Science.gov

Sample records for noise ii 2d

  1. Energy-filtered Electron Transport Structures for Low-power Low-noise 2-D Electronics

    PubMed Central

    Pan, Xuan; Qiu, Wanzhi; Skafidas, Efstratios

    2016-01-01

    In addition to cryogenic techniques, energy filtering has the potential to achieve high-performance low-noise 2-D electronic systems. Assemblies based on graphene quantum dots (GQDs) have been demonstrated to exhibit interesting transport properties, including resonant tunnelling. In this paper, we investigate GQDs based structures with the goal of producing energy filters for next generation lower-power lower-noise 2-D electronic systems. We evaluate the electron transport properties of the proposed GQD device structures to demonstrate electron energy filtering and the ability to control the position and magnitude of the energy passband by appropriate device dimensioning. We also show that the signal-to-thermal noise ratio performance of the proposed nanoscale device can be modified according to device geometry. The tunability of two-dimensional GQD structures indicates a promising route for the design of electron energy filters to produce low-power and low-noise electronics. PMID:27796343

  2. Energy-filtered Electron Transport Structures for Low-power Low-noise 2-D Electronics.

    PubMed

    Pan, Xuan; Qiu, Wanzhi; Skafidas, Efstratios

    2016-10-31

    In addition to cryogenic techniques, energy filtering has the potential to achieve high-performance low-noise 2-D electronic systems. Assemblies based on graphene quantum dots (GQDs) have been demonstrated to exhibit interesting transport properties, including resonant tunnelling. In this paper, we investigate GQDs based structures with the goal of producing energy filters for next generation lower-power lower-noise 2-D electronic systems. We evaluate the electron transport properties of the proposed GQD device structures to demonstrate electron energy filtering and the ability to control the position and magnitude of the energy passband by appropriate device dimensioning. We also show that the signal-to-thermal noise ratio performance of the proposed nanoscale device can be modified according to device geometry. The tunability of two-dimensional GQD structures indicates a promising route for the design of electron energy filters to produce low-power and low-noise electronics.

  3. Energy-filtered Electron Transport Structures for Low-power Low-noise 2-D Electronics

    NASA Astrophysics Data System (ADS)

    Pan, Xuan; Qiu, Wanzhi; Skafidas, Efstratios

    2016-10-01

    In addition to cryogenic techniques, energy filtering has the potential to achieve high-performance low-noise 2-D electronic systems. Assemblies based on graphene quantum dots (GQDs) have been demonstrated to exhibit interesting transport properties, including resonant tunnelling. In this paper, we investigate GQDs based structures with the goal of producing energy filters for next generation lower-power lower-noise 2-D electronic systems. We evaluate the electron transport properties of the proposed GQD device structures to demonstrate electron energy filtering and the ability to control the position and magnitude of the energy passband by appropriate device dimensioning. We also show that the signal-to-thermal noise ratio performance of the proposed nanoscale device can be modified according to device geometry. The tunability of two-dimensional GQD structures indicates a promising route for the design of electron energy filters to produce low-power and low-noise electronics.

  4. Ergodicity of stochastic 2D Navier-Stokes equation with Lévy noise

    NASA Astrophysics Data System (ADS)

    Dong, Zhao; Xie, Yingchao

    In this paper we deal with the 2D Navier-Stokes equation perturbed by a Lévy noise force whose white noise part is non-degenerate and that the intensity measure of Poisson measure is σ-finite. Existence and uniqueness of invariant measure for this equation is obtained, two main properties of the Markov semigroup associated with this equation are proved. In other words, strong Feller property and irreducibility hold in the same space.

  5. Amide I'-II' 2D IR spectroscopy provides enhanced protein secondary structural sensitivity.

    PubMed

    Deflores, Lauren P; Ganim, Ziad; Nicodemus, Rebecca A; Tokmakoff, Andrei

    2009-03-11

    We demonstrate how multimode 2D IR spectroscopy of the protein amide I' and II' vibrations can be used to distinguish protein secondary structure. Polarization-dependent amide I'-II' 2D IR experiments on poly-l-lysine in the beta-sheet, alpha-helix, and random coil conformations show that a combination of amide I' and II' diagonal and cross peaks can effectively distinguish between secondary structural content, where amide I' infrared spectroscopy alone cannot. The enhanced sensitivity arises from frequency and amplitude correlations between amide II' and amide I' spectra that reflect the symmetry of secondary structures. 2D IR surfaces are used to parametrize an excitonic model for the amide I'-II' manifold suitable to predict protein amide I'-II' spectra. This model reveals that the dominant vibrational interaction contributing to this sensitivity is a combination of negative amide II'-II' through-bond coupling and amide I'-II' coupling within the peptide unit. The empirically determined amide II'-II' couplings do not significantly vary with secondary structure: -8.5 cm(-1) for the beta sheet, -8.7 cm(-1) for the alpha helix, and -5 cm(-1) for the coil.

  6. Low Speed, 2-D Rotor/Stator Active Noise Control at the Source Demonstration

    NASA Technical Reports Server (NTRS)

    Simonich, John C.; Kousen, Ken A.; Zander, Anthony C.; Bak, Michael; Topol, David A.

    1997-01-01

    to be unaffected by the presence of air flow representative of the Purdue experimental rig. A test of the active noise control at the source concept for rotor/stator active noise control was demonstrated. This 2-D test demonstrated conclusively the simultaneous reduction of two acoustic modes. Reductions of over 10 dB were obtained over a wide operating range.

  7. Noise reduction methods applied to two-dimensional correlation spectroscopy (2D-COS) reveal complementary benefits of pre- and post-treatment.

    PubMed

    Foist, Rod B; Schulze, H Georg; Ivanov, Andre; Turner, Robin F B

    2011-05-01

    Two-dimensional correlation spectroscopy (2D-COS) is a powerful spectral analysis technique widely used in many fields of spectroscopy because it can reveal spectral information in complex systems that is not readily evident in the original spectral data alone. However, noise may severely distort the information and thus limit the technique's usefulness. Consequently, noise reduction is often performed before implementing 2D-COS. In general, this is implemented using one-dimensional (1D) methods applied to the individual input spectra, but, because 2D-COS is based on sets of successive spectra and produces 2D outputs, there is also scope for the utilization of 2D noise-reduction methods. Furthermore, 2D noise reduction can be applied either to the original set of spectra before performing 2D-COS ("pretreatment") or on the 2D-COS output ("post-treatment"). Very little work has been done on post-treatment; hence, the relative advantages of these two approaches are unclear. In this work we compare the noise-reduction performance on 2D-COS of pretreatment and post-treatment using 1D (wavelets) and 2D algorithms (wavelets, matrix maximum entropy). The 2D methods generally outperformed the 1D method in pretreatment noise reduction. 2D post-treatment in some cases was superior to pretreatment and, unexpectedly, also provided correlation coefficient maps that were similar to 2D correlation spectroscopy maps but with apparent better contrast.

  8. Impact of bounded noise on the formation and instability of spiral wave in a 2D Lattice of neurons

    PubMed Central

    Yao, Yuangen; Deng, Haiyou; Yi, Ming; Ma, Jun

    2017-01-01

    Spiral waves in the neocortex may provide a spatial framework to organize cortical oscillations, thus help signal communication. However, noise influences spiral wave. Many previous theoretical studies about noise mainly focus on unbounded Gaussian noise, which contradicts that a real physical quantity is always bounded. Furthermore, non-Gaussian noise is also important for dynamical behaviors of excitable media. Nevertheless, there are no results concerning the effect of bounded noise on spiral wave till now. Based on Hodgkin-Huxley neuron model subjected to bounded noise with the form of Asin[ωt + σW(t)], the influences of bounded noise on the formation and instability of spiral wave in a two-dimensional (2D) square lattice of neurons are investigated in detail by separately adjusting the intensity σ, amplitude A, and frequency f of bounded noise. It is found that the increased intensity σ can facilitate the formation of spiral wave while the increased amplitude A tends to destroy spiral wave. Furthermore, frequency of bounded noise has the effect of facilitation or inhibition on pattern synchronization. Interestingly, for the appropriate intensity, amplitude and frequency can separately induce resonance-like phenomenon. PMID:28220877

  9. Impact of bounded noise on the formation and instability of spiral wave in a 2D Lattice of neurons

    NASA Astrophysics Data System (ADS)

    Yao, Yuangen; Deng, Haiyou; Yi, Ming; Ma, Jun

    2017-02-01

    Spiral waves in the neocortex may provide a spatial framework to organize cortical oscillations, thus help signal communication. However, noise influences spiral wave. Many previous theoretical studies about noise mainly focus on unbounded Gaussian noise, which contradicts that a real physical quantity is always bounded. Furthermore, non-Gaussian noise is also important for dynamical behaviors of excitable media. Nevertheless, there are no results concerning the effect of bounded noise on spiral wave till now. Based on Hodgkin-Huxley neuron model subjected to bounded noise with the form of Asin[ωt + σW(t)], the influences of bounded noise on the formation and instability of spiral wave in a two-dimensional (2D) square lattice of neurons are investigated in detail by separately adjusting the intensity σ, amplitude A, and frequency f of bounded noise. It is found that the increased intensity σ can facilitate the formation of spiral wave while the increased amplitude A tends to destroy spiral wave. Furthermore, frequency of bounded noise has the effect of facilitation or inhibition on pattern synchronization. Interestingly, for the appropriate intensity, amplitude and frequency can separately induce resonance-like phenomenon.

  10. Intercalation of organic molecules in 2D copper (II) nitroprusside: Intermolecular interactions and magnetic properties

    SciTech Connect

    Osiry, H.; Cano, A.; Lemus-Santana, A.A.; Rodríguez, A.; Carbonio, R.E.; Reguera, E.

    2015-10-15

    This contribution discusses the intercalation of imidazole and its 2-ethyl derivative, and pyridine in 2D copper nitroprusside. In the interlayer region, neighboring molecules remain interacting throu gh their dipole and quadrupole moments, which supports the solid 3D crystal structure. The crystal structure of this series of intercalation compounds was solved and refined from powder X-ray diffraction patterns complemented with spectroscopic information. The intermolecular interactions were studied from the refined crystal structures and low temperature magnetic measurements. Due to strong attractive forces between neighboring molecules, the resulting π–π cloud overlapping enables the ferromagnetic coupling between metal centers on neighboring layers, which was actually observed for the solids containing imidazole and pyridine as intercalated molecules. For these two solids, the magnetic data were properly described with a model of six neighbors. For the solid containing 2-ethylimidazole and for 2D copper nitroprusside, a model of four neighbors in a plane is sufficient to obtain a reliable data fitting. - Highlights: • Intercalation of organic molecules in 2D copper (II) nitroprusside. • Molecular properties of intercalation compounds of 2D copper (II) nitroprusside. • Magnetic properties of hybrid inorganic–organic solids. • Hybrid inorganic–organic 3D framework.

  11. Image Pretreatment Tools II: Normalization Techniques for 2-DE and 2-D DIGE.

    PubMed

    Robotti, Elisa; Marengo, Emilio; Quasso, Fabio

    2016-01-01

    Gel electrophoresis is usually applied to identify different protein expression profiles in biological samples (e.g., control vs. pathological, control vs. treated). Information about the effect to be investigated (a pathology, a drug, a ripening effect, etc.) is however generally confounded with experimental variability that is quite large in 2-DE and may arise from small variations in the sample preparation, reagents, sample loading, electrophoretic conditions, staining and image acquisition. Obtaining valid quantitative estimates of protein abundances in each map, before the differential analysis, is therefore fundamental to provide robust candidate biomarkers. Normalization procedures are applied to reduce experimental noise and make the images comparable, improving the accuracy of differential analysis. Certainly, they may deeply influence the final results, and to this respect they have to be applied with care. Here, the most widespread normalization procedures are described both for what regards the applications to 2-DE and 2D Difference Gel-electrophoresis (2-D DIGE) maps.

  12. Low Noise Borehole Triaxial Seismometer Phase II

    SciTech Connect

    Kerr, James D; McClung, David W

    2006-11-06

    This report describes the preliminary design and the effort to date of Phase II of a Low Noise Borehole Triaxial Seismometer for use in networks of seismic stations for monitoring underground nuclear explosions. The design uses the latest technology of broadband seismic instrumentation. Each parameter of the seismometer is defined in terms of the known physical limits of the parameter. These limits are defined by the commercially available components, and the physical size constraints. A theoretical design is proposed, and a preliminary prototype model of the proposed instrument has been built. This prototype used the sensor module of the KS2000. The installation equipment (hole locks, etc.) has been designed and one unit has been installed in a borehole. The final design of the sensors and electronics and leveling mechanism is in process. Noise testing is scheduled for the last quarter of 2006.

  13. 2D water layer enclathrated between Mn(II)-Ni(CN){sub 4} coordination frameworks

    SciTech Connect

    Ray, Ambarish; Bhowmick, Indrani; Sheldrick, William S.; Jana, Atish Dipankar; Ali, Mahammed

    2009-10-15

    A [Ni(CN){sub 4}]{sup 2-}based two-dimensional Mn(II) coordination polymer {l_brace}Mn(H{sub 2}O){sub 2}[NiCN]{sub 4}.4H{sub 2}O{r_brace}, in which the coordination layers are stacked on top of each other sandwiching 2D water layer of boat-shaped hexagonal water clusters has been synthesized. The complex exhibits high thermal decomposition temperature and reversible water absorption, which were clearly demonstrated by thermal and PXRD studies on the parent and rehydrated complex after dehydration. - Abstract: A coordination polymer, {l_brace}Mn(H{sub 2}O){sub 2}[NiCN]{sub 4}.4H{sub 2}O{r_brace}{sub n}, showed that the coordination layers are stacked on top of each other sandwiching 2D ice layer of boat-shaped hexagonal water clusters . Display Omitted

  14. 2D stochastic-integral models for characterizing random grain noise in titanium alloys

    SciTech Connect

    Sabbagh, Harold A.; Murphy, R. Kim; Sabbagh, Elias H.; Cherry, Matthew; Pilchak, Adam; Knopp, Jeremy S.; Blodgett, Mark P.

    2014-02-18

    We extend our previous work, in which we applied high-dimensional model representation (HDMR) and analysis of variance (ANOVA) concepts to the characterization of a metallic surface that has undergone a shot-peening treatment to reduce residual stresses, and has, therefore, become a random conductivity field. That example was treated as a onedimensional problem, because those were the only data available. In this study, we develop a more rigorous two-dimensional model for characterizing random, anisotropic grain noise in titanium alloys. Such a model is necessary if we are to accurately capture the 'clumping' of crystallites into long chains that appear during the processing of the metal into a finished product. The mathematical model starts with an application of the Karhunen-Loève (K-L) expansion for the random Euler angles, θ and φ, that characterize the orientation of each crystallite in the sample. The random orientation of each crystallite then defines the stochastic nature of the electrical conductivity tensor of the metal. We study two possible covariances, Gaussian and double-exponential, which are the kernel of the K-L integral equation, and find that the double-exponential appears to satisfy measurements more closely of the two. Results based on data from a Ti-7Al sample will be given, and further applications of HDMR and ANOVA will be discussed.

  15. Directional statistics for realistic weakly interacting massive particle direct detection experiments. II. 2D readout

    NASA Astrophysics Data System (ADS)

    Morgan, Ben; Green, Anne M.

    2005-12-01

    The direction dependence of the WIMP direct detection rate provides a powerful tool for distinguishing a WIMP signal from possible backgrounds. We study the number of events required to discriminate a WIMP signal from an isotropic background for a detector with 2-d readout using nonparametric circular statistics. We also examine the number of events needed to (i) detect a deviation from rotational symmetry, due to flattening of the Milky Way halo and (ii) detect a deviation in the mean direction due to a tidal stream. If the senses of the recoils are measured then of order 20--70 events (depending on the plane of the 2-d readout and the detector location) will be sufficient to reject isotropy of the raw recoil angles at 90% confidence. If the senses can not be measured these number increase by roughly 2 orders of magnitude (compared with an increase of 1 order of magnitude for the case of full 3-d readout). The distributions of the reduced angles, with the (time-dependent) direction of solar motion subtracted, are far more anisotropic, however, and if the isotropy tests are applied to these angles then the numbers of events required are similar to the case of 3-d readout. A deviation from rotational symmetry will only be detectable if the Milky Way halo is significantly flattened. The deviation in the mean direction due to a tidal stream is potentially detectable, however, depending on the density and direction of the stream. The meridian plane (which contains the Earth’s spin axis) is, for all detector locations, the optimum readout plane for rejecting isotropy. However readout in this plane can not be used for detecting flattening of the Milky Way halo or a stream with direction perpendicular to the galactic plane. In these cases the optimum readout plane depends on the detector location.

  16. Phase Noise Measurement in PEP II and the Linac

    SciTech Connect

    Getaneh, Mesfin

    2003-09-05

    The Goal of this project is to provide a measurement of the phase of the radio frequency (RF) relative to electron beam traveling down the Stanford Linear Accelerator Center (SLAC). Because the Main Drive Line (MDL) supplies the RF drive and phase reference for the entire accelerator system, the phase accuracy and amount of phase noise present in the MDL are very critical to the functionality of the accelerator. Therefore, a Phase Noise Measurement System was built to measure the phase noise in the liner accelerator (Linac) and PEP II. The system was used to determine the stability of the PEP II RF reference system. In this project a low noise Phase Locked Loop system (PLL) was built to measure timing jitter about sub picoseconds level. The phase noise measured in Master Oscillator using PLL indicates that phase noise is low enough for PEP II to run.

  17. 77 FR 72284 - Approval and Promulgation of Implementation Plans; Region 4 States; Section 110(a)(2)(D)(i)(II...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-05

    ... for Section 110(a) State Implementation Plans Pertaining to the Fine Particulate Matter (PM 2.5... AGENCY 40 CFR Part 52 Approval and Promulgation of Implementation Plans; Region 4 States; Section 110(a)(2)(D)(i)(II) Infrastructure Requirement for the 1997 and 2006 Fine Particulate Matter...

  18. 77 FR 72291 - Approval and Promulgation of Implementation Plans; Region 4 States; Section 110(a)(2)(D)(i)(II...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-05

    ... Pertaining to the Fine Particulate Matter (PM 2.5 ) NAAQS'' making a finding that each state had submitted or... AGENCY 40 CFR Part 52 Approval and Promulgation of Implementation Plans; Region 4 States; Section 110(a)(2)(D)(i)(II) Infrastructure Requirement for the 1997 and 2006 Fine Particulate Matter...

  19. Quantum damped oscillator II: Bateman's Hamiltonian vs. 2D parabolic potential barrier

    SciTech Connect

    Chruscinski, Dariusz . E-mail: darch@phys.uni.torun.pl

    2006-04-15

    We show that quantum Bateman's system which arises in the quantization of a damped harmonic oscillator is equivalent to a quantum problem with 2D parabolic potential barrier known also as 2D inverted isotropic oscillator. It turns out that this system displays the family of complex eigenvalues corresponding to the poles of analytical continuation of the resolvent operator to the complex energy plane. It is shown that this representation is more suitable than the hyperbolic one used recently by Blasone and Jizba.

  20. 2-D Spectroscopic Observations of O II Recombination Lines in the Planetary Nebula NGC 7009

    NASA Astrophysics Data System (ADS)

    Hwang, Sehyun; Dinerstein, H.; Hill, G.; MacQueen, P.; Adams, J.; Blanc, G.

    2007-12-01

    We present preliminary results from 2-D spatially-resolved spectroscopic observations of the planetary nebula NGC 7009, obtained in September 2007 on the McDonald Observatory 2.7m telescope utilizing the integral field unit (IFU) VIRUS-P (Visible Integral-field Replicable Unit Spectrograph-Prototype; Hill et al., 2006, New Astronomy Reviews, 50, 378). The instrument delivers simultaneous spectra in 247 fibers over the wavelength range 3550-5850Å at a spectral resolving power of 1000 at 5000Å. By taking three spatially dithered integrations, fully-sampled maps can be obtained for a region of 112"×112" with an angular resolution of 4.1". These observations are part of an observing program to investigate the enigma of the optical recombination lines (ORLs) such as those of O II, that appear to indicate higher oxygen abundances than the collisionally excited lines (CELs) from the same ion, in some planetary nebulae. In order to resolve this abundance discrepancy, Liu et al. (2000, MNRAS, 312, 585) proposed a dual-abundance model, which postulates that the nebulae which display this behavior contain cold, metal-rich, H-deficient inclusions where the ORLs are produced, embedded in hotter material of more normal composition from which the CELs arise. This model can provide a good fit to the integrated-light spectra, but the cold, metal-rich inclusions have yet to be spatially resolved or isolated. We have obtained fully-sampled maps of several planetary nebulae that display this anomaly, in an effort to find evidence for localized variations in the strengths of the ORLs relative to the CELs that would be expected if the cold, metal-rich gas is concentrated in spatially distinct clumps. In this poster we will present results from our observations to date, in particular from a recent VIRUS-P observing set of NGC 7009. [This research was supported by NSF grants AST-0408609/-0708245 to H.L.D., and VIRUS-P has been by the Cynthia and George Mitchell Foundation.

  1. Broadband 2D electronic spectrometer using white light and pulse shaping: noise and signal evaluation at 1 and 100 kHz.

    PubMed

    Kearns, Nicholas M; Mehlenbacher, Randy D; Jones, Andrew C; Zanni, Martin T

    2017-04-03

    We have developed a broad bandwidth two-dimensional electronic spectrometer that operates shot-to-shot at repetition rates up to 100 kHz using an acousto-optic pulse shaper. It is called a two-dimensional white-light (2D-WL) spectrometer because the input is white-light supercontinuum. Methods for 100 kHz data collection are studied to understand how laser noise is incorporated into 2D spectra during measurement. At 100 kHz, shot-to-shot scanning of the delays and phases of the pulses in the pulse sequence produces a 2D spectrum 13-times faster and with the same signal-to-noise as using mechanical stages and a chopper. Comparing 100 to 1 kHz repetition rates, data acquisition time is decreased by a factor of 200, which is beyond the improvement expected by the repetition rates alone due to reduction in 1/f noise. These improvements arise because shot-to-shot readout and modulation of the pulse train at 100 kHz enables the electronic coherences to be measured faster than the decay in correlation between laser intensities. Using white light supercontinuum for the pump and probe pulses produces high signal-to-noise spectra on samples with optical densities <0.1 within a few minutes of averaging and an instrument response time of <46 fs thereby demonstrating that that simple broadband continuum sources, although weak, are sufficient to create high quality 2D spectra with >200 nm bandwidth.

  2. Low-dose 2D X-ray angiography enhancement using 2-axis PCA for the preservation of blood-vessel region and noise minimization.

    PubMed

    Lee, Yong Geun; Lee, Jeongjin; Shin, Yeong-Gil; Kang, Ho Chul

    2016-01-01

    Enhancing 2D angiography while maintaining a low radiation dose has become an important research topic. However, it is difficult to enhance images while preserving vessel-structure details because X-ray noise and contrast blood vessels in 2D angiography have similar intensity distributions, which can lead to ambiguous images of vessel structures. In this paper, we propose a novel and fast vessel-enhancement method for 2D angiography. We apply filtering in the principal component analysis domain for vessel regions and background regions separately, using assumptions based on energy compaction. First, we identify an approximate vessel region using a Hessian-based method. Vessel and non-vessel regions are then represented sparsely by calculating their optimal bases separately. This is achieved by identifying periodic motion in the vessel region caused by the flow of the contrast medium through the blood vessels when viewed on the time axis. Finally, we obtain noise-free images by removing noise in the new coordinate domain for the optimal bases. Our method was validated for an X-ray system, using 10 low-dose sets for training and 20 low-dose sets for testing. The results were compared with those for a high-dose dataset with respect to noise-free images. The average enhancement rate was 93.11±0.71%. The average processing time for enhancing video comprising 50-70 frames was 0.80±0.35s, which is much faster than the previously proposed technique. Our method is applicable to 2D angiography procedures such as catheterization, which requires rapid and natural vessel enhancement.

  3. Anion-induced structural transformation of a sulfate-incorporated 2D Cd(II)–organic framework

    SciTech Connect

    Lee, Li-Wei; Luo, Tzuoo-Tsair; Wang, Chih-Min; Lee, Gene-Hsiang; Peng, Shie-Ming; Liu, Yen-Hsiang; Lee, Sheng-Long; Lu, Kuang-Lieh

    2016-07-15

    A Cd(II)–organic framework {[Cd_2(tpim)_4(SO_4)(H_2O)_2]·(SO_4)·21H_2O}{sub n} (1) was synthesized by reacting CdSO{sub 4}·8/3H{sub 2}O and 2,4,5-tri(4-pyridyl)imidazole (tpim) under hydrothermal conditions. A structural analysis showed that compound 1 adopts a layered structure in which the [Cd(tpim){sub 2}]{sub n} chains are linked by sulfate anions. These 2D layers are further packed into a 3D supramolecular framework via π–π interactions. The structure contains two types of SO{sub 4}{sup 2−} anions, i.e., bridging SO{sub 4}{sup 2−} and free SO{sub 4}{sup 2−} anions, the latter of which are included in the large channels of the framework. Compound 1 exhibits interesting anion exchange behavior. In the presence of SCN{sup −} anions, both the bridging and free SO{sub 4}{sup 2−} anions in 1 were completely exchanged by SCN{sup −} ligands to form a 1D species [Cd(tpim){sub 2}(SCN){sub 2}] (1A), in which the SCN{sup –} moieties function as a monodentate ligand. On the other hand, when compound 1 was ion exchanged with N{sub 3}{sup −} anions in aqueous solution, the bridging SO{sub 4}{sup 2−} moieties remained intact, and only the free guest SO{sub 4}{sup 2−} were replaced by N{sub 3}{sup −} anions. The gas adsorption behavior of the activated compound 1 was also investigated. - Highlights: • An interesting anion-induced structural transformation of a sulfate-incorporated 2D Cd(II)–organic framework is reported. • The sulfate-incorporated 2D layer compound exhibits very different anion exchange behavior with respect to SCN{sup −} and N{sub 3}{sup −}. • Both the bridging and free SO{sub 4}{sup 2−} anions in the 2D structure were completely exchanged by SCN{sup −} ligands, resulting in the formation of a 1D species. However, in the case of N{sub 3}{sup −} anions, only the free guest SO{sub 4}{sup 2−} in the structure was replaced.

  4. 1-D and 2-D resonances in an Alpine valley identified from ambient noise measurements and 3-D modelling

    NASA Astrophysics Data System (ADS)

    Le Roux, Olivier; Cornou, Cécile; Jongmans, Denis; Schwartz, Stéphane

    2012-09-01

    H/V spectral ratios are regularly used for estimating the bedrock depth in 1-D like basins exhibiting smooth lateral variations. In the case of 2-D or 3-D pronounced geometries, observational and numerical studies have shown that H/V curves exhibit peculiar shapes and that the H/V frequency generally overestimates 1-D theoretical resonance frequency. To investigate the capabilities of the H/V method in complex structures, a detailed comparison between measured and 3-D-simulated ambient vibrations was performed in the small-size lower Romanche valley (French Alps), which shows significant variations in geometry, downstream and upstream the Séchilienne basin. Analysing the H/V curve characteristics, two different wave propagation modes were identified along the valley. Relying on previous geophysical investigation, a power-law relationship was derived between the bedrock depth and the H/V peak frequency, which was used for building a 3-D model of the valley geometry. Simulated and experimental H/V curves were found to exhibit quite similar features in terms of curve shape and peak frequency values, validating the 3-D structure. This good agreement also evidenced two different propagation modes in the valley: 2-D resonance in the Séchilienne basin and 1-D resonance in the external parts. This study underlines the interest of H/V curves for investigating complex basin structures.

  5. Crystal structures and fluorescence properties of two 2D MnII/CdII trimellitic complexes containing terpyridine

    NASA Astrophysics Data System (ADS)

    Ren, Yixia; Chai, Hongmei; Hou, Xiangyang; Wang, Jijiang; Fu, Feng

    2015-12-01

    Hydrothermal reactions of manganese (II)/cadmium(II) salts with 1,2,4-trimellitic acid (H3tma) and 2,2‧:6‧,2-terpyridine (tpy) result in two novel complexes formulated with [M(Htma)(tpy)]·H2O (M = Mn(1) and Cd(2)). X-ray diffraction structural analyses of two complexes reveal they are isomorphic except for the different center metal ions and crystallize in the monoclinic crystal system of P(2)/n space group. The metal ion lies in a six-coordinated distorted octahedral environment coordinated with three Htma2- anions and one tpy ligand. There is an infinite two-dimensional rhombic network based on the metallic dimmers and Htma2- anions with the tpy ligands in void. Furthermore, the tpy ligands from the adjacent network weakly interact each other by π⋯π packing interactions into 3D supramolecular structure. The fluorescence properties could be assigned to the π - π* transition of organic ligands.

  6. Energy transfer dynamics in trimers and aggregates of light-harvesting complex II probed by 2D electronic spectroscopy

    SciTech Connect

    Enriquez, Miriam M.; Zhang, Cheng; Tan, Howe-Siang; Akhtar, Parveen; Garab, Győző; Lambrev, Petar H.

    2015-06-07

    The pathways and dynamics of excitation energy transfer between the chlorophyll (Chl) domains in solubilized trimeric and aggregated light-harvesting complex II (LHCII) are examined using two-dimensional electronic spectroscopy (2DES). The LHCII trimers and aggregates exhibit the unquenched and quenched excitonic states of Chl a, respectively. 2DES allows direct correlation of excitation and emission energies of coupled states over population time delays, hence enabling mapping of the energy flow between Chls. By the excitation of the entire Chl b Q{sub y} band, energy transfer from Chl b to Chl a states is monitored in the LHCII trimers and aggregates. Global analysis of the two-dimensional (2D) spectra reveals that energy transfer from Chl b to Chl a occurs on fast and slow time scales of 240–270 fs and 2.8 ps for both forms of LHCII. 2D decay-associated spectra resulting from the global analysis identify the correlation between Chl states involved in the energy transfer and decay at a given lifetime. The contribution of singlet–singlet annihilation on the kinetics of Chl energy transfer and decay is also modelled and discussed. The results show a marked change in the energy transfer kinetics in the time range of a few picoseconds. Owing to slow energy equilibration processes, long-lived intermediate Chl a states are present in solubilized trimers, while in aggregates, the population decay of these excited states is significantly accelerated, suggesting that, overall, the energy transfer within the LHCII complexes is faster in the aggregated state.

  7. Energy transfer dynamics in trimers and aggregates of light-harvesting complex II probed by 2D electronic spectroscopy.

    PubMed

    Enriquez, Miriam M; Akhtar, Parveen; Zhang, Cheng; Garab, Győző; Lambrev, Petar H; Tan, Howe-Siang

    2015-06-07

    The pathways and dynamics of excitation energy transfer between the chlorophyll (Chl) domains in solubilized trimeric and aggregated light-harvesting complex II (LHCII) are examined using two-dimensional electronic spectroscopy (2DES). The LHCII trimers and aggregates exhibit the unquenched and quenched excitonic states of Chl a, respectively. 2DES allows direct correlation of excitation and emission energies of coupled states over population time delays, hence enabling mapping of the energy flow between Chls. By the excitation of the entire Chl b Qy band, energy transfer from Chl b to Chl a states is monitored in the LHCII trimers and aggregates. Global analysis of the two-dimensional (2D) spectra reveals that energy transfer from Chl b to Chl a occurs on fast and slow time scales of 240-270 fs and 2.8 ps for both forms of LHCII. 2D decay-associated spectra resulting from the global analysis identify the correlation between Chl states involved in the energy transfer and decay at a given lifetime. The contribution of singlet-singlet annihilation on the kinetics of Chl energy transfer and decay is also modelled and discussed. The results show a marked change in the energy transfer kinetics in the time range of a few picoseconds. Owing to slow energy equilibration processes, long-lived intermediate Chl a states are present in solubilized trimers, while in aggregates, the population decay of these excited states is significantly accelerated, suggesting that, overall, the energy transfer within the LHCII complexes is faster in the aggregated state.

  8. Comparative Variable Temperature Studies of Polyamide II with a Benchtop Fourier Transform and a Miniature Handheld Near-Infrared Spectrometer Using 2D-COS and PCMW-2D Analysis.

    PubMed

    Unger, Miriam; Pfeifer, Frank; Siesler, Heinz W

    2016-07-01

    The main objective of this communication is to compare the performance of a miniaturized handheld near-infrared (NIR) spectrometer with a benchtop Fourier transform near-infrared (FT-NIR) spectrometer. Generally, NIR spectroscopy is an extremely powerful analytical tool to study hydrogen-bonding changes of amide functionalities in solid and liquid materials and therefore variable temperature NIR measurements of polyamide II (PAII) have been selected as a case study. The information content of the measurement data has been further enhanced by exploiting the potential of two-dimensional correlation spectroscopy (2D-COS) and the perturbation correlation moving window two-dimensional (PCMW2D) evaluation technique. The data provide valuable insights not only into the changes of the hydrogen-bonding structure and the recrystallization of the hydrocarbon segments of the investigated PAII but also in their sequential order. Furthermore, it has been demonstrated that the 2D-COS and PCMW2D results derived from the spectra measured with the miniaturized NIR instrument are equivalent to the information extracted from the data obtained with the high-performance FT-NIR instrument.

  9. Anion-induced structural transformation of a sulfate-incorporated 2D Cd(II)-organic framework

    NASA Astrophysics Data System (ADS)

    Lee, Li-Wei; Luo, Tzuoo-Tsair; Wang, Chih-Min; Lee, Gene-Hsiang; Peng, Shie-Ming; Liu, Yen-Hsiang; Lee, Sheng-Long; Lu, Kuang-Lieh

    2016-07-01

    A Cd(II)-organic framework {[Cd2(tpim)4(SO4)(H2O)2]·(SO4)·21H2O}n (1) was synthesized by reacting CdSO4·8/3H2O and 2,4,5-tri(4-pyridyl)imidazole (tpim) under hydrothermal conditions. A structural analysis showed that compound 1 adopts a layered structure in which the [Cd(tpim)2]n chains are linked by sulfate anions. These 2D layers are further packed into a 3D supramolecular framework via π-π interactions. The structure contains two types of SO42- anions, i.e., bridging SO42- and free SO42- anions, the latter of which are included in the large channels of the framework. Compound 1 exhibits interesting anion exchange behavior. In the presence of SCN- anions, both the bridging and free SO42- anions in 1 were completely exchanged by SCN- ligands to form a 1D species [Cd(tpim)2(SCN)2] (1A), in which the SCN- moieties function as a monodentate ligand. On the other hand, when compound 1 was ion exchanged with N3- anions in aqueous solution, the bridging SO42- moieties remained intact, and only the free guest SO42- were replaced by N3- anions. The gas adsorption behavior of the activated compound 1 was also investigated.

  10. Ag(nic)2 (nic = nicotinate): a spin-canted quasi-2D antiferromagnet composed of square-planar S = 1/2 Ag(II) ions.

    PubMed

    Manson, Jamie L; Woods, Toby J; Lapidus, Saul H; Stephens, Peter W; Southerland, Heather I; Zapf, Vivien S; Singleton, John; Goddard, Paul A; Lancaster, Tom; Steele, Andrew J; Blundell, Stephen J

    2012-02-20

    Square-planar S = 1/2 Ag(II) ions in polymeric Ag(nic)(2) are linked by bridging nic monoanions to yield 2D corrugated sheets. Long-range magnetic order occurs below T(N) = 11.8(2) K due to interlayer couplings that are estimated to be about 30 times weaker than the intralayer exchange interaction.

  11. Low-cost chemiresistive sensor for volatile amines based on a 2D network of a zinc(II) Schiff-base complex

    NASA Astrophysics Data System (ADS)

    Mirabella, S.; Oliveri, I. P.; Ruffino, F.; Maccarrone, G.; Di Bella, S.

    2016-10-01

    A marked chemiresistive behavior is revealed in a nanostructured material obtained by spin-coating a solution of a bis(salycilaldiminato)Zn(II) Schiff-base (ZnSB) complex. The resulting submicron 2D network exhibits reversible changes in absorbance and resistance under the cycles of absorption and desorption of a volatile amine. These results are explained in terms of a Lewis donor-acceptor interaction between the ZnSB (acceptor) and the chemisorbed amine (donor). The 2D network of ZnSB was employed as a sensing element to fabricate a low-cost device for the volatile amines detection, showing promising results for food spoilage detection.

  12. The Spitzer c2d Survey of Large, Nearby, Interstellar Clouds. X. The Chamaeleon II Pre-Main-Sequence Population as Observed with IRAC and MIPS

    NASA Astrophysics Data System (ADS)

    Alcalá, Juan M.; Spezzi, Loredana; Chapman, Nicholas; Evans, Neal J., II; Huard, Tracy L.; Jørgensen, Jes K.; Merín, Bruno; Stapelfeldt, Karl R.; Covino, Elvira; Frasca, Antonio; Gandolfi, Davide; Oliveira, Isa

    2008-03-01

    We discuss the results from the combined IRAC and MIPS c2d Spitzer Legacy survey observations and complementary optical and NIR data of the Chamaeleon II (Cha II) dark cloud. We perform a census of the young population in an area of ~1.75 deg2 and study the spatial distribution and properties of the cloud members and candidate pre-main-sequence (PMS) objects and their circumstellar matter. Our census is complete down to the substellar regime (M ≈ 0.03 M⊙). From the analysis of the volume density of the PMS objects and candidates we find two groups of objects with volume densities higher than 25 M⊙ pc -3 and 5-10 members each. A multiplicity fraction of about 13% +/- 3% is observed for objects with separations 0.8'' < θ < 6.0'' (142-1065 AU). No evidence for variability between the two epochs of the c2d IRAC data set, Δ t ~ 6 hr, is detected. We estimate a star formation efficiency of 1%-4%, consistent with the estimates for Taurus and Lupus, but lower than for Cha I. This might mean that different star formation activities in the Chamaeleon clouds reflect a different history of star formation. We also find that Cha II is turning some 6-7 M⊙ into stars every Myr, which is low in comparison with the star formation rate in other c2d clouds. The disk fraction of 70%-80% that we estimate in Cha II is much higher than in other star-forming regions and indicates that the population in this cloud is dominated by objects with active accretion. Finally, the Cha II outflows are discussed; a new Herbig-Haro outflow, HH 939, driven by the classical T Tauri star Sz 50, has been discovered.

  13. A Numerical Treatment of the Rf SQUID: II. Noise Temperature

    SciTech Connect

    Kleiner, Reinhold; Koelle, Dieter; Clarke, John

    2007-01-15

    We investigate rf SQUIDs (Superconducting QUantum Interference Devices), coupled to a resonant input circuit, a readout tank circuit and a preamplifier, by numerically solving the corresponding Langevin equations and optimizing model parameters with respect to noise temperature. We also give approximate analytic solutions for the noise temperature, which we reduce to parameters of the SQUID and the tank circuit in the absence of the input circuit. The analytic solutions agree with numerical simulations of the full circuit to within 10%, and are similar to expressions used to calculate the noise temperature of dc SQUIDs. The best device performance is obtained when {beta}{sub L}{prime} {triple_bond} 2{pi}LI{sub 0}/{Phi}{sub 0} is 0.6-0.8; L is the SQUID inductance, I{sub 0} the junction critical current and F{sub 0} the flux quantum. For a tuned input circuit we find an optimal noise temperature T{sub N,opt} {approx} 3Tf/f{sub c}, where T, f and f{sub c} denote temperature, signal frequency and junction characteristic frequency, respectively. This value is only a factor of 2 larger than the optimal noise temperatures obtained by approximate analytic theories carried out previously in the limit {beta}{sub L}{prime} << 1. We study the dependence of the noise temperature on various model parameters, and give examples using realistic device parameters of the extent to which the intrinsic noise temperature can be realized experimentally.

  14. Two 2D Cd(II) coordination polymers based on asymmetrical Schiff-base ligand: synthesis, crystal structures and luminescent properties.

    PubMed

    Dang, Dong-Bin; Li, Meng-Meng; Bai, Yan; Zhou, Rui-Min

    2013-02-15

    Two new two-dimensional coordination polymers [Cd(3)L(2)(SCN)(6)](n) (1) and [CdLI(2)](n) (2) have been synthesized and characterized by IR spectroscopy, elemental analysis, TG technique, XRPD and complete single crystal structure analysis, where L is 4-(pyridine-2-yl)methyleneamino-1,2,4-trizaole. Asymmetrical Schiff-base ligand L with five- and six-membered N-containing heterocyclic rings acts as a tridentate bridging ligand to bind two Cd(II) centers through one terminal N(triazolyl) and one pyridylimine chelate unit in 1 and 2. For polymer 1, tridentate bridging ligands link Cd-(1,3-μ-SCN(-)) 1D inorganic chains to form a 2D layer network. The existence of C-H···π and π-π stacking interactions between 2D hybrid layers further gives rise to a 3D supramolecular network. In comparison with 1, polymer 2 shows a 2D layer network containing hexanuclear macrometallacyclic units. The 2D layers are staggered together through the combination of C-H···π and π-π stacking interactions and forming a 3D supramolecular structure. The luminescent properties of the polymers 1 and 2 were investigated in the solid state at room temperature.

  15. Noise analysis of driven vortices of type-II superconductors - A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    M, Suresh Babu; Pal, D.

    2015-06-01

    We present the zero temperature molecular dynamics simulation of vortices in low Tc type-II superconductors. We observe power law variation of noise in the dynamical phase. In comparison with the ordered vortex flow region the disordered vortex flow region shows large power law correlation of noise.

  16. ZEUS-2D: A Radiation Magnetohydrodynamics Code for Astrophysical Flows in Two Space Dimensions. II. The Magnetohydrodynamic Algorithms and Tests

    NASA Astrophysics Data System (ADS)

    Stone, James M.; Norman, Michael L.

    1992-06-01

    In this, the second of a series of three papers, we continue a detailed description of ZEUS-2D, a numerical code for the simulation of fluid dynamical flows in astrophysics including a self-consistent treatment of the effects of magnetic fields and radiation transfer. In this paper, we give a detailed description of the magnetohydrodynamical (MHD) algorithms in ZEUS-2D. The recently developed constrained transport (CT) algorithm is implemented for the numerical evolution of the components of the magnetic field for MHD simulations. This formalism guarantees the numerically evolved field components will satisfy the divergence-free constraint at all times. We find, however, that the method used to compute the electromotive forces must be chosen carefully to propagate accurately all modes of MHD wave families (in particular shear Alfvén waves). A new method of computing the electromotive force is developed using the method of characteristics (MOC). It is demonstrated through the results of an extensive series of MHD test problems that the resulting hybrid MOC-CT method provides for the accurate evolution of all modes of MHD wave families.

  17. Airframe Noise Results from the QTD II Flight Test Program

    NASA Technical Reports Server (NTRS)

    Elkoby, Ronen; Brusniak, Leon; Stoker, Robert W.; Khorrami, Mehdi R.; Abeysinghe, Amal; Moe, Jefferey W.

    2007-01-01

    With continued growth in air travel, sensitivity to community noise intensifies and materializes in the form of increased monitoring, regulations, and restrictions. Accordingly, realization of quieter aircraft is imperative, albeit only achievable with reduction of both engine and airframe components of total aircraft noise. Model-scale airframe noise testing has aided in this pursuit; however, the results are somewhat limited due to lack of fidelity of model hardware, particularly in simulating full-scale landing gear. Moreover, simulation of true in-flight conditions is non-trivial if not infeasible. This paper reports on an investigation of full-scale landing gear noise measured as part of the 2005 Quiet Technology Demonstrator 2 (QTD2) flight test program. Conventional Boeing 777-300ER main landing gear were tested, along with two noise reduction concepts, namely a toboggan fairing and gear alignment with the local flow, both of which were down-selected from various other noise reduction devices evaluated in model-scale testing at Virginia Tech. The full-scale toboggan fairings were designed by Goodrich Aerostructures as add-on devices allowing for complete retraction of the main gear. The baseline-conventional gear, faired gear, and aligned gear were all evaluated with the high-lift system in the retracted position and deployed at various flap settings, all at engine idle power setting. Measurements were taken with flyover community noise microphones and a large aperture acoustic phased array, yielding far-field spectra, and localized sources (beamform maps). The results were utilized to evaluate qualitatively and quantitatively the merit of each noise reduction concept. Complete similarity between model-scale and full-scale noise reduction levels was not found and requires further investigation. Far-field spectra exhibited no noise reduction for both concepts across all angles and frequencies. Phased array beamform maps show inconclusive evidence of noise

  18. Comparison and analysis of 2-D simulation results with two implosion radiation experiments on the Los Alamos Pegasus I and Pegasus II capacitor banks

    SciTech Connect

    Peterson, D.L.; Bowers, R.L.; Lebeda, C.F.; Matuska, W.; Benage, J.; Idzorek, G.; Oona, H.; Stokes, J.; Roderick, N.F.

    1995-09-01

    Two experiments, PegI-41, conducted on the Los Alamos Pegasus I capacitor bank, and PegII-25, on the Pegasus II bank, consisted of the implosions of 13 mg (nominal), 5 cm radius, 2 cm high thin cylindrical aluminum foils resulting in soft x-ray radiation pulses from the plasma thermalization on axis. The implosions were conducted in direct-drive (no intermediate switching) mode with peak currents of about 4 MA and 5 MA respectively, and implosion times of about 2.5 {micro}s and 2.0 {micro}s. A radiation yield of about 250 kJ was measured for PegII-25. The purpose of these experiments was to examine the physics of the implosion and relate this physics to the production of the radiation pulse and to provide detailed experimental data which could be compared with 2-D radiation-magnetohydrodynamic (RMHD) simulations. Included in the experimental diagnostic suites were faraday rotation and dB/dt current measurements, a visible framing camera, an x-ray stripline camera, time-dependent spectroscopy, bolometers and XRD`S. A comparison of the results from these experiments shows agreement with 2-D simulation results in the instability development, current, and radiation pulse data, including the pulsewidth, shape, peak power and total radiation yield as measured by bolometry. Instabilities dominate the behavior of the implosion and largely determine the properties of the resulting radiation pulse. The 2-D simulations can be seen to be an important tool in understanding the implosion physics.

  19. Measured aperture-array noise temperature of the Mark II phased array feed for ASKAP

    NASA Astrophysics Data System (ADS)

    Chippendale, A. P.; Brown, A. J.; Beresford, R. J.; Hampson, G. A.; Shaw, R. D.; Hayman, D. B.; Macleod, A.; Forsyth, A. R.; Hay, S. G.; Leach, M.; Cantrall, C.; Brothers, M. L.; Hotan, A. W.

    2015-11-01

    We have measured the aperture-array noise temperature of the first Mk. II phased array feed that CSIRO has built for the Australian Square Kilometre Array Pathfinder telescope. As an aperture array, the Mk. II phased array feed achieves a beam equivalent noise temperature less than 40 K from 0.78 GHz to 1.7 GHz and less than 50 K from 0.7 GHz to 1.8 GHz for a boresight beam directed at the zenith. We believe these are the lowest reported noise temperatures over these frequency ranges for ambient-temperature phased arrays. The measured noise temperature includes receiver electronics noise, ohmic losses in the array, and stray radiation from sidelobes illuminating the sky and ground away from the desired field of view. This phased array feed was designed for the Australian Square Kilometre Array Pathfinder to demonstrate fast astronomical surveys with a wide field of view for the Square Kilometre Array.

  20. Observation of ferromagnetic and antiferromagnetic coupling in 1-D and 2-D extended structures of copper(II) terephthalates

    SciTech Connect

    Deakin, L.; Arif, A.M.; Miller, J.S.

    1999-11-01

    The reaction between CuCl{sub 2}{center{underscore}dot}2H{sub 2}O and disodium terephthalate, Na{sub 2}tp, in aqueous solution simultaneously produces chain, bis(aqua)[{mu}-(terephthalato-{kappa}O:{kappa}O{prime})]copper(II), monohydrate, Cutp(OH{sub 2}){sub 2}{center{underscore}dot}H{sub 2}O (1), and layered, bis(aqua)[{mu}-(terephthalato-{kappa}O)]copper(II), Cutp(OH{sub 2}){sub 2} (2), structured materials. 1 (C{sub 8}H{sub 10}CuO{sub 7}) belongs to the orthorhombic P2{sub 1}2{sub 1}2 space group [a = 6.3015(4) {angstrom}, b = 6.8743(4) {angstrom}, c = 22.9972(14) {angstrom}, and Z = 4] and incorporates tp in a bridging bis-monodentate binding mode and Cu(II) in a tetragonally elongated octahedron. 2 (C{sub 8}H{sub 10}CuO{sub 6}) which belongs to the orthorhombic Pmc2{sub 1} space group [a = 10.7421(8) {angstrom}, b = 7.2339(10) {angstrom}, c = 5.7143(13) {angstrom}, and Z = 2] incorporates tp in a mono-bidentate binding mode and Cu(II) in a distorted square pyramid. 1 and 2 exhibit axial X-band powder EPR spectra with G{sub {perpendicular}} = 2.08, g{sub {parallel}} = 2.29 (1) and g{sub {perpendicular}} = 2.07, g{sub {parallel}} = 2.29 (2) at 300 K. 1 obeys the Curie-Weiss law at high temperatures ({theta} = {minus}7.2 K) and at low temperatures behaves as 1-D magnetic chains with an exchange-coupling constant of J/k{sub B} = {minus}9.15 K (H = {minus}2JS{sub 1}{center{underscore}dot}S{sub 2}). This material displays a spontaneous moment below 2 K under small applied magnetic fields, consistent with the presence of spin canting. 2 exhibits ferromagnetic interactions with {theta} = +0.8 K. Along the 1-D chain where coordinated water forms the bridge between metal centers, the coupling between Cu(II) is J/k{sub B} = +0.6 K. The fit of the magnetic susceptibility for 2 using a molecular field correction, which takes into consideration antiferromagnetic interactions between chains via the tp ligand, yields J{prime}/k{sub B} = {minus}0.13 K.

  1. A marching in space and time (MAST) solver of the shallow water equations. Part II: The 2D model

    NASA Astrophysics Data System (ADS)

    Aricò, C.; Nasello, C.; Tucciarelli, T.

    2007-05-01

    A novel methodology for the solution of the 2D shallow water equations is proposed. The algorithm is based on a fractional step decomposition of the original system in (1) a convective prediction, (2) a convective correction, and (3) a diffusive correction step. The convective components are solved using a Marching in Space and Time (MAST) procedure, that solves a sequence of small ODEs systems, one for each computational cell, ordered according to the cell value of a scalar approximated potential. The scalar potential is sought after computing first the minimum of a functional via the solution of a large linear system and then refining locally the optimum search. Model results are compared with the experimental data of two laboratory tests and with the results of other simulations carried out for the same tests by different authors. A comparison with the analytical solution of the oblique jump test has been also considered. Numerical results of the proposed scheme are in good agreement with measured data, as well as with analytical and higher order approximation methods results. The growth of the CPU time versus the cell number is investigated successively refining the elements of an initially coarse mesh. The CPU specific time, per element and per time step, is found out to be almost constant and no evidence of Courant-Friedrichs-Levi (CFL) number limitation has been detected in all the numerical experiments.

  2. Optimizing the transverse thermal conductivity of 2D-SiC f/SiC composites, II. Experimental

    NASA Astrophysics Data System (ADS)

    Youngblood, G. E.; Senor, D. J.; Jones, R. H.; Kowbel, Witold

    2002-12-01

    Model predictions of the transverse thermal conductivity ( Keff) are compared to experimentally determined values as a function of temperature for a commercial 2D-SiC f/SiC made by DuPont from plain weave Hi-Nicalon TM fabric and with an ICVI-SiC matrix. Two versions of the DuPont composite were examined: one with a 'thin' and one with a 'thick' pyrolytic carbon (PyC) fiber coating of thickness 0.110 and 1.044 μm, respectively. Generally good agreement of either the Hasselman-Johnson or the Markworth model predictions ( see companion paper, I. Modeling) with measured values of Keff for this composite suggest that these models can be used to predict Keff for composites with various 'non-ideal' fiber, interphase and matrix structures. Importantly, the models make it possible to separate the relative component contributions to Keff so that individual component degradation mechanisms can be examined in detail. For the two versions of the well-bonded, as-received DuPont composite made with Hi-Nicalon TM woven fabric, at 200 °C constituent values Km=22-25 W/m K (matrix thermal conductivity), Kc≈25 W/m K (PyC-coating thermal conductivity) and heq=2.4×10 7 W/m 2 K (equivalent fiber-matrix interfacial thermal conductance) were determined.

  3. An Implicit Energy-Conservative 2D Fokker-Planck Algorithm. II. Jacobian-Free Newton-Krylov Solver

    NASA Astrophysics Data System (ADS)

    Chacón, L.; Barnes, D. C.; Knoll, D. A.; Miley, G. H.

    2000-01-01

    Energy-conservative implicit integration schemes for the Fokker-Planck transport equation in multidimensional geometries require inverting a dense, non-symmetric matrix (Jacobian), which is very expensive to store and solve using standard solvers. However, these limitations can be overcome with Newton-Krylov iterative techniques, since they can be implemented Jacobian-free (the Jacobian matrix from Newton's algorithm is never formed nor stored to proceed with the iteration), and their convergence can be accelerated by preconditioning the original problem. In this document, the efficient numerical implementation of an implicit energy-conservative scheme for multidimensional Fokker-Planck problems using multigrid-preconditioned Krylov methods is discussed. Results show that multigrid preconditioning is very effective in speeding convergence and decreasing CPU requirements, particularly in fine meshes. The solver is demonstrated on grids up to 128×128 points in a 2D cylindrical velocity space (vr, vp) with implicit time steps of the order of the collisional time scale of the problem, τ. The method preserves particles exactly, and energy conservation is improved over alternative approaches, particularly in coarse meshes. Typical errors in the total energy over a time period of 10τ remain below a percent.

  4. A Structure-Activity Relationship Study of Imidazole-5-Carboxylic Acid Derivatives as Angiotensin II Receptor Antagonists Combining 2D and 3D QSAR Methods.

    PubMed

    Sharma, Mukesh C

    2016-03-01

    Two-dimensional (2D) and three-dimensional (3D) quantitative structure-activity relationship (QSAR) studies were performed for correlating the chemical composition of imidazole-5-carboxylic acid analogs and their angiotensin II [Formula: see text] receptor antagonist activity using partial least squares and k-nearest neighbor, respectively. For comparing the three different feature selection methods of 2D-QSAR, k-nearest neighbor models were used in conjunction with simulated annealing (SA), genetic algorithm and stepwise coupled with partial least square (PLS) showed variation in biological activity. The statistically significant best 2D-QSAR model having good predictive ability with statistical values of [Formula: see text] and [Formula: see text] was developed by SA-partial least square with the descriptors like [Formula: see text]count, 5Chain count, SdsCHE-index, and H-acceptor count, showing that increase in the values of these descriptors is beneficial to the activity. The 3D-QSAR studies were performed using the SA-PLS. A leave-one-out cross-validated correlation coefficient [Formula: see text] and predicate activity [Formula: see text] = 0.7226 were obtained. The information rendered by QSAR models may lead to a better understanding of structural requirements of substituted imidazole-5-carboxylic acid derivatives and also aid in designing novel potent antihypertensive molecules.

  5. Synthesis and characterization of three 2D Cd (II) coordination polymers built with terphenyl-2, 2‧, 4, 4‧-tetracarboxylate and flexible bis(imidazole)

    NASA Astrophysics Data System (ADS)

    Wang, Ji-Jiang; Tang, Long; Zhang, Mei-Li; Gao, Lou-Jun; Ren, Yi-Xia; Hou, Xiang-Yang; Fu, Feng

    2015-04-01

    Three new CdII coordination polymers, namely, {[Cd2 (L) (1, 2-bix)2(H2O)2]ṡ2H2O}n(1), [Cd2 (L) (1, 3-bix)2]n (2), and {[Cd (H2L) (1, 4-bix) (H2O)2]ṡ2H2O}n (3) [H4L = terphenyl-2, 2‧, 4, 4‧-tetracarboxylic acid, 1, n-bix = 1, n-bis(imidazol-l-ylmethyl) benzene (n = 2, 3, 4)], have been synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction, IR, thermogravimetric analysis, and fluorescent analysis. Complex 1 is a 2D wavelike network structure incorporating the dinuclear Cd2 (1, 2-bix)2 units, whereas complex 2 possesses a 2D stair-like network structure consisting of the dinuclear Cd2O2 units. Complex 3 features a 2D puckered network constructed by 1D [Cd (H2L)]n and 1D [Cd (1, 4-bix)]n chains. The results show that the structural diversity of the polymers is mainly attributed to the usage of diverse ancillary bis (imidazol-1-ylmethyl)-benzene isomers ligands. The thermal stabilities and photoluminescence behaviors were also investigated.

  6. Bulk anisotropic excitons in type-II semiconductors built with 1D and 2D low-dimensional structures

    NASA Astrophysics Data System (ADS)

    Coyotecatl, H. A.; Del Castillo-Mussot, M.; Reyes, J. A.; Vazquez, G. J.; Montemayor-Aldrete, J. A.; Reyes-Esqueda, J. A.; Cocoletzi, G. H.

    2005-08-01

    We used a simple variational approach to account for the difference in the electron and hole effective masses in Wannier-Mott excitons in type-II semiconducting heterostructures in which the electron is constrained in an one-dimensional quantum wire (1DQW) and the hole is in a two-dimensional quantum layer (2DQL) perpendicular to the wire or viceversa. The resulting Schrodinger equation is similar to that of a 3D bulk exciton because the number of free (nonconfined) variables is three; two coming from the 2DQL and one from the 1DQW. In this system the effective electron-hole interaction depends on the confinement potentials.

  7. A Coupled 2 × 2D Babcock–Leighton Solar Dynamo Model. II. Reference Dynamo Solutions

    NASA Astrophysics Data System (ADS)

    Lemerle, Alexandre; Charbonneau, Paul

    2017-01-01

    In this paper we complete the presentation of a new hybrid 2 × 2D flux transport dynamo (FTD) model of the solar cycle based on the Babcock–Leighton mechanism of poloidal magnetic field regeneration via the surface decay of bipolar magnetic regions (BMRs). This hybrid model is constructed by allowing the surface flux transport (SFT) simulation described in Lemerle et al. to provide the poloidal source term to an axisymmetric FTD simulation defined in a meridional plane, which in turn generates the BMRs required by the SFT. A key aspect of this coupling is the definition of an emergence function describing the probability of BMR emergence as a function of the spatial distribution of the internal axisymmetric magnetic field. We use a genetic algorithm to calibrate this function, together with other model parameters, against observed cycle 21 emergence data. We present a reference dynamo solution reproducing many solar cycle characteristics, including good hemispheric coupling, phase relationship between the surface dipole and the BMR-generating internal field, and correlation between dipole strength at cycle maximum and peak amplitude of the next cycle. The saturation of the cycle amplitude takes place through the quenching of the BMR tilt as a function of the internal field. The observed statistical scatter about the mean BMR tilt, built into the model, acts as a source of stochasticity which dominates amplitude fluctuations. The model thus can produce Dalton-like epochs of strongly suppressed cycle amplitude lasting a few cycles and can even shut off entirely following an unfavorable sequence of emergence events.

  8. Confinement of a bioinspired nonheme Fe(II) complex in 2D hexagonal mesoporous silica with metal site isolation.

    PubMed

    Jollet, Véronique; Albela, Belén; Sénéchal-David, Katell; Jégou, Pascale; Kolodziej, Emilie; Sainton, Joëlle; Bonneviot, Laurent; Banse, Frédéric

    2013-08-28

    A mixed amine pyridine polydentate Fe(II) complex was covalently tethered in hexagonal mesoporous silica of the MCM-41 type. Metal site isolation was generated using adsorbed tetramethylammonium cations acting as a patterned silanol protecting mask and trimethylsilylazane as a capping agent. Then, the amine/pyridine ligand bearing a tethering triethoxysilane group was either grafted to such a pretreated silica surface prior to or after complexation to Fe(II). These two synthetic routes, denoted as two-step and one-step, respectively, were also applied to fumed silica for comparison, except that the silanol groups were capped after tethering the metal unit. The coordination of the targeted complex was monitored using UV-visible spectrophotometry and, according to XPS, the best control was achieved inside the channels of the mesoporous silica for the two-step route. For the solid prepared according to the one-step route, tethering of the complex occurred mainly at the entrance of the channel.

  9. Rational design of two bpy-bridged 3D and 2D Co(II) open frameworks with similar amino-acid-based Schiff bases.

    PubMed

    Li, Zong-Ze; Du, Lin; Zhou, Jie; Zhu, Ming-Rong; Qian, Fen-Hua; Liu, Jing; Chen, Peng; Zhao, Qi-Hua

    2012-12-21

    Two novel bpy-bridged Co(II) Schiff base complexes have been synthesized by the hydro(solvo)thermal reactions of corresponding amino-acid-based Schiff bases, bpy and Co(NO(3))(2)·6H(2)O. The following formulae identify the two complexes: {[Co(napala)(bpy)(0.5)]·H(2)O}(n) (1) and [Co(napgly)(bpy)(0.5)](n) (2) [H(2)napala = N-(2-hydroxy-1-naphthylmethylidene)-D/L-alanine, H(2)napgly = N-(2-hydroxy-1-naphthylmethylidene)-glycine and bpy = 4,4'-bipyridine]. These two compounds have been characterized using single-crystal X-ray diffraction, infrared, powder X-ray diffraction, thermogravimetric analysis, optical spectra analysis, and magnetic measurement. Complex 1 features an unprecedented threefold interpenetrated diamond network based on the fan-shaped Co(II)(4)(μ(2)-napala)(4) molecular square node and bpy linker, which represents the first example of 3D framework among the amino-acid-based Schiff base complexes with salicylaldehyde or its derivatives. In 2, adjacent Co(II) ions are bridged by μ(2)-napgly(2-) to form left- and right-handed [Co(II)(μ(2)-napgly)](n) helical chains. These two types of helical chains are sustained alternately by a symmetrical bpy co-ligand into a 2D grid-based layer. The solid-state fluorescence of complexes 1 and 2 are quenched almost completely compared with free mixed-ligands at room temperature. Moreover, magnetic studies show the dominant antiferromagnetic coupling between the Co(II) centers mediated by the syn-anti-COO(-)-bridges in both complexes.

  10. Pyrrolo[3,2-d]pyrimidine derivatives as type II kinase insert domain receptor (KDR) inhibitors: CoMFA and CoMSIA studies.

    PubMed

    Wu, Xiao-Yun; Chen, Wen-Hua; Wu, Shu-Guang; Tian, Yuan-Xin; Zhang, Jia-Jie

    2012-01-01

    Kinase insert domain receptor (KDR) inhibitors have been proved to be very effective anticancer agents. Molecular docking, 3D-QSAR methods, CoMFA and CoMSIA were performed on pyrrolo[3,2-d]pyrimidine derivatives as non-ATP competitive KDR inhibitors (type II). The bioactive conformation was explored by docking one potent compound 20 into the active site of KDR in its DFG-out inactive conformation. The constructed CoMFA and CoMSIA models produced statistically significant results with the cross-validated correlation coefficients q(2) of 0.542 and 0.552, non-cross-validated correlation coefficients r(2) of 0.912 and 0.955, and predicted correction coefficients r(2) (pred) of 0.913 and 0.897, respectively. These results ensure the CoMFA and CoMSIA models as a tool to guide the design of a series of new potent KDR inhibitors.

  11. DSD2D-FLS 2010: Bdzil's 2010 DSD Code Base; Computing tb and Dn with Edits to Reduce the Noise in the Dn Field Near HE Boundaries

    SciTech Connect

    Bdzil, John Bohdan

    2016-09-21

    The full level-set function code, DSD3D, is fully described in LA-14336 (2007) [1]. This ASCI-supported, DSD code project was the last such LANL DSD code project that I was involved with before my retirement in 2007. My part in the project was to design and build the core DSD3D solver, which was to include a robust DSD boundary condition treatment. A robust boundary condition treatment was required, since for an important local “customer,” the only description of the explosives’ boundary was through volume fraction data. Given this requirement, the accuracy issues I had encountered with our “fast-tube,” narrowband, DSD2D solver, and the difficulty we had building an efficient MPI-parallel version of the narrowband DSD2D, I decided DSD3D should be built as a full level-set function code, using a totally local DSD boundary condition algorithm for the level-­set function, phi, which did not rely on the gradient of the level-­set function being one, |grad(phi)| = 1. The narrowband DSD2D solver was built on the assumption that |grad(phi)| could be driven to one, and near the boundaries of the explosive this condition was not being satisfied. Since the narrowband is typically no more than10*dx wide, narrowband methods are discrete methods with a fixed, non-­resolvable error, where the error is related to the thickness of the band: the narrower the band the larger the errors. Such a solution represents a discrete approximation to the true solution and does not limit to the solution of the underlying PDEs under grid resolution.The full level-­set function code, DSD3D, is fully described in LA-14336 (2007) [1]. This ASCI-­supported, DSD code project was the last such LANL DSD code project that I was involved with before my retirement in 2007. My part in the project was to design and build the core DSD3D solver, which was to include a robust DSD boundary condition treatment. A robust boundary condition treatment was required, since for an important local

  12. Coupled 2-dimensional cascade theory for noise an d unsteady aerodynamics of blade row interaction in turbofans. Volume 2: Documentation for computer code CUP2D

    NASA Technical Reports Server (NTRS)

    Hanson, Donald B.

    1994-01-01

    A two dimensional linear aeroacoustic theory for rotor/stator interaction with unsteady coupling was derived and explored in Volume 1 of this report. Computer program CUP2D has been written in FORTRAN embodying the theoretical equations. This volume (Volume 2) describes the structure of the code, installation and running, preparation of the input file, and interpretation of the output. A sample case is provided with printouts of the input and output. The source code is included with comments linking it closely to the theoretical equations in Volume 1.

  13. New dicyano cyclometalated compounds containing Pd(II)-Tl(I) bonds as building blocks in 2D extended structures: synthesis, structure, and luminescence studies.

    PubMed

    Sicilia, Violeta; Forniés, Juan; Fuertes, Sara; Martín, Antonio

    2012-10-15

    New mixed metal complexes [PdTl(C^N)(CN)(2)] [C^N = 7,8-benzoquinolinate (bzq, 3); 2-phenylpyridinate (ppy, 4)] have been synthesized by reaction of their corresponding precursors (NBu(4))[Pd(C^N)(CN)(2)] [C^N = bzq (1), ppy (2)] with TlPF(6). Compounds 3 and 4 were studied by X-ray diffraction, showing the not-so-common Pd(II)-Tl(I) bonds. Both crystal structures exhibit 2-D extended networks fashioned by organometallic "PdTl(C^N)(CN)(2)" units, each one containing a donor-acceptor Pd(II)-Tl(I) bond, which are connected through additional Tl···N≡C contacts and weak Tl···π (bzq) contacts in the case of 3. Solid state emissions are red-shifted compared with those of the precursors and have been assigned to metal-metal'-to-ligand charge transfer (MM'LCT [d/s σ*(Pd,Tl) → π*(C^N)]) mixed with some intraligand ((3)IL[π(C^N) → π*(C^N)]) character. In diluted solution either at room temperature or 77 K, the Pd-Tl bond is no longer retained as confirmed by mass spectrometry, NMR, and UV-vis spectroscopic techniques.

  14. Augmented anti-tumor activity of NK-92 cells expressing chimeric receptors of TGF-βR II and NKG2D.

    PubMed

    Wang, Zhongjuan; Guo, Linghua; Song, Yuan; Zhang, Yinsheng; Lin, Dandan; Hu, Bo; Mei, Yu; Sandikin, Dedy; Liu, Haiyan

    2017-04-01

    The capacity of natural killer (NK) cells to kill tumor cells without specific antigen recognition provides an advantage over T cells and makes them potential effectors for tumor immunotherapy. However, the efficacy of NK cell adoptive therapy can be limited by the immunosuppressive tumor microenvironment. Transforming growth factor-β (TGF-β) is a potent immunosuppressive cytokine that can suppress NK cell function. To convert the suppressive signal induced by TGF-β to an activating signal, we genetically modified NK-92 cells to express a chimeric receptor with TGF-β type II receptor extracellular and transmembrane domains and the intracellular domain of NK cell-activating receptor NKG2D (TN chimeric receptor). NK-92 cells expressing TN receptors were resistant to TGF-β-induced suppressive signaling and did not down-regulate NKG2D. These modified NK-92 cells had higher killing capacity and interferon γ (IFN-γ) production against tumor cells compared with the control cells and their cytotoxicity could be further enhanced by TGF-β. More interestingly, the NK-92 cells expressing TN receptors were better chemo-attracted to the tumor cells expressing TGF-β. The presence of these modified NK-92 cells significantly inhibited the differentiation of human naïve CD4(+) T cells to regulatory T cells. NK-92-TN cells could also inhibit tumor growth in vivo in a hepatocellular carcinoma xenograft tumor model. Therefore, TN chimeric receptors can be a novel strategy to augment anti-tumor efficacy in NK cell adoptive therapy.

  15. Screening of Potential Landing Gear Noise Control Devices at Virginia Tech For QTD II Flight Test

    NASA Technical Reports Server (NTRS)

    Ravetta, Patricio A.; Burdisso, Ricardo A.; Ng, Wing F.; Khorrami, Mehdi R.; Stoker, Robert W.

    2007-01-01

    In support of the QTD II (Quiet Technology Demonstrator) program, aeroacoustic measurements of a 26%-scale, Boeing 777 main landing gear model were conducted in the Virginia Tech Stability Tunnel. The objective of these measurements was to perform risk mitigation studies on noise control devices for a flight test performed at Glasgow, Montana in 2005. The noise control devices were designed to target the primary main gear noise sources as observed in several previous tests. To accomplish this task, devices to reduce noise were built using stereo lithography for landing gear components such as the brakes, the forward cable harness, the shock strut, the door/strut gap and the lower truck. The most promising device was down selected from test results. In subsequent stages, the initial design of the selected lower truck fairing was improved to account for all the implementation constraints encountered in the full-scale airplane. The redesigned truck fairing was then retested to assess the impact of the modifications on the noise reduction potential. From extensive acoustic measurements obtained using a 63-element microphone phased array, acoustic source maps and integrated spectra were generated in order to estimate the noise reduction achievable with each device.

  16. Noise Attenuation Performance of the Joint Service Aircrew Mask (JSAM) - Joint Strike Fighter (JSF) with the Lightning II Generation II Helmet

    DTIC Science & Technology

    2012-04-01

    1 Figure 2. a. F-35 Lightning II Gen II HMD b. Original ANR Earcups...Integrated System Ltd (HISL) active noise reduction ( ANR ) earcups (part number JS02591, Figure 2b), and a MBU-23/P oxygen mask with customized...F-35 Lightning II Gen II HMD b. Original ANR Earcups Table 1. JSAM-JSF Requirement (baseline Gen II HMD total attenuation data collected in

  17. Spin-crossover behavior in cyanide-bridged iron(II)-gold(I) bimetallic 2D Hofmann-like metal-organic frameworks.

    PubMed

    Agustí, Gloria; Muñoz, M Carmen; Gaspar, Ana B; Real, José A

    2008-04-07

    The synthesis and characterization of new two-dimensional (2D) cyanide-bridged iron(II)-gold(I) bimetallic coordination polymers formulated, {Fe(3-Xpy)2[Au(CN)2]2} (py = pyridine; X = F (1), Cl (2), Br (3), and I (4)) and the clathrate derivative {Fe(3-Ipy)2[Au(CN)2]2}.1/2(3-Ipy) (5), are reported. The iron(II) ion lies in pseudoctahedral [FeN6] sites defined by four [Au(CN)2](-) bridging ligands and two 3-Xpy ligands occupying the equatorial and axial positions, respectively. Although only compounds 2 and 4 can be considered strictly isostructurals, all of the components of this family are made up of parallel stacks of corrugated {Fe[Au(CN)2]2}n grids. The grids are formed by edge sharing of {Fe4[Au(CN)2]4} pseudosquare moieties. The stacks are constituted of double layers sustained by short aurophilic contacts ranging from 3.016(2) to 3.1580(8) A. The Au...Au distances between consecutive double layers are in the range of 5.9562(9)-8.790(2) A. Compound 5, considered a clathrate derivative of 4, includes one-half of a 3-Ipy molecule per iron(II) atom between the double layers. Compound 1 undergoes a half-spin transition with critical temperatures Tc downward arrow = 140 K and Tc upward arrow = 145 K. The corresponding thermodynamic parameters derived from differential scanning calorimetry (DSC) are Delta H = 9.8 +/- 0.4 kJ mol(-1) and Delta S = 68.2 +/- 3 J K mol(-1). This spin transition is accompanied by a crystallographic phase transition from the monoclinic P2(1)/c space group to the triclinic P1 space group. At high temperatures, where 1 is 100% high-spin, there is only one crystallographically independent iron(II) site. In contrast, the low temperature structural analysis shows the occurrence of two crystallographically independent iron(II) sites with equal population, one high-spin and the other low-spin. Furthermore, 1 undergoes a complete two-step spin transition at pressures as high as 0.26 GPa. Compounds 2- 4 are high-spin iron(II) complexes according

  18. Mn(II)- and Co(II)-Catalyzed Transformation of 2-Cyanopyrimidine to Methylimidate by Sodium Azide: Isolation, Structural Characterization, and Magnetic Studies on 2D Mn(II)- and Cu(II)-Complexes.

    PubMed

    Dolai, Malay; Biswas, Surajit; Escuer, Albert; Ali, Mahammad

    2015-07-20

    The Mn(II)-mediated transformation of 2-cyanopyrimidine to methylimidate in the presence of inorganic azide is proven through isolation and structural characterization of a metal complex. Though the reaction conditions are favorable for a "click" reaction leading to the formation of tetrazole, as evidenced from recent studies, we are astonished to see the formation of methylimidate in MeOH instead of tetrazole, which is supposed to form only in the presence of catalytic amount of corresponding alkoxide ion as base. The catalytic nature of this transformation reaction was confirmed by performing these experiments under catalytic conditions and analyzing the products using liquid chromatography-mass spectrometry techniques, which clearly showed ∼96% and ∼60% selectivity of methylimidate along with almost 100% conversion in the presence of Mn(II) and Co(II) as catalysts, respectively. In absence or presence of other metal ions like Cu(II), Ni(II), Fe(II), Zn(II), etc. only tetrazole formation takes place. So the present findings extended the formation of methylimidate catalyzed by metal ions in the presence of azide ion in alcoholic medium. Importantly, a probable mechanism for this unexpected transformation was framed based on the structural analysis and high-resolution mass spectrometry (electrospray ionization MS(+)) studies. The magnetic studies were also performed on complexes [Mn(L)(N3)2]n (1) and [Cu (L(2))2]n (2a), showing anti-ferromagnetic character for compound 1 and negligible coupling for the copper complex 2a.

  19. Thermal detection of flux-flow noise in type-II superconductors

    NASA Astrophysics Data System (ADS)

    Plaçais, B.; Simon, Y.

    1989-02-01

    In this paper we present an original method for the observation of flux-flow noise. A superconducting slab, placed in a normal magnetic field, and immersed in He II, constitutes one of the walls of a rectangular second-sound resonator. As is well known, the voltage observed in the flux-flow regime is noisy, due to irregularities in the vortex motion. Therefore, noise in Joule dissipation is expected to occur, making the slab act as a noisy second-sound transmitter. Second-sound noise is then amplified selectively on the different modes of the resonator, with amplitudes depending, in general, on the spatial distribution and coherence of the fluctuating heat sources on the sample. Thus careful and detailed second-sound analysis should provide valuable information on vortex motion and pinning, that is not necessarily given by the usual voltage noise measurements. Preliminary experiments reported in this paper are merely intended to demonstrate that we are able to detect and identify the thermal flux-flow noise, in spite of its minuteness (~10-15 W2/Hz), while obtaining reliable quantitative results.

  20. The Fluctuation-Dissipation Theorem of Colloidal Particle's energy on 2D Periodic Substrates: A Monte Carlo Study of thermal noise-like fluctuation and diffusion like Brownian motion

    NASA Astrophysics Data System (ADS)

    Najafi, Amin

    2014-05-01

    Using the Monte Carlo simulations, we have calculated mean-square fluctuations in statistical mechanics, such as those for colloids energy configuration are set on square 2D periodic substrates interacting via a long range screened Coulomb potential on any specific and fixed substrate. Random fluctuations with small deviations from the state of thermodynamic equilibrium arise from the granular structure of them and appear as thermal diffusion with Gaussian distribution structure as well. The variations are showing linear form of the Fluctuation-Dissipation Theorem on the energy of particles constitutive a canonical ensemble with continuous diffusion process of colloidal particle systems. The noise-like variation of the energy per particle and the order parameter versus the Brownian displacement of sum of large number of random steps of particles at low temperatures phase are presenting a markovian process on colloidal particles configuration, too.

  1. A unique 2D → 3D polycatenation cobalt(II)-based molecule magnet showing coexistence of paramagnetism and canted antiferromagnetism.

    PubMed

    Xu, Bo; Lin, Xi; He, Zhangzhen; Lin, Zujin; Cao, Rong

    2011-04-07

    A novel entangled architecture [Co(1.5)(bpmp)(Hcda)(cda)(H(2)O)] (1) based on 4(4)-sql subunits, showing an interesting 2D → 3D inclined polycatenation structure feature, is reported. Magnetic investigation shows that compound 1 exhibits coexistence of paramagnetism and canted antiferromagnetism with Tc of 48 K.

  2. Towards the Identification of the Keeper Erosion Cause(s): Numerical Simulations of the Plasma and Neutral Gas Using the Global Cathode Model OrCa2D-II

    NASA Technical Reports Server (NTRS)

    Mikellides, Ioannis G.; Katz, Ira; Goebel, Dan M.; Jameson, Kristina K.

    2006-01-01

    Numerical simulations with the time-dependent Orificed Cathode (OrCa2D-II) computer code show that classical enhancements of the plasma resistivity can not account for the elevated electron temperatures and steep plasma potential gradients measured in the plume of a 25-27.5 A discharge hollow cathode. The cathode, which employs a 0.11-in diameter orifice, was operated at 5.5 sccm without an applied magnetic field using two different anode geometries. It is found that anomalous resistivity based on electron-driven instabilities improves the comparison between theory and experiment. It is also estimated that other effects such as the Hall-effect from the self-induced magnetic field, not presently included in OrCa2D-II, may contribute to the constriction of the current density streamlines thus explaining the higher plasma densities observed along the centerline.

  3. Optoelectronics with 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Mueller, Thomas

    2015-03-01

    Two-dimensional (2D) atomic crystals, such as graphene and layered transition-metal dichalcogenides, are currently receiving a lot of attention for applications in electronics and optoelectronics. In this talk, I will review our research activities on electrically driven light emission, photovoltaic energy conversion and photodetection in 2D semiconductors. In particular, WSe2 monolayer p-n junctions formed by electrostatic doping using a pair of split gate electrodes, type-II heterojunctions based on MoS2/WSe2 and MoS2/phosphorene van der Waals stacks, 2D multi-junction solar cells, and 3D/2D semiconductor interfaces will be presented. Upon optical illumination, conversion of light into electrical energy occurs in these devices. If an electrical current is driven, efficient electroluminescence is obtained. I will present measurements of the electrical characteristics, the optical properties, and the gate voltage dependence of the device response. In the second part of my talk, I will discuss photoconductivity studies of MoS2 field-effect transistors. We identify photovoltaic and photoconductive effects, which both show strong photoconductive gain. A model will be presented that reproduces our experimental findings, such as the dependence on optical power and gate voltage. We envision that the efficient photon conversion and light emission, combined with the advantages of 2D semiconductors, such as flexibility, high mechanical stability and low costs of production, could lead to new optoelectronic technologies.

  4. Enumeration of four-connected three-dimensional nets. II. Conversion of edges of three-connected 2D nets into zigzag chains.

    PubMed

    Han; Smith

    1999-03-01

    Four-connected three-dimensional (3D) nets were systematically enumerated by converting some horizontal edges of a vertical stack of three-connected two-dimensional (2D) nets into vertical zigzag chains. 77 out of 131 2D nets were selected for enumeration, and different arrangements of zigzag edges and horizontal edges were investigated. This yielded 138 3D nets of which 19 are represented by known structures: cristobalite; tridymite; MAPO-39 (International Zeolite Association Structure Commission code ATN); svyatoslavite; Li-A(BW) (ABW); cancrinite (CAN); AlPO-31 (ATO); MAPO-36 (ATS); BaFe(2)O(4); 'nepheline hydrate' (JBW); bikitaite (BIK); KBGe(2)O(6); CsAlSi(5)O(12) (CAS); UiO-6 (OSI); Theta-1 (TON); ZSM-12 (MTW); ZSM-23 (MTT); AlPO-53C; and CIT-5 (CFI).

  5. Self-assembly of alternating left- and right-handed infinite Cd(II) helicates into a 2D open framework structure

    NASA Astrophysics Data System (ADS)

    Ghosh, Sujit K.; Bharadwaj, Parimal K.

    2006-08-01

    Pyrazine-2,3,5,6-tetracarboxylic acid (ptcH 4) reacts with Cd(NO 3) 2·6H 2O at room temperature in the presence of pyridine to form a 2D open framework built from alternating left- and right-handed helicates with the empirical formula, {[Cd 2(ptc)·(py) 5·H 2O]·5H 2O·py} n, 1. Lattice water and pyridine molecules form an intricate array of H-bonding with the 2D sheets leading to a 3D structure. This compound crystallizes in the monoclinic space group C2/ c with the following lattice parameters— a=24.103(2), b=13.480(5), c=29.176(4) Å, β=109.427(3)°, V=8940(4) Å 3, Z=8, R1=0.0513, wR2=0.1552, S=1.085.

  6. Effect of solvent polarity on the vibrational dephasing dynamics of the nitrosyl stretch in an Fe(II) complex revealed by 2D IR spectroscopy.

    PubMed

    Brookes, Jennifer F; Slenkamp, Karla M; Lynch, Michael S; Khalil, Munira

    2013-07-25

    The vibrational dephasing dynamics of the nitrosyl stretching vibration (ν(NO)) in sodium nitroprusside (SNP, Na2[Fe(CN)5NO]·2H2O) are investigated using two-dimensional infrared (2D IR) spectroscopy. The ν(NO) in SNP acts as a model system for the nitrosyl ligand found in metalloproteins which play an important role in the transportation and detection of nitric oxide (NO) in biological systems. We perform a 2D IR line shape study of the ν(NO) in the following solvents: water, deuterium oxide, methanol, ethanol, ethylene glycol, formamide, and dimethyl sulfoxide. The frequency of the ν(NO) exhibits a large vibrational solvatochromic shift of 52 cm(-1), ranging from 1884 cm(-1) in dimethyl sulfoxide to 1936 cm(-1) in water. The vibrational anharmonicity of the ν(NO) varies from 21 to 28 cm(-1) in the solvents used in this study. The frequency-frequency correlation functions (FFCFs) of the ν(NO) in SNP in each of the seven solvents are obtained by fitting the experimentally obtained 2D IR spectra using nonlinear response theory. The fits to the 2D IR line shape reveal that the spectral diffusion time scale of the ν(NO) in SNP varies from 0.8 to 4 ps and is negatively correlated with the empirical solvent polarity scales. We compare our results with the experimentally determined FFCFs of other charged vibrational probes in polar solvents and in the active sites of heme proteins. Our results suggest that the vibrational dephasing dynamics of the ν(NO) in SNP reflect the fluctuations of the nonhomogeneous electric field created by the polar solvents around the nitrosyl and cyanide ligands. The solute solvent interactions occurring at the trans-CN ligand are sensed through the π-back-bonding network along the Fe-NO bond in SNP.

  7. Impact of Cytochrome P450 2D6 Function on the Chiral Blood Plasma Pharmacokinetics of 3,4-Methylenedioxymethamphetamine (MDMA) and Its Phase I and II Metabolites in Humans.

    PubMed

    Steuer, Andrea E; Schmidhauser, Corina; Tingelhoff, Eva H; Schmid, Yasmin; Rickli, Anna; Kraemer, Thomas; Liechti, Matthias E

    2016-01-01

    3,4-methylenedioxymethamphetamine (MDMA; ecstasy) metabolism is known to be stereoselective, with preference for S-stereoisomers. Its major metabolic step involves CYP2D6-catalyzed demethylenation to 3,4-dihydroxymethamphetamine (DHMA), followed by methylation and conjugation. Alterations in CYP2D6 genotype and/or phenotype have been associated with higher toxicity. Therefore, the impact of CYP2D6 function on the plasma pharmacokinetics of MDMA and its phase I and II metabolites was tested by comparing extensive metabolizers (EMs), intermediate metabolizers (IMs), and EMs that were pretreated with bupropion as a metabolic inhibitor in a controlled MDMA administration study. Blood plasma samples were collected from 16 healthy participants (13 EMs and three IMs) up to 24 h after MDMA administration in a double-blind, placebo-controlled, four-period, cross-over design, with subjects receiving 1 week placebo or bupropion pretreatment followed by a single placebo or MDMA (125 mg) dose. Bupropion pretreatment increased the maximum plasma concentration (Cmax) and area under the plasma concentration-time curve from 0 to 24 h (AUC24) of R-MDMA (9% and 25%, respectively) and S-MDMA (16% and 38%, respectively). Bupropion reduced the Cmax and AUC24 of the CYP2D6-dependently formed metabolite stereoisomers of DHMA 3-sulfate, DHMA 4-sulfate, and 4-hydroxy-3-methoxymethamphetamine (HMMA sulfate and HMMA glucuronide) by approximately 40%. The changes that were observed in IMs were generally comparable to bupropion-pretreated EMs. Although changes in stereoselectivity based on CYP2D6 activity were observed, these likely have low clinical relevance. Bupropion and hydroxybupropion stereoisomer pharmacokinetics were unaltered by MDMA co-administration. The present data might aid further interpretations of toxicity based on CYP2D6-dependent MDMA metabolism.

  8. Impact of Cytochrome P450 2D6 Function on the Chiral Blood Plasma Pharmacokinetics of 3,4-Methylenedioxymethamphetamine (MDMA) and Its Phase I and II Metabolites in Humans

    PubMed Central

    Steuer, Andrea E.; Schmidhauser, Corina; Tingelhoff, Eva H.; Schmid, Yasmin; Rickli, Anna; Kraemer, Thomas; Liechti, Matthias E.

    2016-01-01

    3,4-methylenedioxymethamphetamine (MDMA; ecstasy) metabolism is known to be stereoselective, with preference for S-stereoisomers. Its major metabolic step involves CYP2D6-catalyzed demethylenation to 3,4-dihydroxymethamphetamine (DHMA), followed by methylation and conjugation. Alterations in CYP2D6 genotype and/or phenotype have been associated with higher toxicity. Therefore, the impact of CYP2D6 function on the plasma pharmacokinetics of MDMA and its phase I and II metabolites was tested by comparing extensive metabolizers (EMs), intermediate metabolizers (IMs), and EMs that were pretreated with bupropion as a metabolic inhibitor in a controlled MDMA administration study. Blood plasma samples were collected from 16 healthy participants (13 EMs and three IMs) up to 24 h after MDMA administration in a double-blind, placebo-controlled, four-period, cross-over design, with subjects receiving 1 week placebo or bupropion pretreatment followed by a single placebo or MDMA (125 mg) dose. Bupropion pretreatment increased the maximum plasma concentration (Cmax) and area under the plasma concentration-time curve from 0 to 24 h (AUC24) of R-MDMA (9% and 25%, respectively) and S-MDMA (16% and 38%, respectively). Bupropion reduced the Cmax and AUC24 of the CYP2D6-dependently formed metabolite stereoisomers of DHMA 3-sulfate, DHMA 4-sulfate, and 4-hydroxy-3-methoxymethamphetamine (HMMA sulfate and HMMA glucuronide) by approximately 40%. The changes that were observed in IMs were generally comparable to bupropion-pretreated EMs. Although changes in stereoselectivity based on CYP2D6 activity were observed, these likely have low clinical relevance. Bupropion and hydroxybupropion stereoisomer pharmacokinetics were unaltered by MDMA co-administration. The present data might aid further interpretations of toxicity based on CYP2D6-dependent MDMA metabolism. PMID:26967321

  9. A low-noise CMOS pixel direct charge sensor, Topmetal-II-

    NASA Astrophysics Data System (ADS)

    An, Mangmang; Chen, Chufeng; Gao, Chaosong; Han, Mikyung; Ji, Rong; Li, Xiaoting; Mei, Yuan; Sun, Quan; Sun, Xiangming; Wang, Kai; Xiao, Le; Yang, Ping; Zhou, Wei

    2016-02-01

    We report the design and characterization of a CMOS pixel direct charge sensor, Topmetal-II-, fabricated in a standard 0.35 μm CMOS Integrated Circuit process. The sensor utilizes exposed metal patches on top of each pixel to directly collect charge. Each pixel contains a low-noise charge-sensitive preamplifier to establish the analog signal and a discriminator with tunable threshold to generate hits. The analog signal from each pixel is accessible through time-shared multiplexing over the entire array. Hits are read out digitally through a column-based priority logic structure. Tests show that the sensor achieved a < 15e- analog noise and a 200e- minimum threshold for digital readout per pixel. The sensor is capable of detecting both electrons and ions drifting in gas. These characteristics enable its use as the charge readout device in future Time Projection Chambers without gaseous gain mechanism, which has unique advantages in low background and low rate-density experiments.

  10. On-board monitoring of 2-D spatially-resolved temperatures in cylindrical lithium-ion batteries: Part II. State estimation via impedance-based temperature sensing

    NASA Astrophysics Data System (ADS)

    Richardson, Robert R.; Zhao, Shi; Howey, David A.

    2016-09-01

    Impedance-based temperature detection (ITD) is a promising approach for rapid estimation of internal cell temperature based on the correlation between temperature and electrochemical impedance. Previously, ITD was used as part of an Extended Kalman Filter (EKF) state-estimator in conjunction with a thermal model to enable estimation of the 1-D temperature distribution of a cylindrical lithium-ion battery. Here, we extend this method to enable estimation of the 2-D temperature field of a battery with temperature gradients in both the radial and axial directions. An EKF using a parameterised 2-D spectral-Galerkin model with ITD measurement input (the imaginary part of the impedance at 215 Hz) is shown to accurately predict the core temperature and multiple surface temperatures of a 32,113 LiFePO4 cell, using current excitation profiles based on an Artemis HEV drive cycle. The method is validated experimentally on a cell fitted with a heat sink and asymmetrically cooled via forced air convection. A novel approach to impedance-temperature calibration is also presented, which uses data from a single drive cycle, rather than measurements at multiple uniform cell temperatures as in previous studies. This greatly reduces the time required for calibration, since it overcomes the need for repeated cell thermal equalization.

  11. Quantum-noise quenching in the correlated spontaneous-emission laser as a multiplicative noise process. II. Rigorous analysis including amplitude noise

    SciTech Connect

    Schleich, W.; Scully, M.O.; von Garssen, H.

    1988-04-15

    An analytical steady-state distribution for the phase difference psi in a correlated spontaneous-emission laser (CEL) is derived based on the amplitude and phase equations of a CEL. This distribution is shown to be an excellent approximation to that obtained from a numerical simulation of the complete set of CEL equations. In particular, the effects of amplitude noise on CEL operation are considered and it is shown that fluctuations in the relative amplitude are also noise quenched.

  12. Advance Noise Control Fan II: Test Rig Fan Risk Management Study

    NASA Technical Reports Server (NTRS)

    Lucero, John

    2013-01-01

    Since 1995 the Advanced Noise Control Fan (ANCF) has significantly contributed to the advancement of the understanding of the physics of fan tonal noise generation. The 9'x15' WT has successfully tested multiple high speed fan designs over the last several decades. This advanced several tone noise reduction concepts to higher TRL and the validation of fan tone noise prediction codes.

  13. Validation for 2D/3D registration II: The comparison of intensity- and gradient-based merit functions using a new gold standard data set

    SciTech Connect

    Gendrin, Christelle; Markelj, Primoz; Pawiro, Supriyanto Ardjo; Spoerk, Jakob; Bloch, Christoph; Weber, Christoph; Figl, Michael; Bergmann, Helmar; Birkfellner, Wolfgang; Likar, Bostjan; Pernus, Franjo

    2011-03-15

    Purpose: A new gold standard data set for validation of 2D/3D registration based on a porcine cadaver head with attached fiducial markers was presented in the first part of this article. The advantage of this new phantom is the large amount of soft tissue, which simulates realistic conditions for registration. This article tests the performance of intensity- and gradient-based algorithms for 2D/3D registration using the new phantom data set. Methods: Intensity-based methods with four merit functions, namely, cross correlation, rank correlation, correlation ratio, and mutual information (MI), and two gradient-based algorithms, the backprojection gradient-based (BGB) registration method and the reconstruction gradient-based (RGB) registration method, were compared. Four volumes consisting of CBCT with two fields of view, 64 slice multidetector CT, and magnetic resonance-T1 weighted images were registered to a pair of kV x-ray images and a pair of MV images. A standardized evaluation methodology was employed. Targets were evenly spread over the volumes and 250 starting positions of the 3D volumes with initial displacements of up to 25 mm from the gold standard position were calculated. After the registration, the displacement from the gold standard was retrieved and the root mean square (RMS), mean, and standard deviation mean target registration errors (mTREs) over 250 registrations were derived. Additionally, the following merit properties were computed: Accuracy, capture range, number of minima, risk of nonconvergence, and distinctiveness of optimum for better comparison of the robustness of each merit. Results: Among the merit functions used for the intensity-based method, MI reached the best accuracy with an RMS mTRE down to 1.30 mm. Furthermore, it was the only merit function that could accurately register the CT to the kV x rays with the presence of tissue deformation. As for the gradient-based methods, BGB and RGB methods achieved subvoxel accuracy (RMS m

  14. Photomagnetic properties of an Fe(ii) spin-crossover complex of 6-(3,5-diamino-2,4,6-triazinyl)-2,2'-bipyridine and its insertion into 2D and 3D bimetallic oxalate-based networks.

    PubMed

    Sánchez-Sánchez, C; Desplanches, C; Clemente-Juan, J M; Clemente-León, M; Coronado, E

    2017-02-21

    The Fe(ii) complex of the L1 ligand (L1 = 6-(3,5-diamino-2,4,6-triazinyl)-2,2'-bipyridine) has been used as a templating cation for the growth of oxalate-based networks. The magnetic characterization of the [Fe(II)(L1)2](ClO4)2·CH3CN (1) precursor in the solid state has been performed for the first time showing that the low-spin (LS) state is predominating from 2 to 400 K with 10% of Fe(ii), which undergoes a gradual and irreversible spin-crossover above 350 K. 1 presents the LIESST effect with a photo-conversion close to 25% and a T(LIESST) of 49 K. During the preparation of 1, a secondary product of the formula [Fe(II)(L1)(CH3CN)2(H2O)](ClO4)2·CH3CN (2) has been obtained. The magnetic characterization of 2 shows that it contains high-spin (HS) Fe(ii). 1 has afforded two novel oxalate-based compounds, the 2D compound of the formula [Fe(II)(L1)2][Mn(II)Cr(III)(ox)3]2·(CH3NO2)6·(CH3OH)·(H2O)2 (3) and the 3D compound of the formula [Fe(II)(L1)2][Mn(II)Cr(III)(ox)3]2·(CH3CN)3 (4), which have been obtained by changing the synthetic conditions. The magnetic properties show that in 3 the inserted Fe(ii) cation remains in the LS state from 2 to 340 K and presents a partial and irreversible spin-crossover of ∼20% at higher temperatures. In 4, most of the Fe(ii) complexes remain in the LS state from 2 to 230 K and present a partial and irreversible spin-crossover of ∼50% from 230 to 400 K. 3 and 4 do not present the LIESST effect.

  15. Conversion loss and noise of microwave and millimeter-wave mixers. I - Theory. II - Experiment

    NASA Technical Reports Server (NTRS)

    Held, D. N.; Kerr, A. R.

    1978-01-01

    The conversion loss and noise of microwave and millimeter-wave mixers are analyzed. Nonlinear capacitance, arbitrary embedding impedances, as well as shot, thermal and scattering noise arising in the diode, figure in the analysis. The anomalous mixer noise noted in millimeter-wave mixers by Kerr (1975) is shown to be explainable in terms of the correlation of down-converted components of the time-varying shot noise. A digital computer analysis of the conversion loss, noise, and output impedance of an 80-120-GHz mixer is also conducted.

  16. Effects of Phase Noise and Thermal Noise upon Coherent PSK Demodulation and Their Impact on Phase Noise Specifications for Terminals of the Phase II DSCS.

    DTIC Science & Technology

    1974-08-01

    TDMA With PLL Noise Bandwidth of 100 Hz. Operation With Possible Phase 11 DS (S Noise Contributors and With Soft Decision (3-biti, Rate 1 2, Constraint...vith a fixed s )lh, lQ :t 11’ , it is tossilil t () ’ause the cairrier referen ce total phase error \\:i’lnt(c it) int’.cr S , ds e crease, or renain...Mod.F17 JF Lof-E(701) LOSF(’TH) LOSS(TOr) LOS1THi T/f CFF ) crp) (DB) (DB 71377k>6 >6 15rI . 7f-3 A.877PP >6 >6 300 P. 9A704 S. f7 ORd >6 >6 S,),3. 791

  17. High frequency green function for aerodynamic noise in moving media. I - General theory. II - Noise from a spreading jet

    NASA Technical Reports Server (NTRS)

    Durbin, P. A.

    1983-01-01

    It is shown how a high frequency analysis can be made for general problems involving flow-generated noise. In the parallel shear flow problem treated by Balsa (1976) and Goldstein (1982), the equation governing sound propagation in the moving medium could be transformed into a wave equation for a stationary medium with an inhomogeneous index of refraction. It is noted that the procedure of Avila and Keller (1963) was then used to construct a high frequency Green function. This procedure involves matching a solution valid in an inner region around the point source to an outer, ray-acoustics solution. This same procedure is used here to construct the Green function for a source in an arbitrary mean flow. In view of the fact that there is no restriction to parallel flow, the governing equations cannot be transformed into a wave equation; the analysis therefore proceeds from the equations of motion themselves.

  18. DO-BOD modeling of River Yamuna for national capital territory, India using STREAM II, a 2D water quality model.

    PubMed

    Sharma, Deepshikha; Singh, Ram Karan

    2009-12-01

    The study illustrates the utility of STREAM II as a modeling package to determine the pollution load due to organic matter in the River Yamuna during its course through the National Capital Territory that is Delhi, India. The study was done for a period from 1995-2005. Model simulates the dissolved oxygen and biochemical oxygen demand parameters in a two-dimensional fashion by performing the numerical solution to a set of differential equations representing aquatic life with the help of Crank-Nicholson finite difference method. The model was simulated and calibrated through the field water-quality primary data and the secondary data which were taken from Central Pollution Control Board. The main reasons for the high river pollution is increasing population of Delhi and other states, leading to generation of huge amounts of domestic sewage into the river Yamuna. The model gave a good agreement between calibrated and observed data, thus, actualizing the validity of the model. However, discrepancies noticed during model calibrations were attributed to the assumptions adopted in the model formulation and to lack of field data.

  19. Vertical 2D Heterostructures

    NASA Astrophysics Data System (ADS)

    Lotsch, Bettina V.

    2015-07-01

    Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.

  20. Toward the detection of gravitational waves under non-Gaussian noises II. Independent component analysis.

    PubMed

    Morisaki, Soichiro; Yokoyama, Jun'ichi; Eda, Kazunari; Itoh, Yousuke

    2016-01-01

    We introduce a new analysis method to deal with stationary non-Gaussian noises in gravitational wave detectors in terms of the independent component analysis. First, we consider the simplest case where the detector outputs are linear combinations of the inputs, consisting of signals and various noises, and show that this method may be helpful to increase the signal-to-noise ratio. Next, we take into account the time delay between the inputs and the outputs. Finally, we extend our method to nonlinearly correlated noises and show that our method can identify the coupling coefficients and remove non-Gaussian noises. Although we focus on gravitational wave data analysis, our methods are applicable to the detection of any signals under non-Gaussian noises.

  1. Toward the detection of gravitational waves under non-Gaussian noises II. Independent component analysis

    PubMed Central

    MORISAKI, Soichiro; YOKOYAMA, Jun’ichi; EDA, Kazunari; ITOH, Yousuke

    2016-01-01

    We introduce a new analysis method to deal with stationary non-Gaussian noises in gravitational wave detectors in terms of the independent component analysis. First, we consider the simplest case where the detector outputs are linear combinations of the inputs, consisting of signals and various noises, and show that this method may be helpful to increase the signal-to-noise ratio. Next, we take into account the time delay between the inputs and the outputs. Finally, we extend our method to nonlinearly correlated noises and show that our method can identify the coupling coefficients and remove non-Gaussian noises. Although we focus on gravitational wave data analysis, our methods are applicable to the detection of any signals under non-Gaussian noises. PMID:27725472

  2. Hearing in young adults. Part II: The effects of recreational noise exposure.

    PubMed

    Keppler, Hannah; Dhooge, Ingeborg; Vinck, Bart

    2015-01-01

    Great concern arises from recreational noise exposure, which might lead to noise-induced hearing loss in young adults. The objective of the current study was to evaluate the effects of recreational noise exposure on hearing function in young adults. A questionnaire concerning recreational noise exposures and an audiological test battery were completed by 163 subjects (aged 18-30 years). Based on the duration of exposure and self-estimated loudness of various leisure-time activities, the weekly and lifetime equivalent noise exposure were calculated. Subjects were categorized in groups with low, intermediate, and high recreational noise exposure based on these values. Hearing was evaluated using audiometry, transient-evoked otoacoustic emissions (TEOAEs), and distortion-product otoacoustic emissions (DPOAEs). Mean differences in hearing between groups with low, intermediate, and high recreational noise exposure were evaluated using one-way analysis of variance (ANOVA). There were no significant differences in hearing thresholds, TEOAE amplitudes, and DPOAE amplitudes between groups with low, intermediate, or high recreational noise exposure. Nevertheless, one-third of our subjects exceeded the weekly equivalent noise exposure for all activities of 75 dBA. Further, the highest equivalent sound pressure levels (SPLs) were calculated for the activities visiting nightclubs or pubs, attending concerts or festivals, and playing in a band or orchestra. Moreover, temporary tinnitus after recreational noise exposure was found in 86% of our subjects. There were no significant differences in hearing between groups with low, intermediate, and high recreational noise exposure. Nevertheless, a long-term assessment of young adults' hearing in relation to recreational noise exposure is needed.

  3. Hearing in young adults. Part II: The effects of recreational noise exposure

    PubMed Central

    Keppler, Hannah; Dhooge, Ingeborg; Vinck, Bart

    2015-01-01

    Great concern arises from recreational noise exposure, which might lead to noise-induced hearing loss in young adults. The objective of the current study was to evaluate the effects of recreational noise exposure on hearing function in young adults. A questionnaire concerning recreational noise exposures and an audiological test battery were completed by 163 subjects (aged 18-30 years). Based on the duration of exposure and self-estimated loudness of various leisure-time activities, the weekly and lifetime equivalent noise exposure were calculated. Subjects were categorized in groups with low, intermediate, and high recreational noise exposure based on these values. Hearing was evaluated using audiometry, transient-evoked otoacoustic emissions (TEOAEs), and distortion-product otoacoustic emissions (DPOAEs). Mean differences in hearing between groups with low, intermediate, and high recreational noise exposure were evaluated using one-way analysis of variance (ANOVA). There were no significant differences in hearing thresholds, TEOAE amplitudes, and DPOAE amplitudes between groups with low, intermediate, or high recreational noise exposure. Nevertheless, one-third of our subjects exceeded the weekly equivalent noise exposure for all activities of 75 dBA. Further, the highest equivalent sound pressure levels (SPLs) were calculated for the activities visiting nightclubs or pubs, attending concerts or festivals, and playing in a band or orchestra. Moreover, temporary tinnitus after recreational noise exposure was found in 86% of our subjects. There were no significant differences in hearing between groups with low, intermediate, and high recreational noise exposure. Nevertheless, a long-term assessment of young adults’ hearing in relation to recreational noise exposure is needed. PMID:26356366

  4. 2D semiconductor optoelectronics

    NASA Astrophysics Data System (ADS)

    Novoselov, Kostya

    The advent of graphene and related 2D materials has recently led to a new technology: heterostructures based on these atomically thin crystals. The paradigm proved itself extremely versatile and led to rapid demonstration of tunnelling diodes with negative differential resistance, tunnelling transistors, photovoltaic devices, etc. By taking the complexity and functionality of such van der Waals heterostructures to the next level we introduce quantum wells engineered with one atomic plane precision. Light emission from such quantum wells, quantum dots and polaritonic effects will be discussed.

  5. Oxalate-based soluble 2D magnets: the series [K(18-crown-6)]3[M(II)3(H2O)4{M(III)(ox)3}3] (M(III) = Cr, Fe; M(II) = Mn, Fe, Ni, Co, Cu; ox = C2O4(2-); 18-crown-6 = C12H24O6).

    PubMed

    Coronado, Eugenio; Galán-Mascarós, José R; Martí-Gastaldo, Carlos; Waerenborgh, João C; Gaczyński, Piotr

    2008-08-04

    The synthesis and magnetic properties of the oxalate-based molecular soluble magnets with general formula [K(18-crown-6)] 3[M (II) 3(H 2O) 4{M (III)(ox) 3} 3] (M (III) = Cr, Fe; M (II) = Mn, Fe, Ni, Co, Cu; ox = C 2O 4 (2-)) are here described. All the reported compounds are isostructural and built up by 2D bimetallic networks formed by alternating M (III) and M (II) ions connected through oxalate anions. Whereas the Cr (III)M (II) derivatives behave as ferromagnets with critical temperatures up to 8 K, the Fe (III)M (II) present ferri- or weak ferromagnetic ordering up to 26 K.

  6. Binaural detection with narrowband and wideband reproducible noise maskers: II. Results for rabbit

    NASA Astrophysics Data System (ADS)

    Zheng, Ling; Early, Susan J.; Mason, Christine R.; Idrobo, Fabio; Harrison, J. Michael; Carney, Laurel H.

    2002-01-01

    Binaural detection with narrowband and wideband noise maskers was examined by using a Pavlovian-conditioned eyeblink response in rabbits. The target was a tone at 500 Hz, and the maskers were ten individual noise samples having one of two bandwidths, 200 Hz (410 Hz to 610 Hz) or 2900 Hz (100 Hz to 3 kHz). The narrowband noise maskers were created by filtering the wideband noise maskers such that the two sets of maskers had identical spectra in the 200-Hz frequency region surrounding the tone. The responses across the set of noise maskers were compared across bandwidths and across interaural configurations (N0S0 and N0Sπ). Responses across the set of noise waveforms were not strongly correlated across bandwidths; this result is inconsistent with models for binaural detection that depend only upon the narrow band of energy centered at the frequency of the target tone. Responses were correlated across interaural configurations for the wideband masker condition, but not for the narrowband masker. All of these results were consistent with the companion study of human listeners [Evilsizer et al., J. Acoust. Soc. Am. 111, 336-345 (2002)] and with the results of human studies of binaural detection that used only wideband [Gilkey et al., J. Acoust. Soc. Am. 78, 1207-1219 (1985)] or narrowband [Isabelle and Colburn, J. Acoust. Soc. Am. 89, 352-259 (1991)] individual noise maskers.

  7. Development of a technique for inflight jet noise simulation. I, II

    NASA Technical Reports Server (NTRS)

    Clapper, W. S.; Stringas, E. J.; Mani, R.; Banerian, G.

    1976-01-01

    Several possible noise simulation techniques were evaluated, including closed circuit wind tunnels, free jets, rocket sleds and high speed trains. The free jet technique was selected for demonstration and verification. The first paper describes the selection and development of the technique and presents results for simulation and in-flight tests of the Learjet, F106, and Bertin Aerotrain. The second presents a theoretical study relating the two sets of noise signatures. It is concluded that the free jet simulation technique provides a satisfactory assessment of in-flight noise.

  8. An unprecedented copper(I,II)-octacyanotungstate(V) 2-D network: crystal structure and magnetism of [CuII(tren)]{CuI[W(V)(CN)8]} . 1.5H2O.

    PubMed

    Korzeniak, Tomasz; Stadnicka, Katarzyna; Pelka, Robert; Balanda, Maria; Tomala, Krzysztof; Kowalski, Kazimierz; Sieklucka, Barbara

    2005-06-21

    A novel two-dimensional cyanide-bridged polymer [CuII(tren)]{CuI[W(V)(CN)8]} . 1.5H2O (tren = tris(2-aminoethyl)amine) formed via the simultaneous in situ metal-ligand redox reaction of [Cu(tren)(OH2)]2+ and self-assembly with [W(V)(CN)8]3- consists of a {CuI[W(V)(CN)8]} square grid built of CuI centres of tetrahedral geometry coordinatively saturated by CN bridges and [W(V)(CN)8]3- capped by [CuII(tren)]2+ moieties; it exhibits ferromagnetic coupling J1 = +5.8(1) cm(-1) within the CuII-W(V) dinuclear subunits and weak antiferromagnetic coupling J2 = -0.03(1) cm(-1) between them through diamagnetic CuI spacers.

  9. Effects of noise suppression on intelligibility. II: An attempt to validate physical metrics.

    PubMed

    Hilkhuysen, Gaston; Gaubitch, Nikolay; Brookes, Mike; Huckvale, Mark

    2014-01-01

    Using the data presented in the accompanying paper [Hilkhuysen et al., J. Acoust. Soc. Am. 131, 531-539 (2012)], the ability of six metrics to predict intelligibility of speech in noise before and after noise suppression was studied. The metrics considered were the Speech Intelligibility Index (SII), the fractional Articulation Index (fAI), the coherence intelligibility index based on the mid-levels in speech (CSIImid), an extension of the Normalized Coherence Metric (NCM+), a part of the speech-based envelope power model (pre-sEPSM), and the Short Term Objective Intelligibility measure (STOI). Three of the measures, SII, CSIImid, and NCM+, overpredicted intelligibility after noise reduction, whereas fAI underpredicted these intelligibilities. The pre-sEPSM metric worked well for speech in babble but failed with car noise. STOI gave the best predictions, but overall the size of intelligibility prediction errors were greater than the change in intelligibility caused by noise suppression. Suggestions for improvements of the metrics are discussed.

  10. Psychophysics of prosthetic vision: II. stochastic sampling, the phosphene image, and noise.

    PubMed

    Hallum, Luke E; Chen, Spencer C; Cloherty, Shaun L; Lovell, Nigel H

    2006-01-01

    Stimulation of the diseased retina via an intraocular electrode array is a proposed means of restoring some vision to the profoundly blind. A prosthetic device to this end would involve post-implantation calibration (analogous to cochlear implant fitting), wherein the subject indicates those discrete positions in the visual field where luminous percepts are elicited. This procedure would be a source of noise, because the indicated positions would only approximate the actual positions in the visual field. Put differently, the procedure introduces sampling jitter, and would therefore affect clinical outcomes such as mobility and reading speeds. The nature of this noise is the concern of the present paper; we derive an expression for the noise power spectrum as it relates to the statistical nature of the sampling jitter. We show that, generally, jitter has greater effect on higher spatial-frequencies, that is, those areas of the implantee's visual perception that represent fine detail are more prone to noise. More specifically, the noise spectrum depends on the characteristic function of the random variable describing the sampling jitter. Our results signal the need for experimental work that characterizes sampling jitter in implantees, plus the need for simulations that allow a better understanding of perception and the noisy phosphene image.

  11. National Environmental/Energy Workforce Assessment, Phase II, Post-Secondary Education Profile: Noise.

    ERIC Educational Resources Information Center

    National Field Research Center Inc., Iowa City, IA.

    Noise-related training programs were reviewed in nine degree-granting institutions in seven states. These programs represent a sample, only, of the various programs available nationwide. The enrollment profile and average number of graduates by degree level for the past three years are given, as well as the apparent enrollment trends by degree…

  12. Thermal- and light-induced spin crossover in novel 2D Fe(II) metalorganic frameworks {Fe(4-PhPy)(2)[M(II)(CN)(x)](y)}.sH(2)O: spectroscopic, structural, and magnetic studies.

    PubMed

    Seredyuk, M; Gaspar, A B; Ksenofontov, V; Verdaguer, M; Villain, F; Gütlich, P

    2009-07-06

    Five novel two-dimensional coordination polymers {Fe(4PhPy)(2)[M(II)(CN)(4)]}.sH(2)O (4PhyPy = 4-phenylpyridine; 1: M(II) = Pd, s = 0; 2: M(II) = Ni, s = 0; 3: M(II) = Pt, s = 1) and {Fe(4PhPy)(2)[M(I)(CN)(2)](2)}.sH(2)O (4: M(I) = Ag, s = 1; 5: M(I) = Au, s = 0.5) exhibiting spin-crossover properties have been synthesized. They were characterized at various temperatures using X-ray absorption spectroscopy (XAS), powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), and magnetic susceptibility measurements. The occurrence of a cooperative thermal spin transition detected by the magnetic method is located at critical temperatures T(c)( downward arrow)/T(c)( upward arrow) = 163 K/203 K (1), 135 K/158 K (2), and 172 K/221 K (3), and a less cooperative one is located at T(c) = 188 K (4) and 225 K (5). Compounds 1-5 show an abrupt color change from yellow (high-spin (HS) state) to red (low-spin (LS) state) upon spin-state conversion. The dehydration of the compounds changes the type of the spin transition, making it more abrupt and shifting the critical temperature to higher temperatures. For 1 and 2, XAS provides local structural information on the contraction of the FeN(6) coordination sphere upon the HS-to-LS transition, in line with the magnetic results. Variable-temperature characterization of 1 by X-ray diffraction evidences the very abrupt phase transition with a large hysteresis. A light-induced spin conversion (LIESST effect) is detected by magnetic measurements in 1-5 below 70 K.

  13. Phase II Clinical Trials: D-methionine to Reduce Noise-Induced Hearing Loss

    DTIC Science & Technology

    2012-03-01

    loss (NIHL) and tinnitus in our troops. Hypotheses: Primary Hypothesis: Administration of oral D-methionine prior to and during weapons...reduce or prevent noise-induced tinnitus . Primary outcome to test the primary hypothesis: Pure tone air-conduction thresholds. Primary outcome to...test the secondary hypothesis: Tinnitus questionnaires. Specific Aims: 1. To determine whether administering oral D-methionine (D-met) can

  14. 1D and 2D assembly structures by imidazole···chloride hydrogen bonds of iron(II) complexes [Fe(II)(HL(n-Pr))3]Cl·Y (HL(n-Pr) = 2-methylimidazol-4-yl-methylideneamino-n-propyl; Y = AsF6, BF4) and their spin states.

    PubMed

    Fujinami, Takeshi; Nishi, Koshiro; Matsumoto, Naohide; Iijima, Seiichiro; Halcrow, Malcolm A; Sunatsuki, Yukinari; Kojima, Masaaki

    2011-12-07

    Two Fe(II) complexes fac-[Fe(II)(HL(n-Pr))(3)]Cl·Y (Y = AsF(6) (1) and BF(4) (2)) were synthesized, where HL(n-Pr) is 2-methylimidazole-4-yl-methylideneamino-n-propyl. Each complex-cation has the same octahedral N(6) geometry coordinated by three bidentate ligands and assumes facial-isomerism, fac-[Fe(II)(HL(n-Pr))(3)](2+) with Δ- and Λ-enantiomorphs. Three imidazole groups per Δ- or Λ-fac-[Fe(II)(HL(n-Pr))(3)](2+) are hydrogen-bonded to three Cl(-) ions or, from the viewpoint of the Cl(-) ion, one Cl(-) ion is hydrogen-bonded to three neighbouring fac-[Fe(II)(HL(n-Pr))(3)](2+) cations. The 3 : 3 NH···Cl(-) hydrogen bonds between Δ- or Λ-fac-[Fe(II)(HL(n-Pr))(3)](2+) and Cl(-) generate two kinds of assembly structures. The directions of the 3 : 3 NH···Cl(-) hydrogen bonds and hence the resulting assembly structures are determined by the size of the anion Y, though Y is not involved into the network structure and just accommodated in the cavity. Compound 1 has a 1D ladder structure giving a larger cavity, in which the Δ- and Λ-fac-[Fe(II)(HL(n-Pr))(3)](2+) enantiomorphs are bridged by two NH···Cl(-) hydrogen bonds. Compound 2 has a 2D network structure with a net unit of a cyclic trimer of {fac-[Fe(II)(HL(n-Pr))(3)](2+)···Cl(-)}(3) giving a smaller cavity, in which Δ- or Λ-fac-[Fe(II)(HL(n-Pr))(3)](2+) species with the same chirality are linked by NH···Cl(-) hydrogen bonds to give a homochiral 2D network structure. Magnetic susceptibility and Mössbauer spectral measurements demonstrated that compound 1 showed an abrupt one-step spin crossover with 4.0 K thermal hysteresis of T(c↓) = 125.5 K and T(c↑) = 129.5 K and compound 2 showed no spin transition and stayed in the high-spin state over the 5-300 K temperature range.

  15. E-2D Advanced Hawkeye Aircraft (E-2D AHE)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-364 E-2D Advanced Hawkeye Aircraft (E-2D AHE) As of FY 2017 President’s Budget Defense...Office Estimate RDT&E - Research, Development, Test, and Evaluation SAR - Selected Acquisition Report SCP - Service Cost Position TBD - To Be Determined

  16. Blast Noise Prediction. Volume II. BNOISE 3.2 Computer Program Description and Program Listing.

    DTIC Science & Technology

    1981-03-01

    possible sequence in %hich the modules of the Blast Noise Prediction pro- gram , could he ordered b the user in the SlIR’S RIUN Tahles 8 through 17 summarize...cxery 1000 ni 0)1 200,) it are reasonabhle values il the o~erall land area itluded in the contour is, fairl - large) [he smaiIL ller the aucs Used...Prediction pro gram does ni~ take ito coinsidleration the eff’ects of’ wind. IHowever, it does take intoi account tenm- perat ure Inversioins. T-heref’ore

  17. Selective attention reduces physiological noise in the external ear canals of humans. II: visual attention.

    PubMed

    Walsh, Kyle P; Pasanen, Edward G; McFadden, Dennis

    2014-06-01

    Human subjects performed in several behavioral conditions requiring, or not requiring, selective attention to visual stimuli. Specifically, the attentional task was to recognize strings of digits that had been presented visually. A nonlinear version of the stimulus-frequency otoacoustic emission (SFOAE), called the nSFOAE, was collected during the visual presentation of the digits. The segment of the physiological response discussed here occurred during brief silent periods immediately following the SFOAE-evoking stimuli. For all subjects tested, the physiological-noise magnitudes were substantially weaker (less noisy) during the tasks requiring the most visual attention. Effect sizes for the differences were >2.0. Our interpretation is that cortico-olivo influences adjusted the magnitude of efferent activation during the SFOAE-evoking stimulation depending upon the attention task in effect, and then that magnitude of efferent activation persisted throughout the silent period where it also modulated the physiological noise present. Because the results were highly similar to those obtained when the behavioral conditions involved auditory attention, similar mechanisms appear to operate both across modalities and within modalities. Supplementary measurements revealed that the efferent activation was spectrally global, as it was for auditory attention.

  18. Estimates of auditory risk from outdoor impulse noise. II: Civilian firearms.

    PubMed

    Flamme, Gregory A; Wong, Adam; Liebe, Kevin; Lynd, James

    2009-01-01

    Firearm impulses are common noise exposures in the United States. This study records, describes and analyzes impulses produced outdoors by civilian firearms with respect to the amount of auditory risk they pose to the unprotected listener under various listening conditions. Risk estimates were obtained using three contemporary damage risk criteria (DRC) including a waveform parameter-based approach (peak SPL and B-duration), an energy-based criterion (A-weighted SEL and equivalent continuous level) and a physiological model (AHAAH). Results from these DRC were converted into a number of maximum permissible unprotected exposures to facilitate interpretation. Acoustic characteristics of firearm impulses differed substantially across guns, ammunition, and microphone location. The type of gun, ammunition and the microphone location all significantly affected estimates of auditory risk from firearms. Vast differences in maximum permissible exposures were observed; the rank order of the differences varied with the source of the impulse. Unprotected exposure to firearm noise is not recommended, but people electing to fire a gun without hearing protection should be advised to minimize auditory risk through careful selection of ammunition and shooting environment. Small-caliber guns with long barrels and guns loaded with the least powerful ammunition tend to be associated with the least auditory risk.

  19. Selective attention reduces physiological noise in the external ear canals of humans. II: Visual attention

    PubMed Central

    Walsh, Kyle P.; Pasanen, Edward G.; McFadden, Dennis

    2014-01-01

    Human subjects performed in several behavioral conditions requiring, or not requiring, selective attention to visual stimuli. Specifically, the attentional task was to recognize strings of digits that had been presented visually. A nonlinear version of the stimulus-frequency otoacoustic emission (SFOAE), called the nSFOAE, was collected during the visual presentation of the digits. The segment of the physiological response discussed here occurred during brief silent periods immediately following the SFOAE-evoking stimuli. For all subjects tested, the physiological-noise magnitudes were substantially weaker (less noisy) during the tasks requiring the most visual attention. Effect sizes for the differences were >2.0. Our interpretation is that cortico-olivo influences adjusted the magnitude of efferent activation during the SFOAE-evoking stimulation depending upon the attention task in effect, and then that magnitude of efferent activation persisted throughout the silent period where it also modulated the physiological noise present. Because the results were highly similar to those obtained when the behavioral conditions involved auditory attention, similar mechanisms appear to operate both across modalities and within modalities. Supplementary measurements revealed that the efferent activation was spectrally global, as it was for auditory attention. PMID:24732070

  20. Propeller aircraft interior noise model. II - Scale-model and flight-test comparisons

    NASA Technical Reports Server (NTRS)

    Willis, C. M.; Mayes, W. H.

    1987-01-01

    A program for predicting the sound levels inside propeller driven aircraft arising from sidewall transmission of airborne exterior noise is validated through comparisons of predictions with both scale-model test results and measurements obtained in flight tests on a turboprop aircraft. The program produced unbiased predictions for the case of the scale-model tests, with a standard deviation of errors of about 4 dB. For the case of the flight tests, the predictions revealed a bias of 2.62-4.28 dB (depending upon whether or not the data for the fourth harmonic were included) and the standard deviation of the errors ranged between 2.43 and 4.12 dB. The analytical model is shown to be capable of taking changes in the flight environment into account.

  1. Statistical processes limiting the noise of a screen-film system: II

    NASA Astrophysics Data System (ADS)

    Beutel, Jacob; Shaw, Rodney; Yampolsky, Michael

    1995-05-01

    In a recent publication we demonstrated that the increase in image noise which results from exposing a film via a phosphor screen can be attributed entirely to the increased extent of the autocorrelation interval introduced by the screen, and not to any change in the shape or scale of the probability distribution function which governs the fluctuations about the mean level. This result implies that the (0,0)-value of the autocovariance function is independent of the degree of so-called quantum mottle and since the autocovariance function, ACV(x,y), and the Wiener Spectrum, WS(u,v), are Fourier transform pairs, it follows that the integral of the Wiener Spectrum over all spatial frequencies (u,v) must share this independence. Since this result was counterintuitive to existing assumptions of the role of screen and film in defining the Wiener Spectrum (i.e., a simple additive combination of quantum mottle and film grain), we now investigate this relationship in more detail in order to provide a more complete insight. For this purpose we have simulated a set of controlled images which correspond to a wide range of screen correlation intervals, from 192 micrometers down to uncorrelated film noise. Included in this simulation we have also explored the role of the overall amplification factor, i.e., the average number of image grains associated with an x-ray quantum. The results of these simulations are presented here, and confirm our previous findings, by establishing the invariance of the scale (0,0) value of the ACV.

  2. New insights into insect's silent flight. Part II: sound source and noise control

    NASA Astrophysics Data System (ADS)

    Xue, Qian; Geng, Biao; Zheng, Xudong; Liu, Geng; Dong, Haibo

    2016-11-01

    The flapping flight of aerial animals has excellent aerodynamic performance but meanwhile generates low noise. In this study, the unsteady flow and acoustic characteristics of the flapping wing are numerically investigated for three-dimensional (3D) models of Tibicen linnei cicada at free forward flight conditions. Single cicada wing is modelled as a membrane with prescribed motion reconstructed by Wan et al. (2015). The flow field and acoustic field around the flapping wing are solved with immersed-boundary-method based incompressible flow solver and linearized-perturbed-compressible-equations based acoustic solver. The 3D simulation allows examination of both directivity and frequency composition of the produced sound in a full space. The mechanism of sound generation of flapping wing is analyzed through correlations between acoustic signals and flow features. Along with a flexible wing model, a rigid wing model is also simulated. The results from these two cases will be compared to investigate the effects of wing flexibility on sound generation. This study is supported by NSF CBET-1313217 and AFOSR FA9550-12-1-0071.

  3. Intercomparison of methods for image quality characterization. II. Noise power spectrum

    SciTech Connect

    Dobbins, James T. III; Samei, Ehsan; Ranger, Nicole T.; Chen Ying

    2006-05-15

    Second in a two-part series comparing measurement techniques for the assessment of basic image quality metrics in digital radiography, in this paper we focus on the measurement of the image noise power spectrum (NPS). Three methods were considered: (1) a method published by Dobbins et al. [Med. Phys. 22, 1581-1593 (1995)] (2) a method published by Samei et al. [Med. Phys. 30, 608-622 (2003)], and (3) a new method sanctioned by the International Electrotechnical Commission (IEC 62220-1, 2003), developed as part of an international standard for the measurement of detective quantum efficiency. In addition to an overall comparison of the estimated NPS between the three techniques, the following factors were also evaluated for their effect on the measured NPS: horizontal versus vertical directional dependence, the use of beam-limiting apertures, beam spectrum, and computational methods of NPS analysis, including the region-of-interest (ROI) size and the method of ROI normalization. Of these factors, none was found to demonstrate a substantial impact on the amplitude of the NPS estimates ({<=}3.1% relative difference in NPS averaged over frequency, for each factor considered separately). Overall, the three methods agreed to within 1.6%{+-}0.8% when averaged over frequencies >0.15 mm{sup -1}.

  4. Hydrothermal synthesis of zinc(II)-phosphonate coordination polymers with different dimensionality (0D, 2D, 3D) and dimensionality change in the solid phase (0D→3D) induced by temperature

    SciTech Connect

    Fernández-Zapico, Eva; Montejo-Bernardo, Jose; Fernández-González, Alfonso; García, José R. García-Granda, Santiago

    2015-05-15

    Three new zinc(II) coordination polymers, [Zn(HO{sub 3}PCH{sub 2}CH{sub 2}COO)(C{sub 12}H{sub 8}N{sub 2})(H{sub 2}O)] (1), [Zn{sub 3}(O{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(C{sub 12}H{sub 8}N{sub 2})](H{sub 2}O){sub 3.40} (2) and [Zn{sub 5}(HO{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(O{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(C{sub 12}H{sub 8}N{sub 2}){sub 4}](H{sub 2}O){sub 0.32} (3), with different structural dimensionality (0D, 2D and 3D, respectively) have been prepared by hydrothermal synthesis, and their structures were determined by single-crystal X-ray diffraction. Compound 1 crystallizes in the monoclinic system (P2{sub 1}/c) forming discrete dimeric units bonded through H-bonds, while compounds 2 and 3 crystallize in the triclinic (P−1) and the monoclinic (C2/c) systems, respectively. Compound 3, showing three different coordination numbers (4, 5 and 6) for the zinc atoms, has also been obtained by thermal treatment of 1 (probed by high-temperature XRPD experiments). The crystalline features of these compounds, related to the coordination environments for the zinc atoms in each structure, provoke the increase of the relative fluorescence for 2 and 3, compared to the free phenanthroline. Thermal analysis (TG and DSC) and XPS studies have been also carried out for all compounds. - Graphical abstract: Three new coordination compounds of zinc with 2-carboxyethylphosphonic acid (H{sub 2}PPA) and phenanthroline have been obtained by hydrothermal synthesis. The crystalline structure depends on the different coordination environments of the zinc atoms (see two comparative Zn{sub 6}-moieties). The influence of the different coordination modes of H{sub 2}PPA with the central atom in all structures have been studied, being found new coordination modes for this ligand. Several compounds show a significant increase in relative fluorescence with respect to the free phenanthroline. - Highlights: • Compounds have been obtained modifying the reaction time and the rate of

  5. Energy Efficiency of D2D Multi-User Cooperation.

    PubMed

    Zhang, Zufan; Wang, Lu; Zhang, Jie

    2017-03-28

    The Device-to-Device (D2D) communication system is an important part of heterogeneous networks. It has great potential to improve spectrum efficiency, throughput and energy efficiency cooperation of multiple D2D users with the advantage of direct communication. When cooperating, D2D users expend extraordinary energy to relay data to other D2D users. Hence, the remaining energy of D2D users determines the life of the system. This paper proposes a cooperation scheme for multiple D2D users who reuse the orthogonal spectrum and are interested in the same data by aiming to solve the energy problem of D2D users. Considering both energy availability and the Signal to Noise Ratio (SNR) of each D2D user, the Kuhn-Munkres algorithm is introduced in the cooperation scheme to solve relay selection problems. Thus, the cooperation issue is transformed into a maximum weighted matching (MWM) problem. In order to enhance energy efficiency without the deterioration of Quality of Service (QoS), the link outage probability is derived according to the Shannon Equation by considering the data rate and delay. The simulation studies the relationships among the number of cooperative users, the length of shared data, the number of data packets and energy efficiency.

  6. Highly crystalline 2D superconductors

    NASA Astrophysics Data System (ADS)

    Saito, Yu; Nojima, Tsutomu; Iwasa, Yoshihiro

    2016-12-01

    Recent advances in materials fabrication have enabled the manufacturing of ordered 2D electron systems, such as heterogeneous interfaces, atomic layers grown by molecular beam epitaxy, exfoliated thin flakes and field-effect devices. These 2D electron systems are highly crystalline, and some of them, despite their single-layer thickness, exhibit a sheet resistance more than an order of magnitude lower than that of conventional amorphous or granular thin films. In this Review, we explore recent developments in the field of highly crystalline 2D superconductors and highlight the unprecedented physical properties of these systems. In particular, we explore the quantum metallic state (or possible metallic ground state), the quantum Griffiths phase observed in out-of-plane magnetic fields and the superconducting state maintained in anomalously large in-plane magnetic fields. These phenomena are examined in the context of weakened disorder and/or broken spatial inversion symmetry. We conclude with a discussion of how these unconventional properties make highly crystalline 2D systems promising platforms for the exploration of new quantum physics and high-temperature superconductors.

  7. Extensions of 2D gravity

    SciTech Connect

    Sevrin, A.

    1993-06-01

    After reviewing some aspects of gravity in two dimensions, I show that non-trivial embeddings of sl(2) in a semi-simple (super) Lie algebra give rise to a very large class of extensions of 2D gravity. The induced action is constructed as a gauged WZW model and an exact expression for the effective action is given.

  8. Fundamental performance assessment of 2-D myocardial elastography in a phased-array configuration.

    PubMed

    Luo, Jianwen; Lee, Wei-Ning; Konofagou, Elisa E

    2009-10-01

    Two-dimensional myocardial elastography, an RF-based, speckle-tracking technique, uses 1-D cross-correlation and recorrelation methods in a 2-D search, and can estimate and image the 2-D transmural motion and deformation of the myocardium so as to characterize the cardiac function. Based on a 3-D finite-element (FE) canine left-ventricular model, a theoretical framework was previously developed by our group to evaluate the estimation quality of 2-D myocardial elastography using a linear array. In this paper, an ultrasound simulation program, Field II, was used to generate the RF signals of a model of the heart in a phased-array configuration and under 3-D motion conditions; thus simulating a standard echocardiography exam. The estimation method of 2-D myocardial elastography was adapted for use with such a configuration. All elastographic displacements and strains were found to be in good agreement with the FE solutions, as indicated by the mean absolute error (MAE) between the two. The classified first and second principal strains approximated the radial and circumferential strains, respectively, in the phased-array configuration. The results at different sonographic signal-to-noise ratios (SNR(s)) showed that the MAEs of the axial, lateral, radial, and circumferential strains remained relatively constant when the SNR(s) was equal to or higher than 20 dB. The MAEs of the strain estimation were not significantly affected when the acoustic attenuation was included in the simulations. A significantly reduced number of scatterers could be used to speed up the simulation, without sacrificing the estimation quality.The proposed framework can further be used to assess the estimation quality, explore the theoretical limitation and investigate the effects of various parameters in 2-D myocardial elastography under more realistic conditions.

  9. Self-assembled decanuclear Na(I)2Mn(II)4Mn(III)4 complexes: from discrete clusters to 1-D and 2-D structures, with the Mn(II)4Mn(III)4 unit displaying a large spin ground state and probable SMM behaviour.

    PubMed

    Langley, Stuart K; Chilton, Nicholas F; Moubaraki, Boujemaa; Murray, Keith S

    2011-12-07

    The synthesis, magnetic characterization and X-ray crystal structures are reported for five new manganese compounds, [Mn(III)(teaH(2))(sal)]·(1/2)H(2)O (1), [Na(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(MeOH)(4)]·6MeOH (2), [Na(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(MeOH)(2)](n)·7MeOH (3), [Na(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(MeOH)(2)](n)·2MeOH·Et(2)O (4) and [K(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(H(2)O)(2)](n)·5MeOH (5). Complex 1 is a mononuclear compound, formed via the reaction of Mn(NO(3))(2)·4H(2)O, triethanolamine (teaH(3)) and salicylic acid (salH(2)) in a basic methanolic solution. Compound 2 is a mixed-valent hetero-metallic cluster made up of a Mn(8)Na(2) decanuclear core and is formed via the reaction of sodium azide (NaN(3)) with 1. Compounds 3-5 are isolated as 1- or 2-D coordination polymers, each containing the decanuclear Mn(8)M(2) (M = Na(+) or K(+)) core building block as the repeating unit. Compound 3 is isolated when 1 is reacted with NaN(3) over a very short reaction time and forms a 1-D coordination polymer. Each unit displays inter-cluster bridges via the O-atoms of teaH(2-) ligands bonding to the sodium ions of an adjacent cluster. Increasing the reaction time appears to drive the formation of 4 which forms 2-D polymeric sheets and is a packing polymorph of 3. The addition of KMnO(4) and NaN(3) to 1 resulted in compound 5, which also forms a 1-D coordination polymer of the decanuclear core unit. The 1-D chains are now linked via inter-cluster potassium and salicylate bridges. Solid state DC susceptibility measurements were performed on compounds 1-5. The data for 1 are as expected for an S = 2 Mn(III) ion, with the isothermal M vs. H data being fitted by matrix diagonalization methods to give values of g and the axial (D) and rhombic (E) zero field splitting parameters of 2.02, -2.70 cm(-1) and 0.36 cm(-1) respectively. The data for 2-5, each with an identical Mn(II)(4)Mn(III)(4

  10. Magneto-optical disk drive technology using multiple fiber-coupled flying optical heads. Part II. Laser noise considerations.

    PubMed

    Wilde, Jeffrey P; Tselikov, Alexander A; Gray, George R; Zhang, Yongwei; Gangopadhyay, Shubhagat

    2002-02-10

    A magneto-optical data storage system utilizing single-mode fiber is capable of providing high signal-to-noise ratio (SNR) recording if laser noise sources are properly managed. In particular, mode partition noise (MPN) associated with use of a Fabry-Perot laser diode can be a significant problem in a fiber-based system. The various mechanisms leading to MPN as well as to laser phase noise are discussed in the context of a system constructed with polarization-maintaining fiber. The primary noise mechanisms include spurious fiber-endface reflections and errors in the quarter-wave plate on the recording head. An understanding of these effects is essential for fabrication of a fiber-based recording system with suitable SNR performance.

  11. Experimental validation of equations for 2D DIC uncertainty quantification.

    SciTech Connect

    Reu, Phillip L.; Miller, Timothy J.

    2010-03-01

    Uncertainty quantification (UQ) equations have been derived for predicting matching uncertainty in two-dimensional image correlation a priori. These equations include terms that represent the image noise and image contrast. Researchers at the University of South Carolina have extended previous 1D work to calculate matching errors in 2D. These 2D equations have been coded into a Sandia National Laboratories UQ software package to predict the uncertainty for DIC images. This paper presents those equations and the resulting error surfaces for trial speckle images. Comparison of the UQ results with experimentally subpixel-shifted images is also discussed.

  12. Characterization and 2D NMR study of the stable [9-21, 15-27] 2 disulfide intermediate in the folding of the 3 disulfide trypsin inhibitor EETI II.

    PubMed Central

    Le-Nguyen, D.; Heitz, A.; Chiche, L.; el Hajji, M.; Castro, B.

    1993-01-01

    The three disulfide Ecballium elaterium trypsin inhibitor II (EETI II) reduction with dithiothreitol (DTT) and reoxidation of the fully reduced derivative have been examined. A common stable intermediate has been observed for both processes. Isolation and sequencing of carboxymethylated material showed that the intermediate lacks the [2-19] bridge. The NMR study showed a very strong structural conservation as compared to the native EETI II, suggesting that the bridges are the [9-21] and [15-27] native ones. The differences occurred in sections 2-7 (containing the free cysteine 2 and the Arg 4-Ile 5 active site) and 19-21 (containing the second free cysteine). Distance geometry calculations and restrained molecular dynamics refinements were also in favor of a [9-21, 15-27] arrangement and resulted in a well-conserved (7-28) segment. PMID:8443596

  13. 2D quasiperiodic plasmonic crystals

    PubMed Central

    Bauer, Christina; Kobiela, Georg; Giessen, Harald

    2012-01-01

    Nanophotonic structures with irregular symmetry, such as quasiperiodic plasmonic crystals, have gained an increasing amount of attention, in particular as potential candidates to enhance the absorption of solar cells in an angular insensitive fashion. To examine the photonic bandstructure of such systems that determines their optical properties, it is necessary to measure and model normal and oblique light interaction with plasmonic crystals. We determine the different propagation vectors and consider the interaction of all possible waveguide modes and particle plasmons in a 2D metallic photonic quasicrystal, in conjunction with the dispersion relations of a slab waveguide. Using a Fano model, we calculate the optical properties for normal and inclined light incidence. Comparing measurements of a quasiperiodic lattice to the modelled spectra for angle of incidence variation in both azimuthal and polar direction of the sample gives excellent agreement and confirms the predictive power of our model. PMID:23209871

  14. Valleytronics in 2D materials

    NASA Astrophysics Data System (ADS)

    Schaibley, John R.; Yu, Hongyi; Clark, Genevieve; Rivera, Pasqual; Ross, Jason S.; Seyler, Kyle L.; Yao, Wang; Xu, Xiaodong

    2016-11-01

    Semiconductor technology is currently based on the manipulation of electronic charge; however, electrons have additional degrees of freedom, such as spin and valley, that can be used to encode and process information. Over the past several decades, there has been significant progress in manipulating electron spin for semiconductor spintronic devices, motivated by potential spin-based information processing and storage applications. However, experimental progress towards manipulating the valley degree of freedom for potential valleytronic devices has been limited until very recently. We review the latest advances in valleytronics, which have largely been enabled by the isolation of 2D materials (such as graphene and semiconducting transition metal dichalcogenides) that host an easily accessible electronic valley degree of freedom, allowing for dynamic control.

  15. Unparticle example in 2D.

    PubMed

    Georgi, Howard; Kats, Yevgeny

    2008-09-26

    We discuss what can be learned about unparticle physics by studying simple quantum field theories in one space and one time dimension. We argue that the exactly soluble 2D theory of a massless fermion coupled to a massive vector boson, the Sommerfield model, is an interesting analog of a Banks-Zaks model, approaching a free theory at high energies and a scale-invariant theory with nontrivial anomalous dimensions at low energies. We construct a toy standard model coupling to the fermions in the Sommerfield model and study how the transition from unparticle behavior at low energies to free particle behavior at high energies manifests itself in interactions with the toy standard model particles.

  16. Perception-based reversible watermarking for 2D vector maps

    NASA Astrophysics Data System (ADS)

    Men, Chaoguang; Cao, Liujuan; Li, Xiang

    2010-07-01

    This paper presents an effective and reversible watermarking approach for digital copyright protection of 2D-vector maps. To ensure that the embedded watermark is insensitive for human perception, we only select the noise non-sensitive regions for watermark embedding by estimating vertex density within each polyline. To ensure the exact recovery of original 2D-vector map after watermark extraction, we introduce a new reversible watermarking scheme based on reversible high-frequency wavelet coefficients modification. Within the former-selected non-sensitive regions, our watermarking operates on the lower-order vertex coordinate decimals with integer wavelet transform. Such operation further reduces the visual distortion caused by watermark embedding. We have validated the effectiveness of our scheme on our real-world city river/building 2D-vector maps. We give extensive experimental comparisons with state-of-the-art methods, including embedding capability, invisibility, and robustness over watermark attacking.

  17. Rapid-scan coherent 2D fluorescence spectroscopy.

    PubMed

    Draeger, Simon; Roeding, Sebastian; Brixner, Tobias

    2017-02-20

    We developed pulse-shaper-assisted coherent two-dimensional (2D) electronic spectroscopy in liquids using fluorescence detection. A customized pulse shaper facilitates shot-to-shot modulation at 1 kHz and is employed for rapid scanning over all time delays. A full 2D spectrum with 15 × 15 pixels is obtained in approximately 6 s of measurement time (plus further averaging if needed). Coherent information is extracted from the incoherent fluorescence signal via 27-step phase cycling. We exemplify the technique on cresyl violet in ethanol and recover literature-known oscillations as a function of population time. Signal-to-noise behavior is analyzed as a function of the amount of averaging. Rapid scanning provides a 2D spectrum with a root-mean-square error of < 0.05 after 1 min of measurement time.

  18. Homoleptic Iron(II) Complexes with the Ionogenic Ligand 6,6'-Bis(1H-tetrazol-5-yl)-2,2'-bipyridine: Spin Crossover Behavior in a Singular 2D Spin Crossover Coordination Polymer.

    PubMed

    Seredyuk, Maksym; Piñeiro-López, Lucía; Muñoz, M Carmen; Martínez-Casado, Francisco J; Molnár, Gábor; Rodriguez-Velamazán, José Alberto; Bousseksou, Azzedine; Real, José Antonio

    2015-08-03

    Deprotonation of the ionogenic tetradentate ligand 6,6'-bis(1H-tetrazol-5-yl)-2,2'-bipyridine [H2bipy(ttr)2] in the presence of Fe(II) in solution has afforded an anionic mononuclear complex and a neutral two-dimensional coordination polymer formulated as, respectively, NEt3H{Fe[bipy(ttr)2][Hbipy(ttr)2]}·3MeOH (1) and {Fe[bipy(ttr)2]}n (2). The anions [Hbipy(ttr)2](-) and [bipy(ttr)2](2-) embrace the Fe(II) centers defining discrete molecular units 1 with the Fe(II) ion lying in a distorted bisdisphenoid dodecahedron, a rare example of octacoordination in the coordination environment of this cation. The magnetic behavior of 1 shows that the Fe(II) is high-spin, and its Mössbauer spectrum is characterized by a relatively large average quadrupole splitting, ΔEQ = 3.42 mm s(-1). Compound 2 defines a strongly distorted octahedral environment for Fe(II) in which one [bipy(ttr)2](-) anion coordinates the equatorial positions of the Fe(II) center, while the axial positions are occupied by peripheral N-tetrazole atoms of two adjacent {Fe[bipy(ttr)2]}(0) moieties thereby generating an infinite double-layer sheet. Compound 2 undergoes an almost complete spin crossover transition between the high-spin and low-spin states centered at about 221 K characterized by an average variation of enthalpy and entropy ΔH(av) = 8.27 kJ mol(-1), ΔS(av) = 37.5 J K(-1) mol(-1), obtained from calorimetric DSC measurements. Photomagnetic measurements of 2 at 10 K show an almost complete light-induced spin state trapping (LIESST) effect which denotes occurrence of antiferromagnetic coupling between the excited high-spin species and TLIESST = 52 K. The crystal structure of 2 has been investigated in detail at various temperatures and discussed.

  19. Quantum coherence selective 2D Raman–2D electronic spectroscopy

    PubMed Central

    Spencer, Austin P.; Hutson, William O.; Harel, Elad

    2017-01-01

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational–vibrational, electronic–vibrational and electronic–electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment–protein complexes. PMID:28281541

  20. Quantum coherence selective 2D Raman-2D electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Spencer, Austin P.; Hutson, William O.; Harel, Elad

    2017-03-01

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational-vibrational, electronic-vibrational and electronic-electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment-protein complexes.

  1. Quantum coherence selective 2D Raman-2D electronic spectroscopy.

    PubMed

    Spencer, Austin P; Hutson, William O; Harel, Elad

    2017-03-10

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational-vibrational, electronic-vibrational and electronic-electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment-protein complexes.

  2. Visual signal detection in structured backgrounds. II. Effects of contrast gain control, background variations, and white noise

    NASA Technical Reports Server (NTRS)

    Eckstein, M. P.; Ahumada, A. J. Jr; Watson, A. B.

    1997-01-01

    Studies of visual detection of a signal superimposed on one of two identical backgrounds show performance degradation when the background has high contrast and is similar in spatial frequency and/or orientation to the signal. To account for this finding, models include a contrast gain control mechanism that pools activity across spatial frequency, orientation and space to inhibit (divisively) the response of the receptor sensitive to the signal. In tasks in which the observer has to detect a known signal added to one of M different backgrounds grounds due to added visual noise, the main sources of degradation are the stochastic noise in the image and the suboptimal visual processing. We investigate how these two sources of degradation (contrast gain control and variations in the background) interact in a task in which the signal is embedded in one of M locations in a complex spatially varying background (structured background). We use backgrounds extracted from patient digital medical images. To isolate effects of the fixed deterministic background (the contrast gain control) from the effects of the background variations, we conduct detection experiments with three different background conditions: (1) uniform background, (2) a repeated sample of structured background, and (3) different samples of structured background. Results show that human visual detection degrades from the uniform background condition to the repeated background condition and degrades even further in the different backgrounds condition. These results suggest that both the contrast gain control mechanism and the background random variations degrade human performance in detection of a signal in a complex, spatially varying background. A filter model and added white noise are used to generate estimates of sampling efficiencies, an equivalent internal noise, an equivalent contrast-gain-control-induced noise, and an equivalent noise due to the variations in the structured background.

  3. Oxycline formation induced by Fe(II) oxidation in a water reservoir affected by acid mine drainage modeled using a 2D hydrodynamic and water quality model - CE-QUAL-W2.

    PubMed

    Torres, Ester; Galván, Laura; Cánovas, Carlos Ruiz; Soria-Píriz, Sara; Arbat-Bofill, Marina; Nardi, Albert; Papaspyrou, Sokratis; Ayora, Carlos

    2016-08-15

    The Sancho reservoir is an acid mine drainage (AMD)-contaminated reservoir located in the Huelva province (SW Spain) with a pH close to 3.5. The water is only used for a refrigeration system of a paper mill. The Sancho reservoir is holomictic with one mixing period per year in the winter. During this mixing period, oxygenated water reaches the sediment, while under stratified conditions (the rest of the year) hypoxic conditions develop at the hypolimnion. A CE-QUAL-W2 model was calibrated for the Sancho Reservoir to predict the thermocline and oxycline formation, as well as the salinity, ammonium, nitrate, phosphorous, algal, chlorophyll-a, and iron concentrations. The version 3.7 of the model does not allow simulating the oxidation of Fe(II) in the water column, which limits the oxygen consumption of the organic matter oxidation. However, to evaluate the impact of Fe(II) oxidation on the oxycline formation, Fe(II) has been introduced into the model based on its relationship with labile dissolved organic matter (LDOM). The results show that Fe oxidation is the main factor responsible for the oxygen depletion in the hypolimnion of the Sancho Reservoir. The limiting factors for green algal growth have also been studied. The model predicted that ammonium, nitrate, and phosphate were not limiting factors for green algal growth. Light appeared to be one of the limiting factors for algal growth, while chlorophyll-a and dissolved oxygen concentrations could not be fully described. We hypothesize that dissolved CO2 is one of the limiting nutrients due to losses by the high acidity of the water column. The sensitivity tests carried out support this hypothesis. Two different remediation scenarios have been tested with the calibrated model: 1) an AMD passive treatment plant installed at the river, which removes completely Fe, and 2) different depth water extractions. If no Fe was introduced into the reservoir, water quality would significantly improve in only two years

  4. Synthesis, X-ray crystal structure, optical properties and DFT studies of a new 2D layered iodide bridged Pb(II) coordination polymer with 2,3-bis(2-pyridyl)pyrazine

    SciTech Connect

    Saghatforoush, Lotfali Bakhtiari, Akbar; Gheleji, Hojjat

    2015-01-15

    The synthesis of two dimensional (2D) coordination polymer [Pb{sub 2}(µ-I){sub 2}(µ-dpp-N,N,N,N)(µ-dpp-N,N)I{sub 2}]{sub n} (dpp=2,3-bis(2-pyridyl)pyrazine) is reported. As determined by X-ray diffraction of a twinned crystal, the dpp ligand simultaneously adopts a bis–bidentate and bis–monodentate coordination mode in the crystal structure of compound. The electronic band structure along with density of states (DOS) calculated by the DFT method indicates that the compound is an indirect band gap semiconductor. According to the DFT calculations, the observed emission of the compound at 600 nm in solid phase could be attributed to arise from an excited LLCT state (dpp-π{sup ⁎} [C-2p and N-2p states, CBs] to I-6p state [VBs]). The linear optical properties of the compound are also calculated by DFT method. The structure of the compound in solution phase is discussed based on the measured {sup 1}H NMR and fluorescence spectra in DMSO. TGA studies indicate that the compound is thermally stable up to 210 °C. - Graphical abstract: The synthesis, crystal structure and emission spectra of [Pb{sub 2}(µ-I){sub 2}(µ-dpp-N,N,N,N)(µ-dpp-N,N)I{sub 2}]{sub n} is presented. The electronic band structure and linear optical properties of the compound are calculated by the DFT method. - Highlights: • Two dimensional [Pb{sub 2}(µ-I){sub 2}(µ-dpp-N,N,N,N)(µ-dpp-N,N)I{sub 2}]{sub n} has been prepared. • The structure of the compound is determined by XRD of a twinned crystal. • DFT calculations indicate that the compound is an indirect band gap semiconductor. • As shown by DFT calculations, the emission band of the compound is LLCT. • Solution phase structure of compound is explored by {sup 1}H NMR and emission spectra.

  5. RNA folding pathways and kinetics using 2D energy landscapes.

    PubMed

    Senter, Evan; Dotu, Ivan; Clote, Peter

    2015-01-01

    RNA folding pathways play an important role in various biological processes, such as (i) the hok/sok (host-killing/suppression of killing) system in E. coli to check for sufficient plasmid copy number, (ii) the conformational switch in spliced leader (SL) RNA from Leptomonas collosoma, which controls trans splicing of a portion of the '5 exon, and (iii) riboswitches--portions of the 5' untranslated region of messenger RNA that regulate genes by allostery. Since RNA folding pathways are determined by the energy landscape, we describe a novel algorithm, FFTbor2D, which computes the 2D projection of the energy landscape for a given RNA sequence. Given two metastable secondary structures A, B for a given RNA sequence, FFTbor2D computes the Boltzmann probability p(x, y) = Z(x,y)/Z that a secondary structure has base pair distance x from A and distance y from B. Using polynomial interpolationwith the fast Fourier transform,we compute p(x, y) in O(n(5)) time and O(n(2)) space, which is an improvement over an earlier method, which runs in O(n(7)) time and O(n(4)) space. FFTbor2D has potential applications in synthetic biology, where one might wish to design bistable switches having target metastable structures A, B with favorable pathway kinetics. By inverting the transition probability matrix determined from FFTbor2D output, we show that L. collosoma spliced leader RNA has larger mean first passage time from A to B on the 2D energy landscape, than 97.145% of 20,000 sequences, each having metastable structures A, B. Source code and binaries are freely available for download at http://bioinformatics.bc.edu/clotelab/FFTbor2D. The program FFTbor2D is implemented in C++, with optional OpenMP parallelization primitives.

  6. VIEWNET: a neural architecture for learning to recognize 3D objects from multiple 2D views

    NASA Astrophysics Data System (ADS)

    Grossberg, Stephen; Bradski, Gary

    1994-10-01

    A self-organizing neural network is developed for recognition of 3-D objects from sequences of their 2-D views. Called VIEWNET because it uses view information encoded with networks, the model processes 2-D views of 3-D objects using the CORT-X 2 filter, which discounts the illuminant, regularizes and completes figural boundaries, and removes noise from the images. A log-polar transform is taken with respect to the centroid of the resulting figure and then re-centered to achieve 2-D scale and rotation invariance. The invariant images are coarse coded to further reduce noise, reduce foreshortening effects, and increase generalization. These compressed codes are input into a supervised learning system based on the Fuzzy ARTMAP algorithm which learns 2-D view categories. Evidence from sequences of 2-D view categories is stored in a working memory. Voting based on the unordered set of stored categories determines object recognition. Recognition is studied with noisy and clean images using slow and fast learning. VIEWNET is demonstrated on an MIT Lincoln Laboratory database of 2-D views of aircraft with and without additive noise. A recognition rate of up to 90% is achieved with one 2-D view category and of up to 98.5% correct with three 2-D view categories.

  7. NKG2D ligands as therapeutic targets

    PubMed Central

    Spear, Paul; Wu, Ming-Ru; Sentman, Marie-Louise; Sentman, Charles L.

    2013-01-01

    The Natural Killer Group 2D (NKG2D) receptor plays an important role in protecting the host from infections and cancer. By recognizing ligands induced on infected or tumor cells, NKG2D modulates lymphocyte activation and promotes immunity to eliminate ligand-expressing cells. Because these ligands are not widely expressed on healthy adult tissue, NKG2D ligands may present a useful target for immunotherapeutic approaches in cancer. Novel therapies targeting NKG2D ligands for the treatment of cancer have shown preclinical success and are poised to enter into clinical trials. In this review, the NKG2D receptor and its ligands are discussed in the context of cancer, infection, and autoimmunity. In addition, therapies targeting NKG2D ligands in cancer are also reviewed. PMID:23833565

  8. Classification methods for noise transients in advanced gravitational-wave detectors II: performance tests on Advanced LIGO data

    NASA Astrophysics Data System (ADS)

    Powell, Jade; Torres-Forné, Alejandro; Lynch, Ryan; Trifirò, Daniele; Cuoco, Elena; Cavaglià, Marco; Heng, Ik Siong; Font, José A.

    2017-02-01

    The data taken by the advanced LIGO and Virgo gravitational-wave detectors contains short duration noise transients that limit the significance of astrophysical detections and reduce the duty cycle of the instruments. As the advanced detectors are reaching sensitivity levels that allow for multiple detections of astrophysical gravitational-wave sources it is crucial to achieve a fast and accurate characterization of non-astrophysical transient noise shortly after it occurs in the detectors. Previously we presented three methods for the classification of transient noise sources. They are Principal Component Analysis for Transients (PCAT), Principal Component LALInference Burst (PC-LIB) and Wavelet Detection Filter with Machine Learning (WDF-ML). In this study we carry out the first performance tests of these algorithms on gravitational-wave data from the Advanced LIGO detectors. We use the data taken between the 3rd of June 2015 and the 14th of June 2015 during the 7th engineering run (ER7), and outline the improvements made to increase the performance and lower the latency of the algorithms on real data. This work provides an important test for understanding the performance of these methods on real, non stationary data in preparation for the second advanced gravitational-wave detector observation run, planned for later this year. We show that all methods can classify transients in non stationary data with a high level of accuracy and show the benefits of using multiple classifiers.

  9. Thermal- and pressure-induced cooperative spin transition in the 2D and 3D coordination polymers {Fe(5-Br-pmd)z[M(CN)x]y} (M=AgI, AuI, NiII, PdII, PtII).

    PubMed

    Agustí, Gloria; Gaspar, Ana Belén; Muñoz, M Carmen; Real, José Antonio

    2007-11-12

    A new family of cyanide-based spin-crossover polymers with the general formula {Fe(5-Br-pmd)z[M(CN)x]y} [M=AgI (1), AuI (2), NiII (3), PdII (4), PtII (5); 5-Br-pmd=5-bromopyrimidine; z=1 or 2, x=2 or 4, and y=2 or 1] have been synthesized and characterized using single-crystal X-ray diffraction (XRD), X-ray powder diffraction (XRPD), magnetic susceptibility measurements, and differential scanning calorimetry (DSC). At 293 K, compound 1 presents the monoclinic space group C2/c, whereas at 120 K, it changes to the monoclinic space group P21/c. At 293 K, the crystal structure of 1 displays an uninodal three-dimensional network whose nodes, constituted of FeII, lie at the inversion center of an elongated octahedron. The equatorial bond lengths are defined by the N atoms of four [AgI(CN)2]- groups belonging to two crystallographically nonequivalent AgI atoms, Ag(1) and Ag(2). They are shorter than those of the axial positions occupied by the N atoms of the 5-Br-pmd ligands. The Fe-N average bond length of 2.1657(7) A is consistent with a high-spin (HS) state for the FeII ions. At 120 K, the crystal structure changes refer mainly to the FeII environment. There are two crystallographically independent FeII ions at this temperature, Fe(1) and Fe(2), which adopt the HS and low-spin (LS) states, respectively. The average Fe-N bond length for Fe(1) [2.174(5) A] and Fe(2) [1.955(5) A] agrees well with the reported magnetic data at this temperature. The spin transition of the FeII ions labeled as Fe(1) is found to be centered at Tc downward arrow=149 K and Tc upward arrow=167 K and accompanied by a drastic change of color from orange (HS) to red (LS). Magnetic susceptibility measurements under applied hydrostatic pressure performed on 1 have shown a linear displacement of the transition to higher temperatures while the hysteresis width remains unaltered in the interval of pressures of 105 Pa to 0.34 GPa. A further increase of the pressure induces the spin transition in the Fe(2

  10. Volumetric elasticity imaging with a 2-D CMUT array.

    PubMed

    Fisher, Ted G; Hall, Timothy J; Panda, Satchi; Richards, Michael S; Barbone, Paul E; Jiang, Jingfeng; Resnick, Jeff; Barnes, Steve

    2010-06-01

    This article reports the use of a two-dimensional (2-D) capacitive micro-machined ultrasound transducer (CMUT) to acquire radio-frequency (RF) echo data from relatively large volumes of a simple ultrasound phantom to compare three-dimensional (3-D) elasticity imaging methods. Typical 2-D motion tracking for elasticity image formation was compared with three different methods of 3-D motion tracking, with sum-squared difference (SSD) used as the similarity measure. Differences among the algorithms were the degree to which they tracked elevational motion: not at all (2-D search), planar search, combination of multiple planes and plane independent guided search. The cross-correlation between the predeformation and motion-compensated postdeformation RF echo fields was used to quantify motion tracking accuracy. The lesion contrast-to-noise ratio was used to quantify image quality. Tracking accuracy and strain image quality generally improved with increased tracking sophistication. When used as input for a 3-D modulus reconstruction, high quality 3-D displacement estimates yielded accurate and low noise modulus reconstruction.

  11. Volumetric Elasticity Imaging with a 2D CMUT Array

    PubMed Central

    Fisher, Ted G.; Hall, Timothy J.; Panda, Satchi; Richards, Michael S.; Barbone, Paul E.; Jiang, Jingfeng; Resnick, Jeff; Barnes, Steve

    2010-01-01

    This paper reports the use of a two-dimensional (2D) capacitive micro-machined ultrasound transducer (CMUT) to acquire radio frequency (RF) echo data from relatively large volumes of a simple ultrasound phantom to compare 3D elasticity imaging methods. Typical 2D motion tracking for elasticity image formation was compared to three different methods of 3D motion tracking, with sum-squared difference (SSD) used as the similarity measure. Differences among the algorithms were the degree to which they tracked elevational motion: not at all (2D search), planar search, combination of multiple planes, and plane independent guided search. The cross correlation between the pre-deformation and motion-compensated post-deformation RF echo fields was used to quantify motion tracking accuracy. The lesion contrast-to-noise ratio was used to quantify image quality. Tracking accuracy and strain image quality generally improved with increased tracking sophistication. When used as input for a 3D modulus reconstruction, high quality 3D displacement estimates yielded accurate and low noise modulus reconstruction. PMID:20510188

  12. Competing coexisting phases in 2D water

    NASA Astrophysics Data System (ADS)

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-05-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules.

  13. Competing coexisting phases in 2D water

    PubMed Central

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-01-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules. PMID:27185018

  14. Two novel Krebs-type polyoxoanions [Cu I2(WO 2) 2(β-XW 9O 33) 2] 12- (X = Sb III, Bi III) resulting in 2D layer structures linked by copper(I) ions and copper(II) complex groups

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Liu, Shuxia; Feng, Dan; Zhang, Chundan; Sun, Ping; Ma, Fengji

    2009-11-01

    Two sandwich-type organic-inorganic hybrid polyoxotungstates [enH 2] 5[Cu II(en) 2][Cu I2(WO 2) 2(β-SbW 9O 33) 2]·16H 2O ( 1) and [enH 2] 5[Cu II(en) 2][Cu I2(WO 2) 2(β-BiW 9O 33) 2]·22H 2O ( 2) (en = ethylenediamine) have been synthesized hydrothermally and structurally characterized by elemental analyses, IR spectra, thermal stability analyses, X-ray powder diffraction, and single-crystal X-ray diffraction. The polyoxoanions in 1 and 2 are composed of two trivacant (B-β-XW 9O 33) 9- (X = Sb III ( 1), Bi III ( 2)) subunits joined together by two Cu(I) ions and two W(VI) ions resulting in two novel Krebs-type sandwich structures. These polyoxoanions are further connected by Cu(I) ions and [Cu II(en) 2] 2+ coordination cations, and afford the first copper(I)-linked 2D layer structure constructed from Krebs-type polyoxotungstates. Additionally, the electrochemical behavior and electrocatalysis of 1 and 2 modified carbon paste electrodes (CPEs) have been studied. The results indicate that they have good electrocatalytic activities toward the reduction of nitrite.

  15. Controlling avalanche criticality in 2D nano arrays

    PubMed Central

    Zohar, Y. C.; Yochelis, S.; Dahmen, K. A.; Jung, G.; Paltiel, Y.

    2013-01-01

    Many physical systems respond to slowly changing external force through avalanches spanning broad range of sizes. Some systems crackle even without apparent external force, such as bursts of neuronal activity or charge transfer avalanches in 2D molecular layers. Advanced development of theoretical models describing disorder-induced critical phenomena calls for experiments probing the dynamics upon tuneable disorder. Here we show that isomeric structural transitions in 2D organic self-assembled monolayer (SAM) exhibit critical dynamics with experimentally tuneable disorder. The system consists of field effect transistor coupled through SAM to illuminated semiconducting nanocrystals (NCs). Charges photoinduced in NCs are transferred through SAM to the transistor surface and modulate its conductivity. Avalanches of isomeric structural transitions are revealed by measuring the current noise I(t) of the transistor. Accumulated surface traps charges reduce dipole moments of the molecules, decrease their coupling, and thus decrease the critical disorder of the SAM enabling its tuning during experiments. PMID:23677142

  16. Controlling avalanche criticality in 2D nano arrays.

    PubMed

    Zohar, Y C; Yochelis, S; Dahmen, K A; Jung, G; Paltiel, Y

    2013-01-01

    Many physical systems respond to slowly changing external force through avalanches spanning broad range of sizes. Some systems crackle even without apparent external force, such as bursts of neuronal activity or charge transfer avalanches in 2D molecular layers. Advanced development of theoretical models describing disorder-induced critical phenomena calls for experiments probing the dynamics upon tuneable disorder. Here we show that isomeric structural transitions in 2D organic self-assembled monolayer (SAM) exhibit critical dynamics with experimentally tuneable disorder. The system consists of field effect transistor coupled through SAM to illuminated semiconducting nanocrystals (NCs). Charges photoinduced in NCs are transferred through SAM to the transistor surface and modulate its conductivity. Avalanches of isomeric structural transitions are revealed by measuring the current noise I(t) of the transistor. Accumulated surface traps charges reduce dipole moments of the molecules, decrease their coupling, and thus decrease the critical disorder of the SAM enabling its tuning during experiments.

  17. 23 CFR 772.19 - Construction noise.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 23 Highways 1 2014-04-01 2014-04-01 false Construction noise. 772.19 Section 772.19 Highways... ABATEMENT OF HIGHWAY TRAFFIC NOISE AND CONSTRUCTION NOISE § 772.19 Construction noise. For all Type I and II projects, a highway agency shall: (a) Identify land uses or activities that may be affected by noise...

  18. 23 CFR 772.19 - Construction noise.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 23 Highways 1 2013-04-01 2013-04-01 false Construction noise. 772.19 Section 772.19 Highways... ABATEMENT OF HIGHWAY TRAFFIC NOISE AND CONSTRUCTION NOISE § 772.19 Construction noise. For all Type I and II projects, a highway agency shall: (a) Identify land uses or activities that may be affected by noise...

  19. Quantitative 2D liquid-state NMR.

    PubMed

    Giraudeau, Patrick

    2014-06-01

    Two-dimensional (2D) liquid-state NMR has a very high potential to simultaneously determine the absolute concentration of small molecules in complex mixtures, thanks to its capacity to separate overlapping resonances. However, it suffers from two main drawbacks that probably explain its relatively late development. First, the 2D NMR signal is strongly molecule-dependent and site-dependent; second, the long duration of 2D NMR experiments prevents its general use for high-throughput quantitative applications and affects its quantitative performance. Fortunately, the last 10 years has witnessed an increasing number of contributions where quantitative approaches based on 2D NMR were developed and applied to solve real analytical issues. This review aims at presenting these recent efforts to reach a high trueness and precision in quantitative measurements by 2D NMR. After highlighting the interest of 2D NMR for quantitative analysis, the different strategies to determine the absolute concentrations from 2D NMR spectra are described and illustrated by recent applications. The last part of the manuscript concerns the recent development of fast quantitative 2D NMR approaches, aiming at reducing the experiment duration while preserving - or even increasing - the analytical performance. We hope that this comprehensive review will help readers to apprehend the current landscape of quantitative 2D NMR, as well as the perspectives that may arise from it.

  20. Experimental validation of 2-D generalized geometric super resolved approach

    NASA Astrophysics Data System (ADS)

    Borkowski, Amikam; Zalevsky, Zeev; Cohen, Nadav; Hadas, Zadok; Marom, Emanuel; Javidi, Bahram

    2014-01-01

    In this paper, we generalize the method of using a 2-D moving binary random mask to overcome the geometrical resolution limitation of an imaging sensor. The spatial blurring is caused by the size of the imaging sensor pixels which yield insufficient spatial sampling. The mask is placed in an intermediate image plane and can be shifted in any direction while keeping the sensor as well as all other optical components fixed. Out of the set of images that are captured and registered, a high resolution image can be composed. In addition, this proposed approach reduces the amount of required computations and it has an improved robustness to spatial noise.

  1. Annotated Bibliography of EDGE2D Use

    SciTech Connect

    J.D. Strachan and G. Corrigan

    2005-06-24

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.

  2. Staring 2-D hadamard transform spectral imager

    DOEpatents

    Gentry, Stephen M.; Wehlburg, Christine M.; Wehlburg, Joseph C.; Smith, Mark W.; Smith, Jody L.

    2006-02-07

    A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.

  3. Photoplethysmograph signal reconstruction based on a novel motion artifact detection-reduction approach. Part II: Motion and noise artifact removal.

    PubMed

    Salehizadeh, S M A; Dao, Duy K; Chong, Jo Woon; McManus, David; Darling, Chad; Mendelson, Yitzhak; Chon, Ki H

    2014-11-01

    We introduce a new method to reconstruct motion and noise artifact (MNA) contaminated photoplethysmogram (PPG) data. A method to detect MNA corrupted data is provided in a companion paper. Our reconstruction algorithm is based on an iterative motion artifact removal (IMAR) approach, which utilizes the singular spectral analysis algorithm to remove MNA artifacts so that the most accurate estimates of uncorrupted heart rates (HRs) and arterial oxygen saturation (SpO2) values recorded by a pulse oximeter can be derived. Using both computer simulations and three different experimental data sets, we show that the proposed IMAR approach can reliably reconstruct MNA corrupted data segments, as the estimated HR and SpO2 values do not significantly deviate from the uncorrupted reference measurements. Comparison of the accuracy of reconstruction of the MNA corrupted data segments between our IMAR approach and the time-domain independent component analysis (TD-ICA) is made for all data sets as the latter method has been shown to provide good performance. For simulated data, there were no significant differences in the reconstructed HR and SpO2 values starting from 10 dB down to -15 dB for both white and colored noise contaminated PPG data using IMAR; for TD-ICA, significant differences were observed starting at 10 dB. Two experimental PPG data sets were created with contrived MNA by having subjects perform random forehead and rapid side-to-side finger movements show that; the performance of the IMAR approach on these data sets was quite accurate as non-significant differences in the reconstructed HR and SpO2 were found compared to non-contaminated reference values, in most subjects. In comparison, the accuracy of the TD-ICA was poor as there were significant differences in reconstructed HR and SpO2 values in most subjects. For non-contrived MNA corrupted PPG data, which were collected with subjects performing walking and stair climbing tasks, the IMAR significantly

  4. Optical CDMA system using 2-D run-length limited code

    NASA Astrophysics Data System (ADS)

    Liu, Maw-Yang; Jiang, Joe-Air

    2010-10-01

    In this paper, time-spreading wavelength-hopping optical CDMA system using 2-D run-length limited code is investigated. The run-length limited code we use here is predicated upon spatial coding scheme, which can improve system performance significantly. In our proposed system, we employ carrier-hopping prime code and its shifted version as signature sequences. Based on the zero auto-correlation sidelobes property of signature sequence, we propose a two-state trellis coding architecture, which utilizes 2-D parallel detection scheme. The proposed scheme is compact and simple that can be applied to more complicated trellis to further enhance system performance. Multiple access interference is the main deterioration factor in optical CDMA system that affects system performance adversely. Aside from the multiple access interference, some of the adverse impacts of system performance are also taken into consideration, which include thermal noise, shot noise, relative intensity noise, and beat noise.

  5. Rotorcraft noise

    NASA Technical Reports Server (NTRS)

    Huston, R. J. (Compiler)

    1982-01-01

    The establishment of a realistic plan for NASA and the U.S. helicopter industry to develop a design-for-noise methodology, including plans for the identification and development of promising noise reduction technology was discussed. Topics included: noise reduction techniques, scaling laws, empirical noise prediction, psychoacoustics, and methods of developing and validing noise prediction methods.

  6. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-01-01

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  7. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-12-31

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  8. Brittle damage models in DYNA2D

    SciTech Connect

    Faux, D.R.

    1997-09-01

    DYNA2D is an explicit Lagrangian finite element code used to model dynamic events where stress wave interactions influence the overall response of the system. DYNA2D is often used to model penetration problems involving ductile-to-ductile impacts; however, with the advent of the use of ceramics in the armor-anti-armor community and the need to model damage to laser optics components, good brittle damage models are now needed in DYNA2D. This report will detail the implementation of four brittle damage models in DYNA2D, three scalar damage models and one tensor damage model. These new brittle damage models are then used to predict experimental results from three distinctly different glass damage problems.

  9. 2D/3D switchable displays

    NASA Astrophysics Data System (ADS)

    Dekker, T.; de Zwart, S. T.; Willemsen, O. H.; Hiddink, M. G. H.; IJzerman, W. L.

    2006-02-01

    A prerequisite for a wide market acceptance of 3D displays is the ability to switch between 3D and full resolution 2D. In this paper we present a robust and cost effective concept for an auto-stereoscopic switchable 2D/3D display. The display is based on an LCD panel, equipped with switchable LC-filled lenticular lenses. We will discuss 3D image quality, with the focus on display uniformity. We show that slanting the lenticulars in combination with a good lens design can minimize non-uniformities in our 20" 2D/3D monitors. Furthermore, we introduce fractional viewing systems as a very robust concept to further improve uniformity in the case slanting the lenticulars and optimizing the lens design are not sufficient. We will discuss measurements and numerical simulations of the key optical characteristics of this display. Finally, we discuss 2D image quality, the switching characteristics and the residual lens effect.

  10. 2-d Finite Element Code Postprocessor

    SciTech Connect

    Sanford, L. A.; Hallquist, J. O.

    1996-07-15

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  11. Chemical Approaches to 2D Materials.

    PubMed

    Samorì, Paolo; Palermo, Vincenzo; Feng, Xinliang

    2016-08-01

    Chemistry plays an ever-increasing role in the production, functionalization, processing and applications of graphene and other 2D materials. This special issue highlights a selection of enlightening chemical approaches to 2D materials, which nicely reflect the breadth of the field and convey the excitement of the individuals involved in it, who are trying to translate graphene and related materials from the laboratory into a real, high-impact technology.

  12. A novel hybrid motion detection algorithm based on 2D histogram

    NASA Astrophysics Data System (ADS)

    Su, Xiaomeng; Wang, Haiying

    2015-03-01

    This article proposes a novel hybrid motion detection algorithm based on 2-D (2-Dimensional) spatio-temporal states histogram. The new algorithm combines the idea of image change detection based on 2-D histogram and spatio-temporal entropy image segmentation. It quantifies the continuity of pixel state in time and space domain which are called TDF (Time Domain Filter) and SDF (Space Domain Filter) respectively. After this, put both channels of output data from TDF and SDF into a 2-D histogram. In the 2-D histogram, a curve division method helps to separate the foreground state points and the background ones more accurately. Innovatively, the new algorithm converts the video sequence to its histogram sequence, and transforms the difference of pixel's value in the video sequence into the difference of pixel's position in the 2-D histogram. Experimental results on different types of scenes added Gaussian noise shows that the proposed technique has strong ability of detecting moving objects.

  13. Generation of two-mode bright squeezed light using a noise-suppressed amplified diode laser.

    PubMed

    Zhang, Yun; Hayasaka, Kazuhiro; Kasai, Katsuyuki

    2006-12-25

    We present the generation of nonclassical state using an amplified diode laser as a light source. The intensity noise of an amplified diode laser was significantly suppressed and reached the shot noise limit at 15 MHz using both a filter cavity and resonant optical feedback. Frequency doubling efficiency of 66% and up to 120 mW output power of green has been achieved in cw second-harmonic generation from 1080 nm to 540 nm. Bright two-mode amplitude-squeezed state was generated from a type-II nondegenerate optical parametric amplifier pumped by generated green light. The measured noise reduction is 2.1+/-0.2 dB below the shot-noise level.

  14. Fully automated 2D-3D registration and verification.

    PubMed

    Varnavas, Andreas; Carrell, Tom; Penney, Graeme

    2015-12-01

    Clinical application of 2D-3D registration technology often requires a significant amount of human interaction during initialisation and result verification. This is one of the main barriers to more widespread clinical use of this technology. We propose novel techniques for automated initial pose estimation of the 3D data and verification of the registration result, and show how these techniques can be combined to enable fully automated 2D-3D registration, particularly in the case of a vertebra based system. The initialisation method is based on preoperative computation of 2D templates over a wide range of 3D poses. These templates are used to apply the Generalised Hough Transform to the intraoperative 2D image and the sought 3D pose is selected with the combined use of the generated accumulator arrays and a Gradient Difference Similarity Measure. On the verification side, two algorithms are proposed: one using normalised features based on the similarity value and the other based on the pose agreement between multiple vertebra based registrations. The proposed methods are employed here for CT to fluoroscopy registration and are trained and tested with data from 31 clinical procedures with 417 low dose, i.e. low quality, high noise interventional fluoroscopy images. When similarity value based verification is used, the fully automated system achieves a 95.73% correct registration rate, whereas a no registration result is produced for the remaining 4.27% of cases (i.e. incorrect registration rate is 0%). The system also automatically detects input images outside its operating range.

  15. Half-metallicity in 2D organometallic honeycomb frameworks.

    PubMed

    Sun, Hao; Li, Bin; Zhao, Jin

    2016-10-26

    Half-metallic materials with a high Curie temperature (T C) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d-p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule-CN-noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology.

  16. Half-metallicity in 2D organometallic honeycomb frameworks

    NASA Astrophysics Data System (ADS)

    Sun, Hao; Li, Bin; Zhao, Jin

    2016-10-01

    Half-metallic materials with a high Curie temperature (T C) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d-p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule—CN—noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology.

  17. Noise and Phase Transitions

    NASA Astrophysics Data System (ADS)

    Chen, Zhi; Yu, Clare C.

    2006-03-01

    Noise is present in many physical systems and is often viewed as a nuisance. Yet it can also be a probe of microscopic fluctuations. There have been indications recently that the noise in the resistivity increases in the vicinity of the metal-insulator transition. But what are the characteristics of the noise associated with well-understood first and second order phase transitions? It is well known that critical fluctuations are associated with second order phase transitions, but do these fluctuations lead to enhanced noise? We have addressed these questions using Monte Carlo simulations to study the noise in the 2D Ising model which undergoes a second order phase transition, and in the 5-state Potts model which undergoes a first order phase transition. We monitor these systems as the temperature drops below the critical temperature. At each temperature, after equilibration is established, we obtain the time series of quantities characterizing the properties of the system, i.e., the energy and magnetization per site. We apply different methods, such as the noise power spectrum, the Detrended Fluctuation Analysis (DFA) and the second spectrum of the noise, to analyze the fluctuations in these quantities.

  18. Conjugation of organoruthenium(II) 3-(1H-benzimidazol-2-yl)pyrazolo[3,4-b]pyridines and indolo[3,2-d]benzazepines to recombinant human serum albumin: a strategy to enhance cytotoxicity in cancer cells.

    PubMed

    Stepanenko, Iryna N; Casini, Angela; Edafe, Fabio; Novak, Maria S; Arion, Vladimir B; Dyson, Paul J; Jakupec, Michael A; Keppler, Bernhard K

    2011-12-19

    Following our strategy of coupling cyclin-dependent kinase (Cdk) inhibitors with organometallic moieties to improve their physicochemical properties and bioavailability, five organoruthenium complexes (1c-5c) of the general formula [RuCl(η(6)-arene)(L)]Cl have been synthesized in which the arene is 4-formylphenoxyacetyl-η(6)-benzylamide and L is a Cdk inhibitor [3-(1H-benzimidazol-2-yl)-1H-pyrazolo[3,4-b]pyridines (L1-L3) and indolo[3,2-d]benzazepines (L4 and L5)]. All of the compounds were characterized by spectroscopic and analytical methods. Upon prolonged standing (2-3 months) at room temperature, the dimethyl sulfoxide (DMSO) solutions of 1c and 2c(-HCl) afforded residues, which after recrystallization from EtOH and EtOH/H(2)O, respectively, were shown by X-ray diffraction to be cis,cis-[Ru(II)Cl(2)(DMSO)(2)(L1)]·H(2)O and mer-[Ru(II)Cl(DMSO)(3)(L2-H)]·H(2)O. Compound 5c, with a coordinated amidine unit, undergoes E/Z isomerization in solution. The antiproliferative activities and effects on the cell cycle of the new compounds were evaluated. Complexes 1c-5c are moderately cytotoxic to cancer cells (CH1, SW480, A549, A2780, and A2780cisR cell lines). Therefore, in order to improve their antiproliferative effects, as well as their drug targeting and delivery to cancer cells, 1c-5c were conjugated to recombinant human serum albumin, potentially exploiting the so-called "enhanced permeability and retention" effect that results in the accumulation of macromolecules in tumors. Notably, a marked increase in cytotoxicity of the albumin conjugates was observed in all cases.

  19. Comparison of Ising spin glass noise to flux and inductance noise in SQUIDs.

    PubMed

    Chen, Zhi; Yu, Clare C

    2010-06-18

    Recent experiments implicate spins on the surface of metals as the source of flux and inductance noise in SQUIDs. We present Monte Carlo simulations of 2D and 3D Ising spin glasses that produce magnetization noise S(M) consistent with flux noise. At low frequencies S(M) is a maximum at the critical temperature T(C) in three dimensions, implying that flux noise should be a maximum at T(C). The second spectra of the magnetization noise and the noise in the susceptibility are consistent with experimentally measured SQUID inductance noise.

  20. 2D Magneto-Optical Trapping of Diatomic Molecules

    NASA Astrophysics Data System (ADS)

    Hummon, Matthew T.; Yeo, Mark; Stuhl, Benjamin K.; Collopy, Alejandra L.; Xia, Yong; Ye, Jun

    2013-04-01

    We demonstrate one- and two-dimensional transverse laser cooling and magneto-optical trapping of the polar molecule yttrium (II) oxide (YO). In a 1D magneto-optical trap (MOT), we characterize the magneto-optical trapping force and decrease the transverse temperature by an order of magnitude, from 25 to 2 mK, limited by interaction time. In a 2D MOT, we enhance the intensity of the YO beam and reduce the transverse temperature in both transverse directions. The approach demonstrated here can be applied to many molecular species and can also be extended to 3D.

  1. 23 CFR 772.19 - Construction noise.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 23 Highways 1 2012-04-01 2012-04-01 false Construction noise. 772.19 Section 772.19 Highways... ABATEMENT OF HIGHWAY TRAFFIC NOISE AND CONSTRUCTION NOISE § 772.19 Construction noise. For all Type I and II... construction of the project. The identification is to be performed during the project development studies....

  2. Orthotropic Piezoelectricity in 2D Nanocellulose

    NASA Astrophysics Data System (ADS)

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-10-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V‑1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.

  3. Orthotropic Piezoelectricity in 2D Nanocellulose

    PubMed Central

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-01-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V−1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies. PMID:27708364

  4. Orthotropic Piezoelectricity in 2D Nanocellulose.

    PubMed

    García, Y; Ruiz-Blanco, Yasser B; Marrero-Ponce, Yovani; Sotomayor-Torres, C M

    2016-10-06

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V(-1), ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.

  5. 2D microwave imaging reflectometer electronics

    SciTech Connect

    Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.

    2014-11-15

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  6. Large Area Synthesis of 2D Materials

    NASA Astrophysics Data System (ADS)

    Vogel, Eric

    Transition metal dichalcogenides (TMDs) have generated significant interest for numerous applications including sensors, flexible electronics, heterostructures and optoelectronics due to their interesting, thickness-dependent properties. Despite recent progress, the synthesis of high-quality and highly uniform TMDs on a large scale is still a challenge. In this talk, synthesis routes for WSe2 and MoS2 that achieve monolayer thickness uniformity across large area substrates with electrical properties equivalent to geological crystals will be described. Controlled doping of 2D semiconductors is also critically required. However, methods established for conventional semiconductors, such as ion implantation, are not easily applicable to 2D materials because of their atomically thin structure. Redox-active molecular dopants will be demonstrated which provide large changes in carrier density and workfunction through the choice of dopant, treatment time, and the solution concentration. Finally, several applications of these large-area, uniform 2D materials will be described including heterostructures, biosensors and strain sensors.

  7. 2D microwave imaging reflectometer electronics.

    PubMed

    Spear, A G; Domier, C W; Hu, X; Muscatello, C M; Ren, X; Tobias, B J; Luhmann, N C

    2014-11-01

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  8. Assessing 2D electrophoretic mobility spectroscopy (2D MOSY) for analytical applications.

    PubMed

    Fang, Yuan; Yushmanov, Pavel V; Furó, István

    2016-12-08

    Electrophoretic displacement of charged entity phase modulates the spectrum acquired in electrophoretic NMR experiments, and this modulation can be presented via 2D FT as 2D mobility spectroscopy (MOSY) spectra. We compare in various mixed solutions the chemical selectivity provided by 2D MOSY spectra with that provided by 2D diffusion-ordered spectroscopy (DOSY) spectra and demonstrate, under the conditions explored, a superior performance of the former method. 2D MOSY compares also favourably with closely related LC-NMR methods. The shape of 2D MOSY spectra in complex mixtures is strongly modulated by the pH of the sample, a feature that has potential for areas such as in drug discovery and metabolomics. Copyright © 2016 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd. StartCopTextCopyright © 2016 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd.

  9. 2D Distributed Sensing Via TDR

    DTIC Science & Technology

    2007-11-02

    plate VEGF CompositeSensor Experimental Setup Air 279 mm 61 78 VARTM profile: slope RTM profile: rectangle 22 1 Jul 2003© 2003 University of Delaware...2003 University of Delaware All rights reserved Vision: Non-contact 2D sensing ü VARTM setup constructed within TL can be sensed by its EM field: 2D...300.0 mm/ns. 1 2 1 Jul 2003© 2003 University of Delaware All rights reserved Model Validation “ RTM Flow” TDR Response to 139 mm VEGC

  10. Inkjet printing of 2D layered materials.

    PubMed

    Li, Jiantong; Lemme, Max C; Östling, Mikael

    2014-11-10

    Inkjet printing of 2D layered materials, such as graphene and MoS2, has attracted great interests for emerging electronics. However, incompatible rheology, low concentration, severe aggregation and toxicity of solvents constitute critical challenges which hamper the manufacturing efficiency and product quality. Here, we introduce a simple and general technology concept (distillation-assisted solvent exchange) to efficiently overcome these challenges. By implementing the concept, we have demonstrated excellent jetting performance, ideal printing patterns and a variety of promising applications for inkjet printing of 2D layered materials.

  11. Analysis of stochastic phenomena in 2D Hindmarsh-Rose neuron model

    NASA Astrophysics Data System (ADS)

    Bashkirtseva, I.; Ryashko, L.; Slepukhina, E.

    2016-10-01

    In mathematical research of neuronal activity, conceptual models play an important role. We consider 2D Hindmarsh-Rose model, which exhibits the fundamental property of neuron, the excitability. We study how random disturbances affect this property. The effects of noise are analysed in the parametric zone where the deterministic model is characterized by the coexistence of two stable equilibria. We show that under random disturbances, noise-induced transitions between the attractors occur, forming a new complex dynamic regime of stochastic bursting. It is confirmed by changes of distribution of random trajectories and interspike intervals. For the analysis of this noise-induced phenomenon, we apply the stochastic sensitivity technique and confidence domains method. We suggest a method for estimation of threshold noise intensity corresponding to the onset of noise-induced bursting. We show that the obtained values are in a good agreement with direct numerical simulations.

  12. Airport noise

    NASA Technical Reports Server (NTRS)

    Pendley, R. E.

    1982-01-01

    The problem of airport noise at several airports and air bases is detailed. Community reactions to the noise, steps taken to reduce jet engine noise, and the effect of airport use restrictions and curfews on air transportation are discussed. The adverse effect of changes in allowable operational noise on airport safety and altenative means for reducing noise pollution are considered. Community-airport relations and public relations are discussed.

  13. Combustion noise

    NASA Technical Reports Server (NTRS)

    Strahle, W. C.

    1977-01-01

    A review of the subject of combustion generated noise is presented. Combustion noise is an important noise source in industrial furnaces and process heaters, turbopropulsion and gas turbine systems, flaring operations, Diesel engines, and rocket engines. The state-of-the-art in combustion noise importance, understanding, prediction and scaling is presented for these systems. The fundamentals and available theories of combustion noise are given. Controversies in the field are discussed and recommendations for future research are made.

  14. Bayesian 2D Current Reconstruction from Magnetic Images

    NASA Astrophysics Data System (ADS)

    Clement, Colin B.; Bierbaum, Matthew K.; Nowack, Katja; Sethna, James P.

    We employ a Bayesian image reconstruction scheme to recover 2D currents from magnetic flux imaged with scanning SQUIDs (Superconducting Quantum Interferometric Devices). Magnetic flux imaging is a versatile tool to locally probe currents and magnetic moments, however present reconstruction methods sacrifice resolution due to numerical instability. Using state-of-the-art blind deconvolution techniques we recover the currents, point-spread function and height of the SQUID loop by optimizing the probability of measuring an image. We obtain uncertainties on these quantities by sampling reconstructions. This generative modeling technique could be used to develop calibration protocols for scanning SQUIDs, to diagnose systematic noise in the imaging process, and can be applied to many tools beyond scanning SQUIDs.

  15. Parallel Stitching of 2D Materials.

    PubMed

    Ling, Xi; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; Hsu, Allen L; Bie, Yaqing; Lee, Yi-Hsien; Zhu, Yimei; Wu, Lijun; Li, Ju; Jarillo-Herrero, Pablo; Dresselhaus, Mildred; Palacios, Tomás; Kong, Jing

    2016-03-23

    Diverse parallel stitched 2D heterostructures, including metal-semiconductor, semiconductor-semiconductor, and insulator-semiconductor, are synthesized directly through selective "sowing" of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. The methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.

  16. The basics of 2D DIGE.

    PubMed

    Beckett, Phil

    2012-01-01

    The technique of two-dimensional (2D) gel electrophoresis is a powerful tool for separating complex mixtures of proteins, but since its inception in the mid 1970s, it acquired the stigma of being a very difficult application to master and was generally used to its best effect by experts. The introduction of commercially available immobilized pH gradients in the early 1990s provided enhanced reproducibility and easier protocols, leading to a pronounced increase in popularity of the technique. However gel-to-gel variation was still difficult to control without the use of technical replicates. In the mid 1990s (at the same time as the birth of "proteomics"), the concept of multiplexing fluorescently labeled proteins for 2D gel separation was realized by Jon Minden's group and has led to the ability to design experiments to virtually eliminate gel-to-gel variation, resulting in biological replicates being used for statistical analysis with the ability to detect very small changes in relative protein abundance. This technology is referred to as 2D difference gel electrophoresis (2D DIGE).

  17. Parallel stitching of 2D materials

    DOE PAGES

    Ling, Xi; Wu, Lijun; Lin, Yuxuan; ...

    2016-01-27

    Diverse parallel stitched 2D heterostructures, including metal–semiconductor, semiconductor–semiconductor, and insulator–semiconductor, are synthesized directly through selective “sowing” of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. Lastly, the methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.

  18. A method to calibrate a camera using perpendicularity of 2D lines in the target observations

    PubMed Central

    Xu, Guan; Zheng, Anqi; Li, Xiaotao; Su, Jian

    2016-01-01

    Camera calibration based on point features leads the main trends in vision-based measurement systems for both fundamental researches and potential applications. However, the calibration results tend to be affected by the precision of the feature point extraction in the camera images. As the point features are noise sensitive, line features are more appropriate to provide a stable calibration due to the noise immunity of line features. We propose a calibration method using the perpendicularity of the lines on a 2D target. The objective function of the camera internal parameters is theoretically constructed by the reverse projections of the image lines on a 2D target in the world coordinate system. We experimentally explore the performances of the perpendicularity method and compare them with the point feature methods at different distances. By the perpendicularity and the noise immunity of the lines, our work achieves a relatively higher calibration precision. PMID:27713566

  19. A method to calibrate a camera using perpendicularity of 2D lines in the target observations

    NASA Astrophysics Data System (ADS)

    Xu, Guan; Zheng, Anqi; Li, Xiaotao; Su, Jian

    2016-10-01

    Camera calibration based on point features leads the main trends in vision-based measurement systems for both fundamental researches and potential applications. However, the calibration results tend to be affected by the precision of the feature point extraction in the camera images. As the point features are noise sensitive, line features are more appropriate to provide a stable calibration due to the noise immunity of line features. We propose a calibration method using the perpendicularity of the lines on a 2D target. The objective function of the camera internal parameters is theoretically constructed by the reverse projections of the image lines on a 2D target in the world coordinate system. We experimentally explore the performances of the perpendicularity method and compare them with the point feature methods at different distances. By the perpendicularity and the noise immunity of the lines, our work achieves a relatively higher calibration precision.

  20. Low frequency noise assessment in n- and p-channel sub-10 nm triple-gate FinFETs: Part II: Measurements and results

    NASA Astrophysics Data System (ADS)

    Boudier, D.; Cretu, B.; Simoen, E.; Carin, R.; Veloso, A.; Collaert, N.; Thean, A.

    2017-02-01

    Low frequency noise measurements are used as a non-destructive diagnostic tool in order to evaluate the quality of the gate oxide and the silicon film of sub-10 nm triple-gate Silicon-on-Insulator (SOI) FinFETs. It was found that the carrier number fluctuations explain the 1/f noise in moderate inversion for n- and p-FinFETs, which allows estimating the gate oxide trap densities. The noise spectroscopy with respect to temperature (study of the generation-recombination noise) led to the identification of the traps located in the transistors silicon film.

  1. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology

    PubMed Central

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346

  2. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.

    PubMed

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-02-06

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.

  3. VizieR Online Data Catalog: c2d Spitzer final data release (DR4) (Evans+, 2003)

    NASA Astrophysics Data System (ADS)

    Evans, N. J., II; Allen, L. E.; Blake, G. A.; Boogert, A. C. A.; Bourke, T.; Harvey, P. M.; Kessler, J. E.; Koerner, D. W.; Lee, C. W.; Mundy, L. G.; Myers, P. C.; Padgett, D. L.; Pontoppidan, K.; Sargent, A. I.; Stapelfeldt, K. R.; van Dishoeck, E. F.; Young, C. H.; Young, K. E.

    2014-05-01

    This is the final delivery (DR4, Fall 2006 and Fall 2007) of the Spitzer Space Telescope "From Molecular Cores to Planet-Forming Disks" (c2d) Legacy Project. The data are also available as Enhanced Products from the Spitzer Science Center (SSC). c2d has delivered 867 catalogs. IRSA has merged these delivered catalogs into four groups - Clouds, Off-Cloud, Cores, Stars - and serves them through the general catalog search engine Gator. Many of the delivered catalogs, images and spectra are accessible through IRSA's general search service, Atlas. As a service to its users, the CDS has downloaded a dataset containing most of the c2d data (but not all columns) from the IRSA archive. The individual catalogs are listed below: C2D Fall '07 Full CLOUDS Catalog (CHA_II, LUP, OPH, PER, SER) C2D Fall '07 High Reliability (HREL) CLOUDS Catalog (CHA_II, LUP, OPH, PER, SER) C2D Fall '07 candidate Young Stellar Objects (YSO) CLOUDS Catalog (CHA_II, LUP, OPH, PER, SER) C2D Fall '07 Full OFF-CLOUD Catalog (CHA_II, LUP, OPH, PER, SER) C2D Fall '07 candidate Young Stellar Objects (YSO) OFF-CLOUD Catalog (CHA_II, LUP, OPH, PER, SER) C2D Fall '07 Full CORES Catalog C2D Fall '07 candidate Young Stellar Objects (YSO) CORES Catalog C2D Fall '07 Full STARS Catalog C2D Fall '07 candidate Young Stellar Objects (YSO) STARS Catalog These tables have been merged into a single table at CDS. All three SIRTF instruments (Infrared Array Camera [IRAC], Multiband Imaging Photometer for SIRTF [MIPS], and Infrared Spectrograph [IRS]) were used to observe sources that span the evolutionary sequence from molecular cores to protoplanetary disks, encompassing a wide range of cloud masses, stellar masses, and star-forming environments. (1 data file).

  4. Compatible embedding for 2D shape animation.

    PubMed

    Baxter, William V; Barla, Pascal; Anjyo, Ken-Ichi

    2009-01-01

    We present new algorithms for the compatible embedding of 2D shapes. Such embeddings offer a convenient way to interpolate shapes having complex, detailed features. Compared to existing techniques, our approach requires less user input, and is faster, more robust, and simpler to implement, making it ideal for interactive use in practical applications. Our new approach consists of three parts. First, our boundary matching algorithm locates salient features using the perceptually motivated principles of scale-space and uses these as automatic correspondences to guide an elastic curve matching algorithm. Second, we simplify boundaries while maintaining their parametric correspondence and the embedding of the original shapes. Finally, we extend the mapping to shapes' interiors via a new compatible triangulation algorithm. The combination of our algorithms allows us to demonstrate 2D shape interpolation with instant feedback. The proposed algorithms exhibit a combination of simplicity, speed, and accuracy that has not been achieved in previous work.

  5. Schottky diodes from 2D germanane

    NASA Astrophysics Data System (ADS)

    Sahoo, Nanda Gopal; Esteves, Richard J.; Punetha, Vinay Deep; Pestov, Dmitry; Arachchige, Indika U.; McLeskey, James T.

    2016-07-01

    We report on the fabrication and characterization of a Schottky diode made using 2D germanane (hydrogenated germanene). When compared to germanium, the 2D structure has higher electron mobility, an optimal band-gap, and exceptional stability making germanane an outstanding candidate for a variety of opto-electronic devices. One-atom-thick sheets of hydrogenated puckered germanium atoms have been synthesized from a CaGe2 framework via intercalation and characterized by XRD, Raman, and FTIR techniques. The material was then used to fabricate Schottky diodes by suspending the germanane in benzonitrile and drop-casting it onto interdigitated metal electrodes. The devices demonstrate significant rectifying behavior and the outstanding potential of this material.

  6. Extrinsic Cation Selectivity of 2D Membranes

    PubMed Central

    2017-01-01

    From a systematic study of the concentration driven diffusion of positive and negative ions across porous 2D membranes of graphene and hexagonal boron nitride (h-BN), we prove their cation selectivity. Using the current–voltage characteristics of graphene and h-BN monolayers separating reservoirs of different salt concentrations, we calculate the reversal potential as a measure of selectivity. We tune the Debye screening length by exchanging the salt concentrations and demonstrate that negative surface charge gives rise to cation selectivity. Surprisingly, h-BN and graphene membranes show similar characteristics, strongly suggesting a common origin of selectivity in aqueous solvents. For the first time, we demonstrate that the cation flux can be increased by using ozone to create additional pores in graphene while maintaining excellent selectivity. We discuss opportunities to exploit our scalable method to use 2D membranes for applications including osmotic power conversion. PMID:28157333

  7. Static & Dynamic Response of 2D Solids

    SciTech Connect

    Lin, Jerry

    1996-07-15

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surface contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.

  8. Explicit 2-D Hydrodynamic FEM Program

    SciTech Connect

    Lin, Jerry

    1996-08-07

    DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.

  9. Quasiparticle interference in unconventional 2D systems

    NASA Astrophysics Data System (ADS)

    Chen, Lan; Cheng, Peng; Wu, Kehui

    2017-03-01

    At present, research of 2D systems mainly focuses on two kinds of materials: graphene-like materials and transition-metal dichalcogenides (TMDs). Both of them host unconventional 2D electronic properties: pseudospin and the associated chirality of electrons in graphene-like materials, and spin-valley-coupled electronic structures in the TMDs. These exotic electronic properties have attracted tremendous interest for possible applications in nanodevices in the future. Investigation on the quasiparticle interference (QPI) in 2D systems is an effective way to uncover these properties. In this review, we will begin with a brief introduction to 2D systems, including their atomic structures and electronic bands. Then, we will discuss the formation of Friedel oscillation due to QPI in constant energy contours of electron bands, and show the basic concept of Fourier-transform scanning tunneling microscopy/spectroscopy (FT-STM/STS), which can resolve Friedel oscillation patterns in real space and consequently obtain the QPI patterns in reciprocal space. In the next two parts, we will summarize some pivotal results in the investigation of QPI in graphene and silicene, in which systems the low-energy quasiparticles are described by the massless Dirac equation. The FT-STM experiments show there are two different interference channels (intervalley and intravalley scattering) and backscattering suppression, which associate with the Dirac cones and the chirality of quasiparticles. The monolayer and bilayer graphene on different substrates (SiC and metal surfaces), and the monolayer and multilayer silicene on a Ag(1 1 1) surface will be addressed. The fifth part will introduce the FT-STM research on QPI in TMDs (monolayer and bilayer of WSe2), which allow us to infer the spin texture of both conduction and valence bands, and present spin-valley coupling by tracking allowed and forbidden scattering channels.

  10. Compact 2-D graphical representation of DNA

    NASA Astrophysics Data System (ADS)

    Randić, Milan; Vračko, Marjan; Zupan, Jure; Novič, Marjana

    2003-05-01

    We present a novel 2-D graphical representation for DNA sequences which has an important advantage over the existing graphical representations of DNA in being very compact. It is based on: (1) use of binary labels for the four nucleic acid bases, and (2) use of the 'worm' curve as template on which binary codes are placed. The approach is illustrated on DNA sequences of the first exon of human β-globin and gorilla β-globin.

  11. 2D Metals by Repeated Size Reduction.

    PubMed

    Liu, Hanwen; Tang, Hao; Fang, Minghao; Si, Wenjie; Zhang, Qinghua; Huang, Zhaohui; Gu, Lin; Pan, Wei; Yao, Jie; Nan, Cewen; Wu, Hui

    2016-10-01

    A general and convenient strategy for manufacturing freestanding metal nanolayers is developed on large scale. By the simple process of repeatedly folding and calendering stacked metal sheets followed by chemical etching, free-standing 2D metal (e.g., Ag, Au, Fe, Cu, and Ni) nanosheets are obtained with thicknesses as small as 1 nm and with sizes of the order of several micrometers.

  12. Realistic and efficient 2D crack simulation

    NASA Astrophysics Data System (ADS)

    Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek

    2010-04-01

    Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.

  13. Engineering light outcoupling in 2D materials.

    PubMed

    Lien, Der-Hsien; Kang, Jeong Seuk; Amani, Matin; Chen, Kevin; Tosun, Mahmut; Wang, Hsin-Ping; Roy, Tania; Eggleston, Michael S; Wu, Ming C; Dubey, Madan; Lee, Si-Chen; He, Jr-Hau; Javey, Ali

    2015-02-11

    When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells.

  14. Irreversibility-inversions in 2D turbulence

    NASA Astrophysics Data System (ADS)

    Bragg, Andrew; de Lillo, Filippo; Boffetta, Guido

    2016-11-01

    We consider a recent theoretical prediction that for inertial particles in 2D turbulence, the nature of the irreversibility of their pair dispersion inverts when the particle inertia exceeds a certain value. In particular, when the particle Stokes number, St , is below a certain value, the forward-in-time (FIT) dispersion should be faster than the backward-in-time (BIT) dispersion, but for St above this value, this should invert so that BIT becomes faster than FIT dispersion. This non-trivial behavior arises because of the competition between two physically distinct irreversibility mechanisms that operate in different regimes of St . In 3D turbulence, both mechanisms act to produce faster BIT than FIT dispersion, but in 2D, the two mechanisms have opposite effects because of the inverse energy cascade in the turbulent velocity field. We supplement the qualitative argument given by Bragg et al. by deriving quantitative predictions of this effect in the short-time dispersion limit. These predictions are then confirmed by results of inertial particle dispersion in a direct numerical simulation of 2D turbulence.

  15. Analysis of Helicopter Noise Data Using International Helicopter Noise Certification Procedures,

    DTIC Science & Technology

    1986-03-01

    establishes noise levels using the basic testing, reduction and analysis procedures specified by the International Civil Aviation Organization ( ICAO ...for helicopter noise certification supplemented with some procedural refinements contained in ICAO Working Group II recommendations for incorporation...Noise levels are plotted versus the logarithm of maximum gross takeoff weight and are shown relative to the ICAO noise level limits. Data from the ICAO

  16. 2D superconductivity by ionic gating

    NASA Astrophysics Data System (ADS)

    Iwasa, Yoshi

    2D superconductivity is attracting a renewed interest due to the discoveries of new highly crystalline 2D superconductors in the past decade. Superconductivity at the oxide interfaces triggered by LaAlO3/SrTiO3 has become one of the promising routes for creation of new 2D superconductors. Also, the MBE grown metallic monolayers including FeSe are also offering a new platform of 2D superconductors. In the last two years, there appear a variety of monolayer/bilayer superconductors fabricated by CVD or mechanical exfoliation. Among these, electric field induced superconductivity by electric double layer transistor (EDLT) is a unique platform of 2D superconductivity, because of its ability of high density charge accumulation, and also because of the versatility in terms of materials, stemming from oxides to organics and layered chalcogenides. In this presentation, the following issues of electric filed induced superconductivity will be addressed; (1) Tunable carrier density, (2) Weak pinning, (3) Absence of inversion symmetry. (1) Since the sheet carrier density is quasi-continuously tunable from 0 to the order of 1014 cm-2, one is able to establish an electronic phase diagram of superconductivity, which will be compared with that of bulk superconductors. (2) The thickness of superconductivity can be estimated as 2 - 10 nm, dependent on materials, and is much smaller than the in-plane coherence length. Such a thin but low resistance at normal state results in extremely weak pinning beyond the dirty Boson model in the amorphous metallic films. (3) Due to the electric filed, the inversion symmetry is inherently broken in EDLT. This feature appears in the enhancement of Pauli limit of the upper critical field for the in-plane magnetic fields. In transition metal dichalcogenide with a substantial spin-orbit interactions, we were able to confirm the stabilization of Cooper pair due to its spin-valley locking. This work has been supported by Grant-in-Aid for Specially

  17. Community noise

    NASA Technical Reports Server (NTRS)

    Bragdon, C. R.

    1982-01-01

    Airport and community land use planning as they relate to airport noise reduction are discussed. Legislation, community relations, and the physiological effect of airport noise are considered. Noise at the Logan, Los Angeles, and Minneapolis/St. Paul airports is discussed.

  18. 2-D nonlinear IIR-filters for image processing - An exploratory analysis

    NASA Technical Reports Server (NTRS)

    Bauer, P. H.; Sartori, M.

    1991-01-01

    A new nonlinear IIR filter structure is introduced and its deterministic properties are analyzed. It is shown to be better suited for image processing applications than its linear shift-invariant counterpart. The new structure is obtained from causality inversion of a 2D quarterplane causal linear filter with respect to the two directions of propagation. It is demonstrated, that by using this design, a nonlinear 2D lowpass filter can be constructed, which is capable of effectively suppressing Gaussian or impulse noise without destroying important image information.

  19. 3-D Deep Penetration Photoacoustic Imaging with a 2-D CMUT Array.

    PubMed

    Ma, Te-Jen; Kothapalli, Sri Rajasekhar; Vaithilingam, Srikant; Oralkan, Omer; Kamaya, Aya; Wygant, Ira O; Zhuang, Xuefeng; Gambhir, Sanjiv S; Jeffrey, R Brooke; Khuri-Yakub, Butrus T

    2010-10-11

    In this work, we demonstrate 3-D photoacoustic imaging of optically absorbing targets embedded as deep as 5 cm inside a highly scattering background medium using a 2-D capacitive micromachined ultrasonic transducer (CMUT) array with a center frequency of 5.5 MHz. 3-D volumetric images and 2-D maximum intensity projection images are presented to show the objects imaged at different depths. Due to the close proximity of the CMUT to the integrated frontend circuits, the CMUT array imaging system has a low noise floor. This makes the CMUT a promising technology for deep tissue photoacoustic imaging.

  20. Periodically sheared 2D Yukawa systems

    SciTech Connect

    Kovács, Anikó Zsuzsa; Hartmann, Peter; Donkó, Zoltán

    2015-10-15

    We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates.

  1. ENERGY LANDSCAPE OF 2D FLUID FORMS

    SciTech Connect

    Y. JIANG; ET AL

    2000-04-01

    The equilibrium states of 2D non-coarsening fluid foams, which consist of bubbles with fixed areas, correspond to local minima of the total perimeter. (1) The authors find an approximate value of the global minimum, and determine directly from an image how far a foam is from its ground state. (2) For (small) area disorder, small bubbles tend to sort inwards and large bubbles outwards. (3) Topological charges of the same sign repel while charges of opposite sign attract. (4) They discuss boundary conditions and the uniqueness of the pattern for fixed topology.

  2. Codon Constraints on Closed 2D Shapes,

    DTIC Science & Technology

    2014-09-26

    19843$ CODON CONSTRAINTS ON CLOSED 2D SHAPES Go Whitman Richards "I Donald D. Hoffman’ D T 18 Abstract: Codons are simple primitives for describing plane...RSONAL AUT"ORtIS) Richards, Whitman & Hoffman, Donald D. 13&. TYPE OF REPORT 13b. TIME COVERED N/A P8 AT F RRrT t~r. Ago..D,) is, PlE COUNT Reprint...outlines, if figure and ground are ignored. Later, we will address the problem of indexing identical codon descriptors that have different figure

  3. Rayleigh scattering in sapphire test mass for laser interferometric gravitational-wave detectors:. II: Rayleigh scattering induced noise in a laser interferometric-wave detector

    NASA Astrophysics Data System (ADS)

    Benabid, F.; Notcutt, M.; Ju, L.; Blair, D. G.

    1999-10-01

    We present the level of noise induced by Rayleigh-scattered light from sapphire test mass, the limit of scattering loss on build-up power inside the interferometer and finally the tolerable absorption loss in order to meet the specification of the interferometer sensitivity. The results show that the Rayleigh scattering induced noise remains below h˜10 -25 Hz -1/2 and a higher tolerance on the absorption level in sapphire substrate compared with silica substrate.

  4. Remarks on thermalization in 2D CFT

    NASA Astrophysics Data System (ADS)

    de Boer, Jan; Engelhardt, Dalit

    2016-12-01

    We revisit certain aspects of thermalization in 2D conformal field theory (CFT). In particular, we consider similarities and differences between the time dependence of correlation functions in various states in rational and non-rational CFTs. We also consider the distinction between global and local thermalization and explain how states obtained by acting with a diffeomorphism on the ground state can appear locally thermal, and we review why the time-dependent expectation value of the energy-momentum tensor is generally a poor diagnostic of global thermalization. Since all 2D CFTs have an infinite set of commuting conserved charges, generic initial states might be expected to give rise to a generalized Gibbs ensemble rather than a pure thermal ensemble at late times. We construct the holographic dual of the generalized Gibbs ensemble and show that, to leading order, it is still described by a Banados-Teitelboim-Zanelli black hole. The extra conserved charges, while rendering c <1 theories essentially integrable, therefore seem to have little effect on large-c conformal field theories.

  5. Microwave Assisted 2D Materials Exfoliation

    NASA Astrophysics Data System (ADS)

    Wang, Yanbin

    Two-dimensional materials have emerged as extremely important materials with applications ranging from energy and environmental science to electronics and biology. Here we report our discovery of a universal, ultrafast, green, solvo-thermal technology for producing excellent-quality, few-layered nanosheets in liquid phase from well-known 2D materials such as such hexagonal boron nitride (h-BN), graphite, and MoS2. We start by mixing the uniform bulk-layered material with a common organic solvent that matches its surface energy to reduce the van der Waals attractive interactions between the layers; next, the solutions are heated in a commercial microwave oven to overcome the energy barrier between bulk and few-layers states. We discovered the minutes-long rapid exfoliation process is highly temperature dependent, which requires precise thermal management to obtain high-quality inks. We hypothesize a possible mechanism of this proposed solvo-thermal process; our theory confirms the basis of this novel technique for exfoliation of high-quality, layered 2D materials by using an as yet unknown role of the solvent.

  6. 2D Radiative Transfer in Magnetically Confined Structures

    NASA Astrophysics Data System (ADS)

    Heinzel, P.; Anzer, U.

    2003-01-01

    Magnetically confined structures in the solar atmosphere exhibit a large complexity in their shapes and physical conditions. As an example, we show the case of so-called magnetic dips in prominences which are in magnetohydrostatic equilibria. For such models we solve 2D non-LTE multilevel problem for hydrogen with PRD in Lyman resonance lines. The iterative technique used is based on the MALI approach with simple diagonal ALO and SC formal solver. To compute the hydrogen ionization balance, the preconditioned MALI equations are linearized with respect to atomic level populations and electron density and solved iteratively using the Newton-Raphson scheme. Two additional problems are addressed: (i) an adequate iteration method for cases when the column-mass scale is used in one of the two dimensions but varies along the other dimension (which has a geometrical scaling); and (ii) a possibility of using AMR (Adaptive Mesh Refinement) algorithms to account for steep 2D gradients of selected variables (temperature, density, etc.).

  7. 2D array of cold-electron nanobolometers with double polarised cross-dipole antennas

    PubMed Central

    2012-01-01

    A novel concept of the two-dimensional (2D) array of cold-electron nanobolometers (CEB) with double polarised cross-dipole antennas is proposed for ultrasensitive multimode measurements. This concept provides a unique opportunity to simultaneously measure both components of an RF signal and to avoid complicated combinations of two schemes for each polarisation. The optimal concept of the CEB includes a superconductor-insulator-normal tunnel junction and an SN Andreev contact, which provides better performance. This concept allows for better matching with the junction gate field-effect transistor (JFET) readout, suppresses charging noise related to the Coulomb blockade due to the small area of tunnel junctions and decreases the volume of a normal absorber for further improvement of the noise performance. The reliability of a 2D array is considerably increased due to the parallel and series connections of many CEBs. Estimations of the CEB noise with JFET readout give an opportunity to realise a noise equivalent power (NEP) that is less than photon noise, specifically, NEP = 4 10−19 W/Hz1/2 at 7 THz for an optical power load of 0.02 fW. PMID:22512950

  8. A simple approach to quantifying the noise-ENSO interaction. Part II: the role of coupling between the warm pool and equatorial zonal wind anomalies

    NASA Astrophysics Data System (ADS)

    Levine, Aaron F. Z.; Jin, Fei Fei; Stuecker, Malte F.

    2017-01-01

    Stochastic forcing has been used conceptually to explain ENSO irregularity. More recently, the concept of state-dependent (multiplicative) stochastic forcing has been explored as an explanation of a number of ENSO properties. By calculating the state-dependence factor of ENSO zonal wind stress noise forcing on SST, we are able to separate the additive and multiplicative components of the wind stress noise forcing of ENSO. Spatially, the months with large additive or multiplicative components all resemble previous studies on westerly wind bursts. They differ from each other in that the wind stresses are significantly stronger during months with a large multiplicative noise component. It is further shown that when the multiplicative noise component is large, there have been large values of the wind stress noise in the preceding months. This is not true of the months when the additive component is large. The multi-month growth of the wind stress from the multiplicative noise process is shown to be related to an eastward migration of the western Pacific Warm Pool, which is coupled to the wind stress through convection. This process is shown to be significantly weakened in a climate model when the ocean and atmosphere are uncoupled.

  9. 2-D or not 2-D, that is the question: A Northern California test

    SciTech Connect

    Mayeda, K; Malagnini, L; Phillips, W S; Walter, W R; Dreger, D

    2005-06-06

    Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. The complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Using the same station and event distribution, we compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7{le} f {le} 8.0-Hz), the 2-D approach resulted in inter-station scatter that was generally 10-30% smaller. For complex regions where data are plentiful, a 2-D approach can significantly improve upon the simple 1-D assumption. In regions where only 1-D coda correction is available it is still preferable over 2

  10. Interior Noise

    NASA Technical Reports Server (NTRS)

    Mixson, John S.; Wilby, John F.

    1991-01-01

    The generation and control of flight vehicle interior noise is discussed. Emphasis is placed on the mechanisms of transmission through airborne and structure-borne paths and the control of cabin noise by path modification. Techniques for identifying the relative contributions of the various source-path combinations are also discussed along with methods for the prediction of aircraft interior noise such as those based on the general modal theory and statistical energy analysis.

  11. A Multi Directional Perfect Reconstruction Filter Bank Designed with 2-D Eigenfilter Approach: Application to Ultrasound Speckle Reduction.

    PubMed

    Nagare, Mukund B; Patil, Bhushan D; Holambe, Raghunath S

    2017-02-01

    B-Mode ultrasound images are degraded by inherent noise called Speckle, which creates a considerable impact on image quality. This noise reduces the accuracy of image analysis and interpretation. Therefore, reduction of speckle noise is an essential task which improves the accuracy of the clinical diagnostics. In this paper, a Multi-directional perfect-reconstruction (PR) filter bank is proposed based on 2-D eigenfilter approach. The proposed method used for the design of two-dimensional (2-D) two-channel linear-phase FIR perfect-reconstruction filter bank. In this method, the fan shaped, diamond shaped and checkerboard shaped filters are designed. The quadratic measure of the error function between the passband and stopband of the filter has been used an objective function. First, the low-pass analysis filter is designed and then the PR condition has been expressed as a set of linear constraints on the corresponding synthesis low-pass filter. Subsequently, the corresponding synthesis filter is designed using the eigenfilter design method with linear constraints. The newly designed 2-D filters are used in translation invariant pyramidal directional filter bank (TIPDFB) for reduction of speckle noise in ultrasound images. The proposed 2-D filters give better symmetry, regularity and frequency selectivity of the filters in comparison to existing design methods. The proposed method is validated on synthetic and real ultrasound data which ensures improvement in the quality of ultrasound images and efficiently suppresses the speckle noise compared to existing methods.

  12. Low 2D:4D Values Are Associated with Video Game Addiction

    PubMed Central

    Kornhuber, Johannes; Zenses, Eva-Maria; Lenz, Bernd; Stoessel, Christina; Bouna-Pyrrou, Polyxeni; Rehbein, Florian; Kliem, Sören; Mößle, Thomas

    2013-01-01

    Androgen-dependent signaling regulates the growth of the fingers on the human hand during embryogenesis. A higher androgen load results in lower 2D:4D (second digit to fourth digit) ratio values. Prenatal androgen exposure also impacts brain development. 2D:4D values are usually lower in males and are viewed as a proxy of male brain organization. Here, we quantified video gaming behavior in young males. We found lower mean 2D:4D values in subjects who were classified according to the CSAS-II as having at-risk/addicted behavior (n = 27) compared with individuals with unproblematic video gaming behavior (n = 27). Thus, prenatal androgen exposure and a hyper-male brain organization, as represented by low 2D:4D values, are associated with problematic video gaming behavior. These results may be used to improve the diagnosis, prediction, and prevention of video game addiction. PMID:24236143

  13. Low 2D:4D values are associated with video game addiction.

    PubMed

    Kornhuber, Johannes; Zenses, Eva-Maria; Lenz, Bernd; Stoessel, Christina; Bouna-Pyrrou, Polyxeni; Rehbein, Florian; Kliem, Sören; Mößle, Thomas

    2013-01-01

    Androgen-dependent signaling regulates the growth of the fingers on the human hand during embryogenesis. A higher androgen load results in lower 2D:4D (second digit to fourth digit) ratio values. Prenatal androgen exposure also impacts brain development. 2D:4D values are usually lower in males and are viewed as a proxy of male brain organization. Here, we quantified video gaming behavior in young males. We found lower mean 2D:4D values in subjects who were classified according to the CSAS-II as having at-risk/addicted behavior (n = 27) compared with individuals with unproblematic video gaming behavior (n = 27). Thus, prenatal androgen exposure and a hyper-male brain organization, as represented by low 2D:4D values, are associated with problematic video gaming behavior. These results may be used to improve the diagnosis, prediction, and prevention of video game addiction.

  14. Transition to turbulence: 2D directed percolation

    NASA Astrophysics Data System (ADS)

    Chantry, Matthew; Tuckerman, Laurette; Barkley, Dwight

    2016-11-01

    The transition to turbulence in simple shear flows has been studied for well over a century, yet in the last few years has seen major leaps forward. In pipe flow, this transition shows the hallmarks of (1 + 1) D directed percolation, a universality class of continuous phase transitions. In spanwisely confined Taylor-Couette flow the same class is found, suggesting the phenomenon is generic to shear flows. However in plane Couette flow the largest simulations and experiments to-date find evidence for a discrete transition. Here we study a planar shear flow, called Waleffe flow, devoid of walls yet showing the fundamentals of planar transition to turbulence. Working with a quasi-2D yet Navier-Stokes derived model of this flow we are able to attack the (2 + 1) D transition problem. Going beyond the system sizes previously possible we find all of the required scalings of directed percolation and thus establish planar shears flow in this class.

  15. 2D quantum gravity from quantum entanglement.

    PubMed

    Gliozzi, F

    2011-01-21

    In quantum systems with many degrees of freedom the replica method is a useful tool to study the entanglement of arbitrary spatial regions. We apply it in a way that allows them to backreact. As a consequence, they become dynamical subsystems whose position, form, and extension are determined by their interaction with the whole system. We analyze, in particular, quantum spin chains described at criticality by a conformal field theory. Its coupling to the Gibbs' ensemble of all possible subsystems is relevant and drives the system into a new fixed point which is argued to be that of the 2D quantum gravity coupled to this system. Numerical experiments on the critical Ising model show that the new critical exponents agree with those predicted by the formula of Knizhnik, Polyakov, and Zamolodchikov.

  16. Simulation of Yeast Cooperation in 2D.

    PubMed

    Wang, M; Huang, Y; Wu, Z

    2016-03-01

    Evolution of cooperation has been an active research area in evolutionary biology in decades. An important type of cooperation is developed from group selection, when individuals form spatial groups to prevent them from foreign invasions. In this paper, we study the evolution of cooperation in a mixed population of cooperating and cheating yeast strains in 2D with the interactions among the yeast cells restricted to their small neighborhoods. We conduct a computer simulation based on a game theoretic model and show that cooperation is increased when the interactions are spatially restricted, whether the game is of a prisoner's dilemma, snow drifting, or mutual benefit type. We study the evolution of homogeneous groups of cooperators or cheaters and describe the conditions for them to sustain or expand in an opponent population. We show that under certain spatial restrictions, cooperator groups are able to sustain and expand as group sizes become large, while cheater groups fail to expand and keep them from collapse.

  17. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  18. Graphene suspensions for 2D printing

    NASA Astrophysics Data System (ADS)

    Soots, R. A.; Yakimchuk, E. A.; Nebogatikova, N. A.; Kotin, I. A.; Antonova, I. V.

    2016-04-01

    It is shown that, by processing a graphite suspension in ethanol or water by ultrasound and centrifuging, it is possible to obtain particles with thicknesses within 1-6 nm and, in the most interesting cases, 1-1.5 nm. Analogous treatment of a graphite suspension in organic solvent yields eventually thicker particles (up to 6-10 nm thick) even upon long-term treatment. Using the proposed ink based on graphene and aqueous ethanol with ethylcellulose and terpineol additives for 2D printing, thin (~5 nm thick) films with sheet resistance upon annealing ~30 MΩ/□ were obtained. With the ink based on aqueous graphene suspension, the sheet resistance was ~5-12 kΩ/□ for 6- to 15-nm-thick layers with a carrier mobility of ~30-50 cm2/(V s).

  19. Canard configured aircraft with 2-D nozzle

    NASA Technical Reports Server (NTRS)

    Child, R. D.; Henderson, W. P.

    1978-01-01

    A closely-coupled canard fighter with vectorable two-dimensional nozzle was designed for enhanced transonic maneuvering. The HiMAT maneuver goal of a sustained 8g turn at a free-stream Mach number of 0.9 and 30,000 feet was the primary design consideration. The aerodynamic design process was initiated with a linear theory optimization minimizing the zero percent suction drag including jet effects and refined with three-dimensional nonlinear potential flow techniques. Allowances were made for mutual interference and viscous effects. The design process to arrive at the resultant configuration is described, and the design of a powered 2-D nozzle model to be tested in the LRC 16-foot Propulsion Wind Tunnel is shown.

  20. Numerical Evaluation of 2D Ground States

    NASA Astrophysics Data System (ADS)

    Kolkovska, Natalia

    2016-02-01

    A ground state is defined as the positive radial solution of the multidimensional nonlinear problem \\varepsilon propto k_ bot 1 - ξ with the function f being either f(u) =a|u|p-1u or f(u) =a|u|pu+b|u|2pu. The numerical evaluation of ground states is based on the shooting method applied to an equivalent dynamical system. A combination of fourth order Runge-Kutta method and Hermite extrapolation formula is applied to solving the resulting initial value problem. The efficiency of this procedure is demonstrated in the 1D case, where the maximal difference between the exact and numerical solution is ≈ 10-11 for a discretization step 0:00025. As a major application, we evaluate numerically the critical energy constant. This constant is defined as a functional of the ground state and is used in the study of the 2D Boussinesq equations.

  1. Noise Protection

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Environmental Health Systems puts forth an increasing effort in the U.S. to develop ways of controlling noise, particularly in industrial environments due to Federal and State laws, labor union insistence and new findings relative to noise pollution impact on human health. NASA's Apollo guidance control system aided in the development of a noise protection product, SMART. The basis of all SMART products is SMART compound a liquid plastic mixture with exceptional energy/sound absorbing qualities. The basic compound was later refined for noise protection use.

  2. Metrology for graphene and 2D materials

    NASA Astrophysics Data System (ADS)

    Pollard, Andrew J.

    2016-09-01

    The application of graphene, a one atom-thick honeycomb lattice of carbon atoms with superlative properties, such as electrical conductivity, thermal conductivity and strength, has already shown that it can be used to benefit metrology itself as a new quantum standard for resistance. However, there are many application areas where graphene and other 2D materials, such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN), may be disruptive, areas such as flexible electronics, nanocomposites, sensing and energy storage. Applying metrology to the area of graphene is now critical to enable the new, emerging global graphene commercial world and bridge the gap between academia and industry. Measurement capabilities and expertise in a wide range of scientific areas are required to address this challenge. The combined and complementary approach of varied characterisation methods for structural, chemical, electrical and other properties, will allow the real-world issues of commercialising graphene and other 2D materials to be addressed. Here, examples of metrology challenges that have been overcome through a multi-technique or new approach are discussed. Firstly, the structural characterisation of defects in both graphene and MoS2 via Raman spectroscopy is described, and how nanoscale mapping of vacancy defects in graphene is also possible using tip-enhanced Raman spectroscopy (TERS). Furthermore, the chemical characterisation and removal of polymer residue on chemical vapour deposition (CVD) grown graphene via secondary ion mass spectrometry (SIMS) is detailed, as well as the chemical characterisation of iron films used to grow large domain single-layer h-BN through CVD growth, revealing how contamination of the substrate itself plays a role in the resulting h-BN layer. In addition, the role of international standardisation in this area is described, outlining the current work ongoing in both the International Organization of Standardization (ISO) and the

  3. Airframe Noise Reduction Studies and Clean-Airframe Noise Investigation

    NASA Technical Reports Server (NTRS)

    Fink, M. R.; Bailey, D. A.

    1980-01-01

    Acoustic wind tunnel tests were conducted of a wing model with modified leading edge slat and trailing edge flap. The modifications were intended to reduce the surface pressure response to convected turbulence and thereby reduce the airframe noise without changing the lift at constant incidence. Tests were conducted at 70.7 and 100 m/sec airspeeds, with Reynolds numbers 1.5 x 10 to the 6th power and 2.1 x 10 to the 6th power. Considerable reduction of noise radiation from the side edges of a 40 deflection single slotted flap was achieved by modification to the side edge regions or the leading edge region of the flap panel. Total far field noise was reduced 2 to 3 dB over several octaves of frequency. When these panels were installed as the aft panel of a 40 deg deflection double slotted flap, 2 dB noise reduction was achieved.

  4. Numerical investigation of 3D effects on a 2D-dominated shocked mixing layer

    NASA Astrophysics Data System (ADS)

    Reese, Daniel; Weber, Christopher

    2016-11-01

    A nominally two-dimensional interface, unstable to the Rayleigh-Taylor or Richtmyer-Meshkov instability, will become three-dimensional at high Reynolds numbers due to the growth of background noise and 3D effects like vortex stretching. This three-dimensionality changes macroscopic features, such as the perturbation growth rate and mixing, as it enhances turbulent dissipation. In this study, a 2D perturbation with small-scale, 3D fluctuations is modeled using the hydrodynamics code Miranda. A Mach 1.95 shockwave accelerates a helium-over-SF6 interface, similar to the experiments of Motl et al. ["Experimental validation of a Richtmyer-Meshkov scaling law over large density ratio and shock strength ranges," Phys. Fluids 21(12), 126102 (2009)], to explore the regime where a 2D dominated flow will experience 3D effects. We report on the structure, growth, and mixing of the post-shocked interface in 2D and 3D.

  5. Calcium-dependent activation and autolysis of Arabidopsis metacaspase 2d.

    PubMed

    Watanabe, Naohide; Lam, Eric

    2011-03-25

    Metacaspases (MCPs) are members of a new family of cysteine proteases found in plants, fungi, and protozoa that are structurally related to metazoan caspases. Recent studies showed that plant MCPs are arginine/lysine-specific cysteine proteases with caspase-like processing activities in vitro and in vivo, and some of the plant type II MCPs exhibit Ca(2+) dependence for their endopeptidase activity in vitro. However, the mechanisms and biological relevance of Ca(2+) dependence and self-processing of plant MCPs remains unclear. Here we show that recombinant AtMCP2d, the most abundantly expressed member of Arabidopsis type II MCPs at the transcriptional level, exhibits a strict Ca(2+) dependence for its catalytic activation that is apparently mediated by intramolecular self-cleavage mechanism. However, rapid inactivation of AtMCP2d activity concomitant with Ca(2+)-induced self-processing at multiple internal sites was observed. Because active AtMCP2d can cleave its inactive form, intermolecular cleavage (autolysis) of AtMCP2d could also occur under our assay conditions. Ca(2+)-induced self-processing of recombinant AtMCP2d was found to correlate with the sequential appearance of at least six intermediates, including self-cleaved forms, during the proenzyme purification process. Six of these peptides were characterized, and the cleavage sites were mapped through N-terminal protein sequencing. Mutation analysis of AtMCP2d revealed that cleavage after Lys-225, which is a highly conserved residue among the six Arabidopsis type II MCPs, is critical for the catalytic activation by Ca(2+), and we demonstrate that this residue is essential for AtMCP2d activation of H(2)O(2)-induced cell death in yeast. Together, our results provide clues to understand the mode of regulation for this class of proteases.

  6. Use of marginal distributions constrained optimization (MADCO) for accelerated 2D MRI relaxometry and diffusometry

    NASA Astrophysics Data System (ADS)

    Benjamini, Dan; Basser, Peter J.

    2016-10-01

    Measuring multidimensional (e.g., 2D) relaxation spectra in NMR and MRI clinical applications is a holy grail of the porous media and biomedical MR communities. The main bottleneck is the inversion of Fredholm integrals of the first kind, an ill-conditioned problem requiring large amounts of data to stabilize a solution. We suggest a novel experimental design and processing framework to accelerate and improve the reconstruction of such 2D spectra that uses a priori information from the 1D projections of spectra, or marginal distributions. These 1D marginal distributions provide powerful constraints when 2D spectra are reconstructed, and their estimation requires an order of magnitude less data than a conventional 2D approach. This marginal distributions constrained optimization (MADCO) methodology is demonstrated here with a polyvinylpyrrolidone-water phantom that has 3 distinct peaks in the 2D D-T1 space. The stability, sensitivity to experimental parameters, and accuracy of this new approach are compared with conventional methods by serially subsampling the full data set. While the conventional, unconstrained approach performed poorly, the new method had proven to be highly accurate and robust, only requiring a fraction of the data. Additionally, synthetic T1 -T2 data are presented to explore the effects of noise on the estimations, and the performance of the proposed method with a smooth and realistic 2D spectrum. The proposed framework is quite general and can also be used with a variety of 2D MRI experiments (D-T2,T1 -T2, D -D, etc.), making these potentially feasible for preclinical and even clinical applications for the first time.

  7. Impact of Air Injection on Jet Noise

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda; Norum, Tom

    2007-01-01

    The objective of this viewgraph presentation is to review the program to determine impact of core fluidic chevrons on noise produced by dual stream jets (i.e., broadband shock noise - supersonic, and mixing noise - subsonic and supersonic). The presentation reviews the sources of jet noise. It shows designs of Generation II Fluidic Chevrons. The injection impacts shock structure and stream disturbances through enhanced mixing. This may impact constructive interference between acoustic sources. The high fan pressures may inhibit mixing produced by core injectors. A fan stream injection may be required for better noise reduction. In future the modification of Gen II nozzles to allow for some azimuthal control: will allow for higher mass flow rates and will allow for shallower injection angles A Flow field study is scheduled for spring, 2008 The conclusions are that injection can reduce well-defined shock noise and injection reduces mixing noise near peak jet noise angle

  8. Image Appraisal for 2D and 3D Electromagnetic Inversion

    SciTech Connect

    Alumbaugh, D.L.; Newman, G.A.

    1999-01-28

    Linearized methods are presented for appraising image resolution and parameter accuracy in images generated with two and three dimensional non-linear electromagnetic inversion schemes. When direct matrix inversion is employed, the model resolution and posterior model covariance matrices can be directly calculated. A method to examine how the horizontal and vertical resolution varies spatially within the electromagnetic property image is developed by examining the columns of the model resolution matrix. Plotting the square root of the diagonal of the model covariance matrix yields an estimate of how errors in the inversion process such as data noise and incorrect a priori assumptions about the imaged model map into parameter error. This type of image is shown to be useful in analyzing spatial variations in the image sensitivity to the data. A method is analyzed for statistically estimating the model covariance matrix when the conjugate gradient method is employed rather than a direct inversion technique (for example in 3D inversion). A method for calculating individual columns of the model resolution matrix using the conjugate gradient method is also developed. Examples of the image analysis techniques are provided on 2D and 3D synthetic cross well EM data sets, as well as a field data set collected at the Lost Hills Oil Field in Central California.

  9. Effects of Agent's Repulsion in 2d Flocking Models

    NASA Astrophysics Data System (ADS)

    Moussa, Najem; Tarras, Iliass; Mazroui, M'hammed; Boughaleb, Yahya

    In nature many animal groups, such as fish schools or bird flocks, clearly display structural order and appear to move as a single coherent entity. In order to understand the complex behavior of these systems, many models have been proposed and tested so far. This paper deals with an extension of the Vicsek model, by including a second zone of repulsion, where each agent attempts to maintain a minimum distance from the others. The consideration of this zone in our study seems to play an important role during the travel of agents in the two-dimensional (2D) flocking models. Our numerical investigations show that depending on the basic ingredients such as repulsion radius (R1), effect of density of agents (ρ) and noise (η), our nonequilibrium system can undergo a kinetic phase transition from no transport to finite net transport. For different values of ρ, kinetic phase diagrams in the plane (η ,R1) are found. Implications of these findings are discussed.

  10. Tracking of deformable target in 2D ultrasound images

    NASA Astrophysics Data System (ADS)

    Royer, Lucas; Marchal, Maud; Le Bras, Anthony; Dardenne, Guillaume; Krupa, Alexandre

    2015-03-01

    In this paper, we propose a novel approach for automatically tracking deformable target within 2D ultrasound images. Our approach uses only dense information combined with a physically-based model and has therefore the advantage of not using any fiducial marker nor a priori knowledge on the anatomical environment. The physical model is represented by a mass-spring damper system driven by different types of forces where the external forces are obtained by maximizing image similarity metric between a reference target and a deformed target across the time. This deformation is represented by a parametric warping model where the optimal parameters are estimated from the intensity variation. This warping function is well-suited to represent localized deformations in the ultrasound images because it directly links the forces applied on each mass with the motion of all the pixels in its vicinity. The internal forces constrain the deformation to physically plausible motions, and reduce the sensitivity to the speckle noise. The approach was validated on simulated and real data, both for rigid and free-form motions of soft tissues. The results are very promising since the deformable target could be tracked with a good accuracy for both types of motion. Our approach opens novel possibilities for computer-assisted interventions where deformable organs are involved and could be used as a new tool for interactive tracking of soft tissues in ultrasound images.

  11. Antenna coupled detectors for 2D staring focal plane arrays

    NASA Astrophysics Data System (ADS)

    Gritz, Michael A.; Kolasa, Borys; Lail, Brian; Burkholder, Robert; Chen, Leonard

    2013-06-01

    Millimeter-wave (mmW)/sub-mmW/THz region of the electro-magnetic spectrum enables imaging thru clothing and other obscurants such as fog, clouds, smoke, sand, and dust. Therefore considerable interest exists in developing low cost millimeter-wave imaging (MMWI) systems. Previous MMWI systems have evolved from crude mechanically scanned, single element receiver systems into very complex multiple receiver camera systems. Initial systems required many expensive mmW integrated-circuit low-noise amplifiers. In order to reduce the cost and complexity of the existing systems, attempts have been made to develop new mmW imaging sensors employing direct detection arrays. In this paper, we report on Raytheon's recent development of a unique focal plane array technology, which operates broadly from the mmW through the sub-mmW/THz region. Raytheon's innovative nano-antenna based detector enables low cost production of 2D staring mmW focal plane arrays (mmW FPA), which not only have equivalent sensitivity and performance to existing MMWI systems, but require no mechanical scanning.

  12. ADAM10 new selective inhibitors reduce NKG2D ligand release sensitizing Hodgkin lymphoma cells to NKG2D-mediated killing

    PubMed Central

    Zocchi, Maria Raffaella; Camodeca, Caterina; Nuti, Elisa; Rossello, Armando; Venè, Roberta; Tosetti, Francesca; Dapino, Irene; Costa, Delfina; Musso, Alessandra; Poggi, Alessandro

    2016-01-01

    ABSTRACT Hodgkin lymphoma (HL) resistant to conventional therapies is increasing, making of interest the search for new schemes of treatment. Members of the “A Disintegrin And Metalloproteases” (ADAMs) family, mainly ADAM10 or ADAM17, have been proposed as therapeutic targets in solid tumors and some ADAMs inhibitors have been shown to exert antitumor effects. We have previously described an overexpression of ADAM10 in HL, together with increased release of NKG2D ligands (NKG2D-L) and reduced activation of effector T lymphocytes with anti-lymphoma capacity. Aim of the present work was to verify whether inhibition of ADAM10 in HL cells could restore the triggering of NKG2D-dependent anti-lymphoma T cell response. As no selective ADAM10 blockers have been reported so far, we synthesized the two hydroxamate compounds LT4 and MN8 with selectivity for ADAM10 over metalloproteases (MMPs), LT4 showing higher specificity for ADAM10 over ADAM17. We show that (i) HL lymph nodes (LN) and cultured HL cells express high levels of the mature active membrane form of ADAM10; (ii) ADAM10 is the major sheddase for the NKG2D-L in HL cells; (iii) the new LT4 and MN8 compounds strongly reduce the shedding of NKG2D-L by HL cell lines and enhance the binding of NKG2D receptor; (iv) of note, these new ADAM10 inhibitors increase the sensitivity of HL cell lines to NKG2D-dependent cell killing exerted by natural killer and γδ T cells. Overall, the biologic activity of LT4 and MN8 appears to be more potent than that of the commercial inhibitor GI254023X. PMID:27467923

  13. ADAM10 new selective inhibitors reduce NKG2D ligand release sensitizing Hodgkin lymphoma cells to NKG2D-mediated killing.

    PubMed

    Zocchi, Maria Raffaella; Camodeca, Caterina; Nuti, Elisa; Rossello, Armando; Venè, Roberta; Tosetti, Francesca; Dapino, Irene; Costa, Delfina; Musso, Alessandra; Poggi, Alessandro

    2016-05-01

    Hodgkin lymphoma (HL) resistant to conventional therapies is increasing, making of interest the search for new schemes of treatment. Members of the "A Disintegrin And Metalloproteases" (ADAMs) family, mainly ADAM10 or ADAM17, have been proposed as therapeutic targets in solid tumors and some ADAMs inhibitors have been shown to exert antitumor effects. We have previously described an overexpression of ADAM10 in HL, together with increased release of NKG2D ligands (NKG2D-L) and reduced activation of effector T lymphocytes with anti-lymphoma capacity. Aim of the present work was to verify whether inhibition of ADAM10 in HL cells could restore the triggering of NKG2D-dependent anti-lymphoma T cell response. As no selective ADAM10 blockers have been reported so far, we synthesized the two hydroxamate compounds LT4 and MN8 with selectivity for ADAM10 over metalloproteases (MMPs), LT4 showing higher specificity for ADAM10 over ADAM17. We show that (i) HL lymph nodes (LN) and cultured HL cells express high levels of the mature active membrane form of ADAM10; (ii) ADAM10 is the major sheddase for the NKG2D-L in HL cells; (iii) the new LT4 and MN8 compounds strongly reduce the shedding of NKG2D-L by HL cell lines and enhance the binding of NKG2D receptor; (iv) of note, these new ADAM10 inhibitors increase the sensitivity of HL cell lines to NKG2D-dependent cell killing exerted by natural killer and γδ T cells. Overall, the biologic activity of LT4 and MN8 appears to be more potent than that of the commercial inhibitor GI254023X.

  14. Persistence Measures for 2d Soap Froth

    NASA Astrophysics Data System (ADS)

    Feng, Y.; Ruskin, H. J.; Zhu, B.

    Soap froths as typical disordered cellular structures, exhibiting spatial and temporal evolution, have been studied through their distributions and topological properties. Recently, persistence measures, which permit representation of the froth as a two-phase system, have been introduced to study froth dynamics at different length scales. Several aspects of the dynamics may be considered and cluster persistence has been observed through froth experiment. Using a direct simulation method, we have investigated persistent properties in 2D froth both by monitoring the persistence of survivor cells, a topologically independent measure, and in terms of cluster persistence. It appears that the area fraction behavior for both survivor and cluster persistence is similar for Voronoi froth and uniform froth (with defects). Survivor and cluster persistent fractions are also similar for a uniform froth, particularly when geometries are constrained, but differences observed for the Voronoi case appear to be attributable to the strong topological dependency inherent in cluster persistence. Survivor persistence, on the other hand, depends on the number rather than size and position of remaining bubbles and does not exhibit the characteristic decay to zero.

  15. SEM signal emulation for 2D patterns

    NASA Astrophysics Data System (ADS)

    Sukhov, Evgenii; Muelders, Thomas; Klostermann, Ulrich; Gao, Weimin; Braylovska, Mariya

    2016-03-01

    The application of accurate and predictive physical resist simulation is seen as one important use model for fast and efficient exploration of new patterning technology options, especially if fully qualified OPC models are not yet available at an early pre-production stage. The methodology of using a top-down CD-SEM metrology to extract the 3D resist profile information, such as the critical dimension (CD) at various resist heights, has to be associated with a series of presumptions which may introduce such small, but systematic CD errors. Ideally, the metrology effects should be carefully minimized during measurement process, or if possible be taken into account through proper metrology modeling. In this paper we discuss the application of a fast SEM signal emulation describing the SEM image formation. The algorithm is applied to simulated resist 3D profiles and produces emulated SEM image results for 1D and 2D patterns. It allows estimating resist simulation quality by comparing CDs which were extracted from the emulated and from the measured SEM images. Moreover, SEM emulation is applied for resist model calibration to capture subtle error signatures through dose and defocus. Finally, it should be noted that our SEM emulation methodology is based on the approximation of physical phenomena which are taking place in real SEM image formation. This approximation allows achieving better speed performance compared to a fully physical model.

  16. Radiofrequency Spectroscopy and Thermodynamics of Fermi Gases in the 2D to Quasi-2D Dimensional Crossover

    NASA Astrophysics Data System (ADS)

    Cheng, Chingyun; Kangara, Jayampathi; Arakelyan, Ilya; Thomas, John

    2016-05-01

    We tune the dimensionality of a strongly interacting degenerate 6 Li Fermi gas from 2D to quasi-2D, by adjusting the radial confinement of pancake-shaped clouds to control the radial chemical potential. In the 2D regime with weak radial confinement, the measured pair binding energies are in agreement with 2D-BCS mean field theory, which predicts dimer pairing energies in the many-body regime. In the qausi-2D regime obtained with increased radial confinement, the measured pairing energy deviates significantly from 2D-BCS theory. In contrast to the pairing energy, the measured radii of the cloud profiles are not fit by 2D-BCS theory in either the 2D or quasi-2D regimes, but are fit in both regimes by a beyond mean field polaron-model of the free energy. Supported by DOE, ARO, NSF, and AFOSR.

  17. A real-time multi-scale 2D Gaussian filter based on FPGA

    NASA Astrophysics Data System (ADS)

    Luo, Haibo; Gai, Xingqin; Chang, Zheng; Hui, Bin

    2014-11-01

    Multi-scale 2-D Gaussian filter has been widely used in feature extraction (e.g. SIFT, edge etc.), image segmentation, image enhancement, image noise removing, multi-scale shape description etc. However, their computational complexity remains an issue for real-time image processing systems. Aimed at this problem, we propose a framework of multi-scale 2-D Gaussian filter based on FPGA in this paper. Firstly, a full-hardware architecture based on parallel pipeline was designed to achieve high throughput rate. Secondly, in order to save some multiplier, the 2-D convolution is separated into two 1-D convolutions. Thirdly, a dedicate first in first out memory named as CAFIFO (Column Addressing FIFO) was designed to avoid the error propagating induced by spark on clock. Finally, a shared memory framework was designed to reduce memory costs. As a demonstration, we realized a 3 scales 2-D Gaussian filter on a single ALTERA Cyclone III FPGA chip. Experimental results show that, the proposed framework can computing a Multi-scales 2-D Gaussian filtering within one pixel clock period, is further suitable for real-time image processing. Moreover, the main principle can be popularized to the other operators based on convolution, such as Gabor filter, Sobel operator and so on.

  18. 2D discrete Fourier transform on sliding windows.

    PubMed

    Park, Chun-Su

    2015-03-01

    Discrete Fourier transform (DFT) is the most widely used method for determining the frequency spectra of digital signals. In this paper, a 2D sliding DFT (2D SDFT) algorithm is proposed for fast implementation of the DFT on 2D sliding windows. The proposed 2D SDFT algorithm directly computes the DFT bins of the current window using the precalculated bins of the previous window. Since the proposed algorithm is designed to accelerate the sliding transform process of a 2D input signal, it can be directly applied to computer vision and image processing applications. The theoretical analysis shows that the computational requirement of the proposed 2D SDFT algorithm is the lowest among existing 2D DFT algorithms. Moreover, the output of the 2D SDFT is mathematically equivalent to that of the traditional DFT at all pixel positions.

  19. MAGNUM2D. Radionuclide Transport Porous Media

    SciTech Connect

    Langford, D.W.; Baca, R.G.

    1989-03-01

    MAGNUM2D was developed to analyze thermally driven fluid motion in the deep basalts below the Paco Basin at the Westinghouse Hanford Site. Has been used in the Basalt Waste Isolation Project to simulate nonisothermal groundwater flow in a heterogeneous anisotropic medium and heat transport in a water/rock system near a high level nuclear waste repository. Allows three representations of the hydrogeologic system: an equivalent porous continuum, a system of discrete, unfilled, and interconnecting fractures separated by impervious rock mass, and a low permeability porous continuum with several discrete, unfilled fractures traversing the medium. The calculations assume local thermodynamic equilibrium between the rock and groundwater, nonisothermal Darcian flow in the continuum portions of the rock, and nonisothermal Poiseuille flow in discrete unfilled fractures. In addition, the code accounts for thermal loading within the elements, zero normal gradient and fixed boundary conditions for both temperature and hydraulic head, and simulation of the temperature and flow independently. The Q2DGEOM preprocessor was developed to generate, modify, plot and verify quadratic two dimensional finite element geometries. The BCGEN preprocessor generates the boundary conditions for head and temperature and ICGEN generates the initial conditions. The GRIDDER postprocessor interpolates nonregularly spaced nodal flow and temperature data onto a regular rectangular grid. CONTOUR plots and labels contour lines for a function of two variables and PARAM plots cross sections and time histories for a function of time and one or two spatial variables. NPRINT generates data tables that display the data along horizontal or vertical cross sections. VELPLT differentiates the hydraulic head and buoyancy data and plots the velocity vectors. The PATH postprocessor plots flow paths and computes the corresponding travel times.

  20. MAGNUM2D. Radionuclide Transport Porous Media

    SciTech Connect

    Langford, D.W.; Baca, R.G.

    1988-08-01

    MAGNUM2D was developed to analyze thermally driven fluid motion in the deep basalts below the Paco Basin at the Westinghouse Hanford Site. Has been used in the Basalt Waste Isolation Project to simulate nonisothermal groundwater flow in a heterogeneous anisotropic medium and heat transport in a water/rock system near a high level nuclear waste repository. Allows three representations of the hydrogeologic system: an equivalent porous continuum, a system of discrete, unfilled, and interconnecting fractures separated by impervious rock mass, and a low permeability porous continuum with several discrete, unfilled fractures traversing the medium. The calculation assumes local thermodynamic equilibrium between the rock and groundwater, nonisothermal Darcian flow in the continuum portions of the rock, and nonisothermal Poiseuille flow in discrete unfilled fractures. In addition, the code accounts for thermal loading within the elements, zero normal gradient and fixed boundary conditions for both temperature and hydraulic head, and simulation of the temperature and flow independently. The Q2DGEOM preprocessor was developed to generate, modify, plot and verify quadratic two dimensional finite element geometries. The BCGEN preprocessor generates the boundary conditions for head and temperature and ICGEN generates the initial conditions. The GRIDDER postprocessor interpolates nonregularly spaced nodal flow and temperature data onto a regular rectangular grid. CONTOUR plots and labels contour lines for a function of two variables and PARAM plots cross sections and time histories for a function of time and one or two spatial variables. NPRINT generates data tables that display the data along horizontal or vertical cross sections. VELPLT differentiates the hydraulic head and buoyancy data and plots the velocity vectors. The PATH postprocessor plots flow paths and computes the corresponding travel times.

  1. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Hallquist, J. O.; Sanford, Larry

    1996-07-15

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  2. MAZE96. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Sanford, L.; Hallquist, J.O.

    1992-02-24

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  3. NIKE2D96. Static & Dynamic Response of 2D Solids

    SciTech Connect

    Raboin, P.; Engelmann, B.; Halquist, J.O.

    1992-01-24

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surface contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.

  4. How to COAAD Images. II. A Coaddition Image that is Optimal for Any Purpose in the Background-dominated Noise Limit

    NASA Astrophysics Data System (ADS)

    Zackay, Barak; Ofek, Eran O.

    2017-02-01

    Image coaddition is one of the most basic operations that astronomers perform. In Paper I, we presented the optimal ways to coadd images in order to detect faint sources and to perform flux measurements under the assumption that the noise is approximately Gaussian. Here, we build on these results and derive from first principles a coaddition technique that is optimal for any hypothesis testing and measurement (e.g., source detection, flux or shape measurements, and star/galaxy separation), in the background-noise-dominated case. This method has several important properties. The pixels of the resulting coadded image are uncorrelated. This image preserves all the information (from the original individual images) on all spatial frequencies. Any hypothesis testing or measurement that can be done on all the individual images simultaneously, can be done on the coadded image without any loss of information. The PSF of this image is typically as narrow, or narrower than the PSF of the best image in the ensemble. Moreover, this image is practically indistinguishable from a regular single image, meaning that any code that measures any property on a regular astronomical image can be applied to it unchanged. In particular, the optimal source detection statistic derived in Paper I is reproduced by matched filtering this image with its own PSF. This coaddition process, which we call proper coaddition, can be understood as the maximum signal-to-noise ratio measurement of the Fourier transform of the image, weighted in such a way that the noise in the entire Fourier domain is of equal variance. This method has important implications for multi-epoch seeing-limited deep surveys, weak lensing galaxy shape measurements, and diffraction-limited imaging via speckle observations. The last topic will be covered in depth in future papers. We provide an implementation of this algorithm in MATLAB.

  5. Analysis of helicopter noise data using international helicopter noise certification procedures

    NASA Astrophysics Data System (ADS)

    Newman, J. S.; Rickley, E. J.; Levanduski, D. A.; Woolridge, S. B.

    1986-03-01

    The results of a Federal Aviation Administration (FAA) noise measurement flight test program involving seven helicopters are documented. Noise levels were established using the basic testing, reduction and analysis techniques specified by the International Civil Aviation Organization (ICAO) for helicopter noise certification, supplemented with some procedural refinements contained in ICAO Working Group II recommendations for incorporation into the standard.

  6. Noise suppression by quantum control before and after the noise

    NASA Astrophysics Data System (ADS)

    Wakamura, Hiroaki; Kawakubo, Ryûitirô; Koike, Tatsuhiko

    2017-02-01

    We discuss the possibility of protecting the state of a quantum system that goes through noise by measurements and operations before and after the noise process. The aim is to seek the optimal protocol that makes the input and output states as close as possible and to clarify the role of the measurements therein. We consider two cases: one can perform quantum measurements and operations (i) only after the noise process and (ii) both before and after. We prove in a two-dimensional Hilbert space that, in case (i), the noise suppression is essentially impossible for all types of noise and, in case (ii), the optimal protocol for the depolarizing noise is either the "do nothing" protocol or the "discriminate and reprepare" protocol. These protocols are not "truly quantum" and can be considered as classical. They involve no measurement or only use the measurement outcomes. These results describe the fundamental limitations in quantum mechanics from the viewpoint of control theory. Finally, we conjecture that a statement similar to case (ii) holds for higher-dimensional Hilbert spaces and present some numerical evidence.

  7. Sub-Doppler infrared spectroscopy of CH2D radical in a slit supersonic jet: isotopic symmetry breaking in the CH stretching manifold.

    PubMed

    Roberts, Melanie A; Savage, Chandra; Dong, Feng; Sharp-Williams, Erin N; McCoy, Anne B; Nesbitt, David J

    2012-06-21

    First high-resolution infrared absorption spectra in the fundamental symmetric/asymmetric CH stretching region of isotopically substituted methyl radical, CH(2)D, are reported and analyzed. These studies become feasible in the difference frequency spectrometer due to (i) high density radical generation via dissociative electron attachment to CH(2)DI in a discharge, (ii) low rotational temperatures (23 K) from supersonic cooling in a slit expansion, (iii) long absorption path length (64 cm) along the slit axes, and (iv) near shot noise limited absorption sensitivity (5 × 10(-7)/√(Hz)). The spectra are fully rovibrationally resolved and fit to an asymmetric top rotational Hamiltonian to yield rotational/centrifugal constants and vibrational band origins. In addition, the slit expansion collisionally quenches the transverse velocity distribution along the laser probe direction, yielding sub-Doppler resolution of spin-rotation structure and even partial resolution of nuclear hyperfine structure for each rovibrational line. Global least-squares fits to the line shapes provide additional information on spin-rotation and nuclear hyperfine constants, which complement and clarify previous FTIR studies [K. Kawaguchi, Can. J. Phys. 79, 449 (2001)] of CH(2)D in the out-of-plane bending region. Finally, analysis of the spectral data from the full isotopomeric CH(m)D(3-m) series based on harmonically coupled Morse oscillators establishes a predictive framework for describing the manifold of planar stretching vibrations in this fundamental combustion radical.

  8. Arabidopsis metacaspase 2d is a positive mediator of cell death induced during biotic and abiotic stresses.

    PubMed

    Watanabe, Naohide; Lam, Eric

    2011-06-01

    Cysteine proteases such as caspases play important roles in programmed cell death (PCD) of metazoans. Plant metacaspases (MCPs), a family of cysteine proteases structurally related to caspases, have been hypothesized to be ancestors of metazoan caspases, despite their different substrate specificity. Arabidopsis thaliana contains six type II MCP genes (AtMCP2a-f). Whether and how these individual members are involved in controlling PCD in plants remains largely unknown. Here we investigated the function and regulation of AtMCP2d, the predominant and constitutively expressed member of type II MCPs, in stress-inducible PCD. Two AtMCP2d mutants (mcp2d-1 and mcp2d-3) exhibited reduced sensitivity to PCD-inducing mycotoxin fumonisin B1 as well as oxidative stress inducers, whereas AtMCP2d over-expressors were more sensitive to these agents, and exhibited accelerated cell-death progression. We found that AtMCP2d exclusively localizes to the cytosol, and its accumulation and self-processing patterns were age-dependent in leaves. Importantly, active proteolytic processing of AtMCP2d proteins dependent on its catalytic activity was observed in mature leaves during mycotoxin-induced cell death. We also found that mcp2d-1 leaves exhibited reduced cell death in response to Pseudomonas syringae carrying avirulent gene avrRpt2, and that self-processing of AtMCP2d was also detected in wild-type leaves in response to this pathogen. Furthermore, increases in processed AtMCP2d proteins were found to correlate with conditional cell-death induction in two lesion-mimic mutants (cpr22 and ssi4) that exhibit spontaneous cell-death phenotypes. Taken together, our data strongly suggest that AtMCP2d plays a positive regulatory role in biotic and abiotic stress-induced PCD.

  9. Performance Analysis of Error Probabilities for Arbitrary 2-D Signaling with I/Q Unbalances over Nakagami-m Fading Channels

    NASA Astrophysics Data System (ADS)

    Lee, Jaeyoon; Yoon, Dongweon; Park, Sang Kyu

    Recently, we provided closed-form expressions involving two-dimensional (2-D) joint Gaussian Q-function for the symbol error rate (SER) and bit error rate (BER) of an arbitrary 2-D signal with I/Q unbalances over an additive white Gaussian noise (AWGN) channel [1]. In this letter, we extend the expressions to Nakagami-m fading channels. Using Craig representation of the 2-D joint Gaussian Q-function, we derive an exact and general expression for the error probabilities of arbitrary 2-D signaling with I/Q phase and amplitude unbalances over Nakagami-m fading channels.

  10. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6*15 and *35 Genotyping

    PubMed Central

    Riffel, Amanda K.; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C.; Leeder, J. Steven; Rosenblatt, Kevin P.; Gaedigk, Andrea

    2016-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35) which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe regions can impact

  11. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6 (*) 15 and (*) 35 Genotyping.

    PubMed

    Riffel, Amanda K; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C; Leeder, J Steven; Rosenblatt, Kevin P; Gaedigk, Andrea

    2015-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6 (*) 15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6 (*) 15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6 (*) 35) which is also located in exon 1. Although alternative CYP2D6 (*) 15 and (*) 35 assays resolved the issue, we discovered a novel CYP2D6 (*) 15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6 (*) 15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6 (*) 43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer

  12. A large 2D PSD for thermal neutron detection

    SciTech Connect

    Knott, R.B.; Watt, G.; Boldeman, J.W.; Smith, G.C.

    1996-12-31

    A 2D PSD based on a MWPC has been constructed for a small angle neutron scattering instrument. The active area of the detector was 640 x 640 mm{sup 2}. To meet the specifications for neutron detection efficiency and spatial resolution, and to minimize parallax, the gas mixture was 190 kPa {sup 3}He plus 100 kPa CF{sub 4} and the active volume had a thickness of 30 mm. The design maximum neutron count-rate of the detector was 10{sup 5} events per second. The (calculated) neutron detection efficiency was 60% for 2{angstrom} neutrons and the (measured) neutron energy resolution on the anode grid was typically 20% (fwhm). The location of a neutron detection event within the active area was determined using the wire-by-wire method: the spatial resolution (5 x 5 mm{sup 2}) was thereby defined by the wire geometry. A 16 channel charge-sensitive preamplifier/amplifier/comparator module has been developed with a channel sensitivity of 0.1 V/fC, noise linewidth of 0.4 fC (fwhm) and channel-to-channel cross-talk of less than 5%. The Proportional Counter Operating System (PCOS III) (LeCroy Corp USA) was used for event encoding. The ECL signals produced by the 16 channel modules were latched in PCOS III by a trigger pulse from the anode and the fast encoders produce a position and width for each event. The information was transferred to a UNIX workstation for accumulation and online display.

  13. A large 2D PSD for thermal neutron detection

    NASA Astrophysics Data System (ADS)

    Knott, R. B.; Smith, G. C.; Watt, G.; Boldeman, J. W.

    1997-02-01

    A 2D PSD based on a MWPC has been constructed for a small angle neutron scattering instrument. The active area of the detector was 640 × 640 mm 2. To meet the specifications for neutron detection efficiency and spatial resolution, and to minimise parallax, the gas mixture was 190 kPa 3He plus 100 kPa CF 4, and the active volume had a thickness of 30 mm. The design maximum neutron count rate of the detector was 10 5 events per secod. The (calculated) neutron detection efficiency was 60% for 2 Å neutrons and the (measured) neutron energy resolution on the anode grid was typically 20% (fwhm). The location of a neutron detection event within the active area was determined using the wire-by-wire method: the spatial resolution (5 × 5 mm 2) was thereby defined by the wire geometry. A 16-channel charge-sensitive preamplifier/amplifier/comparator module has been developed with a channel sensitivity of 0.1 V/fC, noise line width of 0.4 fC (fwhm) and channel-to-channel cross-talk of less than 5%. The Proportional Counter Operating System (PCOS III) (LeCroy Corp, USA) was used for event encoding. The ECL signals produced by the 16 channel modules were latched in PCOS III by a trigger pulse from the anode and the fast encoders produce a position and width for each event. The information was transferred to a UNIX workstation for accumulation and online display.

  14. Residual lens effects in 2D mode of auto-stereoscopic lenticular-based switchable 2D/3D displays

    NASA Astrophysics Data System (ADS)

    Sluijter, M.; IJzerman, W. L.; de Boer, D. K. G.; de Zwart, S. T.

    2006-04-01

    We discuss residual lens effects in multi-view switchable auto-stereoscopic lenticular-based 2D/3D displays. With the introduction of a switchable lenticular, it is possible to switch between a 2D mode and a 3D mode. The 2D mode displays conventional content, whereas the 3D mode provides the sensation of depth to the viewer. The uniformity of a display in the 2D mode is quantified by the quality parameter modulation depth. In order to reduce the modulation depth in the 2D mode, birefringent lens plates are investigated analytically and numerically, by ray tracing. We can conclude that the modulation depth in the 2D mode can be substantially decreased by using birefringent lens plates with a perfect index match between lens material and lens plate. Birefringent lens plates do not disturb the 3D performance of a switchable 2D/3D display.

  15. Differential CYP 2D6 metabolism alters primaquine pharmacokinetics.

    PubMed

    Potter, Brittney M J; Xie, Lisa H; Vuong, Chau; Zhang, Jing; Zhang, Ping; Duan, Dehui; Luong, Thu-Lan T; Bandara Herath, H M T; Dhammika Nanayakkara, N P; Tekwani, Babu L; Walker, Larry A; Nolan, Christina K; Sciotti, Richard J; Zottig, Victor E; Smith, Philip L; Paris, Robert M; Read, Lisa T; Li, Qigui; Pybus, Brandon S; Sousa, Jason C; Reichard, Gregory A; Marcsisin, Sean R

    2015-04-01

    Primaquine (PQ) metabolism by the cytochrome P450 (CYP) 2D family of enzymes is required for antimalarial activity in both humans (2D6) and mice (2D). Human CYP 2D6 is highly polymorphic, and decreased CYP 2D6 enzyme activity has been linked to decreased PQ antimalarial activity. Despite the importance of CYP 2D metabolism in PQ efficacy, the exact role that these enzymes play in PQ metabolism and pharmacokinetics has not been extensively studied in vivo. In this study, a series of PQ pharmacokinetic experiments were conducted in mice with differential CYP 2D metabolism characteristics, including wild-type (WT), CYP 2D knockout (KO), and humanized CYP 2D6 (KO/knock-in [KO/KI]) mice. Plasma and liver pharmacokinetic profiles from a single PQ dose (20 mg/kg of body weight) differed significantly among the strains for PQ and carboxy-PQ. Additionally, due to the suspected role of phenolic metabolites in PQ efficacy, these were probed using reference standards. Levels of phenolic metabolites were highest in mice capable of metabolizing CYP 2D6 substrates (WT and KO/KI 2D6 mice). PQ phenolic metabolites were present in different quantities in the two strains, illustrating species-specific differences in PQ metabolism between the human and mouse enzymes. Taking the data together, this report furthers understanding of PQ pharmacokinetics in the context of differential CYP 2D metabolism and has important implications for PQ administration in humans with different levels of CYP 2D6 enzyme activity.

  16. Magnetic resonance imaging of the cervical spine: comparison of 2D T2-weighted turbo spin echo, 2D T2*weighted gradient-recalled echo and 3D T2-weighted variable flip-angle turbo spin echo sequences.

    PubMed

    Meindl, T; Wirth, S; Weckbach, S; Dietrich, O; Reiser, M; Schoenberg, S O

    2009-03-01

    To compare an isotropic three-dimensional (3D) high-resolution T2-weighted (w) MR sequence and its reformations with conventional sequences for imaging of the cervical spine. Fifteen volunteers were examined at 1.5 T using sagittal and axial 3D T2-w, sagittal and axial 2D T2w, and axial 2D T2*w MR sequences. Axial reformations of the sagittal 3D dataset were generated (3D MPR T2w). Signal-to-noise and image homogeneity were evaluated in a phantom and in vivo. Visibility of ten anatomical structures of the cervical spine was evaluated. Artifacts were assessed. For statistical analysis, Cohen's kappa, Wilcoxon matched pairs, and t-testing were utilized. There were no significant differences in homogeneity between the sequences. Sagittal 3D T2w enabled better delineation of nerve roots, neural foramina, and intraforaminal structures compared to sagittal 2D T2w. Axial 3D T2w and axial 3D MPR T2w resulted in superior visibility of most anatomical structures compared to axial 2D T2w and comparable results to 2D T2*w concerning the spinal cord, nerve roots, intraforaminal structures, and fat. Artifacts were most pronounced in axial 2D T2w and axial 3D T2w. Acquisition of a 3D T2w data set is feasible in the cervical spine with superior delineation of anatomical structures compared to 2D sequences.

  17. Mechanical characterization of 2D, 2D stitched, and 3D braided/RTM materials

    NASA Technical Reports Server (NTRS)

    Deaton, Jerry W.; Kullerd, Susan M.; Portanova, Marc A.

    1993-01-01

    Braided composite materials have potential for application in aircraft structures. Fuselage frames, floor beams, wing spars, and stiffeners are examples where braided composites could find application if cost effective processing and damage tolerance requirements are met. Another important consideration for braided composites relates to their mechanical properties and how they compare to the properties of composites produced by other textile composite processes being proposed for these applications. Unfortunately, mechanical property data for braided composites do not appear extensively in the literature. Data are presented in this paper on the mechanical characterization of 2D triaxial braid, 2D triaxial braid plus stitching, and 3D (through-the-thickness) braid composite materials. The braided preforms all had the same graphite tow size and the same nominal braid architectures, (+/- 30 deg/0 deg), and were resin transfer molded (RTM) using the same mold for each of two different resin systems. Static data are presented for notched and unnotched tension, notched and unnotched compression, and compression after impact strengths at room temperature. In addition, some static results, after environmental conditioning, are included. Baseline tension and compression fatigue results are also presented, but only for the 3D braided composite material with one of the resin systems.

  18. Zero-dimensional noise: the best mask you never saw.

    PubMed

    Baker, Daniel H; Meese, Tim S

    2012-09-29

    The transmission of weak signals through the visual system is limited by internal noise. Its level can be estimated by adding external noise, which increases the variance within the detecting mechanism, causing masking. But experiments with white noise fail to meet three predictions: (a) noise has too small an influence on the slope of the psychometric function, (b) masking occurs even when the noise sample is identical in each two-alternative forced-choice (2AFC) interval, and (c) double-pass consistency is too low. We show that much of the energy of 2D white noise masks extends well beyond the pass-band of plausible detecting mechanisms and that this suppresses signal activity. These problems are avoided by restricting the external noise energy to the target mechanisms by introducing a pedestal with a mean contrast of 0% and independent contrast jitter in each 2AFC interval (termed zero-dimensional [0D] noise). We compared the jitter condition to masking from 2D white noise in double-pass masking and (novel) contrast matching experiments. Zero-dimensional noise produced the strongest masking, greatest double-pass consistency, and no suppression of perceived contrast, consistent with a noisy ideal observer. Deviations from this behavior for 2D white noise were explained by cross-channel suppression with no need to appeal to induced internal noise or uncertainty. We conclude that (a) results from previous experiments using white pixel noise should be re-evaluated and (b) 0D noise provides a cleaner method for investigating internal variability than pixel noise. Ironically then, the best external noise stimulus does not look noisy.

  19. [Study on the processing of leech by FTIR and 2D-IR correlation spectroscopy].

    PubMed

    Li, Bing-Ning; Wu, Yan-Wen; Ouyang, Jie; Sun, Su-Qin; Chen, Shun-Cong

    2011-04-01

    The chemical differences of traditional Chinese medicine leech before and after processing were analyzed by FTIR and two-dimensional correlation infrared (2D-IR) spectroscopy. The result showed that the leech was high in protein, with characteristic peaks of amide I, II bands. Comparing the IR spectra of samples, the primary difference was that the characteristic peak of fresh leech was at 1 543 cm(-1), while that of crude and processed leech was at 1 535 cm(-1). A 2D-IR spectrum with heating perturbation was used to track the processing dynamics of leech In the 2D-IR correlation spectra, fresh leech exhibited stronger automatic peaks of the amide I and II bands than that of processed leech, which indicates that the protein components of the fresh leech were more sensitive to heat perturbation than the processed one. Moreover, the result of FTIR and 2D-IR correlation spectra validated that the 3-dimensional structure of protein was damaged and hydrogen bonds were broken after processing, which resulted in the inactivation of protein. The fatty acids and cholesterol components of leech were also oxidized in this process.

  20. Computational Screening of 2D Materials for Photocatalysis.

    PubMed

    Singh, Arunima K; Mathew, Kiran; Zhuang, Houlong L; Hennig, Richard G

    2015-03-19

    Two-dimensional (2D) materials exhibit a range of extraordinary electronic, optical, and mechanical properties different from their bulk counterparts with potential applications for 2D materials emerging in energy storage and conversion technologies. In this Perspective, we summarize the recent developments in the field of solar water splitting using 2D materials and review a computational screening approach to rapidly and efficiently discover more 2D materials that possess properties suitable for solar water splitting. Computational tools based on density-functional theory can predict the intrinsic properties of potential photocatalyst such as their electronic properties, optical absorbance, and solubility in aqueous solutions. Computational tools enable the exploration of possible routes to enhance the photocatalytic activity of 2D materials by use of mechanical strain, bias potential, doping, and pH. We discuss future research directions and needed method developments for the computational design and optimization of 2D materials for photocatalysis.

  1. Nanoparticle plasmonics for 2D-photovoltaics: mechanisms, optimization, and limits.

    PubMed

    Hägglund, Carl; Kasemo, Bengt

    2009-07-06

    Plasmonic nanostructures placed within or near photovoltaic (PV) layers are of high current interest for improving thin film solar cells. We demonstrate, by electrodynamics calculations, the feasibility of a new class of essentially two dimensional (2D) solar cells based on the very large optical cross sections of plasmonic nanoparticles. Conditions for inducing absorption in extremely thin PV layers via plasmon near-fields, are optimized in 2D-arrays of (i) core-shell particles, and (ii) plasmonic particles on planar layers. At the plasmon resonance, a pronounced optimum is found for the extinction coefficient of the PV material. We also characterize the influence of the dielectric environment, PV layer thickness and nanoparticle shape, size and spatial distribution. The response of the system is close to that of a 2D effective medium layer, and subject to a 50% absorption limit when the dielectric environment around the 2D layer is symmetric. In this case, a plasmon induced absorption of about 40% is demonstrated in PV layers as thin as 10 nm, using silver nanoparticle arrays of only 1 nm effective thickness. In an asymmetric environment, the useful absorption may be increased significantly for the same layer thicknesses. These new types of essentially 2D solar cells are concluded to have a large potential for reducing solar electricity costs.

  2. Direct Self-Assembly of a 2D and 3D Star of David.

    PubMed

    Song, Bo; Zhang, Zhe; Wang, Kun; Hsu, Chih-Hao; Bolarinwa, Olapeju; Wang, Jing; Li, Yiming; Yin, Guang-Qiang; Rivera, Edwin; Yang, Hai-Bo; Liu, Changlin; Xu, Bingqian; Li, Xiaopeng

    2017-04-06

    Two- and three-dimensional metallosupramolecules shaped like a Star of David were synthesized by the self-assembly of a tetratopic pyridyl ligand with a 180° diplatinum(II) motif and Pd(II) ions, respectively. In contrast to other strategies, such as template-directed synthesis and stepwise self-assembly, this design enables the formation of 2D and 3D structures in one step and high yield. The structures were characterized by both one-dimensional ((1) H, (13) C, (31) P) and two-dimensional (COSY, NOESY, DOSY) NMR spectroscopy, ESI-MS, ion-mobility mass spectrometry (IM-MS), AFM, and TEM. The stabilities of the 2D and 3D structures were measured and compared by gradient tandem mass spectrometry (gMS(2) ). The high stability of the 3D Star of David was correlated to its high density of coordination sites (DOCS).

  3. Engineering the Charge Transfer in all 2D Graphene-Nanoplatelets Heterostructure Photodetectors

    PubMed Central

    Robin, A.; Lhuillier, E.; Xu, X. Z.; Ithurria, S.; Aubin, H.; Ouerghi, A.; Dubertret, B.

    2016-01-01

    Two dimensional layered (i.e. van der Waals) heterostructures open up great prospects, especially in photodetector applications. In this context, the control of the charge transfer between the constituting layers is of crucial importance. Compared to bulk or 0D system, 2D materials are characterized by a large exciton binding energy (0.1–1 eV) which considerably affects the magnitude of the charge transfer. Here we investigate a model system made from colloidal 2D CdSe nanoplatelets and epitaxial graphene in a phototransistor configuration. We demonstrate that using a heterostructured layered material, we can tune the magnitude and the direction (i.e. electron or hole) of the charge transfer. We further evidence that graphene functionalization by nanocrystals only leads to a limited change in the magnitude of the 1/f noise. These results draw some new directions to design van der Waals heterostructures with enhanced optoelectronic properties. PMID:27143413

  4. Engineering the Charge Transfer in all 2D Graphene-Nanoplatelets Heterostructure Photodetectors

    NASA Astrophysics Data System (ADS)

    Robin, A.; Lhuillier, E.; Xu, X. Z.; Ithurria, S.; Aubin, H.; Ouerghi, A.; Dubertret, B.

    2016-05-01

    Two dimensional layered (i.e. van der Waals) heterostructures open up great prospects, especially in photodetector applications. In this context, the control of the charge transfer between the constituting layers is of crucial importance. Compared to bulk or 0D system, 2D materials are characterized by a large exciton binding energy (0.1–1 eV) which considerably affects the magnitude of the charge transfer. Here we investigate a model system made from colloidal 2D CdSe nanoplatelets and epitaxial graphene in a phototransistor configuration. We demonstrate that using a heterostructured layered material, we can tune the magnitude and the direction (i.e. electron or hole) of the charge transfer. We further evidence that graphene functionalization by nanocrystals only leads to a limited change in the magnitude of the 1/f noise. These results draw some new directions to design van der Waals heterostructures with enhanced optoelectronic properties.

  5. Noise sensitivity: A neurophenomenological perspective.

    PubMed

    Dzhambov, Angel M

    2015-11-01

    This paper addresses the current limitations of noise sensitivity research and the benefit of undertaking a neurophenomenological approach of investigation. It begins by questioning the invariance of noise sensitivity across different studies and contexts and argues that these are issues associated with the psychometric construct rather than the underlying reaction patterns. It suggest that our definition and operationalization of noise sensitivity might have been misspecified and that it needs to be revised on the basis of heuristically derived first-person data about our experiences of noise. It then shows why the basic principles of the neurophenomenological program are applicable to psychoacoustic research. Namely, it argues that phenomenological training leading to reflexive introspection and verbalization of our susceptibility to noise might have three-fold implication - (i) it will generate deeper understanding of noise sensitivity which will then allow us to deduce a hierarchical structure of meaning and concepts to supplement and be fed to quantitative research, (ii) it will provide better interpretation of neuroimaging and electroencephalographic data related to noise reaction and perception, which in turn will allow a process of reciprocal validation, (iii) and, most importantly, it presents a promising technique for emotional regulation of noise processing via modulation of the amygdalar function, when a state of awareness of this processing has been achieved.

  6. Quasi 2D Materials: Raman Nanometrology and Thermal Management Applications

    NASA Astrophysics Data System (ADS)

    Shahil, Khan Mohammad Farhan

    Quasi two-dimensional (2D) materials obtained by the "graphene-like" exfoliation attracted tremendous attention. Such materials revealed unique electronic, thermal and optical properties, which can be potentially used in electronics, thermal management and energy conversion. This dissertation research addresses two separate but synergetic problems: (i) preparation and optical characterization of quasi-2D films of the bismuth-telluride (Bi 2Te3) family of materials, which demonstrate both thermoelectric and topological insulator properties; and (ii) investigation of thermal properties of composite materials prepared with graphene and few-layer graphene (FLG). The first part of dissertation reports properties of the exfoliated few-quintuple layers of Bi2Te3, Bi2Se3 and Sb 2Te3. Both non-resonant and resonant Raman scattering spectra have been investigated. It was found that the crystal symmetry breaking in few-quintuple films results in appearance of A1u-symmetry Raman peaks, which are not active in the bulk crystals. The scattering spectra measured under the 633-nm wavelength excitation reveals a number of resonant features, which could be used for analysis of the electronic and phonon processes in these materials. The obtained results help to understand the physical mechanisms of Raman scattering in the few-quintuple-thick films and can be used for nanometrology of topological insulator films on various substrates. The second part of the dissertation is dedicated to investigation of properties of composite materials prepared with graphene and FLG. It was found that the optimized mixture of graphene and multilayer graphene---produced by the high-yield inexpensive liquid-phase-exfoliation technique---can lead to an extremely strong enhancement of the cross-plane thermal conductivity K of the composite. The "laser flash" measurements revealed a record-high enhancement of K by 2300 % in the graphene-based polymer at the filler loading fraction f =10 vol. %. It was

  7. Synthetic Covalent and Non-Covalent 2D Materials.

    PubMed

    Boott, Charlotte E; Nazemi, Ali; Manners, Ian

    2015-11-16

    The creation of synthetic 2D materials represents an attractive challenge that is ultimately driven by their prospective uses in, for example, electronics, biomedicine, catalysis, sensing, and as membranes for separation and filtration. This Review illustrates some recent advances in this diverse field with a focus on covalent and non-covalent 2D polymers and frameworks, and self-assembled 2D materials derived from nanoparticles, homopolymers, and block copolymers.

  8. Interrogating Fiber Formation Kinetics with Automated 2D-IR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Strasfeld, David B.; Ling, Yun L.; Shim, Sang-Hee; Zanni, Martin T.

    A new method for collecting 2D-IR spectra that utilizes both a pump-probe beam geometry and a mid-IR pulse shaper is used to gain a fuller understanding of fiber formation in the human islet amyloid polypeptide (hIAPP). We extract structural kinetics in order to better understand aggregation in hIAPP, the protein component of the amyloid fibers found to inhibit insulin production in type II diabetes patients.

  9. Controlling of stochastic resonance and noise enhanced stability induced by harmonic noises in a bistable system

    NASA Astrophysics Data System (ADS)

    Wang, Chao-Jie; Long, Fei; Zhang, Pei; Nie, Lin-Ru

    2017-04-01

    Stochastic resonance (SR) and noise enhanced stability (NES) in a bistable system driven by an additive harmonic noise and a multiplicative harmonic noise is investigated. Through numerical simulation, we obtained the power spectrum by the Fourier transformation on time series. The results indicate that (i) for certain values of the parameters of additive harmonic noise Γ, Ω and the noise intensity D, the SR phenomenon occurs. It means we can control the SR phenomenon by modulating the parameters of harmonic noise; (ii) the NES phenomenon occurs at certain values of the parameters of multiplicative harmonic noise Γ, Ω and the multiplicative noise intensity Q. Most important, the NES phenomenon can also be controlled by modulating the parameters of harmonic noise.

  10. Epitaxial 2D SnSe2/ 2D WSe2 van der Waals Heterostructures.

    PubMed

    Aretouli, Kleopatra Emmanouil; Tsoutsou, Dimitra; Tsipas, Polychronis; Marquez-Velasco, Jose; Aminalragia Giamini, Sigiava; Kelaidis, Nicolaos; Psycharis, Vassilis; Dimoulas, Athanasios

    2016-09-07

    van der Waals heterostructures of 2D semiconductor materials can be used to realize a number of (opto)electronic devices including tunneling field effect devices (TFETs). It is shown in this work that high quality SnSe2/WSe2 vdW heterostructure can be grown by molecular beam epitaxy on AlN(0001)/Si(111) substrates using a Bi2Se3 buffer layer. A valence band offset of 0.8 eV matches the energy gap of SnSe2 in such a way that the VB edge of WSe2 and the CB edge of SnSe2 are lined up, making this materials combination suitable for (nearly) broken gap TFETs.

  11. Computationally Efficient 2D DOA Estimation with Uniform Rectangular Array in Low-Grazing Angle

    PubMed Central

    Shi, Junpeng; Hu, Guoping; Zhang, Xiaofei; Sun, Fenggang; Xiao, Yu

    2017-01-01

    In this paper, we propose a computationally efficient spatial differencing matrix set (SDMS) method for two-dimensional direction of arrival (2D DOA) estimation with uniform rectangular arrays (URAs) in a low-grazing angle (LGA) condition. By rearranging the auto-correlation and cross-correlation matrices in turn among different subarrays, the SDMS method can estimate the two parameters independently with one-dimensional (1D) subspace-based estimation techniques, where we only perform difference for auto-correlation matrices and the cross-correlation matrices are kept completely. Then, the pair-matching of two parameters is achieved by extracting the diagonal elements of URA. Thus, the proposed method can decrease the computational complexity, suppress the effect of additive noise and also have little information loss. Simulation results show that, in LGA, compared to other methods, the proposed methods can achieve performance improvement in the white or colored noise conditions. PMID:28245634

  12. Circular photogalvanic effect caused by the transitions between edge and 2D states in a 2D topological insulator

    NASA Astrophysics Data System (ADS)

    Magarill, L. I.; Entin, M. V.

    2016-12-01

    The electron absorption and the edge photocurrent of a 2D topological insulator are studied for transitions between edge states to 2D states. The circular polarized light is found to produce the edge photocurrent, the direction of which is determined by light polarization and edge orientation. It is shown that the edge-state current is found to exceed the 2D current owing to the topological protection of the edge states.

  13. Improving Gabor noise.

    PubMed

    Lagae, Ares; Lefebvre, Sylvain; Dutré, Philip

    2011-08-01

    We have recently proposed a new procedural noise function, Gabor noise, which offers a combination of properties not found in the existing noise functions. In this paper, we present three significant improvements to Gabor noise: 1) an isotropic kernel for Gabor noise, which speeds up isotropic Gabor noise with a factor of roughly two, 2) an error analysis of Gabor noise, which relates the kernel truncation radius to the relative error of the noise, and 3) spatially varying Gabor noise, which enables spatial variation of all noise parameters. These improvements make Gabor noise an even more attractive alternative for the existing noise functions.

  14. Assessment of Domestic Appliance Noise.

    NASA Astrophysics Data System (ADS)

    Brooks, Jeanette Rosamond

    Available from UMI in association with The British Library. The aims of this study were: (i) to identify the factors involved in eliciting a subjective reaction to domestic appliance noise, (ii) to identify the noise index (or indices) that correlate highly with a subjective reaction to the noise, and (iii) to investigate the contribution of domestic appliance noise to an individual's daily noise dose. Two series of experimental studies were carried out using several examples of each of five types of domestic appliances. One determined the index values of domestic appliance noise--namely L_{WA} (using ISO 3741), L_{pA} , L_{pD}, L _{p}, PNL, L_{Aeq, 30 sec}, L_{Amax} and L_{AX}; the other determined subjective reactions to domestic appliance noise (judgements of noisiness, annoyance, the acceptability of the appliance noise and appraisals of usefulness). The success or failure of the research hypotheses was assessed statistically by analysis of variance, regression analysis, log linear analysis, Hotelling test, bootstrapping, t-test and post-hoc comparisons. Ratings of annoyance, noisiness and the acceptability of the noise of the appliance were found to be interrelated and interdependent, and not influenced by appraisals of usefulness of the appliances. Noisiness ratings were the most consistent of the subjective ratings investigated, and were influenced by the duration of the exposure, and the actual appliance type under investigation. Significant correlations were obtained between noisiness ratings and all the noise indices under investigation. However, statistical analysis demonstrated that L_ {WA} correlated less successfully with noisiness ratings than all other indices. L_ {Amax},L_{Aeq,30 sec }, and L_{AX} indices were the most successful. It is therefore suggested that the labelling of domestic appliance noise consist of L_{WA} and L _{Aeq} as measured in a standardised test environment. The percentage contribution of domestic appliance noise to the total

  15. Integrating Mobile Multimedia into Textbooks: 2D Barcodes

    ERIC Educational Resources Information Center

    Uluyol, Celebi; Agca, R. Kagan

    2012-01-01

    The major goal of this study was to empirically compare text-plus-mobile phone learning using an integrated 2D barcode tag in a printed text with three other conditions described in multimedia learning theory. The method examined in the study involved modifications of the instructional material such that: a 2D barcode was used near the text, the…

  16. Efficient Visible Quasi-2D Perovskite Light-Emitting Diodes.

    PubMed

    Byun, Jinwoo; Cho, Himchan; Wolf, Christoph; Jang, Mi; Sadhanala, Aditya; Friend, Richard H; Yang, Hoichang; Lee, Tae-Woo

    2016-09-01

    Efficient quasi-2D-structure perovskite light-emitting diodes (4.90 cd A(-1) ) are demonstrated by mixing a 3D-structured perovskite material (methyl ammonium lead bromide) and a 2D-structured perovskite material (phenylethyl ammonium lead bromide), which can be ascribed to better film uniformity, enhanced exciton confinement, and reduced trap density.

  17. Adaptation algorithms for 2-D feedforward neural networks.

    PubMed

    Kaczorek, T

    1995-01-01

    The generalized weight adaptation algorithms presented by J.G. Kuschewski et al. (1993) and by S.H. Zak and H.J. Sira-Ramirez (1990) are extended for 2-D madaline and 2-D two-layer feedforward neural nets (FNNs).

  18. Low Noise Exhaust Nozzle Technology Development

    NASA Technical Reports Server (NTRS)

    Majjigi, R. K.; Balan, C.; Mengle, V.; Brausch, J. F.; Shin, H.; Askew, J. W.

    2005-01-01

    NASA and the U.S. aerospace industry have been assessing the economic viability and environmental acceptability of a second-generation supersonic civil transport, or High Speed Civil Transport (HSCT). Development of a propulsion system that satisfies strict airport noise regulations and provides high levels of cruise and transonic performance with adequate takeoff performance, at an acceptable weight, is critical to the success of any HSCT program. The principal objectives were to: 1. Develop a preliminary design of an innovative 2-D exhaust nozzle with the goal of meeting FAR36 Stage III noise levels and providing high levels of cruise performance with a high specific thrust for Mach 2.4 HSCT with a range of 5000 nmi and a payload of 51,900 lbm, 2. Employ advanced acoustic and aerodynamic codes during preliminary design, 3. Develop a comprehensive acoustic and aerodynamic database through scale-model testing of low-noise, high-performance, 2-D nozzle configurations, based on the preliminary design, and 4. Verify acoustic and aerodynamic predictions by means of scale-model testing. The results were: 1. The preliminary design of a 2-D, convergent/divergent suppressor ejector nozzle for a variable-cycle engine powered, Mach 2.4 HSCT was evolved, 2. Noise goals were predicted to be achievable for three takeoff scenarios, and 3. Impact of noise suppression, nozzle aerodynamic performance, and nozzle weight on HSCT takeoff gross weight were assessed.

  19. Regulation of ligands for the NKG2D activating receptor

    PubMed Central

    Raulet, David H.; Gasser, Stephan; Gowen, Benjamin G.; Deng, Weiwen; Jung, Heiyoun

    2014-01-01

    NKG2D is an activating receptor expressed by all NK cells and subsets of T cells. It serves as a major recognition receptor for detection and elimination of transformed and infected cells and participates in the genesis of several inflammatory diseases. The ligands for NKG2D are self-proteins that are induced by pathways that are active in certain pathophysiological states. NKG2D ligands are regulated transcriptionally, at the level of mRNA and protein stability, and by cleavage from the cell surface. In some cases, ligand induction can be attributed to pathways that are activated specifically in cancer cells or infected cells. We review the numerous pathways that have been implicated in the regulation of NKG2D ligands, discuss the pathologic states in which those pathways are likely to act, and attempt to synthesize the findings into general schemes of NKG2D ligand regulation in NK cell responses to cancer and infection. PMID:23298206

  20. 2D materials and van der Waals heterostructures.

    PubMed

    Novoselov, K S; Mishchenko, A; Carvalho, A; Castro Neto, A H

    2016-07-29

    The physics of two-dimensional (2D) materials and heterostructures based on such crystals has been developing extremely fast. With these new materials, truly 2D physics has begun to appear (for instance, the absence of long-range order, 2D excitons, commensurate-incommensurate transition, etc.). Novel heterostructure devices--such as tunneling transistors, resonant tunneling diodes, and light-emitting diodes--are also starting to emerge. Composed from individual 2D crystals, such devices use the properties of those materials to create functionalities that are not accessible in other heterostructures. Here we review the properties of novel 2D crystals and examine how their properties are used in new heterostructure devices.

  1. New generation transistor technologies enabled by 2D crystals

    NASA Astrophysics Data System (ADS)

    Jena, D.

    2013-05-01

    The discovery of graphene opened the door to 2D crystal materials. The lack of a bandgap in 2D graphene makes it unsuitable for electronic switching transistors in the conventional field-effect sense, though possible techniques exploiting the unique bandstructure and nanostructures are being explored. The transition metal dichalcogenides have 2D crystal semiconductors, which are well-suited for electronic switching. We experimentally demonstrate field effect transistors with current saturation and carrier inversion made from layered 2D crystal semiconductors such as MoS2, WS2, and the related family. We also evaluate the feasibility of such semiconducting 2D crystals for tunneling field effect transistors for low-power digital logic. The article summarizes the current state of new generation transistor technologies either proposed, or demonstrated, with a commentary on the challenges and prospects moving forward.

  2. Selective attention and the auditory vertex potential. I - Effects of stimulus delivery rate. II - Effects of signal intensity and masking noise

    NASA Technical Reports Server (NTRS)

    Schwent, V. L.; Hillyard, S. A.; Galambos, R.

    1976-01-01

    The effects of varying the rate of delivery of dichotic tone pip stimuli on selective attention measured by evoked-potential amplitudes and signal detectability scores were studied. The subjects attended to one channel (ear) of tones, ignored the other, and pressed a button whenever occasional targets - tones of a slightly higher pitch were detected in the attended ear. Under separate conditions, randomized interstimulus intervals were short, medium, and long. Another study compared the effects of attention on the N1 component of the auditory evoked potential for tone pips presented alone and when white noise was added to make the tones barely above detectability threshold in a three-channel listening task. Major conclusions are that (1) N1 is enlarged to stimuli in an attended channel only in the short interstimulus interval condition (averaging 350 msec), (2) N1 and P3 are related to different modes of selective attention, and (3) attention selectivity in multichannel listening task is greater when tones are faint and/or difficult to detect.

  3. Community noise sources and noise control issues

    NASA Technical Reports Server (NTRS)

    Nihart, Gene L.

    1992-01-01

    The topics covered include the following: community noise sources and noise control issues; noise components for turbine bypass turbojet engine (TBE) turbojet; engine cycle selection and noise; nozzle development schedule; NACA nozzle design; NACA nozzle test results; nearly fully mixed (NFM) nozzle design; noise versus aspiration rate; peak noise test results; nozzle test in the Low Speed Aeroacoustic Facility (LSAF); and Schlieren pictures of NACA nozzle.

  4. Noise in Nonlinear Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Moss, Frank; McClintock, P. V. E.

    2009-08-01

    List of contributors; Preface; Introduction to volume three; 1. The effects of coloured quadratic noise on a turbulent transition in liquid He II J. T. Tough; 2. Electrohydrodynamic instability of nematic liquid crystals: growth process and influence of noise S. Kai; 3. Suppression of electrohydrodynamic instabilities by external noise Helmut R. Brand; 4. Coloured noise in dye laser fluctuations R. Roy, A. W. Yu and S. Zhu; 5. Noisy dynamics in optically bistable systems E. Arimondo, D. Hennequin and P. Glorieux; 6. Use of an electronic model as a guideline in experiments on transient optical bistability W. Lange; 7. Computer experiments in nonlinear stochastic physics Riccardo Mannella; 8. Analogue simulations of stochastic processes by means of minimum component electronic devices Leone Fronzoni; 9. Analogue techniques for the study of problems in stochastic nonlinear dynamics P. V. E. McClintock and Frank Moss; Index.

  5. Estrogen-Induced Cholestasis Leads to Repressed CYP2D6 Expression in CYP2D6-Humanized Mice.

    PubMed

    Pan, Xian; Jeong, Hyunyoung

    2015-07-01

    Cholestasis activates bile acid receptor farnesoid X receptor (FXR) and subsequently enhances hepatic expression of small heterodimer partner (SHP). We previously demonstrated that SHP represses the transactivation of cytochrome P450 2D6 (CYP2D6) promoter by hepatocyte nuclear factor (HNF) 4α. In this study, we investigated the effects of estrogen-induced cholestasis on CYP2D6 expression. Estrogen-induced cholestasis occurs in subjects receiving estrogen for contraception or hormone replacement, or in susceptible women during pregnancy. In CYP2D6-humanized transgenic (Tg-CYP2D6) mice, cholestasis triggered by administration of 17α-ethinylestradiol (EE2) at a high dose led to 2- to 3-fold decreases in CYP2D6 expression. This was accompanied by increased hepatic SHP expression and subsequent decreases in the recruitment of HNF4α to CYP2D6 promoter. Interestingly, estrogen-induced cholestasis also led to increased recruitment of estrogen receptor (ER) α, but not that of FXR, to Shp promoter, suggesting a predominant role of ERα in transcriptional regulation of SHP in estrogen-induced cholestasis. EE2 at a low dose (that does not cause cholestasis) also increased SHP (by ∼ 50%) and decreased CYP2D6 expression (by 1.5-fold) in Tg-CYP2D6 mice, the magnitude of differences being much smaller than that shown in EE2-induced cholestasis. Taken together, our data indicate that EE2-induced cholestasis increases SHP and represses CYP2D6 expression in Tg-CYP2D6 mice in part through ERα transactivation of Shp promoter.

  6. Solid chemistry of the Zn{sup II}/1,2,4-triazolate/anion system: Separation of 2D isoreticular layers tuned by the terminal counteranions X (X=Cl{sup -}, Br{sup -}, I{sup -}, SCN{sup -})

    SciTech Connect

    Chen Sanping; Sun Shu; Gao Shengli

    2008-12-15

    An array of 2D isoreticular layers, viz. [Zn(atrz)X]{sub {infinity}} (1.X; X=Cl{sup -}, Br{sup -}, I{sup -}; atrz=3-amino-1,2,4-triazole anion), [Zn{sub 4}(atrz){sub 4}(SCN){sub 4}.H{sub 2}O]{sub {infinity}} (1.SCN.H{sub 2}O) and [Zn(trz)X]{sub {infinity}} (2.X; X=Cl{sup -}, Br{sup -}, I{sup -}; trz=1,2,4-triazole anion), have been hydrothermally synthesized and structurally characterized. Compounds 1.X and 1.SCN.H{sub 2}O are constructed from binuclear planar Zn{sub 2}(atrz){sub 2} subunits and exhibit (4,4) topological network when the subunits are simplified as four-connected nodes. Based on changing the terminal counteranions X (X=Cl{sup -}, Br{sup -}, I{sup -}, SCN{sup -}), the average interlayer separations of 1.X and 1.SCN.H{sub 2}O are enlarged, which equal to 5.851, 6.153, 6.651 and 8.292 A, respectively. As a result, H{sub 2}O molecules reside in the spaces between two adjacent layers of 1.SCN.H{sub 2}O. 2 and 1 are the isomorphous structures. In common with 1, the interlayer separations of 2.X are widened with increasing the ion radius. Solid-state luminescence properties and thermogravimetric analyses of 1 and 2 were investigated, respectively. - Graphical Abstract: Based on employing the various terminal counteranions X (X=Cl{sup -}, Br{sup -}, I{sup -}, SCN{sup -}) the average interlayer separations of four 2D isoreticular layer compounds [Zn(atrz)X]{sub {infinity}} are gradually enlarged, which equal to 5.851, 6.153, 6.651 and 8.292 A, respectively. As a result, guest H{sub 2}O molecules reside in the space between two adjacent layers of [Zn{sub 4}(atrz){sub 4}(SCN){sub 4}.H{sub 2}O]{sub {infinity}}.

  7. Control of Environmental Noise

    ERIC Educational Resources Information Center

    Jensen, Paul

    1973-01-01

    Discusses the physical properties, sources, physiological effects, and legislation pertaining to noise, especially noise characteristics in the community. Indicates that noise reduction steps can be taken more intelligently after determination of the true noise sources and paths. (CC)

  8. Targeted fluorescence imaging enhanced by 2D materials: a comparison between 2D MoS2 and graphene oxide.

    PubMed

    Xie, Donghao; Ji, Ding-Kun; Zhang, Yue; Cao, Jun; Zheng, Hu; Liu, Lin; Zang, Yi; Li, Jia; Chen, Guo-Rong; James, Tony D; He, Xiao-Peng

    2016-08-04

    Here we demonstrate that 2D MoS2 can enhance the receptor-targeting and imaging ability of a fluorophore-labelled ligand. The 2D MoS2 has an enhanced working concentration range when compared with graphene oxide, resulting in the improved imaging of both cell and tissue samples.

  9. Efficient 2D MRI relaxometry using compressed sensing

    NASA Astrophysics Data System (ADS)

    Bai, Ruiliang; Cloninger, Alexander; Czaja, Wojciech; Basser, Peter J.

    2015-06-01

    Potential applications of 2D relaxation spectrum NMR and MRI to characterize complex water dynamics (e.g., compartmental exchange) in biology and other disciplines have increased in recent years. However, the large amount of data and long MR acquisition times required for conventional 2D MR relaxometry limits its applicability for in vivo preclinical and clinical MRI. We present a new MR pipeline for 2D relaxometry that incorporates compressed sensing (CS) as a means to vastly reduce the amount of 2D relaxation data needed for material and tissue characterization without compromising data quality. Unlike the conventional CS reconstruction in the Fourier space (k-space), the proposed CS algorithm is directly applied onto the Laplace space (the joint 2D relaxation data) without compressing k-space to reduce the amount of data required for 2D relaxation spectra. This framework is validated using synthetic data, with NMR data acquired in a well-characterized urea/water phantom, and on fixed porcine spinal cord tissue. The quality of the CS-reconstructed spectra was comparable to that of the conventional 2D relaxation spectra, as assessed using global correlation, local contrast between peaks, peak amplitude and relaxation parameters, etc. This result brings this important type of contrast closer to being realized in preclinical, clinical, and other applications.

  10. 2D vs. 3D mammography observer study

    NASA Astrophysics Data System (ADS)

    Fernandez, James Reza F.; Hovanessian-Larsen, Linda; Liu, Brent

    2011-03-01

    Breast cancer is the most common type of non-skin cancer in women. 2D mammography is a screening tool to aid in the early detection of breast cancer, but has diagnostic limitations of overlapping tissues, especially in dense breasts. 3D mammography has the potential to improve detection outcomes by increasing specificity, and a new 3D screening tool with a 3D display for mammography aims to improve performance and efficiency as compared to 2D mammography. An observer study using a mammography phantom was performed to compare traditional 2D mammography with this ne 3D mammography technique. In comparing 3D and 2D mammography there was no difference in calcification detection, and mass detection was better in 2D as compared to 3D. There was a significant decrease in reading time for masses, calcifications, and normals in 3D compared to 2D, however, as well as more favorable confidence levels in reading normal cases. Given the limitations of the mammography phantom used, however, a clearer picture in comparing 3D and 2D mammography may be better acquired with the incorporation of human studies in the future.

  11. Joint 2D and 3D phase processing for quantitative susceptibility mapping: application to 2D echo-planar imaging.

    PubMed

    Wei, Hongjiang; Zhang, Yuyao; Gibbs, Eric; Chen, Nan-Kuei; Wang, Nian; Liu, Chunlei

    2017-04-01

    Quantitative susceptibility mapping (QSM) measures tissue magnetic susceptibility and typically relies on time-consuming three-dimensional (3D) gradient-echo (GRE) MRI. Recent studies have shown that two-dimensional (2D) multi-slice gradient-echo echo-planar imaging (GRE-EPI), which is commonly used in functional MRI (fMRI) and other dynamic imaging techniques, can also be used to produce data suitable for QSM with much shorter scan times. However, the production of high-quality QSM maps is difficult because data obtained by 2D multi-slice scans often have phase inconsistencies across adjacent slices and strong susceptibility field gradients near air-tissue interfaces. To address these challenges in 2D EPI-based QSM studies, we present a new data processing procedure that integrates 2D and 3D phase processing. First, 2D Laplacian-based phase unwrapping and 2D background phase removal are performed to reduce phase inconsistencies between slices and remove in-plane harmonic components of the background phase. This is followed by 3D background phase removal for the through-plane harmonic components. The proposed phase processing was evaluated with 2D EPI data obtained from healthy volunteers, and compared against conventional 3D phase processing using the same 2D EPI datasets. Our QSM results were also compared with QSM values from time-consuming 3D GRE data, which were taken as ground truth. The experimental results show that this new 2D EPI-based QSM technique can produce quantitative susceptibility measures that are comparable with those of 3D GRE-based QSM across different brain regions (e.g. subcortical iron-rich gray matter, cortical gray and white matter). This new 2D EPI QSM reconstruction method is implemented within STI Suite, which is a comprehensive shareware for susceptibility imaging and quantification. Copyright © 2016 John Wiley & Sons, Ltd.

  12. NKG2D receptor and its ligands in host defense

    PubMed Central

    Lanier, Lewis L.

    2015-01-01

    NKG2D is an activating receptor expressed on the surface of natural killer (NK) cells, CD8+ T cells, and subsets of CD4+ T cells, iNKT cells, and γδ T cells. In humans NKG2D transmits signals by its association with the DAP10 adapter subunit and in mice alternatively spliced isoforms transmit signals either using DAP10 or DAP12 adapter subunits. Although NKG2D is encoded by a highly conserved gene (KLRK1) with limited polymorphism, the receptor recognizes an extensive repertoire of ligands, encoded by at least 8 genes in humans (MICA, MICB, RAET1E, RAET1G, RAET1H, RAET1I, RAET1L, and RAET1N), some with extensive allelic polymorphism. Expression of the NKG2D ligands is tightly regulated at the level of transcription, translation, and post-translation. In general healthy adult tissues do not express NKG2D glycoproteins on the cell surface, but these ligands can be induced by hyper-proliferation and transformation, as well as when cells are infected by pathogens. Thus, the NKG2D pathway serves a mechanism for the immune system to detect and eliminate cells that have undergone “stress”. Viruses and tumor cells have devised numerous strategies to evade detection by the NKG2D surveillance system and diversification of the NKG2D ligand genes likely has been driven by selective pressures imposed by pathogens. NKG2D provides an attractive target for therapeutics in the treatment of infectious diseases, cancer, and autoimmune diseases. PMID:26041808

  13. NKG2D Receptor and Its Ligands in Host Defense.

    PubMed

    Lanier, Lewis L

    2015-06-01

    NKG2D is an activating receptor expressed on the surface of natural killer (NK) cells, CD8(+) T cells, and subsets of CD4(+) T cells, invariant NKT cells (iNKT), and γδ T cells. In humans, NKG2D transmits signals by its association with the DAP10 adapter subunit, and in mice alternatively spliced isoforms transmit signals either using DAP10 or DAP12 adapter subunits. Although NKG2D is encoded by a highly conserved gene (KLRK1) with limited polymorphism, the receptor recognizes an extensive repertoire of ligands, encoded by at least eight genes in humans (MICA, MICB, RAET1E, RAET1G, RAET1H, RAET1I, RAET1L, and RAET1N), some with extensive allelic polymorphism. Expression of the NKG2D ligands is tightly regulated at the level of transcription, translation, and posttranslation. In general, healthy adult tissues do not express NKG2D glycoproteins on the cell surface, but these ligands can be induced by hyperproliferation and transformation, as well as when cells are infected by pathogens. Thus, the NKG2D pathway serves as a mechanism for the immune system to detect and eliminate cells that have undergone "stress." Viruses and tumor cells have devised numerous strategies to evade detection by the NKG2D surveillance system, and diversification of the NKG2D ligand genes likely has been driven by selective pressures imposed by pathogens. NKG2D provides an attractive target for therapeutics in the treatment of infectious diseases, cancer, and autoimmune diseases.

  14. 2-D Versus 3-D Magnetotelluric Data Interpretation

    NASA Astrophysics Data System (ADS)

    Ledo, Juanjo

    2005-09-01

    In recent years, the number of publications dealing with the mathematical and physical 3-D aspects of the magnetotelluric method has increased drastically. However, field experiments on a grid are often impractical and surveys are frequently restricted to single or widely separated profiles. So, in many cases we find ourselves with the following question: is the applicability of the 2-D hypothesis valid to extract geoelectric and geological information from real 3-D environments? The aim of this paper is to explore a few instructive but general situations to understand the basics of a 2-D interpretation of 3-D magnetotelluric data and to determine which data subset (TE-mode or TM-mode) is best for obtaining the electrical conductivity distribution of the subsurface using 2-D techniques. A review of the mathematical and physical fundamentals of the electromagnetic fields generated by a simple 3-D structure allows us to prioritise the choice of modes in a 2-D interpretation of responses influenced by 3-D structures. This analysis is corroborated by numerical results from synthetic models and by real data acquired by other authors. One important result of this analysis is that the mode most unaffected by 3-D effects depends on the position of the 3-D structure with respect to the regional 2-D strike direction. When the 3-D body is normal to the regional strike, the TE-mode is affected mainly by galvanic effects, while the TM-mode is affected by galvanic and inductive effects. In this case, a 2-D interpretation of the TM-mode is prone to error. When the 3-D body is parallel to the regional 2-D strike the TE-mode is affected by galvanic and inductive effects and the TM-mode is affected mainly by galvanic effects, making it more suitable for 2-D interpretation. In general, a wise 2-D interpretation of 3-D magnetotelluric data can be a guide to a reasonable geological interpretation.

  15. Noise pollution resources compendium

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Abstracts of reports concerning noise pollution are presented. The abstracts are grouped in the following areas of activity: (1) sources of noise, (2) noise detection and measurement, (3) noise abatement and control, (4) physical effects of noise and (5) social effects of noise.

  16. Recent advances in 2D materials for photocatalysis.

    PubMed

    Luo, Bin; Liu, Gang; Wang, Lianzhou

    2016-04-07

    Two-dimensional (2D) materials have attracted increasing attention for photocatalytic applications because of their unique thickness dependent physical and chemical properties. This review gives a brief overview of the recent developments concerning the chemical synthesis and structural design of 2D materials at the nanoscale and their applications in photocatalytic areas. In particular, recent progress on the emerging strategies for tailoring 2D material-based photocatalysts to improve their photo-activity including elemental doping, heterostructure design and functional architecture assembly is discussed.

  17. Comparison of 2D and 3D gamma analyses

    SciTech Connect

    Pulliam, Kiley B.; Huang, Jessie Y.; Howell, Rebecca M.; Followill, David; Kry, Stephen F.; Bosca, Ryan; O’Daniel, Jennifer

    2014-02-15

    Purpose: As clinics begin to use 3D metrics for intensity-modulated radiation therapy (IMRT) quality assurance, it must be noted that these metrics will often produce results different from those produced by their 2D counterparts. 3D and 2D gamma analyses would be expected to produce different values, in part because of the different search space available. In the present investigation, the authors compared the results of 2D and 3D gamma analysis (where both datasets were generated in the same manner) for clinical treatment plans. Methods: Fifty IMRT plans were selected from the authors’ clinical database, and recalculated using Monte Carlo. Treatment planning system-calculated (“evaluated dose distributions”) and Monte Carlo-recalculated (“reference dose distributions”) dose distributions were compared using 2D and 3D gamma analysis. This analysis was performed using a variety of dose-difference (5%, 3%, 2%, and 1%) and distance-to-agreement (5, 3, 2, and 1 mm) acceptance criteria, low-dose thresholds (5%, 10%, and 15% of the prescription dose), and data grid sizes (1.0, 1.5, and 3.0 mm). Each comparison was evaluated to determine the average 2D and 3D gamma, lower 95th percentile gamma value, and percentage of pixels passing gamma. Results: The average gamma, lower 95th percentile gamma value, and percentage of passing pixels for each acceptance criterion demonstrated better agreement for 3D than for 2D analysis for every plan comparison. The average difference in the percentage of passing pixels between the 2D and 3D analyses with no low-dose threshold ranged from 0.9% to 2.1%. Similarly, using a low-dose threshold resulted in a difference between the mean 2D and 3D results, ranging from 0.8% to 1.5%. The authors observed no appreciable differences in gamma with changes in the data density (constant difference: 0.8% for 2D vs 3D). Conclusions: The authors found that 3D gamma analysis resulted in up to 2.9% more pixels passing than 2D analysis. It must

  18. Noise Abatement

    NASA Technical Reports Server (NTRS)

    1983-01-01

    SMART, Sound Modification and Regulated Temperature compound, is a liquid plastic mixture with exceptional energy and sound absorbing qualities. It is derived from a very elastic plastic which was an effective noise abatement material in the Apollo Guidance System. Discovered by a NASA employee, it is marketed by Environmental Health Systems, Inc. (EHS). The product has been successfully employed by a diaper company with noisy dryers and a sugar company with noisy blowers. The company also manufactures an audiometric test booth and acoustical office partitions.

  19. Genomics of Dementia: APOE- and CYP2D6-Related Pharmacogenetics

    PubMed Central

    Cacabelos, Ramón; Martínez, Rocío; Fernández-Novoa, Lucía; Carril, Juan C.; Lombardi, Valter; Carrera, Iván; Corzo, Lola; Tellado, Iván; Leszek, Jerzy; McKay, Adam; Takeda, Masatoshi

    2012-01-01

    Dementia is a major problem of health in developed societies. Alzheimer's disease (AD), vascular dementia, and mixed dementia account for over 90% of the most prevalent forms of dementia. Both genetic and environmental factors are determinant for the phenotypic expression of dementia. AD is a complex disorder in which many different gene clusters may be involved. Most genes screened to date belong to different proteomic and metabolomic pathways potentially affecting AD pathogenesis. The ε4 variant of the APOE gene seems to be a major risk factor for both degenerative and vascular dementia. Metabolic factors, cerebrovascular disorders, and epigenetic phenomena also contribute to neurodegeneration. Five categories of genes are mainly involved in pharmacogenomics: genes associated with disease pathogenesis, genes associated with the mechanism of action of a particular drug, genes associated with phase I and phase II metabolic reactions, genes associated with transporters, and pleiotropic genes and/or genes associated with concomitant pathologies. The APOE and CYP2D6 genes have been extensively studied in AD. The therapeutic response to conventional drugs in patients with AD is genotype specific, with CYP2D6-PMs, CYP2D6-UMs, and APOE-4/4 carriers acting as the worst responders. APOE and CYP2D6 may cooperate, as pleiotropic genes, in the metabolism of drugs and hepatic function. The introduction of pharmacogenetic procedures into AD pharmacological treatment may help to optimize therapeutics. PMID:22482072

  20. The influence of pressure on the structure of a 2D uranium(VI) carboxyphosphonoate compound

    SciTech Connect

    Spencer, Elinor C.; Ross, Nancy L.; Surbella, Robert G.; Cahill, Christopher L.

    2014-10-15

    We report the first quantitative analysis of the structural evolution of a uranyl bearing coordination polymer in response to pressure. The material that is central to this study, (UO{sub 2})(O{sub 3}PCH{sub 2}CO{sub 2}H) (1), is constructed from rigid 2D inorganic layers comprising edge sharing UO{sub 7} pentagonal bipyramids cross-linked by [PO{sub 3}(COOH)]{sup 2−} anions. Strong hydrogen bonding interactions exist between the pendent carboxylic acid groups on adjacent layers. Under pressure, 1 exhibits compressional behaviour primarily in the direction perpendicular to the inorganic layers, which is aided by a reduction in the interlayer distance and shifting of the layers with respect to each other. The bulk modulus for the 2D compound 1 is unexpectedly high [18.1(1) GPa] and is within the range reported for 3D CPs assembled from Zn{sup II} cations and inflexible imidazolate anions, and is at the lower end of the range of moduli observed for aluminosilicate zeolites (19–59 GPa). - Graphical Abstract: The compression mechanism and elastic constants for a 2D Uranium(VI) carboxyphosphonoate compound are reported. - Highlights: • The response to pressure of a uranium carboxyphosphonoate compound has been studied. • High-pressure single-crystal XRD data for this 2D uranium compound were collected. • Elastic constants for this material have been determined. • The compression mechanism for the compound has been elucidated.

  1. Lipid-gramicidin interactions: dynamic structure of the boundary lipid by 2D-ELDOR.

    PubMed

    Costa-Filho, Antonio J; Crepeau, Richard H; Borbat, Petr P; Ge, Mingtao; Freed, Jack H

    2003-05-01

    The use of 2D-electron-electron double resonance (2D-ELDOR) for the characterization of the boundary lipid in membrane vesicles of DPPC and gramicidin A' (GA) is reported. We show that 2D-ELDOR, with its enhanced spectral resolution to dynamic structure as compared with continuous-wave electron spin resonance, provides a reliable and useful way of studying lipid-protein interactions. The 2D-ELDOR spectra of the end-chain spin label 16-PC in DPPC/GA vesicles is composed of two components, which are assigned to the bulk lipids (with sharp auto peaks and crosspeaks) and to the boundary lipids (with broad auto peaks). Their distinction is clearest for higher temperatures and higher GA concentrations. The quantitative analysis of these spectra shows relatively faster motions and very low ordering for the end chain of the bulk lipids, whereas the boundary lipids show very high "y-ordering" and slower motions. The y-ordering represents a dynamic bending at the end of the boundary lipid acyl chain, which can then coat the GA molecules. These results are consistent with the previous studies by Ge and Freed (1999) using continuous-wave electron spin resonance, thereby supporting their model for GA aggregation and H(II) phase formation for high GA concentrations. Improved instrumental and simulation methods have been employed.

  2. 2D versus 3D cross-correlation-based radial and circumferential strain estimation using multiplane 2D ultrafast ultrasound in a 3D atherosclerotic carotid artery model.

    PubMed

    Fekkes, Stein; Swillens, Abigail E S; Hansen, Hendrik H G; Saris, Anne E C M; Nillesen, Maartje M; Iannaccone, Francesco; Segers, Patrick; de Korte, Chris L

    2016-08-25

    Three-dimensional strain estimation might improve the detection and localization of high strain regions in the carotid artery for identification of vulnerable plaques. This study compares 2D vs. 3D displacement estimation in terms of radial and circumferential strain using simulated ultrasound images of a patient specific 3D atherosclerotic carotid artery model at the bifurcation embedded in surrounding tissue generated with ABAQUS software. Global longitudinal motion was superimposed to the model based on literature data. A Philips L11-3 linear array transducer was simulated which transmitted plane waves at 3 alternating angles at a pulse repetition rate of 10 kHz. Inter-frame radiofrequency ultrasound data were simulated in Field II for 191 equally spaced longitudinal positions of the internal carotid artery. Accumulated radial and circumferential displacements were estimated using tracking of the inter-frame displacements estimated by a two-step normalized cross-correlation method and displacement compounding. Least squares strain estimation was performed to determine accumulated radial and circumferential strain. The performance of the 2D and 3D method was compared by calculating the root-mean-squared error of the estimated strains with respect to the reference strains obtained from the model. More accurate strain images were obtained using the 3D displacement estimation for the entire cardiac cycle. The 3D technique clearly outperformed the 2D technique in phases with high inter-frame longitudinal motion. In fact the large inter-frame longitudinal motion rendered it impossible to accurately track the tissue and cumulate strains over the entire cardiac cycle with the 2D technique.

  3. 2-D Versus 3-D Cross-Correlation-Based Radial and Circumferential Strain Estimation Using Multiplane 2-D Ultrafast Ultrasound in a 3-D Atherosclerotic Carotid Artery Model.

    PubMed

    Fekkes, Stein; Swillens, Abigail E S; Hansen, Hendrik H G; Saris, Anne E C M; Nillesen, Maartje M; Iannaccone, Francesco; Segers, Patrick; de Korte, Chris L

    2016-10-01

    Three-dimensional (3-D) strain estimation might improve the detection and localization of high strain regions in the carotid artery (CA) for identification of vulnerable plaques. This paper compares 2-D versus 3-D displacement estimation in terms of radial and circumferential strain using simulated ultrasound (US) images of a patient-specific 3-D atherosclerotic CA model at the bifurcation embedded in surrounding tissue generated with ABAQUS software. Global longitudinal motion was superimposed to the model based on the literature data. A Philips L11-3 linear array transducer was simulated, which transmitted plane waves at three alternating angles at a pulse repetition rate of 10 kHz. Interframe (IF) radio-frequency US data were simulated in Field II for 191 equally spaced longitudinal positions of the internal CA. Accumulated radial and circumferential displacements were estimated using tracking of the IF displacements estimated by a two-step normalized cross-correlation method and displacement compounding. Least-squares strain estimation was performed to determine accumulated radial and circumferential strain. The performance of the 2-D and 3-D methods was compared by calculating the root-mean-squared error of the estimated strains with respect to the reference strains obtained from the model. More accurate strain images were obtained using the 3-D displacement estimation for the entire cardiac cycle. The 3-D technique clearly outperformed the 2-D technique in phases with high IF longitudinal motion. In fact, the large IF longitudinal motion rendered it impossible to accurately track the tissue and cumulate strains over the entire cardiac cycle with the 2-D technique.

  4. 2D-3D registration for brain radiation therapy using a 3D CBCT and a single limited field-of-view 2D kV radiograph

    NASA Astrophysics Data System (ADS)

    Munbodh, R.; Moseley, D. J.

    2014-03-01

    We report results of an intensity-based 2D-3D rigid registration framework for patient positioning and monitoring during brain radiotherapy. We evaluated two intensity-based similarity measures, the Pearson Correlation Coefficient (ICC) and Maximum Likelihood with Gaussian noise (MLG) derived from the statistics of transmission images. A useful image frequency band was identified from the bone-to-no-bone ratio. Validation was performed on gold-standard data consisting of 3D kV CBCT scans and 2D kV radiographs of an anthropomorphic head phantom acquired at 23 different poses with parameter variations along six degrees of freedom. At each pose, a single limited field of view kV radiograph was registered to the reference CBCT. The ground truth was determined from markers affixed to the phantom and visible in the CBCT images. The mean (and standard deviation) of the absolute errors in recovering each of the six transformation parameters along the x, y and z axes for ICC were varphix: 0.08(0.04)°, varphiy: 0.10(0.09)°, varphiz: 0.03(0.03)°, tx: 0.13(0.11) mm, ty: 0.08(0.06) mm and tz: 0.44(0.23) mm. For MLG, the corresponding results were varphix: 0.10(0.04)°, varphiy: 0.10(0.09)°, varphiz: 0.05(0.07)°, tx: 0.11(0.13) mm, ty: 0.05(0.05) mm and tz: 0.44(0.31) mm. It is feasible to accurately estimate all six transformation parameters from a 3D CBCT of the head and a single 2D kV radiograph within an intensity-based registration framework that incorporates the physics of transmission images.

  5. Effect of cyp2d6*10 allele on the pharmacokinetics of loratadine in chinese subjects.

    PubMed

    Yin, Ophelia Q P; Shi, X J; Tomlinson, B; Chow, Moses S S

    2005-09-01

    Loratadine is known to be a substrate for both CYP3A4 and CYP2D6 based on a previous in vitro study. In view of the large interindividual variability in loratadine pharmacokinetics and the greater genetically determined variability of CYP2D6 activity than of CYP3A4 in vivo, we hypothesized that CYP2D6 polymorphisms may contribute to the pharmacokinetic variability of loratadine. The purpose of this study was to evaluate the effect of CYP2D6 genotype (specifically the CYP2D6*10 allele) on the pharmacokinetics of loratadine in Chinese subjects. Three groups of healthy male Chinese subjects were enrolled: group I, homozygous CYP2D6*1 (*1/*1, n=4); group II, heterozygous CYP2D6*10 (*1/*10 or *2/*10, n=6); and group III, homozygous CYP2D6*10 (*10/*10, n=7) carriers. Each subject received a single oral dose of 20 mg of loratadine under fasting conditions. Multiple blood samples were collected over 48 h, and the plasma concentrations of loratadine and its metabolite desloratadine were determined by high-performance liquid chromatography. In comparing homozygous CYP2D6*10 (group III) to heterozygous CYP2D6*10 (group II) to homozygous CYP2D6*1 (group I) subjects, loratadine oral clearance values were 7.17+/- 2.54 versus 11.06+/-1.70 versus 14.59+/-2.43 l/h/kg, respectively [one-way analysis of variance (ANOVA), p<0.01], and the corresponding metabolic ratios [area under the plasma concentration-time curve (AUC)(desloratadine)/AUC(loratadine)] were 1.55+/-0.73 versus 2.47+/- 0.46 versus 3.32+/- 0.49, respectively (one-way ANOVA, p<0.05), indicating a gene-dose effect. The results demonstrated that CYP2D6 polymorphism prevalent in the Chinese population significantly affected loratadine pharmacokinetics.

  6. Double resonance rotational spectroscopy of CH2D+

    NASA Astrophysics Data System (ADS)

    Töpfer, Matthias; Jusko, Pavol; Schlemmer, Stephan; Asvany, Oskar

    2016-09-01

    Context. Deuterated forms of CH are thought to be responsible for deuterium enrichment in lukewarm astronomical environments. There is no unambiguous detection of CH2D+ in space to date. Aims: Four submillimetre rotational lines of CH2D+ are documented in the literature. Our aim is to present a complete dataset of highly resolved rotational lines, including millimetre (mm) lines needed for a potential detection. Methods: We used a low-temperature ion trap and applied a novel IR-mm-wave double resonance method to measure the rotational lines of CH2D+. Results: We measured 21 low-lying (J ≤ 4) rotational transitions of CH2D+ between 23 GHz and 1.1 THz with accuracies close to 2 ppb.

  7. Recovering 3D particle size distributions from 2D sections

    NASA Astrophysics Data System (ADS)

    Cuzzi, Jeffrey N.; Olson, Daniel M.

    2017-03-01

    We discuss different ways to convert observed, apparent particle size distributions from 2D sections (thin sections, SEM maps on planar surfaces, etc.) into true 3D particle size distributions. We give a simple, flexible, and practical method to do this; show which of these techniques gives the most faithful conversions; and provide (online) short computer codes to calculate both 2D-3D recoveries and simulations of 2D observations by random sectioning. The most important systematic bias of 2D sectioning, from the standpoint of most chondrite studies, is an overestimate of the abundance of the larger particles. We show that fairly good recoveries can be achieved from observed size distributions containing 100-300 individual measurements of apparent particle diameter.

  8. Phonon thermal conduction in novel 2D materials

    NASA Astrophysics Data System (ADS)

    Xu, Xiangfan; Chen, Jie; Li, Baowen

    2016-12-01

    Recently, there has been increasing interest in phonon thermal transport in low-dimensional materials, due to the crucial importance of dissipating and managing heat in micro- and nano-electronic devices. Significant progress has been achieved for one-dimensional (1D) systems, both theoretically and experimentally. However, the study of heat conduction in two-dimensional (2D) systems is still in its infancy due to the limited availability of 2D materials and the technical challenges of fabricating suspended samples that are suitable for thermal measurements. In this review, we outline different experimental techniques and theoretical approaches for phonon thermal transport in 2D materials, discuss the problems and challenges of phonon thermal transport measurements and provide a comparison between existing experimental data. Special attention will be given to the effects of size, dimensionality, anisotropy and mode contributions in novel 2D systems, including graphene, boron nitride, MoS2, black phosphorous and silicene.

  9. Recent developments in 2D layered inorganic nanomaterials for sensing

    NASA Astrophysics Data System (ADS)

    Kannan, Padmanathan Karthick; Late, Dattatray J.; Morgan, Hywel; Rout, Chandra Sekhar

    2015-08-01

    Two dimensional layered inorganic nanomaterials (2D-LINs) have recently attracted huge interest because of their unique thickness dependent physical and chemical properties and potential technological applications. The properties of these layered materials can be tuned via both physical and chemical processes. Some 2D layered inorganic nanomaterials like MoS2, WS2 and SnS2 have been recently developed and employed in various applications, including new sensors because of their layer-dependent electrical properties. This article presents a comprehensive overview of recent developments in the application of 2D layered inorganic nanomaterials as sensors. Some of the salient features of 2D materials for different sensing applications are discussed, including gas sensing, electrochemical sensing, SERS and biosensing, SERS sensing and photodetection. The working principles of the sensors are also discussed together with examples.

  10. Phonon thermal conduction in novel 2D materials.

    PubMed

    Xu, Xiangfan; Chen, Jie; Li, Baowen

    2016-12-07

    Recently, there has been increasing interest in phonon thermal transport in low-dimensional materials, due to the crucial importance of dissipating and managing heat in micro- and nano-electronic devices. Significant progress has been achieved for one-dimensional (1D) systems, both theoretically and experimentally. However, the study of heat conduction in two-dimensional (2D) systems is still in its infancy due to the limited availability of 2D materials and the technical challenges of fabricating suspended samples that are suitable for thermal measurements. In this review, we outline different experimental techniques and theoretical approaches for phonon thermal transport in 2D materials, discuss the problems and challenges of phonon thermal transport measurements and provide a comparison between existing experimental data. Special attention will be given to the effects of size, dimensionality, anisotropy and mode contributions in novel 2D systems, including graphene, boron nitride, MoS2, black phosphorous and silicene.

  11. Exact Solution of Ising Model in 2d Shortcut Network

    NASA Astrophysics Data System (ADS)

    Shanker, O.

    We give the exact solution to the Ising model in the shortcut network in the 2D limit. The solution is found by mapping the model to the square lattice model with Brascamp and Kunz boundary conditions.

  12. Technical Review of the UNET2D Hydraulic Model

    SciTech Connect

    Perkins, William A.; Richmond, Marshall C.

    2009-05-18

    The Kansas City District of the US Army Corps of Engineers is engaged in a broad range of river management projects that require knowledge of spatially-varied hydraulic conditions such as velocities and water surface elevations. This information is needed to design new structures, improve existing operations, and assess aquatic habitat. Two-dimensional (2D) depth-averaged numerical hydraulic models are a common tool that can be used to provide velocity and depth information. Kansas City District is currently using a specific 2D model, UNET2D, that has been developed to meet the needs of their river engineering applications. This report documents a tech- nical review of UNET2D.

  13. Reconstruction-based 3D/2D image registration.

    PubMed

    Tomazevic, Dejan; Likar, Bostjan; Pernus, Franjo

    2005-01-01

    In this paper we present a novel 3D/2D registration method, where first, a 3D image is reconstructed from a few 2D X-ray images and next, the preoperative 3D image is brought into the best possible spatial correspondence with the reconstructed image by optimizing a similarity measure. Because the quality of the reconstructed image is generally low, we introduce a novel asymmetric mutual information similarity measure, which is able to cope with low image quality as well as with different imaging modalities. The novel 3D/2D registration method has been evaluated using standardized evaluation methodology and publicly available 3D CT, 3DRX, and MR and 2D X-ray images of two spine phantoms, for which gold standard registrations were known. In terms of robustness, reliability and capture range the proposed method outperformed the gradient-based method and the method based on digitally reconstructed radiographs (DRRs).

  14. Alloyed 2D Metal-Semiconductor Atomic Layer Junctions.

    PubMed

    Kim, Ah Ra; Kim, Yonghun; Nam, Jaewook; Chung, Hee-Suk; Kim, Dong Jae; Kwon, Jung-Dae; Park, Sang Won; Park, Jucheol; Choi, Sun Young; Lee, Byoung Hun; Park, Ji Hyeon; Lee, Kyu Hwan; Kim, Dong-Ho; Choi, Sung Mook; Ajayan, Pulickel M; Hahm, Myung Gwan; Cho, Byungjin

    2016-03-09

    Heterostructures of compositionally and electronically variant two-dimensional (2D) atomic layers are viable building blocks for ultrathin optoelectronic devices. We show that the composition of interfacial transition region between semiconducting WSe2 atomic layer channels and metallic NbSe2 contact layers can be engineered through interfacial doping with Nb atoms. WxNb1-xSe2 interfacial regions considerably lower the potential barrier height of the junction, significantly improving the performance of the corresponding WSe2-based field-effect transistor devices. The creation of such alloyed 2D junctions between dissimilar atomic layer domains could be the most important factor in controlling the electronic properties of 2D junctions and the design and fabrication of 2D atomic layer devices.

  15. Dominant 2D magnetic turbulence in the solar wind

    NASA Technical Reports Server (NTRS)

    Bieber, John W.; Wanner, Wolfgang; Matthaeus, William H.

    1995-01-01

    There have been recent suggestions that solar wind magnetic turbulence may be a composite of slab geometry (wavevector aligned with the mean magnetic field) and 2D geometry (wavevectors perpendicular to the mean field). We report results of two new tests of this hypothesis using Helios measurements of inertial ranged magnetic spectra in the solar wind. The first test is based upon a characteristic difference between perpendicular and parallel reduced power spectra which is expected for the 2D component but not for the slab component. The second test examines the dependence of power spectrum density upon the magnetic field angle (i.e., the angle between the mean magnetic field and the radial direction), a relationship which is expected to be in opposite directions for the slab and 2D components. Both tests support the presence of a dominant (approximately 85 percent by energy) 2D component in solar wind magnetic turbulence.

  16. Studying Zeolite Catalysts with a 2D Model System

    SciTech Connect

    Boscoboinik, Anibal

    2016-12-07

    Anibal Boscoboinik, a materials scientist at Brookhaven’s Center for Functional Nanomaterials, discusses the surface-science tools and 2D model system he uses to study catalysis in nanoporous zeolites, which catalyze reactions in many industrial processes.

  17. ORION96. 2-d Finite Element Code Postprocessor

    SciTech Connect

    Sanford, L.A.; Hallquist, J.O.

    1992-02-02

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  18. Emerging and potential opportunities for 2D flexible nanoelectronics

    NASA Astrophysics Data System (ADS)

    Zhu, Weinan; Park, Saungeun; Akinwande, Deji

    2016-05-01

    The last 10 years have seen the emergence of two-dimensional (2D) nanomaterials such as graphene, transition metal dichalcogenides (TMDs), and black phosphorus (BP) among the growing portfolio of layered van der Waals thin films. Graphene, the prototypical 2D material has advanced rapidly in device, circuit and system studies that has resulted in commercial large-area applications. In this work, we provide a perspective of the emerging and potential translational applications of 2D materials including semiconductors, semimetals, and insulators that comprise the basic material set for diverse nanosystems. Applications include RF transceivers, smart systems, the so-called internet of things, and neurotechnology. We will review the DC and RF electronic performance of graphene and BP thin film transistors. 2D materials at sub-um channel length have so far enabled cut-off frequencies from baseband to 100GHz suitable for low-power RF and sub-THz concepts.

  19. Quantum Noise in Laser Diodes

    NASA Technical Reports Server (NTRS)

    Giacobino, E.; Marin, F.; Bramati, A.; Jost, V.; Poizat, J. Ph.; Roch, J.-F.; Grangier, P.; Zhang, T.-C.

    1996-01-01

    We have investigated the intensity noise of single mode laser diodes, either free-running or using different types of line narrowing techniques at room temperature. We have measured an intensity squeezing of 1.2 dB with grating-extended cavity lasers and 1.4 dB with injection locked lasers (respectively 1.6 dB and 2.3 dB inferred at the laser output). We have observed that the intensity noise of a free-running nominally single mode laser diode results from a cancellation effect between large anti-correlated fluctuations of the main mode and of weak longitudinal side modes. Reducing the side modes by line narrowing techniques results in intensity squeezing.

  20. Anisotropic 2D Materials for Tunable Hyperbolic Plasmonics.

    PubMed

    Nemilentsau, Andrei; Low, Tony; Hanson, George

    2016-02-12

    Motivated by the recent emergence of a new class of anisotropic 2D materials, we examine their electromagnetic modes and demonstrate that a broad class of the materials can host highly directional hyperbolic plasmons. Their propagation direction can be manipulated on the spot by gate doping, enabling hyperbolic beam reflection, refraction, and bending. The realization of these natural 2D hyperbolic media opens up a new avenue in dynamic control of hyperbolic plasmons not possible in the 3D version.

  1. Supported and Free-Standing 2D Semimetals

    DTIC Science & Technology

    2015-01-15

    of this effort on focusing on rare- earth arsenides (RE-A), although not a van der Waals 2D solid, nonetheless, exhibits substantial 2D quantum size...this effort on focusing on rare- earth arsenides (RE- A), although not a van der Waals 20 solid, nonetheless, exhibits substantial 20 quantum size...Brongersma and S.R. Bank, "Rare- earth monopnictide alloys for tunable, epitaxial metals" in preparation. iii. S. Rahimi, E. M. Krivoy, J. Lee, M. E

  2. Application of 2-D graphical representation of DNA sequence

    NASA Astrophysics Data System (ADS)

    Liao, Bo; Tan, Mingshu; Ding, Kequan

    2005-10-01

    Recently, we proposed a 2-D graphical representation of DNA sequence [Bo Liao, A 2-D graphical representation of DNA sequence, Chem. Phys. Lett. 401 (2005) 196-199]. Based on this representation, we consider properties of mutations and compute the similarities among 11 mitochondrial sequences belonging to different species. The elements of the similarity matrix are used to construct phylogenic tree. Unlike most existing phylogeny construction methods, the proposed method does not require multiple alignment.

  3. phase_space_cosmo_fisher: Fisher matrix 2D contours

    NASA Astrophysics Data System (ADS)

    Stark, Alejo

    2016-11-01

    phase_space_cosmo_fisher produces Fisher matrix 2D contours from which the constraints on cosmological parameters can be derived. Given a specified redshift array and cosmological case, 2D marginalized contours of cosmological parameters are generated; the code can also plot the derivatives used in the Fisher matrix. In addition, this package can generate 3D plots of qH^2 and other cosmological quantities as a function of redshift and cosmology.

  4. A simultaneous 2D/3D autostereo workstation

    NASA Astrophysics Data System (ADS)

    Chau, Dennis; McGinnis, Bradley; Talandis, Jonas; Leigh, Jason; Peterka, Tom; Knoll, Aaron; Sumer, Aslihan; Papka, Michael; Jellinek, Julius

    2012-03-01

    We present a novel immersive workstation environment that scientists can use for 3D data exploration and as their everyday 2D computer monitor. Our implementation is based on an autostereoscopic dynamic parallax barrier 2D/3D display, interactive input devices, and a software infrastructure that allows client/server software modules to couple the workstation to scientists' visualization applications. This paper describes the hardware construction and calibration, software components, and a demonstration of our system in nanoscale materials science exploration.

  5. Phylogenetic tree construction based on 2D graphical representation

    NASA Astrophysics Data System (ADS)

    Liao, Bo; Shan, Xinzhou; Zhu, Wen; Li, Renfa

    2006-04-01

    A new approach based on the two-dimensional (2D) graphical representation of the whole genome sequence [Bo Liao, Chem. Phys. Lett., 401(2005) 196.] is proposed to analyze the phylogenetic relationships of genomes. The evolutionary distances are obtained through measuring the differences among the 2D curves. The fuzzy theory is used to construct phylogenetic tree. The phylogenetic relationships of H5N1 avian influenza virus illustrate the utility of our approach.

  6. Regulation of NKG2D ligand gene expression.

    PubMed

    Eagle, Robert A; Traherne, James A; Ashiru, Omodele; Wills, Mark R; Trowsdale, John

    2006-03-01

    The activating immunoreceptor NKG2D has seven known host ligands encoded by the MHC class I chain-related MIC and ULBP/RAET genes. Why there is such diversity of NKG2D ligands is not known but one hypothesis is that they are differentially expressed in different tissues in response to different stresses. To explore this, we compared expression patterns and promoters of NKG2D ligand genes. ULBP/RAET genes were transcribed independent of each other in a panel of cell lines. ULBP/RAET gene expression was upregulated on infection with human cytomegalovirus; however, a clinical strain, Toledo, induced expression more slowly than did a laboratory strain, AD169. ULBP4/RAET1E was not induced by infection with either strain. To investigate the mechanisms behind the similarities and differences in NKG2D ligand gene expression a comparative sequence analysis of NKG2D ligand gene putative promoter regions was conducted. Sequence alignments demonstrated that there was significant sequence diversity; however, one region of high similarity between most of the genes is evident. This region contains a number of potential transcription factor binding sites, including those involved in shock responses and sites for retinoic acid-induced factors. Promoters of some NKG2D ligand genes are polymorphic and several sequence alterations in these alleles abolished putative transcription factor binding.

  7. CYP2D6 variability in populations from Venezuela.

    PubMed

    Moreno, Nancy; Flores-Angulo, Carlos; Villegas, Cecilia; Mora, Yuselin

    2016-12-01

    CYP2D6 is an important cytochrome P450 enzyme that plays an important role in the metabolism of about 25% of currently prescribed drugs. The presence of polymorphisms in the CYP2D6 gene may modulate enzyme level and activity, thereby affecting individual responses to pharmacological treatments. The most prevalent diseases in the admixed population from Venezuela are cardiovascular and cancer, whereas viral, bacterial and parasitic diseases, particularly malaria, are prevalent in Amerindian populations; in the treatment of these diseases, several drugs that are metabolized by CYP2D6 are used. In this work, we reviewed the data on CYP2D6 variability and predicted metabolizer phenotypes, in healthy volunteers of two admixed and five Amerindian populations from Venezuela. The Venezuelan population is very heterogeneous as a result of the genetic admixture of three major ethnical components: Europeans, Africans and Amerindians. There are noticeable inter-regional and inter-population differences in the process of mixing of this population. Hitherto, there are few published studies in Venezuela on CYP2D6; therefore, it is necessary to increase research in this regard, in particular to develop studies with a larger sample size. There is a considerable amount of work remaining before CYP2D6 is integrated into clinical practice in Venezuela.

  8. 2D microscopic model of graphene fracture properties

    NASA Astrophysics Data System (ADS)

    Hess, Peter

    2015-05-01

    An analytical two-dimensional (2D) microscopic fracture model based on Morse-type interaction is derived containing no adjustable parameter. From the 2D Young’s moduli and 2D intrinsic strengths of graphene measured by nanoindentation based on biaxial tension and calculated by density functional theory for uniaxial tension the widely unknown breaking force, line or edge energy, surface energy, fracture toughness, and strain energy release rate were determined. The simulated line energy agrees well with ab initio calculations and the fracture toughness of perfect graphene sheets is in good agreement with molecular dynamics simulations and the fracture toughness evaluated for defective graphene using the Griffith relation. Similarly, the estimated critical strain energy release rate agrees well with result of various theoretical approaches based on the J-integral and surface energy. The 2D microscopic model, connecting 2D and three-dimensional mechanical properties in a consistent way, provides a versatile relationship to easily access all relevant fracture properties of pristine 2D solids.

  9. Hysteretic Spin Crossover in Two-Dimensional (2D) Hofmann-Type Coordination Polymers.

    PubMed

    Liu, Wei; Wang, Lu; Su, Yu-Jun; Chen, Yan-Cong; Tucek, Jiri; Zboril, Radek; Ni, Zhao-Ping; Tong, Ming-Liang

    2015-09-08

    Three new two-dimensional (2D) Hofmann-type coordination polymers with general formula [Fe(3-NH2py)2M(CN)4] (3-NH2py = 3-aminopyridine, M = Ni (1), Pd (2), Pt (3)) have been synthesized. Magnetic susceptibility measurements show that they exhibited cooperative spin crossover (SCO) with remarkable hysteretic behaviors. Their hysteresis widths are 25, 37, and 30 K for 1-3, respectively. The single-crystal structure of 1 suggest that the pseudo-octahedral Fe sites are equatorially bridged by [M(CN)4](2-) to form 2D grids and axially coordinated by 3-NH2py ligands. The intermolecular interactions between layers (the offset face-to-face π···π interactions, hydrogen bonds, and weak N(amino)···Ni(II) contacts) together with the covalent bonds bridged by [M(CN)4](2-) units are responsible to the significant cooperativity.

  10. Couette shear of an ideal 2D photo-elastic granular system

    NASA Astrophysics Data System (ADS)

    Behringer, Robert; Zheng, Hu; Barés, Jonathan; Wang, Dong

    2016-11-01

    In this study, Couette shear experiments are conducted using 2D photoelastic granular particles, which allows us to apply infinite shear strain to the granular system. We obtain force information at the granular scale using the calibrated photo-elastic grain force response. The whole granular system is density matched in salt solution, which guarantees an ideal 2D system without basal friction between the particles and the table. The viscosity is negligible at the very small shear strain rate (0.017 rpm). This talk will address two main points: i) how does the system reach a jammed state; ii) how does system reach a long term stable state and what are the properties of that state. We acknowledge support from NSF Grant No. DMR1206351, NASA Grant No. NNX15AD38G and the W.M. Keck Foundation.

  11. Self-Assembly of Shaped Nanoparticles into Free-Standing 2D and 3D Superlattices.

    PubMed

    Li, Weikun; Wang, Ke; Zhang, Peng; He, Jie; Xu, Shaoyi; Liao, Yonggui; Zhu, Jintao; Xie, Xiaolin; Nie, Zhihong

    2016-01-27

    This article describes a novel supramolecular assembly-mediated strategy for the organization of Au nanoparticles (NPs) with different shapes (e.g., spheres, rods, and cubes) into large-area, free-standing 2D and 3D superlattices. This robust approach involves two major steps: (i) the organization of polymer-tethered NPs within the assemblies of supramolecular comblike block copolymers (CBCPs), and (ii) the disassembly of the assembled CBCP structures to produce free-standing NP superlattices. It is demonstrated that the crystal structures and lattice constants of the superlattices can be readily tailored by varying the molecular weight of tethered polymers, the volume fraction of NPs, and the matrix of CBCPs. This template-free approach may open a new avenue for the assembly of NPs into 2D and 3D structures with a wide range of potential applications.

  12. A stochastic simulation framework for the prediction of strategic noise mapping and occupational noise exposure using the random walk approach.

    PubMed

    Han, Lim Ming; Haron, Zaiton; Yahya, Khairulzan; Bakar, Suhaimi Abu; Dimon, Mohamad Ngasri

    2015-01-01

    Strategic noise mapping provides important information for noise impact assessment and noise abatement. However, producing reliable strategic noise mapping in a dynamic, complex working environment is difficult. This study proposes the implementation of the random walk approach as a new stochastic technique to simulate noise mapping and to predict the noise exposure level in a workplace. A stochastic simulation framework and software, namely RW-eNMS, were developed to facilitate the random walk approach in noise mapping prediction. This framework considers the randomness and complexity of machinery operation and noise emission levels. Also, it assesses the impact of noise on the workers and the surrounding environment. For data validation, three case studies were conducted to check the accuracy of the prediction data and to determine the efficiency and effectiveness of this approach. The results showed high accuracy of prediction results together with a majority of absolute differences of less than 2 dBA; also, the predicted noise doses were mostly in the range of measurement. Therefore, the random walk approach was effective in dealing with environmental noises. It could predict strategic noise mapping to facilitate noise monitoring and noise control in the workplaces.

  13. Structural noise tolerance of photonic crystal optical properties

    NASA Astrophysics Data System (ADS)

    Odontsengel, Nyam-Erdene; Cai, DongSheng; Cole, James B.

    2016-12-01

    Using nonstandard (NS) finite difference time domain (FDTD) scheme to perform 2D electromagnetic (EM) simulations, we investigate how the optical properties of 2D photonic crystals (PCs) are affected by various different kinds of structural noises in the PC lattice. While the transmission spectrum is strongly affected by noises, the position and the depth of the band gap in the transmission spectrum are remarkably robust. It is shown that rather coarse numerical grids can be used to evaluate various PC structures in NS-FDTD EM simulations. The combination of noises affects transmission spectrum in the same way as the most influential individual noise. It is shown that reducing the most influential individual noise is a very efficient method to make PC more accurate.

  14. Four novel ULBP splice variants are ligands for human NKG2D.

    PubMed

    Cao, Wei; Xi, Xueyan; Wang, Zhun; Dong, Liling; Hao, Zhiyong; Cui, Lianxian; Ma, Chi; He, Wei

    2008-08-01

    UL16-binding proteins [ULBPs, also termed as retinoic acid early transcripts (RAET1) molecules] are frequently expressed by malignant transformed cells and stimulate anti-tumor immune responses mediated by NKG2D-positive NK cells, CD8(+) alphabeta T cells and gammadelta T cells in vitro and in vivo. In this study, we identified four novel functional splice variants of ULBPs including ULBP4-I, ULBP4-II, ULBP4-III and RAET1G3 in HepG2 liver carcinoma cells, WISH human amnion cells, Hep-2 larynx carcinoma cells and K562 leukemia cells, respectively, by reverse transcription-PCR and T vector cloning strategy. Analysis of alignments of amino acid sequences of the splice variants illustrated that there were important modifications between splice variants and their individual parental ULBP. All ULBP4 splice variants (ULBP4-I, ULBP4-II and ULBP4-III) were type 1 membrane-spanning molecules and had the ability to bind with human NKG2D receptor in vitro. Ectopic expressions of ULBP4 and ULBP4 splice variants resulted in the enhanced cytotoxic sensitivity of target cells against NK cells, which could be blocked by anti-NKG2D mAb. Moreover, co-culture-free soluble forms of ULBP4 splice variants (their alpha1 + alpha2 ectodomains) and RAET1G3 (soluble splice variant of RAET1G2) with NK cells down-regulated the cell surface expression of NKG2D. Finally, immobilized in a plate-bound form of RAET1G3 stimulated NK cells to secrete IFN-gamma. Taken together, all the identified functional splice variants will help to advance our knowledge regarding the overall functions of ULBP gene family.

  15. 2D Hexagonal Boron Nitride (2D-hBN) Explored for the Electrochemical Sensing of Dopamine.

    PubMed

    Khan, Aamar F; Brownson, Dale A C; Randviir, Edward P; Smith, Graham C; Banks, Craig E

    2016-10-04

    Crystalline 2D hexagonal boron nitride (2D-hBN) nanosheets are explored as a potential electrocatalyst toward the electroanalytical sensing of dopamine (DA). The 2D-hBN nanosheets are electrically wired via a drop-casting modification process onto a range of commercially available carbon supporting electrodes, including glassy carbon (GC), boron-doped diamond (BDD), and screen-printed graphitic electrodes (SPEs). 2D-hBN has not previously been explored toward the electrochemical detection/electrochemical sensing of DA. We critically evaluate the potential electrocatalytic performance of 2D-hBN modified electrodes, the effect of supporting carbon electrode platforms, and the effect of "mass coverage" (which is commonly neglected in the 2D material literature) toward the detection of DA. The response of 2D-hBN modified electrodes is found to be largely dependent upon the interaction between 2D-hBN and the underlying supporting electrode material. For example, in the case of SPEs, modification with 2D-hBN (324 ng) improves the electrochemical response, decreasing the electrochemical oxidation potential of DA by ∼90 mV compared to an unmodified SPE. Conversely, modification of a GC electrode with 2D-hBN (324 ng) resulted in an increased oxidation potential of DA by ∼80 mV when compared to the unmodified electrode. We explore the underlying mechanisms of the aforementioned examples and infer that electrode surface interactions and roughness factors are critical considerations. 2D-hBN is utilized toward the sensing of DA in the presence of the common interferents ascorbic acid (AA) and uric acid (UA). 2D-hBN is found to be an effective electrocatalyst in the simultaneous detection of DA and UA at both pH 5.0 and 7.4. The peak separations/resolution between DA and UA increases by ∼70 and 50 mV (at pH 5.0 and 7.4, respectively, when utilizing 108 ng of 2D-hBN) compared to unmodified SPEs, with a particularly favorable response evident in pH 5.0, giving rise to a

  16. Community Response to Noise

    NASA Astrophysics Data System (ADS)

    Fidell, Sandy

    The primary effects of community noise on residential populations are speech interference, sleep disturbance, and annoyance. This chapter focuses on transportation noise in general and on aircraft noise in particular because aircraft noise is one of the most prominent community noise sources, because airport/community controversies are often the most contentious and widespread, and because industrial and other specialized formsofcommunitynoise generally posemorelocalized problems.

  17. Regulation of ligands for the activating receptor NKG2D

    PubMed Central

    Mistry, Anita R; O'Callaghan, Chris A

    2007-01-01

    The outcome of an encounter between a cytotoxic cell and a potential target cell depends on the balance of signals from inhibitory and activating receptors. Natural Killer group 2D (NKG2D) has recently emerged as a major activating receptor on T lymphocytes and natural killer cells. In both humans and mice, multiple different genes encode ligands for NKG2D, and these ligands are non-classical major histocompatibility complex class I molecules. The NKG2D–ligand interaction triggers an activating signal in the cell expressing NKG2D and this promotes cytotoxic lysis of the cell expressing the ligand. Most normal tissues do not express ligands for NKG2D, but ligand expression has been documented in tumour and virus-infected cells, leading to lysis of these cells. Tight regulation of ligand expression is important. If there is inappropriate expression in normal tissues, this will favour autoimmune processes, whilst failure to up-regulate the ligands in pathological conditions would favour cancer development or dissemination of intracellular infection. PMID:17614877

  18. Rotation invariance principles in 2D/3D registration

    NASA Astrophysics Data System (ADS)

    Birkfellner, Wolfgang; Wirth, Joachim; Burgstaller, Wolfgang; Baumann, Bernard; Staedele, Harald; Hammer, Beat; Gellrich, Niels C.; Jacob, Augustinus L.; Regazzoni, Pietro; Messmer, Peter

    2003-05-01

    2D/3D patient-to-computed tomography (CT) registration is a method to determine a transformation that maps two coordinate systems by comparing a projection image rendered from CT to a real projection image. Applications include exact patient positioning in radiation therapy, calibration of surgical robots, and pose estimation in computer-aided surgery. One of the problems associated with 2D/3D registration is the fast that finding a registration includes sovling a minimization problem in six degrees-of-freedom in motion. This results in considerable time expenses since for each iteration step at least one volume rendering has to be computed. We show that by choosing an appropriate world coordinate system and by applying a 2D/2D registration method in each iteration step, the number of iterations can be grossly reduced from n6 to n5. Here, n is the number of discrete variations aroudn a given coordinate. Depending on the configuration of the optimization algorithm, this reduces the total number of iterations necessary to at least 1/3 of its original value. The method was implemented and extensively tested on simulated x-ray images of a pelvis. We conclude that this hardware-indepenent optimization of 2D/3D registration is a step towards increasing the acceptance of this promising method for a wide number of clinical applications.

  19. 2D nanostructures for water purification: graphene and beyond.

    PubMed

    Dervin, Saoirse; Dionysiou, Dionysios D; Pillai, Suresh C

    2016-08-18

    Owing to their atomically thin structure, large surface area and mechanical strength, 2D nanoporous materials are considered to be suitable alternatives for existing desalination and water purification membrane materials. Recent progress in the development of nanoporous graphene based materials has generated enormous potential for water purification technologies. Progress in the development of nanoporous graphene and graphene oxide (GO) membranes, the mechanism of graphene molecular sieve action, structural design, hydrophilic nature, mechanical strength and antifouling properties and the principal challenges associated with nanopore generation are discussed in detail. Subsequently, the recent applications and performance of newly developed 2D materials such as 2D boron nitride (BN) nanosheets, graphyne, molybdenum disulfide (MoS2), tungsten chalcogenides (WS2) and titanium carbide (Ti3C2Tx) are highlighted. In addition, the challenges affecting 2D nanostructures for water purification are highlighted and their applications in the water purification industry are discussed. Though only a few 2D materials have been explored so far for water treatment applications, this emerging field of research is set to attract a great deal of attention in the near future.

  20. 2D Materials for Optical Modulation: Challenges and Opportunities.

    PubMed

    Yu, Shaoliang; Wu, Xiaoqin; Wang, Yipei; Guo, Xin; Tong, Limin

    2017-02-21

    Owing to their atomic layer thickness, strong light-material interaction, high nonlinearity, broadband optical response, fast relaxation, controllable optoelectronic properties, and high compatibility with other photonic structures, 2D materials, including graphene, transition metal dichalcogenides and black phosphorus, have been attracting increasing attention for photonic applications. By tuning the carrier density via electrical or optical means that modifies their physical properties (e.g., Fermi level or nonlinear absorption), optical response of the 2D materials can be instantly changed, making them versatile nanostructures for optical modulation. Here, up-to-date 2D material-based optical modulation in three categories is reviewed: free-space, fiber-based, and on-chip configurations. By analysing cons and pros of different modulation approaches from material and mechanism aspects, the challenges faced by using these materials for device applications are presented. In addition, thermal effects (e.g., laser induced damage) in 2D materials, which are critical to practical applications, are also discussed. Finally, the outlook for future opportunities of these 2D materials for optical modulation is given.

  1. 2D DIGE saturation labeling for minute sample amounts.

    PubMed

    Arnold, Georg J; Fröhlich, Thomas

    2012-01-01

    The 2D DIGE technique, based on fluorophores covalently linked to amino acid side chain residues and the concept of an internal standard, has significantly improved reproducibility, sensitivity, and the dynamic range of protein quantification. In saturation DIGE, sulfhydryl groups of cysteines are labeled with cyanine dyes to completion, providing a so far unraveled sensitivity for protein detection and quantification in 2D gel-based proteomic experiments. Only a few micrograms of protein per 2D gel facilitate the analysis of about 2,000 analytes from complex mammalian cell or tissue samples. As a consequence, 2D saturation DIGE is the method of choice when only minute sample amounts are available for quantitative proteome analysis at the level of proteins rather than peptides. Since very low amounts of samples have to be handled in a reproducible manner, saturation DIGE-based proteomic experiments are technically demanding. Moreover, successful saturation DIGE approaches require a strict adherence to adequate reaction conditions at each step. This chapter is dedicated to colleagues already experienced in 2D PAGE protein separation and intends to support the establishment of this ultrasensitive technique in proteomic workgroups. We provide basic guidelines for the experimental design and discuss crucial aspects concerning labeling chemistry, sample preparation, and pitfalls caused by labeling artifacts. A detailed step-by-step protocol comprises all aspects from initial sample preparation to image analysis and statistical evaluation. Furthermore, we describe the generation of preparative saturation DIGE gels necessary for mass spectrometry-based spot identification.

  2. Mermin–Wagner fluctuations in 2D amorphous solids

    PubMed Central

    Illing, Bernd; Fritschi, Sebastian; Kaiser, Herbert; Klix, Christian L.; Maret, Georg; Keim, Peter

    2017-01-01

    In a recent commentary, J. M. Kosterlitz described how D. Thouless and he got motivated to investigate melting and suprafluidity in two dimensions [Kosterlitz JM (2016) J Phys Condens Matter 28:481001]. It was due to the lack of broken translational symmetry in two dimensions—doubting the existence of 2D crystals—and the first computer simulations foretelling 2D crystals (at least in tiny systems). The lack of broken symmetries proposed by D. Mermin and H. Wagner is caused by long wavelength density fluctuations. Those fluctuations do not only have structural impact, but additionally a dynamical one: They cause the Lindemann criterion to fail in 2D in the sense that the mean squared displacement of atoms is not limited. Comparing experimental data from 3D and 2D amorphous solids with 2D crystals, we disentangle Mermin–Wagner fluctuations from glassy structural relaxations. Furthermore, we demonstrate with computer simulations the logarithmic increase of displacements with system size: Periodicity is not a requirement for Mermin–Wagner fluctuations, which conserve the homogeneity of space on long scales. PMID:28137872

  3. Sparse radar imaging using 2D compressed sensing

    NASA Astrophysics Data System (ADS)

    Hou, Qingkai; Liu, Yang; Chen, Zengping; Su, Shaoying

    2014-10-01

    Radar imaging is an ill-posed linear inverse problem and compressed sensing (CS) has been proved to have tremendous potential in this field. This paper surveys the theory of radar imaging and a conclusion is drawn that the processing of ISAR imaging can be denoted mathematically as a problem of 2D sparse decomposition. Based on CS, we propose a novel measuring strategy for ISAR imaging radar and utilize random sub-sampling in both range and azimuth dimensions, which will reduce the amount of sampling data tremendously. In order to handle 2D reconstructing problem, the ordinary solution is converting the 2D problem into 1D by Kronecker product, which will increase the size of dictionary and computational cost sharply. In this paper, we introduce the 2D-SL0 algorithm into the reconstruction of imaging. It is proved that 2D-SL0 can achieve equivalent result as other 1D reconstructing methods, but the computational complexity and memory usage is reduced significantly. Moreover, we will state the results of simulating experiments and prove the effectiveness and feasibility of our method.

  4. Mean flow and anisotropic cascades in decaying 2D turbulence

    NASA Astrophysics Data System (ADS)

    Liu, Chien-Chia; Cerbus, Rory; Gioia, Gustavo; Chakraborty, Pinaki

    2015-11-01

    Many large-scale atmospheric and oceanic flows are decaying 2D turbulent flows embedded in a non-uniform mean flow. Despite its importance for large-scale weather systems, the affect of non-uniform mean flows on decaying 2D turbulence remains unknown. In the absence of mean flow it is well known that decaying 2D turbulent flows exhibit the enstrophy cascade. More generally, for any 2D turbulent flow, all computational, experimental and field data amassed to date indicate that the spectrum of longitudinal and transverse velocity fluctuations correspond to the same cascade, signifying isotropy of cascades. Here we report experiments on decaying 2D turbulence in soap films with a non-uniform mean flow. We find that the flow transitions from the usual isotropic enstrophy cascade to a series of unusual and, to our knowledge, never before observed or predicted, anisotropic cascades where the longitudinal and transverse spectra are mutually independent. We discuss implications of our results for decaying geophysical turbulence.

  5. 2-D Clinostat for Simulated Microgravity Experiments with Arabidopsis Seedlings

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Li, Xugang; Krause, Lars; Görög, Mark; Schüler, Oliver; Hauslage, Jens; Hemmersbach, Ruth; Kircher, Stefan; Lasok, Hanna; Haser, Thomas; Rapp, Katja; Schmidt, Jürgen; Yu, Xin; Pasternak, Taras; Aubry-Hivet, Dorothée; Tietz, Olaf; Dovzhenko, Alexander; Palme, Klaus; Ditengou, Franck Anicet

    2016-04-01

    Ground-based simulators of microgravity such as fast rotating 2-D clinostats are valuable tools to study gravity related processes. We describe here a versatile g-value-adjustable 2-D clinostat that is suitable for plant analysis. To avoid seedling adaptation to 1 g after clinorotation, we designed chambers that allow rapid fixation. A detailed protocol for fixation, RNA isolation and the analysis of selected genes is described. Using this clinostat we show that mRNA levels of LONG HYPOCOTYL 5 (HY5), MIZU-KUSSEI 1 (MIZ1) and microRNA MIR163 are down-regulated in 5-day-old Arabidopsis thaliana roots after 3 min and 6 min of clinorotation using a maximal reduced g-force of 0.02 g, hence demonstrating that this 2-D clinostat enables the characterization of early transcriptomic events during root response to microgravity. We further show that this 2-D clinostat is able to compensate the action of gravitational force as both gravitropic-dependent statolith sedimentation and subsequent auxin redistribution (monitoring D R5 r e v :: G F P reporter) are abolished when plants are clinorotated. Our results demonstrate that 2-D clinostats equipped with interchangeable growth chambers and tunable rotation velocity are suitable for studying how plants perceive and respond to simulated microgravity.

  6. Developing a Neural Network to Act as a Noise Filter

    DTIC Science & Technology

    1992-10-02

    This study uses the neural network simulator called NETS to determine if neural networks could perform a non-linear filtering operation to remove...noise from two-dimensional (2-D) data and produce a noise-free image. Application is geared toward the development and performance of neural network filters...including the development of an optional neural network architecture and the use of-criteria in determining how accurate the net filtered noise-to produce a noise-free image.

  7. TU-CD-207-08: Intrinsic Image Quality Comparison of Synthesized 2-D and FFDM Images

    SciTech Connect

    Nelson, J; Wells, J; Samei, E

    2015-06-15

    Purpose: With the combined interest of managing patient dose, maintaining or improving image quality, and maintaining or improving the diagnostic utility of mammographic data, this study aims to compare the intrinsic image quality of Hologic’s synthesized 2-D (C-View) and 2-D FFDM images in terms of resolution, contrast, and noise. Methods: This study utilized a novel 3-D printed anthropomorphic breast phantom in addition to the American College of Radiology (ACR) mammography accreditation phantom. Analysis of the 3-D anthropomorphic phantom included visual assessment of resolution and analysis of the normalized noise power spectrum. Analysis of the ACR phantom included both visual inspection and objective automated analysis using in-house software. The software incorporates image- and object-specific CNR visibility thresholds which account for image characteristics such as noise texture which affect object visualization. T- test statistical analysis was also performed on ACR phantom scores. Results: The spatial resolution of C-View images is markedly lower (at least 50% worse) than that of FFDM. And while this is generally associated with the benefit of reduced relative noise magnitude, the noise in C-View images tends to have a more mottled (predominantly low-frequency) texture. In general, for high contrast objects, C-View provides superior visualization over FFDM; however this benefit diminishes for low contrast objects and is applicable only to objects that are sufficiently larger than the spatial resolution threshold. Based on both observer and automated ACR phantom analysis, between 50–70% of C-View images failed to meet ACR minimum accreditation requirements – primarily due to insufficient (unbroken) fiber visibility. Conclusion: Compared to FFDM, C-View offers better depiction of objects of certain size and contrast, but provides poorer overall resolution and noise properties. Based on these findings, the utilization of C-View images in the clinical

  8. Two-Dimensional (2-D) Acoustic Fish Tracking at River Mile 85, Sacramento River, California

    DTIC Science & Technology

    2013-06-01

    7 ii Abstract Fish behavior in response to levee repairs at River Mile 85.6 of the Sacramento River was monitored using 60 VR2W 180-kHz and 45...arrays of VR2W 69-kHz receivers were installed in the river adjacent to levee repair sites and natural areas. This initial effort at 2-D tracking...a levee repair site was located on the outside of a river bend. The site was located at RM 85, just south of Knights Landing, California. The study

  9. The low noise limit in gene expression

    SciTech Connect

    Dar, Roy D.; Weinberger, Leor S.; Cox, Chris D.; Simpson, Michael L.; Razooky, Brandon S.

    2015-10-21

    Protein noise measurements are increasingly used to elucidate biophysical parameters. Unfortunately noise analyses are often at odds with directly measured parameters. Here we show that these inconsistencies arise from two problematic analytical choices: (i) the assumption that protein translation rate is invariant for different proteins of different abundances, which has inadvertently led to (ii) the assumption that a large constitutive extrinsic noise sets the low noise limit in gene expression. While growing evidence suggests that transcriptional bursting may set the low noise limit, variability in translational bursting has been largely ignored. We show that genome-wide systematic variation in translational efficiency can-and in the case of E. coli does-control the low noise limit in gene expression. Therefore constitutive extrinsic noise is small and only plays a role in the absence of a systematic variation in translational efficiency. Lastly, these results show the existence of two distinct expression noise patterns: (1) a global noise floor uniformly imposed on all genes by expression bursting; and (2) high noise distributed to only a select group of genes.

  10. The Low Noise Limit in Gene Expression

    PubMed Central

    Dar, Roy D.; Razooky, Brandon S.; Weinberger, Leor S.; Cox, Chris D.; Simpson, Michael L.

    2015-01-01

    Protein noise measurements are increasingly used to elucidate biophysical parameters. Unfortunately noise analyses are often at odds with directly measured parameters. Here we show that these inconsistencies arise from two problematic analytical choices: (i) the assumption that protein translation rate is invariant for different proteins of different abundances, which has inadvertently led to (ii) the assumption that a large constitutive extrinsic noise sets the low noise limit in gene expression. While growing evidence suggests that transcriptional bursting may set the low noise limit, variability in translational bursting has been largely ignored. We show that genome-wide systematic variation in translational efficiency can–and in the case of E. coli does–control the low noise limit in gene expression. Therefore constitutive extrinsic noise is small and only plays a role in the absence of a systematic variation in translational efficiency. These results show the existence of two distinct expression noise patterns: (1) a global noise floor uniformly imposed on all genes by expression bursting; and (2) high noise distributed to only a select group of genes. PMID:26488303

  11. The low noise limit in gene expression

    DOE PAGES

    Dar, Roy D.; Weinberger, Leor S.; Cox, Chris D.; ...

    2015-10-21

    Protein noise measurements are increasingly used to elucidate biophysical parameters. Unfortunately noise analyses are often at odds with directly measured parameters. Here we show that these inconsistencies arise from two problematic analytical choices: (i) the assumption that protein translation rate is invariant for different proteins of different abundances, which has inadvertently led to (ii) the assumption that a large constitutive extrinsic noise sets the low noise limit in gene expression. While growing evidence suggests that transcriptional bursting may set the low noise limit, variability in translational bursting has been largely ignored. We show that genome-wide systematic variation in translational efficiencymore » can-and in the case of E. coli does-control the low noise limit in gene expression. Therefore constitutive extrinsic noise is small and only plays a role in the absence of a systematic variation in translational efficiency. Lastly, these results show the existence of two distinct expression noise patterns: (1) a global noise floor uniformly imposed on all genes by expression bursting; and (2) high noise distributed to only a select group of genes.« less

  12. Secretory pathways generating immunosuppressive NKG2D ligands

    PubMed Central

    Baragaño Raneros, Aroa; Suarez-Álvarez, Beatriz; López-Larrea, Carlos

    2014-01-01

    Natural Killer Group 2 member D (NKG2D) activating receptor, present on the surface of various immune cells, plays an important role in activating the anticancer immune response by their interaction with stress-inducible NKG2D ligands (NKG2DL) on transformed cells. However, cancer cells have developed numerous mechanisms to evade the immune system via the downregulation of NKG2DL from the cell surface, including the release of NKG2DL from the cell surface in a soluble form. Here, we review the mechanisms involved in the production of soluble NKG2DL (sNKG2DL) and the potential therapeutic strategies aiming to block the release of these immunosuppressive ligands. Therapeutically enabling the NKG2D-NKG2DL interaction would promote immunorecognition of malignant cells, thus abrogating disease progression. PMID:25050215

  13. Splashing transients of 2D plasmons launched by swift electrons

    PubMed Central

    Lin, Xiao; Kaminer, Ido; Shi, Xihang; Gao, Fei; Yang, Zhaoju; Gao, Zhen; Buljan, Hrvoje; Joannopoulos, John D.; Soljačić, Marin; Chen, Hongsheng; Zhang, Baile

    2017-01-01

    Launching of plasmons by swift electrons has long been used in electron energy–loss spectroscopy (EELS) to investigate the plasmonic properties of ultrathin, or two-dimensional (2D), electron systems. However, the question of how a swift electron generates plasmons in space and time has never been answered. We address this issue by calculating and demonstrating the spatial-temporal dynamics of 2D plasmon generation in graphene. We predict a jet-like rise of excessive charge concentration that delays the generation of 2D plasmons in EELS, exhibiting an analog to the hydrodynamic Rayleigh jet in a splashing phenomenon before the launching of ripples. The photon radiation, analogous to the splashing sound, accompanies the plasmon emission and can be understood as being shaken off by the Rayleigh jet–like charge concentration. Considering this newly revealed process, we argue that previous estimates on the yields of graphene plasmons in EELS need to be reevaluated. PMID:28138546

  14. Available information in 2D motional Stark effect imaging.

    PubMed

    Creese, Mathew; Howard, John

    2010-10-01

    Recent advances in imaging techniques have allowed the extension of the standard polarimetric 1D motional Stark effect (MSE) diagnostic to 2D imaging of the internal magnetic field of fusion devices [J. Howard, Plasma Phys. Controlled Fusion 50, 125003 (2008)]. This development is met with the challenge of identifying and extracting the new information, which can then be used to increase the accuracy of plasma equilibrium and current density profile determinations. This paper develops a 2D analysis of the projected MSE polarization orientation and Doppler phase shift. It is found that, for a standard viewing position, the 2D MSE imaging system captures sufficient information to allow imaging of the internal vertical magnetic field component B(Z)(r,z) in a tokamak.

  15. Microscale 2D separation systems for proteomic analysis

    PubMed Central

    Xu, Xin; Liu, Ke; Fan, Z. Hugh

    2012-01-01

    Microscale 2D separation systems have been implemented in capillaries and microfabricated channels. They offer advantages of faster analysis, higher separation efficiency and less sample consumption than the conventional methods, such as liquid chromatography (LC) in a column and slab gel electrophoresis. In this article, we review their recent advancement, focusing on three types of platforms, including 2D capillary electrophoresis (CE), CE coupling with capillary LC, and microfluidic devices. A variety of CE and LC modes have been employed to construct 2D separation systems via sophistically designed interfaces. Coupling of different separation modes has also been realized in a number of microfluidic devices. These separation systems have been applied for the proteomic analysis of various biological samples, ranging from a single cell to tumor tissues. PMID:22462786

  16. 2D materials for photon conversion and nanophotonics

    NASA Astrophysics Data System (ADS)

    Tahersima, Mohammad H.; Sorger, Volker J.

    2015-09-01

    The field of two-dimensional (2D) materials has the potential to enable unique applications across a wide range of the electromagnetic spectrum. While 2D-layered materials hold promise for next-generation photon-conversion intrinsic limitations and challenges exist that shall be overcome. Here we discuss the intrinsic limitations as well as application opportunities of this new class of materials, and is sponsored by the NSF program Designing Materials to Revolutionize and Engineer our Future (DMREF) program, which links to the President's Materials Genome Initiative. We present general material-related details for photon conversion, and show that taking advantage of the mechanical flexibility of 2D materials by rolling MoS2/graphene/hexagonal boron nitride stack to a spiral solar cell allows for solar absorption up to 90%.

  17. 2D-3D transition of gold cluster anions resolved

    NASA Astrophysics Data System (ADS)

    Johansson, Mikael P.; Lechtken, Anne; Schooss, Detlef; Kappes, Manfred M.; Furche, Filipp

    2008-05-01

    Small gold cluster anions Aun- are known for their unusual two-dimensional (2D) structures, giving rise to properties very different from those of bulk gold. Previous experiments and calculations disagree about the number of gold atoms nc where the transition to 3D structures occurs. We combine trapped ion electron diffraction and state of the art electronic structure calculations to resolve this puzzle and establish nc=12 . It is shown that theoretical studies using traditional generalized gradient functionals are heavily biased towards 2D structures. For a correct prediction of the 2D-3D crossover point it is crucial to use density functionals yielding accurate jellium surface energies, such as the Tao-Perdew-Staroverov-Scuseria (TPSS) functional or the Perdew-Burke-Ernzerhof functional modified for solids (PBEsol). Further, spin-orbit effects have to be included, and large, flexible basis sets employed. This combined theoretical-experimental approach is promising for larger gold and other metal clusters.

  18. IUPAP Award: Ion transport in 2D materials

    NASA Astrophysics Data System (ADS)

    Bao, Wenzhong

    Intercalation in 2D materials drastically influences both physical and chemical properties, which leads to a new degree of freedom for fundamental studies and expands the potential applications of 2D materials. In this talk, I will discuss our work in the past two years related to ion intercalation of 2D materials, including insertion of Li and Na ions in graphene and MoS2. We focused on both fundamental mechanism and potential application, e.g. we measured in-situ optical transmittance spectra and electrical transport properties of few-layer graphene (FLG) nanostructures upon electrochemical lithiation/delithiation. By observing a simultaneous increase of both optical transmittance and DC conductivity, strikingly different from other materials, we proposed its application as a next generation transparent electrode.

  19. 2d-retrieval For Mipas-envisat

    NASA Astrophysics Data System (ADS)

    Steck, T.; von Clarmann, T.; Grabowski, U.; Höpfner, M.

    Limb sounding of the Earth's atmosphere provides vertically high resolved profiles of geophysical parameters. The long ray path through the atmosphere makes limb sounders sensitive to even little abundant species. On the other hand, horizontal in- homogeneities, if not taken into account properly, can cause systematic errors within the retrieval process. Especially for limb emission measurements in the mid IR, at- mopheric temperature gradients result in considerable vmr retrieval errors if they are neglected. We present a dedicated method of taking full 2D fields of state parameters (indepen- dent of tangent points) into account in the forward model and in the retrieval. The basic idea is that the 2D state vector is updated sequentially for each limb scan. This method is applied to the 2D retrieval of temperature and vmr for simulated radiances as expected from MIPAS-ENVISAT.

  20. Genetics, genomics, and evolutionary biology of NKG2D ligands.

    PubMed

    Carapito, Raphael; Bahram, Seiamak

    2015-09-01

    Human and mouse NKG2D ligands (NKG2DLs) are absent or only poorly expressed by most normal cells but are upregulated by cell stress, hence, alerting the immune system in case of malignancy or infection. Although these ligands are numerous and highly variable (at genetic, genomic, structural, and biochemical levels), they all belong to the major histocompatibility complex class I gene superfamily and bind to a single, invariant, receptor: NKG2D. NKG2D (CD314) is an activating receptor expressed on NK cells and subsets of T cells that have a key role in the recognition and lysis of infected and tumor cells. Here, we review the molecular diversity of NKG2DLs, discuss the increasing appreciation of their roles in a variety of medical conditions, and propose several explanations for the evolutionary force(s) that seem to drive the multiplicity and diversity of NKG2DLs while maintaining their interaction with a single invariant receptor.

  1. Graphene based 2D-materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Palaniselvam, Thangavelu; Baek, Jong-Beom

    2015-09-01

    Ever-increasing energy demands and the depletion of fossil fuels are compelling humanity toward the development of suitable electrochemical energy conversion and storage devices to attain a more sustainable society with adequate renewable energy and zero environmental pollution. In this regard, supercapacitors are being contemplated as potential energy storage devices to afford cleaner, environmentally friendly energy. Recently, a great deal of attention has been paid to two-dimensional (2D) nanomaterials, including 2D graphene and its inorganic analogues (transition metal double layer hydroxides, chalcogenides, etc), as potential electrodes for the development of supercapacitors with high electrochemical performance. This review provides an overview of the recent progress in using these graphene-based 2D materials as potential electrodes for supercapacitors. In addition, future research trends including notable challenges and opportunities are also discussed.

  2. Chemical vapour deposition: Transition metal carbides go 2D

    DOE PAGES

    Gogotsi, Yury

    2015-08-17

    Here, the research community has been steadily expanding the family of few-atom-thick crystals beyond graphene, discovering new materials or producing known materials in a 2D state and demonstrating their unique properties1, 2. Recently, nanometre-thin 2D transition metal carbides have also joined this family3. Writing in Nature Materials, Chuan Xu and colleagues now report a significant advance in the field, showing the synthesis of large-area, high-quality, nanometre-thin crystals of molybdenum carbide that demonstrate low-temperature 2D superconductivity4. Moreover, they also show that other ultrathin carbide crystals, such as tungsten and tantalum carbides, can be grown by chemical vapour deposition with a highmore » crystallinity and very low defect concentration.« less

  3. Optoelectronics based on 2D TMDs and heterostructures

    NASA Astrophysics Data System (ADS)

    Huo, Nengjie; Yang, Yujue; Li, Jingbo

    2017-03-01

    2D materials including graphene and TMDs have proven interesting physical properties and promising optoelectronic applications. We reviewed the growth, characterization and optoelectronics based on 2D TMDs and their heterostructures, and demonstrated their unique and high quality of performances. For example, we observed the large mobility, fast response and high photo-responsivity in MoS2, WS2 and WSe2 phototransistors, as well as the novel performances in vdW heterostructures such as the strong interlayer coupling, am-bipolar and rectifying behaviour, and the obvious photovoltaic effect. It is being possible that 2D family materials could play an increasingly important role in the future nano- and opto-electronics, more even than traditional semiconductors such as silicon.

  4. Applications of Doppler Tomography in 2D and 3D

    NASA Astrophysics Data System (ADS)

    Richards, M.; Budaj, J.; Agafonov, M.; Sharova, O.

    2010-12-01

    Over the past few years, the applications of Doppler tomography have been extended beyond the usual calculation of 2D velocity images of circumstellar gas flows. This technique has now been used with the new Shellspec spectrum synthesis code to demonstrate the effective modeling of the accretion disk and gas stream in the TT Hya Algol binary. The 2D tomography procedure projects all sources of emission onto a single central (Vx, Vy) velocity plane even though the gas is expected to flow beyond that plane. So, new 3D velocity images were derived with the Radioastronomical Approach method by assuming a grid of Vz values transverse to the central 2D plane. The 3D approach has been applied to the U CrB and RS Vul Algol-type binaries to reveal substantial flow structures beyond the central velocity plane.

  5. Chemical vapour deposition: Transition metal carbides go 2D

    SciTech Connect

    Gogotsi, Yury

    2015-08-17

    Here, the research community has been steadily expanding the family of few-atom-thick crystals beyond graphene, discovering new materials or producing known materials in a 2D state and demonstrating their unique properties1, 2. Recently, nanometre-thin 2D transition metal carbides have also joined this family3. Writing in Nature Materials, Chuan Xu and colleagues now report a significant advance in the field, showing the synthesis of large-area, high-quality, nanometre-thin crystals of molybdenum carbide that demonstrate low-temperature 2D superconductivity4. Moreover, they also show that other ultrathin carbide crystals, such as tungsten and tantalum carbides, can be grown by chemical vapour deposition with a high crystallinity and very low defect concentration.

  6. Turbomachinery noise

    NASA Astrophysics Data System (ADS)

    Groeneweg, John F.; Sofrin, Thomas G.; Rice, Edward J.; Gliebe, Phillip R.

    1991-08-01

    Summarized here are key advances in experimental techniques and theoretical applications which point the way to a broad understanding and control of turbomachinery noise. On the experimental side, the development of effective inflow control techniques makes it possible to conduct, in ground based facilities, definitive experiments in internally controlled blade row interactions. Results can now be valid indicators of flight behavior and can provide a firm base for comparison with analytical results. Inflow control coupled with detailed diagnostic tools such as blade pressure measurements can be used to uncover the more subtle mechanisms such as rotor strut interaction, which can set tone levels for some engine configurations. Initial mappings of rotor wake-vortex flow fields have provided a data base for a first generation semiempirical flow disturbance model. Laser velocimetry offers a nonintrusive method for validating and improving the model. Digital data systems and signal processing algorithms are bringing mode measurement closer to a working tool that can be frequently applied to a real machine such as a turbofan engine. On the analytical side, models of most of the links in the chain from turbomachine blade source to far field observation point have been formulated. Three dimensional lifting surface theory for blade rows, including source noncompactness and cascade effects, blade row transmission models incorporating mode and frequency scattering, and modal radiation calculations, including hybrid numerical-analytical approaches, are tools which await further application.

  7. Turbomachinery noise

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.; Sofrin, Thomas G.; Rice, Edward J.; Gliebe, Phillip R.

    1991-01-01

    Summarized here are key advances in experimental techniques and theoretical applications which point the way to a broad understanding and control of turbomachinery noise. On the experimental side, the development of effective inflow control techniques makes it possible to conduct, in ground based facilities, definitive experiments in internally controlled blade row interactions. Results can now be valid indicators of flight behavior and can provide a firm base for comparison with analytical results. Inflow control coupled with detailed diagnostic tools such as blade pressure measurements can be used to uncover the more subtle mechanisms such as rotor strut interaction, which can set tone levels for some engine configurations. Initial mappings of rotor wake-vortex flow fields have provided a data base for a first generation semiempirical flow disturbance model. Laser velocimetry offers a nonintrusive method for validating and improving the model. Digital data systems and signal processing algorithms are bringing mode measurement closer to a working tool that can be frequently applied to a real machine such as a turbofan engine. On the analytical side, models of most of the links in the chain from turbomachine blade source to far field observation point have been formulated. Three dimensional lifting surface theory for blade rows, including source noncompactness and cascade effects, blade row transmission models incorporating mode and frequency scattering, and modal radiation calculations, including hybrid numerical-analytical approaches, are tools which await further application.

  8. Real-time 2-D temperature imaging using ultrasound.

    PubMed

    Liu, Dalong; Ebbini, Emad S

    2010-01-01

    We have previously introduced methods for noninvasive estimation of temperature change using diagnostic ultrasound. The basic principle was validated both in vitro and in vivo by several groups worldwide. Some limitations remain, however, that have prevented these methods from being adopted in monitoring and guidance of minimally invasive thermal therapies, e.g., RF ablation and high-intensity-focused ultrasound (HIFU). In this letter, we present first results from a real-time system for 2-D imaging of temperature change using pulse-echo ultrasound. The front end of the system is a commercially available scanner equipped with a research interface, which allows the control of imaging sequence and access to the RF data in real time. A high-frame-rate 2-D RF acquisition mode, M2D, is used to capture the transients of tissue motion/deformations in response to pulsed HIFU. The M2D RF data is streamlined to the back end of the system, where a 2-D temperature imaging algorithm based on speckle tracking is implemented on a graphics processing unit. The real-time images of temperature change are computed on the same spatial and temporal grid of the M2D RF data, i.e., no decimation. Verification of the algorithm was performed by monitoring localized HIFU-induced heating of a tissue-mimicking elastography phantom. These results clearly demonstrate the repeatability and sensitivity of the algorithm. Furthermore, we present in vitro results demonstrating the possible use of this algorithm for imaging changes in tissue parameters due to HIFU-induced lesions. These results clearly demonstrate the value of the real-time data streaming and processing in monitoring, and guidance of minimally invasive thermotherapy.

  9. Towards functional assembly of 3D and 2D nanomaterials

    NASA Astrophysics Data System (ADS)

    Jacobs, Christopher B.; Wang, Kai; Ievlev, Anton V.; Muckley, Eric S.; Ivanov, Ilia N.

    2016-09-01

    Functional assemblies of materials can be realized by tuning the work function and band gap of nanomaterials by rational material selection and design. Here we demonstrate the structural assembly of 2D and 3D nanomaterials and show that layering a 2D material monolayer on a 3D metal oxide leads to substantial alteration of both the surface potential and optical properties of the 3D material. A 40 nm thick film of polycrystalline NiO was produced by room temperature rf-sputtering, resulting in a 3D nanoparticle assembly. Chemical vapor deposition (CVD) grown 10-30 μm WS2 flakes (2D material) were placed on the NiO surface using a PDMS stamp transfer technique. The 2D/3D WS2/NiO assembly was characterized using confocal micro Raman spectroscopy to evaluate the vibrational properties and using Kelvin probe force microscopy (KPFM) to evaluate the surface potential. Raman maps of the 2D/3D assembly show spatial non-uniformity of the A1g mode ( 418 cm-1) and the disorder-enhanced longitudinal acoustic mode, 2LA(M) ( 350 cm-1), suggesting that the WS2 exists in a strained condition on when transferred onto 3D polycrystalline NiO. KPFM measurements show that single layer WS2 on SiO2 has a surface potential 75 mV lower than that of SiO2, whereas the surface potential of WS2 on NiO is 15 mV higher than NiO, indicating that WS2 could act as electron donor or acceptor depending on the 3D material it is interfaced with. Thus 2D and 3D materials can be organized into functional assemblies with electron flow controlled by the WS2 either as the electron donor or acceptor.

  10. Laboratory Experiments On Continually Forced 2d Turbulence

    NASA Astrophysics Data System (ADS)

    Wells, M. G.; Clercx, H. J. H.; Van Heijst, G. J. F.

    There has been much recent interest in the advection of tracers by 2D turbulence in geophysical flows. While there is a large body of literature on decaying 2D turbulence or forced 2D turbulence in unbounded domains, there have been very few studies of forced turbulence in bounded domains. In this study we present new experimental results from a continuously forced quasi 2D turbulent field. The experiments are performed in a square Perspex tank filled with water. The flow is made quasi 2D by a steady background rotation. The rotation rate of the tank has a small (<8 %) sinusoidal perturbation which leads to the periodic formation of eddies in the corners of the tank. When the oscillation period of the perturbation is greater than an eddy roll-up time-scale, dipole structures are observed to form. The dipoles can migrate away from the walls, and the interior of the tank is continually filled with vortexs. From experimental visualizations the length scale of the vortexs appears to be largely controlled by the initial formation mechanism and large scale structures are not observed to form at large times. Thus the experiments provide a simple way of cre- ating a continuously forced 2D turbulent field. The resulting structures are in contrast with most previous laboratory experiments on 2D turbulence which have investigated decaying turbulence and have observed the formations of large scale structure. In these experiments, decaying turbulence had been produced by a variety of methods such as the decaying turbulence in the wake of a comb of rods (Massen et al 1999), organiza- tion of vortices in thin conducting liquids (Cardoso et al 1994) or in rotating systems where there are sudden changes in angular rotation rate (Konijnenberg et al 1998). Results of dye visualizations, particle tracking experiments and a direct numerical simulation will be presented and discussed in terms of their oceanographic application. Bibliography Cardoso,O. Marteau, D. &Tabeling, P

  11. 2dF grows up: Echidna for the AAT

    NASA Astrophysics Data System (ADS)

    McGrath, Andrew; Barden, Sam; Miziarski, Stan; Rambold, William; Smith, Greg

    2008-07-01

    We present the concept design of a new fibre positioner and spectrograph system for the Anglo-Australian Telescope, as a proposed enhancement to the Anglo-Australian Observatory's well-known 2dF facility. A four-fold multiplex enhancement is accomplished by replacing the 400-fibre 2dF fibre positioning robot with a 1600-fibre Echidna unit, feeding three clones of the AAOmega optical spectrograph. Such a facility has the capability of a redshift 1 survey of a large fraction of the southern sky, collecting five to ten thousand spectra per night for a million-galaxy survey.

  12. Noninvasive deep Raman detection with 2D correlation analysis

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Min; Park, Hyo Sun; Cho, Youngho; Jin, Seung Min; Lee, Kang Taek; Jung, Young Mee; Suh, Yung Doug

    2014-07-01

    The detection of poisonous chemicals enclosed in daily necessaries is prerequisite essential for homeland security with the increasing threat of terrorism. For the detection of toxic chemicals, we combined a sensitive deep Raman spectroscopic method with 2D correlation analysis. We obtained the Raman spectra from concealed chemicals employing spatially offset Raman spectroscopy in which incident line-shaped light experiences multiple scatterings before being delivered to inner component and yielding deep Raman signal. Furthermore, we restored the pure Raman spectrum of each component using 2D correlation spectroscopic analysis with chemical inspection. Using this method, we could elucidate subsurface component under thick powder and packed contents in a bottle.

  13. Evaluation of 2D ceramic matrix composites in aeroconvective environments

    NASA Technical Reports Server (NTRS)

    Riccitiello, Salvatore R.; Love, Wendell L.; Balter-Peterson, Aliza

    1992-01-01

    An evaluation is conducted of a novel ceramic-matrix composite (CMC) material system for use in the aeroconvective-heating environments encountered by the nose caps and wing leading edges of such aerospace vehicles as the Space Shuttle, during orbit-insertion and reentry from LEO. These CMCs are composed of an SiC matrix that is reinforced with Nicalon, Nextel, or carbon refractory fibers in a 2D architecture. The test program conducted for the 2D CMCs gave attention to their subsurface oxidation.

  14. Radiative heat transfer in 2D Dirac materials.

    PubMed

    Rodriguez-López, Pablo; Tse, Wang-Kong; Dalvit, Diego A R

    2015-06-03

    We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. Finally, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.

  15. Quantum process tomography by 2D fluorescence spectroscopy

    SciTech Connect

    Pachón, Leonardo A.; Marcus, Andrew H.; Aspuru-Guzik, Alán

    2015-06-07

    Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed.

  16. Radiative heat transfer in 2D Dirac materials

    DOE PAGES

    Rodriguez-López, Pablo; Tse, Wang -Kong; Dalvit, Diego A. R.

    2015-05-12

    We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. In conclusion, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.

  17. Scale Invariance in 2D BCS-BEC Crossover

    NASA Astrophysics Data System (ADS)

    Sensarma, Rajdeep; Taylor, Edward; Randeria, Mohit

    2013-03-01

    In 2D BCS-BEC crossover, the frequency of the breathing mode in a harmonic trap, as well as the lower edge of the radio frequency spectroscopy response, show remarkable scale-invariance throughout the crossover regime, i.e. they are independent of the coupling constant. Using functional integral methods, we study the behaviour of these quantities in the 2D BCS-BEC crossover and comment on the possible reasons for this scale independence. RS was supported by DAE, Govt. of India. MR was supported by NSF Grant No. DMR-1006532. ET was supported by NSERC and the Canadian Institute for Advanced Research.

  18. Closed-shell and open-shell 2D nanographenes.

    PubMed

    Sun, Zhe; Wu, Jishan

    2014-01-01

    This chapter describes a series of two-dimensional (2D) expanded arene networks, also known as nanographenes, with either closed-shell or open-shell electronic structure in the ground state. These systems are further categorized into three classes on a basis of different edge structures: those with zigzag edges only, those with armchair edges only, and those possessing both. Distinctive physical properties of these 2D aromatic systems are closely related to their structural characteristics and provide great potential for them as materials for different applications.

  19. 2D Log-Gabor Wavelet Based Action Recognition

    NASA Astrophysics Data System (ADS)

    Li, Ning; Xu, De

    The frequency response of log-Gabor function matches well the frequency response of primate visual neurons. In this letter, motion-salient regions are extracted based on the 2D log-Gabor wavelet transform of the spatio-temporal form of actions. A supervised classification technique is then used to classify the actions. The proposed method is robust to the irregular segmentation of actors. Moreover, the 2D log-Gabor wavelet permits more compact representation of actions than the recent neurobiological models using Gabor wavelet.

  20. A novel improved method for analysis of 2D diffusion relaxation data—2D PARAFAC-Laplace decomposition

    NASA Astrophysics Data System (ADS)

    Tønning, Erik; Polders, Daniel; Callaghan, Paul T.; Engelsen, Søren B.

    2007-09-01

    This paper demonstrates how the multi-linear PARAFAC model can with advantage be used to decompose 2D diffusion-relaxation correlation NMR spectra prior to 2D-Laplace inversion to the T2- D domain. The decomposition is advantageous for better interpretation of the complex correlation maps as well as for the quantification of extracted T2- D components. To demonstrate the new method seventeen mixtures of wheat flour, starch, gluten, oil and water were prepared and measured with a 300 MHz nuclear magnetic resonance (NMR) spectrometer using a pulsed gradient stimulated echo (PGSTE) pulse sequence followed by a Carr-Purcell-Meiboom-Gill (CPMG) pulse echo train. By varying the gradient strength, 2D diffusion-relaxation data were recorded for each sample. From these double exponentially decaying relaxation data the PARAFAC algorithm extracted two unique diffusion-relaxation components, explaining 99.8% of the variation in the data set. These two components were subsequently transformed to the T2- D domain using 2D-inverse Laplace transformation and quantitatively assigned to the oil and water components of the samples. The oil component was one distinct distribution with peak intensity at D = 3 × 10 -12 m 2 s -1 and T2 = 180 ms. The water component consisted of two broad populations of water molecules with diffusion coefficients and relaxation times centered around correlation pairs: D = 10 -9 m 2 s -1, T2 = 10 ms and D = 3 × 10 -13 m 2 s -1, T2 = 13 ms. Small spurious peaks observed in the inverse Laplace transformation of original complex data were effectively filtered by the PARAFAC decomposition and thus considered artefacts from the complex Laplace transformation. The oil-to-water ratio determined by PARAFAC followed by 2D-Laplace inversion was perfectly correlated with known oil-to-water ratio of the samples. The new method of using PARAFAC prior to the 2D-Laplace inversion proved to have superior potential in analysis of diffusion-relaxation spectra, as it

  1. 2D molybdenum disulphide (2D-MoS2) modified electrodes explored towards the oxygen reduction reaction.

    PubMed

    Rowley-Neale, Samuel J; Fearn, Jamie M; Brownson, Dale A C; Smith, Graham C; Ji, Xiaobo; Banks, Craig E

    2016-08-21

    Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm(-2) modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR.

  2. CHEM2D: a two-dimensional, three-phase, nine-component chemical flood simulator. Volume I. CHEM2D technical description and FORTRAN code

    SciTech Connect

    Fanchi, J.R.

    1985-04-01

    Under the sponsorship of the US Department of Energy, a publicly available chemical simulator has been evaluated and substantially enhanced to serve as a useful tool for projecting polymer or chemical flood performance. The program, CHEM2D, is a two-dimensional, three-phase, nine-component finite-difference numerical simulator. It can model primary depletion, waterfloods, polymer floods, and micellar/polymer floods using heterogeneous linear, areal, or cross-sectional reservoir descriptions. The user may specify well performance as either pressure or rate constrained. Both a constant time step size and a variable time step size based on extrapolation of concentration changes are available as options. A solution technique which is implicit in pressure and explicit in saturations and concentrations is used. The major physical mechanisms that are modeled include adsorption, capillary trapping, cation exchange, dilution, dispersion, interfacial tension, binary or ternary phase behavior, non-Newtonian polymer rheology, and two-phase or three-phase relative permeability. Typical components include water, oil, surfactant, polymer, and three ions (chloride, calcium, and sodium). Components may partition amongst the aqueous, oleic, and microemulsion phases. Volume I of this report provides a discussion of the formulation and algorithms used within CHEM2D. Included in Volume I are a number of validation and illustrative examples, as well as the FORTRAN code. The CHEM2D user's manual, Volume II, contains both the input data sets for the examples presented in Volume I and an example output. All appendices and a phase behavior calculation program are collected in Volume III. 20 references.

  3. FET Noise Studies.

    DTIC Science & Technology

    1981-03-01

    The predominant sources of nonlinearity in the FET, relevant to oscillator analysis, are the transconductance gm and the source-gate capacitance C sg...two general categories of noise mechanisms in an FET: intrinsic sources, i.e., noise associated with the FET operation itself, and extrinsic noise...very high drain voltages, also produces white noise. Noise produced by para- sitic resistance, one of the extrinsic noise sources, is also flat. These

  4. Noise and blast

    NASA Technical Reports Server (NTRS)

    Hodge, D. C.; Garinther, G. R.

    1973-01-01

    Noise and blast environments are described, providing a definition of units and techniques of noise measurement and giving representative booster-launch and spacecraft noise data. The effects of noise on hearing sensitivity and performance are reviewed, and community response to noise exposure is discussed. Physiological, or nonauditory, effects of noise exposure are also treated, as are design criteria and methods for minimizing the noise effects of hearing sensitivity and communications. The low level sound detection and speech reception are included, along with subjective and behavioral responses to noise.

  5. Probing Spatio-Temporal Correlation in Complex Aqueous Systems through 2D-IR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bagchi, Biman; Biswas, Rajib; Samanta, Tuhin; Ghosh, Rikhia; Roy, Susmita

    2015-03-01

    Heterogeneity is ubiquitous in aqueous solutions, e.g., in protein and DNA solutions, micelles and reverse micelles, density fluctuations during phase transitions (e,g., water to ice). Origin of heterogeneity can be diverse, sometimes stimulated by external biomolecular subsystems (proteins, DNA, lipids), nanoscopic materials etc, but may also be intrinsic to the thermodynamic nature of the aqueous solution itself. The altered dynamics of water in presence of such diverse surfaces have attracted considerable attention in recent years. However, efficiently capturing the length and timescale of heterogeneous dynamics of water is indeed a challenging task. Recent development of two dimensional infra-red (2D-IR) allows us to estimate length and time scales of such dynamics fairly accurately. In this work, we present a series of interesting studies employing two dimensional infra-red spectroscopy (2D-IR) to investigate (i) dynamics of water inside reverse micelles of varying sizes, (ii) supercritical water near the Widom line that is known to exhibit pronounced density fluctuation and calculate. The respective studies reveal a number of interesting facts. Spatio-temporal correlation of water dynamics with varying size of reverse micelles is well captured through the spectral diffusion of corresponding 2D-IR spectra. In case of supercritical water also, we observe strong signature of dynamic heterogeneity from the elongated nature of the spectra.

  6. Speckle lithography for fabricating Gaussian, quasi-random 2D structures and black silicon structures

    PubMed Central

    Bingi, Jayachandra; Murukeshan, Vadakke Matham

    2015-01-01

    Laser speckle pattern is a granular structure formed due to random coherent wavelet interference and generally considered as noise in optical systems including photolithography. Contrary to this, in this paper, we use the speckle pattern to generate predictable and controlled Gaussian random structures and quasi-random structures photo-lithographically. The random structures made using this proposed speckle lithography technique are quantified based on speckle statistics, radial distribution function (RDF) and fast Fourier transform (FFT). The control over the speckle size, density and speckle clustering facilitates the successful fabrication of black silicon with different surface structures. The controllability and tunability of randomness makes this technique a robust method for fabricating predictable 2D Gaussian random structures and black silicon structures. These structures can enhance the light trapping significantly in solar cells and hence enable improved energy harvesting. Further, this technique can enable efficient fabrication of disordered photonic structures and random media based devices. PMID:26679513

  7. The inversion of 2D NMR relaxometry data using L1 regularization

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaolong; Su, Guanqun; Wang, Lijia; Nie, Shengdong; Ge, Xinmin

    2017-02-01

    NMR relaxometry has been used as a powerful tool to study molecular dynamics. Many algorithms have been developed for the inversion of 2D NMR relaxometry data. Unlike traditional algorithms implementing L2 regularization, high order Tikhonov regularization or iterative regularization, L1 penalty term is involved to constrain the sparsity of resultant spectra in this paper. Then fast iterative shrinkage-thresholding algorithm (FISTA) is proposed to solve the L1 regularization problem. The effectiveness, noise vulnerability and practical utility of the proposed algorithm are analyzed by simulations and experiments. The results demonstrate that the proposed algorithm has a more excellent capability to reveal narrow peaks than traditional inversion algorithms. The L1 regularization implemented by our algorithm can be a useful complementary to the existing algorithms.

  8. A 2D range Hausdorff approach for 3D face recognition.

    SciTech Connect

    Koch, Mark William; Russ, Trina Denise; Little, Charles Quentin

    2005-04-01

    This paper presents a 3D facial recognition algorithm based on the Hausdorff distance metric. The standard 3D formulation of the Hausdorff matching algorithm has been modified to operate on a 2D range image, enabling a reduction in computation from O(N2) to O(N) without large storage requirements. The Hausdorff distance is known for its robustness to data outliers and inconsistent data between two data sets, making it a suitable choice for dealing with the inherent problems in many 3D datasets due to sensor noise and object self-occlusion. For optimal performance, the algorithm assumes a good initial alignment between probe and template datasets. However, to minimize the error between two faces, the alignment can be iteratively refined. Results from the algorithm are presented using 3D face images from the Face Recognition Grand Challenge database version 1.0.

  9. A 2D range Hausdorff approach to 3D facial recognition.

    SciTech Connect

    Koch, Mark William; Russ, Trina Denise; Little, Charles Quentin

    2004-11-01

    This paper presents a 3D facial recognition algorithm based on the Hausdorff distance metric. The standard 3D formulation of the Hausdorff matching algorithm has been modified to operate on a 2D range image, enabling a reduction in computation from O(N2) to O(N) without large storage requirements. The Hausdorff distance is known for its robustness to data outliers and inconsistent data between two data sets, making it a suitable choice for dealing with the inherent problems in many 3D datasets due to sensor noise and object self-occlusion. For optimal performance, the algorithm assumes a good initial alignment between probe and template datasets. However, to minimize the error between two faces, the alignment can be iteratively refined. Results from the algorithm are presented using 3D face images from the Face Recognition Grand Challenge database version 1.0.

  10. Evaluation of the channelized Hotelling observer for signal detection in 2D tomographic imaging

    NASA Astrophysics Data System (ADS)

    LaRoque, Samuel J.; Sidky, Emil Y.; Edwards, Darrin C.; Pan, Xiaochuan

    2007-03-01

    Signal detection by the channelized Hotelling (ch-Hotelling) observer is studied for tomographic application by employing a small, tractable 2D model of a computed tomography (CT) system. The primary goal of this manuscript is to develop a practical method for evaluating the ch-Hotelling observer that can generalize to larger 3D cone-beam CT systems. The use of the ch-Hotelling observer for evaluating tomographic image reconstruction algorithms is also demonstrated. For a realistic model for CT, the ch-Hotelling observer can be a good approximation to the ideal observer. The ch-Hotelling observer is applied to both the projection data and the reconstructed images. The difference in signal-to-noise ratio for signal detection in both of these domains provides a metric for evaluating the image reconstruction algorithm.

  11. Speckle lithography for fabricating Gaussian, quasi-random 2D structures and black silicon structures.

    PubMed

    Bingi, Jayachandra; Murukeshan, Vadakke Matham

    2015-12-18

    Laser speckle pattern is a granular structure formed due to random coherent wavelet interference and generally considered as noise in optical systems including photolithography. Contrary to this, in this paper, we use the speckle pattern to generate predictable and controlled Gaussian random structures and quasi-random structures photo-lithographically. The random structures made using this proposed speckle lithography technique are quantified based on speckle statistics, radial distribution function (RDF) and fast Fourier transform (FFT). The control over the speckle size, density and speckle clustering facilitates the successful fabrication of black silicon with different surface structures. The controllability and tunability of randomness makes this technique a robust method for fabricating predictable 2D Gaussian random structures and black silicon structures. These structures can enhance the light trapping significantly in solar cells and hence enable improved energy harvesting. Further, this technique can enable efficient fabrication of disordered photonic structures and random media based devices.

  12. Discrepant Results in a 2-D Marble Collision

    ERIC Educational Resources Information Center

    Kalajian, Peter

    2013-01-01

    Video analysis of 2-D collisions is an excellent way to investigate conservation of linear momentum. The often-desired experimental design goal is to minimize the momentum loss in order to demonstrate the conservation law. An air table with colliding pucks is an ideal medium for this experiment, but such equipment is beyond the budget of many…

  13. 2-D Finite Element Cable and Box IEMP Analysis

    SciTech Connect

    Scivner, G.J.; Turner, C.D.

    1998-12-17

    A 2-D finite element code has been developed for the solution of arbitrary geometry cable SGEMP and box IEMP problems. The quasi- static electric field equations with radiation- induced charge deposition and radiation-induced conductivity y are numerically solved on a triangular mesh. Multiple regions of different dielectric materials and multiple conductors are permitted.

  14. 2D Orthogonal Locality Preserving Projection for Image Denoising.

    PubMed

    Shikkenawis, Gitam; Mitra, Suman K

    2016-01-01

    Sparse representations using transform-domain techniques are widely used for better interpretation of the raw data. Orthogonal locality preserving projection (OLPP) is a linear technique that tries to preserve local structure of data in the transform domain as well. Vectorized nature of OLPP requires high-dimensional data to be converted to vector format, hence may lose spatial neighborhood information of raw data. On the other hand, processing 2D data directly, not only preserves spatial information, but also improves the computational efficiency considerably. The 2D OLPP is expected to learn the transformation from 2D data itself. This paper derives mathematical foundation for 2D OLPP. The proposed technique is used for image denoising task. Recent state-of-the-art approaches for image denoising work on two major hypotheses, i.e., non-local self-similarity and sparse linear approximations of the data. Locality preserving nature of the proposed approach automatically takes care of self-similarity present in the image while inferring sparse basis. A global basis is adequate for the entire image. The proposed approach outperforms several state-of-the-art image denoising approaches for gray-scale, color, and texture images.

  15. 2D signature for detection and identification of drugs

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Varentsova, Svetlana A.; Shen, Jingling; Zhang, Cunlin; Zhou, Qingli; Shi, Yulei

    2011-06-01

    The method of spectral dynamics analysis (SDA-method) is used for obtaining the2D THz signature of drugs. This signature is used for the detection and identification of drugs with similar Fourier spectra by transmitted THz signal. We discuss the efficiency of SDA method for the identification problem of pure methamphetamine (MA), methylenedioxyamphetamine (MDA), 3, 4-methylenedioxymethamphetamine (MDMA) and Ketamine.

  16. Optoelectronics of supported and suspended 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Bolotin, Kirill

    2014-03-01

    Two-dimensional semiconductors, materials such monolayer molybdenum disulfide (MoS2) are characterized by strong spin-orbit and electron-electron interactions. However, both electronic and optoelectronic properties of these materials are dominated by disorder-related scattering. In this talk, we investigate approaches to reduce scattering and explore physical phenomena arising in intrinsic 2D semiconductors. First, we discuss fabrication of pristine suspended monolayer MoS2 and use photocurrent spectroscopy measurements to study excitons in this material. We observe band-edge and van Hove singularity excitons and estimate their binding energies. Furthermore, we study dissociation of these excitons and uncover the mechanism of their contribution to photoresponse of MoS2. Second, we study strain-induced modification of bandstructures of 2D semiconductors. With increasing strain, we find large and controllable band gap reduction of both single- and bi-layer MoS2. We also detect experimental signatures consistent with strain-induced transition from direct to indirect band gap in monolayer MoS2. Finally, we fabricate heterostructures of dissimilar 2D semiconductors and study their photoresponse. For closely spaced 2D semiconductors we detect charge transfer, while for separation larger than 10nm we observe Forster-like energy transfer between excitations in different layers.

  17. Graphene band structure and its 2D Raman mode

    NASA Astrophysics Data System (ADS)

    Narula, Rohit; Reich, Stephanie

    2014-08-01

    High-precision simulations are used to generate the 2D Raman mode of graphene under a range of screening conditions and laser energies EL. We reproduce the decreasing trend of the 2D mode FWHM vs EL and the nearly linearly increasing dispersion ∂ω2D/∂EL seen experimentally in freestanding (unscreened) graphene, and propose relations between these experimentally accessible quantities and the local, two-dimensional gradients |∇ | of the electronic and TO phonon bands. In light of state-of-the-art electronic structure calculations that acutely treat the long-range e-e interactions of isolated graphene and its experimentally observed 2D Raman mode, our calculations determine a 40% greater slope of the TO phonons about K than given by explicit phonon measurements performed in graphite or GW phonon calculations in graphene. We also deduce the variation of the broadening energy γ [EL] for freestanding graphene and find a nominal value γ ˜140 meV, showing a gradually increasing trend for the range of frequencies available experimentally.

  18. Development of a MEMS 2D separations device

    NASA Astrophysics Data System (ADS)

    Bloschock, Kristen P.; Flyer, Jonathan N.; Schneider, Thomas W.; Hussam, Abul; Van Keuren, Edward R.

    2004-12-01

    A polymer based biochip for rapid 2D separations of peptides, proteins, and other biomedically relevant molecules was designed and fabricated. Like traditional 2D polyacrylamide gel electrophoresis (2D-PAGE) methods, the device will allow molecules to separate based on isoelectric point (pI) and molecular weight (MW). Our design, however, integrates both an initial capillary isoelectric focusing (cIEF) step followed by capillary electrophoresis (CE) in multiple parallel channels, all on a single microfluidic chip. Not only is the "lab-on-a-chip" design easier to use and less expensive, but the miniaturization of the device produces very rapid separations. Compared to traditional 2D-PAGE, which can take hours to complete, we estimate separation times on the order of seconds. Fluorescence detection will be used in the preliminary stages of testing, but the device also is equipped with integrated electrodes in the electrophoresis channels to perform multiplexed electrochemical detection for quantitative analysis. We will present preliminary results of the chip development and testing.

  19. The 2dF Galaxy Redshift Survey: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Maddox, Steve; 2DF Galaxy Redshift Survey Team; Bland-Hawthorn, Joss; Cannon, Russell; Cole, Shaun; Colless, Matthew; Collins, Chris; Couch, Warrick; Dalton, Gavin; Driver, Simon; Ellis, Richard; Efstathiou, George; Folkes, Simon; Frenk, Carlos; Glazebrook, Karl; Kaiser, Nick; Lahav, Ofer; Lumsden, Stuart; Peterson, Bruce; Peacock, John; Sutherland, Will; Taylor, Keith

    Spectroscopic observations for a new survey of 250 000 galaxy redshifts are underway, using the 2dF instrument at the AAT. The input galaxy catalogue and commissioning data are described. The first result from the preliminary data is a new estimate of the galaxy luminosity function at = 0.1.

  20. Volume Calculation of Venous Thrombosis Using 2D Ultrasound Images.

    PubMed

    Dhibi, M; Puentes, J; Bressollette, L; Guias, B; Solaiman, B

    2005-01-01

    Venous thrombosis screening exams use 2D ultrasound images, from which medical experts obtain a rough idea of the thrombosis aspect and infer an approximate volume. Such estimation is essential to follow up the thrombosis evolution. This paper proposes a method to calculate venous thrombosis volume from non-parallel 2D ultrasound images, taking advantage of a priori knowledge about the thrombosis shape. An interactive ellipse fitting contour segmentation extracts the 2D thrombosis contours. Then, a Delaunay triangulation is applied to the set of 2D segmented contours positioned in 3D, and the area that each contour defines, to obtain a global thrombosis 3D surface reconstruction, with a dense triangulation inside the contours. Volume is calculated from the obtained surface and contours triangulation, using a maximum unit normal component approach. Preliminary results obtained on 3 plastic phantoms and 3 in vitro venous thromboses, as well as one in vivo case are presented and discussed. An error rate of volume estimation inferior to 4,5% for the plastic phantoms, and 3,5% for the in vitro venous thromboses was obtained.

  1. ELLIPT2D: A Flexible Finite Element Code Written Python

    SciTech Connect

    Pletzer, A.; Mollis, J.C.

    2001-03-22

    The use of the Python scripting language for scientific applications and in particular to solve partial differential equations is explored. It is shown that Python's rich data structure and object-oriented features can be exploited to write programs that are not only significantly more concise than their counter parts written in Fortran, C or C++, but are also numerically efficient. To illustrate this, a two-dimensional finite element code (ELLIPT2D) has been written. ELLIPT2D provides a flexible and easy-to-use framework for solving a large class of second-order elliptic problems. The program allows for structured or unstructured meshes. All functions defining the elliptic operator are user supplied and so are the boundary conditions, which can be of Dirichlet, Neumann or Robbins type. ELLIPT2D makes extensive use of dictionaries (hash tables) as a way to represent sparse matrices.Other key features of the Python language that have been widely used include: operator over loading, error handling, array slicing, and the Tkinter module for building graphical use interfaces. As an example of the utility of ELLIPT2D, a nonlinear solution of the Grad-Shafranov equation is computed using a Newton iterative scheme. A second application focuses on a solution of the toroidal Laplace equation coupled to a magnetohydrodynamic stability code, a problem arising in the context of magnetic fusion research.

  2. Rheological Properties of Quasi-2D Fluids in Microgravity

    NASA Technical Reports Server (NTRS)

    Stannarius, Ralf; Trittel, Torsten; Eremin, Alexey; Harth, Kirsten; Clark, Noel; Maclennan, Joseph; Glaser, Matthew; Park, Cheol; Hall, Nancy; Tin, Padetha

    2015-01-01

    In recent years, research on complex fluids and fluids in restricted geometries has attracted much attention in the scientific community. This can be attributed not only to the development of novel materials based on complex fluids but also to a variety of important physical phenomena which have barely been explored. One example is the behavior of membranes and thin fluid films, which can be described by two-dimensional (2D) rheology behavior that is quite different from 3D fluids. In this study, we have investigated the rheological properties of freely suspended films of a thermotropic liquid crystal in microgravity experiments. This model system mimics isotropic and anisotropic quasi 2D fluids [46]. We use inkjet printing technology to dispense small droplets (inclusions) onto the film surface. The motion of these inclusions provides information on the rheological properties of the films and allows the study of a variety of flow instabilities. Flat films have been investigated on a sub-orbital rocket flight and curved films (bubbles) have been studied in the ISS project OASIS. Microgravity is essential when the films are curved in order to avoid sedimentation. The experiments yield the mobility of the droplets in the films as well as the mutual mobility of pairs of particles. Experimental results will be presented for 2D-isotropic (smectic-A) and 2D-nematic (smectic-C) phases.

  3. Validation and testing of the VAM2D computer code

    SciTech Connect

    Kool, J.B.; Wu, Y.S. )

    1991-10-01

    This document describes two modeling studies conducted by HydroGeoLogic, Inc. for the US NRC under contract no. NRC-04089-090, entitled, Validation and Testing of the VAM2D Computer Code.'' VAM2D is a two-dimensional, variably saturated flow and transport code, with applications for performance assessment of nuclear waste disposal. The computer code itself is documented in a separate NUREG document (NUREG/CR-5352, 1989). The studies presented in this report involve application of the VAM2D code to two diverse subsurface modeling problems. The first one involves modeling of infiltration and redistribution of water and solutes in an initially dry, heterogeneous field soil. This application involves detailed modeling over a relatively short, 9-month time period. The second problem pertains to the application of VAM2D to the modeling of a waste disposal facility in a fractured clay, over much larger space and time scales and with particular emphasis on the applicability and reliability of using equivalent porous medium approach for simulating flow and transport in fractured geologic media. Reflecting the separate and distinct nature of the two problems studied, this report is organized in two separate parts. 61 refs., 31 figs., 9 tabs.

  4. NKG2D ligands mediate immunosurveillance of senescent cells

    PubMed Central

    Moshayev, Zhana; Vadai, Ezra; Wensveen, Felix; Ben-Dor, Shifra; Golani, Ofra; Polic, Bojan; Krizhanovsky, Valery

    2016-01-01

    Cellular senescence is a stress response mechanism that limits tumorigenesis and tissue damage. Induction of cellular senescence commonly coincides with an immunogenic phenotype that promotes self-elimination by components of the immune system, thereby facilitating tumor suppression and limiting excess fibrosis during wound repair. The mechanisms by which senescent cells regulate their immune surveillance are not completely understood. Here we show that ligands of an activating Natural Killer (NK) cell receptor (NKG2D), MICA and ULBP2 are consistently up-regulated following induction of replicative senescence, oncogene-induced senescence and DNA damage - induced senescence. MICA and ULBP2 proteins are necessary for efficient NK-mediated cytotoxicity towards senescent fibroblasts. The mechanisms regulating the initial expression of NKG2D ligands in senescent cells are dependent on a DNA damage response, whilst continuous expression of these ligands is regulated by the ERK signaling pathway. In liver fibrosis, the accumulation of senescent activated stellate cells is increased in mice lacking NKG2D receptor leading to increased fibrosis. Overall, our results provide new insights into the mechanisms regulating the expression of immune ligands in senescent cells and reveal the importance of NKG2D receptor-ligand interaction in protecting against liver fibrosis. PMID:26878797

  5. Studying Zeolite Catalysts with a 2D Model System

    ScienceCinema

    Boscoboinik, Anibal

    2016-12-14

    Anibal Boscoboinik, a materials scientist at Brookhaven’s Center for Functional Nanomaterials, discusses the surface-science tools and 2D model system he uses to study catalysis in nanoporous zeolites, which catalyze reactions in many industrial processes.

  6. 2D nanomaterials based electrochemical biosensors for cancer diagnosis.

    PubMed

    Wang, Lu; Xiong, Qirong; Xiao, Fei; Duan, Hongwei

    2017-03-15

    Cancer is a leading cause of death in the world. Increasing evidence has demonstrated that early diagnosis holds the key towards effective treatment outcome. Cancer biomarkers are extensively used in oncology for cancer diagnosis and prognosis. Electrochemical sensors play key roles in current laboratory and clinical analysis of diverse chemical and biological targets. Recent development of functional nanomaterials offers new possibilities of improving the performance of electrochemical sensors. In particular, 2D nanomaterials have stimulated intense research due to their unique array of structural and chemical properties. The 2D materials of interest cover broadly across graphene, graphene derivatives (i.e., graphene oxide and reduced graphene oxide), and graphene-like nanomaterials (i.e., 2D layered transition metal dichalcogenides, graphite carbon nitride and boron nitride nanomaterials). In this review, we summarize recent advances in the synthesis of 2D nanomaterials and their applications in electrochemical biosensing of cancer biomarkers (nucleic acids, proteins and some small molecules), and present a personal perspective on the future direction of this area.

  7. 2D molybdenum disulphide (2D-MoS2) modified electrodes explored towards the oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Rowley-Neale, Samuel J.; Fearn, Jamie M.; Brownson, Dale A. C.; Smith, Graham C.; Ji, Xiaobo; Banks, Craig E.

    2016-08-01

    Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm-2 modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR.Two-dimensional molybdenum disulphide nanosheets

  8. WE-AB-BRA-07: Quantitative Evaluation of 2D-2D and 2D-3D Image Guided Radiation Therapy for Clinical Trial Credentialing, NRG Oncology/RTOG

    SciTech Connect

    Giaddui, T; Yu, J; Xiao, Y; Jacobs, P; Manfredi, D; Linnemann, N

    2015-06-15

    Purpose: 2D-2D kV image guided radiation therapy (IGRT) credentialing evaluation for clinical trial qualification was historically qualitative through submitting screen captures of the fusion process. However, as quantitative DICOM 2D-2D and 2D-3D image registration tools are implemented in clinical practice for better precision, especially in centers that treat patients with protons, better IGRT credentialing techniques are needed. The aim of this work is to establish methodologies for quantitatively reviewing IGRT submissions based on DICOM 2D-2D and 2D-3D image registration and to test the methodologies in reviewing 2D-2D and 2D-3D IGRT submissions for RTOG/NRG Oncology clinical trials qualifications. Methods: DICOM 2D-2D and 2D-3D automated and manual image registration have been tested using the Harmony tool in MIM software. 2D kV orthogonal portal images are fused with the reference digital reconstructed radiographs (DRR) in the 2D-2D registration while the 2D portal images are fused with DICOM planning CT image in the 2D-3D registration. The Harmony tool allows alignment of the two images used in the registration process and also calculates the required shifts. Shifts calculated using MIM are compared with those submitted by institutions for IGRT credentialing. Reported shifts are considered to be acceptable if differences are less than 3mm. Results: Several tests have been performed on the 2D-2D and 2D-3D registration. The results indicated good agreement between submitted and calculated shifts. A workflow for reviewing these IGRT submissions has been developed and will eventually be used to review IGRT submissions. Conclusion: The IROC Philadelphia RTQA center has developed and tested a new workflow for reviewing DICOM 2D-2D and 2D-3D IGRT credentialing submissions made by different cancer clinical centers, especially proton centers. NRG Center for Innovation in Radiation Oncology (CIRO) and IROC RTQA center continue their collaborative efforts to enhance

  9. Comparison of lifetime-based methods for 2D phosphor thermometry in high-temperature environment

    NASA Astrophysics Data System (ADS)

    Peng, Di; Liu, Yingzheng; Zhao, Xiaofeng; Kim, Kyung Chun

    2016-09-01

    This paper discusses the currently available techniques for 2D phosphor thermometry, and compares the performance of two lifetime-based methods: high-speed imaging and the dual-gate. High-speed imaging resolves luminescent decay with a fast frame rate, and has become a popular method for phosphor thermometry in recent years. But it has disadvantages such as high equipment cost and long data processing time, and it would fail at sufficiently high temperature due to a low signal-to-noise ratio and short lifetime. The dual-gate method only requires two images on the decay curve and therefore greatly reduces cost in hardware and processing time. A dual-gate method for phosphor thermometry has been developed and compared with the high-speed imaging method through both calibration and a jet impingement experiment. Measurement uncertainty has been evaluated for a temperature range of 473-833 K. The effects of several key factors on uncertainty have been discussed, including the luminescent signal level, the decay lifetime and temperature sensitivity. The results show that both methods are valid for 2D temperature sensing within the given range. The high-speed imaging method shows less uncertainty at low temperatures where the signal level and the lifetime are both sufficient, but its performance is degraded at higher temperatures due to a rapidly reduced signal and lifetime. For T  >  750 K, the dual-gate method outperforms the high-speed imaging method thanks to its superiority in signal-to-noise ratio and temperature sensitivity. The dual-gate method has great potential for applications in high-temperature environments where the high-speed imaging method is not applicable.

  10. 2d-LCA - an alternative to x-wires

    NASA Astrophysics Data System (ADS)

    Puczylowski, Jaroslaw; Hölling, Michael; Peinke, Joachim

    2014-11-01

    The 2d-Laser Cantilever Anemometer (2d-LCA) is an innovative sensor for two-dimensional velocity measurements in fluids. It uses a micostructured cantilever made of silicon and SU-8 as a sensing element and is capable of performing mesurements with extremly high temporal resolutions up to 150 kHz. The size of the cantilever defines its spatial resolution, which is in the order of 150 μm only. Another big feature is a large angular range of 180° in total. The 2d-LCA has been developed as an alternative measurement method to x-wires with the motivation to create a sensor that can operate in areas where the use of hot-wire anemometry is difficult. These areas include measurements in liquids and in near-wall or particle-laden flows. Unlike hot-wires, the resolution power of the 2d-LCA does not decrease with increasing flow velocity, making it particularly suitable for measurements in high speed flows. Comparative measurements with the 2d-LCA and hot-wires have been carried out in order to assess the performance of the new anemometer. The data of both measurement techniques were analyzed using the same stochastic methods including a spectral analysis as well as an inspection of increment statistics and structure functions. Furthermore, key parameters, such as mean values of both velocity components, angles of attack and the characteristic length scales were determined from both data sets. The analysis reveals a great agreement between both anemometers and thus confirms the new approach.

  11. 2D/3D Image Registration using Regression Learning

    PubMed Central

    Chou, Chen-Rui; Frederick, Brandon; Mageras, Gig; Chang, Sha; Pizer, Stephen

    2013-01-01

    In computer vision and image analysis, image registration between 2D projections and a 3D image that achieves high accuracy and near real-time computation is challenging. In this paper, we propose a novel method that can rapidly detect an object’s 3D rigid motion or deformation from a 2D projection image or a small set thereof. The method is called CLARET (Correction via Limited-Angle Residues in External Beam Therapy) and consists of two stages: registration preceded by shape space and regression learning. In the registration stage, linear operators are used to iteratively estimate the motion/deformation parameters based on the current intensity residue between the target projec-tion(s) and the digitally reconstructed radiograph(s) (DRRs) of the estimated 3D image. The method determines the linear operators via a two-step learning process. First, it builds a low-order parametric model of the image region’s motion/deformation shape space from its prior 3D images. Second, using learning-time samples produced from the 3D images, it formulates the relationships between the model parameters and the co-varying 2D projection intensity residues by multi-scale linear regressions. The calculated multi-scale regression matrices yield the coarse-to-fine linear operators used in estimating the model parameters from the 2D projection intensity residues in the registration. The method’s application to Image-guided Radiation Therapy (IGRT) requires only a few seconds and yields good results in localizing a tumor under rigid motion in the head and neck and under respiratory deformation in the lung, using one treatment-time imaging 2D projection or a small set thereof. PMID:24058278

  12. A comprehensive model for quantum noise characterization in digital mammography.

    PubMed

    Monnin, P; Bosmans, H; Verdun, F R; Marshall, N W

    2016-03-07

    A version of cascaded systems analysis was developed specifically with the aim of studying quantum noise propagation in x-ray detectors. Signal and quantum noise propagation was then modelled in four types of x-ray detectors used for digital mammography: four flat panel systems, one computed radiography and one slot-scan silicon wafer based photon counting device. As required inputs to the model, the two dimensional (2D) modulation transfer function (MTF), noise power spectra (NPS) and detective quantum efficiency (DQE) were measured for six mammography systems that utilized these different detectors. A new method to reconstruct anisotropic 2D presampling MTF matrices from 1D radial MTFs measured along different angular directions across the detector is described; an image of a sharp, circular disc was used for this purpose. The effective pixel fill factor for the FP systems was determined from the axial 1D presampling MTFs measured with a square sharp edge along the two orthogonal directions of the pixel lattice. Expectation MTFs were then calculated by averaging the radial MTFs over all possible phases and the 2D EMTF formed with the same reconstruction technique used for the 2D presampling MTF. The quantum NPS was then established by noise decomposition from homogenous images acquired as a function of detector air kerma. This was further decomposed into the correlated and uncorrelated quantum components by fitting the radially averaged quantum NPS with the radially averaged EMTF(2). This whole procedure allowed a detailed analysis of the influence of aliasing, signal and noise decorrelation, x-ray capture efficiency and global secondary gain on NPS and detector DQE. The influence of noise statistics, pixel fill factor and additional electronic and fixed pattern noises on the DQE was also studied. The 2D cascaded model and decompositions performed on the acquired images also enlightened the observed quantum NPS and DQE anisotropy.

  13. 2D Behaviors of Excitons in Cesium Lead Halide Perovskite Nanoplatelets.

    PubMed

    Li, Jing; Luo, Laihao; Huang, Hongwen; Ma, Chao; Ye, Zhizhen; Zeng, Jie; He, Haiping

    2017-03-16

    Fundamental to understanding and predicting the optoelectronic properties of semiconductors is the basic parameters of excitons such as oscillator strength and exciton binding energy. However, such knowledge of CsPbBr3 perovskite, a promising optoelectronic material, is still unexplored. Here we demonstrate that quasi-two-dimensional (quasi-2D) CsPbBr3 nanoplatelets (NPLs) with 2D exciton behaviors serve as an ideal system for the determination of these parameters. It is found that the oscillator strength of CsPbBr3 NPLs is up to 1.18 × 10(4), higher than that of colloidal II-VI NPLs and epitaxial quantum wells. Furthermore, the exciton binding energy is determined to be of ∼120 meV from either the optical absorption or the photoluminescence analysis, comparable to that reported in colloidal II-VI quantum wells. Our work provides physical understanding of the observed excellent optical properties of CsPbBr3 nanocrystals and would benefit the prediction of high-performance excitonic devices based on such materials.

  14. Breast density measurement: 3D cone beam computed tomography (CBCT) images versus 2D digital mammograms

    NASA Astrophysics Data System (ADS)

    Han, Tao; Lai, Chao-Jen; Chen, Lingyun; Liu, Xinming; Shen, Youtao; Zhong, Yuncheng; Ge, Shuaiping; Yi, Ying; Wang, Tianpeng; Yang, Wei T.; Shaw, Chris C.

    2009-02-01

    Breast density has been recognized as one of the major risk factors for breast cancer. However, breast density is currently estimated using mammograms which are intrinsically 2D in nature and cannot accurately represent the real breast anatomy. In this study, a novel technique for measuring breast density based on the segmentation of 3D cone beam CT (CBCT) images was developed and the results were compared to those obtained from 2D digital mammograms. 16 mastectomy breast specimens were imaged with a bench top flat-panel based CBCT system. The reconstructed 3D CT images were corrected for the cupping artifacts and then filtered to reduce the noise level, followed by using threshold-based segmentation to separate the dense tissue from the adipose tissue. For each breast specimen, volumes of the dense tissue structures and the entire breast were computed and used to calculate the volumetric breast density. BI-RADS categories were derived from the measured breast densities and compared with those estimated from conventional digital mammograms. The results show that in 10 of 16 cases the BI-RADS categories derived from the CBCT images were lower than those derived from the mammograms by one category. Thus, breasts considered as dense in mammographic examinations may not be considered as dense with the CBCT images. This result indicates that the relation between breast cancer risk and true (volumetric) breast density needs to be further investigated.

  15. Genomic Data and Disease Forecasting: Application to Type 2 Diabetes (T2D)

    PubMed Central

    Sirovich, Lawrence

    2014-01-01

    A general approach is presented for the extraction of a classifier of disease risk that is latent in large scale disease/control databases. Novel features are the following: (1) a data reorganization into a regularized standard form that emphasizes individual alleles instead of the single nucleotide polymorphism (Snp) allele pair to which they belong; (2) from this a procedure that significantly enhances the discovery of high value genomic loci; (3) an investigative analysis based on the hypothesis that disease represents a very small signal (small signal-to-noise) that is latent in the data. The resulting analyses applied to the FUSION T2D database leads to the polling of thousands of genomic loci to classify disease. This large genomic kernel of loci is shared by non-diabetics at nearly the same high level; but a small well defined separation exists and it is speculated that this might be due to unconventional disease mechanisms. Another analysis demonstrates that the FUSION database size limits its disease predictability, and only one third of the resulting classifier loci are estimated to relate to T2D. The remainder is associated with hidden features that might contrast the disease and control populations and that more data would eliminate. PMID:24465649

  16. Volumetric synthetic aperture imaging with a piezoelectric 2D row-column probe

    NASA Astrophysics Data System (ADS)

    Bouzari, Hamed; Engholm, Mathias; Christiansen, Thomas Lehrmann; Beers, Christopher; Lei, Anders; Stuart, Matthias Bo; Nikolov, Svetoslav Ivanov; Thomsen, Erik Vilain; Jensen, Jørgen Arendt

    2016-04-01

    The synthetic aperture (SA) technique can be used for achieving real-time volumetric ultrasound imaging using 2-D row-column addressed transducers. This paper investigates SA volumetric imaging performance of an in-house prototyped 3 MHz λ/2-pitch 62+62 element piezoelectric 2-D row-column addressed transducer array. Utilizing single element transmit events, a volume rate of 90 Hz down to 14 cm deep is achieved. Data are obtained using the experimental ultrasound scanner SARUS with a 70 MHz sampling frequency and beamformed using a delay-and-sum (DAS) approach. A signal-to-noise ratio of up to 32 dB is measured on the beamformed images of a tissue mimicking phantom with attenuation of 0.5 dB cm-1 MHz-1, from the surface of the probe to the penetration depth of 300λ. Measured lateral resolution as Full-Width-at-Half-Maximum (FWHM) is between 4λ and 10λ for 18% to 65% of the penetration depth from the surface of the probe. The averaged contrast is 13 dB for the same range. The imaging performance assessment results may represent a reference guide for possible applications of such an array in different medical fields.

  17. SNARK09 - a software package for reconstruction of 2D images from 1D projections.

    PubMed

    Klukowska, Joanna; Davidi, Ran; Herman, Gabor T

    2013-06-01

    The problem of reconstruction of slices and volumes from 1D and 2D projections has arisen in a large number of scientific fields (including computerized tomography, electron microscopy, X-ray microscopy, radiology, radio astronomy and holography). Many different methods (algorithms) have been suggested for its solution. In this paper we present a software package, SNARK09, for reconstruction of 2D images from their 1D projections. In the area of image reconstruction, researchers often desire to compare two or more reconstruction techniques and assess their relative merits. SNARK09 provides a uniform framework to implement algorithms and evaluate their performance. It has been designed to treat both parallel and divergent projection geometries and can either create test data (with or without noise) for use by reconstruction algorithms or use data collected by another software or a physical device. A number of frequently-used classical reconstruction algorithms are incorporated. The package provides a means for easy incorporation of new algorithms for their testing, comparison and evaluation. It comes with tools for statistical analysis of the results and ten worked examples.

  18. An overview of health effects on noise

    NASA Astrophysics Data System (ADS)

    Osada, Y.

    1988-12-01

    Although noise can damage the inner ear and cause other pathological changes, its most common negative effects are non-somatic, such as a perception of noisiness and disturbance of daily activities. According to the definition of health by WHO, this should be considered as a health hazard. These health effects of noise can be classified into the following three categories: (I) hearing loss, perception of noisiness and masking are produced along the auditory pathway and are thus direct and specific effects of noise; (II) interference with performance, rest and sleep, a feeling of discomfort and some physiological effects are produced as indirect and non-specific effects via reticular formation of the midbrain; (III) annoyance is not merely a feeling of unpleasantness but the feeling of being bothered or troubled, and includes the development of a particular attitude toward the noise source. Individual or group behavioral responses will be evoked when annoyance develops. Annoyance and behavioral response are integrated and composite effects. The health effects of noise are modified by many factors related to both the noise and the individual. Noise level, frequency spectrum, duration and impulsiveness modify the effects. Sex, age, health status and mental character also have an influence on the effects. Direct effects of noise are most dependent on the physical nature of the noise and least dependent on human factors. Indirect effects are more dependent, and integrated effects most dependent, on human factors.

  19. A scanning-mode 2D shear wave imaging (s2D-SWI) system for ultrasound elastography.

    PubMed

    Qiu, Weibao; Wang, Congzhi; Li, Yongchuan; Zhou, Juan; Yang, Ge; Xiao, Yang; Feng, Ge; Jin, Qiaofeng; Mu, Peitian; Qian, Ming; Zheng, Hairong

    2015-09-01

    Ultrasound elastography is widely used for the non-invasive measurement of tissue elasticity properties. Shear wave imaging (SWI) is a quantitative method for assessing tissue stiffness. SWI has been demonstrated to be less operator dependent than quasi-static elastography, and has the ability to acquire quantitative elasticity information in contrast with acoustic radiation force impulse (ARFI) imaging. However, traditional SWI implementations cannot acquire two dimensional (2D) quantitative images of the tissue elasticity distribution. This study proposes and evaluates a scanning-mode 2D SWI (s2D-SWI) system. The hardware and image processing algorithms are presented in detail. Programmable devices are used to support flexible control of the system and the image processing algorithms. An analytic signal based cross-correlation method and a Radon transformation based shear wave speed determination method are proposed, which can be implemented using parallel computation. Imaging of tissue mimicking phantoms, and in vitro, and in vivo imaging test are conducted to demonstrate the performance of the proposed system. The s2D-SWI system represents a new choice for the quantitative mapping of tissue elasticity, and has great potential for implementation in commercial ultrasound scanners.

  20. 2D-2D tunneling field-effect transistors using WSe2/SnSe2 heterostructures

    NASA Astrophysics Data System (ADS)

    Roy, Tania; Tosun, Mahmut; Hettick, Mark; Ahn, Geun Ho; Hu, Chenming; Javey, Ali

    2016-02-01

    Two-dimensional materials present a versatile platform for developing steep transistors due to their uniform thickness and sharp band edges. We demonstrate 2D-2D tunneling in a WSe2/SnSe2 van der Waals vertical heterojunction device, where WSe2 is used as the gate controlled p-layer and SnSe2 is the degenerately n-type layer. The van der Waals gap facilitates the regulation of band alignment at the heterojunction, without the necessity of a tunneling barrier. ZrO2 is used as the gate dielectric, allowing the scaling of gate oxide to improve device subthreshold swing. Efficient gate control and clean interfaces yield a subthreshold swing of ˜100 mV/dec for >2 decades of drain current at room temperature, hitherto unobserved in 2D-2D tunneling devices. The subthreshold swing is independent of temperature, which is a clear signature of band-to-band tunneling at the heterojunction. A maximum switching ratio ION/IOFF of 107 is obtained. Negative differential resistance in the forward bias characteristics is observed at 77 K. This work bodes well for the possibilities of two-dimensional materials for the realization of energy-efficient future-generation electronics.

  1. Response to CYP2D6 substrate antidepressants is predicted by a CYP2D6 composite phenotype based on genotype and comedications with CYP2D6 inhibitors.

    PubMed

    Gressier, F; Verstuyft, C; Hardy, P; Becquemont, L; Corruble, E

    2015-01-01

    The cytochrome P450 2D6 (CYP2D6) is involved in the metabolism of most antidepressants. Comedication with a potent CYP2D6 inhibitor can convert patients with extensive metabolizer (EM) or ultra-rapid metabolizer (UM) genotypes into poor metabolizer (PM) phenotypes. Since comedication is frequent in depressed patients treated with antidepressants, we investigated the effect of the CYP2D6 composite phenotype on antidepressant efficacy, taking into account both the CYP2D6 genotype and comedication with CYP2D6 inhibitors. 87 Caucasian in patients with a major depressive episode were prospectively treated with flexible doses of antidepressant monotherapy as well as comedications and genotyped for the major CYP2D6 alleles (CYP2D6*3 rs35742686, *4 rs3892097, *5 del, *6 rs5030655, and *2xN). They were classified for CYP2D6 composite phenotype and assessed for antidepressant response after 4 weeks. In terms of genotypes (g), 6 subjects were UMg, 6 PMg, and 75 EMg. Ten patients were coprescribed a CYP2D6 inhibitor, resulting in the following composite phenotypes (cp): 5 UMcp, 16 PMcp, and 66 EMcp. Whereas none of the CYP2D6 genotypes were significantly associated with antidepressant response, UMcp had a lower antidepressant response than PMcp or EMcp (respectively: 39.0 ± 17.9, 50.0 ± 26.0, and 61.6 ± 23.4, p = 0.02). Despite small sample size, this study suggests that a CYP2D6 composite phenotype, taking into account both genotype and comedications with CYP2D6 inhibitors, could predict CYP2D6 substrate antidepressants response. Thus, to optimize antidepressant response, CYP2D6 genotype could be performed and comedications with CYP2D6 inhibitors should be avoided, when prescribing CYP2D6 substrate antidepressants.

  2. Noise, Health, and Architecture.

    ERIC Educational Resources Information Center

    Beranek, Leo L.

    There is reasonable agreement that hearing impairment is related to noise exposure. This hearing loss due to noise is considered a serious health injury, but there is still difficulty in delineating the importance of noise related to people's general non-auditory well-being and health. Beside hearing loss, noise inhibits satisfactory speech…

  3. 2-D linear motion system. Innovative technology summary report

    SciTech Connect

    1998-11-01

    The US Department of Energy's (DOE's) nuclear facility decontamination and decommissioning (D and D) program requires buildings to be decontaminated, decommissioned, and surveyed for radiological contamination in an expeditious and cost-effective manner. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. D and D workers must perform duties high off the ground, requiring the use of manlifts or scaffolding, often, in radiologically or chemically contaminated areas or in areas with limited access. Survey and decontamination instruments that are used are sometimes heavy or awkward to use, particularly when the worker is operating from a manlift or scaffolding. Finding alternative methods of performing such work on manlifts or scaffolding is important. The 2-D Linear Motion System (2-D LMS), also known as the Wall Walker{trademark}, is designed to remotely position tools and instruments on walls for use in such activities as radiation surveys, decontamination, and painting. Traditional (baseline) methods for operating equipment for these tasks require workers to perform duties on elevated platforms, sometimes several meters above the ground surface and near potential sources of contamination. The Wall Walker 2-D LMS significantly improves health and safety conditions by facilitating remote operation of equipment. The Wall Walker 2-D LMS performed well in a demonstration of its precision, accuracy, maneuverability, payload capacity, and ease of use. Thus, this innovative technology is demonstrated to be a viable alternative to standard methods of performing work on large, high walls, especially those that have potential contamination concerns. The Wall Walker was used to perform a final release radiological survey on over 167 m{sup 2} of walls. In this application, surveying using a traditional (baseline) method that employs an aerial lift for manual access was 64% of the total cost of the improved technology

  4. Gold-standard performance for 2D hydrodynamic modeling

    NASA Astrophysics Data System (ADS)

    Pasternack, G. B.; MacVicar, B. J.

    2013-12-01

    Two-dimensional, depth-averaged hydrodynamic (2D) models are emerging as an increasingly useful tool for environmental water resources engineering. One of the remaining technical hurdles to the wider adoption and acceptance of 2D modeling is the lack of standards for 2D model performance evaluation when the riverbed undulates, causing lateral flow divergence and convergence. The goal of this study was to establish a gold-standard that quantifies the upper limit of model performance for 2D models of undulating riverbeds when topography is perfectly known and surface roughness is well constrained. A review was conducted of published model performance metrics and the value ranges exhibited by models thus far for each one. Typically predicted velocity differs from observed by 20 to 30 % and the coefficient of determination between the two ranges from 0.5 to 0.8, though there tends to be a bias toward overpredicting low velocity and underpredicting high velocity. To establish a gold standard as to the best performance possible for a 2D model of an undulating bed, two straight, rectangular-walled flume experiments were done with no bed slope and only different bed undulations and water surface slopes. One flume tested model performance in the presence of a porous, homogenous gravel bed with a long flat section, then a linear slope down to a flat pool bottom, and then the same linear slope back up to the flat bed. The other flume had a PVC plastic solid bed with a long flat section followed by a sequence of five identical riffle-pool pairs in close proximity, so it tested model performance given frequent undulations. Detailed water surface elevation and velocity measurements were made for both flumes. Comparing predicted versus observed velocity magnitude for 3 discharges with the gravel-bed flume and 1 discharge for the PVC-bed flume, the coefficient of determination ranged from 0.952 to 0.987 and the slope for the regression line was 0.957 to 1.02. Unsigned velocity

  5. Instantons in 2D U(1) Higgs model and 2D CP(N-1) sigma models

    NASA Astrophysics Data System (ADS)

    Lian, Yaogang

    2007-12-01

    In this thesis I present the results of a study of the topological structures of 2D U(1) Higgs model and 2D CP N-1 sigma models. Both models have been studied using the overlap Dirac operator construction of topological charge density. The overlap operator provides a more incisive probe into the local topological structure of gauge field configurations than the traditional plaquette-based operator. In the 2D U(1) Higgs model, we show that classical instantons with finite sizes violate the negativity of topological charge correlator by giving a positive contribution to the correlator at non-zero separation. We argue that instantons in 2D U(1) Higgs model must be accompanied by large quantum fluctuations in order to solve this contradiction. In 2D CPN-1 sigma models, we observe the anomalous scaling behavior of the topological susceptibility chi t for N ≤ 3. The divergence of chi t in these models is traced to the presence of small instantons with a radius of order a (= lattice spacing), which are directly observed on the lattice. The observation of these small instantons provides detailed confirmation of Luscher's argument that such short-distance excitations, with quantized topological charge, should be the dominant topological fluctuations in CP1 and CP 2, leading to a divergent topological susceptibility in the continuum limit. For the CPN-1 models with N > 3 the topological susceptibility is observed to scale properly with the mass gap. Another topic presented in this thesis is an implementation of the Zolotarev optimal rational approximation for the overlap Dirac operator. This new implementation has reduced the time complexity of the overlap routine from O(N3 ) to O(N), where N is the total number of sites on the lattice. This opens up a door to more accurate lattice measurements in the future.

  6. Active Noise Control for Dishwasher noise

    NASA Astrophysics Data System (ADS)

    Lee, Nokhaeng; Park, Youngjin

    2016-09-01

    The dishwasher is a useful home appliance and continually used for automatically washing dishes. It's commonly placed in the kitchen with built-in style for practicality and better use of space. In this environment, people are easily exposed to dishwasher noise, so it is an important issue for the consumers, especially for the people living in open and narrow space. Recently, the sound power levels of the noise are about 40 - 50 dBA. It could be achieved by removal of noise sources and passive means of insulating acoustical path. For more reduction, such a quiet mode with the lower speed of cycle has been introduced, but this deteriorates the washing capacity. Under this background, we propose active noise control for dishwasher noise. It is observed that the noise is propagating mainly from the lower part of the front side. Control speakers are placed in the part for the collocation. Observation part of estimating sound field distribution and control part of generating the anti-noise are designed for active noise control. Simulation result shows proposed active noise control scheme could have a potential application for dishwasher noise reduction.

  7. Jet Measurements for Development of Jet Noise Prediction Tools

    NASA Technical Reports Server (NTRS)

    Bridges, James E.

    2006-01-01

    The primary focus of my presentation is the development of the jet noise prediction code JeNo with most examples coming from the experimental work that drove the theoretical development and validation. JeNo is a statistical jet noise prediction code, based upon the Lilley acoustic analogy. Our approach uses time-average 2-D or 3-D mean and turbulent statistics of the flow as input. The output is source distributions and spectral directivity.

  8. Noise in Sodium Beta Alumina Crystals.

    DTIC Science & Technology

    1985-09-01

    Washington, D.C. 20375 .I- 7. 7- NOISE INI SODIUM r ALUMINA SINGLE CRYSTALS James J. Brophy and Steven W. Smith University of Utah Salt Lake City, Utah 84112...RD-Ai56 025 NOISE IN SODiUN BETA ALUMINA CRYSTALS(U) UTAH UNIV SALT II LAKE CITY DEPT OF PHYSICS J J BROPHY ET AL. SEP 85 TR-7 N88814-82-K-e603...h.0- "bf’ ; -28242 ’ITLE (andSubsist&) S. TYPE OF REPORT & PERIOD COVERED L Noise in Sodium B" Alumina Crystals Technical Report #7 CJ S. PERFORMING

  9. Ultrasound 2D strain estimator based on image registration for ultrasound elastography

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Torres, Mylin; Kirkpatrick, Stephanie; Curran, Walter J.; Liu, Tian

    2014-03-01

    In this paper, we present a new approach to calculate 2D strain through the registration of the pre- and post-compression (deformation) B-mode image sequences based on an intensity-based non-rigid registration algorithm (INRA). Compared with the most commonly used cross-correlation (CC) method, our approach is not constrained to any particular set of directions, and can overcome displacement estimation errors introduced by incoherent motion and variations in the signal under high compression. This INRA method was tested using phantom and in vivo data. The robustness of our approach was demonstrated in the axial direction as well as the lateral direction where the standard CC method frequently fails. In addition, our approach copes well under large compression (over 6%). In the phantom study, we computed the strain image under various compressions and calculated the signal-to-noise (SNR) and contrast-to-noise (CNS) ratios. The SNR and CNS values of the INRA method were much higher than those calculated from the CC-based method. Furthermore, the clinical feasibility of our approach was demonstrated with the in vivo data from patients with arm lymphedema.

  10. Optimizing sparse sampling for 2D electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Roeding, Sebastian; Klimovich, Nikita; Brixner, Tobias

    2017-02-01

    We present a new data acquisition concept using optimized non-uniform sampling and compressed sensing reconstruction in order to substantially decrease the acquisition times in action-based multidimensional electronic spectroscopy. For this we acquire a regularly sampled reference data set at a fixed population time and use a genetic algorithm to optimize a reduced non-uniform sampling pattern. We then apply the optimal sampling for data acquisition at all other population times. Furthermore, we show how to transform two-dimensional (2D) spectra into a joint 4D time-frequency von Neumann representation. This leads to increased sparsity compared to the Fourier domain and to improved reconstruction. We demonstrate this approach by recovering transient dynamics in the 2D spectrum of a cresyl violet sample using just 25% of the originally sampled data points.

  11. D2-D1 phase transition of columnar liquid crystals

    NASA Astrophysics Data System (ADS)

    Sun, Y. F.; Swift, J.

    1986-04-01

    The D2-D1 phase transition in columnar liquid crystals of the HAT series [e.g., HAT11 (triphenelene hexa-n-dodecanoate)] is discussed within the framework of Landau theory. The order parameters which describe the transition are abstracted from a tensor density function, and are associated with two irreducible representations of the symmetry group of the high-temperature D2 phase. A mechanism for a first-order transition is then suggested in accordance with both theoretical considerations and the experimental result for the D2-D1 transition. Two possible arrangements of the herringbone structure of the D1 phase are obtained, each of which gives six orientational states in the low-temperature D1 phase.

  12. Extreme Growth of Enstrophy on 2D Bounded Domains

    NASA Astrophysics Data System (ADS)

    Protas, Bartosz; Sliwiak, Adam

    2016-11-01

    We study the vortex states responsible for the largest instantaneous growth of enstrophy possible in viscous incompressible flow on 2D bounded domain. The goal is to compare these results with estimates obtained using mathematical analysis. This problem is closely related to analogous questions recently considered in the periodic setting on 1D, 2D and 3D domains. In addition to systematically characterizing the most extreme behavior, these problems are also closely related to the open question of the finite-time singularity formation in the 3D Navier-Stokes system. We demonstrate how such extreme vortex states can be found as solutions of constrained variational optimization problems which in the limit of small enstrophy reduce to eigenvalue problems. Computational results will be presented for circular and square domains emphasizing the effect of geometric singularities (corners of the domain) on the structure of the extreme vortex states. Supported by an NSERC (Canada) Discovery Grant.

  13. Strength design with 2-d triaxial braid textile composites

    SciTech Connect

    Smith, L.V.; Swanson, S.R.

    1994-12-31

    Textile preforms are currently being considered as a possible means for reducing the cost of advanced fiber composites. This paper presents a methodology for strength design of carbon/epoxy 2-d braid fiber composites under general conditions of biaxial stress loading. A comprehensive investigation into the in-plane strength properties of 2-d braids has been carried out, using tubular specimens of AS4/1895 carbon fiber/epoxy made with the RTM process. The biaxial loadings involved both compression-compression and tension-tension biaxial tests. The results showed that failure under biaxial loading could be based on procedures similar to those developed for laminates, using critical strain values in the axial and braid direction fibers, but with degraded strength properties because of the undulating nature of -the fiber paths. A significant loss of strength was observed in the braid directions.

  14. Band-structure engineering in conjugated 2D polymers.

    PubMed

    Gutzler, Rico

    2016-10-26

    Conjugated polymers find widespread application in (opto)electronic devices, sensing, and as catalysts. Their common one-dimensional structure can be extended into the second dimension to create conjugated planar sheets of covalently linked molecules. Extending π-conjugation into the second dimension unlocks a new class of semiconductive polymers which as a consequence of their unique electronic properties can find usability in numerous applications. In this article the theoretical band structures of a set of conjugated 2D polymers are compared and information on the important characteristics band gap and valence/conduction band dispersion is extracted. The great variance in these characteristics within the investigated set suggests 2D polymers as exciting materials in which band-structure engineering can be used to tailor sheet-like organic materials with desired electronic properties.

  15. Enhanced automated platform for 2D characterization of RFID communications

    NASA Astrophysics Data System (ADS)

    Vuza, Dan Tudor; Vlǎdescu, Marian

    2016-12-01

    The characterization of the quality of communication between an RFID reader and a transponder at all expected positions of the latter on the reader antenna is of primal importance for the evaluation of performance of an RFID system. Continuing the line of instruments developed for this purpose by the authors, the present work proposes an enhanced version of a previously introduced automated platform for 2D evaluation. By featuring higher performance in terms of mechanical speed, the new version allows to obtain 2D maps of communication with a higher resolution that would have been prohibitive in terms of test duration with the previous version. The list of measurement procedures that can be executed with the platform is now enlarged with additional ones, such as the determination of the variation of the magnetic coupling between transponder and antenna across the antenna surface and the utilization of transponder simulators for evaluation of the quality of communication.

  16. Transition to chaos in an open unforced 2D flow

    NASA Technical Reports Server (NTRS)

    Pulliam, Thomas H.; Vastano, John A.

    1993-01-01

    The present numerical study of unsteady, low Reynolds number flow past a 2D airfoil attempts to ascertain the bifurcation sequence leading from simple periodic to complex aperiodic flow with rising Reynolds number, as well as to characterize the degree of chaos present in the aperiodic flow and assess the role of numerics in the modification and control of the observed bifurcation scenario. The ARC2D Navier-Stokes code is used in an unsteady time-accurate mode for most of these computations. The system undergoes a period-doubling bifurcation to chaos as the Reynolds number is increased from 800 to 1600; its chaotic attractors are characterized by estimates of the fractal dimension and partial Liapunov exponent spectra.

  17. Hard and Soft Physics with 2D Materials

    NASA Astrophysics Data System (ADS)

    McEuen, Paul

    With their remarkable structural, thermal, mechanical, optical, chemical, and electronic properties, 2D materials are truly special. For example, a graphene sheet can be made into a high-performance transistor, but it is also the ultimate realization of a thin mechanical sheet. Such sheets, first studied in detail by August Föppl over a hundred years ago, are notoriously complex, since they can bend, buckle, and crumple in a variety of ways. In this talk, I will discuss a number of experiments to probe these unusual materials, from the effects of ripples on the mechanical properties of a graphene sheet, to folding with atomically thin bimorphs, to the electronic properties of bilayer graphene solitons. Finally, I discuss how the Japanese paper art of kirigami (kiru = `to cut', kami = `paper') applied to 2D materials offers a route to mechanical metamaterials and the construction of nanoscale machines.

  18. 2-D Magnetohydrodynamic Modeling of A Pulsed Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Cassibry, J. T.; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) MK-1 pulsed plasma thruster. Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.

  19. FPCAS2D user's guide, version 1.0

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.

    1994-01-01

    The FPCAS2D computer code has been developed for aeroelastic stability analysis of bladed disks such as those in fans, compressors, turbines, propellers, or propfans. The aerodynamic analysis used in this code is based on the unsteady two-dimensional full potential equation which is solved for a cascade of blades. The structural analysis is based on a two degree-of-freedom rigid typical section model for each blade. Detailed explanations of the aerodynamic analysis, the numerical algorithms, and the aeroelastic analysis are not given in this report. This guide can be used to assist in the preparation of the input data required by the FPCAS2D code. A complete description of the input data is provided in this report. In addition, four test cases, including inputs and outputs, are provided.

  20. Structural Complexity and Phonon Physics in 2D Arsenenes.

    PubMed

    Carrete, Jesús; Gallego, Luis J; Mingo, Natalio

    2017-03-15

    In the quest for stable 2D arsenic phases, four different structures have been recently claimed to be stable. We show that, due to phonon contributions, the relative stability of those structures differs from previous reports and depends crucially on temperature. We also show that one of those four phases is in fact mechanically unstable. Furthermore, our results challenge the common assumption of an inverse correlation between structural complexity and thermal conductivity. Instead, a richer picture emerges from our results, showing how harmonic interactions, anharmonicity, and symmetries all play a role in modulating thermal conduction in arsenenes. More generally, our conclusions highlight how vibrational properties are an essential element to be carefully taken into account in theoretical searches for new 2D materials.

  1. Micro-structural Fluctuations in 2D Dusty Plasma Liquids

    SciTech Connect

    I Lin; Huang, Y.-H.; Teng, L.-W.

    2007-07-13

    We address structural fluctuations in a cold 2D dusty plasma liquid which is self-organized through the strong Coulomb coupling of the negatively charged micro-meter sized dust particles suspending in weakly ionized discharges. The 2D liquids consist of triangular type ordered domains surrounded by defect clusters, which can be reorganized through avalanche type hopping under the interplay of strong Coulomb coupling and thermal fluctuations. The spatio-temporal evolutions of the local bond-orientational order are directly tracked through digital optical microscopy. The power law scaling of the temporal persistence length of fluctuations is obtained for the cold liquid. The measurement of the conditional probability of the persistence lengths of the successive fluctuating cycles suggests certain types of the persistence length combinations are more preferred. The memory of persistence lasts a few fluctuating cycles.

  2. 2D FEM Heat Transfer & E&M Field Code

    SciTech Connect

    1992-04-02

    TOPAZ and TOPAZ2D are two-dimensional implicit finite element computer codes for heat transfer analysis. TOPAZ2D can also be used to solve electrostatic and magnetostatic problems. The programs solve for the steady-state or transient temperature or electrostatic and magnetostatic potential field on two-dimensional planar or axisymmetric geometries. Material properties may be temperature or potential-dependent and either isotropic or orthotropic. A variety of time and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. The programs can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.

  3. A Novel 2-D Coherent DOA Estimation Method Based on Dimension Reduction Sparse Reconstruction for Orthogonal Arrays

    PubMed Central

    Wang, Xiuhong; Mao, Xingpeng; Wang, Yiming; Zhang, Naitong; Li, Bo

    2016-01-01

    Based on sparse representations, the problem of two-dimensional (2-D) direction of arrival (DOA) estimation is addressed in this paper. A novel sparse 2-D DOA estimation method, called Dimension Reduction Sparse Reconstruction (DRSR), is proposed with pairing by Spatial Spectrum Reconstruction of Sub-Dictionary (SSRSD). By utilizing the angle decoupling method, which transforms a 2-D estimation into two independent one-dimensional (1-D) estimations, the high computational complexity induced by a large 2-D redundant dictionary is greatly reduced. Furthermore, a new angle matching scheme, SSRSD, which is less sensitive to the sparse reconstruction error with higher pair-matching probability, is introduced. The proposed method can be applied to any type of orthogonal array without requirement of a large number of snapshots and a priori knowledge of the number of signals. The theoretical analyses and simulation results show that the DRSR-SSRSD method performs well for coherent signals, which performance approaches Cramer–Rao bound (CRB), even under a single snapshot and low signal-to-noise ratio (SNR) condition. PMID:27649191

  4. Is 2-D turbulence relevant in the atmosphere?

    NASA Astrophysics Data System (ADS)

    Lovejoy, Shaun; Schertzer, Daniel

    2010-05-01

    Starting with (Taylor, 1935), the paradigm of isotropic (and scaling!) turbulence was developed initially for laboratory applications, but following (Kolmogorov, 1941), three dimensional isotropic turbulence was progressively applied to the atmosphere. Since the atmosphere is strongly stratified, a single wide scale range model which is both isotropic and scaling is not possible so that theorists had to immediately choose between the two symmetries: isotropy or scale invariance. Following the development of models of two dimensional isotropic turbulence ((Fjortoft, 1953), but especially (Kraichnan, 1967) and (Charney, 1971)), the mainstream choice was to first make the convenient assumption of isotropy and to drop wide range scale invariance. Starting at the end of the 1970's this "isotropy primary" (IP) paradigm has lead to a series of increasingly complex isotropic 2D/isotropic 3D models of atmospheric dynamics which continue to dominate the theoretical landscape. Justifications for IP approaches have focused almost exclusively on the horizontal statistics of the horizontal wind in both numerical models and analyses and from aircraft campaigns, especially the highly cited GASP (Nastrom and Gage, 1983), (Gage and Nastrom, 1986; Nastrom and Gage, 1985) and MOZAIC (Cho and Lindborg, 2001) experiments. Since understanding the anisotropy clearly requires comparisons between horizontal and vertical statistics/structures this focus has been unfortunate. Over the same thirty year period that 2D/3D isotropic models were being elaborated, evidence slowly accumulated in favour of the opposite theoretical choice: to drop the isotropy assumption but to retain wide range scaling. The models in the alternative paradigm are scaling but strongly anisotropic with vertical sections of structures becoming increasingly stratified at larger and larger scales albeit in a power law manner; we collectively refer to these as "SP" for "scaling primary" approaches. Early authors explicitly

  5. Absolute state-selected total cross sections for the ion-molecule reactions O + (4S,2D,2P)+H2(D2)

    NASA Astrophysics Data System (ADS)

    Li, X.; Huang, Y.-L.; Flesch, G. D.; Ng, C. Y.

    1997-01-01

    Absolute total cross sections for the state-selected reactions of O+(4S,2D,2P)+H2 (D2) have been measured in the center-of-mass collision energy (Ec.m.) range of 0.02-12 eV. The cross sections for OH+ (OD+) from O+(2D)+H2 (D2) are slightly higher than those from O+(4S)+H2 (D2), whereas the OH+ (OD+) cross sections from O+ (2P)+H2 (D2) are ≈40% lower than those from O+(4S)+H2 (D2) and O+ (2D)+H2 (D2). At Ec.m.<0.5 eV, the total cross sections for OH+ (OD+) from O+ (4S)+H2 (D2) and O+(2D)+H2 (D2) are in accord with those predicted by the Langevin-Gioumousis-Stevenson model. Significantly higher cross sections are observed for H+ (D+) and H2+ (D2+) from O+(2D)+H2 (D2) and O+(2P)+H2 (D2), as compared to those from O+(4S)+H2 (D2). The exothermic nature of the O+(2D,2P)+H2 (D2) charge transfer collisions accounts for the high cross sections observed for H2+ (D2+). While the H+ (D+) ions observed in the O+(4S)+H2 (D2) reaction are identified with the H+ (D+)+O+H channel, the H+ (D+) ions from the reactions involving O+(2D) and O+(2P) are associated mostly with the H+ (D+)+OH (OD) channel, the formation of which obeys the spin-conservation rule. The comparison of the sum (σT) of cross sections for OH+ (OD+), H2+ (D2+), and H+ (D+) from O+(4S)+H2 (D2) to those from O+(2D)+H2 (D2) and O+(2P)+H2 (D2) shows that the σTs for O+(4S)+H2 (D2), O+(2D)+H2 (D2), and O+(2P)+H2 (D2) at Ec.m.<0.5 eV are comparable. At Ec.m.>0.5 eV, the σTs for O+(2P)+H2 (D2) are greater than those for O+(2D)+H2 (D2), which in turn are greater than those for O+(4S)+H2 (D2). This observation is attributed to the increase in the number of accessible product channels for reactions involving the excited O+(2D) and O+(2P) reactant ions.

  6. Local Topological Order Inhibits Thermal Stability in 2D

    NASA Astrophysics Data System (ADS)

    Landon-Cardinal, Olivier; Poulin, David

    2013-03-01

    We study the robustness of quantum information stored in the degenerate ground space of a local, frustration-free Hamiltonian with commuting terms on a 2D spin lattice. On one hand, a macroscopic energy barrier separating the distinct ground states under local transformations would protect the information from thermal fluctuations. On the other hand, local topological order would shield the ground space from static perturbations. Here we demonstrate that local topological order implies a constant energy barrier, thus inhibiting thermal stability.

  7. Synchronization of semiconductor laser arrays with 2D Bragg structures

    NASA Astrophysics Data System (ADS)

    Baryshev, V. R.; Ginzburg, N. S.

    2016-08-01

    A model of a planar semiconductor multi-channel laser is developed. In this model two-dimensional (2D) Bragg mirror structures are used for synchronizing radiation of multiple laser channels. Coupling of longitudinal and transverse waves can be mentioned as the distinguishing feature of these structures. Synchronization of 20 laser channels is demonstrated with a semi-classical approach based on Maxwell-Bloch equations.

  8. Statistical analysis of quiet stance sway in 2-D.

    PubMed

    Bakshi, Avijit; DiZio, Paul; Lackner, James R

    2014-04-01

    Subjects exposed to a rotating environment that perturbs their postural sway show adaptive changes in their voluntary spatially directed postural motion to restore accurate movement paths but do not exhibit any obvious learning during passive stance. We have found, however, that a variable known to characterize the degree of stochasticity in quiet stance can also reveal subtle learning phenomena in passive stance. We extended Chow and Collins (Phys Rev E 52(1):909-912, 1995) one-dimensional pinned-polymer model (PPM) to two dimensions (2-D) and then evaluated the model's ability to make analytical predictions for 2-D quiet stance. To test the model, we tracked center of mass and centers of foot pressures, and compared and contrasted stance sway for the anterior-posterior versus medio-lateral directions before, during, and after exposure to rotation at 10 rpm. Sway of the body during rotation generated Coriolis forces that acted perpendicular to the direction of sway. We found significant adaptive changes for three characteristic features of the mean square displacement (MSD) function: the exponent of the power law defined at short time scales, the proportionality constant of the power law, and the saturation plateau value defined at longer time scales. The exponent of the power law of MSD at a short time scale lies within the bounds predicted by the 2-D PPM. The change in MSD during exposure to rotation also had a power-law exponent in the range predicted by the theoretical model. We discuss the Coriolis force paradigm for studying postural and movement control and the applicability of the PPM model in 2-D for studying postural adaptation.

  9. Flow transitions in a 2D directional solidification model

    NASA Technical Reports Server (NTRS)

    Larroude, Philippe; Ouazzani, Jalil; Alexander, J. Iwan D.

    1992-01-01

    Flow transitions in a Two Dimensional (2D) model of crystal growth were examined using the Bridgman-Stockbarger me thod. Using a pseudo-spectral Chebyshev collocation method, the governing equations yield solutions which exhibit a symmetry breaking flow tansition and oscillatory behavior indicative of a Hopf bifurcation at higher values of Ra. The results are discussed from fluid dynamic viewpoint, and broader implications for process models are also addressed.

  10. Vertical heterostructures based on graphene and other 2D materials

    SciTech Connect

    Antonova, I. V.

    2016-01-15

    Recent advances in the fabrication of vertical heterostructures based on graphene and other dielectric and semiconductor single-layer materials, including hexagonal boron nitride and transition-metal dichalcogenides, are reviewed. Significant progress in this field is discussed together with the great prospects for the development of vertical heterostructures for various applications, which are associated, first of all, with reconsideration of the physical principles of the design and operation of device structures based on graphene combined with other 2D materials.

  11. Report of the 1988 2-D Intercomparison Workshop, chapter 3

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; Brasseur, Guy; Soloman, Susan; Guthrie, Paul D.; Garcia, Rolando; Yung, Yuk L.; Gray, Lesley J.; Tung, K. K.; Ko, Malcolm K. W.; Isaken, Ivar

    1989-01-01

    Several factors contribute to the errors encountered. With the exception of the line-by-line model, all of the models employ simplifying assumptions that place fundamental limits on their accuracy and range of validity. For example, all 2-D modeling groups use the diffusivity factor approximation. This approximation produces little error in tropospheric H2O and CO2 cooling rates, but can produce significant errors in CO2 and O3 cooling rates at the stratopause. All models suffer from fundamental uncertainties in shapes and strengths of spectral lines. Thermal flux algorithms being used in 2-D tracer tranport models produce cooling rates that differ by as much as 40 percent for the same input model atmosphere. Disagreements of this magnitude are important since the thermal cooling rates must be subtracted from the almost-equal solar heating rates to derive the net radiative heating rates and the 2-D model diabatic circulation. For much of the annual cycle, the net radiative heating rates are comparable in magnitude to the cooling rate differences described. Many of the models underestimate the cooling rates in the middle and lower stratosphere. The consequences of these errors for the net heating rates and the diabatic circulation will depend on their meridional structure, which was not tested here. Other models underestimate the cooling near 1 mbar. Suchs errors pose potential problems for future interactive ozone assessment studies, since they could produce artificially-high temperatures and increased O3 destruction at these levels. These concerns suggest that a great deal of work is needed to improve the performance of thermal cooling rate algorithms used in the 2-D tracer transport models.

  12. 2D Hybrid Nanostructured Dirac Materials for Broadband Transparent Electrodes.

    PubMed

    Guo, Yunfan; Lin, Li; Zhao, Shuli; Deng, Bing; Chen, Hongliang; Ma, Bangjun; Wu, Jinxiong; Yin, Jianbo; Liu, Zhongfan; Peng, Hailin

    2015-08-05

    Broadband transparent electrodes based on 2D hybrid nanostructured Dirac materials between Bi2 Se3 and graphene are synthesized using a chemical vapor deposition (CVD) method. Bi2 Se3 nanoplates are preferentially grown along graphene grain boundaries as "smart" conductive patches to bridge the graphene boundary. These hybrid films increase by one- to threefold in conductivity while remaining highly transparent over broadband wavelength. They also display outstanding chemical stability and mechanical flexibility.

  13. Parallel-pipeline 2-D DCT/IDCT processor chip

    NASA Astrophysics Data System (ADS)

    Ruiz, G. A.; Michell, J. A.; Buron, A.

    2005-06-01

    This paper describes the architecture of an 8x8 2-D DCT/IDCT processor with high throughput and a cost-effective architecture. The 2D DCT/IDCT is calculated using the separability property, so that its architecture is made up of two 1-D processors and a transpose buffer (TB) as intermediate memory. This transpose buffer presents a regular structure based on D-type flip-flops with a double serial input/output data-flow very adequate for pipeline architectures. The processor has been designed with parallel and pipeline architecture to attain high throughput, reduced hardware and maximum efficiency in all arithmetic elements. This architecture allows that the processing elements and arithmetic units work in parallel at half the frequency of the data input rate, except for normalization of transform which it is done in a multiplier operating at maximum frequency. Moreover, it has been verified that the precision analysis of the proposed processor meets the demands of IEEE Std. 1180-1990 used in video codecs ITU-T H.261 and ITU-T H.263. This processor has been conceived using a standard cell design methodology and manufactured in a 0.35-μm CMOS CSD 3M/2P 3.3V process. It has an area of 6.25 mm2 (the core is 3mm2) and contains a total of 11.7k gates, of which 5.8k gates are flip-flops. A data input rate frequency of 300MHz has been established with a latency of 172 cycles for the 2-D DCT and 178 cycles for the 2-D IDCT. The computing time of a block is close to 580ns. Its performances in computing speed as well as hardware complexity indicate that the proposed design is suitable for HDTV applications.

  14. FASTWO - A 2-D interactive algebraic grid generator

    NASA Technical Reports Server (NTRS)

    Luh, Raymond Ching-Chung; Lombard, C. K.

    1988-01-01

    This paper presents a very simple and effective computational procedure, FASTWO, for generating patched composite finite difference grids in 2-D for any geometry. Major components of the interactive graphics based method that is closely akin to and borrows many tools from transfinite interpolation are highlighted. Several grids produced by FASTWO are shown to illustrate its powerful capability. Comments about extending the methodology to 3-D are also given.

  15. Energy level transitions of gas in a 2D nanopore

    SciTech Connect

    Grinyaev, Yurii V.; Chertova, Nadezhda V.; Psakhie, Sergei G.

    2015-10-27

    An analytical study of gas behavior in a 2D nanopore was performed. It is shown that the temperature dependence of gas energy can be stepwise due to transitions from one size-quantized subband to another. Taking into account quantum size effects results in energy level transitions governed by the nanopore size, temperature and gas density. This effect leads to an abrupt change of gas heat capacity in the nanopore at the above varying system parameters.

  16. 2D Lattices of Ferromagnetic Nanoparticles as Supermagnetics

    DTIC Science & Technology

    1999-06-18

    Supermagnetics DISTRIBUTION: Approved for public release, distribution unlimited Availability: Hard copy only. This paper is part of the following report: TITLE...Technology" OAN.01 i St Petersburg, Russia, June 14-18, 1999 © 1999 loffe Institute 2D lattices of ferromagnetic nanoparticles as supermagnetics A. A...temperature the system became ordered due to the dipole interaction of particles. Such a state of the system was defined as supermagnetic [ ]. The critical

  17. 2D and 3D Traveling Salesman Problem

    ERIC Educational Resources Information Center

    Haxhimusa, Yll; Carpenter, Edward; Catrambone, Joseph; Foldes, David; Stefanov, Emil; Arns, Laura; Pizlo, Zygmunt

    2011-01-01

    When a two-dimensional (2D) traveling salesman problem (TSP) is presented on a computer screen, human subjects can produce near-optimal tours in linear time. In this study we tested human performance on a real and virtual floor, as well as in a three-dimensional (3D) virtual space. Human performance on the real floor is as good as that on a…

  18. Numerical 2D-modeling of multiroll leveling

    NASA Astrophysics Data System (ADS)

    Mathieu, N.; Potier-Ferry, M.; Zahrouni, H.

    2016-10-01

    Multiroll leveling is a forming process used in the metals industries (aluminum, steel, …) in order to correct flatness defects and minimize residual stresses in strips thanks to alternating bending. This work proposes a Finite Element 2D model to simulate the metal sheet conveying through the machine. Obtained results (plastic strain and residual stress distributions through thickness) are analysed. Strip deformation, after elastic springback and potential buckling, is also predicted (residual curvatures).

  19. 2-D Signal Generation Using State-Space Formulation.

    DTIC Science & Technology

    1985-12-01

    published that have established nonoptical .~ -~ Iimage processing as a viable area of research. A large portion of this research emphasizes the linear...research and the study of time-discrete linear systems. This thesis develops the discrete model of Roesser [Ref. 5] for linear image processing which... THESIS 2-D SIGNAL GENERATION USING STATE-SPACE FORMULATION - • by (.) Evangelos Theofilou December 1985 • Thesis Advisor: Sydney R. Parker Approved

  20. Geometric properties of quasiperiodic orbits of 2D Hamiltonian systems

    NASA Astrophysics Data System (ADS)

    Adrover, A.; Giona, M.

    1999-08-01

    By enforcing the isomorphism between the group SL(2, R ) and linear fractional transforms, this letter shows that, for quasi-periodic orbits of 2D area-preserving maps possessing regions of chaotic behavior, the vector tangent to the quasiperiodic orbit can be obtained from the dynamics of the associated linear fractional transforms (obtained from the differential of the map), which is Cesaro convergent. Several implications of this geometric result are addressed.

  1. [3D display of sequential 2D medical images].

    PubMed

    Lu, Yisong; Chen, Yazhu

    2003-12-01

    A detailed review is given in this paper on various current 3D display methods for sequential 2D medical images and the new development in 3D medical image display. True 3D display, surface rendering, volume rendering, 3D texture mapping and distributed collaborative rendering are discussed in depth. For two kinds of medical applications: Real-time navigation system and high-fidelity diagnosis in computer aided surgery, different 3D display methods are presented.

  2. NASA High-Speed 2D Photogrammetric Measurement System

    NASA Technical Reports Server (NTRS)

    Dismond, Harriett R.

    2012-01-01

    The object of this report is to provide users of the NASA high-speed 2D photogrammetric measurement system with procedures required to obtain drop-model trajectory and impact data for full-scale and sub-scale models. This guide focuses on use of the system for vertical drop testing at the NASA Langley Landing and Impact Research (LandIR) Facility.

  3. A Herpesviral induction of RAE-1 NKG2D ligand expression occurs through release of HDAC mediated repression

    PubMed Central

    Greene, Trever T; Tokuyama, Maria; Knudsen, Giselle M; Kunz, Michele; Lin, James; Greninger, Alexander L; DeFilippis, Victor R; DeRisi, Joseph L; Raulet, David H; Coscoy, Laurent

    2016-01-01

    Natural Killer (NK) cells are essential for control of viral infection and cancer. NK cells express NKG2D, an activating receptor that directly recognizes NKG2D ligands. These are expressed at low level on healthy cells, but are induced by stresses like infection and transformation. The physiological events that drive NKG2D ligand expression during infection are still poorly understood. We observed that the mouse cytomegalovirus encoded protein m18 is necessary and sufficient to drive expression of the RAE-1 family of NKG2D ligands. We demonstrate that RAE-1 is transcriptionally repressed by histone deacetylase inhibitor 3 (HDAC3) in healthy cells, and m18 relieves this repression by directly interacting with Casein Kinase II and preventing it from activating HDAC3. Accordingly, we found that HDAC inhibiting proteins from human herpesviruses induce human NKG2D ligand ULBP-1. Thus our findings indicate that virally mediated HDAC inhibition can act as a signal for the host to activate NK-cell recognition. DOI: http://dx.doi.org/10.7554/eLife.14749.001 PMID:27874833

  4. A Herpesviral induction of RAE-1 NKG2D ligand expression occurs through release of HDAC mediated repression.

    PubMed

    Greene, Trever T; Tokuyama, Maria; Knudsen, Giselle M; Kunz, Michele; Lin, James; Greninger, Alexander L; DeFilippis, Victor R; DeRisi, Joseph L; Raulet, David H; Coscoy, Laurent

    2016-11-22

    Natural Killer (NK) cells are essential for control of viral infection and cancer. NK cells express NKG2D, an activating receptor that directly recognizes NKG2D ligands. These are expressed at low level on healthy cells, but are induced by stresses like infection and transformation. The physiological events that drive NKG2D ligand expression during infection are still poorly understood. We observed that the mouse cytomegalovirus encoded protein m18 is necessary and sufficient to drive expression of the RAE-1 family of NKG2D ligands. We demonstrate that RAE-1 is transcriptionally repressed by histone deacetylase inhibitor 3 (HDAC3) in healthy cells, and m18 relieves this repression by directly interacting with Casein Kinase II and preventing it from activating HDAC3. Accordingly, we found that HDAC inhibiting proteins from human herpesviruses induce human NKG2D ligand ULBP-1. Thus our findings indicate that virally mediated HDAC inhibition can act as a signal for the host to activate NK-cell recognition.

  5. Regulation of podocalyxin trafficking by Rab small GTPases in 2D and 3D epithelial cell cultures

    PubMed Central

    Mrozowska, Paulina S.

    2016-01-01

    MDCK II cells, a widely used model of polarized epithelia, develop into different structures depending on culture conditions: two-dimensional (2D) monolayers when grown on synthetic supports or three-dimensional (3D) cysts when surrounded by an extracellular matrix. The establishment of epithelial polarity is accompanied by transcytosis of the apical marker podocalyxin from the outer plasma membrane to the newly formed apical domain, but its exact route and regulation remain poorly understood. Here, through comprehensive colocalization and knockdown screenings, we identified the Rab GTPases mediating podocalyxin transcytosis and showed that different sets of Rabs coordinate its transport during cell polarization in 2D and 3D structures. Moreover, we demonstrated that different Rab35 effectors regulate podocalyxin trafficking in 2D and 3D environments; trafficking is mediated by OCRL in 2D monolayers and ACAP2 in 3D cysts. Our results give substantial insight into regulation of the transcytosis of this apical marker and highlight differences between trafficking mechanisms in 2D and 3D cell cultures. PMID:27138252

  6. 2D:4D Ratio and its Implications in Medicine

    PubMed Central

    Jeevanandam, Saravanakumar

    2016-01-01

    Digit ratios, especially 2D:4D ratio, a potential proxy marker for prenatal androgen exposure shows sexual dimorphism. Existing literature and recent research show accumulating evidence on 2D:4D ratio showing correlations with various phenotypic traits in humans. Ratio of 2D:4D is found to correlate negatively to testosterone and positively to oestrogen in the foetus. Interestingly, it is constant since birth and not influenced by the adult hormone levels. Usually, males have lower ratios when compared to females. Prenatal androgen exposure and therefore, digit ratios have been reported to be associated with numerical competencies, spatial skills, handedness, cognitive abilities, academic performance, sperm counts, personalities and prevalence of obesity, migraine, eating disorders, depression, myopia, autism etc. The authors have attempted to write a brief account on the digit ratios and the dimorphism observed in various physiological, psychological and behavioural traits. Also, the authors have discussed the relevant molecular basics and the methods of measurement of digit ratios. PMID:28208851

  7. 2D optical beam splitter using diffractive optical elements (DOE)

    NASA Astrophysics Data System (ADS)

    Wen, Fung J.; Chung, Po S.

    2006-09-01

    A novel approach for optical beam distribution into a 2-dimensional (2-D) packaged fiber arrays using 2-D Dammann gratings is investigated. This paper focuses on the design and fabrication of the diffractive optical element (DOE) and investigates the coupling efficiencies of the beamlets into a packaged V-grooved 2x2 fibre array. We report for the first time experimental results of a 2-D optical signal distribution into a packaged 2x2 fibre array using Dammann grating. This grating may be applicable to the FTTH network as it can support sufficient channels with good output uniformity together with low polarization dependent loss (PDL) and acceptable insertion loss. Using an appropriate optimization algorithm (the steepest descent algorithm in this case), the optimum profile for the gratings can be calculated. The gratings are then fabricated on ITO glass using electron-beam lithography. The overall performance of the design shows an output uniformity of around 0.14 dB and an insertion loss of about 12.63 dB, including the DOE, focusing lens and the packaged fiber array.

  8. Shear viscosity measurements in a 2D Yukawa liquid

    NASA Astrophysics Data System (ADS)

    Nosenko, Volodymyr

    2005-03-01

    Shear viscosity was measured for a 2D strongly-coupled Yukawa liquid. First, we formed a dilute monolayer suspension of microspheres in a partially-ionized rarefied gas, i.e., a dusty plasma. In the absence of manipulation, the suspension forms a 2D triangular lattice. We used a new in-situ method of applying a shear stress using the scattering forces applied by counter-propagating laser beams. The lattice melted and a shear flow formed. Using digital video microscopy for direct imaging and particle tracking, the microscopic dynamics of the shear flow are observed. Averaging the velocities of individual microspheres, a velocity flow profile was calculated. Using the Navier-Stokes equation with an additional frictional term to account for gas drag, we fit the velocity profile. The fit yielded the value of the shear viscosity. The kinematic viscosity of our particle suspension is of order 1 mm^2s-1, which is comparable to that for liquid water. We believe this is the first report of a rheological measurement in a 2D dusty plasma. This talk is based on V. Nosenko and J. Goree, PRL 93, 155004 (2004).

  9. Hybrid 3D-2D printing for bone scaffolds fabrication

    NASA Astrophysics Data System (ADS)

    Seleznev, V. A.; Prinz, V. Ya

    2017-02-01

    It is a well-known fact that bone scaffold topography on micro- and nanometer scale influences the cellular behavior. Nano-scale surface modification of scaffolds allows the modulation of biological activity for enhanced cell differentiation. To date, there has been only a limited success in printing scaffolds with micro- and nano-scale features exposed on the surface. To improve on the currently available imperfect technologies, in our paper we introduce new hybrid technologies based on a combination of 2D (nano imprint) and 3D printing methods. The first method is based on using light projection 3D printing and simultaneous 2D nanostructuring of each of the layers during the formation of the 3D structure. The second method is based on the sequential integration of preliminarily created 2D nanostructured films into a 3D printed structure. The capabilities of the developed hybrid technologies are demonstrated with the example of forming 3D bone scaffolds. The proposed technologies can be used to fabricate complex 3D micro- and nanostructured products for various fields.

  10. Building 3D scenes from 2D image sequences

    NASA Astrophysics Data System (ADS)

    Cristea, Paul D.

    2006-05-01

    Sequences of 2D images, taken by a single moving video receptor, can be fused to generate a 3D representation. This dynamic stereopsis exists in birds and reptiles, whereas the static binocular stereopsis is common in mammals, including humans. Most multimedia computer vision systems for stereo image capture, transmission, processing, storage and retrieval are based on the concept of binocularity. As a consequence, their main goal is to acquire, conserve and enhance pairs of 2D images able to generate a 3D visual perception in a human observer. Stereo vision in birds is based on the fusion of images captured by each eye, with previously acquired and memorized images from the same eye. The process goes on simultaneously and conjointly for both eyes and generates an almost complete all-around visual field. As a consequence, the baseline distance is no longer fixed, as in the case of binocular 3D view, but adjustable in accordance with the distance to the object of main interest, allowing a controllable depth effect. Moreover, the synthesized 3D scene can have a better resolution than each individual 2D image in the sequence. Compression of 3D scenes can be achieved, and stereo transmissions with lower bandwidth requirements can be developed.

  11. A novel point cloud registration using 2D image features

    NASA Astrophysics Data System (ADS)

    Lin, Chien-Chou; Tai, Yen-Chou; Lee, Jhong-Jin; Chen, Yong-Sheng

    2017-01-01

    Since a 3D scanner only captures a scene of a 3D object at a time, a 3D registration for multi-scene is the key issue of 3D modeling. This paper presents a novel and an efficient 3D registration method based on 2D local feature matching. The proposed method transforms the point clouds into 2D bearing angle images and then uses the 2D feature based matching method, SURF, to find matching pixel pairs between two images. The corresponding points of 3D point clouds can be obtained by those pixel pairs. Since the corresponding pairs are sorted by their distance between matching features, only the top half of the corresponding pairs are used to find the optimal rotation matrix by the least squares approximation. In this paper, the optimal rotation matrix is derived by orthogonal Procrustes method (SVD-based approach). Therefore, the 3D model of an object can be reconstructed by aligning those point clouds with the optimal transformation matrix. Experimental results show that the accuracy of the proposed method is close to the ICP, but the computation cost is reduced significantly. The performance is six times faster than the generalized-ICP algorithm. Furthermore, while the ICP requires high alignment similarity of two scenes, the proposed method is robust to a larger difference of viewing angle.

  12. Resolving 2D Amorphous Materials with Scanning Probe Microscopy

    NASA Astrophysics Data System (ADS)

    Burson, Kristen M.; Buechner, Christin; Lewandowski, Adrian; Heyde, Markus; Freund, Hans-Joachim

    Novel two-dimensional (2D) materials have garnered significant scientific interest due to their potential technological applications. Alongside the emphasis on crystalline materials, such as graphene and hexagonal BN, a new class of 2D amorphous materials must be pursued. For amorphous materials, a detailed understanding of the complex structure is necessary. Here we present a structural study of 2D bilayer silica on Ru(0001), an insulating material which is weakly coupled to the substrate. Atomic structure has been determined with a dual mode atomic force microscopy (AFM) and scanning tunneling microscopy (STM) sensor in ultra-high vacuum (UHV) at low temperatures, revealing a network of different ring sizes. Liquid AFM measurements with sub-nanometer resolution bridge the gap between clean UHV conditions and the environments that many material applications demand. Samples are grown and characterized in vacuum and subsequently transferred to the liquid AFM. Notably, the key structural features observed, namely nanoscale ring networks and larger holes to the substrate, show strong quantitative agreement between the liquid and UHV microscopy measurements. This provides direct evidence for the structural stability of these silica films for nanoelectronics and other applications. KMB acknowledges support from the Alexander von Humboldt Foundation.

  13. F-theory and 2d (0, 2) theories

    NASA Astrophysics Data System (ADS)

    Schäfer-Nameki, Sakura; Weigand, Timo

    2016-05-01

    F-theory compactified on singular, elliptically fibered Calabi-Yau five-folds gives rise to two-dimensional gauge theories preserving N = (0 , 2) supersymmetry. In this paper we initiate the study of such compactifications and determine the dictionary between the geometric data of the elliptic fibration and the 2d gauge theory such as the matter content in terms of (0 , 2) superfields and their supersymmetric couplings. We study this setup both from a gauge-theoretic point of view, in terms of the partially twisted 7-brane theory, and provide a global geometric description based on the structure of the elliptic fibration and its singularities. Global consistency conditions are determined and checked against the dual M-theory compactification to one dimension. This includes a discussion of gauge anomalies, the structure of the Green-Schwarz terms and the Chern-Simons couplings in the dual M-theory supersymmetric quantum mechanics. Furthermore, by interpreting the resulting 2d (0 , 2) theories as heterotic worldsheet theories, we propose a correspondence between the geometric data of elliptically fibered Calabi-Yau five-folds and the target space of a heterotic gauged linear sigma-model (GLSM). In particular the correspondence between the Landau-Ginsburg and sigma-model phase of a 2d (0 , 2) GLSM is realized via different T-branes or gluing data in F-theory.

  14. An Intercomparison of 2-D Models Within a Common Framework

    NASA Technical Reports Server (NTRS)

    Weisenstein, Debra K.; Ko, Malcolm K. W.; Scott, Courtney J.; Jackman, Charles H.; Fleming, Eric L.; Considine, David B.; Kinnison, Douglas E.; Connell, Peter S.; Rotman, Douglas A.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    A model intercomparison among the Atmospheric and Environmental Research (AER) 2-D model, the Goddard Space Flight Center (GSFC) 2-D model, and the Lawrence Livermore National Laboratory 2-D model allows us to separate differences due to model transport from those due to the model's chemical formulation. This is accomplished by constructing two hybrid models incorporating the transport parameters of the GSFC and LLNL models within the AER model framework. By comparing the results from the native models (AER and e.g. GSFC) with those from the hybrid model (e.g. AER chemistry with GSFC transport), differences due to chemistry and transport can be identified. For the analysis, we examined an inert tracer whose emission pattern is based on emission from a High Speed Civil Transport (HSCT) fleet; distributions of trace species in the 2015 atmosphere; and the response of stratospheric ozone to an HSCT fleet. Differences in NO(y) in the upper stratosphere are found between models with identical transport, implying different model representations of atmospheric chemical processes. The response of O3 concentration to HSCT aircraft emissions differs in the models from both transport-dominated differences in the HSCT-induced perturbations of H2O and NO(y) as well as from differences in the model represent at ions of O3 chemical processes. The model formulations of cold polar processes are found to be the most significant factor in creating large differences in the calculated ozone perturbations

  15. Murine cytomegalovirus regulation of NKG2D ligands.

    PubMed

    Lenac, Tihana; Arapović, Jurica; Traven, Luka; Krmpotić, Astrid; Jonjić, Stipan

    2008-06-01

    Human cytomegalovirus (HCMV) is a ubiquitous pathogen that causes morbidity risk in immunologically suppressed and immunodeficient patients including congenital infections. Approaches to curb the consequences of HCMV infections are restricted by a lack of complete understanding of viral pathogenesis. The infection of mice with murine cytomegalovirus (MCMV) as a model of HCMV infection has been particularly useful in elucidating the role of innate and adaptive immune response mechanisms. A large number of cytomegalovirus genes modulate the innate and the adaptive host immune response. The products of several MCMV genes are involved in subverting the natural killer (NK) cell response by down-modulating cellular ligands for the NKG2D receptor expressed on NK cells and CD8(+) T cells. Mutant viruses lacking these immunoevasion genes are attenuated with respect to virus growth in vivo. Given the importance of the NKG2D receptor in controlling both NK- and T cell-mediated immunity, it is of tremendous importance to understand the molecular mechanisms and consequences of viral regulation of the NKG2D ligands.

  16. Design Application Translates 2-D Graphics to 3-D Surfaces

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Fabric Images Inc., specializing in the printing and manufacturing of fabric tension architecture for the retail, museum, and exhibit/tradeshow communities, designed software to translate 2-D graphics for 3-D surfaces prior to print production. Fabric Images' fabric-flattening design process models a 3-D surface based on computer-aided design (CAD) specifications. The surface geometry of the model is used to form a 2-D template, similar to a flattening process developed by NASA's Glenn Research Center. This template or pattern is then applied in the development of a 2-D graphic layout. Benefits of this process include 11.5 percent time savings per project, less material wasted, and the ability to improve upon graphic techniques and offer new design services. Partners include Exhibitgroup/Giltspur (end-user client: TAC Air, a division of Truman Arnold Companies Inc.), Jack Morton Worldwide (end-user client: Nickelodeon), as well as 3D Exhibits Inc., and MG Design Associates Corp.

  17. 2D depiction of nonbonding interactions for protein complexes.

    PubMed

    Zhou, Peng; Tian, Feifei; Shang, Zhicai

    2009-04-30

    A program called the 2D-GraLab is described for automatically generating schematic representation of nonbonding interactions across the protein binding interfaces. The input file of this program takes the standard PDB format, and the outputs are two-dimensional PostScript diagrams giving intuitive and informative description of the protein-protein interactions and their energetics properties, including hydrogen bond, salt bridge, van der Waals interaction, hydrophobic contact, pi-pi stacking, disulfide bond, desolvation effect, and loss of conformational entropy. To ensure these interaction information are determined accurately and reliably, methods and standalone programs employed in the 2D-GraLab are all widely used in the chemistry and biology community. The generated diagrams allow intuitive visualization of the interaction mode and binding specificity between two subunits in protein complexes, and by providing information on nonbonding energetics and geometric characteristics, the program offers the possibility of comparing different protein binding profiles in a detailed, objective, and quantitative manner. We expect that this 2D molecular graphics tool could be useful for the experimentalists and theoreticians interested in protein structure and protein engineering.

  18. Broadband THz Spectroscopy of 2D Nanoscale Materials

    NASA Astrophysics Data System (ADS)

    Chen, Lu; Tripathi, Shivendra; Huang, Mengchen; Hsu, Jen-Feng; D'Urso, Brian; Lee, Hyungwoo; Eom, Chang-Beom; Irvin, Patrick; Levy, Jeremy

    Two-dimensional (2D) materials such as graphene and transition-metal dichalcogenides (TMDC) have attracted intense research interest in the past decade. Their unique electronic and optical properties offer the promise of novel optoelectronic applications in the terahertz regime. Recently, generation and detection of broadband terahertz (10 THz bandwidth) emission from 10-nm-scale LaAlO3/SrTiO3 nanostructures created by conductive atomic force microscope (c-AFM) lithography has been demonstrated . This unprecedented control of THz emission at 10 nm length scales creates a pathway toward hybrid THz functionality in 2D-material/LaAlO3/SrTiO3 heterostructures. Here we report initial efforts in THz spectroscopy of 2D nanoscale materials with resolution comparable to the dimensions of the nanowire (10 nm). Systems under investigation include graphene, single-layer molybdenum disulfide (MoS2), and tungsten diselenide (WSe2) nanoflakes. 1. Y. Ma, et al., Nano Lett. 13, 2884 (2013). We gratefully acknowledge financial support from the following agencies and grants: AFOSR (FA9550-12-1-0268 (JL, PRI), FA9550-12-1-0342 (CBE)), ONR (N00014-13-1-0806 (JL, CBE), N00014-15-1-2847 (JL)), NSF DMR-1124131 (JL, CBE) and DMR-1234096 (CBE).

  19. 2D spatial profile measurements of potential fluctuation with heavy ion beam probe on the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Shimizu, A.; Ido, T.; Nishiura, M.; Kato, S.; Ogawa, K.; Takahashi, H.; Igami, H.; Yoshimura, Y.; Kubo, S.; Shimozuma, T.

    2016-11-01

    Two-dimensional spatial profiles of potential fluctuation were measured with the heavy ion beam probe (HIBP) in the Large Helical Device (LHD). For 2D spatial profile measurements, the probe beam energy has to be changed, which requires the adjustment of many deflectors in the beam transport line to optimize the beam trajectory, since the transport line of LHD-HIBP system is long. The automatic beam adjustment system was developed, which allows us to adjust the beam trajectory easily. By analyzing coherence between potential fluctuation and magnetic probe signal, the noise level of the mode power spectrum of the potential fluctuation can be reduced. By using this method, the 2D spatial profile of potential fluctuation profile was successfully obtained.

  20. A 2D strain estimator with numerical optimization method for soft-tissue elastography.

    PubMed

    Liu, Ke; Zhang, Pengfei; Shao, Jinhua; Zhu, Xinjian; Zhang, Yun; Bai, Jing

    2009-12-01

    Elastography is a bioelasticity-based imaging modality which has been proved to be a potential evaluation tool to detect the tissue abnormalities. Conventional method for elastography is to estimate the displacement based on cross-correlation technique firstly, then strain profile is calculated as the gradient of the displacement. The main problem of this method arises from the fact that the cross-correlation between pre- and post-compression signals will be decreased because of the signal's compression-to-deformation. It may constrain the estimation of the displacement. Numerical optimization, as an efficient tool to estimate the non-rigid deformation in image registration, has its potential to achieve the elastogram. This paper incorporates the idea of image registration into elastography and proposes a radio frequency (RF) signal registration strain estimator based on the minimization of a cost function using numerical optimization method with Powell algorithm (NOMPA). To evaluate the proposed scheme, the simulation data with a hard inclusion embedded in the homogeneous background is produced for analysis. NOMPA can obtain the displacement profiles and strain profiles simultaneously. When compared with the cross-correlation based method, NOMPA presents better signal-to-noise ratio (SNR, 32.6+/-1.5 dB vs. 23.8+/-1.1 dB) and contrast-to-noise ratio (CNR, 28.8+/-1.8 dB vs. 21.7+/-0.9 dB) in axial normal strain estimation. The in vitro experiment of porcine liver with ethanol-induced lesion is also studied. The statistic results of SNR and CNR indicate that strain profiles by NOMPA performs better anti-noise and target detectability than that by cross-correlation based method. Though NOMPA carry a heavier computational burden than cross-correlation based method, it may be an useful method to obtain 2D strains in elastography.

  1. Cytochrome P450-2D6 Screening Among Elderly Using Antidepressants (CYSCE)

    ClinicalTrials.gov

    2016-10-24

    Depression; Depressive Disorder; Poor Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Intermediate Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Ultrarapid Metabolizer Due to Cytochrome P450 CYP2D6 Variant

  2. Comparison of 2D and 3D qualitative whole body positron emission tomography (PET) without attenuation or scatter correction

    SciTech Connect

    Kohlmyer, S.G.; Mankoff, D.A.; Lewellen, T.K.; Kaplan, M.S.

    1996-12-31

    The increased sensitivity of 3D PET reduces image noise but can also result in a loss of contrast due to higher scatter fractions. Phantom studies were performed to compare tumor detectability in 2D and 3D qualitative whole body PET without scatter or attenuation correction. Lesion detectability was defined as: detectability = contrast/noise = (-) / {sigma}liver, where and are the average of lesion and liver regions of interest (ROIs), respectively. Liver, heart, and soft tissue sections of a Data Spectrum torso phantom containing a Teflon spine insert were filled with F-18 to match relative concentrations found in clinical FDG studies. Spherical lesions of 1.2 and 2.2 cm diameter were placed in the liver with a lesion to liver activity concentration ratio of 2 : 1. Resulting 2D and 3D images were compared for equivalent whole body acquisition times. Circular ROIs, half the diameter of the lesions, were placed on the tumors and the surrounding background. Background ROIs were normalized to account for the spatially variant bias caused by the absence of the scatter and attenuation corrections. Detectability was greater in the 3D images over the range of count densities and lesion sizes studied, although the difference in detectability between 2D and 3D decreases with decreasing lesion size. These results suggest that 3D imaging is preferable to 2D imaging for clinical qualitative whole body scanning without scatter or attenuation correction. Further studies representing a larger range of clinical applications are required.

  3. Verhulst model with Lévy white noise excitation

    NASA Astrophysics Data System (ADS)

    Dubkov, A. A.; Spagnolo, B.

    2008-10-01

    The transient dynamics of the Verhulst model perturbed by arbitrary non-Gaussian white noise is investigated. Based on the infinitely divisible distribution of the Lévy process we study the nonlinear relaxation of the population density for three cases of white non-Gaussian noise: (i) shot noise; (ii) noise with a probability density of increments expressed in terms of Gamma function; and (iii) Cauchy stable noise. We obtain exact results for the probability distribution of the population density in all cases, and for Cauchy stable noise the exact expression of the nonlinear relaxation time is derived. Moreover starting from an initial delta function distribution, we find a transition induced by the multiplicative Lévy noise, from a trimodal probability distribution to a bimodal probability distribution in asymptotics. Finally we find a nonmonotonic behavior of the nonlinear relaxation time as a function of the Cauchy stable noise intensity.

  4. A 2-D Array of Superconducting Magnesium Diboride (MgB2) Far-IR Thermal Detectors for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Lakew, Brook

    2009-01-01

    A 2-D array of superconducting Magnesium Diboride(MgB2) far IR thermal detectors has been fabricated. Such an array is intended to be at the focal plane of future generation thermal imaging far-IR instruments that will investigate the outer planets and their icy moons. Fabrication and processing of the pixels of the array as well as noise characterization of architectured MgB2 thin films will be presented. Challenges and solutions for improving the performance of the array will be discussed.

  5. Aviation noise effects

    NASA Astrophysics Data System (ADS)

    Newman, J. S.; Beattie, K. R.

    1985-03-01

    This report summarizes the effects of aviation noise in many areas, ranging from human annoyance to impact on real estate values. It also synthesizes the findings of literature on several topics. Included in the literature were many original studies carried out under FAA and other Federal funding over the past two decades. Efforts have been made to present the critical findings and conclusions of pertinent research, providing, when possible, a bottom line conclusion, criterion or perspective. Issues related to aviation noise are highlighted, and current policy is presented. Specific topic addressed include: annoyance; Hearing and hearing loss; noise metrics; human response to noise; speech interference; sleep interference; non-auditory health effects of noise; effects of noise on wild and domesticated animals; low frequency acoustical energy; impulsive noise; time of day weightings; noise contours; land use compatibility; and real estate values. This document is designed for a variety of users, from the individual completely unfamiliar with aviation noise to experts in the field.

  6. [Identification of metabolites of epiberberine in rat liver microsomes and its inhibiting effects on CYP2D6].

    PubMed

    Yang, Xiao-Yan; Ye, Jing; Sun, Gui-Xia; Xue, Bao-Juan; Zhao, Yuan-Yuan; Miao, Pei-Pei; Su, Jin; Zhang, Yu-Jie

    2014-10-01

    Epiberberine, one of the most important isoquinoline alkaloid in Coptidis Rhizoma, possesses extensive pharmacological activities. In this paper, the liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to study phase I and phase II metabolites. A Thermo HPLC system (including Surveyor AS, Surveyor LC Pump, Surveyor PDA. USA) was used. The cocktail probe drugs method was imposed to determine the content change of metoprolol, dapsone, phenacetin, chlorzoxazone and tolbutamide simultaneously for evaluating the activity of CYP2D6, CYP3A4, CYP1A2, CYP2E1 and CYP2C9 under different concentrations of epiberberine in rat liver microsomes. The result showed that epiberberine may have phase I and phase II metabolism in the rat liver and two metabolites in phase I and three metabolites in phase II are identified in the temperature incubation system of in vitro liver microsomes. Epiberberine showed significant inhibition on CYP2D6 with IC50 value of 35.22 μmol L(-1), but had no obvious inhibiting effect on the activities of CYP3A4, CYP1A2, CYP2E1 and CYP2C9. The results indicated that epiberberine may be caused drug interactions based on CYP2D6 enzyme. This study aims to provide a reliable experimental basis for its further research and development of epiberberine.

  7. Altered expression of small heterodimer partner governs cytochrome P450 (CYP) 2D6 induction during pregnancy in CYP2D6-humanized mice.

    PubMed

    Koh, Kwi Hye; Pan, Xian; Shen, Hong-Wu; Arnold, Samuel L M; Yu, Ai-Ming; Gonzalez, Frank J; Isoherranen, Nina; Jeong, Hyunyoung

    2014-02-07

    Substrates of a major drug-metabolizing enzyme CYP2D6 display increased elimination during pregnancy, but the underlying mechanisms are unknown in part due to a lack of experimental models. Here, we introduce CYP2D6-humanized (Tg-CYP2D6) mice as an animal model where hepatic CYP2D6 expression is increased during pregnancy. In the mouse livers, expression of a known positive regulator of CYP2D6, hepatocyte nuclear factor 4α (HNF4α), did not change during pregnancy. However, HNF4α recruitment to CYP2D6 promoter increased at term pregnancy, accompanied by repressed expression of small heterodimer partner (SHP). In HepG2 cells, SHP repressed HNF4α transactivation of CYP2D6 promoter. In transgenic (Tg)-CYP2D6 mice, SHP knockdown led to a significant increase in CYP2D6 expression. Retinoic acid, an endogenous compound that induces SHP, exhibited decreased hepatic levels during pregnancy in Tg-CYP2D6 mice. Administration of all-trans-retinoic acid led to a significant decrease in the expression and activity of hepatic CYP2D6 in Tg-CYP2D6 mice. This study provides key insights into mechanisms underlying altered CYP2D6-mediated drug metabolism during pregnancy, laying a foundation for improved drug therapy in pregnant women.

  8. 2D OR NOT 2D: THE EFFECT OF DIMENSIONALITY ON THE DYNAMICS OF FINGERING CONVECTION AT LOW PRANDTL NUMBER

    SciTech Connect

    Garaud, Pascale; Brummell, Nicholas

    2015-12-10

    Fingering convection (otherwise known as thermohaline convection) is an instability that occurs in stellar radiative interiors in the presence of unstable compositional gradients. Numerical simulations have been used in order to estimate the efficiency of mixing induced by this instability. However, fully three-dimensional (3D) computations in the parameter regime appropriate for stellar astrophysics (i.e., low Prandtl number) are prohibitively expensive. This raises the question of whether two-dimensional (2D) simulations could be used instead to achieve the same goals. In this work, we address this issue by comparing the outcome of 2D and 3D simulations of fingering convection at low Prandtl number. We find that 2D simulations are never appropriate. However, we also find that the required 3D computational domain does not have to be very wide: the third dimension only needs to contain a minimum of two wavelengths of the fastest-growing linearly unstable mode to capture the essentially 3D dynamics of small-scale fingering. Narrow domains, however, should still be used with caution since they could limit the subsequent development of any large-scale dynamics typically associated with fingering convection.

  9. Hybrid 3D-2D printing of bone scaffolds Hybrid 3D-2D printing methods for bone scaffolds fabrication.

    PubMed

    Prinz, V Ya; Seleznev, Vladimir

    2016-12-13

    It is a well-known fact that bone scaffold topography on micro- and nanometer scale influences the cellular behavior. Nano-scale surface modification of scaffolds allows the modulation of biological activity for enhanced cell differentiation. To date, there has been only a limited success in printing scaffolds with micro- and nano-scale features exposed on the surface. To improve on the currently available imperfect technologies, in our paper we introduce new hybrid technologies based on a combination of 2D (nano imprint) and 3D printing methods. The first method is based on using light projection 3D printing and simultaneous 2D nanostructuring of each of the layers during the formation of the 3D structure. The second method is based on the sequential integration of preliminarily created 2D nanostructured films into a 3D printed structure. The capabilities of the developed hybrid technologies are demonstrated with the example of forming 3D bone scaffolds. The proposed technologies can be used to fabricate complex 3D micro- and nanostructured products for various fields.

  10. Solution conformation of 2-aminopurine (2-AP) dinucleotide determined by ultraviolet 2D fluorescence spectroscopy (UV-2D FS).

    PubMed

    Widom, Julia R; Johnson, Neil P; von Hippel, Peter H; Marcus, Andrew H

    2013-02-01

    We have observed the conformation-dependent electronic coupling between the monomeric subunits of a dinucleotide of 2-aminopurine (2-AP), a fluorescent analog of the nucleic acid base adenine. This was accomplished by extending two-dimensional fluorescence spectroscopy (2D FS) - a fluorescence-detected variation of 2D electronic spectroscopy - to excite molecular transitions in the ultraviolet (UV) regime. A collinear sequence of four ultrafast laser pulses centered at 323 nm was used to resonantly excite the coupled transitions of 2-AP dinucleotide. The phases of the optical pulses were continuously swept at kilohertz frequencies, and the ensuing nonlinear fluorescence was phase-synchronously detected at 370 nm. Upon optimization of a point-dipole coupling model to our data, we found that in aqueous buffer the 2-AP dinucleotide adopts an average conformation in which the purine bases are non-helically stacked (center-to-center distance R12 = 3.5 Å ± 0.5 Å, twist angle θ12 = 5° ± 5°), which differs from the conformation of such adjacent bases in duplex DNA. These experiments establish UV-2D FS as a method for examining the local conformations of an adjacent pair of fluorescent nucleotides substituted into specific DNA or RNA constructs, which will serve as a powerful probe to interpret, in structural terms, biologically significant local conformational changes within the nucleic acid framework of protein-nucleic acid complexes.

  11. Digit ratio (2D:4D) in Lithuania once and now: testing for sex differences, relations with eye and hair color, and a possible secular change.

    PubMed

    Voracek, Martin; Bagdonas, Albinas; Dressler, Stefan G

    2007-09-01

    The second-to-fourth digit ratio (2D:4D) is a sexually dimorphic somatic trait and has been proposed as a biomarker for the organizational, i.e., permanent, effects of prenatal testosterone on the human brain. Accordingly, recent research has related 2D:4D to a variety of sex-dependent, hormonally influenced traits and phenotypes. The geographical variation in typical 2D:4D is marked and presently poorly understood. This study presents the first investigation into the 2D:4D ratio in a Baltic country. A contemporary sample of 109 Lithuanian men and women was compared with data from a historical sample of 100 Lithuanian men and women, collected and published in the 1880s and rediscovered only now. The findings included the following lines of evidence: (i) seen in an international perspective, the average 2D:4D in Lithuania is low; (ii) there was a sex difference in 2D:4D in the expected direction in both samples; (iii) a previously adduced hypothesis of an association of lighter eye and hair color with higher, i.e., more feminized, 2D:4D received no support in both samples; and (iv) the average 2D:4D in the contemporary sample was higher than in the historical sample. In view of a hypothesized increase in 2D:4D in modern populations, owing to increased environmental levels of endocrine disruptors such as xenoestrogens, this latter finding appears to be of particular notice. However, because finger-length measurement methods differed across the samples, it cannot be safely ruled out that the apparent time trend in Lithuanian 2D:4D in truth is an artifact. The puzzling geographical pattern seen in the 2D:4D ratio and the question of possible time trends therein deserve further investigations.

  12. Noise effects in two different biological systems

    NASA Astrophysics Data System (ADS)

    Spagnolo, B.; Spezia, S.; Curcio, L.; Pizzolato, N.; Fiasconaro, A.; Valenti, D.; Lo Bue, P.; Peri, E.; Colazza, S.

    2009-05-01

    We investigate the role of the colored noise in two biological systems: (i) adults of Nezara viridula (L.) (Heteroptera: Pentatomidae), and (ii) polymer translocation. In the first system we analyze, by directionality tests, the response of N. viridula individuals to subthreshold signals plus noise in their mating behaviour. The percentage of insects that react to the subthreshold signal shows a nonmonotonic behaviour, characterized by the presence of a maximum, as a function of the noise intensity. This is the signature of the non-dynamical stochastic resonance phenomenon. By using a “soft” threshold model we find that the maximum of the input-output cross correlation occurs in the same range of noise intensity values for which the behavioural activation of the insects has a maximum. Moreover this maximum value is lowered and shifted towards higher noise intensities, compared to the case of white noise. In the second biological system the noise driven translocation of short polymers in crowded solutions is analyzed. An improved version of the Rouse model for a flexible polymer is adopted to mimic the molecular dynamics by taking into account both the interactions between adjacent monomers and the effects of a Lennard-Jones potential between all beads. The polymer dynamics is simulated in a two-dimensional domain by numerically solving the Langevin equations of motion in the presence of thermal fluctuations and a colored noise source. At low temperatures or for strong colored noise intensities the translocation process of the polymer chain is delayed. At low noise intensity, as the polymer length increases, we find a nonmonotonic behaviour for the mean first translocation time of the polymer centre of inertia. We show how colored noise influences the motion of short polymers, by inducing two different regimes of translocation in the dynamics of molecule transport.

  13. [Subjective sensitivity to noise].

    PubMed

    Belojević, G

    1991-01-01

    It is likely that individual variations in subjectively estimated noise sensitivity influence different social and psychophysiological reactions of people exposed to noise. Subjective noise sensitivity might be a relatively stable personal characteristic. A correlation have been found between high sensitiveness to noise and some medical symptoms (sleep disturbance, nervousness, depression), and worse work performance in noisy environments. An introvert person with neurotic symptoms is more frequently found in people highly sensitive to noise. Testing for subjective sensitivity to noise might be helpful in professional selection and orientation for noisy work-places as well as in housing advising.

  14. Cloning and characterization of a novel human phosphatidic acid phosphatase type 2, PAP2d, with two different transcripts PAP2d_v1 and PAP2d_v2.

    PubMed

    Sun, Liyun; Gu, Shaohua; Sun, Yaqiong; Zheng, Dan; Wu, Qihan; Li, Xin; Dai, Jianfeng; Dai, Jianliang; Ji, Chaoneng; Xie, Yi; Mao, Yumin

    2005-04-01

    This study reports the cloning and characterization of a novel human phosphatidic acid phosphatase type 2 isoform cDNAs (PAP2d) from the foetal brain cDNA library. The PAP2d gene is localized on chromosome 1p21.3. It contains six exons and spans 112 kb of the genomic DNA. By large-scale cDNA sequencing we found two splice variants of PAP2d, PAP2d_v1 and PAP2d_v2. The PAP2d_v1 cDNA is 1722 bp in length and spans an open reading frame from nucleotide 56 to 1021, encoding a 321aa protein. The PAP2d_v2 cDNA is 1707 bp in length encoding a 316aa protein from nucleotide 56-1006. The PAP2d_v1 cDNA is 15 bp longer than the PAP2d_v2 cDNA in the terminal of the fifth exon and it creates different ORF. Both of the proteins contain a well-conserved PAP2 motif. The PAP2d_v1 is mainly expressed in human brain, lung, kidney, testis and colon, while PAP2d_v2 is restricted to human placenta, skeletal muscle, and kidney. The two splice variants are co-expressed only in kidney.

  15. 2D Seismic Reflection Data across Central Illinois

    SciTech Connect

    Smith, Valerie; Leetaru, Hannes

    2014-09-30

    In a continuing collaboration with the Midwest Geologic Sequestration Consortium (MGSC) on the Evaluation of the Carbon Sequestration Potential of the Cambro-Ordovician Strata of the Illinois and Michigan Basins project, Schlumberger Carbon Services and WesternGeco acquired two-dimensional (2D) seismic data in the Illinois Basin. This work included the design, acquisition and processing of approximately 125 miles of (2D) seismic reflection surveys running west to east in the central Illinois Basin. Schlumberger Carbon Services and WesternGeco oversaw the management of the field operations (including a pre-shoot planning, mobilization, acquisition and de-mobilization of the field personnel and equipment), procurement of the necessary permits to conduct the survey, post-shoot closure, processing of the raw data, and provided expert consultation as needed in the interpretation of the delivered product. Three 2D seismic lines were acquired across central Illinois during November and December 2010 and January 2011. Traversing the Illinois Basin, this 2D seismic survey was designed to image the stratigraphy of the Cambro-Ordovician sections and also to discern the basement topography. Prior to this survey, there were no regionally extensive 2D seismic data spanning this section of the Illinois Basin. Between the NW side of Morgan County and northwestern border of Douglas County, these seismic lines ran through very rural portions of the state. Starting in Morgan County, Line 101 was the longest at 93 miles in length and ended NE of Decatur, Illinois. Line 501 ran W-E from the Illinois Basin – Decatur Project (IBDP) site to northwestern Douglas County and was 25 miles in length. Line 601 was the shortest and ran N-S past the IBDP site and connected lines 101 and 501. All three lines are correlated to well logs at the IBDP site. Originally processed in 2011, the 2D seismic profiles exhibited a degradation of signal quality below ~400 millisecond (ms) which made

  16. Human erythrocytes analyzed by generalized 2D Raman correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Wesełucha-Birczyńska, Aleksandra; Kozicki, Mateusz; Czepiel, Jacek; Łabanowska, Maria; Nowak, Piotr; Kowalczyk, Grzegorz; Kurdziel, Magdalena; Birczyńska, Malwina; Biesiada, Grażyna; Mach, Tomasz; Garlicki, Aleksander

    2014-07-01

    The most numerous elements of the blood cells, erythrocytes, consist mainly of two components: homogeneous interior filled with hemoglobin and closure which is the cell membrane. To gain insight into their specific properties we studied the process of disintegration, considering these two constituents, and comparing the natural aging process of human healthy blood cells. MicroRaman spectra of hemoglobin within the single RBC were recorded using 514.5, and 785 nm laser lines. The generalized 2D correlation method was applied to analyze the collected spectra. The time passed from blood donation was regarded as an external perturbation. The time was no more than 40 days according to the current storage limit of blood banks, although, the average RBC life span is 120 days. An analysis of the prominent synchronous and asynchronous cross peaks allow us to get insight into the mechanism of hemoglobin decomposition. Appearing asynchronous cross-peaks point towards globin and heme separation from each other, while synchronous shows already broken globin into individual amino acids. Raman scattering analysis of hemoglobin "wrapping", i.e. healthy erythrocyte ghosts, allows for the following peculiarity of their behavior. The increasing power of the excitation laser induced alterations in the assemblage of membrane lipids. 2D correlation maps, obtained with increasing laser power recognized as an external perturbation, allows for the consideration of alterations in the erythrocyte membrane structure and composition, which occurs first in the proteins. Cross-peaks were observed indicating an asynchronous correlation between the senescent-cell antigen (SCA) and heme or proteins vibrations. The EPR spectra of the whole blood was analyzed regarding time as an external stimulus. The 2D correlation spectra points towards participation of the selected metal ion centers in the disintegration process.

  17. Digit ratio (2D:4D), salivary testosterone, and handedness.

    PubMed

    Beaton, Alan A; Rudling, Nick; Kissling, Christian; Taurines, Regine; Thome, Johannes

    2011-03-01

    The length of the index finger relative to that of the ring finger, the 2D:4D ratio, has been taken to be a marker of the amount of testosterone (T) that was present in the foetal environment (Manning, Scutt, Wilson, & Lewis-Jones, 1998). It has also been suggested (Geschwind & Galaburda, 1987) that elevated levels of foetal T are associated with left-handedness and that adult levels of circulating T might relate to foetal levels (Jamison, Meier, & Campbell, 1993). We used multiple regression analyses to investigate whether there is any relationship between either left or right hand 2D:4D ratio and handedness. We also examined whether adult levels of salivary T (or cortisol, used as a control hormone) predict digit ratio and/or handedness. Although the 2D:4D ratio of neither the left nor the right hand was related to handedness, the difference between the digit ratios of the right and left hands, D(R-L), was a significant predictor of handedness and of the performance difference between the hands on a peg-moving task, supporting previous findings (Manning & Peters, 2009; Manning et al., 1998; Manning, Trivers, Thornhill, & Singh, 2000; Stoyanov, Marinov, & Pashalieva, 2009). Adult circulating T levels did not predict the digit ratio of the left or right hand; nor was there a significant relationship between concentrations of salivary T (or cortisol) and either hand preference or asymmetry in manual skill. We suggest that the association between D(R-L) and hand preference arises because D(R-L) is a correlate of sensitivity to T in the developing foetus.

  18. Quantitation of protein in samples prepared for 2-D electrophoresis.

    PubMed

    Berkelman, Tom

    2008-01-01

    The concentration of protein in a sample prepared for two dimensional (2-D) electrophoretic analysis is usually determined by protein assay. Reasons for this include the following. (1) Protein quantitation ensures that the amount of protein to be separated is appropriate for the gel size and visualization method. (2) Protein quantitation facilitates comparison among similar samples, as image-based analysis is simplified when equivalent quantities of proteins have been loaded on the gels to be compared. (3) Quantitation is necessary in cases where the protein sample is labeled with dye before separation (1,2). The labeling chemistry is affected by the dye to protein ratio so it is essential to know the protein concentration before setting up the labeling reaction.A primary consideration with quantitating protein in samples prepared for 2-D electrophoresis is interference by nonprotein substances that may be present in the sample. These samples generally contain chaotropic solubilizing agents, detergents, reductants, buffers or carrier ampholytes, all of which potentially interfere with protein quantitation. The most commonly used protein assays in proteomics research are colorimetric assays in which the presence of protein causes a color change that can be measured spectrophotometrically (3). All protein assays utilize standards, a dilution series of a known concentration of a known protein, to create a standard curve. Two methods will be considered that circumvent some of the problems associated with interfering substances and are well suited for samples prepared for 2-D electrophoresis. The first method (4.1.1) relies on a color change that occurs upon binding of a dye to protein and the second (4.1.2) relies on binding and reduction of cupric ion (Cu2+) ion to cuprous ion (Cu+) by proteins.

  19. Long-lived magnetoexcitons in 2D-fermion system

    NASA Astrophysics Data System (ADS)

    Kulik, L. V.; Zhuravlev, A. S.; Gorbunov, A. V.; Timofeev, V. B.; Kukushkin, I. V.

    2017-01-01

    The paper addresses the experimental technique that, when applied to a 2D-electron system in the integer quantum Hall regime with filling factor ν = 2 (the Hall insulating state), allows resonant excitation of magnetoexcitons, their detection, control of an ensemble of long-lived triplet excitons and investigation of their radiationless decay related to exciton spin relaxation into the ground state. The technique proposed enables independent control of photoexcited electrons and Fermi-holes using photoinduced resonance reflection spectra as well as estimate with a reasonable degree of accuracy the resulting density of photoinduced electron-hole pairs bound into magnetoexcitons. The mere existence of triplet excitons was directly established by inelastic light scattering spectra which were analyzed to determine the value of singlet-triplet exciton splitting. It was found that the lifetimes of triplet excitons conditioned by electron spin relaxation in highly perfect GaAs/AlGaAs heterostructures with highly mobile 2D electrons are extremely long exceeding 100 μs at T < 1 K. The paper presents a qualitative explanation of the long-spin relaxation lifetimes which are unprecedented for translation-invariant 2D systems. This enabled us to create sufficiently high concentrations of triplet magnetoexcitons, electrically neutral excitations following Bose-Einstein statistics, in a Fermi electron system and investigate their collective properties. At sufficiently high densities of triplet magnetoexcitons and low temperatures, T < 1 K, the degenerate magnetofermionic system exhibits condensation of the triplet magnetoexcitons into a qualitatively new collective state with unusual properties which occurs in the space of generalized moments (magnetic translation vectors). The occurrence of a condensed phase is accompanied with a significant decrease in the viscosity of the photoexcited system, which is responsible for electron spin transport at macroscopic distances, as well

  20. 2D to 3D conversion implemented in different hardware

    NASA Astrophysics Data System (ADS)

    Ramos-Diaz, Eduardo; Gonzalez-Huitron, Victor; Ponomaryov, Volodymyr I.; Hernandez-Fragoso, Araceli

    2015-02-01

    Conversion of available 2D data for release in 3D content is a hot topic for providers and for success of the 3D applications, in general. It naturally completely relies on virtual view synthesis of a second view given by original 2D video. Disparity map (DM) estimation is a central task in 3D generation but still follows a very difficult problem for rendering novel images precisely. There exist different approaches in DM reconstruction, among them manually and semiautomatic methods that can produce high quality DMs but they demonstrate hard time consuming and are computationally expensive. In this paper, several hardware implementations of designed frameworks for an automatic 3D color video generation based on 2D real video sequence are proposed. The novel framework includes simultaneous processing of stereo pairs using the following blocks: CIE L*a*b* color space conversions, stereo matching via pyramidal scheme, color segmentation by k-means on an a*b* color plane, and adaptive post-filtering, DM estimation using stereo matching between left and right images (or neighboring frames in a video), adaptive post-filtering, and finally, the anaglyph 3D scene generation. Novel technique has been implemented on DSP TMS320DM648, Matlab's Simulink module over a PC with Windows 7, and using graphic card (NVIDIA Quadro K2000) demonstrating that the proposed approach can be applied in real-time processing mode. The time values needed, mean Similarity Structural Index Measure (SSIM) and Bad Matching Pixels (B) values for different hardware implementations (GPU, Single CPU, and DSP) are exposed in this paper.