint view on flux consistency and strong wall boundary conditions to the Navier–Stokes equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stück, Arthur, E-mail: arthur.stueck@dlr.de

    2015-11-15

    Inconsistent discrete expressions in the boundary treatment of Navier–Stokes solvers and in the definition of force objective functionals can lead to discrete-adjoint boundary treatments that are not a valid representation of the boundary conditions to the corresponding adjoint partial differential equations. The underlying problem is studied for an elementary 1D advection–diffusion problem first using a node-centred finite-volume discretisation. The defect of the boundary operators in the inconsistently defined discrete-adjoint problem leads to oscillations and becomes evident with the additional insight of the continuous-adjoint approach. A homogenisation of the discretisations for the primal boundary treatment and the force objective functional yieldsmore » second-order functional accuracy and eliminates the defect in the discrete-adjoint boundary treatment. Subsequently, the issue is studied for aerodynamic Reynolds-averaged Navier–Stokes problems in conjunction with a standard finite-volume discretisation on median-dual grids and a strong implementation of noslip walls, found in many unstructured general-purpose flow solvers. Going out from a base-line discretisation of force objective functionals which is independent of the boundary treatment in the flow solver, two improved flux-consistent schemes are presented; based on either body wall-defined or farfield-defined control-volumes they resolve the dual inconsistency. The behaviour of the schemes is investigated on a sequence of grids in 2D and 3D.« less

  19. Moving Particles Through a Finite Element Mesh

    PubMed Central

    Peskin, Adele P.; Hardin, Gary R.

    1998-01-01

    We present a new numerical technique for modeling the flow around multiple objects moving in a fluid. The method tracks the dynamic interaction between each particle and the fluid. The movements of the fluid and the object are directly coupled. A background mesh is designed to fit the geometry of the overall domain. The mesh is designed independently of the presence of the particles except in terms of how fine it must be to track particles of a given size. Each particle is represented by a geometric figure that describes its boundary. This figure overlies the mesh. Nodes are added to the mesh where the particle boundaries intersect the background mesh, increasing the number of nodes contained in each element whose boundary is intersected. These additional nodes are then used to describe and track the particle in the numerical scheme. Appropriate element shape functions are defined to approximate the solution on the elements with extra nodes. The particles are moved through the mesh by moving only the overlying nodes defining the particles. The regular finite element grid remains unchanged. In this method, the mesh does not distort as the particles move. Instead, only the placement of particle-defining nodes changes as the particles move. Element shape functions are updated as the nodes move through the elements. This method is especially suited for models of moderate numbers of moderate-size particles, where the details of the fluid-particle coupling are important. Both the complications of creating finite element meshes around appreciable numbers of particles, and extensive remeshing upon movement of the particles are simplified in this method. PMID:28009377

  20. Divergence-free MHD on unstructured meshes using high order finite volume schemes based on multidimensional Riemann solvers

    NASA Astrophysics Data System (ADS)

    Balsara, Dinshaw S.; Dumbser, Michael

    2015-10-01

    Several advances have been reported in the recent literature on divergence-free finite volume schemes for Magnetohydrodynamics (MHD). Almost all of these advances are restricted to structured meshes. To retain full geometric versatility, however, it is also very important to make analogous advances in divergence-free schemes for MHD on unstructured meshes. Such schemes utilize a staggered Yee-type mesh, where all hydrodynamic quantities (mass, momentum and energy density) are cell-centered, while the magnetic fields are face-centered and the electric fields, which are so useful for the time update of the magnetic field, are centered at the edges. Three important advances are brought together in this paper in order to make it possible to have high order accurate finite volume schemes for the MHD equations on unstructured meshes. First, it is shown that a divergence-free WENO reconstruction of the magnetic field can be developed for unstructured meshes in two and three space dimensions using a classical cell-centered WENO algorithm, without the need to do a WENO reconstruction for the magnetic field on the faces. This is achieved via a novel constrained L2-projection operator that is used in each time step as a postprocessor of the cell-centered WENO reconstruction so that the magnetic field becomes locally and globally divergence free. Second, it is shown that recently-developed genuinely multidimensional Riemann solvers (called MuSIC Riemann solvers) can be used on unstructured meshes to obtain a multidimensionally upwinded representation of the electric field at each edge. Third, the above two innovations work well together with a high order accurate one-step ADER time stepping strategy, which requires the divergence-free nonlinear WENO reconstruction procedure to be carried out only once per time step. The resulting divergence-free ADER-WENO schemes with MuSIC Riemann solvers give us an efficient and easily-implemented strategy for divergence-free MHD on unstructured meshes. Several stringent two- and three-dimensional problems are shown to work well with the methods presented here.

  1. On the existence and stability conditions for mixed-hybrid finite element solutions based on Reissner's variational principle

    NASA Technical Reports Server (NTRS)

    Karlovitz, L. A.; Atluri, S. N.; Xue, W.-M.

    1985-01-01

    The extensions of Reissner's two-field (stress and displacement) principle to the cases wherein the displacement field is discontinuous and/or the stress field results in unreciprocated tractions, at a finite number of surfaces ('interelement boundaries') in a domain (as, for instance, when the domain is discretized into finite elements), is considered. The conditions for the existence, uniqueness, and stability of mixed-hybrid finite element solutions based on such discontinuous fields, are summarized. The reduction of these global conditions to local ('element') level, and the attendant conditions on the ranks of element matrices, are discussed. Two examples of stable, invariant, least-order elements - a four-node square planar element and an eight-node cubic element - are discussed in detail.

  2. Longitudinal 3.0T MRI analysis of changes in lymph node volume and apparent diffusion coefficient in an experimental animal model of metastatic and hyperplastic lymph nodes.

    PubMed

    Klerkx, Wenche M; Geldof, Albert A; Heintz, A Peter; van Diest, Paul J; Visser, Fredy; Mali, Willem P; Veldhuis, Wouter B

    2011-05-01

    To perform a longitudinal analysis of changes in lymph node volume and apparent diffusion coefficient (ADC) in healthy, metastatic, and hyperplastic lymph nodes. Three groups of four female Copenhagen rats were studied. Metastasis was induced by injecting cells with a high metastatic potential in their left hind footpad. Reactive nodes were induced by injecting Complete Freund Adjuvant (CFA). Imaging was performed at baseline and at 2, 5, 8, 11, and 14 days after tumor cell injection. Finally, lymph nodes were examined histopathologically. The model was highly efficient in inducing lymphadenopathy: subcutaneous cell or CFA inoculation resulted in ipsilateral metastatic or reactive popliteal lymph nodes in all rats. Metastatic nodal volumes increased exponentially from 5-7 mm(3) at baseline to 25 mm(3) at day 14, while the control node remained 5 mm(3). The hyperplastic nodes showed a rapid volume increase reaching a plateau at day 6. The ADC of metastatic nodes significantly decreased (range 13%-32%), but this decrease was also seen in reactive nodes. Metastatic and hyperplastic lymph nodes differed in terms of enlargement patterns and ADC changes. Enlarged reactive or malignant nodes could not be differentiated based on their ADC values. Copyright © 2011 Wiley-Liss, Inc.

  3. A novel finite volume discretization method for advection-diffusion systems on stretched meshes

    NASA Astrophysics Data System (ADS)

    Merrick, D. G.; Malan, A. G.; van Rooyen, J. A.

    2018-06-01

    This work is concerned with spatial advection and diffusion discretization technology within the field of Computational Fluid Dynamics (CFD). In this context, a novel method is proposed, which is dubbed the Enhanced Taylor Advection-Diffusion (ETAD) scheme. The model equation employed for design of the scheme is the scalar advection-diffusion equation, the industrial application being incompressible laminar and turbulent flow. Developed to be implementable into finite volume codes, ETAD places specific emphasis on improving accuracy on stretched structured and unstructured meshes while considering both advection and diffusion aspects in a holistic manner. A vertex-centered structured and unstructured finite volume scheme is used, and only data available on either side of the volume face is employed. This includes the addition of a so-called mesh stretching metric. Additionally, non-linear blending with the existing NVSF scheme was performed in the interest of robustness and stability, particularly on equispaced meshes. The developed scheme is assessed in terms of accuracy - this is done analytically and numerically, via comparison to upwind methods which include the popular QUICK and CUI techniques. Numerical tests involved the 1D scalar advection-diffusion equation, a 2D lid driven cavity and turbulent flow case. Significant improvements in accuracy were achieved, with L2 error reductions of up to 75%.

  4. High-order finite difference formulations for the incompressible Navier-Stokes equations on the CM-5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tafti, D.

    1995-12-01

    The paper describes the features and implementation of a general purpose high-order accurate finite difference computer program for direct and large-eddy simulations of turbulence on the CM-5 in the data parallel mode. Benchmarking studies for a direct simulation of turbulent channel flow are discussed. Performance of up to 8.8 GFLOPS is obtained for the high-order formulations on 512 processing nodes of the CM-5. The execution time for a simulation with 24 million nodes in a domain with two periodic directions is in the range of 0.2 {mu}secs/time-step/degree of freedom on 512 processing nodes of the CM-5.

  5. Dense volumetric detection and segmentation of mediastinal lymph nodes in chest CT images

    NASA Astrophysics Data System (ADS)

    Oda, Hirohisa; Roth, Holger R.; Bhatia, Kanwal K.; Oda, Masahiro; Kitasaka, Takayuki; Iwano, Shingo; Homma, Hirotoshi; Takabatake, Hirotsugu; Mori, Masaki; Natori, Hiroshi; Schnabel, Julia A.; Mori, Kensaku

    2018-02-01

    We propose a novel mediastinal lymph node detection and segmentation method from chest CT volumes based on fully convolutional networks (FCNs). Most lymph node detection methods are based on filters for blob-like structures, which are not specific for lymph nodes. The 3D U-Net is a recent example of the state-of-the-art 3D FCNs. The 3D U-Net can be trained to learn appearances of lymph nodes in order to output lymph node likelihood maps on input CT volumes. However, it is prone to oversegmentation of each lymph node due to the strong data imbalance between lymph nodes and the remaining part of the CT volumes. To moderate the balance of sizes between the target classes, we train the 3D U-Net using not only lymph node annotations but also other anatomical structures (lungs, airways, aortic arches, and pulmonary arteries) that can be extracted robustly in an automated fashion. We applied the proposed method to 45 cases of contrast-enhanced chest CT volumes. Experimental results showed that 95.5% of lymph nodes were detected with 16.3 false positives per CT volume. The segmentation results showed that the proposed method can prevent oversegmentation, achieving an average Dice score of 52.3 +/- 23.1%, compared to the baseline method with 49.2 +/- 23.8%, respectively.

  6. Arbitrary-level hanging nodes for adaptive hphp-FEM approximations in 3D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavel Kus; Pavel Solin; David Andrs

    2014-11-01

    In this paper we discuss constrained approximation with arbitrary-level hanging nodes in adaptive higher-order finite element methods (hphp-FEM) for three-dimensional problems. This technique enables using highly irregular meshes, and it greatly simplifies the design of adaptive algorithms as it prevents refinements from propagating recursively through the finite element mesh. The technique makes it possible to design efficient adaptive algorithms for purely hexahedral meshes. We present a detailed mathematical description of the method and illustrate it with numerical examples.

  7. Finite element simulation of articular contact mechanics with quadratic tetrahedral elements.

    PubMed

    Maas, Steve A; Ellis, Benjamin J; Rawlins, David S; Weiss, Jeffrey A

    2016-03-21

    Although it is easier to generate finite element discretizations with tetrahedral elements, trilinear hexahedral (HEX8) elements are more often used in simulations of articular contact mechanics. This is due to numerical shortcomings of linear tetrahedral (TET4) elements, limited availability of quadratic tetrahedron elements in combination with effective contact algorithms, and the perceived increased computational expense of quadratic finite elements. In this study we implemented both ten-node (TET10) and fifteen-node (TET15) quadratic tetrahedral elements in FEBio (www.febio.org) and compared their accuracy, robustness in terms of convergence behavior and computational cost for simulations relevant to articular contact mechanics. Suitable volume integration and surface integration rules were determined by comparing the results of several benchmark contact problems. The results demonstrated that the surface integration rule used to evaluate the contact integrals for quadratic elements affected both convergence behavior and accuracy of predicted stresses. The computational expense and robustness of both quadratic tetrahedral formulations compared favorably to the HEX8 models. Of note, the TET15 element demonstrated superior convergence behavior and lower computational cost than both the TET10 and HEX8 elements for meshes with similar numbers of degrees of freedom in the contact problems that we examined. Finally, the excellent accuracy and relative efficiency of these quadratic tetrahedral elements was illustrated by comparing their predictions with those for a HEX8 mesh for simulation of articular contact in a fully validated model of the hip. These results demonstrate that TET10 and TET15 elements provide viable alternatives to HEX8 elements for simulation of articular contact mechanics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. A 3D finite element ALE method using an approximate Riemann solution

    DOE PAGES

    Chiravalle, V. P.; Morgan, N. R.

    2016-08-09

    Arbitrary Lagrangian–Eulerian finite volume methods that solve a multidimensional Riemann-like problem at the cell center in a staggered grid hydrodynamic (SGH) arrangement have been proposed. This research proposes a new 3D finite element arbitrary Lagrangian–Eulerian SGH method that incorporates a multidimensional Riemann-like problem. Here, two different Riemann jump relations are investigated. A new limiting method that greatly improves the accuracy of the SGH method on isentropic flows is investigated. A remap method that improves upon a well-known mesh relaxation and remapping technique in order to ensure total energy conservation during the remap is also presented. Numerical details and test problemmore » results are presented.« less

  9. A 3D finite element ALE method using an approximate Riemann solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiravalle, V. P.; Morgan, N. R.

    Arbitrary Lagrangian–Eulerian finite volume methods that solve a multidimensional Riemann-like problem at the cell center in a staggered grid hydrodynamic (SGH) arrangement have been proposed. This research proposes a new 3D finite element arbitrary Lagrangian–Eulerian SGH method that incorporates a multidimensional Riemann-like problem. Here, two different Riemann jump relations are investigated. A new limiting method that greatly improves the accuracy of the SGH method on isentropic flows is investigated. A remap method that improves upon a well-known mesh relaxation and remapping technique in order to ensure total energy conservation during the remap is also presented. Numerical details and test problemmore » results are presented.« less

  10. Relationship between sample volumes and modulus of human vertebral trabecular bone in micro-finite element analysis.

    PubMed

    Wen, Xin-Xin; Xu, Chao; Zong, Chun-Lin; Feng, Ya-Fei; Ma, Xiang-Yu; Wang, Fa-Qi; Yan, Ya-Bo; Lei, Wei

    2016-07-01

    Micro-finite element (μFE) models have been widely used to assess the biomechanical properties of trabecular bone. How to choose a proper sample volume of trabecular bone, which could predict the real bone biomechanical properties and reduce the calculation time, was an interesting problem. Therefore, the purpose of this study was to investigate the relationship between different sample volumes and apparent elastic modulus (E) calculated from μFE model. 5 Human lumbar vertebral bodies (L1-L5) were scanned by micro-CT. Cubic concentric samples of different lengths were constructed as the experimental groups and the largest possible volumes of interest (VOI) were constructed as the control group. A direct voxel-to-element approach was used to generate μFE models and steel layers were added to the superior and inferior surface to mimic axial compression tests. A 1% axial strain was prescribed to the top surface of the model to obtain the E values. ANOVA tests were performed to compare the E values from the different VOIs against that of the control group. Nonlinear function curve fitting was performed to study the relationship between volumes and E values. The larger cubic VOI included more nodes and elements, and more CPU times were needed for calculations. E values showed a descending tendency as the length of cubic VOI decreased. When the volume of VOI was smaller than (7.34mm(3)), E values were significantly different from the control group. The fit function showed that E values approached an asymptotic values with increasing length of VOI. Our study demonstrated that apparent elastic modulus calculated from μFE models were affected by the sample volumes. There was a descending tendency of E values as the length of cubic VOI decreased. Sample volume which was not smaller than (7.34mm(3)) was efficient enough and timesaving for the calculation of E. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Finite Volume Numerical Methods for Aeroheating Rate Calculations from Infrared Thermographic Data

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Berry, Scott A.; Horvath, Thomas J.; Nowak, Robert J.

    2006-01-01

    The use of multi-dimensional finite volume heat conduction techniques for calculating aeroheating rates from measured global surface temperatures on hypersonic wind tunnel models was investigated. Both direct and inverse finite volume techniques were investigated and compared with the standard one-dimensional semi-infinite technique. Global transient surface temperatures were measured using an infrared thermographic technique on a 0.333-scale model of the Hyper-X forebody in the NASA Langley Research Center 20-Inch Mach 6 Air tunnel. In these tests the effectiveness of vortices generated via gas injection for initiating hypersonic transition on the Hyper-X forebody was investigated. An array of streamwise-orientated heating striations was generated and visualized downstream of the gas injection sites. In regions without significant spatial temperature gradients, one-dimensional techniques provided accurate aeroheating rates. In regions with sharp temperature gradients caused by striation patterns multi-dimensional heat transfer techniques were necessary to obtain more accurate heating rates. The use of the one-dimensional technique resulted in differences of 20% in the calculated heating rates compared to 2-D analysis because it did not account for lateral heat conduction in the model.

  12. Curved Thermopiezoelectric Shell Structures Modeled by Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Lee, Ho-Jun

    2000-01-01

    "Smart" structures composed of piezoelectric materials may significantly improve the performance of aeropropulsion systems through a variety of vibration, noise, and shape-control applications. The development of analytical models for piezoelectric smart structures is an ongoing, in-house activity at the NASA Glenn Research Center at Lewis Field focused toward the experimental characterization of these materials. Research efforts have been directed toward developing analytical models that account for the coupled mechanical, electrical, and thermal response of piezoelectric composite materials. Current work revolves around implementing thermal effects into a curvilinear-shell finite element code. This enhances capabilities to analyze curved structures and to account for coupling effects arising from thermal effects and the curved geometry. The current analytical model implements a unique mixed multi-field laminate theory to improve computational efficiency without sacrificing accuracy. The mechanics can model both the sensory and active behavior of piezoelectric composite shell structures. Finite element equations are being implemented for an eight-node curvilinear shell element, and numerical studies are being conducted to demonstrate capabilities to model the response of curved piezoelectric composite structures (see the figure).

  13. Dissipative properties of hot and dense hadronic matter in an excluded-volume hadron resonance gas model

    NASA Astrophysics Data System (ADS)

    Kadam, Guru Prakash; Mishra, Hiranmaya

    2015-09-01

    We estimate dissipative properties, viz., shear and bulk viscosities of hadronic matter using relativistic Boltzmann equation in relaxation time approximation within the framework of excluded-volume hadron resonance gas (EHRG) model. We find that at zero baryon chemical potential the shear viscosity to entropy ratio (η /s ) decreases with temperature while at finite baryon chemical potential this ratio shows the same behavior as a function of temperature but reaches close to the Kovtun-Son-Starinets (KSS) bound. Further along the chemical freezeout curve, ratio η /s is almost constant apart from small initial monotonic rise. This observation may have some relevance to the experimental finding that the differential elliptic flow of charged hadrons does not change considerably at lower center-of-mass energy. We further find that bulk viscosity to entropy density (ζ /s ) decreases with temperature while this ratio has higher value at finite baryon chemical potential at higher temperature. Along the freezeout curve ζ /s decreases monotonically at lower center-of-mass energy and then saturates.

  14. Comparison of cell centered and cell vertex scheme in the calculation of high speed compressible flows

    NASA Astrophysics Data System (ADS)

    Rahman, Syazila; Yusoff, Mohd. Zamri; Hasini, Hasril

    2012-06-01

    This paper describes the comparison between the cell centered scheme and cell vertex scheme in the calculation of high speed compressible flow properties. The calculation is carried out using Computational Fluid Dynamic (CFD) in which the mass, momentum and energy equations are solved simultaneously over the flow domain. The geometry under investigation consists of a Binnie and Green convergent-divergent nozzle and structured mesh scheme is implemented throughout the flow domain. The finite volume CFD solver employs second-order accurate central differencing scheme for spatial discretization. In addition, the second-order accurate cell-vertex finite volume spatial discretization is also introduced in this case for comparison. The multi-stage Runge-Kutta time integration is implemented for solving a set of non-linear governing equations with variables stored at the vertices. Artificial dissipations used second and fourth order terms with pressure switch to detect changes in pressure gradient. This is important to control the solution stability and capture shock discontinuity. The result is compared with experimental measurement and good agreement is obtained for both cases.

  15. Dose-volume effects in pathologic lymph nodes in locally advanced cervical cancer.

    PubMed

    Bacorro, Warren; Dumas, Isabelle; Escande, Alexandre; Gouy, Sebastien; Bentivegna, Enrica; Morice, Philippe; Haie-Meder, Christine; Chargari, Cyrus

    2018-03-01

    In cervical cancer patients, dose-volume relationships have been demonstrated for tumor and organs-at-risk, but not for pathologic nodes. The nodal control probability (NCP) according to dose/volume parameters was investigated. Patients with node-positive cervical cancer treated curatively with external beam radiotherapy (EBRT) and image-guided brachytherapy (IGABT) were identified. Nodal doses during EBRT, IGABT and boost were converted to 2-Gy equivalent (α/β = 10 Gy) and summed. Pathologic nodes were followed individually from diagnosis to relapse. Statistical analyses comprised log-rank tests (univariate analyses), Cox proportional model (factors with p ≤ 0.1 in univariate) and Probit analyses. A total of 108 patients with 254 unresected pathological nodes were identified. The mean nodal volume at diagnosis was 3.4 ± 5.8 cm 3 . The mean total nodal EQD2 doses were 55.3 ± 5.6 Gy. Concurrent chemotherapy was given in 96%. With a median follow-up of 33.5 months, 20 patients (18.5%) experienced relapse in nodes considered pathologic at diagnosis. Overall nodal recurrence rate was 9.1% (23/254). On univariate analyses, nodal volume (threshold: 3 cm 3 , p < .0001) and lymph node dose (≥57.5 Gy α/β10 , p = .039) were significant for nodal control. The use of simultaneous boost was borderline for significance (p = .07). On multivariate analysis, volume (HR = 8.2, 4.0-16.6, p < .0001) and dose (HR = 2, 1.05-3.9, p = .034) remained independent factors. Probit analysis combining dose and volume showed significant relationships with NCP, with increasing gap between the curves with higher nodal volumes. A nodal dose-volume effect on NCP is demonstrated for the first time, with increasing NCP benefit of additional doses to higher-volume nodes. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Multi-directional fault detection system

    DOEpatents

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2010-11-23

    An apparatus, program product and method checks for nodal faults in a group of nodes comprising a center node and all adjacent nodes. The center node concurrently communicates with the immediately adjacent nodes in three dimensions. The communications are analyzed to determine a presence of a faulty node or connection.

  17. Multi-directional fault detection system

    DOEpatents

    Archer, Charles Jens [Rochester, MN; Pinnow, Kurt Walter [Rochester, MN; Ratterman, Joseph D [Rochester, MN; Smith, Brian Edward [Rochester, MN

    2009-03-17

    An apparatus, program product and method checks for nodal faults in a group of nodes comprising a center node and all adjacent nodes. The center node concurrently communicates with the immediately adjacent nodes in three dimensions. The communications are analyzed to determine a presence of a faulty node or connection.

  18. Multi-directional fault detection system

    DOEpatents

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2010-06-29

    An apparatus, program product and method checks for nodal faults in a group of nodes comprising a center node and all adjacent nodes. The center node concurrently communicates with the immediately adjacent nodes in three dimensions. The communications are analyzed to determine a presence of a faulty node or connection.

  19. The MHOST finite element program: 3-D inelastic analysis methods for hot section components. Volume 1: Theoretical manual

    NASA Technical Reports Server (NTRS)

    Nakazawa, Shohei

    1991-01-01

    Formulations and algorithms implemented in the MHOST finite element program are discussed. The code uses a novel concept of the mixed iterative solution technique for the efficient 3-D computations of turbine engine hot section components. The general framework of variational formulation and solution algorithms are discussed which were derived from the mixed three field Hu-Washizu principle. This formulation enables the use of nodal interpolation for coordinates, displacements, strains, and stresses. Algorithmic description of the mixed iterative method includes variations for the quasi static, transient dynamic and buckling analyses. The global-local analysis procedure referred to as the subelement refinement is developed in the framework of the mixed iterative solution, of which the detail is presented. The numerically integrated isoparametric elements implemented in the framework is discussed. Methods to filter certain parts of strain and project the element discontinuous quantities to the nodes are developed for a family of linear elements. Integration algorithms are described for linear and nonlinear equations included in MHOST program.

  20. Toward real-time diffuse optical tomography: accelerating light propagation modeling employing parallel computing on GPU and CPU

    NASA Astrophysics Data System (ADS)

    Doulgerakis, Matthaios; Eggebrecht, Adam; Wojtkiewicz, Stanislaw; Culver, Joseph; Dehghani, Hamid

    2017-12-01

    Parameter recovery in diffuse optical tomography is a computationally expensive algorithm, especially when used for large and complex volumes, as in the case of human brain functional imaging. The modeling of light propagation, also known as the forward problem, is the computational bottleneck of the recovery algorithm, whereby the lack of a real-time solution is impeding practical and clinical applications. The objective of this work is the acceleration of the forward model, within a diffusion approximation-based finite-element modeling framework, employing parallelization to expedite the calculation of light propagation in realistic adult head models. The proposed methodology is applicable for modeling both continuous wave and frequency-domain systems with the results demonstrating a 10-fold speed increase when GPU architectures are available, while maintaining high accuracy. It is shown that, for a very high-resolution finite-element model of the adult human head with ˜600,000 nodes, consisting of heterogeneous layers, light propagation can be calculated at ˜0.25 s/excitation source.

  1. Design of an essentially non-oscillatory reconstruction procedure in finite-element type meshes

    NASA Technical Reports Server (NTRS)

    Abgrall, Remi

    1992-01-01

    An essentially non oscillatory reconstruction for functions defined on finite element type meshes is designed. Two related problems are studied: the interpolation of possibly unsmooth multivariate functions on arbitary meshes and the reconstruction of a function from its averages in the control volumes surrounding the nodes of the mesh. Concerning the first problem, the behavior of the highest coefficients of two polynomial interpolations of a function that may admit discontinuities of locally regular curves is studied: the Lagrange interpolation and an approximation such that the mean of the polynomial on any control volume is equal to that of the function to be approximated. This enables the best stencil for the approximation to be chosen. The choice of the smallest possible number of stencils is addressed. Concerning the reconstruction problem, two methods were studied: one based on an adaptation of the so called reconstruction via deconvolution method to irregular meshes and one that lies on the approximation on the mean as defined above. The first method is conservative up to a quadrature formula and the second one is exactly conservative. The two methods have the expected order of accuracy, but the second one is much less expensive than the first one. Some numerical examples are given which demonstrate the efficiency of the reconstruction.

  2. Finite-Time and Fixed-Time Cluster Synchronization With or Without Pinning Control.

    PubMed

    Liu, Xiwei; Chen, Tianping

    2018-01-01

    In this paper, the finite-time and fixed-time cluster synchronization problem for complex networks with or without pinning control are discussed. Finite-time (or fixed-time) synchronization has been a hot topic in recent years, which means that the network can achieve synchronization in finite-time, and the settling time depends on the initial values for finite-time synchronization (or the settling time is bounded by a constant for any initial values for fixed-time synchronization). To realize the finite-time and fixed-time cluster synchronization, some simple distributed protocols with or without pinning control are designed and the effectiveness is rigorously proved. Several sufficient criteria are also obtained to clarify the effects of coupling terms for finite-time and fixed-time cluster synchronization. Especially, when the cluster number is one, the cluster synchronization becomes the complete synchronization problem; when the network has only one node, the coupling term between nodes will disappear, and the synchronization problem becomes the simplest master-slave case, which also includes the stability problem for nonlinear systems like neural networks. All these cases are also discussed. Finally, numerical simulations are presented to demonstrate the correctness of obtained theoretical results.

  3. A Floating Node Method for the Modelling of Discontinuities Within a Finite Element

    NASA Technical Reports Server (NTRS)

    Pinho, Silvestre T.; Chen, B. Y.; DeCarvalho, Nelson V.; Baiz, P. M.; Tay, T. E.

    2013-01-01

    This paper focuses on the accurate numerical representation of complex networks of evolving discontinuities in solids, with particular emphasis on cracks. The limitation of the standard finite element method (FEM) in approximating discontinuous solutions has motivated the development of re-meshing, smeared crack models, the eXtended Finite Element Method (XFEM) and the Phantom Node Method (PNM). We propose a new method which has some similarities to the PNM, but crucially: (i) does not introduce an error on the crack geometry when mapping to natural coordinates; (ii) does not require numerical integration over only part of a domain; (iii) can incorporate weak discontinuities and cohesive cracks more readily; (iv) is ideally suited for the representation of multiple and complex networks of (weak, strong and cohesive) discontinuities; (v) leads to the same solution as a finite element mesh where the discontinuity is represented explicitly; and (vi) is conceptually simpler than the PNM.

  4. Finite-time synchronization for second-order nonlinear multi-agent system via pinning exponent sliding mode control.

    PubMed

    Hou, Huazhou; Zhang, Qingling

    2016-11-01

    In this paper we investigate the finite-time synchronization for second-order multi-agent system via pinning exponent sliding mode control. Firstly, for the nonlinear multi-agent system, differential mean value theorem is employed to transfer the nonlinear system into linear system, then, by pinning only one node in the system with novel exponent sliding mode control, we can achieve synchronization in finite time. Secondly, considering the 3-DOF helicopter system with nonlinear dynamics and disturbances, the novel exponent sliding mode control protocol is applied to only one node to achieve the synchronization. Finally, the simulation results show the effectiveness and the advantages of the proposed method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  5. A framework of space weather satellite data pipeline

    NASA Astrophysics Data System (ADS)

    Ma, Fuli; Zou, Ziming

    Various applications indicate a need of permanent space weather information. The diversity of available instruments enables a big variety of products. As an indispensable part of space weather satellite operation system, space weather data processing system is more complicated than before. The information handled by the data processing system has been used in more and more fields such as space weather monitoring and space weather prediction models. In the past few years, many satellites have been launched by China. The data volume downlinked by these satellites has achieved the so-called big data level and it will continue to grow fast in the next few years due to the implementation of many new space weather programs. Because of the huge amount of data, the current infrastructure is no longer incapable of processing data timely, so we proposed a new space weather data processing system (SWDPS) based on the architecture of cloud computing. Similar to Hadoop, SWDPS decomposes the tasks into smaller tasks which will be executed by many different work nodes. Control Center in SWDPS, just like NameNode and JobTracker within Hadoop which is the bond between the data and the cluster, will establish work plan for the cluster once a client submits data. Control Center will allocate node for the tasks and the monitor the status of all tasks. As the same of TaskTrakcer, Compute Nodes in SWDPS are the salves of Control Center which are responsible for calling the plugins(e.g., dividing and sorting plugins) to execute the concrete jobs. They will also manage all the tasks’ status and report them to Control Center. Once a task fails, a Compute Node will notify Control Center. Control Center decides what to do then; it may resubmit the job elsewhere, it may mark that specific record as something to avoid, and it may even blacklist the Compute Node as unreliable. In addition to these modules, SWDPS has a different module named Data Service which is used to provide file operations such as adding, deleting, modifying and querying for the clients. Beyond that Data Service can also split and combine files based on the timestamp of each record. SWDPS has been used for quite some time and it has been successfully dealt with many satellites, such as FY1C, FY1D, FY2A, FY2B, etc. The good performance in actual operation shows that SWDPS is stable and reliable.

  6. Critical temperatures of hybrid laminates using finite elements

    NASA Astrophysics Data System (ADS)

    Chockalingam, S.; Mathew, T. C.; Singh, G.; Rao, G. V.

    1992-06-01

    Thermal buckling of antisymmetric cross-ply hybrid laminates is investigated. A one-dimensional finite element based on first-order shear deformation theory, having two nodes and six degrees of freedom per node, namely axial displacement, transverse displacements and rotation of the normal to the beam axis and their derivatives with respect to beam coordinate axis, is employed for this purpose. Various types of hybrid laminates with different combination of glass/epoxy, Kevlar/epoxy and carbon/epoxy are considered. Effects of slenderness ratio, boundary conditions and lay-ups are studied in detail.

  7. Spatial Convergence of Three Dimensional Turbulent Flows

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Anderson, W. Kyle

    2016-01-01

    Finite-volume and finite-element schemes, both implemented within the FUN3D flow solver, are evaluated for several test cases described on the Turbulence-Modeling Resource (TMR) web site. The cases include subsonic flow over a hemisphere cylinder, subsonic flow over a swept bump configuration, and supersonic flow in a square duct. The finite- volume and finite-element schemes are both used to obtain solutions for the first two cases, whereas only the finite-volume scheme is used for the supersonic duct. For the hemisphere cylinder, finite-element solutions obtained on tetrahedral meshes are compared with finite- volume solutions on mixed-element meshes. For the swept bump, finite-volume solutions have been obtained for both hexahedral and tetrahedral meshes and are compared with finite-element solutions obtained on tetrahedral meshes. For the hemisphere cylinder and the swept bump, solutions are obtained on a series of meshes with varying grid density and comparisons are made between drag coefficients, pressure distributions, velocity profiles, and profiles of the turbulence working variable. The square duct shows small variation due to element type or the spatial accuracy of turbulence model convection. It is demonstrated that the finite-element scheme on tetrahedral meshes yields similar accuracy as the finite- volume scheme on mixed-element and hexahedral grids, and demonstrates less sensitivity to the mesh topology (biased tetrahedral grids) than the finite-volume scheme.

  8. Linear magnetoconductivity in an intrinsic topological Weyl semimetal

    NASA Astrophysics Data System (ADS)

    Zhang, Song-Bo; Lu, Hai-Zhou; Shen, Shun-Qing

    2016-05-01

    Searching for the signature of the violation of chiral charge conservation in solids has inspired a growing passion for the magneto-transport in topological semimetals. One of the open questions is how the conductivity depends on magnetic fields in a semimetal phase when the Fermi energy crosses the Weyl nodes. Here, we study both the longitudinal and transverse magnetoconductivity of a topological Weyl semimetal near the Weyl nodes with the help of a two-node model that includes all the topological semimetal properties. In the semimetal phase, the Fermi energy crosses only the 0th Landau bands in magnetic fields. For a finite potential range of impurities, it is found that both the longitudinal and transverse magnetoconductivity are positive and linear at the Weyl nodes, leading to an anisotropic and negative magnetoresistivity. The longitudinal magnetoconductivity depends on the potential range of impurities. The longitudinal conductivity remains finite at zero field, even though the density of states vanishes at the Weyl nodes. This work establishes a relation between the linear magnetoconductivity and the intrinsic topological Weyl semimetal phase.

  9. Development of the Joint NASA/NCAR General Circulation Model

    NASA Technical Reports Server (NTRS)

    Lin, S.-J.; Rood, R. B.

    1999-01-01

    The Data Assimilation Office at NASA/Goddard Space Flight Center is collaborating with NCAR/CGD in an ambitious proposal for the development of a unified climate, numerical weather prediction, and chemistry transport model which is suitable for global data assimilation of the physical and chemical state of the Earth's atmosphere. A prototype model based on the NCAR CCM3 physics and the NASA finite-volume dynamical core has been built. A unique feature of the NASA finite-volume dynamical core is its advanced tracer transport algorithm on the floating Lagrangian control-volume coordinate. The model currently has a highly idealized ozone production/loss chemistry derived from the observed 2D (latitude-height) climatology of the recent decades. Nevertheless, the simulated horizontal wave structure of the total ozone is in good qualitative agreement with the observed (TOMS). Long term climate simulations and NWP experiments have been carried out. Current up to date status and futur! e plan will be discussed in the conference.

  10. INDIRECT COMPUTED TOMOGRAPHIC LYMPHOGRAPHY FOR ILIOSACRAL LYMPHATIC MAPPING IN A COHORT OF DOGS WITH ANAL SAC GLAND ADENOCARCINOMA: TECHNIQUE DESCRIPTION.

    PubMed

    Majeski, Stephanie A; Steffey, Michele A; Fuller, Mark; Hunt, Geraldine B; Mayhew, Philipp D; Pollard, Rachel E

    2017-05-01

    Sentinel lymph node mapping can help to direct surgical oncologic staging and metastatic disease detection in patients with complex lymphatic pathways. We hypothesized that indirect computed tomographic lymphography (ICTL) with a water-soluble iodinated contrast agent would successfully map lymphatic pathways of the iliosacral lymphatic center in dogs with anal sac gland carcinoma, providing a potential preoperative method for iliosacral sentinel lymph node identification in dogs. Thirteen adult dogs diagnosed with anal sac gland carcinoma were enrolled in this prospective, pilot study, and ICTL was performed via peritumoral contrast injection with serial caudal abdominal computed tomography scans for iliosacral sentinel lymph node identification. Technical and descriptive details for ICTL were recorded, including patient positioning, total contrast injection volume, timing of contrast visualization, and sentinel lymph nodes and lymphatic pathways identified. Indirect CT lymphography identified lymphatic pathways and sentinel lymph nodes in 12/13 cases (92%). Identified sentinel lymph nodes were ipsilateral to the anal sac gland carcinoma in 8/12 and contralateral to the anal sac gland carcinoma in 4/12 cases. Sacral, internal iliac, and medial iliac lymph nodes were identified as sentinel lymph nodes, and patterns were widely variable. Patient positioning and timing of imaging may impact successful sentinel lymph node identification. Positioning in supported sternal recumbency is recommended. Results indicate that ICTL may be a feasible technique for sentinel lymph node identification in dogs with anal sac gland carcinoma and offer preliminary data to drive further investigation of iliosacral lymphatic metastatic patterns using ICTL and sentinel lymph node biopsy. © 2017 American College of Veterinary Radiology.

  11. Gigaflop (billion floating point operations per second) performance for computational electromagnetics

    NASA Technical Reports Server (NTRS)

    Shankar, V.; Rowell, C.; Hall, W. F.; Mohammadian, A. H.; Schuh, M.; Taylor, K.

    1992-01-01

    Accurate and rapid evaluation of radar signature for alternative aircraft/store configurations would be of substantial benefit in the evolution of integrated designs that meet radar cross-section (RCS) requirements across the threat spectrum. Finite-volume time domain methods offer the possibility of modeling the whole aircraft, including penetrable regions and stores, at longer wavelengths on today's gigaflop supercomputers and at typical airborne radar wavelengths on the teraflop computers of tomorrow. A structured-grid finite-volume time domain computational fluid dynamics (CFD)-based RCS code has been developed at the Rockwell Science Center, and this code incorporates modeling techniques for general radar absorbing materials and structures. Using this work as a base, the goal of the CFD-based CEM effort is to define, implement and evaluate various code development issues suitable for rapid prototype signature prediction.

  12. A new adaptive mesh refinement strategy for numerically solving evolutionary PDE's

    NASA Astrophysics Data System (ADS)

    Burgarelli, Denise; Kischinhevsky, Mauricio; Biezuner, Rodney Josue

    2006-11-01

    A graph-based implementation of quadtree meshes for dealing with adaptive mesh refinement (AMR) in the numerical solution of evolutionary partial differential equations is discussed using finite volume methods. The technique displays a plug-in feature that allows replacement of a group of cells in any region of interest for another one with arbitrary refinement, and with only local changes occurring in the data structure. The data structure is also specially designed to minimize the number of operations needed in the AMR. Implementation of the new scheme allows flexibility in the levels of refinement of adjacent regions. Moreover, storage requirements and computational cost compare competitively with mesh refinement schemes based on hierarchical trees. Low storage is achieved for only the children nodes are stored when a refinement takes place. These nodes become part of a graph structure, thus motivating the denomination autonomous leaves graph (ALG) for the new scheme. Neighbors can then be reached without accessing their parent nodes. Additionally, linear-system solvers based on the minimization of functionals can be easily employed. ALG was not conceived with any particular problem or geometry in mind and can thus be applied to the study of several phenomena. Some test problems are used to illustrate the effectiveness of the technique.

  13. Computational performance of Free Mesh Method applied to continuum mechanics problems

    PubMed Central

    YAGAWA, Genki

    2011-01-01

    The free mesh method (FMM) is a kind of the meshless methods intended for particle-like finite element analysis of problems that are difficult to handle using global mesh generation, or a node-based finite element method that employs a local mesh generation technique and a node-by-node algorithm. The aim of the present paper is to review some unique numerical solutions of fluid and solid mechanics by employing FMM as well as the Enriched Free Mesh Method (EFMM), which is a new version of FMM, including compressible flow and sounding mechanism in air-reed instruments as applications to fluid mechanics, and automatic remeshing for slow crack growth, dynamic behavior of solid as well as large-scale Eigen-frequency of engine block as applications to solid mechanics. PMID:21558753

  14. Effects of finite volume on the K L – K S mass difference

    DOE PAGES

    Christ, N.  H.; Feng, X.; Martinelli, G.; ...

    2015-06-24

    Phenomena that involve two or more on-shell particles are particularly sensitive to the effects of finite volume and require special treatment when computed using lattice QCD. In this paper we generalize the results of Lüscher and Lellouch and Lüscher, which determine the leading-order effects of finite volume on the two-particle spectrum and two-particle decay amplitudes to determine the finite-volume effects in the second-order mixing of the K⁰ and K⁰⁻ states. We extend the methods of Kim, Sachrajda, and Sharpe to provide a direct, uniform treatment of these three, related, finite-volume corrections. In particular, the leading, finite-volume corrections to the Kmore » L – K S mass difference ΔM K and the CP-violating parameter εK are determined, including the potentially large effects which can arise from the near degeneracy of the kaon mass and the energy of a finite-volume, two-pion state.« less

  15. Analytical and Photogrammetric Characterization of a Planar Tetrahedral Truss

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Adams, Richard R.; Rhodes, Marvin D.

    1990-01-01

    Future space science missions are likely to require near-optical quality reflectors which are supported by a stiff truss structure. This support truss should conform closely with its intended shape to minimize its contribution to the overall surface error of the reflector. The current investigation was conducted to evaluate the planar surface accuracy of a regular tetrahedral truss structure by comparing the results of predicted and measured node locations. The truss is a 2-ring hexagonal structure composed of 102 equal-length truss members. Each truss member is nominally 2 meters in length between node centers and is comprised of a graphite/epoxy tube with aluminum nodes and joints. The axial stiffness and the length variation of the truss components were determined experimentally and incorporated into a static finite element analysis of the truss. From this analysis, the root mean square (RMS) surface error of the truss was predicted to be 0.11 mm (0004 in). Photogrammetry tests were performed on the assembled truss to measure the normal displacements of the upper surface nodes and to determine if the truss would maintain its intended shape when subjected to repeated assembly. Considering the variation in the truss component lengths, the measures rms error of 0.14 mm (0.006 in) in the assembled truss is relatively small. The test results also indicate that a repeatable truss surface is achievable. Several potential sources of error were identified and discussed.

  16. MODFLOW–USG version 1: An unstructured grid version of MODFLOW for simulating groundwater flow and tightly coupled processes using a control volume finite-difference formulation

    USGS Publications Warehouse

    Panday, Sorab; Langevin, Christian D.; Niswonger, Richard G.; Ibaraki, Motomu; Hughes, Joseph D.

    2013-01-01

    A new version of MODFLOW, called MODFLOW–USG (for UnStructured Grid), was developed to support a wide variety of structured and unstructured grid types, including nested grids and grids based on prismatic triangles, rectangles, hexagons, and other cell shapes. Flexibility in grid design can be used to focus resolution along rivers and around wells, for example, or to subdiscretize individual layers to better represent hydrostratigraphic units. MODFLOW–USG is based on an underlying control volume finite difference (CVFD) formulation in which a cell can be connected to an arbitrary number of adjacent cells. To improve accuracy of the CVFD formulation for irregular grid-cell geometries or nested grids, a generalized Ghost Node Correction (GNC) Package was developed, which uses interpolated heads in the flow calculation between adjacent connected cells. MODFLOW–USG includes a Groundwater Flow (GWF) Process, based on the GWF Process in MODFLOW–2005, as well as a new Connected Linear Network (CLN) Process to simulate the effects of multi-node wells, karst conduits, and tile drains, for example. The CLN Process is tightly coupled with the GWF Process in that the equations from both processes are formulated into one matrix equation and solved simultaneously. This robustness results from using an unstructured grid with unstructured matrix storage and solution schemes. MODFLOW–USG also contains an optional Newton-Raphson formulation, based on the formulation in MODFLOW–NWT, for improving solution convergence and avoiding problems with the drying and rewetting of cells. Because the existing MODFLOW solvers were developed for structured and symmetric matrices, they were replaced with a new Sparse Matrix Solver (SMS) Package developed specifically for MODFLOW–USG. The SMS Package provides several methods for resolving nonlinearities and multiple symmetric and asymmetric linear solution schemes to solve the matrix arising from the flow equations and the Newton-Raphson formulation, respectively.

  17. Multidimensional directional flux weighted upwind scheme for multiphase flow modeling in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Jin, G.

    2012-12-01

    Multiphase flow modeling is an important numerical tool for a better understanding of transport processes in the fields including, but not limited to, petroleum reservoir engineering, remedy of ground water contamination, and risk evaluation of greenhouse gases such as CO2 injected into deep saline reservoirs. However, accurate numerical modeling for multiphase flow remains many challenges that arise from the inherent tight coupling and strong non-linear nature of the governing equations and the highly heterogeneous media. The existence of counter current flow which is caused by the effect of adverse relative mobility contrast and gravitational and capillary forces will introduce additional numerical instability. Recently multipoint flux approximation (MPFA) has become a subject of extensive research and has been demonstrated with great success in reducing considerable grid orientation effects compared to the conventional single point upstream (SPU) weighting scheme, especially in higher dimensions. However, the present available MPFA schemes are mathematically targeted to certain types of grids in two dimensions, a more general form of MPFA scheme is needed for both 2-D and 3-D problems. In this work a new upstream weighting scheme based on multipoint directional incoming fluxes is proposed which incorporates full permeability tensor to account for the heterogeneity of the porous media. First, the multiphase governing equations are decoupled into an elliptic pressure equation and a hyperbolic or parabolic saturation depends on whether the gravitational and capillary pressures are presented or not. Next, a dual secondary grid (called finite volume grid) is formulated from a primary grid (called finite element grid) to create interaction regions for each grid cell over the entire simulation domain. Such a discretization must ensure the conservation of mass and maintain the continuity of the Darcy velocity across the boundaries between neighboring interaction regions. The pressure field is then implicitly calculated from the pressure equation, which in turn results in the derived velocity field for directional flux calculation at each grid node. Directional flux at the center of each interaction surface is also calculated by interpolation from the element nodal fluxes using shape functions. The MPFA scheme is performed by a specific linear combination of all incoming fluxes into the upstream cell represented by either nodal fluxes or interpolated surface boundary fluxes to produce an upwind directional fluxed weighted relative mobility at the center of the interaction region boundary. Such an upwind weighted relative mobility is then used for calculating the saturations of each fluid phase explicitly. The proposed upwind weighting scheme has been implemented into a mixed finite element-finite volume (FE-FV) method, which allows for handling complex reservoir geometry with second-order accuracies in approximating primary variables. The numerical solver has been tested with several bench mark test problems. The application of the proposed scheme to migration path analysis of CO2 injected into deep saline reservoirs in 3-D has demonstrated its ability and robustness in handling multiphase flow with adverse mobility contrast in highly heterogeneous porous media.

  18. The Pilot Land Data System (PLDS) at the Ames Research Center manages aircraft data in collaboration with an ecosystem research project

    NASA Technical Reports Server (NTRS)

    Angelici, Gary; Popovici, Lidia; Skiles, Jay

    1991-01-01

    The Pilot Land Data System (PLDS) is a data and information system serving NASA-supported investigators in the land science community. The three nodes of the PLDS, one each at the Ames Research Center (ARC), the Goddard Space Flight Center (GSFC) and the Jet Propulsion Laboratory (JPL), cooperate in providing consistent information describing the various data holding in the hardware and software (accessible via network and modem) that provide information about and access to PLDS-held data, which is available for distribution. A major new activity of the PLDS node at the Ames Research Center involves the interaction of the PLDS with an active NASA ecosystem science project, the Oregon Transect Ecosystems Research involves the management of, access to, and distribution of the large volume of widely-varying aircraft data collected by OTTER. The OTTER project, is managed by researchers at the Ames Research Center and Oregon State University. Its principal objective is to estimate major fluxes of carbon, nitrogen, and water of forest ecosystems using an ecosystem process model driven by remote sensing data. Ten researchers at NASA centers and universities are analyzing data for six sites along a temperature-moisture gradient across the western half of central Oregon (called the Oregon Transect). Sensors mounted on six different aircraft have acquired data over the Oregon Transect in support of the OTTER project.

  19. [Definition of nodal volumes in breast cancer treatment and segmentation guidelines].

    PubMed

    Kirova, Y M; Castro Pena, P; Dendale, R; Campana, F; Bollet, M A; Fournier-Bidoz, N; Fourquet, A

    2009-06-01

    To assist in the determination of breast and nodal volumes in the setting of radiotherapy for breast cancer and establish segmentation guidelines. Materials and methods. Contrast metarial enhanced CT examinations were obtained in the treatment position in 25 patients to clearly define the target volumes. The clinical target volume (CTV) including the breast, internal mammary nodes, supraclavicular and subclavicular regions and axxilary region were segmented along with the brachial plexus and interpectoral nodes. The following critical organs were also segmented: heart, lungs, contralateral breast, thyroid, esophagus and humeral head. A correlation between clinical and imaging findings and meeting between radiation oncologists and breast specialists resulted in a better definition of irradiation volumes for breast and nodes with establishement of segmentation guidelines and creation of an anatomical atlas. A practical approach, based on anatomical criteria, is proposed to assist in the segmentation of breast and node volumes in the setting of breast cancer treatment along with a definition of irradiation volumes.

  20. Quantitative photoacoustic assessment of ex-vivo lymph nodes of colorectal cancer patients

    NASA Astrophysics Data System (ADS)

    Sampathkumar, Ashwin; Mamou, Jonathan; Saegusa-Beercroft, Emi; Chitnis, Parag V.; Machi, Junji; Feleppa, Ernest J.

    2015-03-01

    Staging of cancers and selection of appropriate treatment requires histological examination of multiple dissected lymph nodes (LNs) per patient, so that a staggering number of nodes require histopathological examination, and the finite resources of pathology facilities create a severe processing bottleneck. Histologically examining the entire 3D volume of every dissected node is not feasible, and therefore, only the central region of each node is examined histologically, which results in severe sampling limitations. In this work, we assess the feasibility of using quantitative photoacoustics (QPA) to overcome the limitations imposed by current procedures and eliminate the resulting under sampling in node assessments. QPA is emerging as a new hybrid modality that assesses tissue properties and classifies tissue type based on multiple estimates derived from spectrum analysis of photoacoustic (PA) radiofrequency (RF) data and from statistical analysis of envelope-signal data derived from the RF signals. Our study seeks to use QPA to distinguish cancerous from non-cancerous regions of dissected LNs and hence serve as a reliable means of imaging and detecting small but clinically significant cancerous foci that would be missed by current methods. Dissected lymph nodes were placed in a water bath and PA signals were generated using a wavelength-tunable (680-950 nm) laser. A 26-MHz, f-2 transducer was used to sense the PA signals. We present an overview of our experimental setup; provide a statistical analysis of multi-wavelength classification parameters (mid-band fit, slope, intercept) obtained from the PA signal spectrum generated in the LNs; and compare QPA performance with our established quantitative ultrasound (QUS) techniques in distinguishing metastatic from non-cancerous tissue in dissected LNs. QPA-QUS methods offer a novel general means of tissue typing and evaluation in a broad range of disease-assessment applications, e.g., cardiac, intravascular, musculoskeletal, endocrine-gland, etc.

  1. Data Summarization in the Node by Parameters (DSNP): Local Data Fusion in an IoT Environment.

    PubMed

    Maschi, Luis F C; Pinto, Alex S R; Meneguette, Rodolfo I; Baldassin, Alexandro

    2018-03-07

    With the advent of the Internet of Things, billions of objects or devices are inserted into the global computer network, generating and processing data at a volume never imagined before. This paper proposes a way to collect and process local data through a data fusion technology called summarization. The main feature of the proposal is the local data fusion, through parameters provided by the application, ensuring the quality of data collected by the sensor node. In the evaluation, the sensor node was compared when performing the data summary with another that performed a continuous recording of the collected data. Two sets of nodes were created, one with a sensor node that analyzed the luminosity of the room, which in this case obtained a reduction of 97% in the volume of data generated, and another set that analyzed the temperature of the room, obtaining a reduction of 80% in the data volume. Through these tests, it has been proven that the local data fusion at the node can be used to reduce the volume of data generated, consequently decreasing the volume of messages generated by IoT environments.

  2. Propagating plane harmonic waves through finite length plates of variable thickness using finite element techniques

    NASA Technical Reports Server (NTRS)

    Clark, J. H.; Kalinowski, A. J.; Wagner, C. A.

    1983-01-01

    An analysis is given using finite element techniques which addresses the propagaton of a uniform incident pressure wave through a finite diameter axisymmetric tapered plate immersed in a fluid. The approach utilized in developing a finite element solution to this problem is based upon a technique for axisymmetric fluid structure interaction problems. The problem addressed is that of a 10 inch diameter axisymmetric fixed plate totally immersed in a fluid. The plate increases in thickness from approximately 0.01 inches thick at the center to 0.421 inches thick at a radius of 5 inches. Against each face of the tapered plate a cylindrical fluid volume was represented extending five wavelengths off the plate in the axial direction. The outer boundary of the fluid and plate regions were represented as a rigid encasement cylinder as was nearly the case in the physical problem. The primary objective of the analysis is to determine the form of the transmitted pressure distribution on the downstream side of the plate.

  3. The fundamental theorem of asset pricing under default and collateral in finite discrete time

    NASA Astrophysics Data System (ADS)

    Alvarez-Samaniego, Borys; Orrillo, Jaime

    2006-08-01

    We consider a financial market where time and uncertainty are modeled by a finite event-tree. The event-tree has a length of N, a unique initial node at the initial date, and a continuum of branches at each node of the tree. Prices and returns of J assets are modeled, respectively, by a R2JxR2J-valued stochastic process . In this framework we prove a version of the Fundamental Theorem of Asset Pricing which applies to defaultable securities backed by exogenous collateral suffering a contingent linear depreciation.

  4. An Element-Based Concurrent Partitioner for Unstructured Finite Element Meshes

    NASA Technical Reports Server (NTRS)

    Ding, Hong Q.; Ferraro, Robert D.

    1996-01-01

    A concurrent partitioner for partitioning unstructured finite element meshes on distributed memory architectures is developed. The partitioner uses an element-based partitioning strategy. Its main advantage over the more conventional node-based partitioning strategy is its modular programming approach to the development of parallel applications. The partitioner first partitions element centroids using a recursive inertial bisection algorithm. Elements and nodes then migrate according to the partitioned centroids, using a data request communication template for unpredictable incoming messages. Our scalable implementation is contrasted to a non-scalable implementation which is a straightforward parallelization of a sequential partitioner.

  5. ParaView visualization of Abaqus output on the mechanical deformation of complex microstructures

    NASA Astrophysics Data System (ADS)

    Liu, Qingbin; Li, Jiang; Liu, Jie

    2017-02-01

    Abaqus® is a popular software suite for finite element analysis. It delivers linear and nonlinear analyses of mechanical and fluid dynamics, includes multi-body system and multi-physics coupling. However, the visualization capability of Abaqus using its CAE module is limited. Models from microtomography have extremely complicated structures, and datasets of Abaqus output are huge, requiring a visualization tool more powerful than Abaqus/CAE. We convert Abaqus output into the XML-based VTK format by developing a Python script and then using ParaView to visualize the results. Such capabilities as volume rendering, tensor glyphs, superior animation and other filters allow ParaView to offer excellent visualizing manifestations. ParaView's parallel visualization makes it possible to visualize very big data. To support full parallel visualization, the Python script achieves data partitioning by reorganizing all nodes, elements and the corresponding results on those nodes and elements. The data partition scheme minimizes data redundancy and works efficiently. Given its good readability and extendibility, the script can be extended to the processing of more different problems in Abaqus. We share the script with Abaqus users on GitHub.

  6. Generalized Fluid System Simulation Program (GFSSP) - Version 6

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; LeClair, Andre; Moore, Ric; Schallhorn, Paul

    2015-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors, flow control valves and external body forces such as gravity and centrifugal. The thermo-fluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the 'point, drag, and click' method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids, and 24 different resistance/source options are provided for modeling momentum sources or sinks in the branches. Users can introduce new physics, non-linear and time-dependent boundary conditions through user-subroutine.

  7. Generalized Fluid System Simulation Program, Version 6.0

    NASA Technical Reports Server (NTRS)

    Majumdar, A. K.; LeClair, A. C.; Moore, A.; Schallhorn, P. A.

    2013-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependant flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors and external body forces such as gravity and centrifugal. The thermo-fluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the 'point, drag, and click' method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids, and 24 different resistance/source options are provided for modeling momentum sources or sinks in the branches. This Technical Memorandum illustrates the application and verification of the code through 25 demonstrated example problems.

  8. Generation of a composite grid for turbine flows and consideration of a numerical scheme

    NASA Technical Reports Server (NTRS)

    Choo, Y.; Yoon, S.; Reno, C.

    1986-01-01

    A composite grid was generated for flows in turbines. It consisted of the C-grid (or O-grid) in the immediate vicinity of the blade and the H-grid in the middle of the blade passage between the C-grids and in the upstream region. This new composite grid provides better smoothness, resolution, and orthogonality than any single grid for a typical turbine blade with a large camber and rounded leading and trailing edges. The C-H (or O-H) composite grid has an unusual grid point that is connected to more than four neighboring nodes in two dimensions (more than six neighboring nodes in three dimensions). A finite-volume lower-upper (LU) implicit scheme to be used on this grid poses no problem and requires no special treatment because each interior cell of this composite grid has only four neighboring cells in two dimensions (six cells in three dimensions). The LU implicit scheme was demonstrated to be efficient and robust for external flows in a broad flow regime and can be easily applied to internal flows and extended from two to three dimensions.

  9. Generalized Fluid System Simulation Program, Version 5.0-Educational

    NASA Technical Reports Server (NTRS)

    Majumdar, A. K.

    2011-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors and external body forces such as gravity and centrifugal. The thermofluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the point, drag and click method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids and 21 different resistance/source options are provided for modeling momentum sources or sinks in the branches. This Technical Memorandum illustrates the application and verification of the code through 12 demonstrated example problems.

  10. High Performance Computing Technologies for Modeling the Dynamics and Dispersion of Ice Chunks in the Arctic Ocean

    DTIC Science & Technology

    2016-08-23

    SECURITY CLASSIFICATION OF: Hybrid finite element / finite volume based CaMEL shallow water flow solvers have been successfully extended to study wave...effects on ice floes in a simplified 10 sq-km ocean domain. Our solver combines the merits of both the finite element and finite volume methods and...ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 sea ice dynamics, shallow water, finite element , finite volume

  11. An RBF-FD closest point method for solving PDEs on surfaces

    NASA Astrophysics Data System (ADS)

    Petras, A.; Ling, L.; Ruuth, S. J.

    2018-10-01

    Partial differential equations (PDEs) on surfaces appear in many applications throughout the natural and applied sciences. The classical closest point method (Ruuth and Merriman (2008) [17]) is an embedding method for solving PDEs on surfaces using standard finite difference schemes. In this paper, we formulate an explicit closest point method using finite difference schemes derived from radial basis functions (RBF-FD). Unlike the orthogonal gradients method (Piret (2012) [22]), our proposed method uses RBF centers on regular grid nodes. This formulation not only reduces the computational cost but also avoids the ill-conditioning from point clustering on the surface and is more natural to couple with a grid based manifold evolution algorithm (Leung and Zhao (2009) [26]). When compared to the standard finite difference discretization of the closest point method, the proposed method requires a smaller computational domain surrounding the surface, resulting in a decrease in the number of sampling points on the surface. In addition, higher-order schemes can easily be constructed by increasing the number of points in the RBF-FD stencil. Applications to a variety of examples are provided to illustrate the numerical convergence of the method.

  12. Wave propagation in anisotropic elastic materials and curvilinear coordinates using a summation-by-parts finite difference method

    DOE PAGES

    Petersson, N. Anders; Sjogreen, Bjorn

    2015-07-20

    We develop a fourth order accurate finite difference method for solving the three-dimensional elastic wave equation in general heterogeneous anisotropic materials on curvilinear grids. The proposed method is an extension of the method for isotropic materials, previously described in the paper by Sjögreen and Petersson (2012) [11]. The method we proposed discretizes the anisotropic elastic wave equation in second order formulation, using a node centered finite difference method that satisfies the principle of summation by parts. The summation by parts technique results in a provably stable numerical method that is energy conserving. Also, we generalize and evaluate the super-grid far-fieldmore » technique for truncating unbounded domains. Unlike the commonly used perfectly matched layers (PML), the super-grid technique is stable for general anisotropic material, because it is based on a coordinate stretching combined with an artificial dissipation. Moreover, the discretization satisfies an energy estimate, proving that the numerical approximation is stable. We demonstrate by numerical experiments that sufficiently wide super-grid layers result in very small artificial reflections. Applications of the proposed method are demonstrated by three-dimensional simulations of anisotropic wave propagation in crystals.« less

  13. A Finite-Volume "Shaving" Method for Interfacing NASA/DAO''s Physical Space Statistical Analysis System to the Finite-Volume GCM with a Lagrangian Control-Volume Vertical Coordinate

    NASA Technical Reports Server (NTRS)

    Lin, Shian-Jiann; DaSilva, Arlindo; Atlas, Robert (Technical Monitor)

    2001-01-01

    Toward the development of a finite-volume Data Assimilation System (fvDAS), a consistent finite-volume methodology is developed for interfacing the NASA/DAO's Physical Space Statistical Analysis System (PSAS) to the joint NASA/NCAR finite volume CCM3 (fvCCM3). To take advantage of the Lagrangian control-volume vertical coordinate of the fvCCM3, a novel "shaving" method is applied to the lowest few model layers to reflect the surface pressure changes as implied by the final analysis. Analysis increments (from PSAS) to the upper air variables are then consistently put onto the Lagrangian layers as adjustments to the volume-mean quantities during the analysis cycle. This approach is demonstrated to be superior to the conventional method of using independently computed "tendency terms" for surface pressure and upper air prognostic variables.

  14. SToRM: A Model for 2D environmental hydraulics

    USGS Publications Warehouse

    Simões, Francisco J. M.

    2017-01-01

    A two-dimensional (depth-averaged) finite volume Godunov-type shallow water model developed for flow over complex topography is presented. The model, SToRM, is based on an unstructured cell-centered finite volume formulation and on nonlinear strong stability preserving Runge-Kutta time stepping schemes. The numerical discretization is founded on the classical and well established shallow water equations in hyperbolic conservative form, but the convective fluxes are calculated using auto-switching Riemann and diffusive numerical fluxes. Computational efficiency is achieved through a parallel implementation based on the OpenMP standard and the Fortran programming language. SToRM’s implementation within a graphical user interface is discussed. Field application of SToRM is illustrated by utilizing it to estimate peak flow discharges in a flooding event of the St. Vrain Creek in Colorado, U.S.A., in 2013, which reached 850 m3/s (~30,000 f3 /s) at the location of this study.

  15. Rigid body formulation in a finite element context with contact interaction

    NASA Astrophysics Data System (ADS)

    Refachinho de Campos, Paulo R.; Gay Neto, Alfredo

    2018-03-01

    The present work proposes a formulation to employ rigid bodies together with flexible bodies in the context of a nonlinear finite element solver, with contact interactions. Inertial contributions due to distribution of mass of a rigid body are fully developed, considering a general pole position associated with a single node, representing a rigid body element. Additionally, a mechanical constraint is proposed to connect a rigid region composed by several nodes, which is useful for linking rigid/flexible bodies in a finite element environment. Rodrigues rotation parameters are used to describe finite rotations, by an updated Lagrangian description. In addition, the contact formulation entitled master-surface to master-surface is employed in conjunction with the rigid body element and flexible bodies, aiming to consider their interaction in a rigid-flexible multibody environment. New surface parameterizations are presented to establish contact pairs, permitting pointwise interaction in a frictional scenario. Numerical examples are provided to show robustness and applicability of the methods.

  16. Efficient conservative ADER schemes based on WENO reconstruction and space-time predictor in primitive variables

    NASA Astrophysics Data System (ADS)

    Zanotti, Olindo; Dumbser, Michael

    2016-01-01

    We present a new version of conservative ADER-WENO finite volume schemes, in which both the high order spatial reconstruction as well as the time evolution of the reconstruction polynomials in the local space-time predictor stage are performed in primitive variables, rather than in conserved ones. To obtain a conservative method, the underlying finite volume scheme is still written in terms of the cell averages of the conserved quantities. Therefore, our new approach performs the spatial WENO reconstruction twice: the first WENO reconstruction is carried out on the known cell averages of the conservative variables. The WENO polynomials are then used at the cell centers to compute point values of the conserved variables, which are subsequently converted into point values of the primitive variables. This is the only place where the conversion from conservative to primitive variables is needed in the new scheme. Then, a second WENO reconstruction is performed on the point values of the primitive variables to obtain piecewise high order reconstruction polynomials of the primitive variables. The reconstruction polynomials are subsequently evolved in time with a novel space-time finite element predictor that is directly applied to the governing PDE written in primitive form. The resulting space-time polynomials of the primitive variables can then be directly used as input for the numerical fluxes at the cell boundaries in the underlying conservative finite volume scheme. Hence, the number of necessary conversions from the conserved to the primitive variables is reduced to just one single conversion at each cell center. We have verified the validity of the new approach over a wide range of hyperbolic systems, including the classical Euler equations of gas dynamics, the special relativistic hydrodynamics (RHD) and ideal magnetohydrodynamics (RMHD) equations, as well as the Baer-Nunziato model for compressible two-phase flows. In all cases we have noticed that the new ADER schemes provide less oscillatory solutions when compared to ADER finite volume schemes based on the reconstruction in conserved variables, especially for the RMHD and the Baer-Nunziato equations. For the RHD and RMHD equations, the overall accuracy is improved and the CPU time is reduced by about 25 %. Because of its increased accuracy and due to the reduced computational cost, we recommend to use this version of ADER as the standard one in the relativistic framework. At the end of the paper, the new approach has also been extended to ADER-DG schemes on space-time adaptive grids (AMR).

  17. Compact cell-centered discretization stencils at fine-coarse block structured grid interfaces

    NASA Astrophysics Data System (ADS)

    Pletzer, Alexander; Jamroz, Ben; Crockett, Robert; Sides, Scott

    2014-03-01

    Different strategies for coupling fine-coarse grid patches are explored in the context of the adaptive mesh refinement (AMR) method. We show that applying linear interpolation to fill in the fine grid ghost values can produce a finite volume stencil of comparable accuracy to quadratic interpolation provided the cell volumes are adjusted. The volume of fine cells expands whereas the volume of neighboring coarse cells contracts. The amount by which the cells contract/expand depends on whether the interface is a face, an edge, or a corner. It is shown that quadratic or better interpolation is required when the conductivity is spatially varying, anisotropic, the refinement ratio is other than two, or when the fine-coarse interface is concave.

  18. [Volume changes to the neck lymph node metastases in head-neck tumors. The evaluation of radiotherapeutic treatment success].

    PubMed

    Liszka, G; Thalacker, U; Somogyi, A; Németh, G

    1997-08-01

    This work is engaged with the volume change of neck lymph node metastasis of malignant tumors in the head-neck region during radiotherapy. In 54 patients with head and neck tumors, the volume of neck lymph nodes before and after radiation was measured. The volumetry was done with CT planimetry. The total dose was 66 Gy (2 Gy/d) telecobalt from 2 lateral opponated fields. The time of volume change could be defined with measuring of the half-time and the doubling-time by the help of Schwartz formula. After 10 Gy the volume diminution was about 20% and half-time 24 to 26 days. Afterwards the time of volume diminution picked up speed and finally achieved 60 to 72%. Meanwhile the half-time decreased to the half value. The result was independent of the site of primary tumor, the patient's sex and age. In our opinion the effectivity of radiotherapy can best be judged with defining of the volume change of lymph nodes of the neck.

  19. Stabilized Finite Elements in FUN3D

    NASA Technical Reports Server (NTRS)

    Anderson, W. Kyle; Newman, James C.; Karman, Steve L.

    2017-01-01

    A Streamlined Upwind Petrov-Galerkin (SUPG) stabilized finite-element discretization has been implemented as a library into the FUN3D unstructured-grid flow solver. Motivation for the selection of this methodology is given, details of the implementation are provided, and the discretization for the interior scheme is verified for linear and quadratic elements by using the method of manufactured solutions. A methodology is also described for capturing shocks, and simulation results are compared to the finite-volume formulation that is currently the primary method employed for routine engineering applications. The finite-element methodology is demonstrated to be more accurate than the finite-volume technology, particularly on tetrahedral meshes where the solutions obtained using the finite-volume scheme can suffer from adverse effects caused by bias in the grid. Although no effort has been made to date to optimize computational efficiency, the finite-element scheme is competitive with the finite-volume scheme in terms of computer time to reach convergence.

  20. Finite Volume Method for Pricing European Call Option with Regime-switching Volatility

    NASA Astrophysics Data System (ADS)

    Lista Tauryawati, Mey; Imron, Chairul; Putri, Endah RM

    2018-03-01

    In this paper, we present a finite volume method for pricing European call option using Black-Scholes equation with regime-switching volatility. In the first step, we formulate the Black-Scholes equations with regime-switching volatility. we use a finite volume method based on fitted finite volume with spatial discretization and an implicit time stepping technique for the case. We show that the regime-switching scheme can revert to the non-switching Black Scholes equation, both in theoretical evidence and numerical simulations.

  1. Conservative and bounded volume-of-fluid advection on unstructured grids

    NASA Astrophysics Data System (ADS)

    Ivey, Christopher B.; Moin, Parviz

    2017-12-01

    This paper presents a novel Eulerian-Lagrangian piecewise-linear interface calculation (PLIC) volume-of-fluid (VOF) advection method, which is three-dimensional, unsplit, and discretely conservative and bounded. The approach is developed with reference to a collocated node-based finite-volume two-phase flow solver that utilizes the median-dual mesh constructed from non-convex polyhedra. The proposed advection algorithm satisfies conservation and boundedness of the liquid volume fraction irrespective of the underlying flux polyhedron geometry, which differs from contemporary unsplit VOF schemes that prescribe topologically complicated flux polyhedron geometries in efforts to satisfy conservation. Instead of prescribing complicated flux-polyhedron geometries, which are prone to topological failures, our VOF advection scheme, the non-intersecting flux polyhedron advection (NIFPA) method, builds the flux polyhedron iteratively such that its intersection with neighboring flux polyhedra, and any other unavailable volume, is empty and its total volume matches the calculated flux volume. During each iteration, a candidate nominal flux polyhedron is extruded using an iteration dependent scalar. The candidate is subsequently intersected with the volume guaranteed available to it at the time of the flux calculation to generate the candidate flux polyhedron. The difference in the volume of the candidate flux polyhedron and the actual flux volume is used to calculate extrusion during the next iteration. The choice in nominal flux polyhedron impacts the cost and accuracy of the scheme; however, it does not impact the methods underlying conservation and boundedness. As such, various robust nominal flux polyhedron are proposed and tested using canonical periodic kinematic test cases: Zalesak's disk and two- and three-dimensional deformation. The tests are conducted on the median duals of a quadrilateral and triangular primal mesh, in two-dimensions, and on the median duals of a hexahedral, wedge and tetrahedral primal mesh, in three-dimensions. Comparisons are made with the adaptation of a conventional unsplit VOF advection scheme to our collocated node-based flow solver. Depending on the choice in the nominal flux polyhedron, the NIFPA scheme presented accuracies ranging from zeroth to second order and calculation times that differed by orders of magnitude. For the nominal flux polyhedra which demonstrate second-order accuracy on all tests and meshes, the NIFPA method's cost was comparable to the traditional topologically complex second-order accurate VOF advection scheme.

  2. Toward real-time diffuse optical tomography: accelerating light propagation modeling employing parallel computing on GPU and CPU.

    PubMed

    Doulgerakis, Matthaios; Eggebrecht, Adam; Wojtkiewicz, Stanislaw; Culver, Joseph; Dehghani, Hamid

    2017-12-01

    Parameter recovery in diffuse optical tomography is a computationally expensive algorithm, especially when used for large and complex volumes, as in the case of human brain functional imaging. The modeling of light propagation, also known as the forward problem, is the computational bottleneck of the recovery algorithm, whereby the lack of a real-time solution is impeding practical and clinical applications. The objective of this work is the acceleration of the forward model, within a diffusion approximation-based finite-element modeling framework, employing parallelization to expedite the calculation of light propagation in realistic adult head models. The proposed methodology is applicable for modeling both continuous wave and frequency-domain systems with the results demonstrating a 10-fold speed increase when GPU architectures are available, while maintaining high accuracy. It is shown that, for a very high-resolution finite-element model of the adult human head with ∼600,000 nodes, consisting of heterogeneous layers, light propagation can be calculated at ∼0.25  s/excitation source. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  3. Design of an essentially non-oscillatory reconstruction procedure on finite-element type meshes

    NASA Technical Reports Server (NTRS)

    Abgrall, R.

    1991-01-01

    An essentially non-oscillatory reconstruction for functions defined on finite-element type meshes was designed. Two related problems are studied: the interpolation of possibly unsmooth multivariate functions on arbitrary meshes and the reconstruction of a function from its average in the control volumes surrounding the nodes of the mesh. Concerning the first problem, we have studied the behavior of the highest coefficients of the Lagrange interpolation function which may admit discontinuities of locally regular curves. This enables us to choose the best stencil for the interpolation. The choice of the smallest possible number of stencils is addressed. Concerning the reconstruction problem, because of the very nature of the mesh, the only method that may work is the so called reconstruction via deconvolution method. Unfortunately, it is well suited only for regular meshes as we show, but we also show how to overcome this difficulty. The global method has the expected order of accuracy but is conservative up to a high order quadrature formula only. Some numerical examples are given which demonstrate the efficiency of the method.

  4. Design optimization of space structures

    NASA Technical Reports Server (NTRS)

    Felippa, Carlos

    1991-01-01

    The topology-shape-size optimization of space structures is investigated through Kikuchi's homogenization method. The method starts from a 'design domain block,' which is a region of space into which the structure is to materialize. This domain is initially filled with a finite element mesh, typically regular. Force and displacement boundary conditions corresponding to applied loads and supports are applied at specific points in the domain. An optimal structure is to be 'carved out' of the design under two conditions: (1) a cost function is to be minimized, and (2) equality or inequality constraints are to be satisfied. The 'carving' process is accomplished by letting microstructure holes develop and grow in elements during the optimization process. These holes have a rectangular shape in two dimensions and a cubical shape in three dimensions, and may also rotate with respect to the reference axes. The properties of the perforated element are obtained through an homogenization procedure. Once a hole reaches the volume of the element, that element effectively disappears. The project has two phases. In the first phase the method was implemented as the combination of two computer programs: a finite element module, and an optimization driver. In the second part, focus is on the application of this technique to planetary structures. The finite element part of the method was programmed for the two-dimensional case using four-node quadrilateral elements to cover the design domain. An element homogenization technique different from that of Kikuchi and coworkers was implemented. The optimization driver is based on an augmented Lagrangian optimizer, with the volume constraint treated as a Courant penalty function. The optimizer has to be especially tuned to this type of optimization because the number of design variables can reach into the thousands. The driver is presently under development.

  5. Supercomputer implementation of finite element algorithms for high speed compressible flows

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.; Ramakrishnan, R.

    1986-01-01

    Prediction of compressible flow phenomena using the finite element method is of recent origin and considerable interest. Two shock capturing finite element formulations for high speed compressible flows are described. A Taylor-Galerkin formulation uses a Taylor series expansion in time coupled with a Galerkin weighted residual statement. The Taylor-Galerkin algorithms use explicit artificial dissipation, and the performance of three dissipation models are compared. A Petrov-Galerkin algorithm has as its basis the concepts of streamline upwinding. Vectorization strategies are developed to implement the finite element formulations on the NASA Langley VPS-32. The vectorization scheme results in finite element programs that use vectors of length of the order of the number of nodes or elements. The use of the vectorization procedure speeds up processing rates by over two orders of magnitude. The Taylor-Galerkin and Petrov-Galerkin algorithms are evaluated for 2D inviscid flows on criteria such as solution accuracy, shock resolution, computational speed and storage requirements. The convergence rates for both algorithms are enhanced by local time-stepping schemes. Extension of the vectorization procedure for predicting 2D viscous and 3D inviscid flows are demonstrated. Conclusions are drawn regarding the applicability of the finite element procedures for realistic problems that require hundreds of thousands of nodes.

  6. Quadrilateral finite element mesh coarsening

    DOEpatents

    Staten, Matthew L; Dewey, Mark W; Benzley, Steven E

    2012-10-16

    Techniques for coarsening a quadrilateral mesh are described. These techniques include identifying a coarsening region within the quadrilateral mesh to be coarsened. Quadrilateral elements along a path through the coarsening region are removed. Node pairs along opposite sides of the path are identified. The node pairs along the path are then merged to collapse the path.

  7. Atlas of the thoracic lymph nodal delineation and recommendations for lymph nodal CTV of esophageal squamous cell cancer in radiation therapy from China.

    PubMed

    Huang, Wei; Huang, Yong; Sun, Jujie; Liu, Xibin; Zhang, Jian; Zhou, Tao; Zhang, Baijiang; Li, Baosheng

    2015-07-01

    To construct an anatomical atlas of thoracic lymph node regions of esophageal cancer (EC) based on definitions from The Japan Esophageal Society (JES) and generate a consensus to delineate the nodal clinical target volume (CTVn) for elective nodal radiation (ENI) of esophageal squamous cell carcinoma (ESCC). An interdisciplinary group including two dedicated radiation oncologists, an experienced radiologist, a pathologist and two thoracic surgeons were gathered to generate a three-dimensional radiological description for the mediastinal lymph node regions of EC on axial CT scans. Then the radiological boundaries of lymph node regions were validated by a relatively large number of physicians in multiple institutions. An atlas of detailed anatomic boundaries of lymph node station No. 105-114 was defined on axial CT, along with illustrations. From the previous work, the study provided a guide of CTVn contouring for ENI of thoracic ESCC from a single center. It is feasible to use such an atlas of thoracic lymph node stations for radiotherapy planning. A phase III study based on the atlas is ongoing in China to measure quantitatively the ENI received by patients with ESCC. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Finite volume effects on the electric polarizability of neutral hadrons in lattice QCD

    NASA Astrophysics Data System (ADS)

    Lujan, M.; Alexandru, A.; Freeman, W.; Lee, F. X.

    2016-10-01

    We study the finite volume effects on the electric polarizability for the neutron, neutral pion, and neutral kaon using eight dynamically generated two-flavor nHYP-clover ensembles at two different pion masses: 306(1) and 227(2) MeV. An infinite volume extrapolation is performed for each hadron at both pion masses. For the neutral kaon, finite volume effects are relatively mild. The dependence on the quark mass is also mild, and a reliable chiral extrapolation can be performed along with the infinite volume extrapolation. Our result is αK0 phys=0.356 (74 )(46 )×10-4 fm3 . In contrast, for neutron, the electric polarizability depends strongly on the volume. After removing the finite volume corrections, our neutron polarizability results are in good agreement with chiral perturbation theory. For the connected part of the neutral pion polarizability, the negative trend persists, and it is not due to finite volume effects but likely sea quark charging effects.

  9. General method to find the attractors of discrete dynamic models of biological systems.

    PubMed

    Gan, Xiao; Albert, Réka

    2018-04-01

    Analyzing the long-term behaviors (attractors) of dynamic models of biological networks can provide valuable insight. We propose a general method that can find the attractors of multilevel discrete dynamical systems by extending a method that finds the attractors of a Boolean network model. The previous method is based on finding stable motifs, subgraphs whose nodes' states can stabilize on their own. We extend the framework from binary states to any finite discrete levels by creating a virtual node for each level of a multilevel node, and describing each virtual node with a quasi-Boolean function. We then create an expanded representation of the multilevel network, find multilevel stable motifs and oscillating motifs, and identify attractors by successive network reduction. In this way, we find both fixed point attractors and complex attractors. We implemented an algorithm, which we test and validate on representative synthetic networks and on published multilevel models of biological networks. Despite its primary motivation to analyze biological networks, our motif-based method is general and can be applied to any finite discrete dynamical system.

  10. General method to find the attractors of discrete dynamic models of biological systems

    NASA Astrophysics Data System (ADS)

    Gan, Xiao; Albert, Réka

    2018-04-01

    Analyzing the long-term behaviors (attractors) of dynamic models of biological networks can provide valuable insight. We propose a general method that can find the attractors of multilevel discrete dynamical systems by extending a method that finds the attractors of a Boolean network model. The previous method is based on finding stable motifs, subgraphs whose nodes' states can stabilize on their own. We extend the framework from binary states to any finite discrete levels by creating a virtual node for each level of a multilevel node, and describing each virtual node with a quasi-Boolean function. We then create an expanded representation of the multilevel network, find multilevel stable motifs and oscillating motifs, and identify attractors by successive network reduction. In this way, we find both fixed point attractors and complex attractors. We implemented an algorithm, which we test and validate on representative synthetic networks and on published multilevel models of biological networks. Despite its primary motivation to analyze biological networks, our motif-based method is general and can be applied to any finite discrete dynamical system.

  11. Assessment of Ultrasound Features Predicting Axillary Nodal Metastasis in Breast Cancer: The Impact of Cortical Thickness

    PubMed Central

    Stachs, A.; Thi, A. Tra-Ha; Dieterich, M.; Stubert, J.; Hartmann, S.; Glass, Ä.; Reimer, T.; Gerber, B.

    2015-01-01

    Purpose: To evaluate the accuracy of axillary ultrasound (AUS) in detecting nodal metastasis in patients with early-stage breast cancer and to identify AUS features with high predictive power. Materials and Methods: Prospective single-center preliminary study in 105 patients with a primary diagnosis of breast cancer and clinically negative axilla. AUS was performed using a 12 MHz linear-array transducer before ultrasound-guided needle biopsy. Nodal characteristics (shape, longitudinal-transverse [LT] axis ratio, margins, cortical thickness, hyperechoic hilum) were correlated with histopathological nodal status after SLNB or axillary lymph node dissection (ALND). Results: Nodal metastases were present in 42/105 patients (40.0%). Univariate analyses showed that absence of hyperechoic hilum, round shape, LT axis ratio<2, sharp margins and cortical thickness>3 mm were associated with lymph node metastasis. Multivariate logistic regression analysis revealed cortical thickness > 3 mm as an independent predictive parameter for nodal involvement. Sensitivity, specificity, positive predictive value, negative predictive value and accuracy were 66.7, 74.6, 63.6, 77.0% and 71.4% respectively when cortical thickness > 3 mm was applied as the criterion for AUS positivity. Axillary tumor volume was low in patients with pT1/2 tumors and negative AUS, since only 3.2% of patients had > 2 metastatic lymph nodes. Conclusion: Cortical thickness>3 mm is a reliable predictor of nodal metastatic involvement. Negative AUS does not exclude lymph node metastases, but extensive axillary tumor volume is rare. PMID:27689144

  12. Distributed shared memory for roaming large volumes.

    PubMed

    Castanié, Laurent; Mion, Christophe; Cavin, Xavier; Lévy, Bruno

    2006-01-01

    We present a cluster-based volume rendering system for roaming very large volumes. This system allows to move a gigabyte-sized probe inside a total volume of several tens or hundreds of gigabytes in real-time. While the size of the probe is limited by the total amount of texture memory on the cluster, the size of the total data set has no theoretical limit. The cluster is used as a distributed graphics processing unit that both aggregates graphics power and graphics memory. A hardware-accelerated volume renderer runs in parallel on the cluster nodes and the final image compositing is implemented using a pipelined sort-last rendering algorithm. Meanwhile, volume bricking and volume paging allow efficient data caching. On each rendering node, a distributed hierarchical cache system implements a global software-based distributed shared memory on the cluster. In case of a cache miss, this system first checks page residency on the other cluster nodes instead of directly accessing local disks. Using two Gigabit Ethernet network interfaces per node, we accelerate data fetching by a factor of 4 compared to directly accessing local disks. The system also implements asynchronous disk access and texture loading, which makes it possible to overlap data loading, volume slicing and rendering for optimal volume roaming.

  13. Study of hypervelocity meteoroid impact on orbital space stations

    NASA Technical Reports Server (NTRS)

    Leimbach, K. R.; Prozan, R. J.

    1973-01-01

    Structural damage resulting in hypervelocity impact of a meteorite on a spacecraft is discussed. Of particular interest is the backside spallation caused by such a collision. To treat this phenomenon two numerical schemes were developed in the course of this study to compute the elastic-plastic flow fracture of a solid. The numerical schemes are a five-point finite difference scheme and a four-node finite element scheme. The four-node finite element scheme proved to be less sensitive to the type of boundary conditions and loadings. Although further development work is needed to improve the program versatility (generalization of the network topology, secondary storage for large systems, improving of the coding to reduce the run time, etc.), the basic framework is provided for a utilitarian computer program which may be used in a wide variety of situations. Analytic results showing the program output are given for several test cases.

  14. Influence of Joint Flexibility on Vibration Analysis of Free-Free Beams

    NASA Astrophysics Data System (ADS)

    Gunda, Jagadish Babu; Krishna, Y.

    2014-12-01

    In present work, joint flexibility (or looseness) of the free-free beam is investigated by using a two noded beam finite element formulation with transverse displacement and joint rotations as the degrees of freedom per node at joint location. Flexibility of the joint is primarily represented by means of a rotational spring analogy, where the stiffness of the rotational spring characterizes the looseness of the flexible joint for an applied bending moment. Influence of joint location as well as joint stiffness on modal behavior of first five modes of slender, uniform free-free beams are discussed for various values of non-dimensional rotational spring stiffness parameter. Numerical accuracy of the results obtained from the present finite element formulation are validated by using the commercially available finite element software which shows the confidence gained on the numerical results discussed in the present study.

  15. Game of life on phyllosilicates: Gliders, oscillators and still life

    NASA Astrophysics Data System (ADS)

    Adamatzky, Andrew

    2013-10-01

    A phyllosilicate is a sheet of silicate tetrahedra bound by basal oxygens. A phyllosilicate automaton is a regular network of finite state machines - silicon nodes and oxygen nodes - which mimics structure of the phyllosilicate. A node takes states 0 and 1. Each node updates its state in discrete time depending on a sum of states of its three (silicon) or six (oxygen) neighbours. Phyllosilicate automata exhibit localisations attributed to Conway's Game of Life: gliders, oscillators, still lifes, and a glider gun. Configurations and behaviour of typical localisations, and interactions between the localisations are illustrated.

  16. Finite-volume scheme for anisotropic diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Es, Bram van, E-mail: bramiozo@gmail.com; FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, The Netherlands"1; Koren, Barry

    In this paper, we apply a special finite-volume scheme, limited to smooth temperature distributions and Cartesian grids, to test the importance of connectivity of the finite volumes. The area of application is nuclear fusion plasma with field line aligned temperature gradients and extreme anisotropy. We apply the scheme to the anisotropic heat-conduction equation, and compare its results with those of existing finite-volume schemes for anisotropic diffusion. Also, we introduce a general model adaptation of the steady diffusion equation for extremely anisotropic diffusion problems with closed field lines.

  17. Mass-corrections for the conservative coupling of flow and transport on collocated meshes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waluga, Christian, E-mail: waluga@ma.tum.de; Wohlmuth, Barbara; Rüde, Ulrich

    2016-01-15

    Buoyancy-driven flow models demand a careful treatment of the mass-balance equation to avoid spurious source and sink terms in the non-linear coupling between flow and transport. In the context of finite-elements, it is therefore commonly proposed to employ sufficiently rich pressure spaces, containing piecewise constant shape functions to obtain local or even strong mass-conservation. In three-dimensional computations, this usually requires nonconforming approaches, special meshes or higher order velocities, which make these schemes prohibitively expensive for some applications and complicate the implementation into legacy code. In this paper, we therefore propose a lean and conservatively coupled scheme based on standard stabilizedmore » linear equal-order finite elements for the Stokes part and vertex-centered finite volumes for the energy equation. We show that in a weak mass-balance it is possible to recover exact conservation properties by a local flux-correction which can be computed efficiently on the control volume boundaries of the transport mesh. We discuss implementation aspects and demonstrate the effectiveness of the flux-correction by different two- and three-dimensional examples which are motivated by geophysical applications.« less

  18. Finite element analysis of the valgus knee joint of an obese child.

    PubMed

    Sun, Jun; Yan, Songhua; Jiang, Yan; Wong, Duo Wai-Chi; Zhang, Ming; Zeng, Jizhou; Zhang, Kuan

    2016-12-28

    Knee valgus and varus morbidity is at the second top place in children lower limb deformity diseases. It may cause abnormal stress distribution. The magnitude and location of contact forces on tibia plateau during gait cycle have been indicated as markers for risk of osteoarthritis. So far, few studies reported the contact stress and force distribution on tibial plateau of valgus knee of children. To estimate the contact stresses and forces on tibial plateau of an 8-year old obese boy with valgus knee and a 7-year old healthy boy, three-dimensional (3D) finite element (FE) models of their left knee joints were developed. The valgus knee model has 36,897 nodes and 1,65,106 elements, and the normal knee model has 78,278 nodes and 1,18,756 elements. Paired t test was used for the comparison between the results from the 3D FE analysis method and the results from traditional kinematic measurement methods. The p value of paired t test is 0.12. Maximum stresses shifted to lateral plateau in knee valgus children while maximum stresses were on medial plateau in normal knee child at the first peak of vertical GRF of stance phase. The locations of contact centers on medial plateau changed 3.38 mm more than that on lateral plateau, while the locations of contact centers on medial plateau changed 1.22 mm less than that on lateral plateau for healthy child from the first peak to second peak of vertical GRF of stance phase. The paired t test result shows that there is no significant difference between the two methods. The results of FE analysis method suggest that knee valgus malalignment could be the reason for abnormal knee load that may cause knee problems in obese children with valgus knee in the long-term. This study may help to understand biomechanical mechanism of valgus knees of obese children.

  19. A Big Data Task Force Review of Advances in Data Access and Discovery Within the Science Disciplines of the NASA Science Mission Directorate (SMD)

    NASA Astrophysics Data System (ADS)

    Walker, R. J.; Beebe, R. F.

    2017-12-01

    One of the basic problems the NASA Science Mission Directorate (SMD) faces when dealing with preservation of scientific data is the variety of the data. This stems from the fact that NASA's involvement in the sciences spans a broad range of disciplines across the Science Mission Directorate: Astrophysics, Earth Sciences, Heliophysics and Planetary Science. As the ability of some missions to produce large data volumes has accelerated, the range of problems associated with providing adequate access to the data has demanded diverse approaches for data access. Although mission types, complexity and duration vary across the disciplines, the data can be characterized by four characteristics: velocity, veracity, volume, and variety. The rate of arrival of the data (velocity) must be addressed at the individual mission level, validation and documentation of the data (veracity), data volume and the wide variety of data products present huge challenges as the science disciplines strive to provide transparent access to their available data. Astrophysics, supports an integrated system of data archives based on frequencies covered (UV, visible, IR, etc.) or subject areas (extrasolar planets, extra galactic, etc.) and is accessed through the Astrophysics Data Center (https://science.nasa.gov/astrophysics/astrophysics-data-centers/). Earth Science supports the Earth Observing System (https://earthdata.nasa.gov/) that manages the earth science satellite data. The discipline supports 12 Distributed Active Archive Centers. Heliophysics provides the Space Physics Data Facility (https://spdf.gsfc.nasa.gov/) that supports the heliophysics community and Solar Data Analysis Center (https://umbra.nascom.nasa.gov/index.html) that allows access to the solar data. The Planetary Data System (https://pds.nasa.gov) is the main archive for planetary science data. It consists of science discipline nodes (Atmospheres, Geosciences, Cartography and Imaging Sciences, Planetary Plasma Interactions, Ring-Moon Systems, and Small Bodies) and supporting nodes (Engineering and the Navigation and Ancillary Information Facility). This presentation will address current efforts by the disciplines to face the demands of providing user access in the era of Big Data.

  20. A comparison between different finite elements for elastic and aero-elastic analyses.

    PubMed

    Mahran, Mohamed; ELsabbagh, Adel; Negm, Hani

    2017-11-01

    In the present paper, a comparison between five different shell finite elements, including the Linear Triangular Element, Linear Quadrilateral Element, Linear Quadrilateral Element based on deformation modes, 8-node Quadrilateral Element, and 9-Node Quadrilateral Element was presented. The shape functions and the element equations related to each element were presented through a detailed mathematical formulation. Additionally, the Jacobian matrix for the second order derivatives was simplified and used to derive each element's strain-displacement matrix in bending. The elements were compared using carefully selected elastic and aero-elastic bench mark problems, regarding the number of elements needed to reach convergence, the resulting accuracy, and the needed computation time. The best suitable element for elastic free vibration analysis was found to be the Linear Quadrilateral Element with deformation-based shape functions, whereas the most suitable element for stress analysis was the 8-Node Quadrilateral Element, and the most suitable element for aero-elastic analysis was the 9-Node Quadrilateral Element. Although the linear triangular element was the last choice for modal and stress analyses, it establishes more accurate results in aero-elastic analyses, however, with much longer computation time. Additionally, the nine-node quadrilateral element was found to be the best choice for laminated composite plates analysis.

  1. Electro-mechanical analysis of composite and sandwich multilayered structures by shell elements with node-dependent kinematics

    NASA Astrophysics Data System (ADS)

    Carrera; Valvano; Kulikov

    2018-01-01

    In this work, a new class of finite elements for the analysis of composite and sandwich shells embedding piezoelectric skins and patches is proposed. The main idea of models coupling is developed by presenting the concept of nodal dependent kinematics where the same finite element can present at each node a different approximation of the main unknowns by setting a node-wise through-the-thickness approximation base. In a global/local approach scenario, the computational costs can be reduced drastically by assuming refined theories only in those zones/nodes of the structural domain where the resulting strain and stress states, and their electro-mechanical coupling present a complex distribution. Several numerical investigations are carried out to validate the accuracy and efficiency of the present shell element. An accurate representation of mechanical stresses and electric displacements in localized zones is possible with reduction of the computational costs if an accurate distribution of the higher-order kinematic capabilities is performed. On the contrary, the accuracy of the solution in terms of mechanical displacements and electric potential values depends on the global approximation over the whole structure. The efficacy of the present node-dependent variable kinematic models, thus, depends on the characteristics of the problem under consideration as well as on the required analysis type.

  2. A weak Galerkin least-squares finite element method for div-curl systems

    NASA Astrophysics Data System (ADS)

    Li, Jichun; Ye, Xiu; Zhang, Shangyou

    2018-06-01

    In this paper, we introduce a weak Galerkin least-squares method for solving div-curl problem. This finite element method leads to a symmetric positive definite system and has the flexibility to work with general meshes such as hybrid mesh, polytopal mesh and mesh with hanging nodes. Error estimates of the finite element solution are derived. The numerical examples demonstrate the robustness and flexibility of the proposed method.

  3. The Geometry of Quadratic Polynomial Differential Systems with a Finite and an Infinite Saddle-Node (C)

    NASA Astrophysics Data System (ADS)

    Artés, Joan C.; Rezende, Alex C.; Oliveira, Regilene D. S.

    Planar quadratic differential systems occur in many areas of applied mathematics. Although more than one thousand papers have been written on these systems, a complete understanding of this family is still missing. Classical problems, and in particular, Hilbert's 16th problem [Hilbert, 1900, 1902], are still open for this family. Our goal is to make a global study of the family QsnSN of all real quadratic polynomial differential systems which have a finite semi-elemental saddle-node and an infinite saddle-node formed by the collision of two infinite singular points. This family can be divided into three different subfamilies, all of them with the finite saddle-node in the origin of the plane with the eigenvectors on the axes and with the eigenvector associated with the zero eigenvalue on the horizontal axis and (A) with the infinite saddle-node in the horizontal axis, (B) with the infinite saddle-node in the vertical axis and (C) with the infinite saddle-node in the bisector of the first and third quadrants. These three subfamilies modulo the action of the affine group and time homotheties are three-dimensional and we give the bifurcation diagram of their closure with respect to specific normal forms, in the three-dimensional real projective space. The subfamilies (A) and (B) have already been studied [Artés et al., 2013b] and in this paper we provide the complete study of the geometry of the last family (C). The bifurcation diagram for the subfamily (C) yields 371 topologically distinct phase portraits with and without limit cycles for systems in the closure /line{QsnSN(C)} within the representatives of QsnSN(C) given by a chosen normal form. Algebraic invariants are used to construct the bifurcation set. The phase portraits are represented on the Poincaré disk. The bifurcation set of /line{QsnSN(C)} is not only algebraic due to the presence of some surfaces found numerically. All points in these surfaces correspond to either connections of separatrices, or the presence of a double limit cycle.

  4. Supercritical Mixing in a Shear Coaxial Injector

    DTIC Science & Technology

    2016-07-27

    in the core of the injected fluid emphasizes this observation. Two acoustically excited cases: pressure node and pressure anti-node at the center... acoustically excited cases: pressure node and pressure anti-node at the center plane of the jet are also studied in the same manner. The pressure anti-node...shortens the core flow of the injected jet. I. Introduction OCKET engines present a unique environment for injection of the propellants due to

  5. Improved Life Prediction of Turbine Engine Components Using a Finite Element Based Software Called Zencrack

    DTIC Science & Technology

    2003-09-01

    application .................................................. 5-42 5.10 Different materials within crack-block...5-30 Figure 5-29 - Application of required user edge node sets... applications . Users have at their disposal all of the capabilities within these finite element programs and may, if desired, include any number of

  6. Moving Finite Elements in 2-D.

    DTIC Science & Technology

    1982-06-07

    that a small number of control parameters would allow a great deal of flexibility in the type of node mobility available in specific problems while...CLEO 󈨕), Washington, DC, June 10-12, 1981.) 5. R. J. Gelinas and S. K. Doss, "The Moving Finite Element Method: 1-D Transient Flow Aplications ," to

  7. Investigation of free vibration characteristics for skew multiphase magneto-electro-elastic plate

    NASA Astrophysics Data System (ADS)

    Kiran, M. C.; Kattimani, S.

    2018-04-01

    This article presents the investigation of skew multiphase magneto-electro-elastic (MMEE) plate to assess its free vibration characteristics. A finite element (FE) model is formulated considering the different couplings involved via coupled constitutive equations. The transformation matrices are derived to transform local degrees of freedom into the global degrees of freedom for the nodes lying on the skew edges. Effect of different volume fraction (Vf) on the free vibration behavior is explicitly studied. In addition, influence of width to thickness ratio, the aspect ratio, and the stacking arrangement on natural frequencies of skew multiphase MEE plate investigated. Particular attention has been paid to investigate the effect of skew angle on the non-dimensional Eigen frequencies of multiphase MEE plate with simply supported edges.

  8. Three-Dimensional Incompressible Navier-Stokes Flow Computations about Complete Configurations Using a Multiblock Unstructured Grid Approach

    NASA Technical Reports Server (NTRS)

    Sheng, Chunhua; Hyams, Daniel G.; Sreenivas, Kidambi; Gaither, J. Adam; Marcum, David L.; Whitfield, David L.

    2000-01-01

    A multiblock unstructured grid approach is presented for solving three-dimensional incompressible inviscid and viscous turbulent flows about complete configurations. The artificial compressibility form of the governing equations is solved by a node-based, finite volume implicit scheme which uses a backward Euler time discretization. Point Gauss-Seidel relaxations are used to solve the linear system of equations at each time step. This work employs a multiblock strategy to the solution procedure, which greatly improves the efficiency of the algorithm by significantly reducing the memory requirements by a factor of 5 over the single-grid algorithm while maintaining a similar convergence behavior. The numerical accuracy of solutions is assessed by comparing with the experimental data for a submarine with stem appendages and a high-lift configuration.

  9. European Science Notes Information Bulletin Reports on Current European/ Middle Eastern Science

    DTIC Science & Technology

    1991-06-01

    particularly those that involve shock wave/boundary layer cell-centered, finite-volume, explicit, Runge-Kutta interactions , still prov;de considerble...aircraft configuration attributed to using an interactive vcual grid generation was provided by A. Bocci and A. Baxendale, the Aircraft system developed...the surface pressure the complex problem of wing/body/pylon/store distributions with and without the mass flow through the interaction . Reasonable

  10. A cell-centered Lagrangian finite volume approach for computing elasto-plastic response of solids in cylindrical axisymmetric geometries

    NASA Astrophysics Data System (ADS)

    Sambasivan, Shiv Kumar; Shashkov, Mikhail J.; Burton, Donald E.

    2013-03-01

    A finite volume cell-centered Lagrangian formulation is presented for solving large deformation problems in cylindrical axisymmetric geometries. Since solid materials can sustain significant shear deformation, evolution equations for stress and strain fields are solved in addition to mass, momentum and energy conservation laws. The total strain-rate realized in the material is split into an elastic and plastic response. The elastic and plastic components in turn are modeled using hypo-elastic theory. In accordance with the hypo-elastic model, a predictor-corrector algorithm is employed for evolving the deviatoric component of the stress tensor. A trial elastic deviatoric stress state is obtained by integrating a rate equation, cast in the form of an objective (Jaumann) derivative, based on Hooke's law. The dilatational response of the material is modeled using an equation of state of the Mie-Grüneisen form. The plastic deformation is accounted for via an iterative radial return algorithm constructed from the J2 von Mises yield condition. Several benchmark example problems with non-linear strain hardening and thermal softening yield models are presented. Extensive comparisons with representative Eulerian and Lagrangian hydrocodes in addition to analytical and experimental results are made to validate the current approach.

  11. Influence of Finite Element Software on Energy Release Rates Computed Using the Virtual Crack Closure Technique

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Goetze, Dirk; Ransom, Jonathon (Technical Monitor)

    2006-01-01

    Strain energy release rates were computed along straight delamination fronts of Double Cantilever Beam, End-Notched Flexure and Single Leg Bending specimens using the Virtual Crack Closure Technique (VCCT). Th e results were based on finite element analyses using ABAQUS# and ANSYS# and were calculated from the finite element results using the same post-processing routine to assure a consistent procedure. Mixed-mode strain energy release rates obtained from post-processing finite elem ent results were in good agreement for all element types used and all specimens modeled. Compared to previous studies, the models made of s olid twenty-node hexahedral elements and solid eight-node incompatible mode elements yielded excellent results. For both codes, models made of standard brick elements and elements with reduced integration did not correctly capture the distribution of the energy release rate acr oss the width of the specimens for the models chosen. The results suggested that element types with similar formulation yield matching results independent of the finite element software used. For comparison, m ixed-mode strain energy release rates were also calculated within ABAQUS#/Standard using the VCCT for ABAQUS# add on. For all specimens mod eled, mixed-mode strain energy release rates obtained from ABAQUS# finite element results using post-processing were almost identical to re sults calculated using the VCCT for ABAQUS# add on.

  12. Thermodynamic evaluation of transonic compressor rotors using the finite volume approach

    NASA Technical Reports Server (NTRS)

    Moore, J.; Nicholson, S.; Moore, J. G.

    1985-01-01

    Research at NASA Lewis Research Center gave the opportunity to incorporate new control volumes in the Denton 3-D finite-volume time marching code. For duct flows, the new control volumes require no transverse smoothing and this allows calculations with large transverse gradients in properties without significant numerical total pressure losses. Possibilities for improving the Denton code to obtain better distributions of properties through shocks were demonstrated. Much better total pressure distributions through shocks are obtained when the interpolated effective pressure, needed to stabilize the solution procedure, is used to calculate the total pressure. This simple change largely eliminates the undershoot in total pressure down-stream of a shock. Overshoots and undershoots in total pressure can then be further reduced by a factor of 10 by adopting the effective density method, rather than the effective pressure method. Use of a Mach number dependent interpolation scheme for pressure then removes the overshoot in static pressure downstream of a shock. The stability of interpolation schemes used for the calculation of effective density is analyzed and a Mach number dependent scheme is developed, combining the advantages of the correct perfect gas equation for subsonic flow with the stability of 2-point and 3-point interpolation schemes for supersonic flow.

  13. Optimizing Energy Consumption in Vehicular Sensor Networks by Clustering Using Fuzzy C-Means and Fuzzy Subtractive Algorithms

    NASA Astrophysics Data System (ADS)

    Ebrahimi, A.; Pahlavani, P.; Masoumi, Z.

    2017-09-01

    Traffic monitoring and managing in urban intelligent transportation systems (ITS) can be carried out based on vehicular sensor networks. In a vehicular sensor network, vehicles equipped with sensors such as GPS, can act as mobile sensors for sensing the urban traffic and sending the reports to a traffic monitoring center (TMC) for traffic estimation. The energy consumption by the sensor nodes is a main problem in the wireless sensor networks (WSNs); moreover, it is the most important feature in designing these networks. Clustering the sensor nodes is considered as an effective solution to reduce the energy consumption of WSNs. Each cluster should have a Cluster Head (CH), and a number of nodes located within its supervision area. The cluster heads are responsible for gathering and aggregating the information of clusters. Then, it transmits the information to the data collection center. Hence, the use of clustering decreases the volume of transmitting information, and, consequently, reduces the energy consumption of network. In this paper, Fuzzy C-Means (FCM) and Fuzzy Subtractive algorithms are employed to cluster sensors and investigate their performance on the energy consumption of sensors. It can be seen that the FCM algorithm and Fuzzy Subtractive have been reduced energy consumption of vehicle sensors up to 90.68% and 92.18%, respectively. Comparing the performance of the algorithms implies the 1.5 percent improvement in Fuzzy Subtractive algorithm in comparison.

  14. Finite element analysis of a bone healing model: 1-year follow-up after internal fixation surgery for femoral fracture.

    PubMed

    Jiang-Jun, Zhou; Min, Zhao; Ya-Bo, Yan; Wei, Lei; Ren-Fa, Lv; Zhi-Yu, Zhu; Rong-Jian, Chen; Wei-Tao, Yu; Cheng-Fei, Du

    2014-03-01

    Finite element analysis was used to compare preoperative and postoperative stress distribution of a bone healing model of femur fracture, to identify whether broken ends of fractured bone would break or not after fixation dislodgement one year after intramedullary nailing. Method s: Using fast, personalized imaging, bone healing models of femur fracture were constructed based on data from multi-slice spiral computed tomography using Mimics, Geomagic Studio, and Abaqus software packages. The intramedullary pin was removed by Boolean operations before fixation was dislodged. Loads were applied on each model to simulate a person standing on one leg. The von Mises stress distribution, maximum stress, and its location was observed. Results : According to 10 kinds of display groups based on material assignment, the nodes of maximum and minimum von Mises stress were the same before and after dislodgement, and all nodes of maximum von Mises stress were outside the fracture line. The maximum von Mises stress node was situated at the bottom quarter of the femur. The von Mises stress distribution was identical before and after surgery. Conclusion : Fast, personalized model establishment can simulate fixation dislodgement before operation, and personalized finite element analysis was performed to successfully predict whether nail dislodgement would disrupt femur fracture or not.

  15. Generalized Fluid System Simulation Program, Version 5.0-Educational. Supplemental Information for NASA/TM-2011-216470. Supplement

    NASA Technical Reports Server (NTRS)

    Majumdar, A. K.

    2011-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors and external body forces such as gravity and centrifugal. The thermofluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the point, drag and click method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids and 21 different resistance/source options are provided for modeling momentum sources or sinks in the branches. This Technical Memorandum illustrates the application and verification of the code through 12 demonstrated example problems. This supplement gives the input and output data files for the examples.

  16. A single-stage flux-corrected transport algorithm for high-order finite-volume methods

    DOE PAGES

    Chaplin, Christopher; Colella, Phillip

    2017-05-08

    We present a new limiter method for solving the advection equation using a high-order, finite-volume discretization. The limiter is based on the flux-corrected transport algorithm. Here, we modify the classical algorithm by introducing a new computation for solution bounds at smooth extrema, as well as improving the preconstraint on the high-order fluxes. We compute the high-order fluxes via a method-of-lines approach with fourth-order Runge-Kutta as the time integrator. For computing low-order fluxes, we select the corner-transport upwind method due to its improved stability over donor-cell upwind. Several spatial differencing schemes are investigated for the high-order flux computation, including centered- differencemore » and upwind schemes. We show that the upwind schemes perform well on account of the dissipation of high-wavenumber components. The new limiter method retains high-order accuracy for smooth solutions and accurately captures fronts in discontinuous solutions. Further, we need only apply the limiter once per complete time step.« less

  17. The 0.125 degree finite-volume General Circulation Model on the NASA Columbia Supercomputer: Preliminary Simulations of Mesoscale Vortices

    NASA Technical Reports Server (NTRS)

    Shen, B.-W.; Atlas, R.; Chern, J.-D.; Reale, O.; Lin, S.-J.; Lee, T.; Chang, J.

    2005-01-01

    The NASA Columbia supercomputer was ranked second on the TOP500 List in November, 2004. Such a quantum jump in computing power provides unprecedented opportunities to conduct ultra-high resolution simulations with the finite-volume General Circulation Model (fvGCM). During 2004, the model was run in realtime experimentally at 0.25 degree resolution producing remarkable hurricane forecasts [Atlas et al., 2005]. In 2005, the horizontal resolution was further doubled, which makes the fvGCM comparable to the first mesoscale resolving General Circulation Model at the Earth Simulator Center [Ohfuchi et al., 2004]. Nine 5-day 0.125 degree simulations of three hurricanes in 2004 are presented first for model validation. Then it is shown how the model can simulate the formation of the Catalina eddies and Hawaiian lee vortices, which are generated by the interaction of the synoptic-scale flow with surface forcing, and have never been reproduced in a GCM before.)

  18. Finite difference time domain implementation of surface impedance boundary conditions

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Luebbers, Raymond J.; Yee, Kane S.; Kunz, Karl S.

    1991-01-01

    Surface impedance boundary conditions are employed to reduce the solution volume during the analysis of scattering from lossy dielectric objects. In the finite difference solution, they also can be utilized to avoid using small cells, made necessary by shorter wavelengths in conducting media throughout the solution volume. The standard approach is to approximate the surface impedance over a very small bandwidth by its value at the center frequency, and then use that result in the boundary condition. Here, two implementations of the surface impedance boundary condition are presented. One implementation is a constant surface impedance boundary condition and the other is a dispersive surface impedance boundary condition that is applicable over a very large frequency bandwidth and over a large range of conductivities. Frequency domain results are presented in one dimension for two conductivity values and are compared with exact results. Scattering width results from an infinite square cylinder are presented as a two dimensional demonstration. Extensions to three dimensions should be straightforward.

  19. Finite difference time domain implementation of surface impedance boundary conditions

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Luebbers, Raymond J.; Yee, Kane S.; Kunz, Karl S.

    1991-01-01

    Surface impedance boundary conditions are employed to reduce the solution volume during the analysis of scattering from lossy dielectric objects. In a finite difference solution, they also can be utilized to avoid using small cells, made necessary by shorter wavelengths in conducting media throughout the solution volume. The standard approach is to approximate the surface impedance over a very small bandwidth by its value at the center frequency, and then use that result in the boundary condition. Two implementations of the surface impedance boundary condition are presented. One implementation is a constant surface impedance boundary condition and the other is a dispersive surface impedance boundary condition that is applicable over a very large frequency bandwidth and over a large range of conductivities. Frequency domain results are presented in one dimension for two conductivity values and are compared with exact results. Scattering width results from an infinite square cylinder are presented as a 2-D demonstration. Extensions to 3-D should be straightforward.

  20. An implicit numerical model for multicomponent compressible two-phase flow in porous media

    NASA Astrophysics Data System (ADS)

    Zidane, Ali; Firoozabadi, Abbas

    2015-11-01

    We introduce a new implicit approach to model multicomponent compressible two-phase flow in porous media with species transfer between the phases. In the implicit discretization of the species transport equation in our formulation we calculate for the first time the derivative of the molar concentration of component i in phase α (cα, i) with respect to the total molar concentration (ci) under the conditions of a constant volume V and temperature T. The species transport equation is discretized by the finite volume (FV) method. The fluxes are calculated based on powerful features of the mixed finite element (MFE) method which provides the pressure at grid-cell interfaces in addition to the pressure at the grid-cell center. The efficiency of the proposed model is demonstrated by comparing our results with three existing implicit compositional models. Our algorithm has low numerical dispersion despite the fact it is based on first-order space discretization. The proposed algorithm is very robust.

  1. Laminated Thin Shell Structures Subjected to Free Vibration in a Hygrothermal Environment

    NASA Technical Reports Server (NTRS)

    Gotsis, Pascal K.; Guptill, James D.

    1994-01-01

    Parametric studies were performed to assess the effects of various parameters on the free-vibration behavior (natural frequencies) of (+/- theta)(sub 2) angle-ply, fiber composite, thin shell structures in a hygrothermal environment. Knowledge of the natural frequencies of structures is important in considering their response to various kinds of excitation, especially when structures and force systems are complex and when excitations are not periodic. The three dimensional, finite element structural analysis computer code CSTEM was used in the Cray YMP computer environment. The fiber composite shell was assumed to be cylindrical and made from T300 graphite fibers embedded in an intermediate-modulus, high-strength matrix. The following parameters were investigated: the length and the laminate thickness of the shell, the fiber orientation, the fiber volume fraction, the temperature profile through the thickness of the laminate, and laminates with different ply thicknesses. The results indicate that the fiber orientation and the length of the laminated shell had significant effects on the natural frequencies. The fiber volume fraction, the laminate thickness, and the temperature profile through the shell thickness had weak effects on the natural frequencies. Finally, the laminates with different ply thicknesses had an insignificant influence on the behavior of the vibrated laminated shell. Also, a single through-the-thickness, eight-node, three dimensional composite finite element analysis appears to be sufficient for investigating the free-vibration behavior of thin, composite, angle-ply shell structures.

  2. Stress Recovery and Error Estimation for 3-D Shell Structures

    NASA Technical Reports Server (NTRS)

    Riggs, H. R.

    2000-01-01

    The C1-continuous stress fields obtained from finite element analyses are in general lower- order accurate than are the corresponding displacement fields. Much effort has focussed on increasing their accuracy and/or their continuity, both for improved stress prediction and especially error estimation. A previous project developed a penalized, discrete least squares variational procedure that increases the accuracy and continuity of the stress field. The variational problem is solved by a post-processing, 'finite-element-type' analysis to recover a smooth, more accurate, C1-continuous stress field given the 'raw' finite element stresses. This analysis has been named the SEA/PDLS. The recovered stress field can be used in a posteriori error estimators, such as the Zienkiewicz-Zhu error estimator or equilibrium error estimators. The procedure was well-developed for the two-dimensional (plane) case involving low-order finite elements. It has been demonstrated that, if optimal finite element stresses are used for the post-processing, the recovered stress field is globally superconvergent. Extension of this work to three dimensional solids is straightforward. Attachment: Stress recovery and error estimation for shell structure (abstract only). A 4-node, shear-deformable flat shell element developed via explicit Kirchhoff constraints (abstract only). A novel four-node quadrilateral smoothing element for stress enhancement and error estimation (abstract only).

  3. Three-body unitarity in the finite volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, M.; Döring, M.

    We present the physical interpretation of lattice QCD simulations, performed in a small volume, requires an extrapolation to the infinite volume. A method is proposed to perform such an extrapolation for three interacting particles at energies above threshold. For this, a recently formulated relativisticmore » $$3\\to 3$$ amplitude based on the isobar formulation is adapted to the finite volume. The guiding principle is two- and three-body unitarity that imposes the imaginary parts of the amplitude in the infinite volume. In turn, these imaginary parts dictate the leading power-law finite-volume effects. It is demonstrated that finite-volume poles arising from the singular interaction, from the external two-body sub-amplitudes, and from the disconnected topology cancel exactly leaving only the genuine three-body eigenvalues. Lastly, the corresponding quantization condition is derived for the case of three identical scalar-isoscalar particles and its numerical implementation is demonstrated.« less

  4. Three-body unitarity in the finite volume

    DOE PAGES

    Mai, M.; Döring, M.

    2017-12-18

    We present the physical interpretation of lattice QCD simulations, performed in a small volume, requires an extrapolation to the infinite volume. A method is proposed to perform such an extrapolation for three interacting particles at energies above threshold. For this, a recently formulated relativisticmore » $$3\\to 3$$ amplitude based on the isobar formulation is adapted to the finite volume. The guiding principle is two- and three-body unitarity that imposes the imaginary parts of the amplitude in the infinite volume. In turn, these imaginary parts dictate the leading power-law finite-volume effects. It is demonstrated that finite-volume poles arising from the singular interaction, from the external two-body sub-amplitudes, and from the disconnected topology cancel exactly leaving only the genuine three-body eigenvalues. Lastly, the corresponding quantization condition is derived for the case of three identical scalar-isoscalar particles and its numerical implementation is demonstrated.« less

  5. A randomized trial of exercise on well-being and function following breast cancer surgery: the RESTORE trial.

    PubMed

    Anderson, Roger T; Kimmick, Gretchen G; McCoy, Thomas P; Hopkins, Judith; Levine, Edward; Miller, Gary; Ribisl, Paul; Mihalko, Shannon L

    2012-06-01

    This study aimed to determine the effect of a moderate, tailored exercise program on health-related quality of life, physical function, and arm volume in women receiving treatment for nonmetastatic breast cancer. Women who were within 4-12 weeks of surgery for stage I-III breast cancer were randomized to center-based exercise and lymphedema education intervention or patient education. Functional assessment of cancer therapy-breast cancer (FACT-B), 6-min walk, and arm volume were performed at 3-month intervals through 18 months. Repeated measures analysis of covariance was used to model the total meters walked over time, FACT-B scores, and arm volume. Models were adjusted for baseline measurement, baseline affected arm volume, number of nodes removed, age, self-reported symptoms, baseline SF-12 mental and physical component scores, visit, and treatment group. Of the recruited 104 women, 82 completed all 18 months. Mean age (range) was 53.6 (32-82) years; 88% were Caucasian; 45% were employed full time; 44% were overweight; and 28% obese. Approximately, 46% had breast-conserving surgery; 79% had axillary node dissection; 59% received chemotherapy; and 64% received radiation. The intervention resulted in an average increase of 34.3 ml (SD = 12.8) versus patient education (p = 0.01). Changes in FACT-B scores and arm volumes were not significantly different. With this early exercise intervention after breast cancer diagnosis, a significant improvement was achieved in physical function, with no decline in health-related quality of life or detrimental effect on arm volume. Starting a supervised exercise regimen that is tailored to an individual's strength and stamina within 3 months following breast cancer surgery appears safe and may hasten improvements in physical functioning.

  6. Data Access Based on a Guide Map of the Underwater Wireless Sensor Network

    PubMed Central

    Wei, Zhengxian; Song, Min; Yin, Guisheng; Wang, Hongbin; Cheng, Albert M. K.

    2017-01-01

    Underwater wireless sensor networks (UWSNs) represent an area of increasing research interest, as data storage, discovery, and query of UWSNs are always challenging issues. In this paper, a data access based on a guide map (DAGM) method is proposed for UWSNs. In DAGM, the metadata describes the abstracts of data content and the storage location. The center ring is composed of nodes according to the shortest average data query path in the network in order to store the metadata, and the data guide map organizes, diffuses and synchronizes the metadata in the center ring, providing the most time-saving and energy-efficient data query service for the user. For this method, firstly the data is stored in the UWSN. The storage node is determined, the data is transmitted from the sensor node (data generation source) to the storage node, and the metadata is generated for it. Then, the metadata is sent to the center ring node that is the nearest to the storage node and the data guide map organizes the metadata, diffusing and synchronizing it to the other center ring nodes. Finally, when there is query data in any user node, the data guide map will select a center ring node nearest to the user to process the query sentence, and based on the shortest transmission delay and lowest energy consumption, data transmission routing is generated according to the storage location abstract in the metadata. Hence, specific application data transmission from the storage node to the user is completed. The simulation results demonstrate that DAGM has advantages with respect to data access time and network energy consumption. PMID:29039757

  7. Data Access Based on a Guide Map of the Underwater Wireless Sensor Network.

    PubMed

    Wei, Zhengxian; Song, Min; Yin, Guisheng; Song, Houbing; Wang, Hongbin; Ma, Xuefei; Cheng, Albert M K

    2017-10-17

    Underwater wireless sensor networks (UWSNs) represent an area of increasing research interest, as data storage, discovery, and query of UWSNs are always challenging issues. In this paper, a data access based on a guide map (DAGM) method is proposed for UWSNs. In DAGM, the metadata describes the abstracts of data content and the storage location. The center ring is composed of nodes according to the shortest average data query path in the network in order to store the metadata, and the data guide map organizes, diffuses and synchronizes the metadata in the center ring, providing the most time-saving and energy-efficient data query service for the user. For this method, firstly the data is stored in the UWSN. The storage node is determined, the data is transmitted from the sensor node (data generation source) to the storage node, and the metadata is generated for it. Then, the metadata is sent to the center ring node that is the nearest to the storage node and the data guide map organizes the metadata, diffusing and synchronizing it to the other center ring nodes. Finally, when there is query data in any user node, the data guide map will select a center ring node nearest to the user to process the query sentence, and based on the shortest transmission delay and lowest energy consumption, data transmission routing is generated according to the storage location abstract in the metadata. Hence, specific application data transmission from the storage node to the user is completed. The simulation results demonstrate that DAGM has advantages with respect to data access time and network energy consumption.

  8. Establishing the 3-D finite element solid model of femurs in partial by volume rendering.

    PubMed

    Zhang, Yinwang; Zhong, Wuxue; Zhu, Haibo; Chen, Yun; Xu, Lingjun; Zhu, Jianmin

    2013-01-01

    It remains rare to report three-dimensional (3-D) finite element solid model of femurs in partial by volume rendering method, though several methods of femoral 3-D finite element modeling are already available. We aim to analyze the advantages of the modeling method by establishing the 3-D finite element solid model of femurs in partial by volume rendering. A 3-D finite element model of the normal human femurs, made up of three anatomic structures: cortical bone, cancellous bone and pulp cavity, was constructed followed by pretreatment of the CT original image. Moreover, the finite-element analysis was carried on different material properties, three types of materials given for cortical bone, six assigned for cancellous bone, and single for pulp cavity. The established 3-D finite element of femurs contains three anatomical structures: cortical bone, cancellous bone, and pulp cavity. The compressive stress primarily concentrated in the medial surfaces of femur, especially in the calcar femorale. Compared with whole modeling by volume rendering method, the 3-D finite element solid model created in partial is more real and fit for finite element analysis. Copyright © 2013 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  9. Patterns of practice of regional nodal irradiation in breast cancer: results of the European Organization for Research and Treatment of Cancer (EORTC) NOdal Radiotherapy (NORA) survey.

    PubMed

    Belkacemi, Y; Kaidar-Person, O; Poortmans, P; Ozsahin, M; Valli, M-C; Russell, N; Kunkler, I; Hermans, J; Kuten, A; van Tienhoven, G; Westenberg, H

    2015-03-01

    Predicting outcome of breast cancer (BC) patients based on sentinel lymph node (SLN) status without axillary lymph node dissection (ALND) is an area of uncertainty. It influences the decision-making for regional nodal irradiation (RNI). The aim of the NORA (NOdal RAdiotherapy) survey was to examine the patterns of RNI. A web-questionnaire, including several clinical scenarios, was distributed to 88 EORTC-affiliated centers. Responses were received between July 2013 and January 2014. A total of 84 responses were analyzed. While three-dimensional (3D) radiotherapy (RT) planning is carried out in 81 (96%) centers, nodal areas are delineated in only 51 (61%) centers. Only 14 (17%) centers routinely link internal mammary chain (IMC) and supraclavicular node (SCN) RT indications. In patients undergoing total mastectomy (TM) with ALND, SCN-RT is recommend by 5 (6%), 53 (63%) and 51 (61%) centers for patients with pN0(i+), pN(mi) and pN1, respectively. Extra-capsular extension (ECE) is the main factor influencing decision-making RNI after breast conserving surgery (BCS) and TM. After primary systemic therapy (PST), 49 (58%) centers take into account nodal fibrotic changes in ypN0 patients for RNI indications. In ypN0 patients with inner/central tumors, 23 (27%) centers indicate SCN-RT and IMC-RT. In ypN1 patients, SCN-RT is delivered by less than half of the centers in patients with ypN(i+) and ypN(mi). Twenty-one (25%) of the centers recommend ALN-RT in patients with ypN(mi) or 1-2N+ after ALND. Seventy-five (90%) centers state that age is not considered a limiting factor for RNI. The NORA survey is unique in evaluating the impact of SLNB/ALND status on adjuvant RNI decision-making and volumes after BCS/TM with or without PST. ALN-RT is often indicated in pN1 patients, particularly in the case of ECE. Besides the ongoing NSABP-B51/RTOG and ALLIANCE trials, NORA could help to design future specific RNI trials in the SLNB era without ALND in patients receiving or not PST. © The Author 2014. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Efficient discretization in finite difference method

    NASA Astrophysics Data System (ADS)

    Rozos, Evangelos; Koussis, Antonis; Koutsoyiannis, Demetris

    2015-04-01

    Finite difference method (FDM) is a plausible and simple method for solving partial differential equations. The standard practice is to use an orthogonal discretization to form algebraic approximate formulations of the derivatives of the unknown function and a grid, much like raster maps, to represent the properties of the function domain. For example, for the solution of the groundwater flow equation, a raster map is required for the characterization of the discretization cells (flow cell, no-flow cell, boundary cell, etc.), and two raster maps are required for the hydraulic conductivity and the storage coefficient. Unfortunately, this simple approach to describe the topology comes along with the known disadvantages of the FDM (rough representation of the geometry of the boundaries, wasted computational resources in the unavoidable expansion of the grid refinement in all cells of the same column and row, etc.). To overcome these disadvantages, Hunt has suggested an alternative approach to describe the topology, the use of an array of neighbours. This limits the need for discretization nodes only for the representation of the boundary conditions and the flow domain. Furthermore, the geometry of the boundaries is described more accurately using a vector representation. Most importantly, graded meshes can be employed, which are capable of restricting grid refinement only in the areas of interest (e.g. regions where hydraulic head varies rapidly, locations of pumping wells, etc.). In this study, we test the Hunt approach against MODFLOW, a well established finite difference model, and the Finite Volume Method with Simplified Integration (FVMSI). The results of this comparison are examined and critically discussed.

  11. Method of generating a surface mesh

    DOEpatents

    Shepherd, Jason F [Albuquerque, NM; Benzley, Steven [Provo, UT; Grover, Benjamin T [Tracy, CA

    2008-03-04

    A method and machine-readable medium provide a technique to generate and modify a quadrilateral finite element surface mesh using dual creation and modification. After generating a dual of a surface (mesh), a predetermined algorithm may be followed to generate and modify a surface mesh of quadrilateral elements. The predetermined algorithm may include the steps of generating two-dimensional cell regions in dual space, determining existing nodes in primal space, generating new nodes in the dual space, and connecting nodes to form the quadrilateral elements (faces) for the generated and modifiable surface mesh.

  12. An efficient 3D R-tree spatial index method for virtual geographic environments

    NASA Astrophysics Data System (ADS)

    Zhu, Qing; Gong, Jun; Zhang, Yeting

    A three-dimensional (3D) spatial index is required for real time applications of integrated organization and management in virtual geographic environments of above ground, underground, indoor and outdoor objects. Being one of the most promising methods, the R-tree spatial index has been paid increasing attention in 3D geospatial database management. Since the existing R-tree methods are usually limited by their weakness of low efficiency, due to the critical overlap of sibling nodes and the uneven size of nodes, this paper introduces the k-means clustering method and employs the 3D overlap volume, 3D coverage volume and the minimum bounding box shape value of nodes as the integrative grouping criteria. A new spatial cluster grouping algorithm and R-tree insertion algorithm is then proposed. Experimental analysis on comparative performance of spatial indexing shows that by the new method the overlap of R-tree sibling nodes is minimized drastically and a balance in the volumes of the nodes is maintained.

  13. Equivalent modulus method for finite element simulation of the sound absorption of anechoic coating backed with orthogonally rib-stiffened plate

    NASA Astrophysics Data System (ADS)

    Jin, Zhongkun; Yin, Yao; Liu, Bilong

    2016-03-01

    The finite element method is often used to investigate the sound absorption of anechoic coating backed with orthogonally rib-stiffened plate. Since the anechoic coating contains cavities, the number of grid nodes of a periodic unit cell is usually large. An equivalent modulus method is proposed to reduce the large amount of nodes by calculating an equivalent homogeneous layer. Applications of this method in several models show that the method can well predict the sound absorption coefficient of such structure in a wide frequency range. Based on the simulation results, the sound absorption performance of such structure and the influences of different backings on the first absorption peak are also discussed.

  14. Brownian cluster dynamics with short range patchy interactions: Its application to polymers and step-growth polymerization

    NASA Astrophysics Data System (ADS)

    Prabhu, A.; Babu, S. B.; Dolado, J. S.; Gimel, J.-C.

    2014-07-01

    We present a novel simulation technique derived from Brownian cluster dynamics used so far to study the isotropic colloidal aggregation. It now implements the classical Kern-Frenkel potential to describe patchy interactions between particles. This technique gives access to static properties, dynamics and kinetics of the system, even far from the equilibrium. Particle thermal motions are modeled using billions of independent small random translations and rotations, constrained by the excluded volume and the connectivity. This algorithm, applied to a single polymer chain leads to correct static and dynamic properties, in the framework where hydrodynamic interactions are ignored. By varying patch angles, various local chain flexibilities can be obtained. We have used this new algorithm to model step-growth polymerization under various solvent qualities. The polymerization reaction is modeled by an irreversible aggregation between patches while an isotropic finite square-well potential is superimposed to mimic the solvent quality. In bad solvent conditions, a competition between a phase separation (due to the isotropic interaction) and polymerization (due to patches) occurs. Surprisingly, an arrested network with a very peculiar structure appears. It is made of strands and nodes. Strands gather few stretched chains that dip into entangled globular nodes. These nodes act as reticulation points between the strands. The system is kinetically driven and we observe a trapped arrested structure. That demonstrates one of the strengths of this new simulation technique. It can give valuable insights about mechanisms that could be involved in the formation of stranded gels.

  15. Finite element techniques for the Navier-Stokes equations in the primitive variable formulation and the vorticity stream-function formulation

    NASA Technical Reports Server (NTRS)

    Glaisner, F.; Tezduyar, T. E.

    1987-01-01

    Finite element procedures for the Navier-Stokes equations in the primitive variable formulation and the vorticity stream-function formulation have been implemented. For both formulations, streamline-upwind/Petrov-Galerkin techniques are used for the discretization of the transport equations. The main problem associated with the vorticity stream-function formulation is the lack of boundary conditions for vorticity at solid surfaces. Here an implicit treatment of the vorticity at no-slip boundaries is incorporated in a predictor-multicorrector time integration scheme. For the primitive variable formulation, mixed finite-element approximations are used. A nine-node element and a four-node + bubble element have been implemented. The latter is shown to exhibit a checkerboard pressure mode and a numerical treatment for this spurious pressure mode is proposed. The two methods are compared from the points of view of simulating internal and external flows and the possibilities of extensions to three dimensions.

  16. Sudden spreading of infections in an epidemic model with a finite seed fraction

    NASA Astrophysics Data System (ADS)

    Hasegawa, Takehisa; Nemoto, Koji

    2018-03-01

    We study a simple case of the susceptible-weakened-infected-removed model in regular random graphs in a situation where an epidemic starts from a finite fraction of initially infected nodes (seeds). Previous studies have shown that, assuming a single seed, this model exhibits a kind of discontinuous transition at a certain value of infection rate. Performing Monte Carlo simulations and evaluating approximate master equations, we find that the present model has two critical infection rates for the case with a finite seed fraction. At the first critical rate the system shows a percolation transition of clusters composed of removed nodes, and at the second critical rate, which is larger than the first one, a giant cluster suddenly grows and the order parameter jumps even though it has been already rising. Numerical evaluation of the master equations shows that such sudden epidemic spreading does occur if the degree of the underlying network is large and the seed fraction is small.

  17. Material nonlinear analysis via mixed-iterative finite element method

    NASA Technical Reports Server (NTRS)

    Sutjahjo, Edhi; Chamis, Christos C.

    1992-01-01

    The performance of elastic-plastic mixed-iterative analysis is examined through a set of convergence studies. Membrane and bending behaviors are tested using 4-node quadrilateral finite elements. The membrane result is excellent, which indicates the implementation of elastic-plastic mixed-iterative analysis is appropriate. On the other hand, further research to improve bending performance of the method seems to be warranted.

  18. Three Dimensional Thermal Model of Newberry Volcano, Oregon

    DOE Data Explorer

    Trenton Cladouhos

    2015-01-30

    Final results of a 3D finite difference thermal model of Newberry Volcano, Oregon. Model data are formatted as a text file with four data columns (X, Y, Z, T). X and Y coordinates are in UTM (NAD83 Zone 10N), Z is elevation from mean sea level (meters), T is temperature in °C. Model is 40km X 40km X 12.5 km, grid node spacing is 100m in X, Y, and Z directions. A symmetric cylinder shaped magmatic heat source centered on the present day caldera is the modeled heat source. The center of the modeled body is a -1700 m (elevation) and is 600m thick with a radius of 8700m. This is the best fit results from 2D modeling of the west flank of the volcano. The model accounts for temperature dependent thermal properties and latent heat of crystallization. For additional details, assumptions made, data used, and a discussion of the validity of the model see Frone, 2015 (http://search.proquest.com/docview/1717633771).

  19. Bilateral implant reconstruction does not affect the quality of postmastectomy radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Alice Y., E-mail: hoa1234@mskcc.org; Patel, Nisha; Ohri, Nisha

    To determine if the presence of bilateral implants, in addition to other anatomic and treatment-related variables, affects coverage of the target volume and dose to the heart and lung in patients receiving postmastectomy radiation therapy (PMRT). A total of 197 consecutive women with breast cancer underwent mastectomy and immediate tissue expander (TE) placement, with or without exchange for a permanent implant (PI) before radiation therapy at our center. PMRT was delivered with 2 tangential beams + supraclavicular lymph node field (50 Gy). Patients were grouped by implant number: 51% unilateral (100) and 49% bilateral (97). The planning target volume (PTV)more » (defined as implant + chest wall + nodes), heart, and ipsilateral lung were contoured and the following parameters were abstracted from dose-volume histogram (DVH) data: PTV D{sub 95%} > 98%, Lung V{sub 20}Gy > 30%, and Heart V{sub 25}Gy > 5%. Univariate (UVA) and multivariate analyses (MVA) were performed to determine the association of variables with these parameters. The 2 groups were well balanced for implant type and volume, internal mammary node (IMN) treatment, and laterality. In the entire cohort, 90% had PTV D{sub 95%} > 98%, indicating excellent coverage of the chest wall. Of the patients, 27% had high lung doses (V{sub 20}Gy > 30%) and 16% had high heart doses (V{sub 25}Gy > 5%). No significant factors were associated with suboptimal PTV coverage. On MVA, IMN treatment was found to be highly associated with high lung and heart doses (both p < 0.0001), but implant number was not (p = 0.54). In patients with bilateral implants, IMN treatment was the only predictor of dose to the contralateral implant (p = 0.001). In conclusion, bilateral implants do not compromise coverage of the target volume or increase lung and heart dose in patients receiving PMRT. The most important predictor of high lung and heart doses in patients with implant-based reconstruction, whether unilateral or bilateral, is treatment of the IMNs. Refinement of radiation techniques in reconstructed patients who require comprehensive nodal irradiation is warranted.« less

  20. Node 1 and PMA-1 are moved for weight and center of gravity determination

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Node 1, the first U.S. element for the International Space Station, and Pressurized Mating Adapter-1 (PMA-1) continue with prelaunch preparation activities at KSC's Space Station Processing Facility. Node 1 is a connecting passageway to the living and working areas of the space station. The node and PMA-1 are being moved to an element rotation stand, or test stand, where they will undergo an interim weight and center of gravity determination. The final determination is planned to be performed prior to transporting Node 1 to the launch pad. Node 1 is scheduled to fly on STS-88.

  1. Enterprise Architecture as a Tool of Navy METOC Transformation

    DTIC Science & Technology

    2006-09-01

    Enterprise Service Integration Layer (MESIL) METOC Enterprise Service Bus (ESB) Local ESBl Impl InfraI l I f Production Center Node Local ESBl Impl...InfraI l I f Local ESBl Impl InfraI l I f METOC Edge Node NCOW Tenets NCOW Tenets SOA Tenets SOA Tenets Production Center Node Top-Down Analysis

  2. Chiral crossover transition in a finite volume

    NASA Astrophysics Data System (ADS)

    Shi, Chao; Jia, Wenbao; Sun, An; Zhang, Liping; Zong, Hongshi

    2018-02-01

    Finite volume effects on the chiral crossover transition of strong interactions at finite temperature are studied by solving the quark gap equation within a cubic volume of finite size L. With the anti-periodic boundary condition, our calculation shows the chiral quark condensate, which characterizes the strength of dynamical chiral symmetry breaking, decreases as L decreases below 2.5 fm. We further study the finite volume effects on the pseudo-transition temperature {T}{{c}} of the crossover, showing a significant decrease in {T}{{c}} as L decreases below 3 fm. Supported by National Natural Science Foundation of China (11475085, 11535005, 11690030, 51405027), the Fundamental Research Funds for the Central Universities (020414380074), China Postdoctoral Science Foundation (2016M591808) and Open Research Foundation of State Key Lab. of Digital Manufacturing Equipment & Technology in Huazhong University of Science & Technology (DMETKF2015015)

  3. Volume dependence of baryon number cumulants and their ratios

    DOE PAGES

    Almási, Gábor A.; Pisarski, Robert D.; Skokov, Vladimir V.

    2017-03-17

    Here, we explore the influence of finite-volume effects on cumulants of baryon/quark number fluctuations in a nonperturbative chiral model. In order to account for soft modes, we use the functional renormalization group in a finite volume, using a smooth regulator function in momentum space. We compare the results for a smooth regulator with those for a sharp (or Litim) regulator, and show that in a finite volume, the latter produces spurious artifacts. In a finite volume there are only apparent critical points, about which we compute the ratio of the fourth- to the second-order cumulant of quark number fluctuations. Finally,more » when the volume is sufficiently small the system has two apparent critical points; as the system size decreases, the location of the apparent critical point can move to higher temperature and lower chemical potential.« less

  4. Improved Boundary Conditions for Cell-centered Difference Schemes

    NASA Technical Reports Server (NTRS)

    VanderWijngaart, Rob F.; Klopfer, Goetz H.; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    Cell-centered finite-volume (CCFV) schemes have certain attractive properties for the solution of the equations governing compressible fluid flow. Among others, they provide a natural vehicle for specifying flux conditions at the boundaries of the physical domain. Unfortunately, they lead to slow convergence for numerical programs utilizing them. In this report a method for investigating and improving the convergence of CCFV schemes is presented, which focuses on the effect of the numerical boundary conditions. The key to the method is the computation of the spectral radius of the iteration matrix of the entire demoralized system of equations, not just of the interior point scheme or the boundary conditions.

  5. [Building an effective nonlinear three-dimensional finite-element model of human thoracolumbar spine].

    PubMed

    Zeng, Zhi-Li; Cheng, Li-Ming; Zhu, Rui; Wang, Jian-Jie; Yu, Yan

    2011-08-23

    To build an effective nonlinear three-dimensional finite-element (FE) model of T(11)-L(3) segments for a further biomechanical study of thoracolumbar spine. The CT (computed tomography) scan images of healthy adult T(11)-L(3) segments were imported into software Simpleware 2.0 to generate a triangular mesh model. Using software Geomagic 8 for model repair and optimization, a solid model was generated into the finite element software Abaqus 6.9. The reasonable element C3D8 was selected for bone structures. Created between bony endplates, the intervertebral disc was subdivided into nucleus pulposus and annulus fibrosus (44% nucleus, 56% annulus). The nucleus was filled with 5 layers of 8-node solid elements and annulus reinforced by 8 crisscross collagenous fiber layers. The nucleus and annulus were meshed by C3D8RH while the collagen fibers meshed by two node-truss elements. The anterior (ALL) and posterior (PLL) longitudinal ligaments, flavum (FL), supraspinous (SSL), interspinous (ISL) and intertransverse (ITL) ligaments were modeled with S4R shell elements while capsular ligament (CL) was modeled with 3-node shell element. All surrounding ligaments were represented by envelope of 1 mm uniform thickness. The discs and bone structures were modeled with hyper-elastic and elasto-plastic material laws respectively while the ligaments governed by visco-elastic material law. The nonlinear three-dimensional finite-element model of T(11)-L(3) segments was generated and its efficacy verified through validating the geometric similarity and disc load-displacement and stress distribution under the impact of violence. Using ABAQUS/ EXPLICIT 6.9 the explicit dynamic finite element solver, the impact test was simulated in vitro. In this study, a 3-dimensional, nonlinear FE model including 5 vertebrae, 4 intervertebral discs and 7 ligaments consisted of 78 887 elements and 71 939 nodes. The model had good geometric similarity under the same conditions. The results of FEM intervertebral disc load-displacement curve were similar to those of in vitro test. The stress distribution results of vertebral cortical bone, posterior complex and cancellous bone were similar to those of other static experiments in a dynamic impact test under the observation of stress cloud. With the advantages of high geometric and mechanical similarity and complete thoracolumbar, hexahedral meshes, nonlinear finite element model may facilitate the impact loading test for a further dynamic analysis of injury mechanism for thoracolumbar burst fracture.

  6. The Development of a Finite Volume Method for Modeling Sound in Coastal Ocean Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Wen; Yang, Zhaoqing; Copping, Andrea E.

    : As the rapid growth of marine renewable energy and off-shore wind energy, there have been concerns that the noises generated from construction and operation of the devices may interfere marine animals’ communication. In this research, a underwater sound model is developed to simulate sound prorogation generated by marine-hydrokinetic energy (MHK) devices or offshore wind (OSW) energy platforms. Finite volume and finite difference methods are developed to solve the 3D Helmholtz equation of sound propagation in the coastal environment. For finite volume method, the grid system consists of triangular grids in horizontal plane and sigma-layers in vertical dimension. A 3Dmore » sparse matrix solver with complex coefficients is formed for solving the resulting acoustic pressure field. The Complex Shifted Laplacian Preconditioner (CSLP) method is applied to efficiently solve the matrix system iteratively with MPI parallelization using a high performance cluster. The sound model is then coupled with the Finite Volume Community Ocean Model (FVCOM) for simulating sound propagation generated by human activities in a range-dependent setting, such as offshore wind energy platform constructions and tidal stream turbines. As a proof of concept, initial validation of the finite difference solver is presented for two coastal wedge problems. Validation of finite volume method will be reported separately.« less

  7. Lymph node segmentation on CT images by a shape model guided deformable surface methodh

    NASA Astrophysics Data System (ADS)

    Maleike, Daniel; Fabel, Michael; Tetzlaff, Ralf; von Tengg-Kobligk, Hendrik; Heimann, Tobias; Meinzer, Hans-Peter; Wolf, Ivo

    2008-03-01

    With many tumor entities, quantitative assessment of lymph node growth over time is important to make therapy choices or to evaluate new therapies. The clinical standard is to document diameters on transversal slices, which is not the best measure for a volume. We present a new algorithm to segment (metastatic) lymph nodes and evaluate the algorithm with 29 lymph nodes in clinical CT images. The algorithm is based on a deformable surface search, which uses statistical shape models to restrict free deformation. To model lymph nodes, we construct an ellipsoid shape model, which strives for a surface with strong gradients and user-defined gray values. The algorithm is integrated into an application, which also allows interactive correction of the segmentation results. The evaluation shows that the algorithm gives good results in the majority of cases and is comparable to time-consuming manual segmentation. The median volume error was 10.1% of the reference volume before and 6.1% after manual correction. Integrated into an application, it is possible to perform lymph node volumetry for a whole patient within the 10 to 15 minutes time limit imposed by clinical routine.

  8. Improved finite element methodology for integrated thermal structural analysis

    NASA Technical Reports Server (NTRS)

    Dechaumphai, P.; Thornton, E. A.

    1982-01-01

    An integrated thermal-structural finite element approach for efficient coupling of thermal and structural analysis is presented. New thermal finite elements which yield exact nodal and element temperatures for one dimensional linear steady state heat transfer problems are developed. A nodeless variable formulation is used to establish improved thermal finite elements for one dimensional nonlinear transient and two dimensional linear transient heat transfer problems. The thermal finite elements provide detailed temperature distributions without using additional element nodes and permit a common discretization with lower order congruent structural finite elements. The accuracy of the integrated approach is evaluated by comparisons with analytical solutions and conventional finite element thermal structural analyses for a number of academic and more realistic problems. Results indicate that the approach provides a significant improvement in the accuracy and efficiency of thermal stress analysis for structures with complex temperature distributions.

  9. The role of CEUS in characterization of superficial lymph nodes: a single center prospective study

    PubMed Central

    de Stefano, Giorgio; Scognamiglio, Umberto; Di Martino, Filomena; Parrella, Roberto; Scarano, Francesco; Signoriello, Giuseppe; Farella, Nunzia

    2016-01-01

    Accurate lymph node characterization is important in a large number of clinical settings. We evaluated the usefulness of Contrast Enhanced Ultrasound (CEUS) in distinguishing between benign and malignant lymph nodes compared with conventional ultrasonography in the differential diagnosis of superficial lymphadenopathy. We present our experience for 111 patients enrolled in a single center. 111 superficial lymph nodes were selected and only 1 lymph node per patient underwent CEUS. A definitive diagnosis for all lymph nodes was obtained by ultrasonographically guided biopsy and/or excision biopsy. The size of the lymph nodes, the site (neck, axilla, inguinal region) being easily accessible for biopsy, and the US and color Doppler US characteristics guided us in selecting the nodes to be evaluated by CEUS. In our study we identified different enhancement patterns in benign and malignant lymph nodes, with a high degree of diagnostic accuracy for superficial lymphadenopathy in comparison with conventional US. PMID:27191746

  10. A simplified CT-based definition of the supraclavicular and infraclavicular nodal volumes in breast cancer.

    PubMed

    Atean, I; Pointreau, Y; Ouldamer, L; Monghal, C; Bougnoux, A; Bera, G; Barillot, I

    2013-02-01

    The available contouring guidelines for the supraclavicular and infraclavicular lymph nodes appeared to be inadequate for their delineation on non-enhanced computed tomography (CT) scans. For this purpose, we developed delineation guidelines for the clinical target volumes (CTV) of these lymph nodes on non-enhanced CT-slices performed in the treatment position of breast cancer. A fresh female cadaver study as well as delineation and an anatomical descriptions review were performed to propose a simplified definition of the supra- and infraclavicular lymph nodes using readily identifiable anatomical structures. This definition was developed jointly by breast radiologists, breast surgeons, and radiation oncologists. To validate these guidelines, the primary investigator and seven radiation oncologists (observers) independently delineated 10 different nodal CTVs. The primary investigator contours were considered to be the gold standard contours. Contour accuracy and concordance were evaluated. Written guidelines for the delineation of supra- and infraclavicular lymph nodes CTVs were developed. Consistent contours with minimal variability existed between the delineated volumes; the mean kappa index was 0.83. The mean common contoured and additional contoured volumes were 84.6% and 18.5%, respectively. The mean overlap volume ratio was 0.71. Simplified CT-based atlas for delineation of the supra- and infraclavicular lymph nodes for locoregional irradiation of the breast on non-enhanced CT-scan, have been developed in this study. This atlas provides a consistent set of guidelines for delineating these volumes. Copyright © 2012 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  11. Finite Volume Algorithms for Heat Conduction

    DTIC Science & Technology

    2010-05-01

    scalar quantity). Although (3) is relatively easy to discretize by using finite differences , its form in generalized coordinates is not. Later, we...familiar with the finite difference method for discretizing differential equations. In fact, the Newton divided difference is the numerical analog for a...expression (8) for the average derivative matches the Newton divided difference formula, so for uniform one-dimensional meshes, the finite volume and

  12. Rupture Dynamics Simulation for Non-Planar fault by a Curved Grid Finite Difference Method

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Zhu, G.; Chen, X.

    2011-12-01

    We first implement the non-staggered finite difference method to solve the dynamic rupture problem, with split-node, for non-planar fault. Split-node method for dynamic simulation has been used widely, because of that it's more precise to represent the fault plane than other methods, for example, thick fault, stress glut and so on. The finite difference method is also a popular numeric method to solve kinematic and dynamic problem in seismology. However, previous works focus most of theirs eyes on the staggered-grid method, because of its simplicity and computational efficiency. However this method has its own disadvantage comparing to non-staggered finite difference method at some fact for example describing the boundary condition, especially the irregular boundary, or non-planar fault. Zhang and Chen (2006) proposed the MacCormack high order non-staggered finite difference method based on curved grids to precisely solve irregular boundary problem. Based upon on this non-staggered grid method, we make success of simulating the spontaneous rupture problem. The fault plane is a kind of boundary condition, which could be irregular of course. So it's convinced that we could simulate rupture process in the case of any kind of bending fault plane. We will prove this method is valid in the case of Cartesian coordinate first. In the case of bending fault, the curvilinear grids will be used.

  13. On absence of steady state in the Bouchaud-Mézard network model

    NASA Astrophysics Data System (ADS)

    Liu, Zhiyuan; Serota, R. A.

    2018-02-01

    In the limit of infinite number of nodes (agents), the Itô-reduced Bouchaud-Mézard network model of economic exchange has a time-independent mean and a steady-state inverse gamma distribution. We show that for a finite number of nodes the mean is actually distributed as a time-dependent lognormal and inverse gamma is quasi-stationary, with the time-dependent scale parameter.

  14. Three-Dimensional Finite Element Analysis of Sheet-Pile Cellular Cofferdams

    DTIC Science & Technology

    1992-04-01

    requirements were in selecting the shell element for this study: * Nodes only at the midsurface of the element. * Higher-order shape functions to...on orthogonal curvilinear coordinate (shell coordinates) system with the ref- erence surface of the element midsurface (Figure 4.13). The formulation...element was selected which allows for: * Nodes at the midsurface of the element only. 150 CHAPTER 4. ADDITIONS TO THE ELEMENT LIBRARY " Higher-order

  15. Vector two-point functions in finite volume using partially quenched chiral perturbation theory at two loops

    NASA Astrophysics Data System (ADS)

    Bijnens, Johan; Relefors, Johan

    2017-12-01

    We calculate vector-vector correlation functions at two loops using partially quenched chiral perturbation theory including finite volume effects and twisted boundary conditions. We present expressions for the flavor neutral cases and the flavor charged case with equal masses. Using these expressions we give an estimate for the ratio of disconnected to connected contributions for the strange part of the electromagnetic current. We give numerical examples for the effects of partial quenching, finite volume and twisting and suggest the use of different twists to check the size of finite volume effects. The main use of this work is expected to be for lattice QCD calculations of the hadronic vacuum polarization contribution to the muon anomalous magnetic moment.

  16. A Non-Cut Cell Immersed Boundary Method for Use in Icing Simulations

    NASA Technical Reports Server (NTRS)

    Sarofeen, Christian M.; Noack, Ralph W.; Kreeger, Richard E.

    2013-01-01

    This paper describes a computational fluid dynamic method used for modelling changes in aircraft geometry due to icing. While an aircraft undergoes icing, the accumulated ice results in a geometric alteration of the aerodynamic surfaces. In computational simulations for icing, it is necessary that the corresponding geometric change is taken into consideration. The method used, herein, for the representation of the geometric change due to icing is a non-cut cell Immersed Boundary Method (IBM). Computational cells that are in a body fitted grid of a clean aerodynamic geometry that are inside a predicted ice formation are identified. An IBM is then used to change these cells from being active computational cells to having properties of viscous solid bodies. This method has been implemented in the NASA developed node centered, finite volume computational fluid dynamics code, FUN3D. The presented capability is tested for two-dimensional airfoils including a clean airfoil, an iced airfoil, and an airfoil in harmonic pitching motion about its quarter chord. For these simulations velocity contours, pressure distributions, coefficients of lift, coefficients of drag, and coefficients of pitching moment about the airfoil's quarter chord are computed and used for comparison against experimental results, a higher order panel method code with viscous effects, XFOIL, and the results from FUN3D's original solution process. The results of the IBM simulations show that the accuracy of the IBM compares satisfactorily with the experimental results, XFOIL results, and the results from FUN3D's original solution process.

  17. Curvature estimation for multilayer hinged structures with initial strains

    NASA Astrophysics Data System (ADS)

    Nikishkov, G. P.

    2003-10-01

    Closed-form estimate of curvature for hinged multilayer structures with initial strains is developed. The finite element method is used for modeling of self-positioning microstructures. The geometrically nonlinear problem with large rotations and large displacements is solved using step procedure with node coordinate update. Finite element results for curvature of the hinged micromirror with variable width is compared to closed-form estimates.

  18. General framework for dynamic large deformation contact problems based on phantom-node X-FEM

    NASA Astrophysics Data System (ADS)

    Broumand, P.; Khoei, A. R.

    2018-04-01

    This paper presents a general framework for modeling dynamic large deformation contact-impact problems based on the phantom-node extended finite element method. The large sliding penalty contact formulation is presented based on a master-slave approach which is implemented within the phantom-node X-FEM and an explicit central difference scheme is used to model the inertial effects. The method is compared with conventional contact X-FEM; advantages, limitations and implementational aspects are also addressed. Several numerical examples are presented to show the robustness and accuracy of the proposed method.

  19. Novel quadrilateral elements based on explicit Hermite polynomials for bending of Kirchhoff-Love plates

    NASA Astrophysics Data System (ADS)

    Beheshti, Alireza

    2018-03-01

    The contribution addresses the finite element analysis of bending of plates given the Kirchhoff-Love model. To analyze the static deformation of plates with different loadings and geometries, the principle of virtual work is used to extract the weak form. Following deriving the strain field, stresses and resultants may be obtained. For constructing four-node quadrilateral plate elements, the Hermite polynomials defined with respect to the variables in the parent space are applied explicitly. Based on the approximated field of displacement, the stiffness matrix and the load vector in the finite element method are obtained. To demonstrate the performance of the subparametric 4-node plate elements, some known, classical examples in structural mechanics are solved and there are comparisons with the analytical solutions available in the literature.

  20. Construction of optimal 3-node plate bending triangles by templates

    NASA Astrophysics Data System (ADS)

    Felippa, C. A.; Militello, C.

    A finite element template is a parametrized algebraic form that reduces to specific finite elements by setting numerical values to the free parameters. The present study concerns Kirchhoff Plate-Bending Triangles (KPT) with 3 nodes and 9 degrees of freedom. A 37-parameter template is constructed using the Assumed Natural Deviatoric Strain (ANDES). Specialization of this template includes well known elements such as DKT and HCT. The question addressed here is: can these parameters be selected to produce high performance elements? The study is carried out by staged application of constraints on the free parameters. The first stage produces element families satisfying invariance and aspect ratio insensitivity conditions. Application of energy balance constraints produces specific elements. The performance of such elements in benchmark tests is presently under study.

  1. Analysis of interlaminar stresses in symmetric and unsymmetric laminates under various loadings

    NASA Astrophysics Data System (ADS)

    Leger, C. A.; Chan, W. S.

    1993-04-01

    A quasi-three-dimensional finite-element model is developed to investigate the interlaminar stresses in a composite laminate under combined loadings. An isoparametric quadrilateral element with eight nodes and three degrees of freedom per node is the finite element used in this study. The element is used to model a composite laminate cross section loaded by tension, torsion, transverse shear, and both beam and chord bending which are representative of loading in a helicopter rotor system. Symmetric and unsymmetric laminates are examined with comparisons made between the interlaminar stress distributions and magnitudes for each laminate. Unsymmetric results are compared favorably to limited results found in literature. The unsymmetric interlaminar normal stress distribution in a symmetric laminate containing a free edge delamination is also examined.

  2. A simple finite element method for non-divergence form elliptic equation

    DOE PAGES

    Mu, Lin; Ye, Xiu

    2017-03-01

    Here, we develop a simple finite element method for solving second order elliptic equations in non-divergence form by combining least squares concept with discontinuous approximations. This simple method has a symmetric and positive definite system and can be easily analyzed and implemented. We could have also used general meshes with polytopal element and hanging node in the method. We prove that our finite element solution approaches to the true solution when the mesh size approaches to zero. Numerical examples are tested that demonstrate the robustness and flexibility of the method.

  3. A mixed shear flexible finite element for the analysis of laminated plates

    NASA Technical Reports Server (NTRS)

    Putcha, N. S.; Reddy, J. N.

    1984-01-01

    A mixed shear flexible finite element based on the Hencky-Mindlin type shear deformation theory of laminated plates is presented and their behavior in bending is investigated. The element consists of three displacements, two rotations, and three moments as the generalized degrees of freedom per node. The numerical convergence and accuracy characteristics of the element are investigated by comparing the finite element solutions with the exact solutions. The present study shows that reduced-order integration of the stiffness coefficients due to shear is necessary to obtain accurate results for thin plates.

  4. A simple finite element method for non-divergence form elliptic equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Lin; Ye, Xiu

    Here, we develop a simple finite element method for solving second order elliptic equations in non-divergence form by combining least squares concept with discontinuous approximations. This simple method has a symmetric and positive definite system and can be easily analyzed and implemented. We could have also used general meshes with polytopal element and hanging node in the method. We prove that our finite element solution approaches to the true solution when the mesh size approaches to zero. Numerical examples are tested that demonstrate the robustness and flexibility of the method.

  5. A new approach to delineating lymph node target volumes for post-operative radiotherapy in gastric cancer: A phase II trial.

    PubMed

    Haijun, Yu; Qiuji, Wu; Zhenming, Fu; Yong, Huang; Zhengkai, Liao; Conghua, Xie; Yunfeng, Zhou; Yahua, Zhong

    2015-08-01

    In the context of gastric cancer, lymph node target volume delineation for post-operative radiotherapy is currently built on the traditional system of dividing the stomach and 2-D treatment methods. Here, we have proposed a new delineation approach with irradiation indications for lymph node stations. Its safety and efficacy were evaluated in a phase II clinical trial. Fifty-four gastric cancer patients with D2 lymph node dissection received 2 cycles of FOLFOX4. They subsequently received concurrent chemoradiotherapy (45 Gy at 1.8 Gy per fraction, 5 fractions per week for 5 weeks) with a 5-fluorouracil/leucovorin regimen, followed by 4 additional FOLFOX4 cycles. The target volume included the remnant stomach, anastomosis site, tumor bed, and regional lymph nodes selected through our new approach by taking gastric arteries as references. The most common grade 3-4 adverse event was neutropenia (14.8%). Neutropenia, anemia, and nausea were common grade 1-2 toxicities. No treatment-related deaths occurred during treatment. The 3-year overall, disease-free, and locoregional recurrence-free survival rates were 81.6%, 70.2%, and 91.1%, respectively. Eight patients developed peritoneal or distant metastases. Using our new approach and irradiation indications, delineation of the target volume of post-operative lymph node stations was feasible and well tolerated after D2 resection in patients with gastric cancer. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  6. Irradiation of the prostate and pelvic lymph nodes with an adaptive algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, A. B.; Chen, J.; Nguyen, T. B.

    2012-02-15

    Purpose: The simultaneous treatment of pelvic lymph nodes and the prostate in radiotherapy for prostate cancer is complicated by the independent motion of these two target volumes. In this work, the authors study a method to adapt intensity modulated radiation therapy (IMRT) treatment plans so as to compensate for this motion by adaptively morphing the multileaf collimator apertures and adjusting the segment weights. Methods: The study used CT images, tumor volumes, and normal tissue contours from patients treated in our institution. An IMRT treatment plan was then created using direct aperture optimization to deliver 45 Gy to the pelvic lymphmore » nodes and 50 Gy to the prostate and seminal vesicles. The prostate target volume was then shifted in either the anterior-posterior direction or in the superior-inferior direction. The treatment plan was adapted by adjusting the aperture shapes with or without re-optimizing the segment weighting. The dose to the target volumes was then determined for the adapted plan. Results: Without compensation for prostate motion, 1 cm shifts of the prostate resulted in an average decrease of 14% in D-95%. If the isocenter is simply shifted to match the prostate motion, the prostate receives the correct dose but the pelvic lymph nodes are underdosed by 14% {+-} 6%. The use of adaptive morphing (with or without segment weight optimization) reduces the average change in D-95% to less than 5% for both the pelvic lymph nodes and the prostate. Conclusions: Adaptive morphing with and without segment weight optimization can be used to compensate for the independent motion of the prostate and lymph nodes when combined with daily imaging or other methods to track the prostate motion. This method allows the delivery of the correct dose to both the prostate and lymph nodes with only small changes to the dose delivered to the target volumes.« less

  7. Heterogeneous expression of Ca(2+) handling proteins in rabbit sinoatrial node.

    PubMed

    Musa, Hanny; Lei, Ming; Honjo, Hauro; Jones, Sandra A; Dobrzynski, Halina; Lancaster, Mathew K; Takagishi, Yoshiko; Henderson, Zaineb; Kodama, Itsuo; Boyett, Mark R

    2002-03-01

    We investigated the densities of the L-type Ca(2+) current, i(Ca,L), and various Ca(2+) handling proteins in rabbit sinoatrial (SA) node. The density of i(Ca,L), recorded with the whole-cell patch-clamp technique, varied widely in sinoatrial node cells. The density of i(Ca,L) was significantly (p<0.001) correlated with cell capacitance (measure of cell size) and the density was greater in larger cells (likely to be from the periphery of the SA node) than in smaller cells (likely to be from the center of the SA node). Immunocytochemical labeling of the L-type Ca(2+) channel, Na(+)-Ca(2+) exchanger, sarcoplasmic reticulum Ca(2+) release channel (RYR2), and sarcoplasmic reticulum Ca(2+) pump (SERCA2) also varied widely in SA node cells. In all cases there was significantly (p<0.05) denser labeling of cells from the periphery of the SA node than of cells from the center. In contrast, immunocytochemical labeling of the Na(+)-K(+) pump was similar in peripheral and central cells. We conclude that Ca(2+) handling proteins are sparse and poorly organized in the center of the SA node (normally the leading pacemaker site), whereas they are more abundant in the periphery (at the border of the SA node with the surrounding atrial muscle).

  8. Actuator line simulations of a Joukowsky and Tjæreborg rotor using spectral element and finite volume methods

    NASA Astrophysics Data System (ADS)

    Kleusberg, E.; Sarmast, S.; Schlatter, P.; Ivanell, S.; Henningson, D. S.

    2016-09-01

    The wake structure behind a wind turbine, generated by the spectral element code Nek5000, is compared with that from the finite volume code EllipSys3D. The wind turbine blades are modeled using the actuator line method. We conduct the comparison on two different setups. One is based on an idealized rotor approximation with constant circulation imposed along the blades corresponding to Glauert's optimal operating condition, and the other is the Tjffireborg wind turbine. The focus lies on analyzing the differences in the wake structures entailed by the different codes and corresponding setups. The comparisons show good agreement for the defining parameters of the wake such as the wake expansion, helix pitch and circulation of the helical vortices. Differences can be related to the lower numerical dissipation in Nek5000 and to the domain differences at the rotor center. At comparable resolution Nek5000 yields more accurate results. It is observed that in the spectral element method the helical vortices, both at the tip and root of the actuator lines, retain their initial swirl velocity distribution for a longer distance in the near wake. This results in a lower vortex core growth and larger maximum vorticity along the wake. Additionally, it is observed that the break down process of the spiral tip vortices is significantly different between the two methods, with vortex merging occurring immediately after the onset of instability in the finite volume code, while Nek5000 simulations exhibit a 2-3 radii period of vortex pairing before merging.

  9. Earthquake Rupture Dynamics using Adaptive Mesh Refinement and High-Order Accurate Numerical Methods

    NASA Astrophysics Data System (ADS)

    Kozdon, J. E.; Wilcox, L.

    2013-12-01

    Our goal is to develop scalable and adaptive (spatial and temporal) numerical methods for coupled, multiphysics problems using high-order accurate numerical methods. To do so, we are developing an opensource, parallel library known as bfam (available at http://bfam.in). The first application to be developed on top of bfam is an earthquake rupture dynamics solver using high-order discontinuous Galerkin methods and summation-by-parts finite difference methods. In earthquake rupture dynamics, wave propagation in the Earth's crust is coupled to frictional sliding on fault interfaces. This coupling is two-way, required the simultaneous simulation of both processes. The use of laboratory-measured friction parameters requires near-fault resolution that is 4-5 orders of magnitude higher than that needed to resolve the frequencies of interest in the volume. This, along with earlier simulations using a low-order, finite volume based adaptive mesh refinement framework, suggest that adaptive mesh refinement is ideally suited for this problem. The use of high-order methods is motivated by the high level of resolution required off the fault in earlier the low-order finite volume simulations; we believe this need for resolution is a result of the excessive numerical dissipation of low-order methods. In bfam spatial adaptivity is handled using the p4est library and temporal adaptivity will be accomplished through local time stepping. In this presentation we will present the guiding principles behind the library as well as verification of code against the Southern California Earthquake Center dynamic rupture code validation test problems.

  10. Radiotherapy volume delineation using 18F-FDG-PET/CT modifies gross node volume in patients with oesophageal cancer.

    PubMed

    Jimenez-Jimenez, E; Mateos, P; Aymar, N; Roncero, R; Ortiz, I; Gimenez, M; Pardo, J; Salinas, J; Sabater, S

    2018-05-02

    Evidence supporting the use of 18F-FDG-PET/CT in the segmentation process of oesophageal cancer for radiotherapy planning is limited. Our aim was to compare the volumes and tumour lengths defined by fused PET/CT vs. CT simulation. Twenty-nine patients were analyzed. All patients underwent a single PET/CT simulation scan. Two separate GTVs were defined: one based on CT data alone and another based on fused PET/CT data. Volume sizes for both data sets were compared and the spatial overlap was assessed by the Dice similarity coefficient (DSC). The gross tumour volume (GTVtumour) and maximum tumour diameter were greater by PET/CT, and length of primary tumour was greater by CT, but differences were not statistically significant. However, the gross node volume (GTVnode) was significantly greater by PET/CT. The DSC analysis showed excellent agreement for GTVtumour, 0.72, but was very low for GTVnode, 0.25. Our study shows that the volume definition by PET/CT and CT data differs. CT simulation, without taking into account PET/CT information, might leave cancer-involved nodes out of the radiotherapy-delineated volumes.

  11. Mapping of nodal disease in locally advanced prostate cancer: Rethinking the clinical target volume for pelvic nodal irradiation based on vascular rather than bony anatomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shih, Helen A.; Harisinghani, Mukesh; Zietman, Anthony L.

    2005-11-15

    Purpose: Toxicity from pelvic irradiation could be reduced if fields were limited to likely areas of nodal involvement rather than using the standard 'four-field box.' We employed a novel magnetic resonance lymphangiographic technique to highlight the likely sites of occult nodal metastasis from prostate cancer. Methods and Materials: Eighteen prostate cancer patients with pathologically confirmed node-positive disease had a total of 69 pathologic nodes identifiable by lymphotropic nanoparticle-enhanced MRI and semiquantitative nodal analysis. Fourteen of these nodes were in the para-aortic region, and 55 were in the pelvis. The position of each of these malignant nodes was mapped to amore » common template based on its relation to skeletal or vascular anatomy. Results: Relative to skeletal anatomy, nodes covered a diffuse volume from the mid lumbar spine to the superior pubic ramus and along the sacrum and pelvic side walls. In contrast, the nodal metastases mapped much more tightly relative to the large pelvic vessels. A proposed pelvic clinical target volume to encompass the region at greatest risk of containing occult nodal metastases would include a 2.0-cm radial expansion volume around the distal common iliac and proximal external and internal iliac vessels that would encompass 94.5% of the pelvic nodes at risk as defined by our node-positive prostate cancer patient cohort. Conclusions: Nodal metastases from prostate cancer are largely localized along the major pelvic vasculature. Defining nodal radiation treatment portals based on vascular rather than bony anatomy may allow for a significant decrease in normal pelvic tissue irradiation and its associated toxicities.« less

  12. Two-Nucleon Systems in a Finite Volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briceno, Raul

    2014-11-01

    I present the formalism and methodology for determining the nucleon-nucleon scattering parameters from the finite volume spectra obtained from lattice quantum chromodynamics calculations. Using the recently derived energy quantization conditions and the experimentally determined scattering parameters, the bound state spectra for finite volume systems with overlap with the 3S1-3D3 channel are predicted for a range of volumes. It is shown that the extractions of the infinite-volume deuteron binding energy and the low-energy scattering parameters, including the S-D mixing angle, are possible from Lattice QCD calculations of two-nucleon systems with boosts of |P| <= 2pi sqrt{3}/L in volumes with spatial extentsmore » L satisfying fm <~ L <~ 14 fm.« less

  13. An experimental study of arch perimeter and arch width increase with mandibular expansion: a finite element method.

    PubMed

    Baswaraj; Hemanth, M; Jayasudha; Patil, Chandrashekhargouda; Sunilkumar, P; Raghuveer, H P; Chandralekha, B

    2013-01-01

    The objective of this study was to estimate the increase in arch perimeter associated with mandibular lateral expansion, To estimate the increase in intermolar width with mandibular lateral expansion and to find out the changes of tooth inclination with mandibular expansion. The mandibular bone with dentition of indian skeletal specimen was obtained. The computer tomogram (CT) slices of the mandible were taken. Finite element model (FEM): Numerical representation of the geometry was created by dividing the geometry into finite number of elements and the elements were connected together with nodes at the junction. The result of the study showed when 10° of lateral expansion was applied to the lower buccal segment at the center of rotation found at 4.3 mm below the root apex of first molar, a space of 1.3 mm between the canine and first premolar, and thus an increase in arch perimeter of 2.6 mm. The tip of the mesiolingual cusp of the first molar moved 4.2 mm laterally, resulting in a change in intermolar width by 8.4 mm. Three-dimensional simulation showed that 1 mm of intermolar expansion increased the arch perimeter by 0.30 mm. As the finite element method evolves and scientists are able to more clearly define physical properties of biological tissues, more accurate information can be generated at the level that other analytical methods cannot fully provide data.This result would be of value clinically for prediction of the effects of mandibular expansion.

  14. Entanglement routers via a wireless quantum network based on arbitrary two qubit systems

    NASA Astrophysics Data System (ADS)

    Metwally, N.

    2014-12-01

    A wireless quantum network is generated between multi-hops, where each hop consists of two entangled nodes. These nodes share a finite number of entangled two-qubit systems randomly. Different types of wireless quantum bridges (WQBS) are generated between the non-connected nodes. The efficiency of these WQBS to be used as quantum channels between its terminals to perform quantum teleportation is investigated. We suggest a theoretical wireless quantum communication protocol to teleport unknown quantum signals from one node to another, where the more powerful WQBS are used as quantum channels. It is shown that, by increasing the efficiency of the sources that emit the initial partial entangled states, one can increase the efficiency of the wireless quantum communication protocol.

  15. Anatomic Distribution of Fluorodeoxyglucose-Avid Para-aortic Lymph Nodes in Patients With Cervical Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takiar, Vinita; Fontanilla, Hiral P.; Eifel, Patricia J.

    Purpose: Conformal treatment of para-aortic lymph nodes (PAN) in cervical cancer allows dose escalation and reduces normal tissue toxicity. Currently, data documenting the precise location of involved PAN are lacking. We define the spatial distribution of this high-risk nodal volume by analyzing fluorodeoxyglucose (FDG)-avid lymph nodes (LNs) on positron emission tomography/computed tomography (PET/CT) scans in patients with cervical cancer. Methods and Materials: We identified 72 PANs on pretreatment PET/CT of 30 patients with newly diagnosed stage IB-IVA cervical cancer treated with definitive chemoradiation. LNs were classified as left-lateral para-aortic (LPA), aortocaval (AC), or right paracaval (RPC). Distances from the LNmore » center to the closest vessel and adjacent vertebral body were calculated. Using deformable image registration, nodes were mapped to a template computed tomogram to provide a visual impression of nodal frequencies and anatomic distribution. Results: We identified 72 PET-positive para-aortic lymph nodes (37 LPA, 32 AC, 3 RPC). All RPC lymph nodes were in the inferior third of the para-aortic region. The mean distance from aorta for all lymph nodes was 8.3 mm (range, 3-17 mm), and from the inferior vena cava was 5.6 mm (range, 2-10 mm). Of the 72 lymph nodes, 60% were in the inferior third, 36% were in the middle third, and 4% were in the upper third of the para-aortic region. In all, 29 of 30 patients also had FDG-avid pelvic lymph nodes. Conclusions: A total of 96% of PET positive nodes were adjacent to the aorta; PET positive nodes to the right of the IVC were rare and were all located distally, within 3 cm of the aortic bifurcation. Our findings suggest that circumferential margins around the vessels do not accurately define the nodal region at risk. Instead, the anatomical extent of the nodal basin should be contoured on each axial image to provide optimal coverage of the para-aortic nodal compartment.« less

  16. A Kernel-free Boundary Integral Method for Elliptic Boundary Value Problems ⋆

    PubMed Central

    Ying, Wenjun; Henriquez, Craig S.

    2013-01-01

    This paper presents a class of kernel-free boundary integral (KFBI) methods for general elliptic boundary value problems (BVPs). The boundary integral equations reformulated from the BVPs are solved iteratively with the GMRES method. During the iteration, the boundary and volume integrals involving Green's functions are approximated by structured grid-based numerical solutions, which avoids the need to know the analytical expressions of Green's functions. The KFBI method assumes that the larger regular domain, which embeds the original complex domain, can be easily partitioned into a hierarchy of structured grids so that fast elliptic solvers such as the fast Fourier transform (FFT) based Poisson/Helmholtz solvers or those based on geometric multigrid iterations are applicable. The structured grid-based solutions are obtained with standard finite difference method (FDM) or finite element method (FEM), where the right hand side of the resulting linear system is appropriately modified at irregular grid nodes to recover the formal accuracy of the underlying numerical scheme. Numerical results demonstrating the efficiency and accuracy of the KFBI methods are presented. It is observed that the number of GM-RES iterations used by the method for solving isotropic and moderately anisotropic BVPs is independent of the sizes of the grids that are employed to approximate the boundary and volume integrals. With the standard second-order FEMs and FDMs, the KFBI method shows a second-order convergence rate in accuracy for all of the tested Dirichlet/Neumann BVPs when the anisotropy of the diffusion tensor is not too strong. PMID:23519600

  17. Simulations of Hurricane Katrina (2005) with the 0.125 degree finite-volume General Circulation Model on the NASA Columbia Supercomputer

    NASA Technical Reports Server (NTRS)

    Shen, B.-W.; Atlas, R.; Reale, O.; Lin, S.-J.; Chern, J.-D.; Chang, J.; Henze, C.

    2006-01-01

    Hurricane Katrina was the sixth most intense hurricane in the Atlantic. Katrina's forecast poses major challenges, the most important of which is its rapid intensification. Hurricane intensity forecast with General Circulation Models (GCMs) is difficult because of their coarse resolution. In this article, six 5-day simulations with the ultra-high resolution finite-volume GCM are conducted on the NASA Columbia supercomputer to show the effects of increased resolution on the intensity predictions of Katrina. It is found that the 0.125 degree runs give comparable tracks to the 0.25 degree, but provide better intensity forecasts, bringing the center pressure much closer to observations with differences of only plus or minus 12 hPa. In the runs initialized at 1200 UTC 25 AUG, the 0.125 degree simulates a more realistic intensification rate and better near-eye wind distributions. Moreover, the first global 0.125 degree simulation without convection parameterization (CP) produces even better intensity evolution and near-eye winds than the control run with CP.

  18. Tetrahedral Finite-Volume Solutions to the Navier-Stokes Equations on Complex Configurations

    NASA Technical Reports Server (NTRS)

    Frink, Neal T.; Pirzadeh, Shahyar Z.

    1998-01-01

    A review of the algorithmic features and capabilities of the unstructured-grid flow solver USM3Dns is presented. This code, along with the tetrahedral grid generator, VGRIDns, is being extensively used throughout the U.S. for solving the Euler and Navier-Stokes equations on complex aerodynamic problems. Spatial discretization is accomplished by a tetrahedral cell-centered finite-volume formulation using Roe's upwind flux difference splitting. The fluxes are limited by either a Superbee or MinMod limiter. Solution reconstruction within the tetrahedral cells is accomplished with a simple, but novel, multidimensional analytical formula. Time is advanced by an implicit backward-Euler time-stepping scheme. Flow turbulence effects are modeled by the Spalart-Allmaras one-equation model, which is coupled with a wall function to reduce the number of cells in the near-wall region of the boundary layer. The issues of accuracy and robustness of USM3Dns Navier-Stokes capabilities are addressed for a flat-plate boundary layer, and a full F-16 aircraft with external stores at transonic speed.

  19. KENNEDY SPACE CENTER, FLA. - Alan Thirkettle (center), International Space Station Program manager for Node 2, European Space Agency (ESA); and NASA’s Michael C. Kostelnik (right), deputy associate administrator for International Space Station and Shuttle Programs, sign documents officially transferring ownership of Node 2 between the ESA and NASA. At left, also part of the signing, is Andrea Lorenzoni (left), International Space Station Program manager for Node 2, Italian Space Agency. NASA's Node 2, built by ESA in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Alan Thirkettle (center), International Space Station Program manager for Node 2, European Space Agency (ESA); and NASA’s Michael C. Kostelnik (right), deputy associate administrator for International Space Station and Shuttle Programs, sign documents officially transferring ownership of Node 2 between the ESA and NASA. At left, also part of the signing, is Andrea Lorenzoni (left), International Space Station Program manager for Node 2, Italian Space Agency. NASA's Node 2, built by ESA in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  20. Finite volume for three-flavour Partially Quenched Chiral Perturbation Theory through NNLO in the meson sector

    NASA Astrophysics Data System (ADS)

    Bijnens, Johan; Rössler, Thomas

    2015-11-01

    We present a calculation of the finite volume corrections to meson masses and decay constants in three flavour Partially Quenched Chiral Perturbation Theory (PQChPT) through two-loop order in the chiral expansion for the flavour-charged (or off-diagonal) pseudoscalar mesons. The analytical results are obtained for three sea quark flavours with one, two or three different masses. We reproduce the known infinite volume results and the finite volume results in the unquenched case. The calculation has been performed using the supersymmetric formulation of PQChPT as well as with a quark flow technique.

  1. A compressible Navier-Stokes solver with two-equation and Reynolds stress turbulence closure models

    NASA Technical Reports Server (NTRS)

    Morrison, Joseph H.

    1992-01-01

    This report outlines the development of a general purpose aerodynamic solver for compressible turbulent flows. Turbulent closure is achieved using either two equation or Reynolds stress transportation equations. The applicable equation set consists of Favre-averaged conservation equations for the mass, momentum and total energy, and transport equations for the turbulent stresses and turbulent dissipation rate. In order to develop a scheme with good shock capturing capabilities, good accuracy and general geometric capabilities, a multi-block cell centered finite volume approach is used. Viscous fluxes are discretized using a finite volume representation of a central difference operator and the source terms are treated as an integral over the control volume. The methodology is validated by testing the algorithm on both two and three dimensional flows. Both the two equation and Reynolds stress models are used on a two dimensional 10 degree compression ramp at Mach 3, and the two equation model is used on the three dimensional flow over a cone at angle of attack at Mach 3.5. With the development of this algorithm, it is now possible to compute complex, compressible high speed flow fields using both two equation and Reynolds stress turbulent closure models, with the capability of eventually evaluating their predictive performance.

  2. Arbitrary-Order Conservative and Consistent Remapping and a Theory of Linear Maps: Part II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullrich, Paul A.; Devendran, Dharshi; Johansen, Hans

    2016-04-01

    The focus on this series of articles is on the generation of accurate, conservative, consistent, and (optionally) monotone linear offline maps. This paper is the second in the series. It extends on the first part by describing four examples of 2D linear maps that can be constructed in accordance with the theory of the earlier work. The focus is again on spherical geometry, although these techniques can be readily extended to arbitrary manifolds. The four maps include conservative, consistent, and (optionally) monotone linear maps (i) between two finite-volume meshes, (ii) from finite-volume to finite-element meshes using a projection-type approach, (iii)more » from finite-volume to finite-element meshes using volumetric integration, and (iv) between two finite-element meshes. Arbitrary order of accuracy is supported for each of the described nonmonotone maps.« less

  3. ROSA: Distributed Joint Routing and Dynamic Spectrum Allocation in Cognitive Radio Ad Hoc Networks

    DTIC Science & Technology

    2010-03-01

    Aug. 1999. [20] I. N. Psaromiligkos and S. N. Batalama. Rapid Combined Synchronization/Demodulation Structures for DS - CDMA Systems - Part II: Finite...Medley. Rapid Combined Synchronization/Demodulation Structures for DS - CDMA Systems - Part I: Algorithmic developments. IEEE Transactions on...multiple access ( CDMA ) [21][20] al- low concurrent co-located communications so that a message from node i to node j can be correctly received even if

  4. Turbulent Bubbly Flow in a Vertical Pipe Computed By an Eddy-Resolving Reynolds Stress Model

    DTIC Science & Technology

    2014-09-19

    the numerical code OpenFOAM R©. 1 Introduction Turbulent bubbly flows are encountered in many industrially relevant applications, such as chemical in...performed using the OpenFOAM -2.2.2 computational code utilizing a cell- center-based finite volume method on an unstructured numerical grid. The...the mean Courant number is always below 0.4. The utilized turbulence models were implemented into the so-called twoPhaseEulerFoam solver in OpenFOAM , to

  5. A Hybrid MPI/OpenMP Approach for Parallel Groundwater Model Calibration on Multicore Computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Guoping; D'Azevedo, Ed F; Zhang, Fan

    2010-01-01

    Groundwater model calibration is becoming increasingly computationally time intensive. We describe a hybrid MPI/OpenMP approach to exploit two levels of parallelism in software and hardware to reduce calibration time on multicore computers with minimal parallelization effort. At first, HydroGeoChem 5.0 (HGC5) is parallelized using OpenMP for a uranium transport model with over a hundred species involving nearly a hundred reactions, and a field scale coupled flow and transport model. In the first application, a single parallelizable loop is identified to consume over 97% of the total computational time. With a few lines of OpenMP compiler directives inserted into the code,more » the computational time reduces about ten times on a compute node with 16 cores. The performance is further improved by selectively parallelizing a few more loops. For the field scale application, parallelizable loops in 15 of the 174 subroutines in HGC5 are identified to take more than 99% of the execution time. By adding the preconditioned conjugate gradient solver and BICGSTAB, and using a coloring scheme to separate the elements, nodes, and boundary sides, the subroutines for finite element assembly, soil property update, and boundary condition application are parallelized, resulting in a speedup of about 10 on a 16-core compute node. The Levenberg-Marquardt (LM) algorithm is added into HGC5 with the Jacobian calculation and lambda search parallelized using MPI. With this hybrid approach, compute nodes at the number of adjustable parameters (when the forward difference is used for Jacobian approximation), or twice that number (if the center difference is used), are used to reduce the calibration time from days and weeks to a few hours for the two applications. This approach can be extended to global optimization scheme and Monte Carol analysis where thousands of compute nodes can be efficiently utilized.« less

  6. Manual for automatic generation of finite element models of spiral bevel gears in mesh

    NASA Technical Reports Server (NTRS)

    Bibel, G. D.; Reddy, S.; Kumar, A.

    1994-01-01

    The goal of this research is to develop computer programs that generate finite element models suitable for doing 3D contact analysis of faced milled spiral bevel gears in mesh. A pinion tooth and a gear tooth are created and put in mesh. There are two programs: Points.f and Pat.f to perform the analysis. Points.f is based on the equation of meshing for spiral bevel gears. It uses machine tool settings to solve for an N x M mesh of points on the four surfaces, pinion concave and convex, and gear concave and convex. Points.f creates the file POINTS.OUT, an ASCI file containing N x M points for each surface. (N is the number of node points along the length of the tooth, and M is nodes along the height.) Pat.f reads POINTS.OUT and creates the file tl.out. Tl.out is a series of PATRAN input commands. In addition to the mesh density on the tooth face, additional user specified variables are the number of finite elements through the thickness, and the number of finite elements along the tooth full fillet. A full fillet is assumed to exist for both the pinion and gear.

  7. Space physics analysis network node directory (The Yellow Pages): Fourth edition

    NASA Technical Reports Server (NTRS)

    Peters, David J.; Sisson, Patricia L.; Green, James L.; Thomas, Valerie L.

    1989-01-01

    The Space Physics Analysis Network (SPAN) is a component of the global DECnet Internet, which has over 17,000 host computers. The growth of SPAN from its implementation in 1981 to its present size of well over 2,500 registered SPAN host computers, has created a need for users to acquire timely information about the network through a central source. The SPAN Network Information Center (SPAN-NIC) an online facility managed by the National Space Science Data Center (NSSDC) was developed to meet this need for SPAN-wide information. The remote node descriptive information in this document is not currently contained in the SPAN-NIC database, but will be incorporated in the near future. Access to this information is also available to non-DECnet users over a variety of networks such as Telenet, the NASA Packet Switched System (NPSS), and the TCP/IP Internet. This publication serves as the Yellow Pages for SPAN node information. The document also provides key information concerning other computer networks connected to SPAN, nodes associated with each SPAN routing center, science discipline nodes, contacts for primary SPAN nodes, and SPAN reference information. A section on DECnet Internetworking discusses SPAN connections with other wide-area DECnet networks (many with thousands of nodes each). Another section lists node names and their disciplines, countries, and institutions in the SPAN Network Information Center Online Data Base System. All remote sites connected to US-SPAN and European-SPAN (E-SPAN) are indexed. Also provided is information on the SPAN tail circuits, i.e., those remote nodes connected directly to a SPAN routing center, which is the local point of contact for resolving SPAN-related problems. Reference material is included for those who wish to know more about SPAN. Because of the rapid growth of SPAN, the SPAN Yellow Pages is reissued periodically.

  8. Possibilities of the particle finite element method for fluid-soil-structure interaction problems

    NASA Astrophysics Data System (ADS)

    Oñate, Eugenio; Celigueta, Miguel Angel; Idelsohn, Sergio R.; Salazar, Fernando; Suárez, Benjamín

    2011-09-01

    We present some developments in the particle finite element method (PFEM) for analysis of complex coupled problems in mechanics involving fluid-soil-structure interaction (FSSI). The PFEM uses an updated Lagrangian description to model the motion of nodes (particles) in both the fluid and the solid domains (the later including soil/rock and structures). A mesh connects the particles (nodes) defining the discretized domain where the governing equations for each of the constituent materials are solved as in the standard FEM. The stabilization for dealing with an incompressibility continuum is introduced via the finite calculus method. An incremental iterative scheme for the solution of the non linear transient coupled FSSI problem is described. The procedure to model frictional contact conditions and material erosion at fluid-solid and solid-solid interfaces is described. We present several examples of application of the PFEM to solve FSSI problems such as the motion of rocks by water streams, the erosion of a river bed adjacent to a bridge foundation, the stability of breakwaters and constructions sea waves and the study of landslides.

  9. Volume dependence of N-body bound states

    NASA Astrophysics Data System (ADS)

    König, Sebastian; Lee, Dean

    2018-04-01

    We derive the finite-volume correction to the binding energy of an N-particle quantum bound state in a cubic periodic volume. Our results are applicable to bound states with arbitrary composition and total angular momentum, and in any number of spatial dimensions. The only assumptions are that the interactions have finite range. The finite-volume correction is a sum of contributions from all possible breakup channels. In the case where the separation is into two bound clusters, our result gives the leading volume dependence up to exponentially small corrections. If the separation is into three or more clusters, there is a power-law factor that is beyond the scope of this work, however our result again determines the leading exponential dependence. We also present two independent methods that use finite-volume data to determine asymptotic normalization coefficients. The coefficients are useful to determine low-energy capture reactions into weakly bound states relevant for nuclear astrophysics. Using the techniques introduced here, one can even extract the infinite-volume energy limit using data from a single-volume calculation. The derived relations are tested using several exactly solvable systems and numerical examples. We anticipate immediate applications to lattice calculations of hadronic, nuclear, and cold atomic systems.

  10. Role of ultrasound in the assessment of percutaneous laser ablation of cervical metastatic lymph nodes from thyroid carcinoma.

    PubMed

    Zhang, Lu; Zhou, Wei; Zhan, WeiWei

    2018-04-01

    Background Few studies have examined the feasibility and efficiency of performing ultrasound and contrast-enhanced ultrasound (CEUS) after percutaneous laser ablation (PLA) of cervical metastatic lymph nodes from thyroid cancer. Purpose To investigate and describe the use of conventional ultrasound and CEUS in evaluating PLA of metastatic lymph nodes. Material and Methods PLA was performed in a small, prospective, observational study of 21 metastatic lymph nodes in 17 thyroid cancer patients who underwent radical thyroid resection. CEUS was conducted prior to PLA and 1 h and seven days after ablation. Conventional ultrasound examination of all nodes was performed during follow-up after ablation. We observed contrast agent perfusion in the lymph nodes, calculated perfusion defect volumes using CEUS and determined the rates of reduction for metastatic lymph nodes for a mean duration of 17.86 ± 4.704 months (range = 12-27 months). Results CEUS demonstrated that the perfusion defect volume was larger on day 7 than on day 1 post-ablation in 47% of the ablated nodes. Compared to the largest diameters and volumes pre-PLA, the corresponding post-PLA values significantly decreased ( P < 0.05 versus baseline). No statistically significant change in thyroglobulin (Tg) levels before and after PLA was observed in this study ( P > 0.05 versus baseline). Conclusion CEUS can be effectively used to distinguish the margins of ablated regions, assess the accuracy of PLA, and monitor short-term changes in necrotic areas. However, long-term follow-up assessments of the curative effect of PLA will predominantly rely on conventional ultrasonography.

  11. KENNEDY SPACE CENTER, FLA. - At a ceremony highlighting the arrival of two major components of the International Space Station, Node 2 and the Japanese Experiment Module (JEM), ownership of Node 2 was officially transferred between the European Space Agency (ESA) and NASA. Shaking hands after the signing are Alan Thirkettle (center), International Space Station Program manager for Node 2, ESA; and NASA’s Michael C. Kostelnik (right), deputy associate administrator for International Space Station and Shuttle Programs. At left, also part of the signing, is Andrea Lorenzoni (left), International Space Station Program manager for Node 2, Italian Space Agency. NASA's Node 2, built by ESA in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - At a ceremony highlighting the arrival of two major components of the International Space Station, Node 2 and the Japanese Experiment Module (JEM), ownership of Node 2 was officially transferred between the European Space Agency (ESA) and NASA. Shaking hands after the signing are Alan Thirkettle (center), International Space Station Program manager for Node 2, ESA; and NASA’s Michael C. Kostelnik (right), deputy associate administrator for International Space Station and Shuttle Programs. At left, also part of the signing, is Andrea Lorenzoni (left), International Space Station Program manager for Node 2, Italian Space Agency. NASA's Node 2, built by ESA in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  12. Effect of Finite Particle Size on Convergence of Point Particle Models in Euler-Lagrange Multiphase Dispersed Flow

    NASA Astrophysics Data System (ADS)

    Nili, Samaun; Park, Chanyoung; Haftka, Raphael T.; Kim, Nam H.; Balachandar, S.

    2017-11-01

    Point particle methods are extensively used in simulating Euler-Lagrange multiphase dispersed flow. When particles are much smaller than the Eulerian grid the point particle model is on firm theoretical ground. However, this standard approach of evaluating the gas-particle coupling at the particle center fails to converge as the Eulerian grid is reduced below particle size. We present an approach to model the interaction between particles and fluid for finite size particles that permits convergence. We use the generalized Faxen form to compute the force on a particle and compare the results against traditional point particle method. We apportion the different force components on the particle to fluid cells based on the fraction of particle volume or surface in the cell. The application is to a one-dimensional model of shock propagation through a particle-laden field at moderate volume fraction, where the convergence is achieved for a well-formulated force model and back coupling for finite size particles. Comparison with 3D direct fully resolved numerical simulations will be used to check if the approach also improves accuracy compared to the point particle model. Work supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  13. Physics of the 1 Teraflop RIKEN-BNL-Columbia QCD project. Proceedings of RIKEN BNL Research Center workshop: Volume 13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-10-16

    A workshop was held at the RIKEN-BNL Research Center on October 16, 1998, as part of the first anniversary celebration for the center. This meeting brought together the physicists from RIKEN-BNL, BNL and Columbia who are using the QCDSP (Quantum Chromodynamics on Digital Signal Processors) computer at the RIKEN-BNL Research Center for studies of QCD. Many of the talks in the workshop were devoted to domain wall fermions, a discretization of the continuum description of fermions which preserves the global symmetries of the continuum, even at finite lattice spacing. This formulation has been the subject of analytic investigation for somemore » time and has reached the stage where large-scale simulations in QCD seem very promising. With the computational power available from the QCDSP computers, scientists are looking forward to an exciting time for numerical simulations of QCD.« less

  14. A High-Order Finite Spectral Volume Method for Conservation Laws on Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Wang, Z. J.; Liu, Yen; Kwak, Dochan (Technical Monitor)

    2001-01-01

    A time accurate, high-order, conservative, yet efficient method named Finite Spectral Volume (FSV) is developed for conservation laws on unstructured grids. The concept of a 'spectral volume' is introduced to achieve high-order accuracy in an efficient manner similar to spectral element and multi-domain spectral methods. In addition, each spectral volume is further sub-divided into control volumes (CVs), and cell-averaged data from these control volumes is used to reconstruct a high-order approximation in the spectral volume. Riemann solvers are used to compute the fluxes at spectral volume boundaries. Then cell-averaged state variables in the control volumes are updated independently. Furthermore, TVD (Total Variation Diminishing) and TVB (Total Variation Bounded) limiters are introduced in the FSV method to remove/reduce spurious oscillations near discontinuities. A very desirable feature of the FSV method is that the reconstruction is carried out only once, and analytically, and is the same for all cells of the same type, and that the reconstruction stencil is always non-singular, in contrast to the memory and CPU-intensive reconstruction in a high-order finite volume (FV) method. Discussions are made concerning why the FSV method is significantly more efficient than high-order finite volume and the Discontinuous Galerkin (DG) methods. Fundamental properties of the FSV method are studied and high-order accuracy is demonstrated for several model problems with and without discontinuities.

  15. Meshless Method for Simulation of Compressible Flow

    NASA Astrophysics Data System (ADS)

    Nabizadeh Shahrebabak, Ebrahim

    In the present age, rapid development in computing technology and high speed supercomputers has made numerical analysis and computational simulation more practical than ever before for large and complex cases. Numerical simulations have also become an essential means for analyzing the engineering problems and the cases that experimental analysis is not practical. There are so many sophisticated and accurate numerical schemes, which do these simulations. The finite difference method (FDM) has been used to solve differential equation systems for decades. Additional numerical methods based on finite volume and finite element techniques are widely used in solving problems with complex geometry. All of these methods are mesh-based techniques. Mesh generation is an essential preprocessing part to discretize the computation domain for these conventional methods. However, when dealing with mesh-based complex geometries these conventional mesh-based techniques can become troublesome, difficult to implement, and prone to inaccuracies. In this study, a more robust, yet simple numerical approach is used to simulate problems in an easier manner for even complex problem. The meshless, or meshfree, method is one such development that is becoming the focus of much research in the recent years. The biggest advantage of meshfree methods is to circumvent mesh generation. Many algorithms have now been developed to help make this method more popular and understandable for everyone. These algorithms have been employed over a wide range of problems in computational analysis with various levels of success. Since there is no connectivity between the nodes in this method, the challenge was considerable. The most fundamental issue is lack of conservation, which can be a source of unpredictable errors in the solution process. This problem is particularly evident in the presence of steep gradient regions and discontinuities, such as shocks that frequently occur in high speed compressible flow problems. To solve this discontinuity problem, this research study deals with the implementation of a conservative meshless method and its applications in computational fluid dynamics (CFD). One of the most common types of collocating meshless method the RBF-DQ, is used to approximate the spatial derivatives. The issue with meshless methods when dealing with highly convective cases is that they cannot distinguish the influence of fluid flow from upstream or downstream and some methodology is needed to make the scheme stable. Therefore, an upwinding scheme similar to one used in the finite volume method is added to capture steep gradient or shocks. This scheme creates a flexible algorithm within which a wide range of numerical flux schemes, such as those commonly used in the finite volume method, can be employed. In addition, a blended RBF is used to decrease the dissipation ensuing from the use of a low shape parameter. All of these steps are formulated for the Euler equation and a series of test problems used to confirm convergence of the algorithm. The present scheme was first employed on several incompressible benchmarks to validate the framework. The application of this algorithm is illustrated by solving a set of incompressible Navier-Stokes problems. Results from the compressible problem are compared with the exact solution for the flow over a ramp and compared with solutions of finite volume discretization and the discontinuous Galerkin method, both requiring a mesh. The applicability of the algorithm and its robustness are shown to be applied to complex problems.

  16. Stochastic theory of large-scale enzyme-reaction networks: Finite copy number corrections to rate equation models

    NASA Astrophysics Data System (ADS)

    Thomas, Philipp; Straube, Arthur V.; Grima, Ramon

    2010-11-01

    Chemical reactions inside cells occur in compartment volumes in the range of atto- to femtoliters. Physiological concentrations realized in such small volumes imply low copy numbers of interacting molecules with the consequence of considerable fluctuations in the concentrations. In contrast, rate equation models are based on the implicit assumption of infinitely large numbers of interacting molecules, or equivalently, that reactions occur in infinite volumes at constant macroscopic concentrations. In this article we compute the finite-volume corrections (or equivalently the finite copy number corrections) to the solutions of the rate equations for chemical reaction networks composed of arbitrarily large numbers of enzyme-catalyzed reactions which are confined inside a small subcellular compartment. This is achieved by applying a mesoscopic version of the quasisteady-state assumption to the exact Fokker-Planck equation associated with the Poisson representation of the chemical master equation. The procedure yields impressively simple and compact expressions for the finite-volume corrections. We prove that the predictions of the rate equations will always underestimate the actual steady-state substrate concentrations for an enzyme-reaction network confined in a small volume. In particular we show that the finite-volume corrections increase with decreasing subcellular volume, decreasing Michaelis-Menten constants, and increasing enzyme saturation. The magnitude of the corrections depends sensitively on the topology of the network. The predictions of the theory are shown to be in excellent agreement with stochastic simulations for two types of networks typically associated with protein methylation and metabolism.

  17. Nanowire nanocomputer as a finite-state machine.

    PubMed

    Yao, Jun; Yan, Hao; Das, Shamik; Klemic, James F; Ellenbogen, James C; Lieber, Charles M

    2014-02-18

    Implementation of complex computer circuits assembled from the bottom up and integrated on the nanometer scale has long been a goal of electronics research. It requires a design and fabrication strategy that can address individual nanometer-scale electronic devices, while enabling large-scale assembly of those devices into highly organized, integrated computational circuits. We describe how such a strategy has led to the design, construction, and demonstration of a nanoelectronic finite-state machine. The system was fabricated using a design-oriented approach enabled by a deterministic, bottom-up assembly process that does not require individual nanowire registration. This methodology allowed construction of the nanoelectronic finite-state machine through modular design using a multitile architecture. Each tile/module consists of two interconnected crossbar nanowire arrays, with each cross-point consisting of a programmable nanowire transistor node. The nanoelectronic finite-state machine integrates 180 programmable nanowire transistor nodes in three tiles or six total crossbar arrays, and incorporates both sequential and arithmetic logic, with extensive intertile and intratile communication that exhibits rigorous input/output matching. Our system realizes the complete 2-bit logic flow and clocked control over state registration that are required for a finite-state machine or computer. The programmable multitile circuit was also reprogrammed to a functionally distinct 2-bit full adder with 32-set matched and complete logic output. These steps forward and the ability of our unique design-oriented deterministic methodology to yield more extensive multitile systems suggest that proposed general-purpose nanocomputers can be realized in the near future.

  18. Nanowire nanocomputer as a finite-state machine

    PubMed Central

    Yao, Jun; Yan, Hao; Das, Shamik; Klemic, James F.; Ellenbogen, James C.; Lieber, Charles M.

    2014-01-01

    Implementation of complex computer circuits assembled from the bottom up and integrated on the nanometer scale has long been a goal of electronics research. It requires a design and fabrication strategy that can address individual nanometer-scale electronic devices, while enabling large-scale assembly of those devices into highly organized, integrated computational circuits. We describe how such a strategy has led to the design, construction, and demonstration of a nanoelectronic finite-state machine. The system was fabricated using a design-oriented approach enabled by a deterministic, bottom–up assembly process that does not require individual nanowire registration. This methodology allowed construction of the nanoelectronic finite-state machine through modular design using a multitile architecture. Each tile/module consists of two interconnected crossbar nanowire arrays, with each cross-point consisting of a programmable nanowire transistor node. The nanoelectronic finite-state machine integrates 180 programmable nanowire transistor nodes in three tiles or six total crossbar arrays, and incorporates both sequential and arithmetic logic, with extensive intertile and intratile communication that exhibits rigorous input/output matching. Our system realizes the complete 2-bit logic flow and clocked control over state registration that are required for a finite-state machine or computer. The programmable multitile circuit was also reprogrammed to a functionally distinct 2-bit full adder with 32-set matched and complete logic output. These steps forward and the ability of our unique design-oriented deterministic methodology to yield more extensive multitile systems suggest that proposed general-purpose nanocomputers can be realized in the near future. PMID:24469812

  19. An unstructured-mesh finite-volume MPDATA for compressible atmospheric dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kühnlein, Christian, E-mail: christian.kuehnlein@ecmwf.int; Smolarkiewicz, Piotr K., E-mail: piotr.smolarkiewicz@ecmwf.int

    An advancement of the unstructured-mesh finite-volume MPDATA (Multidimensional Positive Definite Advection Transport Algorithm) is presented that formulates the error-compensative pseudo-velocity of the scheme to rely only on face-normal advective fluxes to the dual cells, in contrast to the full vector employed in previous implementations. This is essentially achieved by expressing the temporal truncation error underlying the pseudo-velocity in a form consistent with the flux-divergence of the governing conservation law. The development is especially important for integrating fluid dynamics equations on non-rectilinear meshes whenever face-normal advective mass fluxes are employed for transport compatible with mass continuity—the latter being essential for flux-formmore » schemes. In particular, the proposed formulation enables large-time-step semi-implicit finite-volume integration of the compressible Euler equations using MPDATA on arbitrary hybrid computational meshes. Furthermore, it facilitates multiple error-compensative iterations of the finite-volume MPDATA and improved overall accuracy. The advancement combines straightforwardly with earlier developments, such as the nonoscillatory option, the infinite-gauge variant, and moving curvilinear meshes. A comprehensive description of the scheme is provided for a hybrid horizontally-unstructured vertically-structured computational mesh for efficient global atmospheric flow modelling. The proposed finite-volume MPDATA is verified using selected 3D global atmospheric benchmark simulations, representative of hydrostatic and non-hydrostatic flow regimes. Besides the added capabilities, the scheme retains fully the efficacy of established finite-volume MPDATA formulations.« less

  20. Fermi-Dirac statistics and traffic in complex networks.

    PubMed

    de Moura, Alessandro P S

    2005-06-01

    We propose an idealized model for traffic in a network, in which many particles move randomly from node to node, following the network's links, and it is assumed that at most one particle can occupy any given node. This is intended to mimic the finite forwarding capacity of nodes in communication networks, thereby allowing the possibility of congestion and jamming phenomena. We show that the particles behave like free fermions, with appropriately defined energy-level structure and temperature. The statistical properties of this system are thus given by the corresponding Fermi-Dirac distribution. We use this to obtain analytical expressions for dynamical quantities of interest, such as the mean occupation of each node and the transport efficiency, for different network topologies and particle densities. We show that the subnetwork of free nodes always fragments into small isolated clusters for a sufficiently large number of particles, implying a communication breakdown at some density for all network topologies. These results are compared to direct simulations.

  1. On the motion of substance in a channel of a network and human migration

    NASA Astrophysics Data System (ADS)

    Vitanov, Nikolay K.; Vitanov, Kaloyan N.

    2018-01-01

    We model the motion of a substance in a channel of a network that consists of chain of (i) nodes of the network and (ii) edges that connect the nodes and form the way for motion of the substance. The nodes of the channel can have different ;leakage;, i.e., some amount of the substance can leave the channel at a node and the rate of leaving can be different for the different nodes of the channel. The nodes close to the end of the channel for some (design or other) reason may be more ;attractive; for the substance in comparison to the nodes around the incoming node of the channel. We discuss channels containing infinite or finite number of nodes. The main outcome of the model is the distribution of the substance along the nodes. Two regimes of functioning of the channels are studied: stationary regime and non-stationary regime. The distribution of the substance along the nodes of the channel for the case of stationary regime is a distribution with a very long tail that contains as particular case the Waring distribution (for channel with infinite number of nodes) or the truncated Waring distribution (for channel with finite number of nodes). In the non-stationary regime of functioning of the channel one observes an exponential increase or exponential decrease of the amount of substance in the nodes. However the asymptotic distribution of the substance among the nodes of the channel in this regime remains stationary. The studied model is applied to the case of migration of humans through a migration channel consisting of chain of countries. In this case the model accounts for the number of migrants entering the channel through the first country of the channel; permeability of the borders between the countries; possible large attractiveness of some countries of the channel; possibility for migrants to obtain permission to reside in a country of the channel. The main outcome of the model is the distribution of migrants along the countries of the channel. We discuss the conditions for concentration of migrants in selected country of the channel. Finally two scenarios of changes of conditions of the functioning of the channel are discussed. It is shown that from the point of view of decreasing of the number of migrants in the countries of the channel it is more effective to concentrate efforts on preventing the entrance of migrants in the first country of the channel when compared to concentration of efforts on decrease of permeability of the borders between the countries of the channel.

  2. Tumor, Lymph Node, and Lymph Node-to-Tumor Displacements Over a Radiotherapy Series: Analysis of Interfraction and Intrafraction Variations Using Active Breathing Control (ABC) in Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, Elisabeth, E-mail: eweiss@mcvh-vcu.edu; Robertson, Scott P.; Mukhopadhyay, Nitai

    2012-03-15

    Purpose: To estimate errors in soft tissue-based image guidance due to relative changes between primary tumor (PT) and affected lymph node (LN) position and volume, and to compare the results with bony anatomy-based displacements of PTs and LNs during radiotherapy of lung cancer. Methods and Materials: Weekly repeated breath-hold computed tomography scans were acquired in 17 lung cancer patients undergoing radiotherapy. PTs and affected LNs were manually contoured on all scans after rigid registration. Interfraction and intrafraction displacements in the centers of mass of PTs and LNs relative to bone, as well as LNs relative to PTs (LN-PT), were calculated.more » Results: The mean volume after 5 weeks was 65% for PTs and 63% for LNs. Systematic and random interfraction displacements were 2.6 to 4.6 mm and 2.7 to 2.9 mm, respectively, for PTs; 2.4 to 3.8 mm and 1.4 to 2.7 mm, respectively, for LNs; and 2.3 to 3.9 mm and 1.9 to 2.8 mm, respectively, for LN-PT. Systematic and random intrafraction displacements were less than 1 mm except in the superoinferior direction. Interfraction LN-PT displacements greater than 3 mm were observed in 67% of fractions and require a safety margin of 12 mm in the lateral direction, 11 mm in the anteroposterior direction, and 9 mm in the superoinferior direction. LN-PT displacements displayed significant time trends (p < 0.0001) and depended on the presence of pathoanatomic conditions of the ipsilateral lung, such as atelectasis. Conclusion: Interfraction LN-PT displacements were mostly systematic and comparable to bony anatomy-based displacements of PTs or LNs alone. Time trends, large volume changes, and the influence of pathoanatomic conditions underline the importance of soft tissue-based image guidance and the potential of plan adaptation.« less

  3. Coupled Structural, Thermal, Phase-Change and Electromagnetic Analysis for Superconductors. Volume 1

    NASA Technical Reports Server (NTRS)

    Felippa, C. A.; Farhat, C.; Park, K. C.; Militello, C.; Schuler, J. J.

    1996-01-01

    Described are the theoretical development and computer implementation of reliable and efficient methods for the analysis of coupled mechanical problems that involve the interaction of mechanical, thermal, phase-change and electromagnetic subproblems. The focus application has been the modeling of superconductivity and associated quantum-state phase-change phenomena. In support of this objective the work has addressed the following issues: (1) development of variational principles for finite elements, (2) finite element modeling of the electromagnetic problem, (3) coupling of thermal and mechanical effects, and (4) computer implementation and solution of the superconductivity transition problem. The main accomplishments have been: (1) the development of the theory of parametrized and gauged variational principles, (2) the application of those principled to the construction of electromagnetic, thermal and mechanical finite elements, and (3) the coupling of electromagnetic finite elements with thermal and superconducting effects, and (4) the first detailed finite element simulations of bulk superconductors, in particular the Meissner effect and the nature of the normal conducting boundary layer. The theoretical development is described in two volumes. This volume, Volume 1, describes mostly formulations for specific problems. Volume 2 describes generalization of those formulations.

  4. Lattice study of finite volume effect in HVP for muon g-2

    NASA Astrophysics Data System (ADS)

    Izubuchi, Taku; Kuramashi, Yoshinobu; Lehner, Christoph; Shintani, Eigo

    2018-03-01

    We study the finite volume effect of the hadronic vacuum polarization contribution to muon g-2, aμhvp, in lattice QCD by comparison with two different volumes, L4 = (5.4)4 and (8.1)4 fm4, at physical pion. We perform the lattice computation of highly precise vector-vector current correlator with optimized AMA technique on Nf = 2 + 1 PACS gauge configurations in Wilson-clover fermion and stout smeared gluon action at one lattice cut-off, a-1 = 2.33 GeV. We compare two integrals of aμhvp, momentum integral and time-slice summation, on the lattice and numerically show that the different size of finite volume effect appears between two methods. We also discuss the effect of backward-state propagation into the result of aμhvp with the different boundary condition. Our model-independent study suggest that the lattice computation at physical pion is important for correct estimate of finite volume and other lattice systematics in aμhvp.

  5. PSMA PET/CT with Glu-urea-Lys-(Ahx)-[⁶⁸Ga(HBED-CC)] versus 3D CT volumetric lymph node assessment in recurrent prostate cancer.

    PubMed

    Giesel, Frederik L; Fiedler, H; Stefanova, M; Sterzing, F; Rius, M; Kopka, K; Moltz, J H; Afshar-Oromieh, A; Choyke, P L; Haberkorn, U; Kratochwil, C

    2015-11-01

    PET/CT with the PSMA ligand is a powerful new method for the early detection of nodal metastases in patients with biochemical relapse. The purpose of this retrospective investigation was to evaluate the volume and dimensions of nodes identified by Glu-urea-Lys-(Ahx)-[(68)Ga(HBED-CC)] ((68)Ga-PSMA-11) in the setting of recurrent prostate cancer. All PET/CT images were acquired 60 ± 10 min after intravenous injection of (68)Ga-PSMA-11 (mean dose 176 MBq). In 21 patients with recurrent prostate cancer and rising PSA, 49 PSMA-positive lymph nodes were identified. Using semiautomated lymph node segmentation software, node volume and short-axis and long-axis dimensions were measured and compared with the maximum standardized uptake values (SUVmax). Round nodes greater than or equal to 8 mm were considered positive by morphological criteria alone. The percentage of nodes identified by elevated SUVmax but not by conventional morphological criteria was determined. The mean volume of (68)Ga-PSMA-11-positive nodes was 0.5 ml (range 0.2 - 2.3 ml), and the mean short-axis diameter was 5.8 mm (range 2.4 - 13.3 mm). In 7 patients (33.3 %) with 31 PSMA-positive nodes only 11 (36 %) were morphologically positive based on diameters >8 mm on CT. In the remaining 14 patients (66.7 %), 18 (37 %) of PSMA positive lymph nodes had short-axis diameters <8 mm with a mean short-axis diameter of 5.0 mm (range 2.4 - 7.9 mm). Thus, in this population, (68)Ga-PSMA-11 PET/CT detected nodal recurrence in two-thirds of patients who would have been missed using conventional morphological criteria. (68)Ga-PSMA-11 PET/CT is more sensitive than CT based 3D volumetric lymph node evaluation in determining the node status of patients with recurrent prostate cancer, and is a promising method of restaging prostate cancers in this setting.

  6. Army Communicator. Volume 31, Number 1, Winter 2006

    DTIC Science & Technology

    2006-01-01

    material does not represent official policy, thinking, or endorsement by an agency of the U.S. Army. This publication contains no advertising . U.S...exercise, to simu- late the bandwidth capacity of a Joint Node Network command post node or an ATM Moblie Subscriber Equipment node. These links were

  7. Exact finite volume expectation values of \\overline{Ψ}Ψ in the massive Thirring model from light-cone lattice correlators

    NASA Astrophysics Data System (ADS)

    Hegedűs, Árpád

    2018-03-01

    In this paper, using the light-cone lattice regularization, we compute the finite volume expectation values of the composite operator \\overline{Ψ}Ψ between pure fermion states in the Massive Thirring Model. In the light-cone regularized picture, this expectation value is related to 2-point functions of lattice spin operators being located at neighboring sites of the lattice. The operator \\overline{Ψ}Ψ is proportional to the trace of the stress-energy tensor. This is why the continuum finite volume expectation values can be computed also from the set of non-linear integral equations (NLIE) governing the finite volume spectrum of the theory. Our results for the expectation values coming from the computation of lattice correlators agree with those of the NLIE computations. Previous conjectures for the LeClair-Mussardo-type series representation of the expectation values are also checked.

  8. Implicit method for the computation of unsteady flows on unstructured grids

    NASA Technical Reports Server (NTRS)

    Venkatakrishnan, V.; Mavriplis, D. J.

    1995-01-01

    An implicit method for the computation of unsteady flows on unstructured grids is presented. Following a finite difference approximation for the time derivative, the resulting nonlinear system of equations is solved at each time step by using an agglomeration multigrid procedure. The method allows for arbitrarily large time steps and is efficient in terms of computational effort and storage. Inviscid and viscous unsteady flows are computed to validate the procedure. The issue of the mass matrix which arises with vertex-centered finite volume schemes is addressed. The present formulation allows the mass matrix to be inverted indirectly. A mesh point movement and reconnection procedure is described that allows the grids to evolve with the motion of bodies. As an example of flow over bodies in relative motion, flow over a multi-element airfoil system undergoing deployment is computed.

  9. Electromagnetic finite elements based on a four-potential variational principle

    NASA Technical Reports Server (NTRS)

    Schuler, James J.; Felippa, Carlos A.

    1991-01-01

    Electromagnetic finite elements based on a variational principle that uses the electromagnetic four-potential as a primary variable are derived. This choice is used to construct elements suitable for downstream coupling with mechanical and thermal finite elements for the analysis of electromagnetic/mechanical systems that involve superconductors. The main advantages of the four-potential as a basis for finite element formulation are that the number of degrees of freedom per node remains modest as the problem dimensionally increases, that jump discontinuities on interfaces are naturally accommodated, and that statics as well as dynamics may be treated without any a priori approximations. The new elements are tested on an axisymmetric problem under steady state forcing conditions. The results are in excellent agreement with analytical solutions.

  10. A 3-D Finite-Volume Non-hydrostatic Icosahedral Model (NIM)

    NASA Astrophysics Data System (ADS)

    Lee, Jin

    2014-05-01

    The Nonhydrostatic Icosahedral Model (NIM) formulates the latest numerical innovation of the three-dimensional finite-volume control volume on the quasi-uniform icosahedral grid suitable for ultra-high resolution simulations. NIM's modeling goal is to improve numerical accuracy for weather and climate simulations as well as to utilize the state-of-art computing architecture such as massive parallel CPUs and GPUs to deliver routine high-resolution forecasts in timely manner. NIM dynamic corel innovations include: * A local coordinate system remapped spherical surface to plane for numerical accuracy (Lee and MacDonald, 2009), * Grid points in a table-driven horizontal loop that allow any horizontal point sequence (A.E. MacDonald, et al., 2010), * Flux-Corrected Transport formulated on finite-volume operators to maintain conservative positive definite transport (J.-L, Lee, ET. Al., 2010), *Icosahedral grid optimization (Wang and Lee, 2011), * All differentials evaluated as three-dimensional finite-volume integrals around the control volume. The three-dimensional finite-volume solver in NIM is designed to improve pressure gradient calculation and orographic precipitation over complex terrain. NIM dynamical core has been successfully verified with various non-hydrostatic benchmark test cases such as internal gravity wave, and mountain waves in Dynamical Cores Model Inter-comparisons Projects (DCMIP). Physical parameterizations suitable for NWP are incorporated into NIM dynamical core and successfully tested with multimonth aqua-planet simulations. Recently, NIM has started real data simulations using GFS initial conditions. Results from the idealized tests as well as real-data simulations will be shown in the conference.

  11. An optimized posterior axillary boost technique in radiation therapy to supraclavicular and axillary lymph nodes: A comparative study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez, Victor, E-mail: vhernandezmasgrau@gmail.com; Arenas, Meritxell; Müller, Katrin

    2013-01-01

    To assess the advantages of an optimized posterior axillary (AX) boost technique for the irradiation of supraclavicular (SC) and AX lymph nodes. Five techniques for the treatment of SC and levels I, II, and III AX lymph nodes were evaluated for 10 patients selected at random: a direct anterior field (AP); an anterior to posterior parallel pair (AP-PA); an anterior field with a posterior axillary boost (PAB); an anterior field with an anterior axillary boost (AAB); and an optimized PAB technique (OptPAB). The target coverage, hot spots, irradiated volume, and dose to organs at risk were evaluated and a statisticalmore » analysis comparison was performed. The AP technique delivered insufficient dose to the deeper AX nodes. The AP-PA technique produced larger irradiated volumes and higher mean lung doses than the other techniques. The PAB and AAB techniques originated excessive hot spots in most of the cases. The OptPAB technique produced moderate hot spots while maintaining a similar planning target volume (PTV) coverage, irradiated volume, and dose to organs at risk. This optimized technique combines the advantages of the PAB and AP-PA techniques, with moderate hot spots, sufficient target coverage, and adequate sparing of normal tissues. The presented technique is simple, fast, and easy to implement in routine clinical practice and is superior to the techniques historically used for the treatment of SC and AX lymph nodes.« less

  12. Application of the control volume mixed finite element method to a triangular discretization

    USGS Publications Warehouse

    Naff, R.L.

    2012-01-01

    A two-dimensional control volume mixed finite element method is applied to the elliptic equation. Discretization of the computational domain is based in triangular elements. Shape functions and test functions are formulated on the basis of an equilateral reference triangle with unit edges. A pressure support based on the linear interpolation of elemental edge pressures is used in this formulation. Comparisons are made between results from the standard mixed finite element method and this control volume mixed finite element method. Published 2011. This article is a US Government work and is in the public domain in the USA. ?? 2012 John Wiley & Sons, Ltd. This article is a US Government work and is in the public domain in the USA.

  13. Validation of High Displacement Piezoelectric Actuator Finite Element Models

    NASA Technical Reports Server (NTRS)

    Taleghani, B. K.

    2000-01-01

    The paper presents the results obtained by using NASTRAN(Registered Trademark) and ANSYS(Regitered Trademark) finite element codes to predict doming of the THUNDER piezoelectric actuators during the manufacturing process and subsequent straining due to an applied input voltage. To effectively use such devices in engineering applications, modeling and characterization are essential. Length, width, dome height, and thickness are important parameters for users of such devices. Therefore, finite element models were used to assess the effects of these parameters. NASTRAN(Registered Trademark) and ANSYS(Registered Trademark) used different methods for modeling piezoelectric effects. In NASTRAN(Registered Trademark), a thermal analogy was used to represent voltage at nodes as equivalent temperatures, while ANSYS(Registered Trademark) processed the voltage directly using piezoelectric finite elements. The results of finite element models were validated by using the experimental results.

  14. Coupled Structural, Thermal, Phase-change and Electromagnetic Analysis for Superconductors, Volume 2

    NASA Technical Reports Server (NTRS)

    Felippa, C. A.; Farhat, C.; Park, K. C.; Militello, C.; Schuler, J. J.

    1996-01-01

    Described are the theoretical development and computer implementation of reliable and efficient methods for the analysis of coupled mechanical problems that involve the interaction of mechanical, thermal, phase-change and electromag subproblems. The focus application has been the modeling of superconductivity and associated quantum-state phase change phenomena. In support of this objective the work has addressed the following issues: (1) development of variational principles for finite elements, (2) finite element modeling of the electromagnetic problem, (3) coupling of thermel and mechanical effects, and (4) computer implementation and solution of the superconductivity transition problem. The main accomplishments have been: (1) the development of the theory of parametrized and gauged variational principles, (2) the application of those principled to the construction of electromagnetic, thermal and mechanical finite elements, and (3) the coupling of electromagnetic finite elements with thermal and superconducting effects, and (4) the first detailed finite element simulations of bulk superconductors, in particular the Meissner effect and the nature of the normal conducting boundary layer. The theoretical development is described in two volumes. Volume 1 describes mostly formulation specific problems. Volume 2 describes generalization of those formulations.

  15. Nonlinear Finite Element Analysis of Shells with Large Aspect Ratio

    NASA Technical Reports Server (NTRS)

    Chang, T. Y.; Sawamiphakdi, K.

    1984-01-01

    A higher order degenerated shell element with nine nodes was selected for large deformation and post-buckling analysis of thick or thin shells. Elastic-plastic material properties are also included. The post-buckling analysis algorithm is given. Using a square plate, it was demonstrated that the none-node element does not have shear locking effect even if its aspect ratio was increased to the order 10 to the 8th power. Two sample problems are given to illustrate the analysis capability of the shell element.

  16. Classifying Infrastructure in an Urban Battlespace Using Thermal IR Signatures

    DTIC Science & Technology

    2006-11-01

    Huntsville, Alabama for sharing their ATLAS data for Atlanta. REFERENCES Bentz , D . P . (2000). A Computer Model to Predict the Surface Temperature...10: 2 2 xt α Δ Δ ≤ (10) 2.2 Implementing the Model Bentz uses a 1- D finite difference grid with a varying number of nodes. The nodes are equally...and rooftops were modeled as a function of time and environmental conditions using 1- D heat transfer theory. The model was implemented in MATLAB

  17. General formulation of long-range degree correlations in complex networks

    NASA Astrophysics Data System (ADS)

    Fujiki, Yuka; Takaguchi, Taro; Yakubo, Kousuke

    2018-06-01

    We provide a general framework for analyzing degree correlations between nodes separated by more than one step (i.e., beyond nearest neighbors) in complex networks. One joint and four conditional probability distributions are introduced to fully describe long-range degree correlations with respect to degrees k and k' of two nodes and shortest path length l between them. We present general relations among these probability distributions and clarify the relevance to nearest-neighbor degree correlations. Unlike nearest-neighbor correlations, some of these probability distributions are meaningful only in finite-size networks. Furthermore, as a baseline to determine the existence of intrinsic long-range degree correlations in a network other than inevitable correlations caused by the finite-size effect, the functional forms of these probability distributions for random networks are analytically evaluated within a mean-field approximation. The utility of our argument is demonstrated by applying it to real-world networks.

  18. A refined finite element method for bending analysis of laminated plates integrated with piezoelectric fiber-reinforced composite actuators

    NASA Astrophysics Data System (ADS)

    Rouzegar, J.; Abbasi, A.

    2018-03-01

    This research presents a finite element formulation based on four-variable refined plate theory for bending analysis of cross-ply and angle-ply laminated composite plates integrated with a piezoelectric fiber-reinforced composite actuator under electromechanical loading. The four-variable refined plate theory is a simple and efficient higher-order shear deformation theory, which predicts parabolic variation of transverse shear stresses across the plate thickness and satisfies zero traction conditions on the plate free surfaces. The weak form of governing equations is derived using the principle of minimum potential energy, and a 4-node non-conforming rectangular plate element with 8 degrees of freedom per node is introduced for discretizing the domain. Several benchmark problems are solved by the developed MATLAB code and the obtained results are compared with those from exact and other numerical solutions, showing good agreement.

  19. A Viscoelastic Hybrid Shell Finite Element

    NASA Technical Reports Server (NTRS)

    Johnson, Arthur

    1999-01-01

    An elastic large displacement thick-shell hybrid finite element is modified to allow for the calculation of viscoelastic stresses. Internal strain variables are introduced at he element's stress nodes and are employed to construct a viscous material model. First order ordinary differential equations relate the internal strain variables to the corresponding elastic strains at the stress nodes. The viscous stresses are computed from the internal strain variables using viscous moduli which are a fraction of the elastic moduli. The energy dissipated by the action of the viscous stresses in included in the mixed variational functional. Nonlinear quasi-static viscous equilibrium equations are then obtained. Previously developed Taylor expansions of the equilibrium equations are modified to include the viscous terms. A predictor-corrector time marching solution algorithm is employed to solve the algebraic-differential equations. The viscous shell element is employed to numerically simulate a stair-step loading and unloading of an aircraft tire in contact with a frictionless surface.

  20. Slave finite elements for nonlinear analysis of engine structures, volume 1

    NASA Technical Reports Server (NTRS)

    Gellin, S.

    1991-01-01

    A 336 degrees of freedom slave finite element processing capability to analyze engine structures under severe thermomechanical loading is presented. Description of the theoretical development and demonstration of that element is presented in this volume.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuprat, A.P.; Glasser, A.H.

    The authors discuss unstructured grids for application to transport in the tokamak edge SOL. They have developed a new metric with which to judge element elongation and resolution requirements. Using this method, the authors apply a standard moving finite element technique to advance the SOL equations while inserting/deleting dynamically nodes that violate an elongation criterion. In a tokamak plasma, this method achieves a more uniform accuracy, and results in highly stretched triangular finite elements, except near separatrix X-point where transport is more isotropic.

  2. A Fully Distributed Approach to the Design of a KBIT/SEC VHF Packet Radio Network,

    DTIC Science & Technology

    1984-02-01

    topological change and consequent out-modea routing data. Algorithm development has been aided by computer simulation using a finite state machine technique...development has been aided by computer simulation using a finite state machine technique to model a realistic network of up to fifty nodes. This is...use of computer based equipments in weapons systems and their associated sensors and command and control elements and the trend from voice to data

  3. A Prospective Multi-Center Audit of Nutrition Support Parameters Following Burn Injury.

    PubMed

    Kurmis, Rochelle; Heath, Kathryn; Ooi, Selena; Munn, Zachary; Forbes, Sharon; Young, Vicki; Rigby, Paul; Wood, Kate; Phillips, Frances; Greenwood, John

    2015-01-01

    The importance of nutrition support delivery to the severe burn-injured patient is well recognized, however, nutrition provision to the patient may be sub optimal in practice. The aim of this study was to conduct a prospective multi-center audit across Australia and New Zealand using the Joanna Briggs Institute Burns Node Nutrition audit criteria. Thirty-four patients with severe burn injury (≥20% TBSA in adults and ≥10% TBSA in children) were identified on admission or on referral to the Dietitian at the eight participating Burn Units between February 1, 2012 and April 30, 2012 for inclusion in the study. De-identified patient data was analyzed using the Joanna Briggs Institute, Practical Application of Clinical Evidence System. Compliance with individual audit criterion ranged from 33 to 100%. Provision of prescribed enteral feed volumes and weekly weighing of patients were highlighted as key areas for clinical improvement. Clinical audit is a valuable tool for evaluating current practice against best evidence to ensure that quality patient care is delivered. The use of the Joanna Briggs Institute Burns Node audit criteria has allowed for a standardized multi-center audit to be conducted. Improving nutrition support delivery in burn patients was identified as a key area requiring ongoing clinical improvement across Australia and New Zealand. Clinician feedback on use of the audit criteria will allow for future refinement of individual criterion, and presentation of results of this audit has resulted in a review of the Bi-National Burns Registry nutrition quality indicators.

  4. SU-E-J-124: FDG PET Metrics Analysis in the Context of An Adaptive PET Protocol for Node Positive Gynecologic Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nawrocki, J; Chino, J; Light, K

    2014-06-01

    Purpose: To compare PET extracted metrics and investigate the role of a gradient-based PET segmentation tool, PET Edge (MIM Software Inc., Cleveland, OH), in the context of an adaptive PET protocol for node positive gynecologic cancer patients. Methods: An IRB approved protocol enrolled women with gynecological, PET visible malignancies. A PET-CT was obtained for treatment planning prescribed to 45–50.4Gy with a 55– 70Gy boost to the PET positive nodes. An intra-treatment PET-CT was obtained between 30–36Gy, and all volumes re-contoured. Standard uptake values (SUVmax, SUVmean, SUVmedian) and GTV volumes were extracted from the clinician contoured GTVs on the pre- andmore » intra-treament PET-CT for primaries and nodes and compared with a two tailed Wilcoxon signed-rank test. The differences between primary and node GTV volumes contoured in the treatment planning system and those volumes generated using PET Edge were also investigated. Bland-Altman plots were used to describe significant differences between the two contouring methods. Results: Thirteen women were enrolled in this study. The median baseline/intra-treatment primary (SUVmax, mean, median) were (30.5, 9.09, 7.83)/( 16.6, 4.35, 3.74), and nodes were (20.1, 4.64, 3.93)/( 6.78, 3.13, 3.26). The p values were all < 0.001. The clinical contours were all larger than the PET Edge generated ones, with mean difference of +20.6 ml for primary, and +23.5 ml for nodes. The Bland-Altman revealed changes between clinician/PET Edge contours to be mostly within the margins of the coefficient of variability. However, there was a proportional trend, i.e. the larger the GTV, the larger the clinical contours as compared to PET Edge contours. Conclusion: Primary and node SUV values taken from the intratreament PET-CT can be used to assess the disease response and to design an adaptive plan. The PET Edge tool can streamline the contouring process and lead to smaller, less user-dependent contours.« less

  5. ACCURATE CHEMICAL MASTER EQUATION SOLUTION USING MULTI-FINITE BUFFERS

    PubMed Central

    Cao, Youfang; Terebus, Anna; Liang, Jie

    2016-01-01

    The discrete chemical master equation (dCME) provides a fundamental framework for studying stochasticity in mesoscopic networks. Because of the multi-scale nature of many networks where reaction rates have large disparity, directly solving dCMEs is intractable due to the exploding size of the state space. It is important to truncate the state space effectively with quantified errors, so accurate solutions can be computed. It is also important to know if all major probabilistic peaks have been computed. Here we introduce the Accurate CME (ACME) algorithm for obtaining direct solutions to dCMEs. With multi-finite buffers for reducing the state space by O(n!), exact steady-state and time-evolving network probability landscapes can be computed. We further describe a theoretical framework of aggregating microstates into a smaller number of macrostates by decomposing a network into independent aggregated birth and death processes, and give an a priori method for rapidly determining steady-state truncation errors. The maximal sizes of the finite buffers for a given error tolerance can also be pre-computed without costly trial solutions of dCMEs. We show exactly computed probability landscapes of three multi-scale networks, namely, a 6-node toggle switch, 11-node phage-lambda epigenetic circuit, and 16-node MAPK cascade network, the latter two with no known solutions. We also show how probabilities of rare events can be computed from first-passage times, another class of unsolved problems challenging for simulation-based techniques due to large separations in time scales. Overall, the ACME method enables accurate and efficient solutions of the dCME for a large class of networks. PMID:27761104

  6. Signal broadening in the laser Doppler velocimeter.

    NASA Technical Reports Server (NTRS)

    Angus, J. C.; Edwards, R. V.; Dunning, J. W., Jr.

    1971-01-01

    Critical review of a recent paper in which Denison, Stevenson, and Fox (1971) discussed the sources of spectral broadening in the laser Doppler velocimeter. It is pointed out that, in their discussion, the above-mentioned authors indicated that the spread in wave vectors of the incident and detected fields and the finite length of time a scattering center stayed in the sample volume each contributed separately and independently to the observed spectral width of the scattered radiation. This statement is termed incorrect, and it is shown that the two effects are one and the same.

  7. Timelike pion form factor in lattice QCD

    NASA Astrophysics Data System (ADS)

    Feng, Xu; Aoki, Sinya; Hashimoto, Shoji; Kaneko, Takashi

    2015-03-01

    We perform a nonperturbative lattice calculation of the complex phase and modulus of the pion form factor in the timelike momentum region using the finite-volume technique. We use two ensembles of 2 +1 -flavor overlap fermions at pion masses mπ=380 and 290 MeV. By calculating the I =1 correlators in the center-of-mass and three moving frames, we obtain the form factor at ten different values of the timelike momentum transfer around the vector resonance. We compare the results with the phenomenological model of Gounaris-Sakurai and its variant.

  8. Radiotherapy in Italy after conservative treatment of early breast cancer. A survey by the Italian Society of Radiation Oncology (AIRO).

    PubMed

    Aristei, Cynthia; Amichetti, Maurizio; Ciocca, Mario; Nardone, Luigia; Bertoni, Filippo; Vidali, Cristiana

    2008-01-01

    The aim of surveys on clinical practice is to stimulate discussion and optimize practice. In this paper the current Italian radiotherapy practice after breast-conserving surgery for early breast cancer is described and adherence to national and international guidelines is assessed. Furthermore, results are compared with an earlier survey in northern Italy and international reports. A multiple-choice questionnaire sent to all 138 Italian radiation oncology centers. 48% of centers responded. Most performed breast-conserving surgery when tumor size was < or =3 cm. All centers routinely performed axillary dissection; 45 carried out sentinel node biopsy followed by axillary dissection when the sentinel node was positive. Most centers re-excised when resection margins were positive. The median interval between surgery and radiotherapy, when chemotherapy was not administered, was 60 days. Adjuvant chemotherapy was preferably administered before radiotherapy. Regional lymph nodes were never irradiated in 10 centers; in all others irradiation depended on the number of positive lymph nodes and/or involvement of axillary fat and/or tumor location in medial quadrants. All centers used standard fractionation; hypofractionated schemes were available in 6. Most centers used 4-6 MV photons. In 59 centers the boost dose of 10 Gy could be increased if margins were not negative. All centers ensured patient setup reproducibility. Treatment planning was computerized in 59 centers. The irradiation dose was prescribed at the ICRU point in 56 centers and portal films were made in 54 centers. Intraoperative radiotherapy was used in 4 centers: for partial breast irradiation in 1 and for boost administration in 3 centers. Although the quality of radiotherapy delivery has improved in Italy in recent years, approaches that do not conform to international standards persist.

  9. Mesh Deformation Based on Fully Stressed Design: The Method and Two-Dimensional Examples

    NASA Technical Reports Server (NTRS)

    Hsu, Su-Yuen; Chang, Chau-Lyan

    2007-01-01

    Mesh deformation in response to redefined boundary geometry is a frequently encountered task in shape optimization and analysis of fluid-structure interaction. We propose a simple and concise method for deforming meshes defined with three-node triangular or four-node tetrahedral elements. The mesh deformation method is suitable for large boundary movement. The approach requires two consecutive linear elastic finite-element analyses of an isotropic continuum using a prescribed displacement at the mesh boundaries. The first analysis is performed with homogeneous elastic property and the second with inhomogeneous elastic property. The fully stressed design is employed with a vanishing Poisson s ratio and a proposed form of equivalent strain (modified Tresca equivalent strain) to calculate, from the strain result of the first analysis, the element-specific Young s modulus for the second analysis. The theoretical aspect of the proposed method, its convenient numerical implementation using a typical linear elastic finite-element code in conjunction with very minor extra coding for data processing, and results for examples of large deformation of two-dimensional meshes are presented in this paper. KEY WORDS: Mesh deformation, shape optimization, fluid-structure interaction, fully stressed design, finite-element analysis, linear elasticity, strain failure, equivalent strain, Tresca failure criterion

  10. Rigged String Configurations, Bethe Ansatz Qubits, and Conservation of Parity

    NASA Astrophysics Data System (ADS)

    Lulek, T.

    Bethe Ansatz solutions for the Heisenberg Hamiltonian of a one - dimensional magnetic ring of N nodes, each with the spin 1/2, within the XXX model, have been presented as some composite systems, in a spirit of quantum information theory. The constituents are single - node spin states, which organize into strings of various length, and "seas of holes". The former are responsible for dynamics, whereas the latter determine the range of riggings for strings. Another aim was to demonstrate a unification of Bethe Ansatz eigenstates by means of Galois symmetries of finite field extensions. The key observation is that the original eigenproblem is expressible in integers, and thus, for a finite fixed N, the splitting field of the characteristic polynom of the Heisenberg Hamiltonian is also finite. The Galois group of the latter field permutes, by definition, roots of this polynom, which implies permutation of eigenstates. General considerations are demonstrated on the example of heptagon (N = 7), which admits an implementation of a collection of arithmetic qubits, and also demonstrates a special case of degeneration of the spectrum of the Hamiltonian, resulting from conservation of parity, within the realm of rigged string configurations.

  11. Intensity-modulated radiotherapy for cervical node squamous cell carcinoma metastases from unknown head-and-neck primary site: M. D. Anderson Cancer Center outcomes and patterns of failure.

    PubMed

    Frank, Steven J; Rosenthal, David I; Petsuksiri, Janjira; Ang, K Kian; Morrison, William H; Weber, Randal S; Glisson, Bonnie S; Chao, K S Clifford; Schwartz, David L; Chronowski, Gregory M; El-Naggar, Adel K; Garden, Adam S

    2010-11-15

    Conventional therapy for cervical node squamous cell carcinoma metastases from an unknown primary can cause considerable toxicity owing to the volume of tissues to be irradiated. In the present study, hypothesizing that using intensity-modulated radiotherapy (IMRT) would provide effective treatment with minimal toxicity, we reviewed the outcomes and patterns of failure for head-and-neck unknown primary cancer at a single tertiary cancer center. We retrospectively reviewed the records of 52 patients who had undergone IMRT for an unknown primary at M.D. Anderson Cancer Center between 1998 and 2005. The patient and treatment characteristics were extracted and the survival rates calculated using the Kaplan-Meier method. Of the 52 patients, 5 presented with Stage N1, 11 with Stage N2a, 23 with Stage N2b, 6 with Stage N2c, 4 with Stage N3, and 3 with Stage Nx disease. A total of 26 patients had undergone neck dissection, 13 before and 13 after IMRT; 14 patients had undergone excisional biopsy and presented for IMRT without evidence of disease. Finally, 14 patients had received systemic chemotherapy. All patients underwent IMRT to targets on both sides of the neck and pharyngeal axis. The median follow-up time for the surviving patients was 3.7 years. The 5-year actuarial rate of primary mucosal tumor control and regional control was 98% and 94%, respectively. Only 3 patients developed distant metastasis with locoregional control. The 5-year actuarial disease-free and overall survival rate was 88% and 89%, respectively. The most severe toxicity was Grade 3 dysphagia/esophageal stricture, experienced by 2 patients. The results of our study have shown that IMRT can produce excellent outcomes for patients who present with cervical node squamous cell carcinoma metastases from an unknown head-and-neck primary tumor. Severe late complications were uncommon. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Intensity-Modulated Radiotherapy for Cervical Node Squamous Cell Carcinoma Metastases From Unknown Head-and-Neck Primary Site: M. D. Anderson Cancer Center Outcomes and Patterns of Failure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, Steven J., E-mail: sjfrank@mdanderson.or; Rosenthal, David I.; Petsuksiri, Janjira

    2010-11-15

    Purpose: Conventional therapy for cervical node squamous cell carcinoma metastases from an unknown primary can cause considerable toxicity owing to the volume of tissues to be irradiated. In the present study, hypothesizing that using intensity-modulated radiotherapy (IMRT) would provide effective treatment with minimal toxicity, we reviewed the outcomes and patterns of failure for head-and-neck unknown primary cancer at a single tertiary cancer center. Methods and Materials: We retrospectively reviewed the records of 52 patients who had undergone IMRT for an unknown primary at M.D. Anderson Cancer Center between 1998 and 2005. The patient and treatment characteristics were extracted and themore » survival rates calculated using the Kaplan-Meier method. Results: Of the 52 patients, 5 presented with Stage N1, 11 with Stage N2a, 23 with Stage N2b, 6 with Stage N2c, 4 with Stage N3, and 3 with Stage Nx disease. A total of 26 patients had undergone neck dissection, 13 before and 13 after IMRT; 14 patients had undergone excisional biopsy and presented for IMRT without evidence of disease. Finally, 14 patients had received systemic chemotherapy. All patients underwent IMRT to targets on both sides of the neck and pharyngeal axis. The median follow-up time for the surviving patients was 3.7 years. The 5-year actuarial rate of primary mucosal tumor control and regional control was 98% and 94%, respectively. Only 3 patients developed distant metastasis with locoregional control. The 5-year actuarial disease-free and overall survival rate was 88% and 89%, respectively. The most severe toxicity was Grade 3 dysphagia/esophageal stricture, experienced by 2 patients. Conclusion: The results of our study have shown that IMRT can produce excellent outcomes for patients who present with cervical node squamous cell carcinoma metastases from an unknown head-and-neck primary tumor. Severe late complications were uncommon.« less

  13. A finite volume method for trace element diffusion and partitioning during crystal growth

    NASA Astrophysics Data System (ADS)

    Hesse, Marc A.

    2012-09-01

    A finite volume method on a uniform grid is presented to compute the polythermal diffusion and partitioning of a trace element during the growth of a porphyroblast crystal in a uniform matrix and in linear, cylindrical and spherical geometry. The motion of the crystal-matrix interface and the thermal evolution are prescribed functions of time. The motion of the interface is discretized and it advances from one cell boundary to next as the prescribed interface position passes the cell center. The appropriate conditions for the flux across the crystal-matrix interface are derived from discrete mass conservation. Numerical results are benchmarked against steady and transient analytic solutions for isothermal diffusion with partitioning and growth. Two applications illustrate the ability of the model to reproduce observed rare-earth element patterns in garnets (Skora et al., 2006) and water concentration profiles around spherulites in obsidian (Watkins et al., 2009). Simulations with diffusion inside the growing crystal show complex concentration evolutions for trace elements with high diffusion coefficients, such as argon or hydrogen, but demonstrate that rare-earth element concentrations in typical metamorphic garnets are not affected by intracrystalline diffusion.

  14. A Lymph Node Staging System for Gastric Cancer: A Hybrid Type Based on Topographic and Numeric Systems.

    PubMed

    Choi, Yoon Young; An, Ji Yeong; Katai, Hitoshi; Seto, Yasuyuki; Fukagawa, Takeo; Okumura, Yasuhiro; Kim, Dong Wook; Kim, Hyoung-Il; Cheong, Jae-Ho; Hyung, Woo Jin; Noh, Sung Hoon

    2016-01-01

    Although changing a lymph node staging system from an anatomically based system to a numerically based system in gastric cancer offers better prognostic performance, several problems can arise: it does not offer information on the anatomical extent of disease and cannot represent the extent of lymph node dissection. The purpose of this study was to discover an alternative lymph node staging system for gastric cancer. Data from 6025 patients who underwent gastrectomy for primary gastric cancer between January 2000 and December 2010 were reviewed. The lymph node groups were reclassified into lesser-curvature, greater-curvature, and extra-perigastric groups. Presence of any metastatic lymph node in one group was considered positive. Lymph node groups were further stratified into four (new N0-new N3) according to the number of positive lymph node groups. Survival outcomes with this new N staging were compared with those of the current TNM system. For validation, two centers in Japan (large center, n = 3443; medium center, n = 560) were invited. Even among the same pN stages, the more advanced new N stage showed worse prognosis, indicating that the anatomical extent of metastatic lymph nodes is important. The prognostic performance of the new staging system was as good as that of the current TNM system for overall advanced gastric cancer as well as lymph node-positive gastric cancer (Harrell C-index was 0.799, 0.726, and 0.703 in current TNM and 0.799, 0.727, and 0.703 in new TNM stage). Validation sets supported these outcomes. The new N staging system demonstrated prognostic performance equal to that of the current TNM system and could thus be used as an alternative.

  15. A finite-volume module for all-scale Earth-system modelling at ECMWF

    NASA Astrophysics Data System (ADS)

    Kühnlein, Christian; Malardel, Sylvie; Smolarkiewicz, Piotr

    2017-04-01

    We highlight recent advancements in the development of the finite-volume module (FVM) (Smolarkiewicz et al., 2016) for the IFS at ECMWF. FVM represents an alternative dynamical core that complements the operational spectral dynamical core of the IFS with new capabilities. Most notably, these include a compact-stencil finite-volume discretisation, flexible meshes, conservative non-oscillatory transport and all-scale governing equations. As a default, FVM solves the compressible Euler equations in a geospherical framework (Szmelter and Smolarkiewicz, 2010). The formulation incorporates a generalised terrain-following vertical coordinate. A hybrid computational mesh, fully unstructured in the horizontal and structured in the vertical, enables efficient global atmospheric modelling. Moreover, a centred two-time-level semi-implicit integration scheme is employed with 3D implicit treatment of acoustic, buoyant, and rotational modes. The associated 3D elliptic Helmholtz problem is solved using a preconditioned Generalised Conjugate Residual approach. The solution procedure employs the non-oscillatory finite-volume MPDATA advection scheme that is bespoke for the compressible dynamics on the hybrid mesh (Kühnlein and Smolarkiewicz, 2017). The recent progress of FVM is illustrated with results of benchmark simulations of intermediate complexity, and comparison to the operational spectral dynamical core of the IFS. C. Kühnlein, P.K. Smolarkiewicz: An unstructured-mesh finite-volume MPDATA for compressible atmospheric dynamics, J. Comput. Phys. (2017), in press. P.K. Smolarkiewicz, W. Deconinck, M. Hamrud, C. Kühnlein, G. Mozdzynski, J. Szmelter, N.P. Wedi: A finite-volume module for simulating global all-scale atmospheric flows, J. Comput. Phys. 314 (2016) 287-304. J. Szmelter, P.K. Smolarkiewicz: An edge-based unstructured mesh discretisation in geospherical framework, J. Comput. Phys. 229 (2010) 4980-4995.

  16. A Novel Deployment Scheme Based on Three-Dimensional Coverage Model for Wireless Sensor Networks

    PubMed Central

    Xiao, Fu; Yang, Yang; Wang, Ruchuan; Sun, Lijuan

    2014-01-01

    Coverage pattern and deployment strategy are directly related to the optimum allocation of limited resources for wireless sensor networks, such as energy of nodes, communication bandwidth, and computing power, and quality improvement is largely determined by these for wireless sensor networks. A three-dimensional coverage pattern and deployment scheme are proposed in this paper. Firstly, by analyzing the regular polyhedron models in three-dimensional scene, a coverage pattern based on cuboids is proposed, and then relationship between coverage and sensor nodes' radius is deduced; also the minimum number of sensor nodes to maintain network area's full coverage is calculated. At last, sensor nodes are deployed according to the coverage pattern after the monitor area is subdivided into finite 3D grid. Experimental results show that, compared with traditional random method, sensor nodes number is reduced effectively while coverage rate of monitor area is ensured using our coverage pattern and deterministic deployment scheme. PMID:25045747

  17. Fission-Fusion Adaptivity in Finite Elements for Nonlinear Dynamics of Shells

    DTIC Science & Technology

    1988-11-30

    where mesh refinement will prove useful. In fact, the deviation of a bilinear element from a smooth shell midsurface can be related to the angle between...comparisons with nonadaptive meshes. Conclusions and further discussions are given in Section 6. -5- 2. FINITE ELEMENT FORMULATION The shape of the midsurface ...8217 22 , and e3 is defined so that e, and e2 are tangent to the midsurface and rotate with the element; 2. for each node, a triad b i is defined so that

  18. Proceedings of the Scientific Conference on Obscuration and Aerosol Research Held in Aberdeen Maryland on 27-30 June 1989

    DTIC Science & Technology

    1990-08-01

    corneal structure for both normal and swollen corneas. Other problems of future interest are the understanding of the structure of scarred and dystrophied ...METHOD AND RESULTS The system of equations is solved numerically on a Cray X-MP by a finite element method with 9-node Lagrange quadrilaterals ( Becker ...Appl. Math., 42, 430. Becker , E. B., G. F. Carey, and J. T. Oden, 1981. Finite Elements: An Introduction (Vol. 1), Prentice- Hall, Englewood Cliffs, New

  19. Patterns of local-regional recurrence following parotid-sparing conformal and segmental intensity-modulated radiotherapy for head and neck cancer.

    PubMed

    Dawson, L A; Anzai, Y; Marsh, L; Martel, M K; Paulino, A; Ship, J A; Eisbruch, A

    2000-03-15

    To analyze the patterns of local-regional recurrence in patients with head and neck cancer treated with parotid-sparing conformal and segmental intensity-modulated radiotherapy (IMRT). Fifty-eight patients with head and neck cancer were treated with bilateral neck radiation (RT) using conformal or segmental IMRT techniques, while sparing a substantial portion of one parotid gland. The targets for CT-based RT planning included the gross tumor volume (GTV) (primary tumor and lymph node metastases) and the clinical target volume (CTV) (postoperative tumor bed, expansions of the GTVs and lymph node groups at risk of subclinical disease). Lymph node targets at risk of subclinical disease included the bilateral jugulodigastric and lower jugular lymph nodes, bilateral retropharyngeal lymph nodes at risk, and high jugular nodes at the base of skull in the side of the neck at highest risk (containing clinical neck metastases and/or ipsilateral to the primary tumor). The CTVs were expanded by 5 mm to yield planning target volumes (PTVs). Planning goals included coverage of all PTVs (with a minimum of 95% of the prescribed dose) and sparing of a substantial portion of the parotid gland in the side of the neck at less risk. The median RT doses to the gross tumor, the operative bed, and the subclinical disease PTVs were 70.4 Gy, 61.2 Gy, and 50.4 Gy respectively. All recurrences were defined on CT scans obtained at the time of recurrence, transferred to the pretreatment CT dataset used for RT planning, and analyzed using dose-volume histograms. The recurrences were classified as 1) "in-field," in which 95% or more of the recurrence volume (V(recur)) was within the 95% isodose; 2) "marginal," in which 20% to 95% of V(recur) was within the 95% isodose; or 3) "outside," in which less than 20% of V(recur) was within the 95% isodose. With a median follow-up of 27 months (range 6 to 60 months), 10 regional recurrences, 5 local recurrences (including one noninvasive recurrence) and 1 stomal recurrence were seen in 12 patients, for a 2-year actuarial local-regional control rate of 79% (95% confidence interval 68-90%). Ten patients (80%) relapsed in-field (in areas of previous gross tumor in nine patients), and two patients developed marginal recurrences in the side of the neck at highest risk (one in the high retropharyngeal nodes/base of skull and one in the submandibular nodes). Four regional recurrences extended superior to the jugulodigastric node, in the high jugular and retropharyngeal nodes near the base of skull of the side of the neck at highest risk. Three of these were in-field, in areas that had received the dose intended for subclinical disease. No recurrences were seen in the nodes superior to the jugulodigastric nodes in the side of the neck at less risk, where RT was partially spared. The majority of local-regional recurrences after conformal and segmental IMRT were "in-field," in areas judged to be at high risk at the time of RT planning, including the GTV, the operative bed, and the first echelon nodes. These findings motivate studies of dose escalation to the highest risk regions.

  20. Growth dominates choice in network percolation

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, Vikram S.; Noël, Pierre-André; Waagen, Alex; D'Souza, Raissa M.

    2013-09-01

    The onset of large-scale connectivity in a network (i.e., percolation) often has a major impact on the function of the system. Traditionally, graph percolation is analyzed by adding edges to a fixed set of initially isolated nodes. Several years ago, it was shown that adding nodes as well as edges to the graph can yield an infinite order transition, which is much smoother than the traditional second-order transition. More recently, it was shown that adding edges via a competitive process to a fixed set of initially isolated nodes can lead to a delayed, extremely abrupt percolation transition with a significant jump in large but finite systems. Here we analyze a process that combines both node arrival and edge competition. If started from a small collection of seed nodes, we show that the impact of node arrival dominates: although we can significantly delay percolation, the transition is of infinite order. Thus, node arrival can mitigate the trade-off between delay and abruptness that is characteristic of explosive percolation transitions. This realization may inspire new design rules where network growth can temper the effects of delay, creating opportunities for network intervention and control.

  1. Finite-time mixed outer synchronization of complex networks with coupling time-varying delay.

    PubMed

    He, Ping; Ma, Shu-Hua; Fan, Tao

    2012-12-01

    This article is concerned with the problem of finite-time mixed outer synchronization (FMOS) of complex networks with coupling time-varying delay. FMOS is a recently developed generalized synchronization concept, i.e., in which different state variables of the corresponding nodes can evolve into finite-time complete synchronization, finite-time anti-synchronization, and even amplitude finite-time death simultaneously for an appropriate choice of the controller gain matrix. Some novel stability criteria for the synchronization between drive and response complex networks with coupling time-varying delay are derived using the Lyapunov stability theory and linear matrix inequalities. And a simple linear state feedback synchronization controller is designed as a result. Numerical simulations for two coupled networks of modified Chua's circuits are then provided to demonstrate the effectiveness and feasibility of the proposed complex networks control and synchronization schemes and then compared with the proposed results and the previous schemes for accuracy.

  2. Research on Finite Element Model Generating Method of General Gear Based on Parametric Modelling

    NASA Astrophysics Data System (ADS)

    Lei, Yulong; Yan, Bo; Fu, Yao; Chen, Wei; Hou, Liguo

    2017-06-01

    Aiming at the problems of low efficiency and poor quality of gear meshing in the current mainstream finite element software, through the establishment of universal gear three-dimensional model, and explore the rules of unit and node arrangement. In this paper, a finite element model generation method of universal gear based on parameterization is proposed. Visual Basic program is used to realize the finite element meshing, give the material properties, and set the boundary / load conditions and other pre-processing work. The dynamic meshing analysis of the gears is carried out with the method proposed in this pape, and compared with the calculated values to verify the correctness of the method. The method greatly shortens the workload of gear finite element pre-processing, improves the quality of gear mesh, and provides a new idea for the FEM pre-processing.

  3. Finite element solution for energy conservation using a highly stable explicit integration algorithm

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Manhardt, P. D.

    1972-01-01

    Theoretical derivation of a finite element solution algorithm for the transient energy conservation equation in multidimensional, stationary multi-media continua with irregular solution domain closure is considered. The complete finite element matrix forms for arbitrarily irregular discretizations are established, using natural coordinate function representations. The algorithm is embodied into a user-oriented computer program (COMOC) which obtains transient temperature distributions at the node points of the finite element discretization using a highly stable explicit integration procedure with automatic error control features. The finite element algorithm is shown to posses convergence with discretization for a transient sample problem. The condensed form for the specific heat element matrix is shown to be preferable to the consistent form. Computed results for diverse problems illustrate the versatility of COMOC, and easily prepared output subroutines are shown to allow quick engineering assessment of solution behavior.

  4. An efficicient data structure for three-dimensional vertex based finite volume method

    NASA Astrophysics Data System (ADS)

    Akkurt, Semih; Sahin, Mehmet

    2017-11-01

    A vertex based three-dimensional finite volume algorithm has been developed using an edge based data structure.The mesh data structure of the given algorithm is similar to ones that exist in the literature. However, the data structures are redesigned and simplied in order to fit requirements of the vertex based finite volume method. In order to increase the cache efficiency, the data access patterns for the vertex based finite volume method are investigated and these datas are packed/allocated in a way that they are close to each other in the memory. The present data structure is not limited with tetrahedrons, arbitrary polyhedrons are also supported in the mesh without putting any additional effort. Furthermore, the present data structure also supports adaptive refinement and coarsening. For the implicit and parallel implementation of the FVM algorithm, PETSc and MPI libraries are employed. The performance and accuracy of the present algorithm are tested for the classical benchmark problems by comparing the CPU time for the open source algorithms.

  5. Nanoparticle-Enhanced MRI to Evaluate Radiation Delivery to the Regional Lymphatics for Patients With Breast Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, Shannon M., E-mail: smacdonald@partners.or; Harisinghani, Mukesh G.; Katkar, Amol

    2010-07-15

    Purpose: At present, radiation (RT) fields are based largely, and often solely, on bony anatomy. Recent efforts have been taken to better define lymphatic regions for RT planning. Lymphotrophic nanoparticle-enhanced MRI (LN-MRI) allows for accurate identification of malignant and benign lymph nodes. We sought to evaluate RT delivery to lymphatics for breast cancer using LN-MRI. Methods and Materials: Twenty-three patients with breast cancer underwent LN-MRI. MRIs were anatomically registered to a reference CT; benign and malignant lymph nodes were contoured. Standard RT fields were planned and dose calculated to prescribe 45-50 Gy. Lymphatic regions were contoured on CT. Coverage ofmore » LN-MRI lymph nodes by RT fields and contoured lymphatics were assessed. Results: Eighty-one percent of all lymph nodes defined by LN-MRI were covered by the 45-Gy isodose line; 82% of malignant and 79% of benign. The 50-Gy isodose line only encompassed 60% of LN-MRI defined lymph nodes-64% of malignant and 59% of benign. For nodal volumes contoured in the absence of a margin, 86% of actual lymph nodes were within contoured volumes. When a 5-mm expansion was added, 99% were included. Conclusions: LN-MRI is a useful tool to delineate the location of breast regional lymphatics. These results suggest less than desired coverage of lymph nodes using standard RT fields and that a margin may be advisable when defining nodal volumes by CT. The use of IMRT and RT in lieu of surgery makes accurate definition of the location of breast regional lymphatics of paramount importance.« less

  6. Patterns of Recurrence in Electively Irradiated Lymph Node Regions After Definitive Accelerated Intensity Modulated Radiation Therapy for Head and Neck Squamous Cell Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bosch, Sven van den, E-mail: sven.vandenbosch@radboudumc.nl; Dijkema, Tim; Verhoef, Lia C.G.

    Purpose: To provide a comprehensive risk assessment on the patterns of recurrence in electively irradiated lymph node regions after definitive radiation therapy for head and neck cancer. Methods and Materials: Two hundred sixty-four patients with stage cT2-4N0-2M0 squamous cell carcinoma of the oropharynx, larynx, or hypopharynx treated with accelerated intensity modulated radiation therapy between 2008 and 2012 were included. On the radiation therapy planning computed tomography (CT) scans from all patients, 1166 lymph nodes (short-axis diameter ≥5 mm) localized in the elective volume were identified and delineated. The exact sites of regional recurrences were reconstructed and projected on the initial radiationmore » therapy planning CT scan by performing coregistration with diagnostic imaging of the recurrence. Results: The actuarial rate of recurrence in electively irradiated lymph node regions at 2 years was 5.1% (95% confidence interval 2.4%-7.8%). Volumetric analysis showed an increased risk of recurrence with increasing nodal volume. Receiver operating characteristic analysis demonstrated that the summed long- and short-axis diameter is a good alternative for laborious volume calculations, using ≥17 mm as cut-off (hazard ratio 17.8; 95% confidence interval 5.7-55.1; P<.001). Conclusions: An important risk factor was identified that can help clinicians in the pretreatment risk assessment of borderline-sized lymph nodes. Not overtly pathologic nodes with a summed diameter ≥17 mm may require a higher than elective radiation therapy dose. For low-risk elective regions (all nodes <17 mm), the safety of dose de-escalation below the traditional 45 to 50 Gy should be investigated.« less

  7. Development and Implementation of Production Area of Agricultural Product Data Collection System Based on Embedded System

    NASA Astrophysics Data System (ADS)

    Xi, Lei; Guo, Wei; Che, Yinchao; Zhang, Hao; Wang, Qiang; Ma, Xinming

    To solve problems in detecting the origin of agricultural products, this paper brings about an embedded data-based terminal, applies middleware thinking, and provides reusable long-range two-way data exchange module between business equipment and data acquisition systems. The system is constructed by data collection node and data center nodes. Data collection nodes taking embedded data terminal NetBoxII as the core, consisting of data acquisition interface layer, controlling information layer and data exchange layer, completing the data reading of different front-end acquisition equipments, and packing the data TCP to realize the data exchange between data center nodes according to the physical link (GPRS / CDMA / Ethernet). Data center node consists of the data exchange layer, the data persistence layer, and the business interface layer, which make the data collecting durable, and provide standardized data for business systems based on mapping relationship of collected data and business data. Relying on public communications networks, application of the system could establish the road of flow of information between the scene of origin certification and management center, and could realize the real-time collection, storage and processing between data of origin certification scene and databases of certification organization, and could achieve needs of long-range detection of agricultural origin.

  8. Use of Generalized Fluid System Simulation Program (GFSSP) for Teaching and Performing Senior Design Projects at the Educational Institutions

    NASA Technical Reports Server (NTRS)

    Majumdar, A. K.; Hedayat, A.

    2015-01-01

    This paper describes the experience of the authors in using the Generalized Fluid System Simulation Program (GFSSP) in teaching Design of Thermal Systems class at University of Alabama in Huntsville. GFSSP is a finite volume based thermo-fluid system network analysis code, developed at NASA/Marshall Space Flight Center, and is extensively used in NASA, Department of Defense, and aerospace industries for propulsion system design, analysis, and performance evaluation. The educational version of GFSSP is freely available to all US higher education institutions. The main purpose of the paper is to illustrate the utilization of this user-friendly code for the thermal systems design and fluid engineering courses and to encourage the instructors to utilize the code for the class assignments as well as senior design projects. The need for a generalized computer program for thermofluid analysis in a flow network has been felt for a long time in aerospace industries. Designers of thermofluid systems often need to know pressures, temperatures, flow rates, concentrations, and heat transfer rates at different parts of a flow circuit for steady state or transient conditions. Such applications occur in propulsion systems for tank pressurization, internal flow analysis of rocket engine turbopumps, chilldown of cryogenic tanks and transfer lines, and many other applications of gas-liquid systems involving fluid transients and conjugate heat and mass transfer. Computer resource requirements to perform time-dependent, three-dimensional Navier-Stokes computational fluid dynamic (CFD) analysis of such systems are prohibitive and therefore are not practical. Available commercial codes are generally suitable for steady state, single-phase incompressible flow. Because of the proprietary nature of such codes, it is not possible to extend their capability to satisfy the above-mentioned needs. Therefore, the Generalized Fluid System Simulation Program (GFSSP1) has been developed at NASA Marshall Space Flight Center (MSFC) as a general fluid flow system solver capable of handling phase changes, compressibility, mixture thermodynamics and transient operations. It also includes the capability to model external body forces such as gravity and centrifugal effects in a complex flow network. The objectives of GFSSP development are: a) to develop a robust and efficient numerical algorithm to solve a system of equations describing a flow network containing phase changes, mixing, and rotation; and b) to implement the algorithm in a structured, easy-to-use computer program. The analysis of thermofluid dynamics in a complex network requires resolution of the system into fluid nodes and branches, and solid nodes and conductors as shown in Figure 1. Figure 1 shows a schematic and GFSSP flow circuit of a counter-flow heat exchanger. Hot nitrogen gas is flowing through a pipe, colder nitrogen is flowing counter to the hot stream in the annulus pipe and heat transfer occurs through metal tubes. The problem considered is to calculate flowrates and temperature distributions in both streams. GFSSP has a unique data structure, as shown in Figure 2, that allows constructing all possible arrangements of a flow network with no limit on the number of elements. The elements of a flow network are boundary nodes where pressure and temperature are specified, internal nodes where pressure and temperature are calculated, and branches where flowrates are calculated. For conjugate heat transfer problems, there are three additional elements: solid node, ambient node, and conductor. The solid and fluid nodes are connected with solid-fluid conductors. GFSSP solves the conservation equations of mass and energy, and equation of state in internal nodes to calculate pressure, temperature and resident mass. The momentum conservation equation is solved in branches to calculate flowrate. It also solves for energy conservation equations to calculate temperatures of solid nodes. The equations are coupled and nonlinear; therefore, they are solved by an iterative numerical scheme. GFSSP employs a unique numerical scheme known as simultaneous adjustment with successive substitution (SASS), which is a combination of Newton-Raphson and successive substitution methods. The mass and momentum conservation equations and the equation of state are solved by the Newton-Raphson method while the conservation of energy and species are solved by the successive substitution method. GFSSP is linked with two thermodynamic property programs, GASP2 and WASP3 and GASPAK4, that provide thermodynamic and thermophysical properties of selected fluids. Both programs cover a range of pressure and temperature that allows fluid properties to be evaluated for liquid, liquid-vapor (saturation), and vapor region. GASP and WASP provide properties of 12 fluids. GASPAK includes a library of 36 fluids. GFSSP has three major parts. The first part is the graphical user interface (GUI), visual thermofluid analyzer of systems and components (VTASC). VTASC allows users to create a flow circuit by a 'point and click' paradigm. It creates the GFSSP input file after the completion of the model building process. GFSSP's GUI provides the users a platform to build and run their models. It also allows post-processing of results. The network flow circuit is first built using three basic elements: boundary node, internal node, and branch.

  9. Node 2 and Japanese Experimental Module (JEM) In Space Station Processing Facility

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Lining the walls of the Space Station Processing Facility at the Kennedy Space Center (KSC) are the launch awaiting U.S. Node 2 (lower left). and the first pressurized module of the Japanese Experimental Module (JEM) (upper right), named 'Kibo' (Hope). Node 2, the 'utility hub' and second of three connectors between International Space Station (ISS) modules, was built in the Torino, Italy facility of Alenia Spazio, an International contractor based in Rome. Japan's major contribution to the station, the JEM, was built by the Space Development Agency of Japan (NASDA) at the Tsukuba Space Center near Tokyo and will expand research capabilities aboard the station. Both were part of an agreement between NASA and the European Space Agency (ESA). The Node 2 will be the next pressurized module installed on the Station. Once the Japanese and European laboratories are attached to it, the resulting roomier Station will expand from the equivalent space of a 3-bedroom house to a 5-bedroom house. The Marshall Space Center in Huntsville, Alabama manages the Node program for NASA.

  10. Efficient sensor network vehicle classification using peak harmonics of acoustic emissions

    NASA Astrophysics Data System (ADS)

    William, Peter E.; Hoffman, Michael W.

    2008-04-01

    An application is proposed for detection and classification of battlefield ground vehicles using the emitted acoustic signal captured at individual sensor nodes of an ad hoc Wireless Sensor Network (WSN). We make use of the harmonic characteristics of the acoustic emissions of battlefield vehicles, in reducing both the computations carried on the sensor node and the transmitted data to the fusion center for reliable and effcient classification of targets. Previous approaches focus on the lower frequency band of the acoustic emissions up to 500Hz; however, we show in the proposed application how effcient discrimination between battlefield vehicles is performed using features extracted from higher frequency bands (50 - 1500Hz). The application shows that selective time domain acoustic features surpass equivalent spectral features. Collaborative signal processing is utilized, such that estimation of certain signal model parameters is carried by the sensor node, in order to reduce the communication between the sensor node and the fusion center, while the remaining model parameters are estimated at the fusion center. The transmitted data from the sensor node to the fusion center ranges from 1 ~ 5% of the sampled acoustic signal at the node. A variety of classification schemes were examined, such as maximum likelihood, vector quantization and artificial neural networks. Evaluation of the proposed application, through processing of an acoustic data set with comparison to previous results, shows that the improvement is not only in the number of computations but also in the detection and false alarm rate as well.

  11. Two-particle multichannel systems in a finite volume with arbitrary spin

    DOE PAGES

    Briceno, Raul A.

    2014-04-08

    The quantization condition for two-particle systems with arbitrary number of two-body open coupled channels, spin and masses in a finite cubic volume with either periodic or twisted boundary conditions is presented. The condition presented is in agreement with all previous studies of two-body systems in a finite volume. The result is relativistic, holds for all momenta below the three- and four-particle thresholds, and is exact up to exponential volume corrections that are governed by L/r, where L is the spatial extent of the volume and r is the range of the interactions between the particles. With hadronic systems the rangemore » of the interaction is set by the inverse of the pion mass, m π, and as a result the formalism presented is suitable for m πL>>1. Implications of the formalism for the studies of multichannel baryon-baryon systems are discussed.« less

  12. Relativistic, model-independent, multichannel 2 → 2 transition amplitudes in a finite volume

    DOE PAGES

    Briceno, Raul A.; Hansen, Maxwell T.

    2016-07-13

    We derive formalism for determining 2 + J → 2 infinite-volume transition amplitudes from finite-volume matrix elements. Specifically, we present a relativistic, model-independent relation between finite-volume matrix elements of external currents and the physically observable infinite-volume matrix elements involving two-particle asymptotic states. The result presented holds for states composed of two scalar bosons. These can be identical or non-identical and, in the latter case, can be either degenerate or non-degenerate. We further accommodate any number of strongly-coupled two-scalar channels. This formalism will, for example, allow future lattice QCD calculations of themore » $$\\rho$$-meson form factor, in which the unstable nature of the $$\\rho$$ is rigorously accommodated. In conclusion, we also discuss how this work will impact future extractions of nuclear parity and hadronic long-range matrix elements from lattice QCD.« less

  13. Modeling dam-break flows using finite volume method on unstructured grid

    USDA-ARS?s Scientific Manuscript database

    Two-dimensional shallow water models based on unstructured finite volume method and approximate Riemann solvers for computing the intercell fluxes have drawn growing attention because of their robustness, high adaptivity to complicated geometry and ability to simulate flows with mixed regimes and di...

  14. Two Dimensional Linear Elastic Analysis of Fracture Specimens User’s Manual of a Finite Element Computer Program.

    DTIC Science & Technology

    1980-02-01

    8 d. Data Set 4 8 e. Data Set 5 9 f. Data Set 6 9 g. Data Set 7 10 h. Data Set 8 10 i. Data Set 9 11 J. Data Set 10 12 k. Data...Coordinates NODE X Y NODE X Y NODE X Y 1 4.0 0.5 7 3.50 1.0 13 1.50 1.5 2 4.0 1.0 8 3.50 1.5 14 1.25 0.5 3 4.0 1.5 9 2.50 0.5 15 1.25 1.5 4 3.75 0.5 10 ...4 1+5 1+6 1+7 1 1 3 8 6 2 5 7 4 2 8 13 11 6 10 12 9 7 3 16 11 13 18 14 12 15 17 Note that I can be chosen to be any corner node. 6. PLOTTING THE

  15. Influence of twin boundaries on superconducting gap nodes in FeSe single crystal studied by STM/STS

    NASA Astrophysics Data System (ADS)

    Watashige, T.; Hanaguri, T.; Kohsaka, Y.; Iwaya, K.; Fu, Y.; Kasahara, S.; Watanabe, D.; Mizukami, Y.; Mikami, T.; Kawamoto, Y.; Kurata, S.; Shibauchi, T.; Matsuda, Y.; Böhmer, A. E.; Wolf, T.; Meingast, C.; Löhneysen, H. V.

    2014-03-01

    We performed scanning tunneling microscopy (STM) and spectroscopy (STS) measurements on high-quality FeSe single crystals grown by vapor transport technique to examine the superconducting-gap structure. In MBE-grown FeSe thin films, based on the V-shaped tunneling spectra, nodal superconductivity is suggested. It is interesting to investigate how the nodes are affected by various kinds of defects. We found that twin boundaries bring about drastic effects on the gap nodes. With approaching to the twin boundary, V-shaped spectra gradually change to U-shaped ones. Interestingly, in the area between the twin boundaries separated by about 30 nm, the gap node is completely lifted and there appears a finite gap over +/-0.4 meV. This unusual twin-boundary effect will give us a hint to elucidate the superconducting-gap structure.

  16. SU-E-T-157: Evaluation and Comparison of Doses to Pelvic Lymph Nodes and to Point B with 3D Image Guided Treatment Planning for High Dose Brachytherapy for Treatment of Cervical Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhandare, N.

    2014-06-01

    Purpose: To estimate and compare the doses received by the obturator, external and internal iliac lymph nodes and point Methods: CT-MR fused image sets of 15 patients obtained for each of 5 fractions of HDR brachytherapy using tandem and ring applicator, were used to generate treatment plans optimized to deliver a prescription dose to HRCTV-D90 and to minimize the doses to organs at risk (OARs). For each set of image, target volume (GTV, HRCTV) OARs (Bladder, Rectum, Sigmoid), and both left and right pelvic lymph nodes (obturator, external and internal iliac lymph nodes) were delineated. Dose-volume histograms (DVH) were generatedmore » for pelvic nodal groups (left and right obturator group, internal and external iliac chains) Per fraction DVH parameters used for dose comparison included dose to 100% volume (D100), and dose received by 2cc (D2cc), 1cc (D1cc) and 0.1 cc (D0.1cc) of nodal volume. Dose to point B was compared with each DVH parameter using 2 sided t-test. Pearson correlation were determined to examine relationship of point B dose with nodal DVH parameters. Results: FIGO clinical stage varied from 1B1 to IIIB. The median pretreatment tumor diameter measured on MRI was 4.5 cm (2.7– 6.4cm).The median dose to bilateral point B was 1.20 Gy ± 0.12 or 20% of the prescription dose. The correlation coefficients were all <0.60 for all nodal DVH parameters indicating low degree of correlation. Only 2 cc of obturator nodes was not significantly different from point B dose on t-test. Conclusion: Dose to point B does not adequately represent the dose to any specific pelvic nodal group. When using image guided 3D dose-volume optimized treatment nodal groups should be individually identified and delineated to obtain the doses received by pelvic nodes.« less

  17. Robotic-assisted laparoscopic radical cystectomy: history, techniques and outcomes.

    PubMed

    Liss, Michael A; Kader, A Karim

    2013-06-01

    Robotic-assisted radical cystectomy (RARC) is a less invasive means of performing the radical cystectomy operation, which holds promise for improved patient morbidity. We review the history, technique and current literature pertaining to RARC and place the current results in context with the open procedure. All articles regarding RARC found in PubMed after January 2000 were examined. We selected articles that appeared in high-impact journals, had large patient population size (>80 patients), or were novel in technique or findings. We chose key laparoscopic articles to give reference to the history in transition to robotic radical cystectomy. In addition, we chose classic articles from open radical cystectomy to give reference regarding the newer robotic perioperative outcomes. Studies suggest that a 20-patient learning curve is needed to reach an operative time of 6.5 h, with 30 surgeries performed to reach lymph node counts in excess of 20 (International Robotic Cystectomy Consortium). The only randomized surgical trial comparing open and robotic techniques showed equivalent lymph node yield, which may be surgeon and volume dependent. Literature demonstrates lower estimated blood loss, transfusion rates, early return of bowel function and decreased complications in early small series. RARC and urinary diversion are still early in development and limited to centers with extensive robotic experience and volume, although adoption of the robotic approach is becoming more common. Early studies have shown promise to reduce complications with equivalent oncologic results.

  18. Compositeness of hadron resonances in finite volume

    NASA Astrophysics Data System (ADS)

    Tsuchida, Yujiro; Hyodo, Tetsuo

    2018-05-01

    We develop a theoretical framework to quantify the structure of unstable hadron resonances. With the help of the corresponding system in a finite volume, we define the compositeness of resonance states which can be interpreted as a probability. This framework is used to study the structure of the scalar mesons f0(980 ) and a0(980 ) . In both mesons, the K ¯K component dominates about a half of the wave function. The method is also applied to the Λ (1405 ) resonance. We argue that a single energy level in finite volume represents the two eigenstates in infinite volume. The K ¯N component of Λ (1405 ) , including contributions from both eigenstates, is found to be 58%, and the rest is composed of the π Σ and other channels.

  19. Evaluation of Sentinel Lymph Node Dose Distribution in 3D Conformal Radiotherapy Techniques in 67 pN0 Breast Cancer Patients.

    PubMed

    Witucki, Gerlo; Degregorio, Nikolaus; Rempen, Andreas; Schwentner, Lukas; Bottke, Dirk; Janni, Wolfgang; Ebner, Florian

    2015-01-01

    Introduction. The anatomic position of the sentinel lymph node is variable. The purpose of the following study was to assess the dose distribution delivered to the surgically marked sentinel lymph node site by 3D conformal radio therapy technique. Material and Method. We retrospectively analysed 70 radiotherapy (RT) treatment plans of consecutive primary breast cancer patients with a successful, disease-free, sentinel lymph node resection. Results. In our case series the SN clip volume received a mean dose of 40.7 Gy (min 28.8 Gy/max 47.6 Gy). Conclusion. By using surgical clip markers in combination with 3D CT images our data supports the pathway of tumouricidal doses in the SN bed. The target volume should be defined by surgical clip markers and 3D CT images to give accurate dose estimations.

  20. Multi-scale Methods in Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Polyzou, W. N.; Michlin, Tracie; Bulut, Fatih

    2018-05-01

    Daubechies wavelets are used to make an exact multi-scale decomposition of quantum fields. For reactions that involve a finite energy that take place in a finite volume, the number of relevant quantum mechanical degrees of freedom is finite. The wavelet decomposition has natural resolution and volume truncations that can be used to isolate the relevant degrees of freedom. The application of flow equation methods to construct effective theories that decouple coarse and fine scale degrees of freedom is examined.

  1. [Establishment of lymph node metastasis of MDA-MB-231 breast cancer model in nude mice].

    PubMed

    Wang, Le; Mi, Chengrong; Wang, Wen

    2015-06-16

    To establish lymph node metastasis of breast cancer model in nude mices using MDA-MB-231 cell lines or tumor masses. Divided twelve female nude mices of five weeks into A, B groups randomly. A group had seven nude mices, B group had five nude mices. A group nude mices were injected with MDA-MB-231 cells suspension into the second right mammary fat pad. Two weeks after emerged tumors, the orthotopic tumors of two nude mices of A group were dissected and then implanted into the second right mammary fat pad of B group nude mices. The other mices of A group continued to be fed. After six weeks of inoculation, we excised the tumors and the swollen lymph nodes in right axilla of all nude mices to make pathological examination. ① A group have a 7/7 tumor formation rate 7 days after implanted, B group was 5/5 5 days after implanted. ② The tumor volumes between the two groups had evident difference (P = 0.023), and the tumor volume of B group was bigger than A group. ③ A group had three nude mices which had one tumid lymph node respectively, the lymph node enlargement rate was 3/5; B group only had one nude mice that had one tumid lymph node, the lymph node enlargement rate was 1/5, the lymph node enlargement rate between the two groups showed no significant difference (P = 0.524). ④ The result of pathology in the two groups testified the tumors were invasive ductal carcinoma. The swollen lymph nodes in A group were reactive hyperplasia lymph nodes; the swollen lymph nodes in B group was metastatic lymph node. The method of orthotopic implantation with MDA-MB-231 tumor mass to establish lymph node metastasis of breast cancer model in nude mice, can provide a useful mean to research the lymph node metastasis mechanism of breast cancer.

  2. Split Node and Stress Glut Methods for Dynamic Rupture Simulations in Finite Elements.

    NASA Astrophysics Data System (ADS)

    Ramirez-Guzman, L.; Bielak, J.

    2008-12-01

    I present two numerical techniques to solve the Dynamic problem. I revisit and modify the Split Node approach and introduce a Stress Glut type Method. Both algorithms are implemented using a iso/sub- parametric FEM solver. In the first case, I discuss the formulation and perform an analysis of convergence for different orders of approximation for the acoustic case. I describe the algorithm of the second methodology as well as the assumptions made. The key to the new technique is to have an accurate representation of the traction. Thus, I devote part of the discussion to analyze the tractions for a simple example. The sensitivity of the method is tested by comparing against Split Node solutions.

  3. Prospective feasibility trial of radiotherapy target definition for head and neck cancer using 3-dimensional PET and CT imaging.

    PubMed

    Scarfone, Christopher; Lavely, William C; Cmelak, Anthony J; Delbeke, Dominique; Martin, William H; Billheimer, Dean; Hallahan, Dennis E

    2004-04-01

    The aim of this investigation was to evaluate the influence and accuracy of (18)F-FDG PET in target volume definition as a complementary modality to CT for patients with head and neck cancer (HNC) using dedicated PET and CT scanners. Six HNC patients were custom fitted with head and neck and upper body immobilization devices, and conventional radiotherapy CT simulation was performed together with (18)F-FDG PET imaging. Gross target volume (GTV) and pathologic nodal volumes were first defined in the conventional manner based on CT. A segmentation and surface-rendering registration technique was then used to coregister the (18)F-FDG PET and CT planning image datasets. (18)F-FDG PET GTVs were determined and displayed simultaneously with the CT contours. CT GTVs were then modified based on the PET data to form final PET/CT treatment volumes. Five-field intensity-modulated radiation therapy (IMRT) was then used to demonstrate dose targeting to the CT GTV or the PET/CT GTV. One patient was PET-negative after induction chemotherapy. The CT GTV was modified in all remaining patients based on (18)F-FDG PET data. The resulting PET/CT GTV was larger than the original CT volume by an average of 15%. In 5 cases, (18)F-FDG PET identified active lymph nodes that corresponded to lymph nodes contoured on CT. The pathologically enlarged CT lymph nodes were modified to create final lymph node volumes in 3 of 5 cases. In 1 of 6 patients, (18)F-FDG-avid lymph nodes were not identified as pathologic on CT. In 2 of 6 patients, registration of the independently acquired PET and CT data using segmentation and surface rendering resulted in a suboptimal alignment and, therefore, had to be repeated. Radiotherapy planning using IMRT demonstrated the capability of this technique to target anatomic or anatomic/physiologic target volumes. In this manner, metabolically active sites can be intensified to greater daily doses. Inclusion of (18)F-FDG PET data resulted in modified target volumes in radiotherapy planning for HNC. PET and CT data acquired on separate, dedicated scanners may be coregistered for therapy planning; however, dual-acquisition PET/CT systems may be considered to reduce the need for reregistrations. It is possible to use IMRT to target dose to metabolically active sites based on coregistered PET/CT data.

  4. SU(2) lattice gluon propagator: Continuum limit, finite-volume effects, and infrared mass scale m{sub IR}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bornyakov, V. G.; Mitrjushkin, V. K.; Mueller-Preussker, M.

    2010-03-01

    We study the scaling behavior and finite (physical) volume effects as well as the Gribov copy dependence of the SU(2) Landau gauge gluon propagator on the lattice. Our physical lattice sizes range from (3.0 fm){sup 4} to (7.3 fm){sup 4}. Considering lattices with decreasing lattice spacing but fixed physical volume we confirm (nonperturbative) multiplicative renormalizability and the approach to the continuum limit for the renormalized gluon propagator D{sub ren}(p) at momenta |p| > or approx. 0.6 GeV. The finite-volume effects and Gribov copy influence turn out small in this region. On the contrary, in the deeper infrared we found themore » Gribov copy influence strong and finite-volume effects, which still require special attention. The gluon propagator does not seem to be consistent with a simple polelike behavior {approx}(p{sup 2}+m{sub g}{sup 2}){sup -1} for momenta |p| < or approx. 0.6 GeV. Instead, a Gaussian-type fit works very well in this region. From its width - for a physical volume (5.0 fm){sup 4} - we estimate a corresponding infrared (mass) scale to be m{sub IR{approx}}0.7 GeV.« less

  5. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, the U.S. Node 2 (center) and the Japanese Experiment Module (JEM), background right, await a Multi-Element Integrated Test (MEIT). Node 2 attaches to the end of the U.S. Lab on the International Space Station and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The National Space Development Agency of Japan (NASDA) developed their laboratory at the Tsukuba Space Center near Tokyo. It is the first element, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-08-27

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, the U.S. Node 2 (center) and the Japanese Experiment Module (JEM), background right, await a Multi-Element Integrated Test (MEIT). Node 2 attaches to the end of the U.S. Lab on the International Space Station and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The National Space Development Agency of Japan (NASDA) developed their laboratory at the Tsukuba Space Center near Tokyo. It is the first element, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  6. Supine MRI for regional breast radiotherapy: imaging axillary lymph nodes before and after sentinel-node biopsy

    NASA Astrophysics Data System (ADS)

    van Heijst, Tristan C. F.; Eschbach-Zandbergen, Debora; Hoekstra, Nienke; van Asselen, Bram; Lagendijk, Jan J. W.; Verkooijen, Helena M.; Pijnappel, Ruud M.; de Waard, Stephanie N.; Witkamp, Arjen J.; van Dalen, Thijs; Desirée van den Bongard, H. J. G.; Philippens, Marielle E. P.

    2017-08-01

    Regional radiotherapy (RT) is increasingly used in breast cancer treatment. Conventionally, computed tomography (CT) is performed for RT planning. Lymph node (LN) target levels are delineated according to anatomical boundaries. Magnetic resonance imaging (MRI) could enable individual LN delineation. The purpose was to evaluate the applicability of MRI for LN detection in supine treatment position, before and after sentinel-node biopsy (SNB). Twenty-three female breast cancer patients (cTis-3N0M0) underwent 1.5 T MRI, before and after SNB, in addition to CT. Endurance for MRI was monitored. Axillary levels were delineated. LNs were identified and delineated on MRI from before and after SNB, and on CT, and compared by Wilcoxon signed-rank tests. LN locations and LN-based volumes were related to axillary delineations and associated volumes. Although postoperative effects were visible, LN numbers on postoperative MRI (median 26 LNs) were highly reproducible compared to preoperative MRI when adding excised sentinel nodes, and higher than on CT (median 11, p  <  0.001). LN-based volumes were considerably smaller than respective axillary levels. Supine MRI of LNs is feasible and reproducible before and after SNB. This may lead to more accurate RT target definition compared to CT, with potentially lower toxicity. With the MRI techniques described here, initiation of novel MRI-guided RT strategies aiming at individual LNs could be possible.

  7. Anomalous DC Hall response in noncentrosymmetric tilted Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Mukherjee, S. P.; Carbotte, J. P.

    2018-03-01

    Weyl nodes come in pairs of opposite chirality. For broken time reversal symmetry (TR) they are displaced in momentum space by {Q} and the anomalous DC Hall conductivity σxy is proportional to {Q} at charge neutrality. For finite doping there are additive corrections to σxy which depend on the chemical potential as well as on the tilt (C ) of the Dirac cones and on their relative orientation. If inversion symmetry (I) is also broken the Weyl nodes are shifted in energy by an amount Q0 . This introduces further changes in σxy and we provide simple analytic formulas for these modifications for both type I (C<1 ) and type II (C>1 , overtilted) Weyl. For type I when the Weyl nodes have equal magnitude but oppositely directed tilts, the correction to σxy is proportional to the chemical potential μ and completely independent of the energy shift Q0 . When instead the tilts are parallel, the correction is linear in Q0 and μ drops out. For type II the corrections involve both μ and Q0 , are nonlinear and also involve a momentum cut off. We discuss the implied changes to the Nernst coefficient and to the thermal Hall effect of a finite Q0 .

  8. Towards a systematic assessment of errors in diffusion Monte Carlo calculations of semiconductors: Case study of zinc selenide and zinc oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Jaehyung; Wagner, Lucas K.; Ertekin, Elif, E-mail: ertekin@illinois.edu

    2015-12-14

    The fixed node diffusion Monte Carlo (DMC) method has attracted interest in recent years as a way to calculate properties of solid materials with high accuracy. However, the framework for the calculation of properties such as total energies, atomization energies, and excited state energies is not yet fully established. Several outstanding questions remain as to the effect of pseudopotentials, the magnitude of the fixed node error, and the size of supercell finite size effects. Here, we consider in detail the semiconductors ZnSe and ZnO and carry out systematic studies to assess the magnitude of the energy differences arising from controlledmore » and uncontrolled approximations in DMC. The former include time step errors and supercell finite size effects for ground and optically excited states, and the latter include pseudopotentials, the pseudopotential localization approximation, and the fixed node approximation. We find that for these compounds, the errors can be controlled to good precision using modern computational resources and that quantum Monte Carlo calculations using Dirac-Fock pseudopotentials can offer good estimates of both cohesive energy and the gap of these systems. We do however observe differences in calculated optical gaps that arise when different pseudopotentials are used.« less

  9. The Kπ Interaction in Finite Volume

    NASA Astrophysics Data System (ADS)

    Zhou, Dan; Cui, Er-Liang; Chen, Hua-Xing; Geng, Li-Sheng; Zhu, Li-Hua

    We calculate energy levels of the Kπ scattering in the K∗ channel in finite volume using chiral unitary theory. We use these energy levels to obtain the Kπ phase shifts and the K∗ meson properties. We also investigate their dependence on the pion mass and compare this with Lattice QCD calculations.

  10. Call for Papers: Photonics in Switching

    NASA Astrophysics Data System (ADS)

    Wosinska, Lena; Glick, Madeleine

    2006-04-01

    Call for Papers: Photonics in Switching

    Guest Editors:

    Lena Wosinska, Royal Institute of Technology (KTH) / ICT Sweden Madeleine Glick, Intel Research, Cambridge, UK

    Technologies based on DWDM systems allow data transmission with bit rates of Tbit/s on a single fiber. To facilitate this enormous transmission volume, high-capacity and high-speed network nodes become inevitable in the optical network. Wideband switching, WDM switching, optical burst switching (OBS), and optical packet switching (OPS) are promising technologies for harnessing the bandwidth of WDM optical fiber networks in a highly flexible and efficient manner. As a number of key optical component technologies approach maturity, photonics in switching is becoming an increasingly attractive and practical solution for the next-generation of optical networks. The scope of this special issue is focused on the technology and architecture of optical switching nodes, including the architectural and algorithmic aspects of high-speed optical networks.

    Scope of Submission

    The scope of the papers includes, but is not limited to, the following topics:
    • WDM node architectures
    • Novel device technologies enabling photonics in switching, such as optical switch fabrics, optical memory, and wavelength conversion
    • Routing protocols
    • WDM switching and routing
    • Quality of service
    • Performance measurement and evaluation
    • Next-generation optical networks: architecture, signaling, and control
    • Traffic measurement and field trials
    • Optical burst and packet switching
    • OBS/OPS node architectures
    • Burst/Packet scheduling and routing algorithms
    • Contention resolution/avoidance strategies
    • Services and applications for OBS/OPS (e.g., grid networks, storage-area networks, etc.)
    • Burst assembly and ingress traffic shaping
    • Hybrid OBS/TDM or OBS/wavelength routing

    Manuscript Submission

    To submit to this special issue, follow the normal procedure for submission to JON and select ``Photonics in Switching' in the features indicator of the online submission form. For all other questions relating to this feature issue, please send an e-mail to jon@osa.org, subject line ``Photonics in Switching.' Additional information can be found on the JON website: http://www.osa-jon.org/journal/jon/author.cfm. Submission Deadline: 15 September 2006

  11. FSM-F: Finite State Machine Based Framework for Denial of Service and Intrusion Detection in MANET.

    PubMed

    N Ahmed, Malik; Abdullah, Abdul Hanan; Kaiwartya, Omprakash

    2016-01-01

    Due to the continuous advancements in wireless communication in terms of quality of communication and affordability of the technology, the application area of Mobile Adhoc Networks (MANETs) significantly growing particularly in military and disaster management. Considering the sensitivity of the application areas, security in terms of detection of Denial of Service (DoS) and intrusion has become prime concern in research and development in the area. The security systems suggested in the past has state recognition problem where the system is not able to accurately identify the actual state of the network nodes due to the absence of clear definition of states of the nodes. In this context, this paper proposes a framework based on Finite State Machine (FSM) for denial of service and intrusion detection in MANETs. In particular, an Interruption Detection system for Adhoc On-demand Distance Vector (ID-AODV) protocol is presented based on finite state machine. The packet dropping and sequence number attacks are closely investigated and detection systems for both types of attacks are designed. The major functional modules of ID-AODV includes network monitoring system, finite state machine and attack detection model. Simulations are carried out in network simulator NS-2 to evaluate the performance of the proposed framework. A comparative evaluation of the performance is also performed with the state-of-the-art techniques: RIDAN and AODV. The performance evaluations attest the benefits of proposed framework in terms of providing better security for denial of service and intrusion detection attacks.

  12. Using telephony data to facilitate discovery of clinical workflows.

    PubMed

    Rucker, Donald W

    2017-04-19

    Discovery of clinical workflows to target for redesign using methods such as Lean and Six Sigma is difficult. VoIP telephone call pattern analysis may complement direct observation and EMR-based tools in understanding clinical workflows at the enterprise level by allowing visualization of institutional telecommunications activity. To build an analytic framework mapping repetitive and high-volume telephone call patterns in a large medical center to their associated clinical units using an enterprise unified communications server log file and to support visualization of specific call patterns using graphical networks. Consecutive call detail records from the medical center's unified communications server were parsed to cross-correlate telephone call patterns and map associated phone numbers to a cost center dictionary. Hashed data structures were built to allow construction of edge and node files representing high volume call patterns for display with an open source graph network tool. Summary statistics for an analysis of exactly one week's call detail records at a large academic medical center showed that 912,386 calls were placed with a total duration of 23,186 hours. Approximately half of all calling called number pairs had an average call duration under 60 seconds and of these the average call duration was 27 seconds. Cross-correlation of phone calls identified by clinical cost center can be used to generate graphical displays of clinical enterprise communications. Many calls are short. The compact data transfers within short calls may serve as automation or re-design targets. The large absolute amount of time medical center employees were engaged in VoIP telecommunications suggests that analysis of telephone call patterns may offer additional insights into core clinical workflows.

  13. KENNEDY SPACE CENTER, FLA. - The U.S. Node 2 is undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS.

    NASA Image and Video Library

    2003-08-27

    KENNEDY SPACE CENTER, FLA. - The U.S. Node 2 is undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS.

  14. Pulse bifurcations and instabilities in an excitable medium: Computations in finite ring domains

    NASA Astrophysics Data System (ADS)

    Or-Guil, M.; Krishnan, J.; Kevrekidis, I. G.; Bär, M.

    2001-10-01

    We investigate the instabilities and bifurcations of traveling pulses in a model excitable medium; in particular, we discuss three different scenarios involving either the loss of stability or disappearance of stable pulses. In numerical simulations beyond the instabilities we observe replication of pulses (``backfiring'') resulting in complex periodic or spatiotemporally chaotic dynamics as well as modulated traveling pulses. We approximate the linear stability of traveling pulses through computations in a finite albeit large domain with periodic boundary conditions. The critical eigenmodes at the onset of the instabilities are related to the resulting spatiotemporal dynamics and ``act'' upon the back of the pulses. The first scenario has been analyzed earlier [M. G. Zimmermann et al., Physica D 110, 92 (1997)] for high excitability (low excitation threshold): it involves the collision of a stable pulse branch with an unstable pulse branch in a so-called T point. In the framework of traveling wave ordinary differential equations, pulses correspond to homoclinic orbits and the T point to a double heteroclinic loop. We investigate this transition for a pulse in a domain with finite length and periodic boundary conditions. Numerical evidence of the proximity of the infinite-domain T point in this setup appears in the form of two saddle node bifurcations. Alternatively, for intermediate excitation threshold, an entire cascade of saddle nodes causing a ``spiraling'' of the pulse branch appears near the parameter values corresponding to the infinite-domain T point. Backfiring appears at the first saddle-node bifurcation, which limits the existence region of stable pulses. The third case found in the model for large excitation threshold is an oscillatory instability giving rise to ``breathing,'' traveling pulses that periodically vary in width and speed.

  15. An efficient numerical method for the solution of the problem of elasticity for 3D-homogeneous elastic medium with cracks and inclusions

    NASA Astrophysics Data System (ADS)

    Kanaun, S.; Markov, A.

    2017-06-01

    An efficient numerical method for solution of static problems of elasticity for an infinite homogeneous medium containing inhomogeneities (cracks and inclusions) is developed. Finite number of heterogeneous inclusions and planar parallel cracks of arbitrary shapes is considered. The problem is reduced to a system of surface integral equations for crack opening vectors and volume integral equations for stress tensors inside the inclusions. For the numerical solution of these equations, a class of Gaussian approximating functions is used. The method based on these functions is mesh free. For such functions, the elements of the matrix of the discretized system are combinations of explicit analytical functions and five standard 1D-integrals that can be tabulated. Thus, the numerical integration is excluded from the construction of the matrix of the discretized problem. For regular node grids, the matrix of the discretized system has Toeplitz's properties, and Fast Fourier Transform technique can be used for calculation matrix-vector products of such matrices.

  16. Combining registration and active shape models for the automatic segmentation of the lymph node regions in head and neck CT images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Antong; Deeley, Matthew A.; Niermann, Kenneth J.

    2010-12-15

    Purpose: Intensity-modulated radiation therapy (IMRT) is the state of the art technique for head and neck cancer treatment. It requires precise delineation of the target to be treated and structures to be spared, which is currently done manually. The process is a time-consuming task of which the delineation of lymph node regions is often the longest step. Atlas-based delineation has been proposed as an alternative, but, in the authors' experience, this approach is not accurate enough for routine clinical use. Here, the authors improve atlas-based segmentation results obtained for level II-IV lymph node regions using an active shape model (ASM)more » approach. Methods: An average image volume was first created from a set of head and neck patient images with minimally enlarged nodes. The average image volume was then registered using affine, global, and local nonrigid transformations to the other volumes to establish a correspondence between surface points in the atlas and surface points in each of the other volumes. Once the correspondence was established, the ASMs were created for each node level. The models were then used to first constrain the results obtained with an atlas-based approach and then to iteratively refine the solution. Results: The method was evaluated through a leave-one-out experiment. The ASM- and atlas-based segmentations were compared to manual delineations via the Dice similarity coefficient (DSC) for volume overlap and the Euclidean distance between manual and automatic 3D surfaces. The mean DSC value obtained with the ASM-based approach is 10.7% higher than with the atlas-based approach; the mean and median surface errors were decreased by 13.6% and 12.0%, respectively. Conclusions: The ASM approach is effective in reducing segmentation errors in areas of low CT contrast where purely atlas-based methods are challenged. Statistical analysis shows that the improvements brought by this approach are significant.« less

  17. Application of the multi-scale finite element method to wave propagation problems in damaged structures

    NASA Astrophysics Data System (ADS)

    Casadei, F.; Ruzzene, M.

    2011-04-01

    This work illustrates the possibility to extend the field of application of the Multi-Scale Finite Element Method (MsFEM) to structural mechanics problems that involve localized geometrical discontinuities like cracks or notches. The main idea is to construct finite elements with an arbitrary number of edge nodes that describe the actual geometry of the damage with shape functions that are defined as local solutions of the differential operator of the specific problem according to the MsFEM approach. The small scale information are then brought to the large scale model through the coupling of the global system matrices that are assembled using classical finite element procedures. The efficiency of the method is demonstrated through selected numerical examples that constitute classical problems of great interest to the structural health monitoring community.

  18. An accurate nonlinear finite element analysis and test correlation of a stiffened composite wing panel

    NASA Astrophysics Data System (ADS)

    Davis, D. D., Jr.; Krishnamurthy, T.; Stroud, W. J.; McCleary, S. L.

    1991-05-01

    State-of-the-art nonlinear finite element analysis techniques are evaluated by applying them to a realistic aircraft structural component. A wing panel from the V-22 tiltrotor aircraft is chosen because it is a typical modern aircraft structural component for which there is experimental data for comparison of results. From blueprints and drawings, a very detailed finite element model containing 2284 9-node Assumed Natural-Coordinate Strain elements was generated. A novel solution strategy which accounts for geometric nonlinearity through the use of corotating element reference frames and nonlinear strain-displacement relations is used to analyze this detailed model. Results from linear analyses using the same finite element model are presented in order to illustrate the advantages and costs of the nonlinear analysis as compared with the more traditional linear analysis.

  19. An accurate nonlinear finite element analysis and test correlation of a stiffened composite wing panel

    NASA Technical Reports Server (NTRS)

    Davis, D. D., Jr.; Krishnamurthy, T.; Stroud, W. J.; Mccleary, S. L.

    1991-01-01

    State-of-the-art nonlinear finite element analysis techniques are evaluated by applying them to a realistic aircraft structural component. A wing panel from the V-22 tiltrotor aircraft is chosen because it is a typical modern aircraft structural component for which there is experimental data for comparison of results. From blueprints and drawings, a very detailed finite element model containing 2284 9-node Assumed Natural-Coordinate Strain elements was generated. A novel solution strategy which accounts for geometric nonlinearity through the use of corotating element reference frames and nonlinear strain-displacement relations is used to analyze this detailed model. Results from linear analyses using the same finite element model are presented in order to illustrate the advantages and costs of the nonlinear analysis as compared with the more traditional linear analysis.

  20. Access to bird population data

    USGS Publications Warehouse

    Martin, E.; Peterjohn, B.G.; Koneff, M.D.

    2001-01-01

    Access to bird population data is critical for effective conservation planning and implementation. Although a tremendous volume of baseline data exists, it is often diffusely distributed and inaccessible to the resource manager and decision maker. A mechanism that facilitates assembly, documentation and delivery of avian data in a user-friendly manner is needed in order to integrate bird-related information resources across agencies and organizations. To address this fundamental need, the National Biological Information Infrastructure (NBII), in partnership with the U.S. Geological Survey's Patuxent Wildlife Research Center and the U.S. Fish and Wildlife Service, is developing a web-based interactive system that will focus on access to bird population and habitat data used in bird management and conservation. This system, known as the NBII Bird Conservation Node, will support planning and evaluation of bird conservation activities within the context of the North American Bird Conservation Initiative (NABCI), a framework for collaboration among organizations interested in bird conservation across North America. Initial development of the NBII Bird Conservation Node will focus on creating a prototype mapping application that will provide interactive access to data from the North American Breeding Bird Survey, the Colonial Waterbird Survey, the Breeding Waterfowl Population and Habitat Survey, and the Atlantic Flyway Mid-winter Waterfowl Survey. This prototype mapping application, to be available on-line at http://www.nbii.gov by Sep 2001, will lay the foundation for establishment of a Migratory Bird Data Center at Patuxent Wildlife Research Center, and will provide an opportunity for linking to and establishing partnerships with other sources of bird population and habitat data available over the Internet.

  1. Finite volume solution of the compressible boundary-layer equations

    NASA Technical Reports Server (NTRS)

    Loyd, B.; Murman, E. M.

    1986-01-01

    A box-type finite volume discretization is applied to the integral form of the compressible boundary layer equations. Boundary layer scaling is introduced through the grid construction: streamwise grid lines follow eta = y/h = const., where y is the normal coordinate and h(x) is a scale factor proportional to the boundary layer thickness. With this grid, similarity can be applied explicity to calculate initial conditions. The finite volume method preserves the physical transparency of the integral equations in the discrete approximation. The resulting scheme is accurate, efficient, and conceptually simple. Computations for similar and non-similar flows show excellent agreement with tabulated results, solutions computed with Keller's Box scheme, and experimental data.

  2. An arbitrary grid CFD algorithm for configuration aerodynamics analysis. Volume 1: Theory and validations

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Iannelli, G. S.; Manhardt, Paul D.; Orzechowski, J. A.

    1993-01-01

    This report documents the user input and output data requirements for the FEMNAS finite element Navier-Stokes code for real-gas simulations of external aerodynamics flowfields. This code was developed for the configuration aerodynamics branch of NASA ARC, under SBIR Phase 2 contract NAS2-124568 by Computational Mechanics Corporation (COMCO). This report is in two volumes. Volume 1 contains the theory for the derived finite element algorithm and describes the test cases used to validate the computer program described in the Volume 2 user guide.

  3. An arbitrary grid CFD algorithm for configuration aerodynamics analysis. Volume 2: FEMNAS user guide

    NASA Technical Reports Server (NTRS)

    Manhardt, Paul D.; Orzechowski, J. A.; Baker, A. J.

    1992-01-01

    This report documents the user input and output data requirements for the FEMNAS finite element Navier-Stokes code for real-gas simulations of external aerodynamics flowfields. This code was developed for the configuration aerodynamics branch of NASA ARC, under SBIR Phase 2 contract NAS2-124568 by Computational Mechanics Corporation (COMCO). This report is in two volumes. Volume 1 contains the theory for the derived finite element algorithm and describes the test cases used to validate the computer program described in the Volume 2 user guide.

  4. Three dimensional modeling of rigid pavement : executive summary, February 1995.

    DOT National Transportation Integrated Search

    1995-02-17

    A finite-element program has been developed to model the response of rigid pavement to both static loads and temperature changes. The program is fully three-dimensional and incorporates not only the common twenty-node brick element but also a thin in...

  5. Three-dimensional modeling of rigid pavement : final report, September 1995.

    DOT National Transportation Integrated Search

    1995-02-17

    A finite-element program has been developed to model the response of rigid pavement to both static loads and temperature changes. The program is fully three-dimensional and incorporates not only the common twenty-node brick element but also a thin in...

  6. An efficient finite element with layerwise mechanics for smart piezoelectric composite and sandwich shallow shells

    NASA Astrophysics Data System (ADS)

    Yasin, M. Yaqoob; Kapuria, S.

    2014-01-01

    In this work, we present a new efficient four-node finite element for shallow multilayered piezoelectric shells, considering layerwise mechanics and electromechanical coupling. The laminate mechanics is based on the zigzag theory that has only seven kinematic degrees of freedom per node. The normal deformation of the piezoelectric layers under the electric field is accounted for without introducing any additional deflection variables. A consistent quadratic variation of the electric potential across the piezoelectric layers with the provision of satisfying the equipotential condition of electroded surfaces is adopted. The performance of the new element is demonstrated for the static response under mechanical and electric potential loads, and for free vibration response of smart shells under different boundary conditions. The predictions are found to be very close to the three dimensional piezoelasticity solutions for hybrid shells made of not only single-material composite substrates, but also sandwich substrates with a soft core for which the equivalent single layer (ESL) theories perform very badly.

  7. Quasi-Static Viscoelastic Finite Element Model of an Aircraft Tire

    NASA Technical Reports Server (NTRS)

    Johnson, Arthur R.; Tanner, John A.; Mason, Angela J.

    1999-01-01

    An elastic large displacement thick-shell mixed finite element is modified to allow for the calculation of viscoelastic stresses. Internal strain variables are introduced at the element's stress nodes and are employed to construct a viscous material model. First order ordinary differential equations relate the internal strain variables to the corresponding elastic strains at the stress nodes. The viscous stresses are computed from the internal strain variables using viscous moduli which are a fraction of the elastic moduli. The energy dissipated by the action of the viscous stresses is included in the mixed variational functional. The nonlinear quasi-static viscous equilibrium equations are then obtained. Previously developed Taylor expansions of the nonlinear elastic equilibrium equations are modified to include the viscous terms. A predictor-corrector time marching solution algorithm is employed to solve the algebraic-differential equations. The viscous shell element is employed to computationally simulate a stair-step loading and unloading of an aircraft tire in contact with a frictionless surface.

  8. A computer program for anisotropic shallow-shell finite elements using symbolic integration

    NASA Technical Reports Server (NTRS)

    Andersen, C. M.; Bowen, J. T.

    1976-01-01

    A FORTRAN computer program for anisotropic shallow-shell finite elements with variable curvature is described. A listing of the program is presented together with printed output for a sample case. Computation times and central memory requirements are given for several different elements. The program is based on a stiffness (displacement) finite-element model in which the fundamental unknowns consist of both the displacement and the rotation components of the reference surface of the shell. Two triangular and four quadrilateral elements are implemented in the program. The triangular elements have 6 or 10 nodes, and the quadrilateral elements have 4 or 8 nodes. Two of the quadrilateral elements have internal degrees of freedom associated with displacement modes which vanish along the edges of the elements (bubble modes). The triangular elements and the remaining two quadrilateral elements do not have bubble modes. The output from the program consists of arrays corresponding to the stiffness, the geometric stiffness, the consistent mass, and the consistent load matrices for individual elements. The integrals required for the generation of these arrays are evaluated by using symbolic (or analytic) integration in conjunction with certain group-theoretic techniques. The analytic expressions for the integrals are exact and were developed using the symbolic and algebraic manipulation language.

  9. Development of a hip joint model for finite volume simulations.

    PubMed

    Cardiff, P; Karač, A; FitzPatrick, D; Ivanković, A

    2014-01-01

    This paper establishes a procedure for numerical analysis of a hip joint using the finite volume method. Patient-specific hip joint geometry is segmented directly from computed tomography and magnetic resonance imaging datasets and the resulting bone surfaces are processed into a form suitable for volume meshing. A high resolution continuum tetrahedral mesh has been generated, where a sandwich model approach is adopted; the bones are represented as a stiffer cortical shells surrounding more flexible cancellous cores. Cartilage is included as a uniform thickness extruded layer and the effect of layer thickness is investigated. To realistically position the bones, gait analysis has been performed giving the 3D positions of the bones for the full gait cycle. Three phases of the gait cycle are examined using a finite volume based custom structural contact solver implemented in open-source software OpenFOAM.

  10. Nonlinear Conservation Laws and Finite Volume Methods

    NASA Astrophysics Data System (ADS)

    Leveque, Randall J.

    Introduction Software Notation Classification of Differential Equations Derivation of Conservation Laws The Euler Equations of Gas Dynamics Dissipative Fluxes Source Terms Radiative Transfer and Isothermal Equations Multi-dimensional Conservation Laws The Shock Tube Problem Mathematical Theory of Hyperbolic Systems Scalar Equations Linear Hyperbolic Systems Nonlinear Systems The Riemann Problem for the Euler Equations Numerical Methods in One Dimension Finite Difference Theory Finite Volume Methods Importance of Conservation Form - Incorrect Shock Speeds Numerical Flux Functions Godunov's Method Approximate Riemann Solvers High-Resolution Methods Other Approaches Boundary Conditions Source Terms and Fractional Steps Unsplit Methods Fractional Step Methods General Formulation of Fractional Step Methods Stiff Source Terms Quasi-stationary Flow and Gravity Multi-dimensional Problems Dimensional Splitting Multi-dimensional Finite Volume Methods Grids and Adaptive Refinement Computational Difficulties Low-Density Flows Discrete Shocks and Viscous Profiles Start-Up Errors Wall Heating Slow-Moving Shocks Grid Orientation Effects Grid-Aligned Shocks Magnetohydrodynamics The MHD Equations One-Dimensional MHD Solving the Riemann Problem Nonstrict Hyperbolicity Stiffness The Divergence of B Riemann Problems in Multi-dimensional MHD Staggered Grids The 8-Wave Riemann Solver Relativistic Hydrodynamics Conservation Laws in Spacetime The Continuity Equation The 4-Momentum of a Particle The Stress-Energy Tensor Finite Volume Methods Multi-dimensional Relativistic Flow Gravitation and General Relativity References

  11. New ghost-node method for linking different models with varied grid refinement

    USGS Publications Warehouse

    James, S.C.; Dickinson, J.E.; Mehl, S.W.; Hill, M.C.; Leake, S.A.; Zyvoloski, G.A.; Eddebbarh, A.-A.

    2006-01-01

    A flexible, robust method for linking grids of locally refined ground-water flow models constructed with different numerical methods is needed to address a variety of hydrologic problems. This work outlines and tests a new ghost-node model-linking method for a refined "child" model that is contained within a larger and coarser "parent" model that is based on the iterative method of Steffen W. Mehl and Mary C. Hill (2002, Advances in Water Res., 25, p. 497-511; 2004, Advances in Water Res., 27, p. 899-912). The method is applicable to steady-state solutions for ground-water flow. Tests are presented for a homogeneous two-dimensional system that has matching grids (parent cells border an integer number of child cells) or nonmatching grids. The coupled grids are simulated by using the finite-difference and finite-element models MODFLOW and FEHM, respectively. The simulations require no alteration of the MODFLOW or FEHM models and are executed using a batch file on Windows operating systems. Results indicate that when the grids are matched spatially so that nodes and child-cell boundaries are aligned, the new coupling technique has error nearly equal to that when coupling two MODFLOW models. When the grids are nonmatching, model accuracy is slightly increased compared to that for matching-grid cases. Overall, results indicate that the ghost-node technique is a viable means to couple distinct models because the overall head and flow errors relative to the analytical solution are less than if only the regional coarse-grid model was used to simulate flow in the child model's domain.

  12. SCISEAL: A CFD code for analysis of fluid dynamic forces in seals

    NASA Technical Reports Server (NTRS)

    Athavale, Mahesh; Przekwas, Andrzej

    1994-01-01

    A viewgraph presentation is made of the objectives, capabilities, and test results of the computer code SCISEAL. Currently, the seal code has: a finite volume, pressure-based integration scheme; colocated variables with strong conservation approach; high-order spatial differencing, up to third-order; up to second-order temporal differencing; a comprehensive set of boundary conditions; a variety of turbulence models and surface roughness treatment; moving grid formulation for arbitrary rotor whirl; rotor dynamic coefficients calculated by the circular whirl and numerical shaker methods; and small perturbation capabilities to handle centered and eccentric seals.

  13. Numerical boundary condition procedures and multigrid methods; Proceedings of the Symposium, NASA Ames Research Center, Moffett Field, CA, October 19-22, 1981

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Papers presented in this volume provide an overview of recent work on numerical boundary condition procedures and multigrid methods. The topics discussed include implicit boundary conditions for the solution of the parabolized Navier-Stokes equations for supersonic flows; far field boundary conditions for compressible flows; and influence of boundary approximations and conditions on finite-difference solutions. Papers are also presented on fully implicit shock tracking and on the stability of two-dimensional hyperbolic initial boundary value problems for explicit and implicit schemes.

  14. Dynamic Contrast-enhanced Magnetic Resonance Imaging for Differentiating Between Primary Tumor, Metastatic Node and Normal Tissue in Head and Neck Cancer.

    PubMed

    Chen, Liangliang; Ye, Yufeng; Chen, Hanwei; Chen, Shihui; Jiang, Jinzhao; Dan, Guo; Huang, Bingsheng

    2018-06-01

    To study the difference of the Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) parameters among the primary tumor, metastatic node and peripheral normal tissue of head and neck cancer. Consecutive newly-diagnosed head and neck cancer patients with nodal metastasis between December 2010 and July 2013 were recruited, and 25 patients (8 females; 24~63,mean 43±11 years old) were enrolled. DCE-MRI was performed in the primary tumor region including the regional lymph nodes on a 3.0-T MRI system. Three quantitative parameters: Ktrans (volume transfer constant), ve (volume fraction of extravascular extracellular space) and kep (the rate constant of contrast transfer) were calculated for the largest node. A repeated-measure ANOVA with a Greenhouse-Geisser correction and post hoc tests using the Bonferroni correction were used to evaluate the differences in Ktrans, ve and kep among primary tumors, metastatic nodes and normal tissue. The values of both Ktrans and ve of normal tissue differed significantly from those of nodes (both P < 0.001) and primary tumors (both P < 0.001) respectively, while no significant differences of Ktrans and ve were observed between nodes and primary tumors (P = 0.075 and 0.365 respectively). The kep values of primary tumors were significantly different from those of nodes (P = 0.001) and normal tissue (P = 0.002), while no significant differences between nodes and normal tissue (P > 0.999). The DCE-MRI parameters were different in the tumors, metastatic nodes and normal tissue in head and neck cancer. These findings may be useful in the characterization of head and neck cancer.

  15. An overlapped grid method for multigrid, finite volume/difference flow solvers: MaGGiE

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay; Lessard, Victor R.

    1990-01-01

    The objective is to develop a domain decomposition method via overlapping/embedding the component grids, which is to be used by upwind, multi-grid, finite volume solution algorithms. A computer code, given the name MaGGiE (Multi-Geometry Grid Embedder) is developed to meet this objective. MaGGiE takes independently generated component grids as input, and automatically constructs the composite mesh and interpolation data, which can be used by the finite volume solution methods with or without multigrid convergence acceleration. Six demonstrative examples showing various aspects of the overlap technique are presented and discussed. These cases are used for developing the procedure for overlapping grids of different topologies, and to evaluate the grid connection and interpolation data for finite volume calculations on a composite mesh. Time fluxes are transferred between mesh interfaces using a trilinear interpolation procedure. Conservation losses are minimal at the interfaces using this method. The multi-grid solution algorithm, using the coaser grid connections, improves the convergence time history as compared to the solution on composite mesh without multi-gridding.

  16. Densification and structural transitions in networks that grow by node copying

    NASA Astrophysics Data System (ADS)

    Bhat, U.; Krapivsky, P. L.; Lambiotte, R.; Redner, S.

    2016-12-01

    We introduce a growing network model, the copying model, in which a new node attaches to a randomly selected target node and, in addition, independently to each of the neighbors of the target with copying probability p . When p <1/2 , this algorithm generates sparse networks, in which the average node degree is finite. A power-law degree distribution also arises, with a nonuniversal exponent whose value is determined by a transcendental equation in p . In the sparse regime, the network is "normal," e.g., the relative fluctuations in the number of links are asymptotically negligible. For p ≥1/2 , the emergent networks are dense (the average degree increases with the number of nodes N ), and they exhibit intriguing structural behaviors. In particular, the N dependence of the number of m cliques (complete subgraphs of m nodes) undergoes m -1 transitions from normal to progressively more anomalous behavior at an m -dependent critical values of p . Different realizations of the network, which start from the same initial state, exhibit macroscopic fluctuations in the thermodynamic limit: absence of self-averaging. When linking to second neighbors of the target node can occur, the number of links asymptotically grows as N2 as N →∞ , so that the network is effectively complete as N →∞ .

  17. Users manual for AUTOMESH-2D: A program of automatic mesh generation for two-dimensional scattering analysis by the finite element method

    NASA Technical Reports Server (NTRS)

    Hua, Chongyu; Volakis, John L.

    1990-01-01

    AUTOMESH-2D is a computer program specifically designed as a preprocessor for the scattering analysis of two dimensional bodies by the finite element method. This program was developed due to a need for reproducing the effort required to define and check the geometry data, element topology, and material properties. There are six modules in the program: (1) Parameter Specification; (2) Data Input; (3) Node Generation; (4) Element Generation; (5) Mesh Smoothing; and (5) Data File Generation.

  18. A high-quality high-fidelity visualization of the September 11 attack on the World Trade Center.

    PubMed

    Rosen, Paul; Popescu, Voicu; Hoffmann, Christoph; Irfanoglu, Ayhan

    2008-01-01

    In this application paper, we describe the efforts of a multidisciplinary team towards producing a visualization of the September 11 Attack on the North Tower of New York's World Trade Center. The visualization was designed to meet two requirements. First, the visualization had to depict the impact with high fidelity, by closely following the laws of physics. Second, the visualization had to be eloquent to a nonexpert user. This was achieved by first designing and computing a finite-element analysis (FEA) simulation of the impact between the aircraft and the top 20 stories of the building, and then by visualizing the FEA results with a state-of-the-art commercial animation system. The visualization was enabled by an automatic translator that converts the simulation data into an animation system 3D scene. We built upon a previously developed translator. The translator was substantially extended to enable and control visualization of fire and of disintegrating elements, to better scale with the number of nodes and number of states, to handle beam elements with complex profiles, and to handle smoothed particle hydrodynamics liquid representation. The resulting translator is a powerful automatic and scalable tool for high-quality visualization of FEA results.

  19. KENNEDY SPACE CENTER, FLA. - At ceremony highlighting the arrival of two major components of the International Space Station, Node 2 and the Japanese Experiment Module (JEM), ownership of Node 2 was officially transferred between the European Space Agency and NASA. Shaking hands after the signing are Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA). At right is NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs. NASA's Node 2, built by ESA in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - At ceremony highlighting the arrival of two major components of the International Space Station, Node 2 and the Japanese Experiment Module (JEM), ownership of Node 2 was officially transferred between the European Space Agency and NASA. Shaking hands after the signing are Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA). At right is NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs. NASA's Node 2, built by ESA in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  20. Finite-difference interblock transmissivity for unconfined aquifers and for aquifers having smoothly varying transmissivity

    USGS Publications Warehouse

    Goode, D.J.; Appel, C.A.

    1992-01-01

    More accurate alternatives to the widely used harmonic mean interblock transmissivity are proposed for block-centered finite-difference models of ground-water flow in unconfined aquifers and in aquifers having smoothly varying transmissivity. The harmonic mean is the exact interblock transmissivity for steady-state one-dimensional flow with no recharge if the transmissivity is assumed to be spatially uniform over each finite-difference block, changing abruptly at the block interface. However, the harmonic mean may be inferior to other means if transmissivity varies in a continuous or smooth manner between nodes. Alternative interblock transmissivity functions are analytically derived for the case of steady-state one-dimensional flow with no recharge. The second author has previously derived the exact interblock transmissivity, the logarithmic mean, for one-dimensional flow when transmissivity is a linear function of distance in the direction of flow. We show that the logarithmic mean transmissivity is also exact for uniform flow parallel to the direction of changing transmissivity in a two- or three-dimensional model, regardless of grid orientation relative to the flow vector. For the case of horizontal flow in a homogeneous unconfined or water-table aquifer with a horizontal bottom and with areally distributed recharge, the exact interblock transmissivity is the unweighted arithmetic mean of transmissivity at the nodes. This mean also exhibits no grid-orientation effect for unidirectional flow in a two-dimensional model. For horizontal flow in an unconfined aquifer with no recharge where hydraulic conductivity is a linear function of distance in the direction of flow the exact interblock transmissivity is the product of the arithmetic mean saturated thickness and the logarithmic mean hydraulic conductivity. For several hypothetical two- and three-dimensional cases with smoothly varying transmissivity or hydraulic conductivity, the harmonic mean is shown to yield the least accurate solution to the flow equation of the alternatives considered. Application of the alternative interblock transmissivities to a regional aquifer system model indicates that the changes in computed heads and fluxes are typically small, relative to model calibration error. For this example, the use of alternative interblock transmissivities resulted in an increase in computational effort of less than 3 percent. Numerical algorithms to compute alternative interblock transmissivity functions in a modular three-dimensional flow model are presented and documented.

  1. Implementation of the glacial rebound prestress advection correction in general-purpose finite element analysis software: Springs versus foundations

    NASA Astrophysics Data System (ADS)

    Schmidt, Peter; Lund, Björn; Hieronymus, Christoph

    2012-03-01

    When general-purpose finite element analysis software is used to model glacial isostatic adjustment (GIA), the first-order effect of prestress advection has to be accounted for by the user. We show here that the common use of elastic foundations at boundaries between materials of different densities will produce incorrect displacements, unless the boundary is perpendicular to the direction of gravity. This is due to the foundations always acting perpendicular to the surface to which they are attached, while the body force they represent always acts in the direction of gravity. If prestress advection is instead accounted for by the use of elastic spring elements in the direction of gravity, the representation will be correct. The use of springs adds a computation of the spring constants to the analysis. The spring constant for a particular node is defined by the product of the density contrast at the boundary, the gravitational acceleration, and the area supported by the node. To be consistent with the finite element formulation, the area is evaluated by integration of the nodal shape functions. We outline an algorithm for the calculation and include a Python script that integrates the shape functions over a bilinear quadrilateral element. For linear rectangular and triangular elements, the area supported by each node is equal to the element area divided the number of defining nodes, thereby simplifying the computation. This is, however, not true in the general nonrectangular case, and we demonstrate this with a simple 1-element model. The spring constant calculation is simple and performed in the preprocessing stage of the analysis. The time spent on the calculation is more than compensated for by a shorter analysis time, compared to that for a model with foundations. We illustrate the effects of using springs versus foundations with a simple two-dimensional GIA model of glacial loading, where the Earth model has an inclined boundary between the overlying elastic layer and the lower viscoelastic layer. Our example shows that the error introduced by the use of foundations is large enough to affect an analysis based on high-accuracy geodetic data.

  2. A new range-free localisation in wireless sensor networks using support vector machine

    NASA Astrophysics Data System (ADS)

    Wang, Zengfeng; Zhang, Hao; Lu, Tingting; Sun, Yujuan; Liu, Xing

    2018-02-01

    Location information of sensor nodes is of vital importance for most applications in wireless sensor networks (WSNs). This paper proposes a new range-free localisation algorithm using support vector machine (SVM) and polar coordinate system (PCS), LSVM-PCS. In LSVM-PCS, two sets of classes are first constructed based on sensor nodes' polar coordinates. Using the boundaries of the defined classes, the operation region of WSN field is partitioned into a finite number of polar grids. Each sensor node can be localised into one of the polar grids by executing two localisation algorithms that are developed on the basis of SVM classification. The centre of the resident polar grid is then estimated as the location of the sensor node. In addition, a two-hop mass-spring optimisation (THMSO) is also proposed to further improve the localisation accuracy of LSVM-PCS. In THMSO, both neighbourhood information and non-neighbourhood information are used to refine the sensor node location. The results obtained verify that the proposed algorithm provides a significant improvement over existing localisation methods.

  3. MHD convective heat transfer in a discretely heated square cavity with conductive inner block using two-phase nanofluid model.

    PubMed

    Alsabery, A I; Sheremet, M A; Chamkha, A J; Hashim, I

    2018-05-09

    The problem of steady, laminar natural convection in a discretely heated and cooled square cavity filled by an alumina/water nanofluid with a centered heat-conducting solid block under the effects of inclined uniform magnetic field, Brownian diffusion and thermophoresis is studied numerically by using the finite difference method. Isothermal heaters and coolers are placed along the vertical walls and the bottom horizontal wall, while the upper horizontal wall is kept adiabatic. Water-based nanofluids with alumina nanoparticles are chosen for investigation. The governing parameters of this study are the Rayleigh number (10 3  ≤ Ra ≤ 10 6 ), the Hartmann number (0 ≤ Ha ≤ 50), thermal conductivity ratio (0.28 ≤ k w  ≤ 16), centered solid block size (0.1 ≤ D ≤ 0.7) and the nanoparticles volume fraction (0 ≤ ϕ ≤ 0.04). The developed computational code is validated comprehensively using the grid independency test and numerical and experimental data of other authors. The obtained results reveal that the effects of the thermal conductivity ratio, centered solid block size and the nanoparticles volume fraction are non-linear for the heat transfer rate. Therefore, it is possible to find optimal parameters for the heat transfer enhancement in dependence on the considered system. Moreover, high values of the Rayleigh number and nanoparticles volume fraction characterize homogeneous distributions of nanoparticles inside the cavity. High concentration of nanoparticles can be found near the centered solid block where thermal plumes from the local heaters interact.

  4. Nonlinear Krylov and moving nodes in the method of lines

    NASA Astrophysics Data System (ADS)

    Miller, Keith

    2005-11-01

    We report on some successes and problem areas in the Method of Lines from our work with moving node finite element methods. First, we report on our "nonlinear Krylov accelerator" for the modified Newton's method on the nonlinear equations of our stiff ODE solver. Since 1990 it has been robust, simple, cheap, and automatic on all our moving node computations. We publicize further trials with it here because it should be of great general usefulness to all those solving evolutionary equations. Second, we discuss the need for reliable automatic choice of spatially variable time steps. Third, we discuss the need for robust and efficient iterative solvers for the difficult linearized equations (Jx=b) of our stiff ODE solver. Here, the 1997 thesis of Zulu Xaba has made significant progress.

  5. Comparing Blast Effects on Human Torso Finite Element Model against Existing Lethality Curves

    DTIC Science & Technology

    2010-07-15

    vertebrae, intervertebral discs, ribs, cartilage, sternum, scapula, and clavicle . The internal organs include the heart and aorta, lungs and trachea...Thoracic Vertebrae  Intervertebral Disc  Scapula  Clavicle Heritage Style Viewgraphs6 HTFEM Development Internal Organs Ten-noded tetrahedral

  6. Parallel Adaptive Mesh Refinement for High-Order Finite-Volume Schemes in Computational Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Schwing, Alan Michael

    For computational fluid dynamics, the governing equations are solved on a discretized domain of nodes, faces, and cells. The quality of the grid or mesh can be a driving source for error in the results. While refinement studies can help guide the creation of a mesh, grid quality is largely determined by user expertise and understanding of the flow physics. Adaptive mesh refinement is a technique for enriching the mesh during a simulation based on metrics for error, impact on important parameters, or location of important flow features. This can offload from the user some of the difficult and ambiguous decisions necessary when discretizing the domain. This work explores the implementation of adaptive mesh refinement in an implicit, unstructured, finite-volume solver. Consideration is made for applying modern computational techniques in the presence of hanging nodes and refined cells. The approach is developed to be independent of the flow solver in order to provide a path for augmenting existing codes. It is designed to be applicable for unsteady simulations and refinement and coarsening of the grid does not impact the conservatism of the underlying numerics. The effect on high-order numerical fluxes of fourth- and sixth-order are explored. Provided the criteria for refinement is appropriately selected, solutions obtained using adapted meshes have no additional error when compared to results obtained on traditional, unadapted meshes. In order to leverage large-scale computational resources common today, the methods are parallelized using MPI. Parallel performance is considered for several test problems in order to assess scalability of both adapted and unadapted grids. Dynamic repartitioning of the mesh during refinement is crucial for load balancing an evolving grid. Development of the methods outlined here depend on a dual-memory approach that is described in detail. Validation of the solver developed here against a number of motivating problems shows favorable comparisons across a range of regimes. Unsteady and steady applications are considered in both subsonic and supersonic flows. Inviscid and viscous simulations achieve similar results at a much reduced cost when employing dynamic mesh adaptation. Several techniques for guiding adaptation are compared. Detailed analysis of statistics from the instrumented solver enable understanding of the costs associated with adaptation. Adaptive mesh refinement shows promise for the test cases presented here. It can be considerably faster than using conventional grids and provides accurate results. The procedures for adapting the grid are light-weight enough to not require significant computational time and yield significant reductions in grid size.

  7. Positivity-preserving cell-centered Lagrangian schemes for multi-material compressible flows: From first-order to high-orders. Part I: The one-dimensional case

    NASA Astrophysics Data System (ADS)

    Vilar, François; Shu, Chi-Wang; Maire, Pierre-Henri

    2016-05-01

    One of the main issues in the field of numerical schemes is to ally robustness with accuracy. Considering gas dynamics, numerical approximations may generate negative density or pressure, which may lead to nonlinear instability and crash of the code. This phenomenon is even more critical using a Lagrangian formalism, the grid moving and being deformed during the calculation. Furthermore, most of the problems studied in this framework contain very intense rarefaction and shock waves. In this paper, the admissibility of numerical solutions obtained by high-order finite-volume-scheme-based methods, such as the discontinuous Galerkin (DG) method, the essentially non-oscillatory (ENO) and the weighted ENO (WENO) finite volume schemes, is addressed in the one-dimensional Lagrangian gas dynamics framework. After briefly recalling how to derive Lagrangian forms of the 1D gas dynamics system of equations, a discussion on positivity-preserving approximate Riemann solvers, ensuring first-order finite volume schemes to be positive, is then given. This study is conducted for both ideal gas and non-ideal gas equations of state (EOS), such as the Jones-Wilkins-Lee (JWL) EOS or the Mie-Grüneisen (MG) EOS, and relies on two different techniques: either a particular definition of the local approximation of the acoustic impedances arising from the approximate Riemann solver, or an additional time step constraint relative to the cell volume variation. Then, making use of the work presented in [89,90,22], this positivity study is extended to high-orders of accuracy, where new time step constraints are obtained, and proper limitation is required. Through this new procedure, scheme robustness is highly improved and hence new problems can be tackled. Numerical results are provided to demonstrate the effectiveness of these methods. This paper is the first part of a series of two. The whole analysis presented here is extended to the two-dimensional case in [85], and proves to fit a wide range of numerical schemes in the literature, such as those presented in [19,64,15,82,84].

  8. Advances In Engineering Science, Volume 2.

    DTIC Science & Technology

    1976-11-01

    UNDRAINED CLAY BEHAVIOR .... ............ .. 95 Jean-Herve Prevost and Kaare H~eg THEORY OF ORTHODONTIC MOTIONS...compo- nents at a lower level are terminal nodes of a tree. The bracketed numbers on the right hand side of the terminating nodes are the number of...primitive data objects in each instance of the defined object. The bracketed numbers on the right hand side of the non-terminal nodes in the tree are the

  9. Dental application of novel finite element analysis software for three-dimensional finite element modeling of a dentulous mandible from its computed tomography images.

    PubMed

    Nakamura, Keiko; Tajima, Kiyoshi; Chen, Ker-Kong; Nagamatsu, Yuki; Kakigawa, Hiroshi; Masumi, Shin-ich

    2013-12-01

    This study focused on the application of novel finite-element analysis software for constructing a finite-element model from the computed tomography data of a human dentulous mandible. The finite-element model is necessary for evaluating the mechanical response of the alveolar part of the mandible, resulting from occlusal force applied to the teeth during biting. Commercially available patient-specific general computed tomography-based finite-element analysis software was solely applied to the finite-element analysis for the extraction of computed tomography data. The mandibular bone with teeth was extracted from the original images. Both the enamel and the dentin were extracted after image processing, and the periodontal ligament was created from the segmented dentin. The constructed finite-element model was reasonably accurate using a total of 234,644 nodes and 1,268,784 tetrahedral and 40,665 shell elements. The elastic moduli of the heterogeneous mandibular bone were determined from the bone density data of the computed tomography images. The results suggested that the software applied in this study is both useful and powerful for creating a more accurate three-dimensional finite-element model of a dentulous mandible from the computed tomography data without the need for any other software.

  10. Improving finite element results in modeling heart valve mechanics.

    PubMed

    Earl, Emily; Mohammadi, Hadi

    2018-06-01

    Finite element analysis is a well-established computational tool which can be used for the analysis of soft tissue mechanics. Due to the structural complexity of the leaflet tissue of the heart valve, the currently available finite element models do not adequately represent the leaflet tissue. A method of addressing this issue is to implement computationally expensive finite element models, characterized by precise constitutive models including high-order and high-density mesh techniques. In this study, we introduce a novel numerical technique that enhances the results obtained from coarse mesh finite element models to provide accuracy comparable to that of fine mesh finite element models while maintaining a relatively low computational cost. Introduced in this study is a method by which the computational expense required to solve linear and nonlinear constitutive models, commonly used in heart valve mechanics simulations, is reduced while continuing to account for large and infinitesimal deformations. This continuum model is developed based on the least square algorithm procedure coupled with the finite difference method adhering to the assumption that the components of the strain tensor are available at all nodes of the finite element mesh model. The suggested numerical technique is easy to implement, practically efficient, and requires less computational time compared to currently available commercial finite element packages such as ANSYS and/or ABAQUS.

  11. Hybrid wireless sensor network for rescue site monitoring after earthquake

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Wang, Shuo; Tang, Chong; Zhao, Xiaoguang; Hu, Weijian; Tan, Min; Gao, Bowei

    2016-07-01

    This paper addresses the design of a low-cost, low-complexity, and rapidly deployable wireless sensor network (WSN) for rescue site monitoring after earthquakes. The system structure of the hybrid WSN is described. Specifically, the proposed hybrid WSN consists of two kinds of wireless nodes, i.e., the monitor node and the sensor node. Then the mechanism and the system configuration of the wireless nodes are detailed. A transmission control protocol (TCP)-based request-response scheme is proposed to allow several monitor nodes to communicate with the monitoring center. UDP-based image transmission algorithms with fast recovery have been developed to meet the requirements of in-time delivery of on-site monitor images. In addition, the monitor node contains a ZigBee module that used to communicate with the sensor nodes, which are designed with small dimensions to monitor the environment by sensing different physical properties in narrow spaces. By building a WSN using these wireless nodes, the monitoring center can display real-time monitor images of the monitoring area and visualize all collected sensor data on geographic information systems. In the end, field experiments were performed at the Training Base of Emergency Seismic Rescue Troops of China and the experimental results demonstrate the feasibility and effectiveness of the monitor system.

  12. Polar Seismic TETwalker: Integrating Engineering Teaching and Research

    NASA Astrophysics Data System (ADS)

    Gifford, C. M.; Ruiz, I.; Carmichael, B. L.; Wade, U. B.; Agah, A.

    2007-12-01

    Based on the TETwalker robot platform at NASA/Goddard Space Flight Center, the Center for Remote Sensing of Ice Sheets (CReSIS) has begun work on designing and modeling the integration of seismic surveying equipment into the TETwalker robot architecture for use in polar environments. Employing multiple Seismic TETwalker robots will allow gathering of polar seismic data in previously inaccessible or unexplored terrains, as well as help significantly reduce human involvement in such harsh environments. NASA's TETwalker mobile robot uses a unique form of mobility to topple across the surface and over obstacles. This robot therefore does not suffer the fate of other wheeled and tracked robots if tipped over. It is composed of extending struts and nodes, forming a tetrahedral shape which can be strategically adjusted to change the robot's center of gravity for toppling. Of the many platforms the TETwalker architecture can form, the 4-TETwalker robot (consisting of four ground nodes, a center payload node, and interconnecting struts) has been the focus of current research. The center node has been chosen as the geophone deployment medium, designed in such a way to allow geophone insertion using any face of the robot's structure. As the robot comes to rest at the deployment location, one of its faces will rest on the surface. No matter which side it is resting on, a geophone spike will be perpendicular to its face and an extending strut will be vertical for pushing the geophone into the ground. Lengthening and shortening struts allow the deployment node to precisely place the geophone into the ground, as well as vertically orient the geophones for proper data acquisition on non-flat surfaces. Power source integration has been investigated, incorporating possible combinations of solar, wind, and vibration power devices onboard the robot models for long-term survival in a polar environment. Designs have also been modeled for an alternate center node sensor package (e.g., broadband seismometer) and other structures of the node-and-strut TETwalker robot architecture. It is planned to take the design models and construct a physical prototype for future testing in Greenland and Antarctica. This work involved three undergraduate students from underrepresented groups as part of the CReSIS Summer REU program, aimed at involving these groups in science and engineering research.

  13. Three-Dimensional High-Order Spectral Finite Volume Method for Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Liu, Yen; Vinokur, Marcel; Wang, Z. J.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Many areas require a very high-order accurate numerical solution of conservation laws for complex shapes. This paper deals with the extension to three dimensions of the Spectral Finite Volume (SV) method for unstructured grids, which was developed to solve such problems. We first summarize the limitations of traditional methods such as finite-difference, and finite-volume for both structured and unstructured grids. We then describe the basic formulation of the spectral finite volume method. What distinguishes the SV method from conventional high-order finite-volume methods for unstructured triangular or tetrahedral grids is the data reconstruction. Instead of using a large stencil of neighboring cells to perform a high-order reconstruction, the stencil is constructed by partitioning each grid cell, called a spectral volume (SV), into 'structured' sub-cells, called control volumes (CVs). One can show that if all the SV cells are partitioned into polygonal or polyhedral CV sub-cells in a geometrically similar manner, the reconstructions for all the SVs become universal, irrespective of their shapes, sizes, orientations, or locations. It follows that the reconstruction is reduced to a weighted sum of unknowns involving just a few simple adds and multiplies, and those weights are universal and can be pre-determined once for all. The method is thus very efficient, accurate, and yet geometrically flexible. The most critical part of the SV method is the partitioning of the SV into CVs. In this paper we present the partitioning of a tetrahedral SV into polyhedral CVs with one free parameter for polynomial reconstructions up to degree of precision five. (Note that the order of accuracy of the method is one order higher than the reconstruction degree of precision.) The free parameter will be determined by minimizing the Lebesgue constant of the reconstruction matrix or similar criteria to obtain optimized partitions. The details of an efficient, parallelizable code to solve three-dimensional problems for any order of accuracy are then presented. Important aspects of the data structure are discussed. Comparisons with the Discontinuous Galerkin (DG) method are made. Numerical examples for wave propagation problems are presented.

  14. OFF, Open source Finite volume Fluid dynamics code: A free, high-order solver based on parallel, modular, object-oriented Fortran API

    NASA Astrophysics Data System (ADS)

    Zaghi, S.

    2014-07-01

    OFF, an open source (free software) code for performing fluid dynamics simulations, is presented. The aim of OFF is to solve, numerically, the unsteady (and steady) compressible Navier-Stokes equations of fluid dynamics by means of finite volume techniques: the research background is mainly focused on high-order (WENO) schemes for multi-fluids, multi-phase flows over complex geometries. To this purpose a highly modular, object-oriented application program interface (API) has been developed. In particular, the concepts of data encapsulation and inheritance available within Fortran language (from standard 2003) have been stressed in order to represent each fluid dynamics "entity" (e.g. the conservative variables of a finite volume, its geometry, etc…) by a single object so that a large variety of computational libraries can be easily (and efficiently) developed upon these objects. The main features of OFF can be summarized as follows: Programming LanguageOFF is written in standard (compliant) Fortran 2003; its design is highly modular in order to enhance simplicity of use and maintenance without compromising the efficiency; Parallel Frameworks Supported the development of OFF has been also targeted to maximize the computational efficiency: the code is designed to run on shared-memory multi-cores workstations and distributed-memory clusters of shared-memory nodes (supercomputers); the code's parallelization is based on Open Multiprocessing (OpenMP) and Message Passing Interface (MPI) paradigms; Usability, Maintenance and Enhancement in order to improve the usability, maintenance and enhancement of the code also the documentation has been carefully taken into account; the documentation is built upon comprehensive comments placed directly into the source files (no external documentation files needed): these comments are parsed by means of doxygen free software producing high quality html and latex documentation pages; the distributed versioning system referred as git has been adopted in order to facilitate the collaborative maintenance and improvement of the code; CopyrightsOFF is a free software that anyone can use, copy, distribute, study, change and improve under the GNU Public License version 3. The present paper is a manifesto of OFF code and presents the currently implemented features and ongoing developments. This work is focused on the computational techniques adopted and a detailed description of the main API characteristics is reported. OFF capabilities are demonstrated by means of one and two dimensional examples and a three dimensional real application.

  15. Demonstration Of Ultra HI-FI (UHF) Methods

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W.

    2004-01-01

    Computational aero-acoustics (CAA) requires efficient, high-resolution simulation tools. Most current techniques utilize finite-difference approaches because high order accuracy is considered too difficult or expensive to achieve with finite volume or finite element methods. However, a novel finite volume approach (Ultra HI-FI or UHF) which utilizes Hermite fluxes is presented which can achieve both arbitrary accuracy and fidelity in space and time. The technique can be applied to unstructured grids with some loss of fidelity or with multi-block structured grids for maximum efficiency and resolution. In either paradigm, it is possible to resolve ultra-short waves (less than 2 PPW). This is demonstrated here by solving the 4th CAA workshop Category 1 Problem 1.

  16. Verification of Orthogrid Finite Element Modeling Techniques

    NASA Technical Reports Server (NTRS)

    Steeve, B. E.

    1996-01-01

    The stress analysis of orthogrid structures, specifically with I-beam sections, is regularly performed using finite elements. Various modeling techniques are often used to simplify the modeling process but still adequately capture the actual hardware behavior. The accuracy of such 'Oshort cutso' is sometimes in question. This report compares three modeling techniques to actual test results from a loaded orthogrid panel. The finite element models include a beam, shell, and mixed beam and shell element model. Results show that the shell element model performs the best, but that the simpler beam and beam and shell element models provide reasonable to conservative results for a stress analysis. When deflection and stiffness is critical, it is important to capture the effect of the orthogrid nodes in the model.

  17. Wigner analysis of three dimensional pupil with finite lateral aperture

    PubMed Central

    Chen, Hsi-Hsun; Oh, Se Baek; Zhai, Xiaomin; Tsai, Jui-Chang; Cao, Liang-Cai; Barbastathis, George; Luo, Yuan

    2015-01-01

    A three dimensional (3D) pupil is an optical element, most commonly implemented on a volume hologram, that processes the incident optical field on a 3D fashion. Here we analyze the diffraction properties of a 3D pupil with finite lateral aperture in the 4-f imaging system configuration, using the Wigner Distribution Function (WDF) formulation. Since 3D imaging pupil is finite in both lateral and longitudinal directions, the WDF of the volume holographic 4-f imager theoretically predicts distinct Bragg diffraction patterns in phase space. These result in asymmetric profiles of diffracted coherent point spread function between degenerate diffraction and Bragg diffraction, elucidating the fundamental performance of volume holographic imaging. Experimental measurements are also presented, confirming the theoretical predictions. PMID:25836443

  18. Sanity check for NN bound states in lattice QCD with Lüscher's finite volume formula - Disclosing Symptoms of Fake Plateaux -

    NASA Astrophysics Data System (ADS)

    Aoki, Sinya; Doi, Takumi; Iritani, Takumi

    2018-03-01

    The sanity check is to rule out certain classes of obviously false results, not to catch every possible error. After reviewing such a sanity check for NN bound states with the Lüscher's finite volume formula [1-3], we give further evidences for the operator dependence of plateaux, a symptom of the fake plateau problem, against the claim [4]. We then present our critical comments on [5] by NPLQCD: (i) Operator dependences of plateaux in NPL2013 [6, 7] exist with the P value of 4-5%. (ii) The volume independence of plateaux in NPL2013 does not prove their correctness. (iii) Effective range expansions (EREs) in NPL2013 violate the physical pole condition. (iv) Their comment is partly based on new data and analysis different from the original ones. (v) Their new ERE does not satisfy the Lüscher's finite volume formula.

  19. Listing triangles in expected linear time on a class of power law graphs.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nordman, Daniel J.; Wilson, Alyson G.; Phillips, Cynthia Ann

    Enumerating triangles (3-cycles) in graphs is a kernel operation for social network analysis. For example, many community detection methods depend upon finding common neighbors of two related entities. We consider Cohen's simple and elegant solution for listing triangles: give each node a 'bucket.' Place each edge into the bucket of its endpoint of lowest degree, breaking ties consistently. Each node then checks each pair of edges in its bucket, testing for the adjacency that would complete that triangle. Cohen presents an informal argument that his algorithm should run well on real graphs. We formalize this argument by providing an analysismore » for the expected running time on a class of random graphs, including power law graphs. We consider a rigorously defined method for generating a random simple graph, the erased configuration model (ECM). In the ECM each node draws a degree independently from a marginal degree distribution, endpoints pair randomly, and we erase self loops and multiedges. If the marginal degree distribution has a finite second moment, it follows immediately that Cohen's algorithm runs in expected linear time. Furthermore, it can still run in expected linear time even when the degree distribution has such a heavy tail that the second moment is not finite. We prove that Cohen's algorithm runs in expected linear time when the marginal degree distribution has finite 4/3 moment and no vertex has degree larger than {radical}n. In fact we give the precise asymptotic value of the expected number of edge pairs per bucket. A finite 4/3 moment is required; if it is unbounded, then so is the number of pairs. The marginal degree distribution of a power law graph has bounded 4/3 moment when its exponent {alpha} is more than 7/3. Thus for this class of power law graphs, with degree at most {radical}n, Cohen's algorithm runs in expected linear time. This is precisely the value of {alpha} for which the clustering coefficient tends to zero asymptotically, and it is in the range that is relevant for the degree distribution of the World-Wide Web.« less

  20. Effects of porosity distribution and porosity volume fraction on the electromechanical properties of 3-3 piezoelectric foams

    NASA Astrophysics Data System (ADS)

    Nguyen, B. V.; Challagulla, K. S.; Venkatesh, T. A.; Hadjiloizi, D. A.; Georgiades, A. V.

    2016-12-01

    Unit-cell based finite element models are developed to completely characterize the role of porosity distribution and porosity volume fraction in determining the elastic, dielectric and piezoelectric properties as well as relevant figures of merit of 3-3 type piezoelectric foam structures. Eight classes of foam structures which represent structures with different types and degrees of uniformity of porosity distribution are identified; a Base structure (Class I), two H-type foam structures (Classes II, and III), a Cross-type foam structure (Class IV) and four Line-type foam structures (Classes V, VI, VII, and VIII). Three geometric factors that influence the electromechanical properties are identified: (i) the number of pores per face, pore size and the distance between the pores; (ii) pore orientation with respect to poling direction; (iii) the overall symmetry of the pore distribution with respect to the center of the face of the unit cell. To assess the suitability of these structures for such applications as hydrophones, bone implants, medical imaging and diagnostic devices, five figures of merit are determined via the developed finite element model; the piezoelectric coupling constant (K t ), the acoustic impedance (Z), the piezoelectric charge coefficient (d h ), the hydrostatic voltage coefficient (g h ), and the hydrostatic figure of merit (d h g h ). At high material volume fractions, foams with non-uniform Line-type porosity (Classes V and VII) where the pores are preferentially distributed perpendicular to poling direction, are found to exhibit the best combination of desirable piezoelectric figures of merit. For example, at about 50% volume fraction, the d h , g h , and d h g h figures of merit are 55%, 1600% and 2500% higher, respectively, for Classes V and VII of Line-like foam structures compared with the Base structure.

  1. Methods for High-Order Multi-Scale and Stochastic Problems Analysis, Algorithms, and Applications

    DTIC Science & Technology

    2016-10-17

    finite volume schemes, discontinuous Galerkin finite element method, and related methods, for solving computational fluid dynamics (CFD) problems and...approximation for finite element methods. (3) The development of methods of simulation and analysis for the study of large scale stochastic systems of...laws, finite element method, Bernstein-Bezier finite elements , weakly interacting particle systems, accelerated Monte Carlo, stochastic networks 16

  2. Algorithm implementation on the Navier-Stokes computer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krist, S.E.; Zang, T.A.

    1987-03-01

    The Navier-Stokes Computer is a multi-purpose parallel-processing supercomputer which is currently under development at Princeton University. It consists of multiple local memory parallel processors, called Nodes, which are interconnected in a hypercube network. Details of the procedures involved in implementing an algorithm on the Navier-Stokes computer are presented. The particular finite difference algorithm considered in this analysis was developed for simulation of laminar-turbulent transition in wall bounded shear flows. Projected timing results for implementing this algorithm indicate that operation rates in excess of 42 GFLOPS are feasible on a 128 Node machine.

  3. Algorithm implementation on the Navier-Stokes computer

    NASA Technical Reports Server (NTRS)

    Krist, Steven E.; Zang, Thomas A.

    1987-01-01

    The Navier-Stokes Computer is a multi-purpose parallel-processing supercomputer which is currently under development at Princeton University. It consists of multiple local memory parallel processors, called Nodes, which are interconnected in a hypercube network. Details of the procedures involved in implementing an algorithm on the Navier-Stokes computer are presented. The particular finite difference algorithm considered in this analysis was developed for simulation of laminar-turbulent transition in wall bounded shear flows. Projected timing results for implementing this algorithm indicate that operation rates in excess of 42 GFLOPS are feasible on a 128 Node machine.

  4. Longitudinal Assessment of Synovial, Lymph Node, and Bone Volumes in Inflammatory Arthritis in Mice using in vivo MRI and micro-CT

    PubMed Central

    Proulx, Steven T.; Kwok, Edmund; You, Zhigang; Papuga, M. Owen; Beck, Christopher A.; Shealy, David J.; Ritchlin, Christopher T.; Awad, Hani A.; Boyce, Brendan F.; Xing, Lianping; Schwarz, Edward M.

    2009-01-01

    Objective Development of longitudinal 3D outcomes of inflammation and bone erosion in murine arthritis using contrast enhanced (CE) MRI and in vivo micro-CT; and in a pilot study, to determine the value of entrance criteria by age versus synovial volume in therapeutic intervention studies. Methods CE-MRI and in vivo micro-CT was performed on TNF-Tg and WT littermates to quantify the synovial and popliteal lymph node (LN) volumes and patella and talus bone volumes, respectively, which were validated with histology. These longitudinal outcome measures were used to assess the natural history of inflammatory-erosive arthritis. We also performed anti-TNF versus placebo efficacy studies in TNF-Tg mice in which treatment was initiated either by age (4–5 months) or synovial volume (3mm3 as detected by CE-MRI). Linear regression was performed to analyze the correlation between synovitis and focal erosion. Results CE-MRI demonstrated the highly variable nature of TNF-induced joint inflammation. Initiation of treatment by synovial volume produced significantly larger treatment effects on synovial volume (p=0.04) and lymph node volume (p<0.01) than initiation by age. By correlating the MRI and microCT data we were able to demonstrate a significant relationship between changes in synovial and patellar volumes (R2 =0.75; p<0.01). Conclusion In vivo CE-MRI and micro-CT 3D outcome measures are powerful tools that accurately demonstrate the progression of inflammatory-erosive arthritis in mice. These methods can be used to identify mice with arthritis of similar severity before intervention studies are initiated and thus minimize heterogeneity in outcome studies of chronic arthritis seen between genetically identical littermates. PMID:18050199

  5. Fast content-based image retrieval using dynamic cluster tree

    NASA Astrophysics Data System (ADS)

    Chen, Jinyan; Sun, Jizhou; Wu, Rongteng; Zhang, Yaping

    2008-03-01

    A novel content-based image retrieval data structure is developed in present work. It can improve the searching efficiency significantly. All images are organized into a tree, in which every node is comprised of images with similar features. Images in a children node have more similarity (less variance) within themselves in relative to its parent. It means that every node is a cluster and each of its children nodes is a sub-cluster. Information contained in a node includes not only the number of images, but also the center and the variance of these images. Upon the addition of new images, the tree structure is capable of dynamically changing to ensure the minimization of total variance of the tree. Subsequently, a heuristic method has been designed to retrieve the information from this tree. Given a sample image, the probability of a tree node that contains the similar images is computed using the center of the node and its variance. If the probability is higher than a certain threshold, this node will be recursively checked to locate the similar images. So will its children nodes if their probability is also higher than that threshold. If no sufficient similar images were founded, a reduced threshold value would be adopted to initiate a new seeking from the root node. The search terminates when it found sufficient similar images or the threshold value is too low to give meaningful sense. Experiments have shown that the proposed dynamic cluster tree is able to improve the searching efficiency notably.

  6. KENNEDY SPACE CENTER, FLA. - An overhead crane in the Space Station Processing Facility lifts the U.S. Node 2 out of its shipping container. The node will be moved to a workstand. The second of three connecting modules on the International Space Station, the Italian-built Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

    NASA Image and Video Library

    2003-06-03

    KENNEDY SPACE CENTER, FLA. - An overhead crane in the Space Station Processing Facility lifts the U.S. Node 2 out of its shipping container. The node will be moved to a workstand. The second of three connecting modules on the International Space Station, the Italian-built Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

  7. Looking into the crystal ball: future device learning using hybrid e-beam and optical lithography (Keynote Paper)

    NASA Astrophysics Data System (ADS)

    Steen, S. E.; McNab, S. J.; Sekaric, L.; Babich, I.; Patel, J.; Bucchignano, J.; Rooks, M.; Fried, D. M.; Topol, A. W.; Brancaccio, J. R.; Yu, R.; Hergenrother, J. M.; Doyle, J. P.; Nunes, R.; Viswanathan, R. G.; Purushothaman, S.; Rothwell, M. B.

    2005-05-01

    Semiconductor process development teams are faced with increasing process and integration complexity while the time between lithographic capability and volume production has remained more or less constant over the last decade. Lithography tools have often gated the volume checkpoint of a new device node on the ITRS roadmap. The processes have to be redeveloped after the tooling capability for the new groundrule is obtained since straight scaling is no longer sufficient. In certain cases the time window that the process development teams have is actually decreasing. In the extreme, some forecasts are showing that by the time the 45nm technology node is scheduled for volume production, the tooling vendors will just begin shipping the tools required for this technology node. To address this time pressure, IBM has implemented a hybrid-lithography strategy that marries the advantages of optical lithography (high throughput) with electron beam direct write lithography (high resolution and alignment capability). This hybrid-lithography scheme allows for the timely development of semiconductor processes for the 32nm node, and beyond. In this paper we will describe how hybrid lithography has enabled early process integration and device learning and how IBM applied e-beam & optical hybrid lithography to create the world's smallest working SRAM cell.

  8. Finite element stress analysis of the human left ventricle whose irregular shape is developed from single plane cineangiocardiogram

    NASA Technical Reports Server (NTRS)

    Ghista, D. N.; Hamid, M. S.

    1977-01-01

    The three-dimensional left ventricular chamber geometrical model is developed from single plane cineangiocardiogram. This left ventricular model is loaded by an internal pressure monitored by cardiac catheterization. The resulting stresses in the left ventricular model chamber's wall are determined by computerized finite element procedure. For the discretization of this left ventricular model structure, a 20-node, isoparametric finite element is employed. The analysis and formulation of the computerised procedure is presented in the paper, along with the detailed algorithms and computer programs. The procedure is applied to determine the stresses in a left ventricle at an instant, during systole. Next, a portion (represented by a finite element) of this left ventricular chamber is simulated as being infarcted by making its active-state modulus value equal to its passive-state value; the neighbouring elements are shown to relieve the 'infarcted' element of stress by themselves taking on more stress.

  9. FSM-F: Finite State Machine Based Framework for Denial of Service and Intrusion Detection in MANET

    PubMed Central

    N. Ahmed, Malik; Abdullah, Abdul Hanan; Kaiwartya, Omprakash

    2016-01-01

    Due to the continuous advancements in wireless communication in terms of quality of communication and affordability of the technology, the application area of Mobile Adhoc Networks (MANETs) significantly growing particularly in military and disaster management. Considering the sensitivity of the application areas, security in terms of detection of Denial of Service (DoS) and intrusion has become prime concern in research and development in the area. The security systems suggested in the past has state recognition problem where the system is not able to accurately identify the actual state of the network nodes due to the absence of clear definition of states of the nodes. In this context, this paper proposes a framework based on Finite State Machine (FSM) for denial of service and intrusion detection in MANETs. In particular, an Interruption Detection system for Adhoc On-demand Distance Vector (ID-AODV) protocol is presented based on finite state machine. The packet dropping and sequence number attacks are closely investigated and detection systems for both types of attacks are designed. The major functional modules of ID-AODV includes network monitoring system, finite state machine and attack detection model. Simulations are carried out in network simulator NS-2 to evaluate the performance of the proposed framework. A comparative evaluation of the performance is also performed with the state-of-the-art techniques: RIDAN and AODV. The performance evaluations attest the benefits of proposed framework in terms of providing better security for denial of service and intrusion detection attacks. PMID:27285146

  10. Practical aspects of prestack depth migration with finite differences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ober, C.C.; Oldfield, R.A.; Womble, D.E.

    1997-07-01

    Finite-difference, prestack, depth migrations offers significant improvements over Kirchhoff methods in imaging near or under salt structures. The authors have implemented a finite-difference prestack depth migration algorithm for use on massively parallel computers which is discussed. The image quality of the finite-difference scheme has been investigated and suggested improvements are discussed. In this presentation, the authors discuss an implicit finite difference migration code, called Salvo, that has been developed through an ACTI (Advanced Computational Technology Initiative) joint project. This code is designed to be efficient on a variety of massively parallel computers. It takes advantage of both frequency and spatialmore » parallelism as well as the use of nodes dedicated to data input/output (I/O). Besides giving an overview of the finite-difference algorithm and some of the parallelism techniques used, migration results using both Kirchhoff and finite-difference migration will be presented and compared. The authors start out with a very simple Cartoon model where one can intuitively see the multiple travel paths and some of the potential problems that will be encountered with Kirchhoff migration. More complex synthetic models as well as results from actual seismic data from the Gulf of Mexico will be shown.« less

  11. Simplified Dynamic Analysis of Grinders Spindle Node

    NASA Astrophysics Data System (ADS)

    Demec, Peter

    2014-12-01

    The contribution deals with the simplified dynamic analysis of surface grinding machine spindle node. Dynamic analysis is based on the use of the transfer matrix method, which is essentially a matrix form of method of initial parameters. The advantage of the described method, despite the seemingly complex mathematical apparatus, is primarily, that it does not require for solve the problem of costly commercial software using finite element method. All calculations can be made for example in MS Excel, which is advantageous especially in the initial stages of constructing of spindle node for the rapid assessment of the suitability its design. After detailing the entire structure of spindle node is then also necessary to perform the refined dynamic analysis in the environment of FEM, which it requires the necessary skills and experience and it is therefore economically difficult. This work was developed within grant project KEGA No. 023TUKE-4/2012 Creation of a comprehensive educational - teaching material for the article Production technique using a combination of traditional and modern information technology and e-learning.

  12. KENNEDY SPACE CENTER, FLA. - Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA); and NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, sign documents officially transferring ownership of Node 2 between the ESA and NASA. The signing was part of a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module (above right) of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA); and NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, sign documents officially transferring ownership of Node 2 between the ESA and NASA. The signing was part of a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module (above right) of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  13. Minimizing EIT image artefacts from mesh variability in finite element models.

    PubMed

    Adler, Andy; Lionheart, William R B

    2011-07-01

    Electrical impedance tomography (EIT) solves an inverse problem to estimate the conductivity distribution within a body from electrical simulation and measurements at the body surface, where the inverse problem is based on a solution of Laplace's equation in the body. Most commonly, a finite element model (FEM) is used, largely because of its ability to describe irregular body shapes. In this paper, we show that simulated variations in the positions of internal nodes within a FEM can result in serious image artefacts in the reconstructed images. Such variations occur when designing FEM meshes to conform to conductivity targets, but the effects may also be seen in other applications of absolute and difference EIT. We explore the hypothesis that these artefacts result from changes in the projection of the anisotropic conductivity tensor onto the FEM system matrix, which introduces anisotropic components into the simulated voltages, which cannot be reconstructed onto an isotropic image, and appear as artefacts. The magnitude of the anisotropic effect is analysed for a small regular FEM, and shown to be proportional to the relative node movement as a fraction of element size. In order to address this problem, we show that it is possible to incorporate a FEM node movement component into the formulation of the inverse problem. These results suggest that it is important to consider artefacts due to FEM mesh geometry in EIT image reconstruction.

  14. Application of kernel method in fluorescence molecular tomography

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Baikejiang, Reheman; Li, Changqing

    2017-02-01

    Reconstruction of fluorescence molecular tomography (FMT) is an ill-posed inverse problem. Anatomical guidance in the FMT reconstruction can improve FMT reconstruction efficiently. We have developed a kernel method to introduce the anatomical guidance into FMT robustly and easily. The kernel method is from machine learning for pattern analysis and is an efficient way to represent anatomical features. For the finite element method based FMT reconstruction, we calculate a kernel function for each finite element node from an anatomical image, such as a micro-CT image. Then the fluorophore concentration at each node is represented by a kernel coefficient vector and the corresponding kernel function. In the FMT forward model, we have a new system matrix by multiplying the sensitivity matrix with the kernel matrix. Thus, the kernel coefficient vector is the unknown to be reconstructed following a standard iterative reconstruction process. We convert the FMT reconstruction problem into the kernel coefficient reconstruction problem. The desired fluorophore concentration at each node can be calculated accordingly. Numerical simulation studies have demonstrated that the proposed kernel-based algorithm can improve the spatial resolution of the reconstructed FMT images. In the proposed kernel method, the anatomical guidance can be obtained directly from the anatomical image and is included in the forward modeling. One of the advantages is that we do not need to segment the anatomical image for the targets and background.

  15. Ray Casting of Large Multi-Resolution Volume Datasets

    NASA Astrophysics Data System (ADS)

    Lux, C.; Fröhlich, B.

    2009-04-01

    High quality volume visualization through ray casting on graphics processing units (GPU) has become an important approach for many application domains. We present a GPU-based, multi-resolution ray casting technique for the interactive visualization of massive volume data sets commonly found in the oil and gas industry. Large volume data sets are represented as a multi-resolution hierarchy based on an octree data structure. The original volume data is decomposed into small bricks of a fixed size acting as the leaf nodes of the octree. These nodes are the highest resolution of the volume. Coarser resolutions are represented through inner nodes of the hierarchy which are generated by down sampling eight neighboring nodes on a finer level. Due to limited memory resources of current desktop workstations and graphics hardware only a limited working set of bricks can be locally maintained for a frame to be displayed. This working set is chosen to represent the whole volume at different local resolution levels depending on the current viewer position, transfer function and distinct areas of interest. During runtime the working set of bricks is maintained in CPU- and GPU memory and is adaptively updated by asynchronously fetching data from external sources like hard drives or a network. The CPU memory hereby acts as a secondary level cache for these sources from which the GPU representation is updated. Our volume ray casting algorithm is based on a 3D texture-atlas in GPU memory. This texture-atlas contains the complete working set of bricks of the current multi-resolution representation of the volume. This enables the volume ray casting algorithm to access the whole working set of bricks through only a single 3D texture. For traversing rays through the volume, information about the locations and resolution levels of visited bricks are required for correct compositing computations. We encode this information into a small 3D index texture which represents the current octree subdivision on its finest level and spatially organizes the bricked data. This approach allows us to render a bricked multi-resolution volume data set utilizing only a single rendering pass with no loss of compositing precision. In contrast most state-of-the art volume rendering systems handle the bricked data as individual 3D textures, which are rendered one at a time while the results are composited into a lower precision frame buffer. Furthermore, our method enables us to integrate advanced volume rendering techniques like empty-space skipping, adaptive sampling and preintegrated transfer functions in a very straightforward manner with virtually no extra costs. Our interactive volume ray tracing implementation allows high quality visualizations of massive volume data sets of tens of Gigabytes in size on standard desktop workstations.

  16. Grid generation about complex three-dimensional aircraft configurations

    NASA Technical Reports Server (NTRS)

    Klopfer, Goetz H.

    1991-01-01

    The problem of obtaining three dimensional grids with sufficient resolution to resolve all the flow or other physical features of interest is addressed. The generation of a computational grid involves a series of compromises to resolve several conflicting requirements. On one hand, one would like the grid to be fine enough and not too skewed to reduce the numerical errors and to adequately resolve the pertinent physical features of the flow field about the aircraft. On the other hand, the capabilities of present or even future supercomputers are finite and the number of mesh points must be limited to a reasonable number: one which is usually much less than desired for numerical accuracy. One technique to overcome this limitation is the 'zonal' grid approach. In this method, the overall field is subdivided into smaller zones or blocks in each of which an independent grid is generated with enough grid density to resolve the flow features in that zone. The zonal boundaries or interfaces require special boundary conditions such that the conservation properties of the governing equations are observed. Much work was done in 3-D zonal approaches with nonconservative zonal interfaces. A 3-D zonal conservative interfacing method that is efficient and easy to implement was developed during the past year. During the course of the work, it became apparent that it would be much more feasible to do the conservative interfacing with cell-centered finite volume codes instead of the originally planned finite difference codes. Accordingly, the CNS code was converted to finite volume form. This new version of the code is named CNSFV. The original multi-zonal interfacing capability of the CNS code was enhanced by generalizing the procedure to allow for completely arbitrarily shaped zones with no mesh continuity between the zones. While this zoning capability works well for most flow situations, it is, however, still nonconservative. The conservative interface algorithm was also implemented but was not completely validated.

  17. International Space Station Node 1 is moved for leak test

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Node 1, the first element for the International Space Station, and attached Pressurized Mating Adapter-1 continue with prelaunch preparation activities at KSC's Space Station Processing Facility. Node 1 is a connecting passageway to the living and working areas of the space station. The node is being removed from the element rotation stand, or test stand, where it underwent an interim weight and center of gravity determination. (The final determination is planned to be performed prior to transporting Node 1 to the launch pad.) Now the node is being moved to the Shuttle payload transportation canister, where the doors will be closed for a two-week leak check. Node 1 is scheduled to fly on STS-88.

  18. 3D highly heterogeneous thermal model of pineal gland in-vitro study for electromagnetic exposure using finite volume method

    NASA Astrophysics Data System (ADS)

    Cen, Wei; Hoppe, Ralph; Lu, Rongbo; Cai, Zhaoquan; Gu, Ning

    2017-08-01

    In this paper, the relationship between electromagnetic power absorption and temperature distributions inside highly heterogeneous biological samples was accurately determinated using finite volume method. An in-vitro study on pineal gland that is responsible for physiological activities was for the first time simulated to illustrate effectiveness of the proposed method.

  19. Equivalence of Fluctuation Splitting and Finite Volume for One-Dimensional Gas Dynamics

    NASA Technical Reports Server (NTRS)

    Wood, William A.

    1997-01-01

    The equivalence of the discretized equations resulting from both fluctuation splitting and finite volume schemes is demonstrated in one dimension. Scalar equations are considered for advection, diffusion, and combined advection/diffusion. Analysis of systems is performed for the Euler and Navier-Stokes equations of gas dynamics. Non-uniform mesh-point distributions are included in the analyses.

  20. Statistical Optics

    NASA Astrophysics Data System (ADS)

    Goodman, Joseph W.

    2000-07-01

    The Wiley Classics Library consists of selected books that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: T. W. Anderson The Statistical Analysis of Time Series T. S. Arthanari & Yadolah Dodge Mathematical Programming in Statistics Emil Artin Geometric Algebra Norman T. J. Bailey The Elements of Stochastic Processes with Applications to the Natural Sciences Robert G. Bartle The Elements of Integration and Lebesgue Measure George E. P. Box & Norman R. Draper Evolutionary Operation: A Statistical Method for Process Improvement George E. P. Box & George C. Tiao Bayesian Inference in Statistical Analysis R. W. Carter Finite Groups of Lie Type: Conjugacy Classes and Complex Characters R. W. Carter Simple Groups of Lie Type William G. Cochran & Gertrude M. Cox Experimental Designs, Second Edition Richard Courant Differential and Integral Calculus, Volume I RIchard Courant Differential and Integral Calculus, Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume II D. R. Cox Planning of Experiments Harold S. M. Coxeter Introduction to Geometry, Second Edition Charles W. Curtis & Irving Reiner Representation Theory of Finite Groups and Associative Algebras Charles W. Curtis & Irving Reiner Methods of Representation Theory with Applications to Finite Groups and Orders, Volume I Charles W. Curtis & Irving Reiner Methods of Representation Theory with Applications to Finite Groups and Orders, Volume II Cuthbert Daniel Fitting Equations to Data: Computer Analysis of Multifactor Data, Second Edition Bruno de Finetti Theory of Probability, Volume I Bruno de Finetti Theory of Probability, Volume 2 W. Edwards Deming Sample Design in Business Research

  1. A time accurate finite volume high resolution scheme for three dimensional Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Hsu, Andrew T.

    1989-01-01

    A time accurate, three-dimensional, finite volume, high resolution scheme for solving the compressible full Navier-Stokes equations is presented. The present derivation is based on the upwind split formulas, specifically with the application of Roe's (1981) flux difference splitting. A high-order accurate (up to the third order) upwind interpolation formula for the inviscid terms is derived to account for nonuniform meshes. For the viscous terms, discretizations consistent with the finite volume concept are described. A variant of second-order time accurate method is proposed that utilizes identical procedures in both the predictor and corrector steps. Avoiding the definition of midpoint gives a consistent and easy procedure, in the framework of finite volume discretization, for treating viscous transport terms in the curvilinear coordinates. For the boundary cells, a new treatment is introduced that not only avoids the use of 'ghost cells' and the associated problems, but also satisfies the tangency conditions exactly and allows easy definition of viscous transport terms at the first interface next to the boundary cells. Numerical tests of steady and unsteady high speed flows show that the present scheme gives accurate solutions.

  2. Simulating the Effect of Space Vehicle Environments on Directional Solidification of a Binary Alloy

    NASA Technical Reports Server (NTRS)

    Westra, D. G.; Heinrich, J. C.; Poirier, D. R.

    2003-01-01

    Space microgravity missions are designed to provide a microgravity environment for scientific experiments, but these missions cannot provide a perfect environment, due to vibrations caused by crew activity, on-board experiments, support systems (pumps, fans, etc.), periodic orbital maneuvers, and water dumps. Therefore, it is necessary to predict the impact of these vibrations on space experiments, prior to performing them. Simulations were conducted to study the effect of the vibrations on the directional solidification of a dendritic alloy. Finite element ca!cu!attie?ls were dme with a simd2titcr based on a continuum model of dendritic solidification, using the Fractional Step Method (FSM). The FSM splits the solution of the momentum equation into two steps: the viscous intermediate step, which does not enforce continuity; and the inviscid projection step, which calculates the pressure and enforces continuity. The FSM provides significant computational benefits for predicting flows in a directionally solidified alloy, compared to other methods presently employed, because of the efficiency gains in the uncoupled solution of velocity and pressure. finite differences, arises when the interdendritic liquid reaches the eutectic temperature and concentration. When a node reaches eutectic temperature, it is assumed that the solidification of the eutectic liquid continues at constant temperature until all the eutectic is solidified. With this approach, solidification is not achieved continuously across an element; rather, the element is not considered solidified until the eutectic isotherm overtakes the top nodes. For microgravity simulations, where the convection is driven by shrinkage, it introduces large variations in the fluid velocity. When the eutectic isotherm reaches a node, all the eutectic must be solidified in a short period, causing an abrupt increase in velocity. To overcome this difficulty, we employed a scheme to numerically predict a more accurate value for the rate of change of fraction of liquid as the liquid in an element solidifies. The new method enables us to contrast results of simulations in which the alloy is subjected to no gravity or a steady-state acceleration versus simulations when the alloy is subjected to vibration disturbances; therefore, the effect of vibration disturbances can be assessed more accurately. To assess the impact of these vibration-perturbations, transient accelerometer data from a space shuttle mission are used as inputs for the simulation model. These on-orbit acceleration data were obtained from the Microgravity Science Division at Glenn Research Center (GRC- MSD) and are applied to the buoyancy term of the momentum equation in a simulation of a Pb-5.8 wt. % Sb alloy that solidifies in a thermal gradient of 4000 K/m and a translation velocity of 3 p d s . Figure 2 shows the vertical velocity of a node that begins in the all-liquid region and subsequently solidifies; the vibrations are applied at 5000 seconds in this simulation. An important difficulty, common to all solidification models based on finite elements or 2 The magnitudes of the velocity oscillations that are vibration-induced are very small and acceptable. The biggest concern is whether the concentration of the liquid near the dendrite tips is distorted because of the vibration-induced perturbations. Results for this case show no concentration oscillations present in the all-liquid region.

  3. Dosimetric Comparison of Combined Intensity-Modulated Radiotherapy (IMRT) and Proton Therapy Versus IMRT Alone for Pelvic and Para-Aortic Radiotherapy in Gynecologic Malignancies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berman Milby, Abigail; Both, Stefan, E-mail: both@uphs.upenn.edu; Ingram, Mark

    2012-03-01

    Purpose: To perform a dosimetric comparison of intensity-modulated radiotherapy (IMRT), passive scattering proton therapy (PSPT), and intensity-modulated proton therapy (IMPT) to the para-aortic (PA) nodal region in women with locally advanced gynecologic malignancies. Methods and Materials: The CT treatment planning scans of 10 consecutive patients treated with IMRT to the pelvis and PA nodes were identified. The clinical target volume was defined by the primary tumor for patients with cervical cancer and by the vagina and paravaginal tissues for patients with endometrial cancer, in addition to the regional lymph nodes. The IMRT, PSPT, and IMPT plans were generated using themore » Eclipse Treatment Planning System and were analyzed for various dosimetric endpoints. Two groups of treatment plans including proton radiotherapy were created: IMRT to pelvic nodes with PSPT to PA nodes (PSPT/IMRT), and IMRT to pelvic nodes with IMPT to PA nodes (IMPT/IMRT). The IMRT and proton RT plans were optimized to deliver 50.4 Gy or Gy (relative biologic effectiveness [RBE)), respectively. Dose-volume histograms were analyzed for all of the organs at risk. The paired t test was used for all statistical comparison. Results: The small-bowel V{sub 20}, V{sub 30}, V{sub 35}, andV{sub 40} were reduced in PSPT/IMRT by 11%, 18%, 27%, and 43%, respectively (p < 0.01). Treatment with IMPT/IMRT demonstrated a 32% decrease in the small-bowel V{sub 20}. Treatment with PSPT/IMRT showed statistically significant reductions in the body V{sub 5-20}; IMPT/IMRT showed reductions in the body V{sub 5-15}. The dose received by half of both kidneys was reduced by PSPT/IMRT and by IMPT/IMRT. All plans maintained excellent coverage of the planning target volume. Conclusions: Compared with IMRT alone, PSPT/IMRT and IMPT/IMRT had a statistically significant decrease in dose to the small and large bowel and kidneys, while maintaining excellent planning target volume coverage. Further studies should be done to correlate the clinical significance of these findings.« less

  4. Excitations in the Yang–Gaudin Bose gas

    DOE PAGES

    Robinson, Neil J.; Konik, Robert M.

    2017-06-01

    Here, we study the excitation spectrum of two-component delta-function interacting bosons confined to a single spatial dimension, the Yang–Gaudin Bose gas. We show that there are pronounced finite-size effects in the dispersion relations of excitations, perhaps best illustrated by the spinon single particle dispersion which exhibits a gap at 2k F and a finite-momentum roton-like minimum. Such features occur at energies far above the finite volume excitation gap, vanish slowly as 1/L for fixed spinon number, and can persist to the thermodynamic limit at fixed spinon density. Features such as the 2k F gap also persist to multi-particle excitation continua. Our results show that excitations in the finite system can behave in a qualitatively different manner to analogous excitations in the thermodynamic limit. The Yang–Gaudin Bose gas is also host to multi-spinon bound states, known asmore » $$\\Lambda$$ -strings. We study these excitations both in the thermodynamic limit under the string hypothesis and in finite size systems where string deviations are taken into account. In the zero-temperature limit we present a simple relation between the length n $$\\Lambda$$-string dressed energies $$\\epsilon_n(\\lambda)$$ and the dressed energy $$\\epsilon(k)$$. We solve the Yang–Yang–Takahashi equations numerically and compare to the analytical solution obtained under the strong couple expansion, revealing that the length n $$\\Lambda$$ -string dressed energy is Lorentzian over a wide range of real string centers λ in the vicinity of $$\\lambda = 0$$ . We then examine the finite size effects present in the dispersion of the two-spinon bound states by numerically solving the Bethe ansatz equations with string deviations.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Neil J.; Konik, Robert M.

    Here, we study the excitation spectrum of two-component delta-function interacting bosons confined to a single spatial dimension, the Yang–Gaudin Bose gas. We show that there are pronounced finite-size effects in the dispersion relations of excitations, perhaps best illustrated by the spinon single particle dispersion which exhibits a gap at 2k F and a finite-momentum roton-like minimum. Such features occur at energies far above the finite volume excitation gap, vanish slowly as 1/L for fixed spinon number, and can persist to the thermodynamic limit at fixed spinon density. Features such as the 2k F gap also persist to multi-particle excitation continua. Our results show that excitations in the finite system can behave in a qualitatively different manner to analogous excitations in the thermodynamic limit. The Yang–Gaudin Bose gas is also host to multi-spinon bound states, known asmore » $$\\Lambda$$ -strings. We study these excitations both in the thermodynamic limit under the string hypothesis and in finite size systems where string deviations are taken into account. In the zero-temperature limit we present a simple relation between the length n $$\\Lambda$$-string dressed energies $$\\epsilon_n(\\lambda)$$ and the dressed energy $$\\epsilon(k)$$. We solve the Yang–Yang–Takahashi equations numerically and compare to the analytical solution obtained under the strong couple expansion, revealing that the length n $$\\Lambda$$ -string dressed energy is Lorentzian over a wide range of real string centers λ in the vicinity of $$\\lambda = 0$$ . We then examine the finite size effects present in the dispersion of the two-spinon bound states by numerically solving the Bethe ansatz equations with string deviations.« less

  6. Multiresolution molecular mechanics: Surface effects in nanoscale materials

    NASA Astrophysics Data System (ADS)

    Yang, Qingcheng; To, Albert C.

    2017-05-01

    Surface effects have been observed to contribute significantly to the mechanical response of nanoscale structures. The newly proposed energy-based coarse-grained atomistic method Multiresolution Molecular Mechanics (MMM) (Yang, To (2015), [57]) is applied to capture surface effect for nanosized structures by designing a surface summation rule SRS within the framework of MMM. Combined with previously proposed bulk summation rule SRB, the MMM summation rule SRMMM is completed. SRS and SRB are consistently formed within SRMMM for general finite element shape functions. Analogous to quadrature rules in finite element method (FEM), the key idea to the good performance of SRMMM lies in that the order or distribution of energy for coarse-grained atomistic model is mathematically derived such that the number, position and weight of quadrature-type (sampling) atoms can be determined. Mathematically, the derived energy distribution of surface area is different from that of bulk region. Physically, the difference is due to the fact that surface atoms lack neighboring bonding. As such, SRS and SRB are employed for surface and bulk domains, respectively. Two- and three-dimensional numerical examples using the respective 4-node bilinear quadrilateral, 8-node quadratic quadrilateral and 8-node hexahedral meshes are employed to verify and validate the proposed approach. It is shown that MMM with SRMMM accurately captures corner, edge and surface effects with less 0.3% degrees of freedom of the original atomistic system, compared against full atomistic simulation. The effectiveness of SRMMM with respect to high order element is also demonstrated by employing the 8-node quadratic quadrilateral to solve a beam bending problem considering surface effect. In addition, the introduced sampling error with SRMMM that is analogous to numerical integration error with quadrature rule in FEM is very small.

  7. A pyramid scheme for three-dimensional diffusion equations on polyhedral meshes

    NASA Astrophysics Data System (ADS)

    Wang, Shuai; Hang, Xudeng; Yuan, Guangwei

    2017-12-01

    In this paper, a new cell-centered finite volume scheme is proposed for three-dimensional diffusion equations on polyhedral meshes, which is called as pyramid scheme (P-scheme). The scheme is designed for polyhedral cells with nonplanar cell-faces. The normal flux on a nonplanar cell-face is discretized on a planar face, which is determined by a simple optimization procedure. The resulted discrete form of the normal flux involves only cell-centered and cell-vertex unknowns, and is free from face-centered unknowns. In the case of hexahedral meshes with skewed nonplanar cell-faces, a quite simple expression is obtained for the discrete normal flux. Compared with the second order accurate O-scheme [31], the P-scheme is more robust and the discretization cost is reduced remarkably. Numerical results are presented to show the performance of the P-scheme on various kinds of distorted meshes. In particular, the P-scheme is shown to be second order accurate.

  8. Superimposition of maximal stress and necrosis areas at the top of the femoral head in hip aseptic osteonecrosis.

    PubMed

    Escudier, J-C; Ollivier, M; Donnez, M; Parratte, S; Lafforgue, P; Argenson, J-N

    2018-05-01

    Recent reports described possible mechanical factors in the development and aggravation of osteonecrosis of the femoral head (OFH), but these have yet to be confirmed on dedicated mechanical study. We therefore developed a 3D finite element model based on in-vivo data from patients with incipient OFH, with a view to determining whether the necrosis area was superimposed on the maximal stress area on the femoral head. The location of the necrosis area is determined by stress on the femoral head. All patients from the rheumatology department with early stage OFH in our center were investigated. Analysis of CT scans showed stress distribution on the head by 3D finite elements models, enabling determination of necrosis volume within the maximal stress area and of the percentage intersection of necrosis within the stress area (%I n/s: necrosis volume in stress area divided by total stress area volume and multiplied by 100) and of stress within the necrosis area (%I s/n: stress volume in necrosis area divided by total necrosis area volume and multiplied by 100). Nineteen of the 161 patients assessed retrospectively for the period between 2006 and 2015 had incipient unilateral OFH, 10 of whom (4 right, 6 left) had CT scans of sufficient quality for inclusion. Mean age was 52 years (range, 37-81 years). Mean maximal stress was 1.63MPa, mean maximal exported stress volume was 2,236.9 mm 3 and mean necrosis volume 6,291.1 mm 3 . Mean %I n/s was 83% and mean %I s/n 35%, with no significant differences according to gender, age, side or stress volume. There was a strong inverse correlation between necrosis volume and %I s/n (R 2 =-0.92) and a strong direct correlation between exported stress volume and %I s/n (R 2 =0.55). %I s/n was greater in small necrosis (<7,000mm 3 ). OFH seems to develop within the maximal stress area on the femoral head. The present results need confirmation by larger-scale studies. We consider it essential to take account of these mechanical parameters to reduce failure rates in conservative treatment of OFH. IV. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  9. Higher order cumulants in colorless partonic plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherif, S.; Laboratoire de Physique et de Mathématiques Appliquées; Ahmed, M. A. A.

    2016-06-10

    Any physical system considered to study the QCD deconfinement phase transition certainly has a finite volume, so the finite size effects are inevitably present. This renders the location of the phase transition and the determination of its order as an extremely difficult task, even in the simplest known cases. In order to identify and locate the colorless QCD deconfinement transition point in finite volume T{sub 0}(V), a new approach based on the finite-size cumulant expansion of the order parameter and the ℒ{sub m,n}-Method is used. We have shown that both cumulants of higher order and their ratios, associated to themore » thermodynamical fluctuations of the order parameter, in QCD deconfinement phase transition behave in a particular enough way revealing pronounced oscillations in the transition region. The sign structure and the oscillatory behavior of these in the vicinity of the deconfinement phase transition point might be a sensitive probe and may allow one to elucidate their relation to the QCD phase transition point. In the context of our model, we have shown that the finite volume transition point is always associated to the appearance of a particular point in whole higher order cumulants under consideration.« less

  10. An Analysis of the Centaur Ground Processing System at the Kennedy Space Center/Cape Canaveral AFS.

    DTIC Science & Technology

    1985-12-01

    SPONSORING 8tn OFF ICE SYMBOL 9 . PROCUREMENT INSTRUMENT IDENTIFiCATION NUMBER 0 RG4NICATICN II appsicable, * cADDRESS C-;t,. S:sI. and~ /11’ L,a,, .0...The PERT Network................8 2. The SLAM Model................. 9 F. Outline of the Paper................13 Ii. The Shuttle/Centaur G System...104 9 . AWAIT NODE..................104 10. FREE NODE...................105 11. ASSIGN NODE..................105 w 12. COLCT NODE

  11. Comparison of radiated noise from shrouded and unshrouded propellers

    NASA Technical Reports Server (NTRS)

    Eversman, Walter

    1992-01-01

    The ducted propeller in a free field is modeled using the finite element method. The generation, propagation, and radiation of sound from a ducted fan is described by the convened wave equation with volumetric body forces. Body forces are used to introduce the blade loading for rotating blades and stationary exit guide vanes. For an axisymmetric nacelle or shroud, the problem is formulated in cylindrical coordinates. For a specified angular harmonic, the angular coordinate is eliminated, resulting in a two-dimensional representation. A finite element discretization based on nine-node quadratic isoparametric elements is used.

  12. Finite element model for brittle fracture and fragmentation

    DOE PAGES

    Li, Wei; Delaney, Tristan J.; Jiao, Xiangmin; ...

    2016-06-01

    A new computational model for brittle fracture and fragmentation has been developed based on finite element analysis of non-linear elasticity equations. The proposed model propagates the cracks by splitting the mesh nodes alongside the most over-strained edges based on the principal direction of strain tensor. To prevent elements from overlapping and folding under large deformations, robust geometrical constraints using the method of Lagrange multipliers have been incorporated. In conclusion, the model has been applied to 2D simulations of the formation and propagation of cracks in brittle materials, and the fracture and fragmentation of stretched and compressed materials.

  13. Finite element model for brittle fracture and fragmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei; Delaney, Tristan J.; Jiao, Xiangmin

    A new computational model for brittle fracture and fragmentation has been developed based on finite element analysis of non-linear elasticity equations. The proposed model propagates the cracks by splitting the mesh nodes alongside the most over-strained edges based on the principal direction of strain tensor. To prevent elements from overlapping and folding under large deformations, robust geometrical constraints using the method of Lagrange multipliers have been incorporated. In conclusion, the model has been applied to 2D simulations of the formation and propagation of cracks in brittle materials, and the fracture and fragmentation of stretched and compressed materials.

  14. Multisource passive acoustic tracking: an application of random finite set data fusion

    NASA Astrophysics Data System (ADS)

    Ali, Andreas M.; Hudson, Ralph E.; Lorenzelli, Flavio; Yao, Kung

    2010-04-01

    Multisource passive acoustic tracking is useful in animal bio-behavioral study by replacing or enhancing human involvement during and after field data collection. Multiple simultaneous vocalizations are a common occurrence in a forest or a jungle, where many species are encountered. Given a set of nodes that are capable of producing multiple direction-of-arrivals (DOAs), such data needs to be combined into meaningful estimates. Random Finite Set provides the mathematical probabilistic model, which is suitable for analysis and optimal estimation algorithm synthesis. Then the proposed algorithm has been verified using a simulation and a controlled test experiment.

  15. Assessing a mini-application as a performance proxy for a finite element method engineering application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Paul T.; Heroux, Michael A.; Barrett, Richard F.

    The performance of a large-scale, production-quality science and engineering application (‘app’) is often dominated by a small subset of the code. Even within that subset, computational and data access patterns are often repeated, so that an even smaller portion can represent the performance-impacting features. If application developers, parallel computing experts, and computer architects can together identify this representative subset and then develop a small mini-application (‘miniapp’) that can capture these primary performance characteristics, then this miniapp can be used to both improve the performance of the app as well as provide a tool for co-design for the high-performance computing community.more » However, a critical question is whether a miniapp can effectively capture key performance behavior of an app. This study provides a comparison of an implicit finite element semiconductor device modeling app on unstructured meshes with an implicit finite element miniapp on unstructured meshes. The goal is to assess whether the miniapp is predictive of the performance of the app. Finally, single compute node performance will be compared, as well as scaling up to 16,000 cores. Results indicate that the miniapp can be reasonably predictive of the performance characteristics of the app for a single iteration of the solver on a single compute node.« less

  16. Assessing a mini-application as a performance proxy for a finite element method engineering application

    DOE PAGES

    Lin, Paul T.; Heroux, Michael A.; Barrett, Richard F.; ...

    2015-07-30

    The performance of a large-scale, production-quality science and engineering application (‘app’) is often dominated by a small subset of the code. Even within that subset, computational and data access patterns are often repeated, so that an even smaller portion can represent the performance-impacting features. If application developers, parallel computing experts, and computer architects can together identify this representative subset and then develop a small mini-application (‘miniapp’) that can capture these primary performance characteristics, then this miniapp can be used to both improve the performance of the app as well as provide a tool for co-design for the high-performance computing community.more » However, a critical question is whether a miniapp can effectively capture key performance behavior of an app. This study provides a comparison of an implicit finite element semiconductor device modeling app on unstructured meshes with an implicit finite element miniapp on unstructured meshes. The goal is to assess whether the miniapp is predictive of the performance of the app. Finally, single compute node performance will be compared, as well as scaling up to 16,000 cores. Results indicate that the miniapp can be reasonably predictive of the performance characteristics of the app for a single iteration of the solver on a single compute node.« less

  17. Performance of an MPI-only semiconductor device simulator on a quad socket/quad core InfiniBand platform.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shadid, John Nicolas; Lin, Paul Tinphone

    2009-01-01

    This preliminary study considers the scaling and performance of a finite element (FE) semiconductor device simulator on a capacity cluster with 272 compute nodes based on a homogeneous multicore node architecture utilizing 16 cores. The inter-node communication backbone for this Tri-Lab Linux Capacity Cluster (TLCC) machine is comprised of an InfiniBand interconnect. The nonuniform memory access (NUMA) nodes consist of 2.2 GHz quad socket/quad core AMD Opteron processors. The performance results for this study are obtained with a FE semiconductor device simulation code (Charon) that is based on a fully-coupled Newton-Krylov solver with domain decomposition and multilevel preconditioners. Scaling andmore » multicore performance results are presented for large-scale problems of 100+ million unknowns on up to 4096 cores. A parallel scaling comparison is also presented with the Cray XT3/4 Red Storm capability platform. The results indicate that an MPI-only programming model for utilizing the multicore nodes is reasonably efficient on all 16 cores per compute node. However, the results also indicated that the multilevel preconditioner, which is critical for large-scale capability type simulations, scales better on the Red Storm machine than the TLCC machine.« less

  18. Extrusion Process by Finite Volume Method Using OpenFoam Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matos Martins, Marcelo; Tonini Button, Sergio; Divo Bressan, Jose

    The computational codes are very important tools to solve engineering problems. In the analysis of metal forming process, such as extrusion, this is not different because the computational codes allow analyzing the process with reduced cost. Traditionally, the Finite Element Method is used to solve solid mechanic problems, however, the Finite Volume Method (FVM) have been gaining force in this field of applications. This paper presents the velocity field and friction coefficient variation results, obtained by numerical simulation using the OpenFoam Software and the FVM to solve an aluminum direct cold extrusion process.

  19. KENNEDY SPACE CENTER, FLA. - An overhead crane in the Space Station Processing Facility is attached to the U.S. Node 2 to lift it out of its shipping container. The node will be moved to a workstand. The second of three connecting modules on the International Space Station, the Italian-built Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

    NASA Image and Video Library

    2003-06-03

    KENNEDY SPACE CENTER, FLA. - An overhead crane in the Space Station Processing Facility is attached to the U.S. Node 2 to lift it out of its shipping container. The node will be moved to a workstand. The second of three connecting modules on the International Space Station, the Italian-built Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

  20. Collective strong coupling with homogeneous Rabi frequencies using a 3D lumped element microwave resonator

    NASA Astrophysics Data System (ADS)

    Angerer, Andreas; Astner, Thomas; Wirtitsch, Daniel; Sumiya, Hitoshi; Onoda, Shinobu; Isoya, Junichi; Putz, Stefan; Majer, Johannes

    2016-07-01

    We design and implement 3D-lumped element microwave cavities that spatially focus magnetic fields to a small mode volume. They allow coherent and uniform coupling to electron spins hosted by nitrogen vacancy centers in diamond. We achieve large homogeneous single spin coupling rates, with an enhancement of more than one order of magnitude compared to standard 3D cavities with a fundamental resonance at 3 GHz. Finite element simulations confirm that the magnetic field distribution is homogeneous throughout the entire sample volume, with a root mean square deviation of 1.54%. With a sample containing 1017 nitrogen vacancy electron spins, we achieve a collective coupling strength of Ω = 12 MHz, a cooperativity factor C = 27, and clearly enter the strong coupling regime. This allows to interface a macroscopic spin ensemble with microwave circuits, and the homogeneous Rabi frequency paves the way to manipulate the full ensemble population in a coherent way.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolton, Daniel R.; Briceno, Raul A.; Wilson, David J.

    Here, we present a determination of the isovector,more » $P$-wave $$\\pi\\pi$$ scattering phase shift obtained by extrapolating recent lattice QCD results from the Hadron Spectrum Collaboration using $$m_\\pi =236$$ MeV. The finite volume spectra are described using extensions of L\\"uscher's method to determine the infinite volume Unitarized Chiral Perturbation Theory scattering amplitude. We exploit the pion mass dependence of this effective theory to obtain the scattering amplitude at $$m_\\pi= 140$$ MeV. The scattering phase shift is found to be in good agreement with experiment up to center of mass energies of 1.2 GeV. The analytic continuation of the scattering amplitude to the complex plane yields a $$\\rho$$-resonance pole at $$E_\\rho= \\left[755(2)(1)(^{20}_{02})-\\frac{i}{2}\\,129(3)(1)(^{7}_{1})\\right]~{\\rm MeV}$$. The techniques presented illustrate a possible pathway towards connecting lattice QCD observables of few-body, strongly interacting systems to experimentally accessible quantities.« less

  2. Finite Volume Methods: Foundation and Analysis

    NASA Technical Reports Server (NTRS)

    Barth, Timothy; Ohlberger, Mario

    2003-01-01

    Finite volume methods are a class of discretization schemes that have proven highly successful in approximating the solution of a wide variety of conservation law systems. They are extensively used in fluid mechanics, porous media flow, meteorology, electromagnetics, models of biological processes, semi-conductor device simulation and many other engineering areas governed by conservative systems that can be written in integral control volume form. This article reviews elements of the foundation and analysis of modern finite volume methods. The primary advantages of these methods are numerical robustness through the obtention of discrete maximum (minimum) principles, applicability on very general unstructured meshes, and the intrinsic local conservation properties of the resulting schemes. Throughout this article, specific attention is given to scalar nonlinear hyperbolic conservation laws and the development of high order accurate schemes for discretizing them. A key tool in the design and analysis of finite volume schemes suitable for non-oscillatory discontinuity capturing is discrete maximum principle analysis. A number of building blocks used in the development of numerical schemes possessing local discrete maximum principles are reviewed in one and several space dimensions, e.g. monotone fluxes, E-fluxes, TVD discretization, non-oscillatory reconstruction, slope limiters, positive coefficient schemes, etc. When available, theoretical results concerning a priori and a posteriori error estimates are given. Further advanced topics are then considered such as high order time integration, discretization of diffusion terms and the extension to systems of nonlinear conservation laws.

  3. Growing optimal scale-free networks via likelihood

    NASA Astrophysics Data System (ADS)

    Small, Michael; Li, Yingying; Stemler, Thomas; Judd, Kevin

    2015-04-01

    Preferential attachment, by which new nodes attach to existing nodes with probability proportional to the existing nodes' degree, has become the standard growth model for scale-free networks, where the asymptotic probability of a node having degree k is proportional to k-γ. However, the motivation for this model is entirely ad hoc. We use exact likelihood arguments and show that the optimal way to build a scale-free network is to attach most new links to nodes of low degree. Curiously, this leads to a scale-free network with a single dominant hub: a starlike structure we call a superstar network. Asymptotically, the optimal strategy is to attach each new node to one of the nodes of degree k with probability proportional to 1/N +ζ (γ ) (k+1 ) γ (in a N node network): a stronger bias toward high degree nodes than exhibited by standard preferential attachment. Our algorithm generates optimally scale-free networks (the superstar networks) as well as randomly sampling the space of all scale-free networks with a given degree exponent γ . We generate viable realization with finite N for 1 ≪γ <2 as well as γ >2 . We observe an apparently discontinuous transition at γ ≈2 between so-called superstar networks and more treelike realizations. Gradually increasing γ further leads to reemergence of a superstar hub. To quantify these structural features, we derive a new analytic expression for the expected degree exponent of a pure preferential attachment process and introduce alternative measures of network entropy. Our approach is generic and can also be applied to an arbitrary degree distribution.

  4. Spectral (Finite) Volume Method for Conservation Laws on Unstructured Grids II: Extension to Two Dimensional Scalar Equation

    NASA Technical Reports Server (NTRS)

    Wang, Z. J.; Liu, Yen; Kwak, Dochan (Technical Monitor)

    2002-01-01

    The framework for constructing a high-order, conservative Spectral (Finite) Volume (SV) method is presented for two-dimensional scalar hyperbolic conservation laws on unstructured triangular grids. Each triangular grid cell forms a spectral volume (SV), and the SV is further subdivided into polygonal control volumes (CVs) to supported high-order data reconstructions. Cell-averaged solutions from these CVs are used to reconstruct a high order polynomial approximation in the SV. Each CV is then updated independently with a Godunov-type finite volume method and a high-order Runge-Kutta time integration scheme. A universal reconstruction is obtained by partitioning all SVs in a geometrically similar manner. The convergence of the SV method is shown to depend on how a SV is partitioned. A criterion based on the Lebesgue constant has been developed and used successfully to determine the quality of various partitions. Symmetric, stable, and convergent linear, quadratic, and cubic SVs have been obtained, and many different types of partitions have been evaluated. The SV method is tested for both linear and non-linear model problems with and without discontinuities.

  5. Determination of baryon-baryon elastic scattering phase shift from finite volume spectra in elongated boxes

    NASA Astrophysics Data System (ADS)

    Li, Ning; Wu, Ya-Jie; Liu, Zhan-Wei

    2018-01-01

    The relations between the baryon-baryon elastic scattering phase shifts and the two-particle energy spectrum in the elongated box are established. We studied the cases with both the periodic boundary condition and twisted boundary condition in the center of mass frame. The framework is also extended to the system of nonzero total momentum with periodic boundary condition in the moving frame. Moreover, we discussed the sensitivity functions σ (q ) that represent the sensitivity of higher scattering phases. Our analytical results will be helpful to extract the baryon-baryon elastic scattering phase shifts in the continuum from lattice QCD data by using elongated boxes.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giunta, G.; Belouettar, S.

    In this paper, the static response of three-dimensional beams made of functionally graded materials is investigated through a family of hierarchical one-dimensional finite elements. A wide variety of elements is proposed differing by the kinematic formulation and the number of nodes per elements along the beam axis. Elements’ stiffness matrix and load vector are derived in a unified nuclear form that does not depend upon the a priori expansion order over the cross-section nor the finite element approximation along the beam axis. Results are validated towards three-dimensional finite element models as well as equivalent Navier-type analytical solutions. The numerical investigationsmore » show that accurate and efficient solutions (when compared with full three-dimensional FEM solutions) can be obtained by the proposed family of hierarchical one-dimensional elements’ family.« less

  7. Distribution of Prostate Sentinel Nodes: A SPECT-Derived Anatomic Atlas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganswindt, Ute, E-mail: ute.ganswindt@med.uni-muenchen.d; Schilling, David; Mueller, Arndt-Christian

    2011-04-01

    Purpose: The randomized Radiation Therapy Oncology Group 94-13 trial revealed that coverage of the pelvic lymph nodes in high-risk prostate cancer confers an advantage (progression-free survival and biochemical failure) in patients with {>=}15% risk of lymph node involvement. To facilitate an improved definition of the adjuvant target volume, precise knowledge regarding the location of the relevant lymph nodes is necessary. Therefore, we generated a three-dimensional sentinel lymph node atlas. Methods and Materials: In 61 patients with high-risk prostate cancer, a three-dimensional visualization of sentinel lymph nodes was performed using a single photon emission computed tomography system after transrectal intraprostatic injectionmore » of 150 to 362 (median 295) mega becquerel (MBq) {sup 99m}Technetium-nanocolloid (1.5-3h after injection) followed by an anatomic functional image fusion. Results: In all, 324 sentinel nodes in 59 of 61 patients (96.7%) were detected, with 0 to 13 nodes per patient (median 5, mean 5.3). The anatomic distribution of the sentinel nodes was as follows: external iliac 34.3%, internal iliac 17.9%, common iliac 12.7%, sacral 8.6%, perirectal 6.2%, left paraaortic 5.3%, right paraaortic 5.3%, seminal vesicle lymphatic plexus 3.1%, deep inguinal 1.5%, superior rectal 1.2%, internal pudendal 1.2%, perivesical 0.9%, inferior rectal 0.9%, retroaortic 0.3%, superficial inguinal 0.3%, and periprostatic 0.3%. Conclusions: The distribution of sentinel nodes as detected by single photon emission computed tomography imaging correlates well with the distribution determined by intraoperative gamma probe detection. A lower detection rate of sentinels in close proximity to the bladder and seminal vesicles is probably caused by the radionuclide accumulation in the bladder. In regard to intensity-modulated radiotherapy techniques, the presented anatomic atlas may allow optimized target volume definitions.« less

  8. Incorporation of Condensation Heat Transfer in a Flow Network Code

    NASA Technical Reports Server (NTRS)

    Anthony, Miranda; Majumdar, Alok

    2002-01-01

    Pure water is distilled from waste water in the International Space Station. The distillation assembly consists of an evaporator, a compressor and a condenser. Vapor is periodically purged from the condenser to avoid vapor accumulation. Purged vapor is condensed in a tube by coolant water prior to entering the purge pump. The paper presents a condensation model of purged vapor in a tube. This model is based on the Finite Volume Method. In the Finite Volume Method, the flow domain is discretized into multiple control volumes and a simultaneous analysis is performed.

  9. Thermodynamic evaluation of transonic compressor rotors using the finite volume approach

    NASA Technical Reports Server (NTRS)

    Moore, John; Nicholson, Stephen; Moore, Joan G.

    1986-01-01

    The development of a computational capability to handle viscous flow with an explicit time-marching method based on the finite volume approach is summarized. Emphasis is placed on the extensions to the computational procedure which allow the handling of shock induced separation and large regions of strong backflow. Appendices contain abstracts of papers and whole reports generated during the contract period.

  10. Numerical approach for finite volume three-body interaction

    NASA Astrophysics Data System (ADS)

    Guo, Peng; Gasparian, Vladimir

    2018-01-01

    In the present work, we study a numerical approach to one dimensional finite volume three-body interaction, the method is demonstrated by considering a toy model of three spinless particles interacting with pair-wise δ -function potentials. The numerical results are compared with the exact solutions of three spinless bosons interaction when the strength of short-range interactions are set equal for all pairs.

  11. Deformation analysis of rotary combustion engine housings

    NASA Technical Reports Server (NTRS)

    Vilmann, Carl

    1991-01-01

    This analysis of the deformation of rotary combustion engine housings targeted the following objectives: (1) the development and verification of a finite element model of the trochoid housing, (2) the prediction of the stress and deformation fields present within the trochoid housing during operating conditions, and (3) the development of a specialized preprocessor which would shorten the time necessary for mesh generation of a trochoid housing's FEM model from roughly one month to approximately two man hours. Executable finite element models were developed for both the Mazda and the Outboard Marine Corporation trochoid housings. It was also demonstrated that a preprocessor which would hasten the generation of finite element models of a rotary engine was possible to develop. The above objectives are treated in detail in the attached appendices. The first deals with finite element modeling of a Wankel engine center housing, and the second with the development of a preprocessor that generates finite element models of rotary combustion engine center housings. A computer program, designed to generate finite element models of user defined rotary combustion engine center housing geometries, is also included.

  12. The Relation of Finite Element and Finite Difference Methods

    NASA Technical Reports Server (NTRS)

    Vinokur, M.

    1976-01-01

    Finite element and finite difference methods are examined in order to bring out their relationship. It is shown that both methods use two types of discrete representations of continuous functions. They differ in that finite difference methods emphasize the discretization of independent variable, while finite element methods emphasize the discretization of dependent variable (referred to as functional approximations). An important point is that finite element methods use global piecewise functional approximations, while finite difference methods normally use local functional approximations. A general conclusion is that finite element methods are best designed to handle complex boundaries, while finite difference methods are superior for complex equations. It is also shown that finite volume difference methods possess many of the advantages attributed to finite element methods.

  13. Evaluation of an EIT reconstruction algorithm using finite difference human thorax models as phantoms.

    PubMed

    Patterson, Robert P; Zhang, Jie

    2003-05-01

    A finite difference model of the human thorax with 113,400 control volumes (nodes) based on ECG gated MRI images was used to evaluate the Sheffield DAS-01P EIT system. Sixteen simulated electrode positions equally spaced around the thorax model at approximately the fourth intercostals space level were selected. Pairs of adjacent positions were excited sequentially by injecting current in a manner similar to that used by the Sheffield DAS-01P EIT system. The resulting voltages on the non-excited electrode positions were calculated and used to reconstruct the image using the Sheffield filtered back projection algorithm. By changing the resistivities of the lungs, the ventricles and the atria over a range of 1% to 40%, the resulting changes in the images were quantified by measuring the average resistivity change over a region defined automatically by two thresholds, 40% or 80% of the average of the first four pixels with the largest change. The results show that the changes observed in the images are consistently less than the changes in the model, but changed in a nearly linear manner as a function of resistivity in the model. For 40% resistivity changes in the model for right lung, right ventricle and right atrium, the observed resistivity changes in the region of interest (ROI, defined by the 80% threshold) of the images are 32% for the right lung, 11% for the right ventricle and 5.5% for the right atrium, which suggests strong volume dependence of EIT imaging. The effect of structural (size) change between end diastole and end systole was also studied, which showed large resistivity changes caused in the heart region of the constructed image. The study demonstrates that the Sheffield DAS-01P EIT reconstruction algorithm tracks the change occurring in the lungs most closely and with proper scaling may be used to observe physiological changes.

  14. Project APhiD: A Lorenz-gauged A-Φ decomposition for parallelized computation of ultra-broadband electromagnetic induction in a fully heterogeneous Earth

    NASA Astrophysics Data System (ADS)

    Weiss, Chester J.

    2013-08-01

    An essential element for computational hypothesis testing, data inversion and experiment design for electromagnetic geophysics is a robust forward solver, capable of easily and quickly evaluating the electromagnetic response of arbitrary geologic structure. The usefulness of such a solver hinges on the balance among competing desires like ease of use, speed of forward calculation, scalability to large problems or compute clusters, parsimonious use of memory access, accuracy and by necessity, the ability to faithfully accommodate a broad range of geologic scenarios over extremes in length scale and frequency content. This is indeed a tall order. The present study addresses recent progress toward the development of a forward solver with these properties. Based on the Lorenz-gauged Helmholtz decomposition, a new finite volume solution over Cartesian model domains endowed with complex-valued electrical properties is shown to be stable over the frequency range 10-2-1010 Hz and range 10-3-105 m in length scale. Benchmark examples are drawn from magnetotellurics, exploration geophysics, geotechnical mapping and laboratory-scale analysis, showing excellent agreement with reference analytic solutions. Computational efficiency is achieved through use of a matrix-free implementation of the quasi-minimum-residual (QMR) iterative solver, which eliminates explicit storage of finite volume matrix elements in favor of "on the fly" computation as needed by the iterative Krylov sequence. Further efficiency is achieved through sparse coupling matrices between the vector and scalar potentials whose non-zero elements arise only in those parts of the model domain where the conductivity gradient is non-zero. Multi-thread parallelization in the QMR solver through OpenMP pragmas is used to reduce the computational cost of its most expensive step: the single matrix-vector product at each iteration. High-level MPI communicators farm independent processes to available compute nodes for simultaneous computation of multi-frequency or multi-transmitter responses.

  15. International Space Station Node 1 is moved for leak test

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Node 1, the first element for the International Space Station, and attached Pressurized Mating Adapter-1 continue with prelaunch preparation activities at KSC's Space Station Processing Facility. Node 1 is a connecting passageway to the living and working areas of the space station. The node is seen here being moved into the Shuttle payload transportation canister, where the doors will be closed for a two-week leak check. The node was moved to the canister from the element rotation stand, or test stand, where it underwent an interim weight and center of gravity determination. The final determination is planned to be performed prior to transporting Node 1 to the launch pad. Node 1 is scheduled to fly on STS-88.

  16. International Space Station Node 1 is moved for leak test

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Node 1, the first U.S. element for the International Space Station, and attached Pressurized Mating Adapter-1 continue with prelaunch preparation activities at KSC's Space Station Processing Facility. Node 1 is a connecting passageway to the living and working areas of the space station. The node and PMA-1 are being removed from the element rotation stand, or test stand, where they underwent an interim weight and center of gravity determination. (The final determination is planned to be performed prior to transporting Node 1 to the launch pad.) Now the node is being moved to the Shuttle payload transportation canister, where the doors will be closed for a two-week leak check. Node 1 is scheduled to fly on STS-88.

  17. Potential advantage of studying the lymphatic drainage by sentinel node technique and SPECT-CT image fusion for pelvic irradiation of prostate cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krengli, Marco; Ballare, Andrea; Cannillo, Barbara

    2006-11-15

    Purpose: This study aims to investigate the in vivo drainage of lymphatic spread by using the sentinel node (SN) technique and single-photon emission computed tomography (SPECT)-computed tomography (CT) image fusion, and to analyze the impact of such information on conformal pelvic irradiation. Methods and Materials: Twenty-three prostate cancer patients, candidates for radical prostatectomy already included in a trial studying the SN technique, were enrolled. CT and SPECT images were obtained after intraprostate injection of 115 MBq of {sup 99m}Tc-nanocolloid, allowing identification of SN and other pelvic lymph nodes. Target and nontarget structures, including lymph nodes identified by SPECT, were drawnmore » on SPECT-CT fusion images. A three-dimensional conformal treatment plan was performed for each patient. Results: Single-photon emission computed tomography lymph nodal uptake was detected in 20 of 23 cases (87%). The SN was inside the pelvic clinical target volume (CTV{sub 2}) in 16 of 20 cases (80%) and received no less than the prescribed dose in 17 of 20 cases (85%). The most frequent locations of SN outside the CTV{sub 2} were the common iliac and presacral lymph nodes. Sixteen of the 32 other lymph nodes (50%) identified by SPECT were found outside the CTV{sub 2}. Overall, the SN and other intrapelvic lymph nodes identified by SPECT were not included in the CTV{sub 2} in 5 of 20 (25%) patients. Conclusions: The study of lymphatic drainage can contribute to a better knowledge of the in vivo potential pattern of lymph node metastasis in prostate cancer and can lead to a modification of treatment volume with consequent optimization of pelvic irradiation.« less

  18. Precise calculation of a bond percolation transition and survival rates of nodes in a complex network.

    PubMed

    Kawamoto, Hirokazu; Takayasu, Hideki; Jensen, Henrik Jeldtoft; Takayasu, Misako

    2015-01-01

    Through precise numerical analysis, we reveal a new type of universal loopless percolation transition in randomly removed complex networks. As an example of a real-world network, we apply our analysis to a business relation network consisting of approximately 3,000,000 links among 300,000 firms and observe the transition with critical exponents close to the mean-field values taking into account the finite size effect. We focus on the largest cluster at the critical point, and introduce survival probability as a new measure characterizing the robustness of each node. We also discuss the relation between survival probability and k-shell decomposition.

  19. Quantifying uncertainties in the structural response of SSME blades

    NASA Technical Reports Server (NTRS)

    Nagpal, Vinod K.

    1987-01-01

    To quantify the uncertainties associated with the geometry and material properties of a Space Shuttle Main Engine (SSME) turbopump blade, a computer code known as STAEBL was used. A finite element model of the blade used 80 triangular shell elements with 55 nodes and five degrees of freedom per node. The whole study was simulated on the computer and no real experiments were conducted. The structural response has been evaluated in terms of three variables which are natural frequencies, root (maximum) stress, and blade tip displacements. The results of the study indicate that only the geometric uncertainties have significant effects on the response. Uncertainties in material properties have insignificant effects.

  20. Nontrivial thermodynamics in 't Hooft's large-N limit

    NASA Astrophysics Data System (ADS)

    Cubero, Axel Cortés

    2015-05-01

    We study the finite volume/temperature correlation functions of the (1 +1 )-dimensional SU (N ) principal chiral sigma model in the planar limit. The exact S-matrix of the sigma model is known to simplify drastically at large N , and this leads to trivial thermodynamic Bethe ansatz (TBA) equations. The partition function, if derived using the TBA, can be shown to be that of free particles. We show that the correlation functions and expectation values of operators at finite volume/temperature are not those of the free theory, and that the TBA does not give enough information to calculate them. Our analysis is done using the Leclair-Mussardo formula for finite-volume correlators, and knowledge of the exact infinite-volume form factors. We present analytical results for the one-point function of the energy-momentum tensor, and the two-point function of the renormalized field operator. The results for the energy-momentum tensor can be used to define a nontrivial partition function.

  1. Simulation studies of vestibular macular afferent-discharge patterns using a new, quasi-3-D finite volume method

    NASA Technical Reports Server (NTRS)

    Ross, M. D.; Linton, S. W.; Parnas, B. R.

    2000-01-01

    A quasi-three-dimensional finite-volume numerical simulator was developed to study passive voltage spread in vestibular macular afferents. The method, borrowed from computational fluid dynamics, discretizes events transpiring in small volumes over time. The afferent simulated had three calyces with processes. The number of processes and synapses, and direction and timing of synapse activation, were varied. Simultaneous synapse activation resulted in shortest latency, while directional activation (proximal to distal and distal to proximal) yielded most regular discharges. Color-coded visualizations showed that the simulator discretized events and demonstrated that discharge produced a distal spread of voltage from the spike initiator into the ending. The simulations indicate that directional input, morphology, and timing of synapse activation can affect discharge properties, as must also distal spread of voltage from the spike initiator. The finite volume method has generality and can be applied to more complex neurons to explore discrete synaptic effects in four dimensions.

  2. KSC-04pd1676

    NASA Image and Video Library

    2004-08-24

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, a worker observes data from the Traveled Work Systems Test (TWST) conducted on the Node 2. The TWST executes open work that traveled with the Node 2 from Italy and simulates the on-orbit activation sequence. Node 2 was powered up Aug. 19 for the testing. The second of three Space Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Node 2 is scheduled to launch on mission STS-120, assembly flight 10A to the International Space Station.

  3. KSC-2009-3613

    NASA Image and Video Library

    2009-06-08

    CAPE CANAVERAL, Fla. – During a media event in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida to showcase the newest section of the International Space Station, the Tranquility node, astronauts who will deliver the node on the STS-130 mission were available for questions. From left are Pilot Terry Virts and Mission Specialists Stephen Robinson and Kathryn Hire. At right are other guests, Philippe Deloo, ISS Nodes project manager with the European Space Agency, and Rafael Garcia, ISS Nodes and Express Logistics Carrier project manager with NASA's Johnson Space Center. Managers from NASA, the European Space Agency, Thales Alenia Space and Boeing -- the organizations involved in building and processing the module for flight -- were available for a question-and-answer session during the event. Tranquility is a pressurized module that will provide room for many of the station's life support systems. Photo credit: NASA/Jim Grossmann

  4. KENNEDY SPACE CENTER, FLA. - STS-120 Mission Specialists Piers Sellers and Michael Foreman are in the Space Station Processing Facility for hardware familiarization. The mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - STS-120 Mission Specialists Piers Sellers and Michael Foreman are in the Space Station Processing Facility for hardware familiarization. The mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.

  5. Finite deformation of incompressible fiber-reinforced elastomers: A computational micromechanics approach

    NASA Astrophysics Data System (ADS)

    Moraleda, Joaquín; Segurado, Javier; LLorca, Javier

    2009-09-01

    The in-plane finite deformation of incompressible fiber-reinforced elastomers was studied using computational micromechanics. Composite microstructure was made up of a random and homogeneous dispersion of aligned rigid fibers within a hyperelastic matrix. Different matrices (Neo-Hookean and Gent), fibers (monodisperse or polydisperse, circular or elliptical section) and reinforcement volume fractions (10-40%) were analyzed through the finite element simulation of a representative volume element of the microstructure. A successive remeshing strategy was employed when necessary to reach the large deformation regime in which the evolution of the microstructure influences the effective properties. The simulations provided for the first time "quasi-exact" results of the in-plane finite deformation for this class of composites, which were used to assess the accuracy of the available homogenization estimates for incompressible hyperelastic composites.

  6. Moduli thermalization and finite temperature effects in "big" divisor large volume D3/ D7 Swiss-cheese compactification

    NASA Astrophysics Data System (ADS)

    Shukla, Pramod

    2011-01-01

    In the context of Type IIB compactified on a large volume Swiss-Cheese orientifold in the presence of a mobile space-time filling D3-brane and stacks of fluxed D7-branes wrapping the "big" divisor Σ B of a Swiss-Cheese Calabi Yau in WCP 4[1, 1, 1, 6, 9], we explore various implications of moduli dynamics and discuss their couplings and decay into MSSM (-like) matter fields early in the history of universe to reach thermal equilibrium. Like finite temperature effects in O'KKLT, we observe that the local minimum of zero-temperature effective scalar potential is stable against any finite temperature corrections (up to two-loops) in large volume scenarios as well. Also we find that moduli are heavy enough to avoid any cosmological moduli problem.

  7. The unstaggered extension to GFDL's FV3 dynamical core on the cubed-sphere

    NASA Astrophysics Data System (ADS)

    Chen, X.; Lin, S. J.; Harris, L.

    2017-12-01

    Finite-volume schemes have become popular for atmospheric transport since they provide intrinsic mass conservation to constituent species. Many CFD codes use unstaggered discretizations for finite volume methods with an approximate Riemann solver. However, this approach is inefficient for geophysical flows due to the complexity of the Riemann solver. We introduce a Low Mach number Approximate Riemann Solver (LMARS) simplified using assumptions appropriate for atmospheric flows: the wind speed is much slower than the sound speed, weak discontinuities, and locally uniform sound wave velocity. LMARS makes possible a Riemann-solver-based dynamical core comparable in computational efficiency to many current dynamical cores. We will present a 3D finite-volume dynamical core using LMARS in a cubed-sphere geometry with a vertically Lagrangian discretization. Results from standard idealized test cases will be discussed.

  8. A combined dislocation fan-finite element (DF-FE) method for stress field simulation of dislocations emerging at the free surfaces of 3D elastically anisotropic crystals

    NASA Astrophysics Data System (ADS)

    Balusu, K.; Huang, H.

    2017-04-01

    A combined dislocation fan-finite element (DF-FE) method is presented for efficient and accurate simulation of dislocation nodal forces in 3D elastically anisotropic crystals with dislocations intersecting the free surfaces. The finite domain problem is decomposed into half-spaces with singular traction stresses, an infinite domain, and a finite domain with non-singular traction stresses. As such, the singular and non-singular parts of the traction stresses are addressed separately; the dislocation fan (DF) method is introduced to balance the singular traction stresses in the half-spaces while the finite element method (FEM) is employed to enforce the non-singular boundary conditions. The accuracy and efficiency of the DF method is demonstrated using a simple isotropic test case, by comparing it with the analytical solution as well as the FEM solution. The DF-FE method is subsequently used for calculating the dislocation nodal forces in a finite elastically anisotropic crystal, which produces dislocation nodal forces that converge rapidly with increasing mesh resolutions. In comparison, the FEM solution fails to converge, especially for nodes closer to the surfaces.

  9. Computing an upper bound on contact stress with surrogate duality

    NASA Astrophysics Data System (ADS)

    Xuan, Zhaocheng; Papadopoulos, Panayiotis

    2016-07-01

    We present a method for computing an upper bound on the contact stress of elastic bodies. The continuum model of elastic bodies with contact is first modeled as a constrained optimization problem by using finite elements. An explicit formulation of the total contact force, a fraction function with the numerator as a linear function and the denominator as a quadratic convex function, is derived with only the normalized nodal contact forces as the constrained variables in a standard simplex. Then two bounds are obtained for the sum of the nodal contact forces. The first is an explicit formulation of matrices of the finite element model, derived by maximizing the fraction function under the constraint that the sum of the normalized nodal contact forces is one. The second bound is solved by first maximizing the fraction function subject to the standard simplex and then using Dinkelbach's algorithm for fractional programming to find the maximum—since the fraction function is pseudo concave in a neighborhood of the solution. These two bounds are solved with the problem dimensions being only the number of contact nodes or node pairs, which are much smaller than the dimension for the original problem, namely, the number of degrees of freedom. Next, a scheme for constructing an upper bound on the contact stress is proposed that uses the bounds on the sum of the nodal contact forces obtained on a fine finite element mesh and the nodal contact forces obtained on a coarse finite element mesh, which are problems that can be solved at a lower computational cost. Finally, the proposed method is verified through some examples concerning both frictionless and frictional contact to demonstrate the method's feasibility, efficiency, and robustness.

  10. Scaling Limits and Generic Bounds for Exploration Processes

    NASA Astrophysics Data System (ADS)

    Bermolen, Paola; Jonckheere, Matthieu; Sanders, Jaron

    2017-12-01

    We consider exploration algorithms of the random sequential adsorption type both for homogeneous random graphs and random geometric graphs based on spatial Poisson processes. At each step, a vertex of the graph becomes active and its neighboring nodes become blocked. Given an initial number of vertices N growing to infinity, we study statistical properties of the proportion of explored (active or blocked) nodes in time using scaling limits. We obtain exact limits for homogeneous graphs and prove an explicit central limit theorem for the final proportion of active nodes, known as the jamming constant, through a diffusion approximation for the exploration process which can be described as a unidimensional process. We then focus on bounding the trajectories of such exploration processes on random geometric graphs, i.e., random sequential adsorption. As opposed to exploration processes on homogeneous random graphs, these do not allow for such a dimensional reduction. Instead we derive a fundamental relationship between the number of explored nodes and the discovered volume in the spatial process, and we obtain generic bounds for the fluid limit and jamming constant: bounds that are independent of the dimension of space and the detailed shape of the volume associated to the discovered node. Lastly, using coupling techinques, we give trajectorial interpretations of the generic bounds.

  11. Numerical Investigation of a Model Scramjet Combustor Using DDES

    NASA Astrophysics Data System (ADS)

    Shin, Junsu; Sung, Hong-Gye

    2017-04-01

    Non-reactive flows moving through a model scramjet were investigated using a delayed detached eddy simulation (DDES), which is a hybrid scheme combining Reynolds averaged Navier-Stokes scheme and a large eddy simulation. The three dimensional Navier-Stokes equations were solved numerically on a structural grid using finite volume methods. An in-house was developed. This code used a monotonic upstream-centered scheme for conservation laws (MUSCL) with an advection upstream splitting method by pressure weight function (AUSMPW+) for space. In addition, a 4th order Runge-Kutta scheme was used with preconditioning for time integration. The geometries and boundary conditions of a scramjet combustor operated by DLR, a German aerospace center, were considered. The profiles of the lower wall pressure and axial velocity obtained from a time-averaged solution were compared with experimental results. Also, the mixing efficiency and total pressure recovery factor were provided in order to inspect the performance of the combustor.

  12. Toward Verification of USM3D Extensions for Mixed Element Grids

    NASA Technical Reports Server (NTRS)

    Pandya, Mohagna J.; Frink, Neal T.; Ding, Ejiang; Parlette, Edward B.

    2013-01-01

    The unstructured tetrahedral grid cell-centered finite volume flow solver USM3D has been recently extended to handle mixed element grids composed of hexahedral, prismatic, pyramidal, and tetrahedral cells. Presently, two turbulence models, namely, baseline Spalart-Allmaras (SA) and Menter Shear Stress Transport (SST), support mixed element grids. This paper provides an overview of the various numerical discretization options available in the newly enhanced USM3D. Using the SA model, the flow solver extensions are verified on three two-dimensional test cases available on the Turbulence Modeling Resource website at the NASA Langley Research Center. The test cases are zero pressure gradient flat plate, planar shear, and bump-inchannel. The effect of cell topologies on the flow solution is also investigated using the planar shear case. Finally, the assessment of various cell and face gradient options is performed on the zero pressure gradient flat plate case.

  13. Assessment of the Unstructured Grid Software TetrUSS for Drag Prediction of the DLR-F4 Configuration

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z.; Frink, Neal T.

    2002-01-01

    An application of the NASA unstructured grid software system TetrUSS is presented for the prediction of aerodynamic drag on a transport configuration. The paper briefly describes the underlying methodology and summarizes the results obtained on the DLR-F4 transport configuration recently presented in the first AIAA computational fluid dynamics (CFD) Drag Prediction Workshop. TetrUSS is a suite of loosely coupled unstructured grid CFD codes developed at the NASA Langley Research Center. The meshing approach is based on the advancing-front and the advancing-layers procedures. The flow solver employs a cell-centered, finite volume scheme for solving the Reynolds Averaged Navier-Stokes equations on tetrahedral grids. For the present computations, flow in the viscous sublayer has been modeled with an analytical wall function. The emphasis of the paper is placed on the practicality of the methodology for accurately predicting aerodynamic drag data.

  14. Wireless Sensor Node for Autonomous Monitoring and Alerts in Remote Environments

    NASA Technical Reports Server (NTRS)

    Panangadan, Anand V. (Inventor); Monacos, Steve P. (Inventor)

    2015-01-01

    A method, apparatus, system, and computer program products provides personal alert and tracking capabilities using one or more nodes. Each node includes radio transceiver chips operating at different frequency ranges, a power amplifier, sensors, a display, and embedded software. The chips enable the node to operate as either a mobile sensor node or a relay base station node while providing a long distance relay link between nodes. The power amplifier enables a line-of-sight communication between the one or more nodes. The sensors provide a GPS signal, temperature, and accelerometer information (used to trigger an alert condition). The embedded software captures and processes the sensor information, provides a multi-hop packet routing protocol to relay the sensor information to and receive alert information from a command center, and to display the alert information on the display.

  15. Nonlinear Legendre Spectral Finite Elements for Wind Turbine Blade Dynamics: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Q.; Sprague, M. A.; Jonkman, J.

    2014-01-01

    This paper presents a numerical implementation and examination of new wind turbine blade finite element model based on Geometrically Exact Beam Theory (GEBT) and a high-order spectral finite element method. The displacement-based GEBT is presented, which includes the coupling effects that exist in composite structures and geometric nonlinearity. Legendre spectral finite elements (LSFEs) are high-order finite elements with nodes located at the Gauss-Legendre-Lobatto points. LSFEs can be an order of magnitude more efficient that low-order finite elements for a given accuracy level. Interpolation of the three-dimensional rotation, a major technical barrier in large-deformation simulation, is discussed in the context ofmore » LSFEs. It is shown, by numerical example, that the high-order LSFEs, where weak forms are evaluated with nodal quadrature, do not suffer from a drawback that exists in low-order finite elements where the tangent-stiffness matrix is calculated at the Gauss points. Finally, the new LSFE code is implemented in the new FAST Modularization Framework for dynamic simulation of highly flexible composite-material wind turbine blades. The framework allows for fully interactive simulations of turbine blades in operating conditions. Numerical examples showing validation and LSFE performance will be provided in the final paper.« less

  16. Dynamics of epidemic diseases on a growing adaptive network

    PubMed Central

    Demirel, Güven; Barter, Edmund; Gross, Thilo

    2017-01-01

    The study of epidemics on static networks has revealed important effects on disease prevalence of network topological features such as the variance of the degree distribution, i.e. the distribution of the number of neighbors of nodes, and the maximum degree. Here, we analyze an adaptive network where the degree distribution is not independent of epidemics but is shaped through disease-induced dynamics and mortality in a complex interplay. We study the dynamics of a network that grows according to a preferential attachment rule, while nodes are simultaneously removed from the network due to disease-induced mortality. We investigate the prevalence of the disease using individual-based simulations and a heterogeneous node approximation. Our results suggest that in this system in the thermodynamic limit no epidemic thresholds exist, while the interplay between network growth and epidemic spreading leads to exponential networks for any finite rate of infectiousness when the disease persists. PMID:28186146

  17. Dynamics of epidemic diseases on a growing adaptive network.

    PubMed

    Demirel, Güven; Barter, Edmund; Gross, Thilo

    2017-02-10

    The study of epidemics on static networks has revealed important effects on disease prevalence of network topological features such as the variance of the degree distribution, i.e. the distribution of the number of neighbors of nodes, and the maximum degree. Here, we analyze an adaptive network where the degree distribution is not independent of epidemics but is shaped through disease-induced dynamics and mortality in a complex interplay. We study the dynamics of a network that grows according to a preferential attachment rule, while nodes are simultaneously removed from the network due to disease-induced mortality. We investigate the prevalence of the disease using individual-based simulations and a heterogeneous node approximation. Our results suggest that in this system in the thermodynamic limit no epidemic thresholds exist, while the interplay between network growth and epidemic spreading leads to exponential networks for any finite rate of infectiousness when the disease persists.

  18. Dynamics of epidemic diseases on a growing adaptive network

    NASA Astrophysics Data System (ADS)

    Demirel, Güven; Barter, Edmund; Gross, Thilo

    2017-02-01

    The study of epidemics on static networks has revealed important effects on disease prevalence of network topological features such as the variance of the degree distribution, i.e. the distribution of the number of neighbors of nodes, and the maximum degree. Here, we analyze an adaptive network where the degree distribution is not independent of epidemics but is shaped through disease-induced dynamics and mortality in a complex interplay. We study the dynamics of a network that grows according to a preferential attachment rule, while nodes are simultaneously removed from the network due to disease-induced mortality. We investigate the prevalence of the disease using individual-based simulations and a heterogeneous node approximation. Our results suggest that in this system in the thermodynamic limit no epidemic thresholds exist, while the interplay between network growth and epidemic spreading leads to exponential networks for any finite rate of infectiousness when the disease persists.

  19. Quadrature rules with multiple nodes for evaluating integrals with strong singularities

    NASA Astrophysics Data System (ADS)

    Milovanovic, Gradimir V.; Spalevic, Miodrag M.

    2006-05-01

    We present a method based on the Chakalov-Popoviciu quadrature formula of Lobatto type, a rather general case of quadrature with multiple nodes, for approximating integrals defined by Cauchy principal values or by Hadamard finite parts. As a starting point we use the results obtained by L. Gori and E. Santi (cf. On the evaluation of Hilbert transforms by means of a particular class of Turan quadrature rules, Numer. Algorithms 10 (1995), 27-39; Quadrature rules based on s-orthogonal polynomials for evaluating integrals with strong singularities, Oberwolfach Proceedings: Applications and Computation of Orthogonal Polynomials, ISNM 131, Birkhauser, Basel, 1999, pp. 109-119). We generalize their results by using some of our numerical procedures for stable calculation of the quadrature formula with multiple nodes of Gaussian type and proposed methods for estimating the remainder term in such type of quadrature formulae. Numerical examples, illustrations and comparisons are also shown.

  20. Preoperative prediction of lymph node metastasis and deep stromal invasion in women with invasive cervical cancer: prospective multicenter study using 2D and 3D ultrasound.

    PubMed

    Pálsdóttir, K; Fischerova, D; Franchi, D; Testa, A; Di Legge, A; Epstein, E

    2015-04-01

    To determine how various objective two-dimensional (2D) and three-dimensional (3D) ultrasound parameters allow prediction of deep stromal tumor invasion and lymph node involvement, in comparison to subjective ultrasound assessment, in women scheduled for surgery for cervical cancer. This was a prospective multicenter trial including 104 women with cervical cancer at FIGO Stages IA2-IIB, verified histologically. Patients scheduled for surgery underwent a preoperative ultrasound examination. The value of various 2D (size, color score) and 3D (volume, vascular indices) ultrasound parameters was compared to that of subjective assessment in the prediction of deep stromal tumor invasion and lymph node involvement. Histology obtained from radical hysterectomy or trachelectomy and pelvic lymphadenectomy was considered as the gold standard for assessment. All women underwent pelvic lymphadenectomy, with 99 (95%) undergoing subsequent radical surgery; five underwent only pelvic lymphadenectomy because of the presence of a positive sentinel lymph node. Women with deep stromal invasion or lymph node involvement had significantly larger tumors (diameter and volume) but there was no correlation with vascular indices measured on 3D ultrasound. Subjective evaluation was superior (AUC, 0.93; sensitivity, 90.5%; specificity, 97.2%) in the prediction of deep stromal invasion when compared to any objective measurement technique, with maximal tumor diameter at 20.5-mm cut-off (AUC, 0.83; sensitivity, 90.5%; specificity, 61.1%) and 3D tumor volume at 9.1-mm(3) cut-off (AUC, 0.85; sensitivity, 79.4%; specificity, 83.3%) providing the best performance among the objective parameters. Both subjective assessment and objective measurements were poorly predictive of lymph node involvement. In women with cervical cancer, subjective ultrasound evaluation allowed better prediction of deep stromal invasion than did objective measurements; however, neither subjective evaluation nor objective parameters were adequate to predict lymph node involvement. 3D vascular indices were ineffective in the prediction of advanced stages of the disease. Copyright © 2014 ISUOG. Published by John Wiley & Sons Ltd.

Top