Science.gov

Sample records for nogoli metamorphic complex

  1. Exhuming Metamorphic Rocks: Constraints from Cooling of the Chugach Metamorphic Complex, southern Alaska

    NASA Astrophysics Data System (ADS)

    Gasser, Deta; Bruand, Emilie; Stüwe, Kurt; Rubatto, Daniela; Foster, David; Schuster, Ralf

    2010-05-01

    Exhumation mechanisms for metamorphic rocks include (a) erosion, (b) extension, (c) extrusion by channel flow, simple or pure shear, and - recently suggested - (d) slab extraction. Distinguishing in a particular case of a metamorphic complex between the different exhumation mechanisms is a much discussed subject in modern geodynamics. In order to add to this discussion, we adopt an interdisciplinary approach combining detailed petrological and structural field work with several geochronological and thermochronological systems. The Chugach Metamorphic Complex of southern Alaska is a ~600 km long and 10-30 km wide zone of upper amphibolite-facies metamorphic rocks. It lies in the outermost tectonic belt of the North American Cordillera, which is a vast and complex Phanerozoic orogen formed from the oblique collision of the Pacific, Kula and Farallon oceanic plates and the North American continent. The Chugach Complex developed in the Eocene in a Cretaceous to Paleocene accretionary prism while the Kula and Pacific plates were obliquely colliding with North America. We conducted detailed field work, U-Pb and 40Ar-39Ar geochronology and compiled all other geochronological data from the region in order to construct cooling histories for the whole metamorphic complex. These cooling histories vary along strike: The western and central parts of the Chugach Metamorphic Complex, where the metamorphic complex is wide, show very fast cooling to below ~300° C between 54-45 Ma, shortly after peak metamorphism, and then slowly cool to surface temperatures over the remaining 45 Ma. In contrast, the south-eastern part, where the metamorphic complex is very narrow, slowly and steadily cooled between 51-5 Ma only to increase its cooling rate in the last few Ma before present. Whether and how these cooling rates can be directly linked with exhumation rates and why they differ so grossly between the wide and the narrow parts of the complex is the current focus of our work.

  2. Thermal history of a metamorphic core complex

    NASA Technical Reports Server (NTRS)

    Dokka, R. K.; Mahaffie, M. J.; Snoke, A. W.

    1985-01-01

    Fission track (FT) thermochronology studies of lower plate rocks of the Ruby Mountains-East Humbolt Range metamorphic core complex provide important constraints on the timing an nature of major middle Tertiary extension of northeast Nevada. Rocks analyzed include several varieties of mylonitic orthogneiss as well as amphibolitic orthognesses from the non-mylonitic infrastructural core. Oligocene-age porphyritic biotite granodiorite of the Harrison Pass pluton was also studied. The minerals dated include apatite, zircon, and sphene and were obtained from the same rocks that have been previously studied. FT ages are concordant and range in age from 26.4 Ma to 23.8 Ma, with all showing overlap at 1 sigma between 25.4 to 23.4 Ma. Concordancy of all FT ages from all structural levels indicates that the lower plate cooled rapidly from temperatures above approx. 285 C (assumed sphene closure temperature (2)) to below approx. 150 C (assumed apatite closure temperature) near the beginning of the Miocene. This suggests that the lower plate cooled at a rate of at least approx. 36 deg C/Ma during this event. Rapid cooling of the region is considered to reflect large-scale tectonic denudation (intracrustal thinning), the vertical complement to intense crustal extension. FT data firmly establish the upper limit on the timing of mylonitization during detachment faulting and also coincide with the age of extensive landscape disruption.

  3. Contrasting geochemistry and metamorphism of pillow basalts in metamorphic complexes from Aysén, S. Chile

    NASA Astrophysics Data System (ADS)

    Hervé, F.; Aguirre, L.; Sepúlveda, V.; Morata, D.

    1999-07-01

    The geochemistry of pillow basalts from the Chonos Metamorphic Complex (CMC) and the Eastern Andes Metamorphic Complex of Aysén (EAMC) indicates contrasting tectonic environments for these basic lavas. They have E-MORB and continental alkaline affinities, respectively. The MORB-like basalts are metamorphosed in the pumpellyite-actinolite metamorphic facies, with mineral associations indicative of relatively high P/T metamorphism. The continental alkali basalts exhibit pumpellyite-chlorite assemblages developed in a low to intermediate P/T regime. These contrasting eruptive and metamorphic settings agree with recently established age differences between the complexes, and invalidate direct correlation between them.

  4. Meteoric water in metamorphic core complexes

    NASA Astrophysics Data System (ADS)

    Teyssier, Christian; Mulch, Andreas

    2015-04-01

    The trace of surface water has been found in all detachment shear zones that bound the Cordilleran metamorphic core complexes of North America. DeltaD values of mica fish in detachment mylonites demonstrate that these synkinematic minerals grew in the presence of meteoric water. Typically deltaD values are very negative (-120 to -160 per mil) corresponding to deltaD values of water that are < -100 per mil given the temperature of water-mica isotopic equilibration (300-500C). From British Columbia (Canada) to Nevada (USA) detachment systems bound a series of core complexes: the Thor-Odin, Valhalla, Kettle-Okanogan, Bitterroot -Anaconda, Pioneer, Raft River, Ruby Mountain, and Snake Range. The bounding shear zones range in thickness from ~100 m to ~1 km, and within the shear zones, meteoric water signature is recognized over 10s to 100s of meters beneath the detachment fault. The age of shearing ranges generally from Eocene in the N (~50-45 Ma) to Oligo-Miocene in the S (25-15 Ma). DeltaD water values derived from mica fish in shear zones are consistent with supradetachment basin records of the same age brackets and can be used for paleoaltimetry if coeval isotopic records from near sea level are available. Results show that a wave of topography (typically 4000-5000 m) developed from N to S along the Cordillera belt from Eocene to Miocene, accompanied by the propagation of extensional deformation and volcanic activity. In addition, each detachment system informs a particular extensional detachment process. For example, the thick Thor-Odin detachment shear zone provides sufficient age resolution to indicate the downward propagation of shearing and the progressive incorporation of footwall rocks into the hanging wall. The Kettle detachment provides a clear illustration of the dependence of fluid circulation on dynamic recrystallization processes. The Raft River system consists of a thick Eocene shear zone that was overprinted by Miocene shearing; channels of meteoric

  5. Metamorphic and stratigraphic constraints on the evolution of the Santa Catalina Mountains metamorphic core complex, Arizona

    SciTech Connect

    Palais, D.G.; Peacock, S.M. )

    1990-01-10

    Contact metamorphic mineral assemblages in the Santa Catalina Mountains metamorphic core complex constrain the emplacement depth of the metaluminous Late Cretaceous Leatherwood quartz diorite to between 7.5 and 14 km (2-3.8 kbar). The peraluminous Eocene Wilderness granite is constrained to have been emplaced at depths of less than 14 km. Stratigraphic and tectonic considerations are consistent with emplacement of both the Leatherwood quartz diorite and Wilderness granite at upper crustal levels. Published igneous thermobarometry (Anderson et al., 1988), although in approximate agreement with the metamorphic and tectonostratigraphic estimates for the depth of emplacement of the Wilderness granite, suggests that the Leatherwood quartz diorite was emplaced at depths of {approximately} 21 km (5.6 kbar) or greater. The discrepancy between the different emplacement estimates may reflect ambiguities associated with interpretations of the results from each technique. Igneous barometric assemblages may reflect conditions experienced during a period of crystallization during ascent of the magma through the crust (i.e., ponding of the magma). Alternatively, emplacement of the voluminous Wilderness granite and associated plutons may have entirely overprinted earlier Leatherwood-related contact metamorphism. The proposed upper crustal emplacement of the Leatherwood quartz diorite is consistent with the observation that Laramide-age crustal thickening in southeast Arizona probably did not exceed 8 km.

  6. Metamorphic and stratigraphic constraints on the evolution of the Santa Catalina Mountains Metamorphic Core Complex, Arizona

    NASA Astrophysics Data System (ADS)

    Palais, David G.; Peacock, Simon M.

    1990-01-01

    Contact metamorphic mineral assemblages in the Santa Catalina Mountains metamorphic core complex constrain the emplacement depth of the metaluminous Late Cretaceous Leatherwood quartz diorite to between 7.5 and 14 km (2-3.8 kbar). The peraluminous Eocene Wilderness granite is constrained to have been emplaced at depths of less than 14 km. Stratigraphic and tectonic considerations are consistent with emplacement of both the Leatherwood quartz diorite and Wilderness granite at upper crustal levels. Published igneous thermobarometry (Anderson et al., 1988), although in approximate agreement with the metamorphic and tectonostratigraphic estimates for the depth of emplacement of the Wilderness granite, suggests that the Leatherwood quartz diortite was emplaced at depths of ˜21 km (5.6 kbar) or greater. The discrepancy between the different emplacement estimates may reflect ambiguities associated with interpretations of the results from each technique. Igneous barometric assemblages may reflect conditions experienced during a period of crystallization during ascent of the magma through the crust (i.e., ponding of the magma). Alternatively, emplacement of the voluminous Wilderness granite and associated plutons may have entirely overprinted earlier Leatherwood-related contact metamorphism. The proposed upper crustal emplacement of the Leatherwood quartz diorite is consistent with the observation that Lararrade-age crustal thickening in southeast Arizona probably did not exceed 8 km.

  7. Garnet as a reactant during and recorder of mid-crustal metamorphism: Sawtooth Metamorphic Complex, Idaho

    NASA Astrophysics Data System (ADS)

    Dutrow, B. L.; Henry, D.; Fukai, I.; Metz, K.

    2013-12-01

    The Sawtooth Metamorphic Complex (SMC), in central Idaho, is a newly recognized high-grade metamorphic terrain that provides constraints on crustal evolution of a key area in North America. The SMC lies near the southwestern margin of Laurentia, in an area that is largely obscured by the voluminous Idaho Batholith. Originally mapped as undifferentiated Precambrian metamorphic rocks, recent work demonstrates that a range of rock types from aluminous gneisses to calc-silicates record middle-lower crustal conditions. Field mapping, high-resolution sampling, mineral chemical, whole-rock and trace-element characterization define the nature of metamorphism. Multi-equilibria thermobarometry of aluminous gneisses yield the highest pressure (P)-temperature (T) conditions of lower-granulite facies near 765-795 °C and 7 kbar. Peraluminous gneisses passed above the muscovite stability field to produce sillimanite (sil) + Ksp + H2O. Occasionally, fine-grained biotite + sil are included in the cordierite (crd) suggesting the reaction: phlogopite + sil = Mg-crd + garnet + H2O. These dehydration reactions likely enhanced localized melting and migmatite formation. A post peak hydration event produced muscovite and andalusite that cross cuts dominant foliation and indicates a clockwise P-T path. In these rocks, garnet serves as an important phase to react with and to preserve the peak and post-peak phases and conditions. Calc-silicate gneisses record at least two metamorphic (M1, M2) and two deformational (D1, D2) events. M1 reaches upper-amphibolite to lower-granulite facies at temperatures near 800oC at 6 kbar. D1 ductile deformation post-dates peak metamorphism and produces deformation lamellae in clinopyroxene. M2 is characterized by amphibole (magnesiohornblende and tremolite) growth overprinting and retrogressing peak assemblages at Ts from 620-740oC at an assumed P of 6.5 kbar based on the application of the hornblende-plagioclase thermometer. These temperatures are

  8. Early Tertiary Anaconda metamorphic core complex, southwestern Montana

    USGS Publications Warehouse

    O'Neill, J. M.; Lonn, J.D.; Lageson, D.R.; Kunk, M.J.

    2004-01-01

    A sinuous zone of gently southeast-dipping low-angle Tertiary normal faults is exposed for 100 km along the eastern margins of the Anaconda and Flint Creek ranges in southwest Montana. Faults in the zone variously place Mesoproterozoic through Paleozoic sedimentary rocks on younger Tertiary granitic rocks or on sedimentary rocks older than the overlying detached rocks. Lower plate rocks are lineated and mylonitic at the main fault and, below the mylonitic front, are cut by mylonitic mesoscopic to microscopic shear zones. The upper plate consists of an imbricate stack of younger-on-older sedimentary rocks that are locally mylonitic at the main, lowermost detachment fault but are characteristically strongly brecciated or broken. Kinematic indicators in the lineated mylonite indicate tectonic transport to the east-southeast. Syntectonic sedimentary breccia and coarse conglomerate derived solely from upper plate rocks were deposited locally on top of hanging-wall rocks in low-lying areas between fault blocks and breccia zones. Muscovite occurs locally as mica fish in mylonitic quartzites at or near the main detachment. The 40Ar/39Ar age spectrum obtained from muscovite in one mylonitic quartzite yielded an age of 47.2 + 0.14 Ma, interpreted to be the age of mylonitization. The fault zone is interpreted as a detachment fault that bounds a metamorphic core complex, here termed the Anaconda metamorphic core complex, similar in age and character to the Bitterroot mylonite that bounds the Bitterroot metamorphic core complex along the Idaho-Montana state line 100 km to the west. The Bitterroot and Anaconda core complexes are likely components of a continuous, tectonically integrated system. Recognition of this core complex expands the region of known early Tertiary brittle-ductile crustal extension eastward into areas of profound Late Cretaceous contractile deformation characterized by complex structural interactions between the overthrust belt and Laramide basement uplifts

  9. Detrital zircon geochronology of the Tananao Metamorphic Complex, Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, Y. C.; Chen, W. S.; Feng, H. T.; Liu, C. H.; Chung, S. L.; Lee, Y. H.

    2014-12-01

    The oldest rock of the Tananao Metamorphic Complex exposed at the Backbone Range which consists of marble, schist, and gneiss. According to the stratigraphy and structural analysis, the Complex in the ascending order can be divided into Chiuchu Marble, Paiyang Schist with Kuyuan Schist, and Pilu Formation. Based on Sr isotope dating, it is speculated that the formation age of Chiuchu Marble is closed to 250±20 Ma. Using the zircon U-Pb dating, the magnetic age of gneiss (I-type granite) yields 105- 86 Ma. The stratigraphic age of schist is difficult to define because of fossils are poorly-preserved. In our study, we use the detrital zircon U-Pb dating, by LA-ICPMS, to yield the maximum depositional age of the schist formation. We analyze fifteen samples in this study. The depositional age of the Kuyuan and Paiyang Schists would be not older than late Cretaceous, and the depositional age of the Pilu Formation may have formed in late Cretaceous and younger than Kuyuan and Paiyang Schists. Results from the above mentioned, we are interpreted as the tectonic setting of the Tananao Metamorpic Complex. The region was located on a passive continental margin that formed carbonate platform deposits during the late Permian period. The clastic sediments were unconformably deposited on Chiuchu Marble during the early Cretaceous. Then the paleo-Pacific plate subducted to the Cathaysia Block forming the granite at about 105-86 Ma. Afterwards, the clastic sediments were deeply buried caused by continuing subduction formed as schist rock. The metamorphic event is known as the Nanao orogeny.

  10. Age of granites of Wrangel Island metamorphic complex

    NASA Astrophysics Data System (ADS)

    Luchitskaya, Marina; Sergeev, Sergey; Sokolov, Sergey; Tuchkova, Marianna

    2014-05-01

    Within huge arctic shelf of Eastern-Siberian and Chukchi seas the metamorphic basement (Wrangel complex, Berri Formation) is exposed only on the Wrangel Island. There are different points of views on the age of metamorphic rocks of Wrangel complex (Berri Formation): (1) Neoproterozoic (Kameneva, 1970; Ageev, 1979; Kos'ko et al., 1993, 2003), (2) Devonian (Til'man et al., 1964, 1970; Ganelin, 1989). Metamorphic basement is represented by stratified complex, composed of dislocated metavolcanic, metavolcaniclastic and metasedimentary rocks (schists, metasandstones, metaconglomerated) with single lenses and layers of carbonate rocks (Wrangel Island…, 2003). Among basement rocks in the central part of Wrangel Island there are felsic intrusive bodies. They form small tabular bodies from tens centimeters to 70-80 meters in thickness, rarely dikes and small stocks (up to 20 x 30 m) and are composed of granite-porphyres, rarely muscovite porphyr-like granites and granosyenites (Wrangel Island…, 2003). The age of intrusions allow to determine the age of basement formation. Earlier the age of intrusions was determined by different methods and correlated to the boundary between Neoproterozoic and Paleozoic: K-Ar 570-603 Ma, Pb-Pb 590±50 Ma (S.M. Pavlov, Institute of Precambrian Geology and Geochronology, USSR Academy of Sciences), Rb-Sr 475±31 Ma (I.M.Vasil'eva, Institute of Precambrian Geology and Geochronology, USSR Academy of Sciences), U-Pb 609, 633, 677 Ma (Geological Survey of Canada) (Wrangel Island…, 2003; Kos'ko et al., 1993; Cecile et al., 1991). In the lower part of metamorphic rocks of Wrangel complex there are conformable tabular bodies of gneissosed and foliated granitoides. The latter are meramorphosed and transformed in biotite-muscovite-feldspar-quartz-sericite and muscovite-feldspar-quartz-sericite gneisses and schists, where relics of primary minerals (quartz, plagioclase, potassium feldspar, rarely biotite and muscovite) and equigranular granitic

  11. Origin of metamorphic core complexes and detachment faults

    NASA Astrophysics Data System (ADS)

    Wu, G.; Lavier, L. L.

    2013-12-01

    Origin of metamorphic core complexes and detachment faults Guangliang Wu1,2, Luc L. Lavier1,2 1 Institute for Geophysics, University of Texas at Austin, TX 78758, USA 2 Department of Geological Sciences, University of Texas at Austin, TX 78712, USA Metamorphic core complexes (MCCs) and detachment faults are widely observed in collapsing orogens, such as Western US Cordillera, the Aegean and Papua New Guinea. A theory for the origin of MCCs has to provide: i) a viable mechanism to bring deeper crustal material to the surface, ii) a scenario that allows slip on low-angle detachment faults, and iii) a viable mechanism to form a flat Moho at a certain stage of evolution. However, previous models ignored at least one of these three requirements. Using thermo-mechanical models constrained by geological and geophysical observation, we simulated MCCs and detachment faults in the context of collapsing orogens with preexisting shear zones and middle crust of variable strength. We found that MCCs and detachment faults are natural products of gravity driven middle crustal extrusion and exhumation and strong crustal decoupling along the preexisting shear zones in a favorable state of stress in collapsing orogens. Based on previous geological and geophysical observations and our numerical simulations, we categorized MCCs into four types: i) massifs, such as Menderes massif and SW Rhodope massif, ii) single large asymmetric MCC (classic MCC), such as Whipple mountains and Snake Range Mountains, Western US Cordillera and Crete and Cyclades, the Aegean, iii) multiple less evolved MCCs, such as Black Mountains turtlebacks, and iv) subsurface ';MCC', such as interpreted at the Adriatic coast. We also recognized two types of detachment faults: one being listric fault transitioning to a convex upward shear zone at greater depth and the other a shallow exhumed upward convex shear zone. Our new models successfully predict many MCCs and detachment faults known to date.

  12. Survey yields data on unique metamorphic rock complex in China

    NASA Astrophysics Data System (ADS)

    Schulze, A.; Jiang, M.; Ryberg, T.; Gao, R.

    Seismic data from survey work last year in Dabie Shan, China, are giving scientists their first view of the subsurface structure of a unique metamorphic rock complex. The work, in which a joint Chinese-German research team surveyed possible sites for a super deep borehole, set the stage for more intensive petrological and seismic investigations this year and next.Data were collected by near-vertical seismic imaging at Dabie Shan, the Earth's largest outcrop of ultra-high pressure metamorphic (UHM) rocks, some exhumed from depths of 100 km. Processing so far has revealed unexpectedly strong mid-and lower-crustal reflections, predominantly dipping west to east, indicating the involved tectonic history of the region. Upcoming research will look more closely at the three-dimensional structure of the rock and other matters. Scientific deep drilling is essential in addressing a wide range of major geoscientific problems of global importance. The International Continental Scientific Drilling Programme (ICDP) coordinates such, and one key target of ICDP is the Dabie Shan. To find the most appropriate location for a drill site and to extend the findings of the drilling beyond the drill hole, geophysical methods, especially seismic investigations, play an important role. Integrated interpretation of seismic and drill results in the Dabie Shan will lead to a better understanding of the structure and dynamic processes of the collisional history of the Yangtze and Sino-Korean Cratons. The Dabie Shan is located in the eastern part of the Qinling orogen in Anhui province, central China. The rocks there contain microdiamonds and coesite within a 20-km-thick eclogite zone representing a part of the lower lithosphere of the Yangtze Craton [Okay, 1993]. Such rocks suggest that continental crust had been subducted to depths greater than 100 km and exhumed afterwards [Hackeretal, 1995].

  13. Thermobarometric constraints on mid-Cretaceous to late Cretaceous metamorphic events in the western metamorphic belt of the Coast Mountains complex near Petersburg, southeastern Alaska

    USGS Publications Warehouse

    Himmelberg, Glen R.; Brew, David A.

    2005-01-01

    The western metamorphic belt is part of the Coast Mountains Complex of southeastern Alaska and western Canada. This complex formed as a result of mid-Cretaceous through middle Eocene crustal shortening between the previously amalgamated Wrangellia and Alexander terranes (Insular superterrane) and previously accreted terranes of the North American continental margin (Intermontane superterrane). The western metamorphic belt, which ranges from a few kilometers to several tens of kilometers in width, records a complex sequence of contact-metamorphic and regional metamorphic events, the most significant of which are designated M1R, M2C-R, and M3R. The M1R regional metamorphic event ranged in grade from subgreenschist to greenschist facies and was overprinted by the M2C-R and M3R metamorphic events. The M2C-R metamorphic event is recorded in discrete contact-metamorphic aureoles and regional metamorphic-mineral assemblages related to tonalite-granodiorite plutons of the Admiralty-Revillagigedo plutonic belt. The M3R metamorphic belt, which is adjacent to the M2C-R belt, is characterized by regional Barrovian isograds of garnet, staurolite, kyanite, and sillimanite. Using the THERMOCALC program, pressure-temperature (P-T) conditions for the M2C-R metamorphic event are estimated to be in the ranges 5.3-7.5 kbars and 525-640 deg.C and for the M3R metamorphic event in the ranges 9.4-12.6 kbars and 730-895 deg.C. The M2C-R metamorphic event occurred at approximately 90 Ma, but the timing of the M3R metamorphic event is poorly documented and uncertain. On the basis of an 40Ar/39Ar age on actinolitic amphibole and a Sm-Nd age on garnet core, the timing of metamorphism might be constrained between 90+/-1 and 80+/-9 Ma, although the Sm-Nd age of 80+/-9 m.y. possibly reflects postpeak growth. Thermobarometric data suggest that the two events occurred at different crustal levels and followed different P-T paths. No evidence exists that M2C-R metamorphic-mineral assemblages were

  14. The role of boron and fluids in high temperature, shallow level metamorphism of the Chugach Metamorphic Complex, Alaska

    NASA Technical Reports Server (NTRS)

    Sisson, V. B.; Leeman, W. P.

    1988-01-01

    The possible role of boron (B) involvement in granite equilibria and generation of melts during crustal metamorphism has been a focus of speculation in recent literature. Most of the evidence for such involvement derives from experimental data which implies that the addition of B will lower the temperature of the granite solidus. Also the presence of tourmaline has a minor effect on the temperature of the solidus. Further indirect evidence that B may be involved in partial melting processes is the observation that granulites are commonly depleted in B, whereas the B content of low grade metapelites can be high (up to 2000 ppm). Researchers' measurements of the whole-rock B contents of granulites from the Madras region, India are low, ranging from 0.4 to 2.6 ppm. Ahmad and Wilson suggest that B was mobilized in the fluid phase during granulite facies metamorphism of the Broken Hill Complex, Australia. Thus, it appears that during the amphibolite to granulite transition, B is systematically lost from metasediments. The B that is released will probably partition into the vapor phase and/or melt phase. Preliminary measurements imply that the boron content of rocks in the Chugach Metamorphic Complex is not sufficient to influence the processes of partial melting at low pressures.

  15. Syn-extensional plutonism and peak metamorphism in the albion-raft river-grouse creek metamorphic core complex

    USGS Publications Warehouse

    Strickland, A.; Miller, E.L.; Wooden, J.L.; Kozdon, R.; Valley, J.W.

    2011-01-01

    The Cassia plutonic complex (CPC) is a group of variably deformed, Oligocene granitic plutons exposed in the lower plate of the Albion-Raft River- Grouse Creek (ARG) metamorphic core complex of Idaho and Utah. The plutons range from granodiorite to garnet-bearing, leucogranite, and during intrusion, sillimanite- grade peak metamorphism and ductile attenuation occurred in the country rocks and normal-sense, amphibolite-grade deformation took place along the Middle Mountain shear zone. U-Pb zircon geochronology from three variably deformed plutons exposed in the lower plate of the ARG metamorphic core complex revealed that each zircon is comprised of inherited cores (dominantly late Archean) and Oligocene igneous overgrowths. Within each pluton, a spread of concordant ages from the Oligocene zircon overgrowths is interpreted as zircon recycling within a long-lived magmatic system. The plutons of the CPC have very low negative whole rock ??Nd values of -26 to -35, and initial Sr values of 0.714 to 0.718, consistent with an ancient, crustal source. Oxygen isotope ratios of the Oligocene zircon overgrowths from the CPC have an average ??18O value of 5.40 ?? 0.63 permil (2SD, n = 65) with a slight trend towards higher ??18O values through time. The ??18O values of the inherited cores of the zircons are more variable at 5.93 ?? 1.51 permil (2SD, n = 29). Therefore, we interpret the plutons of the CPC as derived, at least in part, from melting Archean crust based on the isotope geochemistry. In situ partial melting of the exposed Archean basement that was intruded by the Oligocene plutons of the CPC is excluded as the source for the CPC based on field relationships, age and geochemistry. Correlations between Ti and Hf concentrations in zircons from the CPC suggest that the magmatic system may have become hotter (higher Ti concentration in zircon) and less evolved (lower Hf in zircon concentration) through time. Therefore, the CPC represents prolonged or episodic magmatism

  16. Deformation and metamorphism of Hamadat complex: Shear zones reshaping the lithosphere

    NASA Astrophysics Data System (ADS)

    Hassan, Mahmoud; Abu-Alam, Tamer; Stüwe, Kurt

    2015-04-01

    In the active tectonic regions, shear zones play an important role to re-configure the structure of the lithosphere. One of the largest pre-Mesozoic shear zones on the Earth is the Najd Fault System of the Arabian-Nubian Shield. Literature data record exhumation of medium-pressure metamorphic complexes due to the activity of the Najd Fault System during the Pan-African Orogeny where the shear zone surrounds the boundaries of metamorphic complexes. The Hamadat complex of Northwestern part of Saudi Arabia shows an exception where the metamorphic rocks appear to occur within the shear zone itself instead of being surrounded by branches of it. The Hamadat complex records peak metamorphic conditions of 505 - 700 °C at two ranges of pressure 8 - 11 and 12.5 - 16.5 kbar. These pressures are higher than those of most other metamorphic complexes associated and exhumed by the Najd Fault system. The higher pressure conditions of the Hamadat complex relatively to other complexes in the shield can be interpreted in two different ways. The documented pressure can be due to lithostatic pressure or shear stress (i.e. in part non-lithostatic). Assuming the lithostatic condition, these pressure ranges indicate that the Hamadat complex consists rocks from two different crustal level (i.e. 28 - 38 km and 43 - 58 km) which shows the importance of the shear zone to reshape the lithosphere by bring rocks from different crustal level into one metamorphic complex.

  17. Metamorphic conditions and structural evolution of the Kesebir-Kardamos dome: Rhodope metamorphic complex (Greece-Bulgaria)

    NASA Astrophysics Data System (ADS)

    Moulas, Evangelos; Schenker, Filippo Luca; Burg, Jean-Pierre; Kostopoulos, Dimitrios

    2017-03-01

    The synmetamorphic nappe system of the Rhodope Metamorphic Complex has been deformed into dome-and-basin structures attributed to syn- to post-convergent exhumation. We document the deformation style and present new thermobarometric and geochronological constraints for the Kesebir-Kardamos dome in southern Bulgaria and northern Greece. The dome consists of a migmatitic core overlain by high-grade thrust sheets. Kinematic indicators indicate a continuum from ductile to brittle conditions during exhumation. Thermodynamic modeling applied to the high-grade, intermediate thrust sheets yielded peak conditions of 1.2 GPa and ca 730 °C. New U-Pb SHRIMP-II dating of zircons from rocks of the same unit revealed Late Jurassic-Early Cretaceous (145 Ma) as the time of metamorphic crystallization; some zircon rims yielded Eocene ages (53 and 44 Ma) interpreted as having been thermally reset owing to coeval granitoid magmatism. The high-grade rocks were covered by Lutetian-Priabonian marine sediments after exhumation. Slumps suggest that sedimentation took place in a tectonically active environment. Our new structural, petrological and geochronological results suggest that the major shear zone in the core of the Kesebir-Kardamos dome is equivalent to the Late Jurassic-Early Cretaceous Nestos Shear Zone. Post-Jurassic metamorphic ages recorded in the Rhodope most likely represent crustal rather than deep subduction geodynamic processes.

  18. 40Ar/ 39Ar mineral ages from the Oki metamorphic complex, Oki-Dogo, southwest Japan: implications for regional correlations

    NASA Astrophysics Data System (ADS)

    Dallmeyer, R. D.; Takasu, A.

    1998-08-01

    The Oki metamorphic complex exposed in the Oki-Dogo islands consists predominantly of psammitic and pelitic gneisses with subordinate amphibolite and rare calcareous gneiss. The Oki gneisses were regionally metamorphosed to general amphibolite facies conditions, with local development of granulite facies assemblages. Peak metamorphic conditions of c. 800°C have been suggested. Hornblende concentrates from amphibolites collected within the Oki metamorphic complex record 40Ar/ 39Ar isotope correlation ages of 199-192 Ma. These are interpreted to date the post metamorphic cooling through temperatures required for intracrystalline retention of argon (c. 500°C). Muscovite concentrates record 40Ar/ 39Ar plateau ages of 167-168 Ma. These are interpreted to date post metamorphic cooling through appropriate closure temperature of muscovite (c. 400-375°C). Combined with the previously reported geochronological data, the Oki metamorphic complex appears to have experienced peak metamorphic conditions at c. 250 Ma. Subsequently, it cooled and was exhumed at the earth's surface at c. 90 Ma with cooling rate of c. 5°C/Ma. The Oki metamorphic complex records a similar prograde metamorphic event as the Hida metamorphic complex exposed in central Japan. The cooling and exhumation rates of the Hida metamorphic complex were significantly more rapid compared with the Oki metamorphic complex, and they were exhumed with extensively intruded Jurassic granites (Funatsu granites).

  19. Metamorphic and geochronogical study of the Triassic El Oro metamorphic complex, Ecuador: Implications for high-temperature metamorphism in a forearc zone

    NASA Astrophysics Data System (ADS)

    Riel, N.; Guillot, S.; Jaillard, E.; Martelat, J.-E.; Paquette, J.-L.; Schwartz, S.; Goncalves, P.; Duclaux, G.; Thebaud, N.; Lanari, P.; Janots, E.; Yuquilema, J.

    2013-01-01

    In the forearc of the Andean active margin in southwest Ecuador, the El Oro metamorphic complex exhibits a well exposed tilted forearc section partially migmatized. We used Raman spectroscopy on carbonaceous matter (RSCM) thermometry and pseudosections coupled with mineralogical and textural studies to constrain the pressure-temperature (P-T) evolution of the El Oro metamorphic complex during Triassic times. Our results show that anatexis of the continental crust occurred by white-mica and biotite dehydration melting along a 10 km thick crustal domain (from 4.5 to 8 kbar) with increasing temperature from 650 to 700 °C. In the biotite dehydration melting zone, temperature was buffered at 750-820 °C in a 5 km thick layer. The estimated average thermal gradient during peak metamorphism is of 30 °C/km within the migmatitic domain can be partitioned into two apparent gradients parts. The upper part from surface to 7 km depth records a 40-45 °C/km gradient. The lower part records a quasi-adiabatic geotherm with a 10 °C/km gradient consistent with an isothermal melting zone. Migmatites U-Th-Pb geochronology yielded zircon and monazite ages of 229.3 ± 2.1 Ma and 224.5 ± 2.3 Ma, respectively. This thermal event generated S-type magmatism (the Marcabeli granitoid) and was immediately followed by underplating of the high-pressure low-temperature (HP-LT) Arenillas-Panupalí unit at 225.8 ± 1.8 Ma. The association of high-temperature low-pressure (HT-LP) migmatites with HP-LT unit constitutes a new example of a paired metamorphic belt along the South American margin. We propose that in addition to crustal thinning, underplating of the Piedras gabbroic unit before 230 Ma provided the heat source necessary to foster crustal anatexis. Furthermore, its MORB signature shows that the asthenosphere was involved as the source of the heat anomaly. S-type felsic magmatism is widespread during this time and suggests that a large-scale thermal anomaly affected a large part of the

  20. Metamorphism within the Chugach accretionary complex on southern Baranof Island, southeastern Alaska

    USGS Publications Warehouse

    Zumsteg, Cathy L.; Himmelberg, Glen R.; Karl, Susan M.; Haeussler, Peter J.

    2003-01-01

    On Baranof Island, southeastern Alaska, we identify four metamorphic events that affect rocks associated with the Chugach accretionary complex. This study focuses on the M1 and M4 metamorphic events. Mesozoic schists, gneisses, and migmatitic gneisses exposed near the Kasnyku pluton on central Baranof Island represent the M1 metamorphic rocks. These rocks underwent amphibolite facies metamorphism. Calculated temperatures and pressures range from about 620 to 780 ºC and 5.5 to 6.6 kbar and are compatible with the observed metamorphic mineral assemblages.The M4 metamorphism affected rocks of the Sitka Graywacke on southern Baranof Island, producing extensive biotite and garnet zones as well as andalusite and sillimanite zones at the contacts of the Crawfish Inlet and Redfish Bay plutons. Calculated M4 temperatures and pressures from the andalusite and sillimanite zones range from 575 to 755 ºC and 3.4 to 6.9 kbar. These results fall within the sillimanite stability field, at pressures higher than andalusite stability. These results may indicate the M4 metamorphic event occurred along a P-T path along which the equilibration of aluminosilicate-garnet-plagioclase-quartz did not occur or was not maintained. This interpretation is supported by the occurrence of andalusite and sillimanite within the same sample. We propose the data reflect a clockwise P-T path with peak M4 metamorphism of the sillimanite-bearing samples adjacent to the intrusions at an approximate depth of 15 to 20 km, followed by rapid uplift without reequilibration of garnet-plagioclase-aluminosilicate-quartz.The large extent of the biotite zone, and possibly the garnet zone, suggests that an additional heat source must have existed to regionally metamorphose these rocks during the M4 event. We suggest the M4 regional thermal metamorphism and intrusion of the Crawfish Inlet and Redfish Bay plutons were synchronous and the result of heat flux from a slab window beneath the accretionary complex at that

  1. Amphibole zonation as a tool for tracing metamorphic histories: examples from Lavrion and Penteli metamorphic core complexes

    NASA Astrophysics Data System (ADS)

    Baziotis, Ioannis; Proyer, Alexander; Mposkos, Evripides; Marsellos, Antonios; Leontakianakos, George

    2014-05-01

    The amphiboles represent the predominant minerals in high pressure/low temperature metamafic rocks. Amphibole composition (e.g. cations Si, Al, Na) depends on the bulk composition, the solid solution's gaps and the P-T conditions during metamorphism. The AlIV , NaA and Ti increase with temperature, whereas AlV I and NaB with pressure (Triboulet, 1992). Increase of Si+4 and decrease of AlV I and (NaA+NaB) in clinoamphibole is concurrent with pressure decrease. We focus on Na- and Ca-amphiboles from greenschists and blueschists from Lavrion (upper tectonic unit-UTU) and Penteli (lower tectonic unit-LTU) metamorphic complexes (Baziotis et al. 2009; Baziotis & Mposkos, 2011) in order to unravel the relation of zonation with: (1) the physicochemical conditions and (2) the P-T stages during metamorphic evolution. Amphiboles in Lavrion metabasites are the dominant rock constituents: (ferro)-glaucophane in the blueschists and actinolite in the greenschists. Blue-amphiboles occur in various textural modes: parallel to the foliation, replacing omphacite, rimmed by Ca-amphibole, as inclusions in albite and epidote or in calcitic veinlets. The blue-amphibole composition varies from glaucophane to ferro-glaucophane with the NaB ranging from 1.617 to 1.979 a.p.f.u., whereas the green-amphiboles are actinolites. In the blueschists, actinolite has higher R3+ at a given NaB compared to the greenschists, attributed to Fe+3-rich bulk composition of the blueschists. Three types of zoning were observed in these amphiboles: glaucophane rimming actinolite, glaucophane with increasing AlIV , AlV I and NaB values towards the rim, and actinolite mantling glaucophane. The zoning patterns in the blue-amphiboles are characterized by increasing Tschermak and glaucophane components towards the rim, consistent with increasing temperature and pressure during prograde metamorphism. Two different modes of actinolite represent different stages of the metamorphic history. The actinolite inclusions

  2. Metamorphic P-T-t path retrieved from metapelites in the southeastern Taihua metamorphic complex, and the Paleoproterozoic tectonic evolution of the southern North China Craton

    NASA Astrophysics Data System (ADS)

    Lu, Jun-Sheng; Zhai, Ming-Guo; Lu, Lin-Sheng; Wang, Hao Y. C.; Chen, Hong-Xu; Peng, Tao; Wu, Chun-Ming; Zhao, Tai-Ping

    2017-02-01

    The Taihua metamorphic complex in the southern part of the North China Craton is composed of tonalite-trondhjemite-granodiorite (TTG) gneisses, amphibolites, metapelitic gneisses, marbles, quartzites, and banded iron formations (BIFs). The protoliths of the complex have ages ranging from ∼2.1 to ∼2.9 Ga and was metamorphosed under the upper amphibolite to granulite facies conditions with NWW-SEE-striking gneissosity. Metapelitites from the Wugang area have three stages of metamorphic mineral assemblages. The prograde metamorphic mineral assemblage (M1) includes biotite + plagioclase + quartz + ilmenite preserved as inclusions in garnet porphyroblasts. The peak mineral assemblage (M2) consists of garnet porphyroblasts and matrix minerals of sillimanite + biotite + plagioclase + quartz + K-feldspar + ilmenite + rutile + pyrite. The retrograde mineral assemblage (M3), biotite + plagioclase + quartz, occurs as symplectic assemblages surrounding embayed garnet porphyroblasts. Garnet porphyroblasts are chemically zoned. Pseudosection calculated in the NCKFMASHTO model system suggests that mantles of garnet porphyroblasts define high-pressure granulites facies P-T conditions of 12.2 kbar and 830 °C, whereas garnet rims record P-T conditions of 10.2 kbar and 840 °C. Integrating the prograde mineral assemblages, zoning of garnet porphyroblasts with symplectic assemblages, a clockwise metamorphic P-T path can be retrieved. High resolution SIMS U-Pb dating and LA-ICP-MS trace element measurements of the metamorphic zircons demonstrate that metapelites in Wugang possibly record the peak or near peak metamorphic ages of ∼1.92 Ga. Furthermore, 40Ar/39Ar dating of biotite in metapelites suggests that the cooling of the Taihua complex may have lasted until ∼1.83 Ga. Therefore, a long-lived Palaeoproterozoic metamorphic event may define a slow exhumation process. Field relationship and new metamorphic data for the Taihua metamorphic complex does not support the previous

  3. Late Cretaceous to Paleocene metamorphism and magmatism in the Funeral Mountains metamorphic core complex, Death Valley, California

    USGS Publications Warehouse

    Mattinson, C.G.; Colgan, J.P.; Metcalf, J.R.; Miller, E.L.; Wooden, J.L.

    2007-01-01

    Amphibolite-facies Proterozoic metasedimentary rocks below the low-angle Ceno-zoic Boundary Canyon Detachment record deep crustal processes related to Meso-zoic crustal thickening and subsequent extension. A 91.5 ?? 1.4 Ma Th-Pb SHRIMP-RG (sensitive high-resolution ion microprobe-reverse geometry) monazite age from garnet-kyanite-staurolite schist constrains the age of prograde metamorphism in the lower plate. Between the Boundary Canyon Detachment and the structurally deeper, subparallel Monarch Spring fault, prograde metamorphic fabrics are overprinted by a pervasive greenschist-facies retrogression, high-strain subhorizontal mylonitic foliation, and a prominent WNW-ESE stretching lineation parallel to corrugations on the Boundary Canyon Detachment. Granitic pegmatite dikes are deformed, rotated into parallelism, and boudinaged within the mylonitic foliation. High-U zircons from one muscovite granite dike yield an 85.8 ?? 1.4 Ma age. Below the Monarch Spring fault, retrogression is minor, and amphibolite-facies mineral elongation lineations plunge gently north to northeast. Multiple generations of variably deformed dikes, sills, and leucosomal segregations indicate a more complex history of partial melting and intrusion compared to that above the Monarch Spring fault, but thermobarometry on garnet amphibolites above and below the Monarch Spring fault record similar peak conditions of 620-680 ??C and 7-9 kbar, indicating minor (<3-5 km) structural omission across the Monarch Spring fault. Discordant SHRIMP-RG U-Pb zircon ages and 75-88 Ma Th-Pb monazite ages from leucosomal segregations in paragneisses suggest that partial melting of Proterozoic sedimentary protoliths was a source for the structurally higher 86 Ma pegmatites. Two weakly deformed two-mica leucogranite dikes that cut the high-grademetamorphic fabrics below the Monarch Spring fault yield 62.3 ?? 2.6 and 61.7 ?? 4.7 Ma U-Pb zircon ages, and contain 1.5-1.7 Ga cores. The similarity of metamorphic

  4. Hot metamorphic core complex in a cold foreland

    NASA Astrophysics Data System (ADS)

    Franke, Wolfgang; Doublier, Michael Patrick; Klama, Kai; Potel, Sébastien; Wemmer, Klaus

    2011-06-01

    The Montagne Noire forms the southernmost part of the French Massif Central. Carboniferous flysch sediments and very low-grade metamorphic imprint testify to a very external position in the orogen. Sedimentation of synorogenic clastic sediments continued up to the Viséan/Namurian boundary (≤320 Ma). Subsequently, the Palaeozoic sedimentary pile underwent recumbent folding and grossly southward thrusting. An extensional window exposes a hot core of Carboniferous HT/LP gneisses, migmatites and granites (Zone Axiale), which was uplifted from under the nappe pile. After the emplacement of the nappes on the Zone Axiale (Variscan D1), all structural levels shared the same tectonic evolution: D2 (extension and exhumation), D3 (refolding) and post-D3 dextral transtension. HT/LP-metamorphism in the crystalline rocks probably started before and continued after the emplacement of the nappes. Peak metamorphic temperatures were attained during a post-nappe thermal increment (M2). M2 occurred during ENE-directed bilateral extension, which exhumed the Zone Axiale and its frame as a ductile horst structure, flanked to the ENE by a Stephanian intra-montane basin. Map patterns and mesoscopic structures reveal that extension in ENE occurred simultaneously with NNW-oriented shortening. Combination of these D2 effects defines a bulk prolate strain in a "pinched pull-apart" setting. Ductile D2 deformation during M2 dominates the structural record. In wide parts of the nappes on the southern flank of the Zone Axiale, D1 is only represented by the inverted position of bedding (overturned limbs of recumbent D1 folds) and by refolded D1 folds. U-Pb monazite and zircon ages and K-Ar muscovite ages are in accord with Ar-Ar data from the literature. HT/LP metamorphism and granitoid intrusion commenced already at ≥330 Ma and continued until 297 Ma, and probably in a separate pulse in post-Stephanian time. Metamorphic ages older than c. 300 Ma are not compatible with the classical model of

  5. Metamorphic complexes in accretionary orogens: Insights from the Beishan collage, southern Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Song, Dongfang; Xiao, Wenjiao; Windley, Brian F.; Han, Chunming; Yang, Lei

    2016-10-01

    The sources of ancient zircons and the tectonic attributions and origins of metamorphic complexes in Phanerozoic accretionary orogens have long been difficult issues. Situated between the Tianshan and Inner Mongolia orogens, the Beishan orogenic collage (BOC) plays a pivotal role in understanding the accretionary processes of the southern Central Asian Orogenic Belt (CAOB), particularly the extensive metamorphic and high-strained complexes on the southern margin. Despite their importance in understanding the basic architecture of the southern CAOB, little consensus has been reached on their ages and origins. Our new structural, LA-ICP-MS zircon U-Pb and Hf isotopic data from the Baidunzi, Shibandun, Qiaowan and Wutongjing metamorphic complexes resolve current controversial relations. The metamorphic complexes have varied lithologies and structures. Detrital zircons from five para-metamorphic rocks yield predominantly Phanerozoic ages with single major peaks at ca. 276 Ma, 286 Ma, 427 Ma, 428 Ma and 461 Ma. Two orthogneisses have weighted mean ages of 294 ± 2 Ma and 304 ± 2 Ma with no Precambrian inherited zircons. Most Phanerozoic zircons show positive εHf(t) values indicating significant crustal growth in the Ordovician, Silurian and Permian. The imbricated fold-thrust deformation style combined with diagnostic zircon U-Pb-Hf isotopic data demonstrate that the metamorphic rocks developed in a subduction-accretion setting on an arc or active continental margin. This setting and conclusion are supported by the nearby occurrence of Ordovician-Silurian adakites, Nb-rich basalts, Carboniferous-Permian ophiolitic mélanges, and trench-type turbidites. Current data do not support the presence of a widespread Precambrian basement in the evolution of the BOC; the accretionary processes may have continued to the early Permian in this part of the CAOB. These relationships have meaningful implications for the interpretation of the tectonic attributions and origins of other

  6. Short-lived thermal peak from garnet geospeedometry in the inverted metamorphic gradient of the Nestos Thrust in the Rhodope Metamorphic Complex (RMC)

    NASA Astrophysics Data System (ADS)

    Cioldi, Stefania; Moulas, Evangelos; Burg, Jean-Pierre

    2017-04-01

    Pressure, temperature and time (P-T-t) are among the most common variables that can be deduced from the study of metamorphic rocks. Although metamorphic recrystallization is mostly due to changes in pressure and temperature, the time of residence or the rate of change of P-T is commonly assessed by geochronological studies. In this work we attempt to link information from isotopic systems, petrological determination and diffusion kinetics in order to assess the activity of the major syn-metamorphic Nestos Thrust of the Rhodope Metamorphic Complex (RMC). The RMC, in Northern-Greece and South Bulgaria, includes a synmetamorphic thrust complex that juxtaposes high-grade imbricate units on top of a medium-to-low grade unit. The metamorphic rocks exhibit an inverted metamorphic gradient with peak-metamorphic temperatures that increase upwards. Syn-kinematic migmatites occur in the immediate hanging wall of the thrust zone. U-Pb Sensitive High Resolution Ion Microprobe (SHRIMP) zircon geochronology on leucosomes from these migmatites yield Early Cretaceous crystallization ages (160-120 Ma), which are interpreted to date anatexis. The duration of the high-temperature peak has been estimated with forward numerical modelling of garnet fractionation and diffusion. Garnets that display chemical zoning in their four major elements (Fe-Ca-Mg-Mn) have been investigated. Their chemical composition was compared to numerically generated compositions of garnet that grow and diffuse in a given P-T-t path. The duration of the peak-temperature conditions was found to be between 2 and 5 Ma. The short thermal peak and the spatial distribution of the high grade rocks along the major shear zone suggests that the heat source of metamorphism is most probably related to the viscous heating of this major shear zone.

  7. Can the Metamorphic Basement of Northwestern Guatemala be Correlated with the Chuacús Complex?

    NASA Astrophysics Data System (ADS)

    Cacao, N.; Martens, U.

    2007-05-01

    The Chuacús complex constitutes a northward concave metamorphic belt that stretches ca. 150 km south of the Cuilco-Chixoy-Polochic (CCP) fault system in central and central-eastern Guatemala. It represents the basement of the southern edge of the Maya block, being well exposed in the sierra de Chuacús and the sierra de Las Minas. It is composed of high-Al metapelites, amphibolites, quartzofeldspathic gneisses, and migmatites. In central Guatemala the Chuacús complex contains ubiquitous epidote-amphibolite mineral associations, and local relics of eclogite reveal a previous high-pressure metamorphic event. North of the CCP, in the Sierra de Los Cuchumatanes area of western Guatemala, metamorphic rocks have been considered the equivalent of the Chuacús complex and hence been given the name Western Chuacús group, These rocks, which were intruded by granitic rocks and later mylonitized, include chloritic schist and gneiss, biotite-garnet schist, migmatites, and amphibolites. No eclogitic relics have been found within metamorphic rocks in northwestern Guatemala. Petrographic analyses of garnet-biotite schist reveal abundant retrogression and the formation of abundant zeolite-bearing veins associated with intrusion. Although metamorphic conditions in the greenschist and amphibolite facies are similar to those in the sierra de Chuacús, the association with deformed intrusive granites is unique for western Guatemala. Hence a correlation with metasediments intruded by the Rabinal granite in the San Gabriel area of Baja Verapaz seems more feasible than a correlation with the Chuacús complex. This idea is supported by reintegration of the Cenozoic left-lateral displacement along the CCP, which would place the metamorphic basement of western Guatemala north of Baja Verapaz, adjacent to metasediments intruded by granites in the San Gabriel-Rabinal area.

  8. Fluids circulations during the formation of the Naxos Metamorphic Core Complex (Greece)

    NASA Astrophysics Data System (ADS)

    Vanderhaeghe, Olivier; Boiron, Marie-Christine; Siebenaller, Luc

    2015-04-01

    The island of Naxos, in the central part of the Cycladic Metamorphic Core Complex (Greece) represents a perfect example to address the evolution of fluid circulations during collapse of an orogenic belt. It displays a complex detachment system characterized by mylonites, cataclasites and high-angle normal faults which geometric relationships reflect rheological layering of the orogenic crust and its evolution during collapse. The chemistry of fluid inclusions determined by microthermometry, RAMAN spectroscopy, LA-ICPMS, and crush-leach combined with C and H isotopic signatures point to three distinct types of fluids, namely (i) a H2O-dominated fluid, (ii) a composite H2O-CO2 fluid, and (iii) a NaCl-rich fluid concentrated in metals. These different types of fluids are interpreted to reflect mixtures to various degrees among fluids generated by (i) condensation of clouds (meteoric aqueous fluid), (ii) dehydration and decarbonatation of metasedimentary rocks during metamorphism (metamorphic aqueous-carbonic fluid), and (iii) crystallization of granitic magmas (magmatic saline fluid with high metal contents). The distribution of fluids with respect to microstructures evidences the close link between deformation and fluid circulations at the mineral scale from intracristalline deformation to fracturing. The orientation of fluid inclusion planes, veins and alteration zones allows to identify the scale and geometry of the reservoir into which fluids are circulating and their evolution during the formation of the Metamorphic Core Complex. These data indicate that the orogenic crust is subdivided in two reservoirs separated by the ductile/fragile transition. Meteoric fluids circulate in the upper crust affected by brittle deformation whereas metamorphic and magmatic fluids circulate in relation to intracristalline ductile deformation affecting the lower crust. The geometry of these reservoirs evolves during the formation of the Naxos Metamorphic Core Complex as the

  9. Potential links between porphyry copper deposits and exhumed metamorphic basement complexes in northern Chile

    NASA Astrophysics Data System (ADS)

    Cooper, Frances; Docherty, Alistair; Perkins, Rebecca

    2014-05-01

    Porphyry copper deposits (PCDs) are typically associated with magmatic arcs in compressional subduction zone settings where thickened crust and fractionated calc-alkaline magmas produce favourable conditions for copper mineralisation. A classic example is the Eocene-Oligocene PCD belt of Chile, the world's leading copper producing country. In other parts of the world, older late Cretaceous to early Tertiary PCDs are found in regions of former subduction-related magmatism that have undergone subsequent post-orogenic crustal extension, such as the Basin and Range province of western North America, and the Eurasian Balkan-Carpathian-Dinaride belt. In the Basin and Range there is a striking correlation between the location of many PCDs and exhumed metamorphic core complexes (isolated remnants of the middle to lower crust exhumed during extensional normal faulting). This close spatial relationship raises questions about the links between the two. For example, are their exhumation histories related? Could the presence of impermeable metamorphic rocks at depth affect and localise mineralising fluids? In Chile there appears to be a similar spatial relationship between PCDs and isolated outcrops of exhumed metamorphic basement. In northern Chile, isolated exposures of high-grade metamorphic gneisses and amphibolites are thought to be exhumed remnants of the pre-subduction Proterozoic-Paleozoic continental margin of Gondwana [2], although little is known about when they were exhumed and by what mechanism. For example, the Limón Verde metamorphic complex, exhumed from a depth of ca. 50 km, is situated adjacent to Chuquicamata, the largest open pit copper mine in the world. In northernmost Chile, another metamorphic exposure, the Belén complex, sits close to the Dos Hermanos PCD, a small deposit that is not actively mined. Comprising garnet-bearing gneisses and amphibolites, the Belén is thought to have been exhumed from a depth of ca. 25 km, but when and how is unclear [3

  10. Mantle compensation of active metamorphic core complexes at Woodlark rift in Papua New Guinea.

    PubMed

    Abers, Geoffrey A; Ferris, Aaron; Craig, Mitchell; Davies, Hugh; Lerner-Lam, Arthur L; Mutter, John C; Taylor, Brian

    2002-08-22

    In many highly extended rifts on the Earth, tectonic removal of the upper crust exhumes mid-crustal rocks, producing metamorphic core complexes. These structures allow the upper continental crust to accommodate tens of kilometres of extension, but it is not clear how the lower crust and underlying mantle respond. Also, despite removal of the upper crust, such core complexes remain both topographically high and in isostatic equilibrium. Because many core complexes in the western United States are underlain by a flat Moho discontinuity, it has been widely assumed that their elevation is supported by flow in the lower crust or by magmatic underplating. These processes should decouple upper-crust extension from that in the mantle. In contrast, here we present seismic observations of metamorphic core complexes of the western Woodlark rift that show the overall crust to be thinned beneath regions of greatest surface extension. These core complexes are actively being exhumed at a rate of 5-10 km Myr(-1), and the thinning of the underlying crust appears to be compensated by mantle rocks of anomalously low density, as indicated by low seismic velocities. We conclude that, at least in this case, the development of metamorphic core complexes and the accommodation of high extension is not purely a crustal phenomenon, but must involve mantle extension.

  11. Carbon, hydrogen, and oxygen isotope studies of the regional metamorphic complex at Naxos, Greece

    USGS Publications Warehouse

    Rye, R.O.; Schuiling, R.D.; Rye, D.M.; Jansen, J.B.H.

    1976-01-01

    At Naxos, Greece, a migmatite dome is surrounded by schists and marbles of decreasing metamorphic grade. Sillimanite, kyanite, biotite, chlorite, and glaucophane zones are recognized at successively greater distances from the migmatite dome. Quartz-muscovite and quartz-biotite oxygen isotope and mineralogie temperatures range from 350 to 700??C. The metamorphic complex can be divided into multiple schist-rich (including migmatites) and marblerich zones. The ??18O values of silicate minerals in migmatite and schist units and quartz segregations in the schist-rich zones decrease with increase in metamorphic grades. The calculated ??18OH2O values of the metamorphic fluids in the schist-rich zones decrease from about 15??? in the lower grades to an average of about 8.5??? in the migmatite. The ??D values of OH-minerals (muscovite, biotite, chlorite, and glaucophane) in the schist-rich zones also decrease with increase in grade. The calculated ??DH2O values for the metamorphic fluid decrease from -5??? in the glaucophane zone to an average of about -70??? in the migmatite. The ??D values of water in fluid inclusions in quartz segregations in the higher grade rocks are consistent with this trend. The??18O values of silicate minerals and quartz segregations in marble-rich zones are usually very large and were controlled by exchange with the adjacent marbles. The ??D values of the OH minerals in some marble-rich zones may reflect the value of water contained in the rocks prior to metamorphism. Detailed data on 20 marble units show systematic variations of ??18O values which depend upon metamorphic grade. Below the 540??C isograd very steep ??18O gradients at the margins and large ??18O values in the interior of the marbles indicate that oxygen isotope exchange with the adjacent schist units was usually limited to the margins of the marbles with more exchange occurring in the stratigraphic bottom than in the top margins. Above the 540??C isograd lower ??18O values occur in

  12. Reconnaissance and economic geology of Copper Mountain metamorphic complex, Owl Creek Mountains, Wyoming

    SciTech Connect

    Hausel, W.D.

    1983-08-01

    The Copper Mountain metamorphic complex lies within a westerly trending belt of Precambrian exposures known as the Owl Creek Mountains uplift. The metamorphic complex at Copper Mountain is part of a larger complex known as the Owl Creek Mountains greenstone belt. Until more detailed mapping and petrographic studies can be completed, the Copper Mountain area is best referred to as a complex, even though it has some characteristics of a greestone belt. At least three episodes of Precambrian deformation have affected the supracrustals, and two have disturbed the granites. The final Precambrian deformation event was preceded by a weak thermal event expressed by retrogressive metamorphism and restricted metasomatic alteration. During this event, a second phase of pegmatization was accompanied by hydrothermal solutions. During the Laramide orogeny, Copper Mountain was again modified by deformation. Laramide deformation produced complex gravity faults and keystone grabens. Uranium deposits were formed following major Laramide deformation. The genesis of these deposits is attributable to either the leaching of granites or the leaching of overlying tuffaceous sediments during the Tertiary. Production of metals and industrial minerals has been limited, although some gold, copper, silver, tungsten, beryl, feldspar, and lithium ore have been shipped from Copper Mountain. A large amount of uranium was produced from the Copper Mountain district in the 1950s.

  13. Incidence of Metamorphism on Magnetic Mineralogy in the Sarmiento Ophiolitic Complex, Southern Chile

    NASA Astrophysics Data System (ADS)

    Singer, S.; Rapalini, A.; Calderon, M.; Herve, F.

    2005-05-01

    The Sarmiento Ophiolitic Complex (SOC), located in the southern Andes of Chile, represents the mafic portion of the Late Jurassic to Early Cretaceous oceanic floor of a back-arc basin closed and uplifted in the Mid Cretaceous. Its igneous pseudostratigraphy consists of mainly mafic pillow lavas, dikes, and gabbros. These rocks underwent a non - deformative "ocean floor metamorphism" which developed secondary mineral assemblages in a vertical steep metamorphic gradient passing from zeolite to actinolite facies, followed by a transition to fresh gabbros Syntectonic greenschist facies assemblages in mylonitic rocks bordering the thrust slices that expose the SOC, represent a different metamorphic event, that probably occured before the latest Cretaceous. A paleomagnetic study of these rocks has shown that a post-tectonic widespread remagnetization affected the whole ophiolite. Incidence of the mentioned metamophic processes on the natural remanent magnetization of the ophiolite was evaluated thru a susceptibility survey and a study of ferromagnetic (s.l ) minerals. These were identified by microscope observations under reflected and transmitted light. A very good agreement between magnetic susceptibility values and optical observations was found. Metamorphic processes have produced strong effects on ferromagnetic minerals. These metabasites are disctintly poor in titanomagnetites, except the metagabbros and dikes crosscutting gabbros, which show high susceptibilities due to magnetite from serpentinisation of olivines and uralitization of pyroxenes. Sheeted dikes and pillow lavas show low susceptibilities controlled by paramagnetic minerals with titanite as witness of a primary titanium-bearing mineral. Pure microcrystalline magnetite, main carrier of natural remanent magnetization, likely formed during the greenschist post-tectonic overprint. Sulfide mineralization in the Complex requires further studies. Finally, equilibria between Fe3+ in oxides and Fe3+ in

  14. Metamorphic and thermal evolution of large contact aureoles - lessons from the Bushveld Igneous Complex

    NASA Astrophysics Data System (ADS)

    Waters, D.

    2012-04-01

    Large igneous intrusions crystallise, cool, and transfer heat out into their host rocks. The thermal structure of the resulting aureole can be mapped as a series of assemblage zones and isograds, and can in principle be modelled on the assumption that heat transfer is dominantly by conduction. The local peak of contact metamorphism occurs later in time with increasing distance from the igneous contact. The importance of fluids as a metamorphic/metasomatic agent or heat transfer mechanism depends on volatile contents of magma and country rock, and on the geometry of the intrusion. Many of these features are spectacularly illustrated by the aureole beneath the mafic Rustenburg Layered Suite of the Bushveld Complex, which was emplaced at ca. 2060 Ma sub-concordantly into the shale-quartzite succession of the Pretoria Group in the Transvaal Basin. The layered suite reaches a thickness of at least 8 km, and the metamorphic aureole extends 4 km or more downwards into the "floor" of the intrusion. The great extent and relative absence of deformation make this a remarkable natural laboratory for studying the fundamental processes of metamorphism. In quantifying the thermal history, however, a number of second-order factors need to be taken into account. The first relates to the markedly different thermal properties of the major quartzite and shale units, and the second to the importance of endothermic metamorphic reactions in shale units relative to the quartzites. Further insights into metamorphic processes arise from the exquisite detail of poikiloblast growth microstructures preserved in graphite-poor metapelites of the Timeball Hill and Silverton Formations, 2.5 to 3.5 km beneath the igneous contact. These allow a detailed reconstruction of the time sequence of mineral growth and replacement, revealing a marked overlap of the growth intervals of porphyroblastic staurolite, cordierite, biotite, garnet and andalusite at the expense of muscovite, chlorite and chloritoid

  15. Late Carboniferous high-pressure metamorphism of the Kassan Metamorphic Complex (Kyrgyz Tianshan) and assembly of the SW Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Mühlberg, M.; Hegner, E.; Klemd, R.; Pfänder, J. A.; Kaliwoda, M.; Biske, Y. S.

    2016-11-01

    High-pressure (HP) metamorphism of the Kassan Metamorphic Complex (KMC) in the western Kyrgyz Tianshan has been related to either late Ordovician or late Carboniferous-Permian subduction processes. We report Sm-Nd ages for retrogressed eclogite samples and 40Ar/39Ar cooling ages for enclosing garnet-muscovite samples from the KMC as new age constraints on HP metamorphism and rock exhumation. These data will be used for an upgraded paleogeographic model for late Paleozoic crustal consolidation in the southwestern Central Asian Orogenic Belt. The retrogressed eclogite samples have transitional alkaline to tholeiitic affinity and trace-element patterns consistent with protoliths derived from garnet-bearing mantle sources at rifting plate margins. Geothermobarometric data for a retrogressed eclogite sample indicate peak-metamorphic conditions of 540 ± 30 °C at 1.6 ± 0.1 GPa. Samples from different lithotectonic units of the KMC provide coherent Sm-Nd garnet-whole rock ages of 317 ± 4 Ma and 316 ± 3 Ma (2σ). The prograde major-element zoning in the mm-sized garnets in combination with the moderate peak-metamorphic temperature, support our interpretation of the Sm-Nd garnet ages as unambiguous evidence for late Carboniferous HP metamorphism. The Sm-Nd garnet growth ages overlap within-error with the 40Ar/39Ar mica cooling ages of 314 ± 2 Ma and 313 ± 2 Ma (2σ) indicating rapid uplift of the subduction complex after peak metamorphism. The ca. 317-313 Ma HP-exhumation event of the KMC is contemporaneous with those of the Atbashi and Akeyazi (ca. 500 km east in NW China) HP complexes and implies similar collision histories at the South Tianshan Suture to the east and west of the Talas-Fergana Fault (TFF). The exhumation of the KMC and Atbashi HP complexes overlaps with the initiation of the TFF (Rolland et al., 2013) suggesting incipient separation of the Chatkal and Atbashi complexes during rock exhumation and early plate collision.

  16. Metamorphic core complexes: Expression of crustal extension by ductile-brittle shearing of the geologic column

    NASA Technical Reports Server (NTRS)

    Davis, G. H.

    1985-01-01

    Metamorphic core complexes and detachment fault terranes in the American Southwest are products of stretching of continental crust in the Tertiary. The physical and geometric properties of the structures, fault rocks, and contact relationships that developed as a consequence of the extension are especially well displayed in southeastern Arizona. The structures and fault rocks, as a system, reflect a ductile-through-brittle continuum of deformation, with individual structures and faults rocks showing remarkably coordinated strain and displacement patterns. Careful mapping and analysis of the structural system has led to the realization that strain and displacement were partitioned across a host of structures, through a spectrum of scales, in rocks of progressively changing rheology. By integrating observations made in different parts of the extensional system, especially at different inferred depth levels, it has been possible to construct a descriptive/kinematic model of the progressive deformation that achieved continental crustal extension in general, and the development of metamorphic core complexes in particular.

  17. Metamorphic and tectonic evolution of the Greater Himalayan Crystalline Complex in Nyalam region, south Tibet

    NASA Astrophysics Data System (ADS)

    Wang, Jia-Min; Zhang, Jin-Jiang; Rubatto, Daniela

    2016-04-01

    Recent studies evoke dispute whether the Himalayan metamorphic core - Greater Himalayan Crystalline Complex (GHC) - was exhumed as a lateral crustal flow or a critical taper wedge during the India-Asia collision. This contribution investigated the evolution of the GHC in the Nyalam region, south Tibet, with comprehensive studies on structural kinematics, metamorphic petrology and geochronology. The GHC in the Nyalam region can be divided into the lower and upper GHC. Phase equilibria modelling and conventional thermobarometric results show that peak temperature conditions are lower in the lower GHC (~660-700°C) and higher in the upper GHC (~740-780°C), whereas corresponding pressure conditions at peak-T decrease from ~9-13 kbar to ~4 kbar northward. Monazite, zircon and rutile U-Pb dating results reveal two distinct blocks within the GHC of the Nyalam region. The upper GHC underwent higher degree of partial melting (15-25%, via muscovite dehydration melting) that initiated at ~32 Ma, peaked at ~29 Ma to 25 Ma, possibly ended at ~20 Ma. The lower GHC underwent lower degree of melting (0-10%) that lasted from 19 to 16 Ma, which was produced mainly via H2O-saturated melting. At different times, both the upper and lower blocks underwent initial slow cooling (35 ± 8 and 10 ± 5°C/Myr, respectively) and subsequent rapid cooling (120 ± 40°C/Myr). The established timescale of metamorphism suggests that high-temperature metamorphism within the GHC lasted a long duration (~15 Myr), whereas duration of partial melting lasted for ~3 Myr in the lower GHC and lasted for 7-12 Myr in the upper GHC. The documented diachronous metamorphism and discontinuity of peak P-T conditions implies the presence of the Nyalam Thrust in the study area. This thrust is probably connected to the other thrusts in Nepal and Sikkim Himalaya, which extends over ~800 km and is named the "High Himalayan Thrust". Timing of activity along this thrust is at ~25-16 Ma, which is coeval with active

  18. The timing of tertiary metamorphism and deformation in the Albion-Raft River-Grouse Creek metamorphic core complex, Utah and Idaho

    USGS Publications Warehouse

    Strickland, A.; Miller, E.L.; Wooden, J.L.

    2011-01-01

    The Albion-Raft River-Grouse Creek metamorphic core complex of southern Idaho and northern Utah exposes 2.56-Ga orthogneisses and Neoproterozoic metasedimentary rocks that were intruded by 32-25-Ma granitic plutons. Pluton emplacement was contemporaneous with peak metamorphism, ductile thinning of the country rocks, and top-to-thewest, normal-sense shear along the Middle Mountain shear zone. Monazite and zircon from an attenuated stratigraphic section in the Middle Mountain were dated with U-Pb, using a SHRIMP-RG (reverse geometry) ion microprobe. Zircons from the deformed Archean gneiss preserve a crystallization age of 2532 ?? 33 Ma, while monazites range from 32.6 ?? 0.6 to 27.1 ?? 0.6 Ma. In the schist of the Upper Narrows, detrital zircons lack metamorphic overgrowths, and monazites produced discordant U-Pb ages that range from 52.8 ?? 0.6 to 37.5 ?? 0.3 Ma. From the structurally and stratigraphically highest unit sampled, the schist of Stevens Spring, narrow metamorphic rims on detrital zircons yield ages from 140-110 Ma, and monazite grains contained cores that yield an age of 141 ??2 Ma, whereas rims and some whole grains ranged from 35.5 ?? 0.5 to 30.0 ?? 0.4 Ma. A boudinaged pegmatite exposed in Basin Creek is deformed by the Middle Mountains shear zone and yields a monazite age of 27.6 ?? 0.2 Ma. We interpret these data to indicate two periods of monazite and metamorphic zircon growth: a poorly preserved Early Cretaceous period (???140 Ma) that is strongly overprinted by Oligocene metamorphism (???32-27 Ma) related to regional plutonism and extension. ?? 2011 by The University of Chicago.

  19. Faulting evidence of isostatic uplift in the Rincon Mountains metamorphic core complex: An image processing analysis

    NASA Astrophysics Data System (ADS)

    Rodriguez-Guerra, Edna Patricia

    This study focuses on the applications of remote sensing techniques and digital analysis to characterizing of tectonic features of the Rincon Mountains metamorphic core complex. Data included Landsat Thematic Mapper (TM) images, digital elevation models (DEM), and digital orthophoto quadrangle quads (DOQQ). The main findings in this study are two nearly orthogonal systems of structures that have never been reported in the Rincon Mountains. The first system, a penetrative faulting system of the footwall rocks, trends N10--30°W. Similar structures identified in other metamorphic core complexes. The second system trends N60--70°E, and has only been alluded indirectly in the literature of metamorphic core complexes. The structures pervade mylonites in Tanque Verde Mountain, Mica Mountain, and the Rincon Peak area. As measured on the imagery, spacing between the N10--30°W lineaments ranges from ˜0.5 to 2 km, and from 0.25 to 1 km for the N60--70°E system. Field inspection reveals that the N10--30°W trending system, are high-angle normal faults dipping mainly to the west. One of the main faults, named here the Cabeza de Vaca fault, has a polished, planar, striated and grooved surface with slickenlines indicating pure normal dip-slip movement (N10°W, 83°SW; slickensides rake 85°SW). The Cabeza de Vaca fault is the eastern boundary of a 2 km-wide graben, with displacement as great as 400 meters. The N10--30°W faults are syn- to post-mylonitic, high-angle normal faults that formed during isostatic uplift of the Rincon core complex during mid-Tertiary time. This interpretation is based on previous works, which report similar fault patterns in other metamorphic core complexes. Faults trending N20--30°W, shape the east flank of Mica Mountain. These faults, on the back dipping mylonitic zone, dip east and may represent late-stage antithetic shear zones. The Cabeza de Vaca fault and the back dipping antithetic faults accommodate as much as 65% of the extension due to

  20. Metamorphic core complex formation by density inversion and lower-crust extrusion.

    PubMed

    Martinez, F; Goodliffe, A M; Taylor, B

    2001-06-21

    Metamorphic core complexes are domal uplifts of metamorphic and plutonic rocks bounded by shear zones that separate them from unmetamorphosed cover rocks. Interpretations of how these features form are varied and controversial, and include models involving extension on low-angle normal faults, plutonic intrusions and flexural rotation of initially high-angle normal faults. The D'Entrecasteaux islands of Papua New Guinea are actively forming metamorphic core complexes located within a continental rift that laterally evolves to sea-floor spreading. The continental rifting is recent (since approximately 6 Myr ago), seismogenic and occurring at a rapid rate ( approximately 25 mm yr-1). Here we present evidence-based on isostatic modelling, geological data and heat-flow measurements-that the D'Entrecasteaux core complexes accommodate extension through the vertical extrusion of ductile lower-crust material, driven by a crustal density inversion. Although buoyant extrusion is accentuated in this region by the geological structure present-which consists of dense ophiolite overlaying less-dense continental crust-this mechanism may be generally applicable to regions where thermal expansion lowers crustal density with depth.

  1. Subsidence in Gorontalo Bay, Sulawesi (Indonesia) and metamorphic core complex exhumation on land

    NASA Astrophysics Data System (ADS)

    Pezzati, Giovanni; Hennig, Juliane; Advokaat, Eldert; Hall, Robert; Burgess, Peter; Perez-Gussinye, Marta

    2015-04-01

    Gorontalo Bay is a semi-enclosed sea between the North and East Arms of Sulawesi. It is surrounded by land on three sides, separating a northern volcanic province from metamorphic rocks to the south and west, and ophiolites to the southeast. In the western part of Gorontalo Bay there are two sub-basins: the northern Tomini Basin and the southern Poso Basin, which have different histories. This study presents a new geological interpretation of western Gorontalo Bay, based on recent multibeam and 2D seismic data and field observations on land. In Tomini Basin six major seismic sequences (Units A to F) have a total thickness of more than 5 sec TWT. Ages are based on correlation with events on land. A major unconformity above Basement Unit A is interpreted to be the result of an Early Miocene collision. Unit A subsided from the Early Miocene, with deposition of Units B and C largely in a deep marine environment. There was regional uplift in the Middle Miocene followed by renewed subsidence resulting in shallow marine depositional environments in which carbonate platforms developed (Units D-E). Subsidence accelerated during the deposition of Unit E, causing back-stepping of the shelf edge, formation of pinnacle reefs and then drowning of the carbonate platforms, leading to the present depths of 2 km in the basin centre with a thin clastic cover (Unit F). North of Tomini Basin, the Malino Metamorphic Complex exposes strongly deformed mid-crustal rocks which record Middle Miocene extension accommodated by low angle shear zones. A second phase of rapid uplift and extension recorded in these rocks occurred in the Pliocene-Pleistocene, and was accommodated by high angle normal faulting. Poso Basin is younger than Tomini Basin and it occupies the southern part of western Gorontalo Bay. The deeper part of its sedimentary sequence is probably the time equivalent of Unit D in Tomini Basin. Immediately south of Poso Basin, on land, is a large metamorphic core complex. Seismic

  2. Geologic and Geochronologic Studies of the Early Proterozoic Kanektok Metamorphic Complex of Southwestern Alaska

    USGS Publications Warehouse

    Turner, Donald L.; Forbes, Robert B.; Aleinikoff, John N.; McDougall, Ian; Hedge, Carl E.; Wilson, Frederic H.; Layer, Paul W.; Hults, Chad P.

    2009-01-01

    The Kanektok complex of southwestern Alaska appears to be a rootless terrane of early Proterozoic sedimentary, volcanic, and intrusive rocks which were metamorphosed to amphibolite and granulite facies and later underwent a pervasive late Mesozoic thermal event accompanied by granitic plutonism and greenschist facies metamorphism of overlying sediments. The terrane is structurally complex and exhibits characteristics generally attributed to mantled gneiss domes. U-Th-Pb analyses of zircon and sphene from a core zone granitic orthogneiss indicate that the orthogneiss protolith crystallized about 2.05 b.y. ago and that the protolithic sedimentary, volcanic and granitic intrusive rocks of the core zone were metamorphosed to granulite and amphibolite facies about 1.77 b.y. ago. A Rb-Sr study of 13 whole-rock samples also suggests metamorphism of an early Proterozoic [Paleoproterozoic] protolith at 1.77 Ga, although the data are scattered and difficult to interpret. Seventy-seven conventional 40K/40Ar mineral ages were determined for 58 rocks distributed throughout the outcrop area of the complex. Analysis of the K-Ar data indicate that nearly all of these ages have been totally or partially reset by a pervasive late Mesozoic thermal event accompanied by granitic plutonism and greenschist facies metamorphism. Several biotites gave apparent K-Ar ages over 2 Ga. These ages appear to be controlled by excess radiogenic 40Ar produced by the degassing protolith during the 1.77 Ga metamorphism and incorporated by the biotites when they were at temperatures at which Ar could diffuse through the lattice. Five amphibolites yielded apparent Precambrian 40K/40Ar hornblende ages. There is no evidence that these hornblende ages have been increased by excess argon. The oldest 40K/40Ar hornblende age of 1.77 Ga is identical to the sphene 207Pb/206Pb orthogneiss age and to the Rb-Sr 'isochron' age for six of the 13 whole-rock samples. The younger hornblende ages are interpreted as

  3. Geology of a zone of metamorphic core complexes in southeastern Arizona

    USGS Publications Warehouse

    Banks, Norman G.

    1980-01-01

    An elongate northwest-trending zone of batholith-size metamorphic core complexes extends some 130 km from the Rincon Mountains to the Picacho Mountains in southeastern Arizona. The complexes are characterized by undeformed to gneissic granitic intrusions, gneissic to phyllonitic xenoliths and wall rocks derived mainly from Precambrian granitic rock, shallow-dipping foliation, and remarkably uniform directions of lineation. Parts of this zone have been recognized and studied extensively for more than 30 yr, but there remains a divergence of opinion about the age, depth of emplacement, and origin of the complexes. Field relations indicate that host rocks as young as or younger than Mesozoic were involved in cataclasis. K-Ar and fission-track ages indicate that the complexes were at temperatures uniformly in excess of 400°C in the middle Tertiary (20 to 30 m.y. ago) and that the bedrock between and very near the complexes was not thermally affected. Tertiary plutons characteristically associated with the high-grade metamorphic rocks are also cataclastically deformed, and stratigraphic depths to the top of metamorphic terranes were no more than 6 km and possibly less than 3 km. These and other data suggest to some that the complexes developed during intrusion of composite batholiths at shallow depth in an anisotropic stress field during the middle Tertiary. On the other hand, Rb-Sr and U-Th-Pb techniques yielded older ages (≥44 m.y.) for some samples. These and additional data suggest to others that major development of cataclasis preceded the middle Tertiary and included regional thrusting.

  4. Did the entire Seve Nappe Complex in the Scandinavian Caledonides undergo HP metamorphism?

    NASA Astrophysics Data System (ADS)

    Klonowska, I.; Rosén, Š.; Majka, J.; Ladenberger, A.; Gee, D. G.

    2012-04-01

    The Seve Nappe Complex (SNC) in the Scandinavian Caledonides is composed of high grade metamorphic rocks, derived from the outer(most) parts of the Baltica margin. The main lithologies are represented by amphibolite facies metasediments and granulite facies gneisses, locally with migmatites. Granulites from the SNC on Åreskutan and Snasahögarna in west-central Jämtland (Sweden), give an excellent opportunity to investigate the high grade metamorphic history of these far-travelled nappes. As there are only two areas within the SNC, where eclogites have been found, there is a necessity to look for other evidence of HP metamorphism elsewhere to unravel a more complete history of the SNC. The latest zircon ion microprobe dating (Ladenberger et.al., 2012) of the Åreskutan Nappe indicate that the peak (temperature) of metamorphism occurred at 442-436 Ma. An earlier history of higher pressure metamorphism has been identified by EMP monazite dating (Majka et. al., in press), probably occurring in the mid-late Ordovician as in northwestern Jämtland (Root and Corfu, 2011, Brueckner and van Roermund, 2007). Kyanite-bearing leucogranulite and pyroxene-dominated paleosome samples from granulite facies migmatites were collected in the Åreskutan Nappe, as well as garnet-clinopyroxene granulite on Tväråklumparna in the Snasahögarna area near Storlien. Garnet chemistry and kyanite-sillimanite transformation were investigated in thin sections using light microscopy, WDS analysis and Raman spectroscopy. In the Tväråklumparna granulite almandine with high Ca content (19-20% grs) contain inclusions of diopside. Garnets from the Åreskutan granulite are homogenous, have high Ca content (26-27% grs) and lack inclusions. Preliminary estimates from garnet - clinopyroxene geothermobarometric calculations give 760°C and 18kbar for the Tväråklumparna granulite and 740°C and 20kbar for the Åreskutan mafic granulite. The presence of HP kyanite- replaced by LP sillimanite

  5. Deciphering the tectonometamorphis history of the Anarak Metamorphic Complex, Central Iran

    NASA Astrophysics Data System (ADS)

    Zanchetta, Stefano; Malaspina, Nadia; Zanchi, Andrea; Martin, Silvana; Benciolini, Luca; Berra, Fabrizio; Javadi, Hamid Reza; Koohpeyma, Meysam; Ghasemi, Mohammad R.; Sheikholeslami, Mohammad Reza

    2014-05-01

    The Cimmerian orogeny shaped the southern margin of Eurasia during the Late Permian and the Triassic. Several microplates, detached from Gondwana in the Early Permian, migrated northward to be accreted to the Eurasia margin. In the reconstruction of such orogenic event Iran is a key area. The occurrence of several "ophiolites" belt of various age, from Paleozoic to Cretaceous, poses several questions on the possibility that a single rather than multiple Paleotethys sutures occur between Eurasia and Iran. In this scenario the Anarak region in Central Iran still represents a conundrum. Contrasting geochronological, paleontological, paleomagnetic data and reported field evidence suggest different origins for the Anarak Metamorphic Complex (AMC). The AMC is either interpreted to be part of microplate of Gondwanan affinity, a relic of an accretionary wedge developed at the Eurasia margin during the Paleothetys subduction or part of the Cimmerian suture zone, occurring in NE Iran, displaced to central Iran by counterclockwise rotation of the central Iranian blocks from the Triassic. Our field structural data, petrographic and geochemical data, carried out in the frame of the DARIUS PROGRAMME, indicate that the AMC is not a single coherent block, but it consists of several units (Morghab, Chah Gorbeh, Patyar, Palhavand Gneiss, Lakh Marble, Doshak and dismembered "ophiolites") which display different tectonometamorphic evolutions. The Morghab and Chah Gorbeh units share a common history and they preserve, as a peculiar feature within metabasites, a prograde metamorphism with sin- to post-deformation growth of blueschists facies assemblages on pre-existing greenschist facies mineralogical associations. LT-HP metamorphism responsible for the growth of sodic amphibole has been recognized also within marble lenses at the southern limit of the Chah Gorbeh unit. Finally, evidence of LT-HP metamorphism also occur in the metabasites and possibly also in the serpentinites that form

  6. "High-grade burial metamorphism of sedimentary mélange, Shoo Fly Complex, central Sierra Nevada, California"

    NASA Astrophysics Data System (ADS)

    Mendoza, Y.; Wakabayashi, J.

    2013-12-01

    The Shoo Fly Complex, California is a subduction complex metamorphosed at lower greenschist facies in much of the northern Sierra Nevada. Central Sierra Nevada exposures include higher grade assemblages. Previous studies have interpreted the higher grade rocks as gneissic granitoids representing the roots of a Paleozoic arc. Recent field work in the North Fork Mokelumne River drainage, shows that high-grade and low-grade metamorphic rocks were derived from similar subduction complex protoliths. The Shoo Fly in this region consists of mostly phyllite (metasiltstone, metasandstone, metachert), with some metabasite, and metaultramafic blocks. There is a metamorphic gradient from west to east in the field area, transitioning from sub to lower greenschist facies (white mica only) to middle and upper green schist facies (biotite) within the phyllites to amphibolite/upper amphibolite/granulite grade mica schists, gneisses, and amphibolites This gradient occurs across a zone about 1.5 km wide and this gradient is about 5 km west of the contact between the Shoo Fly Complex and plutons of the Sierra Nevada batholith. The higher-grade rocks do not have an apparent west-east metamorphic gradient. Accordingly the high-grade metamorphism does not appear to be a consequence of either contact metamorphism or raised regional geothermal gradients connected with the batholith. This conclusion is consistent with the fact that published metamorphic ages from probable correlative rocks within the central Sierra are much older than the Sierra Nevada batholith. Protoliths for the higher grade rocks appear identical to the lower grade rocks, for metaclastic rocks dominate with subordinate metacherts, metabasites, and metaultramafic rocks. The latter are represented by tremolite-talc schists. In the lower grade rocks some of the metabasite and metaultramafic blocks exhibit a higher grade of metamorphism than the surrounding metaclastic rocks and metacherts. Amphibolite and tremolite schist

  7. Rheological transitions in the middle crust: insights from Cordilleran metamorphic core complexes

    NASA Astrophysics Data System (ADS)

    Cooper, Frances J.; Platt, John P.; Behr, Whitney M.

    2017-02-01

    High-strain mylonitic rocks in Cordilleran metamorphic core complexes reflect ductile deformation in the middle crust, but in many examples it is unclear how these mylonites relate to the brittle detachments that overlie them. Field observations, microstructural analyses, and thermobarometric data from the footwalls of three metamorphic core complexes in the Basin and Range Province, USA (the Whipple Mountains, California; the northern Snake Range, Nevada; and Ruby Mountains-East Humboldt Range, Nevada), suggest the presence of two distinct rheological transitions in the middle crust: (1) the brittle-ductile transition (BDT), which depends on thermal gradient and tectonic regime, and marks the switch from discrete brittle faulting and cataclasis to continuous, but still localized, ductile shear, and (2) the localized-distributed transition, or LDT, a deeper, dominantly temperature-dependent transition, which marks the switch from localized ductile shear to distributed ductile flow. In this model, brittle normal faults in the upper crust persist as ductile shear zones below the BDT in the middle crust, and sole into the subhorizontal LDT at greater depths.In metamorphic core complexes, the presence of these two distinct rheological transitions results in the development of two zones of ductile deformation: a relatively narrow zone of high-stress mylonite that is spatially and genetically related to the brittle detachment, underlain by a broader zone of high-strain, relatively low-stress rock that formed in the middle crust below the LDT, and in some cases before the detachment was initiated. The two zones show distinct microstructural assemblages, reflecting different conditions of temperature and stress during deformation, and contain superposed sequences of microstructures reflecting progressive exhumation, cooling, and strain localization. The LDT is not always exhumed, or it may be obscured by later deformation, but in the Whipple Mountains, it can be directly

  8. The tectono-metamorphic evolution of gneiss complexes in the Middle Urals, Russia: a reappraisal

    NASA Astrophysics Data System (ADS)

    Echtler, H. P.; Ivanov, K. S.; Ronkin, Y. L.; Karsten, L. A.; Hetzel, R.; Noskov, A. G.

    1997-07-01

    The Middle Urals are characterized by a major virgation in the linear trend of the Urals orogen, and represent the most highly contracted part of the late Palaeozoic collisional belt. This part of the orogen is dominated by metamorphic complexes and major fault and shear zones. The Main Uralian Fault zone (MUF), the east-dipping suture of the orogen containing low-grade metamorphic rocks, separates the Sysert Complex in the east from the Ufaley Complex in the west. The Sysert Complex in the hanging wall of the MUF consists of intensely deformed gneisses, granitic intrusions and a metamorphosed mélange zone. Tectonic and isotopic investigations suggest the following stages for the evolution of the Sysert Complex: (a) pre-orogenic rifting and magmatism during Ordovician and Silurian times; (b) oceanic closure, island arc formation related to convergence and subduction during Devonian times; (c) major ductile deformation under amphibolite facies conditions related to NW-directed thrusting associated with crustal stacking during collision in Carboniferous times; (d) exhumation and contractional intracontinental tectonics during Permian times; and (e) closing of isotope systems related to cooling and the end of orogenic shortening through Triassic times. The Ufaley Complex, in the footwall of the MUF, is interpreted as an east-dipping crustal stack that records an amphibolite facies Uralian metamorphism. Lithologically the complex can be divided into pre-orogenic European basement (West Ufaley) and intensely deformed Palaeozoic metasediments and amphibolites (East Ufaley). High-pressure relics in the East Ufaley Complex are interpreted to be the result of subduction, whereas intense ductile deformation is related to overthrusting onto West Ufaley. The West Ufaley Complex is composed of gneisses, amphibolites, migmatites and granitic intrusions and has been thrust onto Devonian limestones along a major shear zone. In both Sysert and Ufaley Complexes, NW

  9. Unliganded Thyroid Hormone Receptor Regulates Metamorphic Timing via the Recruitment of Histone Deacetylase Complexes

    PubMed Central

    2014-01-01

    Anuran metamorphosis involves a complex series of tissue transformations that change an aquatic tadpole to a terrestrial frog and resembles the postembryonic perinatal period in mammals. Thyroid hormone (TH) plays a causative role in amphibian metamorphosis and its effect is mediated by TH receptors (TRs). Molecular analyses during Xenopus development have shown that unliganded TR recruits histone deacetylase (HDAC)-containing N-CoR/SMRT complexes and causes histone deacetylation at target genes while liganded TR leads to increased histone acetylations and altered histone methylations at target genes. Transgenic studies involving mutant TR-cofactors have shown that corepressor recruitment by unliganded TR is required to ensure proper timing of the onset of metamorphosis while coactivator levels influence the rate of metamorphic progression. In addition, a number of factors that can influence cellular free TH levels appear to contribute the timing of metamorphic transformations of different organs by regulating the levels of unliganded vs. liganded TR in an organ-specific manner. Thus, the recruitment of HDAC-containing corepressor complexes by unliganded TR likely controls both the timing of the initiation of metamorphosis and the temporal regulation of organ-specific transformations. Similar mechanisms likely mediate TR function in mammals as the maturation of many organs during postembryonic development is dependent upon TH and resembles organ metamorphosis in amphibians. PMID:23962846

  10. 40Ar/39Ar laserprobe study of the Day Nui Con Voi Metamorphic Complex, Vietnam

    NASA Astrophysics Data System (ADS)

    Wu, C.; Lo, C.; Yeh, M.; Chung, S.; Lee, T.

    2009-12-01

    The garnet bearing gneiss within the Day Nui Con Voi (DNCV) Metamorphic Complex along the Red River Shear Zone (RRSZ) in North Vietnam, recorded a long tectonothermal history since the Indosinian orogeny. In-situ 40Ar/39Ar laserprobe study of biotite inclusions within garnet porphyroblasts and matrix biotites, combining with microstructural and scanning electron microscopy (SEM) studies, deciphered the timing and duration of thermal events. Biotites from two matrix fabrics from different deformation events show approximately similar 40Ar/39Ar age ranges in 19-24Ma, depending grain size. These matrix biotite ages are best interpreted to record a rapid cooling event associating with the left-lateral shearing event of the RRSZ. Whereas, all biotite inclusions exhibit age zoning patterns with 40Ar/39Ar ages gradually increase from 17 Ma to more than 28 Ma according to their diffusion pathways. These age variations may have resultant from a combination effect of argon retention by garnet shielding, which provides a best recorder to the metamorphic event, and argon diffusion loss along the deformed cracks during the shearing event of the RRSZ. Diffusion modeling of these age zoning indicated that the total duration of argon diffusion loss may have lasted for nearly 9 Myr and argon diffusion may have occurred sometime around 24.5Ma. These results are generally in good agreement with previous interpretation, but provide better resolution of 40Ar/39Ar age data for deciphering the history of thermal event in the DNCV Metamorphic Complex and the left-lateral shearing event of the RRSZ in Vietnam, as well.

  11. Structures, microfabrics and textures of the Cordilleran-type Rechnitz metamorphic core complex, Eastern Alps☆

    PubMed Central

    Cao, Shuyun; Neubauer, Franz; Bernroider, Manfred; Liu, Junlai; Genser, Johann

    2013-01-01

    Rechnitz window group represents a Cordilleran-style metamorphic core complex, which is almost entirely located within nearly contemporaneous Neogene sediments at the transition zone between the Eastern Alps and the Neogene Pannonian basin. Two tectonic units are distinguished within the Rechnitz metamorphic core complex (RMCC): (1) a lower unit mainly composed of Mesozoic metasediments, and (2) an upper unit mainly composed of ophiolite remnants. Both units are metamorphosed within greenschist facies conditions during earliest Miocene followed by exhumation and cooling. The internal structure of the RMCC is characterized by the following succession of structure-forming events: (1) blueschist relics of Paleocene/Eocene age formed as a result of subduction (D1), (2) ductile nappe stacking (D2) of an ophiolite nappe over a distant passive margin succession (ca. E–W to WNW–ESE oriented stretching lineation), (3) greenschist facies-grade metamorphism annealing dominant in the lower unit, and (4) ductile low-angle normal faulting (D3) (with mainly NE–SW oriented stretching lineation), and (5) ca. E to NE-vergent folding (D4). The microfabrics are related to mostly ductile nappe stacking to ductile low-angle normal faulting. Paleopiezometry in conjunction with P–T estimates yield high strain rates of 10− 11 to 10− 13 s− 1, depending on the temperature (400–350 °C) and choice of piezometer and flow law calibration. Progressive microstructures and texture analysis indicate an overprint of the high-temperature fabrics (D2) by the low-temperature deformation (D3). Phengitic mica from the Paleocene/Eocene high-pressure metamorphism remained stable during D2 ductile deformation as well as preserved within late stages of final sub-greenschist facies shearing. Chlorite geothermometry yields two temperature groups, 376–328 °C, and 306–132 °C. Chlorite is seemingly accessible to late-stage resetting. The RMCC underwent an earlier large-scale coaxial

  12. First evidence of UHP metamorphism within the Seve Nappe Complex of central Sweden

    NASA Astrophysics Data System (ADS)

    Majka, J.; Janák, M.; Gee, D. G.; Van Roermund, H. L. M.; Verbaas, J.

    2012-04-01

    The first evidence of UHP metamorphism in the Seve Nappe Complex of northern Jämtland, central Swedish Caledonides, was discovered in 2010 (Majka & Janák 2011). The UHP parageneses occur within a kyanite-bearing eclogite, forming part of a metabasic dyke that truncates an orogenic garnet peridotite body. This kyanite-eclogite provides key information about the peak UHP metamorphic conditions and subsequent granulite facies overprint. The garnet peridotite body is located close to lake Friningen, northeast of the town Gäddede. The metabasic dyke consists predominantly of a bi-mineralic garnet pyroxenite (Cpx=diopside); however this dominant composition locally "grades" into that of the kyanite-eclogite described here. The kyanite-eclogite is composed of coarse grained garnet and omphacite, with minor kyanite. Garnet occurs in three varieties: large (< 1 cm), small (< 100 µm) and tiny lamellae within omphacite. In terms of chemistry the three garnet varieties reveal similar compositions (XPrp = 0.40-0.44, XGrs = 0.25-0.29, XAlm = 0.29-0.33; XSps = 0.01). Large garnets commonly contain inclusions of omphacite, kyanite, zoisite, rutile, quartz, amphibole and rare phengite. Omphacite (25% of Jd and 2.6% of Ca-Eskola components) exhibits rods of SiO2 and kyanite, which are crystallographically oriented and are interpreted as exsolutions. A set of retrogressive microtextures is represented by symplectites of diopside + plagioclase (after omphacite), sapphirine+spinel+corundum (after kyanite) and, together with orthopyroxene and diopside, defining lower pressure granulite facies assemblages. The calculated peak P-T metamorphic conditions, obtained from Grt-Omp-Ky-Phn geothermobarometry and confirmed by pseudosection modelling, are 2.9-3.5 GPa and 720-822 °C, clearly falling inside the coesite stability field. The retrograde granulite facies overprint occurred at 0.8-1.0 GPa and 750-850 °C, constrained by pseudosection. Brueckner & Van Roermund (2007) reported a Sm

  13. Structures, microfabrics and textures of the Cordilleran-type Rechnitz metamorphic core complex, Eastern Alps.

    PubMed

    Cao, Shuyun; Neubauer, Franz; Bernroider, Manfred; Liu, Junlai; Genser, Johann

    2013-11-26

    Rechnitz window group represents a Cordilleran-style metamorphic core complex, which is almost entirely located within nearly contemporaneous Neogene sediments at the transition zone between the Eastern Alps and the Neogene Pannonian basin. Two tectonic units are distinguished within the Rechnitz metamorphic core complex (RMCC): (1) a lower unit mainly composed of Mesozoic metasediments, and (2) an upper unit mainly composed of ophiolite remnants. Both units are metamorphosed within greenschist facies conditions during earliest Miocene followed by exhumation and cooling. The internal structure of the RMCC is characterized by the following succession of structure-forming events: (1) blueschist relics of Paleocene/Eocene age formed as a result of subduction (D1), (2) ductile nappe stacking (D2) of an ophiolite nappe over a distant passive margin succession (ca. E-W to WNW-ESE oriented stretching lineation), (3) greenschist facies-grade metamorphism annealing dominant in the lower unit, and (4) ductile low-angle normal faulting (D3) (with mainly NE-SW oriented stretching lineation), and (5) ca. E to NE-vergent folding (D4). The microfabrics are related to mostly ductile nappe stacking to ductile low-angle normal faulting. Paleopiezometry in conjunction with P-T estimates yield high strain rates of 10(- 11) to 10(- 13) s(- 1), depending on the temperature (400-350 °C) and choice of piezometer and flow law calibration. Progressive microstructures and texture analysis indicate an overprint of the high-temperature fabrics (D2) by the low-temperature deformation (D3). Phengitic mica from the Paleocene/Eocene high-pressure metamorphism remained stable during D2 ductile deformation as well as preserved within late stages of final sub-greenschist facies shearing. Chlorite geothermometry yields two temperature groups, 376-328 °C, and 306-132 °C. Chlorite is seemingly accessible to late-stage resetting. The RMCC underwent an earlier large-scale coaxial deformation

  14. A Cordilleran-type metamorphic core complex: Rechnitz window, Eastern Alps

    NASA Astrophysics Data System (ADS)

    Cao, Shuyun; Neubauer, Franz; Bernroider, Manfred; Liu, Junlai; Genser, Johann

    2013-04-01

    The Rechnitz window group represents a Cordilleran-style metamorphic core complex, which is almost entirely located within nearly contemporaneous Neogene sediments of the Pannonian basin at the transition zone between the Eastern Alps and the Neogene Pannonian basin. The western boundary of the South Burgenland High is a high-angle normal fault dipping to the west, whereas the eastern boundary is rather a low-angle normal fault operative during exhumation of the Penninic units exposed within the Rechnitz window. Two tectonic units separated by a ductile thrust fault can be distinguished within the Rechnitz metamorphic core complex (RMCC): (1) a lower unit mainly composed of Mesozoic metasediments, and (2) an upper unit mainly composed of ophiolite remnants. Both units are metamorphosed within greenschist facies conditions during earliest Miocene followed by exhumation and cooling. The internal structure of the RMCC is characterized by the following succession of structure-forming events: (1) blueschist relics formed as a result of subduction (D1), (2) ductile nappe stacking (D2) greenschist facies-grade metamorphism of an ophiolite nappe over a distant passive margin succession (ca. E-W to WNW-ESE oriented stretching lineation), (3) greenschist facies-grade metamorphism annealing dominant in the lower unit, and (4) ductile low-angle normal faulting (D3) (with mainly NE-SW oriented stretching lineation), and (5) ca. E to NE-vergent folding (D4). The microfabrics are related to mostly ductile nappe stacking respectively to ductile low-angle normal faulting. Palaeopiezometry of recrystallized quartz and calcite in conjunction with P-T estimates yield high strain rates of 10-11 to 10-13 s-1, depending on the temperature (400-350 °C) and choice of piezometer and flow law calibration. Progressive microstructures, strain analysis of the recrystallized quartz and calcite, texture analysis and thermobarometric calculations indicate an overprint of the greenschist facies

  15. Ti in garnet: complex substitutions and their implications for understanding crustal metamorphism

    NASA Astrophysics Data System (ADS)

    Ackerson, M. R.; Watson, E. B.; Tailby, N. D.

    2015-12-01

    The nature of Ti incorporation into garnet (substitution mechanisms, site occupancy) has been a matter of interest for decades. Most crustal garnets contain minor to trace quantities of Ti, yet crystallographically-aligned rutile needles in some high grade crustal and mantle garnets suggest Ti solubility can reach major-element concentrations (>1%TiO2) under certain conditions. Understanding Ti incorporation into garnet holds promise for evaluating and interpreting the history and evolution of metamorphic systems. In this study we will demonstrate that Ti is incorporated into garnets via at least three substitution mechanisms on multiple crystallographic sites. Garnets were grown in piston cylinder apparatuses at eclogite and granulite facies conditions in multiple bulk compositions. Chemical trends in the experimentally-grown garnets suggest Ti incorporation occurs on the octahedral crystallographic site (VITi) via at least two substitution mechanisms. Furthermore, Ti partitioning between garnets and their corresponding melts increases with decreasing temperature and increasing melt polymerization. Ti Kα X-ray Absorption Near Edge Struture (XANES) pre-edge analysis was used to observe Ti coordination in experimental and natural garnets (contact metamorphic grade up to eclogite and granulite facies). XANES analyses confirm the observation of VITi in experimental garnets. However, natural garnets contain both VITi and IVTi (from ~90% IVTi to 100% VITi). Microprobe analyses of Ti in garnet were combined with the XANES analyses to determine VITi and IVTi concentrations. Increasing VITi is strongly correlated with increasing Ca content in garnet, while IVTi behaves similar to IVTi in other silicate minerals (e.g. quartz, zircon). The complex nature of Ti incorporation into garnet diminishes the utility of a single-mineral Ti-in-garnet thermobarometer, but partitioning of Ti between garnet, clinopyroxene and melt could be useful for the development of novel empirical

  16. Chronology of paleozoic metamorphism and deformation in the Blue Ridge thrust complex, North Carolina and Tennessee

    SciTech Connect

    Goldberg, S.A.; Dallmeyer, R.D.

    1997-05-01

    The Blue Ridge province in northwestern North Carolina and northeastern Tennessee records a multiphase collisional and accretionary history from the Mesoproterozoic through the Paleozoic. To constrain the tectonothermal evolution in this region, radiometric ages have been determined for 23 regionally metamorphosed amphibolites, granitic gneisses, and pelitic schists and from mylonites along shear zones that bound thrust sheets and within an internal shear zone. The garnet ages from the Pumpkin Patch a thrust sheet (458, 455, and 451 Ma) are similar to those from the structurally overlying Spruce Pine thrust sheet (460, 456, 455, and 450 Ma). Both thrust sheets exhibit similar upper amphibolite-facies conditions. Because of the high closure temperature for garnet, the garnet ages are interpreted to date growth at or near the peak of Taconic metamorphism. Devonian metamorphic ages are recognized in the Spruce Pine thrust sheet, where Sm-Nd and Rb-Sr garnet ages of 386 and 393 Ma and mineral isochron ages of 397 {+-} 14 and 375 {+-} 27 Ma are preserved. Hornblendes record similar {sup 40}Ar/{sup 39}Ar, Sm-Nd, and Rb-Sr ages of 398 to 379 Ma. Devonian {sup 40}Ar/{sup 39}Ar hornblende ages are also recorded in the structurally lower Pumpkin Patch thrust sheet. The Devonian mineral ages are interpreted to date a discrete tectonothermal event, as opposed to uplift and slow cooling from an Ordovician metamorphic event. The Mississippian mylonitization is interpreted to represent thrusting and initial assembly of crystalline sheets associated with the Alleghanian orogeny. The composite thrust stack of the Blue Ridge complex was subsequently thrust northwestward along the Linville Falls fault during middle Alleghanian orogeny (about 300 Ma).

  17. Detrital zircons from the Tananao metamorphic complex of Taiwan: Implications for sediment provenance and Mesozoic tectonics

    NASA Astrophysics Data System (ADS)

    Yui, T. F.; Maki, K.; Lan, C. Y.; Hirata, T.; Chu, H. T.; Kon, Y.; Yokoyama, T. D.; Jahn, B. M.; Ernst, W. G.

    2012-05-01

    Taiwan formed during the Plio-Pleistocene collision of Eurasia with the outboard Luzon arc. Its pre-Tertiary basement, the Tananao metamorphic complex, consists of the western Tailuko belt and the eastern Yuli belt. These circum-Pacific belts have been correlated with the high-temperature/low-pressure (HT/LP) Ryoke belt and the high-pressure/low-temperature (HP/LT) Sanbagawa belt of Japan, respectively. To test this correlation and to reveal the architecture and plate-tectonic history of the Tananao metamorphic basement, detrital zircons were separated from 7 metasedimentary rock samples for U-Pb dating by LA-ICPMS techniques. Results of the present study, coupled with previous data, show that (1) the Tailuko belt consists of a Late Jurassic to earliest Cretaceous accretionary complex sutured against a Permian-Early Jurassic marble ± metabasaltic terrane, invaded in the north by scattered Late Cretaceous granitic plutons; the latter as well as minor Upper Cretaceous cover strata probably formed in a circum-Pacific forearc; (2) the Yuli belt is a mid- to Late Cretaceous accretionary complex containing HP thrust sheets that were emplaced attending the Late Cenozoic Eurasian plate-Luzon arc collision; (3) these two Late Mesozoic belts are not coeval, and in part were overprinted by low-grade metamorphism during the Plio-Pleistocene collision; (4) accreted clastic sediments of the Tailuko belt contain mainly Phanerozoic detrital zircons, indicating that terrigenous sediments were mainly sourced from western Cathaysia, whereas in contrast, clastic rocks of the Yuli accretionary complex contain a significant amount of Paleoproterozoic and distinctive Neoproterozoic zircons, probably derived from the North China craton and the Yangtze block ± eastern Cathaysia, as a result of continent uplift/exhumation after the Permo-Triassic South China-North China collision; and (5) the Late Jurassic-Late Cretaceous formation of the Tananao basement complex precludes the possibility

  18. Regional granulite facies metamorphism in the Ivrea zone: Is the Mafic Complex the smoking gun or a red herring?

    NASA Astrophysics Data System (ADS)

    Barboza, Scott A.; Bergantz, George W.; Brown, Michael

    1999-05-01

    One widely accepted paradigm for the development of continental lower crust is that regional granulite facies metamorphism is caused by intrusion of mafic magma beneath or into the crust (magmatic accretion). The amphibolite to granulite facies supracrustal section exposed in the Ivrea zone (southern Alps, northern Italy) is commonly cited as a classic example establishing this postulated genetic relationship. Our interpretation of the pattern of metamorphic isograds, compositional trends in high-grade metasedimentary rocks, and textural evidence in metapelite, however, indicates that final emplacement of the mafic plutonic rocks (the Mafic Complex) occurred subsequent to the regional thermal maximum. Field and petrographic relations suggest that a spatially restricted contact-melting event in crustal rocks accompanied the emplacement of the Mafic Complex. This inference is consistent with leucosome compositions in migmatites and a low-pressure, high-temperature metamorphic overprint recorded by mineral assemblages in wall rocks proximal to the intrusion. Therefore, evidence of anatexis and metamorphism of crustal rocks associated unequivocally with emplacement of the Mafic Complex is found only within an ˜2-km-wide contact aureole overlying the intrusion. The narrow aureole associated with emplacement of the Mafic Complex demonstrates that, in some cases, emplacement of large volumes of mafic magma within the crust does not inexorably lead to regional-scale granulite facies metamorphism and large ion lithophile element depletion by melt loss.

  19. The Ikaria high-temperature Metamorphic Core Complex (Cyclades, Greece): Geometry, kinematics and thermal structure

    NASA Astrophysics Data System (ADS)

    Beaudoin, Alexandre; Augier, Romain; Laurent, Valentin; Jolivet, Laurent; Lahfid, Abdeltif; Bosse, Valérie; Arbaret, Laurent; Rabillard, Aurélien; Menant, Armel

    2015-12-01

    This work attempted at clarifying the structure of Ikaria using primarily intensive geological mapping combined with structural analysis and a geothermometry approach of Raman spectrometry of carbonaceous material. Foliation over the whole island defines a structural dome cored by high-grade to partially molten rocks. Its exhumation was completed by two top-to-the-N ductile extensional shear zones, operating in the ductile and then the brittle fields, through a single extensional event coeval with progressive strain localization. The thermal structure of the dome with regard to position of ductile shear zones was retrieved using the Raman spectroscopy of carbonaceous material. Peak-metamorphic temperatures range from 390 °C in the upper parts of the structure down to 625 °C in the core of the dome in the vicinity of migmatites and S-type granite. Pioneer in situ U-Th-Pb analyses on monazite performed on the leucosome parts of these rock yielded a 15.7 ± 0.2 Ma age. Ikaria Island thus completes the series of Miocene migmatite-cored Metamorphic Core Complex in the central part of the Aegean domain where a genuine high-temperature zone can be defined as the central Aegean HT zone. There, the extreme stretching of the continental crust is associated with dominantly top-to-the-N kinematics.

  20. Structure and metamorphism of the Franciscan Complex, Mt. Hamilton area, Northern California

    USGS Publications Warehouse

    Blake, M.C.; Wentworth, C.M.

    1999-01-01

    Truncation of metamorphic isograds and fold axes within coherent terranes of Franciscan metagraywacke by intervening zones of melange indicate that the melange is tectonic and formed after the subduction-related metamorphism and folding. These relations are expressed in two terranes of blueschist-facies rocks of the Franciscan Complex in the Mt. Hamilton area, northern California-the Jurassic Yolla Bolly terrane and the structurally underlying Cretaceous Burnt Hills terrane. Local preservation in both terranes of basal radiolarian chert and oceanic basalt beneath continent-derived metagraywacke and argillite demonstrates thrust repetition within the coherent terranes, although these relations are scarce near Mt. Hamilton. The metagraywackes range from albite-pumpellyite blueschists to those containing well-crystallized jadeitic pyroxene, and a jadeite-in isograd can be defined in parts of the area. Primary bedding defines locally coherent structural orientations and folds within the metagraywacke units. These units are crosscut by thin zones of tectonic melange containing blocks of high-grade blueschist, serpentinite, and other exotic rocks, and a broader, but otherwise identical melange zone marks the discordant boundary between the two terranes.

  1. Amphibolite to granulite progressive metamorphism in the Niquelândia Complex, Central Brazil: regional tectonic implications

    NASA Astrophysics Data System (ADS)

    Filho, C. F. Ferreira; De Moraes, R.; Fawcett, J. J.; Naldrett, A. J.

    1998-01-01

    The Niquelândia Complex is a major Proterozoic mafic and ultramafic layered intrusion in central Brazil. Ductile deformation and associated metamorphic recrystallization are widespread along ductile shear zones. Bands of alumina and silica-rich rocks (less than few meters thick) occur in the central parts of these ductile shear zones. Metamorphic grade, ranging from amphibolite to granulite facies, increases progressively downward in the layered intrusion stratigraphy. The three mapped metamorphic zones: amphibolite zone, amphibolite-granulite transition zone and granulite zone, are parallel to the intrusion stratigraphy. Metabasites show progressive changes in mineral assemblages, texture, and Ca-amphibole composition in a traverse covering the three metamorphic zones. With increasing metamorphic grade, amphibolites (hbl+pl ± cpx ± grt ± ep) give way to hornblende granulites (hbl+pl+cpx+opx) and anhydrous mafic granulites (pl+cpx+opx). The Ti, A1 IV and Na+K content of amphiboles increase progressively with metamorphic grade. Quartz-rich rocks have kyanite as the Al 2SiO 5 polymorph in the amphibolite zone, whereas sillimanite occurs in the granulite zone. Geothermobarometry and mineral stability data indicate P-T conditions of peak metamorphism at about 700 °C and 6-8 kbars in the amphibolite zone and temperatures higher than 800 °C in the granulite zone. In quartz-rich rocks of the granulite zone, retrogressive processes are indicated by reaction coronas of sil+grt between peak metamorphic assemblages of hc+qtz and replacement of sillimanite by kyanite. These reactions have an appreciable temperature dependence and together they indicate a retrogressive path characterized by an initial period of nearly isobaric cooling. Previously reported U-Pb zircon dating demonstrates the coeval nature of the amphibolite and granulite facies metamorphism and supports the notion that the entire terrain represents a single continuous crustal section. The metamorphic age

  2. The Palu Metamorphic Complex, NW Sulawesi, Indonesia: Origin and evolution of a young metamorphic terrane with links to Gondwana and Sundaland

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Theo; Allen, Charlotte M.; Elburg, Marlina; Massonne, Hans-Joachim; Palin, J. Michael; Hennig, Juliane

    2016-01-01

    The Palu Metamorphic Complex (PMC) is exposed in a late Cenozoic orogenic belt in NW Sulawesi, Indonesia. It is a composite terrane comprising a gneiss unit of Gondwana origin, a schist unit composed of meta-sediments deposited along the SE Sundaland margin in the Late Cretaceous and Early Tertiary, and one or more slivers of amphibolite with oceanic crust characteristics. The gneiss unit forms part of the West Sulawesi block underlying the northern and central sections of the Western Sulawesi Province. The presence of Late Triassic granitoids and recycled Proterozoic zircons in this unit combined with its isotopic signature suggests that the West Sulawesi block has its origin in the New Guinea margin from which it rifted in the late Mesozoic. It docked with Sundaland sometime during the Late Cretaceous. U-Th-Pb dating results for monazite suggest that another continental fragment may have collided with the Sundaland margin in the earliest Miocene. High-pressure (HP) and ultrahigh-pressure (UHP) rocks (granulite, peridotite, eclogite) are found as tectonic slices within the PMC, mostly along the Palu-Koro Fault Zone, a major strike-slip fault that cuts the complex. Mineralogical and textural features suggest that some of these rocks resided at depths of 60-120 km during a part of their histories. Thermochronological data (U-Th-Pb zircon and 40Ar/39Ar) from the metamorphic rocks indicate a latest Miocene to mid-Pliocene metamorphic event, which was accompanied by widespread granitoid magmatism and took place in an extensional tectonic setting. It caused recrystallization of, and new overgrowths on, pre-existing zircon crystals, and produced andalusite-cordierite-sillimanite-staurolite assemblages in pelitic protoliths, indicating HT-LP (Buchan-type) metamorphism. The PMC was exhumed as a core complex at moderate rates (c. 0.7-1.0 mm/yr) accompanied by rapid cooling in the Plio-Pleistocene. Some of the UHP rocks were transported to the surface at significantly higher

  3. Gneiss domes of the Danba Metamorphic Complex, Songpan Ganze, eastern Tibet

    NASA Astrophysics Data System (ADS)

    Billerot, Audrey; Duchene, Stéphanie; Vanderhaeghe, Olivier; de Sigoyer, Julia

    2017-06-01

    In this paper we address the formation and exhumation of the Danba Metamorphic Complex (DMC) that represents the deepest structural level of the Songpan Ganze terrane situated along the eastern margin of the Tibetan plateau. The DMC comprises a variety of gneiss domes and offers a unique opportunity to decipher their development during orogenic evolution. For that purpose, PTtD paths of metamorphic rocks sampled at different structural levels have been reconstructed. The DMC is composed of Triassic metaturbidites of the Xikang group, Paleozoic metasedimentary cover and basement of the Yangtze craton. The DMC is structurally marked by transposition of the upright S1 foliation of the Triassic metaturbidites into a NW-SE trending S2 composite foliation dipping to the NE. Transposition is associated with a localized top-to-the-northeast shear zone along the northeastern edge of the DMC and with pervasive top-to-the-southwest shearing from the core to the border of the complex. These structures are consistent with extrusion of the core of the DMC relative to the lower grade Triassic metaturbidites. The position of the biotite isograd overlapping the structural boundary of the DMC suggests that the Triassic metaturbidites have been affected by an increase in temperature as a result of extrusion. Within the DMC, the position of the metamorphic index minerals relative to the composite S2 foliation reveals that biotite, garnet, staurolite and kyanite grew before the transposition into S2, in contrast with sillimanite which crystallizes in the hinge of F2 folds and along the axial planar S2 schistosity. The sillimanite isograd delineates regional-scale overturned F2 folds and cross-cuts the staurolite and kyanite isograds consistent with an increase in temperature during D2. The melt-in isograd characterizes the deepest structural level of the DMC. PT conditions for these metamorphic rocks, determined using pseudosections and conventional thermometry, indicate a temperature

  4. Zircon SHRIMP U-Pb dating of metamorphic complexes in the conjunction of the Greater and Lesser Xing'an ranges, NE China: Timing of formation and metamorphism and tectonic implications

    NASA Astrophysics Data System (ADS)

    Miao, Laicheng; Zhang, Fuqin; Zhu, Mingshuai; Liu, Dunyi

    2015-12-01

    Metamorphic complexes, including the Luomahu, Xinkailing and Fengshuigouhe groups, are scattered in the conjunction of the Greater and the Lesser Xing'an ranges, NE China, and have long been interpreted to represent the Precambrian basement of the so-called "Xing'an" and "Songnen" blocks although reliable evidence is lacking. Thin-section examination and mineral assemblage indicate that the protoliths of these metamorphic rocks are mainly meta-sedimentary and meta-volcanic rocks and have experienced greenschist- to amphibolite-facies metamorphism and strong deformation. Zircon SHRIMP U-Pb dating results of the metamorphic complexes and associated pre- or syn-kinematic veins constrained the formation and metamorphic ages of the Luomahuo Group at 175 ± 3 Ma and 159 ± 3 Ma, the Xingkailing Group at 200 ± 2 Ma and 158 ± 3 Ma, and the Fengshuigouhe Group at between 230-310 Ma and 170 ± 3 Ma, respectively. Additionally, all these rocks contain some Late Paleozoic detrital or inherited zircons with ages between 290-390 Ma, but no Precambrian, even if Early Paleozoic, age information was detected from these metamorphic rocks. These new data suggest that the metamorphic complexes were formed during Mesozoic-Late Paleozoic period, rather than in Precambrian as previously inferred, and that all of them underwent metamorphism and deformation during Middle Jurassic between 170-160 Ma. Consequently, these metamorphic complexes are not basement rocks of the so-called Precambrian continental blocks. Instead, there are likely metamorphosed Late Paleozoic-Mesozoic accretionary complexes and/or arc terranes. These results, in combination with published data, illustrate an overall young trend from north to south in the tectonic evolution of the northern Xing'an region. Significantly, the Jurassic (170-160 Ma) metamorphism and deformation event firstly identified by this study from the metamorphic complexes likely recorded the coinstantaneous Mongol-Okhotsk collisional and

  5. Petrology, geochemistry, and metamorphic evolution of meta-sedimentary rocks in the Diancang Shan-Ailao Shan metamorphic complex, Southeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Liu, Fulai; Liu, Pinghua; Shi, Jianrong; Cai, Jia

    2016-07-01

    Meta-sedimentary rocks are widely distributed within the Diancang Shan-Ailao Shan metamorphic complex in the Southeastern Tibetan Plateau. Detailed geochemical analyses show that all of them have similar geochemical features. They are enriched in light rare-earth elements (LREEs) and depleted in heavy rare-earth elements (HREEs), with moderately negative Eu anomalies (Eu/Eu∗ = 0.55-0.75). Major and trace element compositions for the meta-sedimentary rocks suggest that the protoliths were probably claystone, siltstone, and greywacke and deposited in an active continental margin. Garnet porphyroblasts in meta-sedimentary rocks have distinct compositional zonation from core to rim. The zonation of garnet in St-Ky-Grt-Bt-Ms schist indicates an increasing P-T trend during garnet growth. In contrast, garnets from (Sil)-Grt-Bt paragneiss show diffusion zoning, implying a decreasing P-T trend. Based on mineral transformations and P-T estimates using conventional geothermobarometers and pseudosection calculations, four metamorphic stages have been determined, including an early prograde metamorphic stage (M1), a peak amphibolite-granulite facies metamorphic stage (M2), a near-isothermal decompression stage (M3), and a late amphibolites-facies retrograde stage (M4). The relic assemblage of Ms + St ± Ky ± Bt ± Kfs + Qz preserved as inclusions in garnet porphyroblasts of the meta-sedimentary rocks belongs to prograde (M1) stage and records P-T conditions of 560-590 °C and 5.5-6.3 kb. Matrix mineral assemblages of Grt + Bt + Ky/Sil + Pl + Qz and Grt + Bt ± Sil + Pl ± Kfs + Qz formed at peak (M2) stage yield P-T conditions of 720-760 °C and 8.0-9.3 kb. M3 is characterized by decompression reactions, dehydration melting of assemblages that include hydrous minerals (e.g., biotite), and partial melting of felsic minerals. The retrograde assemblages is Grt + Bt + Sil + Pl + Qz formed at 650-760 °C and 5.0-7.3 kb. At the amphibolites-facies retrograde (M4) stage, fine

  6. Microstructural, geothermobarometric and geochronological constraints on the complex Alpine collisional history recorded on the low-grade "Psunj Complex" metamorphic rocks of the Slavonian Mts. (Croatia)

    NASA Astrophysics Data System (ADS)

    Balen, Dražen

    2014-05-01

    Metamorphic rocks of the Slavonian Mts. (NE Croatia) cropping out on the SW edge of the Pannonian Basin belong to the Bihor nappe system of Tisia Mega-Unit i.e. of the lithospheric fragment broken off from the southern margin of the European plate. The present-day position of this Unit resulted from complex regional-scale Mesozoic and Cenozoic movements during the Alpine-Carpathian-Dinaridic orogenic system geodynamic evolution. Usually, the metamorphic rocks of the Slavonian Mts. are interpreted as a part of igneous-metamorphic complex belonging to metamorphic belt formed during or even prior to the Variscan orogeny. Until recently, the Alpine metamorphic evolution was considered insignificant and often neglected or described just in general terms due to considerable lack of geothermobarometric, phase equilibrium, fossil and/or geochronological age constraints. The chlorite schists are widely distributed lithology in the area, comprising simple peak metamorphic mineral assemblage chlorite + plagioclase (albite) + muscovite + quartz ± garnet and are associated to the local complex called Psunj complex (PsC). Metamorphic conditions for non-garnetiferous chlorite schists are obtained with chlorite (Al(IV)) thermometry and white mica barometry are 300 °C and 2.4±0.6 kbar. The chlorite schists are thrusted over (~ to the NE) microtectonically similar chloritoid-bearing schists that reached peak P-T values of 3.5-4 kbar and 340-380 °C. At least two distinct penetrative low-grade metamorphic foliations recorded in the chlorite schists are accompanied by existence of different populations of small (~3.5 µm) low-Th monazites, giving an average age 99±15 Ma. Histogram of obtained ages shows two peaks at 120 and 80 Ma while age modelling recognized two peaks at 113±20 and 82±23 Ma. First Alpine (113±20 Ma) event represents a rare record of late Early Cretaceous thermal event that affected Bihor nappe system. The age contradicts common opinion that Bihor nappe

  7. Oblique convergence of the Kula plate: dextral transpression following ridge subduction, Chugach metamorphic complex, southern Alaska

    NASA Astrophysics Data System (ADS)

    Scharman, M.; Pavlis, T. L.

    2012-12-01

    The Chugach metamorphic complex (CMC), southern Alaska is a Mesozoic accretionary prism that has experienced high-temperature/low-pressure metamorphism due to subduction of the Kula-Farallon (or Kula-Resurrection) ridge in the Eocene. The Border Ranges fault acts as the northern boundary of the accretionary prism, and was active as a strike-slip system through many phases prior to, or during, CMC formation. Oblique plate subduction followed ridge subduction producing a dextral transpression system that is now exposed as a down-plunge view of a mid-crustal section. Dextral transpression and synchronous peak metamorphism produced a narrow gneiss core structurally overlain by amphibolite-facies meta-sedimentary rocks. Oblique subduction was preceded in the CMC by an initial convergence phase (D1) approximately orthogonal to the margin, and a second margin-parallel extension (D2) synchronous with the subducting ridge. D2 was diachronous with oblique subduction of the Kula plate (D3) which followed the trailing edge of the southward migrating triple junction. During D3, strain was partitioned with down-dip lineations and thrust-sense indicators along the southern CMC boundary, and multiple dextral strike-slip shear zones inboard from the former trench. These dextral shear zones produced wrench folding of the S2 foliation in the meta-sedimentary rocks and formation of the narrow gneiss core as a large-scale D3 anticlinorium. Great differences in wavelength of D3 folds between the gneiss core and the overlying meta-sedimentary rocks could indicate formation of a detachment zone during oblique convergence, or strike-slip shear zones that penetrate the gneiss core masked by similar wavelength folds. These D3 dextral shear zones inboard from the former trench suggest a distribution of dextral shear that accommodated the margin parallel motion component of Kula plate oblique subduction. Border Ranges fault dextral slip was effectively replaced during this brief Eocene period

  8. Regional Tectonic Evolution of the Pioneer Metamorphic Core Complex, South-Central Idaho

    NASA Astrophysics Data System (ADS)

    LIU, R.; Leech, M. L.

    2016-12-01

    The Pioneer core complex (PCC) is one of lesser-studied Cordilleran metamorphic core complexes (MCCs) that is located north of Snake River Plain in Rocky Mountains. The PCC resides in a transitional zone separating Eocene MCCs to the north and Miocene MCCs to the south which is a key location to understand processes of subduction and continental rifting in western US. The project applied thermodynamic modeling, zircon U-Pb dating, and Ti-in-zircon and Ti-in-biotite thermometry to study the pressure-temperature-time-deformation (P-T-t-d) history of the PCC. Zircon ages from gneiss, granitic dike and quartzite are in Late Cretaceous to Early Eocene. The age of 109±4 Ma suggests that NE-SW D1 compression was on going 109 Ma. The ages of 83.9±5 and 85.6±1 Ma indicate that D2 compression was >86-84 Ma. The younger ages fall into 3 groups, 52 Ma, 48 Ma and 44 Ma. They indicate that NW-SE D3 extension and magmatism was ongoing 52 Ma and ceased 44 Ma; the emplacement of intrusive granodiorite at 48 Ma gave peak metamorphism of the PCC in upper amphibolite-facies. Ti-in-zircon thermometry calculated peak T of the PCC at 1100°C. Ti-in-biotite thermometry calculated peak T of biotite at 895°C and retrograde metamorphism following the path from 895°C down to 500°C finally. Thermodynamic modeling generated pseudosections of gneiss and phyllite on which the P-T-t-d path of the PCC follows a clockwise path that progrades to peak condition at 4 kbar, 850-900°C at 52-48 Ma, and followed by retrograde stage to 2 kbar, 500°C at 44 Ma. The metamorphic history of PCC started at >109 Ma (D1) in Late Cretaceous during the initiation of Sevier orogeny as the Farallon plate subducted at a shallow angle. Then the PCC underwent D2 Sevier compression 86-84 Ma when the Farallon plate became flat-subducting. However, due to lack of ages between 109 and 86 Ma, it is uncertain if D1 and D2 were one continuous event or two separate episodes in Pioneer region. Following the compression

  9. Geophysical evidence for the evolution of the California Inner Continental Borderland as a metamorphic core complex

    USGS Publications Warehouse

    ten Brink, Uri S.; Zhang, Jie; Brocher, Thomas M.; Okaya, David A.; Klitgord, Kim D.; Fuis, Gary S.

    2000-01-01

    We use new seismic and gravity data collected during the 1994 Los Angeles Region Seismic Experiment (LARSE) to discuss the origin of the California Inner Continental Borderland (ICB) as an extended terrain possibly in a metamorphic core complex mode. The data provide detailed crustal structure of the Borderland and its transition to mainland southern California. Using tomographic inversion as well as traditional forward ray tracing to model the wide-angle seismic data, we find little or no sediments, low (≤6.6 km/s) P wave velocity extending down to the crust-mantle boundary, and a thin crust (19 to 23 km thick). Coincident multichannel seismic reflection data show a reflective lower crust under Catalina Ridge. Contrary to other parts of coastal California, we do not find evidence for an underplated fossil oceanic layer at the base of the crust. Coincident gravity data suggest an abrupt increase in crustal thickness under the shelf edge, which represents the transition to the western Transverse Ranges. On the shelf the Palos Verdes Fault merges downward into a landward dipping surface which separates "basement" from low-velocity sediments, but interpretation of this surface as a detachment fault is inconclusive. The seismic velocity structure is interpreted to represent Catalina Schist rocks extending from top to bottom of the crust. This interpretation is compatible with a model for the origin of the ICB as an autochthonous formerly hot highly extended region that was filled with the exhumed metamorphic rocks. The basin and ridge topography and the protracted volcanism probably represent continued extension as a wide rift until ∼13 m.y. ago. Subduction of the young and hot Monterey and Arguello microplates under the Continental Borderland, followed by rotation and translation of the western Transverse Ranges, may have provided the necessary thermomechanical conditions for this extension and crustal inflow.

  10. Early Jurassic tectonism occurred within the Basu metamorphic complex, eastern central Tibet: Implications for an archipelago-accretion orogenic model

    NASA Astrophysics Data System (ADS)

    Li, Hua-Qi; Xu, Zhi-Qin; Webb, A. Alexander G.; Li, Tian-Fu; Ma, Shi-Wei; Huang, Xue-Meng

    2017-04-01

    The Basu metamorphic complex, surrounded by ophiolitic melanges and intruded by a large volume of undeformed granitoid rocks along the eastern segment of the Bangong-Nujiang suture, holds one of the keys to understanding the pre-Cenozoic tectonic evolution of central Tibet. Zircon U-Pb dating of rocks from the Basu metamorphic complex reveals that meta-igneous rocks yield Early Paleozoic crystallization ages of 500-492 Ma and an Early Jurassic metamorphic age of 173 Ma, and that undeformed granitoid rocks yield crystallization ages of approximately 186-174 Ma. Whole rock geochemical and zircon Lu-Hf isotopic data indicate that the undeformed granitoid rocks originated mainly from partial melting of ancient crustal sources, which may reflect a collisional orogenic setting. 40Ar/39Ar dating of biotite from a sillimanite-garnet-biotite paragneiss shows cooling to 300 ± 50 °C at 165 Ma. These data indicate significant Early Jurassic tectonism, during which most of the Basu metamorphic complex was formed. Furthermore, the age data resemble those of the Amdo metamorphic complex located approximately 500 km to the west along the Bangong-Nujiang suture. Together, these complexes may represent a ;destroyed or unrecognized; block, i.e., the Amdo-Tongka block, which may be the eastern extension of the South Qiangtang terrane. Based on the tectonic outlines of the multiple ophiolitic zones and magmatic belts, we suggest a new archipelago-accretion model that attributes the Early Jurassic tectonism to an arc-continent/micro-continent collision. This model further enables the reconstruction of the eastern Tethyan Ocean and the orogenic processes of central Tibet during the Mesozoic.

  11. Anatomy of a Metamorphic Core Complex: Preliminary Results of Ruby Mountains Seismic Experiment, Northeastern Nevada

    NASA Astrophysics Data System (ADS)

    Schiltz, K. K.; Litherland, M.; Klemperer, S. L.

    2010-12-01

    The Ruby Mountains Seismic Experiment is a 50-station deployment of Earthscope’s Flexible Array installed in June 2010 to study the Ruby Mountain metamorphic core complex, northeastern Nevada. Competing theories of metamorphic core complexes stress the importance of either (1) low-angle detachment faulting and lateral crustal flow, likely leading to horizontal shearing and anisotropy, or (2) vertical diapirism creating dominantly vertical shearing and anisotropy. Our experiment aims to distinguish between these two hypotheses using densely spaced (5 to 10 km) broadband seismometers along two WNW-ESE transects across the Ruby Range and one NNE-SSW transect along the axis of the range. When data acquisition is complete we will image crustal structures and measure velocity and anisotropy with a range of receiver function, shear-wave splitting and surface-wave tomographic methods. In addition to the newly acquired data, existing data can also be used to build understanding of the region. Previous regional studies have interpreted shear-wave splitting in terms of single-layer anisotropy in the mantle, related to a complex flow structure, but previous controlled source studies have identified measurable crustal anisotropy. We therefore attempted to fit existing data to a two-layer model consisting of a weakly anisotropic crustal layer and a more dominant mantle layer. We used “SplitLab” to measure apparent splitting parameters from ELK (a USGS permanent station) and 3 Earthscope Transportable Array stations. There is a clear variation in the splitting parameters with back-azimuth, but existing data do not provide a stable inversion for a two-layer model. Our best forward-model solution is a crustal layer with a fast axis orientation of 357° and 0.3 second delay time and a mantle layer with a 282° fast axis and 1.3 s delay time. Though the direction of the fast axis is consistent with previously published regional results, the 1.3 s delay time is larger than

  12. Strain and flow in the metamorphic core complex of Ios Island (Cyclades, Greece)

    NASA Astrophysics Data System (ADS)

    Mizera, Marcel; Behrmann, Jan H.

    2016-10-01

    We have analysed strain and flow kinematics in the footwall of the South Cyclades Shear Zone (SCSZ), an important tectonic boundary within the Attic-Cycladic Crystalline Complex exposed on Ios Island, Cyclades, Aegean Sea. Coarse-grained augen gneisses in the basement unit flooring the SCSZ and forming a metamorphic core complex are excellently suited to measure finite strain using the Fry method and estimate the vorticity number ( W k) of flow with the "blocked-object" method. The results show that Oligo-Miocene exhumation of the basement unit during extension brought approximately 70 % N-S crustal stretching and up to 40 % subvertical shortening in a plane strain environment ( k = 0.99). Linear down-section strain decrease constrains a zone of contact deformation of the SCSZ of about 1.5 km thick. Kinematic vorticity number estimates suggest little deviation from pure shear ( W k = 0.26). Finite strain and W k are not correlated, indicating that the Ios basement and the overlying cover units were stretched compatibly. While the SCSZ is a localized zone of high strain, net displacement, however, may be restricted to about ten kilometres. This has important repercussions on large-scale tectonic models for extension in the Aegean.

  13. K-Ar ages of allochthonous mafic and ultramafic complexes and their metamorphic aureoles, Western Brooks Range, Alaska

    SciTech Connect

    Boak, J.L.; Turner, D.L.; Wallace, W.K.; Moore, T.E.

    1985-04-01

    New K-Ar ages from allochthonous mafic and ultramafic complexes of the western Brooks Range (Brooks Range ophiolite) show that igneous rocks yielded ages nearly identical to those of underlying metamorphic aureole rocks. Dated rocks of the Misheguk igneous sequence from Tumit Creek consist of (1) hornblende gabbro with minor greenschist and lower grade alteration, hornblende age 147.2 +/- 4.4 Ma; and (2) hornblende-bearing diorite, also slightly altered, age 155.8 +/- 4.7 Ma. Both samples come from presumed higher levels of the Misheguk sequence. Dated samples of metamorphic aureole rocks come from outcrops near Kismilot Creek and lie structurally beneath the Iyikrok Mountain peridotite body. The rocks consist of amphibolite and garnet-bearing biotite-hornblende gneiss considered to be metamorphosed Copter igneous sequence and related sedimentary rocks. Hornblende ages are 154.2 +/- 4.6 Ma and 153.2 +/- 4.6 Ma. metamorphism is clearly related to the structurally overlying perioditite, as the degree of alteration decreases downward. The authors suggest that the K-Ar ages of these rocks represent the effects of thermal metamorphism post-dating igneous crystallization, and are related to tectonic emplacement of the complex. Earlier K-Ar data on igneous rocks give similar ages and have been interpreted as reflecting tectonothermal events. The age of igneous crystallization of the mafic and ultramafic rocks of the Misheguk igneous sequence remains uncertain.

  14. Metamorphism of eclogites from the UHP Maksyutov Complex, south Ural Mountains, Russia

    NASA Astrophysics Data System (ADS)

    Burlick, T. D.; Leech, M. L.

    2013-12-01

    The Maksyutov Complex is a mid- to late Paleozoic ultrahigh-pressure (UHP) subduction terrane in the south Ural Mountains of Russia. Radial fractures around quartz inclusions in garnet, omphacite, and glaucophane interpreted as pre-existing coesite; and microdiamond aggregates in garnet identified by Raman spectroscopy demonstrate Maksyutov rocks were subducted to UHP conditions (>2.8 GPa for coesite and >3.0 GPa for diamond at 600°C). Peak UHP eclogite-facies metamorphism (Grt+Omp+Ph+Coe+Rt ×Ttn) took place at c. 385 M and Maksyutov rocks were exhumed through retrograde blueschist-facies metamorphism (Grt+Gln+Ph+Qz×Chl×Ep) by 360 Ma. Pseudosections were constructed to constrain the P-T conditions recorded by the equilibrium mineral assemblanges in eclogites and their retrograded equivalents using bulk rock XRF analysis in the system Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2 and the suite of free energy minimization programs, Perple_X 6.6.8 [Connolly 2009] with the internally consistent end-member thermodynamic database from Holland and Powell [1998] (mod 2004); solution models for omphacite (Holland and Powell, 1996), clinoamphibole (Dale et al. 2005), white mica (Coggon & Holland 2002, Auzanneau et al 2010), chlorite and garnet (Holland and Powell 1998; Powell and Holland 1999), and feldspar (Thompson and Hovis 1979; Newton et al. 1980) were used with H2O as a saturated component. Both conventional thermometry, using microprobe analyses and Grt-Cpx cation exchange as well as pseudosection modeling result in higher peak equilibrium temperatures than has been previously been reported in the Maksyutov. Pseudosection modeling gives minimum P-T conditions of 625°-675°C and 2.8-3.1 GPa for peak assemblages from the least retrogressed eclogites, while Fe-Mg exchange thermometry yields temperatures of 775°C × 25°C for pressures ranging from 2.5 to 3.5 GPa.

  15. The behaviour of monazite from greenschist facies phyllites to anatectic gneisses: An example from the Chugach Metamorphic Complex, southern Alaska.

    PubMed

    Gasser, Deta; Bruand, Emilie; Rubatto, Daniela; Stüwe, Kurt

    2012-03-01

    Monazite is a common accessory mineral in various metamorphic and magmatic rocks, and is widely used for U-Pb geochronology. However, linking monazite U-Pb ages with the PT evolution of the rock is not always straightforward. We investigated the behaviour of monazite in a metasedimentary sequence ranging from greenschist facies phyllites into upper amphibolites facies anatectic gneisses, which is exposed in the Eocene Chugach Metamorphic Complex of southern Alaska. We investigated textures, chemical compositions and U-Pb dates of monazite grains in samples of differing bulk rock composition and metamorphic grade, with particular focus on the relationship between monazite and other REE-bearing minerals such as allanite and xenotime. In the greenschist facies phyllites, detrital and metamorphic allanite is present, whereas monazite is absent. In lower amphibolites facies schists (~ 550-650 °C and ≥ 3.4 kbar), small, medium-Y monazite is wide-spread (Mnz1), indicating monazite growth prior and/or simultaneous with growth of garnet and andalusite. In anatectic gneisses, new low-Y, high-Th monazite (Mnz2) crystallised from partial melts, and a third, high-Y, low-Th monazite generation (Mnz3) formed during initial cooling and garnet resorption. U-Pb SHRIMP analysis of the second and third monazite generations yields ages of ~ 55-50 Ma. Monazite became unstable and was overgrown by allanite and/or allanite/epidote/apatite coronas within retrograde muscovite- and/or chlorite-bearing shear zones. This study documents polyphase, complex monazite growth and dissolution during a single, relatively short-lived metamorphic cycle.

  16. The behaviour of monazite from greenschist facies phyllites to anatectic gneisses: An example from the Chugach Metamorphic Complex, southern Alaska

    PubMed Central

    Gasser, Deta; Bruand, Emilie; Rubatto, Daniela; Stüwe, Kurt

    2012-01-01

    Monazite is a common accessory mineral in various metamorphic and magmatic rocks, and is widely used for U–Pb geochronology. However, linking monazite U–Pb ages with the PT evolution of the rock is not always straightforward. We investigated the behaviour of monazite in a metasedimentary sequence ranging from greenschist facies phyllites into upper amphibolites facies anatectic gneisses, which is exposed in the Eocene Chugach Metamorphic Complex of southern Alaska. We investigated textures, chemical compositions and U–Pb dates of monazite grains in samples of differing bulk rock composition and metamorphic grade, with particular focus on the relationship between monazite and other REE-bearing minerals such as allanite and xenotime. In the greenschist facies phyllites, detrital and metamorphic allanite is present, whereas monazite is absent. In lower amphibolites facies schists (~ 550–650 °C and ≥ 3.4 kbar), small, medium-Y monazite is wide-spread (Mnz1), indicating monazite growth prior and/or simultaneous with growth of garnet and andalusite. In anatectic gneisses, new low-Y, high-Th monazite (Mnz2) crystallised from partial melts, and a third, high-Y, low-Th monazite generation (Mnz3) formed during initial cooling and garnet resorption. U–Pb SHRIMP analysis of the second and third monazite generations yields ages of ~ 55–50 Ma. Monazite became unstable and was overgrown by allanite and/or allanite/epidote/apatite coronas within retrograde muscovite- and/or chlorite-bearing shear zones. This study documents polyphase, complex monazite growth and dissolution during a single, relatively short-lived metamorphic cycle. PMID:26525358

  17. Syn- to post-orogenic exhumation of metamorphic nappes: Structure and thermobarometry of the western Attic-Cycladic metamorphic complex (Lavrion, Greece)

    NASA Astrophysics Data System (ADS)

    Scheffer, Christophe; Vanderhaeghe, Olivier; Lanari, Pierre; Tarantola, Alexandre; Ponthus, Léandre; Photiades, Adonis; France, Lydéric

    2016-05-01

    The Lavrion peninsula is located along the western boundary of the Attic-Cycladic metamorphic complex in the internal zone of the Hellenic orogenic belt. The nappe stack is well exposed and made, from top to bottom, of (i) a non-metamorphic upper unit composed of an ophiolitic melange, (ii) a middle unit mainly composed of the Lavrion schists in blueschist facies, (iii) and a basal unit mainly composed of the Kamariza schists affected by pervasive retrogression of the blueschist facies metamorphism in greenschist facies. The middle unit is characterized by a relatively steep-dipping foliation associated with isoclinal folds of weakly organized axial orientation. This foliation is transposed into a shallow-dipping foliation bearing a N-S trending lineation. The degree of transposition increases with structural depth and is particularly marked at the transition from the middle to the basal unit across a low-angle mylonitic to cataclastic detachment. The blueschist facies foliation of the Lavrion schists (middle unit) is underlined by high pressure phengite intergrown with chlorite. The Kamariza schists (basal unit) contains relics of the blueschist mineral paragenesis but is dominated by intermediate pressure phengite also intergrown with chlorite and locally with biotite. Electron probe micro-analyzer chemical mapping combined with inverse thermodynamic modeling (local multi-equilibrium) reveals distinct pressure-temperature conditions of crystallization of phengite and chlorite assemblages as a function of their structural, microstructural and microtextural positions. The middle unit is characterized by two metamorphic conditions grading from high pressure (M1, 9-13 kbar) to lower pressure (M2, 6-9 kbar) at a constant temperature of ca. 315 °C. The basal unit has preserved a first set of HP/LT conditions (M1-2, 8-11 kbar, 300 °C) partially to totally transposed-retrogressed into a lower pressure mineral assemblage (M3, 5-8.5 kbar) associated with a slight but

  18. Pseudotachylyte in the Tananao Metamorphic Complex, Taiwan: Occurrence and dynamic phase changes of fossil earthquakes

    NASA Astrophysics Data System (ADS)

    Chu, Hao-Tsu; Hwang, Shyh-Lung; Shen, Pouyan; Yui, Tzen-Fu

    2012-12-01

    Pseudotachylyte veins and cataclasites were studied in the mylonitized granitic gneiss of the Tananao Metamorphic Complex at Hoping, Eastern Taiwan. The aphanitic pseudotachylyte veins vary in thickness, ranging from millimeters to about 1 cm. Field and optical microscopic observations show that such pseudotachylyte veins cut across cataclasites, which, in turn, transect the mylonitized granitic gneiss. Scanning electron microscopic images also show that both the pseudotachylyte veins and the cataclasites have been metasomatized by a K-rich fluid, resulting in the replacement of Na-plagioclase by K-feldspar (veins). Analytical electron microscopic observations reveal further details of physical and chemical changes (mainly fragmentation, dislocations, cleaving-healing with inclusions and relic voids, and retention of high-temperature albite) of quartz and feldspar in crushed grains. Pseudotachylytes occur as dark veins having a higher content of chlorite-biotite, clinozoisite-epidote and titanite fragments than cataclasites. These veins, coupled with hematite/jarosite-Fe-rich amorphous shell/carbonaceous material, indicate that crushing, healing/sintering, and inhomogeneous melt/fluid infiltration involving incipient and intermediate/high temperature melt patches, before and/or contemporaneous with the metasomatic K-rich fluid, prevailed in a coupled or sequential manner in the faulting event to form nonequilibrium phase assemblage. The chlorite-biotite, carbonaceous material and other nanoscale minerals could be vulnerable in future earthquakes under the influence of water. The timing of the formation of these pseudotachylyte veins should be later than the area's age of mylonitization of granitic gneiss of approximately 4.1-3.0 Ma (Wang et al., 1998). The formation of pseudotachylytes registers the fossil earthquakes during early stages in the exhumation history of the uplifting Taiwan Mountain belt since the Plio-Pleistocene Arc-Continent collision.

  19. Possible giant metamorphic core complex at the center of Artemis Corona, Venus

    USGS Publications Warehouse

    Spencer, J.E.

    2001-01-01

    Hundreds of circular features on Venus known as coronae are characterized by annular fractures and commonly associated radial fractures and lava flows. Coronae are thought to have been produced by buoyant mantle diapirs that flatten and spread at the base of the lithosphere and cause fracturing, uplift, and magmatism. The interior of Artemis Corona, by far the largest corona at 2100 km diameter, is divided in half by a northeast-trending deformation belt that contains numerous rounded ridges resembling antiforms. The largest of these ridges, located at the center of Artemis Corona, is ???5 km high on its steep northwest flank where it is adjacent to a flat-bottomed, 10-km-wide trough interpreted as a rift valley. The 280-km-long antiformal ridge is marked by perpendicular grooves that cross the ???50-km-wide ridge and extend southeastward as far as 120 km across adjacent plains. The grooves abruptly terminate northwestward at the rift trough. The large antiformal ridge terminates southwestward at a transform shear zone that parallels the grooves. These features-rift valley, antiformal uplift, grooves, and transform shear zone-are morphologically and geometrically similar to grooved, elevated, submarine metamorphic core complexes on the inside corners of ridge-transform intersections of slow-spreading ridges on Earth. As with submarine core complexes, the grooved surface on Venus is interpreted as the footwall of a large-displacement normal fault, and the grooves are inferred to be the product of plastic molding of the footwall to irregularities on the underside of the hanging wall followed by tectonic exhumation of the molded grooves and conveyer-belt-like transport up and over the large antiform and across the southeastern plains. According to this interpretation, the trend of the grooves records the direction of extension, which is perpendicular to the thrusts at the leading edge of the annular thrust belt 1000 km to the southeast. Both may have formed at the

  20. A key extensional metamorphic complex reviewed and restored: The Menderes Massif of western Turkey

    NASA Astrophysics Data System (ADS)

    van Hinsbergen, Douwe J. J.

    2010-09-01

    This paper provides a review of the structure and metamorphism of the Menderes Massif in western Turkey, and subsequently a map-view restoration of its Neogene unroofing history. Exhumation of this massif — among the largest continental extensional provinces in the world — is generally considered to have occurred along extensional detachments with a NE-SW stretching direction. Restoration of the early Miocene history, however, shows that these extensional detachments can only explain part of the exhumation history of the Menderes Massif, and that NE-SW stretching can only be held accountable for half, or less, of the exhumation. Restoration back to ˜ 15 Ma is relatively straightforward, and is mainly characterised by a previously reported 25-30° vertical axis rotation difference between the northern Menderes Massif, and the Southern Menderes Massif and overlying HP nappes, Lycian Nappes and Bey Dağları about a pivot point close to Denizli. To the west of this pole, the rotation was accommodated by exhumation of the Central Menderes core complex since middle Miocene times, and to the east probably by shortening. At the end of the early Miocene, the Menderes Massif formed a rectangular, NE-SW trending tectonic window of ˜ 150 × 100 km. Geochronology suggests unroofing between ˜ 25 and 15 Ma. The north-eastern Menderes Massif was exhumed along the early Miocene Simav detachment, over a distance of ≤ 50 km. The accommodation of the remainder of the exhumation is enigmatic, but penetrative NE-SW stretching lineations throughout the Menderes Massif suggest a prominent role of NE-SW extension. This, however, requires that the eastern margin of the Menderes Massif, bordering a region without significant extension, is a transform fault with an offset of ˜ 150 km, cutting through the Lycian Nappes. For this, there is no evidence. The Lycian Nappes — a non-metamorphic stack of sedimentary thrust slices and an overlying ophiolite and ophiolitic mélange

  1. A conceptual model for the development of pristine drainage systems during exhumation of metamorphic core complexes

    NASA Astrophysics Data System (ADS)

    Trost, Georg; Neubauer, Franz; Robl, Jörg

    2017-04-01

    Metamorphic core complexes (MCCs) are defined as large scale geological features of domal shape. The essential characteristic comprises metamorphic rocks, which have been exhumed from lower crustal levels and now are exposed to the surface. The updoming process occurs at different tectonic settings of high strain zones initially exposing pristine gently dipping fault planes to Earth's surface. Consequently, the dome shape highly influences the type of adaption of the drainage systems to the active landforms. However, drainage systems and their characteristic metrics in regions shaped by MCCs have only been sparsely investigated and were not examined regarding the distinction between different MCC-types (A-type, B-type, C-type). In this study we investigate the drainage patterns of MCCs formed by different tectonic settings and build up a conceptual model for the development of the drainage systems under these conditions. We apply the χ-method to detect variations in uplift, as well as spatial unconformities in the drainage patterns. The χ-method is a mathematical approach to transform stream longitudinal profiles to the χ space where the slope of steady state profiles is solely dependent on uplift rate and bedrock erodibility. From this transformation we calculate color-coded χ-maps and χ-profiles of the main streams draining the MCCs. The applied method allows the interpretation of channel metrics in terms of (a) spatial gradients in uplift rate and (b) the time dependent evolution of drainage divides including drainage divide migration. Our results show a high variation in the shape and greatest elevation of the χ-profiles. This indicates the migration of active uplift zones along the dome axes. Even though only MCCs younger than Miocene age are investigated, the shape of the χ-profiles clearly points to different development stages of these areas. K-profiles plotted over the detachment underlying an active updoming process show concave shaped

  2. The grand tour of the Ruby-East Humboldt metamorphic core complex, northeastern Nevada: Part 1 - Introduction & road log

    USGS Publications Warehouse

    Snoke, A.W.; Howard, K.A.; McGrew, A.J.; Burton, B.R.; Barnes, C.G.; Peters, M.T.; Wright, J.E.

    1997-01-01

    The purpose of this geological excursion is to provide an overview of the multiphase developmental history of the Ruby Mountains and East Humboldt Range, northeastern Nevada. Although these mountain ranges are commonly cited as a classic example of a Cordilleran metamorphic core complex developed through large-magnitude, mid-Tertiary crustal extension, a preceding polyphase Mesozoic contractional history is also well preserved in the ranges. An early phase of this history involved Late Jurassic two-mica granitic magmatism, high-temperature but relatively low-pressure metamorphism, and polyphase deformation in the central Ruby Mountains. In the northern Ruby Mountains and East Humboldt Range, a Late Cretaceous history of crustal shortening, metamorphism, and magmatism is manifested by fold-nappes (involving Archean basement rocks in the northern East Humboldt Range), widespread migmatization, injection of monzogranitic and leucogranitic magmas, all coupled with sillimanite-grade metamorphism. Following Late Cretaceous contraction, a protracted extensional deformation partially overprinted these areas during the Cenozoic. This extensional history may have begun as early as the Late Cretaceous or as late as the mid-Eocene. Late Eocene and Oligocene magmatism occurred at various levels in the crust yielding mafic to felsic orthogneisses in the deep crust, a composite granitic pluton in the upper crust, and volcanic rocks at the surface. Movement along a west-rooted, extensional shear zone in the Oligocene and early Miocene led to core-complex exhumation. The shear zone produced mylonitic rocks about 1 km thick at deep crustal levels, and an overprint of brittle detachment faulting at shallower levels as unroofing proceeded. Megabreccias and other synextensional sedimentary deposits are locally preserved in a tilted, upper Eocene through Miocene stratigraphic sequence. Neogene magmatism included the emplacement of basalt dikes and eruption of rhyolitic rocks. Subsequent

  3. Formation of metamorphic core complex in inherited wedges: A thermomechanical modelling study

    NASA Astrophysics Data System (ADS)

    Huet, B.; Le Pourhiet, L.; Labrousse, L.; Burov, E. B.; Jolivet, L.

    2011-09-01

    Metamorphic Core Complexes (MCCs) form when a thickened domain with a low-strength lower crust is submitted to extension. These structures are characteristic of post-orogenic extension, and field observations suggest that several MCCs rework a crustal nappe-stack emplaced before extension begins. These MCCs therefore develop within heterogeneous crusts that contain pre-existing dipping heterogeneities, such as thrust faults and dipping nappes in a crustal wedge. Although very common, this first order structural inheritance has never been considered in studies modelling MCCs. Our contribution therefore investigates the effect of an inherited crustal wedge structure on the dynamics and kinematics of formation of the MCCs, using fully coupled thermomechanical modelling. The wealth of petrological, structural and time informations available in the Cycladic MCCs (Aegean domain) allows setting up more realistic initial conditions for the experiments than usual flat-lying setups. It also allows the results of the numerical computation to be directly validated with final geometries, P-T paths and exhumation rates. The experiments using dipping heterogeneities are characterised by a much more complex evolution and final structure than their flat-lying layered equivalents. Dipping heterogeneities drive lateral strength contrasts and help to re-localise the deformation on successive detachments. The dip of the inherited wedge structures imposes kinematic constraints on the flow, which provides a model that explains the regional scale asymmetry of the Cycladic MCCs. The P-T paths, the exhumation rates and the final crustal structure that come out of an initial shallow-dipping wedge model provide a much more realistic comparison with their natural counter-parts than common flat-lying models. Other parameters, like crustal-scale density inversion, thermal structure and creep law parameters are of second order when compared to the initial wedge structure. Being little dependent

  4. Fluid inclusion studies on the Koraput Alkaline Complex, Eastern Ghats Province, India: Implications for mid-Neoproterozoic granulite facies metamorphism and exhumation

    NASA Astrophysics Data System (ADS)

    Nanda, J.; Panigrahi, M. K.; Gupta, S.

    2014-03-01

    Following ultrahigh temperature granulite metamorphism at ˜1 Ga, the Eastern Ghats Province of India was intruded by the Koraput Alkaline Complex, and was subsequently re-metamorphosed in the granulite facies in the mid-Neoproterozoic time. Fluid inclusion studies were conducted on silica undersaturated alkali gabbro and syenites in the complex, and a pre-metamorphic pegmatitic granite dyke that intrudes it. High density (1.02-1.05 g/cc), pseudo-secondary pure CO2 inclusions are restricted to metamorphic garnets within the gabbro and quartz within the granite, whereas moderate (˜0.92-0.95 g/cc) and low density (˜0.75 g/cc) secondary inclusions occur in garnet, magmatic clinopyroxene, plagioclase, hornblende and quartz. The isochores calculated for high density pseudo-secondary inclusions pass very close to the peak metamorphic window (˜8 kbar, 750 °C), and are interpreted to represent the fluid present during peak metamorphism that was entrapped by the growing garnet. Microscopic round inclusions of undigested, relict calcite in garnet suggest that the CO2 present during metamorphism of the complex was internally derived through carbonate breakdown. Pure to low salinity (0.00-10.1 wt% NaCl equivalent) aqueous intra-/intergranular inclusions showing unimodal normal distribution of final ice-melting temperature (Tm) and temperature of homogenization (Th) are present only in quartz within the granite. These represent re-equilibrated inclusions within the quartz host that were entrapped at the metamorphic peak. Rare, chemically precipitated graphite along the walls of carbonic inclusions is interpreted as a post-entrapment reaction product formed during decompression. The fluid inclusion evidence is consistent with rapid exhumation of a thickened lower crust following the mid-Neoproterozoic granulite facies metamorphic event. The study suggests that mantle CO2, transported by alkaline magma into the crust, was locked up within carbonates and released during

  5. Granite intrusion in a metamorphic core complex: The example of the Mykonos laccolith (Cyclades, Greece)

    NASA Astrophysics Data System (ADS)

    Denèle, Y.; Lecomte, E.; Jolivet, L.; Lacombe, O.; Labrousse, L.; Huet, B.; Le Pourhiet, L.

    2011-03-01

    The Aegean domain is a well-suited place to study the formation of metamorphic core complex (MCC) and to investigate the role of syn-tectonic granites on their development. In the northern Cyclades, the Mykonos-Delos-Rhenia MCC is characterized by the intrusion of a kilometer-scale Late Miocene pluton of I-type granitoids within a migmatitic gneiss dome. New combined AMS (anisotropy of magnetic susceptibility) and microstructural studies on the Mykonos granitoids together with recently published thermochronological data allow us to use the granitoids as strain markers. The Mykonos granitoids form a laccolith-like intrusion with a N70°E long axis. The laccolith is strongly asymmetric with an outlying root zone to the SW and a major body mainly developed to the NE. The laccolith construction is due to successive pulses of more or less differentiated magma that intruded the Cycladic Blueschist Unit. The attitude of stretching markers suggests an important (about 60°) vertical-axis local rotation phenomenon in the cycladic upper crust during the exhumation of the Mykonos MCC. Structural data suggest a four-stage evolution of the Mykonos MCC: (i) a first stage characterized by flat shearing toward the N-NE and by the formation of a domal structure in migmatitic paragneisses with multi-scale generation of folds with axes either perpendicular or parallel to the regional stretching, as a result of the interplay between regional N20°E-directed extension and EW shortening; (ii) a second stage marked by the emplacement of the Mykonos laccolith at 13.5 ± 0.3 Ma at the top of the migmatitic paragneisses; (iii) the third stage corresponding to the development of protomylonitic foliations and lineations in the whole laccolith in high to medium temperature conditions; and (iv) the late stage marked by an acceleration of the exhumation of the Mykonos MCC. This exhumation was accommodated by important rotations of upper crustal blocks. During the end of the exhumation processes

  6. SKS anisotropy on a dense broadband array over the Ruby Mountains Metamorphic Core Complex, Nevada

    NASA Astrophysics Data System (ADS)

    Golos, E. M.; Litherland, M.; Klemperer, S. L.

    2012-12-01

    The Ruby Mountains metamorphic core complex (RMCC), located in the Basin-and-Range Province in northeastern Nevada, is thought to have formed by some combination of low-angle detachment faulting, lateral crustal flow, and vertical diapirism. We deployed a 50-station densely-spaced passive seismic array from June 2010 through June 2012, as part of the Earthscope Flexible Array campaign. We were particularly interested in determining whether two layers of anisotropy are distinguishable, as this could imply the existence of discrete crustal and mantle strain fabrics, and potentially provide insight into local flow involved in the formation of the RMCC. We analyzed SKS splitting using the SplitLab program (Wüstefeld et al., 2008, Comp. Geosci. 34, 515) to calculate fast-axis direction, Φ, and time delay, δt, of events with magnitude ≥ 5.50 at distances of 90 to 130 degrees on 35 of our broadband seismic stations. Approximately ten such events were used per station. The mean delay time found was 0.8 s with a standard deviation of 0.28 s, and the mean fast-axis azimuthal direction was -70.1 degrees with a standard deviation of 19 degrees. We did not find evidence of two-layer anisotropy beneath the Ruby Mountains: mean splitting times within and beyond the RMCC are well within one standard deviation of each other, and average fast directions show no obvious trend within the RMCC. Either there is no significant additional crustal strain associated with the RMCC formation; or, the strain direction is identical to that of regional mantle flow; or, most likely, our data quality is insufficient to resolve crustal anisotropy superimposed on mantle anisotropy with a potentially similar fast direction. However, a systematic counterclockwise rotation of fast-axis direction across our array—the four easternmost stations (D03, D02, B17, and C18) have a mean Φ = -40.5 degrees, whereas the four westernmost stations (D05, B01, B02, and C02) have a mean Φ = -79.5 degrees

  7. The co-genetic evolution of metamorphic core complexes and drainage systems

    NASA Astrophysics Data System (ADS)

    Trost, Georg; Neubauer, Franz; Robl, Jörg

    2016-04-01

    Metamorphic core complexes (MCCs) are large scale geological features that globally occur in high strain zones where rocks from lower crustal levels are rapidly exhumed along discrete fault zones, basically ductile-low-angle normal faults recognizable by a metamorphic break between the cool upper plate and hot lower plate. Standard methods, structural analysis and geochronology, are applied to reveal the geodynamic setting of MCCs and to constrain timing and rates of their exhumation. Exhumation is abundantly accompanied by spatially and temporally variable vertical (uplift) and horizontal motions (lateral advection) representing the tectonic driver of topography formation that forces drainage systems and related hillslopes to adjust. The drainage pattern commonly develops in the final stage of exhumation and contributes to the decay of the forming topography. Astonishingly, drainage systems and their characteristic metrics (e.g. normalized steepness index) in regions coined by MCCs have only been sparsely investigated to determine distinctions between different MCC-types (A- and B-type MCCs according to Le Pourhiet et al., 2012). They however, should significantly differ in their topographic expression that evolves by the interplay of tectonic forcing and erosional surface processes. A-type MCCs develop in an overall extensional regime and are bounded partly by strike-slip faults showing transtensional or transpressional components. B-type MCCs are influenced by extensional dynamics only. Here, we introduce C-type MCCs that are updoming along oversteps of crustal-scale, often orogen-parallel strike-slip shear zones. In this study, we analyze drainage systems of several prominent MCCs, and compare their drainage patterns and channel metrics to constrain their geodynamic setting. The Naxos MCC represents an A-type MCC. The Dayman Dome located in Papua New Guinea a B-type MCC, whereas MCCs of the Red River Shear Zone, the Diancang, Ailao-Shan and Day Nui Con Voi

  8. Anatomy of a metamorphic core complex: Seismic refraction/wide-angle reflection profiling in southeastern California and western Arizona

    NASA Astrophysics Data System (ADS)

    McCarthy, Jill; Larkin, Steven P.; Fuis, Gary S.; Simpson, Robert W.; Howard, Keith A.

    1991-07-01

    The metamorphic core complex belt in southeastern California and western Arizona is a NW-SE trending zone of unusually large Tertiary extension and uplift. Midcrustal rocks exposed in this belt raise questions about the crustal thickness, crustal structure, and the tectonic evolution of the region. Three seismic refraction/wide-angle reflection profiles, acquired and analyzed as a part of the U.S. Geological Survey's Pacific to Arizona Crustal Experiment, were collected to address these issues. The results presented here, which focus on the Whipple and Buckskin-Rawhide mountains, yield a consistent three-dimensional image of this part of the metamorphic core complex belt. The seismic refraction/wide-angle reflection data are of excellent quality and are characterized by six principal phases that can be observed on all three profiles. These phases include refractions from the near-surface and crystalline basement, reflections from boundaries in the middle and lower crust, and reflections and refractions from the upper mantle. The final model consists of a thin veneer (<2 km) of upper plate and fractured lower plate rocks (1.5-5.5 kms-1) overlying a fairly homogeneous basement (˜6.0 km s-1) and a localized high-velocity (6.4 km s-1) body situated beneath the western Whipple Mountains. A prominent midcrustal reflection is identified beneath the Whipple and Buckskin-Rawhide mountains between 10 and 20 km depth. This reflector has an arch-like shape and is centered beneath, or just west of, the metamorphic core complex belt. This event is underlain by a weaker, approximately subhorizontal reflection at 24 km depth. Together, these two discontinuities define a lens-shaped midcrustal layer with a velocity of 6.35-6.5 km s-1. The apex of this midcrustal layer corresponds roughly to a region of major tectonic denudation and uplift (˜10 km) defined by surface geologic mapping and petrologic barometry studies. The layer thins to the northeast and is absent in the Transition

  9. Chemical and mineralogical data and processing methods management system prototype with application to study of the North Caucasus Blybsky Metamorphic Complexes metamorphism PT-condition

    NASA Astrophysics Data System (ADS)

    Ivanov, Stanislav; Kamzolkin, Vladimir; Konilov, Aleksandr; Aleshin, Igor

    2014-05-01

    There are many various methods of assessing the conditions of rocks formation based on determining the composition of the constituent minerals. Our objective was to create a universal tool for processing mineral's chemical analysis results and solving geothermobarometry problems by creating a database of existing sensors and providing a user-friendly standard interface. Similar computer assisted tools are based upon large collection of sensors (geothermometers and geobarometers) are known, for example, the project TPF (Konilov A.N., 1999) - text-based sensor collection tool written in PASCAL. The application contained more than 350 different sensors and has been used widely in petrochemical studies (see A.N. Konilov , A.A. Grafchikov, V.I. Fonarev 2010 for review). Our prototype uses the TPF project concept and is designed with modern application development techniques, which allows better flexibility. Main components of the designed system are 3 connected datasets: sensors collection (geothermometers, geobarometers, oxygen geobarometers, etc.), petrochemical data and modeling results. All data is maintained by special management and visualization tools and resides in sql database. System utilities allow user to import and export data in various file formats, edit records and plot graphs. Sensors database contains up to date collections of known methods. New sensors may be added by user. Measured database should be filled in by researcher. User friendly interface allows access to all available data and sensors, automates routine work, reduces the risk of common user mistakes and simplifies information exchange between research groups. We use prototype to evaluate peak pressure during the formation of garnet-amphibolite apoeclogites, gneisses and schists Blybsky metamorphic complex of the Front Range of the Northern Caucasus. In particular, our estimation of formation pressure range (18 ± 4 kbar) agrees on independent research results. The reported study was

  10. Contrasting Protoliths of Cretaceous Metamorphic Rocks from the Luk Ulo Accretionary Wedge Complex of Central Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Kadarusman, A.; Massone, H.; Permana, H.; Munasri, A.

    2005-12-01

    Rocks of the Lok Ulo Accretionary Complex crop out over a small (<100 km2) area in the Karangsambung residency of Central Java. They are part of Cretaceous accretionary wedge complexes in Central Indonesia, which are distributed sporadically in an arc extending from southwest and central Java to southeast Kalimantan and southern Sulawesi. The Lok Ulo complex consists of various types of rocks occurring as tectonic slabs in a black-shale matrix tectonic melange. The slabs are composed of a dismembered ophiolite, sedimentary rocks, and crystalline schists and gneisses. Detailed work on all the various metamorphic rock types in the Lok Ulo complex will be the focus of the study. Our investigations already show that the metamorphic rocks have two different kinds of protoliths and differ in P-T evolution as well. The first group (called `oceanic plate protolith') consists of fine-grained metabasites with metapelitic intercalations ranging from greenschist to amphibolite facies. High-pressure rocks such as eclogite, partially containing lawsonite, jadeite-glaucophane schist and blueschist crop out in a thin zone between the low-grade schists and a serpentinite zone along Kali Muncar. They are associated with a succession of metabasalt, serpentinite, chert and red limestone as common constituents of an ophiolite. The second group (called `continental crustal protolith') consists of low to high grade medium pressure metapelites, calc-silicate rocks, and metagranites (gneisses, quartzites, marbles, felsic granulites), and minor bimodal low grade metavolcanic. These rocks are presumably associated with a monotonous sequence of metapelites from the chlorite zone up to the garnet zone exposed in the northern and eastern part of the Karangsambung area (e.g. Kali Loning). Our findings suggest that the metamorphic rocks from the Lok Ulo complex are not the simple result of subduction metamorphism along the Indo-Australian oceanic plate (margin of the Sundaland craton) in the

  11. Structural evolution of the Day Nui Con Voi metamorphic complex: Implications on the development of the Red River Shear Zone, Northern Vietnam

    NASA Astrophysics Data System (ADS)

    Yeh, Meng-Wan; Lee, Tung-Yi; Lo, Ching-Hua; Chung, Sun-Lin; Lan, Ching-Ying; Anh, Tran Tuan

    2008-12-01

    The Day Nui Con Voi (DNCV) metamorphic complex in North Vietnam is the southernmost high-grade metamorphic zone along the NW-SE trending Red River Shear Zone (RRSZ) in Indochina. The RRSZ was considered as a classical large-scale continental strike-slip fault that had played a significant role in the continental extrusion of Southeast Asia since the collision of India and Eurasia. Earlier ideas determined the RRSZ as a steep shear zone that penetrated the entire lithosphere. Both metamorphism and structures within rocks along the DNCV metamorphic complex have been previously thought to be formed syn-tectonically by left-lateral shearing of the RRSZ during the Oligocene-Miocene continental escape tectonics. However, our meso- and microstructural re-examination of this region shows that these metamorphic rocks were formed during earlier tectonic episodes unrelated to strike-slip shearing. High angle to near orthogonal overprinting fabrics indicated that this region recorded three episodes of ductile deformation followed by brittle faulting events with different intensity spanning from the Triassic to the Tertiary. D 1 is preserved as NW-SE striking upright folds under garnet grade regional metamorphism during the Triassic Indosinian orogeny as South China block amalgamated with the Indochina block. The large-scale horizontal D 2 folds with a dominant top to N-NW bottom to S-SW sense of shear, and sub-horizontal fold axial planes suggest that the DNCV metamorphic complex remained at midcrustal depths since the Indosinian orogeny. The youngest ductile deformation event, D 3, refolded D 2 recumbent folds into a dome, and uplifted the DNCV as lower-temperature fabrics, S 3, indicated. Steep mylonite zones with left-lateral kinematic indicators and brittle faulting were developed on both limbs of the dome along the steep Song Hong and Song Chay faults during left-lateral movement of the RRSZ. Our new spatial, temporal and kinematic correlations of metamorphic fabrics

  12. The Eastern Pelagonian metamorphic core complex: insight from the 40Ar/39Ar dating of white micas

    NASA Astrophysics Data System (ADS)

    Schenker, F. L.; Forster, M.; Burg, J.-P.

    2012-04-01

    The Pelagonian Zone in continental Greece is the westernmost unit of the Internal Hellenides that constitutes a pre-alpine crystalline block in-between two oceanic domains, the Pindos in the west and the Vardar zone in the east. We present petrographic, structural and geochronological evidence for a metamorphic core complex in eastern Pelagonian. The denuded metamorphic dome extends about 20 x 15 km with the long axis striking NNW-SSE. A shallow-dipping foliation defines the structural dome. The mineralogy of the lithologies (gneiss, impure marbles and amphibolites) show metamorphic conditions that decrease from upper-amphibolite in the core to greenschist metamorphic conditions in the flanks of the dome, reflecting structural depth and thus erosion of the dome. Aligned micas and amphiboles and elongated quartz and feldspar define a prominent lineation trending SW-NE. Asymmetric structures in the XZ finite strain plane of rocks show two regional senses of shear: (i) everywhere, top-to-the-SW sense of shear (direction: 252°±30; plunge: 8°±25) associated with strain gradients from protomylonite to ultramylonite and recumbent, isoclinal and occasional sheath folds; (ii) top-to-the-E sense of shear (direction: 88°±24; plunge: 11°±12) in narrow (0.1 to 100 m) low-angle shear zones on the eastern flanks of subdomes. The 40Ar/39Ar step-heating dating technique has been applied to micas from orthogneisses from the core to the flanks of the dome to constrain its thermal and structural evolution. The micas have been separated with acoustical shockwave produced in the SELFRAG apparatus, with the advantage to liberate morphologically intact grains. The liberated grains were sieved at different grain-sizes (between 100 and 300 μm) depending on the micro-textures observed in thin-sections. Results show "plateau"-ages at ca. 100-120 Ma and at ca. 80 Ma. Interestingly, the 100-160 μm fraction of white micas in a mylonitic orthogneiss yielded slightly younger ages than

  13. Complex temporal-spatial metamorphic relationships, Feather River ultramafic belt, northern Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Masutsubo, N.; Wakabayashi, J.

    2011-12-01

    Conventional tectonic models cannot explain the spatial-temporal distribution of the metamorphic grade of the Feather River ultramafic belt (FRB) of the northern Sierra Nevada, California. In the North Yuba River area, thin slabs of ilmenite-bearing, redbrown-amphibole (high Ti, low Al) amphibolites, apparently formed by high-temperature, low to medium pressure (LP-HT) metamorphism, structurally underlie ultramafic rocks, and structurally overlie the high-pressure, low-temperature (HP-LT) blueschist facies Red Ant schist. The Red Ant schist includes a mélange zone with blocks of rutile-bearing, green-amphibole (low Ti, high Al) amphibolite, indicative of high-pressure, high-temperature metamorphism (HP-HT) that have been heavily overprinted with sodic amphibole and lawsonite consistent with mineral assemblages in metabasites in the Red Ant schist coherent units. In the Alleghany and Forest City areas, directly south of the North Yuba River, Red Ant schist, amphibolites, and serpentinites are interleaved as a result of isoclinal folding. In the Alleghany area and the North Fork Feather River areas (roughly 50 km to the north), HP-HT garnet amphibolites occur beneath ultramafic rocks, and the Ar-Ar ages of the latter are about 100 m.y. younger. (ca. 240 vs 340 Ma). In the Forest City area, most of the HP-HT assemblages in amphibolites are almost completely overprinted or erased by later LP-HT metamorphism with red-brown hornblende, diopside, and presumed plagioclase (altered, no fresh plagioclase found), and the only hint of HP-HT metamorphic history was recorded by rutile cores in ilmenite. In the Alleghany area, serpentinite structurally overlies HP-HT amphibolites (rutile-bearing, green amphibole, locally garnet-bearing) that overlie LP-HT (red brown amphibole, ilmenite-bearing) amphibolites, that in turn overlie HP-LT Red Ant schist. These units are repeated in map view by isoclinal folding. The HP-HT rocks may have formed at subduction initiation as a

  14. Exhumation and cooling of the Serifos metamorphic core complex, western Cyclades: extensional surging or continuum since the Early Oligocene?

    NASA Astrophysics Data System (ADS)

    Vogel, H.; Schneider, D. A.; Grasemann, B.; Iglseder, Ch.; Stöckli, D.; Heizler, M.

    2009-04-01

    The western Cycladic island of Serifos lies within the active tectonic setting of the Aegean region where southward retreat of the subducting Hellenic slab and associated back-arc crustal block rotation has led to progressive extensional collapse of the lithosphere. Widespread exhumation has regionally exposed mid-crustal metamorphic and plutonic rocks through low-angle detachments associated with metamorphic core complex development. On Serifos, bedrock lithologies consisting of calc-silicates, schists, gneisses, and marbles metamorphosed under greenschist- to lower amphibolite- facies conditions are intruded by a largely undeformed, Late Miocene I-type granodiorite pluton that dominates the southeast portion of the metamorphic dome. Project ACCEL (Aegean Core Complexes along an Extended Lithosphere) documented that this pluton crosscuts a crustal-scale anastomosing shear zone consisting of (ultra) mylonitic marbles and orthogneisses that record consistent SSW-directed shear. These intensely sheared orthogneisses, yielding a preliminary U-Pb zircon rim crystallization age of c. 37 Ma, represent an earlier S-type granitoid that syn-kinematically intruded to mid-crustal levels during Late Eocene deformation. Additional thermochronometric constraints presented here elucidate the timing of extension and exhumation of the Serifos metamorphic core complex through mid- to shallow-crustal levels. Moderate temperature constraints from Ar-Ar analysis of white micas reveal two distinct cooling age populations separated by a steep age gradient that is coincident with the high-strain mylonitic shear zone. The micas define the rock's foliation in most cases with notable mica fish from shear zone samples and geochemical analysis via electron microprobe confirms that all micas are of a similar muscovite composition. Micas from southern portions of the island, within the shear zone and adjacent to the granodiorite pluton, yield Late Miocene cooling ages of 8-9 Ma, indicating

  15. Nappes, tectonics of oblique plate convergence, and metamorphic evolution related to 140 million years of continuous subduction, Franciscan Complex, California

    SciTech Connect

    Wakabayashi, J. )

    1992-01-01

    This paper presents a new synthesis of Franciscan Complex tectonics, with the emphasis on the pre-San Andreas fault history of these rocks. Field relations suggest that the Franciscan is characterized by nappe structures that formed during sequential accretion at the trench. The presence of these structures along with other field relations, including the lack of evidence for large offset of conglomerate suites, indicates that strike-slip fault systems of large displacement ({gt}500 km) did not cut the Franciscan Complex during subduction. Regional geology and comparisons to modern arc-trench systems suggest that strike-slip faulting associated with oblique subduction took place inboard (east) of the Franciscan in the vicinity of the magmatic arc. The Franciscan varies along strike, because individual accreted elements (packets of trench sediment, seamounts, etc.) did not extend the full length of the trench. Different depths of underplating, distribution of post-metamorphic faulting, and level of erosion produced the present-day surface distribution of high P/T metamorphism. Franciscan Complex tectonic history is presented in this paper.

  16. Rapid cooling and exhumation as a consequence of extension and crustal thinning: Inferences from the Late Miocene to Pliocene Palu Metamorphic Complex, Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Hennig, Juliane; Hall, Robert; Forster, Margaret A.; Kohn, Barry P.; Lister, Gordon S.

    2017-08-01

    Metamorphic complexes forming high mountains of 1.5-2 km in Western Sulawesi were previously considered to be Mesozoic or older basement of Gondwana crust. However, many of the metamorphic rocks are much younger than previously thought. Some have Eocene sedimentary protoliths. New geothermobarometric and geochronological data from metamorphic rocks of the Palu Metamorphic Complex (PMC) and associated granitoids provide information on the timing and mechanisms of Neogene metamorphism and contemporaneous rapid exhumation. The metamorphic rocks are strongly deformed and some were partially melted to form migmatites. Schists contain relict andalusite, cordierite, staurolite and Mn-rich garnet which are wrapped by a pervasive fabric. 40Ar/39Ar dating of biotite, white mica and amphibole from strongly deformed, mylonitic schists and recrystallised amphibolites reveals cooling occurred in the Early Pliocene (c. 5.3-4.8 Ma) in the northern part and during the Late Pliocene (c. 3.1-2.7 Ma) in the southern part of the PMC. U-Pb, 40Ar/39Ar and (U-Th)/He analyses of various minerals from PMC metamorphic and S-type magmatic rocks give very similar mid to Late Pliocene ages, indicating very fast cooling and rapid exhumation, and show the high speed at which tectonic processes, including magmatism, exhumation, and reworking into a sediment, must have occurred. The high rates could be unique to this area but we suggest they record the true speed of metamorphic complex exhumation in a very young orogenic belt. Rates in older orogens appear lower because they are averages measured over longer periods of time. Contemporaneous magmatism and deformation are interpreted as a consequence of decompressional melting due to extension and thinning of the crust, promoted by possible detachment faults and normal faulting at the major NW-trending Palu-Koro and Tambarana Faults. In contrast, I-type magmatic rocks, separated from the PMC by the Palu-Koro Fault, were exhumed from upper crustal

  17. Exhumation with a twist: restoration of the Menderes Metamorphic core complex since the late Oligocene

    NASA Astrophysics Data System (ADS)

    van Hinsbergen, Douwe J. J.

    2010-05-01

    Here, I provide a restoration of the post-Oligocene unroofing history of the Menderes metamorphic massif of western Turkey. Exhumation of this massif - among the largest continental extensional provinces in the world - is generally considered to have occurred along extensional detachments with a NE-SW stretching direction. Restoration of the early Miocene history, however, shows that this simple history is impossible to reconstruct. Restoration back to ~15 Ma is relatively straightforward, and is mainly characterised by a previously reported ~25° vertical axis rotation difference between the northern Menderes Massif, and the Southern Menderes Massif, Lycian Nappes and Bey Dağları about a pole close to Denizli. To the west of this pole, the rotation was accommodated by exhumation of the Central Menderes core complex since middle Miocene times, and to the east by compressional deformation of the Lycian Nappes. Evidence for the latter is not abundant, but a dextral transpressional system in the heart of the Isparta Angle, and post-Oligocene thrusting in the Denizli basin are in line with this suggestion. At the end of the early Miocene, the Menderes Massif formed a rectangular, NE-SW trending tectonic window of ~150x100 km. Fission track- and cooling ages suggest unroofing between ~25 and 15 Ma. The northeastern Menderes Massif was exhumed along the early Miocene Simav detachment, over a distance of ~50 km. The accommodation of the remainder of the exhumation is enigmatic, but was presumed to also result from NE-SW extension. This, however, requires a transform fault along the eastern margin of the Menderes massif with an offset of ~150 km, cutting througth the Lycian Nappes, for which there is no evidence in the latter. The Lycian Nappes have been previously shown to thrust to the SE between 23 and 15 Ma over at least 75 km. This is contemporaneously with, and orthogonally to stretching along the Simav detachment. It is argued that the amount of emplacement was

  18. Metamorphic constraints on the Caledonian Upper Allochthon of Central Norway - the Gula Complex staurolite-garnet-kyanite mica schist

    NASA Astrophysics Data System (ADS)

    Engvik, A. K.; Grenne, T.; Lutro, O.; Meyer, G. B.

    2012-04-01

    Petrological studies of staurolite-garnet-kyanite-biotite schist and garnet-muscovite schist of the Gula Complex provide constraints on the metamorphic evolution of the Caledonian Upper Allochthon in the eastern Trondheim Region, Central Norway. The biotite schist contains conspicuous porphyroblasts of Fe-rich staurolite (Mg#=0.21-0.24), garnet (Alm64-71Prp13-19Grs3-11Sps7-20) and kyanite, set in a fine-grained, well foliated matrix of biotite (Mg#=0.57- 0.62), quartz, minor plagioclase (An19-31) and locally muscovite. The muscovite schist is fine to medium grained with a muscovite-quartz dominated matrix, including garnet (Alm54-70Prp10-14Grs12-25Sps1-11), biotite (Mg#=0.56-0.57), minor plagioclase (An31-45) and clinozoisite. P-T modeling based on thermobarometric calculations and construction of P-T pseudosections illustrates that significant mineralogical heterogeneity in the high grade mica schists arise from only modest geochemical heterogeneities in the original pelitic rocks. Based on garnet ±staurolite ±kyanite ±muscovite +biotite +plagioclase +quartz-assemblages, peak metamorphism reached 680 °C with pressures estimated to 1.01 ±0.11 GPa for the garnet-muscovite schist, and 0.86 ±0.12 GPa for the staurolite-garnet-kyanite-biotite schist. A clockwise P-T path is constrained by secondary mineral reactions; the replacement of kyanite to fibrous sillimanite indicates decompression below 0.65 GPa at elevated temperatures. Growth of foliation-parallel chlorite reflects cooling below 640 °C. Chlorite formation proceeded during cooling and decompression towards 550 °C and 0.4 GPa. Peak metamorphic conditions are associated with a strong N-S trending regional foliation, and the initial uplift continued within the same strain regime. The documented high grade metamorphism and subsequent decompression and retrogression of the Gula Complex metapelites prevailed during the mid-Silurian continent-continent collision and Caledonian burial and exhumation of the

  19. Ortigalita Peak gabbro, Franciscan complex: U-Pb dates of intrusion and high-pressure low-temperature metamorphism

    NASA Astrophysics Data System (ADS)

    Mattinson, James M.; Echeverria, Lina M.

    1980-12-01

    Paleontological and isotopic age data from the Franciscan complex in the Ortigalita Peak quadrangle, Diablo Range, California, provide new insight into the tectonic evolution of at least part of the Franciscan complex. Graywacke, shale, pillowed greenstone, and chert in the quadrangle were deposited in Late Jurassic (Tithonian) time, about 135 to 150 m.y. ago, on the basis of radiolaria. These rocks then were incorporated in an accretionary wedge prior to the intrusion of gabbroic magma 95 m.y. ago (U-Pb dating on zircons). Subduction (metamorphism of gabbro and surrounding sedimentary rocks to blueschist grade) closely followed intrusion at about 92 m.y. ago (U-Pb dating on metamorphic titanite and “plagioclase” = albite + pumpellyite ± quartz). The brief interval between intrusion and subduction confirms the idea that the gabbro was intruded into the accretionary wedge, essentially at the site of plate convergence. The much longer interval (about 40 to 55 m.y.) between deposition and subduction reveals that the Franciscan had a long presubduction history and provides a time frame within which more speculative concepts such as extensive northward translation of the Franciscan must be constrained.

  20. Anatomy of a metamorphic core complex: seismic refraction/wide-angle reflection profiling in southeastern California and western Arizona

    USGS Publications Warehouse

    McCarthy, J.; Larkin, S.P.; Fuis, G.S.; Simpson, R.W.; Howard, K.A.

    1991-01-01

    The metamorphic core complex belt in southeastern California and western Arizona is a NW-SE trending zone of unusually large Tertiary extension and uplift. Midcrustal rocks exposed in this belt raise questions about the crustal thickness, crustal structure, and the tectonic evolution of the region. Three seismic refraction/wide-angle reflection profiles were collected to address these issues. The results presented here, which focus on the Whipple and Buckskin-Rawhide mountains, yield a consistent three-dimensiional image of this part of the metamorphic core complex belt. The final model consists of a thin veneer (<2 km) of upper plate and fractured lower plate rocks (1.5-5.5 km s-1) overlying a fairly homogeneous basement (~6.0 km s-1) and a localized high-velocity (6.4 km s -1) body situated beneath the western Whipple Mountains. A prominent midcrustal reflection is identified beneath the Whipple and Buckskin Rawhide mountains between 10 and 20km depth. -from Authors

  1. Structural analysis and deformation characteristics of the Yingba metamorphic core complex, northwestern margin of the North China craton, NE Asia

    NASA Astrophysics Data System (ADS)

    Yin, Congyuan; Zhang, Bo; Han, Bao-Fu; Zhang, Jinjiang; Wang, Yang; Ai, Sheng

    2017-01-01

    The presence of the Yingba (Yinggete-Bagemaode) metamorphic core complex (MCC) is confirmed near the Sino-Mongolian border in China. We report its structural evolution and the rheological features of ductile shear zones within this complex. Three deformations (Ds, Dm, and Db) since the Late Jurassic are identified. Ds is characterized by ductile structures that resulted from early NW-oriented, low-angle, extensional ductile shearing. Dm is associated with partial melting and magmatic diapirism, which accelerated the formation of the dome-like geometry of the Yingba MCC. Synchronously with or slightly subsequently to Ds and Dm, the Yingba MCC was subjected to brittle, extensional faulting (Db), which was accompanied by the exhumation of the lower crust and the formation of supracrustal basins. The ductile shearing (Ds) developed under greenschist-to amphibolite-facies metamorphic conditions (400-650 °C), as indicated by microstructures in quartz and feldspar, quartz [c] axis fabrics, and two-feldspar geothermometry. The mean kinematic vorticity estimates of 48-62% show a pure shear-preferred flow during Ds. The Yingba MCC provides an excellent sample that recorded an intermediate to high temperature shearing, which also implies the widely extensional regime in northeastern Asia at that time.

  2. Tectonic evolution of kid metamorphic complex and the recognition of Najd fault system in South East Sinai, Egypt

    NASA Astrophysics Data System (ADS)

    Sultan, Yasser M.; El-Shafei, Mohamed K.; Arnous, Mohamed O.

    2017-03-01

    A low-to medium-grade metamorphic belt of a volcano-sedimentary succession occurs in the eastern side of South Sinai as a part of the northernmost extension of the Arabian-Nubian Shield in Egypt. The belt is known as the Kid metamorphic complex. It is considered as one of the major belt among the other exposed metamorphic belts in South Sinai. Here, we detect and investigate the signature of the Najd Fault system in South Sinai based on detailed structural analysis in field and digital image processing. The enhanced satellite image and the geo-spatial distributions confirm that the Kid belt is essentially composed of nine Precambrian units. Field relations and geometrical analysis of the measured structural data revealed that the study area underwent four successive deformational phases (D1-D4). D1 is an upright tight to isoclinal large-scale folds that caused few F1 small-scale folds and a steeply dipping S1 axial plane foliation. The second deformational event D2 produced dominant of sub-horizontal S2 foliation planes accompanied with recumbent isoclinal folds and NW-SE trending L2 lineations. The main sense during D2 was top-to-the-NW with local reversals to the SE. The third folding generations F3 is recorded as axial plane S3-surfaces and is characterized by open concentric folding that overprinting both F1 and F2 folds and has a flexural-slip mechanism. F3 fold hinges plunge to the west-northwest or east-southeast indicate north-northeast-south-southwest shortening during D3. The fourth deformational event D4 is characterized by NE plunging open concentric folding overprint the pre-existing fold generations and formed under flexural slip mechanism reflecting coaxial deformation and indicating change in the stress regime as a result of the change in shortening from NE-SW to NW-SE. This phase is probably accompanied with the final assembly of east and west Gondwana. The dextral NW-SE shear zone that bounded the southwestern portion of the metamorphic belt is

  3. The metamorphic and kinematic history of a subduction channel analogue - the subgreenschist Chrystalls Beach Complex, New Zealand - and effects of metamorphic fluid pressure generation on dominant deformation style

    NASA Astrophysics Data System (ADS)

    Fagereng, A.

    2010-12-01

    dehydration of subducting sediments, releasing fluid of increasing δ18O into the subduction channel with increasing depth and metamorphic grade. Formation of a fault-fracture mesh comprising hydrothermal shear and extension veins requires fluid pressures locally in excess of the least compressive stress. The quartz veins in the Chrystalls Beach Complex are therefore inferred to have precipitated as a result of progressive fluid pressure increase along the prograde P-T path, leading to hydrofracture and fault-fracture mesh generation. At subgreenschist conditions, the subduction channel shear zone may therefore deform by a mixture of continuous deformation by dissolution-precipitation creep and frictional sliding and extension fracture within a fault-fracture mesh. As mesh generation requires high fluid overpressure, the onset of of such deformation will only occur when sufficient fluid has been generated and contained within the subduction channel. Thus, fluid generation along the prograde P-T path, and the permeability of the subduction channel rock assemblage, are likely critical controls on subduction channel deformation style.

  4. Late Cretaceous extension and exhumation of the Stong and Taku magmatic and metamorphic complexes, NE Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    François, T.; Md Ali, M. A.; Matenco, L.; Willingshofer, E.; Ng, T. F.; Taib, N. I.; Shuib, M. K.

    2017-08-01

    Fragmentation of large continental areas by post-orogenic extension requires favourable geodynamic conditions and frequently occurs along pre-existing suture zones or nappe contacts, as exemplified by the Stong and Taku magmatic and metamorphic complexes of northern Peninsular Malaysia. For this case, we have employed a field and microstructural kinematic study combined with low temperature thermo-chronology to analyse the tectonic and exhumation history. The results show that the Late Palaeozoic - Triassic Indosinian orogeny created successive phases of burial related metamorphism, shearing and contractional deformation. This orogenic structure was subsequently dismembered during a Cretaceous thermal event that culminated in the formation of a large scale Late Santonian - Early Maastrichtian extensional detachment, genetically associated with crustal melting, the emplacement of syn-kinematic plutons and widespread migmatisation. The emplacement of these magmatic rocks led to an array of simultaneously formed structures that document deformation conditions over a wide temperature range, represented by amphibolite- and greenschist- facies mylonites and as well as brittle structures, such as cataclastic zones and normal faults that formed during exhumation in the footwall of the detachment. The formation of this detachment and a first phase of Late Cretaceous cooling was followed by renewed Eocene - Oligocene exhumation, as evidenced from our fission track ages. We infer that an initial Cretaceous thermal anomaly was responsible for the formation of an extensional gneiss dome associated with simple shear and rotation of normal faults. These Cretaceous processes played a critical role in the establishment of the presently observed crustal structure of Peninsular Malaysia.

  5. Late Miocene cooling and extension identified on Serifos, western Cyclades: Development of an Aegean metamorphic core complex

    NASA Astrophysics Data System (ADS)

    Vogel, H.; Schneider, D. A.; Heizler, M.; Grasemann, B.; Iglseder, C.; ACCEL Team

    2007-12-01

    The island of Serifos is located in the Western Cyclades archipelago, a region noted for Miocene extension, where slab roll-back of the African-Arabian plate and gravitational collapse of a thickened crust has resulted in north-south to northeast-southwest directed extension. Bedrock lithologies on the island are composed of calc- silicates, schists, gneisses, and marbles metamorphosed to greenschist- to lower amphibolite-facies conditions. Project ACCEL (Aegean Core Complexes along an Extended Lithosphere) has recently documented a major low-angle shear zone consisting of (ultra)mylonitic marbles and orthogneisses with stretching lineations and kinematic indicators that record consistent SSW-directed extensional shear. The orthogneisses found within this shear zone are thought to be a syn-kinematic granite that yield preliminary U-Pb zircon rim ages of c. 37 Ma, suggesting a Late Eocene magmatic and deformation event. The southern part of the island is dominated by a largely undeformed, I-type granodiorite pluton of Late Miocene age. Serifos contains all the hallmarks of a classic Aegean metamorphic core complex, and a thermochronology campaign is underway to elucidate the timing of extension and unroofing. Analysis of fourteen mica separates using Ar-Ar thermochronmetry reveals two distinct cooling age populations, separated by a steep age gradient that is coincident with the well-defined shear zone in the northern region of the island. Samples taken from the southern units of the island, within the shear zone, and adjacent to the granodiorite pluton, give cooling ages of 8-9 Ma, illustrating bedrock cooling and exhumation coeval with intrusion of the granodiorite. Lower grade lithologies from the northern portion of the island yield mica cooling ages of 32-35 Ma. Eocene cooling ages present on Serifos are identical to deformation ages reported from the Cycladic Blueschist unit (CBU), present on nearby islands in the Cyclades and Evvia. The cooling and

  6. Structural and rheological features of the western Liaoning metamorphic core complex corridor: Indications for Late Mesozoic extension of the eastern North China Craton

    NASA Astrophysics Data System (ADS)

    Liang, Chenyue; Liu, Yongjiang; Neubauer, Franz; Jin, Wei; Li, Weimin; Heberer, Bianca; Wen, Quanbo; Li, Jing; Zhang, Li

    2017-05-01

    The Xingcheng-Taili ductile shear zone and Yiwulüshan metamorphic core complex formed during crustal extension of the eastern North China Craton. The ENE-trending Xingchegn-Taili sinistral ductile shear zone developed along the margins of the western Liaoning metamorphic core complex corridor within upper greenschist to lower amphibolite facies-grade metamorphic conditions. Shearing was associated with two different ductile deformation events in the Yiwulüshan metamorphic core complex, i.e. (1) an earlier dextral shearing and (2) later sinistral shearing. The earlier dextral ductile shear zone is mainly characterized by simple-shear dominated general shear with L = S and LS tectonites under upper greenschist to lower amphibolite facies conditions. The orientation and fabrics of L = S tectonites indicate that the later ductile deformation consists of almost equally simple and pure shear and constrains a low-middle-temperature sinistral shear within upper greenschist facies-grade conditions. The estimation of rock rheological parameters from dynamically recrystallized grain sizes of quartz indicates that the high-temperature shear zone has formed under lower stress conditions and higher strain rates, while opposite features exist in the lower temperature shear zone. The initiation of deformation of the western Liaoning metamorphic core complex corridor might have started between 136 Ma and 120 Ma and its termination time was at ca. 100 Ma. The NE-ENE strike-slip ductile deformation in the western Liaoning metamorphic core complex corridor, within the Eastern Block of the North China Craton, was resulted from roll-back of the subducting Pacific plate beneath the North China Craton along the eastern Asian margin during Early Cretaceous times.

  7. Coincidence of gabbro and granulite formation and their implication for Variscan HT metamorphism in the Moldanubian Zone (Bohemian Massif), example from the Kutná Hora Complex

    NASA Astrophysics Data System (ADS)

    Faryad, Shah Wali; Kachlík, Václav; Sláma, Jiří; Jedlicka, Radim

    2016-11-01

    Leucocratic metagabbro and amphibolite from a mafic-ultramafic body within migmatite and granulite in the Kutná Hora Complex were investigated. The mafic-ultramafic rocks show amphibolite facies metamorphism, but in the central part of the body some metagabbro preserves cumulus and intercumulus plagioclase, clinopyroxene and spinel. Spinel forms inclusions in both clinopyroxene and plagioclase and shows various degree of embayment structure, that was probably a result of reaction with melt during magmatic crystallization. In the metagabbro, garnet forms coronae around clinopyroxene at the contacts with plagioclase. Amphibolite contains garnet with prograde zoning and plagioclase. Phase relations of igneous and metamorphic minerals indicate that magmatic crystallization and subsequent metamorphism occurred as a result of isobaric cooling at a depth of 30-35 km. U-Pb dating on zircon from leucogabbro yielded a Variscan age (337.7 ± 2 Ma) that is similar or close to the age of granulite facies metamorphism (ca 340 Ma) in the Moldanubian Zone. Based on the calculated PT conditions and age data, both the mafic-ultramafic body and surrounding granulite shared the same exhumation path from their middle-lower crustal position at the end of Variscan orogeny. The coincidence of mafic-ultramafic intrusives and granulite-amphibolite facies metamorphism is explained by lithospheric upwelling beneath the Moldanubian Zone that occurred due to slab break-off during the final stages of subduction of the Moldanubian plate beneath the Teplá Barrandian Block. The model also addresses questions about the preservation of minerals and/or their compositions from the early metamorphic history of the rocks subjected to ultradeep subduction and subsequent granulite facies metamorphism.

  8. Geochemical investigation of Archaean Bimodal and Dwalile metamorphic suites, Ancient Gneiss Complex, Swaziland

    USGS Publications Warehouse

    Hunter, D.R.; Barker, F.; Millard, H.T.

    1984-01-01

    The bimodal suite (BMS) comprises leucotonalitic and trondhjemitic gneisses interlayered with amphibolites. Based on geochemical parameters three main groups of siliceous gneiss are recognized: (i) SiO2 14%, and fractionated light rare-earth element (REE) and flat heavy REE patterns; (ii) SiO2 and Al2O3 contents similar to (i) but with strongly fractionated REE patterns with steep heavy REE slopes; (iii) SiO2 > 73%, Al2O3 < 14%, Zr ??? 500 ppm and high contents of total REE having fractionated light REE and flat heavy REE patterns with large negative Eu anomalies. The interlayered amphibolites have major element abundances similar to those of basaltic komatiites, Mg-tholeiites and Fe-rich tholeiites. The former have gently sloping REE patterns, whereas the Mg-tholeiites have non-uniform REE patterns ranging from flat (??? 10 times chondrite) to strongly light REE-enriched. The Fe-rich amphibolites have flat REE patterns at 20-30 times chondrite. The Dwalile metamorphic suite, which is preserved in the keels of synforms within the BMS, includes peridotitic komatiites that have depleted light REE patterns similar to those of compositionally similar volcanics in the Onverwacht Group, Barberton, basaltic komatiites and tholeiites. The basaltic komatiites have REE patterns parallel to those of the BMS basaltic komatiites but with lower total REE contents. The Dwalile tholeiites have flat REE patterns. The basic and ultrabasic liquids were derived by partial melting of a mantle source which may have been heterogeneous or the heterogeneity may have resulted from sequential melting of the mantle source. The Fe-rich amphibolites were derived either from liquids generated at shallow levels or from liquids generated at depth which subsequently underwent extensive fractionation. ?? 1984.

  9. Hydrothermal alteration of a seamount complex on La Palma, Canary Islands: Implications for metamorphism in accreted terranes

    NASA Astrophysics Data System (ADS)

    Schiffman, P.; Staudigel, H.

    1994-02-01

    The hydrothermal metamorphism of a sequence of Pliocene-age seamount extrusive and volcaniclastic rocks on La Palma, Canary Islands, is characterized by a relatively complete low-pressure-high-temperature facies series encompassing the zeolite, prehnite-pumpellyite, and greenschist facies. The observed mineral zonations imply metamorphic gradients of 200-300 °C/km. The metamorphism of the seamount, at least in its core region, is distinct from ocean-floor metamorphism: the former is characterized by a serially continuous facies series encompassing zeolite, prehnite-pumpellyite, and greenschist assemblages, and the latter by a discontinuous metamorphic gradient in which prehnite-pumpellyite assemblages are absent. These metamorphic features, presumably reflecting fundamental thermal-tectonic differences between extending oceanic crust at mid- oceanic ridges vs. the more static crust underlying seamount volcanoes, should aid in the recognition of incoherent fragments of seamount metamorphic rocks within accreted terranes which typically have undergone subsequent higher pressure-temperature regional metamorphism, albeit to comparable grades.

  10. Tectono-metamorphic evolution of high-P/T and low-P/T metamorphic rocks in the Tia Complex, southern New England Fold Belt, eastern Australia: Insights from K-Ar chronology

    NASA Astrophysics Data System (ADS)

    Fukui, Shiro; Tsujimori, Tatsuki; Watanabe, Teruo; Itaya, Tetsumaru

    2012-10-01

    The Tia Complex in the southern New England Fold Belt is a poly-metamorphosed Late Paleozoic accretionary complex. It consists mainly of high-P/low-T type pumpellyite-actinolite facies (rare blueschist facies) schists, phyllite and serpentinite (T = 300 °C and P = 5 kbar), and low-P/high-T type amphibolite facies schist and gneiss (T = 600 °C and P < 5 kbar) associated with granodioritic plutons (Tia granodiorite). White mica and biotite K-Ar ages distinguish Carboniferous subduction zone metamorphism and Permian granitic intrusions, respectively. The systematic K-Ar age mapping along a N-S traverse of the Tia Complex exhibits a gradual change. The white mica ages become younger from the lowest-grade zone (339 Ma) to the highest-grade zone (259 Ma). In contrast, Si content of muscovite changes drastically only in the highest-grade zone. The regional changes of white mica K-Ar ages and chemical compositions of micas indicate argon depletion from precursor high-P/low-T type phengitic white mica during the thermal overprinting and recrystallization by granitoids intrusions. Our new K-Ar ages and available geological data postulate a model of the eastward rollback of a subduction zone in Early Permian. The eastward shift of a subduction zone system and subsequent magmatic activities of high-Mg andesite and adakite might explain formation of S-type granitoids (Hillgrove suite) and coeval low-P/high-T type metamorphism in the Tia Complex.

  11. Evolution Process and Structural Analysis of Precambrian Jirisan Metamorphic and Sancheong Anorthosite Complexes in the Jirisan Province, Yeongnam Massif, Korea

    NASA Astrophysics Data System (ADS)

    Kang, J. H.; Lee, D. S.

    2016-12-01

    The Jirisan metamorphic complex consists mainly of schist, blastoporphyritic granite gneiss, granitic gneiss, leucocratic gneiss, biotite gneiss, banded gneiss, migmatitic gneiss and granite gneiss. The Paleoproterozoic (1.87 1.79 Ga) Sancheong anorthosite complex, which intrude it, is classified into massive-type and foliation-type Sancheong anorthosite, Fe-Ti ore body, and mafic granulite which were formed from the multiple fractionation and polybaric crystallization of the coeval and cogenetic magma. These complexes went at least through three times of ductile deformation during Early Proterozoic Late Paleozoic. The D1 deformation formed sheath or "A" type folds and its characteristic orientation was uncertain due to the intensive multi-deformation superimposed after that. The D2 deformation occurred under the EW- or WNW-directed tectonic compression, and formed a regional NS or NNE trend of isoclinal and intrafolial folds and an extensive ductile shear zone accompanied by mylonitization. The D3 deformation occurred under the NS- or NNW-directed tectonic compression environment, and formed an EW or ENE trend of open and tight folds and a partial semibrittle shear zone accompanied by mylonitization, and rearranged the NS-trend pre-D3 structural elements into (E)NE or (W)NW direction. The D2 deformation generally increases from the center toward the margin of Sancheong anorthosite complex but is more intensive in the eastern than western parts of Sancheong anorthosite complex. While the D3 deformation is inversely more intensive in the its western than eastern parts. The D2 and D3 deformations are closely related to the distribution features of Sancheong anorthosite complex. These three tectonic events are expected to give important information in understanding and reconstructing the tectonic movement after the formation of Columbia Supercontinent as well as the present NS-trend tectonic frame of the Jirisan province of the Yeongnam massif, the Korean Peninsula.

  12. Provenance and metamorphic PT conditions of Cryogenian-Ediacaran metasediments from the Kid metamorphic complex, Sinai, NE Arabian-Nubian Shield: Insights from detrital zircon geochemistry and mineral chemistry

    NASA Astrophysics Data System (ADS)

    El-Bialy, Mohammed Z.; Ali, Kamal A.; Abu El-Enen, Mahrous M.; Ahmed, Ahmed H.

    2015-12-01

    The Malhaq and Um Zariq formations occupy the northern part of the Neoproterozoic Kid metamorphic complex of SE Sinai, NE Arabian-Nubian Shield. This study presents new mineral chemistry data and LA-ICP-MS analyses of the trace element concentrations on zircons separated from metapelites from these formations. The detrital zircons of Um Zariq Formation are more enriched in ΣREE, whereas Malhaq Formation zircons are markedly HREE-enriched with strongly fractionated HREE patterns. The quite differences in the overall slope and size of the Eu and Ce anomalies between REE patterns of the two zircon suites provide a robust indication of different sources. The Ti-in-zircon thermometer has revealed that the zircons separated from Malhaq Formation were crystallized within the 916-1018 °C range, while those from Um Zariq Formation exhibit higher range of crystallization temperatures (1084-1154 °C). The detrital zircons of Malhaq Formation were derived mainly from mafic source rocks (basalt and dolerite), whereas Um Zariq Formation zircons have varied and more evolved parent rocks. Most of the investigated zircons from both formations are concluded to be unaltered magmatic that were lately crystallized from a high LREE/HREE melt. All the studied detrital zircon grains show typical trace elements features of crustal-derived zircons. All of the Um Zariq Formation and most of Malhaq Formation detrital zircons are geochemically discriminated as continental zircons. Both formation metapelites record similar, overlapping peak metamorphic temperatures (537-602 °C and 550-579 °C, respectively), and pressures (3.83-4.93 kbar and 3.69-4.07 kbar, respectively). The geothermal gradient, at the peak metamorphic conditions, was quite high (37-41 °C/km) corresponding to metamorphism at burial depth of 14-16 km. The peak regional metamorphism of Um Zariq and Malhaq formations is concluded to be generated during extensional regime and thinning of the lithosphere in an island arc

  13. Kinematics of compressional and extensional ductile shearing deformation in a metamorphic core complex of the northeastern basin and range

    NASA Astrophysics Data System (ADS)

    Malavieille, Jacques

    Analysis of shear criteria enables the kinematics of two main ductile-shearing events ( D1 and D2) to be established in the Raft River, Grouse Creek and Albion 'metamorphic core complex'. The first event ( D1) is a NNE-thrusting and corresponds to Mesozoic shortening. A well developed non-coaxial ductile deformation ( D2), of Cenozoic age, is marked by the occurrence of opposing eastward (in Raft River) and westward shear criteria (in Albion-Grouse Creek). These characterize an arch structure where the shear strain increases outwards. In the axial zone of the complex, D2 seems coaxial. Cenozoic extension is considered to be related to gravitational instability induced by mesozoic overthickening of the crust (involving uplift, erosion and abnormal heating). Brittle extension occurs in the upper part of the uplifted domain. It is transformed laterally above undeformed basement towards stretched domains of the middle and lower crust through the ductile shear zones localized at the Precambrian-Paleozoic interface. This extension of the middle and lower crust occurred in the vicinity of the root zones of the former Mesozoic thrusts, which may thus have been reactivated as ductile normal faults during Cenozoic extension.

  14. Dike emplacement, footwall rotation, and evolving styles of crustal extension in the Whipple Mountains metamorphic core complex, southeastern California

    NASA Astrophysics Data System (ADS)

    Gans, P. B.; Gentry, B.

    2016-12-01

    The Miocene Chambers Well dike swarm and adjacent volcanic successions in the western footwall of the Whipple Detachment Fault (WDF) provide key insights into the evolution of this metamorphic core complex. New structural and geochronologic data suggest that the western 12-15 km of exposed footwall is steeply tilted to the SW, providing a cross sectional view of the upper crust, from the Miocene erosion surface to the top of coeval mylonitization. LA-ICPMS U-Pb zircon ages indicate dikes range in age from 18.8 to 20.1 Dikes generally strike NNW and dip to the ENE and take the form of an inward-dipping assymmetric fan that has been tilted 35-60° westward. West of the main dike swarm, a tilted (60-75°) 1-2 km-thick section of basalt to dacite lavas appears to be deposited directly on Proterozoic basement that is a contiguous part of the footwall to the WDF, including the Chambers Well dike swarm. New 40Ar/39Ar ages indicate fairly continuous eruptive activity (with little evidence for tilting) from 20.5 Ma to 19.0 Ma, followed by rapid tilting and block rotation largely bracketed between 19.0 and 18.5 Ma. Ages and compositions of dikes suggest they are feeders for the volcanic successions. The combined data suggest initial Miocene extension ( 20.5 to 19.0 Ma) was accommodated by magmatic accretion, but transitioned to rapid extensional faulting and block rotation at 19.0-18.5 Ma. The sub-horizontal WDF in this area apparently initiated as a northeast-dipping high angle (50-60°) normal fault that breached the surface locally, not in a breakaway tens of kilometers to the west. Large-scale tilting and differential uplift of the western footwall was in part coeval with mylonitization and dike emplacement, and was accomplished by block rotation in the hanging wall of additional normal faults to the west, isostatic uplift, and flow of lower crust from beneath less extended regions to the west. The WDF is likely a composite surface with a western segment that had ceased

  15. Two Tertiary metamorphic events recognized in metapelites of the Nevado-Filabride Complex (Betic Cordillera, S Spain)

    NASA Astrophysics Data System (ADS)

    Li, Botao; Massonne, Hans-Joachim

    2017-04-01

    The orogenic belt of the Betic Cordillera in southern Spain resulted from the collision of the African plate with the southwestern edge of the Eurasian plate in Alpine times. This belt can be considered as a large nappe stack with the Nevado-Filabride Complex in the eastern Betic Cordillera representing the lowest nappe, in which high-pressure (HP > 10 kbar) rocks such as eclogites occur. We have studied two metapelites from the Ragua (former Veleta) unit, which is the lowest unit of the Nevado-Filabride Complex. These rocks were sampled at Cerro de los Machos (sample 23085) and c. 3 km east of this locality at the Laguna de la Caldera (sample 23098) and contain quartz, potassic white-mica, paragonite, chlorite, garnet, biotite, tourmaline, epidote, rutile, ilmenite, apatite, zircon and monazite and titanite (23085) or calcite and albite (23098). Garnet in both rocks is similarly zoned. An inclusion-rich core shows a prograde metamorphic zonation with high and low Mn contents in the center (e.g. for 23085: Alm64.5Grs27Py2.5Sps6) and at the rim (Alm84Grs8Py6Sps2), respectively, of the core domain. After corrosion of this domain a garnet mantle formed with an inner zone being again relatively rich in Mn and an outermost rim being poor in Mn. This mantle is significantly richer in Mg and poorer in Ca compared to the core domain. Potassic white-mica in the samples also shows a considerable compositional spread (Si = 3.05-3.20 in 23085 and 3.13-3.33 in 23098) with the highest Si contents in the core of potassic white-mica grains. To elucidate the metamorphic evolution of the rocks we calculated various P-T pseudosections for different H2O-CO2 contents and Fe3+/Fe2+ ratios with PERPLE_X. On the basis of the compositions of the garnet inner core and the highest Si content in potassic white mica contrasting peak pressures at c. 535˚ C resulted for the rocks (23085: 12.8 kbar, 23098: 18.3 kbar). A subsequent pressure release to about 8 (23085) or 5 kbar (23098) at slightly

  16. Blueschist Blocks in the Shale-matrix Melange of the Franciscan Complex of California: Metamorphic Aureoles and Subduction Channel Upwelling

    NASA Astrophysics Data System (ADS)

    Cloos, Mark; Ukar, Estibalitz

    2014-05-01

    The subduction channel concept postulates that where oceanic lithosphere converges faster than ~2 cm/yr, the plate boundary is best approximated as a viscous shear zone. Channel capacity can abruptly decrease where there is a sharp increase in the pressure gradient along the top of the shear zone. Where this occurs, subducted sediment can upwell and flow back towards the inlet. The Central Belt of the Franciscan Complex is up to tens of km wide and extends from where subduction continues in Oregon southwards to the Nacimiento Block, west of the San Andreas fault. The scaly shale matrix outcrops poorly along the 1500+ km belt because it is weakly metamorphosed (<200°C, pumpellyite±lawsonite-bearing). The best exposures, as pointed out by Ken Hsu in 1969, are found near San Simeon. The Central Belt mélange is renowned for the "high-grade" garnet-bearing blueschists (e.g., Tiburon, Jenner Beach). How these high-T blocks, the oldest metamorphics in the Franciscan and the more voluminous lower-T blueschists became rounded fragments encased in shale-matrix has been the subject of much discussion. Uplift in serpentine diapirs is widely invoked, but the scarcity of these blocks in serpentinite where exposures are good is problematic. Explaining the blocks as sedimentary olistoliths requires both a phantom source terrane and exhumation mechanism. The simplest explanation is that the coarse blueschists are fragments of a metamorphic aureole formed during subduction initiation that were later detached from the base of the ophiolitic leading edge of the North American plate. Later, tectonic melange was generated by subduction-driven shearing that caused upwelling of shale-rich sediment. Slabs of blueschist were boudinaged and mixed with fragments of greenstone and chert detached from seamounts. Blueschist block incorporation into upwelling mélange is a kind of subduction erosion akin to plucking by glaciers. The exposure of the blueschist along the roof of the subduction

  17. Orogenesis at the southern tip of the Americas: the structural evolution of the Cordillera Darwin metamorphic complex, southernmost Chile

    NASA Astrophysics Data System (ADS)

    Cunningham, W. Dickson

    1995-04-01

    New, detailed lithologic and structural data are presented from three separately mapped areas along the southern boundary of the Cordillera Darwin metamorphic complex of southernmost Chile. Cordillera Darwin is a unique uplift because it exposes the highest grade rocks in the Andes south of Peru and averages 1 km higher in elevation than adjacent areas. The structural data indicate that Cordillera Darwin experienced mid-Late Cretaceous trans-pressional deformation with a partitioned strike-slip component localized along the Beagle Channel that forms the southern boundary to the range. Foliation, lineation and fold axis trends indicate NE-SW-directed contraction and NW-SE strike-slip shearing (present directions) during progressive {D1}/{D2} Andean deformation. D2 deformation is marked by outcrop-to 10 km-scale south-southwest-vergent folds. Late Cretaceous-Tertiary brittle-ductile and brittle left-lateral strike-slip faults and shear zones crosscut all {D1}/{D2} structures. Although limited structural evidence for extensional tectonics was documented in this study, apparent normal offsets across both arms of the Beagle Channel and previously documented field evidence for extension from other areas in Cordillera Darwin suggest that transtensional displacements also may have occurred in southern Cordillera Darwin during the Late Cretaceous-Early Tertiary. Cordillera Darwin's position within the evolving Patagonian Orocline adjacent to an evolving Mesozoic-Cenozoic left-lateral transform boundary between the South American and Antarctic plates, and later the South American and Scotia plates, necessitates consideration of the possible effects of regional counterclockwise rotation on development of structures. Regional counterclockwise rotation of Cordillera Darwin may have controlled the temporal and spatial transition of deformational regimes within Cordillera Darwin. Exhumation of the metamorphic core of Cordillera Darwin during the Late Cretaceous-Early Tertiary is

  18. The lateral boundary of a metamorphic core complex: The Moutsounas shear zone on Naxos, Cyclades, Greece.

    PubMed

    Cao, Shuyun; Neubauer, Franz; Bernroider, Manfred; Liu, Junlai

    2013-09-01

    We describe the structure, microstructures, texture and paleopiezometry of quartz-rich phyllites and marbles along N-trending Moutsounas shear zone at the eastern margin of the Naxos metamorphic core complex (MCC). Fabrics consistently indicate a top-to-the-NNE non-coaxial shear and formed during the main stage of updoming and exhumation between ca. 14 and 11 Ma of the Naxos MCC. The main stage of exhumation postdates the deposition of overlying Miocene sedimentary successions and predates the overlying Upper Miocene/Pliocene conglomerates. Detailed microstructural and textural analysis reveals that the movement along the Moutsounas shear zone is associated with a retrograde greenschist to subgreenschist facies overprint of the early higher-temperature rocks. Paleopiezometry on recrystallized quartz and calcite yields differential stresses of 20-77 MPa and a strain rate of 10(-15)-10(-13) s(-1) at 350 °C for quartz and ca. 300 °C for calcite. Chlorite geothermometry of the shear zone yields two temperature regimes, 300-360 °C, and 200-250 °C. The lower temperature group is interpreted to result from late-stage hydrothermal overprint.

  19. The lateral boundary of a metamorphic core complex: The Moutsounas shear zone on Naxos, Cyclades, Greece☆

    PubMed Central

    Cao, Shuyun; Neubauer, Franz; Bernroider, Manfred; Liu, Junlai

    2013-01-01

    We describe the structure, microstructures, texture and paleopiezometry of quartz-rich phyllites and marbles along N-trending Moutsounas shear zone at the eastern margin of the Naxos metamorphic core complex (MCC). Fabrics consistently indicate a top-to-the-NNE non-coaxial shear and formed during the main stage of updoming and exhumation between ca. 14 and 11 Ma of the Naxos MCC. The main stage of exhumation postdates the deposition of overlying Miocene sedimentary successions and predates the overlying Upper Miocene/Pliocene conglomerates. Detailed microstructural and textural analysis reveals that the movement along the Moutsounas shear zone is associated with a retrograde greenschist to subgreenschist facies overprint of the early higher-temperature rocks. Paleopiezometry on recrystallized quartz and calcite yields differential stresses of 20–77 MPa and a strain rate of 10−15–10−13 s−1 at 350 °C for quartz and ca. 300 °C for calcite. Chlorite geothermometry of the shear zone yields two temperature regimes, 300–360 °C, and 200–250 °C. The lower temperature group is interpreted to result from late-stage hydrothermal overprint. PMID:26523079

  20. Tectonic evolution of forearc nappes of the active Banda arc-continent collision: Origin, age, metamorphic history and structure of the Lolotoi Complex, East Timor

    NASA Astrophysics Data System (ADS)

    Standley, Carl E.; Harris, Ron

    2009-12-01

    An integrated multidisciplinary investigation of the Lolotoi Complex of East Timor (Timor Leste) indicates that it is part of the Banda forearc that was metamorphosed and rapidly exhumed during the Eocene and accreted to the NW Australian continental margin during Late Miocene to present arc-continent collision. Greenschist, graphitic phyllite, quartz-mica schist, amphibolite and pelitic schist dominate metamorphic rock types. Mineral, whole rock, and trace element geochemical analyses of metabasites indicate protolith compositions consistent with tholeiitic basalt and basaltic andesite with mixed MORB and oceanic arc affinities. Metapelite schist is mostly composed of metasedimentary units derived from mafic to intermediate rocks with oceanic to continental volcanic arc provenance. Thermobarometric calculations show peak metamorphic conditions of 530 °C to 680 °C for garnet-biotite pairs and amphibole, and peak pressures of 5 to 10 kbar for garnet-aluminosilicate-quartz-plagioclase assemblages. Peak metamorphism occurred at 45.36 ± 0.63 Ma, as indicated by Lu-Hf analyses of garnet. Detrital zircon grains have a U/Pb age distribution with spikes at 663, 120 and 87 Ma, which is typical of detrital zircon ages throughout the Great Indonesian Arc of Asia, but is distinct from Australian affinity units. These data indicate deposition and later metamorphism occurred after 87 Ma. Structural analyses of the metamorphic rocks and their sedimentary and volcanic cover units reveals 5-6 deformational phases of alternating shortening and extension. There is little to no evidence of strike-slip deformation. Phases 1-4 are inferred as pre-Oligocene from age determinations. Phases 5 and 6 are most likely related to latest Miocene to Pliocene nappe emplacement and Pliocene to present collisional deformation. Kinematic indicators show mostly top to the SE directed shortening and top to the south and SE extension. Structural mapping indicates that the Lolotoi Complex and some of

  1. Banda Forearc Metamorphic Rocks Accreted to the Australian Continental Margin in Timor: Detailed Analysis of the Lolotoi Complex of East Timor.

    NASA Astrophysics Data System (ADS)

    Standley, C. R.

    2006-12-01

    Petrologic, structural and age investigations of the Lolotoi Complex of East Timor indicate that it is part of a group of thin metamorphic klippe found throughout the region that were detached from the Banda forearc and accreted to the NW Australian continental margin during Late Miocene to Present arc-continent collision. Metamorphic rock types are dominated by (in order of abundance), greenschist, graphitic phyllite quartz-mica schist, amphibolite and pelitic schist. Geochemical analyses show metamorphic protolith compositions similar to overlying unmetamoprhosed tholeiitic basalt and andesite with oceanic arc affinities, and turbidities conglomerates and limestone. Fragments of lherzolite and hazburgite are also found. The series of deformation as indicated by field and microstructural measurements is similar to those reported from other klippen throughout the Timor region. 1) S1 foliation formed parallel to original bedding. 2) S2 formed axial- planar to small scale isoclinal folds of S1 during the main phase of metamorphism. 3) Subsequent, mostly broad wavelength SE verging folds with axes oriented NE-SW deformed S2 into a steeper and more variably dipping orientation. 4.) Late brittle deformation in the form of normal and thrust/reverse faults cut across earlier structures. Thrust faults are mostly top to the NW, while normal faults have top to the SW, S and SE sense of shear. Contact relationships with adjacent units indicate that the metamorphic terrain is in thrust contact with underlying Gondwana sequence rocks. Mostly unmetamorphosed volcanic and sedimentary cover units are found locally in fault contact on the edges of the klippen. Geothermobarometric calculations show peak metamorphic temperatures in pelitic rocks range from 564°C to 596° C for garnet-biotite pairs and peak pressures of 4.3 to 5.8 kbar for garnet-aluminosilicate-quartz-plag assemblages. Analysis of amphibole in amphibolites yield temperatures of 570°C to 670°C and pressures of 4

  2. High-pressure metamorphism and uplift of the Olympic subduction complex

    SciTech Connect

    Brandon, M.T.; Calderwood, A.R. )

    1990-12-01

    The discovery of the critical assemblage lawsonite + quartz + calcite indicates that a significant part of the Cenozoic Olympic subduction complex of northwestern Washington State formed by underplating at a depth of about 11 km. The deep structural level exposed in this area is attributed to the presence of a 10-km-high arch in the underlying Juan de Fuca plate. The authors postulate that this arch was formed when the southern Cordilleran coastline swung westward as a result of middle Miocene to recent extension in the Basin and Range province.

  3. On Some Feedback Relations Between Igneous Intrusion - Fluid flow - Metamorphic / Metasomatic Events and Deformation Events During low-P high-T Metamorphism. An Example From the Osor High Grade Complex (Catalan Coastal Ranges. NE Iberia)

    NASA Astrophysics Data System (ADS)

    Martínez, F. J.

    2004-05-01

    Bulk composition is an important factor that can influence both the rheologic and paragenetic histories of metamorphic rocks. Metasomatic changes are likely to occur in certain crustal levels from interplaying phenomena such as the intrusion and crystallization of magmatic bodies and also from pervasive or densely channelized fluid flow through these rocks during their metamorphic evolution. Accordingly, the following possibilities should be tested: a) The role of particular metasomatic changes in the sequence of mineral assemblages and mineral reactions; b) their role in changing deformation regimes and styles; c) their role in the location of major crustal tectonic features such as detachment shear zones, and d) their role in the onset and development of the exhumation histories of metamorphic complexes formed in medium and lower crustal levels during orogenesis. In the Osor Complex we have found evidence for fluid flow related to garnet growth during the prograde stage of a LP/HT metamorphic event and of fluid flow related to granitoid crystallization during the waning stages of regional metamorphic evolution. Fluid flow during increasing T was responsible for the modal deplection of the Osor metapelitic-metapsamitic rocks in quartz, plagioclase and muscovite, carrying away the SiO2, CaO and alcalis in solution. Local migmatization, with the generation of peraluminous granitoid lenses, took place during the final stages of this prograde process. Crystallization of granites was responsible for the recycling of K2O into the enclosing series and, as a result, growth of secondary blastic muscovite, biotite and albitic plagioclase occurred. Quartz deposition during retrogression also implies the recycling of SiO2 lost during the previous deplection stage, although in this case SiO2 concentrated locally, forming a set of quartz veins. The Osor rocks show the imprint of three main deformational events. D2 produced the dominant foliation, a penetrative crenulation

  4. Multi-scale characterization of pore evolution in a combustion metamorphic complex, Hatrurim basin, Israel: Combining (ultra) small-angle neutron scattering and image analysis

    SciTech Connect

    Wang, Hsiu-Wen; Anovitz, Lawrence {Larry} M; Burg, Avihu; Cole, David; Allard Jr, Lawrence Frederick; Jackson, Andrew J; Stack, Andrew G; Rother, Gernot; Ciarlette, Diane D

    2013-01-01

    Backscattered scanning electron micrograph and ultra small- and small-angle neutron scattering data have been combined to provide statistically meaningful data on the pore/grain structure and pore evolution of combustion metamorphic complexes from the Hatrurim basin, Israel. Three processes, anti-sintering roughening, alteration of protolith (dehydration, decarbonation, and oxidation) and crystallization of high-temperature minerals, occurred simultaneously, leading to significant changes in observed pore/grain structures. Pore structures in the protoliths, and in lowand high-grade metamorphic rocks show surface (Ds) and mass (Dm) pore fractal geometries with gradual increases in both Ds and Dm values as a function of metamorphic grade. This suggests that increases in pore volume and formation of less branching pore networks are accompanied by a roughening of pore/grain interfaces. Additionally, pore evolution during combustion metamorphism is also characterized by reduced contributions from small-scale pores to the cumulative porosity in the high-grade rocks. At high temperatures, small-scale pores may be preferentially closed by the formation of high-temperature minerals, producing a rougher morphology with increasing temperature. Alternatively, large-scale pores may develop at the expense of small-scale pores. These observations (pore fractal geometry and cumulative porosity) indicate that the evolution of pore/grain structures is correlated with the growth of high-temperature phases and is a consequence of the energy balance between pore/grain surface energy and energy arising from heterogeneous phase contacts. The apparent pore volume density further suggests that the localized time/temperature development of the high-grade Hatrurim rocks is not simply an extension of that of the low-grade rocks. The former likely represents the "hot spots (burning foci)" in the overall metamorphic terrain while the latter may represent contact aureoles.

  5. Brittle-ductile deformation and kinematics during exhumation of metamorphic complexes below detachments: examples from Sifnos and Syros Islands (Greece)

    NASA Astrophysics Data System (ADS)

    Cardello, Giovanni Luca; Roche, Vincent; Laurent, Valentin; Jolivet, Laurent

    2014-05-01

    Exhumation of metamorphic core complexes is accompanied by progressive strain localization within large-scale shear zones, which may evolve into long-lived bounding detachments affected by ductile to brittle deformation. Despite the well-studied P-T-t patterns of individual nappes, their relative timing, mode and kinematics of exhumation are debated. In this study, in the frame of the Mediterranean syn- and post-orogenic deformation, examples of shear zone hierarchization and strain localization from Sifnos and Syros islands (Cyclades, Greece) are documented in detail in order to explain 3D-geometries and regional kinematics and are here tentatively related to the Ar/Ar ages available in literature. During the Eocene syn-orogenic uplift, the degree of strain localization increases progressively from blue- to green-schists deformation. Some of these shear zones where then reworked during the Oligo-Miocene post-orogenic deformation in different, usually warmer P-T conditions and a new episode of strain localisation, and an evolution toward brittle faulting, either along the main detachments or along newly created faults (as in Sifnos). Such shear zones demonstrate long-lived efficiency, especially where fluid circulation enhance retrograde metamorphic reactions. During Neogene, the final shape and exhumation of domes is the result of crustal thinning and brittle-ductile deformation in the whole Cycladic region. Although stretching directions along individual kilometric scale shear zones may be complex in the details, a simple general picture is shown for the Oligo-Miocene episode, less so for the Eocene one. Most Cycladic islands show a top-to-the-North sense of ductile shear from the syn-orogenic to the post-orogenic stage, this is the case of Sifnos for instance. The syn-orogenic stretching is however often more E-W trending, as exemplified by Syros and Tinos. The top-North or Top-East sense of shear is attributed to the NCDS for the post-orogenic stage and to a

  6. Low-Temperature Constraints on the Evolution of Metamorphic Core Complexes of the Woodlark Rift System, Southeastern Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Fitzgerald, P. G.; Baldwin, S. L.; Miller, S. R.; Perry, S. E.; Webb, L. E.; Little, T. A.

    2008-12-01

    Subduction of the Woodlark microplate at the New Britain trench is driving seafloor spreading in the Woodlark Basin and, to the west of the basin, extension of continental crust in the Woodlark rift. Seafloor spreading in the Woodlark Basin initiated in the east by ~6 Ma, after which it has propagated westward. To the west, in the Woodlark rift, one of the most rapidly extending places on earth, exhumation has been locally both profound and rapid (cm/yr rates). In the NW part of the D'Entrecasteaux Islands, HP and UHP rocks have been unroofed from depths ≥90 km in the last 2-8 Ma. As part of a multidisciplinary study to understand the tectonic evolution of this region and to constrain how rifting is exhuming the world's youngest HP/UHP rocks, low temperature thermochronology is being applied to the metamorphic core complexes of the D'Entrecasteaux Islands, as well as to continental fragments along the rifted conjugate margins of the oceanic Woodlark Basin farther to the east. Within the Woodlark Basin and Woodlark rift, apatite fission track (AFT) ages generally decrease from east to west, from ~7.5 Ma in the lower plate of the Misima metamorphic core complex, to ~3 Ma at Moresby Seamount, to between ca. 1.5 and 0.5 Ma in the D'Entrecasteaux Islands. Precision of AFT ages is poor because of low [U] and hence very few tracks are present. There is considerable variation amongst apatite (U-Th)/He (AHe) single-grain ages but not with respect to [eU], indicating that the radiation damage trapping model is likely not responsible for the observed single grain age distribution. Because of the extremely rapid cooling, anomalous older apparent AHe ages are likely due to external 4He implantation from adjacent minerals. We report ranges of minimum AHe ages as these have been shown to be reliably closer to actual AHe ages. AHe single grain ages decrease from east to west, from 3-6 Ma at Misima Island, although AHe ages may be younger on the western end of the island, to

  7. Trace element composition of rutile in eclogite from the Karakaya Complex, NW Anatolia: Implications for rutile growth during subduction zone metamorphism

    NASA Astrophysics Data System (ADS)

    Şengün, Fırat

    2017-04-01

    High-pressure/low-temperature (HP/LT) eclogite-facies terranes are widely regarded to represent exhumed fragments of subducted slabs. Therefore, the metamorphic studies of eclogites and associated high-pressure rocks yield crucial information about their P-T evolution and associated tectonometamorphic processes at depth in subduction zones. Especially rutile in eclogites record chemical history of subduction zones and also constrain metamorphic temperatures of subduction zone processes. Eclogites occur as a tectonic slice within metabasite-phyllite-marble intercalation of the Karakaya Complex. In this study, trace element geochemistry of rutiles and Zr-in-rutile thermometry have been investigated. The main mineralogical composition eclogites are composed of omphacite, garnet, glaucophane, epidote and quartz. Core-rim analyses through rutile grains yield remarkable trace element zoning with lower contents of Nb, Ta and Zr in the core than in the rim. The variations in Nb, Ta and Zr can be ascribed to the growth zoning rather than diffusion effect. The Nb/Ta and Zr/Hf ratios increase with a decrease in Ta and Hf contents, which could be ascribed to the effect of metamorphic dehydration at subduction zones on rutile Nb/Ta differentiation. The rutile grains from eclogites in the Karakaya Complex are characterized by subchondritic Nb/Ta and Zr/Hf ratios. It can be noted that the subchondritic Nb/Ta ratios may record rutile growth from local sinks of aqueous fluids from metamorphic dehydration. The Zr contents of the all rutile grains vary between 81 and 160 ppm with the average of 123 ppm. The Zr-in-rutile thermometer yielded the metamorphic temperature of 559-604 oC (average 585 oC) for eclogites occurring in the Karakaya Complex. This average temperature suggests the peak growth temperature of rutile. Moreover, Zr contents and calculated temperatures in both inclusion rutile and matrix rutile from eclogites are identical to each other, which suggests that rutiles in

  8. Evolution of the Eastern Karakoram Metamorphic Complex, Ladakh, NW India, and its relationship to magmatism and regional tectonics

    NASA Astrophysics Data System (ADS)

    Wallis, David; Phillips, R. J.; Lloyd, G. E.

    2014-06-01

    The eastern Karakoram terrane, NW India, records crustal evolution in the core of the Himalayan-Tibetan orogen. Recent debate has centred on whether prograde metamorphism, anatexis and leucogranite emplacement were the result of localised shear heating and magma advection within the Karakoram Fault Zone (KFZ) or instead predate the KFZ and were the result of regional tectonometamophic events. Inclusions within andalusite porphyroblasts that grew during 15.7 Ma leucogranite emplacement have fabrics that are random or discordant to the KFZ matrix foliation, indicating that the KFZ initiated after this time. Therefore, earlier anatexis and metamorphism are the result of regional metamorphic events. Amphibole-plagioclase thermobarometry on a c. 17 Ma migmatite melanosome, later exhumed within a transpressional zone of the KFZ, shows that melting occurred at 688 °C and 522 MPa. Amphibolites record an older kyanite-grade metamorphic event that occurred at 677-736 °C and 875-1059 MPa. Metapelites also record a kyanite-grade event which is constrained by Ti-in-biotite thermometry to have occurred at 622 °C and > 650 MPa. The tectonometamorphic history of the eastern Karakoram correlates closely with that of the central Karakoram away from the KFZ. This correlation supports the interpretation that metamorphism and anatexis were regional in extent and also indicates a limited offset of < 150 km on the KFZ.

  9. Protolith and metamorphic ages of the Haiyangsuo Complex, eastern China: A non-UHP exotic tectonic slab in the Sulu ultrahigh-pressure terrane

    USGS Publications Warehouse

    Liou, J.G.; Tsujimori, T.; Chu, W.; Zhang, R.Y.; Wooden, J.L.

    2006-01-01

    The Haiyangsuo Complex in the NE Sulu ultrahigh-pressure (UHP) terrane has discontinuous, coastal exposures of Late Archean gneiss with amphibolitized granulite, amphibolite, Paleoproterozoic metagabbroic intrusives, and Cretaceous granitic dikes over an area of about 15 km2. The U-Pb SHRIMP dating of zircons indicates that theprotolith age of a garnet-biotite gneiss is >2500 Ma, whereas the granulite-facie metamorphism occurred at around 1800 Ma. A gabbroic intrusion was dated at ???1730 Ma, and the formation of amphibolite-facies assemblages in both metagabbro and granulite occurred at ???340-460 Ma. Petrologic and geochronological data indicate that these various rocks show no evidence of Triassic eclogite-facies metamorphism and Neoproterozoic protolith ages that are characteristics of Sulu-Dabie HP-UHP rocks, except Neoproterozoic inherited ages from post-collisional Jurassic granitic dikes. Haiyangsuo retrograde granulites with amphibolite-facies assemblages within the gneiss preserve relict garnet formed during granulite-facies metamorphism at ???1.85 Ga. The Paleoproterozoic metamorphic events are almost coeval with gabbroic intrusions. The granulite-bearing gneiss unit and gabbro-dominated unit of the Haiyangsuo Complex were intruded by thin granitic dikes at about 160 Ma, which is coeval with post-collisional granitic intrusions in the Sulu terrane. We suggest that the Haiyangsuo Complex may represent a fragment of the Jiao-Liao-Ji Paleoproterozoic terrane developed at the eastern margin of the Sino-Korean basement, which was juxtaposed with the Sulu terrane prior to Jurassic granitic activity and regional deformation. ?? Springer-Verlag 2006.

  10. Complete structural analysis of the Upper plate of Attica metamorphic core complex (Sub-Pelagonian Zone, Internal Hellenides, Central Greece)

    NASA Astrophysics Data System (ADS)

    Diamantopoulos, A.

    2009-04-01

    Two structural plates compose the Miocene Cordillera-type core complex of Attica, separated by a km-scale detachment fault (Diamantopoulos 2005, Diamantopoulos 2006). The Upper Plate contains rocks of the Sub-Pelagonian Zone and the Neogene basin of Athens. The Lower Plate includes Neogene basins developed onto Late Cenozoic a-type metamorphic domes. This work analyzes the geometry and the kinematic path of flow of rock masses of the Sub-Pelagonian rocks from the northern parts of Penteli mountain up to the Gulf of Alkyonides. The UP comprises Permo-Triassic rocks, Triassic-Jurassic carbonates and Late Jurassic melange, Mesozoic serpentinites containing Fe-Ni rocks, occurrences of carbonates and radiolarites, Cretaceous limestones as well as Paleocene flysch. A 3D structural analysis in all the scales concludes that: a) Multiple steep- and low-angle cataclastic shear zones define the boundaries among distinctive Permo-Triassic rocks, among Triassic-Jurassic rocks and Permo-Triassic rocks, among Permo-Triassic rocks and Triassic-Jurassic rocks, among Triassic-Jurassic rocks and serpentinites, among serpentinites and Triassic-Jurassic rocks, among Triassic-Jurassic rocks and Jurassic mélange, among Jurassic mélange and Triassic-Jurassic rocks, among Triassic-Jurassic rocks and Jurassic radiolarites, among Cretaceous and Triassic-Jurassic rocks, among Triassic-Jurassic rocks and Fe-Ni rocks, among Cretaceous and Fe-Ni rocks, among Paleocene and Triassic-Jurassic rocks, among Paleocene and Permo-Triassic rocks as well as among Cretaceous and Paleocene rocks, b) Apparent omissions of intermediate lithologies throughout the entire nappe stack observed in multiple locations suggest intense non-coaxial thinning, c) A remarkable contrast in the distributed strain between the distinctive lithologies is well-recognized, dependent by the rheological and mechanical character of the rocks, d) Thrust-like geometries and macroscopic repetitions between competent and incompetent

  11. Tectonic stratigraphy near a metamorphic core complex: Lessons from the Castaneda-signal area of west-central Arizona

    SciTech Connect

    Lucchitta, I. ); Suneson, N.H. )

    1993-04-01

    A sequence of latest Oligocene through Quaternary sedimentary and volcanic rocks, when analyzed tectonically and combined with lithologically distinctive source terranes, clarifies the character and timing of Neogene extension just north of the Buckskin-Rawhide metamorphic core complex (BRMCC) in west-central Arizona. The oldest strata (basal arkose of Lucchitta and Suneson) reflect regional stability and a southwesterly paleoslope. In latest Oligocene time, this drainage was ponded by an upwarp (now exposed as the BRMCC) rising to the southwest. The resulting lake beds contain a thin 26.6 MA airfall tuff that marks the beginning of volcanic activity in the region. A widespread breccia records the progressive unroofing of the still-rising CC. Mantle-driven crustal heating probably caused the upwarp and allowed the eruption of voluminous mantle-derived basalt and basaltic andesite about 19 MA (early basalts, Artillery Basalt). The overlying syntectonic conglomerate (arkose of Keenan Camp) was deposited during a period of extreme extension, low-angle detachment faulting, and block rotation, typical of highly extended terranes. The conglomerate is interlayered with widespread silicic volcanic rocks (15--10 MA) derived from the lower crust and large gravity-glide sheets lithologically identical to the breccia and similarly derived from the CC to the south. Unconformably overlying the conglomerate are locally derived fanglomerate and 13--8.5 MA (mesa-forming) basalt that accumulated in present-day basins of classic basin-range type. Untilted and nearly unfaulted 7.7--5.4 MA mantle-derived megacryst-bearing basalt marks the cessation of tectonic activity.

  12. Tectonic significance of mantle sources for mafic synextensional dikes in metamorphic core complexes, southern Arizona and northern Sonora

    SciTech Connect

    Wright, J.E. ); Haxel, G.B. ); Simmons, A.M.

    1992-01-01

    Synextensional microdiorite and lamprophyre dikes in the metamorphic core complexes (MCCs) of southern Arizona represent magmatism unambiguously associated with middle Tertiary crustal extension. These 24--20 Ma dikes are shoshonitic and primitive. Petrographic and geochemical data and AFC modeling suggest absence of an essential crustal source component. Dikes from individual MCCs have closely similar sr and Pb isotopic compositions that do not correlate with degree of fractionation, indicating little or no crustal assimilation. Minimal crustal interaction is consistent with emplacement of the dikes in a strongly extensional tectonic regime. Samples from the two MCC belts differ isotopically and chemically. Isotopic and trace element data indicate a minimum of three mantle sources, two lithospheric and one asthenospheric. The predominant lithospheric source for dikes in the northern belt was LILE-depleted Proterozoic lithosphere (EM1-like), whereas in the southern belt it was LILE-enriched lithosphere (trending toward EM2) strongly influenced by Proterozoic to Tertiary subduction. The asthenospheric source was available under both MCC belts but more widely or frequently tapped beneath the more highly extended northern belt. The presence of an asthenospheric component in some of the MCC dikes is the only known exception to the observation that asthenosphere-derived Cenozoic basalts first appeared in Arizona ca Ma. By the later stages of middle Tertiary crustal extension, the subduction zone beneath Arizona evidently had fragmented or became inactive, so that it did not form a barrier to ascent of asthenosphere-derived magmas. Continued study will evaluate the belief that these data support tectonic models for middle tertiary crustal extension in which the asthenospheric mantle is active rather than passive.

  13. Miocene slip history of the Eagle Eye detachment fault, Harquahala Mountains metamorphic core complex, west-central Arizona

    NASA Astrophysics Data System (ADS)

    Prior, Michael G.; Stockli, Daniel F.; Singleton, John S.

    2016-08-01

    The structural and thermal evolution of major low-angle normal faults in the Colorado River extensional corridor has been a controversial topic since the pioneering studies of metamorphic core complexes in the early 1980s. We present new geo-thermochronometry data from the Harquahala Mountains in west-central Arizona to determine the timing of extension, displacement magnitude, and slip rates along the Eagle Eye detachment fault (EED) during large-magnitude Miocene extension. Zircon and apatite (U-Th)/He data (ZHe and AHe, respectively) from 31 samples along a 55 km extension-parallel transect indicate active slip along the EED occurred between 21 ± 1 Ma and 14 Ma. The spatial extent of ZHe ages and exhumation of the zircon partial retention zone indicated 44 ± 2 km of total displacement, whereas lithologic similarity and identical U-Pb ages between correlated footwall rocks in the Little Harquahala Mountains and breccia clasts at Bullard Peak in the NE Harcuvar Mountains indicated 43-45 km of displacement across the EED. AHe and ZHe data indicated slip rates of 6.7 + 7.8/-2.3 km/Myr, and 6.6 + 7.1/-2.0 km/Myr, respectively, both consistent with the duration and displacement estimates. The EED initiated as a listric fault with an 34 ± 9° dip that decreased to 13 ± 5° below 7 km depth. Secondary breakaway development and footwall exposure occurred by 17 Ma, during active EED slip. Lithologic and geo-thermochronometric offset constraints show excellent agreement and provided a rare opportunity to fully resolve the timing, rates, and total displacement magnitudes along a major continental detachment fault.

  14. Formation of metamorphic core complexes in non-over-thickened continental crust: A case study of Liaodong Peninsula (East Asia)

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Burov, Evgueni; Gumiaux, Charles; Chen, Yan; Lu, Gang; Mezri, Leila; Zhao, Liang

    2015-12-01

    Pre-thickened hot orogenic crust is often considered a necessary condition for the formation of continental metamorphic core complexes (MCCs). However, the discovery of MCCs in the Liaodong Peninsula, where the crust has a normal thickness (~ 35 km), challenges the universality of this scenario. Therefore, we implement a series of 2-D numerical thermo-mechanical modeling experiments in which we investigate the conditions of MCC formation in normal crusts, as well as the relationships between the underlying mechanisms and the syn-rift basin evolution. In these experiments, we explore the impact of the lithostratigraphic and thermo-rheological structure of the crust. We also examine the lithosphere thickness, strain softening, extension rate, and surface erosion/ sedimentation processes. The experiments demonstrate that high thermal gradients and crustal heterogeneities result only in a symmetric spreading dome, which is geometrically incompatible with the observations of the MCCs in the Liaodong Peninsula. According to our further findings, the strain softening should play a key role in the development of asymmetric strain localization and domal topography uplift, while synchronous surface erosion controls the polarity of the syn-rift basin. The synthetic model data are compatible with the geological observations and cooling history based on the thermo-chronology for the eastern part of the East Asia during the late Mesozoic to the early Cenozoic. The model-predicted P-T-t paths are essentially different from those inferred for the other known MCCs, confirming the exceptional character of the MCC formation in the wide rift system of the East Asia.

  15. P-T path and timing of crustal thickening during amalgamation of East and West Gondwana: A case study from the Hafafit Metamorphic Complex, Eastern Desert of Egypt

    NASA Astrophysics Data System (ADS)

    Abu El-Enen, Mahrous M.; Abu-Alam, Tamer S.; Whitehouse, Martin J.; Ali, Kamal A.; Okrusch, Martin

    2016-10-01

    The southeastern sector of the Hafafit Metamorphic Complex, southern Eastern Desert of Egypt comprises infrastructural orthogneisses of tonalite and syenogranite parentage, amphibolites, and a volcano-sedimentary association. These are overthrust by an obducted suprastructural ophiolite nappes via the Nugrus thrust. The protolith of the biotite-hornblende-gneisses was formed during island-arc accretion, while that of the garnet-biotite gneisses were formed in a within-plate regime, consistent with a transition to a post-collisional setting. The volcano-sedimentary association comprises interbedded and intercalated highly foliated metapelitic schists, metabasites, and leucocratic gneisses, deposited in a back-arc basin. The metapelites and the leucocratic gneisses originated from immature Fe-shales and arkoses derived from intermediate-mafic and acidic igneous rocks, respectively, via weak chemical weathering in a tectonically active island arc terrane. The intercalated amphibolites were derived from tholeiitic basalts generated in a back-arc setting. The volcano-sedimentary association was metamorphosed under upper-amphibolite facies conditions with pressures of 9-13 kbar and temperatures of 570-675 °C, as derived from conventional geothermobarometry and pseudosection calculation. A steep, tight clockwise P-T path is constrained and a geothermal gradient around 20 °C/km is estimated for the peak metamorphism. We assume that deformation and metamorphism are due to crustal thickening during the collision of East and West Gondwana, where peak metamorphism took place in the middle to lower crust at 33 km average crustal depth. This was followed by a subsequent quasi-isothermal decompression due to rapid exhumation during wrench tectonics. Sinistral transcurrent shearing with extensional denudation resulted in vertical ductile thinning that was accompanied by heat input from magmatism, as indicated by a higher geothermal gradient during retrograde metamorphism and

  16. Deciphering igneous and metamorphic events in high-grade rocks of the Wilmington complex, Delaware: Morphology, cathodoluminescence and backscattered electron zoning, and SHRIMP U-Pb geochronology of zircon and monazite

    USGS Publications Warehouse

    Aleinikoff, J.N.; Schenck, W.S.; Plank, M.O.; Srogi, L.A.; Fanning, C.M.; Kamo, S.L.; Bosbyshell, H.

    2006-01-01

    High-grade rocks of the Wilmington Complex, northern Delaware and adjacent Maryland and Pennsylvania, contain morphologically complex zircons that formed through both igneous and metamorphic processes during the development of an island-arc complex and suturing of the arc to Laurentia. The arc complex has been divided into several members, the protoliths of which include both intrusive and extrusive rocks. Metasedimentary rocks are interlayered with the complex and are believed to be the infrastructure upon which the arc was built. In the Wilmingto n Complex rocks, both igneous and metamorphic zircons occur as elongate and equant forms. Chemical zoning, shown by cathodoluminescence (CL), includes both concentric, oscillatory patterns, indicative of igneous origin, and patchwork and sector patterns, suggestive of metamorphic growth. Metamorphic monazites are chemically homogeneous, or show oscillatory or spotted chemical zoning in backscattered electron images. U-Pb geochronology by sensitive high resolution ion microprobe (SHRIMP) was used to date complexly zoned zircon and monazite. All but one member of the Wilmington Complex crystallized in the Ordovician between ca. 475 and 485 Ma; these rocks were intruded by a suite of gabbro-to-granite plutonic rocks at 434 ?? Ma. Detrital zircons in metavolcanic and metasedimentary units were derived predominantly from 0.9 to 1.4 Ga (Grenvillian) basement, presumably of Laurentian origin. Amphibolite to granulite facies metamorphism of the Wilmington Complex, recorded by ages of metamorphic zircon (428 ?? 4 and 432 ?? 6 Ma) and monazite (429 ?? 2 and 426 ?? 3 Ma), occurred contemporaneously with emplacement of the younger plutonic rocks. On the basis of varying CL zoning patterns and external morphologies, metamorphic zircons formed by different processes (presumably controlled by rock chemistry) at slightly different times and temperatures during prograde metamorphism. In addition, at least three other thermal episodes are

  17. P-T-time evolution of the Mejillones Metamorphic Complex: Insights into Late Triassic to Early Jurassic orogenic processes in northern Chile

    NASA Astrophysics Data System (ADS)

    Calderón, M.; Massonne, H.-J.; Hervé, F.; Theye, T.

    2017-10-01

    Better constrained pressure-temperature (P-T) histories of metamorphic complexes along the Andean continental margin are important for understanding the late Paleozoic and Mesozoic tectonic evolution of the southwestern margin of Gondwana. The Mejillones Metamorphic Complex of the northern Chilean Coastal Cordillera is composed of two tectonic units, the Morro Mejillones and Morro Jorgiño blocks. These units are bound by the NW-trending Caleta Herradura fault and show distinctly metamorphic ages and thermal evolution. The Morro Mejillones block was metamorphosed at low pressure conditions (andalusite-sillimanite series) during the intrusion of tonalitic plutons at ca. 208 Ma, as indicated by available geochronological data. In contrast, the Morro Jorgiño block comprises amphibolite-facies schists, gneisses and foliated metabasites with characteristic garnet-bearing mineral assemblages. For garnet-bearing pelitic gneisses, a clockwise P-T path has been determined from pseudosection modelling in the MnNCKFMASHTO system. The proposed evolution is characterized by a pressure increase from 7.5 to 8.5 kbar at increasing temperatures from 585 to 615 °C. Decompression to 6 kbar followed, accompanied by heating to 630-640 °C. Electron microprobe Th-U-Pb in-situ dating of high-Y monazite grains yielded a weighted average age of ca. 190 ± 4 Ma, which is interpreted as the age of tectonic burial of metamorphic rocks of the Morro Jorgiño tectonic unit. We infer that the block was buried to 25 km depth through contractional deformation of the continental edge in a subduction zone, likely linked to the docking of the Mejillonia terrane. Rapid exhumation followed and the ensuing juxtaposition of both tectonic units was controlled by Jurassic transtensional activity of the Atacama Fault System.

  18. Recent progress in recognition of UHP metamorphism in allochthons of the Scandinavian Caledonides (Seve Nappe Complex and Tromsø Nappe)

    NASA Astrophysics Data System (ADS)

    Janák, Marian; Ravna, Erling; Majka, Jarosław; Klonowska, Iwona; Kullerud, Kåre; Gee, David; Froitzheim, Nikolaus

    2017-04-01

    During the last ten years, UHP rocks have been discovered within far-travelled allochthons of the Scandinavian Caledonides including the Seve Nappe Complex (SNC) of the Middle Allochthon and Tromsø Nappe within the Uppermost Allochthon. The first evidence for UHP conditions in the SNC was documented in a kyanite-bearing eclogite dike within the Friningen garnet peridotite. Subsequently, UHP conditions were determined for phengite eclogite and garnet pyroxenite from Stor Jougdan and pelitic gneisses from Åreskutan. Finally, diamond was found in metasedimentary rocks of the SNC at three localities (Snasahögarna, Åreskutan and most recently near Saxnäs), c. 250 km apart, confirming regional UHP conditions within this allochthon. In the Tromsø Nappe (northern Norway), evidence for UHP metamorphism comes from phengite- and kyanite-bearing eclogites from Tønsvika and Tromsdalstind, and diamond-bearing gneisses from Tønsvika. Microdiamond occurs in-situ as single and composite (mostly with Mg-Fe carbonate) inclusions within garnet and zircon. The calculated P-T conditions for the diamond-bearing samples are 4.1-4.2 GPa/830-840°C (Åreskutan), and 3.5-4.0 GPa/ 750-800°C (Tønsvika), in the diamond stability field. The UHP metamorphism in the SNC and Tromsø Nappe is probably Late Ordovician (c. 460-450 Ma), i.e. c. 40-50 Ma older than that in the Western Gneiss Region of southwestern Norway. Whereas the latter occurred during the collision between Laurentia and Baltica in the Late Silurian to Early Devonian, the processes leading to Ordovician UHP metamorphism occurred during closure of the Iapetus Ocean and are less well understood. The occurrence of two UHP metamorphic events in the Scandinavian Caledonides implies subduction, exhumation, and re-subduction of continental crust. This is an observation that could be of importance for the understanding of orogeny at convergent plate boundaries in general. The following questions remain to be answered: (1) Was UHP

  19. Characterization of magmatism and deformation in "Foz do Douro Metamorphic Complex" (N Portugal): insights from AMS studies

    NASA Astrophysics Data System (ADS)

    Sousa, Mónica; Sant'Ovaia, Helena; Noronha, Fernando

    2013-04-01

    The "Foz do Douro Metamorphic Complex" (FDMC) is situated on the shoreline of Porto extending along ~3km series of small beaches. The geology of this zone is marked by magnificent outcrops of a thin band of Precambrian metamorphic rocks intruded by Variscan granites and by the effects of Porto-Tomar-Ferreira do Alentejo, N330° a N340°, dextral, shear zone [1,2]. The metamorphic band is represented by outcrops of metasedimentary rocks, spatially associated to different types of orthogneisses and amphibolites that constitute the FDMC [3]. The granites belong to a late-Variscan granite group (298±11Ma) [4]. Studies of Anisotropy of Magnetic Susceptibility (AMS) were carried out on several types of orthogneisses and amphibolites from the FDMC, as well as on the Variscan granites and tonalites. The results presented here are related to 218 samples collected on 21 sampling sites: 6 sites (n=67) on leucocratic orthogneisses (Group 1), 10 sites (n=99) on biotite orthogneisses (Group 2), 1 site (n=11) on amphibolite (Group 3), 1 site (n=11) on biotite granite (Group 4), 2 sites (n=20) on biotite porphyritic granites (Group 5) and 1 site (n=10) on tonalite (Group 6). Magnetic anisotropy, expressed by the ratio Kmax/Kmin, ranges from 1.045 to 1.144 in Groups 1, 3, 4 and 5 and from 1.139 to 1.297 in Groups 2 and 6. The magnetic fabric is characterized by subvertical magnetic foliations in all lithologies with directions varying from N41° to N86° in Groups 1 and 2, N0° to N10° in Group 3, N80° to N90° in Group 6 and N130° to N140° in Groups 4 and 5, and mainly subvertical magnetic lineations dipping 50° to 86° in Groups 1 and 2, 77 to 80° in Group 3, 75° to 80° in Group 5 and 65° to 70° in Group 6, with the exception of 3 orthogneisses (one belonging to Group 1 and two from Group 2) and two granites (one belonging to Group 4 and one to Group 5) which reveal subhorizontal (04° to 36°) magnetic lineations. Magnetic susceptibility (K) ranges between 20.0 and 74

  20. Metamorphism in the Tlikakila Complex, Lake Clark National Park, Alaska: Does it Record the Collision of the Peninsular Terrane With Alaska?

    NASA Astrophysics Data System (ADS)

    Amato, J. M.; Bogar, M. J.; Calvert, A. T.

    2001-12-01

    The Tlikakila complex is a ~80 km x ~5 km belt of variably metamorphosed and deformed rocks thought to be part of the Peninsular terrane of southern Alaska. This project uses detailed mapping, structural analysis, and thermochronology to address the tectonic evolution of rocks thought to be part of the Peninsular terrane in southern Alaska. Both meta-igneous and metasedimentary rocks of Triassic (?) age are exposed. Meta-igneous protoliths include mafic (gabbro, basalt) and ultramafic rocks. Metasedimentary protoliths include limestone, chert, and other siliceous sediments. Metapelites are rare. Metamorphic rocks in the study area include two distinct occurrences. Smaller outcrops, appear to be roof pendants in Tertiary plutons. At Kasna Creek, near Kontrashibuna Lake, limestone beds were contact metamorphosed with copper sulfide mineralization within a mafic pluton. Larger outcrops in the Tlikakila complex are more continuous, more pervasively deformed, and more recrystallized. A new 40Ar/39Ar analysis of white mica from a metasedimentary rock in the Tlikakila complex located just southwest of Saddle Lake yielded a monotonically increasing age spectrum, with the oldest high-temperature step giving a date of around 160 Ma, and the low-temperature step giving a date of 60.5 Ma. The oldest date could represent the timing of greenschist facies metamorphism of the Tlikakila complex. It is interesting that this 160 Ma date is similar to the youngest of the Middle to Late Jurassic plutons (174-158 Ma) in the Alaska-Aleutian Range batholith, considered to be part of the Peninsular terrane. Metamorphism in the Tlikakila complex could be related to the onset of the collision of the Peninsular terrane with Alaska, which also resulted in the cessation of arc magmatism. The youngest date from this sample overlaps with existing 59-63 Ma K-Ar dates from Tertiary volcanic and plutonic rocks in the area and records new mica growth associated with Tertiary magmatism.

  1. Oxygen and hydrogen isotopic composition of the fluid during formation of anthophyllite metaultramafic rocks in the Sysert metamorphic complex, central Urals

    NASA Astrophysics Data System (ADS)

    Murzin, V. V.

    2014-12-01

    The oxygen (δ18O) and hydrogen (δD) isotopic composition of H2O-bearing minerals was studied for the ore-bearing amphibole metaultramafic rocks, which are the products of the early regional (435 ± 44 Ma) and late local (260 ± 6 Ma) silicic metasomatose in the Sysert metamorphic complex. The gold-sulfide mineralization of the Karas'evogorskoe deposit and anthophyllite-asbestos bodies of the Tersut deposit are related to the regional and local metasomatose combined with plagiogranitization and potassium granitization, respectively. The H2O-bearing minerals of metasomatites (anthophyllite, tremolite, talc) of the Karas'evogorskoe and Tersut deposits are characterized by heavier δ18O (9.8 to 12.2 and 7.6 to 9.4‰, respectively) and lighter ·D (87 to -91 and -56 to -67‰, respectively) values. The calculated isotopic composition of the fluid in equilibrium with these minerals indicates a heterogeneous source of water for the fluids related to the formation of metasomatites and the metamorphic origin of fluids. During the regional metasomatose, this fluid was a result of equilibrium of the deep fluid with volcanosedimentary rocks enriched in the heavy oxygen isotope. At the local metasomatose, the metamorphic fluid was formed by interaction of magmatic water produced by potassium granitization with ultramafic rocks.

  2. Fluid evolution in H2O-CO2-NaCl system and metallogenic analysis of the Surian metamorphic complex, Bavanat Cu deposit, Southwest Iran

    NASA Astrophysics Data System (ADS)

    Asadi, Sina; Moore, Farid

    2017-02-01

    The Bavanat Cu deposit occurs as veins controlled by a NE-trending structure within the Permo-Triassic Surian metamorphic complex (SMC), southwest of Iran. The SMC rocks exposed in the area have undergone greenschist-facies metamorphism. The ore-forming process can be divided into early, middle, and late stages, represented by, respectively, pyrite-quartz, polymetallic sulfide-quartz, and late-stage barren quartz veins. Systematic studies of fluid inclusions (FIs) in the quartz veins found four types: aqueous, mixed aqueous-carbonic, carbonic, and multiphase-bearing inclusions. The FIs of early, middle and late-stages are mainly homogenized at temperatures of 335-417 °C, 230-380 °C, and 190-227 °C, with salinities of 1.1-6.7, 2.9-36.6, and 0.8-2.6 wt.% NaCl equivalent, respectively. The main stage of Cu mineralization is related to the middle-stage, where FIs show evidence of fluid immiscibility. The metal precipitation resulted from a decrease in copper solubility during the fluid immiscibility, cooling, crystallization of multiphase-bearing inclusions, and a small increase in pH. Laser Raman spectroscopy and FIs evidences indicate that the metallogenic system evolved from metamorphic CO2 (+CH4)-rich, relatively high fO2 (10-25 to 10-29 bars) to CO2-poor and relatively low fO2 (10-31 to 10-34 bars). Muscovite from the middle-stage veins yields 40Ar/39Ar plateau age of 195.2 ± 1.0 Ma, suggesting that the Cu mineralization at Bavanat formed in the Early Jurassic coeval with the retrograde metamorphic events during the post-early Cimmerian orogeny.

  3. Magnetic fabric of the rocks from the Klodzko Metamorphic Complex (West Sudetes, Poland) and relation to tectonics

    NASA Astrophysics Data System (ADS)

    Kadzialko-Hofmokl, M.; Werner, T.; Kruczyk, J.; Mazur, S.

    2003-04-01

    The Klodzko Metamorphic Complex KMC consists of metaigneous and metasedimentary rocks of Early Paleozoic and Precambrian age occurring as fragments of a nappe pile lying between the weakly metamorphosed Givetian sediments and Frasnian-Fammenian limestones and shales. At the basis of the Givetian sediments lies a fragment of the Silurian Sudetic ophiolite from which some pillow lavas were sampled. The study concerns the 5 KMC units, Silurian pillow lavas and both Devonian sets of sediments. According to Mazur the rocks under study underwent 6 deformational episodes out of which four D1-D4 took place at the Middle/Late Devonian and two other D5 and D6 - after the Namurian A. The D1 episode was connected with the WNW thrusting, the D2 and subsequent episodes - to dextral transpression or NNE-SSW compression. The mesoscopic mineral lineations L1 and L3 have an azimuth 90-135°E with dip ranging between 15° and 45°. This direction is common in the Sudetes and compatible with the direction of the Intrasudetic and Boundary Sudetic faults. The results of the AMS study agree with the structural conclusions. The Kmax directions calculated in situ for metaigneous rocks, part of metasediments, pillow lavas and Givetian limestones agree well with the mineral lineations. In metasediments from the passive continental margin where the diamagnetics prevail inversion of the anisotropy axes was observed in the fresh specimens. After heating them to 650°C, directions of Kmax became similar to the lineation. Directions of maximum axes of anisotropy of remanence were similar to magnetic lineation in the unheated specimens supporting the conclusion about the inversion of the AMS axes. In the Frasnian-Fammenian limestones the directions of Kmax axes are similar to the results from other units only after correction .for bedding. The results obtained lead to the following conclusions: the magnetic fabric of all studied rock units reflects one or more deformational episodes described by

  4. Analysis of magnetotelluric profile data from the Ruby Mountains metamorphic core complex and southern Carlin Trend region, Nevada

    USGS Publications Warehouse

    Wannamaker, Philip E.; Doerner, William M.; Stodt, John A.; Sodergen, Timothy L.; Rodriguez, Brian D.

    2002-01-01

    We have collected about 150 magnetotelluric (MT) soundings in northeastern Nevada in the region of the Ruby Mountains metamorphic core complex uplift and southern Carlin mineral trend, in an effort to illuminate controls on core complex evolution and deposition of world-class gold deposits. The region has experienced a broad range of tectonic events including several periods of compressional and extensional deformation, which have contributed to the total expression of electrical resistivity. Most of the soundings are in three east-west profiles across increasing degrees of core uplift to the north (Bald Mountain, Harrison Pass and Secret Pass latitudes). Two shorter lines cross a prominent east-west structure to the north of the northern profile. MT impedance tensor and vertical magnetic field rotations imply a N-NNE average regional geoelectric strike, similar to surface geologic trends. Model resistivity cross sections were derived using a 2-D inversion algorithm, which damps departures of model parameters from an a priori structure, emphasizing the transverse magnetic (TM) mode and vertical magnetic field data. Geological interpretation of the resistivity combines previous seismic, potential field and isotope models, structural and petrological models for regional compression and extension, and detailed structural/stratigraphic interpretations incorporating drilling for petroleum and mineral exploration. To first order, the resistivity structure is one of a moderately conductive, Phanerozoic sedimentary section fundamentally disrupted by intrusion and uplift of resistive crystalline rocks. Late Devonian and early Mississippian shales of the Pilot and Chainman Formations together form an important conductive marker sequence in the stratigraphy and show pronounced increases in conductance (conductivity-thickness product) from east to west. These increases in conductance are attributed to graphitization caused by Elko-Sevier era compressional shear deformation and

  5. Contact metamorphism, partial melting and fluid flow in the granitic footwall of the South Kawishiwi Intrusion, Duluth Complex, USA

    NASA Astrophysics Data System (ADS)

    Benko, Z.; Mogessie, A.; Molnar, F.; Severson, M.; Hauck, S.; Lechler, P.; Arehart, G.

    2012-04-01

    The footwall of the South Kawishiwi Intrusion (SKI) a part of the Mesoproterozoic (1.1 Ga) Duluth Complex consists of Archean granite-gneiss, diorite, granodiorite (Giant Range Batholith), thin condensed sequences of Paleoproterozoic shale (Virginia Fm.), as well as banded iron formation (Biwabik Iron Fm). Detailed (re)logging and petrographic analysis of granitic footwall rocks in the NM-57 drillhole from the Dunka Pit area has been performed to understand metamorphic processes, partial melting, deformation and geochemical characteristics of de-volatilization or influx of fluids. In the studied drillhole the footwall consists of foliated metagranite that is intersected by mafic (dioritic) dykes of older age than the SKI. In the proximal contact zones, in the mafic dykes, the orthopyroxene+clinopyroxene+plagioclase+quartz+Fe-Ti-oxide+hornblende±biotite porphyroblasts embedded in a plagioclase+K-feldspar+orthopyroxene+apatite matrix indicate pyroxene-hornfels facies conditions. Migmatitization is revealed by the euhedral crystal faces of plagioclase and pyroxene against anhedral quartz crystals in the in-situ leucosome and by the presence of abundant in-source plagioclase±biotite leucosome veinlets. Amphibole in the melanosome of mafic dykes was formed with breakdown of biotite and implies addition of H2O to the system during partial melting. Towards the deeper zones, the partially melted metatexite-granite can be characterized by K-feldspar+plagioclase+quartz+ortho/clinopyroxene+biotite+Fe-Ti-oxide+apatite mineral assemblage. The felsic veins with either pegmatitic or aplititic textures display sharp contact both to the granite and the mafic veins. They are characterized by K-feldspar+quartz±plagioclase±muscovite mineral assemblage. Sporadic occurrence of muscovite suggest local fluid saturated conditions. Emplacement of gabbroic rocks of the SKI generated intense shear in some zones of the granitic footwall resulting in formation of biotite-rich mylonites with

  6. Lu Hf systematics of the ultra-high temperature Napier Metamorphic Complex in Antarctica: Evidence for the early Archean differentiation of Earth's mantle

    NASA Astrophysics Data System (ADS)

    Choi, Sung Hi; Mukasa, Samuel B.; Andronikov, Alexandre V.; Osanai, Yasuhito; Harley, Simon L.; Kelly, Nigel M.

    2006-06-01

    The Napier Complex of the East Antarctic Craton comprises some of the oldest rocks on Earth (˜ 3.8 billion years old), overprinted by an ultra-high temperature (UHT) metamorphic event near the Archean-Proterozoic boundary. Garnet, orthopyroxene, sapphirine, osumilite, rutile and a whole rock representing a fully equilibrated assemblage from this UHT granulite belt have yielded a Lu-Hf isochron age of 2403 ± 43 Ma, the first ever determined on a UHT mineral assemblage. Preservation of the UHT mineral assemblage in the rock analyzed, without any significant retrogression, suggests rapid cooling with closure likely to have occurred for the Lu-Hf system at post-peak UHT conditions near a temperature of ˜ 800 °C. This mineral-whole rock isochron yields an initial 176Hf/ 177Hf ratio corresponding to an ɛHf value of - 14 ± 1, acquired during UHT metamorphism. Such a low value demonstrates that overall UHT granulites evolved in a low Lu/Hf environment, probably formed when the rocks were first extracted from a highly depleted mantle. Zircon ɛHf values we have measured "see through" the UHT metamorphism and show that the source materials for the magmas that formed the Napier Complex were extremely depleted (> + 5.6 ɛHf at 3.85 Ga) relative to the chondritic uniform reservoir (CHUR). These results also suggest significant depletion of the early Archean mantle, in agreement with the early differentiation of the Earth that the latest core formation models require.

  7. Exhumation with a twist: Paleomagnetic constraints on the evolution of the Menderes metamorphic core complex, western Turkey

    NASA Astrophysics Data System (ADS)

    van Hinsbergen, Douwe J. J.; Dekkers, Mark J.; Bozkurt, Erdin; Koopman, Marijn

    2010-06-01

    Much remains to be understood about the links between regional vertical axis rotations, continental extension, and shortening. In western Turkey, Miocene vertical axis rotations have been reported that occur simultaneously with the extensional exhumation of the Menderes metamorphic core complex, which has been related to back-arc extension in the eastern part of the Aegean back arc. In this paper we explore the spatial and temporal relationships between vertical axis rotations in southwestern Turkey and extensional unroofing of the Menderes Massif. To this end, we provide a large set of new paleomagnetic data from western Turkey, and integrate these with the regional structural evolution to test the causes and consequences of oroclinal bending in the Aegean region. The Lycian Nappes and Bey Daǧları are shown to rotate ˜20° between 16 and 5 Ma, defining the eastern limb of the Aegean orocline. This occurred contemporaneously with the exhumation of the central Menderes Massif (along extensional detachments) and after the latest Oligocene to early Miocene exhumation of the northern and southern Menderes massifs. Exhumation of the latter two was not associated with vertical axis rotations. The lower Miocene volcanics in the region from Lesbos to Uşak, to the north of the central Menderes Massif underwent a small clockwise rotation, insignificant with respect to Eurasia. This shows that exhumation of the central Menderes Massif was associated with a vertical axis rotation difference between the northern and southern Menderes massifs of ˜25°-30°. This result is in excellent agreement with the angle defined by the trends of Büyük Menderes and Alaşehir detachments, as well as the angle defined by the regionally curving stretching lineation pattern across the central Menderes Massif. These structures define a pivot point (rotation pole) for the west Anatolian rotations. The rotation of the southern domain, including the southern Menderes Massif, the Lycian Nappes

  8. Cadomian magmatism and metamorphism at the Ossa Morena/Central Iberian zone boundary, Iberian Massif, Central Portugal: Geochemistry and P-T constraints of the Sardoal Complex

    NASA Astrophysics Data System (ADS)

    Henriques, S. B. A.; Neiva, A. M. R.; Tajčmanová, L.; Dunning, G. R.

    2017-01-01

    A well preserved Cadomian basement is exposed in the Iberian Massif, Central Portugal, at the Ossa Morena/Central Iberian zone boundary, which allows the determination of reliable geochemical data. A sequence of Cadomian and Variscan magmatic and tectonometamorphic events has been already described for this area and are documented in other areas of the Avalonian-Cadomian orogen. However, the geochemical information concerning the Cadomian basement for this area is still limited. We present whole rock geochemical and oxygen isotopic information to characterize the igneous protoliths of the Sardoal Complex, located within the Tomar-Badajoz-Córdoba Shear Zone, and identify their tectonic setting. We use detailed petrography, mineral chemistry and P-T data to characterize the final Cadomian tectonometamorphic event. The Sardoal Complex contains orthogneiss and amphibolite units. The protoliths of the orthogneiss are calc-alkaline magmas of acid composition and peraluminous character that were generated in an active continental margin in three different stages (ca. 692 Ma, ca. 569 Ma and ca. 548 Ma). The most significant processes in their petrogenesis are the partial melting of old metasedimentary and meta-igneous crust at different crustal levels and the crystal fractionation of plagioclase, alkali feldspars, apatite, zircon and Fe-Ti oxides. The protoliths of the amphibolite, older than ca. 540 Ma, are tholeiitic and calc-alkaline magmas of basic composition that display N-, T- and E-MORB affinities. They were generated in an active continental margin. Crustal contamination and fractional crystallization of hornblende and diopside were involved in their petrogenesis. However, the fractional crystallization was not significant. The magmatic activity recorded in the Sardoal Complex indicates the existence of a long-lived continental arc (ca. 692-540 Ma) with coeval felsic and mafic magmatism. The final stage of the Cadomian metamorphism is usually represented in other

  9. New U-Pb zircon age data on polyphase plutono-metamorphic complex in western Enderby Land (East Antarctica) and its implications for Neoproterozoic amalgamation of the Gondwanaland

    NASA Astrophysics Data System (ADS)

    Mikhalskii, Evgenii; Krylov, Dmitriy; Rodionov, Nikolay

    2017-04-01

    Western Enderby Land occupies a key position on Gondwanaland reconstructions near India - Sri Lanka - Antarctica junction and eastwards the Lützow-Holm Bay metamorphic complex commonly identified as a Cambrian suture zone. We present U-Pb zircon isotopic age determinations with SHRIMP II obtained on tonalite- to granite-gneiss samples from the Thala Hills and the Polkanova Hills. In the Thala Hills three high-temperature tectonomagmatic episodes may be distinguished at ca 980-970 Ma, ca 780-720 Ma, and ca 545-530 Ma. All of them included sin-kinematic granitic orthogneiss protolith emplacements and high-grade metamorphism. In the Polkanova Hills tonalitic to granodioritic orthogneisses, intercalated with prevailing amphibolites, were emplaced during ca 980-950 Ma episode (or at both of these ages) and subsequently metamorphosed under amphibolite facies accompanied by migmatization at ca 600-530 Ma. The ca 980-950 Ma event corresponds to the Rayner Structural Episode which affected much of East Antarctica, including Sør Rondane Mountains to the west and Kemp Land to the east of study area. The Polkanova Hills area is underlain by basic amphibolites and tonalitic to granodioritic orthogneisses characterized by LILE enrichment and Nb-Ta troughs in a primitive mantle normalized spiderdiagram suggestive of derivation in arc-related convergent palaeotectonic environments. Co-eval orthogneisses in the Thala Hills are characterized by granitic compositions and occur in intercalation with paragneisses, which points out to more in-land palaeotectonic environments. The ca 780-720 Ma episode included two events at ca 780 Ma (high-grade anatexis) and 720 Ma (sin-tectonic granitoid emplacement) and was roughly co-eval with magmatic and/or metamorphic events in Dronning Maud Land of East Antarctica as well as in other Gondwanaland regions, like Madagascar, Sri Lanka and eastern Africa. The ca 780-720 Ma episode (Thala Episode) may be correlated with the East African Orogeny

  10. Low-grade metamorphism around the down-dip limit of seismogenic subduction zones: Example from an ancient accretionary complex in the Shimanto Belt, Japan

    NASA Astrophysics Data System (ADS)

    Kameda, Jun; Raimbourg, Hugues; Kogure, Toshihiro; Kimura, Gaku

    2011-04-01

    Reactions involving clay minerals during low-grade metamorphism at the depth of an ancient accretionary complex in the Shimanto Belt, Kyushu, Japan, were studied by integrated transmission electron microscopy-energy dispersive X-ray spectroscopy and X-ray diffraction analyses of the bulk rock and clay fraction. The analyzed metasediment (the Kitagawa unit) contain an incipient sub-horizontal slaty cleavage. Illite crystallinity data and mica b dimensions indicate that the conditions of metamorphic deformation were anchizone-epizone grade and intermediate pressure. Cleavage formation was linked to two reactions involving clay minerals: (1) the recrystallization of 1 M-dominant matrix mica, inherited from the original sedimentary fabric, into thick, defect-free 2 M1 packets along cleavage planes; and (2) the formation of chlorite from 7 Å berthierine. Balanced equations among the clay phases, based on compositional data and their relative abundance, suggest that the decomposition of matrix mica resulted in the formation of paragenetic mica and chlorite along the cleavage planes, without significant elemental outflux. Although a modal increase in phyllosilicates is not indicated by the data, the growth of chlorite and mica along cleavage planes may have a large influence on the rheological properties of a décollement and may be related to the occurrence of the seismic-aseismic transition at ~ 350 °C.

  11. P- T- t constraints on the development of the Doi Inthanon metamorphic core complex domain and implications for the evolution of the western gneiss belt, northern Thailand

    NASA Astrophysics Data System (ADS)

    Macdonald, A. S.; Barr, S. M.; Miller, B. V.; Reynolds, P. H.; Rhodes, B. P.; Yokart, B.

    2010-01-01

    The western gneiss belt in northern Thailand is exposed within two overlapping Cenozoic structural domains: the extensional Doi Inthanon metamorphic core complex domain located west of the Chiang Mai basin, and the Mae Ping strike-slip fault domain located west of the Tak batholith. New P- T estimates and U-Pb and 40Ar/ 39Ar age determinations from the Doi Inthanon domain show that the gneiss there records a complex multi-stage history that can be represented by a clockwise P- T- t path. U-Pb zircon and titanite dating of mylonitic calc-silicate gneiss from the Mae Wang area of the complex indicates that the paragneissic sequence experienced high-grade, medium-pressure metamorphism (M1) in the Late Triassic - Early Jurassic (ca. 210 Ma), in good agreement with previously determined zircon ages from the underlying core orthogneiss exposed on Doi Inthanon. Late Cretaceous monazite ages of 84 and 72 Ma reported previously from the core orthogneiss are attributed to a thermal overprint (M2) to upper-amphibolite facies in the sillimanite field. U-Pb zircon and monazite dating of granitic mylonite from the Doi Suthep area of the complex provides an upper age limit of 40 Ma (Late Eocene) for the early stage(s) of development of the actual core complex, by initially ductile, low-angle extensional shearing under lower amphibolite-facies conditions (M3), accompanied by near-isothermal diapiric rise and decompression melting. 40Ar/ 39Ar laserprobe dating of muscovite from both Doi Suthep and Doi Inthanon provided Miocene ages of ca. 26-15 Ma, representing cooling through the ca. 350 °C isotherm and marking late-stage development of the core complex by detachment faulting of the cover rocks and isostatic uplift of the sheared core zone and mantling gneisses in the footwall. Similarities in the thermochronology of high-grade gneisses exposed in the core complex and shear zone domains in the western gneiss belt of northern Thailand (and also in northern Vietnam, Laos, Yunnan

  12. Timing of mid-crustal ductile extension in the northern Snake Range metamorphic core complex, Nevada: Evidence from U/Pb zircon ages

    NASA Astrophysics Data System (ADS)

    Lee, J.; Blackburn, T.; Johnston, S. M.

    2016-12-01

    Metamorphic core complexes (Mccs) within the western U.S. record a history of Cenozoic ductile and brittle extensional deformation, metamorphism, and magmatism, and exhumation within the footwall of high-angle Basin and Range normal faults. Documenting these histories within Mccs have been topics of research for over 40 years, yet there remains disagreement about: 1) whether the detachment fault formed and moved at low angles or initiated at high angles and rotated to a low angle; 2) whether brittle and ductile extensional deformation were linked in space and time; and 3) the temporal relationship of both modes of extension to the development of the detachment fault. The northern Snake Range metamorphic core complex (NSR), Nevada has been central to this debate. To address these issues, we report new U/Pb dates from zircon in deformed and undeformed rhyolite dikes emplaced into ductilely thinned and horizontally stretched lower plate rocks that provide tight bounds on the timing of ductile extension at between 38.2 ± 0.3 Ma and 22.50 ± 0.36 Ma. The maximum age constraint is from the Northern dike swarm (NDS), which was emplaced in the northwest part of the range pre- to syn-tectonic with ductile extension. The minimum age constraint is from the Silver Creek dike swarm (SDS) that was emplaced in the southern part of the range post ductile extensional deformation. Our field observations, petrography, and U/Pb zircon ages on the dikes combined with published data on the geology and kinematics of extension, moderate and low temperature thermochronology on lower plate rocks, and age and faulting histories of Cenozoic sedimentary basins adjacent to the NSR are interpreted as recording an episode of localized upper crustal brittle extension during the Eocene that drove upward ductile extensional flow of hot middle crustal rocks from beneath the NSR detachment soon after, or simultaneous with, emplacement of the NDS. Exhumation of the lower plate continued in a rolling

  13. Dike emplacement, footwall rotation, and the transition from magmatic to tectonic extension in the Whipple Mountains metamorphic core complex, southeastern California

    NASA Astrophysics Data System (ADS)

    Gans, Phillip B.; Gentry, Beau J.

    2016-11-01

    The Chambers Well dike swarm and associated plutonic/volcanic rocks in the western footwall of the Whipple Detachment Fault (WDF) provide key insight into the evolution of this metamorphic core complex. New structural and geochronologic data suggest that the western 12-15 km of exposed footwall is steeply tilted to the SW, providing a cross-sectional view of the upper crust, from the Miocene erosion surface to the top of the coeval mylonitization. Ages and compositions of dikes are indistinguishable from adjacent thick volcanic successions. Several kilometers of early Miocene extension ( 20.5 to 19.0 Ma) were accommodated by magmatic accretion but transitioned to rapid extensional faulting and tilting at 19.0-18.5 Ma. The subhorizontal WDF in this area initiated as a northeast dipping high-angle (50-60°) normal fault that breached the surface locally, not in a breakaway tens of kilometers to the west. Large-scale tilting and differential uplift of the western footwall was in part coeval with mylonitization and dike emplacement and was accomplished by block rotation in the hanging wall of additional normal faults, isostatic uplift, and flow of lower crust from beneath less extended regions to the west. The WDF is likely a composite surface with a western segment that had ceased moving by 18.5 Ma, cut by successively younger and steeper fault(s) to the east. Perhaps, the most important difference between seismogenic high-angle normal faults and low-angle "detachment faults" characteristic of metamorphic core complexes is one of magnitude and rate of total accumulated slip, not of initial failure conditions.

  14. An enigmatic source of hematitic carbonate beds containing vast amounts of iron oxidizers in a paleozoic metamorphic complex, South Hungary, Geresd-Hills, Ófalu.

    NASA Astrophysics Data System (ADS)

    Jáger, Viktor; Dabi, Gergely; Menyhárt, Adrienn

    2013-04-01

    Near the village of Ófalu, in the Geresd Hills, South Hungary, within the "Mecsekalja tectonic belt", low and intermediate grade paleozoic metamorphic complex (phyllite, gneiss) contains vein-like hematitic carbonate beds, up to 30 cm in thickness. The carbonate mineral is calcite. These hematitic carbonate beds cross-cut the foliation of the phyllite, and show no signs of any metamorphic alteration. In the studied section the red carbonate beds are associated with a vein system filled with multiple generations of vein carbonates(Dabi et al., 2011). The red carbonate beds contain a vaste number of twisted stalks of the iron oxidizing taxon of Gallionella. Rarely in some siliceous parts, Leptothrix-like microbial fossils can be found and these beds also contain numerous unidentifiable, hematitic foraminifers. According to ICP-AES measurements, the hematitic carbonate beds contains 8 % Fe, 0.86 % Mn and 0.12 % Ba. XRD and Raman measurements proved that the iron phase is hematite. The SEM observations revealed that the bacterial microfossils and foraminifers are built up of micron-submicron sized pseudohexagonal platy hematite. The bacterial microfossils of the Gallionella iron oxidizer are very well preserved and reaches about 80 µm length and about 2-3 µm width. The above observations raise the following issues: 1. how did these non metamorphic hematitic-carbonatic beds get inside into the metamorphic complex?, 2. what is the age of the formation of these beds?, and 3. what was the source of the iron? If we consider that the hematitic beds contain foraminifers and iron oxidizing bacteria, and no signs of metamorphic alteration nor foliations can be observed in these beds, the only answer for the first question is that the formations are fractures filled with lime-mud, i.e. neptunian dykes, which penetrated into the cracks of the phyllite. The presence of foraminifers and the geotectonic situation of the unit imply marine origin. Considering that these beds are

  15. Evidence for Late Cretaceous-early Tertiary lower plate mylonitization and extension in the Harcuvar metamorphic core complex, Arizona: Evidence from U-Pb geochronology

    NASA Astrophysics Data System (ADS)

    Wrobel, A.; Wong, M.; Singleton, J. S.

    2014-12-01

    Metamorphic core complexes in the North American Cordillera are interpreted as sites of large-magnitude crustal extension, yet many aspects of their development remain controversial. Most core complexes in the central and southern Basin and Range are thought to have been exhumed by a single fault that evolved from ductile to brittle during the Miocene. However, new field relationships and U-Pb zircon geochronology from the lower plate of the Harcuvar core complex in western Arizona raise questions about the age and tectonic significance of mylonites in the evolution of this core complex. Variably mylonitic plutonic rocks dominate the lower plate. Plutonic units yield three major age populations. A foliated biotite granite yielded a U-Pb zircon age of 152 ± 3 Ma, and a gneiss with an E-W lineation yielded a similar 152 ± 4 Ma age, with some 179 ± 9 Ma cores. Leucogranite plutons and sills dominate much of the footwall and yield 71-72 Ma ages, with some inherited ~152 and ~180 Ma cores. A migmatitic biotite gneiss yielded younger U-Pb zircon ages of ~55 Ma and ~61 Ma with some ca. 1.4-1.5 Ga cores. Pegmatite dikes that cross-cut top-NE-directed mylonitic shear zones at high angles and are only weakly deformed also yield 55-64 Ma ages. These results indicate that a phase of Middle to Late Jurassic magmatism was followed by a major magmatic event at ~72 Ma that emplaced large volumes of leucogranite. Minor melting (mainly pegmatites) continued until ca. 55 Ma. The pegmatites are likely late to post-tectonic and suggest that much of the lower plate mylonitization, including shearing related to top-NE extension, occurred during the Late Cretaceous to early Tertiary (Laramide) rather than the Miocene. Laramide extension may have been driven by Late Cretaceous crustal thickening and partial melting that weakened the crust and caused gravitational collapse. Thus, Miocene extension mainly occurred by brittle fault slip rather than widespread ductile shearing. These

  16. Kinematics of the Chugach metamorphic complex, southern Alaska: Plate geometry in the north Pacific margin during the Late Cretaceous to Eocene

    NASA Astrophysics Data System (ADS)

    Scharman, Mitchell R.; Pavlis, Terry L.

    2012-08-01

    The Paleogene plate geometry of the north Pacific margin is poorly constrained because all of the plates involved, except the trailing Pacific plate, have been subducted. However, the kinematic history of the Chugach metamorphic complex in southern Alaska constrains plate configurations because of its link to ridge-subduction. We synthesize recent regional mapping of the complex, finite strain data, and geochronology to show that progressive deformation records the Paleogene triple junction interaction occurred over a period of less than 2 m.y. across ˜350 km of the margin. We document that 140-190 km of distributed dextral shear occurred across the complex during the latest phase of deformation in the complex. This analysis suggests dextral motion of at least 70-95 mm/yr which can account for most, or all, of the margin parallel plate motion during a brief period of the Eocene. We use these results to compare and evaluate possible plate configurations based on older and newer plate motion models. Using modern plate motion models it is difficult to reconcile a Kula-Farallon ridge-subduction model with the available data, but our preferred plate geometry model involving a Kula-Resurrection ridge provides a reasonable explanation for our observations.

  17. The timing of eclogite facies metamorphism and migmatization in the Orlica–Śnieżnik complex, Bohemian Massif: Constraints from a multimethod geochronological study

    USGS Publications Warehouse

    Brocker, M.; Klemd, R.; Cosca, M.; Brock, W.; Larionov, A.N.; Rodionov, N.

    2009-01-01

    The Orlica–Śnieżnik complex (OSC) is a key geological element of the eastern Variscides and mainly consists of amphibolite facies orthogneisses and metasedimentary rocks. Sporadic occurrences of eclogites and granulites record high-pressure (HP) to ultrahigh-pressure (UHP) metamorphic conditions. A multimethod geochronological approach (40Ar–39Ar, Rb–Sr, Sm–Nd, U–Pb) has been used to gain further insights into the polymetamorphic evolution of eclogites and associated country rocks. Special attention was given to the unresolved significance of a 370- to 360 Ma age group that was repeatedly described in previous studies. Efforts to verify the accuracy of c.370 Ma K–Ar phengite and biotite dates reported for an eclogite and associated country-rock gneiss from the location Nowa Wieś suggest that these dates are meaningless, due to contamination with extraneous Ar. Extraneous Ar is also considered to be responsible for a significantly older 40Ar–39Ar phengite date of c. 455 Ma for an eclogite from the location Wojtowka. Attempts to further substantiate the importance of 370–360 Ma zircon dates as an indicator for a melt-forming high-temperature (HT) episode did not provide evidence in support of anatectic processes at this time. Instead, SHRIMP U–Pb zircon dating of leucosomes and leucocratic veins within both orthogneisses and (U)HP granulites revealed two age populations (490–450 and 345–330 Ma respectively) that correspond to protolith ages of the magmatic precursors and late Variscan anatexis. The results of this study further underline the importance of Late Carboniferous metamorphic processes for the evolution of the OSC that comprise the waning stages of HP metamorphism and lower pressure HT overprinting with partial melting. Eclogites and their country rocks provided no chronometric evidence for an UHP and ultrahigh-temperature episode at 387–360 Ma, as recently suggested for granulites from the OSC, based on Lu–Hf garnet

  18. The Garzón Massif, Colombia-a new ultrahigh-temperature metamorphic complex in the Early Neoproterozoic of northern South America

    NASA Astrophysics Data System (ADS)

    Altenberger, U.; Mejia Jimenez, D. M.; Günter, C.; Sierra Rodriguez, G. I.; Scheffler, F.; Oberhänsli, R.

    2012-07-01

    The Garzón Complex of the Garzón Massif in SW Colombia is composed of the Vergel Granulite Unit (VG) and the Las Margaritas Migmatite Unit (LMM). Previous studies reveal peak temperature conditions for the VG of about 740 °C. The present study considers the remarkable exsolution phenomena in feldspars and pyroxenes and titanium-in-quartz thermometry. Recalculated ternary feldspar compositions indicate temperatures around 900-1,000 °C just at or above the ultra-high temperature-metamorphism (UHTM) boundary of granulites. The calculated temperatures range of exsolved ortho- and clinopyroxenes also supports the existence of an UHTM event. In addition, titanium-in-quartz thermometry points towards ultra-high temperatures. It is the first known UHTM crustal segment in the northern part of South America. Although a mean geothermal gradient of ca 38 °C km-1 could imply additional heat supply in the lower crust controlling this extreme of peak metamorphism, an alternative model is suggested. The formation of the Vergel Granulite Unit is supposed to be formed in a continental back-arc environment with a thinned and weakened crust behind a magmatic arc (Guapotón-Mancagua Gneiss) followed by collision. In contrast, rocks of the adjacent Las Margaritas Migmatite Unit display "normal" granulite facies temperatures and are formed in a colder lower crust outside the arc, preserved by the Guapotón-Mancagu Gneiss. Back-arc formation was followed by inversion and thickening of the basin. The three units that form the modern-day Garzón Massif, were juxtaposed upon each other during collision (at ca. 1,000 Ma) and exhumation. The collision leading to the deformation of the studied area is part of the Grenville orogeny leading to the amalgamation of Rodinia.

  19. The role of amphiboles in the metamorphic evolution of the UHP rocks: a case study from the Tso Morari Complex, northwest Himalayas

    NASA Astrophysics Data System (ADS)

    Singh, Preeti; Pant, Naresch C.; Saikia, Ashima; Kundu, Amitava

    2013-11-01

    Amphiboles represent a crucial phase of the ultra-high-pressure (UHP) metamorphic rocks as their solid solution behavior reflects both bulk compositional and P- T changes. Three different types of amphibole have been reported from the UHP metamafic rocks of the Tso Morari Crystalline Complex, NW Himalayas: Na-rich (glaucophane); Na-Ca-rich (barroisite, taramite, winchite) and Ca-rich (tremolite, magnesio-hornblende, pargasite). The Na-amphibole is presented as a core of the zoned amphibole with Na-Ca-rich rim; Na-Ca-amphibole is presented as inclusion in garnets as well as in matrix, and Ca-amphibole is generally found in the matrix. The Na-Ca-amphibole is observed at two different stages of metamorphism. The first is pre-UHP, and the second is post-garnet-omphacite assemblage though with a significant difference in composition. The pressure-temperature estimations of the formation of these two sets of Na-Ca-amphiboles corroborate their textural associations. Ca-rich amphiboles are generally present in the matrix either as symplectite with plagioclase or as a pseudomorph after garnet along with other secondary minerals like chlorite and biotite. Two different types of zoning have been observed in the amphibole grains: (1) core is Na-rich followed by Na-Ca rim and (2) core of Na-Ca-amphibole is followed by Ca-rich rim. The pre-UHP (or the prograde P- T path) and post-UHP stages (or the retrograde P- T path) of Tso Morari eclogites are defined by characteristic amphibole compositions, viz. Na/Na-Ca-amphibole, Na-Ca-amphibole and Ca-amphibole and thus indicate their utility in inferring crustal evolution of this UHP terrain.

  20. TitaniQ analyses of mylonites from metamorphic core complexes in west-central Arizona: Implications for two phases of extension in the lower Colorado River Extensional Corridor

    NASA Astrophysics Data System (ADS)

    Seymour, N. M.; Wong, M.; Singleton, J. S.

    2016-12-01

    We use TitaniQ analyses to determine the temperature of mylonitization in the footwall of the Harcuvar, Buckskin-Rawhide, and Plomosa Mountains metamorphic core complexes in the lower Colorado River Extensional Corridor. We analyzed 14 mylonitic samples from the Harcuvar (n=7), Buckskin-Rawhide (n=3), Little Buckskin (n=2), and Plomosa (n=2) metamorphic core complexes for Ti concentrations ([Ti]) in quartz-rich domains via ion microprobe. Analyses were standardized using Ti-doped synthetic quartz crystals. Equilibration temperatures were calculated from [Ti] using the calibration of Thomas and others (2010) assuming aTiO2 = 0.3-0.7 and P = 2.5-3.5 for greenschist-facies fabrics and P=4-6 kbar for amphibolite-facies fabrics. The most consistent [Ti] values ( 6-13.5) were recorded in Late Cretaceous leucogranites from the southern Harcuvars and southern Buckskin-Rawhides in which quartz recrystallized via grain boundary migration. These values correspond to temperatures ranging from 410-590°C and indicate deformation occurred under upper greenschist to amphibolite-facies conditions. Samples that record quartz subgrain rotation and bulge nucleation yielded more dispersed [Ti] with averages ranging from 0.5-7 ppm ( 300-450°C). The spread in [Ti] suggest these samples did not achieve equilibrium during greenschist-facies overprinting of an earlier amphibolite-facies fabric. Overall, greenschist-facies fabrics and lower [Ti] are most common near the detachment fault, whereas the amphibolite-facies fabrics and higher [Ti] are most common in the structurally lower parts of the mylonitic footwall. Existing hornblende and biotite 40Ar/39Ar ages indicate the footwall of the Harcuvar-Buckskin-Rawhide core complex cooled to 325-500°C in the latest Cretaceous to Eocene. Thus, mylonitization at T > 500°C recorded by [Ti] in several samples is incompatible with mid-crustal shearing during early Miocene detachment faulting and must instead record an earlier phase of top

  1. The early Cretaceous orogen-scale Dabieshan metamorphic core complex: implications for extensional collapse of the Triassic HP-UHP orogenic belt in east-central China

    NASA Astrophysics Data System (ADS)

    Ji, Wenbin; Lin, Wei; Faure, Michel; Shi, Yonghong; Wang, Qingchen

    2016-03-01

    The Dabieshan massif is famous as a portion of the world's largest HP-UHP metamorphic belt in east-central China that was built by the Triassic North-South China collision. The central domain of the Dabieshan massif is occupied by a huge migmatite-cored dome [i.e., the central Dabieshan dome (CDD)]. Origin of this domal structure remains controversial. Synthesizing previous and our new structural and geochronological data, we define the Cretaceous Dabieshan as an orogen-scale metamorphic core complex (MCC) with a multistage history. Onset of lithospheric extension in the Dabieshan area occurred as early as the commencement of crustal anatexis at the earliest Cretaceous (ca. 145 Ma), which was followed by primary (early-stage) detachment during 142-130 Ma. The central Dabieshan complex in the footwall and surrounding detachment faults recorded a consistently top-to-the-NW shearing. It is thus inferred that the primary detachment was initiated from a flat-lying detachment zone at the middle crust level. Removal of the orogenic root by delamination at ca. 130 Ma came into the extensional climax, and subsequently isostatic rebound resulted in rapid doming. Along with exhumation of the footwall, the mid-crustal detachment zone had been warped as shear zones around the CDD. After 120 Ma, the detachment system probably experienced a migration accommodated to the crustal adjustment, which led to secondary (late-stage) detachment with localized ductile shearing at ca. 110 Ma. The migmatite-gneiss with HP/UHP relicts in the CDD (i.e., the central Dabieshan complex) was product of the Cretaceous crustal anatexis that consumed the deep-seated part of the HP-UHP slices and the underlying para-autochthonous basement. Compared with the contemporaneous MCCs widely developed along the eastern margin of the Eurasian continent, we proposed that occurrence of the Dabieshan MCC shares the same tectonic setting as the "destruction of the North China craton". However, geodynamic trigger

  2. The early Cretaceous orogen-scale Dabieshan metamorphic core complex: implications for extensional collapse of the Triassic HP-UHP orogenic belt in east-central China

    NASA Astrophysics Data System (ADS)

    Ji, Wenbin; Lin, Wei; Faure, Michel; Shi, Yonghong; Wang, Qingchen

    2017-06-01

    The Dabieshan massif is famous as a portion of the world's largest HP-UHP metamorphic belt in east-central China that was built by the Triassic North-South China collision. The central domain of the Dabieshan massif is occupied by a huge migmatite-cored dome [i.e., the central Dabieshan dome (CDD)]. Origin of this domal structure remains controversial. Synthesizing previous and our new structural and geochronological data, we define the Cretaceous Dabieshan as an orogen-scale metamorphic core complex (MCC) with a multistage history. Onset of lithospheric extension in the Dabieshan area occurred as early as the commencement of crustal anatexis at the earliest Cretaceous (ca. 145 Ma), which was followed by primary (early-stage) detachment during 142-130 Ma. The central Dabieshan complex in the footwall and surrounding detachment faults recorded a consistently top-to-the-NW shearing. It is thus inferred that the primary detachment was initiated from a flat-lying detachment zone at the middle crust level. Removal of the orogenic root by delamination at ca. 130 Ma came into the extensional climax, and subsequently isostatic rebound resulted in rapid doming. Along with exhumation of the footwall, the mid-crustal detachment zone had been warped as shear zones around the CDD. After 120 Ma, the detachment system probably experienced a migration accommodated to the crustal adjustment, which led to secondary (late-stage) detachment with localized ductile shearing at ca. 110 Ma. The migmatite-gneiss with HP/UHP relicts in the CDD (i.e., the central Dabieshan complex) was product of the Cretaceous crustal anatexis that consumed the deep-seated part of the HP-UHP slices and the underlying para-autochthonous basement. Compared with the contemporaneous MCCs widely developed along the eastern margin of the Eurasian continent, we proposed that occurrence of the Dabieshan MCC shares the same tectonic setting as the "destruction of the North China craton". However, geodynamic trigger

  3. Geochemistry of the Neoproterozoic metasediments of Malhaq and Um Zariq formations, Kid Metamorphic Complex, Sinai, Egypt: implications for source-area weathering, provenance, recycling, and depositional tectonic setting

    NASA Astrophysics Data System (ADS)

    El-Bialy, Mohammed Z.

    2013-04-01

    The Kid Metamorphic Complex of SE Sinai represents a thick volcano-sedimentary succession that underwent polyphase deformation and greenschist to upper amphibolite facies metamorphism in the NE part of the Arabian-Nubian Shield (ANS). The Malhaq and Um Zariq Formations, the target of this study, occupy roughly the northern half of this complex. The Malhaq Formation records several phases of Ediacaran sedimentation and volcanic activity (615-607 Ma), whereas Um Zariq Formation metasediments are relicts of an older sedimentary sequence (Cryogenian; 813±6 Ma). The Malhaq Formation comprises a series of dark gray structureless to schistose felsic to intermediate metavolcanics interbedded and intercalated with fine- to medium-grained foliated mica-rich phyllites and schists, while the Um Zariq Formation is a dominantly metasedimentary sequence, mainly represented by well-bedded metapelitic schists. Malhaq metasediments are enriched in SiO2, CaO and K2O and depleted in TiO2, Al2O3 and K2O relative to those of Um Zariq Formation. Aside from the relatively low Ni and Cr concentrations, compatible transition elements of these metasediments are comparable to average crustal contents. Except for marked Sr depletion, LILEs are around average continental crust values. Pronounced negative Nb-Ta anomalies in all samples, and general enrichment of Um Zariq samples in Th, U, Zr, Ti and Y relative to Malhaq ones are the main features of HFSEs. The REE patterns of all samples are parallel to sub-parallel LREE-enriched, with distinct negative Eu anomalies and weakly fractionated HREE segments. Geochemical investigations have revealed that the source rocks of Malhaq Formation metasediments underwent mild to moderate chemical weathering, whereas those of Um Zariq Formation have suffered severe chemical weathering. These metasediments are predominately derived from felsic to intermediate igneous sources, with a particular slight addition from recycled sedimentary source to the Malhaq

  4. Applicability of the RSCM geothermometry approach in a complex tectono-metamorphic context: The Jebilet massif case study (Variscan Belt, Morocco)

    NASA Astrophysics Data System (ADS)

    Delchini, Sylvain; Lahfid, Abdeltif; Plunder, Alexis; Michard, André

    2016-07-01

    The Raman Spectroscopy of Carbonaceous Materials (RSCM) geothermometry approach allows determining the peak temperature recorded by metasediments through their metamorphic history. This technique, however, has been calibrated using Meso-Cenozoic metapelitic rocks that underwent a single metamorphic cycle. Until now, the reliability of the RSCM method has never been demonstrated for contexts with superposition of regional and contact metamorphism, such as many Variscan contexts. The present study aims at testing the applicability of the RSCM method to these polyphased metamorphism terrains and at investigating the cumulative molecular transformations of carbonaceous materials related to metamorphic superposition. To address the above issues, samples were collected in the Variscan Jebilet massif of the Moroccan Meseta. This massif was first affected by a regional, greenschist facies metamorphic event (D1 phase), and then by a higher-T, regional and contact metamorphism that reached the hornfels/amphibolite facies conditions (D2 and D2/D3 phases). Mineralogical, thermobarometric and RSCM methods have been used in this study to determine the peak T recorded by the studied rocks. The results obtained for greenschist facies metapelitic rocks show a good agreement between the mineralogical assemblage Chlorite-Phengite-Felspar-Quartz and the Raman temperatures ranging from 330 to 394 ± 50 °C. In the metapelitic rocks that underwent higher metamorphism grades (hornfels/amphibolite facies), four dominant mineral assemblages were observed: (1) Chlorite-Biotite, (2) Cordierite-Biotite, (3) Andalusite-Garnet-Bt, and (4) Andalusite-Cordierite-Biotite. The corresponding Raman temperatures vary respectively between 474 ± 50 °C and 628 ± 50 °C. The pseudo-sections generated for samples from the hornfels/amphibolite facies confirmed the peak temperatures measured by the RSCM method. Our results do not support clear evidence of potential molecular cumulative effect on CM

  5. P-T evolution of a spinel + quartz bearing khondalite from the Highland Complex, Sri Lanka: Implications for non-UHT metamorphism

    NASA Astrophysics Data System (ADS)

    Dharmapriya, P. L.; Malaviarachchi, Sanjeewa P. K.; Galli, Andrea; Su, Ben-Xun; Subasinghe, N. D.; Dissanayake, C. B.; Nimalsiri, T. B.; Zhu, Bin

    2014-12-01

    Here, we report a natural field example for the coexistence of spinel + quartz as a non-UHT assemblage in spinel- and cordierite-bearing garnet-sillimanite-biotite-graphite gneiss (khondalite) interbedded with orthopyroxene-garnet-biotite bearing intermediate granulites from the Highland Complex (HC) in Sri Lanka. The khondalite contains Zn-rich spinel mainly in four textural assemblages namely: (a) spinel co-existing with tiny quartz (ZnO = 12.67-12.85 wt%), (b) spinel surrounded by sillimanite moates and in intergrowth with skeletal sillimanites (ZnO = 9.03-9.17 wt%), (c) symplectitic spinels at the margin of sillimanite (ZnO = 4.09-4.28 wt%) and (d) spinel co-existing with ilmenite or as isolated grains (ZnO = 7.61-7.97 wt% and Cr2O3 = 5.99-6.27 wt%). Assemblage (a) and (b) occur within garnet while assemblages of (c) and (d) are present within cordierite moates after garnet in the matrix. Pseudosections calculated in the NCKFMASHTMnO system and conventional geothermobarometry suggest that the metamorphic peak conditions attained by the spinel + quartz bearing khondalites and associated intermediate granulites did not exceed T of 900 °C and P of 7.5-8.5 kbar. Post-peak evolution was characterized by a stage of nearly-isobaric cooling down to T of 770 °C and P of 7.5 kbar, followed by a late stage of isothermal decompression down to P < 6.5 kbar and T of 770 °C. We propose that the incorporation of large amount of Zn into spinel from exotic, metasomatic fluids and possibly incorporation of Fe3+ into spinel under high oxidizing conditions may have shifted the stabilization of co-existing spinel + quartz to T < 900 °C. Hence, this study provides insights into the occurrence of spinel + quartz as a non- UHT assemblage suggesting that the coexistence of spinel + quartz should be treated with care and considered only as indicative, but not diagnostic of UHT metamorphism.

  6. Integration of offshore seismic data, exploration wells, and onland outcrops as constraints on the tectonics and uplift age of metamorphic core complexes, eastern Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Fitz, G. G.; Mann, P.; Campos Aguiniga, H.

    2009-12-01

    High-grade metamorphic domes of the D’Entrecasteaux Islands (DEI) of eastern Papua New Guinea are located within continental crust at the tip of the westward propagating Woodlark spreading ridge. Multi-channel seismic data collected by the RV Maurice Ewing in 1992 was integrated with seismic data from 1974 and two wells drilled by the oil industry in 1973 to understand pattern and age of faults and clastic wedges in offshore basins surrounding the 2-2.5-km high DEI. The WNW-trending line of the DEI demarcates two areas of contrasting deformational and depositional histories. In the area of the Kiribisi and Trobriand basins north of the DEI, normal faults occupy a WNW-striking basin that began to rift in the early Miocene and continued to rift sporadically until the early Pliocene when all normal faults were buried by ~650 m of undeformed Plio-Pleistocene sediments. We infer that these basins formed as sub-basins within a larger forearc basin bounded to the north by the forearc high of the Trobriand Islands and to the south by the DEI. Uplift of the forearc high and inversion of normal faults near the high during the Pleistocene and suggests the possibility of present-day, southward subduction along the Trobriand trench. To the south of the DEI in the Goodenough basin, the Pleistocene section is thicker and deformed by active, WNW-striking normal faults with seafloor scarps and high-angle dips. Wedging of the Pleistocene clastic fill in a half-graben geometry along the Owen-Stanley fault in the Southern part of the Goodenough basin along the southern coastline of the bay indicates that most normal motion has now shifted to this fault system. The shift in extension from north of the DEI to the Owen-Stanley fault zone in post-Pliocene time likely signals the arrival of the propagating rift tip of the Woodlark basin. The presence of conglomerate with high-grade metamorphic clasts in the Pliocene section north of the DEI supports the idea that the uplift and erosion

  7. What do fault patterns reveal about the latest phase of extension within the Northern Snake Range metamorphic core complex, Nevada, USA?

    NASA Astrophysics Data System (ADS)

    Ismat, Zeshan; Riley, Paul; Lerback, Jory

    2016-08-01

    The Northern Snake Range is a classic example of a metamorphic core complex, Basin-and-Range province, United States. It is composed of a plastically deformed footwall and a brittlely deformed hanging wall, separated by the Northern Snake Range low-angle detachment (NSRD). Brittle deformation, however, is not confined to the hanging wall. This paper focuses on exposures in Cove Canyon, located on the SE flank of the Northern Snake Range, where penetrative, homogeneous faults are well exposed throughout the hanging wall, footwall and NSRD, and overprint early plastic deformation. These late-stage fault sets assisted Eocene-Miocene extension. Detailed analysis of the faults reveals the following: (1) The shortening direction defined by faults is similar to the shortening direction defined by the stretching lineation in the footwall mylonites, indicating that the extensional kinematic history remained unchanged as the rocks were uplifted into the elastico-frictional regime. (2) After ∼17 Ma, extension may have continued entirely within elastic-frictional regime via cataclastic flow. (3) This latest deformation phase may have been accommodated by a single, continuous event. (3) Faults within NSRD boudins indicate that deformation within the detachment zone was non-coaxial during the latest phase of extension.

  8. Crustal structure in the Elko-Carlin Region, Nevada, during Eocene gold mineralization: Ruby-East Humboldt metamorphic core complex as a guide to the deep crust

    USGS Publications Warehouse

    Howard, K.A.

    2003-01-01

    The deep crustal rocks exposed in the Ruby-East Humboldt metamorphic core complex, northeastern Nevada, provide a guide for reconstructing Eocene crustal structure ~50 km to the west near the Carlin trend of gold deposits. The deep crustal rocks, in the footwall of a west-dipping normal-sense shear system, may have underlain the Pinon and Adobe Ranges about 50 km to the west before Tertiary extension, close to or under part of the Carlin trend. Eocene lakes formed on the hanging wall of the fault system during an early phase of extension and may have been linked to a fluid reservoir for hydrothermal circulation. The magnitude and timing of Paleogene extension remain indistinct, but dikes and tilt axes in the upper crust indicate that spreading was east-west to northwest-southeast, perpendicular to a Paleozoic and Mesozoic orogen that the spreading overprinted. High geothermal gradients associated with Eocene or older crustal thinning may have contributed to hydrothermal circulation in the upper crust. Late Eocene eruptions, upper crustal dike intrusion, and gold mineralization approximately coincided temporally with deep intrusion of Eocene sills of granite and quartz diorite and shallower intrusion of the Harrison Pass pluton into the core-complex rocks. Stacked Mesozoic nappes of metamorphosed Paleozoic and Precambrian rocks in the core complex lay at least 13 to 20 km deep in Eocene time, on the basis of geobarometry studies. In the northern part of the complex, the presently exposed rocks had been even deeper in the late Mesozoic, to >30 km depths, before losing part of their cover by Eocene time. Nappes in the core plunge northward beneath the originally thicker Mesozoic tectonic cover in the north part of the core complex. Mesozoic nappes and tectonic wedging likely occupied the thickened midlevel crustal section between the deep crustal core-complex intrusions and nappes and the overlying upper crust. These structures, as well as the subsequent large

  9. The Liaonan metamorphic core complex, Southeastern Liaoning Province, North China: A likely contributor to Cretaceous rotation of Eastern Liaoning, Korea and contiguous areas

    NASA Astrophysics Data System (ADS)

    Liu, Junlai; Davis, Gregory A.; Lin, Zhiyong; Wu, Fuyuan

    2005-09-01

    The Mesozoic Liaonan metamorphic core complex (mcc) of the southeastern Liaoning province, North China, is an asymmetric Cordilleran-style complex with a west-rooting master detachment fault, the Jinzhou fault. A thick sequence of lower plate, fault-related mylonitic and gneissic rocks derived from Archean and Early Cretaceous crystalline protoliths has been transported ESE-ward from mid-crustal depths. U-Pb ages of lower plate syntectonic plutons (ca. 130-120 Ma), 40Ar- 39Ar cooling ages in the mylonitic and gneissic sequence (ca. 120-110 Ma), and a Cretaceous supradetachment basin attest to the Early Cretaceous age of this extensional complex. The recent discovery of the coeval and similarly west-rooting Waziyu mcc in western Liaoning [Darby, B.J., Davis, G.A., Zhang, X., Wu, F., Wilde, S., Yang, J., 2004. The newly discovered Waziyu metamorphic core complex, Yiwulushan, western Liaoning Province, North China. Earth Science Frontiers 11, 145-155] indicates that the Gulf of Liaoning, which lies between the two complexes, was the center of a region of major crustal extension. Clockwise crustal rotation of a large region including eastern Liaoning province and the Korean Peninsula with respect to a non-rotated North China block has been conclusively documented by paleomagnetic studies over the past decade. The timing of this rotation and the reasons for it are controversial. Lin et al. [Lin, W., Chen, Y., Faure, M., Wang, Q., 2003. Tectonic implication of new Late Cretaceous paleomagnetic constraints from Eastern Liaoning Peninsula, NE China. Journal of Geophysical Research 108 (B-6) (EPM 5-1 to 5-17)] proposed that a clockwise rotation of 22.5° ± 10.2° was largely post-Early Cretaceous in age, and was the consequence of extension within a crustal domain that tapers southwards towards the Bohai Sea (of which the Gulf of Liaoning is the northernmost part). Paleomagnetic studies of Early Cretaceous strata (ca 134-120 Ma) in the Yixian-Fuxin supradetachment basin of

  10. Low-grade, M1 metamorphism of the western metamorphic belt near Juneau, Alaska

    SciTech Connect

    Himmelberg, G.R. . Dept. of Geology); Brew, D.A.; Ford, A.B. )

    1993-04-01

    The western metamorphic belt is part of the Coast plutonic-metamorphic complex of western Canada and southeastern Alaska that developed as a result of tectonic overlap and/or compressional thickening of crustal rocks during collision of the Alexander terrane and Gravina assemblage on the west against the Yukon Prong and Stikine terranes to the east. Sub-greenschist to lower greenschist facies metabasalts exposed along the west end of the western metamorphic belt near Juneau, Alaska record the earliest metamorphic event (M1). These low-grade rocks are gradational with younger, higher-grade assemblages that define an inverted metamorphic gradient (metamorphic event M5). The most common metamorphic mineral assemblages are chlorite-epidote-actinolite with or without pumpellyite and stilpnomelane. There is no systematic distribution of metamorphic mineral assemblages in the study area, and all assemblages are in the pumpellyite-actinolite facies near the transition to the lower greenschist facies. Different low-variance assemblages can be attributed to minor differences in pressure, temperature, or X[sub CO[sub 2

  11. Synextensional magmatism leading to crustal flow in the Albion-Raft River-Grouse Creek metamorphic core complex, northeastern Basin and Range

    NASA Astrophysics Data System (ADS)

    Konstantinou, Alexandros; Strickland, Ariel; Miller, Elizabeth; Vervoort, Jeffrey; Fisher, Christopher M.; Wooden, Joseph; Valley, John

    2013-09-01

    study addresses the origin of granitic magmas in the Albion-Raft River-Grouse Creek (ARG) metamorphic core complex and environs and how these inform us about the deep crustal processes leading to crustal flow and the formation of the ARG. SHRIMP-RG U-Pb zircon ages, whole-rock geochemical data (major and trace element data, as well as Sr and Nd isotopes), and zircon geochemistry (in situ O-isotope, Hf-isotope, and trace element compositions) from Eocene to Oligocene magmas now exposed at three structural levels of the ARG show that the 41-32 Ma Emigrant Pass and the 32-25 Ma Cassia plutonic complexes have a common origin, sharing a deep crustal "hot zone" that remained above solidus temperatures for at least 16 Myr. This magmatism is part of the protracted magmatism that swept southward across the western U.S. between ˜42 and 21 Ma, inferred to be the result of foundering of the shallow Farallon slab. Isotopic modeling of geochemical data from these magmas suggests that between 41 and 32 Ma, the influx of mantle-derived basalt into the lower crust triggered large-scale hybrid magmatism generating calc-alkaline magmas that erupted and intruded the upper crust and significantly weakened the lower and middle crust. Between 32 and 25 Ma, this "hot zone" incorporated large amounts of continental crustal melts, resulting in greater mobility of the lower and middle crust, driving middle crustal flow and the formation of granitic plutons that rose to shallower levels of the crust forming the granite-cored gneiss domes of the ARG.

  12. Surface Uplift and Disequilibrium Fluvial Geomorphology of Metamorphic Core Complexes in the D'Entrecasteaux Islands and Dayman-Suckling Massif, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Miller, S. R.; Baldwin, S. L.; Fitzgerald, P. G.

    2008-12-01

    Structural, thermobarometric, geochronological, and thermochronological evidence suggests that the D'Entrecasteaux Islands (DEI) and the Dayman-Suckling massif (DSM), in southeastern Papua New Guinea, are metamorphic core complexes, which have been exhumed from depths as great as 90 km over the past 2- -8 Ma, possibly because of microplate rotation. The dome-shaped DEI and DSM reach elevations of ~2500 m and ~3500 m, respectively, however little is known about their kinematic histories since their emergence above sea level in the Plio-Pleistocene. Detachment faults are commonly corrugated or dip- slope surfaces occurring in various states of dissection. The question of whether faults bounding the DEI domes are active today remains debated, yet has implications for what mechanisms have exhumed the core complexes as well as where and how active rifting in the Woodlark rift is accommodated. In order to provide a regional overview and direct future tectonic geomorphic studies, we conducted a stream profile analysis of the DEI and DSM using a 3-arc-second Shuttle Radar Topography Mission digital elevation model. Footwall stream profiles in the study area are characterized by large knickpoints across which stream gradients steepen downstream by a factor of 2. These knickpoints are not typically associated with mapped lithologic contacts or faults and occur in all lower plate lithologies. Therefore, we interpret the knickpoints as transients formed as the result of a Quaternary region-wide increase in rock uplift rate or a decrease in stream erodibility. Model profiles extrapolated from relict reaches above knickpoints project to former base levels 40- -1600 m above sea level, indicating similar amounts of incision and rock uplift. Although the timing of knickpoint initiation is not tightly constrained and may vary throughout the region, estimates of profile uplift measured this way correlate linearly with normalized stream steepness index (ksn) below knickpoints

  13. Color Me Metamorphic.

    ERIC Educational Resources Information Center

    Birdd, Donald L.

    1990-01-01

    Described are five activities using crayons to demonstrate the rock cycle including weathering, erosion and sedimentation, and sedimentary, metamorphic, and igneous rock formation. Discussed are materials, procedures, and probable results. (CW)

  14. Color Me Metamorphic.

    ERIC Educational Resources Information Center

    Birdd, Donald L.

    1990-01-01

    Described are five activities using crayons to demonstrate the rock cycle including weathering, erosion and sedimentation, and sedimentary, metamorphic, and igneous rock formation. Discussed are materials, procedures, and probable results. (CW)

  15. Metamorphism in mesosiderites

    NASA Technical Reports Server (NTRS)

    Delaney, J. S.; Prinz, M.; Harlow, G. E.; Nehru, C. E.

    1982-01-01

    Previous studies of mesosiderites have identified a metamorphic overprint in these meteorites. However, the effects and implications of this overprint have not yet been explored in detail. The present study documents several important textural and chemical features of the mesosiderites. The components of mesosiderites are examined, taking into account orthopyroxenites, olivine in clasts, mesosiderite mafic clasts, and metal. The characteristics of the silicate matrix of the mesosiderites is explored, and textural and chemical evidence of metamorphism is discussed, giving attention to coronas on olivine clasts, overgrowths on Mg-pyroxene clasts, rims on iron rich pyroxene grains, poikiloblasts of plagioclase, and resorption of clasts. Aspects of redox formation of merrillite are considered along with the causes and the implications of metamorphism. It is found that metamorphism has radically changed the texture of the silicate fraction of the mesosiderites.

  16. Plate tectonics: Metamorphic myth

    NASA Astrophysics Data System (ADS)

    Korenaga, Jun

    2016-01-01

    Clear evidence for subduction-induced metamorphism, and thus the operation of plate tectonics on the ancient Earth has been lacking. Theoretical calculations indicate that we may have been looking for something that cannot exist.

  17. Nature and geodynamic setting of the protoliths of the UHP metamorphic Complex and migmatites in Bixiling area, the Dabie Orogen, China

    NASA Astrophysics Data System (ADS)

    Li, H.; Jahn, B.; Wang, D.; Yu, H.; Liu, Z.; Hou, G.

    2013-12-01

    As the largest coesite-bearing mafic-ultramafic body in the Dabie-Sulu orogen, the Bixiling Complex is composed of meta-ultramafic rocks, MgAl-rich eclogites and FeTi-rich eclogites. The FeTi-rich eclogites are further divided into low-Si-high-Fe type (Type I) and high-Si-low-Fe type (Type II) according to their mineral assemblages and bulk chemical composition. Field, petrographic, petrological and geochemical characteristics of these rocks, although suffered an ultra-high pressure metamorphism, still show a magmatic differentiation process among the protoliths of the meta-ultramafic rocks, MgAl-rich eclogites and Type I FeTi-rich eclogites. A small degree of lower crustal contamination occurred during their magma chamber process. Amphibolite is widespread in the periphery of the complex. Non-foliation and fine-grained texture are their obvious characteristics. Geochemical and isotopic affinities suggest that the amphibolites represent a product of complete retrogression from type II FeTi-rich eclogites. The UHP complex is enclosed in granitic gneisses, which variably include two-mica plagioclase gneiss, epidote two-mica plagioclase gneiss, or white-mica plagioclase gneiss. They all show TTG, especially trondjhemitic composition. A migmatite outcrop was found near the northeastern end of the complex. The migmatites consist of dark colored, non-foliated amphibolites and light-colored, fine-grained trondhjemitic gneisses. Field occurrences, microstructures observed under optical microscope and SEM, Sr-Nd isotopic data suggest an origin of partial melting. Chemical composition of two stages of amphiboles occurred in both the amphibolites and the trondhjemitic gneisses also imply a partial melting process occurred. Trace element, Sr-Nd isotope and SHRIMP zircon U-Pb dating of MgAl-rich eclogite, amphibolites and trondhjemite suggest that the migmatites represent a partial melting of crustal materials at about 780Ma, possibly accompanied by the coeval emplacement of a

  18. Two-dimensional travel time inversion for the crustal P and S wave velocity structure of the Ruby Mountains metamorphic core complex, NE Nevada

    NASA Astrophysics Data System (ADS)

    Stoerzel, Andreas; Smithson, Scott B.

    1998-09-01

    Problems about the nature of extended crust in the Basin and Range include the role of plastic flow during extension, the possibility of fluids in the crust, and the amount of mantle-derived material added to the crust. To address these problems, the University of Wyoming conducted a multicomponent wide-angle seismic experiment in the Ruby Mountains of the Basin and Range. The northern Ruby Mountains expose upper and middle crustal rocks of a metamorphic core complex, whereas the southern Ruby Mountains consist of low-grade miogeoclinal rocks. The wide-angle experiment consisted of a 95 km long N-S profile that extended from the southern to the northern Ruby Mountains. Travel time inversion of the wide-angle reflection data reveals relatively high seismic velocities in the midcrust to lower crust which suggest that fluid-filled pores, if they exist, do not reduce the seismic velocities significantly. Therefore the midcrustal to lower crustal porosity is probably much smaller than 1-2 vol %. The average P wave velocity for the crust is 6.4-6.5 km/s in the north and 6.1-6.2 km/s in the south. This difference suggests that larger amounts of mantle-derived material were added during the Tertiary to the core complex crust of the northern Ruby Mountains than to the "normal" Basin and Range crust of the southern Ruby Mountains. The velocity profile is consistent with a maximum of 6-7 km of mantle-derived material in the south and a maximum of 12-15 km of mantle-derived material in the north. Thus volumetric mafic intrusions probably accommodated a maximum of 7 km of core complex exhumation. Shear wave splitting indicates that the upper to middle crust is seismically anisotropic probably due to superposed Tertiary plastic flow patterns. Doming and inflation of a midcrustal layer in the seismic model are compatible with Tertiary flow of material from the south to the north that compensated about 2-5 km of core complex exhumation. Precritical Moho reflections (0-70 km offset

  19. The UHP metamorphic Seve Nappe Complex of the Swedish Caledonides - a new occurrence of the microdiamond-bearing gneisses and their exhumation

    NASA Astrophysics Data System (ADS)

    Klonowska, Iwona; Janák, Marian; Majka, Jarosław; ‎ Froitzheim, Nikolaus; Gee, David G.

    2015-04-01

    The ultra-high pressure metamorphism (UHPM) in the Seve Nappe Complex of the Swedish Caledonides has been recently recognized within several lithologies including gneisses, eclogites and garnet pyroxenites (e.g. Janák et al. 2013, Klonowska et al. 2014a, Majka et al. 2014). Thermodynamic modelling and thermobarometric calculations indicate peak pressure conditions of >3GPa at c. 800-900°C (reaching the diamond stability field) for eclogites and garnet pyroxenites from northern Jämtland (e.g. Klonowska et al. 2014b). In addition to this, the first microdiamonds were found in paragneisses from the Snasahögarna Mt. in central Jämtland (Majka et al. 2014). Here we report a new discovery of microdiamond together with moissanite (SiC) from one of the world's most famous localities for thrusting, Mount Åreskutan, where long transport distances were recognized already in the 19th century (Törnebohm 1888). Garnet porphyroblasts in gneisses from the Åreskutan Mt. contain abundant mineral inclusions, mainly graphite, carbonates and quartz, together with fluid inclusions of CO2 concentrated in swarms. Among these inclusions three microdiamonds were found in two gneiss samples. In one of the samples moissanite was also discovered. Both minerals were identified by micro-Raman spectroscopy. In addition to these 'swarm' inclusions, biotite, kyanite, rutile, feldspars, zircon, monazite, ±phengite, ±muscovite, ±spinel, ±ilmenite, ±apatite occur in garnets. Phase equilibrium modelling for the phengite-bearing gneiss confirms its UHP history at temperatures of c. 800°C. Recent discoveries of UHP metamorphism within the Seve Nappe Complex derived from the Baltican outer margin (part of the Middle Allochthon) challenged us to present a new tectonic model incorporating exhumation of the deeply subducted continental rocks together with mantle lithosphere peridotites. Majka et al. (2014) introduced a new "under-pressure"-driven exhumation mechanism of rocks buried in

  20. Dynamic coupling among channel flow, plateau growth, foreland shortening, and the formation of metamorphic core complexes: Application to the Tibetan plateau

    NASA Astrophysics Data System (ADS)

    Rey, P. F.; Teyssier, C.; Whitney, D. L.

    2009-04-01

    Gravitational potential energy stored in an orogenic plateau can be sufficiently strong to deform the surrounding region (foreland), hence contributing to both plateau growth and collapse. Gravity-driven channel flow from the plateau lower crust into the foreland lower crust, or channel extrusion, has been proposed as a main contributor to the eastward growth of the Tibetan plateau, possibly driving the lower crust channel as far as 1000 km beneath the foreland (eg. Royden et al., 2008). On the basis of numerical modeling using temperature-dependent viscosities and densities, we show that four processes impose severe limitations to channel extrusion: (1) cooling of the extruded channel, (2) convective motion in the plateau channel, (3) surface extension of the plateau, and (4) erosion of the plateau edge. Model results show that peak velocities in the extrusion channel drop rapidly (in less than a few My) from ca. 5 cm/year to less than 1 cm/year, owing to the rapid cooling in the channel from 750-850°C to 650-550°C as it travels into the foreland region. Channel flow extrusion is further slowed when convective flow initiates in the plateau channel as a result of only a few percent drop in density. This convection inhibits laminar flow in the channel, reduces the peak horizontal velocity in the channel to a few mm, and even drives a counter flow at the base of the channel, preventing its propagation toward the foreland. If the foreland is actively pulled away from the plateau (extending boundaries), the plateau upper crust undergoes extension and the lower crust moves up efficiently into a metamorphic core complex, which inhibits flow of the channel away from the plateau and even generates a counter flow from the foreland to the metamorphic core complex. If the foreland is fixed, the same phenomenon occurs as long as the foreland upper crust undergoes shortening (likely weakened by high pore fluid pressure), which enhances extension of the plateau and upward flow

  1. Petrology of metamorphic rocks

    SciTech Connect

    Suk, M.

    1983-01-01

    ''Petrology of Metamorphic Rocks'' reviews Central European opinions about the origin and formation of metamorphic rocks and their genetic systems, confronting the works of such distinguished European scientists as Rosenbusch, Becke, Niggli, Sander, Eskola, Barth and others with present-day knowledge and the results of Soviet and American investigations. The initial chapters discuss the processes that give rise to metamorphic rocks, and the main differences between regional metamorphism and other types of alterations, the emphasis being laid on the material characteristic of the processes of metamorphism, metasomatism and ultrametamorphism. Further chapters give a brief characterization of research methods, together with a detailed genetic classification based on the division of primary rocks into igneous rocks, sediments and ore materials. The effects of metamorphic alterations and those of the properties of the primary rocks are analyzed on the basis of examples taken chiefly from the Bohemian Massif, the West Carpathians, other parts of the European Variscides, from the crystalline Scandinavian Shelf in Norway and Finland, and from the Alps. Typical examples are documented by a number of charts, photographs and petrographical - particularly petrochemical - data.

  2. Magma-facilitated transpressional strain partitioning within the Sawtooth metamorphic complex, Idaho: A zone accommodating Cretaceous orogen-parallel translation in the Idaho batholith

    NASA Astrophysics Data System (ADS)

    Ma, Chong; Foster, David A.; Mueller, Paul A.; Dutrow, Barbara L.

    2017-03-01

    Structural data from metasedimentary rocks and geochronologic data from intrusive rocks in the Idaho batholith provide evidence for the relationship between deformation and magmatism in the northern U.S. Cordillera. The Sawtooth metamorphic complex (SMC), Idaho, is exposed as an inlier in the central Idaho batholith and contains strongly deformed metasedimentary and intrusive rocks. Geologic mapping reveals north-south-striking, alternating contraction- and shear-dominated domains across strike. The contraction-dominated domains consist of centimeter- to tens of meter-scale, shallowly to steeply plunging upright folds with subhorizontal lineations. The shear-dominated domains are characterized by highly strained subvertical foliations, subhorizontal lineations, and syntectonic intrusive sheets. Pervasive S-C structures, winged porphyroclasts, and asymmetric folds indicate dextral strike-slip shearing. The fabrics in the two types of domains are structurally compatible and are interpreted to be broadly synchronous. This work suggests that the SMC structures represent a wrench-dominated transpressional zone, in which the regional strain partitioned into the contraction- and shear-dominated domains and the partitioning was facilitated by emplacement of syntectonic magmas. Zircon U-Pb data of the syntectonic intrusions indicate that the SMC transpressional deformation occurred mainly between ca. 95-92 Ma and ca. 84 Ma and had ended by ca. 77 Ma. The transpressional deformation in the SMC and the western Idaho shear zone (WISZ) were kinematically compatible and partially coeval. This suggests that the SMC and WISZ represent a regional transpression system and that crustal deformation inboard of the continental margin may have contributed to the northward orogen-parallel translation of accreted terranes during the Late Cretaceous.

  3. S-wave velocities and anisotropy of typical rocks from Yunkai metamorphic complex and constraints on the composition of the crust beneath Southern China

    NASA Astrophysics Data System (ADS)

    Ji, Shaocheng; Wang, Qian; Shao, Tongbin; Endo, Hiroto; Michibayashi, Katsuyoshi; Salisbury, Matthew H.

    2016-08-01

    In order to constrain the interpretation of seismic data from receiver functions and deep profiles of the crust beneath southern China (Cathaysia and Yangtze blocks), we have measured S-wave velocities (Vs) and splitting as a function of hydrostatic confining pressure up to 650 MPa for 22 representative samples (i.e., granite, diorite, felsic gneiss and mylonite, amphibolite, schist, and marble) from the Yunkai metamorphic complex (China) that represent the crystalline basement beneath the region. The experimental data were combined with electron backscattering diffraction (EBSD) analysis of rock-forming minerals to constrain variations of Vp/Vs ratios and understand the origin of seismic anisotropy. The crusts beneath the Yangtze and Cathaysia blocks have different average thicknesses (H = 35.4 ± 6.3 km and 29.8 ± 1.8 km, respectively) but display almost the same Vp/Vs values (1.73 ± 0.08 and 1.74 ± 0.04, respectively). These ratios correspond to an average of bimodally distributed granitic and gabbroic lithologies which are dominant, respectively, in the upper and lower crusts, instead a homogeneous andesitic composition of the overall crust. Positive and negative correlations between H and Vp/Vs occur in west and east parts of southern China, respectively. The negative correlation indicates basaltic underplating from a partially molten mantle wedge above the subducting Pacific plate into the southern China crust, whereas the positive correlation implies that much larger thinning strain has taken place in the high temperature mafic lower crust (high temperature) than in the low temperature felsic upper crust during Mesozoic-Cenozoic tectonic extension.

  4. Subduction- and non-subduction-related igneous rocks in the Central European Variscides: geochemical and Nd isotope evidence from the Kłodzko Metamorphic Complex, Polish Sudetes

    NASA Astrophysics Data System (ADS)

    Kryza, Ryszard; Mazur, Stanisław; Pin, Christian

    2003-11-01

    The Kłodzko Metamorphic Complex (KMC) in the Central Sudetes is a composite outcrop of pre-Upper Devonian metasedimentary and metaigneous rocks, formed of several thrust units. The metaigneous rocks are geochemically diversified, and were interpreted to reflect a complex geodynamic setting of emplacement. The association of large amounts of felsic and mafic rocks is reminiscent of the model of Cambro-Ordovician bimodal, rift-related suites developed along the northern periphery of Gondwana. However, the felsic rocks are potash-poor, calc-alkaline in character, while the associated mafic rocks are, in part, metagabbros and cumulates resembling N-MORB, which is consistent with neither typical ensialic rift nor evolved MOR tectonic environments. Combined with published data, our new geochemical and Nd isotope results show that the metabasic rocks of the northeastern part of the KMC, not associated with felsic volcanics, are of within-plate type, with an ɛNd 400 (assuming approximate youngest possible Silurian/Devonian age) of +6.8, typical of magmas derived from time-integrated depleted mantle sources. The metagabbros of the southwestern part of the KMC (associated with felsic rocks) range from slightly enriched to depleted rocks, and their ɛNd 560 (assuming a Neoproterozoic age, K. Turniak, personal communication) scatters from +2.2 to +8.6, suggesting that hybrid sources and/or variable degrees of crustal contamination of a strongly depleted mantle source were involved. The intermediate and acidic rocks are peraluminous to metaluminous rhyolites, rhyodatites/dacites, and andesites (and volcaniclastics), with Na 2O > K 2O and large negative anomalies of Nb, Sr, and Ti. Their highly variable, but distinctly positive, ɛNd 560 values (from +2.9 to +8.6, mostly clustered around +5.5) overlap those measured in the associated metagabbros, thereby substantiating close genetic relationships. Metarhyolites produced by crustal melting are conspicuously missing. A

  5. New U-Pb and Sm-Nd isotope data of the age of formation and metamorphic alteration of the Kandalaksha-Kolvitsa gabbro-anorthosite complex (Baltic Shield)

    NASA Astrophysics Data System (ADS)

    Steshenko, Ekaterina; Bayanova, Tamara; Serov, Pavel; Chashchin, Viktor

    2016-04-01

    The aim of this research was to study the isotope U-Pb age of zircon and rutile and Sm-Nd (rock forming and sulphide minerals) in Kandalaksha-Kolvitsa gabbro-anorthosite complex. Kandalaksha-Kolvitsa gabbro-anorthosite complex is located in the N-E part of Baltic shield and consists of three parts. Marginal zone (mesocratic metanorite) lies at the base of the massif. Main zone is composed of leucocratic metagabbro. The upper zone is alteration of mataanorthosite and leucocratic metagabbro. All rocks were subjected to granulate metamorphism. New U-Pb and Sm-Nd isotopic and geochronological data for the rocks of the Kandalaksha-Kolvitsa Paleoproterozoic gabbro-anorthosite complex is presented. For the first time single zircon grains from metagabbros of Kolvitsa massif were dated 2448±5 Ma, using U-Pb method with an artificial 205Pb tracer. Sm-Nd isotopic age of the metamorphic minerals apatite, garnet and sulphide WR Kolvitsa array is 1985 ± 17 Ma, which is interpreted granulite metamorphism. Two fractions of single zircons from anorthosite of the Kandalaksha massif gave U-Pb age 2450± 3 Ma. Leucocratic gabbro-norite (Kandalaksha massif) were dated by U-Pb on single zircon, with age up to 2230±10 Ma. This age reflects the time of granulite metamorphism according to data of [1]. Two fractions of rutile from anorthosite of the Kandalaksha massif have been analyzed by U-Pb method and reflect age of 1700 ± 10 Ma. It is known that the closure temperature of U-Pb system rutile 400-450 ° C [2], thus cooling of the massif to these temperatures was about 1.7 Ga. These data suggested two stages of metamorphic transformations of the massif. Sm-Nd research Kandalaksha massif reflected the age of the high-temperature metasomatic transformations -1887 ± 37 Ma. Time of regional fluid processing - 1692 ± 71 Ma. A model Sm-Nd age metagabbros Kolvitsa massif is 3.3 Ga with a negative value ɛNd = -4.6, which corresponds to the most likely primary enriched mantle reservoir of

  6. Constraints on the metamorphic history of a mélange complex within the easternmost Himalayan orogen, northern Indo-Burma Range, based on P-T pseudosection and thermobarometric studies.

    NASA Astrophysics Data System (ADS)

    Haproff, P. J.; Yin, A.

    2015-12-01

    Despite many petrologic and structural studies surrounding the eastern Himalayan syntaxis, P-T histories of metamorphic rocks within the northern Indo-Burman mélange of the easternmost Himalayas remain largely unknown. We present metamorphic P-T conditions of three schists from successive thrust sheets related to generation of the Himalayan orogen, based on mineral assemblage thermobarometry and pseudosection phase diagrams. Use of the garnet-muscovite-biotite-plagioclase thermobarometer and Ti-in-biotite thermometer yield peak conditions of 676 ± 78°C and 10.6 ± 1.3 kbar for schist (PH-1-8-13-26) thrust atop metavolcanics, mafic schist, and ultramafics of the Indus-Ysangpo suture zone (IYSZ). Within this sample, quartz is recrystallized along grain boundaries and garnets contain no significant compositional zoning. Pseudosections constructed from bulk-rock composition and equilibrium mineral assemblages yield a clockwise P-T path with similar peak garnet amphibolite conditions. At structurally lower levels, garnet chlorite schist (PH-1-8-13-8) from a thrust klippe of the IYSZ record peak temperatures below 650°C. Garnets display growth zoning, with increasing Mn and decreasing Fe and Mg from rim to core. Application of the Ti-in-biotite thermometer to a mafic schist (PH-1-3-13-1B) within the klippe near a southwestward-directed thrust yields a peak temperature of 679 ± 24°C. Our study reveals a complex metamorphic history throughout the northern Indo-Burman mélange zone that likely records metamorphism at deep crustal levels during thrust motion and growth of the Himalayan orogen around the northeastern corner of India.

  7. Formation and emplacement of two contrasting late-Mesoproterozoic magma types in the central Namaqua Metamorphic Complex (South Africa, Namibia): Evidence from geochemistry and geochronology

    NASA Astrophysics Data System (ADS)

    Bial, Julia; Büttner, Steffen H.; Frei, Dirk

    2015-05-01

    The Namaqua Metamorphic Complex is a Mesoproterozoic low-pressure, granulite facies belt along the southern and western margin of the Kaapvaal Craton. The NMC has formed between ~ 1.3 and 1.0 Ga and its central part consists essentially of different types of granitoids intercalated with metapelites and calc-silicate rocks. The granitoids can be subdivided into three major groups: (i) mesocratic granitoids, (ii) leucocratic granitoids and (iii) leucogranites. The high-K, ferroan mesocratic granitoids (54-75 wt% SiO2) have a variable composition ranging from granitic to tonalitic, and contain biotite and/or hornblende or orthopyroxene. They are strongly enriched in REE and LILE, indicating A-type chemical characteristics, and are depleted in Ba, Sr, Eu, Nb, Ta and Ti. The leucocratic granitoids and leucogranites (68-76 wt% SiO2) differ from the other group in having a granitic or slightly syenitic composition containing biotite and/or garnet/sillimanite. They have lower REE and MgO, FeOt, CaO, TiO2, MnO concentrations, but higher Na2O and K2O contents. Compositional variations in mesocratic granitoids indicate their formation by fractional crystallization of a mafic parental magma. Leucocratic granitoids and leucogranites lack such trends, which suggests melting of a felsic crustal source without subsequent further evolution of the generated magmas. The mineralogical and geochemical characteristics of the mesocratic granitoids are consistent magmatic differentiation of a mantle derived, hot (> 900 °C) parental magma. The leucocratic granitoids and leucogranites granites were formed from low-temperature magmas (< 730 °C), generated during fluid-present melting from metasedimentary sources. New U-Pb zircon ages reveal that both magma types were emplaced into the lower crust within a 30-40 million years interval between 1220-1180 Ma. In this time period the crust reached its thermal peak, which led to the formation of the leucocratic granitoids and leucogranites. A

  8. Zircon U-Pb ages of the metamorphic supracrustal rocks of the Xinghuadukou Group and granitic complexes in the Argun massif of the northern Great Hinggan Range, NE China, and their tectonic implications

    NASA Astrophysics Data System (ADS)

    Wu, Guang; Chen, Yuchuan; Chen, Yanjing; Zeng, Qingtao

    2012-04-01

    The basement of the Argun massif in the northern Great Hinggan Range consists of the metamorphic supracrustal rocks of the Xinghuadukou Group and associated granitic complexes. The metamorphic supracrustal rocks were previously interpreted as Paleoproterozoic, while the granitic complexes were considered Mesoproterozoic in age. This paper presents new zircon LA-MC-ICP-MS U-Pb ages of biotite-plagioclase leptynite and biotite schist from the Xinghuadukou Group in the Lulin Forest area, Heilongjiang Province; zircon SHRIMP U-Pb ages of biotite-plagioclase gneiss from the Xinghuadukou Group in Lulin Forest; and quartz diorite and monzogranite from the granitic complexes in Mohe County, Heilongjiang Province. New geochronological data from the three metasedimentary rock samples of the Xinghuadukou Group can be preliminarily divided into five groups: (1) 2017-2765 Ma, (2) 1736-1942 Ma, (3) 1359-1610 Ma, (4) 749-1239 Ma, and (5) 448-716 Ma. Except for the zircons of the 448-716 Ma group belonging to a metamorphic origin, the other age groups had the youngest age of 749 ± 17 Ma, indicating that the Xinghuadukou Group formed during the Neoproterozoic era (at least <749 Ma). These detrital zircon ages cluster at ca. 2.0-1.8 Ga and ca. 1.0-0.80 Ga, suggesting that the Argun massif had connections with both Columbia and Rodinia and implying that the provenance of the Xinghuadukou Group metamorphosed sediments must be characteristic of felsic-intermediate igneous rocks with ages of ca. 2.0-1.8 Ga and ca. 1.0-0.80 Ga. The quartz diorite and monzogranite from the granitic complexes of the basement within the Argun massif yielded weighted mean ages of 516 ± 10 Ma and 504 ± 9 Ma, respectively, indicating that these rocks emplaced in the Early Paleozoic. Considering the geochemical and chronological data together, we propose that the Xinghuadukou Group was most likely deposited in a back-arc basin environment, whereas the granitic complexes emplaced in a post-collisional setting

  9. Metamorphic Geodesic Regression

    PubMed Central

    Hong, Yi; Joshi, Sarang; Sanchez, Mar; Styner, Martin; Niethammer, Marc

    2013-01-01

    We propose a metamorphic geodesic regression approach approximating spatial transformations for image time-series while simultaneously accounting for intensity changes. Such changes occur for example in magnetic resonance imaging (MRI) studies of the developing brain due to myelination. To simplify computations we propose an approximate metamorphic geodesic regression formulation that only requires pairwise computations of image metamorphoses. The approximated solution is an appropriately weighted average of initial momenta. To obtain initial momenta reliably, we develop a shooting method for image metamorphosis. PMID:23286131

  10. Timing and Nature of Events Leading to the Formation of the Albion-Raft River-Grouse Creek (ARG) Metamorphic Core complex, Northern Great Basin, W. U.S.

    NASA Astrophysics Data System (ADS)

    Miller, E. L.; Konstantinou, A.; Sheu, D.; Strickland, A.; Grove, M.

    2016-12-01

    Interpretations of the geodynamic significance of metamorphic core complexes in the northern Basin and Range are intimately tied to a combination of P-T data, geochronology and mica thermochronology used to infer episodes of deformation and uplift related to syn-shortening gravitational collapse of the crust in the latest Cretaceous-early Cenozoic. The ARG is no exception and we bring new geologic mapping, microstructural analysis, geochronology and 40Ar/39Ar thermochronology to bear on these questions. The petrogenesis of Eocene-Miocene magmas, the structural fabrics and metamorphism developed in wall rocks of plutons and the history of flanking basins outline a three-part Cenozoic story of this complex: Part 1: Mantle-derived heat input into the crust in the Eocene (42-36 Ma), related to Farallon slab removal, produced volcanism, plutonism, but little regional extension. Part 2: Heat input led to increased crustal melting as surface volcanism ceased. Diapiric rise of granite-cored gneiss domes sheathed by high grade, high strain metamorphic fabrics and mylonites took place over a protracted time, 32-25 Ma, stalling at depths > 10 km. Transitions upward from penetrative stretching fabrics to brittle crust were complex damage zones of multiply deformed and faulted Paleozoic strata overlain by a more intact 7-8 km thick section of Late Paleozoic and Triassic. Extension was localized and no sedimentary basins formed during this time. Part 3: Metamorphic and igneous rocks were brought to near surface conditions during Miocene extension, between 14-8 Ma ago. Structures accommodating E-W extension are high-angle, rotational normal faults that currently bound both sides of the ARG complex with linked sedimentary basins in their hanging wall. New 40Ar/39Ar data show that country rocks near the Oligocene Almo pluton share the pluton's cooling history. Further from the pluton, where pre-Oligocene fabrics are variably preserved, white mica total gas and plateau ages increase

  11. Distribution and characteristics of metamorphic belts in the south- eastern Alaska part of the North American Cordillera

    USGS Publications Warehouse

    Brew, D.A.; Himmelberg, G.R.; Loney, R.A.; Ford, A.B.

    1992-01-01

    The Cordilleran orogen in south-eastern Alaska includes 14 distinct metamorphic belts that make up three major metamorphic complexes, from east to west: the Coast plutonic-metamorphic complex; the Glacier Bay-Chichagof plutonic-metamorphic complex; and the Chugach plutonic-metamorphic complex. Each of these complexes is related to a major subduction event. The metamorphic history of the Coast complex is lengthy and is related to the Late Cretaceous collision of the Alexander and Wrangellia terranes and the Gravina overlap assemblage to the west against the Stikine terrane to the east. The metamorphic history of the Glacier Bay-Chichagof complex is relatively simple and is related to the roots of a Late Jurassic to late Early Cretaceous island arc. The metamorphic history of the Chugach is complicated and developed during and after the Late Cretaceous collision of the Chugach terrane with the Wrangellia and Alexander terranes. -from Authors

  12. Development and application of laser microprobe techniques for oxygen isotope analysis of silicates, and, fluid/rock interaction during and after granulite-facies metamorphism, highland southwestern complex, Sri Lanka

    SciTech Connect

    Elsenheimer, D.W.

    1992-01-01

    The extent of fluid/rock interaction within the crust is a function of crustal depth, with large hydrothermal systems common in the brittle, hydrostatically pressured upper crust, but restricted fluid flow in the lithostatically pressured lower crust. To quantify this fluid/rock interaction, a Nd-YAG/CO[sub 2] laser microprobe system was constructed to analyze oxygen isotope ratios in silicates. Developed protocols produce high precision in [sigma][sup 18]O ([+-]0.2, 1[sigma]) and accuracy comparable to conventional extraction techniques on samples of feldspar and quartz as small as 0.3mg. Analysis of sub-millimeter domains in quartz and feldspar in granite from the Isle of Skye, Scotland, reveals complex intragranular zonation. Contrasting heterogeneous and homogeneous [sigma][sup 18]O zonation patterns are revealed in samples <10m apart. These differences suggest fluid flow and isotopic exchange was highly heterogeneous. It has been proposed that granulite-facies metamorphism in the Highland Southwestern Complex (HSWC), Sri Lanka, resulted from the pervasive influx of CO[sub 2], with the marbles and calc-silicates within the HSWC a proposed fluid source. The petrologic and stable isotopic characteristic of HSWC marbles are inconsistent with extensive decarbonation. Wollastonite calc-silicates occur as deformed bands and as post-metamorphis veins with isotopic compositions that suggest vein fluids that are at least in part magmatic. Post-metamorphic magmatic activity is responsible for the formation of secondary disseminated graphite growth in the HSWC. This graphite has magmatic isotopic compositions and is associated with vein graphite and amphibolite-granulite facies transitions zones. Similar features in Kerela Khondalite Belt, South India, may suggest a common metamorphic history for the two terranes.

  13. From intra-oceanic subduction to arc accretion and oblique arc-continent collision: Insights from the P-T-D-t path of the southern Río San Juan metamorphic complex, northern Dominican Republic

    NASA Astrophysics Data System (ADS)

    Escuder-Viruete, J.; Valverde-Vaquero, P.; Rojas-Agramonte, Y.; Gabites, J.; Pérez-Estaún, A.

    2012-04-01

    An integrated structural, petrological, geochemical and geochronological study was undertaken to constrain the origin, structural development and tectonic control on the exhumation of the high-P Cuaba Unit. Located in the southern part of the Río San Juan Metamorphic Complex, northern Dominican Republic, the Cuaba Unit defines a ~40 km long and 2.5-6 km wide, NW-SE-elongated metamorphic complex. Structurally, it is divided into two zones: an internal antiformal core and an outer shear zone. The core, or lower Guaconejo subunit, consists of retrograded eclogites, garnet-bearing mafic and ultramafic gneisses, metagabbros, metadiorites, subordinated migmatites and mylonitic rocks. The outer shear zone, or upper Jobito subunit, is composed of amphibolites with a strong S-L fabric and metadiorites. The Jobito and Guaconejo subunits are juxtaposed by several rootless bodies of SSZ serpentinized peridotites, sheared Hbl-bearing tonalites and variably retrogressed high-P amphibolites. The unit is also juxtaposed against the underlying Helechal peridotite. Whole-rock geochemical analyses indicate that mafic rocks of the Cuaba Unit originated from low-Ti and low-LREE IAT, IAT, N-MORB and calc-alkaline type protoliths. The evolution of structural fabrics and P-T metamorphic conditions recorded in the Cuaba Unit allows identifying (1) a prograde metamorphism (D1-M1) from amphibolite and high-P epidote-garnet amphibolite to eclogite facies conditions, and (2) a retrogressive event (D2-M2) to mid/low-P amphibolite and greenschist facies conditions. The M2 stage consists in an isothermal decompression and was accompanied by variably partial melting of mafic litologies. U-Pb TIMS dating on zircon grains (89.73±0.15 Ma) coupled with 40Ar-39Ar analyses on pargasite/aluminous tschermakite (~89 Ma to 83 Ma), placed temporal constraints on the exhumation path from the M1 pressure-peak (Turonian-Coniacian boundary) to the M2 stage (Coniacian and Santonian). Zircons in early D2 garnet

  14. Mesozoic and Cenozoic thermal history of the eastern Mojave Desert, California and western Arizona, with emphasis on the Old Woman Mountains area and the Chemehuevi metamorphic core complex

    SciTech Connect

    Foster, D.A.

    1989-01-01

    Mesozoic thickening and Cenozoic extension resulted in the juxtaposition of upper and middle crustal rocks in the eastern Mojave Desert, southeastern California and western Arizona. The application of {sup 40}Ar/{sup 39}Ar thermochronology and petrology/thermobarometry to rocks in this region provides information about the timing and nature of thrusting, plutonism, metamorphism, denudation, and detachment faulting. Orogenesis culminated during the Late Cretaceous when rocks exposed in the Old Woman-Piute, Chemehuevi, and Sacramento Mountains attained temperatures > 500C. High grade metamorphism of the Old Woman Mountains area was caused by the intrusion of the Old Woman-Piute batholith at 73 {plus minus} 1 Ma; Cretaceous mineral assemblages in Proterozoic pelites increase in grade from greenschist to upper amphibolite facies, and {sup 40}Ar/{sup 39}Ar hornblende ages from Proterozoic amphibolites decrease in age from {approximately} 1,600 Ma to 73 {plus minus} 1 Ma, in the direction of 73 Ma plutons. Pluton emplacement and metamorphism occurred at 3 to 3.5 kbars and 400 > 600C in the Piute Mountains, and 3.5 to 4.5 kbars and 530 to > 650C in the Old Woman Mountains. Following the Cretaceous, the eastern Mojave Desert underwent a period of cooling at a rate of 2 to 10C/Ma between 65 and 25 Ma. By 30 Ma rocks exposed in the Old Woman-Piute, Marble Ship, Clipper and Turtle Mountains were below {approximately} 100C. {sup 40}/{sup 39}Ar ages from the Sacramento Mountains suggest that mylonitization caused by the onset of regional extension occurred at 23 {plus minus} 1 Ma. When extension started in the Chemehuevi Mountains, rocks exposed in the southwestern and northeastern portions of footwall to the Chemehuevi detachment fault were at {approximately} 180C and {approximately} 350C, respectively which suggests that this fault initiated at a dip of 5 to 30{degree}.

  15. Metamorphic facies map of Alaska

    SciTech Connect

    Dusel-Bacon, C.; O-Rourke, E.F.; Reading, K.E.; Fitch, M.R.; Klute, M.A.

    1985-04-01

    A metamorphic-facies of Alaska has been compiled, following the facies-determination scheme of the Working Group for the Cartography of the Metamorphic Belts of the World. Regionally metamorphosed rocks are divided into facies series where P/T gradients are known and into facies groups where only T is known. Metamorphic rock units also are defined by known or bracketed age(s) of metamorphism. Five regional maps have been prepared at a scale of 1:1,000,000; these maps will provide the basis for a final colored version of the map at a scale of 1:2,500,000. The maps are being prepared by the US Geological Survey in cooperation with the Alaska Division of Geological and Geophysical Surveys. Precambrian metamorphism has been documented on the Seward Peninsula, in the Baird Mountains and the northeastern Kuskokwim Mountains, and in southwestern Alaska. Pre-Ordovician metamorphism affected the rocks in central Alaska and on southern Prince of Wales Island. Mid-Paleozoic metamorphism probably affected the rocks in east-central Alaska. Most of the metamorphic belts in Alaska developed during Mesozoic or early Tertiary time in conjuction with accretion of many terranes. Examples are Jurassic metamorphism in east-central Alaska, Early Cretaceous metamorphism in the southern Brooks Range and along the rim of the Yukon-Kovyukuk basin, and late Cretaceous to early Tertiary metamorphism in the central Alaska Range. Regional thermal metamorphism was associated with multiple episodes of Cretaceous plutonism in southeastern Alaska and with early Tertiary plutonism in the Chugach Mountains. Where possible, metamorphism is related to tectonism. Meeting participants are encouraged to comment on the present version of the metamorphic facies map.

  16. Combustion metamorphism in southern california.

    PubMed

    Bentor, Y K; Kastner, M

    1976-08-06

    In several places in Southern California bituminous sediments of the Monterey Formation-siliceous shales, phosphatic rocks, dolomites, and arkoses-were affected during the Pleistocene and as late as the l9th century by spontaneous subsurface combustion of organic matter, during which temperatures up to 1600 degrees C were reached. This oxidative heating (combustion metamorphism) affected rock complexes over areas of tens of square kilometers that tend to occur in clusters. As a result of these processes, the rocks recrystallized and partially melted to form pseudomagmas which intruded the country rocks. The chemical compositions of these melts differ from those of igneous magmas. Acid and intermediate siliceous melts as well as phosphatic melts have formed. These two types are generally immiscible. The following high-temperature minerals were determined: alpha- and beta-cristobalite, quartz, calcic plagioclase, diopsidic pyroxene, wollastonite, cordierite, graphite, fluorapatite, and fluorite; at lower temperature pyrite, gypsum, aragonite, calcite, jarosite, and hexahydrite crystallized.

  17. Modelling Metamorphism by Abstract Interpretation

    NASA Astrophysics Data System (ADS)

    Dalla Preda, Mila; Giacobazzi, Roberto; Debray, Saumya; Coogan, Kevin; Townsend, Gregg M.

    Metamorphic malware apply semantics-preserving transformations to their own code in order to foil detection systems based on signature matching. In this paper we consider the problem of automatically extract metamorphic signatures from these malware. We introduce a semantics for self-modifying code, later called phase semantics, and prove its correctness by showing that it is an abstract interpretation of the standard trace semantics. Phase semantics precisely models the metamorphic code behavior by providing a set of traces of programs which correspond to the possible evolutions of the metamorphic code during execution. We show that metamorphic signatures can be automatically extracted by abstract interpretation of the phase semantics, and that regular metamorphism can be modelled as finite state automata abstraction of the phase semantics.

  18. The sup 40 Ar/ sup 39 Ar thermochronology of the eastern Mojave Desert, California, and adjacent western Arizona with implications for the evolution of metamorphic core complexes

    SciTech Connect

    Foster, D.A.; Harrison, T.M. ); Miller, C.F. ); Howard, K.A. )

    1990-11-10

    The application of {sup 40}Ar/{sup 39}Ar thermochronology provides information about the timing and nature of thrusting, plutonism, metamorphism, denudation, and detachment faulting. The {sup 40}Ar/{sup 39}Ar ages of 175 to 125 Ma from the Clipper, Piute, Turtle, Mohave, Bill Williams, and Hualapai Mountains are interpreted to be the result of a middle Mesozoic thermal event(s) caused by crustal thickening. The {sup 40}Ar/{sup 39}Ar data from the Clipper and Piute Mountains suggest that this thermal event was followed by a period of cooling at rates of 1-5C/m.y. Orogenesis culminated during the Late Cretaceous when rocks exposed in the Old Woman-Piute, Chemehuevi, and Sacramento Mountains attained temperatures >500C which reset the K-Ar systems of minerals from Proterozoic rocks. High-grade metamorphism in the Old Woman Mountains area was caused by the intrusion of the Old Woman-Piute batholith at 73 {plus minus} 1 Ma. Cooling rates following batholith emplacement in the Old Woman Mountains were {approximately}100C/m.y. between 73 and 70 Ma and 5-10C/m.y. from 70 to {approximately}30 Ma. By 30 Ma, rocks exposed in the Old Woman-Piute, Marble, Ship, Clipper, and Turtle Mountains were below {approximately}100C. The {sup 49}Ar/{sup 39}Ar ages from the Sacramento Mountains suggest that mylonization caused by the onset of regional extension occurred at 23 {plus minus} 1 Ma. When extension started in the Chemehuevi Mountains, rocks exposed in the southwestern and northeastern portions of footwall to the Chemehuevi detachment fault were at {approximately}180C and {approximately}350C, respectively. Unroofing of the footwalls to detachment faults in the Sacramento and Chemehuevi Mountains resulted in average cooling rates of 10-50C/m.y. between 22 and 15 Ma.

  19. Pan-African metamorphic evolution in the southern Yaounde Group (Oubanguide Complex, Cameroon) as revealed by EMP-monazite dating and thermobarometry of garnet metapelites

    NASA Astrophysics Data System (ADS)

    Owona, Sebastien; Schulz, Bernhard; Ratschbacher, Lothar; Mvondo Ondoa, Joseph; Ekodeck, Georges E.; Tchoua, Félix M.; Affaton, Pascal

    2011-01-01

    Garnet-bearing micaschists and paragneisses of the Yaounde Group in the Pan-African Central African Orogenic Belt in Cameroon underwent a polyphase structural evolution with the deformation stages D 1-D 2, D 3 and D 4. The garnet-bearing assemblages crystallized in course of the deformation stage D 1-D 2 which led to the formation of the regional main foliation S 2. In XCa- XMg coordinates one can distinguish several zonation trends in the garnet porphyroblasts. Zonation trends with increasing XMg and variably decreasing XCa signalize a garnet growth during prograde metamorphism. Intermineral microstructures provided criteria for local equilibria and a structurally controlled application of geothermobarometers based on cation exchange and net transfer reactions. The syndeformational P- T path sections calculated from cores and rims of garnets in individual samples partly overlap and align along clockwise P- T trends. The P- T evolution started at ˜450 °C/7 kbar, passed high-pressure conditions at 11-12 kbar at variable temperatures (600-700 °C) and involved a marked decompression toward 6-7 kbar at high temperatures (700-750 °C). Th-U-Pb dating of metamorphic monazite by electron microprobe (EMP-CHIME method) in eight samples revealed a single period of crystallization between 613 ± 33 Ma and 586 ± 15 Ma. The EMP-monazite age populations between 613 ± 33 Ma enclosed in garnet and 605 ± 12 Ma in the matrix apparently bracket the high temperature-intermediate pressure stage at the end of the prograde P- T path. The younger monazites crystallized still at amphibolite-facies conditions during subsequent retrogression. The Pan-African overall clockwise P- T evolution in the Yaounde Group with its syndeformational high pressure stages and marked pressure variations is typical of the parts of orogens which underwent contractional crustal thickening by stacking of nappe units during continental collision and/or during subduction-related accretionary processes.

  20. Metamorphic Testing for Cybersecurity

    PubMed Central

    Chen, Tsong Yueh; Kuo, Fei-Ching; Ma, Wenjuan; Susilo, Willy; Towey, Dave; Voas, Jeffrey

    2016-01-01

    Testing is a major approach for the detection of software defects, including vulnerabilities in security features. This article introduces metamorphic testing (MT), a relatively new testing method, and discusses how the new perspective of MT can help to conduct negative testing as well as to alleviate the oracle problem in the testing of security-related functionality and behavior. As demonstrated by the effectiveness of MT in detecting previously unknown bugs in real-world critical applications such as compilers and code obfuscators, we conclude that software testing of security-related features should be conducted from diverse perspectives in order to achieve greater cybersecurity. PMID:27559196

  1. Metamorphic Testing for Cybersecurity.

    PubMed

    Chen, Tsong Yueh; Kuo, Fei-Ching; Ma, Wenjuan; Susilo, Willy; Towey, Dave; Voas, Jeffrey; Zhou, Zhi Quan

    2016-06-01

    Testing is a major approach for the detection of software defects, including vulnerabilities in security features. This article introduces metamorphic testing (MT), a relatively new testing method, and discusses how the new perspective of MT can help to conduct negative testing as well as to alleviate the oracle problem in the testing of security-related functionality and behavior. As demonstrated by the effectiveness of MT in detecting previously unknown bugs in real-world critical applications such as compilers and code obfuscators, we conclude that software testing of security-related features should be conducted from diverse perspectives in order to achieve greater cybersecurity.

  2. Metamorphic facies map of Southeastern Alaska; distribution, facies, and ages of regionally metamorphosed rocks

    USGS Publications Warehouse

    Dusel-Bacon, Cynthia; Brew, D.A.; Douglass, S.L.

    1996-01-01

    Nearly all of the bedrock in Southeastern Alaska has been metamorphosed, much of it under medium-grade conditions during metamorphic episodes that were associated with widespread plutonism. The oldest metamorphisms affected probable arc rocks near southern Prince of Wales Island and occurred during early and middle Paleozoic orogenies. The predominant period of metamorphism and associated plutonism occurred during Early Cretaceous to early Tertiary time and resulted in the development of the Coast plutonic-metamorphic complex that extends along the inboard half of Southeastern Alaska. Middle Tertiary regional thermal metamorphism affected a large part of Baranof Island.

  3. P-T conditions of Stor Jougdan garnet pyroxenite and phengite-bearing eclogite: further evidence of UHP metamorphism in the Seve Nappe Complex of northern Jämtland (Swedish Caledonides)

    NASA Astrophysics Data System (ADS)

    Klonowska, Iwona; Janák, Marian; Majka, Jarosław; Kośmińska, Karolina

    2014-05-01

    The most recent comprehensive petrological studies of high grade rocks within the Seve Nappe Complex (SNC) in the Scandinavian Caledonides have resulted in new discoveries of ultrahigh pressure metamorphism (UHPM) probably of Late Ordovician age. The first evidence was documented in the kyanite-bearing eclogite dyke within the garnet peridotite at the lake Friningen locality (Janák et al. 2013) in northern Jämtland, Sweden (Gee et al. 2013). A peak pressure assemblage yielded metamorphic conditions within the coesite stability field (~30 kbar and 800°C). About 25 km to the southeast, the Tjeliken eclogite records P-T conditions of 25-26 kbar and 650-700°C (Majka et al. 2013). The study presented here, concerns P-T conditions of garnet pyroxenite and newly discovered, phengite-bearing eclogite located in the SNC about 4 km SE of Tjeliken Mt. on the northern side of lake Stor Jougdan. The investigated garnet pyroxenite, found as small veins within the garnet peridotite body, is composed essentially of Mg-garnet, -orthopyroxene, -clinopyroxene and -olivine, minor constituents include Cr-spinel, amphibole and phlogopite. The main mineral assemblage of phengite eclogite consists of garnet, omphacite, amphibole and minor phengite, plagioclase-diopside symplectites, rutile, titanite, zoisite and quartz (possibly former coesite). Garnet peridotite occurring by the Stor Jougdan lake was studied by Van Roermund (1989) who estimated the temperatures of c. 720-800°C using Fe-Mg geothermometer (Harley 1984a) and the pressures of 14-18 kbar using Al2O3 contents of the orthopyroxene (Harley 1984b) to constrain the P-T conditions of Caledonian metamorphism (M2 garnet with prograde growth zoning and M2 orthopyroxene according to Van Roermund 1989). In the present work, we have used garnet-orthopyroxene (Harley 1984b) and Ca in orthopyroxene (Brey & Koehler 1990) geothermometry in combination with Al in orthopyroxene geothermobarometry (Brey & Koehler 1990) and obtained the

  4. The 40Ar/39Ar thermochronology of the eastern Mojave Desert, California, and adjacent western Arizona with implications for the evolution of metamorphic core complexes

    NASA Astrophysics Data System (ADS)

    Foster, David A.; Harrison, T. Mark; Miller, Calvin F.; Howard, Keith A.

    1990-11-01

    Mesozoic thickening and Cenozoic extension resulted in the juxtaposition of upper and middle crustal rocks in the eastern Mojave Desert, southeastern California and western Arizona. The application of 40Ar/39Ar thermochronology to rocks in this region provides information about the timing and nature of thrusting, plutonism, metamorphism, denudation, and detachment faulting. The 40Ar/39Ar ages of 175 to 125 Ma from the Clipper, Piute, Turtle, Mohave, Bill Williams, and Hualapai Mountains are interpreted to be the result of a middle Mesozoic thermal event(s) caused by crustal thickening. The 40Ar/39Ar data from the Clipper and Piute Mountains suggest that this thermal event was followed by a period of cooling at rates of 1°-5°C/m.y. Orogenesis culminated during the Late Cretaceous when rocks exposed in the Old Woman-Piute, Chemehuevi, and Sacramento Mountains attained temperatures >500°C which reset the K-Ar systems of minerals from Proterozoic rocks. High-grade metamorphism in the Old Woman Mountains area was caused by the intrusion of the Old Woman-Piute batholith at 73±1 Ma. Cooling rates following batholith emplacement in the Old Woman Mountains were ˜100°C/m.y. between 73 and 70 Ma and 5°-10°C/m.y. from 70 to ˜30 Ma. Between 65 and 25 Ma the entire eastern Mojave Desert underwent a period of cooling at a rate of 2°-10°C/m.y. By 30 Ma, rocks exposed in the Old Woman-Piute, Marble, Ship, Clipper, and Turtle Mountains were below ˜100°C. The 40Ar/39Ar ages from the Sacramento Mountains suggest that mylonitization caused by the onset of regional extension occurred at 23±1 Ma. When extension started in the Chemehuevi Mountains, rocks exposed in the southwestern and northeastern portions of footwall to the Chemehuevi detachment fault were at ˜180°C and ˜350°C, respectively. This suggests that the exposed part of the Chemehuevi detachment fault initiated at a dip of 5°-30° or as a series of higher-angle faults that cut to a depth of 10-12 km and were

  5. P-T-t conditions, Nd and Pb isotopic compositions and detrital zircon geochronology of the Massabesic Gneiss Complex, New Hampshire: isotopic and metamorphic evidence for the identification of Gander basement, central New England

    USGS Publications Warehouse

    Dorais, Michael J.; Wintsch, Robert P.; Kunk, Michael J.; Aleinikoff, John; Burton, William; Underdown, Christine; Kerwin, Charles M.

    2012-01-01

    We present new evidence for the assignment of the Neoproterozoic Massabesic Gneiss Complex of New Hampshire to the Gander terrane rather than the Avalon terrane. The majority of Avalonian (sensu stricto) igneous and meta-igneous rocks as defined in Maritime Canada have positive whole-rock ɛNd compared to more negative values for Gander rocks, although there is a region of overlap in ɛNd between the two terranes. Our samples from areas in Connecticut previously thought to be Avalonian and samples from the Willimantic dome have the same isotopic signatures as Maritime Canada Avalon. In contrast, samples from the Clinton dome of southern Connecticut plots exclusively in the Gander field. The majority of the orthogneiss samples from Lyme dome (coastal Connecticut), Pelham dome (central Massachusetts) and Massabesic Gneiss Complex also plot in the Gander field, with a few samples plotting in the overlap zone between Gander and Avalon. U-Pb age distributions of detrital zircon populations from quartzites from the Massabesic Gneiss Complex more closely approximate the data from the Lyme Dome rather than Avalon. Additionally, the similarity of the P-T-t path for the rocks of the Massabesic Gneiss Complex (established by thermobarometry and 40Ar/39Ar dating of amphibole, muscovite, biotite and K-feldspar) with that established in the Ganderian Lyme dome of southern Connecticut strengthens the assignment of these rocks to a single Gander block that docked to Laurentia during the Salinic Orogeny. The identification of Ganderian isotopic signatures for these rocks all of which show evidence for Alleghanian metamorphism, supports the hypothesis that Neoproterozoic Gander lower crustal rocks underlie southern New Hampshire, Massachusetts, and Connecticut, and that all rocks of the overlying Central Maine trough that largely escaped high-grade Alleghanian metamorphism are allochthonous. We suggest that during the Alleghanian, the docking of Gondwana caused Avalon to wedge into

  6. Equilibrium and kinetics in metamorphism

    NASA Astrophysics Data System (ADS)

    Pattison, D. R.

    2012-12-01

    The equilibrium model for metamorphism is founded on the metamorphic facies principle, the repeated association of the same mineral assemblages in rocks of different bulk composition that have been metamorphosed together. Yet, for any metamorphic process to occur, there must be some degree of reaction overstepping (disequilibrium) to initiate reaction. The magnitude and variability of overstepping, and the degree to which it is either a relatively minor wrinkle or a more substantive challenge to the interpretation of metamorphic rocks using the equilibrium model, is an active area of current research. Kinetic barriers to reaction generally diminish with rising temperature due to the Arrhenius relation. In contrast, the rate of build-up of the macroscopic energetic driving force needed to overcome kinetic barriers to reaction, reaction affinity, does not vary uniformly with temperature, instead varying from reaction to reaction. High-entropy reactions that release large quantities of H2O build up reaction affinity more rapidly than low-entropy reactions that release little or no H2O, such that the former are expected to be overstepped less than the latter. Some consequences include: (1) metamorphic reaction intervals may be discrete rather than continuous, initiating at the point that sufficient reaction affinity has built up to overcome kinetic barriers; (2) metamorphic reaction intervals may not correspond in a simple way to reaction boundaries in an equilibrium phase diagram; (3) metamorphic reactions may involve metastable reactions; (4) metamorphic 'cascades' are possible, in which stable and metastable reactions involving the same reactant phases may proceed simultaneously; and (5) fluid generation, and possibly fluid presence in general, may be episodic rather than continuous, corresponding to discrete intervals of reaction. These considerations bear on the interpretation of P-T-t paths from metamorphic mineral assemblages and textures. The success of the

  7. San Andreas Fault tremor and retrograde metamorphism

    NASA Astrophysics Data System (ADS)

    Fagereng, Åke; Diener, Johann F. A.

    2011-12-01

    Tectonic tremor is an enigmatic low-frequency seismic phenomenon mainly observed in subduction zones, but also documented along the deep extension of the central San Andreas Fault. The physical mechanisms behind this unusual seismic event are not yet determined for any tectonic setting; however, low effective stress conditions arising from metamorphic fluid production are commonly inferred for subduction-related tremor. We investigate the petrologic conditions at which the San Andreas tectonic tremor is inferred to occur through calculations of the pressure - temperature - time evolution of stable mineral assemblages and their water content in the dominant lithologies of the Franciscan Complex. We find that tremor locations around Parkfield and Cholame are currently experiencing retrograde metamorphic conditions. Within the temperature-depth conditions of observed tremor activity, at approximately 500°C and 20 km depth, several mineralogical transitions may occur in cooling greywacke and mafic rocks, leading to localised, significant removal of free water and an associated volume decrease. This indicates that, contrary to subduction-related tremor, tremor on the San Andreas Fault is not linked to prograde, crustal metamorphic fluid production within the fault zone; rather it might be related to mantle-derived fluids from below the tremor zone, and/or fault zone weakening that occurs as phyllosilicates replace more competent and granular mineral phases.

  8. Metamorphism in Plate Boundary Zones

    NASA Astrophysics Data System (ADS)

    Brown, M.

    2005-12-01

    Accretionary orogenic systems (AOS) form at sites of subduction of oceanic lithosphere; these systems dominate during supercontinent break-up and dispersal. Collisional orogenic systems (COS) form where ocean basins close and subduction ultimately ceases; these systems dominate during crustal aggregation and assembly of supercontinents. It follows that COS may be superimposed on AOS, although AOS may exist for 100s Ma without terminal collision. AOS are of two types, extensional-contractional AOS in dominantly extensional arc systems, and terrane-dominated AOS in which accretion of allochthonous elements occurs during oblique convergence. On modern Earth, regional metamorphism occurs in plate boundary zones. Blueschists are created in the subduction zone and ultra-high pressure metamorphic (UHPM) rocks are created in collision zones due to deep subduction of continental lithosphere; granulites are created deep under continental and oceanic plateaus and in arcs and collision zones [high-pressure (HP) granulites, ultra-high temperature (UHT) granulites]. In extensional-contractional AOS, basement generally is not exposed, primitive volcanic rocks occur through the history, rift basins step oceanward with time, and a well-defined arc generally is absent. LP-HT metamorphism is dominant, with looping, CW or CCW P-T-t paths and peak metamorphic mineral growth syn-to-late in relation to tectonic fabrics. UHT and HP granulites are absent, and although rare, blueschists may occur early, but UHPM is not recorded. Short-lived contractional phases of orogenesis probably relate to interruptions in the continuity of subduction caused by features on the ocean plate, particularly plateaus. Extensive granite (s.l.) magmatism accompanies metamorphism. Examples include the Lachlan Orogen, Australia, the Acadian Orogen, NE USA and Maritime Canada, and the Proterozoic orogens of the SW USA. At plate boundaries, oblique convergence is partitioned into two components, one directed more

  9. Sm Nd isotope systematics and REE data for leucotroctolites and their amphibolitized equivalents of the Niquelândia Complex upper layered series, central Brazil: further constraints for the timing of magmatism and high-grade metamorphism

    NASA Astrophysics Data System (ADS)

    Ferreira Filho, C. F.; Pimentel, M. M.

    2000-12-01

    The Barro Alto, Niquelândia, and Cana Brava Complexes are major Proterozoic layered intrusions in central Brazil that were affected by high-grade metamorphism with associated ductile deformation during the Neoproterozoic (770-795 Ma). Recent studies recognized that the Niquelândia Complex comprises two petrologically distinct and tectonically juxtaposed magmatic systems: a younger Upper Layered Series to the west and an older Lower Layered Series to the east. Previous geochronological studies on Lower Series rocks suggested a Paleoproterozoic (ca 2.0 Ga) age for the Lower Series magmatic event. New trace element data matched with Sm-Nd isotope data for Upper Series samples yielded well-constrained and original geochronological information. The 1.35 Ga age of the Upper Series magmatism reported in this paper indicates a much younger age of the Upper Series compared with the Lower Series. The tectonic contact between these two distinct magmatic systems is now raised to the category of a major Paleo-Mesoproterozoic crustal discontinuity.

  10. A multi-isotope approach to understanding the evolution of Cenozoic magmatism in the northeastern Basin and Range: Results from igneous rocks in the Albion-Raft River-Grouse Creek metamorphic core complex

    NASA Astrophysics Data System (ADS)

    Konstantinou, A.; Strickland, A.; Miller, E. L.

    2012-12-01

    Deep crustal rocks exposed by extensional processes in metamorphic core complexes provide a unique opportunity to address the magmatic and isotopic evolution of the crust and assess the relative crust versus mantle contributions in Cenozoic igneous rocks exposed in the complexes. The Albion-Raft River-Grouse Creek metamorphic core complex exposes mid-crustal rocks that resided at depths of ~15-20 km before the onset of Cenozoic extension. Three major Cenozoic magmatic events are represented in the complex and have been studied using multiple isotopic systems (whole rock Sr and Nd coupled with the Oxygen isotopes in zircon). These three major events are: (1) 42-31 Ma intrusion of a composite plutonic complex of calc-alkaline composition that intrudes both upper crustal rocks (~5-10 km depth) and deeper rocks. (2) A 32-25 Ma plutonic complex, with evolved calc-alkaline composition that intruded in the middle crust (~12-15 km depth), and (3) A 10-8 Ma bimodal (basalt-rhyolite) suite of volcanic rocks that contain high-T anhydrous mineral assemblages erupted across the complex. The pre-extensional crust consisted of an upper crust composed primarily of Neoproterozoic through Triassic metasedimentary rocks (schist and quartzite at its base and limestone at its top). The middle crust consists of late Archean orthogneiss with evolved composition (metamorphosed peraluminous granite) with average 87Sr/86Sr40~0.800, ɛNd40~ -43.4 and δ18Ozirc ~5.7‰. The lower crust is inferred to have been composed of Precambrian intermediate composition igneous rocks with average 87Sr/86Sr40~0.750, ɛNd40~ -37.5 and δ18Ozirc ~5.9‰, and Precambrian mafic rocks with average 87Sr/86Sr40~0.717, ɛNd40~ -25 and δ18Ozirc ~7.0‰. Existing and new data indicate that the 42-31 Ma upper crustal plutonic complex ranges in isotopic composition from 87Sr/86Sri=0.709-0.712, ɛNdi=-15 to -25 and δ18Ozirc 4.7-6.5‰. The composition of the 32-25 Ma middle crustal plutonic complex ranges from 87Sr

  11. Submarine hydrothermal metamorphism of the Del Puerto ophiolite, California.

    USGS Publications Warehouse

    Evarts, R.C.; Schiffman, P.

    1983-01-01

    Metamorphic zonation overprinted on the volcanic member and overlying volcanogenic sediments of the ophiolite complex increases downward in grade and is characterized by the sequential appearance with depth of zeolites, ferric pumpellyite and pistacitic epidote. Metamorphic assemblages of the plutonic member of the complex are characterized by the presence of calcic amphibole. The overprinting represents the effects of hydrothermal metamorphism resulting from the massive interaction between hot igneous rocks and convecting sea-water in a submarine environment. A thermal gradient of 100oC/km is postulated to account for the zonal recrystallization effects in the volcanic member. The diversity and sporadic distribution of mineral assemblages in the amphibole zone are considered due to the limited availability of H2O in the deeper part of the complex. Details of the zonation and representative microprobe analyses are tabulated.-M.S.

  12. The magmatism and metamorphism at the Malayer area, Western Iran

    NASA Astrophysics Data System (ADS)

    Ahadnejad, V.; Valizadeh, M. V.; Esmaeily, D.

    2009-04-01

    The Malayer area is located in the NW-SE aligned Sanandaj-Sirjan metamorphic belt, western Iran and consists mainly of Mesozoic schists so-called Hamadan Phyllites, Jurassic to Tertiary intrusive rocks and related contact metamorphic aureoles, aplites and pegmatites. The Sanandj-Sirjan Zone is produced by oblique collisional event between Arabian plate and Central Iran microcontinent. Highest level of regional metamorphism in the area is greenschist facies and injection of felsic magmas is caused contact metamorphism. Magmatism is consist of a general northwest trend large felsic to intermediate intrusive bodies. The main trend of structural features i.e. faults, fractures and other structural features is NW-SE. The Malayer granitoid complex is ellipsoid in shape and has NW-SE foliation especially at the corners of the intrusions. Petrography of the magmatic rocks revealed recrystallization of quartz and feldspars, bending of biotite, and aligment of minerals paralle to the main trend of magmatic and metamorphic country rocks. These indicated that intrusion of felsic magma is coincide to the regional metamorphism and is syn-tectoinc. Non-extensive contact metamorphism aureoles and rareness of pegmatite and aplite in the area are interpreted as injection of felsic magmas into the high-strain metamorphic zone. The regional metamorphic rocks mainly consist of meta-sandstone, slate, phyllite, schist. These gray to dark metasedimentary rocks are consist of quartz, muscovite, turmaline, epidote, biotite and chlorite. Sheeted minerals form extended schistosity and study of porphyroblast-matrix relationships shows that injection of granitic magma into the country rocks is syn to post-tectonic. Syn-tectonic indicating porphyroblast growth synchronous with the development of the external fabric. The thermal contact area of the granite can be observed in the contact margin of granite and regional metamorphic rocks, where it produced hornfelses, andalusit-garnet schists and

  13. Metamorphic evolution of the northwestern Ogcheon metamorphic belt, South Korea

    NASA Astrophysics Data System (ADS)

    Min, Kyoungwon; Cho, Moonsup

    1998-05-01

    The Ogcheon metamorphic belt (OMB) comprises Late Proterozoic to Paleozoic metasedimentary and metavolcanic sequences which are intruded by Mesozoic granitoid plutons. To delineate the metamorphic evolution of the OMB, we have investigated mineral parageneses, metamorphic reactions and P-T conditions of pelitic and mafic schists in the Chungju area, northwestern part of the OMB. The regional metamorphic grade increases north-westward from biotite to garnet zones, although low-pressure assemblages have developed in contact aureoles around Jurassic granites. Garnet crystals show chemical zoning, typical for prograde metamorphism, with decreasing Mn, and increasing Fe and Mg from core to rim. Compositions of amphiboles constituting the common assemblage in the mafic schist are consistent with those of biotite- and garnet-zones documented in the medium-pressure metabasites. P-T conditions of the garnet zone, estimated from garnet-biotite, garnet-chlorite and amphibole-plagioclase geothermometers together with garnet-plagioclase-biotite-muscovite/quartz geobarometers, are in the range of 5-8 kbar and 520-590°C. Retrograde P-T path based on fluid inclusion studies suggests that the exhumation of the OMB has passed through the P-T range of 1-3 kbar and 350-500°C, following the isochore curves of the CO 2 inclusions. In conjunction with structural and geochronologic data, we conclude that the OMB has experienced a polycyclic P-T evolution characterized by (1) crustal thickening during the Middle Paleozoic time and (2) regional retrograde metamorphism in the Triassic. Our result further suggests that the Triassic collision belt in east-central China does not pass through the OMB.

  14. Relations between tectonic tremor and metamorphic processes

    NASA Astrophysics Data System (ADS)

    Fagereng, A.; Diener, J. F.

    2011-12-01

    Tectonic tremor appears to require low effective stress conditions, and is therefore commonly inferred to correlate with zones of high fluid pressure. In subduction settings, tremor generally occurs near the down-dip end of the interseismically locked zone of the subduction thrust interface. We calculate the stable mineral assemblages in the subducting slab, and find that slab dehydration is not continuous, but rather restricted to a few reactions localized in pressure-temperature space. Along geothermal gradients applicable to Shikoku and Cascadia, our calculations indicate that localized voluminous water release from the breakdown of lawsonite and chlorite+glaucophane respectively, occurs near the tremor source region at the down-dip limit of the locked zone. The shape of the pressure-temperature path for the subducting slab prevents fluid release at depths above and below where these dehydration reactions occur. It therefore appears that tremor in these locations correlate with site-specific metamorphic dehydration reactions. Tremor is also observed along the deep extension of the central San Andreas Fault. We calculate the stable mineral assemblages in basalt and greywacke, representing main components of the Franciscan Complex melange rocks forming the protolith of San Andreas fault rocks. From thermal models and surface heat flow data it is apparent that the tremor source region is cooling and experiencing retrograde metamorphic conditions. Several mineralogical transitions occur at the temperature-depth conditions of tremor on the deep San Andreas, and during retrograde metamorphism these reactions lead to localized, significant removal of free water from the fault zone and an associated volume decrease. Contrary to subduction-related tremor, tremor on the San Andreas fault is therefore not linked to fluid production within the fault zone; rather it might be related to volume change and/or fault zone weakening that occurs as phyllosilicates replace more

  15. Low pressure regional metamorphism in the Mahneshan area, western Iran

    NASA Astrophysics Data System (ADS)

    Moazzen, M.; Droop, G. T. R.; Saki, A.

    2003-04-01

    LOW PRESSURE REGIONAL METAMORPHISM IN THE MAHNESHAN AREA, WESTERN IRAN M. Moazzen(1), G.T.R. Droop(2) and A. Saki(1) (1) Department of Geology, Tabriz University, 51664, Tabriz Iran, (2) Department of Earth Sciences, The University of Manchester, Manchester M13 9PL, UK moazzen@tabrizu.ac.ir/Fax:+98-411-3341244 The Mahneshan metamorphic complex is a part of the central Iran geological unit. Pelitic, calc-silicate and basic rocks have experienced polyphase deformation, metamorphism and partial melting producing a variety of mica schists, andalusite-staurolite-garnet schist, amphibolite and scapolite-, garnet- and phlogopite-bearing marbles. S-and I-type granitoids are spatially associated with the metamorphic rocks. Fossiliferous Cambrian sediments in the area are not metamorphosed, suggesting a Precambrian age for the metamorphism. Two main deformational phases D1 and D2 are recognised on the basis of field geology and micro-structural studies. The D1 deformational phase produced a slaty cleavage while D2 produced a crenulation cleavage, folding the D1 fabric. D2 was the major deformational phase in the area. Two metamorphic phases, M1 and M2, occurred during D1 and D2 respectively. M2 was stronger, causing moderate to high temperature/low pressure metamorphism and partial melting of the (semi)pelitic rocks. Conventional garnet-biotite thermometry yields temperatures of ca. 500°C for the andalusite-bearing pelites. Barometry of the pelitic rocks using petrogenetic grids and the GASP (garnet-aluminosilicate-quartz-plagioclase) barometer gives a pressure of ca. 3.5 kbar indicating low-pressure regional metamorphism. The data imply an average upper crustal geothermal gradient of ca. 40°/km. The S-type, garnet-bearing granitoids are believed to be products of partial melting of the (semi)pelitic rocks. Mineral parageneses and pressure-temperature estimates indicate a Buchan-type metamorphism during Precambrian of the Iranian crust. The intrusion of the I

  16. Using quantitative phase petrology to understand metamorphism

    NASA Astrophysics Data System (ADS)

    White, Richard

    2015-04-01

    Quantitative phase petrology has become one of the mainstay methods for interpreting metamorphic rocks and processes. Its increased utility has been driven by improvements to end-member thermodynamics, activity-composition relationships and computer programs to undertake calculations. Such improvements now allow us to undertake calculations in increasingly complex chemical systems that more closely reflect those of rocks. Recent progress in activity-composition (a-x) relationships is aimed at developing suites of a-x relationships in large chemical systems that are calibrated together, which will allow a more direct application of the method to metamorphic rocks. In addition, considerable progress has been made in how quantitative phase diagrams can be used to understand features, including chemical potential diagrams for reaction textures, methods for fractionating bulk compositions and methods for modelling open system processes. One feature of calculated phase diagrams is that they present us with a great amount of information, such as mineral assemblages, mineral proportions, phase compositions, volume or density etc. An important aspect to using this information is to understand the potential uncertainties associated with these, which are significant. These uncertainties require that calculated phase diagrams be used with caution to interpret observed features in rocks. Features such as mineral zoning and reaction textures should still be interpreted in a semi-quantitative way, even if based on a fully quantitative diagram. Exercises such as the interpretation of reaction overstepping based on relating phase diagrams to observed mineral core compositions are likely to give spurious results given the infelicities in existing a-x models. Despite these limitations, quantitative phase petrology remains the most useful approach to interpreting the metamorphic history of rocks in that it provides a theoretical framework in which to interpret observed features rather

  17. Shock metamorphism of Elephant Moraine A79001: Implications for olivine-ringwoodite transformation and the complex thermal history of heavily shocked Martian meteorites

    NASA Astrophysics Data System (ADS)

    Walton, Erin L.

    2013-04-01

    Lithology A of Martian meteorite Elephant Moraine (EET) A79001 contains fragments entrained within a 100 μm-thick shear-induced shock vein. These fragments, the shock vein matrix and walls of olivine along the vein, as well as shock deformation and transformation in rock-forming minerals in the bulk rock, were investigated using scanning electron microscopy, the electron microprobe and Raman spectroscopy. The presence of ringwoodite, the spinel-structured high-pressure (Mg,Fe)2SiO4 polymorph, has been confirmed in EETA79001 for the first time. Ringwoodite occurs within and around the shock vein, exhibiting granular and lamellar textures. In both textures ringwoodite consists of ˜500 nm size distinct grains. Ringwoodite lamellae are 115 nm to 1.3 μm wide. Planar fractures in olivine provided sites for heterogeneous nucleation of ringwoodite. Analyses performed on the largest grains (⩾1 μm) show that ringwoodite is consistently higher in iron (Fa27.4-32.4) relative to surrounding olivine (Fa25.1-267.7), implying that there was Fe-Mg exchange during their transformation, and therefore their growth was diffusion-controlled. In the shock environment, diffusion takes place dynamically, i.e., with concurrent deformation and grain size reduction. This results in enhanced diffusion rates (⩾10-8 m2/s) over nm - μm distances. Shock deformation in host rock minerals including strong mosaicism, pervasive fracturing, polysynthetic twinning (pyroxene only), extensive shock melting, local transformation of olivine to ringwoodite, and complete transformation of plagioclase to maskelynite in the bulk rock, indicate that EETA79001 was strongly shocked. The short shock duration (0.01 s) combined with a complex thermal history, resulted in crystallization of the 100 μm thick shock vein in EETA79001 during the pressure release, and partial back-transformation of ringwoodite to olivine. Based on the pressure stabilities of clinopyroxene + ringwoodite, crystallization at the

  18. Stratigraphic and metamorphic inversions in the central Menderes Massif: a new structural model

    NASA Astrophysics Data System (ADS)

    Okay, Aral I.

    2001-04-01

    The Menderes Massif is a large area of dominantly Tertiary metamorphic rocks in western Turkey. It is bordered in the west by the Cycladic Metamorphic Complex with Eocene high-pressure/low-temperature (HP/LT) metamorphism. In the Central Menderes the Aydın mountains are made up of a thrust stack of Eocene age. At the base of the thrust stack, greenschist-facies Paleozoic metasediments of the Menderes Massif form an inverted stratigraphic sequence. The Barrovian-type metamorphism is also inverted with garnet-bearing metapelites lying over the lower-grade biotite-bearing metapelites. The P-T conditions in the garnet zone are estimated as 530°C and 8 kbar. This schist sequence of the central Menderes Massif is interpreted as the inverted lower limb of a major southward closing recumbent fold, with the southern Menderes Massif representing a section from the near hinge of this fold. The Paleozoic metamorphic rocks of the central Menderes Massif are tectonically overlain by gneiss klippen possibly originating from the sheared and southward translated core of the Menderes fold. Lying also tectonically over the Paleozoic metamorphic rocks is a major thrust sheet belonging to the Cycladic metamorphic complex. It consists of garnet micaschist, Mesozoic marble, serpentinite and amphibolitised eclogite. Although it has a highly sheared internal structure, it probably represents an initially coherent sequence that has undergone HP/LT metamorphism during the Eocene. The Aydın mountains are dominated by contractional structures with subordinate extensional structures.

  19. Cathodoluminescence of diamond as an indicator of its metamorphic history

    NASA Astrophysics Data System (ADS)

    Kopylova, Maya; Bruce, Loryn; Longo, Micaela; Ryder, John; Dobrzhinetskaya, Larissa

    2010-05-01

    Diamond displays a supreme resistance to chemical and mechanical weathering, ensuring its survival through complex and prolonged crustal processes, including metamorphism and exhumation. For these reasons, volcanic sources and secondary and tertiary collectors for detrital placer diamonds, like Ural or Bingara diamonds, may be difficult to determine. If metamorphic processes leave their marks on diamond, they can be used to reconstruct crustal geologic processes and ages of primary diamondiferous volcanics. Four diamond suites extracted from metamorphic rocks have been characterized using optical CL, infrared and CL spectroscopy, and photoluminescence at the liquid nitrogen temperature. The studied diamonds are from the ~2.7 Ga sedimentary conglomerate and lamprophyric breccia metamorphosed in the greenschist facies (Wawa, Northern Ontario, Canada) during the 2.67 Ga Kenoran orogeny, and from the ultra-high pressure (UHP) terranes of Kokchetav (Kazakhstan) and Erzgebirge (Germany) exhumated in the Paleozoic. Wawa diamonds (Type IaAB and Type II) displayed green, yellow, orange, and red CL colours controlled by the CL emittance at 520, 576 nm, and between 586 and 664 nm. The UHP terranes diamonds show much weaker CL; few luminescent stones display CL peaks at 395, 498, 528 nm and a broad band at 580-668 nm. In contrast, most common diamonds found in unmetamorphosed rocks, i.e. octahedrally grown Type IaAB stones, luminescence blue emitting light at ~415-440 nm and 480-490 nm. There is a noticeable difference between cathodoluminescence of these diamonds and diamonds in metamorphic rocks. The studied diamonds that experienced metamorphism show a shift of CL emission to longer wavelengths (above 520 nm) and to green, yellow and red CL colours. Photoluminescence has the high resolution necessary to assign luminescence to specific optical centers of diamond. Diamonds in metamorphic rocks contain H3 (pairs of substitutional nitrogen atoms separated by a vacancy) and NVo

  20. Metamorphism in the Martian crust

    NASA Astrophysics Data System (ADS)

    McSween, Harry Y.; Labotka, Theodore C.; Viviano-Beck, Christina E.

    2015-04-01

    Compositions of basaltic and ultramafic rocks analyzed by Mars rovers and occurring as Martian meteorites allow predictions of metamorphic mineral assemblages that would form under various thermophysical conditions. Key minerals identified by remote sensing roughly constrain temperatures and pressures in the Martian crust. We use a traditional metamorphic approach (phase diagrams) to assess low-grade/hydrothermal equilibrium assemblages. Basaltic rocks should produce chlorite + actinolite + albite + silica, accompanied by laumontite, pumpellyite, prehnite, or serpentine/talc. Only prehnite-bearing assemblages have been spectrally identified on Mars, although laumontite and pumpellyite have spectra similar to other uncharacterized zeolites and phyllosilicates. Ultramafic rocks are predicted to produce serpentine, talc, and magnesite, all of which have been detected spectrally on Mars. Mineral assemblages in both basaltic and ultramafic rocks constrain fluid compositions to be H2O-rich and CO2-poor. We confirm the hypothesis that low-grade/hydrothermal metamorphism affected the Noachian crust on Mars, which has been excavated in large craters. We estimate the geothermal gradient (>20 °C km-1) required to produce the observed assemblages. This gradient is higher than that estimated from radiogenic heat-producing elements in the crust, suggesting extra heating by regional hydrothermal activity.

  1. High-P metamorphic rocks from the Himalaya and their tectonic implication ? a review

    NASA Astrophysics Data System (ADS)

    Jan, M. Qasim

    The suture zones bordering the Indian subcontinent on the E, N and W are characterized in several places by the occurrence of ophiolitic complexes and tectonic melanges. High-P metamorphic rocks have recently been discovered in the melanges in Burma, Naga Hills, southern Tibet, eastern and western Ladakh, Kohistan (Jijal, Allai, Shangla) and Khost (Afghanistan). The development of these rocks has an important bearing on the plate tectonics of the Himalaya. The High-P metamorphic rocks belong to prehnite-pumpellyite, blueschist and high-P greenschist facies but extensive garnet-granulites have developed at 35 km depth in Jijal. In the Indus-Zangbo suture zone (IZS) the high-P metamorphism is complemented to the N by low- or medium-P metamorphism and calc-alkaline magmatism in Tibet, Ladakh as well as Kohistan. High-P metamorphism in Jijal has been dated at 104 Ma, in Shangla at 70-100 Ma and in western Ladakh during mid-Cretaceous. Elsewhere, the timing of the high-P metamorphism is not known but a Cretaceous age is inferred. Since collision along the IZS occurred during Eocene, the high-P metamorphism is therefore related to the northwards subduction of the neo-Tethyan lithosphere under Tibet or late Mesozoic magmatic arcs. The timing of high-P metamorphism coincides with the breakup of India from Gondwanaland and its rapid northwards movement, whereas the tectonic melanges may principally have formed during Eocene collision and obduction.

  2. The onset of metamorphism in ordinary and carbonaceous chondrites

    USGS Publications Warehouse

    Grossman, J.N.; Brearley, A.J.

    2005-01-01

    Ordinary and carbonaceous chondrites of the lowest petrologic types were surveyed by X-ray mapping techniques. A variety of metamorphic effects were noted and subjected to detailed analysis using electron microprobe, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and cathodoluminescence (CL) methods. The distribution of Cr in FeO-rich olivine systematically changes as metamorphism increases between type 3.0 and type 3.2. Igneous zoning patterns are replaced by complex ones and Cr-rich coatings develop on all grains. Cr distributions in olivine are controlled by the exsolution of a Cr-rich phase, probably chromite. Cr in olivine may have been partly present as tetrahedrally coordinated Cr3+. Separation of chromite is nearly complete by petrologic type 3.2. The abundance of chondrules showing an inhomogeneous distribution of alkalis in mesostasis also increases with petrologic type. TEM shows this to be the result of crystallization of albite. Residual glass compositions systematically change during metamorphism, becoming increasingly rich in K. Glass in type I chondrules also gains alkalis during metamorphism. Both types of chondrules were open to an exchange of alkalis with opaque matrix and other chondrules. The matrix in the least metamorphosed chondrites is rich in S and Na. The S is lost from the matrix at the earliest stages of metamorphism due to coalescence of minute grains. Progressive heating also results in the loss of sulfides from chondrule rims and increases sulfide abundances in coarse matrix assemblages as well as inside chondrules. Alkalis initially leave the matrix and enter chondrules during early metamorphism. Feldspar subsequently nucleates in the matrix and Na re-enters from chondrules. These metamorphic trends can be used to refine classification schemes for chondrites. Cr distributions in olivine are a highly effective tool for assigning petrologic types to the most primitive meteorites and can be used to

  3. Shock metamorphic effects in lunar microcraters

    NASA Technical Reports Server (NTRS)

    Schaal, R. B.; Hoerz, F.; Gibbons, R. V.

    1976-01-01

    Detailed petrographic descriptions and results of electron microprobe analyses are presented for impact glasses as well as shocked and unshocked minerals associated with individual lunar microcraters (diameters of 0.4 to 4.4 mm). Rocks of four typical lunar lithologies are studied: anorthosite, anorthositic norite, ophitic basalt, and polymict breccia. Textures, mineralogies, and chemical compositions are examined along a radial traverse through each microcrater; i.e., across the impact glasses lining the crater wall, the shock-metamorphosed zone immediately underlying the glass liner, and the unshocked host rock. The microcraters are discussed in a sequence of increasing mineralogical complexity of the host rock (from anorthosite to polymict breccia) in order to distinguish shock effects among mineral types. The shock metamorphic features observed are found to be comparable to those reported in shocked basalt from Lonar Crater, India, and are categorized into five shock-intensity classes with pressures experimentally calibrated.

  4. Shock metamorphic effects in lunar microcraters

    NASA Technical Reports Server (NTRS)

    Schaal, R. B.; Hoerz, F.; Gibbons, R. V.

    1976-01-01

    Detailed petrographic descriptions and results of electron microprobe analyses are presented for impact glasses as well as shocked and unshocked minerals associated with individual lunar microcraters (diameters of 0.4 to 4.4 mm). Rocks of four typical lunar lithologies are studied: anorthosite, anorthositic norite, ophitic basalt, and polymict breccia. Textures, mineralogies, and chemical compositions are examined along a radial traverse through each microcrater; i.e., across the impact glasses lining the crater wall, the shock-metamorphosed zone immediately underlying the glass liner, and the unshocked host rock. The microcraters are discussed in a sequence of increasing mineralogical complexity of the host rock (from anorthosite to polymict breccia) in order to distinguish shock effects among mineral types. The shock metamorphic features observed are found to be comparable to those reported in shocked basalt from Lonar Crater, India, and are categorized into five shock-intensity classes with pressures experimentally calibrated.

  5. Oxidation during metamorphism of the ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Mcsween, Harry Y., Jr.; Labotka, Theodore C.

    1993-01-01

    It is suggested that some current concepts about the conditions of metamorphism in ordinary chondrites may be flawed. These meteorites display small systematic variations in the oxidation state of Fe. Evidence is presented that oxidation of Fe is linked to metamorphic grade in types 4-6 ordinary chondrites. This conclusion is at variance with a commonly accepted model for chondrite metamorphism that assumes Fe reduction by graphite.

  6. Thermal metamorphism of mantle chromites and the stability of noble-metal nanoparticles

    NASA Astrophysics Data System (ADS)

    González-Jiménez, José M.; Reich, Martin; Camprubí, Antoni; Gervilla, Fernando; Griffin, William L.; Colás, Vanessa; O'Reilly, Suzanne Y.; Proenza, Joaquín A.; Pearson, Norman J.; Centeno-García, Elena

    2015-08-01

    The Loma Baya complex in south-western Mexico is a volume of chromitite-bearing oceanic mantle that records a complex metamorphic history, defined by a first stage of hydrous metamorphism overprinted by a short-lived thermal event associated with an Eocene granite intrusion. During the hydrous metamorphism, the primary magmatic chromite-olivine assemblage was replaced by a secondary, porous intergrowth of Fe2+-rich chromite and chlorite. The heat supplied by an Eocene-age granite intrusion reversed the hydration reaction, producing chromite rims with perfectly developed crystal faces. This third-generation chromite is in equilibrium with highly magnesian (neoformed) olivine and defines a chemical trend analogous to the original magmatic one. The preservation of both reactions in the Loma Baya chromitite provides compelling evidence that the hydration of chromite can be reversed by either prograde metamorphism or any heating event, confirming previous thermodynamic predictions. Understanding these complex features is of particular interest due to the fact that changes in temperature and variable degrees of fluid/rock interaction during metamorphism and intrusion have also significantly affected the chromite-hosted IPGE carrier phases. Here, we propose that the metamorphic fluids involved in the hydrous metamorphism have caused the desulphurization of laurite RuS2, releasing minute particles of Ru-Os-Ir alloys <50 nm in diameter. The following short-lived thermal event that promoted dehydration in the chromitite had the opposite effect on nanoparticle stability, producing a significant coarsening of metal nanoparticles to dimensions larger than a micron. Based on such observations, we argue that IPGE nanoparticles can be exsolved and grown (or coarsen) from sulphide matrices during prograde metamorphism or heating and not exclusively upon cooling under magmatic conditions as it has been previously suggested. These results provide new insights on the relevant role of

  7. Geochemical, geochronological characterization and tectonic setting of the metamorphic rocks from the Biga Peninsula, NW Turkey

    NASA Astrophysics Data System (ADS)

    Şengün, F.; Tunç, Ä.°. O.; Yiǧitbaş, E.

    2012-04-01

    The Biga Peninsula in the northwest Turkey is one of the world's important natural laboratories to study geochronology due to having complex geology. The Biga Peninsula has different metamorphic basements including Kazdağ Massif, Çamlıca metamorphics, Kemer metamorphics and Karadağ Massif under cover of the Cenozoic volcano-sedimentary association. The Çamlıca metamorphic assemblage are one of the most critical regions for understanding of the geology of northwestern Turkey. The Çamlıca metamorphic association located on the westernmost part of Turkey is mainly composed of the Andıktası formation, the Dedetepe formation and the Salihler formation, from bottom to top. Metasedimentary rocks of the Çamlıca metamorphics have high SiO2 and medium Al2O3 and TiO2 values. The protolith of these metasediments is arkose-subarkose and greywacke. However, whole-rock geochemistry for the HP eclogite/blueschist within the Çamlıca metamorphics suggests that their protolith was basalt with high TiO2 and K2O-Na2O content and Nb/Y ratios. REE pattern and trace element contents of the HP eclogite/blueschist similar to typical MORB based on tectonic discrimination diagrams. The metavolcanic rocks occurring on the lowest part of the Çamlıca metamorphicassociation has andesitic composition with calc-alkaline character. All metavolcanic rocks in this unit cluster within the volcanic arc field. Zircon grains from metavolcanic rocks and HP eclogite/blueschists were dated by LA-ICPMS. Zircon ages of two metavolcanic samples yielded 328.6 ± 3.5 Ma and 343.2 ± 2.6 Ma, respectively. These ages are interpreted as the time of protolith crystallization of metavolcanic rocks. Moreover, zircon ages from HP eclogite/blueschist yielded 338 ± 1.8 Ma (Early Carboniferous) which is interpreted as the age of protolith crystallization of HP eclogite/blueschist. Geochemical and isotopic data indicate that Early Carboniferous Variscan ages within the Sakarya Zone may form the eastern

  8. Shock metamorphism in lunar samples.

    PubMed

    von Engelhardt, W; Arndt, J; Müller, W F; Stöffler, D

    1970-01-30

    Indications of shock metamorphism produced by pressures up to the megabar region have been observed in the fine material and the breccias, but very rarely in the coarser fragments of crystalline rocks. These indications are deformation structures in plagioclase and pyroxene, diaplectic plagioclase glasses, and glasses formed by shock-induced melting of lunar rocks. Two sources of shock waves have been distinguished: primary impact of meteorites and secondary impact of crater ejecta. There are two major chemical types of shock-induced melts. The differences in chemistry may be related to impact sites in mare and highland areas.

  9. A first find of retrogressed eclogites in the Odenwald Crystalline Complex, Mid-German Crystalline Rise, Germany: evidence for a so far unrecognised high-pressure metamorphism in the Central Variscides

    NASA Astrophysics Data System (ADS)

    Will, Thomas M.; Schmädicke, Esther

    2001-11-01

    Metabasic rocks were recently found in the Böllsteiner Odenwald, being part of the Variscan Mid-German Crystalline Rise (MGCR), that give evidence of a so far unrecognised eclogite-facies metamorphic event and testify, for the first time, to high-pressure metamorphism in the MGCR, the assumed suture zone of the European Variscides. Eclogite-facies metamorphism is indicated by both widespread clinopyroxene-plagioclase symplectites—interpreted as breakdown products of omphacite—and the composition of symplectitic clinopyroxene with measured jadeite contents of up to 27 mol%, extending into the omphacite field. Reintegration of numerous clinopyroxene-plagioclase symplectites implies minimum jadeite contents of the former omphacite of at least 38 mol%. For the eclogite stage, the four-phase assemblage omphacite-garnet-quartz-rutile can be reconstructed. A post-eclogitic overprint led to the formation of symplectitic intergrowths of clinopyroxene and plagioclase, amphibole-plagioclase coronas around garnet and domains with recrystallised amphibole and plagioclase. Preliminary P- T estimates for the eclogite-facies metamorphism indicate minimum pressures of some 16-17 kbar and temperatures of approximately 700±50 °C. Geothermobarometry for the subsequent symplectitic breakdown of omphacite yields some 14 kbar and 700 °C. P- T estimates on retrograde amphibolite-facies domains and on prograde mineral assemblages preserved in garnet cores point to a clockwise P- T path experienced by these rocks. The eclogites formed from a tholeiitic protolith, that may have been genetically linked to a continental extension zone or a young oceanic ridge or back-arc environment.

  10. Lunar anorthosite 15415 - Texture, mineralogy, and metamorphic history.

    NASA Technical Reports Server (NTRS)

    James, O. B.

    1972-01-01

    Lunar anorthosite 15415 consists almost entirely of anorthite (homogeneous anorthite 96.6 molecule percent), with accessory diopsidic augite and traces of hypersthene, ilmenite, and a silica mineral. The rock has had a complex metamorphic history. The texture reflects at least two episodes of shearing (followed by intense and partial recrystallization, respectively), one episode of cataclastic deformation, and one or more episodes of shattering and fragmentation.

  11. Lunar anorthosite 15415: texture, mineralogy, and metamorphic history.

    PubMed

    James, O B

    1972-01-28

    Lunar anorthosite 15415 consists almost entirely of anorthite (homogeneous anorthite 96.6 molecule percent), with accessory diopsidic augite and traces of hypersthene, ilmenite, and a silica mineral. The rock has had a complex metamorphic history. The texture reflects at least two episodes of shearing (followed by intense and partial recrystallization, respectively), one episode of cataclastic deformation, and one or more episodes of shattering and fragmentation.

  12. Lunar anorthosite 15415: Texture, mineralogy, and metamorphic history

    USGS Publications Warehouse

    James, O.B.

    1972-01-01

    Lunar anorthosite 15415 consists almost entirely of anorthite (homogeneous anorthite 96.6 molecule percent), with accessory diopsidic augite and traces of hypersthene, ilmenite, and a silica mineral. The rock has had a complex metamorphic history. The texture reflects at least two episodes of shearing (followed by intense and partial recrystallization, respectively), one episode of cataclastic deformation, and one or more episodes of shattering and fragmentation.

  13. Metamorphic geology: Why should we care?

    NASA Astrophysics Data System (ADS)

    Tajcmanova, Lucie; Moulas, Evangelos; Vrijmoed, Johannes

    2016-04-01

    Estimation of pressure-temperature (P-T) from petrographic observations in metamorphic rocks has become a common practice in petrology studies during the last 50 years. This data then often serves as a key input in geodynamic reconstructions and thus directly influences our understanding of lithospheric processes. Such an approach might have led the metamorphic geology field to a certain level of quiescence. Obtaining high-quality analytical data from metamorphic rocks has become a standard part of geology studies. The numerical tools for geodynamic reconstructions have evolved to a great extend as well. Furthermore, the increasing demand on using the Earth's interior for sustainable energy or nuclear waste disposal requires a better understanding of the physical processes involved in fluid-rock interaction. However, nowadays, metamorphic data have apparently lost their importance in the "bigger picture" of the Earth sciences. Interestingly, the suppression of the metamorphic geology discipline limits the potential for understanding the aforementioned physical processes that could have been exploited. In fact, those phenomena must be considered in the development of new generations of fully coupled numerical codes that involve reacting materials with changing porosity while obeying conservation of mass, momentum and energy. In our contribution, we would like to discuss the current role of metamorphic geology. We will bring food for thoughts and specifically touch upon the following questions: How can we revitalize metamorphic geology? How can we increase the importance of it? How can metamorphic geology contribute to societal issues?

  14. Age of metamorphic events : petrochronology and hygrochronology

    NASA Astrophysics Data System (ADS)

    Bosse, Valerie; Villa, Igor M.

    2017-04-01

    Geodynamic models of the lithosphere require quantitative data from natural samples. Time is a key parameter: it allows to calculate rates and duration of geological processes and provides informations about the involved physical processes (Vance et al. 2003). Large-scale orogenic models require linking geochronological data with other parameters: structures, kinematics, magmatic and metamorphic petrology (P-T-A-X conditions), thermobarometric evolution of the lithosphere, chemical dynamics (Muller, 2003). This requires geochronometers that are both powerful chemical and petrological tracers. In-situ techniques allow dating a mineral in its petrological-microstructural environment. Getting a "date" has become quite easy... But what do we date in the end ? What is the link between the numbers obtained from the mass spectrometer and the age of the metamorphic event we are trying to date ? How can we transform the date into a geological meaningful age ? What do we learn about the behavior of the geochronometer minerals? Now that we can perform precise dating on very small samples directly in the studied rock, it is important to improve the way we interpret the ages to give them more pertinence in the geodynamic context. We propose to discuss the Th/U/Pb system isotopic closure in various metamorphic contexts using our published examples of in situ dating on monazite and zircon (Bosse et al. 2009; Didier et al. 2014, 2015). The studied examples show that (i) fluid assisted dissolution-precipitation processes rather than temperature-dependent solid diffusion predominantly govern the closure of the Th/U/Pb system (ii) monazite and zircon are sensitive to the interaction with fluids of specific composition (F, CO2, K ...), even at low temperature (iii) in the absence of fluids, monazite is able to record HT events and to retain this information in poly-orogenic contexts or during partial melting events (iv) complex chemical and isotopic zonations, well known in monazite

  15. Metamorphic Epitaxy for Multijunction Solar Cells

    SciTech Connect

    France, Ryan M.; Dimroth, Frank; Grassman, Tyler J.; King, Richard R.

    2016-03-01

    Multijunction solar cells have proven to be capable of extremely high efficiencies by combining multiple semiconductor materials with bandgaps tuned to the solar spectrum. Reaching the optimum set of semiconductors often requires combining high-quality materials with different lattice constants into a single device, a challenge particularly suited for metamorphic epitaxy. In this article, we describe different approaches to metamorphic multijunction solar cells, including traditional upright metamorphic, state-of-the-art inverted metamorphic, and forward-looking multijunction designs on silicon. We also describe the underlying materials science of graded buffers that enables metamorphic subcells with low dislocation densities. Following nearly two decades of research, recent efforts have demonstrated high-quality lattice-mismatched multijunction solar cells with very little performance loss related to the mismatch, enabling solar-to-electric conversion efficiencies over 45%.

  16. The eastern limit of Acadian high grade metamorphism in northern New England: Implications for the location of the Acadian Suture''

    SciTech Connect

    West, D.P. Jr. . Dept. of Geological Sciences)

    1993-03-01

    Identifying the eastern limit of Acadian high grade metamorphism in New England is complicated by the presence of pre-Devonian high grade relics, locally intense Late Paleozoic thermal overprints, and post-metamorphic faults. New [sup 40]Ar/[sup 39]Ar mineral ages from along the eastern margin of high grade metamorphism in Maine and New Hampshire help delineate the eastern limit of Devonian amphibolite facies metamorphism thereby placing constraints on the location of the Acadian suture. In New Hampshire, Acadian high grade metamorphism extends southeast at least as far as the Campbell Hill fault and perhaps as far as the Flint Hill fault. New [sup 40]Ar/[sup 39]Ar hornblende ages and previously published U-Pb monazite ages from the Massabesic Gneiss Complex are Permian indicating high grade Alleghanian metamorphism. New [sup 40]Ar/[sup 39]Ar hornblende ages from the Rye Formation, although complicated by excess argon, are considerably older, indicating an earlier Pre-Silurian amphibolite facies metamorphism affected these rocks. North of Portland, [sup 40]Ar/[sup 39]Ar hornblende ages east of the Norumbega Fault Zone from high grade rocks of the Casco Bay Group have ages that range from Middle Devonian to Early Carboniferous, consistent with diachronous cooling following Acadian metamorphism. Further northeast, in upper amphibolite facies rocks of the Passagassawakeag Gneiss, new [sup 40]Ar/[sup 39]Ar hornblende ages range from 385--395 Ma suggesting that these rocks were also affected by high grade Acadian metamorphism.

  17. 3D geometrical modelling of post-foliation deformations in metamorphic terrains (Syros, Cyclades, Greece)

    NASA Astrophysics Data System (ADS)

    Philippon, Mélody; Le Carlier de Veslud, Christian; Gueydan, Frédéric; Brun, Jean-Pierre; Caumon, Guillaume

    2015-09-01

    Superposed to ductile syn-metamorphic deformations, post-foliation deformations affect metamorphic units during their exhumation. Understanding the role of such deformations in the structuration of metamorphic units is key for understanding the tectonic evolution of convergence zones. We characterize post-foliations deformations using 3D modelling which is a first-order tool to describe complex geological structures, but a challenging task where based only on surface data. We propose a modelling procedure that combines fast draft models (interpolation of orientation data), with more complex ones where the structural context is better understood (implicit modelling), allowing us to build a 3D geometrical model of Syros Island blueschists (Cyclades), based on field data. With our approach, the 3D model is able to capture the complex present-day geometry of the island, mainly controlled by the superposition of three types of post-metamorphic deformations affecting the original metamorphic pile: i) a top-to-South ramp-flat extensional system that dominates the overall island structure, ii) large-scale folding of the metamorphic units associated with ramp-flat extensional system, and iii) steeply-dipping normal faults trending dominantly NNW-SSE and EW. The 3D surfaces produced by this method match outcrop data, are geologically consistent, and provide reasonable estimates of geological structures in poorly constrained areas.

  18. Shock metamorphism of carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Scott, Edward R. D.; Keil, Klaus; Stoeffler, Dieter

    1992-01-01

    Shock effects were studied in 69 carbonaceous chondrites, including CM2, CO3, CV3, ungrouped C2-C4, and CK4-6 chondrites, using optical microscopy of thin sections. It is shown that the classification scheme of Stoeffler et al. (1991) for the progressive stages of shock metamorphism in ordinary chondrites is also applicable to carbonaceous chondrites. On the basis of shock effects in olivine, the 69 carbonaceous chondrites could be assigned to four shock stage, S1 to S4. The CM2 and CO3 groups were found to be the least shocked chondrite groups, whereas the CK4-6 and CV3 were the most strongly shocked groups.

  19. Thermal metamorphism. [of chondrite parent bodies

    NASA Technical Reports Server (NTRS)

    Mcsween, Harry Y., Jr.; Sears, Derek W. G.; Dodd, Robert T.

    1988-01-01

    Most chondrites have experienced thermal metamorphism, resulting in changes in texture, mineralogy and possibly chemical composition. The physical conditions for metamorphism range from approximately 400 to 1000 C at low lithostatic pressure. Metamorphism may have resulted from decay of short-lived radionuclides, electromagnetic induction or accretion of hot materials. Several thermal models for chondrite parent bodies have been proposed. The least metamorphosed type-3 chondrites probably carry the most information about the early solar system, but even these have been affected to some degree by thermal processing.

  20. Petrological evolution of the metamorphic sole of Oman

    NASA Astrophysics Data System (ADS)

    Agard, Philippe; Yamato, Philippe; Piccoli, Francesca; Benoît, Mathieu; Dubacq, Benoît; Guillot, Stéphane; Monié, Patrick; Chauvet, Alain; Ceuleneer, Georges; Chopin, Christian; Prigent, Cécile

    2013-04-01

    origin in a transitional oceanic domain located close to the continental margin. This result is in line with earlier findings (Ishikawara, 2005) and suggestions that these soles may derive from the Haybi complex (Searle and Cox, 1999). These data are compared to the available structural and petrological data on both the ophiolite proper and the metamorphic HP-LT subducted continental material beneath. We favour a scenario in which subduction initiates obliquely, in a transitional oceanic domain (close and to the north of Arabia), to a small and young marginal basin (c. 95 Ma; its spreading center is preserved in the south-east, near Maqsad). Limited calc-alkaline magmatic imprint (Lasail volcanism) and orthopyroxenite dykes on the south-western edge of the ophiolite could respectively correspond to limited arc magmatic inputs of the short-lived subduction and to the hydration-driven remelting of oceanic lithosphere. Our interpretation is finally set back in the frame of late Cretaceous Neotethyan geodynamics.

  1. Metamorphic density controls on early-stage subduction dynamics

    NASA Astrophysics Data System (ADS)

    Duesterhoeft, Erik; Oberhänsli, Roland; Bousquet, Romain

    2013-04-01

    contribution to the slab pull, where eclogitization does not occur. Thus, the lithospheric mantle acts as additional ballast below the sinking slab shortly after the initiation of subduction. Our calculation shows that the dogma of eclogitized basaltic, oceanic crust as the driving force of slab pull is overestimated during the early stage of subduction. These results improve our understanding of the force budget for slab pull during the intial and early stage of subduction. Therefore, the complex metamorphic structure of a slab and mantle wedge has an important impact on the development and dynamics of subduction zones. Further Reading: Duesterhoeft, Oberhänsli & Bousquet (2013), submitted to Earth and Planetary Science Letters

  2. Development of inverted metamorphic isograds in the western metamorphic belt, Juneau, Alaska

    USGS Publications Warehouse

    Himmelberg, G.R.; Brew, D.A.; Ford, A.B.

    1991-01-01

    An inverted metamorphic gradient is preserved in the western metamorphic belt near Juneau, Alaska. Detailed mapping of pelitic single-mineral isograds, systematic changes in mineral assemblages, and silicate geothermometry indicate that thermal peak metamorphic conditions increase structurally upward over a distance of about 8 km. Silicate geobarometry suggests that the thermal peak metamorphism occurred under pressures of 9-11 kbar. Our preferred interpretation of the cause of the inverted gradient is that it formed during compression of a thickened wedge of relatively wet and cool rocks in response to heat flow associated with the formation and emplacement of tonalite sill magma. -from Authors

  3. Shock metamorphism of ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Stoeffler, Dieter; Keil, Klaus; Scott, Edward R. D.

    1991-01-01

    This study proposes a revised petrographic classification of progressive stages of shock metamorphism of 26 ordinary chondrites. Six stages of shock (S1 to S6) are defined on the basis of shock effects in olivine and plagioclase as recognized by thin section microscopy, and the characteristic shock effects of each shock stage are described. It is concluded that shock effects and the sequence of progressively increasing degrees of shock metamorphosis are very similar in H, L, and LL groups. Differences in the frequency distribution of shock stages are relatively minor. It is suggested that the collisional histories of the H, L, and LL parent bodies were similar. Petrologic type-3 chondrites are deficient in stages S4 and S6 and, with increasing petrologic type, the frequency of stages S4 to S6 increases. It is suggested that the more porous and volatile-rich Type-3 chondrites are subject to melting at a lower shock pressure than the nonporous chondrites of higher petrologic type. Stage S3 is the most abundant in nearly all petrologic types.

  4. Jurassic to Miocene magmatism and metamorphism in the Mogok metamorphic belt and the India-Eurasia collision in Myanmar

    NASA Astrophysics Data System (ADS)

    Barley, M. E.; Pickard, A. L.; Zaw, Khin; Rak, P.; Doyle, M. G.

    2003-06-01

    Situated south of the eastern Himalayan syntaxis at the western margin of the Shan-Thai terrane the high-grade Mogok metamorphic belt (MMB) in Myanmar occupies a key position in the tectonic evolution of Southeast Asia. The first sensitive high-resolution ion microprobe U-Pb in zircon geochronology for the MMB shows that strongly deformed granitic orthogneisses near Mandalay contain Jurassic (˜170 Ma) zircons that have partly recrystallized during ˜43 Ma high-grade metamorphism. A hornblende syenite from Mandalay Hill also contains Jurassic zircons with evidence of Eocene metamorphic recrystallization rimmed by thin zones of 30.9 ± 0.7 Ma magmatic zircon. The relative abundance of Jurassic zircons in these rocks is consistent with suggestions that southern Eurasia had an Andean-type margin at that time. Mid-Cretaceous to earliest Eocene (120 to 50 Ma) I-type granitoids in the MMB, Myeik Archipelago, and Western Myanmar confirm that prior to the collision of India, an up to 200 km wide magmatic belt extended along the Eurasian margin from Pakistan to Sumatra. Metamorphic overgrowths to zircons in the orthogneiss near Mandalay date a period of Eocene (˜43 Ma) high-grade metamorphism possibly during crustal thickening related to the initial collision between India and Eurasia (at 65 to 55 Ma). This was followed by emplacement of syntectonic hornblende syenites and leucogranites between 35 and 23 Ma. Similar syntectonic syenites and leucogranites intruded the Ailao Shan-Red River shear belt in southern China and Vietnam during the Eocene-Oligocene to Miocene, and the Wang Chao and Three Pagodas faults in northern Thailand (that most likely link with the MMB) were also active at this time. The complex history of Eocene to early Miocene metamorphism, deformation, and magmatism in the MMB provides evidence that it may have played a key role in the network of deformation zones that accommodated strain during the northwards movement of India and resulting extrusion or

  5. Fluid-absent metamorphism in the Adirondacks

    NASA Technical Reports Server (NTRS)

    Valley, J. W.

    1986-01-01

    Results on late Proterozoic metamorphism of granulite in the Adirondacks are presented. There more than 20,000 sq km of rock are at granulite facies. Low water fugacites are implied by orthopyroxene bearing assemblages and by stability of k'spar-plag-quartz assemblages. After mentioning the popular concept of infiltration of carbon dioxide into Precambrian rocks and attendent generation of granulite facies assemblages, several features of Adirondack rocks pertinent to carbon dioxide and water during their metamorphism are summarized: wollastonite occurs in the western lowlands; contact metamorphism by anorthosite preceeding granulite metamorphism is indicated by oxygen isotopes. Oxygen fugacity lies below that of the QFM buffer; total P sub water + P sub carbon dioxide determined from monticellite bearing assemblages are much less than P sub total (7 to 7.6 kb). These and other features indicate close spatial association of high- and low-P sub carbon dioxide assemblages and that a vapor phase was not present during metamorphism. Thus Adirondack rocks were not infiltrated by carbon dioxide vapor. Their metamorphism, at 625 to 775 C, occurred either when the protoliths were relatively dry or after dessication occurred by removal of a partial melt phase.

  6. Stenian - Tonian and Ediacaran metamorphic imprints in the southern Paleoproterozoic Ubendian Belt, Tanzania: Constraints from in situ monazite ages

    NASA Astrophysics Data System (ADS)

    Boniface, Nelson; Appel, Peter

    2017-09-01

    In situ monazite geochronological data yield the timing of migmatitic metamorphism in southern Ubendian Belt. The mineral assemblage of garnet-biotite- sillimanite- K-feldspar- plagioclase-quartz- ilmenite, in migmatitic metapelitic gneisses was achieved during the Ediacaran metamorphic episode between 565 ± 4 Ma and 559 ± 8 Ma as manifested by dating of monazite grains that include garnet. The Ediacaran metamorphic event in the southern Ubendian Belt overprinted the Paleoproterozoic metamorphic event established at 1808 ± 9 Ma and the Mesoproterozoic metamorphic event at 944 ± 4 Ma (Tonian Period). The Stenian - Tonian and Ediacaran metamorphic imprints in the southern Ubendian Belt fall within the time window of metamorphism and deformation of the neighboring Irumide, southern Irumide, and Unango/Marrupa Complexes. The ca. 560 Ma old granulite facies imprinting in the southern Ubendian Belt is coeval with shear zone patterns in the neighboring Nyika Terrane in NE Malawi the event that was followed by eclogite facies metamorphism during the last stage of Gondwana amalgamation.

  7. Zircon evidences, ultrahigh-pressure metamorphic growth of Tso Morari gneisses, Ladakh India

    NASA Astrophysics Data System (ADS)

    Mukherjee, Barun Kumar

    2013-04-01

    The Tso Morari is a metamorphic unit of polyphase paragneiss-orthogneiss -metabasic complex. The metabasics are present as boudins within gneisses, spread over hundreds of kilometre along Indus Suture Zone, Himalaya, and this preserve relict of ultrahigh- pressure eclogite facies. While paragneiss and orthogneiss representing greenschist to low grade amphibolites facies metamorphism at P > 5 kbar and T >550 oC, suggest subsurface metamorphic growth of Tso Morari gneisses. The contrast relationship between UHP -metabsics and surrounding gneisses are due to the subtle preservation of UHP mineral assemblages in the felsic crustal rock. The TMC region usually preserves poor evidence of UHPM, possibly due to the pervasive deformation and strong retrogression process. The key minerals especially UHP indicator normally preserves only in tiny inclusion armor in chemically inert mineral like zircon and garnet. It's a rewarding task to search the inclusion in zircon, exceptionally the unique phases of high pressure mineral like phengite, pyrope-garnet, clinopyroxene, coesite, etc. The above study reveals first evidence of UHP metamorphism preserve within Tso Morari gneissic bodies. The studied zircons from TMC gneisses qualify the extreme UHPM condition suffered by this area at around 50 Ma and these zircons are grown with polyphase metamorphic condition, shown coeval nature to Tso Morari UHP eclogite. Our data provide strong evidence that the metasedimentary rock of~500 Ma even older could probably occupy core part of the TMC unit including metabasics patches, are suffered maximum grade of metamorphism at ~4 GPa, ever known from Himalaya.

  8. Contact metamorphism in Middle Ordovician arc rocks (SW Sardinia, Italy): New paleogeographic constraints

    NASA Astrophysics Data System (ADS)

    Costamagna, Luca Giacomo; Elter, Franco Marco; Gaggero, Laura; Mantovani, Federico

    2016-11-01

    In the early Cambrian Bithia Formation in the Variscan foreland of Sardinia, a Middle Ordovician granitic intrusion (478-457 Ma) is hosted by marly metasedimentary rocks that were affected by high-temperature (HT) metamorphism. A detailed structural-petrographical transect was conducted through the granitic intrusion and its host rocks. Field data and relationships between HT/low-pressure (LP) mineral assemblages in the metasedimentary rocks (Grt + Wo + Ves in carbonate lenses and And in pelite) demonstrate that the study area was affected by a polyphase HT overprint (I: T = 520-620 °C at XCO2 = 0.1, P: 0.2-0.4 GPa; and II: T = 600-670 °C at XCO2 = 0.1, P = 0.2-0.4 GPa) that pre-dates the Variscan tectonic, metamorphic, and igneous phases. In the Canigò or Canigou Massif (Eastern Pyrenees), the Somail Massif (Montagne Noire), and the Ruitor Massif (Internal Massifs, NW Alps), Middle Ordovician orthogneiss with relict igneous textures are deciphered despite being overprinted by Variscan amphibolite-to-granulite-facies metamorphism and subsequent Alpine low-grade metamorphism. Comparisons of associated igneous and metasedimentary rocks in the Sardinia foreland with the High-Grade Metamorphic Complex in the Variscan Axial Zone and the Canigou Massif indicate a convergent Middle Ordovician evolution that was overprinted by HT Variscan metamorphism.

  9. High-gradient metamorphism and anatexis in the Teletsk-Chulyshman metamorphic belt (Gornyi Altai): New data on the age and estimate of P-T parameters

    NASA Astrophysics Data System (ADS)

    Kargopolov, S. A.; Polyansky, O. P.; Reverdatto, V. V.; Novikov, I. S.; Vysotsky, E. M.

    2016-11-01

    Estimates of the P- T parameters of metamorphism, the first results of U-Pb dating of zircons from migmatites of the Teletsk-Chulyshman metamorphic belt, are reported. The age of migmatites from the southern block of the Teletsk-Chulyshman belt is 483.9 ± 5.7 Ma. As is evident from the pressure estimate (≤3-4 kbar), the Chulyshman migmatite-gneiss complex could be an apical part of the thermal-dome structure formed during the Early Ordovician thermal impact of a shallow magmatic basic thermal source, later displaced to the appropriate depth along the thrust at the collisional stage.

  10. Influence of Snowpack Metamorphism on Tropospheric Chemistry

    NASA Astrophysics Data System (ADS)

    Taillandier, A.; Alvarez-Aviles, L.; Domine, F.; Simpson, W.; Houdier, S.; Douglas, T.; Sturm, M.; Stolzberg, R.

    2004-12-01

    In recent years, many studies have highlighted the impact of photochemical reactions in snow on tropospheric chemistry. Snow metamorphism is another factor that affects snow-air interactions. Metamorphism consists of sublimation/condensation cycles driven by temperature gradients. It results in dramatic modifications of the physical properties of the snowpack that lead to exchanges of trace gases with the atmosphere. Even in the absence of light, the chemical compositions of both the snowpack and the troposphere are affected, influencing the chemical signal in ice cores. To better understand exchanges caused by physical processes, we undertook a winter-long study of a snowpack undergoing high-temperature gradient metamorphism, in Fairbanks, central Alaska. To monitor their relative influence on one another, we coupled our physical investigation of the snowpack (temperature, density, crystal morphology, specific surface area, permeability) to chemical measurements (ions, aldehydes, water isotopes). The effects of metamorphic intensity were studied by monitoring the evolution of a similar snowpack subjected to very low temperature gradients. This was achieved by letting the snowpack form on tables, under which air circulation allowed isothermal conditions. A much enhanced permeability and a faster decrease in specific surface area are observed under natural conditions compared to the table experiments. These characteristics considerably impact the concentration of chemical compounds within the snowpack and consequences on their remobilization depend on whether they are present as dissolved gases or particles. Gases such as formaldehyde are strongly released to the atmosphere under high grade metamorphism, while particulate species are less affected by the intensity of metamorphism. These data show that metamorphic intensity significantly influences snow composition, for a constant atmospheric composition. Climate change will decrease temperature gradients in the snow

  11. Short duration thermal metamorphism in CR chondrites

    NASA Astrophysics Data System (ADS)

    Briani, G.; Quirico, E.; Gounelle, M.; Paulhiac-Pison, M.; Montagnac, G.; Beck, P.; Orthous-Daunay, F.-R.; Bonal, L.; Jacquet, E.; Kearsley, A.; Russell, S. S.

    2013-12-01

    CR chondrites are considered as one of the most primitive classes of meteorites. Most of them experienced a mild aqueous alteration and show no evidence of significant effect of thermal metamorphism. We present here a search for low degree metamorphic effects in CR chondrites. We studied 15 CR chondrites using different metamorphic indicators: (1) structure and Ni content of metal grains; (2) hydration state of matrix; (3) structure and composition of organic matter. The different metamorphic indicators show that two of the analyzed CR chondrites, GRA 06100 and GRO 03116, experienced thermal metamorphism. Indeed, all of the metal grains in GRA 06100 and half of the metal grains in GRO 03116 show Ni-rich phases; the matrix of GRA 06100 is almost completely dehydrated, and the matrix of GRO 03116 is partially dehydrated; Raman spectra of organic matter in these two meteorites are clearly different from those obtained for organic matter in the other CR chondrites, which resemble Raman spectra of organic matter in unmetamorphosed, CM2 meteorites; IR spectra of insoluble organic matter extracted from GRA 06100 and GRO 03116 show lower carbonyl abundance and higher CH2/CH3 ratio with respect to organic matter of unmetamorphosed chondrites. The other CR chondrites analyzed here lack these characteristics and only show a few metal grains with Ni-rich inclusions. Our results also show that the metamorphic effects observed in GRA 06100 and GRO 03116 are different from those observed in type 3 chondrites, which experienced long-duration metamorphism of radiogenic origin. We infer that thermal processing in these two CRs extended over a short duration and was triggered by impacts.

  12. Resolving the Youngest Episode of Zircon Rim Growth with High-Spatial Resolution SIMS: U-Pb Ages and Trace Element Analyses from <1 um Thick Metamorphic Zircon Rims from the Zanskar Shear Zone and Tso Morari UHP Complex, NW Himalaya

    NASA Astrophysics Data System (ADS)

    Coble, M. A.; Leech, M. L.

    2014-12-01

    Dating the youngest phase of metamorphic or magmatic zircon growth by in-situ techniques on sectioned zircons can be challenging when rims are only a few microns thick; in the worst case, geologically meaningless measurements result from mixing between different age and/or compositional growth domains. This is especially true for zircons from the Zanskar Shear Zone and Tso Morari UHP Complex, NW Himalaya, which contain Eocene to Miocene rims that grew over Paleozoic and Proterozoic protolith cores during peak and retrograde metamorphism. These metamorphic rims are typically only 0.5 to 3.0 microns thick and require high-spatial resolution to resolve. We used the SHRIMP-RG ion-microprobe to perform new U-Pb depth-profiling analyses on zircon surfaces (non-polished) pressed into indium metal. Zircons from a leucogranite dike from Malung Tokpo along the Zanskar Shear Zone, which have 2000-5000 ppm U rims, were selected for detailed depth-profiling to evaluate the depth-resolution by SIMS for U-Pb and trace element analyses. Due to the high U concentration, we were able to decrease the primary beam intensity (sputter rate) and the count times for U and Pb isotopes, and increase the number of cycles through the run-table (45 peak-hopping scans). As a result, each cycle yielded a 0.04 micron depth-resolved zircon age and trace element composition. The youngest 13 scans yielded a U-Pb age of 21.3 ± 0.5 Ma, representing a 0.6 micron rim with uniform U, Th, and Hf concentrations. At 1.15 microns, the primary beam sputtered into a ~600 Ma core; this older age is complicated by the fact that it reflects mixing between the bottom of the sputter volume and the Miocene ages of the pit margins and rim, because the diameter of the spot tends to increase with time. Trace element analyses on zircon surfaces from the Tso Morari UHP Complex are highly reproducible, showing enriched HREE profiles with negative Eu anomalies - a result that is difficult to reproduce by analyses of

  13. Low grade metamorphism of mafic rocks

    NASA Astrophysics Data System (ADS)

    Schiffman, Peter

    1995-07-01

    Through most of this past century, metamorphic petrologists in the United States have paid their greatest attention to high grade rocks, especially those which constitute the core zones of exhumed, mountain belts. The pioneering studies of the 50's through the 80's, those which applied the principles of thermodynamics to metamorphic rocks, focused almost exclusively on high temperature systems, for which equilibrium processes could be demonstrated. By the 1980's, metamorphic petrologists had developed the methodologies for deciphering the thermal and baric histories of mountain belts through the study of high grade rocks. Of course, low grade metamorphic rocks - here defined as those which form at pressures and temperatures up to and including the greenschist facies - had been well known and described as well, initially through the efforts of Alpine and Circum-Pacific geologists who recognized that they constituted an integral and contiguous portion of mountain belts, and that they underlay large portions of accreted terranes, many of oceanic origins. But until the mid 80's, much of the effort in studying low grade rocks - for a comprehensive review of the literature to that point see Frey (1987) - had been concentrated on mudstones, volcanoclastic rocks, and associated lithologies common to continental mountain belts and arcs. In the mid 80's, results of the Deep Sea Drilling Project (DSDP) rather dramatically mitigated a shift in the study of low grade metamorphic rocks.

  14. Metamorphic Sole and Accreted Units Along a subduction Interface: form Birth to Steady State (the Case of Western Turkey)

    NASA Astrophysics Data System (ADS)

    Plunder, A.; Agard, P.; Chopin, C.; Soret, M.

    2014-12-01

    In Western Turkey, obducted ophiolite, metamorphic sole and oceanic accretionnary complex units linked with the closure of the Neotethys are found along a 400 kilometre-long section (from north to south). We herein reappraise the metamorphic evolution of the sub-ophiolitic metamorphic units (both the metamorphic sole and the accretionnary units) of Western Turkey (i) to better characterize rock units exhumed along a cooling subduction interface, from birth to steady state (ii) to constrain the formation of metamorphic sole during the initiation of subduction (iii) and to track record of obducted ophiolite. On the basis of field and petrological observation three differents accretionnary units are reccognized with pressure-temperature estimates ranging from incipient metamorphism to blueschist-facies conditions providing information on plate coupling at different depths along the subduction interface. The upper part of the metamorphic sole was form in an amphibolite facies (garnet amphibolite - garnet clinopyroxene amphibolite). Different slices of metamorphic sole with different pressure-temperature conditions might be observed probably showing discrete timing of accretion to the upper plate. Part of the samples are characterized by a late blueschsit developpement. Both the blueschist overprint in the metamorphic sole and the high-pressure in oceanic unit were found only in the northern part of the field investigation. On the basis of the presented data, available radiometric and palaeogeographic data as well as recent themomechanical moddeling a tentative reconstruction of the subduction-zone evolution through time and the emplacement of a large-scale ophiolite is presented. Finally a comparison with ongoing work on the metamorphic sole of the Semail ophiolite of Oman is proposed with special highlights on the retrograde evolution in both settings.

  15. Metamorphic zirconology of continental subduction zones

    NASA Astrophysics Data System (ADS)

    Chen, Ren-Xu; Zheng, Yong-Fei

    2017-09-01

    Zircon is widely used to date geological events and trace geochemical sources in high-pressure (HP) to ultrahigh-pressure (UHP) metamorphic rocks of continental subduction zones. However, protolith zircons may be modified by three different types of metamorphic recrystallization via mechanisms of solid-state transformation, metasomatic alteration and dissolution reprecipitation; new zircon growth may be induced by dehydration reactions below the wet solidus of crustal rocks (metamorphic zircon) or peritectic reactions above the wet solidus (peritectic zircon). As a consequence, there are different origins of zircon domains in high-grade metamorphic rocks from collisional orogens. Thus, determining the nature of individual zircon domains is substantial to correct interpretation of their origin in studies of isotopic geochronology and geochemical tracing. We advocate an integrated study of zircon mineragraphy (internal structure and external morphology), U-Pb ages, mineral inclusions, trace elements, and Lu-Hf and O isotope compositions. Only in this way we are in a position to advance the simple zircon applications to metamorphic zirconology, enabling discrimination between the different origins of zircon and providing constraints on the property of fluid activity at subduction-zone conditions. The metamorphic recrystallization of protolith zircons and the new growth of metamorphic and peritectic zircons are prominent in HP to UHP metamorphic rocks of collisional orogens. These different types of recrystallized and grown zircons can be distinguished by their differences in element and isotope compositions. While the protolith nature of metamorphosed rocks dictates water availability, the P-T conditions of subduction zones dictate the property of subduction-zone fluids. The fluids of different properties may be produced at different positions of subducting and exhuming crustal slices, and they may physically and chemically mix with each other in continental

  16. Comparative chronology of Archean HT/UHT crustal metamorphism

    NASA Astrophysics Data System (ADS)

    Caddick, Mark; Dragovic, Besim; Guevara, Victor

    2017-04-01

    Attainment of high crustal heat fluxes and consequent partial melting is critical to the stabilization of continental roots. Understanding the processes and timescales behind partial melting of continental crust in the Archean is thus paramount for understanding Archean tectonic modes and how stable cratons formed. High-temperature (HT) to ultrahigh-temperature (UHT) metamorphic rocks can record evidence for dynamic processes that result in advective heat fluxes and a substantial deviation from normal crustal geothermal gradients. Examination of the pressure-temperature conditions and timescales of HT/UHT metamorphism is thus essential to understanding the tectonic processes behind extreme crust heat fluxes and the formation of stable cratonic crust. Here, utilizing both traditional and nontraditional petrologic and geochronologic techniques, we compare the pressure-temperature-time paths of two Neoarchean terranes: the eastern Beartooth Mountains of the Wyoming Craton and the Pikwitonei Granulite Domain of the Superior Province. The Beartooth Mountains of Montana, USA, expose Archean rocks of the Wyoming Craton that are dominated by an ˜2.8 Ga calc-alkaline granitoid batholith known as the Long Lake Magmatic Complex (LLMC). The LLMC contains widespread, up to km-scale metasedimentary roof pendants, with ID-TIMS Sm-Nd garnet geochronology and laser ablation split stream (LASS) monazite geochronology suggesting that metamorphism occurred almost 100 Ma after entrainment by the LLMC [1]. Phase equilibria modeling and Zr-in-rutile thermometry constrain peak pressures and temperatures of ˜6-7 kbar and ˜780-800˚ C. Major element diffusion modeling of garnet suggest that granulite-facies temperatures were only maintained for a short duration, < 2 Ma. In contrast, the Pikwitonei Granulite Domain consists of >150,000 km2 of high-grade metamorphic rocks situated in the NW Superior Province. Phase equilibria modeling and trace element thermometry constrain peak

  17. Metamorphic petrology unraveling secrets of the Arabian-Nubian Shield evolution

    NASA Astrophysics Data System (ADS)

    Abu-Alam, Tamer

    2015-04-01

    The formation of orogens is a complex process often involving multiple stages of compression and extension. Arabian-Nubian Shield is a juvenile crust formed during the Pan-African orogen and the collision between East- and West-Gondwana. The formation mechanism was complicated and includes rifting of an old continent (Rodinia) and formation of oceanic crust followed by initiation of subduction, arc-arc collision, arcs-Sahara Metacraton collision and finally escape tectonic, formation of the largest pre-Mesozoic shear zone on the Earth - the Najd Fault System. In such complicated setting, the metamorphic petrology can be used as an effective tool to study the evolution of the shield and it can give valuable information about the thermal structural of the lithosphere during this stage of the evolution of the Earth. Baladiyah complex in the northern part of the Arabian-Nubian Shield will be used here as a case study to unraveling the tectonic evolution of the shield using metamorphic petrology. Field evidence from the Baladiyah complex shows several erosional unconformities separate different high grade metasedimentary rocks within the complex. This indicates that the tectonic evolution involved several cycles of exhumation and burial. Mineral equilibria approach and thermodynamic modeling are used to place constraints on the formation conditions of each of these cycles. It is shown that the complex is characterised by three regional metamorphic events followed by a fourth event of contact metamorphism due to the intrusion of post-tectonic granites. The first metamorphic event experienced peak metamorphism around 705 - 715 °C and 5.2 - 5.6 kbar and subsequent isothermal decompression to the Earth's surface. The second metamorphic events attained peak conditions of 635 - 670 oC and 4.2 - 5 kbar followed by exhumation, erosion and depositional of molasse sediments. The rocks were buried for a third time and metamorphosed to greenschist facies metamorphic condition (330

  18. Chemical demineralization of different metamorphic grade coals

    SciTech Connect

    Yusupov, T.S.; Shumskaya, L.G.; Burdukov, A.P.

    2009-07-15

    The paper analyzes a process of deep mineralization of various metamorphic grade coals pre-ground in different destructive units, namely, in centrifugal-planetary mill and disintegrator. Coal dispergation in higher energy intensive mills greatly enhances inorganic component extraction to acidic solutions. This is explained by distortion of crystal structure and amorphization of minerals under various kinds and different intensity mechanical actions.

  19. Platy Hematite and Metamorphism on Mars

    NASA Technical Reports Server (NTRS)

    Lane, M. D.; Morris, R. V.; Hartmann, W. K.; Christensen, P. R.; Mertzman, S. A.

    2002-01-01

    Emissivity spectra of Sinus Meridiani, Mars suggest that the hematite consists of platy particles that occur as consolidated, schistose lenses or loose, platy particles. This platy hematite may have originated as a result of burial metamorphism. Additional information is contained in the original extended abstract.

  20. Metamorphic quantum dots: Quite different nanostructures

    SciTech Connect

    Seravalli, L.; Frigeri, P.; Nasi, L.; Trevisi, G.; Bocchi, C.

    2010-09-15

    In this work, we present a study of InAs quantum dots deposited on InGaAs metamorphic buffers by molecular beam epitaxy. By comparing morphological, structural, and optical properties of such nanostructures with those of InAs/GaAs quantum dot ones, we were able to evidence characteristics that are typical of metamorphic InAs/InGaAs structures. The more relevant are: the cross-hatched InGaAs surface overgrown by dots, the change in critical coverages for island nucleation and ripening, the nucleation of new defects in the capping layers, and the redshift in the emission energy. The discussion on experimental results allowed us to conclude that metamorphic InAs/InGaAs quantum dots are rather different nanostructures, where attention must be put to some issues not present in InAs/GaAs structures, namely, buffer-related defects, surface morphology, different dislocation mobility, and stacking fault energies. On the other hand, we show that metamorphic quantum dot nanostructures can provide new possibilities of tailoring various properties, such as dot positioning and emission energy, that could be very useful for innovative dot-based devices.

  1. Metamorphic conditions in the Ashe Metamorphic Suite, North Carolina Blue Ridge

    SciTech Connect

    McSween, H.Y. Jr. ); Abbott, R.N.; Raymond, L.A. )

    1989-12-01

    Taconian metamorphism of mafic rocks in the Ashe Metamorphic Suite can be characterized by reference to an isograd corresponding to the reaction bio + epi = hbl + gar, which separates rocks into two zones of low-variance assemblages. Temperatures and pressures estimated from mineral exchange geothermometers and a barometer suggest that this reaction occurred at approximately 600-650C and 7.5 kbar. Phase equilibria between biotite and hornblende, as well as the sharpness of the mapped isograd, indicate that the reaction is discontinuous. Inferred differences in metamorphic grade between Ashe amphibolites and mafic dikes in the underlying basement suggest that these units are in faulted contact. Isograd patterns in pelitic rocks suggest an elongated domal uplift that developed after metamorphism and thrusting, the core of which is exposed in the adjacent Grandfather Mountain window.

  2. Evidence for multiple metamorphic events in the Adirondack Mountains, N. Y

    SciTech Connect

    McLelland, J.; Lochhead, A.; Vyhnal, C.

    1988-05-01

    Field evidence consisting of: (1) rotated, foliated xenoliths, (2) country rock foliation truncated by isoclinally folded igneous intrusions bearing granulite facies assemblages document one, or more, early dynamothermal event(s) of regional scale and high grade. Early metamorphism resulted in pronounced linear and planar fabric throughout the Adirondacks and preceded the emplacement of the anorthosite-mangerite-charnockite-granite-alaskite (AMCA) suite which contains xenoliths of the metamorphosed rocks. Olivine metagabbros, believed to be approximately contemporaneous with the AMCA-suite, also crosscut and contain xenoliths of, strongly foliated metasediments. These intrusive rocks caused contact metamorphism in the metasediments which locally exhibit both anatectite and restite assemblages. Subsequently, this already complex framework underwent three phases of folding, including an early recumbent isoclinical event, and was metamorphosed to granulite facies P,T conditions. The age of the early metamorphism cannot yet be narrowly constrained, but isotopic results suggest that it may be as young as approx. 1200 Ma or older than approx. 1420 Ma. U-Pb zircon ages indicate emplacement of the AMCA-(metagabbro)-suite in the interval 1160-1130 Ma and place the peak of granulite facies metamorphism between 1070-1025 Ma. The anorogenic character of the AMCA-suite, and the occurrence of metadiabase dike swarms within it, are further evidence of the separate nature of the metamorphic events that precede and postdate AMCA emplacement.

  3. Timing of Proterozoic deformation, plutonism, and metamorphism in the Los Pinos Mountains, Central New Mexico

    SciTech Connect

    Shastri, L.L. . Dept. of Geology); Bowring, S.A. )

    1992-01-01

    Geochronologic, structural, and metamorphic studies within the Los Pinos Mountains (LPM), central NM provide new insights into the Proterozoic geologic history of this area. The LPM consist of a NE-trending, NW-dipping sequence of complexly deformed amphibolites and felsic schists. These have been intruded by a pervasively deformed granitic pluton. Two predominant deformational fabrics exist in the LPM. S1 is an early northwest-trending foliation, commonly parallel to compositional layering, which is folded about S2. S2 is axial planar foliation to tight to isoclinal folds and is the regional NE-trending fabric. Other fabrics and complex fold interference patterns may be related to localized strain partitioning around granitic bodies. A network of granitic dikes associated with the pluton crosscuts S2 but contains a weak foliation parallel to S2, suggesting synkinematic intrusion of the dikes. Regional metamorphism in the LPM took place at upper greenschist to lower amphibolite facies. Electron microprobe traverses of garnets show compositional variation indicative of growth zoning. No abrupt changes in composition representative of multiple metamorphic events are observed. Garnet-biotite geothermometry yields average rim temperatures of 454 [+-] 50 C. U-Pb geochronology of zircons from amphibolite, granite, and a granite dike indicates essentially the same age for all three units (1.66 Ga). The amphibolite contains abundant zircons which have complex morphologies typical of metamorphic growth; however, an igneous origin cannot yet be precluded. Spheres from the same amphibolite yield a near concordant age of 1.62 Ga. Thus, deformation, plutonism, and possibly the peak of metamorphism, were coeval at ca. 1.66 Ga, with metamorphism cooling through the blocking temperature of sphene at 1.62 Ga. The LPM are similar to other mountain ranges in south-central New Mexico where 1.66 Ga ages have been reported.

  4. Tectonic evolution of high-grade metamorphic terranes in central Vietnam: Constraints from large-scale monazite geochronology

    NASA Astrophysics Data System (ADS)

    Nakano, Nobuhiko; Osanai, Yasuhito; Owada, Masaaki; Nam, Tran Ngoc; Charusiri, Punya; Khamphavong, Keo

    2013-09-01

    Several metamorphic complexes in Southeast Asia have been interpreted as Precambrian basement, characterized by amphibolite to granulite facies metamorphism. In this paper, we re-evaluate the timing of this thermal event based on the large-scale geochronology and compositional variation of monazites from amphibolite to granulite facies metamorphic terranes in central Vietnam. Most of the samples in this study are from metamorphic rocks (n = 38) and granitoids (n = 11) in the Kontum Massif. Gneisses (n = 6) and granitoids (n = 5) from the Hai Van Migmatite Complex and the Truong Son Belt, located to the north of the massif, were also studied. Two distinct thermal episodes (245-230 Ma and 460-430 Ma) affected Kontum Massif gneisses, while a single dominant event at 240-220 Ma is recorded in the gneisses from the Hai Van Complex and the Truong Son Belt. Monazites from granitoids commonly yield an age of 240-220 Ma. Mesoproterozoic ages (1530-1340 Ma) were obtained only from monazite cores that are surrounded by c. 440 Ma overgrowths. Thermobarometric results, combined with concentrations of Y2O3, Ce2O3, and heavy rare earth elements in monazite, and recently reported pressure-temperature paths suggest that Triassic ages correspond to retrograde metamorphism following decompression from high- to medium-pressure/temperature conditions. Ordovician-Silurian ages reflect low-pressure/temperature metamorphism accompanied by isobaric heating during prograde metamorphism. Some samples were affected by both metamorphic events. We conclude that high-grade metamorphism observed in so-called Precambrian basement terranes in central Vietnam occurred during both the Permian-Triassic and the Ordovician-Silurian, while peraluminous granitoid magmatism is Triassic. Additionally, our preliminary analyses for U-Pb zircon age and whole-rock chemistry of granitic gneisses from the Truong Song Belt suggests the presence of the Ordovician-Silurian volcanic arc magmatism in the region. Based

  5. Metamorphism, Plate Tectonics, and the Supercontinent Cycle

    NASA Astrophysics Data System (ADS)

    Brown, Michael

    Granulite facies ultrahigh temperature metamorphism (G-UHTM) is documented in the rock record predominantly from Neoarchean to Cambrian; G-UHTM facies series rocks may be inferred at depth in younger, particularly Cenozoic orogenic systems. The first occurrence of G-UHTM in the rock record signifies a change in geodynamics that generated transient sites of very high heat flow. Many G-UHTM belts may have developed in settings analogous to modern continental backarcs. On a warmer Earth, the cyclic formation of supercontinents and their breakup, particularly by extroversion, which involved destruction of ocean basins floored by thinner lithosphere, may have generated hotter continental backarcs than those associated with the modern Pacific rim. Medium-temperature eclogite, high-pressure granulite metamorphism (E-HPGM), is also first recognized in the Neoarchean rock record and occurs at intervals throughout the Proterozoic and Paleozoic rock record. E-HPGM belts are complementary to G-UHTM belts and are generally inferred to record subduction-to-collision orogenesis. Blueschists become evident in the Neoproterozoic rock record; they record the low thermal gradients associated with modern subduction. Lawsonite blueschists and eclogites (high-pressure metamorphism, HPM) and ultrahigh pressure metamorphism (UHPM) characterized by coesite (±lawsonite) or diamond are predominantly Phanerozoic phenomena. HPM-UHPM registers the low thermal gradients and deep subduction of continental crust during the early stage of the collision process in Phanerozoic subduction-to-collision orogens. Although perhaps counterintuitive, many HPM-UHPM belts appear to have developed by closure of small ocean basins in the process of accretion of a continental terrane during a period of supercontinent introversion (Wilson cycle ocean basin opening and closing). A duality of metamorphic belts—reflecting a duality of thermal regimes—appears in the record only since the Neoarchean Era. A

  6. Metamorphism and aqueous alteration in low petrographic type ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Xie, T.; Lipschutz, M. E.; Sears, D. W. G.; Guimon, R. K.; Jie, Lu; Benoit, P. H.; O'D. Alexander, C. M.; Wright, Ian; Pillinger, C.; Morse, A. D.; hide

    1995-01-01

    evidence for aqueous alteration, but the matrix contains H with approximately terrestrial D/H values, even though it contains much water. Secondary processes (probably aqueous alteration) presumably lowered the D/H of the matrix and certain chondrules. While chondrule properties appear to be governed primarily by formation processes and subsequent metamorphism, the matrix of Semarkona has a more complex history involving aqueous alteration as a meteorite-wide process.

  7. Late Paleozoic onset of subduction and exhumation at the western margin of Gondwana (Chilenia Terrane): Counterclockwise P-T paths and timing of metamorphism of deep-seated garnet-mica schist and amphibolite of Punta Sirena, Coastal Accretionary Complex, central Chile (34° S)

    NASA Astrophysics Data System (ADS)

    Hyppolito, T.; García-Casco, A.; Juliani, C.; Meira, V. T.; Hall, C.

    2014-10-01

    In this study, the Paleozoic albite-epidote-amphibolite occurring as meter-sized intercalations within garnet-mica schist at Punta Sirena beach (Pichilemu region, central Chile) is characterized for the first time. These rocks constitute an unusual exposure of subduction-related rocks within the Paleozoic Coastal Accretionary Complex of central Chile. Whereas high pressure (HP) greenschist and cofacial metasediments are the predominant rocks forming the regional metamorphic basement, the garnet-mica schist and amphibolite yield higher P-T conditions (albite-epidote amphibolite facies) and an older metamorphic age. Combining detailed mineral chemistry and textural information, P-T calculations and Ar-Ar ages, including previously published material from the Paleozoic Accretionary Complex of central Chile, we show that the garnet-mica schist and associated amphibolite (locally retrograded to greenschist) are vestiges of the earliest subducted material now forming exotic bodies within the younger HP units of the paleo-accretionary wedge. These rocks are interpreted as having been formed during the onset of subduction at the southwestern margin of Gondwana. However, we show that the garnet-mica schist formed at a slightly greater depth (ca. 40 km) than the amphibolite (ca. 30 km) along the same hot-subduction gradient developed during the onset of subduction. Both lithotypes reached their peak-P conditions at ca. 335-330 Ma and underwent near-isobaric cooling followed by cooling and decompression (i.e., counterclockwise P-T paths). The forced return flow of the garnet-mica schist from the subduction channel started at ca. 320 Ma and triggered the exhumation of fragments of shallower accreted oceanic crust (amphibolite). Cores of phengite (garnet-mica schist) and amphibole (amphibolite) grains have similar chemical compositions in both the S1 and S2 domains, indicating rotation of these grains during the transposition of the burial-related (prograde peak-T) foliation S1

  8. Phase-field modeling of dry snow metamorphism.

    PubMed

    Kaempfer, Thomas U; Plapp, Mathis

    2009-03-01

    Snow on the ground is a complex three-dimensional porous medium consisting of an ice matrix formed by sintered snow crystals and a pore space filled with air and water vapor. If a temperature gradient is imposed on the snow, a water vapor gradient in the pore space is induced and the snow microstructure changes due to diffusion, sublimation, and resublimation: the snow metamorphoses. The snow microstructure, in turn, determines macroscopic snow properties such as the thermal conductivity of a snowpack. We develop a phase-field model for snow metamorphism that operates on natural snow microstructures as observed by computed x-ray microtomography. The model takes into account heat and mass diffusion within the ice matrix and pore space, as well as phase changes at the ice-air interfaces. Its construction is inspired by phase-field models for alloy solidification, which allows us to relate the phase-field to a sharp-interface formulation of the problem without performing formal matched asymptotics. To overcome the computational difficulties created by the large difference between diffusional and interface-migration time scales, we introduce a method for accelerating the numerical simulations that formally amounts to reducing the heat- and mass-diffusion coefficients while maintaining the correct interface velocities. The model is validated by simulations for simple one- and two-dimensional test cases. Furthermore, we perform qualitative metamorphism simulations on natural snow structures to demonstrate the potential of the approach.

  9. Tectono-metamorphic evolution and magmatic processes in the thermo-metamorphic aureole of the Monte Capanne pluton (Elba Island, Northern Tyrrhenian Sea, Italy).

    NASA Astrophysics Data System (ADS)

    Morelli, M.; Pandeli, E.; Principi, G.

    2003-04-01

    Introduction In this work we present new structural and petrographic data collected in the thermo-metamorphic aureole of Monte Capanne (western Elba Island) and its metamorphic evolution. In the western Elba Island the Monte Capanne monzogranitic body (ca. 7 Ma) and its thermo-metamorphic aureole crop out. At least two different tectonic units can be distinguished: the Punta Le Tombe Unit, weak re-crystallized, and the Punta Nera Unit. In the latter one the re-crystallization is strong and a pre-intrusion tectono-metamorphic framework is evident (Morelli et al., 2002). The latter is mainly constituted by thermo-metamorphosed meta-ophiolites and meta-sedimentary successions previously correlated by Barberi et al. (1969) with the un-metamorphic ones (Complex IV and V of Trevisan, 1950) cropping out in the central-eastern Elba. According to Perrin (1975) and Reutter &Spohn (1982) a pre-intrusion tectono-metamorphic framework was recognized into such rocks. As suggested by Daniel &Jolivet (1995) complex relationships between metamorphic evolution and magmatic events are also recognizable. Geological Data The Punta Nera Unit crops out all around the Monte Capanne magmatic body and the primary contact with the underlying granitoid is somewhere preserved. This unit, strongly re-crystallized and locally crosscut by aplitic and porphyritic dikes, is represented by (Coli &Pandeli, 1997; Morelli, 2000) tectonized meta-serpentinites, meta-gabbros with rodingitic dikes, rare meta-basalts and meta-ophicalcites, meta-cherts, marbles, cherty meta-limestones, phyllites and meta-limestones with rare meta-arenites intercalations. A "pre-magmatic" tectono-metamorphic framework of this unit is well evident only in its meta-sedimentary portion. The meta-sediments are deformed by syn-metamorphic isoclinal folds caractherized by N-S trending axes, west dipping axial planes and easternward vergence. A later folding and flattening event clearly post-dated the above said folds and associated

  10. Upper Cretaceous exhumation of the western Rhodope Metamorphic Province (Chalkidiki Peninsula, northern Greece)

    NASA Astrophysics Data System (ADS)

    Kydonakis, Konstantinos; Gallagher, Kerry; Brun, Jean-Pierre; Jolivet, Marc; Gueydan, Frédéric; Kostopoulos, Dimitrios

    2014-06-01

    The Vertiskos Unit of northern Greece is an elongated basement belt with a complex poly-metamorphic history. It extends from Greece (Chalkidiki peninsula), to the south, up to Serbia, in the north, and arguably represents the westernmost part of the Rhodope Metamorphic Province (northern Greece to southern Bulgaria). The Vertiskos Unit experienced a medium pressure lower amphibolite-facies metamorphic overprint during the Alpine Orogeny. The available medium-temperature geochronology implies that it remained at temperature of approximately 300°C (or slightly higher) during Lower Cretaceous. In order to constrain its post-Lower Cretaceous thermal history, until near-surface exposure, we applied apatite fission track analysis. The central ages obtained range from 68.5 ± 3.8 to 46.6 ± 3.6 Ma (uppermost Cretaceous to Middle Eocene) and mean track lengths between 13 and 13.5 µm. We applied two inverse thermal modeling approaches using either each sample independently (high degree of freedom in the thermal history, better data fit) or all samples together interpreting them as a vertical profile (simpler thermal history, worse data fit). Irrespective of the modeling approach, we conclude that the bulk thermal history of the Vertiskos Unit crosses the high-temperature limit of the apatite partial annealing zone by the uppermost Cretaceous and reaches near-surface conditions as early as lower/middle Eocene. These results contrast with the thermal history of the other domains of the Rhodope Metamorphic Province further east (namely the Southern Rhodope Core Complex and the Northern Rhodope Complex) and establish the Vertiskos basement complex as the oldest exhumed coherent basement fragment of the Rhodope Metamorphic Province and Greece.

  11. Shape Metamorphism Using p-Laplacian Equation

    SciTech Connect

    Cong, Ge; Esser, Mehmet; Parvin, Bahram; Bebis, George

    2004-05-19

    We present a new approach for shape metamorphism, which is a process of gradually changing a source shape (known) through intermediate shapes (unknown) into a target shape (known). The problem, when represented with implicit scalar function, is under-constrained, and regularization is needed. Using the p-Laplacian equation (PLE), we generalize a series of regularization terms based on the gradient of the implicit function, and we show that the present methods lack additional constraints for a more stable solution. The novelty of our approach is in the deployment of a new regularization term when p --> infinity which leads to the infinite Laplacian equation (ILE). We show that ILE minimizes the supremum of the gradient and prove that it is optimal for metamorphism since intermediate solutions are equally distributed along their normal direction. Applications of the proposed algorithm for 2D and 3D objects are demonstrated.

  12. Heat transfer by fluids in granulite metamorphism

    NASA Technical Reports Server (NTRS)

    Morgan, Paul; Ashwal, Lewis D.

    1988-01-01

    The thermal role of fluids in granulite metamorphism was presented. It was shown that for granulites to be formed in the middle crust, heat must be advected by either magma or by volatile fluids, such as water or CO2. Models of channelized fluid flow indicate that there is little thermal difference between channelized and pervasive fluid flow, for the same total fluid flux, unless the channel spacing is of the same order or greater than the thickness of the layer through which the fluids flow. The volumes of volatile fluids required are very large and are only likely to be found associated with dehydration of a subducting slab, if volatile fluids are the sole heat source for granulite metamorphism.

  13. Carbonic metamorphism, granulites and crustal growth

    NASA Technical Reports Server (NTRS)

    Newton, R. C.; Smith, J. V.; Windley, B. F.

    1980-01-01

    Stabilization of early crust against melting by high radioactivity and against resorption into the mantle by fast convective overturn requires that water and heat producers were flushed upwards within 50 Myr of accretion. Creation of a refractory base of granulite by metamorphism associated with CO2 vapour explains CO2-rich fluid inclusions in ancient high-grade rocks, minor-element depletions and local phenomena of arrested development of charnockite in Precambrian terrains. The hot-spot and plate-tectonic models of Precambrian crustal evolution lead to different schemes for CO2 delivery to continental roots. New tectonic concepts may be needed to explain carbonic metamorphism and other features of early crustal evolution.

  14. {sup 40}Ar/{sup 39}Ar thermochronology and thermobarometry of metamorphism, plutonism, and tectonic denudation in the Old Woman Mountains area, California

    SciTech Connect

    Foster, D.A.; Miller, C.F.; Harrison, T.M.; Hoisch, T.D.

    1992-02-01

    Discrimination of individual tectonometamorphic events in polymetamorphosed terranes requires a comprehensive understanding of the relative timing and conditions of metamorphism and plutonism. We have applied a combination of {sup 40}Ar/{sup 39} Ar thermochronology, petrology, and thermobarometry to reconstruct the complex Early Proterozoic through early Cenozoic tectonic and metamorphic evolution of continental crust in the Old Woman Mountains area, southeastern California. Strong Mesozoic thermal events obscure the earlier history in much of the Old Woman Mountains area. In those areas where Early Proterozoic rocks underwent only lower-greenschist-facies metamorphism during the Mesozoic, thermobarometry of pelitic schists indicates that Proterozoic metamorphism occurred at 9 to 11 kbar and {approximately}700 {degrees}C. {sup 40}Ar/{sup 39}Ar ages of hornblende from samples of interbedded Proterozoic amphibolite indicate that this high-grade metamorphism took place before 1600 Ma. The relatively high-pressure conditions of Early Proterozoic metamorphism in the Old Woman Mountains area contrast with the low-pressure granulite-facies metamorphism that occurred elsewhere in the Mojave Desert at this time. {sup 40}Ar/{sup 39}Ar analyses of hornblende from Proterozoic rocks within Mesozoic shear zones and hornblende barometry from Jurassic intrusive rocks suggest that tectonism and burial of Paleozoic strata to >10 km began between 170 and 150 Ma. This tectonism resulted in regional greenschist-facies metamorphism. Late-stage mineral assemblages in Proterozoic and Paleozoic pelitic rocks in the Old Woman Mountains area indicate an increase in metamorphic grade from greenschist to upper amphibolite facies toward Later Cretaceous Plutons of the 73 Ma Old Woman-Piute batholith. Barometric calculations from garnet-bearing metamorphic rocks suggest that this Cretaceous metamorphism took place at 3.5 to 5.0 kbar in the Old Woman Mountains. 68 refs., 11 figs., 3 tabs.

  15. Metamorphic reactions in the Chaunskij mesosiderite

    NASA Astrophysics Data System (ADS)

    Petaev, M. I.

    1994-07-01

    The Chaunskij meteorite, found in 1985, recently has been found to be the most highly metamorphosed, shock-modified, and metal-rich mesosiderite. It contains approximately 10 vol% mono- and polymineralic troilite-phosphate-silicate inclusions, micrometers to centimeters in size. Two dominant silicate lithologies have been found in the inclusions. The primary 'igneous' lithology, making up the largest inclusion studied, is generally a microophitic fine-grained aggregate of pyroxene, plagioclase, and minor silica, with scattered coarser-grained granoblastic spots enriched in silica and troilite. The secondary 'metamorphic' lithology occurs as separate small inclusions and as larger areas in intimate contact with the 'igneous' lithology, separated by highly irregular boundaries from each other, in the largest inclusion. In small inclusions the metamorphic lithology consists of a fine-grained hornfelsic to granoblastic aggregate of cordierite, orthopyroxene, quartz, and whitlockite with variable amounts of opaque minerals. In the largest inclusion the metamorphic lithology is a generally granoblastic to poikiloblastic aggregate of cordierite and quartz with minor amounts of other minerals. The Opx-Chr mineral thermometer and the Cord-Sp barometer have been applied to estimate the conditions of Chaunskij metamorphism. The data for 16 Opx-Chr pairs from different inclusions and lithologies correspond to a temperature of 590 +/- 30 C. The data for 9 Cord-Chr pairs from different inclusions correspond to a pressure of 6.0 +/- 0.2 kbar. While the composition of spinel in Chaunskij much richer in Cr than were the spinels used to calibrate Cord-Sp barometer the estimated pressure is consistent with the occurrence in the igneous lithology of two small pyroxene grains enriched in the CaAl2SiO6 molecule, coexisting with quartz and plagioclase. This mineral assemblage is unstable below approximately 5 kbar at 600 C.

  16. Experimental Study on Fluid Distribution at Ultra-High Metamorphic Conditions

    NASA Astrophysics Data System (ADS)

    Mönicke, K.; Burchard, M.; Duyster, J.; Maresch, W. V.; Röller, K.; Stöckhert, B.

    2001-12-01

    Ultra-high pressure (UHP) metamorphic rocks record deep subduction of continental crust. Insight into their rheological behavior at UHP metamorphic conditions is important for the understanding of the mechanical state and the kinematics within subduction zones. Amazingly, many exhumed UHP metamorphic rocks do not show evidence of significant deformation. Thus, it has been proposed that deformation is localized in low-strength zones controlled by partially wetting interstitial fluids [1]. Experimental results [2] show that at UHP metamorphic conditions only one homogenous fluid phase with variable composition exists, whose density and viscosity should be intermediate between those of conventional aqueous solutions and hydrous melts. Inclusions of such supercritical fluid have been recently described from a natural UHP metamorphic rock [3]. Motivated by these findings, experiments using a piston-cylinder apparatus were performed to study the fluid distribution in various rock types at pressures of 3.5 GPa and temperatures between 900 ° C and 600 ° C. Starting materials were natural UHP metamorphic specimens of (1) S-type granitic biotite-phengite-gneiss and (2) pyrope-quartzite, both from the Dora Maira Massif (Western Alps, Italy) and (3) a diamond-bearing garnet-mica-gneiss with granodioritic bulk composition from the Saxonian Erzgebirge (Germany), all with 2 wt.% water added. The supercritical fluids formed in these experiments can be quenched to form a silicic glass with demixing of an aqueous solution without changing the UHP fluid topology significantly. The shape of the fluid-filled interstices is irregular and complex, resulting in a low volume/interface area ratio and a potential of high stress concentration at the edges of wedge-shaped offshoots. We propose that the distribution of supercritical fluids has a pronounced effect on the strength of cool subducted crust, allowing deformation by grain boundary sliding and dissolution precipitation creep, or

  17. Effect of metamorphism on isolated olivine grains in CO3 chondrites

    NASA Technical Reports Server (NTRS)

    Jones, Rhian H.

    1993-01-01

    The presence of a metamorphic sequence in the CO3 chondrite group has been shown previously to result in changes in properties of chondrule silicates. However, the role of isolated olivine grains during metamorphism of these chondrites has not been addressed. Isolated olivine grains in two metamorphosed CO3 chondrites, Lance and Isna, have been investigated in this study in order to assess the compositional properties of isolated olivine grains that may be attributable to metamorphism. Compositional changes in isolated olivines with increasing petrologic subtype are very similar to changes in chondrule olivines in the same chondrites. Olivine compositions from all occurrences (chondrules, isolated grains, and matrix) converge with increasing petrologic subtype. The degree of equilibration of minor elements is qualitatively related to the diffusion rate of each element in olivine, suggesting that diffusion-controlled processes are the most important processes responsible for compositional changes within the metamorphic sequence. The data are consistent with metamorphism taking place in a closed system on the CO3 chondrite parent body. Fe-poor olivine grains in metamorphosed chondrites are characterized by an Fe-rich rim, which is the result of diffusion of Fe into the grains from Fe-rich matrix. In some instances, 'complex', Fe-rich rims have been identified, which appear to have originated as igneous overgrowths and subsequently to have been overprinted by diffusion processes during metamorphism. Processes experienced by CO3 chondrites are more similar to those experienced by the ordinary chondrites than to those encountered by other carbonaceous chondrites, such as the CV3 group.

  18. Effect of metamorphism on isolated olivine grains in CO3 chondrites

    NASA Astrophysics Data System (ADS)

    Jones, R. H.

    1993-06-01

    The presence of a metamorphic sequence in the CO3 chondrite group has been shown previously to result in changes in properties of chondrule silicates. However, the role of isolated olivine grains during metamorphism of these chondrites has not been addressed. Isolated olivine grains in two metamorphosed CO3 chondrites, Lance and Isna, have been investigated in this study in order to assess the compositional properties of isolated olivine grains that may be attributable to metamorphism. Compositional changes in isolated olivines with increasing petrologic subtype are very similar to changes in chondrule olivines in the same chondrites. Olivine compositions from all occurrences (chondrules, isolated grains, and matrix) converge with increasing petrologic subtype. The degree of equilibration of minor elements is qualitatively related to the diffusion rate of each element in olivine, suggesting that diffusion-controlled processes are the most important processes responsible for compositional changes within the metamorphic sequence. The data are consistent with metamorphism taking place in a closed system on the CO3 chondrite parent body. Fe-poor olivine grains in metamorphosed chondrites are characterized by an Fe-rich rim, which is the result of diffusion of Fe into the grains from Fe-rich matrix. In some instances, 'complex', Fe-rich rims have been identified, which appear to have originated as igneous overgrowths and subsequently to have been overprinted by diffusion processes during metamorphism. Processes experienced by CO3 chondrites are more similar to those experienced by the ordinary chondrites than to those encountered by other carbonaceous chondrites, such as the CV3 group.

  19. Dramatic effects of stress on metamorphic reactions

    NASA Astrophysics Data System (ADS)

    Wheeler, John

    2014-05-01

    Temperature and pressure are primary controls on mineralogy in the Earth; calculations may predict mineralogy from temperature and pressure and vice versa. Such calculations assume that stress is isotropic despite the fact that differential stresses prevail in the Earth, resulting from large scale tectonics and/or differences between fluid and rock pressures in porous rocks. For more than 25 years I have explored how stress may interact with chemical effects through theory (Sheldon & Wheeler 2003, Wheeler 1987, 1992) and more recently experiments (Llana-Funez et al. 2012). New calculations (Wheeler submitted) show that differential stress can have very significant effects on thresholds for metamorphic reactions, depending on the grain-scale reaction pathways. A differential stress may, depending on the reaction pathway, have an effect equivalent to a pressure difference of the order of (assemblage volume)/(reaction volume change) times (differential stress). The multiplying factor is typically 10 or more. For example the onset of a garnet + clinopyroxene breakdown reaction may be offset by the equivalent of +500 MPa in pressure for a 50 MPa differential stress. The effect is equivalent to a temperature difference of the order of (assemblage volume)/(reaction entropy change) times (differential stress). For example the onset of muscovite + quartz breakdown may be offset by the equivalent of +130 degrees C for a 50 MPa differential stress. Much of the Earth is under differential stress, so the new calculations invite a reappraisal of metamorphic mineralogy and microstructure. This is relevant for exploring possible deviations from lithostatic pressure in the Earth. Diagnosing the effect of pressure on mineralogy should be coupled to diagnosing the effects of differential stress - one effect may cloak the other but the scientific rewards for distinguishing them could be significant. Llana-Funez, S., Wheeler, J. & Faulkner, D. R. 2012. Metamorphic reaction rate

  20. Episodic burial metamorphism in the Andes—A viable model?

    NASA Astrophysics Data System (ADS)

    Bevins, R. E.; Robinson, D.; Aguirre, L.; Vergara, M.

    2003-08-01

    Burial metamorphism of regional extent throughout Mesozoic to Cenozoic sequences in the Andean Mountain belt has been attributed previously to a unique model of metamorphic development, involving episodic ˜40 m.y. cycles of extensional basin formation, burial, metamorphism, and then exhumation. A main premise of this model is that breaks in metamorphic grade occur at major stratigraphic unconformities, so marking successive metamorphic cycles. This model is tested in a Mesozoic Cenozoic sequence east of Santiago, where three metamorphic episodes have been reported on the basis of sharp breaks in metamorphic grade at two main unconformities. In metabasites from this area, reaction progress in mafic phyllosilicates shows a continuum across the sequence without breaks at the unconformities. There are differences in mineral assemblages between the various stratigraphic units, from which contrasting subgreenschist facies can be recognized. However, consideration of the controls on mineral paragenesis at subgreenschist facies conditions demonstrates that these different facies cannot be used as evidence of sharp breaks in metamorphic grade at unconformities, as has been reported in many previous publications. Thus, metamorphic breaks within this Andean section cannot be confirmed. Accordingly, models of Andean burial metamorphism linked to episodic tectonic cycles throughout the Mesozoic and Cenozoic appear unfounded.

  1. Telemagmatic metamorphism superimposed on regional metamorphism: Evidence from coals in central China

    SciTech Connect

    Tang, Y. . Dept. of Geological Sciences)

    1993-02-01

    Coal (Lower Permian No. 1) in north-central Henan province, central China, exhibits a zoned rank distribution. The rank varies between high-volatile bituminous and anthracite. Highest rank coal occurs in a northwest-southeast trending zone that cuts across the center of the study area. Coal rank decreases from this central zone towards both the northeast and southwest. Core data indicate that the anthracite is currently overlain by over 4,600 m of sedimentary cover, which represents more or less continuous sedimentation during the Permian and Triassic. In the lower rank area to the southwest, erosion has removed all but approximately 1,000 m of strata. The rank distribution in this area has been attributed to regional metamorphism by previous workers as the higher coal rank coincides with the thicker strata. However, this study reveals that anthracite in the area has a much higher vitrinite reflectance, between 3--6% (Ro max, in oil), with some locations exhibiting reflectances greater than 6%. Petrographically, the anthracite is characterized by well developed pores (5--10 [mu]m in diameter) and mosaic structure. It is suggested that the higher heat flow is due to the presence of deep-seated plutons. It is proposed that coal metamorphism in this area involved three stages: (1) Pre-orogenic (early Permian-late Triassic). Regional metamorphism produced coals of subbituminous to high-volatile bituminous rank; (2) Orogenic (early Jurassic-late Cretaceous). Telemagmatic metamorphism resulted in zones of higher rank coal (medium volatile through anthracite rank); (3) Post-orogenic (Tertiary-Quaternary). Shallow burial depth due to the tectonic uplift followed by erosion had a negligible effect on coal rank. It is suggested, therefore, that coalification in this area is the result of regional metamorphism overprinted by telemagmatic metamorphism.

  2. Metamorphic reactions in mesosiderites - Origin of abundant phosphate and silica

    NASA Technical Reports Server (NTRS)

    Harlow, G. E.; Delaney, J. S.; Prinz, M.; Nehru, C. E.

    1982-01-01

    In light of a study of the Emery mesosiderite, it is determined that the high modal abundances of merrillite and tridymite in most mesosiderites are attributable to redox reactions between silicates and P-bearing Fe-Ni metal within a limited T-fO2 range at low pressure. The recalculated amounts of dissolved P and S in the metallic portion of Emery reduce the metal liquidus temperature to less than 1350 C, and the solidus to less than 800 C, so that the mixing of liquid metal with cold silicates would have resulted in silicate metamorphism rather than melting. This redox reaction and redistribution of components between metal and silicates illuminates the complexities of mesosiderite processing, with a view to the recalculation of their original components.

  3. Metamorphic reactions in mesosiderites - Origin of abundant phosphate and silica

    NASA Technical Reports Server (NTRS)

    Harlow, G. E.; Delaney, J. S.; Prinz, M.; Nehru, C. E.

    1982-01-01

    In light of a study of the Emery mesosiderite, it is determined that the high modal abundances of merrillite and tridymite in most mesosiderites are attributable to redox reactions between silicates and P-bearing Fe-Ni metal within a limited T-fO2 range at low pressure. The recalculated amounts of dissolved P and S in the metallic portion of Emery reduce the metal liquidus temperature to less than 1350 C, and the solidus to less than 800 C, so that the mixing of liquid metal with cold silicates would have resulted in silicate metamorphism rather than melting. This redox reaction and redistribution of components between metal and silicates illuminates the complexities of mesosiderite processing, with a view to the recalculation of their original components.

  4. Making MetPetDB a tool for reconnaissance studies of metamorphism and metamorphic rocks

    NASA Astrophysics Data System (ADS)

    Hallett, B. W.; Spear, F. S.; Horkley, L. K.; Adali, S.; Fox, P. A.

    2012-12-01

    Recent data mining efforts have significantly increased the coverage and quantity of published data that form the foundation of MetPetDB: the Database for Metamorphic Petrology. Mineral assemblage, metamorphic grade, geochemical mineral and whole rock analyses, and image data from over 600 published papers have been compiled and uploaded, with focus on a number of particularly well-studied metamorphic belts of regional extent. As a result of data mining efforts in the past several years, MetPetDB now contains data for over 9,000 samples, over 10,000 mineral and whole rock (major or trace element) analyses, and over 20,000 images including maps, thin section scans, photomicrographs, SE and BSE images, and X-ray maps. These data are available for searching and download, exportable in spreadsheets and/or as placemark layers in a Google Earth .kml file. Each Google Earth placemark contains a link to the full data available through MetPetDB's web interface. The improved spatial coverage provides a starting point for a geoscientist to rapidly gather sample and geochemical data for a growing inventory of distinct metamorphic belts. Regional searches can be performed by choosing a user-defined bounding box, or any of a number of bounding polygons that delineate distinct metamorphic belts, such as the Greenland Caledonides, or the Bohemian Massif. MetPetDB is a tool for researchers to share, compile, and organize sample information, both published and unpublished, enabling production of a dynamic GIS to aid in planning field work, producing geologic maps, or making inventory of geochemical data for metamorphic rocks. In addition to regional queries, published metamorphic rock samples with non-spatial commonalities may be queried and compiled using MetPetDB. For example, a petrologist with an interest in the equilibrium exchange of yttrium between garnet and monazite at mid-crustal conditions could easily find garnet with a certain range of yttrium content in amphibolite

  5. Accessories after the facts: Constraining the timing, duration and conditions of high-temperature metamorphic processes

    NASA Astrophysics Data System (ADS)

    Taylor, Richard J. M.; Kirkland, Christopher L.; Clark, Chris

    2016-11-01

    High-temperature metamorphic rocks are the result of numerous chemical and physical processes that occur during a potentially long-lived thermal evolution. These rocks chart the sequence of events during an orogenic episode including heating, cooling, exhumation and melt interaction, all of which may be interpreted through the elemental and isotopic characteristics of accessory minerals such as zircon, monazite and rutile. Developments in imaging and in situ chemical analysis have resulted in an increasing amount of information being extracted from these accessory phases. The refractory nature of these minerals, combined with both their use as geochronometers and tracers of metamorphic mineral reactions, has made them the focus of many studies of granulite-facies terrains. In such studies the primary aim is often to determine the timing and conditions of the peak of metamorphism, and high-temperature metasedimentary rocks may seem ideal for this purpose. For example pelites typically contain an abundance of accessory minerals in a variety of bulk compositions, are melt-bearing, and may have endured extreme conditions that facilitate diffusion and chemical equilibrium. However complexities arise due to the heterogeneous nature of these rocks on all scales, driven by both the composition of the protolith and metamorphic differentiation. In additional to lithological heterogeneity, the closure temperatures for both radiogenic isotopes and chemical thermometers vary between different accessory minerals. This apparent complexity can be useful as it permits a wide range of temperature and time (T-t) information to be recovered from a single rock sample. In this review we cover: 1) characteristic internal textures of accessory minerals in high temperature rocks; 2) the interpretation of zircon and monazite age data in relation to high temperature processes; 3) rare earth element partitioning; 4) trace element thermometry; 5) the incorporation of accessory mineral growth

  6. High-pressure metamorphism in the Chinshuichi area, Yuli belt, eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Keyser, William; Tsai, Chin-Ho; Iizuka, Yoshiyuki; Oberhänsli, Roland; Ernst, W. G.

    2016-12-01

    Tectonic blocks and slabs of mafic-ultramafic rocks are distributed discontinuously in the Yuli metamorphic belt of Taiwan. The blocks include rare omphacite metagabbros and garnet-epidote blueschists in the Wanjung and Juisui (Tamayen) areas, respectively. Such high-pressure (HP) mineral assemblages have been attributed to a mid-Miocene subduction event. However, the surrounding psammitic, pelitic and chloritic schists are the dominant greenschist-facies lithologies of the Yuli belt. In the Chinshuichi area, tectonic blocks are enclosed in garnet-bearing metapelites, suggesting elevated pressures. In this area, we recently discovered meta-plagiogranite containing the assemblage glaucophane + omphacite (XJd up to 0.39) + rutile + quartz, indicating P-T conditions near 13 kbar/550 °C. New equilibrium phase modeling of a garnet-paragonite mica schist and compositional isopleths for peak assemblage minerals garnet and phengite (Si = 3.33-3.37 pfu) indicate metamorphic conditions of 15.5-17 kbar/530-550 °C. These P-T estimates are higher than previously reported in the Yuli belt and suggest that both tectonic blocks and host metapelites underwent HP metamorphism. The juxtaposition of tectonic blocks and metapelites apparently occurred during the formation of a subduction-accretionary complex, followed by exhumation facilitated by a collisional event. These new findings imply that HP metamorphism was not limited to tectonic blocks, and instead played a significant role attending orogenesis in eastern Taiwan.

  7. Strain-collapsed metamorphic isograds in a sillimanite gneiss dome, Seward Peninsula, Alaska

    SciTech Connect

    Miller, E.L.; Calvert, A.T.; Little, T.A. )

    1992-06-01

    Unusually closely spaced Barrovian series isograds have been described along the flanks of the Kigluaik Mountains, Seward Peninsula, Alaska, where they separate a high-grade gneiss complex intruded by granites of Cretaceous age from surrounding, regionally developed, blueschist to greenschist facies rocks. Structural mapping of the transition zone between the two metamorphic types indicates that their juxtaposition was aided by significant syn- to late-metamorphic solid-state flow that served to attenuate the overlying rock column and thus collapse the field metamorphic gradient. On the basis of field relations, structural data, petrography, and geochronologic data, strain appears to have accompanied the rapid (adiabatic) rise of high-temperature rocks from several tens of kilometers to less than 10 km depth during the Cretaceous, in an event younger than the unrelated to high-P metamorphism. Granite-cored gneiss domes on the Seward Peninsula may have formed during extension of previously thickened continental crust, resulting in the {approximately}35-km-thick crust and near-sea-level elevations of the region today.

  8. Ostwald ripening of clays and metamorphic minerals.

    PubMed

    Eberl, D D; Sacuterodonacute, J; Kralik, M; Taylor, B E; Peterman, Z E

    1990-04-27

    Analyses of particle size distributions indicate that clay minerals and other diagenetic and metamorphic minerals commonly undergo recrystallization by Ostwald ripening. The shapes of their particle size distributions can yield the rate law for this process. One consequence of Ostwald ripening is that a record of the recrystallization process is preserved in the various particle sizes. Therefore, one can determine the detailed geologic history of clays and other recrystallized minerals by separating, from a single sample, the various particle sizes for independent chemical, structural, and isotopic analyses.

  9. Ostwald ripening of clays and metamorphic minerals

    USGS Publications Warehouse

    Eberl, D.D.; Srodon, J.; Kralik, M.; Taylor, B.E.; Peterman, Z.E.

    1990-01-01

    Analyses of particle size distributions indicate that clay minerals and other diagenetic and metamorphic minerals commonly undergo recrystallization by Ostwald ripening. The shapes of their particle size distributions can yield the rate law for this process. One consequence of Ostwald ripening is that a record of the recrystallization process is preserved in the various particle sizes. Therefore, one can determine the detailed geologic history of clays and other recrystallized minerals by separating, from a single sample, the various particle sizes for independent chemical, structural, and isotopic analyses.

  10. Plate tectonics. Seismological detection of slab metamorphism.

    PubMed

    Julian, Bruce

    2002-05-31

    The occurrence of more or less continuous ground vibrations ("volcanic tremor") is an important indicator of volcanic activity. But results from the "Hi-net" seismic network in Japan reported by Obara show that continuous ground vibrations can occur far away from any volcanic activity. In his Perspective, Julian discusses the idea that this tremor is excited by flow of metamorphic fluids. He also identifies other possible locations where such a tremor may be detected and explains what may be learnt from measuring it.

  11. Anatexis of garnet amphibolites from a subduction zone metamorphic terrane

    SciTech Connect

    Sorensen, S.S.; Barton, M.D.; Ernst, W.G.

    1985-01-01

    Concomitant rehydration, metasomatism and amphibolitization of eclogite blocks from a mafic/ultramafic complex of the Catalina Schist terrane, southern California, at estimated metamorphic P approx. 8-12 kb, T approx. 600/sup 0/-700/sup 0/C was apparently accompanied by partial melting of some blocks. Mobilizates of An approx./sub 10-20/ plagioclase (PL) +/- zoisite (ZO) + quartz (QZ) + celadonitic (Si approx. 3.3 p.f.u.) white mica (WM) +/- tourmaline range from stringers and dikelets (approx. 1 cm-0.5 m) in migmatitic amphibolite blocks to dikes approx. 30 m x 3 m which intrude the surrounding, locally enstatite + chlorite +/- talc +/- aluminous actinolite +/- anthophyllite-bearing ultramafic matrix. The uniform phase proportions and the coarse-grained (PL to approx. 20 cm) pegmatitic, graphic, and myrmekitic textures displayed by the dikes and dikelets suggest that they crystallized from silicate melts. WM and ZO appear to be magmatic phases. Fe-rich GT is migmatitic portions of blocks exhibits higher Mg/(Mg + Ca) p.f.u. than GT in restitic portions of blocks; rims are richer in Mg than cores. Field relations, microprobe mineral chemistry, and bulk compositions suggest the pegmatites are low fractions of amphibolite-derived partial melt. Abundant fluid inclusions occur in GT, QZ, PL and clinopyroxene. T/sub h/ for primary H/sub 2/O-rich, low salinity L + V inclusions in GT and QZ from a migmatite range from 136-169/sup 0/C; estimates of T limits for entrapment are 530-640/sup 0/C at 8 kb, 650-780/sup 0/C at 10 kb. H/sub 2/O-rich fluids evidently enabled metasomatism, amphibolitization, and anatexis of (originally) eclogitic rocks at the P-T conditions reflected by the metamorphic mineral assemblages.

  12. Rheologic Transitions During Exhumation of High-Pressure Metamorphic Rocks

    NASA Astrophysics Data System (ADS)

    Whitney, D. L.; Teyssier, C. P.; Rey, P. F.

    2015-12-01

    The exhumation of deeply buried rocks typically involves dynamic feedbacks between deformation and metamorphic reactions (+ fluid and/or melt) that influence rheology and facilitate or drive large-magnitude exhumation. The evolution of grain-scale to terrane-scale processes during decompression can be seen in rocks exhumed from oceanic and continental subduction and from orogenic crust. In the Sivrihisar (Turkey) high-P/low-T (oceanic subduction) complex, microstructures record deformation and syn-kinematic reactions during decompression from eclogite to blueschist facies conditions; this transformation resulted in dramatic strength reduction that promoted strain localization along the subduction interface. In quartz-rich rocks, qz was deformed in the dislocation creep regime and records transitions in microstructure and slip systems during near-isothermal decompression from 2.5 to 1.5 GPa; these transitions may be related to decreasing water fugacity over tens of km of decompression. High-to ultrahigh-P eclogite in exhumed continental subduction zones such as the Western Gneiss Region (Norway) record decompression from >2.5 GPa to <1 GPa. Eclogite shows dramatic textural evidence for decompression, including partial melting and decomposition into hbl-gneiss, resulting in weakening and strain localization. In collisional orogens that are underlain by partially molten crust, upper crustal extension/transtension drives rapid ascent of the deep crust to form migmatite-cored domes. The exhuming deep crust entrains HP relics such as eclogite (e.g. Montagne Noire dome, France) as it traverses much of the orogenic crust, from >1.2 GPa to (in some cases) <0.1 GPa in a single, geologically rapid event during which the partially molten crust reaches the near-surface. In summary, decompression of subducted or deeply buried crust systematically leads to rheologic transitions and feedbacks between deformation and metamorphism in the presence of aqueous fluid and/or melt.

  13. Oxyvanite, V3O5, a new mineral species and the oxyvanite-berdesinskiite V2TiO5 series from metamorphic rocks of the Slyudyanka Complex, southern Baikal region

    NASA Astrophysics Data System (ADS)

    Reznitsky, L. Z.; Sklyarov, E. V.; Armbruster, T.; Ushchapovskaya, Z. F.; Galuskin, E. V.; Polekhovsky, Yu. S.; Barash, I. G.

    2010-12-01

    Oxyvanite has been identified as an accessory mineral in Cr-V-bearing quartz-diopside meta- morphic rocks of the Slyudyanka Complex in the southern Baikal region, Russia. The new mineral was named after constituents of its ideal formula (oxygen and vanadium). Quartz, Cr-V-bearing tremolite and micas, calcite, clinopyroxenes of the diopside-kosmochlor-natalyite series, Cr-bearing goldmanite, eskolaite-karelianite dravite-vanadiumdravite, V-bearing titanite, ilmenite, and rutile, berdesinskiite, schreyerite, plagioclase, scapolite, barite, zircon, and unnamed U-Ti-V-Cr phases are associated minerals. Oxyvanite occurs as anhedral grains up to 0.1-0.15 mm in size, without visible cleavage and parting. The new mineral is brittle, with conchoidal fracture. Observed by the naked eye, the mineral is black, with black streak and resinous luster. The microhardness (VHN) is 1064-1266 kg/mm2 (load 30 g), and the mean value is 1180 kg/mm2. The Mohs hardness is about 7.0-7.5. The calculated density is 4.66(2) g/cm3. The color of oxyvanite is pale cream in reflected light, without internal reflections. The measured reflectance in air is as follows (λ, nm- R, %): 440-17.8; 460-18; 480-18.2; 520-18.6; 520-18.6; 540-18.8; 560-18.9; 580-19; 600-19.1; 620-19.2; 640-19.3; 660-19.4; 680-19.5; 700-19.7. Oxyvanite is monoclinic, space group C2/ c; the unit-cell dimensions are a = 10.03(2), b = 5.050(1), c = 7.000(1) Å, β = 111.14(1)°, V = 330.76(5)Å3, Z = 4. The strongest reflections in the X-ray powder pattern [ d, Å, ( I in 5-number scale)( hkl)] are 3.28 (5) (20 bar 2 ); 2.88 (5) (11 bar 2 ); 2.65, (5) (310); 2.44 (5) (112); 1.717 (5) (42 bar 2 ); 1.633 (5) (31 bar 4 ); 1.446 (4) (33 bar 2 ); 1.379 (5) (422). The chemical composition (electron microprobe, average of six point analyses, wt %): 14.04 TiO2, 73.13 V2O3 (53.97 V2O3calc, 21.25 VO2calc), 10.76 Cr2O3, 0.04 Fe2O3, 0.01 Al2O3, 0.02 MgO, total is 100.03. The empirical formula is (V{1.70/3+} Cr0.30)2.0(V{0.59/4+} Ti0.41)1.0O

  14. Metamorphism of eucrite meteorites studied quantitatively using induced thermoluminescence

    NASA Technical Reports Server (NTRS)

    Batchelor, J. David; Sears, Derek W. G.

    1991-01-01

    Induced thermoluminescence studies provide a new and quantitative means of determining relative metamorphic intensities for eucrite meteorites, the simplest and most ancient products of basaltic volcanism. Using this technique, it is shown that the eucrites constitute a continuous metamorphic series and not, as commonly assumed, two groups of metamorphosed and nonmetamorphosed meteorites. It is suggested that the method may have applications to other basalts.

  15. A Simulated Research Problem for Undergraduate Metamorphic Petrology.

    ERIC Educational Resources Information Center

    Amenta, Roddy V.

    1984-01-01

    Presents a laboratory problem in metamorphic petrology designed to simulate a research experience. The problem deals with data on scales ranging from a geologic map to hand specimens to thin sections. Student analysis includes identifying metamorphic index minerals, locating their isograds on the map, and determining the folding sequence. (BC)

  16. Metamorphic modifications and EPR dosimetry in tooth enamel.

    PubMed

    Brik, A; Radchuk, V; Scherbina, O; Matyash, M; Gaver, O

    1996-01-01

    It is shown that metamorphic modifications in tooth enamel have an essential influence on the results of EPR dosimetry. The metamorphic modifications in minerals of biological origin proceed more quickly than in usual natural minerals. The approaches which at present are applied for reconstruction of doses connected with Chernobyl accident need additional investigation.

  17. Metamorphism of eucrite meteorites studied quantitatively using induced thermoluminescence

    NASA Technical Reports Server (NTRS)

    Batchelor, J. David; Sears, Derek W. G.

    1991-01-01

    Induced thermoluminescence studies provide a new and quantitative means of determining relative metamorphic intensities for eucrite meteorites, the simplest and most ancient products of basaltic volcanism. Using this technique, it is shown that the eucrites constitute a continuous metamorphic series and not, as commonly assumed, two groups of metamorphosed and nonmetamorphosed meteorites. It is suggested that the method may have applications to other basalts.

  18. Metamorphic conditions and CHIME monazite ages of Late Eocene to Late Oligocene high-temperature Mogok metamorphic rocks in central Myanmar

    NASA Astrophysics Data System (ADS)

    Maw Maw Win; Enami, Masaki; Kato, Takenori

    2016-03-01

    The high temperature (T)/pressure (P) regional Mogok metamorphic belt is situated in central Myanmar, and is mainly composed of pelitic gneisses, amphibolites, marbles, and calc-silicate rocks. The garnet-biotite-plagioclase-sillimanite-quartz assemblage and its partial system suggest equilibrium P/T conditions of 0.6-1.0 GPa/780-850 °C for the peak metamorphic stage, and 0.3-0.5 GPa/600-680 °C for the exhumation and hydration stage. Monazite grains show complex compositional zoning consisting of three segments-I, II, and III. Taking into consideration the monazite zoning and relative misfit curves, the calculated chemical Th-U-total Pb isochron method (CHIME) monazite age data (284 spot analyses) indicated four age components: 49.3 ± 2.6-49.9 ± 7.9, 37.8 ± 1.0-38.1 ± 1.7, 28.0 ± 0.8-28.8 ± 1.6, and 23.7 ± 1.3 Ma (2σ level). The ages of the Late Eocene and Late Oligocene epochs were interpreted as the peak metamorphic stage of upper-amphibolite and/or granulite facies and the postdated hydration stage, respectively.

  19. Crustal thickening during Proterozoic metamorphism and deformation in New Mexico

    NASA Astrophysics Data System (ADS)

    Grambling, Jeffrey A.

    1986-02-01

    Proterozoic rocks in northern and central New Mexico underwent simultaneous metamorphism and deformation, tentatively dated at 1410 Ma. Structural relationships record a minimum of 20% 30% shortening during the latter part of deformation, and chemical zoning in garnet and plagioclase indicates a 20% increase in depth of burial during the same interval. Locally, deformation thickened the upper continental crust by at least 20%. This crustal thickening was distributed over a broad area and caused rocks across 75 000 km2 to recrystallize at peak metamorphic conditions near 525 °C and 4 kbar. The metamorphic terrane cooled isobarically, at rates less than 5 °C/m.y. Such slow cooling may be normal at middle crustal depths. Preservation of the regionally uniform peak metamorphic conditions reflects an unusual tectonic history: heat from the metamorphic event outlasted deformation, and the terrane was not subjected to rapid uplift following its thermal peak.

  20. Isothermal densification and metamorphism of new snow

    NASA Astrophysics Data System (ADS)

    Schleef, S.; Loewe, H.; Schneebeli, M.

    2012-12-01

    The interplay between overburden stress and surface energy induced growth and coarsening is relevant for the densification of snow and porous ice at all densities. The densification of new snow is amenable to high precision experiments on short time scales. To this end we investigate the coupling of densification and metamorphism of new snow via time-lapse tomography experiments in the laboratory. We compare the evolution of density, strain, and specific surface area to previous long-time metamorphism experiments of snow and creep of polycrystalline ice. Experimental conditions are tailored to the requirements of time-lapse tomography and the measurements are conducted under nearly isothermal conditions at -20°C with a duration of two days. Images were taken with temporal resolution of a few hours which reveal precise details of the microstructure evolution due to sintering and compaction. We used different crystal shapes of natural new snow and snow samples obtained by sieving crystals grown in a snowmaker in the laboratory. To simulate the effect of overburden stress due to an overlying snowpack additional weights were applied to the sample. As expected we find an influence of the densification rate on initial density and overburden stress. We calculated strain rates and identified a transient creep behavior with a similar power law for all crystal types which substantially differs from the Andrade creep of polycrystalline ice. As a main result we found that the evolution of the specific surface area is independent of the density and follows a unique decay form for all measurements of each crystal type. The accuracy of the measurements allows to obtain a decay exponent for the SSA which is the same as previously obtained from the long-time regime during isothermal metamorphism after several months. Our preliminary results for all available types of new snow suggest a correlation between the initial density and SSA. We also find snow samples which coincide in

  1. Ultrahigh Pressure Metamorphic Terrane Evolution; Norwegian Caledonides

    NASA Astrophysics Data System (ADS)

    Rodda, C. I.; Koons, P. O.; Terry, M.; Robinson, P.

    2007-12-01

    Rocks in Norway's Western Gneiss Region (WGR) experienced high pressure and ultrahigh pressure (UHPM) (4GPa., 800C) peak metamorphic conditions during the Scandian orogeny at 410Ma. Thermobarometric studies of exhumed ultramafic eclogite pods from the Nordfjord, Soroyane and Nordoyane areas place tight time constraints on subduction, UHP metamorphism and exhumation, with all but the final phase of exhumation occurring in ca. 12 million years. However, few structures apparently related to the descent phase of terrane evolution were observed during field studies. Rather, ubiquitous quartz-rod lineation and pervasive minor folding indicate top-to-the-west, relatively shallow unroofing of the subducted margin as indicated in a new bedrock map of a portion of the Norwegian coast. Many of the mapped units have been redescribed, with emphasis put on those features that are of interest to the geophysical community.. To address the ambiguous kinematics of UHPM evolution, numerical models are employed in this study to consider the trajectory of crustal materials during continental collision that concentrate on the delicate balance of forces driving and resisting the subduction of buoyant continental materials as a function of kinetically-controlled equilibration.. In the WGR, past stability of coesite and rarely, of diamond, is preserved in robust mafic eclogites as inclusions within zircon and garnet grains. However, the extent of UHPM equilibration of the volumetrically dominant quartzo-feldspathic gneisses and consequently the contribution of these lithologies to the overall subduction suystemare unclear. . As such, simple equilibrium- defined strength and density parameters are insufficient to define natural model behavior. (Meaning of this next sentence escapes me. How does the following sound?) Rather, numerical solutions involving end member and intermediate states between equilibrium and non-equilibrium assemblages are explored While UHP metamorphic reactions in the

  2. Post-metamorphic brecciation in type 3 ordinary chondrites

    NASA Astrophysics Data System (ADS)

    Scott, E. R. D.; McCoy, T. J.; Keil, K.

    1993-03-01

    Type 3.1-3.9 ordinary chondrites can be divided into two kinds: those in which the compositions of chondrule silicates are entirely consistent with metamorphism of type 3.0 material, and those in which the computational heterogeneity appears to be too extreme for in situ metamorphism. We present petrologic data for three LL3 chondrites of the second kind--Ngawi, ALH A77278 (both type 3.6), and Hamlet (type 3.9)--and compare these data with results for the first kind of LL3-4 chondrites. Given that chondrules form in the nebula and that metamorphic equilibration occurs in asteroids, our new data imply that Ngawi, A77278, Hamlet, and many other type 3 ordinary chondrites are post-metamorphic breccias containing materials with diverse metamorphic histories; they are not metamorphic rocks or special kinds of 'primitive breccias.' We infer also that metamorphism to type 3.1-3.9 levels produces very friable material that is easily remixed into breccias and lithified by mild shock. Thus, petrologic types and subtypes of chondrites indicate the mean metamorphic history of the ingredients, not the thermal history of the rock. The metamorphic history of individual type 1 or 2 porphyritic chondrules in type 3 breccias is best derived from olivine and pyroxene analyses and the data of McCoy et al. for unbrecciated chondrites. The new chondrule classification schemes of Sears, DeHart et al., appears to provide less information about the original state and metamorphic history of individual porphyritic chondrules and should not replace existing classification schemes.

  3. Post-metamorphic brecciation in type 3 ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Scott, E. R. D.; Mccoy, T. J.; Keil, K.

    1993-01-01

    Type 3.1-3.9 ordinary chondrites can be divided into two kinds: those in which the compositions of chondrule silicates are entirely consistent with metamorphism of type 3.0 material, and those in which the computational heterogeneity appears to be too extreme for in situ metamorphism. We present petrologic data for three LL3 chondrites of the second kind--Ngawi, ALH A77278 (both type 3.6), and Hamlet (type 3.9)--and compare these data with results for the first kind of LL3-4 chondrites. Given that chondrules form in the nebula and that metamorphic equilibration occurs in asteroids, our new data imply that Ngawi, A77278, Hamlet, and many other type 3 ordinary chondrites are post-metamorphic breccias containing materials with diverse metamorphic histories; they are not metamorphic rocks or special kinds of 'primitive breccias.' We infer also that metamorphism to type 3.1-3.9 levels produces very friable material that is easily remixed into breccias and lithified by mild shock. Thus, petrologic types and subtypes of chondrites indicate the mean metamorphic history of the ingredients, not the thermal history of the rock. The metamorphic history of individual type 1 or 2 porphyritic chondrules in type 3 breccias is best derived from olivine and pyroxene analyses and the data of McCoy et al. for unbrecciated chondrites. The new chondrule classification schemes of Sears, DeHart et al., appears to provide less information about the original state and metamorphic history of individual porphyritic chondrules and should not replace existing classification schemes.

  4. Metamorphic Perspectives of Subduction Zone Volatiles Cycling

    NASA Astrophysics Data System (ADS)

    Bebout, G. E.

    2008-12-01

    Field study of HP/UHP metamorphic rocks provides "ground-truthing" for experimental and theoretical petrologic studies estimating extents of deep volatiles subduction, and provides information regarding devolatilization and deep subduction-zone fluid flow that can be used to reconcile estimates of subduction inputs and arc volcanic outputs for volatiles such as H2O, N, and C. Considerable attention has been paid to H2O subduction in various bulk compositions, and, based on calculated phase assemblages, it is thought that a large fraction of the initially structurally bound H2O is subducted to, and beyond, subarc regions in most modern subduction zones (Hacker, 2008, G-cubed). Field studies of HP/UHP mafic and sedimentary rocks demonstrate the impressive retention of volatiles (and fluid-mobile elements) to depths approaching those beneath arcs. At the slab-mantle interface, high-variance lithologies containing hydrous phases such as mica, amphibole, talc, and chlorite could further stabilize H2O to great depth. Trench hydration in sub-crustal parts of oceanic lithosphere could profoundly increase subduction inputs of particularly H2O, and massive flux of H2O-rich fluids from these regions into the slab-mantle interface could lead to extensive metasomatism. Consideration of sedimentary N concentrations and δ15N at ODP Site 1039 (Li and Bebout, 2005, JGR), together with estimates of the N concentration of subducting altered oceanic crust (AOC), indicates that ~42% of the N subducting beneath Nicaragua is returned in the corresponding volcanic arc (Elkins et al., 2006, GCA). Study of N in HP/UHP sedimentary and basaltic rocks indicates that much of the N initially subducted in these lithologies would be retained to depths approaching 100 km and thus available for addition to arcs. The more altered upper part of subducting oceanic crust most likely to contribute to arcs has sediment-like δ15NAir (0 to +10 per mil; Li et al., 2007, GCA), and study of HP/UHP eclogites

  5. Early planetary metamorphism in chondritic meteorites

    NASA Astrophysics Data System (ADS)

    Hanan, B. B.; Tilton, G. R.

    1985-07-01

    The record of early events in the solar system is presently sought, together with information on the isotopic composition of primordial lead, in the lead isotope relations of whole rock and separated phases of Mezo-Madaras (L3) and Sharps (H3) chondrites; the respective ages of 4.48 and 4.47 billion years are not significantly changed when Canyon Diablo troilite lead is included in the data sets, suggesting that the initial Pb isotopic composition in both meteorites was the same as that in the troilite. The 4.48 billion year age, which is younger than the well established 4.54-4.56 billion years of the Allende chondrite and Angra dos Reis achondrite, appears to date an early metamorphic event rather than the formation of the chondrites.

  6. Shock metamorphism of lunar and terrestrial basalts

    NASA Technical Reports Server (NTRS)

    Schaal, R. B.; Hoerz, F.

    1977-01-01

    Lonar Crater (India) basalt and lunar basalt 75035 were shock loaded under controlled laboratory conditions up to 1000 kbar, generally in a CO/CO2 (1:1) environment evacuated to 10 to the minus seventh power torr. The Kieffer et al. (1976) classification scheme of progressive shock metamorphism is found to apply to lunar basalts. The major shock features of the five classes that span the range 0 to 1000 kbar are described. Only three out of 152 basalt specimens show shock effects in their natural state as severe as Class 2 features. The scarcity of shocked basalt hand samples in contrast to the abundance of shock-produced agglutinates and homogeneous glass spheres in the lunar regolith indicates the dominant role of micrometeorite impact in the evolution of the lunar regolith. The overall glass content in asteroidal and Mercurian regoliths is considered.

  7. Redistribution of volatiles during lunar metamorphism

    NASA Technical Reports Server (NTRS)

    Cirlin, E. H.; Housley, R. M.

    1980-01-01

    Thermal release profiles of Pb, Zn, and Cd in sample 66095 (highly shocked breccia with melt rock matrix) showed that these volatiles were mostly present on the surface of the grains. Zn in rusty grains from 66095 was also mostly surface Zn, probably from sphalerite in grain boundaries and cracks. Simulation experiments of volatile transfer showed that Fe, FeCl2, iron phosphide, and troilite (FeS) can be produced and transported during subsolidus reactions. These results suggest that volatiles, rust, schreibersite, and possible siderophiles which are observed in lunar highland samples might have been redistributed during disequilibrium thermal metamorphism in hot ejecta blankets, and were not necessarily introduced by volcanic activity or meteoritic addition.

  8. Redistribution of volatiles during lunar metamorphism

    NASA Technical Reports Server (NTRS)

    Cirlin, E. H.; Housley, R. M.

    1980-01-01

    Thermal release profiles of Pb, Zn, and Cd in sample 66095 (highly shocked breccia with melt rock matrix) showed that these volatiles were mostly present on the surface of the grains. Zn in rusty grains from 66095 was also mostly surface Zn, probably from sphalerite in grain boundaries and cracks. Simulation experiments of volatile transfer showed that Fe, FeCl2, iron phosphide, and troilite (FeS) can be produced and transported during subsolidus reactions. These results suggest that volatiles, rust, schreibersite, and possible siderophiles which are observed in lunar highland samples might have been redistributed during disequilibrium thermal metamorphism in hot ejecta blankets, and were not necessarily introduced by volcanic activity or meteoritic addition.

  9. Conodont color and textural alteration: an index to regional metamorphism, contact metamorphism, and hydrothermal alteration.

    USGS Publications Warehouse

    Rejebian, V.A.; Harris, A.G.; Huebner, J.S.

    1987-01-01

    Experimental and field data are used to extend the utility of conodonts as semi-quantitative thermal indices into the regimes of regional and contact metamorphism, as well as hydrothermal alteration. These experiments approximate the type of Colour Alteration Indices mixture characteristically found in conodonts recovered from hydrothermally altered rocks. These data indicate that CAI values of 6 to 8 cannot be used to assess precise temperatures of hydrothermally altered rocks but may serve as useful indicators of potential mineralization. - from Authors

  10. Geochemistry, provenance, and metamorphic evolution of Gabal Samra Neoproterozoic metapelites, Sinai, Egypt

    NASA Astrophysics Data System (ADS)

    Abu El-Enen, Mahrous M.

    2011-02-01

    Metapelites are exposed at Wadi Ba'ba, east of Abu Zenima city; represent the northwestern extension of the Fieran-Solaf Metamorphic Complex, Sinai Peninsula, Egypt. The metapelites are characterized by qtz + pl (An 24-28) + bt + grt ± crd ± sil mineral assemblage, indicating upper amphibolite facies with peak metamorphic conditions of 700 °C and pressures of 7 kbar, as determined by conventional geothermobarometeric methods. This resulted in incipient migmatization, forms patches of leucosomes and melanosomes. Geochemical investigation indicates that the precursor sediments of the metapelites had been deposited as immature Fe-rich shales from source materials of dominantly intermediate composition. Source area exhibited weak to moderate chemical weathering in a tectonically active continental marginal basin within a continental-arc system. A strong shallow-dipping foliation, characterizing the metapelites, was folded around an open antiform with sub-horizontal south plunging hinge. Phase equilibria calculations in the KFMASH system indicate that the peak metamorphic conditions formed at 730-750 °C and 6.8-7.9 kbar. This was followed by a retrogression formed at 770-785 °C and 3.9-4.5 kbar. Hence, this implies an isothermal decompression and rapid exhumation of the metapelites from depth (25-29 km) in the lower crustal level at peak conditions, continuous to include shallow to middle crustal level (14-17 km), at overprint retrograde conditions. Subsequent isobaric cooling took place at 720-750 °C and 3.6-4.5 kbar. The resulting isothermal decompression followed by isobaric cooling clockwise P-T path of the metapelites is more likely, in which the high-temperatures attained maximum conditions during isothermal decompression were enhanced by heat flux, due to the presence of an active magmatic arc that formed on top of subducting young lithosphere. This is supported by a moderate geothermal gradient of 27-43 °C/km and dating compatibility of the Sinai

  11. Record of high-pressure overprint in metamorphic soles of the Tavşanli zone, Western Anatolia

    NASA Astrophysics Data System (ADS)

    Plunder, Alexis; Agard, Philippe; Chopin, Christian; Okay, Aral

    2013-04-01

    Large obducted ophiolites correspond to the emplacement of dense oceanic lithosphere on top of a continent and thereby provide insights into rheological and thermal coupling between plates or fluid budgets. Obducted ophiolites thrust onto the continental margin of the Anatolide-Tauride block (Western Anatolia, south of the Izmir-Ankara suture zone) are dated through their metamorphic sole at ca. 90-95Ma and derive from the same intra-oceanic Neotethyan subduction. We herein focus on the metamorphic soles of the Tavşanlı zone, which show a variable high-pressure low-temperature (HP-LT) overprint of the initial amphibolitic metamorphic conditions (Önen & Hall, 1993; Dilek & Whitney, 1997; Okay et al, 1998). Systematic sampling was done in both the already studied areas as well as new locations. PT conditions were estimated at 8 kbar and 700°C for the amphibolitic stage with the assemblage hornblende + plagioclase ± garnet ± epidote. The HP-LT metamorphic overprint reached incipient blueschist to blueschist facies PT conditions. Development of the characteristic assemblage glaucophane + lawsonite yields PT estimates of >6-7 kbar and 300°C. The high-pressure stage is similar to the one observed for the underlying accretionary-complex unit of the Tavşanlı zone (Plunder et al, this meeting). This HP overprint was not observed in other obduction contexts such as Oman or New Caledonia but was documented in Fransciscan Complex amphibolites (Wakayabashi, 1990). The record of two metamorphic events can be understood as: (1) rapid cooling of the subduction zone after initiation and the exhumation of the metamorphic sole; (2) reburial after or during exhumation of the amphibolite initially welded at the base of the ophiolite. Several observations (i.e., lack of tectonic contact between the ophiolitic body and the metamorphic sole, PT estimates,...) point to cooling as the most likely hypothesis. Metamorphic soles allow to highlight: (1) the dynamics of obducted

  12. Thrust involvement of metamorphic rocks, southwestern Brooks Range, Alaska

    SciTech Connect

    Till, A.B.; Schmidt, J.M.; Nelson, S.W. )

    1988-10-01

    Most models for the tectonic history of the western Brooks Range treat Proterozoic and lower Paleozoic metamorphic rocks exposed in the southern part of the range as passive structural basement vertically uplifted late in the Mesozoic orogenic episode. Mapping in the metamorphic rocks shows that they can de divided into two structurally and metamorphically distinct belts, both of which were folded and thrust during the orogeny. Recognition of these belts and the nature of the contact separating them is critical to construction of accurate tectonic models of the Brooks Range fold and thrust belt.

  13. Early Proterozoic ultrahigh pressure metamorphism: evidence from microdiamonds.

    PubMed

    Cartigny, Pierre; Chinn, Ingrid; Viljoen, K S; Robinson, Derek

    2004-05-07

    Microdiamonds from the Akluilâk minette dykes (Nunavut, Canada) are similar to diamonds formed in subducted metamorphic rocks. High concentrations of unaggregated nitrogen and positive delta(15)N suggest that the microdiamonds formed within rocks subducted to ultrahigh pressures before being sampled by the minette magma 1.8 billion years ago. This ultrahigh pressure metamorphism in North America, probably related to the Trans-Hudson orogen (about 2 billion years ago), extends the occurrence of ultrahigh pressure metamorphism from 0.6 billion years to before 1.8 billion years ago and suggests that Phanerozoic-type subductions were active by the Early Proterozoic.

  14. UHT granulite-facies metamorphism in Rogaland, S Norway, is polyphase in nature

    NASA Astrophysics Data System (ADS)

    Laurent, Antonin; Duchene, Stéphanie; Bingen, Bernard; Seydoux-Guillaume, Anne-Magali; Bosse, Valérie

    2016-04-01

    . We conclude that preconditioning of the crust was a condition necessary to develop such a UHT metamorphic aureole around the anorthosite complex.

  15. Monazite behaviours during high-temperature metamorphism: a case study from Dinggye region, Tibetan Himalaya

    NASA Astrophysics Data System (ADS)

    Wang, Jia-Min; Wu, Fu-Yuan; Rubatto, Daniela; Liu, Shi-Ran; Zhang, Jin-Jiang

    2017-04-01

    Monazite is a key accessory mineral for metamorphic geochronology, but its growth mechanisms during melt-bearing high-temperature metamorphism is not well understood. Therefore, the petrology, pressure-temperature and timing of metamorphism have been investigated in pelitic and psammitic granulites from the Greater Himalayan Crystalline Complex (GHC) in Dinggye, southern Tibet. These rocks underwent an isothermal decompression process from pressure conditions of >10 kbar to <5 kbar with constant temperatures of 750-830°C, and recorded three metamorphic stages of kyanite-grade (M1), sillimanite-grade (M2) and cordierite-spinel grade (M3). Monazite and zircon crystals were analyzed for ages by microbeam techniques either in mounts or thin sections. Ages were linked to specific conditions of mineral growth by comprehensive studies on zoning patterns, trace element signatures, index mineral inclusions (melt inclusions, sillimanite and K-feldspar) in dated domains and textural correlations with coexisting minerals. The results show that inherited domains (500-400 Ma) are common in monazite even at granulite-facies conditions. Few monazites formed at the M1-stage ( 30-29 Ma) and recorded heterogeneous Th, Y, and HREE compositions, which formed by recrystallization related to muscovite dehydration melting reaction. These monazite grains were protected from dissolution or lateral overprinting mainly by the armour effect of matrix crystals (biotite and quartz). Most monazite grains formed at the M3-stage (21-19 Ma) through either dissolution-reprecipitation or recrystallization that was related to biotite dehydration melting reaction. These monazite grains record HREE and Y signatures in local equilibrium with different reactions involving either garnet breakdown or peritectic garnet growth. Another peak of monazite growth occurs during melt crystallization ( 15 Ma), and these monazites are unzoned and have homogeneous compositions. Our results documented the widespread

  16. Fate of gold and base metals during metamorphic devolatilization of a pelite

    NASA Astrophysics Data System (ADS)

    Zhong, Richen; Brugger, Joël; Tomkins, Andrew G.; Chen, Yanjing; Li, Wenbo

    2015-12-01

    enrichment in base metals is expected within large orogenic gold deposits in metamorphic terrains, which is consistent with observations globally. The metamorphic devolatilization model is challenged by models involving externally derived fluid (and possibly Au) sources, including magmatic fluids (de Ronde et al., 2000), deeply convecting meteoric waters (Nesbitt et al., 1989), or mantle-derived fluids (Mao et al., 2008). These alternative models require external sources of fluids to extract Au from the source rocks. A key question to test the feasibility of the metamorphic devolatilization model is whether sufficient Au can be extracted from source rocks solely by internally generated metamorphic fluids. Which reactions control Au extraction? Prograde metamorphism is characterized by a series of dehydration reactions involving breakdown of hydrous minerals (e.g., clay minerals, chlorite, and mica). During any of these reactions, some Au will be scavenged from the source rock into the fluid, but the amounts of Au liberated remain poorly constrained. The transition from pyrite to pyrrhotite during prograde metamorphism is also regarded as important for Au liberation, based on calculations within the Fe-S-O-H(-C) system suggesting that excess sulfur, the most important ligand for Au transport, will be liberated during the pyrite-pyrrhotite transition (Toulmin and Barton, 1964; Ferry, 1981; Tomkins, 2010), for example via the reaction: Another key question relates to the gold-only nature of orogenic Au deposits. Some researchers proposed that because Au forms strong complexes with S ligands, it is highly soluble in low salinity S-rich metamorphic fluids. In contrast, base metals such as Cu, Pb and Zn are primarily transported as chloride complexes, and therefore transported in sub-economic quantities in low-salinity metamorphic fluids (Phillips and Powell, 2010). Nevertheless, studies on some Cu (e.g., Zhong et al., 2012, 2013) and Pb-Zn deposits (e.g., Leach et al

  17. Tectonic Implications of Ultrahigh-Temperature and High-Pressure Granulite Metamorphism in the Neoproterozoic Brasiliano Belts of SE Brazil

    NASA Astrophysics Data System (ADS)

    Brown, M.; Baldwin, J. A.; Moraes, R.; Reno, B. L.; Fuck, R. A.; Piccoli, P. M.; Trouw, R. A.

    2006-05-01

    The orogenic belts suturing Gondwana were a product of the Cryogenian-Cambrian Rodinia-to-Gondwana supercontinent breakup and reconfiguration. Ultrahigh temperature metamorphism is common throughout these belts, whereas high pressure granulite and ultrahigh pressure metamorphism are rarer. The suturing of W Gondwana is exemplified by the successive formation of the Brasilia, Ribeira and Cabo Frio orogenic belts of SE Brazil. In the Brasilia belt of Goias, UHTM granulites occur in the Anapolis-Itaucu complex, between the W margin of the Sao Francisco craton and the Goias magmatic arc. Peak P-T conditions of 0.875 GPa and 1025 C for an impure quartzite were calculated using THERMOCALC, within the Grt-Opx-Sil-Qtz divariant field in a FMAS pseudosection consistent with the peak assemblage (Baldwin et al., 2005), and less extreme than P-T estimated from published FMAS grids. Temperatures calculated using Ti-in-zircon thermometry (Watson et al., unpubl.) on metamorphic zircons are 850-950 C, and likely reflect prograde or retrograde growth; growth of new zircon from ilmenite breakdown appears to yield robust temperatures of 800-750 C, appropriate for post- peak cooling during exhumation. Rutile inclusions in garnet contain variable, but high amounts of Zr, indicating growth under high (or ultrahigh) temperature conditions, but the variability is inconsistent with partial diffusive re-equilibration. The retrograde P-T path involved decompression with production of Spr + Qtz followed by cooling and production of Crd. Dates on multiple single metamorphic zircons from four widely-spaced samples analyzed by TIMS suggest that the peak metamorphism occurred during the interval ca. 645-635 Ma, reflecting growth during a short-lived ultrahigh temperature event. The clockwise P-T evolution was a consequence of back-arc basin development during growth of the Goias magmatic arc and trench roll-back, followed by basin inversion with concomitant mafic magmatism, arc collision and core

  18. Mineral-water reactions in metamorphism and volcanism

    USGS Publications Warehouse

    Barnes, I.

    1985-01-01

    Low-temperature (120??C and less) metamorphism of graywacke, granite and andesite yields zeolites and precursor gels by reaction with fresh water but low-greenschist facies by reaction with salt (sea)water. ?? 1985.

  19. Isotope and chemical age of the Greater Caucasus basement metamorphic rocks

    NASA Astrophysics Data System (ADS)

    Konilov, A. N.; Somin, M. L.; Mukhanova, A. A.

    2009-04-01

    It is widely accepted that metamorphic basement of the Greater Caucasus is essentially Proterozoic [i.e. Gamkrelidze & Shengelia, 2005 ]. New results of geochronological study, mainly on magmatic zircon, contradict this opinion [Somin, 2007; Somin et al., 2007a, b, c and references therein]. To precise age of metamorphism we tried to apply CHIME method on monazite [Suzuki, Adachi, 1991]. The facility consists of Tescan SEM VEGA II xmu equipped with EDS Energy 400 and WDS Wave 500 from Oxford Instruments. This system and analytical protocol for monazite analysis are close to described by Slagstad [2006]. Samples of three metamorphic units were used with purpose to investigate their PT conditions and chemical composition of accessory monazite, xenotime and zircon. In the Blyb Complex Ky-bearing St-Grt-Bt schist was studied. Temperature calculated using Grt-St and Grt-Bt thermometers are 550-600 oC at 10 kb. Because xenotime absence and very low Y2O3 content in monazite, temperature determination on Mnz thermometer was impossible. Isochron chemical age of monazite is 288±24 Ma. In the Gondary Complex the Sil-bearing Grt-Bt gneiss was studied. Temperature calculated using Grt-Bt thermometer and Grt-Pl-Sil-Qtz geobarometer correspond to 610 oC at 4 kb. Monazite thermometer [Pyle et al., 2001] indicates temperature range 533-640 oC for three samples. Monazite chemical age is 303±31 Ma, zircon of leucosome yields SHRIMP age 321-288 Ma. In the Makera Complex the And-Bt-Ms and Grt-Bt-Ms metapelites were examinated. Temperature calculated using Grt-Bt thermometer and Grt-Pl-And-Qtz geobarometer correspond to 500 oC at 2,5 kb. Monazite thermometer indicates average temperatures 293-433-447 oC. Two isochrones correspond to 239±28 Ma and 282±19 Ma. Our results of monazite dating are close to the U-Pb zircon data although not similar being some younger. Therefore conclusion on Precambrian metamorphic events in the studied complexes of the Greater Caucasus is erroneous. These

  20. Contrasting plate-tectonic styles of the Qinling-Dabie-Sulu and Franciscan metamorphic belts

    NASA Astrophysics Data System (ADS)

    Ernst, W. G.; Liou, J. G.

    1995-04-01

    The Dabie Mountains are part of the >2000-km-long Qinling-Dabie-Sulu suture zone juxtaposing the Sino-Korean and Yangtze cratons. An eastern extension apparently crosses Korea and lies along the Japan Sea side of Honshu as the Imjingang and Sangun terranes, respectively; a northeastern segment may be present in Sikhote-Alin, Russian Far East. This orogenic belt records late Paleozoic ocean-floor consumption and the Triassic collision of two Precambrian continental massifs in east-central China. Coesite and microdiamond inclusions in strong, refractory minerals of eclogite facies ultrahigh-pressure (UHP) metamorphic rocks in the Dabie-Sulu area attest to profound subduction of a leading salient of the old, cold Yangtze craton, now recovered through tectonic exhumation and erosion. Northward increase in intensity of subsolidus recrystallization of the suture complex is analogous to the internal progression in grade of high-pressure (HP) and UHP metamorphism documented in the Western Alps. In both regions, subduction of narrow prongs of continental material, UHP metamorphism, and return toward midcrustal levels of relatively lower density, buoyant microcontinental blocks resulted from delamination of these rocks from the descending, higher density, oceanic-crust-capped lithospheric plate. Such salients of continental crust represent an integral structural part of the downgoing slab, remain intact, and may be dragged to great depths before disengaging and rising differentially as coherent blocks. UHP parageneses include trace mineralogic relics requiring peak metamorphic conditions of 700 900 ° C and 28 35 kbar or more. In contrast, Pacific-type HP metamorphic belts, as represented by the Franciscan Complex of western California, recrystallized under physical conditions up to 200 500 ° C, 10 ± 3 kbar. In this setting, voluminous quartzo-feldspathic and graywacke debris was carried downward on oceanic-crust-capped lithosphere, choking the subduction zone with

  1. Application of Metamorphic Testing to Supervised Classifiers

    PubMed Central

    Xie, Xiaoyuan; Ho, Joshua; Kaiser, Gail; Xu, Baowen; Chen, Tsong Yueh

    2010-01-01

    Many applications in the field of scientific computing - such as computational biology, computational linguistics, and others - depend on Machine Learning algorithms to provide important core functionality to support solutions in the particular problem domains. However, it is difficult to test such applications because often there is no “test oracle” to indicate what the correct output should be for arbitrary input. To help address the quality of such software, in this paper we present a technique for testing the implementations of supervised machine learning classification algorithms on which such scientific computing software depends. Our technique is based on an approach called “metamorphic testing”, which has been shown to be effective in such cases. More importantly, we demonstrate that our technique not only serves the purpose of verification, but also can be applied in validation. In addition to presenting our technique, we describe a case study we performed on a real-world machine learning application framework, and discuss how programmers implementing machine learning algorithms can avoid the common pitfalls discovered in our study. We also discuss how our findings can be of use to other areas outside scientific computing, as well. PMID:21243103

  2. Inverted Metamorphic Multijunction (IMM) Cell Processing Instructions

    SciTech Connect

    Duda, A.; Ward, S.; Young, M.

    2012-02-01

    This technical report details the processing schedule used to fabricate Inverted Metamorphic Multijunction (IMM) concentrator solar cells at The National Renewable Energy Laboratory (NREL). These devices are used as experimental test structures to support the research at NREL that is focused on increasing the efficiency of photovoltaic power conversion. They are not intended to be devices suitable for deployment in working concentrator systems primarily because of heat sinking issues. The process schedule was developed to be compatible with small sample sizes and to afford relatively rapid turn-around times, in support of research efforts. The report describes the use of electro deposition of gold for both the back and front contacts. Electro-deposition is used because of its rapid turn around time and because it is a benign metallization technique that is seldom responsible for damage to the semiconductors. The layer transfer technique is detailed including the use of a commercially available adhesive and the etching away of the parent gallium arsenide substrate. Photolithography is used to define front contact grids as well as the mesa area of the cell. Finally, the selective wet chemical etchant system is introduced and its use to reveal the back contact is described.

  3. Silicate versus trace mineral susceptibility in metamorphic rocks

    NASA Astrophysics Data System (ADS)

    Borradaile, Graham; MacKenzie, Allan; Jensen, Eleanor

    1990-06-01

    Rates of change of magnetic susceptibility during leaching can characterize the presence of certain common types of magnetic minerals in metamorphic rocks. In this study the results of leaching are confirmed by mineral separation, optical microscopy, scanning electron microscopy (SEM) and microchemical analysis under SEM. Leaching curves provide a simple, rapid way of determining the relative roles of oxides, sulfides, and silicates in carrying the susceptibility in metamorphic rocks.

  4. Late Cretaceous UHP metamorphism recorded in kyanite-garnet schists from the Central Rhodope Mountains, Bulgaria

    NASA Astrophysics Data System (ADS)

    Collings, David; Savov, Ivan; Maneiro, Kathryn; Baxter, Ethan; Harvey, Jason; Dimitrov, Iliya

    2016-03-01

    In this study, we report the first discovery of microdiamond inclusions in kyanite-garnet schists from the Central Rhodope Mountains in Bulgaria. These inclusions occur in garnets from metapelites that are part of a meta-igneous and meta-sedimentary mélange hosted by Variscan (Hercynian) orthogneiss. Ultra-high-pressure (UHP) conditions are further supported by the presence of exsolved needles of quartz and rutile in the garnet and by geothermobarometry estimates that suggest peak metamorphic temperatures of 750-800 °C and pressures in excess of 4 GPa. The discovery of UHP conditions in the Central Rhodopes of Bulgaria compliments the well-documented evidence for such conditions in the southernmost (Greek) part of the Rhodope Massif. Dating of garnets from these UHP metapelites (Chepelare Shear Zone) using Sm-Nd geochronology indicates a Late Cretaceous age (70.5-92.7 Ma) for the UHP metamorphic event. This is significantly younger than previously reported ages and suggests that the UHP conditions are associated with the Late Mesozoic subduction of the Vardar Ocean northward beneath the Moesian platform (Europe). The present-day structure of the RM is the result of a series of subduction-exhumation events that span the Cenozoic, alongside subsequent post-orogenic extension and metamorphic core complex formation.

  5. Stable isotope evidence for hydrologic conditions during regional metamorphism in the Panamint Mountains, California

    SciTech Connect

    Bergfeld, D.; Nabelek, P.I. . Dept. of Geological Sciences); Labotka, T.C. . Dept. of Geological Sciences)

    1992-01-01

    The Kingston Peak Formation forms part of the Panamint Mountains, California, metamorphic core-complex. Peak tremolite-grade metamorphism as exhibited in Wildrose Canyon occurred in the Jurassic; a retrograde thermal event may have occurred in the Cretaceous. The formation consists dominantly of interbedded siliceous limestones and graphitic calcareous schists. Stable isotopic analysis shows two distinct groups of data. delta O-18 values of calcite from the limestones range between 15.3 and 17.3[per thousand], probably reflecting their original Proterozoic depositional values. Likewise the delta C-13 values are also unshifted, ranging from +1% to +3.8%o. In contrast, delta O-18 values of calcite from the schists are for the most part > 20[per thousand]. These high values could reflect the original depostional conditions; however, they may be due to equilibration with silicate minerals which range from 14.9 to 17.9[per thousand]. Overall, the combined oxygen and carbon isotopic data indicate that most isotopic changes can be explained by closed-system equilibration. Only a limited amount of interaction with externally-derived fluids during metamorphism is evident in the isotopic data. The interaction may have been confined to vicinities of faults and fractures which are common in Wildrose Canyon.

  6. Metamorphic III–V Solar Cells: Recent Progress and Potential

    SciTech Connect

    Garcia, Ivan; France, Ryan M.; Geisz, John F.; McMahon, William E.; Steiner, Myles A.; Johnston, Steve; Friedman, Daniel J.

    2016-01-01

    Inverted metamorphic multijunction solar cells have been demonstrated to be a pathway to achieve the highest photovoltaic (PV) conversion efficiencies. Attaining high-quality lattice-mismatched (metamorphic) semiconductor devices is challenging. However, recent improvements to compositionally graded buffer epitaxy and junction structures have led to the achievement of high-quality metamorphic solar cells exhibiting internal luminescence efficiencies over 90%. For this high material quality, photon recycling is significant, and therefore, the optical environment of the solar cell becomes important. In this paper, we first present recent progress and performance results for 1- and 0.7-eV GaInAs solar cells grown on GaAs substrates. Then, an electrooptical model is used to assess the potential performance improvements in current metamorphic solar cells under different realizable design scenarios. The results show that the quality of 1-eV subcells is such that further improving its electronic quality does not produce significant Voc increases in the four-junction inverted metamorphic subcells, unless a back reflector is used to enhance photon recycling, which would significantly complicate the structure. Conversely, improving the electronic quality of the 0.7-eV subcell would lead to significant Voc boosts, driving the progress of four-junction inverted metamorphic solar cells.

  7. Archean metamorphic sequence and surfaces, Kangerdlugssuaq Fjord, East Greenland

    NASA Technical Reports Server (NTRS)

    Kays, M. A.

    1986-01-01

    The characteristics of Archean metamorphic surfaces and fabrics of a mapped sequence of rocks older than about 3000 Ma provide information basic to an understanding of the structural evolution and metamorphic history in Kangerdlugssuaq Fjord, east Greenland. This information and the additional results of petrologic and geochemical studies have culminated in an extended chronology of Archean plutonic, metamorphic, and tectonic events. The basis for the chronology is considered, especially the nature of the metamorphic fabrics and surfaces in the Archean sequence. The surfaces, which are planar mineral parageneses, may prove to be mappable outside Kangerdlugssuaq Fjord, and if so, will be helpful in extending the events that they represent to other Archean sequences in east Greenland. The surfaces will become especially important reference planes if the absolute ages of their metamorphic assemblages can be determined in at least one location where strain was low subsequent to their recrystallization. Once an isochron is obtained, the dynamothermal age of the regionally identifiable metamorphic surface is determined everywhere it can be mapped.

  8. Design and accuracy analysis of a metamorphic CNC flame cutting machine for ship manufacturing

    NASA Astrophysics Data System (ADS)

    Hu, Shenghai; Zhang, Manhui; Zhang, Baoping; Chen, Xi; Yu, Wei

    2016-09-01

    The current research of processing large size fabrication holes on complex spatial curved surface mainly focuses on the CNC flame cutting machines design for ship hull of ship manufacturing. However, the existing machines cannot meet the continuous cutting requirements with variable pass conditions through their fixed configuration, and cannot realize high-precision processing as the accuracy theory is not studied adequately. This paper deals with structure design and accuracy prediction technology of novel machine tools for solving the problem of continuous and high-precision cutting. The needed variable trajectory and variable pose kinematic characteristics of non-contact cutting tool are figured out and a metamorphic CNC flame cutting machine designed through metamorphic principle is presented. To analyze kinematic accuracy of the machine, models of joint clearances, manufacturing tolerances and errors in the input variables and error models considering the combined effects are derived based on screw theory after establishing ideal kinematic models. Numerical simulations, processing experiment and trajectory tracking experiment are conducted relative to an eccentric hole with bevels on cylindrical surface respectively. The results of cutting pass contour and kinematic error interval which the position error is from-0.975 mm to +0.628 mm and orientation error is from-0.01 rad to +0.01 rad indicate that the developed machine can complete cutting process continuously and effectively, and the established kinematic error models are effective although the interval is within a `large' range. It also shows the matching property between metamorphic principle and variable working tasks, and the mapping correlation between original designing parameters and kinematic errors of machines. This research develops a metamorphic CNC flame cutting machine and establishes kinematic error models for accuracy analysis of machine tools.

  9. Metamorphic signature of the Gneiss Canyon Shear Zone, Lower Granite Gorge, Grand Canyon, Arizona

    SciTech Connect

    Robinson, K.; Williams, M.L. . Dept. of Geology and Geography)

    1992-01-01

    The Proterozoic orogen in Arizona consists of structural blocks separated by NE trending shear zones. The Gneiss Canyon Shear Zone (GCSZ) is important because it appears to define in part the boundary between the amphibolite facies Yavapai Province and the granulite facies Mojave Province. An early NW striking foliation is clearly visible in many samples from the Lower Granite Gorge (LGG). In Travertine Canyon, east of the GCSZ, pelitic schists contain And-Sil-Crd-Bi and Gar-Sil-Sta-Bi. Mafic rocks exhibit complex phase relations between cummingtonite, anthophyllite, gedrite, garnet, and cordierite. The coexistence of cordierite-cummingtonite is indicative of low pressure metamorphism. Microprobe analyses of garnets reveal prograde growth zoning profiles. Temperature and pressure estimates of peak metamorphism are 550--600 C and 3 kb. Just east of the GCSZ, pelitic assemblages contain Gar-Bi [+-] Sil [+-] Mus, and garnet zoning profiles are flat in the cores. In Spencer Canyon, west of the GCSZ, samples commonly contain Gar-Bi-Sil-Crd, and in many samples cordierite is being replaced by sillimanite. Thermobarometric calculations yield temperature and pressure estimates of 650 C and 3.5 kb. Mineral assemblages and quantitative thermobarometry suggest higher peak metamorphic temperature west of the GCSZ but relatively constant pressures across the LGG. On the east side of the GCSZ, temperatures increase toward the Shear Zone, probably due to the presence of extensive dikes, pods, and veins of variably deformed granite. Peak mineral assemblages are syntectonic with respect to the NE-striking GCSZ fabric. If a suture exists in the LGG, the GCSZ fabrics apparently reflect post-accretionary tectonism, with accretion occurring prior to the peak of metamorphism.

  10. Fore arc tectonothermal evolution of the El Oro metamorphic province (Ecuador) during the Mesozoic

    NASA Astrophysics Data System (ADS)

    Riel, Nicolas; Martelat, Jean-Emmanuel; Guillot, Stéphane; Jaillard, Etienne; Monié, Patrick; Yuquilema, Jonatan; Duclaux, Guillaume; Mercier, Jonathan

    2014-10-01

    The El Oro metamorphic province of SW Ecuador is a composite massif made of juxtaposed terranes of both continental and oceanic affinity that has been located in a fore-arc position since Late Paleozoic times. Various geochemical, geochronological, and metamorphic studies have been undertaken on the El Oro metamorphic province, providing an understanding of the origin and age of the distinct units. However, the internal structures and geodynamic evolution of this area remain poorly understood. Our structural analysis and thermal modeling in the El Oro metamorphic province show that this fore-arc zone underwent four main geological events. (1) During Triassic times (230-225 Ma), the emplacement of the Piedras gabbroic unit at crustal-root level (~9 kbar) triggered partial melting of the metasedimentary sequence under an E-W extensional regime at pressure-temperature conditions ranging from 4.5 to 8.5 kbar and from 650 to 900°C for the migmatitic unit. (2) At 226 Ma, the tectonic underplating of the Arenillas-Panupalí oceanic unit (9 kbar and 300°C) thermally sealed the fore-arc region. (3) Around the Jurassic-Cretaceous boundary, the shift from trench-normal to trench-parallel subduction triggered the exhumation and underplating of the high-pressure, oceanic Raspas Ophiolitic Complex (18 kbar and 600°C) beneath the El Oro Group (130-120 Ma). This was followed by the opening of a NE-SW pull-apart basin, which tilted the massif along an E-W subhorizontal axis (110 Ma). (4) In Late Cretaceous times, an N-S compressional event generated heterogeneous deformation due to the presence of the Cretaceous Celica volcanic arc, which acted as a buttress and predominantly affected the central and eastern part of the massif.

  11. Earthquakes, fluid pressures and rapid subduction zone metamorphism

    NASA Astrophysics Data System (ADS)

    Viete, D. R.

    2013-12-01

    High-pressure/low-temperature (HP/LT) metamorphism is commonly incomplete, meaning that large tracts of rock can remain metastable at blueschist- and eclogite-facies conditions for timescales up to millions of years [1]. When HP/LT metamorphism does take place, it can occur over extremely short durations (<<1 Myr) [1-2]. HP/LT metamorphism must be associated with processes that allow large volumes of rock to remain unaffected over long periods of time, but then suddenly undergo localized metamorphism. Existing models for HP/LT metamorphism have focussed on the role of fluids in providing heat for metamorphism [2] or catalyzing metamorphic reactions [1]. Earthquakes in subduction zone settings can occur to depths of 100s of km. Metamorphic dehydration and the associated development of elevated pore pressures in HP/LT metamorphic rocks has been identified as a cause of earthquake activity at such great depths [3-4]. The process of fracturing/faulting significantly increases rock permeability, causing channelized fluid flow and dissipation of pore pressures [3-4]. Thus, deep subduction zone earthquakes are thought to reflect an evolution in fluid pressure, involving: (1) an initial increase in pore pressure by heating-related dehydration of subduction zone rocks, and (2) rapid relief of pore pressures by faulting and channelized flow. Models for earthquakes at depth in subduction zones have focussed on the in situ effects of dehydration and then sudden escape of fluids from the rock mass following fracturing [3-4]. On the other hand, existing models for rapid and incomplete metamorphism in subduction zones have focussed only on the effects of heating and/or hydration with the arrival of external fluids [1-2]. Significant changes in pressure over very short timescales should result in rapid mineral growth and/or disequilibrium texture development in response to overstepping of mineral reaction boundaries. The repeated process of dehydration-pore pressure development

  12. The metamorphic evolution from ultrahigh-temperature to amphibolite facies metamorphism in the Odaesan area after the collision between the North and South China Cratons in the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Lee, Byung Choon; Oh, Chang Whan; Kim, Tae Sung; Yi, Keewook

    2016-07-01

    The Odaesan Gneiss Complex (Odesan Gneiss Complex) is the eastern end of the Hongseong-Odaesan collision belt in the Korean Peninsula, which is an extension of the Dabie-Sulu collision belt between the North and South China cratons. The Odaesan Gneiss Complex mainly consists of banded and migmatitic gneisses with porphyritic granitoids and amphibolites. The garnet-bearing banded gneisses can be subdivided into garnet-biotite and garnet-orthopyroxene banded gneisses. At the beginning of the post-collision stage, the banded gneisses underwent regional ultrahigh-temperature metamorphism (902-950 °C/8.8-9.4 kbar) at ca. 247-245 Ma due to the heat supplied from underplated basic magma, which was generated by the partial melting of the lithospheric mantle caused by the heat supplied from the asthenospheric mantle. As a result of the continuous extensional force, the study area (lower crust) uplifted onto the middle crust depths, and then the study area underwent prograde granulite facies metamorphism from 660 °C and 8.7 kbar to 750-760 °C and 6.3-6.5 kbar at ca. 227 Ma, causing migmatization, which erased the ultrahigh-temperature metamorphism in most of the study area. The ultrahigh-temperature metamorphism was preserved only in the garnet-orthopyroxene banded gneisses due to their very low water contents. During migmatization, the garnet-biotite banded gneisses were retrograded into upper granulite facies due to the relatively abundant water compared with the garnet-orthopyroxene gneisses. Finally, the study area was uplifted to a shallow depth and locally underwent amphibolite facies retrograde metamorphism (575-680 °C and 3.1-4.5 kbar). In addition, Paleoproterozoic metamorphic (ca. 1930-1886 Ma) and post-collisional magmatic events (ca. 1847 Ma) are identified based on SHRIMP age dating. These ages agree well with the regional Paleoproterozoic metamorphic and post-collisional magmatic activities reported from other areas of the Gyeonggi Massif.

  13. Determining age of Pan African metamorphism using Sm-Nd garnet-whole rock geochronology and phase equilibria modeling in the Tasriwine ophiolite, Sirwa, Anti-Atlas Morocco

    NASA Astrophysics Data System (ADS)

    Inglis, Jeremy D.; Hefferan, Kevin; Samson, Scott D.; Admou, Hassan; Saquaque, Ali

    2017-03-01

    Sm-Nd garnet-whole rock geochronology and phase equilibria modeling have been used to determine the age and conditions of regional metamorphism within the Tasriwine ophiolite complex, Sirwa, Morocco. Pressure and temperature estimates obtained using a NaCaKFMASHT phase diagram (pseudosection) and garnet core and rim compositions predict that garnet growth began at ∼0.72 GPa and ∼615 °C and ended at ∼0.8 GPa and ∼640 °C. A bulk garnet Sm-Nd age of 647.2 ± 1.7 Ma, calculated from a four point isochron that combines whole rock, garnet full dissolution and two successively more aggressive partial dissolutions, provides a precise date for garnet formation and regional metamorphism. The age is over 15 million years younger than a previous age estimate of regional metamorphism of 663 ± 13 Ma based upon a SHRIMP U-Pb date from rims on zircon from the Iriri migmatite. The new data provide further constraints on the age and nature of regional metamorphism in the Anti-Atlas mountains and emphasizes that garnet growth during regional metamorphism may not necessarily coincide with magmatism/anatexis which predominate the signature witnessed by previous U-Pb studies. The ability to couple PT estimates for garnet formation with high precision Sm-Nd geochronology highlights the utility of garnet studies for uncovering the detailed metamorphic history of the Anti-Atlas mountain belt.

  14. Mesozoic thermal history and timing of structural events for the Yukon-Tanana Upland, east-central Alaska: 40Ar/39Ar data from metamorphic and plutonic rocks

    USGS Publications Warehouse

    Dusel-Bacon, C.; Lanphere, M.A.; Sharp, W.D.; Layer, P.W.; Hansen, V.L.

    2002-01-01

    We present new 40Ar/39Ar ages for hornblende, muscovite, and biotite from metamorphic and plutonic rocks from the Yukon-Tanana Upland, Alaska. Integration of our data with published 40Ar/39Ar, kinematic, and metamorphic pressure (P) and temperature (T) data confirms and refines the complex interaction of metamorphism and tectonism proposed for the region. The oldest metamorphic episode(s) postdates Middle Permian magmatism and predates the intrusion of Late Triassic (215-212 Ma) granitoids into the Fortymile River assemblage (Taylor Mountain assemblage of previous papers). In the eastern Eagle quadrangle, rapid and widespread Early Jurassic cooling is indicated by ???188-186 Ma 40Ar/39Ar plateau ages for hornblende from plutons that intrude the Fortymile River assemblage, and for metamorphic minerals from the Fortymile River assemblage and the structurally underlying Nasina assemblage. We interpret these Early Jurassic ages to represent cooling resulting from northwest-directed contraction that emplaced the Fortymile River assemblage onto the Nasina assemblage to the north as well as the Lake George assemblage to the south. This cooling was the final stage of a continuum of subduction-related contraction that produced crustal thickening, intermediate- to high-P metamorphism within both the Fortymile River assemblage and the structurally underlying Lake George assemblage, and Late Triassic and Early Jurassic plutonism in the Fortymile River and Nasina assemblages. Although a few metamorphic samples from the Lake George assemblage yield Jurassic 40Ar/39Ar cooling ages, most yield Early Cretaceous 40Ar/39Ar ages: hornblende ???135-115 Ma, and muscovite and biotite ???110-108 Ma. We interpret the Early Cretaceous metamorphic cooling, in most areas, to have resulted from regional extension and exhumation of the lower plate, previously tectonically thickened during Early Jurassic and older convergence.

  15. Counterclockwise P- T evolution of the Aghil Range: Metamorphic record of an accretionary melange between Kunlun and Karakorum (SW Sinkiang, China)

    NASA Astrophysics Data System (ADS)

    Groppo, Chiara; Rolfo, Franco

    2008-10-01

    This paper describes the metamorphic evolution and the tectonic significance of the Aghil Range, a poorly known terrane located between Kunlun and Karakorum north of K2 in the framework of western Tibet. The Aghil Range consists of different units separated by syn- to late-metamorphic thrusts and post-metamorphic faults of similar attitude; among other units, the Surukwat Complex is a composite sequence of thrust sheets trending WNW-ESE and steeply dipping SSW showing a general increase of metamorphic grade from lower to higher structural levels. P- T pseudosections and conventional thermobarometry of metapelites at the top of the Surukwat Complex tightly constrain the P- T path of this highest-grade metamorphic portion of the Aghil Range. The prograde path is characterized by an early increase in both P and T and by a later, nearly isothermal, increase in P, from 500 < T < 530 °C and 0.25 < P < 0.40 GPa to 580 < T < 600 °C and 0.80 < P < 0.90 GPa. The peak metamorphic event is constrained at 550 < T < 590 °C and 0.77 < P < 0.91 GPa. The retrograde path is characterized by decompression associated to a slight cooling to T ~ 500 °C and P < 0.5 GPa. Altogether, the petrology of the studied rocks suggests a P- T path with a narrow counterclockwise shape. The studied sequence could represent the result of the early subduction of an accretionary complex, interpreted further eastward according to a melange underthrusting model. As concerning the tectonic setting of this terrane, a number of geologic and petrologic similarities link the Aghil Range and the central Qiangtang metamorphic belt, suggesting that the Aghil Range is the possible NW extension of the Qiangtang microplate separating Kunlun from Karakorum.

  16. Alpine metamorphic evolution of Ligurian Alps (North-West Italy): chemography and petrological constraints inferred from metamorphic climax assemblages

    NASA Astrophysics Data System (ADS)

    Messiga, B.

    1987-03-01

    The up-to-date petrological and microtextural information on the Ligurian Alps indicates that the metamorphic rocks from the oceanic lithosphere and the paleo-European continental margin underwent an alpine-type metamorphic evolution characterized by low dT/dP gradients. In particular, rocks from the Ligurian-Piedmontese oceanic lithosphere underwent an alpine metamorphism typical of alpine-type blueschist rocks. The distribution of the alpine metamorphic facies in paleo-European continental margin is closely related to the structural position of the different tectonic units. The prograde evolution frequently preserves paragenetic and textural relics of the earlier parageneses. If relics of the earlier parageneses are preserved, the rock exhibits continuous prograde reactions confirmed by strong compositional zoning of the metamorphic minerals. Therefore, these reactions lead to chemical and microtextural equilibrium relations, between the minerals, in limited domains of the rocks (microtextural sites). The main compositional aspect of coronitic textures is the mineral zoning, particularly when the minerals of the coronas are the consequence of a wide range of solid solutions. In such cases, the reacting minerals are armored and the kinetics are lowered. The prograde metamorphic evolution, which involved the rocks from the oceanic lithosphere and the paleo-European continental margin, is quite consistent with a subduction-type geodynamic process in different ages during alpine times.

  17. Metamorphic evolution of the Sesia-Lanzo Zone, Western Alps: time constraints from multi-system geochronology

    NASA Astrophysics Data System (ADS)

    Inger, S.; Ramsbotham, W.; Cliff, R. A.; Rex, D. C.

    1996-12-01

    The Sesia-Lanzo Zone is a polymetamorphic unit containing Hercynian granulite relics overprinted by eclogite and greenschist facies metamorphism and deformation during the Alpine orogeny. Different parts of the unit record different stages on the P-T-deformation evolution, allowing multi-system isotopic studies to unravel the precise timing of the metamorphic history. New Rb Sr white mica and U Pb sphene data constrain the age of eclogite facies metamorphism and deformation to 60 70 Ma. This substantially alters the common view of early- to mid-Cretaceous eclogite facies metamorphism in this unit. The new results are more consistent with the established geotectonic framework for the Alpine orogeny, since they do not require a prolonged period of depressed geothermal gradient at a time when the region was in extension. It is also more concordant with recent studies of other units that demonstrate post-Cretaceous high-pressure metamorphism. Step-heated 40Ar 39Ar analysis of phengites yields good plateaux giving ages older than the corresponding Rb Sr age. Such anomalously high ages indicate the presence of radiogenic argon-rich fluids in the grain boundary network under the fluid/pressure conditions acting during this high-pressure metamorphic event. The U Pb sphene ages are variable in polymetamorphic rocks, and show inheritance of older Pb or sphene crystals into the high-pressure event. Two monometamorphic assemblages yield concordant ages at 66±1 Ma, reflecting crystallisation of the eclogite facies assemblage. The Gneiss Minuti Complex (GMC) lies structurally below the Eclogitic Micaschists, and its pervasive greenschist facies fabric yields tightly clustered Rb Sr white mica ages at 38 39 Ma. This greenschist event did not affect the majority of the EMC. The 40Ar 39Ar ages of micas formed at this time were very disturbed, whereas micas surviving from an earlier higher pressure assemblage had their 40Ar 39Ar system reset. The greenschist event did not strongly

  18. An alternative strategy to apply equilibrium models to metamorphic rocks with disequilibrium features (GMPV Division Outstanding ECS Award Lecture)

    NASA Astrophysics Data System (ADS)

    Lanari, Pierre

    2017-04-01

    Metamorphic rocks evolve dynamically in response to changes in pressure (P) and temperature (T) conditions by adjusting their mineral assemblage, modes and compositions in an attempt to minimize their Gibbs free energy. The transformations are achieved by dissolution-precipitation via successive mineral reactions. Along a given P-T trajectory the evolution of metamorphic rocks can be easily modeled using the principle of Gibbs free energy minimization. Such a forward modeling technique requires a good approximation of the bulk rock composition and an appropriate thermodynamic dataset with complex solid solution models. Recent progress in the accuracy and efficiency of such techniques has had a major impact on the evolution of metamorphic petrology especially in our understanding of the physical conditions occurring in the crust. However, metamorphic rocks commonly preserve mineralogical and textural relics, such as compositionally zoned minerals. These archives are vitally important because they provide a (partial) record of the successive transformations and thus allow the reconstruction of their P-T history; but they also indicate that a rock-wide thermodynamic equilibrium clearly was not attained during the evolution of the rock. In this context, the use of an equilibrium model to understand the metamorphic petrogenesis can be questioned. It becomes necessary to quantify the compositional and textural effects on P-T estimation and to develop alternative modeling strategies that incorporate the complexity of the texture and mineral compositions. In this contribution, I seek to establish an alternative modeling framework to decipher the P-T history of metamorphic rocks. For this purpose it is essential to provide the adapted computer tools to study and model the mineral compositional variability in link with rock textures. Thermodynamic models are applied to local domains using quantitative compositional maps. The goal is to apply the equilibrium model to the

  19. The "granite pump": LP/HT metamorphism and exhumation in the Montagne Nore (S-France)

    NASA Astrophysics Data System (ADS)

    Franke, W.; Doublier, M. P.; Doerr, W.; Stein, E.

    2003-04-01

    The Montagne Noire at the southern margin of the French Massif Central represents an exceptional case of a hot metamorphic core complex evolved from a thrust stack in a foreland position. The core of the structure (Zone Axiale) exposes granites and LP/HT gneisses up to anatectic grade. The hot core is encased by ENE-trending shear zones, which define a dextral pull-apart structure. Ductile extension is documented by top WSW shearing in the W, and ENE shearing in the E part of the Zone Axiale (eg, MATTE et al., 1998). Extension in ENE and reduction of the metamorphic profile are accompanied by NNW-directed contraction ("pinched pull-apart"). Palaeozoic sediments on the southern flank of the Zone Axiale exhibit only greenschist to diagenetic grades of metamorphism. Conodont alteration index (WIEDERER et al., 2002) and illite crystallinity (Doublier, this meeting) reveal a decrease of metamorphic temperature away from the hot core. Metamorphic isograds cut across the axial planes of D1 nappes. These features suggest that metamorphism was imposed by the rising hot core. Accordingly, the palaeozoic sediments show a tectonic evolution which closely resembles that of the gneissic core (extension top ENE, contraction in NNW). Structures relating to stacking (D1) have survived at the southern margin of the Montagne Noire. U-Pb studies (TIMS on single zircon and monazite) reveal peak metamorphism and magmatism already at c. 315 Ma (KLAMA et al., 2001), i.e., only <10 Ma after the end of flysch deposition in latest Visean/Early Namurian time (<= 323 Ma). The coincidence, within error, of the U-Pb ages and earlier Ar/Ar ages (MALUSKI et al., 1991) suggest rapid cooling. Synchronous granite emplacement and metamorphism is best explained by advective heating. Since granites are not generated in foreland settings, we propose derivation of the melts from areas of thickened crust adjacent to the N. Transport and emplacement of granites was essentially driven by the hydraulic

  20. Evolution of Himalayan Metamorphism and the Genesis of Inverted Metamorphic Gradients: Evidence From the Sutlej Valley, NW India

    NASA Astrophysics Data System (ADS)

    Caddick, M.; Bickle, M.; Holland, T.; Harris, N.

    2002-12-01

    An inverted metamorphic gradient is commonly preserved where the high-grade Greater Himalayan Crystalline Sequence (GHCS) overthrusts the Lesser Himalayan foreland. This structural break (the Main Central Thrust, or MCT) is a key feature of Himalayan tectonics, generally considered to have taken up at least 200-300 km of shortening since the Early Miocene. The timing of displacement along the MCT and its relationship with inverted metamorphism is debated, with existing temperature inversion models requiring either (a) post-metamorphic faulting along young shear zones; (b) continual or episodic syn-metamorphic thrust development; or (c) single phase pre- to syn-metamorphic thrusting and subsequent thermal relaxation. Here, we use the P-T-t evolution of individual rock samples to study the contrasting histories of the GHCS and LHS units and deduce the relationship between metamorphism and thrusting. The Sutlej River Valley exposes an inverted metamorphic succession consisting of a 9-km thick amphibolite-facies core (the GHCS), structurally underlain by greenschist and amphibolite-facies Lesser Himalayan Sequence (LHS) metapelites which preserve garnet-in, staurolite-in and kyanite/sillimanite-in isograds. The GHCS displays kyanite-in and sillimanite-in isograds, with migmatisation at the top of the sequence. A major thrust-zone (interpreted as the MCT) separates the LHS from the GHCS. The application of rim-thermobarometry to Sutlej samples identifies both the inverted metamorphic gradient in the LHS and GHCS units, and the inherent frailty of cation-exchange thermobarometers when studying high-grade rocks that have been subjected to subsequent retrograde diffusion. The construction of pseudosections and contouring of mineral composition isopleths, however, identifies the PT-paths that both units have taken, allowing a detailed reconstruction of the burial and uplift histories of the units that constitute the MCT-zone. Pseudosections in the systems KFMASH and Mn

  1. How and when does argon redistribute during a metamorphic cycle?

    NASA Astrophysics Data System (ADS)

    Warren, Clare; McDonald, Christopher; Kelley, Simon

    2015-04-01

    Linking metamorphic 'age' to metamorphic 'stage' is critical for accurately determining the rates and timescales of tectonic processes. 40Ar/39Ar ages of high temperature metamorphic minerals are commonly interpreted under the assumption that 40Ar produced by the decay of 40K is efficiently removed via thermally-driven diffusion at temperatures greater than the mineral 'closure temperature'. An increasing amount of age-dispersed total fusion and laser-ablation in-situ data suggests, however, that an open grain boundary system may be the exception rather than the norm during a metamorphic cycle. The Western Gneiss Region, Norway, exposes felsic gneisses that record the burial and exhumation of Baltican continental crust beneath Laurentia at ca 420-390 Ma. These gneisses record different stages of the breakdown and neo-crystallisation of K-bearing minerals; their 40Ar/39Ar ages allow the effect of processes such as diffusion, deformation, crystallization and partial melting on Ar mobility to be assessed. White mica, stable at peak metamorphic conditions of >2.6 GPa and 700°C yields total fusion and laser spot 40Ar/39Ar ages that are mostly older than and overlap the previously reported ~405-400 Ma 'peak metamorphic' U-Pb zircon age. Biotite and plagioclase that replace the white mica in symplectitic coronas, yield total fusion and laser spot 40Ar/39Ar ages that are overall younger than the white mica ages but that overlap previously reported U-Pb titanite ages interpreted as constraining the timing of the amphibolite-facies overprint at 1 GPa and 700°C. The new 40Ar/39Ar ages therefore cannot be reconciled with a simple diffusive-loss history in an open system. Instead, recrystallization, partial melting and fluid infiltration (but significantly, not deformation) appear to have played a more major role in both removing but also adding Ar from and to the local system. Overall, the data show that even when rocks experience T>700°C for several Ma, Ar may not readily

  2. Metamorphic sole formation reveals plate interface rheology during early subduction

    NASA Astrophysics Data System (ADS)

    Mathieu, S.; Agard, P.; Dubacq, B.; Plunder, A.; Prigent, C.

    2015-12-01

    Metamorphic soles are m to ~500m thick tectonic slices welded beneath most large ophiolites. They correspond to highly to mildly deformed portions of oceanic lithosphere metamorphosed at amphibolite to granulite facies peak conditions. Metamorphic soles are interpreted as formed ≤1-2Ma after intraoceanic subduction initiation by heat transfer from the hot, incipient mantle wegde to the underthrusting lower plate. Their early accretion and exhumation together with the future ophiolite implies at least one jump of the subduction plate interface from above to below the metamorphic sole. Metamorphic soles thus represent one of the few remnants of the very early evolution of the subduction plate interface and provide major constraints on the thermal structure and the effective rheology of the crust and mantle along the nascent slab interface.We herein present a structural and petrological detailed description of the Oman and Turkey metamorphic soles. Both soles present a steep inverted metamorphic structure, with isograds subparallel to the peridotite contact, in which the proportion of mafic rocks, pressure and temperature conditions increase upward. They comprise, as most metamorphic soles worldwide, two main units: (1) a high-grade unit adjacent to the overlying peridotite composed of granulitized to amphibolized metabasalts, with rare metasedimentary interlayers (~800±100ºC at 10±2kbar) and (2) a low-grade greenschist facies unit composed of metasedimentary rocks with rare metatuffs (~500±100ºC at 5±2kbar). We provide for the first time refined P-T peak condition estimations by means of pseudosection modelling and maximum temperature constraints for the Oman low-grade sole by RAMAN thermometry. In order to quantify micro-scale deformations trough the sole, we also present EBSD data on the Oman garnet-bearing and garnet-free high-grade sole.With these new constraints, we finally propose a new conceptual mechanical model for metamorphic sole formation. This

  3. Initiation of continental accretion: metamorphic conditions

    NASA Astrophysics Data System (ADS)

    Clement, Conand; Frederic, Mouthereau; Gianreto, Manatschal; Adbeltif, Lahfid

    2017-04-01

    sediments were metamorphosed. In addition to this work, we report a few inherited temperatures in the 390-570 °C range, indicating recycling of organic matter from metasediments that recorded HT events, likely originated from higher grade metamorphic units of mainland China, which have been eroded and deposited in the post-rift sediments.

  4. The Kenna ureilite - An ultramafic rock with evidence for igneous, metamorphic, and shock origin

    NASA Technical Reports Server (NTRS)

    Berkley, J. L.; Brown, H. G.; Keil, K.; Carter, N. L.; Mercier, J.-C. C.; Huss, G.

    1976-01-01

    Ureilites are a rare group of achondrites. They are composed mainly of olivine and pigeonite in a matrix of carbonaceous material, including graphite, lonsdaleite, diamond, and metal. In most respects Kenna is a typical ureilite with the requisite mineralogical and chemical properties of the group. Differences of the Kenna ureilite from previously studied ureilites are related to a greater density, the occurrence of exceedingly minute quantities of feldspar, and a very strong elongation lineation of the silicate minerals. A description is presented of a study which indicates a complex history for Kenna, including igneous, mild metamorphic, and shock processes.

  5. Moderate pressure metamorphism and anatexis due to anorthosite intrusion, western Adirondack Highlands, New York

    NASA Astrophysics Data System (ADS)

    Florence, F. P.; Darling, R. S.; Orrell, S. E.

    1995-10-01

    Garnet-sillimanite-biotite gneiss near Port Leyden, in the western Adirondack Highlands, New York, contains mineral assemblages and textures that formed during high temperature metamorphism and anatexis at mid-crustal pressures. Evidence for melting includes thin, plagioclase-rich veins, sieve textures in biotite, and the presence of small, euhedral garnet neoblasts. Hercynite-silicate equilibria in combination with the solidus for biotite dehydration melting indicate metamorphic pressure was between 4 and 6.4 kbar at the temperature of melting (ca. 735° C). The gneiss is intruded by a small, discordant Fe-Ti oxide-apatite (nelsonite) dike. Reported field occurrences of nelsonite demonstrate its common association with anorthosite plutons. Although no anorthosite bodies are exposed in the Port Leyden region, the presence of nelsonite is evidence of anorthositic magmatism in the western Adirondacks. Post-intrusion metamorphism has caused partial apatite recrystallization and produced a weak foliated texture in the dike. U-Pb ages from zircon and monazite from both the gneiss and the nelsonite dike indicate that these rocks experienced a complex, polymetamorphic history that we interpret to reflect two thermal episodes. An older event is recorded by discordant zircons in the gneiss, which indicate a minimum age of 1129±6 Ma. A linear best fit to the data yields an upper intercept at 1166±53 Ma. This range of ages coincides with anorthosite-suite magmatism in the Adirondacks. A minimum zircon age of 1104±3 Ma was obtained from the nelsonite dike. Lead-loss or late zircon crystallization at about 1020 Ma affected the U-Pb systematics of zircon in the dike. Monazite ages from both rocks also indicate high temperature metamorphism (>700° C) between 1040 and 960 Ma. The older zircon ages and textural relations in the metapelite are viewed as evidence for anatexis at ca. 1150 Ma, and the presence of nelsonite suggests that the intrusion of anorthosite was coincident

  6. Possible polyphase metamorphic evolution of high grade metabasic rocks from the Songshugou ophiolite, Qinling orogen, China

    NASA Astrophysics Data System (ADS)

    Belic, Maximilian; Hauzenberger, Christoph; Dong, Yunpeng; Chen, Danling

    2014-05-01

    cycle or developed during a separate event. The financial support by Eurasia-Pacific Uninet is gratefully acknowledged. Dong, Y.P., Zhou, M.F., Zhang, G.W., Zhou, D.W., Liu, L., Zhang, Q., 2008. The Grenvillian Songshugou ophiolite in the Qinling Mountains, Central China: implications for the tectonic evolution of the Qinling orogenic belt. Journal of Asian Earth Science 32 (5-6), 325-335. Zhang, Z.J., 1999. Metamorphic evolution of garnet-clinopyroxene-amphibole rocks from the Proterozoic Songshugou mafic-ultramafic complex, Qinling Mountains, central China. The Island Arc, 8, 259-280.

  7. Simulating the metamorphic evolution of rocks in the laboratory: experimental modelling of orogenic metamorphism of metapelites using a piston cylinder apparatus

    NASA Astrophysics Data System (ADS)

    Tropper, Peter; Mair, Philipp

    2017-04-01

    Metamorphic rocks contain a more or less complex mineral assemblage reflecting their metamorphic evolution. If the complex mineral assemblage is of multi-stage origin how do we know which mineral grew at which stage during the P-T evolution? To answer this question one needs to put constraints on the geological evolution of a given rock. The metamorphic evolution of a rock can be deciphered using three approaches: 1.) the practical geothermobarometric approach (inverse modelling), 2.) the theoretical pseudosection approach (forward modelling) and 3.) the experimental approach. Whereas with the first two approaches it is possible to constrain several stages of the P-T-X evolution but how do we know what assemblage is actually present at the desired P-T conditions? This question leads to the experimental approach, which allows a detailed mineralogical investigation of a given rock at distinct P-T conditions. Therefore, experimental investigations should be viewed as a forward modelling technique, which allow putting additional constraints on the evolution of a rock under defined P and T conditions and hence represents a snap-shot of a P-T point of the evolution of a given rock! For this purpose, simple experiments using natural rocks as starting materials can easily be conducted. The disadvantage of this method lies in the complex chemical composition of natural rocks and the deviation from chemical end-member systems. Therefore these experiments need to be evaluated not only 1.) in terms of their ability to reproduce the natural observations but also 2.) in their ability to reproduce theoretical calculations. In this study experimental investigations of orogenic metamorphism of metapelites (quartzphyllites with Grt1 + Ms1 + Ch1 + Bt1 + Rt) was investigated. Four different P-T conditions were chosen to represent an orogenic clockwise P-T loop: 400°C, 0.8 GPa, 600°C, 1.2 GPa, 700°C, 1 GPa and 500°C, 0.4 GPa. Two experiments with a duration of 16 and 33 days were

  8. Ubiquitous brecciation after metamorphism in equilibrated ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Scott, E. R. D.; Lusby, D.; Keil, K.

    1985-01-01

    Ten objects with aberrant Fe/(Fe + Mg) ratios have been found in apparently unbrecciated types 4-6 H and L chondrites. Since the Fe/(Fe + Mg) ratios of these objects are incompatible with the metamorphic history of the host chondrites, it is concluded that a high proportion of ordinary chondrites are breccias that were lithified after peak metamorphism. This is consistent with the results of Scott (1984), who concluded that most type three ordinary chondrites are breccias of materials with diverse thermal histories, even though they do not show prominent brecciation. It is found that the classification scheme of Van Schmus and Wood (1967) does not identify chondrites with similar thermal histories; the petrologic type of a chondrite is only a measure of the average thermal history of its ingredients. Chondrite and achondrite breccias are also compared in order to understand how brecciation of chondrites after metamorphism is so well camouflaged.

  9. Garnet zoning and metamorphism of the Barrovian type area, Scotland

    NASA Astrophysics Data System (ADS)

    Dempster, T. J.

    1985-03-01

    A microprobe investigation of the high grade metamorphic zones from the Barrovian type area in Angus, Scotland, shows the importance of local zones of retrograde cation exchange between garnet, staurolite and biotite. The interpretation of this zoning, established during a slow cooling history, is critical to any study of metamorphic reactions or conditions. The extent and intensity of these diffusion effects are dependent on a number of parameters including grainsize, fabric orientation, heating and cooling history, and the modal abundance of the phases. Increasing diffusion within garnets with metamorphic grade, and the subsequent retrograde effects are modelled using Temperature-Time-Transformation diagrams and provide information on the activation energy for Fe-Mg diffusion in garnet.

  10. Burial metamorphism in rocks of the Western Andes of Peru

    NASA Astrophysics Data System (ADS)

    Offler, R.; Aguirre, L.; Levi, B.; Child, S.

    1980-01-01

    An unconformity bound, episodic pattern of burial metamorphism is preserved in marine and terrestrial volcanic and sedimentary rocks which were deposited in the West Peruvian Trough during the Mesozoic and Cenozoic Eras. A particular metamorphic facies series is developed in each of the stratigraphic-structural units bounded by unconformities. In each unit, grade increases with stratigraphic depth and covers part or all of the range from zeolite to greenschist facies. At every unconformity a mineralogic break occurs where higher grade assemblages on top of the unconformity plane overlie lower grade assemblages. The presence of wairakite and the development of a wide range of metamorphic facies in thin sequences suggest high geothermal gradients, possibly related to generation of magma at depth.

  11. Metamorphic and structural evidence for significant vertical displacement along the Ross Lake fault zone, a major orogen-parallel shear zone in the Cordillera of western North America

    USGS Publications Warehouse

    Baldwin, J.A.; Whitney, D.L.; Hurlow, H.A.

    1997-01-01

    Results of an investigation of the petrology and structure of the Skymo complex and adjacent terranes constrain the amount, timing, and sense of motion on a segment of the > 600-km-long Late Cretaceous - early Tertiary Ross Lake fault zone (RLFZ), a major orogen-parallel shear zone in the Cordillera of western North America. In the study area in the North Cascades, Washington state, the RLFZ accommodated significant pre-middle Eocene vertical displacement, and it juxtaposes the Skymo complex with upper amphibolite facies (650??-690??C and 6-7 kbar) Skagit Gneiss of the North Cascades crystalline core to the SW and andalusite-bearing phyllite of the Little Jack terrane (Intermontane superterrane) to the NE. The two main lithologic units of the Skymo complex, a primitive mafic intrusion and a fault-bounded block of granulite facies metasedimentary rocks, are unique in the North Cascades. Granulite facies conditions were attained during high-temperature (> 800??C), low pressure (??? 4 kbar) contact metamorphism associated with intrusion of the mafic magma. P-T estimates and reaction textures in garnet-orthopyroxene gneiss suggest that contact metamorphism followed earlier, higher pressure regional metamorphism. There is no evidence that the Skagit Gneiss experienced high-T - low-P contact metamorphism. In the Little Jack terrane, however, texturally late cordierite ?? spinel and partial replacement of andalusite by sillimanite near the terrane's fault contact with Skymo gabbro suggest that the Little Jack terrane experienced high-T (??? 600??C) - low-P (??? 4 kbar) contact metamorphism following earlier low-grade regional metamorphism. Similarities in the protoliths of metasedimentary rocks in the Skymo and Little Jack indicate that they may be part of the same terrane. Differences in pressure estimates for the Little Jack versus Skymo for regional metamorphism that preceded contact metamorphism indicate vertical displacement of ??? 10 km (west side up) on the strand

  12. Delineating metamorphic pathways in the ascidian Ciona intestinalis.

    PubMed

    Nakayama-Ishimura, Akie; Chambon, Jean-phillippe; Horie, Takeo; Satoh, Nori; Sasakura, Yasunori

    2009-02-15

    In most ascidians, metamorphosis of tadpole-like swimming larvae is accompanied by dynamic changes in their shape to form sessile adults. The mechanisms underlying ascidian metamorphosis have been debated for a long time. Although recent molecular studies have revealed the presence of various molecules involving in this process, the basic mechanism of the metamorphic events is still unclear. For example, it has not been solved whether all metamorphic events are organized by the same single pathway or by multiple, independent pathways. In the present study, we approached this question using the ascidian Ciona intestinalis. When the papillae and preoral lobes of the larvae were cut off, the papillae-cut larvae initiated certain trunk metamorphic events such as the formation of an ampulla, body axis rotation and adult organ growth without other metamorphic events. This observation indicates that metamorphic events can be divided into at least two groups, events initiated in the papillae-cut larva and events not initiated in this larva. In addition to this observation, we have isolated a novel mutant, tail regression failed (trf), which shows similar phenotypes to those of papillae-cut larvae. The phenotypes of trf mutants are basically different from those of swimming juvenile mutants (Sasakura, Y., Nakashima, K., Awazu, S., Matsuoka, T., Nakayama, A., Azuma, J., Satoh, N., 2005. Transposon-mediated insertional mutagenesis revealed the functions of animal cellulose synthase in the ascidian Ciona intestinalis. Proc. Natl. Acad. Sci. U. S. A. 102, 15134-15139.), which also show abnormal metamorphosis. These findings suggest a model by which ascidian metamorphic events can be classified into four groups initiated by different pathways.

  13. [Spectrum research on metamorphic and deformation of tectonically deformed coals].

    PubMed

    Li, Xiao-Shi; Ju, Yi-Wen; Hou, Quan-Lin; Lin, Hong

    2011-08-01

    The structural and compositive evolution of tectonically deformed coals (TDCs) and their influencing factors were investigated and analyzed in detail through Fourier transform infrared spectroscopy (FTIR) and laser Raman spectra analysis. The TDC samples (0.7% < Ro,max <3.1%) were collected from Huaibei coalfield with different deformation mechanisms and intensity. The FTIR of TDCs shows that the metamorphism and the deformation affect the degradation and polycondensation process of macromolecular structure to different degree. The Raman spectra analysis indicates that secondary structure defects can be produced mainly by structural deformation, also the metamorphism influences the secondary structure defects and aromatic structure. Through comprehensive analysis, it was discussed that the ductile deformation could change to strain energy through the increase and accumulation of dislocation in molecular structure units of TDC, and it could make an obvious influence on degradation and polycondensation. While the brittle deformation could change to frictional heat energy and promote the metamorphism and degradation of TDC structure, but has less effect on polycondensation. Furthermore, degradation is the main reason for affecting the structural evolution of coal in lower metamorphic stage, and polycondensation is the most important controlling factor in higher metamorphic stage. Under metamorphism and deformation, the small molecules which break and fall off from the macromolecular tructure of TDC are preferentially replenished and embedded into the secondary structure defects or the residual aromatic rings were formed into aromatic structure by polycondensation. This process improved the stability of coal structure. It is easier for ductile deformation of coal to induce the secondary structure defects than brittle deformation.

  14. Metamorphic evolution of pelitic-semipelitic granulites in the Kon Tum massif (south-central Vietnam)

    NASA Astrophysics Data System (ADS)

    Tích, Vu Van; Leyreloup, Andrey; Maluski, Henry; Lepvrier, Claude; Lo, Chinh-hua; Vượng, Nguyễn V.

    2013-09-01

    Pelitic and semipelitic anatectic granulites form one of the major lithological units in Kan Nack complex of the Kon Tum massif (in south-central Vietnam), which comprises HT metamorphic and magmatic rocks including granulites and charnockites is classically regarded as the older part of the Gondwana-derived Indosinia terrain. Metamorphic evolution study of pelitic granulite, the most abundant among granulites exposed in this massif, facilitates to understand that tectonic setting take place during the Indosinian time. The paragenetic assemblages, mineral chemistry, thermobarometry and P-T evolution path of pelitic-semipelitic granulites from Kon Tum massif has been studied in detail. Petrographic feature demonstrates that the pelitic granulite experienced prograde history, from pregranulitic conditions in the amphibolite facies up to the peak granulitic assemblages. Successive prograde reactions led to the temperature-climax giving rise to assemblages with cordierite-hercynite and cordierite-hercynite-K-feldspar. Then, as attested by the mineralogic association occurring in cordieritic coronas, these rocks have been affected by retrograde conditions coeval with a decrease of the pressure. Thermobarometic results show that the highest temperature obtained by ksp/pl thermometry is 850 °C and the highest pressure obtained by GASP (Garnet Alumino-Silicate Plagioclase) is 7.8 kbar. The obtained clockwise P-T evolution path involving heating decompression, then nearly isothermal decompression and nearly isobar cooling conditions shows that high temperature-low pressure metamorphism of the studied pelitic anatectic granulites of Kan Nack complex occurred possibly in extensional setting during the Indosinian orogeny of 260-240 Ma in age.

  15. Chemical modifications accompanying blueschist facies metamorphism of Franciscan conglomerates, Diablo Range, California

    USGS Publications Warehouse

    Moore, Diane E.; Liou, J.G.; King, B.-S.

    1981-01-01

    As part of an investigation of blueschist-facies mineral parageneses in pebbles and matrix of some Franciscan metaconglomerates of the Diablo Range, California, textural and major-element chemical analyses were conducted on a number of igneous pebbles that comprise a range of rock types from granite and dacite to gabbro and basalt. Compositions of the igneous pebbles differ significantly from common igneous rocks, particularly with respect to Ca, K, Na, Si and H2O. The SiO2 and H2O contents are characteristically high and the K2O contents low. The CaO and Na2O contents may be relatively enriched or reduced in different pebbles. The igneous pebbles show little evidence of alteration prior to their incorporation into the Franciscan conglomerates, and the chemical modifications are considered to have been produced during metamorphism of the conglomerates to (lawsonite + albite + aragonite ?? jadeite)-bearing assemblages. The observed variations in the pebbles are shown to be functions of: (1) bulk chemistry; (2) the igneous mineral assemblage; (3) the stable metamorphic mineral assemblage; and (4) the composition of pore fluids in the conglomerates. The relative proportions of Mg and Fe in most of the pebbles apparently have been unaffected by the metamorphism, and these parameters, along with other textural and chemical factors, were used to determine the petrogenetic affinities of the igneous pebbles. The plutonic and most of the volcanic pebbles correspond to calc-alkaline rock series, whereas a few volcanic pebbles show apparent Fe-enrichment characteristic of tholeiitic rocks. A continental margin arc-batholith complex would be the best source for these igneous detrital assemblages. Conglomerates in local areas differ in igneous lithologies from conglomerates in other areas and probably differ somewhat in age, perhaps reflecting varying degrees of unroofing of such a complex during deposition of Franciscan sediments. ?? 1981.

  16. Metamorphism of the Oddanchatram anorthosite, Tamil Nadu, South India

    NASA Technical Reports Server (NTRS)

    Wiebe, R. A.; Janardhan, A. S.

    1988-01-01

    The Oddanchatram anorthosite is located in the Madurai District of Tamil Nadu, near the town of Palni. It is emplaced into a granulite facies terrain commonly presumed to have undergone its last regional metamorphism in the late Archean about 2600 m.y. The surrounding country rock consists of basic granulites, charnockites and metasedimentary rocks including quartzites, pelites and calc-silicates. The anorthosite is clearly intrusive into the country rock and contains many large inclusions of previously deformed basic granulite and quartzite within 100 meters of its contact. Both this intrusion and the nearby Kaduvar anorthosite show evidence of having been affected by later metamorphism and deformation.

  17. Anisotropy of magnetic susceptibility of some metamorphic minerals

    NASA Astrophysics Data System (ADS)

    Borradaile, G.; Keeler, W.; Alford, C.; Sarvas, P.

    1987-09-01

    The anisotropy of susceptibility of metamorphic rocks can be due to paramagnetic rock-forming silicates such as amphiboles, chlorites and micas. It is not always necessary to invoke fabrics of separate grains of iron oxide to explain the anisotropy. Minimum estimates of lattice anisotropies of typical samples of silicates have maximum-to-minimum ratios of 1.1-1.7. Since the magnetic anisotropies of most metamorphic rocks are less than this, these minerals can control the anisotropy of susceptibility because their preferred crystallographic orientations are usually very strong in comparison with the preferred dimensional orientation of magnetite and because they are more abundant than magnetite.

  18. Chlorine isotope behavior during prograde metamorphism of sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Selverstone, Jane; Sharp, Zachary D.

    2015-05-01

    Chlorine stable isotope compositions of two sedimentary sequences and their metamorphic equivalents were measured in order to study fractionation effects during prograde metamorphism and devolatilization. Protoliths (n = 25) were collected from a 50 m section of Triassic fluvial and playa-lake strata and Jurassic (Liassic) marine black shales in a well-characterized quarry. Low greenschist to middle amphibolite facies equivalents (n > 80) were collected from the Glarus Alps, Urseren Zone, and Lucomagno region. Bulk δ37Cl values are constant within individual sedimentary layers, but vary from -2.0 to + 2.4 ‰ in Triassic rocks and from -3.0 to 0‰ in the black shales. Dolomitic and gypsiferous samples have positive δ37Cl values, but marls and shales are isotopically negative. Bulk Cl contents show only small declines during the earliest stages of metamorphism. Metamorphic equivalents of the Triassic and Liassic protoliths record the same overall ranges in δ37Cl as their protoliths. Samples with highly correlated bulk compositions but different metamorphic grade show no statistically significant difference in δ37Cl. These data lead to the following conclusions: (1) Terrestrial and marine sedimentary rocks display large primary heterogeneities in chlorine isotope composition. As a result, an unambiguous "sedimentary signature" does not exist in the chlorine stable isotope system. (2) No isotopic fractionation is discernable during metamorphic devolatilization, even at low temperatures. Alpine-style metamorphism thus has little to no effect on bulk chlorine isotopic compositions, despite significant devolatilization. (3) Cl is largely retained in the rocks during devolatilization, contrary to the normally assumed hydrophilic behavior of chlorine. Continuous release of mixed-volatile C-O-H fluids likely affected Cl partitioning between fluid and minerals and allowed chlorine to remain in the rocks. (4) There is no evidence for fluid communication across (meta

  19. MetPetDB: New Directions for Metamorphic Studies

    NASA Astrophysics Data System (ADS)

    Spear, F. S.; Adali, S.; Szymanski, B. K.; Hallett, B. K.; Waters, A. J.; Linder, Z. J.; Fyffe, M. E.; Goldfarb, D.; Barlett, K.

    2008-12-01

    It is estimated that less than 1% of the data collected on metamorphic rocks is published, and MetPetDB (database for metamorphic geochemistry) is being developed and populated to preserve these data and to foster new and innovative directions for scientific research and education. The data model is based on a sample of metamorphic rock and includes information about location, rock type, mineral assemblage, fabric, plus images of all types and mineral composition data. Mineral analyses are linked to locations on appropriate images so the spatial integrity of the data is preserved. Tools will be available for mineral recalculation, plotting, and thermobarometric applications. Derivative data such as peak P-T conditions, metamorphic P-T path, and cooling rate will also be stored. The database will be searchable based on any number of data fields, permitting rapid location of samples that can be used to test hypotheses and discover new relationships. For example: A student is designing a thesis project and MetPetDB will be a first resource to determine the types of rocks present in a region, the work that has been done on them, and links to the published findings. The Fe/Mg zoning in migmatitic garnets has been used to infer cooling rates. What is the range of cooling rates recorded by migmatitic garnets, and is there a correlation between peak metamorphic temperature and cooling rate? Is it possible that melting triggers rapid thrusting that causes the rapid cooling? A search on: rock type = migmatite plus Fe and Mg X-ray maps of garnet would reveal all samples that could be used in this study. A new geobarometer based on a specific mineral assemblage is proposed that permits pressures to be estimated to within 50 MPa. A search of the database for all samples with this assemblage plus analyses of the necessary minerals would provide a set of samples to which this new barometer can be applied. Recalculating pressures and temperatures for an entire region using new

  20. Links between fluid circulation, temperature, and metamorphism in subducting slabs

    USGS Publications Warehouse

    Spinelli, G.A.; Wang, K.

    2009-01-01

    The location and timing of metamorphic reactions in subducting lithosph??re are influenced by thermal effects of fluid circulation in the ocean crust aquifer. Fluid circulation in subducting crust extracts heat from the Nankai subduction zone, causing the crust to pass through cooler metamorphic faci??s than if no fluid circulation occurs. This fluid circulation shifts the basalt-to-eclogite transition and the associated slab dehydration 14 km deeper (35 km farther landward) than would be predicted with no fluid flow. For most subduction zones, hydrothermal cooling of the subducting slab will delay eclogitization relative to estimates made without considering fluid circulation. Copyright 2009 by the American Geophysical Union.

  1. Fluid composition and mineral equilibria in low grade metamorphic rocks, Bündnerschiefer, Switzerland

    NASA Astrophysics Data System (ADS)

    Miron, G. D.; Wagner, T.; Wälle, M.; Heinrich, C. A.

    2012-04-01

    similar metamorphic vein settings (Yardley et al., 1993; Yardley, 2005). This likely reflects the lower salinity of fluids in the Bündnerschiefer veins, which exerts a major control on those elements that are complexed by chloride. Combining fluid inclusion isochores with independent geothermometers results in pressure estimates of 2.8-3.8 kbars for Thusis, and around 3.4 kbars for Schiers. The geothermal gradient decreases from the southern location (27-22 °C/km: Thusis) to the northern location (19 °C/km: Schiers), in agreement with their position during metamorphism. The fluid composition data, in conjunction with metamorphic indicators and petrological modeling, demonstrate that fluid-rock equilibrium was attained during metamorphism and vein formation. Fluid composition and pressure-temperature conditions remained essentially unchanged during the evolution of the vein systems. The veins evolved as rock-buffered closed systems, due to the low permeability of the organic-rich metapelites.

  2. Porosity evolution, contact metamorphism, and fluid flow in the host basalts of the Skaergaard magma-hydrothermal system

    SciTech Connect

    Manning, C.E.

    1989-01-01

    Temporal and spatial variations in porosity during contact metamorphism of the basaltic country rocks to the Skaergaard intrusion in East Greenland resulted in a complex hydrological evolution of the metamorphic aureole. Contrasts in macroscopic porosities in different lithologies led to differences in mineralogical, bulk chemical, and oxygen isotopic alteration, and units with greater macroscopic porosities record larger fluid flux during metamorphism. Calculated Darcy velocities indicate that the horizontal component of fluid flow in the aureole was toward the intrusive contact. In the actinolite + chlorite zone time-integrated fluid flux was higher in aa units ({approximately} 300 kg cm{sup {minus}2}) than in massive units ({approximately} 130 kg cm{sup {minus}2}). Approximately equal time-integrated fluxes of respectively 4 and 5 kg cm{sup {minus}2} in aa and massive units in the pyroxene zone indicate that the volume of fluid flow in the higher grade rocks was independent of primary porosity. These results are consistent with inward fluid migration in the actinolite + chlorite zone through an open network of pores whose abundance varied as a function of primary lava morphology. At higher metamorphic grades fluid fluxes were lower and were independent of primary porosity, probably as a consequence of (1) channelization of fluids due to more extensive pore filling and (2) decreasing horizontal component of flow due to upward migration of fluids near the contact. The results of this study indicate that explicit provision for rock porosity aids interpretation of the nature of fluid flow during contact metamorphism in magma-hydrothermal systems.

  3. Mesoproterozoic syntectonic garnet within Belt Supergroup metamorphic tectonites: Evidence of Grenville-age metamorphism and deformation along northwest Laurentia

    USGS Publications Warehouse

    Nesheim, T.O.; Vervoort, J.D.; McClelland, W.C.; Gilotti, J.A.; Lang, H.M.

    2012-01-01

    Northern Idaho contains Belt-Purcell Supergroup equivalent metamorphic tectonites that underwent two regional deformational and metamorphic events during the Mesoproterozoic. Garnet-bearing pelitic schists from the Snow Peak area of northern Idaho yield Lu-Hf garnet-whole rock ages of 1085??2. Ma, 1198??79. Ma, 1207??8. Ma, 1255??28. Ma, and 1314??2. Ma. Garnet from one sample, collected from the Clarkia area, was micro-drilled to obtain separate core and rim material that produced ages of 1347??10. Ma and 1102??47. Ma. The core versus rim ages from the micro-drilled sample along with the textural and spatial evidence of the other Lu-Hf garnet ages indicate two metamorphic garnet growth events at ~. 1330. Ma (M1) and ~. 1080. Ma (M2) with the intermediate ages representing mixed ages. Some garnet likely nucleated and grew M1 garnet cores that were later overgrown by younger M2 garnet rims. Most garnet throughout the Clarkia and Snow Peak areas are syntectonic with a regional penetrative deformational fabric, preserved as a strong preferred orientation of metamorphic matrix minerals (e.g., muscovite and biotite). The syntectonic garnets are interpreted to represent one regional, coeval metamorphic and deformation event at ~. 1080. Ma, which overlaps in time with the Grenville Orogeny. The older ~. 1330. Ma ages may represent an extension of the East Kootenay Orogeny described in western Canada. These deformational and metamorphic events indicate that western Laurentia (North America) was tectonically active in the Mesoproterozoic and during the assembly of the supercontinent Rodinia. ?? 2011 Elsevier B.V.

  4. On protolith-, metamorphic overprint, microstructure and rheology of mineral assemblages in orogenic peridotites of the central Scandinavian Caledonides

    NASA Astrophysics Data System (ADS)

    Gilio, Mattia; Clos, Frediano; Van Roermund, Herman L. M.

    2013-04-01

    The Scandinavian Caledonides (SC) are a deeply eroded Alpine-type orogenic belt formed by closure of the Iapetus ocean and collision between Baltica and Laurentia (500-380 Ma). The SC consists of a stack of Nappe Complexes (from bottom to top called Lower, Middle, Upper and Uppermost Allochthons) thrusted to the east over the Baltic Shield (Brueckner and Van Roermund, 2004; Gee et al., 2008). Fossil lithospheric mantle fragments, called orogenic peridotites, have been found within the (upper part of) middle, upper and uppermost Allochthons, as well as in the reworked basement gneisses (a.o Western Gneiss Complex (WGC)) along the Norwegian west coast. They occur as isolated lenses that contain diverse mineral parageneses and/or bulk rock compositions. Crustal incorporation of orogenic peridotite is classically interpreted to be the result of plate collisional processes related to orogeny (Brueckner and Medaris, 2000). The WGC and parts of the upper part of the Middle Allochthon (a.o. Seve Nappe Complex (SNC) in N Jämtland/S Västerbotten, central Sweden), are well known for the occurrence of high (HP) and ultrahigh pressure (UHP) metamorphic terranes (of Caledonian age). The (U)HPM evidence clearly demonstrates the deep metamorphic origin of these rocks interpreted to be caused by continental subduction and/or collision. Other metamorphic rocks (of Caledonian age) exposed in allochthonous nappes are solely characterised by greenschist-, amphibolite- and/or MP granulite "facies" mineral assemblages that can be interpreted, in the absence of retrogression, to have formed in less deeply subducted (and/or metamorphic) environments. This duality in metamorphic "facies" allows for a discrimination (at least theoretically) between "deep" versus "shallow" rooted nappes (in central parts of the Scandinavian Caledonides). Conform this reasoning, this duality should also be present within the Caledonian mineral assemblages (= metamorphic overprint) of orogenic peridotites (in

  5. Complexity.

    PubMed

    Gómez-Hernández, J Jaime

    2006-01-01

    It is difficult to define complexity in modeling. Complexity is often associated with uncertainty since modeling uncertainty is an intrinsically difficult task. However, modeling uncertainty does not require, necessarily, complex models, in the sense of a model requiring an unmanageable number of degrees of freedom to characterize the aquifer. The relationship between complexity, uncertainty, heterogeneity, and stochastic modeling is not simple. Aquifer models should be able to quantify the uncertainty of their predictions, which can be done using stochastic models that produce heterogeneous realizations of aquifer parameters. This is the type of complexity addressed in this article.

  6. Metamorphic InAsSb/AlInAsSb Heterostructures for Optoelectronic Applications

    DTIC Science & Technology

    2013-03-20

    REPORT Metamorphic InAsSb/AlInAsSb heterostructures for optoelectronic applications 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Metamorphic ...TELEPHONE NUMBER Gregory Belenky 631-632-8397 3. DATES COVERED (From - To) Standard Form 298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 - Metamorphic InAsSb...AlInAsSb heterostructures for optoelectronic applications Report Title ABSTRACT Metamorphic heterostructures containing bulk InAs1?xSbx layers and

  7. Nature and origin of fluids in granulite facies metamorphism

    NASA Technical Reports Server (NTRS)

    Newton, R. C.

    1988-01-01

    The various models for the nature and origin of fluids in granulite facies metamorphism were summarized. Field and petrologic evidence exists for both fluid-absent and fluid-present deep crustal metamorphism. The South Indian granulite province is often cited as a fluid-rich example. The fluids must have been low in H2O and thus high in CO2. Deep crustal and subcrustal sources of CO2 are as yet unproven possibilities. There is much recent discussion of the possible ways in which deep crustal melts and fluids could have interacted in granulite metamorphism. Possible explanations for the characteristically low activity of H2O associated with granulite terranes were discussed. Granulites of the Adirondacks, New York, show evidence for vapor-absent conditions, and thus appear different from those of South India, for which CO2 streaming was proposed. Several features, such as the presence of high-density CO2 fluid inclusions, that may be misleading as evidence for CO2-saturated conditions during metamorphism, were discussed.

  8. Nature and origin of fluids in granulite facies metamorphism

    NASA Astrophysics Data System (ADS)

    Newton, R. C.

    The various models for the nature and origin of fluids in granulite facies metamorphism were summarized. Field and petrologic evidence exists for both fluid-absent and fluid-present deep crustal metamorphism. The South Indian granulite province is often cited as a fluid-rich example. The fluids must have been low in H2O and thus high in CO2. Deep crustal and subcrustal sources of CO2 are as yet unproven possibilities. There is much recent discussion of the possible ways in which deep crustal melts and fluids could have interacted in granulite metamorphism. Possible explanations for the characteristically low activity of H2O associated with granulite terranes were discussed. Granulites of the Adirondacks, New York, show evidence for vapor-absent conditions, and thus appear different from those of South India, for which CO2 streaming was proposed. Several features, such as the presence of high-density CO2 fluid inclusions, that may be misleading as evidence for CO2-saturated conditions during metamorphism, were discussed.

  9. EMCORE four-junction inverted metamorphic solar cell development

    NASA Astrophysics Data System (ADS)

    Miller, Nate; Patel, Pravin; Struempel, Claudia; Kerestes, Chris; Aiken, Dan; Sharps, Paul

    2014-09-01

    EMCORE grown and tested four-junction terrestrial concentrator inverted metamorphic multijunction (CIMM) devices have been demonstrated with internally measured typical efficiencies of ˜44% and peak efficiencies as high as ˜47%, which are in the realm of world record performance. Improved internal testing as well as external validation by NREL are in progress.

  10. Organic nitrogen chemistry during low-grade metamorphism

    USGS Publications Warehouse

    Boudou, J.-P.; Schimmelmann, A.; Ader, M.; Mastalerz, Maria; Sebilo, M.; Gengembre, L.

    2008-01-01

    Most of the organic nitrogen (Norg) on Earth is disseminated in crustal sediments and rocks in the form of fossil nitrogen-containing organic matter. The chemical speciation of fossil Norg within the overall molecular structure of organic matter changes with time and heating during burial. Progressive thermal evolution of organic matter involves phases of enhanced elimination of Norg and ultimately produces graphite containing only traces of nitrogen. Long-term chemical and thermal instability makes the chemical speciation of Norg a valuable tracer to constrain the history of sub-surface metamorphism and to shed light on the subsurface biogeochemical nitrogen cycle and its participating organic and inorganic nitrogen pools. This study documents the evolutionary path of Norg speciation, transformation and elimination before and during metamorphism and advocates the use of X-ray photoelectron spectroscopy (XPS) to monitor changes in Norg speciation as a diagnostic tool for organic metamorphism. Our multidisciplinary evidence from XPS, stable isotopes, traditional quantitative coal analyses, and other analytical approaches shows that at the metamorphic onset Norg is dominantly present as pyrrolic and pyridinic nitrogen. The relative abundance of nitrogen substituting for carbon in condensed, partially aromatic systems (where N is covalently bonded to three C atoms) increases exponentially with increasing metamorphic grade, at the expense of pyridinic and pyrrolic nitrogen. At the same time, much Norg is eliminated without significant nitrogen isotope fractionation. The apparent absence of Rayleigh-type nitrogen isotopic fractionation suggests that direct thermal loss of nitrogen from an organic matrix does not serve as a major pathway for Norg elimination. Instead, we propose that hot H, O-containing fluids or some of their components gradually penetrate into the carbonaceous matrix and eliminate Norg along a progressing reaction front, without causing nitrogen

  11. Oman metamorphic sole formation reveals early subduction dynamics

    NASA Astrophysics Data System (ADS)

    Soret, Mathieu; Agard, Philippe; Dubacq, Benoît; Plunder, Alexis; Ildefonse, Benoît; Yamato, Philippe; Prigent, Cécile

    2016-04-01

    Metamorphic soles correspond to m to ~500m thick tectonic slices welded beneath most of the large-scale ophiolites. They typically show a steep inverted metamorphic structure where the pressure and temperature conditions of crystallization increase upward (from 500±100°C at 0.5±0.2 GPa to 800±100°C at 1.0±0.2 GPa), with isograds subparallel to the contact with the overlying ophiolitic peridotite. The proportion of mafic rocks in metamorphic soles also increases from the bottom (meta-sediments rich) to the top (approaching the ophiolite peridotites). These soles are interpreted as the result of heat transfer from the incipient mantle wedge toward the nascent slab (associated with large-scale fluid transfer and possible shear heating) during the first My of intra-oceanic subduction (as indicated by radiometric ages). Metamorphic soles provide therefore major constraints on early subduction dynamics (i.e., thermal structure, fluid migration and rheology along the nascent slab interface). We present a detailed structural and petrological study of the metamorphic sole from 4 major cross-sections along the Oman ophiolite. We show precise pressure-temperature estimates obtained by pseudosection modelling and EBSD measurements performed on both the garnet-bearing and garnet-free high-grade sole. Results allow quantification of the micro-scale deformation and highlight differences in pressure-temperature-deformation conditions between the 4 different locations, showing that the inverted metamorphic gradient through the sole is not continuous in all locations. Based on these new constraints, we suggest a new tectonic-petrological model for the formation of metamorphic soles below ophiolites. This model involves the stacking of several homogeneous slivers of oceanic crust leading to the present-day structure of the sole. In this view, these thrusts are the result of rheological contrasts between the sole and the peridotite as the plate interface progressively cools down

  12. Evolution of the Specific Surface Area of Snow in a High Temperature Gradient Metamorphism

    NASA Astrophysics Data System (ADS)

    Wang, X.; Baker, I.

    2014-12-01

    The structural evolution of low-density snow under a high temperature gradient over a short period usually takes place in the surface layers during diurnal recrystallization or on a clear, cold night. To relate snow microstructures with their thermal properties, we combined X-ray computed microtomography (micro-CT) observations with numerical simulations. Different types of snow were tested over a large range of TGs (100 K m-1- 500 K m-1). The Specific Surface Area (SSA) was used to characterize the temperature gradient metamorphism (TGM). The magnitude of the temperature gradient and the initial snow type both influence the evolution of SSA. The SSA evolution under TGM was dominated by grain growth and the formation of complex surfaces. Fresh snow experienced a logarithmic decrease of SSA with time, a feature been observed previously by others [Calonne et al., 2014; Schneebeli and Sokratov, 2004; Taillandier et al., 2007]. However, for initial rounded and connected snow structures, the SSA will increase during TGM. Understanding the SSA increase is important in order to predict the enhanced uptake of chemical species by snow or increase in snow albedo. Calonne, N., F. Flin, C. Geindreau, B. Lesaffre, and S. Rolland du Roscoat (2014), Study of a temperature gradient metamorphism of snow from 3-D images: time evolution of microstructures, physical properties and their associated anisotropy, The Cryosphere Discussions, 8, 1407-1451, doi:10.5194/tcd-8-1407-2014. Schneebeli, M., and S. A. Sokratov (2004), Tomography of temperature gradient metamorphism of snow and associated changes in heat conductivity, Hydrological Processes, 18(18), 3655-3665, doi:10.1002/hyp.5800. Taillandier, A. S., F. Domine, W. R. Simpson, M. Sturm, and T. A. Douglas (2007), Rate of decrease of the specific surface area of dry snow: Isothermal and temperature gradient conditions, Journal of Geophysical Research: Earth Surface (2003-2012), 112(F3), doi: 10.1029/2006JF000514.

  13. Leaf litter resource quality induces morphological changes in wood frog (Lithobates sylvaticus) metamorphs.

    PubMed

    Stoler, Aaron B; Stephens, Jeffrey P; Relyea, Rick A; Berven, Keith A; Tiegs, Scott D

    2015-11-01

    For organisms that exhibit complex life cycles, resource conditions experienced by individuals before metamorphosis can strongly affect phenotypes later in life. Such resource-induced effects are known to arise from variation in resource quantity, yet little is known regarding effects stemming from variation in resource quality (e.g., chemistry). For larval anurans, we hypothesized that variation in resource quality will induce a gradient of effects on metamorph morphology. We conducted an outdoor mesocosm experiment in which we manipulated resource quality by rearing larval wood frogs (Lithobates sylvaticus) under 11 leaf litter treatments. The litter species represented plant species found in open- and closed-canopy wetlands and included many plant species of current conservation concern (e.g., green ash, common reed). Consistent with our hypothesis, we found a gradient of responses for nearly all mass-adjusted morphological dimensions. Hindlimb dimensions and gut mass were positively associated with litter nutrient content and decomposition rate. In contrast, forelimb length and head width were positively associated with concentrations of phenolic acids and dissolved organic carbon. Limb lengths and widths were positively related with the duration of larval period, and we discuss possible hormonal mechanisms underlying this relationship. There were very few, broad differences in morphological traits of metamorphs between open- and closed-canopy litter species or between litter and no-litter treatments. This suggests that the effects of litter on metamorph morphology are litter species-specific, indicating that the effects of changing plant community structure in and around wetlands will largely depend on plant species composition.

  14. Sulfate incorporation in monazite lattice: potential for dating the cycle of sulfur in metamorphic belts

    NASA Astrophysics Data System (ADS)

    Laurent, Antonin; Seydoux-Guillaume, Anne-Magali; Duchene, Stéphanie; Bingen, Bernard; Bosse, Valérie

    2016-04-01

    Monazite is a common accessory mineral in magmatic and metamorphic rocks that often shows complex chemical zoning at the μm- to nm-scale. The large number of cations that may be accommodated in its lattice, makes monazite particularly responsive to changes in the rock-forming minerals and fluid composition. Chemical zoning resulting from replacement or overgrowth may coincide, or not, with age zoning derived from U-Th-Pb isotopes. In this study, we focus on the potential for monazite to record both the redox condition of its crystalizing medium and an absolute U-Th-Pb isotopic age, during polyphase metamorphism in the Proterozoic province of Rogaland, S. Norway. The metamorphic evolution of several samples is derived from phase diagrams and the oxygen fugacity estimated from the FeO/Fe2O3 ratio measured by titration. Monazite grains were mapped at high spatial resolution for minor elements with electron microprobe, revealing convolute chemical zoning. Some of these zones yield appreciable content of S (up to 7000 ppm), accommodated following the Ca2+ + S6+ = REE3+ + P5+ substitution vector. The incorporation of sulfate in monazite has been subsequently investigated by TEM thanks to site specific FIB preparations. Besides, LA-ICP-MS U-Pb isotopic ages of monazite grains show a remarkable correlation with the sulfate content. It is therefore possible to distinguish different generations of monazite based on their S-content. From our petrological study we conclude that sulfate-bearing monazite reflects incongruent melting of Fe-Cu-As sulfides under oxidizing conditions, coeval with biotite dehydration melting. Monazite may therefore be used to probe the presence of sulfur in anatectic melts from high-grade terrains at a specific point in time. This property can be used to investigate the mineralization potential of a given geological event within a larger orogenic framework.

  15. Gold deposits in metamorphic belts: Overview of current understanding, outstanding problems, future research, and exploration significance

    USGS Publications Warehouse

    Groves, D.I.; Goldfarb, R.J.; Robert, F.; Hart, C.J.R.

    2003-01-01

    Metamorphic belts are complex regions where accretion or collision has added to, or thickened, continental crust. Gold-rich deposits can be formed at all stages of orogen evolution, so that evolving metamorphic belts contain diverse gold deposit types that may be juxtaposed or overprint each other. This partly explains the high level of controversy on the origin of some deposit types, particularly those formed or overprinted/remobilized during the major compressional orogeny that shaped the final geometry of the hosting metamorphic belts. These include gold-dominated orogenic and intrusion-related deposits, but also particularly controversial gold deposits with atypical metal associations. There are a number of outstanding problems for all types of gold deposits in metamorphc belts. These include the following: (1) definitive classifications, (2) unequivocal recognition of fluid and metal sources, (3) understanding of fluid migration and focusing at all scales, (4) resolution of the precise role of granitoid magmatism, (5) precise gold-depositional mechanisms, particularly those producing high gold grades, and (6) understanding of the release of CO2-rich fluids from subducting slabs and subcreted oceanic crust and granitoid magmas at different crustal levels. Research needs to be better coordinated and more integrated, such that detailed fluid-inclusion, trace-element, and isotopic studies of both gold deposits and potential source rocks, using cutting-edge technology, are embedded in a firm geological framework at terrane to deposit scales. Ultimately, four-dimensional models need to be developed, involving high-quality, three-dimensional geological data combined with integrated chemical and fluid-flow modeling, to understand the total history of the hydrothermal systems involved. Such research, particularly that which can predict superior targets visible in data sets available to exploration companies before discovery, has obvious spin-offs for global- to deposit

  16. Nature of graphitization and noble metal mineralization in metamorphic rocks of the northern Khanka Terrane, Primorye

    NASA Astrophysics Data System (ADS)

    Khanchuk, A. I.; Plyusnina, L. P.; Ruslan, A. V.; Likhoidov, G. G.; Barinov, N. N.

    2013-07-01

    Elevated contents of noble metals (NM) have been established in the Riphean-Cambrian graphite-bearing complexes of the northern Khanka Terrane, which metamorphosed under conditions of greenschist to granulite facies. At the previously known graphite deposits of the Turgenevo-Tamga group, NM comprise (ppm): Pt (0.04-62.13), Au (0.021-26), Ag (0.56-4.41), Pd (0.003-5.67), Ru (0.007-0.2), Rh (0.001-0.74), Ir (0.002-0.55), and Os (0.011-0.09). Analyses of graphitized rocks carried out with various methods (IMS, INAA, AAS, AES, fire assay) reveal a wide scatter of the results related to the specifics of sample preparation, in particular, due to a significant loss of NM by thermal oxidation decomposition. Analysis of a low-soluble graphite residue obtained by treatment of graphitized rocks allowed us to establish genetic links between NM mineralization and carbonic alteration of various igneous, granulite- and amphibolitefacies metamorphic rocks, which occur over a vast area. The nonuniform distribution of graphite and NM in rocks, their fine dispersivity, and compositional variability of NM indicate that their origin is related largely to endogenic processes with the participation of deep reduced fluids. In greenschist-facies rocks, fluorine, bromine, and iodine are associated both with ore minerals and graphite, providing evidence for transport of NM by halogene- and carbon-bearing fluids. The inhomogeneous distribution of metals in graphite, microglobular structure, and carbon isotopic composition are the guides for its gas-condensate crystallization. At the same time, thermal analysis and Raman spectroscopy show that graphite formed by metamorphism of carbonaceous matter contained in sedimentary rocks also occurs. It is concluded that the predominant mass of NM is of fluid-magmatic origin with the participation of exogenic and metamorphic sources of metals.

  17. Metamorphism and fluid flow related to Mesozoic thrusting in west-central Arizona

    SciTech Connect

    Martinez, S.L.; Peacock, S.M.; Reynolds, S.J. . Dept. of Geology)

    1993-04-01

    Petrologic, fluid inclusion, and stable isotope investigations are being conducted on rocks from the Granite Wash mountains (GWM) and the Harquahala Mountains (HM), located in west-central Arizona, to constrain fluid flow paths and metamorphism during basement-involved thrusting. Regional south-vergent thrusting in west-central Arizona resulted in widespread greenschist-facies metamorphism. In the GWM, upper greenschist-facies metamorphic conditions are indicated by (1) the presence of kyanite and andalusite in aluminum-rich metavolcanic rocks, (2) the presence of calcic amphibole in metabasites, and (3) the absence of garnet in pelitic units. In the HM, higher P-T conditions are indicated by the assemblage kyanite + staurolite + garnet in metasedimentary lithologies. A complex fluid history is recorded by fluid inclusions from both ranges. Individual microfractures from quartz veins parallel to the thrust-related fabric contain either liquid-rich, vapor-rich, or three phase inclusions, representing several stages of fluid flow. A C-O-H fluid was present during thrusting based on the occurrence of three-phase inclusions in quartz veins, CO[sub 2]-bearing inclusions in kyanite crystals related to the thrusting event, and the formation of chlorite and calcite in upper plate granite of the Hercules thrust in the GWM. Homogenization temperatures of [approximately]270 C, which constrain minimum temperatures of the fluid, are common for the liquid-rich inclusions; vapor-rich and three-phase inclusions homogenize at higher temperatures. Preliminary stable isotope analyses suggest large volumes of isotopically light fluid may have flowed preferentially along thrust surfaces.

  18. The structural evolution of carbonaceous material during metamorphism : a geothermometer

    NASA Astrophysics Data System (ADS)

    Beyssac, O.; Goffe, B.; Brunet, F.; Bollinger, L.; Avouac, J.; Rouzaud, J.

    2003-12-01

    With increasing metamorphic temperature, the organic matter present in sedimentary rocks is progressively transformed into graphite (graphitization). The degree of organization of this carbonaceous material (CM) as characterized by Raman spectroscopy (RSCM), can be used as a geothermometer which yields the maximum temperature reached during the metamorphic cycle (Beyssac et al., 2002). We used this RSCM geothermometer to map the maximum metamorphic temperatures through the Lesser Himalaya (LH) in Nepal. This study provides a large dataset (80 samples) to estimate uncertainty of this method and to ascertain its reliability by comparison with conventional petrological investigations. We show that the RSCM geothermometer might be used to detect inter-samples temperature variations as small as 10° C or so, but absolute temperatures are only loosely determined to +/- 50° C due to the uncertainty on the calibration. This successful application of the RSCM geothermometer confirms that, at the timescale of regional metamorphism (several My), the transformation of CM is mainly controlled by temperature. However, laboratory investigations suggest that, in addition to temperature, pressure should also play a role (Beyssac et al. 2003). As a matter of fact, high degree of organizations encountered in natural CM cannot be reproduced in laboratory without pressure, even at temperatures as high as 3000° C. In addition to the data acquired on natural CM, we will discuss laboratory experiments performed up to 8 GPa which show that (1) a few kbar of hydrostatic pressure are required to initiate microtextural and subsequent structural transformations within CM and (2) the overall effect of increasing pressure is to speed up graphitization process. Beyssac, O., Goffe, B., Chopin, C., and Rouzaud, J.N., 2002, Raman spectra of carbonaceous material in metasediments: a new geothermometer. Journal of Metamorphic Geology, 20, 859-871. Beyssac, O., Brunet, F., Petitet, J.P., Goffe, B

  19. Single quantum dot emission at telecom wavelengths from metamorphic InAs/InGaAs nanostructures grown on GaAs substrates

    SciTech Connect

    Seravalli, L.; Trevisi, G.; Frigeri, P.; Rivas, D.; Munoz-Matutano, G.; Suarez, I.; Alen, B.; Canet, J.; Martinez-Pastor, J. P.

    2011-04-25

    We report on the growth by molecular beam epitaxy and the study by atomic force microscopy and photoluminescence of low density metamorphic InAs/InGaAs quantum dots. subcritical InAs coverages allow to obtain 10{sup 8} cm{sup -2} dot density and metamorphic In{sub x}Ga{sub 1-x}As (x=0.15,0.30) confining layers result in emission wavelengths at 1.3 {mu}m. We discuss optimal growth parameters and demonstrate single quantum dot emission up to 1350 nm at low temperatures, by distinguishing the main exciton complexes in these nanostructures. Reported results indicate that metamorphic quantum dots could be valuable candidates as single photon sources for long wavelength telecom windows.

  20. Mid-Late Triassic metamorphic event for Changhai meta-sedimentary rocks from the SE Jiao-Liao-Ji Belt, North China Craton: Evidence from monazite U-Th-Pb and muscovite Ar-Ar dating

    NASA Astrophysics Data System (ADS)

    Liu, Fulai; Wang, Fang; Liou, J. G.; Meng, En; Liu, Jianhui; Yang, Hong; Xiao, Lingling; Cai, Jia; Shi, Jianrong

    2014-11-01

    The precise constraints on the timing of metamorphism of the Changhai metamorphic complex is of great importance considering the prolonged controversial issue of the north margin and the extension of the Sulu-Dabie HP-UHP Belt. While the monazite U-Th-Pb and muscovite 40Ar/39Ar techniques are widely accepted as two of the most powerful dating tools for revealing the thermal histories of medium-low grade metamorphic rocks and precisely constraining the timing of metamorphism. The Changhai metamorphic complex at the SE Jiao-Liao-Ji Belt, North China Craton consists of a variety of pelitic schist and Grt-Ky-bearing paragneiss, and minor quartzite and marble. Analyses of mineral inclusions and back-scattered electric (BSE) images of monazites, combined with LA-ICP-MS U-Th-Pb ages for monazites and 40Ar/39Ar ages for muscovites, provide evidence of the origin and metamorphic age of the Changhai metamorphic complex. Monazites separates from various Grt-Mus schists and Grt-Ky-St-Mus paragneisses exhibit homogeneous BSE images from cores to rims, and contain inclusion assemblages of Grt + Mus + Qtz ± Ctd ± Ky in schist, and Grt + Ky + St + Mus + Pl + Kfs + Qtz inclusions in paragneiss. These inclusion assemblages are very similar to matrix minerals of host rocks, indicating they are metamorphic rather than inherited or detrital in origin. LA-ICP-MS U-Th-Pb dating reveals that monazites of schist and paragneiss have consistent 206Pb/238U ages ranging from 228.1 ± 3.8 to 218.2 ± 3.7 Ma. In contrast, muscovites from various schists show slightly older 40Ar/39Ar plateau ages of 236.1 ± 1.5 to 230.2 ± 1.2 Ma. These geochronological and petrological data conclude that the pelitic sediments have experienced a metamorphic event at the Mid-Late Triassic (236.1-218.2 Ma) rather than the Paleoproterozoic (1950-1850 Ma), commonly regarded as the Precambrian basement for the Jiao-Liao-Ji Belt. Hence, the Changhai metamorphic complex should be considered as a discrete

  1. SHRIMP-RG U-Pb zircon geochronology of mesoproterozoic metamorphism and plutonism in the southwesternmost United States

    USGS Publications Warehouse

    Barth, Andrew P.; Wooden, Joseph L.; Coleman, Drew S.

    2001-01-01

    Mesoproterozoic intrusive and granulite‐grade metamorphic rocks in southern California have been inferred to be exotic to North America on the basis of perceived chronologic incompatibility with autochthonous cratonal rocks. Ion microprobe geochronology indicates that zircons in granulite‐grade gneisses, dated at 1.4 Ga using conventional methods, are composed of 1.68–1.80‐Ga cores and 1.19‐Ga rims. These Early Proterozoic gneisses were metamorphosed at extremely high temperatures and moderate pressures during emplacement of the 1.19‐Ga San Gabriel anorthosite complex. The lack of a 1.4‐Ga metamorphic event suggests that Proterozoic rocks in this region, rather than being exotic to North America, may in fact be a midcrustal window into Mesoproterozoic crustal evolutionary processes in southwestern North America.

  2. Zircon U-Pb and δ18O isotope geochemical signatures of high-temperature metamorphism in the Kazdagi Massif (Northwestern Anatolia, Turkey).

    NASA Astrophysics Data System (ADS)

    Hasözbek, Altug; Sengun, Firat; Deniz Dogan Kulahci, Gullu; Schmitt, Axel K.; Zack, Thomas

    2017-04-01

    The high-grade succession of the Kazdaǧı massif is one of the well-known in the northwestern Turkey (Biga Peninsula). The Kazdaǧı massif is characterized by, from bottom to top, oceanic-crustal ultramafic rocks, and unconformably overlain by the thick-platform type associations (marble and migmatite) with amphibolites and metagranitoids. These high-grade metamorphic rocks record amphibolite-granulite facies features as mineral assemblages and zircon-isotope trends. To reveal the zircon minerals response to the high-temperature metamorphism along the massif, zircon crystals from the meta-oceanic basement (metagabbro) and metaplatform associations (metagranitoids), are analyzed for trace element, U-Pb isotope, and δ18O. Zircon minerals from the metagabbros are slightly smaller (60-90 μm) displaying very complex internal structures such as secondary events due to diffusion reaction processes as a result of high-grade metamorphism. Both U-Pb SIMS and ICP-MS LA analyses from the metagrabbros are roughly in agreement with core (ca. 78-71 Ma) and rim (65-68 Ma) ages. Zircon δ18O VSMOW results from the metagabbros are mostly diverse 2.65-4.87‰ in different samples, however the consistency of the δ18O values in each sample cores' and rims' likely indicate metamorphic fluids took place as internal origin, therefore zircons only record the high-grade metamorphic fluids. Moreover, zircons from the metagranitoids of the meta-platform yield ca. 60-69 Ma core ages and display similar metamorphism related secondary affects in the CL images. Zircon δ18O values from the metagranitoids are identical from 7.07-9.88‰. These expected close radiometric ages and metamorphic features between metagabbros and metagranitoids due to their similar metamorphic link is also in agreement in terms of the geological frame of the massif. Overall, the geological and analytical results indicate that zircons from the metamagmatic associations of the Kazdaǧı Massif only equilibrated during

  3. Stacking and metamorphism of continuous segments of subducted lithosphere in a high-pressure wedge: The example of Alpine Corsica (France)

    NASA Astrophysics Data System (ADS)

    Vitale Brovarone, Alberto; Beyssac, Olivier; Malavieille, Jacques; Molli, Giancarlo; Beltrando, Marco; Compagnoni, Roberto

    2013-01-01

    Alpine Corsica consists of a stack of variably metamorphosed units of continental and Tethys-derived rocks. It represents an excellent example of high-pressure (HP) orogenic belt, such as the Western Alps, exposed over a small and accessible area. Compared to the Western Alps, the geology of Alpine Corsica is poorly unraveled. During the 1970s-80s, based on either lithostratigraphic or metamorphic field observations, various classifications of the belt have been proposed, but these classifications have been rarely matched together. Furthermore, through time, the internal complexity of large domains has been progressively left aside in the frame of large-scale geodynamic reconstructions. As a consequence, major open questions on the internal structure of the belt have remained unsolved. Apart from a few local studies, Alpine Corsica has not benefited of modern developments in petrology and basin research. This feature results in several uncertainties when combining lithostratigraphic and metamorphic patterns and, consequently, in the definition of an exhaustive architecture of the belt. In this paper we provide a review on the geology of Alpine Corsica, paying particular attention to the available lithostratigraphic and metamorphic classifications of the metamorphic terranes. These data are completed by a new and exhaustive metamorphic dataset obtained by means of thermometry based on Raman Spectroscopy of Carbonaceous Material (RSCM). This technique provides reliable insights on the peak temperature of the metamorphic history for CM-bearing metasediments. A detailed metamorphic characterization of metasediments, which have been previously largely ignored due to retrogression or to the lack of diagnostic mineralogy, is thus obtained and fruitfully coupled with the available lithostratigraphic data. Nine main tectono-metamorphic units are defined, from subgreenschist (ca. 280-300 °C) to the lawsonite-eclogite-facies (ca. 500-550 °C) condition. These units are

  4. The use of trace element zoning patterns in garnet to infer reaction paths of metamorphic rocks

    NASA Astrophysics Data System (ADS)

    Konrad-Schmolke, Matthias; Witte, Clemens; Dohmen, Ralf; O'Brien, Patrick; Erpel, Lars; Halama, Ralf; Schmidt, Alexander; Ditterova, Hana

    2015-04-01

    Garnet is one of the most versatile minerals in metamorphic petrology. It is stable over a large pressure and temperature range and thus occurs in many metamorphic environments. Garnet has a wide range of chemical compositions and its major and trace element composition well reflects the pressure (P), temperature (T) and chemical conditions (X) as well as the element transport kinetic properties of the host rock during growth. Hence, compositional growth zonations in garnet contain information about most geochemical, mineralogical and petrological properties of metamorphic rocks. However, detailed interpretation of complex zoning patterns in metamorphic garnet was hindered mainly by the lack of knowledge about the various contributions of kinetic and equilibrium effects to the trace element incorporation into garnet. In this contribution we combine thermodynamic equilibrium calculations together with mass balanced trace element distribution among coexisting phases with diffusion models that simulate kinetically controlled element transport in a reacting host rock. Comparison of the model results with natural garnets enables detailed interpretation of commonly observed major and trace element patterns in high-pressure (HP) and ultra-high pressure (UHP) garnets in terms of reaction paths and physico-chemical properties of the host rock. The comparison of our numerical models with a series of well-investigated (U)HP samples shows that the kinetic influence on rare earth element incorporation into garnet is limited in most rocks at the early stages of garnet growth and increases with increasing grade of rock transformation. We show that REE zoning patterns can be used to distinguish between cold (lawsonite-stable) and warm (epidote-stable) prograde reaction paths. REE liberation along a warm P-T trajectory occurs in three breakdown reactions involving chlorite, epidote and amphibole. All three reactions result in characteristic heavy (HREE) and medium (MREE) REE growth

  5. Late-Paleozoic-Mesozoic deformational and deformation related metamorphic structures of Kuznetsk-Altai region

    NASA Astrophysics Data System (ADS)

    Zinoviev, Sergei

    2014-05-01

    deformation systems. 2) folded (folded-thrust) deformation systems combine deformation zones with relic lenses of Paleozoid substratum, and predominantly conform systems of the main faults. Despite a high degree of regional deformation the sedimentary-stratified and intrusive-contact relations of geological bodies are stored within the deformation systems, and this differs in the main the collision systems from zones of dynamic metamorphism. 3) regional zones of dynamic metamorphism of Kuznetsk-Altai region are the concentration belts of multiple mechanic deformations and contrast dynamometamorphism of complexes. The formational basis of dynamic metamorphism zones is tectonites of the collision stage. Zones of dynamic metamorphism attract special attention in the structural model of Kuznetsk-Altai region. They not only form the typical tectonic framework of collision sutures, but also contain the main part of ore deposits of this region. Pulse mode of structure formation of Kuznetsk-Altai region is detected. Major collision events in Kuznetsk-Altai region were in the late-Carboniferous-Triassic time (307-310, 295-285, 260-250 and 240-220 Ma). This study was supported by a grant of the Russian Foundation for Basic Research (project nos. 14-05-00117).

  6. 3D growth rates from tomographic images: local measurements for a better understanding of snow metamorphism

    NASA Astrophysics Data System (ADS)

    Flin, F.; Calonne, N.; Denis, R.; Caneill, R.; Bernard, L.; Anne, D.; Philip, A.; Roulle, J.; Rolland du Roscoat, S.; Geindreau, C.

    2015-12-01

    Once deposited on the ground, snow forms a complex porous material whose microstructure constantly transforms over time. These evolutions, which strongly impact the physical and mechanical properties of snow (e.g. Srivastava et al, 2010; Calonne et al, 2014) need to be considered in details for an accurate snowpack modeling. However, some of the physical mechanisms involved in metamorphism are still poorly understood.To address this problem, several investigations combining X-ray tomography and 3D micro-modeling have been carried out (e.g. Flin et al, 2003; Kämpfer and Plapp, 2009; Pinzer et al, 2012) but precise comparisons between experimentation and modeling remain difficult. One of the difficulties comes from the lack of high resolution time-lapse series for experiments occurring with very well-defined boundary conditions, and from which precise measurements of the interfacial growth rates can be done.Thanks to a recently developed cryogenic cell (Calonne et al, 2015), we conducted in situ time-lapse tomographic experiments on several snow and ice samples under various conditions (isothermal metamorphism at -7°C, temperature gradient metamorphism at -2°C under a TG of 18 K/m, air cavity migration in a single crystal at -4°C under a TG of 50 K/m). The non-destructive nature of X-ray microtomography yielded series of 8 micron resolution images that were acquired with a 2 to 12 h time step. An image analysis method was then developed to estimate the normal growth rates on each point of the ice-air interface and applied to the series obtained.The analysis of the results and their comparison to those of existing models (e.g. Flin et al, 2003; Flin and Brzoska, 2008) give interesting outlooks for the understanding of the physical mechanisms involved in snow metamorphism. References:Calonne, N., et al (2015), Geophys. Res. Lett., 42, 3911-3918.Calonne, N., et al (2014), The Cryosphere, 8, 2255-2274.Flin, F. and J.-B. Brzoska (2008), Ann. Glaciol., 49, 17-21.Flin

  7. Response of the U-Pb System in Zircon to Ultrahigh-Temperature Metamorphism

    NASA Astrophysics Data System (ADS)

    Kooijman, E.; Mezger, K.; Upadhyay, D.; Raith, M.; Berndt, J.

    2009-05-01

    Zircons from igneous and metamorphic rocks often tend to yield more or less discordant U-Pb ages. This discordance may be due to real Pb-loss or is an artifact of mixing material from zones having different ages during whole or multiple grain dissolution. The latter problem can be addressed by spot analyses of individual growth zones in a single grain. Discordance due to Pb-loss may have several causes that need to be understood for a reliable interpretation of the resulting ages. In principle, Pb can be lost by diffusion or during recrystallization in response to thermal overprinting in a magmatic or metamorphic environment. To assess the behavior of the U-Pb system during ultrahigh temperature (UHT) metamorphism, we have analyzed zircons from quartzites that occur as xenoliths or come from the contact aureole of the Proterozoic Kadavur anorthosite complex, SE India. Cathodoluminescence (CL) imaging shows that the zircon grains consist of rounded cores surrounded by sub- to euhedral rims, some of them separated by a mantle. Interfaces between the zones are usually sharp. The cores show weak CL and are either structureless or have faint oscillatory, sector or patchy zoning. The rims display oscillatory zoning, but the highly luminescent mantles typically show no internal structure. All rims and mantles have similar CL characteristics indicating that they probably record the same growth event(s). U-Pb ages were obtained for single spots in individual CL zones by laser ablation ICP-MS. The cores provide a cluster of both concordant and discordant ages in the range of 3.4 to 1.9 Ga that are interpreted to be of detrital origin. Spot ages from zircon mantles and rims define two concordant age populations with weighted means of 914±22 Ma (2ó) and 815±11 Ma, respectively. Among these, the younger is interpreted to date the anorthosite intrusion, whereas the older are of ca. 914 Ma represents regional granulite facies metamorphism. The preservation of old and

  8. Effects of Compositional and Structural Variations on Log Responses in Igneous and Metamorphic Rocks

    NASA Astrophysics Data System (ADS)

    Pechnig, R.; Bartetzko, A.; Delius, H.

    2001-12-01

    Petrophysical in-situ data of several boreholes drilled igneous and metamorphic rocks of continental and oceanic basement were analyzed in order to characterize and classify the occurring rock types. Since physical properties of crystalline rocks are controlled by both, compositional and structural features, one objective of this study was to develop methods to detect and quantify matrix effects. The comparison of mineralogical and geochemical core data with wireline data reveal following systematic observations: (1) Mafic rocks (e.g. oceanic basalts, volcanic island basalts, gabbros and amphibolites) generally have low contents of radioactive minerals. This is in particular valid for mafic rocks from the upper and lower oceanic crust. Slight increases in gamma-ray are related to an enrichment in potassium due to seafloor alteration. In contrast to this uniform, mantle source controlled rocks, extrusives and re-sedimented material from ocean islands and large igneous provinces show a large scatter in gamma-ray responses as a result of their more complex evolution. Mafic rocks recovered from boreholes into continental crust, are characterized by high gamma-ray values, due to enrichment of thorium and uranium during regional metamorphism. In contrast to the mafic plutonic and metamorphic rocks, where the density and p-wave velocity is controlled by the mineralogical composition, the physical parameters of mafic volcanic rocks are strongly affected by fracturing and vesicularity. Density, p-wave velocity and electrical resistivity logs are significantly lowered depending on the degree of vesicularity and fracturing. (2) Acid to intermediate igneous rocks and orthogneisses are distinguishable from paragneisses by their log responses despite showing a similar geochemical composition. The main difference occurs for the relation of the gamma-ray log to the density and neutron porosity log. The gamma-ray in paragneisses is controlled by the amount of phyllosilicates, which

  9. Heat sources for tertiary metamorphism and anatexis in the Annapurna-Manaslu region, central Nepal

    NASA Astrophysics Data System (ADS)

    England, Philip; Le Fort, Patrick; Molnar, Peter; Pecher, Arnaud

    1992-02-01

    The metamorphic evolution of the rocks near the Main Central Thrust in the Annapurna-Manaslu region of central Nepal is examined. In this region, all three types of metamorphic features can be observed: regional metamorphism, anatectic granitoids, and inverted metamorphic isograds. In this work, each phase of metamorphism is treated separately to estimate the heat sources required for each process. This approach makes it possible to identify the important parameters for each process, to draw preliminary conclusions about the heat sources required for each of these phases, and to determine which parameters need to be measured more precisely in order to constrain these heat sources.

  10. Heat sources for tertiary metamorphism and anatexis in the Annapurna-Manaslu region, central Nepal

    NASA Technical Reports Server (NTRS)

    England, Philip; Le Fort, Patrick; Molnar, Peter; Pecher, Arnaud

    1992-01-01

    The metamorphic evolution of the rocks near the Main Central Thrust in the Annapurna-Manaslu region of central Nepal is examined. In this region, all three types of metamorphic features can be observed: regional metamorphism, anatectic granitoids, and inverted metamorphic isograds. In this work, each phase of metamorphism is treated separately to estimate the heat sources required for each process. This approach makes it possible to identify the important parameters for each process, to draw preliminary conclusions about the heat sources required for each of these phases, and to determine which parameters need to be measured more precisely in order to constrain these heat sources.

  11. Heat sources for tertiary metamorphism and anatexis in the Annapurna-Manaslu region, central Nepal

    NASA Technical Reports Server (NTRS)

    England, Philip; Le Fort, Patrick; Molnar, Peter; Pecher, Arnaud

    1992-01-01

    The metamorphic evolution of the rocks near the Main Central Thrust in the Annapurna-Manaslu region of central Nepal is examined. In this region, all three types of metamorphic features can be observed: regional metamorphism, anatectic granitoids, and inverted metamorphic isograds. In this work, each phase of metamorphism is treated separately to estimate the heat sources required for each process. This approach makes it possible to identify the important parameters for each process, to draw preliminary conclusions about the heat sources required for each of these phases, and to determine which parameters need to be measured more precisely in order to constrain these heat sources.

  12. Controls on Calcite Solubility in Metamorphic and Magmatic Fluids

    NASA Astrophysics Data System (ADS)

    Manning, C. E.; Eguchi, J.; Galvez, M.

    2015-12-01

    Calcite is an important hydrothermal alteration product in a wide range of environments. The role of calcite in hydrothermal alteration depends on its solubility in geologic fluids, especially H2O. At ambient T and P, calcite solubility is low and it exhibits well-known declining, or "reverse", solubility with rising T. However, experimental and theoretical studies show that increasing P yields higher solubility and restricts the region of reverse solubility behavior to higher temperature. At 0.2 GPa the reverse solubility region lies at T>600°C; at 0.5 GPa, >800°C. Thus, whereas calcite possesses relatively low solubility in pure H2O in shallow hydrothermal systems (typically <10 ppm C), it is substantially more soluble at conditions of middle and lower crustal metamorphism and magmatism, reaching concentrations ≥1000 ppm. At the higher P of subduction zones, aragonite solubility in H2O is even greater. Thus, neglecting other solubility controls, calcite precipitation is favored as crustal fluids cool and/or decompress. However, the solubility of calcite in H2O also depends strongly on other solutes, pH, and fO2. Sources of alkalinity decrease calcite solubility. In contrast, sources of acidity such as CO2 and Cl increase solubility. Crustal fluids can be enriched in alkali halides such as NaCl. Calcite solubility increases with increasing salt content at a given P and T. From approximately seawater salinity to salt saturation, the fluid behaves as a dilute molten salt and calcite solubility increases as the square of the salt mole fraction regardless of the alkali (Li, Na, K, Cs) or halogen (F, Cl, Br, I) considered. Similar behavior is seen in mixed salt solutions. At lower salinities, solubility behavior is as expected in dilute electrolyte solutions. The transition from dilute electrolyte to molten salt is fundamental to the properties of crustal fluids. Reduction of carbonate species or CO2 in the fluid to CH4, which is common during serpentinization of

  13. Metamorphism and partial melting of ordinary chondrites: Calculated phase equilibria

    NASA Astrophysics Data System (ADS)

    Johnson, T. E.; Benedix, G. K.; Bland, P. A.

    2016-01-01

    Constraining the metamorphic pressures (P) and temperatures (T) recorded by meteorites is key to understanding the size and thermal history of their asteroid parent bodies. New thermodynamic models calibrated to very low P for minerals and melt in terrestrial mantle peridotite permit quantitative investigation of high-T metamorphism in ordinary chondrites using phase equilibria modelling. Isochemical P-T phase diagrams based on the average composition of H, L and LL chondrite falls and contoured for the composition and abundance of olivine, ortho- and clinopyroxene, plagioclase and chromite provide a good match with values measured in so-called equilibrated (petrologic type 4-6) samples. Some compositional variables, in particular Al in orthopyroxene and Na in clinopyroxene, exhibit a strong pressure dependence when considered over a range of several kilobars, providing a means of recognising meteorites derived from the cores of asteroids with radii of several hundred kilometres, if such bodies existed at that time. At the low pressures (<1 kbar) that typify thermal metamorphism, several compositional variables are good thermometers. Although those based on Fe-Mg exchange are likely to have been reset during slow cooling, those based on coupled substitution, in particular Ca and Al in orthopyroxene and Na in clinopyroxene, are less susceptible to retrograde diffusion and are potentially more faithful recorders of peak conditions. The intersection of isopleths of these variables may allow pressures to be quantified, even at low P, permitting constraints on the minimum size of parent asteroid bodies. The phase diagrams predict the onset of partial melting at 1050-1100 °C by incongruent reactions consuming plagioclase, clinopyroxene and orthopyroxene, whose compositions change abruptly as melting proceeds. These predictions match natural observations well and support the view that type 7 chondrites represent a suprasolidus continuation of the established petrologic

  14. Ontogeny of the bullfrog auditory system across metamorphic development

    NASA Astrophysics Data System (ADS)

    Boatright-Horowitz, Seth Stuart

    1997-12-01

    Larval ranid amphibians undergo metamorphic development, during which they transform from strictly aquatic larvae to partly terrestrial adults. A series of anatomical and electrophysiological experiments were conducted to examine the development of the central auditory system and acoustic conduction pathways across metamorphosis. Gross anatomical dissection and coronal sections of tadpoles indicated that there were no peripheral structures overlying the oval window (OW) in pre- and early prometamorphic tadpoles, while the OWs of late prometamorphic animals were blocked by elements of the forming opercularis system. The OWs of metamorphic climax tadpoles were connected via the opercularis muscle to the shoulder girdle, forming an extratympanic transduction pathway. Components of the tympanic pathway were not mature until after completion of metamorphosis. The bronchial columella, described by Witschi (1949) was observed in animals up to mid-metamorphic climax. Iontophoresis of horseradish peroxidase (HRP) into the torus semicircularis (TS) demonstrated changes in connectivity with other brainstem auditory nuclei across metamorphosis. Pre-and early prometamorphic tadpoles displayed stable, limited transport to the acoustic nucleus (AcN), and robust labeling of the anterior lateral line (LLa) superior olivary (SON) nuclei. Late prometamorphic tadpoles displayed highly reduced SON labeling and variable labeling of the LLa and AcN. Tadpoles in metamorphic climax showed a stage dependent increase in labeling of the SON and AcN, and loss of labeling in the LLa. Late metamorphic climax tadpoles and recently postmetamorphic froglets demonstrated adult-like connectivity. Multiunit recordings in the TS showed that pre- and early prometamorphic tadpoles demonstrated significant phase locking to periodic stimuli at modulation rates as high as 250 Hz, and relatively sharply tuned audiograms with best frequencies (BF) in the range of 2000-2500 Hz. Late prometamorphic tadpoles

  15. CARBONACEOUS MATTER PRECURSORS AND METAMORPHIC CONDITIONS IN THERMALLY PROCESSED CHONDRITES

    NASA Astrophysics Data System (ADS)

    Quirico, E.; Montagnac, G.; Rouzaud, J.; Bonal, L.; Bourot-Denise, M.; Duber, S.; Reynard, B.

    2009-12-01

    Unravelling the origin of carbonaceous matter in pristine chondrites requires the understanding of the effect of post-accretion processes. In chondrites of petrologic type 3, thermal metamorphism modified to various extents the composition and structure of carbonaceous matter. Interestingly, this process controls the degree of structural order of carbonaceous matter, and clues on the thermal history of the parent body may be recovered from the physico-chemical study of carbonaceous matter. Following this framework, geothermometers based on Raman spectrometry of carbonaceous matter and covering a wide range of temperatures (100-650 °C) have been developed over recent years, both on terrestrial rocks and chondrites. While Raman data have been largely interpreted in terms of temperature, they are also the fingerprint of certain metamorphic conditions, especially in the low temperature range relevant to poorly ordered carbonaceous matter. This study investigates the Raman spectra of two series of chondritic carbonaceous matter and coal samples formed from different precursors and under different metamorphic conditions. The Raman spectra of Polyaromatic Carbonaceous Matter (PCM) from 42 chondrites and 27 coal samples, measured with visible (514 nm) and ultra-violet (244 nm) excitation wavelengths, are analyzed. The Raman spectra of low rank coals and chondrites of petrologic types 1 and 2, which contain the more disordered PCM, reflect the distinct carbon structures of their precursors. The 514 nm Raman spectra of high rank coals and chondrites of petrologic type 3 exhibit continuous and systematic spectral differences reflecting different carbon structures present during the metamorphism event. They result from differences in the chemical structures of the precursors concerning for instance the reticulation of polyaromatic units or an abundance of ether functional groups, or possibly from a lack of carbonization processes to efficiently expel oxygen heteroatoms, due

  16. Metamorphic manipulating mechanism design for MCCB using index reduced iteration

    NASA Astrophysics Data System (ADS)

    Xu, Jinghua; Zhang, Shuyou; Zhao, Zhen; Lin, Xiaoxia

    2013-03-01

    The present research on moulded case circuit breaker(MCCB) focuses on the enhancement of current-limiting interrupting performance during short circuit, overload, under voltage and phase failure, involving electrics, magnetic, mechanics, thermal, material, friction, arc extinguishing, impact vibration, skin effect, etc. The rigid-flexible coupling of the parts and components of the metamorphic manipulating mechanism in multi-fields leads to the non-rigid, high frequency, high damping, singularity of the Euler-Lagrange equations which represents the multi-body dynamics. The small step iteration which is used for obtaining the instantaneous and short time critical interrupting performance of metamorphic mechanism appears inaccuracy. It is difficult to realize top-down design by existing CAD systems. Therefore, a metamorphic manipulating mechanism design method for MCCB using index reduced iteration(IRI) is put forward. The metamorphic manipulating mechanism of MCCB is decomposed into three mechanisms: main switch connector mechanism, electromagnet-drawbar-jump buckle mechanism, and bimetallic strip-drawbar mechanism, which is respectively described by electro-dynamic force, electromagnet force, and bimetallic strip force. The dummy part(virtual rigid) without moment of inertia and mass is employed as intermediate to join the flexible body and rigid body. The model of rigid-flexible coupling metamorphic mechanism multi-body dynamics is built. The differential algebraic equations(DAEs) of the multibody dynamics model are converted to pure ordinary differential equations(ODEs) by coordinate partition. Order reduced integration with multi-step and variable step-size is preceded based on IRI. The non-linear algebraic equations are solved in each integration step by Newton-Rapson iteration. There is no ill-condition and singularity of Jacobian matrix when step size reduces to zero. The independent prototype design system using ACIS R13, HOOPS V11.0 and Visual C++.NET 2003

  17. Extension Within The Australia-Eurasia Collision: The Metamorphic Rocks Of Central Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Watkinson, I. M.; Hall, R.; Hennig, J.; Forster, M.

    2012-12-01

    Low-angle mylonitic fabrics from the metamorphic basement of central Sulawesi reveal a complex history of extension from the late Miocene to the present-day. Sulawesi is situated in the convergent triple junction between the Australian, Eurasian and Philippine Sea plates. The island is cut by the Palu-Koro and Matano faults, major active strike-slip zones that were initiated no earlier than about 5 Ma and have previously been attributed to collision-related processes. Within, and to the north and east of the strike-slip faults, are a suite of metamorphic complexes that include mica schists, schistose amphibolites, gneisses, migmatites, granulites, eclogites, marbles and ultramafic rocks including garnet peridotites. Mylonitic fabrics are widespread throughout the metamorphic rocks. The orientation of the mylonitic foliation is highly variable but typically dips less than 30°. Kinematic indicators record transport directions dominantly between top-to-the-NW and top-to-the-NE. Medium to high-grade mylonites, particularly in the south and west, are associated with ductile boudinage of eclogite and kyanite-bearing layers, 'snowball' garnet porphyroclasts, dynamic recrystallisation of feldspar and amphibole, and mylonitic deformation was locally synchronous with partial melting. Medium to high-grade mylonites are commonly overprinted by isoclinal asymmetric similar folds. Low grade mylonites are characterised by quartz recrystallisation only. Mica growth during mylonitic deformation is recorded by young 40Ar-39Ar plateaux between 5.05 ± 0.01 Ma and 2.07 ± 0.03 Ma in the west and 11.33 ± 0.02 Ma in the east. Undeformed aplitic dykes of similar composition to the migmatite leucosomes locally cross-cut the migmatitic mylonites and have yielded a biotite 40Ar-39Ar plateau of 3.62 ± 0.02 Ma. In the east the mylonitic fabric is cut by a low-angle detachment surface expressed as anomalously corrugated topography. On the basis of lithologic variation, shear

  18. Early Cretaceous extensional reworking of the Triassic HP-UHP metamorphic orogen in Eastern China

    NASA Astrophysics Data System (ADS)

    Lin, W.; Ji, W.; Faure, M.; Wu, L.; Li, Q. L.; Shi, Y.; Scharer, U.; Wang, F.; Wang, Q.

    2015-12-01

    Corresponding to the Early Mesozoic continental subduction between the North China Block (NCB) and the South China Block (SCB), the Tongbaishan-Hong'an-Dabieshan-Sulu massifs are famous for their HP-UHP metamorphism. More than 50% of the HP-UHP Orogenic Belt was significantly reworked by Early Cretaceous extensional tectonics. This Early Cretaceous event with a fast cooling period, at 130-120 Ma, superimposed on the Early Mesozoic HP-UHP orogenic belt and intensively changed the architecture of this orogen. Each individual segment documents different Early Cretaceous extensional structures, namely the central Tongbaishan domain is a metamorphic core complex (MCC) represented by an A-type non-cylindrical antiform; the central Dabieshan domain is a typical Cordilleran-type migmatite-cored MCC; the Southern Sulu UHP domain is a "wedge-shaped" structure exhumed by a simple detachment fault. These late stage extensional structures expose the previous HP-UHP orogenic belt as fragments along the NCB-SCB boundary. The geodynamic setting of this Early Cretaceous extensional tectonics along the HP-UHP orogen is a part of a 1000 km-scale crustal extension belt that is widespread in eastern Eurasia continent from Trans-Baikal to the central part of the South China Block. Convective erosion or delamination of the mantle lithosphere might be considered as a possible mechanism for mantle removal.

  19. Early Cretaceous extensional reworking of the Triassic HP-UHP metamorphic orogen in Eastern China

    NASA Astrophysics Data System (ADS)

    Lin, Wei; Ji, Wenbin; Faure, Michel; Wu, Lin; Li, Qiuli; Shi, Yonghong; Scharer, Urs; Wang, Fei; Wang, Qingchen

    2015-11-01

    Corresponding to the Early Mesozoic continental subduction between the North China Block (NCB) and the South China Block (SCB), the Tongbaishan-Hong'an-Dabieshan-Sulu massifs are famous for their HP-UHP metamorphism. More than 50% of the HP-UHP Orogenic Belt was significantly reworked by Early Cretaceous extensional tectonics. This Early Cretaceous event with a fast cooling period, at 130-120 Ma, superimposed on the Early Mesozoic HP-UHP orogenic belt and intensively changed the architecture of this orogen. Each individual segment documents different Early Cretaceous extensional structures, namely the central Tongbaishan domain is a metamorphic core complex (MCC) represented by an A-type non-cylindrical antiform; the central Dabieshan domain is a typical Cordilleran-type migmatite-cored MCC; the Southern Sulu UHP domain is a "wedge-shaped" structure exhumed by a simple detachment fault. These late stage extensional structures expose the previous HP-UHP orogenic belt as fragments along the NCB-SCB boundary. The geodynamic setting of this Early Cretaceous extensional tectonics along the HP-UHP orogen is a part of a 1000 km-scale crustal extension belt that is widespread in eastern Eurasia continent from Trans-Baikal to the central part of SCB. Convective erosion or delamination of the mantle lithosphere might be considered as a possible mechanism for mantle removal.

  20. Replacement textures in CAI and implications regarding planetary metamorphism

    NASA Technical Reports Server (NTRS)

    Meeker, G. P.; Wasserburg, G. J.; Armstrong, J. T.

    1983-01-01

    Formation by a secondary metamorphic event, rather than primary crystallization from a melt or a sequential nebular condensation, is indicated by textural and chemical features of five coarse grained, Ca- and Al-rich inclusions (CAI) from the Allende meteorite which contain embayed pyroxene surrounded by melilite. It is suggested that the most probable environment for a metamorphic process (requiring the addition of Ca derived from calcite or from the introduction of a fluid phase) is that of a small planetary body, rather than the solar nebula. These results are compatible with O isotopic heterogeneities within CAI, and offer a mechanism for the production of lower temperature alteration phases, together with the rim phases found in these inclusions.

  1. Repeated shock and thermal metamorphism of the Abernathy meteorite

    NASA Technical Reports Server (NTRS)

    Lambert, P.; Lewis, C.; Moore, C. B.

    1984-01-01

    Based on the example of Abernathy (L6 chondrite), it is shown how petrographic investigation can be used to unravel the nature, chronology and conditions of superposed metamorphic events in chondrites. Features considered include the texture of the rock, optical characteristics of olivine, pyroxene and plagioclase, refractive index of plagioclase, metallographical characteristics and microhardness of Fe-Ni alloys. It is deduced that Abernathy has been involved in at least six metamorphic events since the formation of the chondrite. Four distinct shock events and two separate reheating events have been identified. The chronology of these events is established. The conditions for the last four events are reasonably well constrained. These include severe reheating (T greater than 1200 C); severe shock causing complete melting of plagioclase and local melting of the rock (P between 90 and 110 GPa, T between 1250 and 1350 C); mild shock (P between 10 and 25 GPa, T less than 500 C); and reheating below 800 C.

  2. Mobility of gold during metamorphism of the Dalradian in Scotland

    NASA Astrophysics Data System (ADS)

    Pitcairn, I. K.; Skelton, A. D. L.; Wohlgemuth-Ueberwasser, C. C.

    2015-09-01

    Mobility of Au and related metals during metamorphism has been suggested to be the source of metals enriched in orogenic Au deposits. This study investigates the mobility of Au, As, and Sb during metamorphism of the Dalradian metasedimentary rocks of Scotland. The metamorphic processes in the Dalradian of Scotland are extremely well studied, and the terrane is an ideal area to investigate mobility of these metals. Our results show that of the 25 major and trace elements analysed, only Au, As, Sb, S and volatile contents as shown by loss on ignition (LOI) values show systematic variation with the metamorphic grade of the samples. Average Au concentrations decrease from 1.1 ± 0.55 ppb and 0.72 ± 0.34 ppb in chlorite and biotite zone rocks down to 0.4 ± 0.22 ppb and 0.34 ± 0.13 ppb in kyanite and sillimanite zone rocks. Average As concentrations decrease from 4.8 ppm (range 0.5 to 17.8 ppm) and 1.96 ± 1.9 ppm in chlorite and biotite zone rocks down to 0.24 ± 0.15 ppm and 0.2 ± 0.12 ppm in kyanite and sillimanite zone rocks. Average Sb concentrations decrease from 0.18 ± 0.15 ppm and 0.11 ± 0.10 ppm in chlorite and biotite zone rocks down to 0.04 ± 0.02 ppm in both kyanite and sillimanite zone rocks. Sulphur and LOI concentrations also show significant decreases. Mass balance calculations indicate that compared to chlorite and biotite zone samples, sillimanite zone samples have an average mass loss of 62 ± 14%, 94 ± 4% and 74 ± 14% for Au, As, and Sb respectively. Every 1 km3 of chlorite-biotite zone mixed psammitic-pelitic protolith rock that is metamorphosed to sillimanite zone conditions would release 1.5 t Au, 8613 t As, 270 t Sb, and 1.02 Mt S. The mobility of these elements is strongly controlled by the paragenesis of sulphide minerals. Pyrite, sphalerite, galena and cobaltite (as well as gersdorffite) decrease in abundance with increasing metamorphic grade in the Dalradian metasedimentary rocks. A critical aspect of the sulphide paragenesis is the

  3. Metamorphic hemispherical microphone array for three-dimensional acoustics

    NASA Astrophysics Data System (ADS)

    Biswas, Shantonu; Reiprich, Johannes; Cohrs, Thaden; Stauden, Thomas; Pezoldt, Joerg; Jacobs, Heiko O.

    2017-07-01

    This article describes the realization of a metamorphic stretchable microphone array, which can be inflated by air to morph from a planar to a hemispherical shape. The array undergoes morphological changes to adjust their receive characteristic. To realize this device, a metamorphic printed circuit board technology (m-PCB) is described. The resulting products are millimeter-thin stretchable silicone embedded and electrically interconnected electronic structures with mechanical properties, which resemble a silicone membrane. The microphone array is used to localize a sound source in a 3D space. The results of the planar orientation (resting shape), and the 3D hemispherical orientation after air inflation are compared. The inflated hemispherical microphone array proofs to be better for 3D acoustic localization and/or beam-forming.

  4. Crust-derived potassic fluid in metamorphic microdiamond

    NASA Astrophysics Data System (ADS)

    Hwang, Shyh-Lung; Shen, Pouyan; Chu, Hao-Tsu; Yui, Tzen-Fu; Liou, Juhn G.; Sobolev, Nikolay V.; Shatsky, Vladislav S.

    2005-03-01

    A highly potassic COH fluid, with dissolved phosphate, chloride and sulfate/sulfide, was identified as nanometer-size inclusions in metamorphic microdiamonds of Kokchetav dolomite marble and garnet-quartz-pyroxene rock using an analytical electron microscope (AEM) coupled with an energy-dispersive X-ray (EDX) spectrometer. This provides a direct piece of evidence for the formation of metamorphic microdiamonds from such a fluid. Although this crust-derived potassic fluid and the associated solid precipitates are in some respects similar to the fluid inclusions in fibrous/cloudy mantle diamonds, distinct chemical differences exist. This potassic COH fluid, in addition, has the potential to trigger high to ultrahigh-K magmatic and K metasomatic processes in mantle.

  5. Metamorphic effects in experimentally heated Krymka /L3/ chondrite

    NASA Technical Reports Server (NTRS)

    Mcsween, H. Y., Jr.; Taylor, L. A.; Lipschutz, M. E.

    1978-01-01

    Experimental charges of the Krymka unequilibrated ordinary chondrite heated from 500-1000 C have been examined petrographically for evidence of metamorphism. Of the petrologic criteria commonly used to distinguish types 4-6 chondrites, only changes in opaque mineral compositions are observed. Chemical and textural observations indicate development of a fine-grained intergrowth of taenite + troilite beginning at 700 C due to melting within the metal-rich portion of the Fe-Ni-S system, and minor reduction of troilite to metal, possibly through sulfur loss at higher temperatures. Overall textural integration, glass devitrification, and significant Fe-enrichment of ferromagnesian minerals are not observed because the short duration of these experiments was not sufficient for the development of other changes normally attributed to metamorphism in ordinary chondritic meteorites.

  6. Pathway to 50% efficient inverted metamorphic concentrator solar cells

    NASA Astrophysics Data System (ADS)

    Geisz, John F.; Steiner, Myles A.; Jain, Nikhil; Schulte, Kevin L.; France, Ryan M.; McMahon, William E.; Perl, Emmett E.; Horowitz, Kelsey A. W.; Friedman, Daniel J.

    2017-09-01

    Series-connected five (5J) and six junction (6J) concentrator solar cell strategies have the realistic potential to exceed 50% efficiency to enable low-cost CPV systems. We propose three strategies for developing a practical 6J device. We have overcome many of the challenges required to build such concentrator solar cell devices: We have developed 2.1 eV AlGaInP, 1.7 eV AlGaAs, and 1.7 eV GaInAsP junctions with external radiative efficiency greater than 0.1%. We have developed a transparent tunnel junction that absorbs minimal light intended for the second junction yet resists degradation under thermal load. We have developed metamorphic grades from the GaAs to the InP lattice constant that are transparent to sub-GaAs bandgap light. We have grown and compared low bandgap junctions (0.7eV - 1.2 eV) using metamorphic GaInAs, metamorphic GaInAsP, and GaInAsP lattice-matched to InP. And finally, we have demonstrated excellent performance in a high voltage, low current 4 junction inverted metamorphic device using 2.1, 1.7, 1.4, and 1.1 eV junctions with over 8.7 mA/cm2 one-sun current density that operates up to 1000 suns without tunnel junction failure.

  7. Penecontemporaneous metamorphism, fragmentation, and reassembly of ordinary chondrite parent bodies

    NASA Technical Reports Server (NTRS)

    Grimm, R. E.

    1985-01-01

    The thermal histories of ordinary chondrites and the canonical internal heating or onion shell models, which predict an inverse relation between the petrologic type of chondrites and the metallographic cooling rate, are reviewed. The thermal and accretional requirements of the 'metamorphosed planetesimal' model proposed by Scott and Rajan (1981) are analyzed, and an alternative model consistent with the metallographic cooling rate constraints is suggested in which ordinary chondrite parent bodies are collisionally fragmented and then rapidly reassembled before metamorphic heat has been dissipated.

  8. Snow metamorphism as revealed by scanning electron microscopy.

    PubMed

    Dominé, Florent; Lauzier, Thomas; Cabanes, Axel; Legagneux, Loïc; Kuhs, Werner F; Techmer, Kirsten; Heinrichs, Till

    2003-09-01

    Current theories of snow metamorphism indicate that sublimating snow crystals have rounded shapes, while growing crystals have shapes that depend on growth rates. At slow growth rates, crystals are rounded. At moderate rates, they have flat faces with rounded edges. At fast growth rates, crystals have flat faces with sharp edges, and they have hollow faces at very fast growth rates. The main growth/sublimation mechanism is thought to be by the homogeneous nucleation of new layers at or near crystal edges. It was also suggested that the equilibrium shape of snow crystals would be temperature dependent: rounded above -10.5 degrees C, and faceted below. To test these paradigms, we have performed SEM investigations of snow samples having undergone metamorphism under natural conditions, and of snow samples subjected to isothermal metamorphism at -4 degrees and -15 degrees C in the laboratory. In general, current theories predicting crystal shapes as a function of growth rates, and of whether crystals are growing or sublimating, are verified. However, the transition in equilibrium shapes from rounded to faceted at -10.5 degrees C is not observed in our isothermal experiments that reveal a predominance of rounded shapes after more than a month of metamorphism at -4 and -15 degrees C. Some small crystals with flat faces that also have sharp angles at -15 degrees C, are observed in our isothermal experiments. These faces are newly formed, and contradict current theory. Several hypotheses are proposed to explain their occurrence. One is that they are due to sublimation at emerging dislocations.

  9. Change in the paramagnetic characteristics of coals during metamorphism

    SciTech Connect

    Bineev, E.A.; Peresun'ko, T.F.

    1983-01-01

    The paper studies the paramagnetic properties of deep-mined coals on samples taken from one seam with a wide spectrum of metamorphism. Changes which take place in the concentration of paramagnetic centres within the various types of coal are related to structural and chemical transformations which occur with progressive coalification. Comparisons of EPR and X-ray structural and elementary analyses produce a picture of those particular paramagnetic centres which are responsible for the wide- and narrow-band EPR signals.

  10. Experimental dynamic metamorphism of mineral single crystals

    USGS Publications Warehouse

    Kirby, S.H.; Stern, L.A.

    1993-01-01

    This paper is a review of some of the rich and varied interactions between non-hydrostatic stress and phase transformations or mineral reactions, drawn mainly from results of experiments done on mineral single crystals in our laboratory or our co-authors. The state of stress and inelastic deformation can enter explicitly into the equilibrium phase relations and kinetics of mineral reactions. Alternatively, phase transformations can have prominent effects on theology and on the nature of inelastic deformation. Our examples represent five types of structural phase changes, each of which is distinguished by particular mechanical effects. In increasing structural complexity, these include: (1) displacive phase transformations involving no bond-breaking, which may produce anomalous brittle behavior. A primary example is the a-?? quartz transition which shows anomalously low fracture strength and tertiary creep behavior near the transition temperature; (2) martensitic-like transformations involving transformation strains dominated by shear deformation. Examples include the orthoenstatite ??? clinoenstatite and w u ??rtzite ??? sphalerite transformations; (3) coherent exsolution or precipitation of a mineral solute from a supersaturated solid-solution, with anisotropy of precipitation and creep rates produced under nonhydrostatic stress. Examples include exsolution of corundum from MgO ?? nAl2O3 spinels and Ca-clinopyroxene from orthopyroxene; (4) order-disorder transformations that are believed to cause anomalous plastic yield strengthening, such as MgO - nAl2O3 spinels; and (5) near-surface devolatilization of hydrous silicate single-crystals that produces a fundamental brittleness thought to be connected with dehydration at microcracks at temperatures well below nominal macroscopic dehydration temperatures. As none of these interactions between single-crystal phase transformations and non-hydrostatic stress is understood in detail, this paper serves as a challenge to

  11. Verification of phylogenetic inference programs using metamorphic testing.

    PubMed

    Sadi, Md Shaik; Kuo, Fei-Ching; Ho, Joshua W K; Charleston, Michael A; Chen, T Y

    2011-12-01

    Many phylogenetic inference programs are available to infer evolutionary relationships among taxa using aligned sequences of characters, typically DNA or amino acids. These programs are often used to infer the evolutionary history of species. However, in most cases it is impossible to systematically verify the correctness of the tree returned by these programs, as the correct evolutionary history is generally unknown and unknowable. In addition, it is nearly impossible to verify whether any non-trivial tree is correct in accordance to the specification of the often complicated search and scoring algorithms. This difficulty is known as the oracle problem of software testing: there is no oracle that we can use to verify the correctness of the returned tree. This makes it very challenging to test the correctness of any phylogenetic inference programs. Here, we demonstrate how to apply a simple software testing technique, called Metamorphic Testing, to alleviate the oracle problem in testing phylogenetic inference programs. We have used both real and randomly generated test inputs to evaluate the effectiveness of metamorphic testing, and found that metamorphic testing can detect failures effectively in faulty phylogenetic inference programs with both types of test inputs.

  12. Evidence for pre-Taconic metamorphism in the Potomac terrane, Maryland and Virginia: Hornblende and Muscovite [sup 40]Ar/[sup 39]Ar results

    SciTech Connect

    Becker, J.L.; Wintsch, R.P. . Dept. of Geological Sciences); Kunk, M.J.; Drake, A.A. Jr. )

    1993-03-01

    New [sup 40]Ar/[sup 39]Ar age spectra of hornblende and white mica from the Great Falls area of the Potomac terrane of Maryland and Virginia indicate pre-Taconic metamorphism. Age spectra of hornblende samples are interpreted to represent cooling from peak metamorphic conditions through their closure temperatures for argon diffusion ([approximately]500C) at about 490 Ma. These older Ordovician postmetamorphic cooling ages strongly contrast with younger post-Ordovician metamorphic cooling ages now being reported in the Blue Ridge and Goochland terranes to the west and east respectively. A late phyllitic sheen observed on rocks in the field and petrographic observations of undulose plagioclase and amphibole, and older muscovite, and kinked primary muscovite in the Bear Island Granodiorite reflect a younger retrogressive metamorphism involving the growth of secondary muscovite (Fisher's S4 ). [sup 40]Ar/[sup 39]Ar Age spectra of white micas from the Bear Island Granodiorite are complex and probably indicate both primary and secondary white mica, the latter apparently growing below the closure temperature for retention of argon in muscovite ([approximately]350C). The age spectra permit an estimate of a minimum age of 420 Ma for cooling through closure of the older generation of white mica. The above ages of hornblende and muscovite closure imply a minimum cooling rate of [approximately]2C/m.y., and exhumation rate of about 1 mm/yr. The projected time of peak met