Science.gov

Sample records for noise methods stage

  1. Comparison of classical and two-stage methods of Barkhausen noise measurement

    NASA Astrophysics Data System (ADS)

    Pal'a, Jozef; Bydžovský, Jan

    2014-07-01

    The purpose of the article was to investigate properties of the two-stage methods of the Barkhausen noise (BN) measurement used in non-destructive testing. The principle of the two-stage method is based on subtraction of two successive instances of the electromotive force (EMF) signal with the same non-stochastic (continuous) component. The subtraction can be accomplished in a hardware (hardware two-stage method) or in a software (software two-stage method). The experiments proved that, with these methods, we are able to significantly suppress the dominant continuous component from the induced EMF signal without using filters and thus simplify the measurement. On the other hand, with the classical one-stage method, to achieve similar suppression of the continuous component and, simultaneously, to not suppress the BN, it was necessary to adjust the cut-off frequency of the high-pass filter.

  2. A multi-stage method for connecting participatory sensing and noise simulations.

    PubMed

    Hu, Mingyuan; Che, Weitao; Zhang, Qiuju; Luo, Qingli; Lin, Hui

    2015-01-22

    Most simulation-based noise maps are important for official noise assessment but lack local noise characteristics. The main reasons for this lack of information are that official noise simulations only provide information about expected noise levels, which is limited by the use of large-scale monitoring of noise sources, and are updated infrequently. With the emergence of smart cities and ubiquitous sensing, the possible improvements enabled by sensing technologies provide the possibility to resolve this problem. This study proposed an integrated methodology to propel participatory sensing from its current random and distributed sampling origins to professional noise simulation. The aims of this study were to effectively organize the participatory noise data, to dynamically refine the granularity of the noise features on road segments (e.g., different portions of a road segment), and then to provide a reasonable spatio-temporal data foundation to support noise simulations, which can be of help to researchers in understanding how participatory sensing can play a role in smart cities. This study first discusses the potential limitations of the current participatory sensing and simulation-based official noise maps. Next, we explain how participatory noise data can contribute to a simulation-based noise map by providing (1) spatial matching of the participatory noise data to the virtual partitions at a more microscopic level of road networks; (2) multi-temporal scale noise estimations at the spatial level of virtual partitions; and (3) dynamic aggregation of virtual partitions by comparing the noise values at the relevant temporal scale to form a dynamic segmentation of each road segment to support multiple spatio-temporal noise simulations. In this case study, we demonstrate how this method could play a significant role in a simulation-based noise map. Together, these results demonstrate the potential benefits of participatory noise data as dynamic input sources for

  3. Shielded multi-stage EMI noise filter

    SciTech Connect

    Kisner, Roger Allen; Fugate, David Lee

    2016-11-08

    Electromagnetic interference (EMI) noise filter embodiments and methods for filtering are provided herein. EMI noise filters include multiple signal exclusion enclosures. The multiple signal exclusion enclosures contain filter circuit stages. The signal exclusion enclosures can attenuate noise generated external to the enclosures and/or isolate noise currents generated by the corresponding filter circuits within the enclosures. In certain embodiments, an output of one filter circuit stage is connected to an input of the next filter circuit stage. The multiple signal exclusion enclosures can be chambers formed using conductive partitions to divide an outer signal exclusion enclosure. EMI noise filters can also include mechanisms to maintain the components of the filter circuit stages at a consistent temperature. For example, a metal base plate can distribute heat among filter components, and an insulating material can be positioned inside signal exclusion enclosures.

  4. 14 CFR 91.859 - Modification to meet Stage 3 or Stage 4 noise levels.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... noise levels. 91.859 Section 91.859 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Noise Limits § 91.859 Modification to meet Stage 3 or Stage 4 noise levels. For an airplane subject to... Stage 3 or Stage 4 noise levels....

  5. 14 CFR 91.859 - Modification to meet Stage 3 or Stage 4 noise levels.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... noise levels. 91.859 Section 91.859 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Noise Limits § 91.859 Modification to meet Stage 3 or Stage 4 noise levels. For an airplane subject to... Stage 3 or Stage 4 noise levels....

  6. 14 CFR 91.859 - Modification to meet Stage 3 or Stage 4 noise levels.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... noise levels. 91.859 Section 91.859 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Noise Limits § 91.859 Modification to meet Stage 3 or Stage 4 noise levels. For an airplane subject to... Stage 3 or Stage 4 noise levels....

  7. 14 CFR 91.859 - Modification to meet Stage 3 or Stage 4 noise levels.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... noise levels. 91.859 Section 91.859 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Noise Limits § 91.859 Modification to meet Stage 3 or Stage 4 noise levels. For an airplane subject to... Stage 3 or Stage 4 noise levels....

  8. 14 CFR 91.859 - Modification to meet Stage 3 or Stage 4 noise levels.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... noise levels. 91.859 Section 91.859 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Noise Limits § 91.859 Modification to meet Stage 3 or Stage 4 noise levels. For an airplane subject to... Stage 3 or Stage 4 noise levels....

  9. Low Noise Research Fan Stage Design

    NASA Technical Reports Server (NTRS)

    Hobbs, David E.; Neubert, Robert J.; Malmborg, Eric W.; Philbrick, Daniel H.; Spear, David A.

    1995-01-01

    This report describes the design of a Low Noise ADP Research Fan stage. The fan is a variable pitch design which is designed at the cruise pitch condition. Relative to the cruise setting, the blade is closed at takeoff and opened for reverse thrust operation. The fan stage is a split flow design with fan exit guide vanes and core stators. This fan stage design was combined with a nacelle and engine core duct to form a powered fan/nacelle, subscale model. This model is intended for use in aerodynamic performance, acoustic and structural testing in a wind tunnel. The model has a 22-inch outer fan diameter and a hub-to-top ratio of 0.426 which permits the use of existing NASA fan and cowl force balance designs and rig drive system. The design parameters were selected to permit valid acoustic and aerodynamic comparisons with the PW 17-inch rig previously tested under NASA contract. The fan stage design is described in detail. The results of the design axisymmetric analysis at aerodynamic design condition are included. The structural analysis of the fan rotor and attachment is described including the material selections and stress analysis. The blade and attachment are predicted to have adequate low cycle fatigue life, and an acceptable operating range without resonant stress or flutter. The stage was acoustically designed with airfoil counts in the fan exit guide vane and core stator to minimize noise. A fan-FEGV tone analysis developed separately under NASA contract was used to determine these airfoil counts. The fan stage design was matched to a nacelle design to form a fan/nacelle model for wind tunnel testing. The nacelle design was developed under a separate NASA contract. The nacelle was designed with an axisymmetric inlet, cowl and nozzle for convenience in testing and fabrication. Aerodynamic analysis of the nacelle confirmed the required performance at various aircraft operating conditions.

  10. Airframe Noise Prediction Using the Sngr Method

    NASA Astrophysics Data System (ADS)

    Chen, Rongqian; Wu, Yizhao; Xia, Jian

    In this paper, the Stochastic Noise Generation and Radiation method (SNGR) is used to predict airframe noise. The SNGR method combines a stochastic model with Computational Fluid Dynamics (CFD), and it can give acceptable noise results while the computation cost is relatively low. In the method, the time-averaged mean flow field is firstly obtained by solving Reynolds Averaged Navier-Stokes equations (RANS), and a stochastic velocity is generated based on the obtained information. Then the turbulent field is used to generate the source for the Acoustic Perturbation Equations (APEs) that simulate the noise propagation. For numerical methods, timeaveraged RANS equations are solved by finite volume method, and the turbulent model is K - ɛ model; APEs are solved by finite difference method, and the numerical scheme is the Dispersion-Relation-Preserving (DRP) scheme, with explicit optimized 5-stage Rung-Kutta scheme time step. In order to test the APE solver, propagation of a Gaussian pulse in a uniform mean flow is firstly simulated and compared with the analytical solution. Then, using the method, the trailing edge noise of NACA0012 airfoil is calculated. The results are compared with reference data, and good agreements are demonstrated.

  11. Computed Tomography Images De-noising using a Novel Two Stage Adaptive Algorithm.

    PubMed

    Fadaee, Mojtaba; Shamsi, Mousa; Saberkari, Hamidreza; Sedaaghi, Mohammad Hossein

    2015-01-01

    In this paper, an optimal algorithm is presented for de-noising of medical images. The presented algorithm is based on improved version of local pixels grouping and principal component analysis. In local pixels grouping algorithm, blocks matching based on L (2) norm method is utilized, which leads to matching performance improvement. To evaluate the performance of our proposed algorithm, peak signal to noise ratio (PSNR) and structural similarity (SSIM) evaluation criteria have been used, which are respectively according to the signal to noise ratio in the image and structural similarity of two images. The proposed algorithm has two de-noising and cleanup stages. The cleanup stage is carried out comparatively; meaning that it is alternately repeated until the two conditions based on PSNR and SSIM are established. Implementation results show that the presented algorithm has a significant superiority in de-noising. Furthermore, the quantities of SSIM and PSNR values are higher in comparison to other methods.

  12. Computed Tomography Images De-noising using a Novel Two Stage Adaptive Algorithm

    PubMed Central

    Fadaee, Mojtaba; Shamsi, Mousa; Saberkari, Hamidreza; Sedaaghi, Mohammad Hossein

    2015-01-01

    In this paper, an optimal algorithm is presented for de-noising of medical images. The presented algorithm is based on improved version of local pixels grouping and principal component analysis. In local pixels grouping algorithm, blocks matching based on L2 norm method is utilized, which leads to matching performance improvement. To evaluate the performance of our proposed algorithm, peak signal to noise ratio (PSNR) and structural similarity (SSIM) evaluation criteria have been used, which are respectively according to the signal to noise ratio in the image and structural similarity of two images. The proposed algorithm has two de-noising and cleanup stages. The cleanup stage is carried out comparatively; meaning that it is alternately repeated until the two conditions based on PSNR and SSIM are established. Implementation results show that the presented algorithm has a significant superiority in de-noising. Furthermore, the quantities of SSIM and PSNR values are higher in comparison to other methods. PMID:26955565

  13. Interim prediction method for jet noise

    NASA Technical Reports Server (NTRS)

    Stone, J. R.

    1974-01-01

    A method is provided for predicting jet noise for a wide range of nozzle geometries and operating conditions of interest for aircraft engines. Jet noise theory, data and existing prediction methods was reviewed, and based on this information a interim method of jet noise prediction is proposed. Problem areas are idenified where further research is needed to improve the prediction method. This method predicts only the noise generated by the exhaust jets mixing with the surrounding air and does not include other noises emanating from the engine exhaust, such as combustion and machinery noise generated inside the engine (i.e., core noise). It does, however, include thrust reverser noise. Prediction relations are provided for conical nozzles, plug nozzles, coaxial nozzles and slot nozzles.

  14. Advanced Low-Noise Research Fan Stage Design

    NASA Technical Reports Server (NTRS)

    Neubert, Robert; Bock, Larry; Malmborg, Eric; Owen-Peer, William

    1997-01-01

    This report describes the design of the Advanced Low-Noise Research Fan stage. The fan is a variable pitch design, which is designed at the cruise pitch condition. Relative to the cruise setting, the blade is closed at takeoff and opened for reverse thrust operation. The fan stage is a split flow design with fan exit guide vanes (FEGVs) and core stators. The fan stage design is combined with a nacelle and engine core duct to form a powered fan/nacelle subscale model. This model is intended for use in combined aerodynamic, acoustic, and structural testing in a wind tunnel. The fan has an outer diameter of 22 in. and a hub-to-tip of 0.426 in., which allows the use of existing NASA fan and cowl force balance and rig drive systems. The design parameters were selected to permit valid acoustic and aerodynamic comparisons with the Pratt & Whitney (P&W) 17- and 22-in. rigs previously tested under NASA contract. The fan stage design is described in detail. The results of the design axisymmetric and Navier-Stokes aerodynamic analysis are presented at the critical design conditions. The structural analysis of the fan rotor and attachment is included. The blade and attachment are predicted to have adequate low-cycle fatigue life and an acceptable operating range without resonant stress or flutter. The stage was acoustically designed with airfoil counts in the FEGV and core stator to minimize noise. A fan/FEGV tone analysis developed separately under NASA contract was used to determine the optimum airfoil counts. The fan stage was matched to the existing nacelle, designed under the previous P&W low-noise contract, to form a fan/nacelle model for wind tunnel testing. It is an axisymmetric nacelle for convenience in testing and analysis. Previous testing confirmed that the nacelle performed as required at various aircraft operating conditions.

  15. Design of a Low Speed Fan Stage for Noise Suppression

    NASA Technical Reports Server (NTRS)

    Dalton, W. N.; Elliot, D. B.; Nickols, K. L.

    1999-01-01

    This report describes the design of a low tip speed, moderate pressure rise fan stage for demonstration of noise reduction concepts. The fan rotor is a fixed-pitch configuration delivering a design pressure ratio of 1.378 at a specific flow of 43.1 lbm/sec/sq ft. Four exit stator configurations were provided to demonstrate the effectiveness of circumferential and axial sweep in reducing rotor-stator interaction tone noise. The fan stage design was combined with an axisymmetric inlet, conical convergent nozzle, and nacelle to form a powered fan-nacelle subscale model. This model has a 22-inch cylindrical flow path and employs a rotor with a 0.30 hub-to-tip radius ratio. The design is fully compatible with an existing NASA force balance and rig drive system. The stage aerodynamic and structural design is described in detail. Three-dimensional (3-D) computational fluid dynamics (CFD) tools were used to define optimum airfoil sections for both the rotor and stators. A fan noise predictive system developed by Pratt & Whitney under contract to NASA was used to determine the acoustic characteristics of the various stator configurations. Parameters varied included rotor-to-stator spacing and vane leading edge sweep. The structural analysis of the rotor and stator are described herein. An integral blade and disk configuration was selected for the rotor. Analysis confirmed adequate low cycle fatigue life, vibratory endurance strength, and aeroelastic suitability. A unique load carrying stator arrangement was selected to minimize generation of tonal noise due to sources other than rotor-stator interaction. Analysis of all static structural components demonstrated adequate strength, fatigue life, and vibratory characteristics.

  16. Two-Stage, 90-GHz, Low-Noise Amplifier

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene A.; Gaier, Todd C.; Xenos, Stephanie; Soria, Mary M.; Kangaslahti, Pekka P.; Cleary, Kieran A.; Ferreira, Linda; Lai, Richard; Mei, Xiaobing

    2010-01-01

    A device has been developed for coherent detection of the polarization of the cosmic microwave background (CMB). A two-stage amplifier has been designed that covers 75-110 GHz. The device uses the emerging 35-nm InP HEMT technology recently developed at Northrop Grumman Corporation primarily for use at higher frequencies. The amplifier has more than 18 dB gain and less than 35 K noise figure across the band. These devices have noise less than 30 K at 100 GHz. The development started with design activities at JPL, as well as characterization of multichip modules using existing InP. Following processing, a test campaign was carried out using single-chip modules at 100 GHz. Successful development of the chips will lead to development of multichip modules, with simultaneous Q and U Stokes parameter detection. This MMIC (monolithic microwave integrated circuit) amplifier takes advantage of performance improvements intended for higher frequencies, but in this innovation are applied at 90 GHz. The large amount of available gain ultimately leads to lower possible noise performance at 90 GHz.

  17. Comparison of the Performance of Noise Metrics as Predictions of the Annoyance of Stage 2 and Stage 3 Aircraft Overflights

    NASA Technical Reports Server (NTRS)

    Pearsons, Karl S.; Howe, Richard R.; Sneddon, Matthew D.; Fidell, Sanford

    1996-01-01

    Thirty audiometrically screened test participants judged the relative annoyance of two comparison (variable level) and thirty-four standard (fixed level) signals in an adaptive paired comparison psychoacoustic study. The signal ensemble included both FAR Part 36 Stage 2 and 3 aircraft overflights, as well as synthesized aircraft noise signatures and other non-aircraft signals. All test signals were presented for judgment as heard indoors, in the presence of continuous background noise, under free-field listening conditions in an anechoic chamber. Analyses of the performance of 30 noise metrics as predictors of these annoyance judgments confirmed that the more complex metrics were generally more accurate and precise predictors than the simpler methods. EPNL was somewhat less accurate and precise as a predictor of the annoyance judgments than a duration-adjusted variant of Zwicker's Loudness Level.

  18. The Traffic Noise Index: A Method of Controlling Noise Nuisance.

    ERIC Educational Resources Information Center

    Langdon, F. J.; Scholes, W. E.

    This building research survey is an analysis of the social nuisance caused by urban motor ways and their noise. The Traffic Noise Index is used to indicate traffic noises and their effects on architectural designs and planning, while suggesting the need for more and better window insulation and acoustical barriers. Overall concern is for--(1)…

  19. CMOS image sensor noise reduction method for image signal processor in digital cameras and camera phones

    NASA Astrophysics Data System (ADS)

    Yoo, Youngjin; Lee, SeongDeok; Choe, Wonhee; Kim, Chang-Yong

    2007-02-01

    Digital images captured from CMOS image sensors suffer Gaussian noise and impulsive noise. To efficiently reduce the noise in Image Signal Processor (ISP), we analyze noise feature for imaging pipeline of ISP where noise reduction algorithm is performed. The Gaussian noise reduction and impulsive noise reduction method are proposed for proper ISP implementation in Bayer domain. The proposed method takes advantage of the analyzed noise feature to calculate noise reduction filter coefficients. Thus, noise is adaptively reduced according to the scene environment. Since noise is amplified and characteristic of noise varies while the image sensor signal undergoes several image processing steps, it is better to remove noise in earlier stage on imaging pipeline of ISP. Thus, noise reduction is carried out in Bayer domain on imaging pipeline of ISP. The method is tested on imaging pipeline of ISP and images captured from Samsung 2M CMOS image sensor test module. The experimental results show that the proposed method removes noise while effectively preserves edges.

  20. Jet Noise Diagnostics Supporting Statistical Noise Prediction Methods

    NASA Technical Reports Server (NTRS)

    Bridges, James E.

    2006-01-01

    compared against measurements of mean and rms velocity statistics over a range of jet speeds and temperatures. Models for flow parameters used in the acoustic analogy, most notably the space-time correlations of velocity, have been compared against direct measurements, and modified to better fit the observed data. These measurements have been extremely challenging for hot, high speed jets, and represent a sizeable investment in instrumentation development. As an intermediate check that the analysis is predicting the physics intended, phased arrays have been employed to measure source distributions for a wide range of jet cases. And finally, careful far-field spectral directivity measurements have been taken for final validation of the prediction code. Examples of each of these experimental efforts will be presented. The main result of these efforts is a noise prediction code, named JeNo, which is in middevelopment. JeNo is able to consistently predict spectral directivity, including aft angle directivity, for subsonic cold jets of most geometries. Current development on JeNo is focused on extending its capability to hot jets, requiring inclusion of a previously neglected second source associated with thermal fluctuations. A secondary result of the intensive experimentation is the archiving of various flow statistics applicable to other acoustic analogies and to development of time-resolved prediction methods. These will be of lasting value as we look ahead at future challenges to the aeroacoustic experimentalist.

  1. Noise Reduction Methods for Weighing Lysimeters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mechanical vibration of the grass and crop weighing lysimeters, located at the University of California West Side Field Research and Extension Station at Five Points, CA generated noise in lysimeter mass measurements and reduced the quality of evapotranspiration (ET) data. Two filtering methods for ...

  2. The French method (of representing noise annoyance)

    NASA Technical Reports Server (NTRS)

    Collet, F.; Delol, J.

    1980-01-01

    The psophic index used in France for noise exposure from aircraft globally represents the annoyance with the following hypotheses: (1) the global annoyance is a function of the number of aircraft overflights of each type but does not depend on the overflight time; (2) an aircraft flying at night is considered to be just as annoying as 10 aircraft of the same type passing overhead during the day; and (3) and annoyance is only a function of the peak noise levels. Overall, the psophic index appears statistically as good a representation of the average annoyance as methods used in other countries; however, it does seem to reflect poorly the annoyance caused by light aircraft. Noise maps produced for Orly, Roissy, and the area around Paris are described. The range of applications and limitations of the psophic index are discussed.

  3. Interim prediction method for low frequency core engine noise

    NASA Technical Reports Server (NTRS)

    Huff, R. G.; Clark, B. J.; Dorsch, R. G.

    1974-01-01

    A literature survey on low-frequency core engine noise is presented. Possible sources of low frequency internally generated noise in core engines are discussed with emphasis on combustion and component scrubbing noise. An interim method is recommended for predicting low frequency core engine noise that is dominant when jet velocities are low. Suggestions are made for future research on low frequency core engine noise that will aid in improving the prediction method and help define possible additional internal noise sources.

  4. A method to predict circulation control noise

    NASA Astrophysics Data System (ADS)

    Reger, Robert W.

    Underwater vehicles suffer from reduced maneuverability with conventional lifting append-\\ ages due to the low velocity of operation. Circulation control offers a method to increase maneuverability independent of vehicle speed. However, with circulation control comes additional noise sources, which are not well understood. To better understand these noise sources, a modal-based prediction method is developed, potentially offering a quantitative connection between flow structures and far-field noise. This method involves estimation of the velocity field, surface pressure field, and far-field noise, using only non-time-resolved velocity fields and time-resolved probe measurements. Proper orthogonal decomposition, linear stochastic estimation and Kalman smoothing are employed to estimate time-resolved velocity fields. Poisson's equation is used to calculate time-resolved pressure fields from velocity. Curle's analogy is then used to propagate the surface pressure forces to the far field. This method is developed on a direct numerical simulation of a two-dimensional cylinder at a low Reynolds number (150). Since each of the fields to be estimated are also known from the simulation, a means of obtaining the error from using the methodology is provided. The velocity estimation and the simulated velocity match well when the simulated additive measurement noise is low. The pressure field suffers due to a small domain size; however, the surface pressures estimates fare much better. The far-field estimation contains similar frequency content with reduced magnitudes, attributed to the exclusion of the viscous forces in Curle's analogy. In the absence of added noise, the estimation procedure performs quite nicely for this model problem. The method is tested experimentally on a 650,000 chord-Reynolds-number flow over a 2-D, 20% thick, elliptic circulation control airfoil. Slot jet momentum coefficients of 0 and 0.10 are investigated. Particle image velocimetry, unsteady

  5. Seismometer Self-Noise and Measuring Methods

    USGS Publications Warehouse

    Ringler, Adam; R. Sleeman,; Hutt, Charles R.; Gee, Lind S.

    2014-01-01

    Seismometer self-noise is usually not considered when selecting and using seismic waveform data in scientific research as it is typically assumed that the self-noise is negligibly small compared to seismic signals. However, instrumental noise is part of the noise in any seismic record, and in particular, at frequencies below a few mHz, the instrumental noise has a frequency-dependent character and may dominate the noise. When seismic noise itself is considered as a carrier of information, as in seismic interferometry (e.g., Chaput et al. 2012), it becomes extremely important to estimate the contribution of instrumental noise to the recordings.

  6. Integrated Development Of Noise-Dust Woodworking Machines At The Design Stage

    NASA Astrophysics Data System (ADS)

    Chukarin, A. N.; Buligin, Y. I.; Alexeenko, L. N.; Romanov, V. A.

    2017-01-01

    The article deals the problem of creating of integrated security systems from the effects of hazardous and harmful factors of woodworking machinery on the design stage. Proposed the machine device design, which provides noise-dust protection of the operator fulfill the criterion of maximum permissible levels of noise and dust concentrations.

  7. 77 FR 57524 - Stage 3 Helicopter Noise Certification Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-18

    ... applications for a new helicopter type design and for a supplemental type certificate for those new type designs. A helicopter type certificated under this standard would be designated as a Stage 3 helicopter... standards of the International Civil Aviation Organization (ICAO). The proposal of these more...

  8. Method of reducing impulsive noise in electromagnetic geophysical data

    SciTech Connect

    Spies, B.R.

    1990-07-31

    This patent describes a method of reducing impulsive noise in electromagnetic geophysical data. It comprises: providing receiving antenna means for receiving an electromagnetic signal. The receiving antenna means receiving impulsive noise; providing noise sensor means for receiving the impulsive noise and placing the noise sensor means so as to receive the impulsive noise that is received by the receiving antenna means and so as to minimize the reception of the electromagnetic signal; simultaneously receiving the electromagnetic signal with the receiving antenna means so as to create a signal record and receiving the impulsive noise with the noise sensor means so as to create a noise record; examining the noise record for occurrences of the impulsive noise by comparing the noise record with a threshold noise value and identifying those instances of time in which the noise record exceeds the threshold; removing those portions of the signal record which are simultaneous with the identified instances in which the noise records exceeds the threshold, wherein the signal record has reduced impulsive noise.

  9. 14 CFR 161.9 - Designation of noise description methods.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Designation of noise description methods... TRANSPORTATION (CONTINUED) AIRPORTS NOTICE AND APPROVAL OF AIRPORT NOISE AND ACCESS RESTRICTIONS General Provisions § 161.9 Designation of noise description methods. For purposes of this part, the...

  10. 14 CFR 161.9 - Designation of noise description methods.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Designation of noise description methods... TRANSPORTATION (CONTINUED) AIRPORTS NOTICE AND APPROVAL OF AIRPORT NOISE AND ACCESS RESTRICTIONS General Provisions § 161.9 Designation of noise description methods. For purposes of this part, the...

  11. 14 CFR 161.9 - Designation of noise description methods.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Designation of noise description methods... TRANSPORTATION (CONTINUED) AIRPORTS NOTICE AND APPROVAL OF AIRPORT NOISE AND ACCESS RESTRICTIONS General Provisions § 161.9 Designation of noise description methods. For purposes of this part, the...

  12. 14 CFR 161.9 - Designation of noise description methods.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Designation of noise description methods... TRANSPORTATION (CONTINUED) AIRPORTS NOTICE AND APPROVAL OF AIRPORT NOISE AND ACCESS RESTRICTIONS General Provisions § 161.9 Designation of noise description methods. For purposes of this part, the...

  13. 14 CFR 161.9 - Designation of noise description methods.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Designation of noise description methods... TRANSPORTATION (CONTINUED) AIRPORTS NOTICE AND APPROVAL OF AIRPORT NOISE AND ACCESS RESTRICTIONS General Provisions § 161.9 Designation of noise description methods. For purposes of this part, the...

  14. Evaluation of internal noise methods for Hotelling observers

    NASA Astrophysics Data System (ADS)

    Zhang, Yani; Pham, Binh T.; Eckstein, Miguel P.

    2005-04-01

    Including internal noise in computer model observers to degrade model observer performance to human levels is a common method to allow for quantitatively comparisons of human and model performance. In this paper, we studied two different types of methods for injecting internal noise to Hotelling model observers. The first method adds internal noise to the output of the individual channels: a) Independent non-uniform channel noise, b) Independent uniform channel noise. The second method adds internal noise to the decision variable arising from the combination of channel responses: a) internal noise standard deviation proportional to decision variable's standard deviation due to the external noise, b) internal noise standard deviation proportional to decision variable's variance caused by the external noise. We tested the square window Hotelling observer (HO), channelized Hotelling observer (CHO), and Laguerre-Gauss Hotelling observer (LGHO). The studied task was detection of a filling defect of varying size/shape in one of four simulated arterial segment locations with real x-ray angiography backgrounds. Results show that the internal noise method that leads to the best prediction of human performance differs across the studied models observers. The CHO model best predicts human observer performance with the channel internal noise. The HO and LGHO best predict human observer performance with the decision variable internal noise. These results might help explain why previous studies have found different results on the ability of each Hotelling model to predict human performance. Finally, the present results might guide researchers with the choice of method to include internal noise into their Hotelling models.

  15. Dual stage active magnetic regenerator and method

    DOEpatents

    Pecharsky, Vitalij K.; Gschneidner, Jr., Karl A.

    1999-03-30

    A dual stage active magnetic regenerator refrigerator as well as method using the Joule-Brayton thermodynamic cycle includes a high temperature stage refrigerant comprising DyAl.sub.2 or (Dy.sub.1-x Er.sub.x)Al.sub.2 where x is selected to be greater than 0 and less than about 0.3 in combination with a low temperature stage comprising (Dy.sub.1-x Er.sub.x)Al.sub.2 where x is selected to be greater than about 0.5 and less than 1 to provide significantly improved refrigeration efficiency in the liquefaction of gaseous hydrogen.

  16. Dual stage active magnetic regenerator and method

    DOEpatents

    Pecharsky, V.K.; Gschneidner, K.A. Jr.

    1999-03-30

    A dual stage active magnetic regenerator refrigerator as well as method using the Joule-Brayton thermodynamic cycle includes a high temperature stage refrigerant comprising DyAl{sub 2} or (Dy{sub 1{minus}x}Er{sub x})Al{sub 2} where x is selected to be greater than 0 and less than about 0.3 in combination with a low temperature stage comprising (Dy{sub 1{minus}x}Er{sub x})Al{sub 2} where x is selected to be greater than about 0.5 and less than 1 to provide significantly improved refrigeration efficiency in the liquefaction of gaseous hydrogen. 17 figs.

  17. Method for suppressing noise in measurements

    NASA Technical Reports Server (NTRS)

    Carson, Paul L. (Inventor); Madsen, Louis A. (Inventor); Leskowitz, Garett M. (Inventor); Weitekamp, Daniel P. (Inventor)

    2000-01-01

    Methods for suppressing noise in measurements by correlating functions based on at least two different measurements of a system at two different times. In one embodiment, a measurement operation is performed on at least a portion of a system that has a memory. A property of the system is measured during a first measurement period to produce a first response indicative of a first state of the system. Then the property of the system is measured during a second measurement period to produce a second response indicative of a second state of the system. The second measurement is performed after an evolution duration subsequent to the first measurement period when the system still retains a degree of memory of an aspect of the first state. Next, a first function of the first response is combined with a second function of the second response to form a second-order correlation function. Information of the system is then extracted from the second-order correlation function.

  18. Single stage, low noise advanced technology fan. Volume 3: Acoustic design

    NASA Technical Reports Server (NTRS)

    Kazin, S. B.; Mishler, R. B.

    1976-01-01

    The acoustic design for a half-scale fan vehicle, which would have application on an advanced transport aircraft, is described. The single stage advanced technology fan was designed to a pressure ratio of 1.8 at a tip speed of 503 m/sec (1,650 ft/sec). The two basic approaches taken in the acoustic design were: (1) minimization of noise at the source, and (2) suppression of the generated noise in the inlet and bypass exhaust duct. Suppression of the generated noise is accomplished in the inlet through use of the hybrid concept (wall acoustic treatment plus airflow acceleration suppression) and in the exhaust duct with extensive acoustic treatment including a splitter. The goal of the design was attainment of twenty effective perceived noise decibels (20 EPNdB) below current Federal Air Regulation noise standards for a full-scale fan at the takeoff, cutback, and approach conditions. Predicted unsuppressed and suppressed fore and aft maximum perceived noise levels indicate that the cutback condition is the most critical with respect to the goal, which is probably unattainable for that condition. This is also true for aft radiated noise in the approach condition.

  19. Single stage, low noise, advanced technology fan. Volume 5: Fan acoustics. Section 1: Results and analysis

    NASA Technical Reports Server (NTRS)

    Jutras, R. R.

    1976-01-01

    The acoustic tests and data analysis for a 0.508-scale fan vehicle of a 111,300 newton (25,000 pound) thrust, full-size engine, which would have application on an advanced transport aircraft, is described. The single-stage advanced technology fan was designed to a pressure ratio of 1.8 at a tip speed of 503 m/sec (1,650 ft/sec) to achieve the desired pressure ratio in a single-stage fan with low radius ratio (0.38), and to maintain adequate stall margin. The fan has 44 tip-shrouded rotor blades and 90 outlet guide vanes. The two basic approaches taken in the acoustic design were: (1) minimization of noise at the source, and (2) suppression of the generated noise in the inlet and bypass exhaust duct. Suppression of the generated noise was accomplished in the inlet through use of the hybrid concept (wall acoustic treatment plus airflow acceleration suppression) and in the exhaust duct with extensive acoustic treatment including a splitter. The goal of the design was attainment of twenty effective perceived noise decibels (20 EPNdB) below current Federal Air Regulation noise standards for a full-scale fan at the takeoff, cutback, and approach conditions. The suppression goal of FAR 36-20 was not reached, but improvements in the technology of both front and aft fan-noise suppression were realized. The suppressed fan noise was shown to be consistent with the proposed federal regulation on aircraft noise.

  20. A method for calculating externally blown flap noise

    NASA Technical Reports Server (NTRS)

    Fink, M. R.

    1978-01-01

    Several basic noise components were described. These components are: (1) compact lift dipoles associated with the wing and flaps; (2) trailing edge noise associated with the last trailing edge; and (3) quadrupole noise associated with the undeflected exhaust jet and the free jet located downstream of the trailing edge. These noise components were combined to allow prediction of directivity and spectra for under the wing (UTW) slotted flaps with conventional or mixer nozzles, UTW slotless flaps, upper surface blowing (USB) slotless flaps, and engine in front of the wing slotted flaps. A digital computer program listing was given for this calculation method. Directivities and spectra calculated by this method were compared with free field data for UTW and USB configurations. The UTRC method best predicted the details of the measured noise emission, but the ANOP method best estimated the noise levels directly below these configurations.

  1. The socio-economic impact of noise: a method for assessing noise annoyance.

    PubMed

    Gjestland, Truls

    2007-01-01

    Norwegian authorities have developed and adopted a method for assessing the magnitude of noise impact on a community in quantitative terms. The method takes into account all levels of noise annoyance experienced by all the residents in an area and transforms these data into a single quantity that can also be expressed in monetary terms. This method is contrary to other commonly used assessment methods where only a certain fraction of the impacted people, e.g. those "highly annoyed," is considered.

  2. Two-stage, low noise advanced technology fan. 5: Acoustic final report

    NASA Technical Reports Server (NTRS)

    Sofrin, T. G.; Riloff, N., Jr.

    1975-01-01

    The NASA Q2S(quiet two-stage) fan is a 0.836m (32.9 in.) diameter model of the STF 433 engine fan, selected in a 1972 study for an Advanced Technology Transport (ATT) airplane. Noise-control features include: low tip speed, moderate stage pressure rise, large blade-vane spacings, no inlet guide vanes, and optimum blade and vane numbers. Tests were run on the baseline Q2S fan with standard inlet and discharge ducts. Further tests were made of a translating centerbody sonic inlet device and treated discharge ducts. Results were scaled to JT8D and JT3D engine fan size for comparison with current two-stage fans, and were also scaled to STF 433 fan size to compare calculated ATT flyover noise with FAR 36 limits. Baseline Q2S results scaled to JT8D and JT3D engine fan sizes showed substantial noise reductions. Calculated unsuppressed baseline ATT flyovers averaged about 2.5 EPNdB below FAR 36 limits. Using measured sonic inlet results, scaled baseline Q2S fan results, and calculated attenuations for a 1975 technology duct liner, projected flyover noise calculations for the ATT averaged about FAR 36 limits minus 10 EPNdB. Advances in suppression technology required to meet the 1985 goal of FAR 36 limits minus 20 EPNdB are discussed.

  3. Evaluation of internal noise methods for Hotelling observer models

    SciTech Connect

    Zhang Yani; Pham, Binh T.; Eckstein, Miguel P.

    2007-08-15

    The inclusion of internal noise in model observers is a common method to allow for quantitative comparisons between human and model observer performance in visual detection tasks. In this article, we studied two different strategies for inserting internal noise into Hotelling model observers. In the first strategy, internal noise was added to the output of individual channels: (a) Independent nonuniform channel noise, (b) independent uniform channel noise. In the second strategy, internal noise was added to the decision variable arising from the combination of channel responses. The standard deviation of the zero mean internal noise was either constant or proportional to: (a) the decision variable's standard deviation due to the external noise, (b) the decision variable's variance caused by the external noise, (c) the decision variable magnitude on a trial to trial basis. We tested three model observers: square window Hotelling observer (HO), channelized Hotelling observer (CHO), and Laguerre-Gauss Hotelling observer (LGHO) using a four alternative forced choice (4AFC) signal known exactly but variable task with a simulated signal embedded in real x-ray coronary angiogram backgrounds. The results showed that the internal noise method that led to the best prediction of human performance differed across the studied model observers. The CHO model best predicted human observer performance with the channel internal noise. The HO and LGHO best predicted human observer performance with the decision variable internal noise. The present results might guide researchers with the choice of methods to include internal noise into Hotelling model observers when evaluating and optimizing medical image quality.

  4. Extension of the characteristic potential method for noise calculation and its application to shot noise in semiconductor devices

    NASA Astrophysics Data System (ADS)

    Hong, Sung-Min; Min, Hong S.; Park, Chan H.; Park, Young J.

    2004-05-01

    Characteristic potential method (CPM) for noise calculation has been developed for multi-terminal semiconductor devices under the drift-diffusion scheme. Merit of the CPM is that clear cut definitions of the terminal thermal noise currents and the terminal excess noise currents can be made for unipolar devices and homogeneous resistors. We prove that the terminal thermal noise currents and the terminal excess noise currents are uncorrelated for unipolar devices even when they come from the same local noise sources. We also suggest a way to define thermal noise and excess noise in bipolar devices using the derived formulas from the CPM. As applications of the CPM, we show that the high frequency excess noise observed in homogenous semiconductor resistors is really shot noise whose noise generating mechanism is just the same as that of vacuum diodes. We also show that the dominant high frequency noise in long-channel MOSFETs is thermal noise in the linear region, but the excess noise is getting more significant as the drain bias increases, and is important in the saturation region. The excess noise in the saturation region of the long-channel MOSFETs is shown to be shot noise. Finally, we try to explain the shot noise-like behaviors observed in forward-biased pn junction diodes by the conventional corpuscular theory of shot noise even though the impedance field method confirms that the shot noise behaviors are caused by the local noise sources in the neutral regions, not in the depletion regions.

  5. A novel de-noising method for B ultrasound images

    NASA Astrophysics Data System (ADS)

    Tian, Da-Yong; Mo, Jia-qing; Yu, Yin-Feng; Lv, Xiao-Yi; Yu, Xiao; Jia, Zhen-Hong

    2015-12-01

    B ultrasound as a kind of ultrasonic imaging, which has become the indispensable diagnosis method in clinical medicine. However, the presence of speckle noise in ultrasound image greatly reduces the image quality and interferes with the accuracy of the diagnosis. Therefore, how to construct a method which can eliminate the speckle noise effectively, and at the same time keep the image details effectively is the research target of the current ultrasonic image de-noising. This paper is intended to remove the inherent speckle noise of B ultrasound image. The novel algorithm proposed is based on both wavelet transformation of B ultrasound images and data fusion of B ultrasound images, with a smaller mean squared error (MSE) and greater signal to noise ratio (SNR) compared with other algorithms. The results of this study can effectively remove speckle noise from B ultrasound images, and can well preserved the details and edge information which will produce better visual effects.

  6. A novel adaptive noise filtering method for SAR images

    NASA Astrophysics Data System (ADS)

    Li, Weibin; He, Mingyi

    2009-08-01

    In the most application situation, signal or image always is corrupted by additive noise. As a result there are mass methods to remove the additive noise while few approaches can work well for the multiplicative noise. The paper presents an improved MAP-based filter for multiplicative noise by adaptive window denoising technique. A Gamma noise models is discussed and a preprocessing technique to differential the matured and un-matured pixel is applied to get accurate estimate for Equivalent Number of Looks. Also the adaptive local window growth and 3 different denoise strategies are applied to smooth noise while keep its subtle information according to its local statistics feature. The simulation results show that the performance is better than existing filter. Several image experiments demonstrate its theoretical performance.

  7. Two stage low noise advanced technology fan. 1: Aerodynamic, structural, and acoustic design

    NASA Technical Reports Server (NTRS)

    Messenger, H. E.; Ruschak, J. T.; Sofrin, T. G.

    1974-01-01

    A two-stage fan was designed to reduce noise 20 db below current requirements. The first-stage rotor has a design tip speed of 365.8 m/sec and a hub/tip ratio of 0.4. The fan was designed to deliver a pressure ratio of 1.9 with an adiabatic efficiency of 85.3 percent at a specific inlet corrected flow of 209.2kg/sec/sq m. Noise reduction devices include acoustically treated casing walls, a flowpath exit acoustic splitter, a translating centerbody sonic inlet device, widely spaced blade rows, and the proper ratio of blades and vanes. Multiple-circular-arc rotor airfoils, resettable stators, split outer casings, and capability to go to close blade-row spacing are also included.

  8. Simple noise-reduction method based on nonlinear forecasting

    NASA Astrophysics Data System (ADS)

    Tan, James P. L.

    2017-03-01

    Nonparametric detrending or noise reduction methods are often employed to separate trends from noisy time series when no satisfactory models exist to fit the data. However, conventional noise reduction methods depend on subjective choices of smoothing parameters. Here we present a simple multivariate noise reduction method based on available nonlinear forecasting techniques. These are in turn based on state-space reconstruction for which a strong theoretical justification exists for their use in nonparametric forecasting. The noise reduction method presented here is conceptually similar to Schreiber's noise reduction method using state-space reconstruction. However, we show that Schreiber's method has a minor flaw that can be overcome with forecasting. Furthermore, our method contains a simple but nontrivial extension to multivariate time series. We apply the method to multivariate time series generated from the Van der Pol oscillator, the Lorenz equations, the Hindmarsh-Rose model of neuronal spiking activity, and to two other univariate real-world data sets. It is demonstrated that noise reduction heuristics can be objectively optimized with in-sample forecasting errors that correlate well with actual noise reduction errors.

  9. NASA's Aeroacoustic Tools and Methods for Analysis of Aircraft Noise

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Lopes, Leonard V.; Burley, Casey L.

    2015-01-01

    Aircraft community noise is a significant concern due to continued growth in air traffic, increasingly stringent environmental goals, and operational limitations imposed by airport authorities. The ability to quantify aircraft noise at the source and ultimately at observers is required to develop low noise aircraft designs and flight procedures. Predicting noise at the source, accounting for scattering and propagation through the atmosphere to the observer, and assessing the perception and impact on a community requires physics-based aeroacoustics tools. Along with the analyses for aero-performance, weights and fuel burn, these tools can provide the acoustic component for aircraft MDAO (Multidisciplinary Design Analysis and Optimization). Over the last decade significant progress has been made in advancing the aeroacoustic tools such that acoustic analyses can now be performed during the design process. One major and enabling advance has been the development of the system noise framework known as Aircraft NOise Prediction Program2 (ANOPP2). ANOPP2 is NASA's aeroacoustic toolset and is designed to facilitate the combination of acoustic approaches of varying fidelity for the analysis of noise from conventional and unconventional aircraft. The toolset includes a framework that integrates noise prediction and propagation methods into a unified system for use within general aircraft analysis software. This includes acoustic analyses, signal processing and interfaces that allow for the assessment of perception of noise on a community. ANOPP2's capability to incorporate medium fidelity shielding predictions and wind tunnel experiments into a design environment is presented. An assessment of noise from a conventional and Hybrid Wing Body (HWB) aircraft using medium fidelity scattering methods combined with noise measurements from a model-scale HWB recently placed in NASA's 14x22 wind tunnel are presented. The results are in the form of community noise metrics and

  10. Mapping urban environmental noise: a land use regression method.

    PubMed

    Xie, Dan; Liu, Yi; Chen, Jining

    2011-09-01

    Forecasting and preventing urban noise pollution are major challenges in urban environmental management. Most existing efforts, including experiment-based models, statistical models, and noise mapping, however, have limited capacity to explain the association between urban growth and corresponding noise change. Therefore, these conventional methods can hardly forecast urban noise at a given outlook of development layout. This paper, for the first time, introduces a land use regression method, which has been applied for simulating urban air quality for a decade, to construct an urban noise model (LUNOS) in Dalian Municipality, Northwest China. The LUNOS model describes noise as a dependent variable of surrounding various land areas via a regressive function. The results suggest that a linear model performs better in fitting monitoring data, and there is no significant difference of the LUNOS's outputs when applied to different spatial scales. As the LUNOS facilitates a better understanding of the association between land use and urban environmental noise in comparison to conventional methods, it can be regarded as a promising tool for noise prediction for planning purposes and aid smart decision-making.

  11. Method for suppressing noise in measurements

    NASA Technical Reports Server (NTRS)

    Carson, Paul J. (Inventor); Madsen, Louis A. (Inventor); Leskowitz, Garett M. (Inventor); Weitekamp, Daniel P. (Inventor)

    2000-01-01

    Techniques of combining separate but correlated measurements to form a second-order or higher order correlation function to suppress the effects of noise in the initial condition of a system capable of retaining memory of an initial state of the system with a characteristic relaxation time. At least two separate measurements are obtained from the system. The temporal separation between the two separate measurements is preferably comparable to or less than the characteristic relaxation time and is adjusted to allow for a correlation between two measurements.

  12. Data analysis and noise prediction for the QF-1B experimental fan stage

    NASA Technical Reports Server (NTRS)

    Bliss, D. B.; Chandiramani, K. L.; Piersol, A. G.

    1976-01-01

    The results of a fan noise data analysis and prediction effort using experimental data obtained from tests on the QF-1B research fan are described. Surface pressure measurements were made with flush mounted sensors installed on selected rotor blades and stator vanes and noise measurements were made by microphones located at the far field. Power spectral density analysis, time history studies, and calculation of coherence functions were made. The emphasis of these studies was on the characteristics of tones in the spectra. The amplitude behavior of spectral tones was found to have a large, often predominant, random component, suggesting that turbulent processes play an important role in the generation of tonal as well as broadband noise. Inputs from the data analysis were used in a prediction method which assumes that acoustic dipoles, produced by unsteady blade and van forces, are the important source of fan noise.

  13. Further studies of methods for reducing community noise around airports. [aircraft noise - aircraft engines

    NASA Technical Reports Server (NTRS)

    Petersen, R. H.; Barry, D. J.; Kline, D. M.

    1975-01-01

    A simplified method of analysis was used in which all flights at a 'simulated' airport were assumed to operate from one runway in a single direction. For this simulated airport, contours of noise exposure forecast were obtained and evaluated. A flight schedule of the simulated airport which is representative of the 23 major U. S. airports was used. The effect of banning night-time operations by four-engine, narrow-body aircraft in combination with other noise reduction options was studied. The reductions in noise which would occur of two- and three-engine, narrow-body aircraft equipped with a refanned engine was examined. A detailed comparison of the effects of engine cutback on takeoff versus the effects of retrofitting quiet nacelles for narrow-body aircraft was also examined. A method of presenting the effects of various noise reduction options was treated.

  14. Increased Fidelity in Prediction Methods For Landing Gear Noise

    NASA Technical Reports Server (NTRS)

    Lopes, Leonard V.; Brentner, Kenneth S.; Morris, Philip J.; Lockhard, David P.

    2006-01-01

    An aeroacoustic prediction scheme has been developed for landing gear noise. The method is designed to handle the complex landing gear geometry of current and future aircraft. The gear is represented by a collection of subassemblies and simple components that are modeled using acoustic elements. These acoustic elements are generic, but generate noise representative of the physical components on a landing gear. The method sums the noise radiation from each component of the undercarriage in isolation accounting for interference with adjacent components through an estimate of the local upstream and downstream flows and turbulence intensities. The acoustic calculations are made in the code LGMAP, which computes the sound pressure levels at various observer locations. The method can calculate the noise from the undercarriage in isolation or installed on an aircraft for both main and nose landing gear. Comparisons with wind tunnel and flight data are used to initially calibrate the method, then it may be used to predict the noise of any landing gear. In this paper, noise predictions are compared with wind tunnel data for model landing gears of various scales and levels of fidelity, as well as with flight data on fullscale undercarriages. The present agreement between the calculations and measurements suggests the method has promise for future application in the prediction of airframe noise.

  15. Noise simulation of aircraft engine fans by the boundary element method

    NASA Astrophysics Data System (ADS)

    Pyatunin, K. R.; Arkharova, N. V.; Remizov, A. E.

    2016-07-01

    Numerical simulation results of the civil aircraft engine fan stage noise in the far field are presented. Non-steady-state rotor-stator interaction is calculated the commercial software that solves the Navier-Stokes equations using differentturbulence models. Noise propagation to the far acoustic field is calculated by the boundary element method using acoustic Lighthill analogies without taking into account the mean current in the air inlet duct. The calculated sound pressure levels at points 50 m from the engine are presented, and the directional patterns of the acoustic radiation are shown. The use of the eddy resolving turbulence model to calculate rotor-stator interaction increases the accuracy in predicting fan stage noise.

  16. Two-stage, low noise advanced technology fan. Volume 2: Aerodynamic data

    NASA Technical Reports Server (NTRS)

    Harley, K. G.; Odegard, P. A.

    1975-01-01

    Aerodynamic data from static tests of a two-stage advanced technology fan designed to minimize noise are presented. Fan design conditions include delivery of 209.1kg/sec/sq m (42.85 lbm/sec/sq ft) specific corrected flow at an overall pressure ratio of 1.9 and an adiabatic efficiency of 85.3 percent. The 0.836m (2.74ft) diameter first stage rotor has a hub/tip ratio of 0.4 and 365.8m/sec (1200ft/sec) design tip speed. In addition to the moderate tip speed and pressure rise per stage, other noise control design features involve widely spaced blade rows and proper selection of blade-vane ratios. Aerodynamic data are presented for tests with unifrom and with hub and tip radially distorted inlet flow. Aerodynamic data are also presented for tests of this fan with acoustic treatments, including acoustically treated casing walls, a flowpath exit acoustic ring, and a translating centerbody sonic inlet device. A complete tabulation of the overall performance data, the blade element data, and the power spectral density information relating to turbulence levels generated by the sonic inlet obtained during these tests is included. For vol. 1, see N74-33789.

  17. A complex noise reduction method for improving visualization of SD-OCT skin biomedical images

    NASA Astrophysics Data System (ADS)

    Myakinin, Oleg O.; Zakharov, Valery P.; Bratchenko, Ivan A.; Kornilin, Dmitry V.; Khramov, Alexander G.

    2014-05-01

    In this paper we consider the original method of solving noise reduction problem for visualization's quality improvement of SD-OCT skin and tumors biomedical images. The principal advantages of OCT are high resolution and possibility of in vivo analysis. We propose a two-stage algorithm: 1) process of raw one-dimensional A-scans of SD-OCT and 2) remove a noise from the resulting B(C)-scans. The general mathematical methods of SD-OCT are unstable: if the noise of the CCD is 1.6% of the dynamic range then result distortions are already 25-40% of the dynamic range. We use at the first stage a resampling of A-scans and simple linear filters to reduce the amount of data and remove the noise of the CCD camera. The efficiency, improving productivity and conservation of the axial resolution when using this approach are showed. At the second stage we use an effective algorithms based on Hilbert-Huang Transform for more accurately noise peaks removal. The effectiveness of the proposed approach for visualization of malignant and benign skin tumors (melanoma, BCC etc.) and a significant improvement of SNR level for different methods of noise reduction are showed. Also in this study we consider a modification of this method depending of a specific hardware and software features of used OCT setup. The basic version does not require any hardware modifications of existing equipment. The effectiveness of proposed method for 3D visualization of tissues can simplify medical diagnosis in oncology.

  18. Experimental validation of boundary element methods for noise prediction

    NASA Technical Reports Server (NTRS)

    Seybert, A. F.; Oswald, Fred B.

    1992-01-01

    Experimental validation of methods to predict radiated noise is presented. A combined finite element and boundary element model was used to predict the vibration and noise of a rectangular box excited by a mechanical shaker. The predicted noise was compared to sound power measured by the acoustic intensity method. Inaccuracies in the finite element model shifted the resonance frequencies by about 5 percent. The predicted and measured sound power levels agree within about 2.5 dB. In a second experiment, measured vibration data was used with a boundary element model to predict noise radiation from the top of an operating gearbox. The predicted and measured sound power for the gearbox agree within about 3 dB.

  19. An effective method for computing the noise in biochemical networks

    PubMed Central

    Zhang, Jiajun; Nie, Qing; He, Miao; Zhou, Tianshou

    2013-01-01

    We present a simple yet effective method, which is based on power series expansion, for computing exact binomial moments that can be in turn used to compute steady-state probability distributions as well as the noise in linear or nonlinear biochemical reaction networks. When the method is applied to representative reaction networks such as the ON-OFF models of gene expression, gene models of promoter progression, gene auto-regulatory models, and common signaling motifs, the exact formulae for computing the intensities of noise in the species of interest or steady-state distributions are analytically given. Interestingly, we find that positive (negative) feedback does not enlarge (reduce) noise as claimed in previous works but has a counter-intuitive effect and that the multi-OFF (or ON) mechanism always attenuates the noise in contrast to the common ON-OFF mechanism and can modulate the noise to the lowest level independently of the mRNA mean. Except for its power in deriving analytical expressions for distributions and noise, our method is programmable and has apparent advantages in reducing computational cost. PMID:23464139

  20. Methods to characterize non-Gaussian noise in TAMA

    NASA Astrophysics Data System (ADS)

    Ando, Masaki; Arai, K.; Takahashi, R.; Tatsumi, D.; Beyersdorf, P.; Kawamura, S.; Miyoki, S.; Mio, N.; Moriwaki, S.; Numata, K.; Kanda, N.; Aso, Y.; Fujimoto, M.-K.; Tsubono, K.; Kuroda, K.; TAMA Collaboration

    2003-09-01

    We present a data characterization method for the main output signal of the interferometric gravitational-wave detector, in particular targetting at effective detection of burst gravitational waves from stellar core collapse. The time scale of non-Gaussian events is evaluated in this method, and events with longer time scale than real signals are rejected as non-Gaussian noises. As a result of data analysis using 1000 h of real data with the interferometric gravitational-wave detector TAMA300, the false-alarm rate was improved 103 times with this non-Gaussian noise evaluation and rejection method.

  1. A new noise reduction method for airborne gravity gradient data

    NASA Astrophysics Data System (ADS)

    Jirigalatu; Ebbing, Jörg; Sebera, Josef

    2016-09-01

    Airborne gravity gradient (AGG) measurements offer an increased resolution and accuracy compared to terrestrial measurements. But interpretation and processing of AGG data are often challenging as levelling errors and survey noise affect the data, and these effects are not easily recognised in the gradient components. We adopted the classic method of upward continuation in the noise reduction using the noise level estimates by the AGG system. By iteratively projecting the survey data to a lower level and upward continuing the data back to the survey height, parts of the high-frequency signal are suppressed. The filter, which is defined by this approach, is directly dependent on the noise level of the AGG data, the maximum number of iterations and the iterative step. We demonstrate the method by applying it to both synthetic data and real AGG data over Karasjok, Norway, and compare the results to the directional filtering method. The results show that the iterative filter can effectively reduce high-frequency noise in the data.

  2. A survey of the broadband shock associated noise prediction methods

    NASA Technical Reports Server (NTRS)

    Kim, Chan M.; Krejsa, Eugene A.; Khavaran, Abbas

    1992-01-01

    Several different prediction methods to estimate the broadband shock associated noise of a supersonic jet are introduced and compared with experimental data at various test conditions. The nozzle geometries considered for comparison include a convergent and a convergent-divergent nozzle, both axisymmetric. Capabilities and limitations of prediction methods in incorporating the two nozzle geometries, flight effect, and temperature effect are discussed. Predicted noise field shows the best agreement for a convergent nozzle geometry under static conditions. Predicted results for nozzles in flight show larger discrepancies from data and more dependable flight data are required for further comparison. Qualitative effects of jet temperature, as observed in experiment, are reproduced in predicted results.

  3. Simple method for prediction of aircraft noise contours

    NASA Technical Reports Server (NTRS)

    Stewart, E. C.; Carson, T. M.

    1980-01-01

    A method for generating noise contours more rapidly and more simply than previously used programs is discussed. The method gives the area, the noise contour, and its extremities for an arbitrarily complex flight path for both takeoffs and landings with relative ease. The analysis reveals the fundamental nature of the contours and how the various factors that influence its size and shape enter into the analysis. It is noted that the effects of ground attenuation and shielding are omitted as they are important only on the initial portion of flight and are highly dependent upon aircraft configuration. However, the analysis shows that these effects could be included. It is emphasized the the single-event contour is an obvious choice for purposes of minimizing noise impact.

  4. Application of the Spectral Element Method to Interior Noise Problems

    NASA Technical Reports Server (NTRS)

    Doyle, James F.

    1998-01-01

    The primary effort of this research project was focused the development of analytical methods for the accurate prediction of structural acoustic noise and response. Of particular interest was the development of curved frame and shell spectral elements for the efficient computational of structural response and of schemes to match this to the surrounding fluid.

  5. Noise-insensitive iterative method for interferogram processing

    NASA Astrophysics Data System (ADS)

    Kotlyar, V. V.; Seraphimovich, P. G.; Zalyalov, O. K.

    1995-08-01

    We have developed and numerically evaluated an iterative algorithm for interferogram processing, which includes the Fourier-transform method, the Gerchberg-Papoulis algorithm and Wiener's filter-based regularization used in combination. Using a signal-to-noise ratio of not less than 1, it has been possible to reconstruct the phase of an object field with an accuracy better than 5%.

  6. An evaluation of methods for scaling aircraft noise perception

    NASA Technical Reports Server (NTRS)

    Ollerhead, J. B.

    1971-01-01

    One hundred and twenty recorded sounds, including jets, turboprops, piston engined aircraft and helicopters were rated by a panel of subjects in a paired comparison test. The results were analyzed to evaluate a number of noise rating procedures in terms of their ability to accurately estimate both relative and absolute perceived noise levels. It was found that the complex procedures developed by Stevens, Zwicker and Kryter are superior to other scales. The main advantage of these methods over the more convenient weighted sound pressure level scales lies in their ability to cope with signals over a wide range of bandwidth. However, Stevens' loudness level scale and the perceived noise level scale both overestimate the growth of perceived level with intensity because of an apparent deficiency in the band level summation rule. A simple correction is proposed which will enable these scales to properly account for the experimental observations.

  7. Thermally integrated staged methanol reformer and method

    DOEpatents

    Skala, Glenn William; Hart-Predmore, David James; Pettit, William Henry; Borup, Rodney Lynn

    2001-01-01

    A thermally integrated two-stage methanol reformer including a heat exchanger and first and second reactors colocated in a common housing in which a gaseous heat transfer medium circulates to carry heat from the heat exchanger into the reactors. The heat transfer medium comprises principally hydrogen, carbon dioxide, methanol vapor and water vapor formed in a first stage reforming reaction. A small portion of the circulating heat transfer medium is drawn off and reacted in a second stage reforming reaction which substantially completes the reaction of the methanol and water remaining in the drawn-off portion. Preferably, a PrOx reactor will be included in the housing upstream of the heat exchanger to supplement the heat provided by the heat exchanger.

  8. Practical methods for noise removal: applications to spikes, nonstationary quasi-periodic noise, and baseline drift.

    PubMed

    Feuerstein, Delphine; Parker, Kim H; Boutelle, Martyn G

    2009-06-15

    A new approach to signal processing of analytical time-domain data is presented. It consists in identifying the types of noise, characterizing them, and subsequently subtracting them from the otherwise unprocessed data set. The algorithms have been successfully applied to three classes of noise commonly found in analytical signals: spikes, ripples, and baseline drift. Traditional filters have been used as an intermediary step to detect and remove spikes in the signal with 96.8% success. Adaptive ensemble average subtraction has been developed to remove nonstationary ripples that have similar time scales as the signal of interest. This method increased the signal-to-noise ratio by up to 250% and led to minimal distortion of the signal, unlike conventional Fourier filters. Finally the removal of baseline drift has been achieved by subtraction of a mathematical model for the baseline. These three methods are generic, computationally fast, and applicable to a wide range of analytical techniques. Full Matlab codes and examples are included as Supporting Information.

  9. A Novel Method for Vertical Acceleration Noise Suppression of a Thrust-Vectored VTOL UAV.

    PubMed

    Li, Huanyu; Wu, Linfeng; Li, Yingjie; Li, Chunwen; Li, Hangyu

    2016-12-02

    Acceleration is of great importance in motion control for unmanned aerial vehicles (UAVs), especially during the takeoff and landing stages. However, the measured acceleration is inevitably polluted by severe noise. Therefore, a proper noise suppression procedure is required. This paper presents a novel method to reduce the noise in the measured vertical acceleration for a thrust-vectored tail-sitter vertical takeoff and landing (VTOL) UAV. In the new procedure, a Kalman filter is first applied to estimate the UAV mass by using the information in the vertical thrust and measured acceleration. The UAV mass is then used to compute an estimate of UAV vertical acceleration. The estimated acceleration is finally fused with the measured acceleration to obtain the minimum variance estimate of vertical acceleration. By doing this, the new approach incorporates the thrust information into the acceleration estimate. The method is applied to the data measured in a VTOL UAV takeoff experiment. Two other denoising approaches developed by former researchers are also tested for comparison. The results demonstrate that the new method is able to suppress the acceleration noise substantially. It also maintains the real-time performance in the final estimated acceleration, which is not seen in the former denoising approaches. The acceleration treated with the new method can be readily used in the motion control applications for UAVs to achieve improved accuracy.

  10. A Novel Method for Vertical Acceleration Noise Suppression of a Thrust-Vectored VTOL UAV

    PubMed Central

    Li, Huanyu; Wu, Linfeng; Li, Yingjie; Li, Chunwen; Li, Hangyu

    2016-01-01

    Acceleration is of great importance in motion control for unmanned aerial vehicles (UAVs), especially during the takeoff and landing stages. However, the measured acceleration is inevitably polluted by severe noise. Therefore, a proper noise suppression procedure is required. This paper presents a novel method to reduce the noise in the measured vertical acceleration for a thrust-vectored tail-sitter vertical takeoff and landing (VTOL) UAV. In the new procedure, a Kalman filter is first applied to estimate the UAV mass by using the information in the vertical thrust and measured acceleration. The UAV mass is then used to compute an estimate of UAV vertical acceleration. The estimated acceleration is finally fused with the measured acceleration to obtain the minimum variance estimate of vertical acceleration. By doing this, the new approach incorporates the thrust information into the acceleration estimate. The method is applied to the data measured in a VTOL UAV takeoff experiment. Two other denoising approaches developed by former researchers are also tested for comparison. The results demonstrate that the new method is able to suppress the acceleration noise substantially. It also maintains the real-time performance in the final estimated acceleration, which is not seen in the former denoising approaches. The acceleration treated with the new method can be readily used in the motion control applications for UAVs to achieve improved accuracy. PMID:27918422

  11. Multi-stage fuel cell system method and apparatus

    DOEpatents

    George, Thomas J.; Smith, William C.

    2000-01-01

    A high efficiency, multi-stage fuel cell system method and apparatus is provided. The fuel cell system is comprised of multiple fuel cell stages, whereby the temperatures of the fuel and oxidant gas streams and the percentage of fuel consumed in each stage are controlled to optimize fuel cell system efficiency. The stages are connected in a serial, flow-through arrangement such that the oxidant gas and fuel gas flowing through an upstream stage is conducted directly into the next adjacent downstream stage. The fuel cell stages are further arranged such that unspent fuel and oxidant laden gases too hot to continue within an upstream stage because of material constraints are conducted into a subsequent downstream stage which comprises a similar cell configuration, however, which is constructed from materials having a higher heat tolerance and designed to meet higher thermal demands. In addition, fuel is underutilized in each stage, resulting in a higher overall fuel cell system efficiency.

  12. Comparison of methods for removing electromagnetic noise from electromyographic signals.

    PubMed

    Defreitas, Jason M; Beck, Travis W; Stock, Matt S

    2012-02-01

    The purpose of this investigation was to compare three different methods of removing noise from monopolar electromyographic (EMG) signals: (a) electrical shielding with a Faraday cage, (b) denoising with a digital notch-filter and (c) applying a bipolar differentiation with another monopolar EMG signal. Ten men and ten women (mean age = 24.0 years) performed isometric muscle actions of the leg extensors at 10-100% of their maximal voluntary contraction on two separate occasions. One trial was performed inside a Faraday tent (a flexible Faraday cage made from conductive material), and the other was performed outside the Faraday tent. The EMG signals collected outside the Faraday tent were analyzed three separate ways: as a raw signal, as a bipolar signal, and as a signal digitally notch filtered to remove 60 Hz noise and its harmonics. The signal-to-noise ratios were greatest after notch-filtering (range: 3.0-33.8), and lowest for the bipolar arrangement (1.6-10.2). Linear slope coefficients for the EMG amplitude versus force relationship were also used to compare the methods of noise removal. The results showed that a bipolar arrangement had a significantly lower linear slope coefficient when compared to the three other conditions (raw, notch and tent). These results suggested that an appropriately filtered monopolar EMG signal can be useful in situations that require a large pick-up area. Furthermore, although it is helpful, a Faraday tent (or cage) is not required to achieve an appropriate signal-to-noise ratio, as long as the correct filters are applied.

  13. Method of calibrating an interferometer and reducing its systematic noise

    NASA Technical Reports Server (NTRS)

    Hammer, Philip D. (Inventor)

    1997-01-01

    Methods of operation and data analysis for an interferometer so as to eliminate the errors contributed by non-responsive or unstable pixels, interpixel gain variations that drift over time, and spurious noise that would otherwise degrade the operation of the interferometer are disclosed. The methods provide for either online or post-processing calibration. The methods apply prescribed reversible transformations that exploit the physical properties of interferograms obtained from said interferometer to derive a calibration reference signal for subsequent treatment of said interferograms for interpixel gain variations. A self-consistent approach for treating bad pixels is incorporated into the methods.

  14. A dual-cable noise reduction method for Langmuir probes

    NASA Astrophysics Data System (ADS)

    Yang, T. F.; Zu, Q. X.; Liu, Ping

    1995-07-01

    To obtain fast time response plasma properties, electron density and electron temperature, with a Langmuir probe, the applied probe voltage has to be swept at high frequency. Due to the RC characteristics of coaxial cables, an induced noise of a square-wave form will appear when a sawtooth voltage is applied to the probe. Such a noise is very annoying and difficult to remove, particularly when the probe signal is weak. This paper discusses a noise reduction method using a dual-cable circuit. One of the cables is active and the other is a dummy. Both of them are of equal length and are laid parallel to each other. The active cable carries the applied probe voltage and the probe current signal. The dummy one is not connected to the probe. After being carefully tuned, the induced noises from both cables are nearly identical and therefore can be effectively eliminated with the use of a differential amplifier. A clean I-V characteristic curve can thus be obtained. This greatly improves the accuracy and the time resolution of the values of ne and Te.

  15. Unstructured CFD and Noise Prediction Methods for Propulsion Airframe Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Pao, S. Paul; Abdol-Hamid, Khaled S.; Campbell, Richard L.; Hunter, Craig A.; Massey, Steven J.; Elmiligui, Alaa A.

    2006-01-01

    Using unstructured mesh CFD methods for Propulsion Airframe Aeroacoustics (PAA) analysis has the distinct advantage of precise and fast computational mesh generation for complex propulsion and airframe integration arrangements that include engine inlet, exhaust nozzles, pylon, wing, flaps, and flap deployment mechanical parts. However, accurate solution values of shear layer velocity, temperature and turbulence are extremely important for evaluating the usually small noise differentials of potential applications to commercial transport aircraft propulsion integration. This paper describes a set of calibration computations for an isolated separate flow bypass ratio five engine nozzle model and the same nozzle system with a pylon. These configurations have measured data along with prior CFD solutions and noise predictions using a proven structured mesh method, which can be used for comparison to the unstructured mesh solutions obtained in this investigation. This numerical investigation utilized the TetrUSS system that includes a Navier-Stokes solver, the associated unstructured mesh generation tools, post-processing utilities, plus some recently added enhancements to the system. New features necessary for this study include the addition of two equation turbulence models to the USM3D code, an h-refinement utility to enhance mesh density in the shear mixing region, and a flow adaptive mesh redistribution method. In addition, a computational procedure was developed to optimize both solution accuracy and mesh economy. Noise predictions were completed using an unstructured mesh version of the JeT3D code.

  16. Single stage, low noise, advanced technology fan. Volume 1: Aerodynamic design

    NASA Technical Reports Server (NTRS)

    Sullivan, T. J.; Younghans, J. L.; Little, D. R.

    1976-01-01

    The aerodynamic design for a half-scale fan vehicle, which would have application on an advanced transport aircraft, is described. The single stage advanced technology fan was designed to a pressure ratio of 1.8 at a tip speed of 503 m/sec 11,650 ft/sec). The fan and booster components are designed in a scale model flow size convenient for testing with existing facility and vehicle hardware. The design corrected flow per unit annulus area at the fan face is 215 kg/sec sq m (44.0 lb m/sec sq ft) with a hub-tip ratio of 0.38 at the leading edge of the fan rotor. This results in an inlet corrected airflow of 117.9 kg/sec (259.9 lb m/sec) for the selected rotor tip diameter if 90.37 cm (35.58 in.). The variable geometry inlet is designed utilizing a combination of high throat Mach number and acoustic treatment in the inlet diffuser for noise suppression (hybrid inlet). A variable fan exhaust nozzle was assumed in conjunction with the variable inlet throat area to limit the required area change of the inlet throat at approach and hence limit the overall diffusion and inlet length. The fan exit duct design was primarily influenced by acoustic requirements, including length of suppressor wall treatment; length, thickness and position on a duct splitter for additional suppressor treatment; and duct surface Mach numbers.

  17. Two-stage, low noise advanced technology fan. 4: Aerodynamic final report

    NASA Technical Reports Server (NTRS)

    Harley, K. G.; Keenan, M. J.

    1975-01-01

    A two-stage research fan was tested to provide technology for designing a turbofan engine for an advanced, long range commercial transport having a cruise Mach number of 0.85 -0.9 and a noise level 20 EPNdB below current requirements. The fan design tip speed was 365.8m/sec (1200ft/sec);the hub/tip ratio was 0.4; the design pressure ratio was 1.9; and the design specific flow was 209.2 kg/sec/sq m(42.85lbm/sec/sq ft). Two fan-versions were tested: a baseline configuration, and an acoustically treated configuration with a sonic inlet device. The baseline version was tested with uniform inlet flow and with tip-radial and hub-radial inlet flow distortions. The baseline fan with uniform inlet flow attained an efficiency of 86.4% at design speed, but the stall margin was low. Tip-radial distortion increased stall margin 4 percentage points at design speed and reduced peak efficiency one percentage point. Hub-radial distortion decreased stall margin 4 percentage points at all speeds and reduced peak efficiency at design speed 8 percentage points. At design speed, the sonic inlet in the cruise position reduced stall margin one percentage point and efficiency 1.5 to 4.5 percentage points. The sonic inlet in the approach position reduced stall margin 2 percentage points.

  18. Advanced Computational Aeroacoustics Methods for Fan Noise Prediction

    NASA Technical Reports Server (NTRS)

    Envia, Edmane (Technical Monitor); Tam, Christopher

    2003-01-01

    Direct computation of fan noise is presently not possible. One of the major difficulties is the geometrical complexity of the problem. In the case of fan noise, the blade geometry is critical to the loading on the blade and hence the intensity of the radiated noise. The precise geometry must be incorporated into the computation. In computational fluid dynamics (CFD), there are two general ways to handle problems with complex geometry. One way is to use unstructured grids. The other is to use body fitted overset grids. In the overset grid method, accurate data transfer is of utmost importance. For acoustic computation, it is not clear that the currently used data transfer methods are sufficiently accurate as not to contaminate the very small amplitude acoustic disturbances. In CFD, low order schemes are, invariably, used in conjunction with unstructured grids. However, low order schemes are known to be numerically dispersive and dissipative. dissipative errors are extremely undesirable for acoustic wave problems. The objective of this project is to develop a high order unstructured grid Dispersion-Relation-Preserving (DRP) scheme. would minimize numerical dispersion and dissipation errors. contains the results of the funded portion of the project. scheme on an unstructured grid has been developed. constructed in the wave number space. The characteristics of the scheme can be improved by the inclusion of additional constraints. Stability of the scheme has been investigated. Stability can be improved by adopting the upwinding strategy.

  19. An efficient and robust method for predicting helicopter rotor high-speed impulsive noise

    NASA Technical Reports Server (NTRS)

    Brentner, Kenneth S.

    1996-01-01

    A new formulation for the Ffowcs Williams-Hawkings quadrupole source, which is valid for a far-field in-plane observer, is presented. The far-field approximation is new and unique in that no further approximation of the quadrupole source strength is made and integrands with r(exp -2) and r(exp -3) dependence are retained. This paper focuses on the development of a retarded-time formulation in which time derivatives are analytically taken inside the integrals to avoid unnecessary computational work when the observer moves with the rotor. The new quadrupole formulation is similar to Farassat's thickness and loading formulation 1A. Quadrupole noise prediction is carried out in two parts: a preprocessing stage in which the previously computed flow field is integrated in the direction normal to the rotor disk, and a noise computation stage in which quadrupole surface integrals are evaluated for a particular observer position. Preliminary predictions for hover and forward flight agree well with experimental data. The method is robust and requires computer resources comparable to thickness and loading noise prediction.

  20. Theory of optimum radio reception methods in random noise

    NASA Astrophysics Data System (ADS)

    Gutkin, L. S.

    1982-09-01

    The theory of optimum methods of reception of signals on the background of random noise, widely used in development of any radioelectronic systems and devices based on reception and transmission of information (radar and radio controlled, radio communications, radio telemetry, radio astronomy, television, and other systems), as well as electroacoustical and wire communications sytems, is presented. Optimum linear and nonlinear filtration, binary and comples signal detection and discrimination, estimation of signal parameters, receiver synthesis for incomplete a priori data, special features of synthesis with respect to certain quality indicators, and other problems are examined.

  1. A Superior Kirchhoff Method for Aeroacoustic Noise Prediction: The Ffowcs Williams-Hawkings Equation

    NASA Technical Reports Server (NTRS)

    Brentner, Kenneth S.

    1997-01-01

    The prediction of aeroacoustic noise is important; all new aircraft must meet noise certification requirements. Local noise standards can be even more stringent. The NASA noise reduction goal is to reduce perceived noise levels by a factor of two in 10 years. The objective of this viewgraph presentation is to demonstrate the superiority of the FW-H approach over the Kirchoff method for aeroacoustics, both analytically and numerically.

  2. The cost of applying current helicopter external noise reduction methods while maintaining realistic vehicle performance

    NASA Technical Reports Server (NTRS)

    Bowes, M. A.

    1978-01-01

    Analytical methods were developed and/or adopted for calculating helicopter component noise, and these methods were incorporated into a unified total vehicle noise calculation model. Analytical methods were also developed for calculating the effects of noise reduction methodology on helicopter design, performance, and cost. These methods were used to calculate changes in noise, design, performance, and cost due to the incorporation of engine and main rotor noise reduction methods. All noise reduction techniques were evaluated in the context of an established mission performance criterion which included consideration of hovering ceiling, forward flight range/speed/payload, and rotor stall margin. The results indicate that small, but meaningful, reductions in helicopter noise can be obtained by treating the turbine engine exhaust duct. Furthermore, these reductions do not result in excessive life cycle cost penalties. Currently available main rotor noise reduction methodology, however, is shown to be inadequate and excessively costly.

  3. Examination of a Rotorcraft Noise Prediction Method and Comparison to Flight Test Data

    NASA Technical Reports Server (NTRS)

    Boyd, D. Douglas, Jr.; Greenwood, Eric; Watts, Michael E.; Lopes, Leonard V.

    2017-01-01

    With a view that rotorcraft noise should be included in the preliminary design process, a relatively fast noise prediction method is examined in this paper. A comprehensive rotorcraft analysis is combined with a noise prediction method to compute several noise metrics of interest. These predictions are compared to flight test data. Results show that inclusion of only the main rotor noise will produce results that severely underpredict integrated metrics of interest. Inclusion of the tail rotor frequency content is essential for accurately predicting these integrated noise metrics.

  4. Scatter-plot-based method for noise characteristics evaluation in remote sensing images using adaptive image clustering procedure

    NASA Astrophysics Data System (ADS)

    Abramova, Victoriya V.; Abramov, Sergey K.; Lukin, Vladimir V.; Vozel, Benoit; Chehdi, Kacem

    2016-10-01

    Several modifications of scatter-plot-based method for mixed noise parameters estimation are proposed. The modifications relate to the stage of image segmentation and they are intended to adaptively separate image blocks into clusters taking into account image peculiarities and to choose a required number of clusters. Comparative performance analysis of the proposed modifications for images from TID2008 database is performed. It is shown that the best estimation accuracy is provided by a method with automatic determination of a required number of clusters followed by block separation into clusters using k-means method. This modification allows improving the accuracy of noise characteristics estimation by up to 5% for both signal-independent and signal-dependent noise components in comparison to the basic method. The results for real-life data are presented.

  5. Apparatus and methods for controlling electron microscope stages

    DOEpatents

    Duden, Thomas

    2015-08-11

    Methods and apparatus for generating an image of a specimen with a microscope (e.g., TEM) are disclosed. In one aspect, the microscope may generally include a beam generator, a stage, a detector, and an image generator. A plurality of crystal parameters, which describe a plurality of properties of a crystal sample, are received. In a display associated with the microscope, an interactive control sphere based at least in part on the received crystal parameters and that is rotatable by a user to different sphere orientations is presented. The sphere includes a plurality of stage coordinates that correspond to a plurality of positions of the stage and a plurality of crystallographic pole coordinates that correspond to a plurality of polar orientations of the crystal sample. Movement of the sphere causes movement of the stage, wherein the stage coordinates move in conjunction with the crystallographic coordinates represented by pole positions so as to show a relationship between stage positions and the pole positions.

  6. /sup 252/Cf-source-driven neutron noise analysis method

    SciTech Connect

    Mihalczo, J.T.; King, W.T.; Blakeman, E.D.

    1985-01-01

    The /sup 252/Cf-source-driven neutron noise analysis method has been tested in a wide variety of experiments that have indicated the broad range of applicability of the method. The neutron multiplication factor k/sub eff/ has been satisfactorily detemined for a variety of materials including uranium metal, light water reactor fuel pins, fissile solutions, fuel plates in water, and interacting cylinders. For a uranyl nitrate solution tank which is typical of a fuel processing or reprocessing plant, the k/sub eff/ values were satisfactorily determined for values between 0.92 and 0.5 using a simple point kinetics interpretation of the experimental data. The short measurement times, in several cases as low as 1 min, have shown that the development of this method can lead to a practical subcriticality monitor for many in-plant applications. The further development of the method will require experiments oriented toward particular applications including dynamic experiments and the development of theoretical methods to predict the experimental observables.

  7. Quantitative evaluation of material degradation by Barkhausen noise method

    SciTech Connect

    Yamaguchi, Atsunori; Maeda, Noriyoshi; Sugibayashi, Takuya

    1995-12-01

    Evaluation the life of nuclear power plant becomes inevitable to extend the plant operating period. This paper applied the magnetic method using Barkhausen noise (BHN) to detect the degradation by fatigue and thermal aging. Low alloy steel (SA 508 cl.2) was fatigued at the strain amplitudes of {+-}1% and {+-}0.4%, and duplex stainless steel (SCS14A) was heated at 400 C for a long period (thermal aging). For the degraded material by thermal aging, BHN was measured and good correlation between magnetic properties and absorption energy of the material was obtained. For fatigued material, BHNM was measured at each predetermined cycle and the effect of stress or strain of the material when it measured was evaluated, and good correlation between BHN and fatigue damage ratio was obtained.

  8. A study on phase-noise reduction method in phase-locked loop systems.

    PubMed

    Takagi, Keiji

    2003-09-01

    Experimental studies are carried out on phase noise and the correlation coefficient between the phase and average current noises of voltage-controlled oscillator in phased-locked loop (PLL) systems. The precise phase stabilization technique is discussed, and new methods to reduce the phase noise are described in PLL systems, using the correlation.

  9. Two Methods of Mechanical Noise Reduction of Recorded Speech During Phonation in an MRI device

    NASA Astrophysics Data System (ADS)

    Přibil, J.; Horáček, J.; Horák, P.

    2011-01-01

    The paper presents two methods of noise reduction of speech signal recorded in an MRI device during phonation for the human vocal tract modelling. The applied approach of noise speech signal cleaning is based on cepstral speech analysis and synthesis because the noise is mainly produced by gradient coils, has a mechanical character, and can be processed in spectral domain. Our first noise reduction method is using real cepstrum limitation and clipping the "peaks" corresponding to the harmonic frequencies of mechanical noise. The second method is coming out from substation of the short-time spectra of two signals recorded withal: the first includes speech and noise, and the second consists of noise only. The resulting speech quality was compared by spectrogram and mean periodogram methods.

  10. A simple method for NMR t1 noise suppression

    NASA Astrophysics Data System (ADS)

    Mo, Huaping; Harwood, John S.; Yang, Danzhou; Post, Carol Beth

    2017-03-01

    t1 noise appears as random or semi-random spurious streaks along the indirect t1 (F1) dimension of a 2D or nD NMR spectrum. It can significantly downgrade spectral quality, especially for spectra with strong diagonal signals such as NOESY, because useful and weak cross-peaks can be easily buried under t1 noise. One of the significant contributing factors to t1 noise is unwanted and semi-random F2 signal modulation during t1 acquisition. As such, t1 noise from different acquisitions is unlikely to correlate with each other strongly. In the case of NOESY, co-addition of multiple spectra significantly reduces t1 noise compared with conventional acquisition with the same amount of total acquisition time and resolution.

  11. The discovery of processing stages: Extension of Sternberg's method.

    PubMed

    Anderson, John R; Zhang, Qiong; Borst, Jelmer P; Walsh, Matthew M

    2016-10-01

    We introduce a method for measuring the number and durations of processing stages from the electroencephalographic signal and apply it to the study of associative recognition. Using an extension of past research that combines multivariate pattern analysis with hidden semi-Markov models, the approach identifies on a trial-by-trial basis where brief sinusoidal peaks (called bumps) are added to the ongoing electroencephalographic signal. We propose that these bumps mark the onset of critical cognitive stages in processing. The results of the analysis can be used to guide the development of detailed process models. Applied to the associative recognition task, the hidden semi-Markov models multivariate pattern analysis method indicates that the effects of associative strength and probe type are localized to a memory retrieval stage and a decision stage. This is in line with a previously developed the adaptive control of thought-rational process model, called ACT-R, of the task. As a test of the generalization of our method we also apply it to a data set on the Sternberg working memory task collected by Jacobs, Hwang, Curran, and Kahana (2006). The analysis generalizes robustly, and localizes the typical set size effect in a late comparison/decision stage. In addition to providing information about the number and durations of stages in associative recognition, our analysis sheds light on the event-related potential components implicated in the study of recognition memory. (PsycINFO Database Record

  12. Fuzzy Filtering Method for Color Videos Corrupted by Additive Noise

    PubMed Central

    Ponomaryov, Volodymyr I.; Montenegro-Monroy, Hector; Nino-de-Rivera, Luis

    2014-01-01

    A novel method for the denoising of color videos corrupted by additive noise is presented in this paper. The proposed technique consists of three principal filtering steps: spatial, spatiotemporal, and spatial postprocessing. In contrast to other state-of-the-art algorithms, during the first spatial step, the eight gradient values in different directions for pixels located in the vicinity of a central pixel as well as the R, G, and B channel correlation between the analogous pixels in different color bands are taken into account. These gradient values give the information about the level of contamination then the designed fuzzy rules are used to preserve the image features (textures, edges, sharpness, chromatic properties, etc.). In the second step, two neighboring video frames are processed together. Possible local motions between neighboring frames are estimated using block matching procedure in eight directions to perform interframe filtering. In the final step, the edges and smoothed regions in a current frame are distinguished for final postprocessing filtering. Numerous simulation results confirm that this novel 3D fuzzy method performs better than other state-of-the-art techniques in terms of objective criteria (PSNR, MAE, NCD, and SSIM) as well as subjective perception via the human vision system in the different color videos. PMID:24688428

  13. An Effective, Economical Method of Reducing Environmental Noise in the Vivarium

    PubMed Central

    Young, Maggie T; French, Alan L; Clymer, Jeffrey W

    2011-01-01

    High levels of ambient noise can have detrimental effects on laboratory animal wellbeing and may affect experimental results. In addition, excessive noise can reduce technician comfort and performance. This study was performed to determine whether inexpensive, passive acoustic noise abatement measures could meaningfully reduce noise levels. Sound level measurements for various activities were obtained in the incoming processing room for pigs before and after installing gypsum acoustic paneling, covering metal-to-metal contact points with strips of adhesive-backed rubber, and replacing hard plastic wheels on transport carts with neoprene wheels. The modifications reduced the overall average noise level by 8.1 dB. Average noise levels for each activity were all less than 85 dB after the modifications. Average noise levels can be reduced effectively and economically with passive abatement methods. Intermittent spikes in noise are more difficult to control and may require attention to the individual activity. PMID:21838981

  14. An effective, economical method of reducing environmental noise in the vivarium.

    PubMed

    Young, Maggie T; French, Alan L; Clymer, Jeffrey W

    2011-07-01

    High levels of ambient noise can have detrimental effects on laboratory animal wellbeing and may affect experimental results. In addition, excessive noise can reduce technician comfort and performance. This study was performed to determine whether inexpensive, passive acoustic noise abatement measures could meaningfully reduce noise levels. Sound level measurements for various activities were obtained in the incoming processing room for pigs before and after installing gypsum acoustic paneling, covering metal-to-metal contact points with strips of adhesive-backed rubber, and replacing hard plastic wheels on transport carts with neoprene wheels. The modifications reduced the overall average noise level by 8.1 dB. Average noise levels for each activity were all less than 85 dB after the modifications. Average noise levels can be reduced effectively and economically with passive abatement methods. Intermittent spikes in noise are more difficult to control and may require attention to the individual activity.

  15. FASTER: an unsupervised fully automated sleep staging method for mice

    PubMed Central

    Sunagawa, Genshiro A; Séi, Hiroyoshi; Shimba, Shigeki; Urade, Yoshihiro; Ueda, Hiroki R

    2013-01-01

    Identifying the stages of sleep, or sleep staging, is an unavoidable step in sleep research and typically requires visual inspection of electroencephalography (EEG) and electromyography (EMG) data. Currently, scoring is slow, biased and prone to error by humans and thus is the most important bottleneck for large-scale sleep research in animals. We have developed an unsupervised, fully automated sleep staging method for mice that allows less subjective and high-throughput evaluation of sleep. Fully Automated Sleep sTaging method via EEG/EMG Recordings (FASTER) is based on nonparametric density estimation clustering of comprehensive EEG/EMG power spectra. FASTER can accurately identify sleep patterns in mice that have been perturbed by drugs or by genetic modification of a clock gene. The overall accuracy is over 90% in every group. 24-h data are staged by a laptop computer in 10 min, which is faster than an experienced human rater. Dramatically improving the sleep staging process in both quality and throughput FASTER will open the door to quantitative and comprehensive animal sleep research. PMID:23621645

  16. Source localization of turboshaft engine broadband noise using a three-sensor coherence method

    NASA Astrophysics Data System (ADS)

    Blacodon, Daniel; Lewy, Serge

    2015-03-01

    Turboshaft engines can become the main source of helicopter noise at takeoff. Inlet radiation mainly comes from the compressor tones, but aft radiation is more intricate: turbine tones usually are above the audible frequency range and do not contribute to the weighted sound levels; jet is secondary and radiates low noise levels. A broadband component is the most annoying but its sources are not well known (it is called internal or core noise). Present study was made in the framework of the European project TEENI (Turboshaft Engine Exhaust Noise Identification). Its main objective was to localize the broadband sources in order to better reduce them. Several diagnostic techniques were implemented by the various TEENI partners. As regards ONERA, a first attempt at separating sources was made in the past with Turbomeca using a three-signal coherence method (TSM) to reject background non-acoustic noise. The main difficulty when using TSM is the assessment of the frequency range where the results are valid. This drawback has been circumvented in the TSM implemented in TEENI. Measurements were made on a highly instrumented Ardiden turboshaft engine in the Turbomeca open-air test bench. Two engine powers (approach and takeoff) were selected to apply TSM. Two internal pressure probes were located in various cross-sections, either behind the combustion chamber (CC), the high-pressure turbine (HPT), the free-turbine first stage (TL), or in four nozzle sections. The third transducer was a far-field microphone located around the maximum of radiation, at 120° from the intake centerline. The key result is that coherence increases from CC to HPT and TL, then decreases in the nozzle up to the exit. Pressure fluctuations from HPT and TL are very coherent with the far-field acoustic spectra up to 700 Hz. They are thus the main acoustic source and can be attributed to indirect combustion noise (accuracy decreases above 700 Hz because coherence is lower, but far-field sound spectra

  17. Selected methods for quantification of community exposure to aircraft noise

    NASA Technical Reports Server (NTRS)

    Edge, P. M., Jr.; Cawthorn, J. M.

    1976-01-01

    A review of the state-of-the-art for the quantification of community exposure to aircraft noise is presented. Physical aspects, people response considerations, and practicalities of useful application of scales of measure are included. Historical background up through the current technology is briefly presented. The developments of both single-event and multiple-event scales are covered. Selective choice is made of scales currently in the forefront of interest and recommended methodology is presented for use in computer programing to translate aircraft noise data into predictions of community noise exposure. Brief consideration is given to future programing developments and to supportive research needs.

  18. A Valuation Method for Multi-Stage Development Projects

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yasuhiro; Kubo, Osamu; Ito, Junko; Ueda, Yoshikatsu

    A real-option based valuation method has been developed for multi-stage development projects which allow flexible stage-wise go/stop judgments. The proposed method measures the economic value of projects from potential future cash flow produced by them, and is characterized by following four functions: (1) Corporation of technical and market risks into project valuation, (2) Quantification of a project portfolio value, (3) Modeling of correlation between individual projects in a portfolio, and (4) Control of project portfolio risk with a risk index.

  19. Comparison of classical statistical methods and artificial neural network in traffic noise prediction

    SciTech Connect

    Nedic, Vladimir; Despotovic, Danijela; Cvetanovic, Slobodan; Despotovic, Milan; Babic, Sasa

    2014-11-15

    Traffic is the main source of noise in urban environments and significantly affects human mental and physical health and labor productivity. Therefore it is very important to model the noise produced by various vehicles. Techniques for traffic noise prediction are mainly based on regression analysis, which generally is not good enough to describe the trends of noise. In this paper the application of artificial neural networks (ANNs) for the prediction of traffic noise is presented. As input variables of the neural network, the proposed structure of the traffic flow and the average speed of the traffic flow are chosen. The output variable of the network is the equivalent noise level in the given time period L{sub eq}. Based on these parameters, the network is modeled, trained and tested through a comparative analysis of the calculated values and measured levels of traffic noise using the originally developed user friendly software package. It is shown that the artificial neural networks can be a useful tool for the prediction of noise with sufficient accuracy. In addition, the measured values were also used to calculate equivalent noise level by means of classical methods, and comparative analysis is given. The results clearly show that ANN approach is superior in traffic noise level prediction to any other statistical method. - Highlights: • We proposed an ANN model for prediction of traffic noise. • We developed originally designed user friendly software package. • The results are compared with classical statistical methods. • The results are much better predictive capabilities of ANN model.

  20. Noise transmission loss of aircraft panels using acoustic intensity methods

    NASA Technical Reports Server (NTRS)

    Mcgary, M. C.

    1982-01-01

    The two-microphone, cross-spectral, acoustic intensity measurement technique was used to determine the acoustic transmission loss of three different aircraft panels. The study was conducted in the transmission loss apparatus in the Langley aircraft noise reduction laboratory.

  1. Neural Network Noise Anomaly Recognition System and Method

    DTIC Science & Technology

    2000-10-04

    determine when an input waveform deviates from learned noise characteristics. A plurality of neural networks is preferably provided, which each receives a...plurality of samples of intervals or windows of the input waveform. Each of the neural networks produces an output based on whether an anomaly is...detected with respect to the noise, which the neural network is trained to detect. The plurality of outputs of the neural networks is preferably applied to

  2. Method for numerical simulation of two-term exponentially correlated colored noise

    SciTech Connect

    Yilmaz, B.; Ayik, S.; Abe, Y.; Gokalp, A.; Yilmaz, O.

    2006-04-15

    A method for numerical simulation of two-term exponentially correlated colored noise is proposed. The method is an extension of traditional method for one-term exponentially correlated colored noise. The validity of the algorithm is tested by comparing numerical simulations with analytical results in two physical applications.

  3. [Novel method of noise power spectrum measurement for computed tomography images with adaptive iterative reconstruction method].

    PubMed

    Nishimaru, Eiji; Ichikawa, Katsuhiro; Hara, Takanori; Terakawa, Shoichi; Yokomachi, Kazushi; Fujioka, Chikako; Kiguchi, Masao; Ishifuro, Minoru

    2012-01-01

    Adaptive iterative reconstruction techniques (IRs) can decrease image noise in computed tomography (CT) and are expected to contribute to reduction of the radiation dose. To evaluate the performance of IRs, the conventional two-dimensional (2D) noise power spectrum (NPS) is widely used. However, when an IR provides an NPS value drop at all spatial frequency (which is similar to NPS changes by dose increase), the conventional method cannot evaluate the correct noise property because the conventional method does not correspond to the volume data natures of CT images. The purpose of our study was to develop a new method for NPS measurements that can be adapted to IRs. Our method utilized thick multi-planar reconstruction (MPR) images. The thick images are generally made by averaging CT volume data in a direction perpendicular to a MPR plane (e.g. z-direction for axial MPR plane). By using this averaging technique as a cutter for 3D-NPS, we can obtain adequate 2D-extracted NPS (eNPS) from 3D NPS. We applied this method to IR images generated with adaptive iterative dose reduction 3D (AIDR-3D, Toshiba) to investigate the validity of our method. A water phantom with 24 cm-diameters was scanned at 120 kV and 200 mAs with a 320-row CT (Acquilion One, Toshiba). From the results of study, the adequate thickness of MPR images for eNPS was more than 25.0 mm. Our new NPS measurement method utilizing thick MPR images was accurate and effective for evaluating noise reduction effects of IRs.

  4. A Better Noise Compliance Method and Validation of Mine Noise Dosimetry Data

    DTIC Science & Technology

    2005-06-01

    assessment of risk for the chronic disease of NIHL , then a comparison of the MSHA scheme vs. average dose is appropriate. By analyzing the MSHA...There is no question that average exposure data provides a superior assessment of health risk to chronic illness than one-time grab samples. NIHL is a...enactment of the new noise rule. It seems reasonable for MSHA and mine operators to consider using average data to determine health risk to NIHL . Note that

  5. Contribution analysis of bus pass-by noise based on dynamic transfer path method

    NASA Astrophysics Data System (ADS)

    Liu, Haitao; Zheng, Sifa; Hao, Peng; Lian, Xiaomin

    2011-10-01

    Bus pass-by noise has become one of the main noise sources which seriously disturb the mental and physical health of urban residents. The key of reducing bus noise is to identify major noise source. In this paper the dynamic transfer characteristic model in the process of bus acceleration is established, which can quantitatively describe the relationship between the sound source or vibration source of the vehicle and the response points outside the vehicle; also a test method has been designed, which can quickly and easily identify the contribution of the bus pass-by noise. Experimental results show that the dynamic transfer characteristic model can identify the main noise source and their contribution during the acceleration, which has significance for the bus noise reduction.

  6. The method of narrow-band audio classification based on universal noise background model

    NASA Astrophysics Data System (ADS)

    Rui, Rui; Bao, Chang-chun

    2013-03-01

    Audio classification is the basis of content-based audio analysis and retrieval. The conventional classification methods mainly depend on feature extraction of audio clip, which certainly increase the time requirement for classification. An approach for classifying the narrow-band audio stream based on feature extraction of audio frame-level is presented in this paper. The audio signals are divided into speech, instrumental music, song with accompaniment and noise using the Gaussian mixture model (GMM). In order to satisfy the demand of actual environment changing, a universal noise background model (UNBM) for white noise, street noise, factory noise and car interior noise is built. In addition, three feature schemes are considered to optimize feature selection. The experimental results show that the proposed algorithm achieves a high accuracy for audio classification, especially under each noise background we used and keep the classification time less than one second.

  7. Rotorcraft noise

    NASA Technical Reports Server (NTRS)

    Huston, R. J. (Compiler)

    1982-01-01

    The establishment of a realistic plan for NASA and the U.S. helicopter industry to develop a design-for-noise methodology, including plans for the identification and development of promising noise reduction technology was discussed. Topics included: noise reduction techniques, scaling laws, empirical noise prediction, psychoacoustics, and methods of developing and validing noise prediction methods.

  8. A noise level prediction method based on electro-mechanical frequency response function for capacitors.

    PubMed

    Zhu, Lingyu; Ji, Shengchang; Shen, Qi; Liu, Yuan; Li, Jinyu; Liu, Hao

    2013-01-01

    The capacitors in high-voltage direct-current (HVDC) converter stations radiate a lot of audible noise which can reach higher than 100 dB. The existing noise level prediction methods are not satisfying enough. In this paper, a new noise level prediction method is proposed based on a frequency response function considering both electrical and mechanical characteristics of capacitors. The electro-mechanical frequency response function (EMFRF) is defined as the frequency domain quotient of the vibration response and the squared capacitor voltage, and it is obtained from impulse current experiment. Under given excitations, the vibration response of the capacitor tank is the product of EMFRF and the square of the given capacitor voltage in frequency domain, and the radiated audible noise is calculated by structure acoustic coupling formulas. The noise level under the same excitations is also measured in laboratory, and the results are compared with the prediction. The comparison proves that the noise prediction method is effective.

  9. Method to Measure Total Noise Temperature of a Wireless Receiver During Operation

    NASA Technical Reports Server (NTRS)

    Young, Lawrence E. (Inventor); Turbiner, Dmitry (Inventor); Esterhuizen, Stephan X. (Inventor)

    2014-01-01

    An electromagnetic signal receiver and methods for determining the noise level and signal power in a signal of interest while the receiver is operating. In some embodiments, the signal of interest is a GPS signal. The receiver includes a noise source that provides a noise signal of known power during intervals while the signal of interest is observed. By measuring a signal-to-noise ratio for the signal of interest and the noise power in the signal of interest, the noise level and signal power of the signal of interest can be computed. Various methods of making the measurements and computing the power of the signal of interest are described. Applications of the system and method are described.

  10. A two-stage spectrum sensing scheme based on energy detection and a novel multitaper method

    NASA Astrophysics Data System (ADS)

    Qi, Pei-Han; Li, Zan; Si, Jiang-Bo; Xiong, Tian-Yi

    2015-04-01

    Wideband spectrum sensing has drawn much attention in recent years since it provides more opportunities to the secondary users. However, wideband spectrum sensing requires a long time and a complex mechanism at the sensing terminal. A two-stage wideband spectrum sensing scheme is considered to proceed spectrum sensing with low time consumption and high performance to tackle this predicament. In this scheme, a novel multitaper spectrum sensing (MSS) method is proposed to mitigate the poor performance of energy detection (ED) in the low signal-to-noise ratio (SNR) region. The closed-form expression of the decision threshold is derived based on the Neyman-Pearson criterion and the probability of detection in the Rayleigh fading channel is analyzed. An optimization problem is formulated to maximize the probability of detection of the proposed two-stage scheme and the average sensing time of the two-stage scheme is analyzed. Numerical results validate the efficiency of MSS and show that the two-stage spectrum sensing scheme enjoys higher performance in the low SNR region and lower time cost in the high SNR region than the single-stage scheme. Project supported by the National Natural Science Foundation of China (Grant No. 61301179), the China Postdoctoral Science Foundation (Grant No. 2014M550479), and the Doctorial Programs Foundation of the Ministry of Education, China (Grant No. 20110203110011).

  11. Method for encapsulating hazardous wastes using a staged mold

    DOEpatents

    Unger, Samuel L.; Telles, Rodney W.; Lubowitz, Hyman R.

    1989-01-01

    A staged mold and method for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  12. Method of recognizing the high-speed railway noise barriers based on the distance image

    NASA Astrophysics Data System (ADS)

    Ma, Le; Shao, Shuangyun; Feng, Qibo; Liu, Bingqian; Kim, Chol Ryong

    2016-10-01

    The damage or lack of the noise barriers is one of the important hidden troubles endangering the safety of high-speed railway. In order to obtain the vibration information of the noise barriers, the online detection systems based on laser vision were proposed. The systems capture images of the laser stripe on the noise barriers and export data files containing distance information between the detection systems on the train and the noise barriers. The vibration status or damage of the noise barriers can be estimated depending on the distance information. In this paper, we focused on the method of separating the area of noise barrier from the background automatically. The test results showed that the proposed method is in good efficiency and accuracy.

  13. The Reduction of Ducted Fan Engine Noise Via a Boundary Integral Equation Method

    NASA Technical Reports Server (NTRS)

    Tweed, John

    2000-01-01

    Engineering studies for reducing ducted fan engine noise were conducted using the noise prediction code TBIEM3D. To conduct parametric noise reduction calculations, it was necessary to advance certain theoretical and computational aspects of the boundary integral equation method (BIEM) described in and implemented in TBIEM3D. Also, enhancements and upgrades to TBIEM3D were made for facilitating the code's use in this research and by the aeroacoustics engineering community.

  14. Reduction of ground noise in the transmitter crowbar instrumentation system by the use of baluns and other noise rejection methods

    NASA Technical Reports Server (NTRS)

    Daeges, J.; Bhanji, A.

    1987-01-01

    Electrical noise interference in the transmitter crowbar monitoring instrumentation system creates false sensing of crowbar faults during a crowbar firing. One predominant source of noise interference is the conduction of currents in the instrumentation cable shields. Since these circulating ground noise currents produce noise that is similar to the crowbar fault sensing signals, such noise interference reduces the ability to determine true crowbar faults.

  15. The application of cost-effective lasers in coherent UDWDM-OFDM-PON aided by effective phase noise suppression methods.

    PubMed

    Liu, Yue; Yang, Chuanchuan; Yang, Feng; Li, Hongbin

    2014-03-24

    Digital coherent passive optical network (PON), especially the coherent orthogonal frequency division multiplexing PON (OFDM-PON), is a strong candidate for the 2nd-stage-next-generation PON (NG-PON2). As is known, OFDM is very sensitive to the laser phase noise which severely limits the application of the cost-effective distributed feedback (DFB) lasers and more energy-efficient vertical cavity surface emitting lasers (VCSEL) in the coherent OFDM-PON. The current long-reach coherent OFDM-PON experiments always choose the expensive external cavity laser (ECL) as the optical source for its narrow linewidth (usually<100 KHz). To solve this problem, we introduce the orthogonal basis expansion based (OBE) phase noise suppression method to the coherent OFDM-PON and study the possibility of the application of the DFB lasers and VCSEL in coherent OFDM-PON. A typical long-reach coherent ultra dense wavelength division multiplexing (UDWDM) OFDM-PON has been set up. The numerical results prove that the OBE method can stand severe phase noise of the lasers in this architecture and the DFB lasers as well as VCSEL can be used in coherent OFDM-PON. In this paper, we have also analyzed the performance of the RF-pilot-aided (RFP) phase noise suppression method in coherent OFDM-PON.

  16. Displacement measurement of the compliant positioning stage based on a computer micro-vision method

    NASA Astrophysics Data System (ADS)

    Wu, Heng; Zhang, Xianmin; Wang, Ruizhou; He, Zhenya

    2016-02-01

    We propose a practical computer micro-vision-based method for displacement measurements of the compliant positioning stage. The algorithm of the proposed method is based on a template matching approach composed of an integer-pixel search and a sub-pixel search. By combining with an optical microscopy, a high resolution CCD camera and the proposed algorithm, an extremely high measuring precision is achieved. Various simulations and experiments are conducted. The simulation results demonstrate that the matching precision can reach to 0.01 pixel when the noise interference is low. A laser interferometer measurement system (LIMS) is established for comparison. The experimental results indicate that the proposed method possesses the same performance as the LIMS but exhibits a greater flexibility and operability. The measuring precision can theoretically attain to 2.83 nm/pixel.

  17. Signal-to-noise ratio adaptive post-filtering method for intelligibility enhancement of telephone speech.

    PubMed

    Jokinen, Emma; Yrttiaho, Santeri; Pulakka, Hannu; Vainio, Martti; Alku, Paavo

    2012-12-01

    Post-filtering can be utilized to improve the quality and intelligibility of telephone speech. Previous studies have shown that energy reallocation with a high-pass type filter works effectively in improving the intelligibility of speech in difficult noise conditions. The present study introduces a signal-to-noise ratio adaptive post-filtering method that utilizes energy reallocation to transfer energy from the first formant to higher frequencies. The proposed method adapts to the level of the background noise so that, in favorable noise conditions, the post-filter has a flat frequency response and the effect of the post-filtering is increased as the level of the ambient noise increases. The performance of the proposed method is compared with a similar post-filtering algorithm and unprocessed speech in subjective listening tests which evaluate both intelligibility and listener preference. The results indicate that both of the post-filtering methods maintain the quality of speech in negligible noise conditions and are able to provide intelligibility improvement over unprocessed speech in adverse noise conditions. Furthermore, the proposed post-filtering algorithm performs better than the other post-filtering method under evaluation in moderate to difficult noise conditions, where intelligibility improvement is mostly required.

  18. Analysis of fractional Gaussian noises using level crossing method

    NASA Astrophysics Data System (ADS)

    Vahabi, M.; Jafari, G. R.; Sadegh Movahed, M.

    2011-11-01

    The so-called level crossing analysis has been used to investigate the empirical data set, but there is a lack of interpretation for what is reflected by the level crossing results. The fractional Gaussian noise as a well-defined stochastic series could be a suitable benchmark to make more sense of the level crossing findings. In this paper, we calculated the average frequency of upcrossing for a wide range of fractional Gaussian noises from logarithmic (zero Hurst exponent, H = 0), to Gaussian, H = 1 (0 < H < 1). By introducing the relative change of the total number of upcrossings for original data with respect to the so-called shuffled data, {R} , an empirical function for the Hurst exponent versus {R} has been established. Finally to make the concept more obvious, we applied this approach to some financial series.

  19. Method and apparatus for reducing microwave oscillator output noise

    NASA Technical Reports Server (NTRS)

    Dick, G. John (Inventor); Saunders, Jonathan E. (Inventor)

    1991-01-01

    Microwave oscilltors incorporate r.f. feedback with carrier suppression to reduce phase noise. In a direct feedback oscillator arrngement a circulator is interposed between the r.f. amplifier and the high-Q resonator. The amplifier output is applied to the slightly over-coupled input port of the resonator so that the resultant net return signal is the vectorial difference between the signals emitted and reflected from the resonator. The gain of the r.f. amplifier is chosen to regenerate the forward signal from the net return signal. In a STALO-type arrangement, the resonator is critically coupled and an r.f. amplifier added to the path of the net return signal. The sensitivity of the STALO-type feedback loop is thereby enhanced while added amplifier noise is minimized by the superposition of the signals emitted by and reflected from the resonator.

  20. Nonlinear mode decomposition: A noise-robust, adaptive decomposition method

    NASA Astrophysics Data System (ADS)

    Iatsenko, Dmytro; McClintock, Peter V. E.; Stefanovska, Aneta

    2015-09-01

    The signals emanating from complex systems are usually composed of a mixture of different oscillations which, for a reliable analysis, should be separated from each other and from the inevitable background of noise. Here we introduce an adaptive decomposition tool—nonlinear mode decomposition (NMD)—which decomposes a given signal into a set of physically meaningful oscillations for any wave form, simultaneously removing the noise. NMD is based on the powerful combination of time-frequency analysis techniques—which, together with the adaptive choice of their parameters, make it extremely noise robust—and surrogate data tests used to identify interdependent oscillations and to distinguish deterministic from random activity. We illustrate the application of NMD to both simulated and real signals and demonstrate its qualitative and quantitative superiority over other approaches, such as (ensemble) empirical mode decomposition, Karhunen-Loève expansion, and independent component analysis. We point out that NMD is likely to be applicable and useful in many different areas of research, such as geophysics, finance, and the life sciences. The necessary matlab codes for running NMD are freely available for download.

  1. Nonlinear mode decomposition: a noise-robust, adaptive decomposition method.

    PubMed

    Iatsenko, Dmytro; McClintock, Peter V E; Stefanovska, Aneta

    2015-09-01

    The signals emanating from complex systems are usually composed of a mixture of different oscillations which, for a reliable analysis, should be separated from each other and from the inevitable background of noise. Here we introduce an adaptive decomposition tool-nonlinear mode decomposition (NMD)-which decomposes a given signal into a set of physically meaningful oscillations for any wave form, simultaneously removing the noise. NMD is based on the powerful combination of time-frequency analysis techniques-which, together with the adaptive choice of their parameters, make it extremely noise robust-and surrogate data tests used to identify interdependent oscillations and to distinguish deterministic from random activity. We illustrate the application of NMD to both simulated and real signals and demonstrate its qualitative and quantitative superiority over other approaches, such as (ensemble) empirical mode decomposition, Karhunen-Loève expansion, and independent component analysis. We point out that NMD is likely to be applicable and useful in many different areas of research, such as geophysics, finance, and the life sciences. The necessary matlab codes for running NMD are freely available for download.

  2. Analysis of electrochemical noise by the stochastic process detector method

    SciTech Connect

    Roberge, P.R. . Dept. of Chemistry and Chemical Engineering)

    1994-07-01

    Electrochemical noise (EN) generated during the corrosion of metal specimens can be analyzed for its stochastic nature. Voltage fluctuations observed during the exposure of commercial aluminum (Al) sheet material were analyzed using a new technique based on randomness of these fluctuations. The stochastic process detector (SPD) technique was found to be very sensitive to the presence of deterministic features that are sometimes present in noise records. Results obtained with three orthogonal faces of Aluminum Association (AA) 7075-T6 Al alloy (UNS A97075) exposed to a saline solution were compared to electrochemical impedance spectroscopy (EIS) measurements and micrographs of exposed specimens. Some fundamental characteristics of voltage fluctuations revealed by SPD appeared to be related directly to the degree of localized corrosion in progress on the metal surfaces. The noise fluctuations' voltage rise times (RT) seemed to be related directly to the propensity of the AA 7075-T6 alloy tested to suffer from localized forms of corrosion visible under optical microscopy (OM). These findings agreed with variations observed in the constant-phase element (CPE) exponents, as calculated from EIS measurements, which also have been related to the degree of localized attack on corroding specimens.

  3. Statistical addition method for external noise sources affecting HF-MF-LF systems

    NASA Astrophysics Data System (ADS)

    Neudegg, David

    2001-01-01

    The current statistical method for the addition of external component noise sources in the LF, MF, and lower HF band (100 kHz to 3 MHz) produces total median noise levels that may be less than the largest-component median in some cases. Several case studies illustrate this anomaly. Methods used to sum the components rely on their power (decibels) distributions being represented as normal by the statistical parameters. The atmospheric noise component is not correctly represented by its decile values when it is assumed to have a normal distribution, causing anomalies in the noise summation when components are similar in magnitude. A revised component summation method is proposed, and the way it provides a more physically realistic total noise median for LF, MF, and lower HF frequencies is illustrated.

  4. Method and apparatus for removing coarse unentrained char particles from the second stage of a two-stage coal gasifier

    DOEpatents

    Donath, Ernest E.

    1976-01-01

    A method and apparatus for removing oversized, unentrained char particles from a two-stage coal gasification process so as to prevent clogging or plugging of the communicating passage between the two gasification stages. In the first stage of the process, recycled process char passes upwardly while reacting with steam and oxygen to yield a first stage synthesis gas containing hydrogen and oxides of carbon. In the second stage, the synthesis gas passes upwardly with coal and steam which react to yield partially gasified char entrained in a second stage product gas containing methane, hydrogen, and oxides of carbon. Agglomerated char particles, which result from caking coal particles in the second stage and are too heavy to be entrained in the second stage product gas, are removed through an outlet in the bottom of the second stage, the particles being separated from smaller char particles by a counter-current of steam injected into the outlet.

  5. Sample-based engine noise synthesis using an enhanced pitch-synchronous overlap-and-add method.

    PubMed

    Jagla, Jan; Maillard, Julien; Martin, Nadine

    2012-11-01

    An algorithm for the real time synthesis of internal combustion engine noise is presented. Through the analysis of a recorded engine noise signal of continuously varying engine speed, a dataset of sound samples is extracted allowing the real time synthesis of the noise induced by arbitrary evolutions of engine speed. The sound samples are extracted from a recording spanning the entire engine speed range. Each sample is delimitated such as to contain the sound emitted during one cycle of the engine plus the necessary overlap to ensure smooth transitions during the synthesis. The proposed approach, an extension of the PSOLA method introduced for speech processing, takes advantage of the specific periodicity of engine noise signals to locate the extraction instants of the sound samples. During the synthesis stage, the sound samples corresponding to the target engine speed evolution are concatenated with an overlap and add algorithm. It is shown that this method produces high quality audio restitution with a low computational load. It is therefore well suited for real time applications.

  6. Comparison of Two Methods of Noise Power Spectrum Determinations of Medical Radiography Systems

    SciTech Connect

    Hassan, Wan Muhamad Saridan Wan; Ahmed Darwish, Zeki

    2011-03-30

    Noise in medical images is recognized as an important factor that determines the image quality. Image noise is characterized by noise power spectrum (NPS). We compared two methods of NPS determination namely the methods of Wagner and Dobbins on Lanex Regular TMG screen-film system and Hologic Lorad Selenia full field digital mammography system, with the aim of choosing the better method to use. The methods differ in terms of various parametric choices and algorithm implementations. These parameters include the low pass filtering, low frequency filtering, windowing, smoothing, aperture correction, overlapping of region of interest (ROI), length of fast Fourier transform, ROI size, method of ROI normalization, and slice selection of the NPS. Overall, the two methods agreed to the practical value of noise power spectrum between 10{sup -3}-10{sup -6} mm{sup 2} over spatial frequency range 0-10 mm{sup -1}.

  7. Comparison of Two Methods of Noise Power Spectrum Determinations of Medical Radiography Systems

    NASA Astrophysics Data System (ADS)

    Hassan, Wan Muhamad Saridan Wan; Ahmed Darwish, Zeki

    2011-03-01

    Noise in medical images is recognized as an important factor that determines the image quality. Image noise is characterized by noise power spectrum (NPS). We compared two methods of NPS determination namely the methods of Wagner and Dobbins on Lanex Regular TMG screen-film system and Hologic Lorad Selenia full field digital mammography system, with the aim of choosing the better method to use. The methods differ in terms of various parametric choices and algorithm implementations. These parameters include the low pass filtering, low frequency filtering, windowing, smoothing, aperture correction, overlapping of region of interest (ROI), length of fast Fourier transform, ROI size, method of ROI normalization, and slice selection of the NPS. Overall, the two methods agreed to the practical value of noise power spectrum between 10-3-10-6 mm2 over spatial frequency range 0-10 mm-1.

  8. Measurement of Trailing Edge Noise Using Directional Array and Coherent Output Power Methods

    NASA Technical Reports Server (NTRS)

    Hutcheson, Florence V.; Brooks, Thomas F.

    2002-01-01

    The use of a directional (or phased) array of microphones for the measurement of trailing edge (TE) noise is described and tested. The capabilities of this method arc evaluated via measurements of TE noise from a NACA 63-215 airfoil model and from a cylindrical rod. This TE noise measurement approach is compared to one that is based on thc cross spectral analysis of output signals from a pair of microphones placed on opposite sides of an airframe model (COP method). Advantages and limitations of both methods arc examined. It is shown that the microphone array can accurately measures TE noise and captures its two-dimensional characteristic over a large frequency range for any TE configuration as long as noise contamination from extraneous sources is within bounds. The COP method is shown to also accurately measure TE noise but over a more limited frequency range that narrows for increased TE thickness. Finally, the applicability and generality of an airfoil self-noise prediction method was evaluated via comparison to the experimental data obtained using the COP and array measurement methods. The predicted and experimental results are shown to agree over large frequency ranges.

  9. An empirical method for predicting the mixing noise levels of subsonic circular and coaxial jets

    NASA Technical Reports Server (NTRS)

    Russell, J. W.

    1984-01-01

    An empirical method for predicting the static free field source noise levels of subsonic circular and coaxial jet flow streams is presented. The method was developed from an extensive data base of 817 jet tests obtained from five different government and industry sources in three nations. The prediction method defines the jet noise in terms of four components which are overall power level, power spectrum level, directivity index, and relative spectrum level. The values of these noise level components are defined on a grid consisting of seven frequency parameter values (Strouhal numbers) and seven directivity angles. The value of the noise level at each of these grid points is called a noise level coordinate and was defined as a function of five jet exhaust flow state parameters which are equivalent jet velocity, equivalent jet total temperature, the velocity ratio (outer stream to inner stream), temperature ratio, and area ratio. The functions were obtained by curve fitting in a least squares sense the noise level coordinates from the data base in a five dimensional flow state space using a third order Taylor series. The noise level coordinates define the component noise levels for all frequencies and directivities through a bicubic spline function.

  10. Full-Scale Turbofan Engine Noise-Source Separation Using a Four-Signal Method

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Arechiga, Rene O.

    2016-01-01

    Contributions from the combustor to the overall propulsion noise of civilian transport aircraft are starting to become important due to turbofan design trends and expected advances in mitigation of other noise sources. During on-ground, static-engine acoustic tests, combustor noise is generally sub-dominant to other engine noise sources because of the absence of in-flight effects. Consequently, noise-source separation techniques are needed to extract combustor-noise information from the total noise signature in order to further progress. A novel four-signal source-separation method is applied to data from a static, full-scale engine test and compared to previous methods. The new method is, in a sense, a combination of two- and three-signal techniques and represents an attempt to alleviate some of the weaknesses of each of those approaches. This work is supported by the NASA Advanced Air Vehicles Program, Advanced Air Transport Technology Project, Aircraft Noise Reduction Subproject and the NASA Glenn Faculty Fellowship Program.

  11. Nonlinear phase noise separation method for on-off keying transmission system modeling with non-Gaussian noise generation in optical fibers.

    PubMed

    Vanin, Evgeny; Jacobsen, Gunnar; Berntson, Anders

    2007-06-15

    We propose a novel method for effective simulation of optical fiber transmission system performance with nonlinear interaction between the amplified spontaneous emission noise and the modulated optical signal employing on-off keying. The method enables a standard analytical description of the receiver operation even when the detected optical field obeys non-Gaussian statistics with a substantial amount of nonlinear phase noise accumulated along the fiber link due to strong signal-noise interaction.

  12. A Method to Further Reduce the Perceived Noise of Low Tip Speed Fans

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.

    2000-01-01

    The use of low tip speed, high bypass ratio fans is a method for reducing the noise of turbofan jet engines. These fans typically have a low number of rotor blades and a number of stator vanes sufficient to achieve cut-off of the blade passing tone. Their perceived noise levels are typically dominated by broadband noise caused by the rotor wake turbulence - stator interaction mechanism. A 106 bladed, 1100 ft/sec takeoff tip speed fan, the Alternative Low Noise Fan, has been tested and shown to have reduced broadband noise. This reduced noise is believed to be the result of the high rotor blade number. Although this fan with 106 blades would not be practical with materials as they exist today, a fan with 50 or so blades could be practically realized. A noise estimate has indicated that such a 50 bladed, low tip speed fan could be 2 to 3 EPNdB quieter than an 18 bladed fan. If achieved, this level of noise reduction would be significant and points to the use of a high blade number, low tip speed fan as a possible configuration for reduced fan noise.

  13. Advanced Methods for Aircraft Engine Thrust and Noise Benefits: Nozzle-Inlet Flow Analysis

    NASA Technical Reports Server (NTRS)

    Morgan, Morris H., III; Gilinsky, Mikhail M.

    2004-01-01

    In this project on the first stage (2000-Ol), we continued to develop the previous joint research between the Fluid Mechanics and Acoustics Laboratory (FM&AL) at Hampton University (HU) and the Jet Noise Team (JNT) at the NASA Langley Research Center (NASA LaRC). At the second stage (2001-03), FM&AL team concentrated its efforts on solving of problems of interest to Glenn Research Center (NASA GRC), especially in the field of propulsion system enhancement. The NASA GRC R&D Directorate and LaRC Hyper-X Program specialists in a hypersonic technology jointly with the FM&AL staff conducted research on a wide region of problems in the propulsion field as well as in experimental testing and theoretical and numerical simulation analyses for advanced aircraft and rocket engines. The last year the Hampton University School of Engineering & Technology was awarded the NASA grant, for creation of the Aeropropulsion Center, and the FM&AL is a key team of the project fulfillment responsible for research in Aeropropulsion and Acoustics (Pillar I). This work is supported by joint research between the NASA GRC/ FM&AL and the Institute of Mechanics at Moscow State University (IMMSU) in Russia under a CRDF grant. The main areas of current scientific interest of the FM&AL include an investigation of the proposed and patented advanced methods for aircraft engine thrust and noise benefits. This is the main subject of our other projects, of which one is presented. The last year we concentrated our efforts to analyze three main problems: (a) new effective methods fuel injection into the flow stream in air-breathing engines; (b) new re-circulation method for mixing, heat transfer and combustion enhancement in propulsion systems and domestic industry application; (c) covexity flow The research is focused on a wide regime of problems in the propulsion field as well as in experimental testing and theoretical and numerical simulation analyses for advanced aircraft and rocket engines (see, for

  14. Method and system for dual resolution translation stage

    DOEpatents

    Halpin, John Michael

    2014-04-22

    A dual resolution translation stage includes a stage assembly operable to receive an optical element and a low resolution adjustment device mechanically coupled to the stage assembly. The dual resolution stage also includes an adjustable pivot block mechanically coupled to the stage assembly. The adjustable pivot block includes a pivot shaft. The dual resolution stage further includes a lever arm mechanically coupled to the adjustable pivot block. The lever arm is operable to pivot about the pivot shaft. The dual resolution stage additionally includes a high resolution adjustment device mechanically coupled to the lever arm and the stage assembly.

  15. Apparatus and method for two-stage oxidation of wastes

    DOEpatents

    Fleischman, Scott D.

    1995-01-01

    An apparatus and method for oxidizing wastes in a two-stage process. The apparatus includes an oxidation device, a gas-liquid contacting column and an electrocell. In the first stage of the process, wastes are heated in the presence of air to partially oxidize the wastes. The heated wastes produce an off-gas stream containing oxidizable materials. In the second stage, the off-gas stream is cooled and flowed through the contacting column, where the off-gas stream is contacted with an aqueous acid stream containing an oxidizing agent having at least two positive valence states. At least a portion of the oxidizable materials are transferred to the acid stream and destroyed by the oxidizing agent. During oxidation, the valence of the oxidizing agent is decreased from its higher state to its lower state. The acid stream is flowed to the electrocell, where an electric current is applied to the stream to restore the oxidizing agent to its higher valence state. The regenerated acid stream is recycled to the contacting column.

  16. Methods for clinical evaluation of noise reduction techniques in abdominopelvic CT.

    PubMed

    Ehman, Eric C; Yu, Lifeng; Manduca, Armando; Hara, Amy K; Shiung, Maria M; Jondal, Dayna; Lake, David S; Paden, Robert G; Blezek, Daniel J; Bruesewitz, Michael R; McCollough, Cynthia H; Hough, David M; Fletcher, Joel G

    2014-01-01

    Most noise reduction methods involve nonlinear processes, and objective evaluation of image quality can be challenging, since image noise cannot be fully characterized on the sole basis of the noise level at computed tomography (CT). Noise spatial correlation (or noise texture) is closely related to the detection and characterization of low-contrast objects and may be quantified by analyzing the noise power spectrum. High-contrast spatial resolution can be measured using the modulation transfer function and section sensitivity profile and is generally unaffected by noise reduction. Detectability of low-contrast lesions can be evaluated subjectively at varying dose levels using phantoms containing low-contrast objects. Clinical applications with inherent high-contrast abnormalities (eg, CT for renal calculi, CT enterography) permit larger dose reductions with denoising techniques. In low-contrast tasks such as detection of metastases in solid organs, dose reduction is substantially more limited by loss of lesion conspicuity due to loss of low-contrast spatial resolution and coarsening of noise texture. Existing noise reduction strategies for dose reduction have a substantial impact on lowering the radiation dose at CT. To preserve the diagnostic benefit of CT examination, thoughtful utilization of these strategies must be based on the inherent lesion-to-background contrast and the anatomy of interest. The authors provide an overview of existing noise reduction strategies for low-dose abdominopelvic CT, including analytic reconstruction, image and projection space denoising, and iterative reconstruction; review qualitative and quantitative tools for evaluating these strategies; and discuss the strengths and limitations of individual noise reduction methods.

  17. Intelligent background noise reduction technology in cable fault locator using the magneto-acoustic synchronous method

    NASA Astrophysics Data System (ADS)

    Mi, JianWei; Huang, JiFa; Fang, XiaoLi; Fan, LiBin

    2017-01-01

    The magneto-acoustic synchronous method has found wide application in accurate positioning of power cable fault due to its advantages of high accuracy and strong ability to reject interference. In the view of principle, the magneto-acoustic synchronous method needs to detect the discharge sound signal and electromagnetic signal emitted from the fault point, but the discharge sound signal is easy to be interfered by the ambient noise around and the magnetic sound synchronization. Therefore, it is challenging to quickly and accurately detect the fault location of cable especially in strong background noise environment. On the other hand, the spectral subtraction is a relatively traditional and effective method in many intelligent background noise reduction technologies, which is characterized by a relatively small computational cost and strong real-time performance. However, its application is limited because the algorithm displays poor performance in low Signal to Noise Ratio (SNR) environment. Aiming at the shortcoming of the spectral subtraction that de-noising effect is weak in low SNR environment, this paper proposes an improved spectral subtraction combining the magnetic sound synchronous principle and analyzing the properties of discharging sound. This method can accurately estimate noise in real time and optimize the performance of the basic spectral subtraction thus solving the problem that the magneto-acoustic synchronous method is unsatisfactory for positioning cable fault in the strong background noise environment.

  18. Mitigating the effect of noise in the hybrid input-output method of phase retrieval.

    PubMed

    Trahan, Russell; Hyland, David

    2013-05-01

    Here a modification to the hybrid input-output (HIO) method of phase retrieval is presented which aides in mitigating the negative effects of low signal-to-noise ratios (SNRs). Various type of interferometers measure diffraction patterns which are used to determine the Fourier transform modulus of an objective. Interferometry often suffers from very low SNRs making phase retrieval difficult because of the sensitivity of most phase retrieval algorithms to local minima. Here we analyze the effect of noise on the HIO method. The result is used as a rationale for the proposed modification to the HIO method. The algorithm presented here introduces a filtering scheme which removes much of the Fourier modulus noise. Examples are shown and the results are compared to the HIO method with and without the proposed modification. Comparisons are also made to other methods of filtering the Fourier modulus noise.

  19. Method of operating a two-stage coal gasifier

    DOEpatents

    Tanca, Michael C.

    1982-01-01

    A method of operating an entrained flow coal gasifier (10) via a two-stage gasification process. A portion of the coal (18) to be gasified is combusted in a combustion zone (30) with near stoichiometric air to generate combustion products. The combustion products are conveyed from the combustion zone into a reduction zone (32) wherein additional coal is injected into the combustion products to react with the combustion products to form a combustible gas. The additional coal is injected into the reduction zone as a mixture (60) consisting of coal and steam, preferably with a coal-to-steam weight ratio of approximately ten to one.

  20. Optimum Noise Reduction Methods for the Interior of Vehicles and Aircraft Cabins

    NASA Astrophysics Data System (ADS)

    Tavossi, Ph. D., Hasson M.

    The most effective methods of noise reduction in vehicles and Aircraft cabins are investigated. The first goal is to determine the optimal means of noise mitigation without change in external shape of the vehicle, or aircraft cabin exterior such as jet engine or fuselage design, with no significant added weight. The second goal is to arrive at interior designs that can be retrofitted to the existing interiors, to reduce overall noise level for the passengers. The physical phenomena considered are; relaxation oscillations, forced vibrations with non-linear damping and sub-harmonic resonances. The negative and positive damping coefficients and active noise cancelations methods are discussed. From noise power-spectrum for a prototype experimental setup, the most energetic vibration modes are determined, that require the highest damping. The proposed technique will utilize the arrangement of uniformly distributed open Helmholtz resonators, with sound absorbing surface. They are tuned to the frequencies that correspond to the most energetic noise levels. The resonators dissipate noise energy inside the vehicle, or aircraft cabin, at the peak frequencies of the noise spectrum, determined for different vehicle or aircraft cabin, interior design models.

  1. IRIS: Towards an Accurate and Fast Stage Weight Prediction Method

    NASA Astrophysics Data System (ADS)

    Taponier, V.; Balu, A.

    2002-01-01

    The knowledge of the structural mass fraction (or the mass ratio) of a given stage, which affects the performance of a rocket, is essential for the analysis of new or upgraded launchers or stages, whose need is increased by the quick evolution of the space programs and by the necessity of their adaptation to the market needs. The availability of this highly scattered variable, ranging between 0.05 and 0.15, is of primary importance at the early steps of the preliminary design studies. At the start of the staging and performance studies, the lack of frozen weight data (to be obtained later on from propulsion, trajectory and sizing studies) leads to rely on rough estimates, generally derived from printed sources and adapted. When needed, a consolidation can be acquired trough a specific analysis activity involving several techniques and implying additional effort and time. The present empirical approach allows thus to get approximated values (i.e. not necessarily accurate or consistent), inducing some result inaccuracy as well as, consequently, difficulties of performance ranking for a multiple option analysis, and an increase of the processing duration. This forms a classical harsh fact of the preliminary design system studies, insufficiently discussed to date. It appears therefore highly desirable to have, for all the evaluation activities, a reliable, fast and easy-to-use weight or mass fraction prediction method. Additionally, the latter should allow for a pre selection of the alternative preliminary configurations, making possible a global system approach. For that purpose, an attempt at modeling has been undertaken, whose objective was the determination of a parametric formulation of the mass fraction, to be expressed from a limited number of parameters available at the early steps of the project. It is based on the innovative use of a statistical method applicable to a variable as a function of several independent parameters. A specific polynomial generator

  2. Development of an Empirical Methods for Predicting Jet Mixing Noise of Cold Flow Rectangular Jets

    NASA Technical Reports Server (NTRS)

    Russell, James W.

    1999-01-01

    This report presents an empirical method for predicting the jet mixing noise levels of cold flow rectangular jets. The report presents a detailed analysis of the methodology used in development of the prediction method. The empirical correlations used are based on narrow band acoustic data for cold flow rectangular model nozzle tests conducted in the NASA Langley Jet Noise Laboratory. There were 20 separate nozzle test operating conditions. For each operating condition 60 Hz bandwidth microphone measurements were made over a frequency range from 0 to 60,000 Hz. Measurements were performed at 16 polar directivity angles ranging from 45 degrees to 157.5 degrees. At each polar directivity angle, measurements were made at 9 azimuth directivity angles. The report shows the methods employed to remove screech tones and shock noise from the data in order to obtain the jet mixing noise component. The jet mixing noise was defined in terms of one third octave band spectral content, polar and azimuth directivity, and overall power level. Empirical correlations were performed over the range of test conditions to define each of these jet mixing noise parameters as a function of aspect ratio, jet velocity, and polar and azimuth directivity angles. The report presents the method for predicting the overall power level, the average polar directivity, the azimuth directivity and the location and shape of the spectra for jet mixing noise of cold flow rectangular jets.

  3. Auto Regressive Moving Average (ARMA) Modeling Method for Gyro Random Noise Using a Robust Kalman Filter.

    PubMed

    Huang, Lei

    2015-09-30

    To solve the problem in which the conventional ARMA modeling methods for gyro random noise require a large number of samples and converge slowly, an ARMA modeling method using a robust Kalman filtering is developed. The ARMA model parameters are employed as state arguments. Unknown time-varying estimators of observation noise are used to achieve the estimated mean and variance of the observation noise. Using the robust Kalman filtering, the ARMA model parameters are estimated accurately. The developed ARMA modeling method has the advantages of a rapid convergence and high accuracy. Thus, the required sample size is reduced. It can be applied to modeling applications for gyro random noise in which a fast and accurate ARMA modeling method is required.

  4. Projection method for improving signal to noise ratio of localized surface plasmon resonance biosensors

    PubMed Central

    Abumazwed, Ahmed; Kubo, Wakana; Shen, Chen; Tanaka, Takuo; Kirk, Andrew G.

    2016-01-01

    This paper presents a simple and accurate method (the projection method) to improve the signal to noise ratio of localized surface plasmon resonance (LSPR). The nanostructures presented in the paper can be readily fabricated by nanoimprint lithography. The finite difference time domain method is used to simulate the structures and generate a reference matrix for the method. The results are validated against experimental data and the proposed method is compared against several other recently published signal processing techniques. We also apply the projection method to biotin-streptavidin binding experimental data and determine the limit of detection (LoD). The method improves the signal to noise ratio (SNR) by one order of magnitude, and hence decreases the limit of detection when compared to the direct measurement of the transmission-dip. The projection method outperforms the established methods in terms of accuracy and achieves the best combination of signal to noise ratio and limit of detection. PMID:28101430

  5. Apparatus and method for reducing vehicular fuel pump noise

    SciTech Connect

    Nashif, A.D.

    1991-06-04

    This paper describes a vehicular fuel pump system including a fuel pump and at least one fuel line mounted inside a fuel tank, noise reduction means. It comprises: a passive vibrator mounted inside the tank to the line, at a position on the line at which the line vibrates at substantially its maximum amplitude, the vibrator comprising spring means mounting a weight to the line, the vibrator having a mass and the spring means having stiffness and damping values selected to cause the vibrator to vibrate resonantly when the line vibrates, out of phase with respect to the vibration of the line and at an amplitude of sufficient magnitude to at least partially reduce the vibration of the line, the vibrator being connected to the pump and tank only through the line.

  6. Pseudo noise code and data transmission method and apparatus

    NASA Technical Reports Server (NTRS)

    Deerkoski, L. F. (Inventor)

    1977-01-01

    Pseudo noise ranging codes, having a predetermined chipping rate, and a pair of binary data sources, each having a bit rate no greater than one tenth the chipping rate, quadriphase, digitally modulate a suppressed carrier wave having a first frequency are examined. Two additional binary data sources, each having a bit rate that is not restricted by the chipping rate of the first carrier, quadriphase, digitally modulate a suppressed carrier wave having a second frequency. The first and second frequencies are only slightly displaced so that there is overlap in the frequency bands which modulate the two carriers. The two suppressed carrier waves are linearly combined and transmitted from a first station to a second station so that the amplitude of the transmitted first wave is controlled so as not to degrade the detectability of the second wave at the second station.

  7. Evaluation of methods of reducing community noise impact around San Jose municipal airport

    NASA Technical Reports Server (NTRS)

    Glick, J. M.; Shevell, R. S.; Bowles, J. V.

    1975-01-01

    A computer simulation of the airport noise impact on the surrounding communities was used to evaluate alternate operational procedures, improved technology, and land use conversion as methods of reducing community noise impact in the airport vicinity. In addition, a constant density population distribution was analyzed for possible application to other airport communities with fairly uniform population densities and similar aircraft operational patterns. The introduction of sound absorption material (SAM) was found to reduce community noise annoyance by over 25 percent, and the introduction of refan was found to reduce community annoyance by over 60 percent. Replacing the present aircraft was found to reduce the noise problem to very small proportions, and the introduction of an advanced technology twin was found to essentially eliminate the community noise problem.

  8. Evaluation of ride quality prediction methods for helicopter interior noise and vibration environments

    NASA Technical Reports Server (NTRS)

    Leatherwood, J. D.; Clevenson, S. A.; Hollenbaugh, D. D.

    1984-01-01

    The results of a simulator study conducted to compare and validate various ride quality prediction methods for use in assessing passenger/crew ride comfort within helicopters are presented. Included are results quantifying 35 helicopter pilots discomfort responses to helicopter interior noise and vibration typical of routine flights, assessment of various ride quality metrics including the NASA ride comfort model, and examination of possible criteria approaches. Results of the study indicated that crew discomfort results from a complex interaction between vibration and interior noise. Overall measures such as weighted or unweighted root-mean-square acceleration level and A-weighted noise level were not good predictors of discomfort. Accurate prediction required a metric incorporating the interactive effects of both noise and vibration. The best metric for predicting crew comfort to the combined noise and vibration environment was the NASA discomfort index.

  9. A Preliminary Axial Fan Design Method with the Considerat ion of Performance and Noise Characteristics

    NASA Astrophysics Data System (ADS)

    Lee, Chan; Kil, Hyun Gwon

    2010-06-01

    Presented in this paper are a fan's aero-acoustic performance method and its computation procedure which combines aerodynamic flow field data, performances and noise levels of fan. The internal flow field and the performance of fan are analyzed by the through-flow modeling, inviscid pitch-averaged quasi-3D flow analysis combined with flow deviation and pressure loss distribution models. Based on the predicted internal flow field dada by the trough-flow modeling, fan noise is predicted by two models for the discrete frequency noise due to rotating steady aerodynamic thrust and blade interaction and for the broadband noise due to turbulent boundary layer and wake vortex shedding. The present predictions of the flow distribution, the performance and the noise level of fan are well agreed with actual test results.

  10. Characterizing night vision goggle noise using the method of paired comparisons

    NASA Astrophysics Data System (ADS)

    Reis, George A.; Marasco, Peter L.; Havig, Paul R.; Heft, Eric L.; Goodyear, Charles D.

    2005-05-01

    Users of night vision goggles (NVGs) have reported differences in NVG noise across different as well as the same type of NVG. To better understand these differences, we attempted to characterize NVG noise by having subjects choose parameters in an NVG simulation to best match the noise in real NVGs. From our previous efforts, we observed interdependence of simulation parameters and variability across observers. This has lead us to use the method of paired comparisons as a process for characterizing NVG noise. The results suggest that people perceive NVG noise differently in terms of spatial, temporal, and contrast combinations. In addition, we provide a methodology for determining psychophysically the best parameter combinations in a simulation"s algorithm to match the real environment that the simulation represents.

  11. Noise reduction of time domain electromagnetic data: Application of a combined wavelet denoising method

    NASA Astrophysics Data System (ADS)

    Ji, Yanju; Li, Dongsheng; Yuan, Guiyang; Lin, Jun; Du, Shangyu; Xie, Lijun; Wang, Yuan

    2016-06-01

    A denoising method based on wavelet analysis is presented for the removal of noise (background noise and random spike) from time domain electromagnetic (TEM) data. This method includes two signal processing technologies: wavelet threshold method and stationary wavelet transform. First, wavelet threshold method is used for the removal of background noise from TEM data. Then, the data are divided into a series of details and approximations by using stationary wavelet transform. The random spike in details is identified by zero reference data and adaptive energy detector. Next, the corresponding details are processed to suppress the random spike. The denoised TEM data are reconstructed via inverse stationary wavelet transform using the processed details at each level and the approximations at the highest level. The proposed method has been verified using a synthetic TEM data, the signal-to-noise ratio of synthetic TEM data is increased from 10.97 dB to 24.37 dB at last. This method is also applied to the noise suppression of the field data which were collected at Hengsha island, China. The section image results shown that the noise is suppressed effectively and the resolution of the deep anomaly is obviously improved.

  12. An alternative method for noise analysis using pixel variance as part of quality control procedures on digital mammography systems

    NASA Astrophysics Data System (ADS)

    Bouwman, R.; Young, K.; Lazzari, B.; Ravaglia, V.; Broeders, M.; van Engen, R.

    2009-11-01

    According to the European Guidelines for quality assured breast cancer screening and diagnosis, noise analysis is one of the measurements that needs to be performed as part of quality control procedures on digital mammography systems. However, the method recommended in the European Guidelines does not discriminate sufficiently between systems with and without additional noise besides quantum noise. This paper attempts to give an alternative and relatively simple method for noise analysis which can divide noise into electronic noise, structured noise and quantum noise. Quantum noise needs to be the dominant noise source in clinical images for optimal performance of a digital mammography system, and therefore the amount of electronic and structured noise should be minimal. For several digital mammography systems, the noise was separated into components based on the measured pixel value, standard deviation (SD) of the image and the detector entrance dose. The results showed that differences between systems exist. Our findings confirm that the proposed method is able to discriminate systems based on their noise performance and is able to detect possible quality problems. Therefore, we suggest to replace the current method for noise analysis as described in the European Guidelines by the alternative method described in this paper.

  13. Fan Noise Reduction: An Overview

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    2001-01-01

    Fan noise reduction technologies developed as part of the engine noise reduction element of the Advanced Subsonic Technology Program are reviewed. Developments in low-noise fan stage design, swept and leaned outlet guide vanes, active noise control, fan flow management, and scarfed inlet are discussed. In each case, a description of the method is presented and, where available, representative results and general conclusions are discussed. The review concludes with a summary of the accomplishments of the AST-sponsored fan noise reduction research and a few thoughts on future work.

  14. Intraoperative methods to stage and localize pancreatic and duodenal tumors.

    PubMed

    Norton, J A

    1999-01-01

    Intraoperative methods to stage and localize tumors have dramatically improved. Advances include less invasive methods to obtain comparable results and precise localization of previously occult tumors. The use of new technology including laparoscopy and ultrasound has provided some of these advances, while improved operative techniques have provided others. Laparoscopy with ultrasound has allowed for improved staging of patients with pancreatic cancer and exclusion of patients who are not resectable for cure. We performed laparoscopy with ultrasound on 50 consecutive patients with adenocarcinoma of the pancreas or liver who appeared to have resectable tumors based on preoperative computed tomography. 22 patients (44%) were found to be unresectable because of tumor nodules on the liver and/or peritoneal surfaces or unsuspected distant nodal or liver metastases. The site of disease making the patient unresectable was confirmed by biopsy in each case. Of the 28 remaining patients in whom laparoscopic ultrasound predicted to be resectable for cure, 26 (93%) had all tumor removed. Thus laparoscopy with ultrasound was the best method to select patients for curative surgery. Intraoperative ultrasound (IOUS) has been a critical method to identify insulinomas that are not palpable. Nonpalpable tumors are most commonly in the pancreatic head. Because the pancreatic head is thick and insulinomas are small, of 9 pancreatic head insulinomas only 3 (33%) were palpable. However, IOUS precisely identified each (100%). Others have recommended blind distal pancreatectomy for individuals with insulinoma in whom no tumor can be identified. However, our data suggest that this procedure is contraindicated as these occult tumors are usually within the pancreatic head. Recent series suggest that previously missed gastrinomas are commonly in the duodenum. IOUS is not able to identify these tumors, but other methods can. Of 27 patients with 31 duodenal gastrinomas, palpation identified 19

  15. A kernel machine-based fMRI physiological noise removal method.

    PubMed

    Song, Xiaomu; Chen, Nan-kuei; Gaur, Pooja

    2014-02-01

    Functional magnetic resonance imaging (fMRI) technique with blood oxygenation level dependent (BOLD) contrast is a powerful tool for noninvasive mapping of brain function under task and resting states. The removal of cardiac- and respiration-induced physiological noise in fMRI data has been a significant challenge as fMRI studies seek to achieve higher spatial resolutions and characterize more subtle neuronal changes. The low temporal sampling rate of most multi-slice fMRI experiments often causes aliasing of physiological noise into the frequency range of BOLD activation signal. In addition, changes of heartbeat and respiration patterns also generate physiological fluctuations that have similar frequencies with BOLD activation. Most existing physiological noise-removal methods either place restrictive limitations on image acquisition or utilize filtering or regression based post-processing algorithms, which cannot distinguish the frequency-overlapping BOLD activation and the physiological noise. In this work, we address the challenge of physiological noise removal via the kernel machine technique, where a nonlinear kernel machine technique, kernel principal component analysis, is used with a specifically identified kernel function to differentiate BOLD signal from the physiological noise of the frequency. The proposed method was evaluated in human fMRI data acquired from multiple task-related and resting state fMRI experiments. A comparison study was also performed with an existing adaptive filtering method. The results indicate that the proposed method can effectively identify and reduce the physiological noise in fMRI data. The comparison study shows that the proposed method can provide comparable or better noise removal performance than the adaptive filtering approach.

  16. A Kernel Machine-based fMRI Physiological Noise Removal Method

    PubMed Central

    Song, Xiaomu; Chen, Nan-kuei; Gaur, Pooja

    2013-01-01

    Functional magnetic resonance imaging (fMRI) technique with blood oxygenation level dependent (BOLD) contrast is a powerful tool for noninvasive mapping of brain function under task and resting states. The removal of cardiac- and respiration-induced physiological noise in fMRI data has been a significant challenge as fMRI studies seek to achieve higher spatial resolutions and characterize more subtle neuronal changes. The low temporal sampling rate of most multi-slice fMRI experiments often causes aliasing of physiological noise into the frequency range of BOLD activation signal. In addition, changes of heartbeat and respiration patterns also generate physiological fluctuations that have similar frequencies with BOLD activation. Most existing physiological noise-removal methods either place restrictive limitations on image acquisition or utilize filtering or regression based post-processing algorithms, which cannot distinguish the frequency-overlapping BOLD activation and the physiological noise. In this work, we address the challenge of physiological noise removal via the kernel machine technique, where a nonlinear kernel machine technique, kernel principal component analysis, is used with a specifically identified kernel function to differentiate BOLD signal from the physiological noise of the frequency. The proposed method was evaluated in human fMRI data acquired from multiple task-related and resting state fMRI experiments. A comparison study was also performed with an existing adaptive filtering method. The results indicate that the proposed method can effectively identify and reduce the physiological noise in fMRI data. The comparison study shows that the proposed method can provide comparable or better noise removal performance than the adaptive filtering approach. PMID:24321306

  17. Open Rotor Noise Prediction Methods at NASA Langley- A Technology Review

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Dunn, Mark H.; Tinetti, Ana F.; Nark, Douglas M.

    2009-01-01

    Open rotors are once again under consideration for propulsion of the future airliners because of their high efficiency. The noise generated by these propulsion systems must meet the stringent noise standards of today to reduce community impact. In this paper we review the open rotor noise prediction methods available at NASA Langley. We discuss three codes called ASSPIN (Advanced Subsonic-Supersonic Propeller Induced Noise), FW - Hpds (Ffowcs Williams-Hawkings with penetrable data surface) and the FSC (Fast Scattering Code). The first two codes are in the time domain and the third code is a frequency domain code. The capabilities of these codes and the input data requirements as well as the output data are presented. Plans for further improvements of these codes are discussed. In particular, a method based on equivalent sources is outlined to get rid of spurious signals in the FW - Hpds code.

  18. A Study of Morrison's Iterative Noise Removal Method. Final Report M. S. Thesis

    NASA Technical Reports Server (NTRS)

    Ioup, G. E.; Wright, K. A. R.

    1985-01-01

    Morrison's iterative noise removal method is studied by characterizing its effect upon systems of differing noise level and response function. The nature of data acquired from a linear shift invariant instrument is discussed so as to define the relationship between the input signal, the instrument response function, and the output signal. Fourier analysis is introduced, along with several pertinent theorems, as a tool to more thorough understanding of the nature of and difficulties with deconvolution. In relation to such difficulties the necessity of a noise removal process is discussed. Morrison's iterative noise removal method and the restrictions upon its application are developed. The nature of permissible response functions is discussed, as is the choice of the response functions used.

  19. System and Method for Suppression of Unwanted Noise in Ground Test Facilities

    NASA Technical Reports Server (NTRS)

    Zaman, Khairul B. M. Q. (Inventor); Clem, Michelle M. (Inventor); Fagan, Amy F. (Inventor)

    2015-01-01

    Systems and methods for the suppression of unwanted noise from a jet discharging into a duct are disclosed herein. The unwanted noise may be in the form of excited duct modes or howl due to super resonance. A damper member is used to reduce acoustic velocity perturbations at the velocity anti-node, associated with the half-wave resonance of the duct, weakening the resonance condition and reducing the amplitudes of the spectral peaks.

  20. Method to Measure Total Noise Temperature of a Wireless Receiver During Operation

    NASA Technical Reports Server (NTRS)

    Young, Lawrence E.; Esterhuizen, Stephan; Turbiner, Dmitry

    2013-01-01

    A method has been developed to measure the total effective noise power in a GPS receiver, including contributions from the system temperature, the antenna temperature, interference, lossy components, etc. A known level of noise is periodically injected before the preamplifier during normal tracking, with a switch set to a very low duty cycle, so that there is insignificant signal loss for the GPS signals being tracked. Alternately, a signal of known power may be injected. The coupling port is fed with a switch that can be controlled from the receiver s digital processing section. The switch can connect the coupling port to a noise or signal source at a known power level. The combined system noise is measured, and nearly continuous noise calibrations are made. The effect from injected noise/signals on the performance of the GPS receiver can be less than 0.01 dB of SNR loss. Minimal additional components are required. The GPS receiver is used to measure the SNRs required to solve for the noise level. Because this measurement is referenced to the preamplifier input, it is insensitive to variations in the receiver gain.

  1. Vacuum-isolation vessel and method for measurement of thermal noise in microphones

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor); Ngo, Kim Chi T. (Inventor)

    1992-01-01

    The vacuum isolation vessel and method in accordance with the present invention are used to accurately measure thermal noise in microphones. The apparatus and method could be used in a microphone calibration facility or any facility used for testing microphones. Thermal noise is measured to determine the minimum detectable sound pressure by the microphone. Conventional isolation apparatus and methods have been unable to provide an acoustically quiet and substantially vibration free environment for accurately measuring thermal noise. In the present invention, an isolation vessel assembly comprises a vacuum sealed outer vessel, a vacuum sealed inner vessel, and an interior suspension assembly coupled between the outer and inner vessels for suspending the inner vessel within the outer vessel. A noise measurement system records thermal noise data from the isolation vessel assembly. A vacuum system creates a vacuum between an internal surface of the outer vessel and an external surface of the inner vessel. The present invention thus provides an acoustically quiet environment due to the vacuum created between the inner and outer vessels and a substantially vibration free environment due to the suspension assembly suspending the inner vessel within the outer vessel. The thermal noise in the microphone, effectively isolated according to the invention, can be accurately measured.

  2. A Noise Level Prediction Method Based on Electro-Mechanical Frequency Response Function for Capacitors

    PubMed Central

    Zhu, Lingyu; Ji, Shengchang; Shen, Qi; Liu, Yuan; Li, Jinyu; Liu, Hao

    2013-01-01

    The capacitors in high-voltage direct-current (HVDC) converter stations radiate a lot of audible noise which can reach higher than 100 dB. The existing noise level prediction methods are not satisfying enough. In this paper, a new noise level prediction method is proposed based on a frequency response function considering both electrical and mechanical characteristics of capacitors. The electro-mechanical frequency response function (EMFRF) is defined as the frequency domain quotient of the vibration response and the squared capacitor voltage, and it is obtained from impulse current experiment. Under given excitations, the vibration response of the capacitor tank is the product of EMFRF and the square of the given capacitor voltage in frequency domain, and the radiated audible noise is calculated by structure acoustic coupling formulas. The noise level under the same excitations is also measured in laboratory, and the results are compared with the prediction. The comparison proves that the noise prediction method is effective. PMID:24349105

  3. “Buzz-saw” noise: A comparison of modal measurements with an improved prediction method

    NASA Astrophysics Data System (ADS)

    McAlpine, A.; Fisher, M. J.; Tester, B. J.

    2007-10-01

    "Buzz-saw" noise is radiated from a turbofan inlet duct when the fan tip speed is supersonic. In a recent article the effect of an acoustic liner on buzz-saw noise has been examined. Spectral measurements in a rigid and an acoustically lined inlet duct have been compared. Also these measurements have been utilized to assess a buzz-saw noise prediction method. The prediction method is based on a one-dimensional nonlinear propagation model. Sound absorption by an acoustic lining can be included in the model. In this article, the buzz-saw noise prediction method is improved by the inclusion in the modelling of the effect of a boundary layer on absorption of sound in a lined duct. Also, modal measurements from a circumferential microphone array have been examined. These show that the principal source of buzz-saw noise is not always the rotor-alone pressure field. Non-rotor-alone scattered tones can be a significant source of buzz-saw noise at low supersonic fan speeds. The numerical simulations, which only predict the rotor-alone tones, have been re-evaluated in light of these new modal measurements.

  4. Methods for designing treatments to reduce interior noise of predominant sources and paths in a single engine light aircraft

    NASA Technical Reports Server (NTRS)

    Hayden, Richard E.; Remington, Paul J.; Theobald, Mark A.; Wilby, John F.

    1985-01-01

    The sources and paths by which noise enters the cabin of a small single engine aircraft were determined through a combination of flight and laboratory tests. The primary sources of noise were found to be airborne noise from the propeller and engine casing, airborne noise from the engine exhaust, structureborne noise from the engine/propeller combination and noise associated with air flow over the fuselage. For the propeller, the primary airborne paths were through the firewall, windshield and roof. For the engine, the most important airborne path was through the firewall. Exhaust noise was found to enter the cabin primarily through the panels in the vicinity of the exhaust outlet although exhaust noise entering the cabin through the firewall is a distinct possibility. A number of noise control techniques were tried, including firewall stiffening to reduce engine and propeller airborne noise, to stage isolators and engine mounting spider stiffening to reduce structure-borne noise, and wheel well covers to reduce air flow noise.

  5. Methods for designing treatments to reduce interior noise of predominant sources and paths in a single engine light aircraft

    NASA Astrophysics Data System (ADS)

    Hayden, Richard E.; Remington, Paul J.; Theobald, Mark A.; Wilby, John F.

    1985-03-01

    The sources and paths by which noise enters the cabin of a small single engine aircraft were determined through a combination of flight and laboratory tests. The primary sources of noise were found to be airborne noise from the propeller and engine casing, airborne noise from the engine exhaust, structureborne noise from the engine/propeller combination and noise associated with air flow over the fuselage. For the propeller, the primary airborne paths were through the firewall, windshield and roof. For the engine, the most important airborne path was through the firewall. Exhaust noise was found to enter the cabin primarily through the panels in the vicinity of the exhaust outlet although exhaust noise entering the cabin through the firewall is a distinct possibility. A number of noise control techniques were tried, including firewall stiffening to reduce engine and propeller airborne noise, to stage isolators and engine mounting spider stiffening to reduce structure-borne noise, and wheel well covers to reduce air flow noise.

  6. Single stage, low noise, advanced technology fan. Volume 5: Fan acoustics. Section 2: One-third octave data tabulations and selected narrowband traces

    NASA Technical Reports Server (NTRS)

    Jutras, R. R.

    1976-01-01

    The raw-acoustic data corrected to standard day, from acoustic tests performed on a 0.508-scale fan vehicle of a 111,300 newton thrust, full-size engine, which has application on an advanced transport aircraft, are presented. The single-stage advanced technology fan was designed to a pressure ratio of 1.8 at a tip speed of 503 m/sec to achieve the desired pressure ratio in a single-stage fan with low radius ratio, and to maintain adequate stall margin. The two basic approaches taken in the acoustic design were: (1) minimization of noise at the source, and (2) suppression of the generated noise in the inlet and bypass exhaust duct. Suppression of the generated noise was accomplished in the inlet through use of the hybrid concept (wall acoustic treatment plus airflow acceleration suppression) and in the exhaust duct with extensive acoustic treatment including a splitter. The goal of the design was attainment of twenty effective perceived noise decibels. The suppression goal of FAR 36-20 was not reached, but improvements in the technology of both front and aft fan-noise suppression were realized.

  7. A Parameter Identification Method for Helicopter Noise Source Identification and Physics-Based Semi-Empirical Modeling

    NASA Technical Reports Server (NTRS)

    Greenwood, Eric, II; Schmitz, Fredric H.

    2010-01-01

    A new physics-based parameter identification method for rotor harmonic noise sources is developed using an acoustic inverse simulation technique. This new method allows for the identification of individual rotor harmonic noise sources and allows them to be characterized in terms of their individual non-dimensional governing parameters. This new method is applied to both wind tunnel measurements and ground noise measurements of two-bladed rotors. The method is shown to match the parametric trends of main rotor Blade-Vortex Interaction (BVI) noise, allowing accurate estimates of BVI noise to be made for operating conditions based on a small number of measurements taken at different operating conditions.

  8. Advances in the development of common noise assessment methods in Europe: The CNOSSOS-EU framework for strategic environmental noise mapping.

    PubMed

    Kephalopoulos, Stylianos; Paviotti, Marco; Anfosso-Lédée, Fabienne; Van Maercke, Dirk; Shilton, Simon; Jones, Nigel

    2014-06-01

    The Environmental Noise Directive (2002/49/EC) requires EU Member States to determine the exposure to environmental noise through strategic noise mapping and to elaborate action plans in order to reduce noise pollution, where necessary. A common framework for noise assessment methods (CNOSSOS-EU) has been developed by the European Commission in co-operation with the EU Member States to be applied for strategic noise mapping as required by the Environment Noise Directive (2002/49/EC). CNOSSOS-EU represents a harmonised and coherent approach to assess noise levels from the main sources of noise (road traffic, railway traffic, aircraft and industrial) across Europe. This paper outlines the process behind the development of CNOSSOS-EU and the parts of the CNOSSOS-EU core methodological framework which were developed during phase A of the CNOSSOS-EU process (2010-2012), whilst focusing on the main scientific and technical issues that were addressed, and the implementation challenges that are being faced before it can become fully operational in the EU MS.

  9. Applications of Response Surface-Based Methods to Noise Analysis in the Conceptual Design of Revolutionary Aircraft

    NASA Technical Reports Server (NTRS)

    Hill, Geoffrey A.; Olson, Erik D.

    2004-01-01

    Due to the growing problem of noise in today's air transportation system, there have arisen needs to incorporate noise considerations in the conceptual design of revolutionary aircraft. Through the use of response surfaces, complex noise models may be converted into polynomial equations for rapid and simplified evaluation. This conversion allows many of the commonly used response surface-based trade space exploration methods to be applied to noise analysis. This methodology is demonstrated using a noise model of a notional 300 passenger Blended-Wing-Body (BWB) transport. Response surfaces are created relating source noise levels of the BWB vehicle to its corresponding FAR-36 certification noise levels and the resulting trade space is explored. Methods demonstrated include: single point analysis, parametric study, an optimization technique for inverse analysis, sensitivity studies, and probabilistic analysis. Extended applications of response surface-based methods in noise analysis are also discussed.

  10. High-order noise analysis for low dose iterative image reconstruction methods: ASIR, IRIS, and MBAI

    NASA Astrophysics Data System (ADS)

    Do, Synho; Singh, Sarabjeet; Kalra, Mannudeep K.; Karl, W. Clem; Brady, Thomas J.; Pien, Homer

    2011-03-01

    Iterative reconstruction techniques (IRTs) has been shown to suppress noise significantly in low dose CT imaging. However, medical doctors hesitate to accept this new technology because visual impression of IRT images are different from full-dose filtered back-projection (FBP) images. Most common noise measurements such as the mean and standard deviation of homogeneous region in the image that do not provide sufficient characterization of noise statistics when probability density function becomes non-Gaussian. In this study, we measure L-moments of intensity values of images acquired at 10% of normal dose and reconstructed by IRT methods of two state-of-art clinical scanners (i.e., GE HDCT and Siemens DSCT flash) by keeping dosage level identical to each other. The high- and low-dose scans (i.e., 10% of high dose) were acquired from each scanner and L-moments of noise patches were calculated for the comparison.

  11. System and method for motor fault detection using stator current noise cancellation

    DOEpatents

    Zhou, Wei; Lu, Bin; Nowak, Michael P.; Dimino, Steven A.

    2010-12-07

    A system and method for detecting incipient mechanical motor faults by way of current noise cancellation is disclosed. The system includes a controller configured to detect indicia of incipient mechanical motor faults. The controller further includes a processor programmed to receive a baseline set of current data from an operating motor and define a noise component in the baseline set of current data. The processor is also programmed to acquire at least on additional set of real-time operating current data from the motor during operation, redefine the noise component present in each additional set of real-time operating current data, and remove the noise component from the operating current data in real-time to isolate any fault components present in the operating current data. The processor is then programmed to generate a fault index for the operating current data based on any isolated fault components.

  12. Development of a low cost method to estimate the seismic signature of a geothermal field form ambient noise analysis.

    SciTech Connect

    Tibuleac, Ileana

    2016-06-30

    A new, cost effective and non-invasive exploration method using ambient seismic noise has been tested at Soda Lake, NV, with promising results. The material included in this report demonstrates that, with the advantage of initial S-velocity models estimated from ambient noise surface waves, the seismic reflection survey, although with lower resolution, reproduces the results of the active survey when the ambient seismic noise is not contaminated by strong cultural noise. Ambient noise resolution is less at depth (below 1000m) compared to the active survey. In general, the results are promising and useful information can be recovered from ambient seismic noise, including dipping features and fault locations.

  13. Probabilistic density function method for nonlinear dynamical systems driven by colored noise

    NASA Astrophysics Data System (ADS)

    Barajas-Solano, David A.; Tartakovsky, Alexandre M.

    2016-05-01

    We present a probability density function (PDF) method for a system of nonlinear stochastic ordinary differential equations driven by colored noise. The method provides an integrodifferential equation for the temporal evolution of the joint PDF of the system's state, which we close by means of a modified large-eddy-diffusivity (LED) closure. In contrast to the classical LED closure, the proposed closure accounts for advective transport of the PDF in the approximate temporal deconvolution of the integrodifferential equation. In addition, we introduce the generalized local linearization approximation for deriving a computable PDF equation in the form of a second-order partial differential equation. We demonstrate that the proposed closure and localization accurately describe the dynamics of the PDF in phase space for systems driven by noise with arbitrary autocorrelation time. We apply the proposed PDF method to analyze a set of Kramers equations driven by exponentially autocorrelated Gaussian colored noise to study nonlinear oscillators and the dynamics and stability of a power grid. Numerical experiments show the PDF method is accurate when the noise autocorrelation time is either much shorter or longer than the system's relaxation time, while the accuracy decreases as the ratio of the two timescales approaches unity. Similarly, the PDF method accuracy decreases with increasing standard deviation of the noise.

  14. Probabilistic density function method for nonlinear dynamical systems driven by colored noise.

    PubMed

    Barajas-Solano, David A; Tartakovsky, Alexandre M

    2016-05-01

    We present a probability density function (PDF) method for a system of nonlinear stochastic ordinary differential equations driven by colored noise. The method provides an integrodifferential equation for the temporal evolution of the joint PDF of the system's state, which we close by means of a modified large-eddy-diffusivity (LED) closure. In contrast to the classical LED closure, the proposed closure accounts for advective transport of the PDF in the approximate temporal deconvolution of the integrodifferential equation. In addition, we introduce the generalized local linearization approximation for deriving a computable PDF equation in the form of a second-order partial differential equation. We demonstrate that the proposed closure and localization accurately describe the dynamics of the PDF in phase space for systems driven by noise with arbitrary autocorrelation time. We apply the proposed PDF method to analyze a set of Kramers equations driven by exponentially autocorrelated Gaussian colored noise to study nonlinear oscillators and the dynamics and stability of a power grid. Numerical experiments show the PDF method is accurate when the noise autocorrelation time is either much shorter or longer than the system's relaxation time, while the accuracy decreases as the ratio of the two timescales approaches unity. Similarly, the PDF method accuracy decreases with increasing standard deviation of the noise.

  15. A method of estimating the noise level in a chaotic time series

    NASA Astrophysics Data System (ADS)

    Jayawardena, A. W.; Xu, Pengcheng; Li, W. K.

    2008-06-01

    An attempt is made in this study to estimate the noise level present in a chaotic time series. This is achieved by employing a linear least-squares method that is based on the correlation integral form obtained by Diks in 1999. The effectiveness of the method is demonstrated using five artificial chaotic time series, the Hénon map, the Lorenz equation, the Duffing equation, the Rossler equation and the Chua's circuit whose dynamical characteristics are known a priori. Different levels of noise are added to the artificial chaotic time series and the estimated results indicate good performance of the proposed method. Finally, the proposed method is applied to estimate the noise level present in some real world data sets.

  16. Method of independently operating a group of stages within a diffusion cascade

    DOEpatents

    Benedict, Manson; Fruit, Allen J.; Levey, Horace B.

    1976-06-08

    1. A method of operating a group of the diffusion stages of a productive diffusion cascade with countercurrent flow, said group comprising a top and a bottom stage, which comprises isolating said group from said cascade, circulating the diffused gas produced in said top stage to the feed of said bottom stage while at the same time circulating the undiffused gas from said bottom stage to the feed of said top stage whereby major changes in

  17. The Reduction of Ducted Fan Engine Noise Via A Boundary Integral Equation Method

    NASA Technical Reports Server (NTRS)

    Tweed, J.; Dunn, M.

    1997-01-01

    The development of a Boundary Integral Equation Method (BIEM) for the prediction of ducted fan engine noise is discussed. The method is motivated by the need for an efficient and versatile computational tool to assist in parametric noise reduction studies. In this research, the work in reference 1 was extended to include passive noise control treatment on the duct interior. The BEM considers the scattering of incident sound generated by spinning point thrust dipoles in a uniform flow field by a thin cylindrical duct. The acoustic field is written as a superposition of spinning modes. Modal coefficients of acoustic pressure are calculated term by term. The BEM theoretical framework is based on Helmholtz potential theory. A boundary value problem is converted to a boundary integral equation formulation with unknown single and double layer densities on the duct wall. After solving for the unknown densities, the acoustic field is easily calculated. The main feature of the BIEM is the ability to compute any portion of the sound field without the need to compute the entire field. Other noise prediction methods such as CFD and Finite Element methods lack this property. Additional BIEM attributes include versatility, ease of use, rapid noise predictions, coupling of propagation and radiation both forward and aft, implementable on midrange personal computers, and valid over a wide range of frequencies.

  18. Noise variance analysis using a flat panel x-ray detector: A method for additive noise assessment with application to breast CT applications

    PubMed Central

    Yang, Kai; Huang, Shih-Ying; Packard, Nathan J.; Boone, John M.

    2010-01-01

    Purpose: A simplified linear model approach was proposed to accurately model the response of a flat panel detector used for breast CT (bCT). Methods: Individual detector pixel mean and variance were measured from bCT projection images acquired both in air and with a polyethylene cylinder, with the detector operating in both fixed low gain and dynamic gain mode. Once the coefficients of the linear model are determined, the fractional additive noise can be used as a quantitative metric to evaluate the system’s efficiency in utilizing x-ray photons, including the performance of different gain modes of the detector. Results: Fractional additive noise increases as the object thickness increases or as the radiation dose to the detector decreases. For bCT scan techniques on the UC Davis prototype scanner (80 kVp, 500 views total, 30 frames∕s), in the low gain mode, additive noise contributes 21% of the total pixel noise variance for a 10 cm object and 44% for a 17 cm object. With the dynamic gain mode, additive noise only represents approximately 2.6% of the total pixel noise variance for a 10 cm object and 7.3% for a 17 cm object. Conclusions: The existence of the signal-independent additive noise is the primary cause for a quadratic relationship between bCT noise variance and the inverse of radiation dose at the detector. With the knowledge of the additive noise contribution to experimentally acquired images, system modifications can be made to reduce the impact of additive noise and improve the quantum noise efficiency of the bCT system. PMID:20831059

  19. Noise variance analysis using a flat panel x-ray detector: A method for additive noise assessment with application to breast CT applications

    SciTech Connect

    Yang Kai; Huang, Shih-Ying; Packard, Nathan J.; Boone, John M.

    2010-07-15

    Purpose: A simplified linear model approach was proposed to accurately model the response of a flat panel detector used for breast CT (bCT). Methods: Individual detector pixel mean and variance were measured from bCT projection images acquired both in air and with a polyethylene cylinder, with the detector operating in both fixed low gain and dynamic gain mode. Once the coefficients of the linear model are determined, the fractional additive noise can be used as a quantitative metric to evaluate the system's efficiency in utilizing x-ray photons, including the performance of different gain modes of the detector. Results: Fractional additive noise increases as the object thickness increases or as the radiation dose to the detector decreases. For bCT scan techniques on the UC Davis prototype scanner (80 kVp, 500 views total, 30 frames/s), in the low gain mode, additive noise contributes 21% of the total pixel noise variance for a 10 cm object and 44% for a 17 cm object. With the dynamic gain mode, additive noise only represents approximately 2.6% of the total pixel noise variance for a 10 cm object and 7.3% for a 17 cm object. Conclusions: The existence of the signal-independent additive noise is the primary cause for a quadratic relationship between bCT noise variance and the inverse of radiation dose at the detector. With the knowledge of the additive noise contribution to experimentally acquired images, system modifications can be made to reduce the impact of additive noise and improve the quantum noise efficiency of the bCT system.

  20. Probabilistic density function method for nonlinear dynamical systems driven by colored noise

    SciTech Connect

    Barajas-Solano, David A.; Tartakovsky, Alexandre M.

    2016-05-01

    We present a probability density function (PDF) method for a system of nonlinear stochastic ordinary differential equations driven by colored noise. The method provides an integro-differential equation for the temporal evolution of the joint PDF of the system's state, which we close by means of a modified Large-Eddy-Diffusivity-type closure. Additionally, we introduce the generalized local linearization (LL) approximation for deriving a computable PDF equation in the form of the second-order partial differential equation (PDE). We demonstrate the proposed closure and localization accurately describe the dynamics of the PDF in phase space for systems driven by noise with arbitrary auto-correlation time. We apply the proposed PDF method to the analysis of a set of Kramers equations driven by exponentially auto-correlated Gaussian colored noise to study the dynamics and stability of a power grid.

  1. Effective simulation method for parametric signal-noise interaction in transmission fibers.

    PubMed

    Vanin, Evgeny; Jacobsen, Gunnar; Berntson, Anders

    2006-08-01

    We propose a new method for effective numerical simulation of transmission system performance and study of correlated noise evolution along an optical fiber with nonlinear parametric interaction between the amplified spontaneous emission (ASE) and the modulated optical signal. The method is based on an evaluation of the noise covariance matrix by using full nonlinear Schrödinger equation (NLSE) and an analytical model for the optical receiver. Using extensive brute-force Monte Carlo simulation as a verification tool, we test the accuracy of the method and illustrate the analytical receiver model limitations in the case of moderate as well as substantial growth of non-Gaussian optical noise along the optical fiber transmission link.

  2. Research on the effect of noise at different times of day: Models, methods and findings

    NASA Technical Reports Server (NTRS)

    Fields, J. M.

    1985-01-01

    Social surveys of residents' responses to noise at different times of day are reviewed. Some of the discrepancies in published reports about the importance of noise at different times of day are reduced when the research findings are classified according to the type of time of day reaction model, the type of time of day weight calculated and the method which is used to estimate the weight. When the estimates of nighttime weights from 12 studies are normalized, it is found that they still disagree, but do not support stronger nighttime weights than those used in existing noise indices. Challenges to common assumptions in nighttime response models are evaluated. Two of these challenges receive enough support to warrant further investigation: the impact of changes in numbers of noise events may be less at night than in the day and nighttime annoyance may be affected by noise levels in other periods. All existing social survey results in which averages of nighttime responses were plotted by nighttime noise levels are reproduced.

  3. Pilot study of methods and equipment for in-home noise level measurements

    PubMed Central

    Neitzel, Richard L.; Heikkinen, Maire S.A.; Williams, Christopher C.; Viet, Susan Marie; Dellarco, Michael

    2015-01-01

    Knowledge of the auditory and non-auditory effects of noise has increased dramatically over the past decade, but indoor noise exposure measurement methods have not advanced appreciably, despite the introduction of applicable new technologies. This study evaluated various conventional and smart devices for exposure assessment in the National Children's Study. Three devices were tested: a sound level meter (SLM), a dosimeter, and a smart device with a noise measurement application installed. Instrument performance was evaluated in a series of semi-controlled tests in office environments over 96-hour periods, followed by measurements made continuously in two rooms (a child's bedroom and a most used room) in nine participating homes over a 7-day period with subsequent computation of a range of noise metrics. The SLMs and dosimeters yielded similar A-weighted average noise levels. Levels measured by the smart devices often differed substantially (showing both positive and negative bias, depending on the metric) from those measured via SLM and dosimeter, and demonstrated attenuation in some frequency bands in spectral analysis compared to SLM results. Virtually all measurements exceeded the Environmental Protection Agency's 45 dBA day-night limit for indoor residential exposures. The measurement protocol developed here can be employed in homes, demonstrates the possibility of measuring long-term noise exposures in homes with technologies beyond traditional SLMs, and highlights potential pitfalls associated with measurements made by smart devices. PMID:27053775

  4. Local-geometric-projection method for noise reduction in chaotic maps and flows

    NASA Astrophysics Data System (ADS)

    Cawley, Robert; Hsu, Guan-Hsong

    1992-09-01

    We describe a method for noise reduction in chaotic systems that is based on projection of the set of points comprising an embedded noisy orbit in openRd toward a finite patchwork of best-fit local approximations to an m-dimensional surface M'⊂openRd, m<=d. We generate the orbits by the delay coordinate construction of Ruelle and Takens [N. H. Packard et al., Phys. Rev. Lett. 45, 712 (1980); F. Takens, in Dynamical Systems and Turbulence, Warwick, 1980, edited by D. A. Rand and L.-S. Young (Springer, Berlin, 1981)] from time series v(t), which in an experimental situation we would assume to have come, together with additional high-dimensional background noise, from an underlying dynamical system ft: M-->M existing on some low m-dimensional manifold M. The surface M' in openRd is the assumed embedded image of M. We give results of systematic studies of linear (tangent plane) projection schemes. We describe in detail the basic algorithm for implementing these schemes. We apply the algorithm iteratively to known map and flow time series to which white noise has been added. In controlled studies, we measure the signal-to-noise ratio improvements, iterating nM times until a stable maximum δM is achieved. We present extensive results for δM and nM for a wide range of values of embedding trial dimension d, projection dimension k, number of nearest-neighbor points for local approximation ν, embedding delay Δ, sampling interval ΔT, initial noise amplitude scrN, and trajectory length N. We give results for very low and very high noise amplitudes 0%<=scrN<=100%. We develop an empirical method for estimating the initial noise level for a given experimental time series, and for the optimal choice of algorithm parameters to achieve peak reduction. We present interesting results of application of the noise-reduction algorithm to a chaotic time series produced from a periodically driven magnetoelastic ribbon experiment on the control of chaos. Two noteworthy elements of the

  5. Numerical Methods for Computing Turbulence-Induced Noise

    DTIC Science & Technology

    2005-12-16

    consider the finite dimensional subspace Vhl C Vh . Let vhi -= phlu be the optimal representation of u in Vhl and phi : V+_+ Vhl be the appropriate...mapping. We consider the following numerical method which is obtained by replacing h with hi in (2.4). Find uhl E Vhi , such that B(whi, uhl) + M(whUhl, f...the same functional form of the model that leads to the optimal solution on Vh, also leads to the optimal solution on Vhi . Thus, requiring uhl = vh

  6. Validation of finite element and boundary element methods for predicting structural vibration and radiated noise

    NASA Technical Reports Server (NTRS)

    Seybert, A. F.; Wu, X. F.; Oswald, Fred B.

    1992-01-01

    Analytical and experimental validation of methods to predict structural vibration and radiated noise are presented. A rectangular box excited by a mechanical shaker was used as a vibrating structure. Combined finite element method (FEM) and boundary element method (BEM) models of the apparatus were used to predict the noise radiated from the box. The FEM was used to predict the vibration, and the surface vibration was used as input to the BEM to predict the sound intensity and sound power. Vibration predicted by the FEM model was validated by experimental modal analysis. Noise predicted by the BEM was validated by sound intensity measurements. Three types of results are presented for the total radiated sound power: (1) sound power predicted by the BEM modeling using vibration data measured on the surface of the box; (2) sound power predicted by the FEM/BEM model; and (3) sound power measured by a sound intensity scan. The sound power predicted from the BEM model using measured vibration data yields an excellent prediction of radiated noise. The sound power predicted by the combined FEM/BEM model also gives a good prediction of radiated noise except for a shift of the natural frequencies that are due to limitations in the FEM model.

  7. Seismic coherent and random noise attenuation using the undecimated discrete wavelet transform method with WDGA technique

    NASA Astrophysics Data System (ADS)

    Goudarzi, Alireza; Riahi, Mohammad Ali

    2012-12-01

    One of the most crucial challenges in seismic data processing is the reduction of the noise in the data or improving the signal-to-noise ratio. In this study, the 1D undecimated discrete wavelet transform (UDWT) has been acquired to attenuate random noise and ground roll. Wavelet domain ground roll analysis (WDGA) is applied to find the ground roll energy in the wavelet domain. The WDGA will be a substitute method for thresholding in seismic data processing. To compare the effectiveness of the WDGA method, we apply the 1D double density discrete wavelet transform (DDDWT) using soft thresholding in the random noise reduction and ground roll attenuation processes. Seismic signals intersect with ground roll in the time and frequency domains. Random noise and ground roll have many undesirable effects on pre-stack seismic data, and result in an inaccurate velocity analysis for NMO correction. In this paper, the UDWT by using the WDGA technique and DDDWT (using the soft thresholding technique) and the regular Fourier based method as f-k transform will be used and compared for seismic denoising.

  8. An optimal local active noise control method based on stochastic finite element models

    NASA Astrophysics Data System (ADS)

    Airaksinen, T.; Toivanen, J.

    2013-12-01

    A new method is presented to obtain a local active noise control that is optimal in stochastic environment. The method uses numerical acoustical modeling that is performed in the frequency domain by using a sequence of finite element discretizations of the Helmholtz equation. The stochasticity of domain geometry and primary noise source is considered. Reference signals from an array of microphones are mapped to secondary loudspeakers, by an off-line optimized linear mapping. The frequency dependent linear mapping is optimized to minimize the expected value of error in a quiet zone, which is approximated by the numerical model and can be interpreted as a stochastic virtual microphone. A least squares formulation leads to a quadratic optimization problem. The presented active noise control method gives robust and efficient noise attenuation, which is demonstrated by a numerical study in a passenger car cabin. The numerical results demonstrate that a significant, stable local noise attenuation of 20-32 dB can be obtained at lower frequencies (<500 Hz) by two microphones, and 8-36 dB attenuation at frequencies up to 1000 Hz, when 8 microphones are used.

  9. A region finding method to remove the noise from the images of the human hand gesture recognition system

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Jibran; Mahmood, Waqas

    2015-12-01

    The performance of the human hand gesture recognition systems depends on the quality of the images presented to the system. Since these systems work in real time environment the images may be corrupted by some environmental noise. By removing the noise the performance of the system can be enhanced. So far different noise removal methods have been presented in many researches to eliminate the noise but all have its own limitations. We have presented a region finding method to deal with the environmental noise that gives better results and enhances the performance of the human hand gesture recognition systems so that the recognition rate of the system can be improved.

  10. An Improved Detection Method for Hyperspectral Imagery Based on White Gaussian Noise.

    PubMed

    Wang, Yiting; Huang, Shiqi; Wang, Hongxia; Liu, Daizhi

    2015-07-01

    To solve the low detection efficiency of the present hyperspectral detection method based on adaptive coherence estimator (ACE), an improved detection method based on white Gaussian noise (WGN) is proposed in this paper. Primarily the method uses the spectral angle mapping (SAM) method to adaptively set an optimal signal-to-noise (SNR) parameter based on the hyperspectral image. Then, a corresponding white Gaussian noise is generated according to this SNR parameter and is added to the original image to get a new image data. Finally, based on the new image data, a better target detection result can be obtained by using the ACE detection algorithm. The image data, added to the white Gaussian noise, are more consistent with the theoretical hypotheses of the ACE algorithm. Therefore the detection performance of the algorithm can be efficiently improved. Meanwhile, the adaptivity of setting the optimum SNR parameter in various images can make the method more universal. Experimental results of real world hyperspectral data show that the proposed ACE-WGN method can effectively improve detection performance.

  11. Electrochemical noise methods applied to the study of organic coatings and pretreatments

    SciTech Connect

    Bierwagen, G.P.; Talhnan, D.E.; Touzain, S.; Smith, A.; Twite, R.; Balbyshev, V.; Pae, Y.

    1998-12-31

    The use of electrochemical noise methods (ENM) to examine organic coatings was first performed in 1986 by Skerry and Eden. The technique uses the spontaneous voltage and current noise that occurs between two identical coated electrodes in electrolyte immersion to determine resistance properties of the coating as well as low frequency noise impedance data for the system. It is a non-perturbing measurement, and one that allows judgment and ranking of coating systems performance. This paper will summarize work in the lab over the past five years on the use of ENM for examining the properties of organic coatings and pretreatment over metals. They have studied marine coatings, pipeline coatings, coil coatings, electrodeposited organic coatings (e-coats), and aircraft coatings by this method and found it to be useful, especially when used in conjunction with impedance and other electrochemical techniques.

  12. Note: A simple method to suppress the artificial noise for velocity map imaging spectroscopy

    SciTech Connect

    Qin, Zhengbo E-mail: zctang@dicp.ac.cn; Li, Chunsheng; Qu, Zehua; Tang, Zichao E-mail: zctang@dicp.ac.cn

    2015-04-15

    A simple method has been proposed to suppress artificial noise from the counts with respect to the central line (or point) for the reconstructed 3D images with cylindrical symmetry in the velocity-map imaging spectroscopy. A raw 2D projection around the z-axis (usually referred to as central line) for photodetachment, photoionization, or photodissociation experiments is pre-processed via angular tailored method to avoid the signal counts distributed near the central line (or point). Two types of photoelectron velocity-map imaging (O{sup −} and Au{sup −} ⋅ NH{sub 3}) are demonstrated to give rise to the 3D images with significantly reduced central line noise after pre-processing operation. The major advantages of the pre-operation are the ability of suppression of central-line noise to resolve weak structures or vibrational excitation in atoms or molecules near photon threshold.

  13. Note: A simple method to suppress the artificial noise for velocity map imaging spectroscopy.

    PubMed

    Qin, Zhengbo; Li, Chunsheng; Qu, Zehua; Tang, Zichao

    2015-04-01

    A simple method has been proposed to suppress artificial noise from the counts with respect to the central line (or point) for the reconstructed 3D images with cylindrical symmetry in the velocity-map imaging spectroscopy. A raw 2D projection around the z-axis (usually referred to as central line) for photodetachment, photoionization, or photodissociation experiments is pre-processed via angular tailored method to avoid the signal counts distributed near the central line (or point). Two types of photoelectron velocity-map imaging (O(-) and Au(-)⋅NH3) are demonstrated to give rise to the 3D images with significantly reduced central line noise after pre-processing operation. The major advantages of the pre-operation are the ability of suppression of central-line noise to resolve weak structures or vibrational excitation in atoms or molecules near photon threshold.

  14. A Direct Method for Calculating Instrument Noise Levels in Side-by-Side Seismometer Evaluations

    USGS Publications Warehouse

    Holcomb, L. Gary

    1989-01-01

    INTRODUCTION The subject of determining the inherent system noise levels present in modem broadband closed loop seismic sensors has been an evolving topic ever since closed loop systems became available. Closed loop systems are unique in that the system noise can not be determined via a blocked mass test as in older conventional open loop seismic sensors. Instead, most investigators have resorted to performing measurements on two or more systems operating in close proximity to one another and to analyzing the outputs of these systems with respect to one another to ascertain their relative noise levels. The analysis of side-by-side relative performance is inherently dependent on the accuracy of the mathematical modeling of the test configuration. This report presents a direct approach to extracting the system noise levels of two linear systems with a common coherent input signal. The mathematical solution to the problem is incredibly simple; however the practical application of the method encounters some difficulties. Examples of expected accuracies are presented as derived by simulating real systems performance using computer generated random noise. In addition, examples of the performance of the method when applied to real experimental test data are shown.

  15. An NMR log echo data de-noising method based on the wavelet packet threshold algorithm

    NASA Astrophysics Data System (ADS)

    Meng, Xiangning; Xie, Ranhong; Li, Changxi; Hu, Falong; Li, Chaoliu; Zhou, Cancan

    2015-12-01

    To improve the de-noising effects of low signal-to-noise ratio (SNR) nuclear magnetic resonance (NMR) log echo data, this paper applies the wavelet packet threshold algorithm to the data. The principle of the algorithm is elaborated in detail. By comparing the properties of a series of wavelet packet bases and the relevance between them and the NMR log echo train signal, ‘sym7’ is found to be the optimal wavelet packet basis of the wavelet packet threshold algorithm to de-noise the NMR log echo train signal. A new method is presented to determine the optimal wavelet packet decomposition scale; this is within the scope of its maximum, using the modulus maxima and the Shannon entropy minimum standards to determine the global and local optimal wavelet packet decomposition scales, respectively. The results of applying the method to the simulated and actual NMR log echo data indicate that compared with the wavelet threshold algorithm, the wavelet packet threshold algorithm, which shows higher decomposition accuracy and better de-noising effect, is much more suitable for de-noising low SNR-NMR log echo data.

  16. A NOISE ADAPTIVE FUZZY EQUALIZATION METHOD FOR PROCESSING SOLAR EXTREME ULTRAVIOLET IMAGES

    SciTech Connect

    Druckmueller, M.

    2013-08-15

    A new image enhancement tool ideally suited for the visualization of fine structures in extreme ultraviolet images of the corona is presented in this paper. The Noise Adaptive Fuzzy Equalization method is particularly suited for the exceptionally high dynamic range images from the Atmospheric Imaging Assembly instrument on the Solar Dynamics Observatory. This method produces artifact-free images and gives significantly better results than methods based on convolution or Fourier transform which are often used for that purpose.

  17. Improved Kalman filter method for measurement noise reduction in multi sensor RFID systems.

    PubMed

    Eom, Ki Hwan; Lee, Seung Joon; Kyung, Yeo Sun; Lee, Chang Won; Kim, Min Chul; Jung, Kyung Kwon

    2011-01-01

    Recently, the range of available radio frequency identification (RFID) tags has been widened to include smart RFID tags which can monitor their varying surroundings. One of the most important factors for better performance of smart RFID system is accurate measurement from various sensors. In the multi-sensing environment, some noisy signals are obtained because of the changing surroundings. We propose in this paper an improved Kalman filter method to reduce noise and obtain correct data. Performance of Kalman filter is determined by a measurement and system noise covariance which are usually called the R and Q variables in the Kalman filter algorithm. Choosing a correct R and Q variable is one of the most important design factors for better performance of the Kalman filter. For this reason, we proposed an improved Kalman filter to advance an ability of noise reduction of the Kalman filter. The measurement noise covariance was only considered because the system architecture is simple and can be adjusted by the neural network. With this method, more accurate data can be obtained with smart RFID tags. In a simulation the proposed improved Kalman filter has 40.1%, 60.4% and 87.5% less mean squared error (MSE) than the conventional Kalman filter method for a temperature sensor, humidity sensor and oxygen sensor, respectively. The performance of the proposed method was also verified with some experiments.

  18. A method for calculating strut and splitter plate noise in exit ducts: Theory and verification

    NASA Technical Reports Server (NTRS)

    Fink, M. R.

    1978-01-01

    Portions of a four-year analytical and experimental investigation relative to noise radiation from engine internal components in turbulent flow are summarized. Spectra measured for such airfoils over a range of chord, thickness ratio, flow velocity, and turbulence level were compared with predictions made by an available rigorous thin-airfoil analytical method. This analysis included the effects of flow compressibility and source noncompactness. Generally good agreement was obtained. This noise calculation method for isolated airfoils in turbulent flow was combined with a method for calculating transmission of sound through a subsonic exit duct and with an empirical far-field directivity shape. These three elements were checked separately and were individually shown to give close agreement with data. This combination provides a method for predicting engine internally generated aft-radiated noise from radial struts and stators, and annular splitter rings. Calculated sound power spectra, directivity, and acoustic pressure spectra were compared with the best available data. These data were for noise caused by a fan exit duct annular splitter ring, larger-chord stator blades, and turbine exit struts.

  19. Development of an MCG/MEG system for small animals and its noise reduction method

    NASA Astrophysics Data System (ADS)

    Miyamoto, M.; Kawai, J.; Adachi, Y.; Haruta, Y.; Komamura, K.; Uehara, G.

    2008-02-01

    Accurate capture of the biomagnetic signals from a rat or a mouse greatly benefits the development of new medicine and pathology. In order to improve the efficiency and accuracy of biomagnetic measurement of small animals, we developed a biomagnetic measurement system specific to small animal measurement. A superconducting quantum interference device (SQUID) sensor array and a table for the system were newly developed and were integrated into a transportable chassis having dimensions of 1.3 m width × 0.7 m depth × 1.8 m height and housing all principal components for the system. The integrated 9ch low-Tc SQUIDs magnetometer array designed to improve spatial resolution covers 8 mm × 8mm measurement area. We have also developed a real-time noise canceling method suitable for this system. The advantage of this method is that the noise reduction process is carried out in real time. We have confirmed the efficacy of this method using the measurement system which was installed in typical laboratory environment. The noise reduction effect was measured to be roughly 16 dB at power line frequency and its harmonics. We measured an magnetocardiogram (MCG) of a mouse using the system with the real-time noise canceling method, and the feasibility of small animal MCG measurement was ensured.

  20. A method to establish seismic noise baselines for automated station assessment

    USGS Publications Warehouse

    McNamara, D.E.; Hutt, C.R.; Gee, L.S.; Benz, H.M.; Buland, R.P.

    2009-01-01

    We present a method for quantifying station noise baselines and characterizing the spectral shape of out-of-nominal noise sources. Our intent is to automate this method in order to ensure that only the highest-quality data are used in rapid earthquake products at NEIC. In addition, the station noise baselines provide a valuable tool to support the quality control of GSN and ANSS backbone data and metadata. The procedures addressed here are currently in development at the NEIC, and work is underway to understand how quickly changes from nominal can be observed and used within the NEIC processing framework. The spectral methods and software used to compute station baselines and described herein (PQLX) can be useful to both permanent and portable seismic stations operators. Applications include: general seismic station and data quality control (QC), evaluation of instrument responses, assessment of near real-time communication system performance, characterization of site cultural noise conditions, and evaluation of sensor vault design, as well as assessment of gross network capabilities (McNamara et al. 2005). Future PQLX development plans include incorporating station baselines for automated QC methods and automating station status report generation and notification based on user-defined QC parameters. The PQLX software is available through the USGS (http://earthquake. usgs.gov/research/software/pqlx.php) and IRIS (http://www.iris.edu/software/ pqlx/).

  1. Method of pedestal and common-mode noise correction for switched-capacitor analog memories

    DOEpatents

    Britton, C.L.

    1996-12-31

    A method and apparatus are disclosed for correcting common-mode noise and pedestal noise in a multichannel array of switched-capacitor analog memories wherein each analog memory is connected to an associated analog-to-digital converter. The apparatus comprises a single differential element in two different embodiments. In a first embodiment, the differential element is a reference analog memory connected to a buffer. In the second embodiment, the differential element is a reference analog memory connected to a reference analog-to-digital connected to an array of digital summing circuits. 4 figs.

  2. Method of pedestal and common-mode noise correction for switched-capacitor analog memories

    DOEpatents

    Britton, C.L.

    1997-09-23

    A method and apparatus are disclosed for correcting common-mode noise and pedestal noise in a multichannel array of switched-capacitor analog memories wherein each analog memory is connected to an associated analog-to-digital converter. The apparatus comprises a single differential element in two different embodiments. In a first embodiment, the differential element is a reference analog memory connected to a buffer. In the second embodiment, the differential dement is a reference analog memory connected to a reference analog-to-digital connected to an array of digital summing circuits. 4 figs.

  3. Slat Noise Predictions Using Higher-Order Finite-Difference Methods on Overset Grids

    NASA Technical Reports Server (NTRS)

    Housman, Jeffrey A.; Kiris, Cetin

    2016-01-01

    Computational aeroacoustic simulations using the structured overset grid approach and higher-order finite difference methods within the Launch Ascent and Vehicle Aerodynamics (LAVA) solver framework are presented for slat noise predictions. The simulations are part of a collaborative study comparing noise generation mechanisms between a conventional slat and a Krueger leading edge flap. Simulation results are compared with experimental data acquired during an aeroacoustic test in the NASA Langley Quiet Flow Facility. Details of the structured overset grid, numerical discretization, and turbulence model are provided.

  4. A method of gear defect intelligent detection based on transmission noise

    NASA Astrophysics Data System (ADS)

    Chen, Hong-fang; Zhao, Yun; Lin, Jia-chun; Guo, Mian

    2015-02-01

    A new approach was proposed by combing Ensemble Empirical Mode Decomposition (EEMD) algorithm and Back Propagation (BP) neural network for detection of gear through transmission noise analysis. Then feature values of the feature signals are calculated. The feature values which have a great difference for different defect types are chosen to build an eigenvector. BP neural network is used to train and learn on the eigenvector for recognition of gear defects intelligently. In this study, a comparative experiment has been performed among normal gears, cracked gears and eccentric gears with fifteen sets of different gears. Experimental results indicate that the proposed method can detect gear defect features carried by the transmission noise effectively.

  5. Method of pedestal and common-mode noise correction for switched-capacitor analog memories

    DOEpatents

    Britton, Charles L.

    1997-01-01

    A method and apparatus for correcting common-mode noise and pedestal noise in a multichannel array of switched-capacitor analog memories wherein each analog memory is connected to an associated analog-to-digital converter. The apparatus comprises a single differential element in two different embodiments. In a first embodiment, the differential element is a reference analog memory connected to a buffer. In the second embodiment, the differential dement is a reference analog memory connected to a reference analog-to-digital connected to an array of digital summing circuits.

  6. Method of pedestal and common-mode noise correction for switched-capacitor analog memories

    DOEpatents

    Britton, Charles L.

    1996-01-01

    A method and apparatus for correcting common-mode noise and pedestal noise in a multichannel array of switched-capacitor analog memories wherein each analog memory is connected to an associated analog-to-digital converter. The apparatus comprises a single differential element in two different embodiments. In a first embodiment, the differential element is a reference analog memory connected to a buffer. In the second embodiment, the differential element is a reference analog memory connected to a reference analog-to-digital connected to an array of digital summing circuits.

  7. Open Rotor Tone Shielding Methods for System Noise Assessments Using Multiple Databases

    NASA Technical Reports Server (NTRS)

    Bahr, Christopher J.; Thomas, Russell H.; Lopes, Leonard V.; Burley, Casey L.; Van Zante, Dale E.

    2014-01-01

    Advanced aircraft designs such as the hybrid wing body, in conjunction with open rotor engines, may allow for significant improvements in the environmental impact of aviation. System noise assessments allow for the prediction of the aircraft noise of such designs while they are still in the conceptual phase. Due to significant requirements of computational methods, these predictions still rely on experimental data to account for the interaction of the open rotor tones with the hybrid wing body airframe. Recently, multiple aircraft system noise assessments have been conducted for hybrid wing body designs with open rotor engines. These assessments utilized measured benchmark data from a Propulsion Airframe Aeroacoustic interaction effects test. The measured data demonstrated airframe shielding of open rotor tonal and broadband noise with legacy F7/A7 open rotor blades. Two methods are proposed for improving the use of these data on general open rotor designs in a system noise assessment. The first, direct difference, is a simple octave band subtraction which does not account for tone distribution within the rotor acoustic signal. The second, tone matching, is a higher-fidelity process incorporating additional physical aspects of the problem, where isolated rotor tones are matched by their directivity to determine tone-by-tone shielding. A case study is conducted with the two methods to assess how well each reproduces the measured data and identify the merits of each. Both methods perform similarly for system level results and successfully approach the experimental data for the case study. The tone matching method provides additional tools for assessing the quality of the match to the data set. Additionally, a potential path to improve the tone matching method is provided.

  8. Noise reduction in computed tomography using a multiplicative continuous-time image reconstruction method

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Yusaku; Kojima, Takeshi; Yoshinaga, Tetsuya

    2016-03-01

    In clinical X-ray computed tomography (CT), filtered back-projection as a transform method and iterative reconstruction such as the maximum-likelihood expectation-maximization (ML-EM) method are known methods to reconstruct tomographic images. As the other reconstruction method, we have presented a continuous-time image reconstruction (CIR) system described by a nonlinear dynamical system, based on the idea of continuous methods for solving tomographic inverse problems. Recently, we have also proposed a multiplicative CIR system described by differential equations based on the minimization of a weighted Kullback-Leibler divergence. We prove theoretically that the divergence measure decreases along the solution to the CIR system, for consistent inverse problems. In consideration of the noisy nature of projections in clinical CT, the inverse problem belongs to the category of ill-posed problems. The performance of a noise-reduction scheme for a new (previously developed) CIR system was investigated by means of numerical experiments using a circular phantom image. Compared to the conventional CIR and the ML-EM methods, the proposed CIR method has an advantage on noisy projection with lower signal-to-noise ratios in terms of the divergence measure on the actual image under the same common measure observed via the projection data. The results lead to the conclusion that the multiplicative CIR method is more effective and robust for noise reduction in CT compared to the ML-EM as well as conventional CIR methods.

  9. Musical-Noise Analysis in Methods of Integrating Microphone Array and Spectral Subtraction Based on Higher-Order Statistics

    NASA Astrophysics Data System (ADS)

    Takahashi, Yu; Saruwatari, Hiroshi; Shikano, Kiyohiro; Kondo, Kazunobu

    2010-12-01

    We conduct an objective analysis on musical noise generated by two methods of integrating microphone array signal processing and spectral subtraction. To obtain better noise reduction, methods of integrating microphone array signal processing and nonlinear signal processing have been researched. However, nonlinear signal processing often generates musical noise. Since such musical noise causes discomfort to users, it is desirable that musical noise is mitigated. Moreover, it has been recently reported that higher-order statistics are strongly related to the amount of musical noise generated. This implies that it is possible to optimize the integration method from the viewpoint of not only noise reduction performance but also the amount of musical noise generated. Thus, we analyze the simplest methods of integration, that is, the delay-and-sum beamformer and spectral subtraction, and fully clarify the features of musical noise generated by each method. As a result, it is clarified that a specific structure of integration is preferable from the viewpoint of the amount of generated musical noise. The validity of the analysis is shown via a computer simulation and a subjective evaluation.

  10. Method and system to perform energy-extraction based active noise control

    NASA Technical Reports Server (NTRS)

    Kelkar, Atul (Inventor); Joshi, Suresh M. (Inventor)

    2009-01-01

    A method to provide active noise control to reduce noise and vibration in reverberant acoustic enclosures such as aircraft, vehicles, appliances, instruments, industrial equipment and the like is presented. A continuous-time multi-input multi-output (MIMO) state space mathematical model of the plant is obtained via analytical modeling and system identification. Compensation is designed to render the mathematical model passive in the sense of mathematical system theory. The compensated system is checked to ensure robustness of the passive property of the plant. The check ensures that the passivity is preserved if the mathematical model parameters are perturbed from nominal values. A passivity-based controller is designed and verified using numerical simulations and then tested. The controller is designed so that the resulting closed-loop response shows the desired noise reduction.

  11. A New Method for Reduction of Photomultiplier Signal-Induced Noise

    NASA Technical Reports Server (NTRS)

    Koble, Andrea; DeYoung, Russell

    2000-01-01

    For lidar measurements of ozone, photomultiplier tube (PMT) detector signal-induced noise represents a fundamental problem that complicates the extraction of information from lidar data. A new method is developed to significantly reduce signal-induced noise in lidar receiver PMT detectors. The electron optics of the lidar photomultiplier detector is modified to filter the source of signal-induced noise. A mesh electrode external to the PMT is utilized to control photoemission and disorient electron trajectories from the photocathode to the first dynode. Experiments were taken both with simulated and actual lidar return signals at Langley Research Center. Results show at least 40 percent more accurate ozone number density values with a mesh voltage of 60 V applied than with no voltage applied.

  12. System and method for bearing fault detection using stator current noise cancellation

    DOEpatents

    Zhou, Wei; Lu, Bin; Habetler, Thomas G.; Harley, Ronald G.; Theisen, Peter J.

    2010-08-17

    A system and method for detecting incipient mechanical motor faults by way of current noise cancellation is disclosed. The system includes a controller configured to detect indicia of incipient mechanical motor faults. The controller further includes a processor programmed to receive a baseline set of current data from an operating motor and define a noise component in the baseline set of current data. The processor is also programmed to repeatedly receive real-time operating current data from the operating motor and remove the noise component from the operating current data in real-time to isolate any fault components present in the operating current data. The processor is then programmed to generate a fault index for the operating current data based on any isolated fault components.

  13. Signal processing method and system for noise removal and signal extraction

    DOEpatents

    Fu, Chi Yung; Petrich, Loren

    2009-04-14

    A signal processing method and system combining smooth level wavelet pre-processing together with artificial neural networks all in the wavelet domain for signal denoising and extraction. Upon receiving a signal corrupted with noise, an n-level decomposition of the signal is performed using a discrete wavelet transform to produce a smooth component and a rough component for each decomposition level. The n.sup.th level smooth component is then inputted into a corresponding neural network pre-trained to filter out noise in that component by pattern recognition in the wavelet domain. Additional rough components, beginning at the highest level, may also be retained and inputted into corresponding neural networks pre-trained to filter out noise in those components also by pattern recognition in the wavelet domain. In any case, an inverse discrete wavelet transform is performed on the combined output from all the neural networks to recover a clean signal back in the time domain.

  14. Assessment of volumetric noise and resolution performance for linear and nonlinear CT reconstruction methods

    SciTech Connect

    Chen, Baiyu; Christianson, Olav; Wilson, Joshua M.; Samei, Ehsan

    2014-07-15

    Purpose: For nonlinear iterative image reconstructions (IR), the computed tomography (CT) noise and resolution properties can depend on the specific imaging conditions, such as lesion contrast and image noise level. Therefore, it is imperative to develop a reliable method to measure the noise and resolution properties under clinically relevant conditions. This study aimed to develop a robust methodology to measure the three-dimensional CT noise and resolution properties under such conditions and to provide guidelines to achieve desirable levels of accuracy and precision. Methods: The methodology was developed based on a previously reported CT image quality phantom. In this methodology, CT noise properties are measured in the uniform region of the phantom in terms of a task-based 3D noise-power spectrum (NPS{sub task}). The in-plane resolution properties are measured in terms of the task transfer function (TTF) by applying a radial edge technique to the rod inserts in the phantom. The z-direction resolution properties are measured from a supplemental phantom, also in terms of the TTF. To account for the possible nonlinearity of IR, the NPS{sub task} is measured with respect to the noise magnitude, and the TTF with respect to noise magnitude and edge contrast. To determine the accuracy and precision of the methodology, images of known noise and resolution properties were simulated. The NPS{sub task} and TTF were measured on the simulated images and compared to the truth, with criteria established to achieve NPS{sub task} and TTF measurements with <10% error. To demonstrate the utility of this methodology, measurements were performed on a commercial CT system using five dose levels, two slice thicknesses, and three reconstruction algorithms (filtered backprojection, FBP; iterative reconstruction in imaging space, IRIS; and sinogram affirmed iterative reconstruction with strengths of 5, SAFIRE5). Results: To achieve NPS{sub task} measurements with <10% error, the

  15. Design method of automotive powertrain mounting system based on vibration and noise limitations of vehicle level

    NASA Astrophysics Data System (ADS)

    Shangguan, Wen-Bin; Liu, Xiao-Ang; Lv, Zhao-Ping; Rakheja, Subhash

    2016-08-01

    The design logic and calculation method for determining mount stiffness and damping for a Powertrain Mounting System (PMS) based on reductions of vehicle vibration and noise contributed by mounts is proposed in this paper. Firstly, the design target for a PMS with regard to vibration and noise limitations of vehicle level contributed form mounts is described. Then a vehicle model with 13 Degree of Freedoms (DOFs) is proposed, which includes 6DOFs for the powertrain, 3 DOFs for the car body and 4DOFs for the four unsprung mass, and the dynamic equation for the model is derived. Some widely used models, such as the 6 DOFs model of the powertrain for the design calculation of a PMS, the 7 DOFs model (Body's 3 DOFs; unsprung mass's 4 DOFs) and the 9 DOFs model (powertrain's 6 DOFs; Body's 3 DOFs) for ride analysis of a vehicle, are the specific cases of the presented model of 13 DOF. Thirdly, the calculation method for obtaining the vibration of seat track and evaluation point and the noise at driver right ear is presented based on the mount forces and the vibration and noise transfer functions. An optimization process is proposed to get the mount stiffness and damping based on minimization of vehicle vibration and noise, and the optimized stiffness is validated by comparing the calculated vibration and noise and limitations. In the end of this paper, the natural frequencies and mode energies for the powertrain, the body and the unsprung mass are calculated using different models and the results are compared and analyzed.

  16. An adaptive segment method for smoothing lidar signal based on noise estimation

    NASA Astrophysics Data System (ADS)

    Wang, Yuzhao; Luo, Pingping

    2014-10-01

    An adaptive segmentation smoothing method (ASSM) is introduced in the paper to smooth the signal and suppress the noise. In the ASSM, the noise is defined as the 3σ of the background signal. An integer number N is defined for finding the changing positions in the signal curve. If the difference of adjacent two points is greater than 3Nσ, the position is recorded as an end point of the smoothing segment. All the end points detected as above are recorded and the curves between them will be smoothed separately. In the traditional method, the end points of the smoothing windows in the signals are fixed. The ASSM creates changing end points in different signals and the smoothing windows could be set adaptively. The windows are always set as the half of the segmentations and then the average smoothing method will be applied in the segmentations. The Iterative process is required for reducing the end-point aberration effect in the average smoothing method and two or three times are enough. In ASSM, the signals are smoothed in the spacial area nor frequent area, that means the frequent disturbance will be avoided. A lidar echo was simulated in the experimental work. The echo was supposed to be created by a space-born lidar (e.g. CALIOP). And white Gaussian noise was added to the echo to act as the random noise resulted from environment and the detector. The novel method, ASSM, was applied to the noisy echo to filter the noise. In the test, N was set to 3 and the Iteration time is two. The results show that, the signal could be smoothed adaptively by the ASSM, but the N and the Iteration time might be optimized when the ASSM is applied in a different lidar.

  17. Method for inserting noise in digital mammography to simulate reduction in radiation dose

    NASA Astrophysics Data System (ADS)

    Borges, Lucas R.; de Oliveira, Helder C. R.; Nunes, Polyana F.; Vieira, Marcelo A. C.

    2015-03-01

    The quality of clinical x-ray images is closely related to the radiation dose used in the imaging study. The general principle for selecting the radiation is ALARA ("as low as reasonably achievable"). The practical optimization, however, remains challenging. It is well known that reducing the radiation dose increases the quantum noise, which could compromise the image quality. In order to conduct studies about dose reduction in mammography, it would be necessary to acquire repeated clinical images, from the same patient, with different dose levels. However, such practice would be unethical due to radiation related risks. One solution is to simulate the effects of dose reduction in clinical images. This work proposes a new method, based on the Anscombe transformation, which simulates dose reduction in digital mammography by inserting quantum noise into clinical mammograms acquired with the standard radiation dose. Thus, it is possible to simulate different levels of radiation doses without exposing the patient to new levels of radiation. Results showed that the achieved quality of simulated images generated with our method is the same as when using other methods found in the literature, with the novelty of using the Anscombe transformation for converting signal-independent Gaussian noise into signal-dependent quantum noise.

  18. Assessment of physiological noise modelling methods for functional imaging of the spinal cord.

    PubMed

    Kong, Yazhuo; Jenkinson, Mark; Andersson, Jesper; Tracey, Irene; Brooks, Jonathan C W

    2012-04-02

    The spinal cord is the main pathway for information between the central and the peripheral nervous systems. Non-invasive functional MRI offers the possibility of studying spinal cord function and central sensitisation processes. However, imaging neural activity in the spinal cord is more difficult than in the brain. A significant challenge when dealing with such data is the influence of physiological noise (primarily cardiac and respiratory), and currently there is no standard approach to account for these effects. We have previously studied the various sources of physiological noise for spinal cord fMRI at 1.5T and proposed a physiological noise model (PNM) (Brooks et al., 2008). An alternative de-noising strategy, selective averaging filter (SAF), was proposed by Deckers et al. (2006). In this study we reviewed and implemented published physiological noise correction methods at higher field (3T) and aimed to find the optimal models for gradient-echo-based BOLD acquisitions. Two general techniques were compared: physiological noise model (PNM) and selective averaging filter (SAF), along with regressors designed to account for specific signal compartments and physiological processes: cerebrospinal fluid (CSF), motion correction (MC) parameters, heart rate (HR), respiration volume per time (RVT), and the associated cardiac and respiratory response functions. Functional responses were recorded from the cervical spinal cord of 18 healthy subjects in response to noxious thermal and non-noxious punctate stimulation. The various combinations of models and regressors were compared in three ways: the model fit residuals, regression model F-tests and the number of activated voxels. The PNM was found to outperform SAF in all three tests. Furthermore, inclusion of the CSF regressor was crucial as it explained a significant amount of signal variance in the cord and increased the number of active cord voxels. Whilst HR, RVT and MC explained additional signal (noise) variance

  19. Phase Noise Investigation of Maximum Likelihood Estimation Method for Airborne Multibaseline SAR Interferometry

    NASA Astrophysics Data System (ADS)

    Magnard, C.; Small, D.; Meier, E.

    2015-03-01

    The phase estimation of cross-track multibaseline synthetic aperture interferometric data is usually thought to be very efficiently achieved using the maximum likelihood (ML) method. The suitability of this method is investigated here as applied to airborne single pass multibaseline data. Experimental interferometric data acquired with a Ka-band sensor were processed using (a) a ML method that fuses the complex data from all receivers and (b) a coarse-to-fine method that only uses the intermediate baselines to unwrap the phase values from the longest baseline. The phase noise was analyzed for both methods: in most cases, a small improvement was found when the ML method was used.

  20. A new measurement method for separating airborne and structureborne noise radiated by aircraft type panels

    NASA Technical Reports Server (NTRS)

    Mcgary, M. C.

    1982-01-01

    The theoretical basis for and experimental validation of a measurement method for separating airborne and structure borne noise radiated by aircraft type panels are presented. An extension of the two microphone, cross spectral, acoustic intensity method combined with existing theory of sound radiation of thin shell structures of various designs, is restricted to the frequency range below the coincidence frequency of the structure. Consequently, the method lends itself to low frequency noise problems such as propeller harmonics. Both an aluminum sheet and two built up aircraft panel designs (two aluminum panels with frames and stringers) with and without added damping were measured. Results indicate that the method is quick, reliable, inexpensive, and can be applied to thin shell structures of various designs.

  1. Experimental validation of finite element and boundary element methods for predicting structural vibration and radiated noise

    NASA Technical Reports Server (NTRS)

    Seybert, A. F.; Wu, T. W.; Wu, X. F.

    1994-01-01

    This research report is presented in three parts. In the first part, acoustical analyses were performed on modes of vibration of the housing of a transmission of a gear test rig developed by NASA. The modes of vibration of the transmission housing were measured using experimental modal analysis. The boundary element method (BEM) was used to calculate the sound pressure and sound intensity on the surface of the housing and the radiation efficiency of each mode. The radiation efficiency of each of the transmission housing modes was then compared to theoretical results for a finite baffled plate. In the second part, analytical and experimental validation of methods to predict structural vibration and radiated noise are presented. A rectangular box excited by a mechanical shaker was used as a vibrating structure. Combined finite element method (FEM) and boundary element method (BEM) models of the apparatus were used to predict the noise level radiated from the box. The FEM was used to predict the vibration, while the BEM was used to predict the sound intensity and total radiated sound power using surface vibration as the input data. Vibration predicted by the FEM model was validated by experimental modal analysis; noise predicted by the BEM was validated by measurements of sound intensity. Three types of results are presented for the total radiated sound power: sound power predicted by the BEM model using vibration data measured on the surface of the box; sound power predicted by the FEM/BEM model; and sound power measured by an acoustic intensity scan. In the third part, the structure used in part two was modified. A rib was attached to the top plate of the structure. The FEM and BEM were then used to predict structural vibration and radiated noise respectively. The predicted vibration and radiated noise were then validated through experimentation.

  2. Statistical Methods and Tools for Hanford Staged Feed Tank Sampling

    SciTech Connect

    Fountain, Matthew S.; Brigantic, Robert T.; Peterson, Reid A.

    2013-10-01

    This report summarizes work conducted by Pacific Northwest National Laboratory to technically evaluate the current approach to staged feed sampling of high-level waste (HLW) sludge to meet waste acceptance criteria (WAC) for transfer from tank farms to the Hanford Waste Treatment and Immobilization Plant (WTP). The current sampling and analysis approach is detailed in the document titled Initial Data Quality Objectives for WTP Feed Acceptance Criteria, 24590-WTP-RPT-MGT-11-014, Revision 0 (Arakali et al. 2011). The goal of this current work is to evaluate and provide recommendations to support a defensible, technical and statistical basis for the staged feed sampling approach that meets WAC data quality objectives (DQOs).

  3. Methods to improve traffic flow and noise exposure estimation on minor roads.

    PubMed

    Morley, David W; Gulliver, John

    2016-09-01

    Address-level estimates of exposure to road traffic noise for epidemiological studies are dependent on obtaining data on annual average daily traffic (AADT) flows that is both accurate and with good geographical coverage. National agencies often have reliable traffic count data for major roads, but for residential areas served by minor roads, especially at national scale, such information is often not available or incomplete. Here we present a method to predict AADT at the national scale for minor roads, using a routing algorithm within a geographical information system (GIS) to rank roads by importance based on simulated journeys through the road network. From a training set of known minor road AADT, routing importance is used to predict AADT on all UK minor roads in a regression model along with the road class, urban or rural location and AADT on the nearest major road. Validation with both independent traffic counts and noise measurements show that this method gives a considerable improvement in noise prediction capability when compared to models that do not give adequate consideration to minor road variability (Spearman's rho. increases from 0.46 to 0.72). This has significance for epidemiological cohort studies attempting to link noise exposure to adverse health outcomes.

  4. Signal-to-noise issues in measuring nitrous oxide fluxes by the eddy covariance method

    NASA Astrophysics Data System (ADS)

    Cowan, Nicholas; Levy, Peter; Langford, Ben; Skiba, Ute

    2016-04-01

    Recently-developed fast-response gas analysers capable of measuring atmospheric N2O with high precision (< 50 ppt) at a rate of 10 Hz are becoming more widely available. These instruments are capable of measuring N2O fluxes using the eddy covariance method, with significantly less effort and uncertainty than previous instruments have allowed. However, there are still many issues to overcome in order to obtain accurate and reliable flux data. The signal-to-noise ratio of N2O measured using these instruments is still two to three orders of magnitude smaller than that of CO2. The low signal-to-noise ratio can lead to systematic uncertainties, in the eddy covariance method, the most significant being in the calculation of the time lag between gas analyser and anemometer by maximisation of covariance (Langford et al., 2015). When signal-to-noise ratio is relatively low, as it is with many N2O measurements, the maximisation of covariance method can systematically overestimate fluxes. However, if constant time lags are assumed, then fluxes will be underestimated. This presents a major issue for N2O eddy covariance measurements. In this presentation we will focus on the signal to noise ratio for an Aerodyne quantum cascade laser (QCL). Eddy covariance flux measurements from multiple agricultural sites across the UK were investigated for potential uncertainties. Our presentation highlights some of these uncertainties when analysing eddy covariance data and offers suggestions as to how these issues may be minimised. Langford, B., Acton, W., Ammann, C., Valach, A. and Nemitz, E.: Eddy-covariance data with low signal-to-noise ratio: time-lag determination, uncertainties and limit of detection, Atmos Meas Tech, 8(10), 4197-4213, doi:10.5194/amt-8-4197-2015, 2015.

  5. Proper orthogonal decomposition methods for noise reduction in particle-based transport calculations

    NASA Astrophysics Data System (ADS)

    del-Castillo-Negrete, D.; Spong, D. A.; Hirshman, S. P.

    2008-09-01

    Proper orthogonal decomposition techniques to reduce noise in the reconstruction of the distribution function in particle-based transport calculations are explored. For two-dimensional steady-state problems, the method is based on low rank truncations of the singular value decomposition of a coarse-grained representation of the particle distribution function. For time-dependent two-dimensional problems or three-dimensional time-independent problems, the use of a generalized low-rank approximation of matrices technique is proposed. The methods are illustrated and tested with Monte Carlo particle simulation data of plasma collisional relaxation and guiding-center transport with collisions in a magnetically confined plasma in toroidal geometry. It is observed that the proposed noise reduction methods achieve high levels of smoothness in the particle distribution function by using significantly fewer particles in the computations.

  6. Stage 3 bucket shank bypass holes and related method

    DOEpatents

    Leone, Sal Albert; Eldrid, Sacheverel Quentin; Lupe, Douglas Arthur

    2002-01-01

    In a multi-stage turbine wherein at least one turbine wheel supports a row of buckets for rotation, and wherein the turbine wheel is located axially between first and second annular fixed arrays of nozzles, a cooling air circuit for purging a wheelspace between the turbine wheel and the second fixed annular array of nozzles comprising a flowpath through a shank portion of one or more buckets connecting a wheelspace between the turbine wheel and the first fixed annular array of nozzles with the wheelspace between the turbine wheel and the second fixed annular array of nozzles.

  7. Characteristic potential method of noise calculation in semiconductor devices: calculation of 1/f noise in MOS transistors in the ohmic region

    NASA Astrophysics Data System (ADS)

    Hong, Sung-min; Kim, Yong-Seok; Min, Hong S.; Park, Young June

    2003-05-01

    The characteristic potential method(CPM), which has been successfully applied to calculate 1/f noise and thermal noise of multi-terminal homogeneous semiconductor resistors, is extended to calculate 1/f noise in inhomogeneous devices such as MOSFETs. The drain 1/f noise current of MOSFETs in the linear region is calculated using the CPM together with the well-known existing 1/f noise sources based on either Hooge's empirical model or McWhorter's model, and the calculated results are compared with the experimental results. It is shown that the difference of the 1/f noise behaviour between n-MOSFETs and p-MOSFETs in the linear region can be attributed to either the difference in their effective field dependence between the local electron mobility and the local hole mobility near the Si-SiO2 interface in the inversion layer or the difference in degree of Nt(oxide trap density)dependence between the effective electron mobility and the effective hole mobility.

  8. Enhanced propagation modeling of directional aviation noise: A hybrid parabolic equation-fast field program method

    NASA Astrophysics Data System (ADS)

    Rosenbaum, Joyce E.

    2011-12-01

    Commercial air traffic is anticipated to increase rapidly in the coming years. The impact of aviation noise on communities surrounding airports is, therefore, a growing concern. Accurate prediction of noise can help to mitigate the impact on communities and foster smoother integration of aerospace engineering advances. The problem of accurate sound level prediction requires careful inclusion of all mechanisms that affect propagation, in addition to correct source characterization. Terrain, ground type, meteorological effects, and source directivity can have a substantial influence on the noise level. Because they are difficult to model, these effects are often included only by rough approximation. This dissertation presents a model designed for sound propagation over uneven terrain, with mixed ground type and realistic meteorological conditions. The model is a hybrid of two numerical techniques: the parabolic equation (PE) and fast field program (FFP) methods, which allow for physics-based inclusion of propagation effects and ensure the low frequency content, a factor in community impact, is predicted accurately. Extension of the hybrid model to a pseudo-three-dimensional representation allows it to produce aviation noise contour maps in the standard form. In order for the model to correctly characterize aviation noise sources, a method of representing arbitrary source directivity patterns was developed for the unique form of the parabolic equation starting field. With this advancement, the model can represent broadband, directional moving sound sources, traveling along user-specified paths. This work was prepared for possible use in the research version of the sound propagation module in the Federal Aviation Administration's new standard predictive tool.

  9. Measurement of habituation to noise using the method of continuous judgment by category

    NASA Astrophysics Data System (ADS)

    Namba, S.; Kuwano, S.

    1988-12-01

    Using "the method of continuous judgment by category", we examined the noisiness of sounds from public loudspeakers, and habituation to them. Subjects judged the noisiness of the sound at any moment of their choice by touching one of seven numbered keys on a computer keyboard, each corresponding to a noisiness category. At the same time, the subjects were required to complete a task as carefully and rapidly as possible. The duration of "no response" to sounds was an index of habituation. Both personality factors and physical factors were analyzed. It was found that the duration of "no response" is a good index to habituation to noise, and that there were wide differences in the "no response" time of different subjects. The reactions of individual subjects in sessions 1 and 2 and the questionnaire survey were, however, consistent. This suggests that there is a group that is relatively sensitive to noise and a group that is less sensitive to noise. It was also found that subjects had difficulty in becoming accustomed to intense noise.

  10. New noise reduction method for reducing CT scan dose: Combining Wiener filtering and edge detection algorithm

    NASA Astrophysics Data System (ADS)

    Anam, Choirul; Haryanto, Freddy; Widita, Rena; Arif, Idam

    2015-09-01

    New noise reduction method for reducing dose of CT scans has been proposed. The new method is expected to address the major problems in the noise reduction algorithm, i.e. the decreasing in the spatial resolution of the image. The proposed method was developed by combining adaptive Wiener filtering and edge detection algorithms. The first step, the image was filtered with a Wiener filter. Separately, edge detection operation performed on the original image using the Prewitt method. The next step, a new image was generated based on the edge detection operation. At the edge area, the image was taken from the original image, while at the non-edge area, the image was taken from the image that had been filtered with a Wiener filter. The new method was tested on a CT image of the spatial resolution phantom, which was scanned by different current-time multiplication, namely 80, 130 and 200 mAs, while other exposure factors were kept in constant conditions. The spatial resolution phantom consists of six sets of bar pattern made of plexi-glass and separated at some distance by water. The new image quality assessed from the amount of noise and the magnitude of spatial resolution. Noise was calculated by determining the standard deviation of the homogeneous regions, while the spatial resolution was assessed by observation of the area sets of the bar pattern. In addition, to evaluate the performance of this new method has also been tested on patient CT images. From the measurements, the new method can reduce the noise to an average 64.85%, with a spatial resolution does not decrease significantly. Visually, the third set bar on the image phantom (the distance between the bar 1.0 mm) can still be distinguished, as well as on the original image. Meanwhile, if the image is only processed using Wiener filter, the second set bar (the distance between the bar 1.3 mm) are distinguishable. Testing this new method to patient image, its results in relatively the same. Thus, using this

  11. Comparison of direct measurement methods for headset noise exposure in the workplace

    PubMed Central

    Nassrallah, Flora G.; Giguère, Christian; Dajani, Hilmi R.; Ellaham, Nicolas N.

    2016-01-01

    The measurement of noise exposure from communication headsets poses a methodological challenge. Although several standards describe methods for general noise measurements in occupational settings, these are not directly applicable to noise assessments under communication headsets. For measurements under occluded ears, specialized methods have been specified by the International Standards Organization (ISO 11904) such as the microphone in a real ear and manikin techniques. Simpler methods have also been proposed in some national standards such as the use of general purpose artificial ears and simulators in conjunction with single number corrections to convert measurements to the equivalent diffuse field. However, little is known about the measurement agreement between these various methods and the acoustic manikin technique. Twelve experts positioned circum-aural, supra-aural and insert communication headsets on four different measurement setups (Type 1, Type 2, Type 3.3 artificial ears, and acoustic manikin). Fit-refit measurements of four audio communication signals were taken under quiet laboratory conditions. Data were transformed into equivalent diffuse-field sound levels using third-octave procedures. Results indicate that the Type 1 artificial ear is not suited for the measurement of sound exposure under communication headsets, while Type 2 and Type 3.3 artificial ears are in good agreement with the acoustic manikin technique. Single number corrections were found to introduce a large measurement uncertainty, making the use of the third-octave transformation preferable. PMID:26960783

  12. Comparison of direct measurement methods for headset noise exposure in the workplace.

    PubMed

    Nassrallah, Flora G; Giguere, Christian; Dajani, Hilmi R; Ellaham, Nicolas N

    2016-01-01

    The measurement of noise exposure from communication headsets poses a methodological challenge. Although several standards describe methods for general noise measurements in occupational settings, these are not directly applicable to noise assessments under communication headsets. For measurements under occluded ears, specialized methods have been specified by the International Standards Organization (ISO 11904) such as the microphone in a real ear and manikin techniques. Simpler methods have also been proposed in some national standards such as the use of general purpose artificial ears and simulators in conjunction with single number corrections to convert measurements to the equivalent diffuse field. However, little is known about the measurement agreement between these various methods and the acoustic manikin technique. Twelve experts positioned circum-aural, supra-aural and insert communication headsets on four different measurement setups (Type 1, Type 2, Type 3.3 artificial ears, and acoustic manikin). Fit-refit measurements of four audio communication signals were taken under quiet laboratory conditions. Data were transformed into equivalent diffuse-field sound levels using third-octave procedures. Results indicate that the Type 1 artificial ear is not suited for the measurement of sound exposure under communication headsets, while Type 2 and Type 3.3 artificial ears are in good agreement with the acoustic manikin technique. Single number corrections were found to introduce a large measurement uncertainty, making the use of the third-octave transformation preferable.

  13. A low noise and ultra-narrow bandwidth frequency-locked loop based on the beat method.

    PubMed

    Gao, Wei; Sui, Jianping; Chen, Zhiyong; Yu, Fang; Sheng, Rongwu

    2011-06-01

    A novel frequency-locked loop (FLL) based on the beat method is proposed in this paper. Compared with other frequency feedback loops, this FLL is a digital loop with simple structure and very low noise. As shown in the experimental results, this FLL can be used to reduce close-in phase noise on atomic frequency standards, through which a composite frequency standard with ultra-low phase noise and low cost can be easily realized.

  14. A nonequilibrium molecular dynamics method for thermal conductivities based on thermal noise

    NASA Astrophysics Data System (ADS)

    Terao, Takamichi; Müller-Plathe, Florian

    2005-02-01

    We developed a nonequilibrium molecular dynamics (NEMD) method for calculating thermal conductivities. In contrast to other NEMD algorithms, here only the heat sink is localized, whereas the heat source can be uniformly distributed throughout the system. The noise due to cutting off the pair forces or to integration errors is such a uniform heat source. In traditional NEMD methods it is normally considered a nuisance factor. The new algorithm accounts for it and uses it. The algorithm is easy to derive, analyse and implement. Moreover, it circumvents the need to calculate energy fluxes. It is tested on the enhanced simple-point charge model for liquid water and reproduces the known thermal conductivity of this model liquid of 0.81Wm-1K-1. It can be generalized to situations, where the thermal noise is replaced by another uniform heat source, or to the inverse situation, where the heat source is localized but the heat sink extends over the entire system.

  15. A nonequilibrium molecular dynamics method for thermal conductivities based on thermal noise.

    PubMed

    Terao, Takamichi; Müller-Plathe, Florian

    2005-02-22

    We developed a nonequilibrium molecular dynamics (NEMD) method for calculating thermal conductivities. In contrast to other NEMD algorithms, here only the heat sink is localized, whereas the heat source can be uniformly distributed throughout the system. The noise due to cutting off the pair forces or to integration errors is such a uniform heat source. In traditional NEMD methods it is normally considered a nuisance factor. The new algorithm accounts for it and uses it. The algorithm is easy to derive, analyse and implement. Moreover, it circumvents the need to calculate energy fluxes. It is tested on the enhanced simple-point charge model for liquid water and reproduces the known thermal conductivity of this model liquid of 0.81 W m(-1) K(-1). It can be generalized to situations, where the thermal noise is replaced by another uniform heat source, or to the inverse situation, where the heat source is localized but the heat sink extends over the entire system.

  16. A Flexible Microwave De-Embedding Method for On-Wafer Noise Parameter Characterization of MOSFETs

    NASA Astrophysics Data System (ADS)

    Wang, Yueh-Hua; Cho, Ming-Hsiang; Wu, Lin-Kun

    A flexible noise de-embedding method for on-wafer microwave measurements of silicon MOSFETs is presented in this study. We use the open, short, and thru dummy structures to subtract the parasitic effects from the probe pads and interconnects of a fixtured MOS transistor. The thru standard are used to extract the interconnect parameters for subtracting the interconnect parasitics in gate, drain, and source terminals of the MOSFET. The parasitics of the dangling leg in the source terminal are also modeled and taken into account in the noise de-embedding procedure. The MOS transistors and de-embedding dummy structures were fabricated in a standard CMOS process and characterized up to 20GHz. Compared with the conventional de-embedding methods, the proposed technique is accurate and area-efficient.

  17. Determination of two-stroke engine exhaust noise by the method of characteristics

    NASA Technical Reports Server (NTRS)

    Jones, A. D.; Brown, G. L.

    1981-01-01

    A computational technique was developed for the method of characteristics solution of a one-dimensional flow in a duct as applied to the wave action in an engine exhaust system. By using the method, it was possible to compute the unsteady flow in both straight pipe and tuned expansion chamber exhaust systems as matched to the flow from the cylinder of a small two-stroke engine. The radiated exhaust noise was then determined by assuming monopole radiation from the tailpipe outlet. Very good agreement with experiment on an operation engine was achieved in the calculation of both the third octave radiated noise and the associated pressure cycles at several locations in the different exhaust systems. Of particular interest is the significance of nonlinear behavior which results in wave steepening and shock wave formation. The method computes the precise paths on the x-t plane of a finite number of C(sub +), C(sub -) and P characteristics, thereby obtaining high accuracy in determining the tailpipe outlet velocity and the radiated noise.

  18. Suppression method of low-frequency noise for two-dimensional integrated magnetic sensor

    NASA Astrophysics Data System (ADS)

    Kimura, Takayuki; Sakairi, Yusuke; Mori, Akihiro; Masuzawa, Toru

    2017-04-01

    A new correlated double sampling method for two-dimensional magnetic sensors was proposed. In this method, output from a magnetic sensor is controlled by adjusting the drain bias of a MOSFET used as a Hall element. The two-dimensional integrated magnetic sensor used for the demonstration of correlated double sampling was composed of a 64 × 64 array of Hall sensors and fabricated by a 0.18 µm CMOS standard process. The size of a Hall element was 2.7 × 2.7 µm2. The dimensions of one pixel in which a Hall element was embedded were 7 × 7 µm2. The magnitude of residual noise after correlated double sampling with drain bias control was 0.81 mVp–p. This value is 16% of the original low-frequency noise. From the experimental results, the proposed correlated double sampling method is found to be suitable for low-frequency noise suppression in the two-dimensional magnetic sensors.

  19. Method for calculating self-noise spectra and operating ranges for seismographic inertial sensors and recorders

    USGS Publications Warehouse

    Evans, John R.; Followill, F.; Hutt, Charles R.; Kromer, R.P.; Nigbor, R.L.; Ringler, A.T.; Steim, J.M.; Wielandt, E.

    2010-01-01

    can be compared. For purposes of instrument operational performance, we provide a means of evaluating signal and noise and the range between them in a manner representative of time-domain instrument performance. We call these “operating range diagrams” (ORDs), plots of instrument self noise and clipping level; the “operating range” is the range between these values. For frequency-domain performance we elect to show self noise as an rPSD that may be compared to another instrument's noise or to ambient Earth noise (e.g., Peterson 1993); however, to limit the number of arbitrary choices required to merge transient and stationary signals we do not compare the rPSD to transient signals in the frequency domain. Our solution for a time-domain comparison is not new but rather builds upon the consensus of the first and second Guidelines for Seismometer Testing workshops (Hutt et al. 2009) and long established practice in acoustics. We propose this method as a standard for characterizing seismic instruments, and it has been endorsed by the second workshop (Hutt et al. 2009, 2010) and the Advanced National Seismic System (ANSS) Working Group (2008) and recent ANSS procurement specifications.

  20. Multi-stage temperature compensation method for Lamb wave measurements

    NASA Astrophysics Data System (ADS)

    Dworakowski, Ziemowit; Ambrozinski, Lukasz; Stepinski, Tadeusz

    2016-11-01

    One of the important issues related to the applications of Lamb waves for structural health monitoring is their undesired sensitivity to variation of environmental conditions. Temperature is the main factor that can affect wave propagation and hence significantly reduce performance of a SHM system. Therefore, there is a need for development of robust monitoring methods with low sensitivity to temperature variations. This paper is aimed at verification of efficiency of four methods designed for damage detection using Lamb wave measurements performed in variable environmental conditions. The methods investigated in the comparison are the following: optimal baseline selection approach, the damage index based on a signal alignment with respect to instantaneous phase, and a group measurement approach capable of distinguishing local damage-related changes from temperature-induced global ones. The fourth method relies on fusion all these solutions simultaneously. The methods' ability to damage detection is compared using a specimen that is subjected to large temperature changes. It is found that although all the methods have their strengths and weaknesses, a cooperation of all solutions allows for significant increase of the damage detection efficiency.

  1. Assessment of methods for simplified traffic noise mapping of small cities: Casework of the city of Valdivia, Chile.

    PubMed

    Bastián-Monarca, Nicolás A; Suárez, Enrique; Arenas, Jorge P

    2016-04-15

    In many countries such as Chile, there is scarce official information for generating accurate noise maps. Therefore, specific simplification methods are becoming a real need for the acoustic community in developing countries. Thus, the main purpose of this work was to evaluate and apply simplified methods to generate a cost-effective traffic noise map of a small city of Chile. The experimental design involved the simplification of the cartographic information on buildings by clustering the households within a block, and the classification of the vehicular traffic flows into categories to generate an inexpensive noise map. The streets have been classified according to the official road classification of the country. Segregation of vehicles from light, heavy and motorbikes is made to account for traffic flow. In addition, a number of road traffic noise models were compared with noise measurements and consequently the road traffic model RLS-90 was chosen to generate the noise map of the city using the Computer Aided Noise Abatement (CadnaA) software. It was observed a direct dependence between noise levels and traffic flow versus each category of street used. The methodology developed in this study appears to be convenient in developing countries to obtain accurate approximations to develop inexpensive traffic noise maps.

  2. Numerical assessment for a broadband and tuned noise using hybrid mufflers and a simulated annealing method

    NASA Astrophysics Data System (ADS)

    Chiu, Min-Chie

    2013-06-01

    A broadband noise hybridized with pure tones often occurs in practical engineering work. However, assessments of a muffler's optimal shape design that would simultaneously overcome a broadband noise hybridized with multiple tones within a constrained space were rarely addressed. In order to promote the best acoustical performance in mufflers, five kinds of the hybrid mufflers composed of a reactive unit, a dissipative unit, and Helmholtz resonator (HR) units will be proposed. Moreover, to strengthen the noise elimination at the pure tone, mufflers having parallel multiple-sectioned HRs or having multiple HR connections in series (muffler D and muffler E) will be also presented in the noise abatement. On the basis of the plane wave theory, the four-pole system matrix used to evaluate the acoustic performance of a multi-tone hybrid Helmholtz muffler will be presented. A numerical case for eliminating broadband noise hybridized with a pure tone emitted from a machine room using five kinds of mufflers (muffler A-E) will also be introduced. To find the best acoustical performance of a space-constrained muffler, a numerical assessment using a simulated annealing (SA) method is adopted. To verify the availability of the SA optimization, a numerical optimization of muffler A at a pure tone (280 Hz) is exemplified. Before the SA operation can be carried out, the accuracy of the mathematical model will be checked using the experimental data. The influences of the sound transmission loss (STL) with respect to N1-array HR and the STL with respect to one-array HR sectioned in N2 divisions have also been assessed. Also, the influence of the STL with respect to the design parameters such as the ratio of d1/d2, the diameter of the perforated hole (dH), the porosity (p%) of the perforated plate, and the outer diameter (d2) of the dissipative unit has been analyzed. Consequently, a successful approach in eliminating a broadband noise hybridized with a pure tone using optimally

  3. [The NSI (Noise Sensitivity Index)--a method for the demonstration of acute physical symptoms in noise exposure and combination exposure].

    PubMed

    Meister, A; Bening, Y; Brumm, L M

    1989-01-01

    The NSI (Noise Sensitive Index) is a method suitable for the single or repeated recording of acute, subjectively perceived bodily complaints caused by exposure against noise alone or combined with additional physical factors (e.g. physical load, high temperature) during the lapse of exposure. The paper describes the application of NSI in 6 experimental investigations. The results are indicative regarding their dependence on components of exposure and personality. If certain rules are taken into consideration, application, scoring and interpretation of NSI is easy, not very time consuming, and profitable.

  4. Occurring mechanism and restraining method research of numerical noise signal in penetration simulation

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Wang, Yabin

    2016-09-01

    In hard target penetration simulation, the existing researches of the convergence of results are mainly concentrating in the corresponding relationship between penetration depth and mesh scales. However, the influence of the mesh difference on the penetration resistance and acceleration signals are seldom refer to. This paper presents the occurring mechanism and restraining method of numerical noise signal in penetration simulation. First, the concept of the noise signal izs proposed. By taking a 3D penetration simulation as example, the influence of the noise signal on the penetration resistance in different mesh scales and impact velocity is studied. To ensure the convergence of the computational results, the grid scale of the target is encrypted to 1:1:8. In addition, modern spectrum analysis method is introduced to further analyze the penetration resistance signal. The research results presented is useful to improve the computational accuracy of high speed projectile penetration simulation, and provide important reference for carrying out structural design and optimization of fuze system.

  5. The Application of a Boundary Integral Equation Method to the Prediction of Ducted Fan Engine Noise

    NASA Technical Reports Server (NTRS)

    Dunn, M. H.; Tweed, J.; Farassat, F.

    1999-01-01

    The prediction of ducted fan engine noise using a boundary integral equation method (BIEM) is considered. Governing equations for the BIEM are based on linearized acoustics and describe the scattering of incident sound by a thin, finite-length cylindrical duct in the presence of a uniform axial inflow. A classical boundary value problem (BVP) is derived that includes an axisymmetric, locally reacting liner on the duct interior. Using potential theory, the BVP is recast as a system of hypersingular boundary integral equations with subsidiary conditions. We describe the integral equation derivation and solution procedure in detail. The development of the computationally efficient ducted fan noise prediction program TBIEM3D, which implements the BIEM, and its utility in conducting parametric noise reduction studies are discussed. Unlike prediction methods based on spinning mode eigenfunction expansions, the BIEM does not require the decomposition of the interior acoustic field into its radial and axial components which, for the liner case, avoids the solution of a difficult complex eigenvalue problem. Numerical spectral studies are presented to illustrate the nexus between the eigenfunction expansion representation and BIEM results. We demonstrate BIEM liner capability by examining radiation patterns for several cases of practical interest.

  6. Mathematical explanation of the predictive power of the X-level approach reaction noise estimator method

    PubMed Central

    2012-01-01

    The X-level Approach Reaction Noise Estimator (XARNES) method has been developed previously to study reaction noise in well mixed reaction volumes. The method is a typical moment closure method and it works by closing the infinite hierarchy of equations that describe moments of the particle number distribution function. This is done by using correlation forms which describe correlation effects in a strict mathematical way. The variable X is used to specify which correlation effects (forms) are included in the description. Previously, it was argued, in a rather informal way, that the method should work well in situations where the particle number distribution function is Poisson-like. Numerical tests confirmed this. It was shown that the predictive power of the method increases, i.e. the agreement between the theory and simulations improves, if X is increased. In here, these features of the method are explained by using rigorous mathematical reasoning. Three derivative matching theoremsare proven which show that the observed numerical behavior is generic to the method. PMID:22500492

  7. Systematic method for electrical characterization of random telegraph noise in MOSFETs

    NASA Astrophysics Data System (ADS)

    Marquez, Carlos; Rodriguez, Noel; Gamiz, Francisco; Ohata, Akiko

    2017-02-01

    This work introduces a new protocol which aims to facilitate massive on-wafer characterization of Random Telegraph Noise (RTN) in MOS transistors. The methodology combines the noise spectral density scanning by gate bias assisted with a modified Weighted Time Lag Plot algorithm to identify unequivocally the single-trap RTN signals in optimum bias conditions for their electrical characterization. The strength of the method is demonstrated by its application for monitoring the distribution of traps over the transistors of a SOI wafer. The influence of the back-gate bias on the RTN characteristics of the SOI devices with coupled front- and back-interfaces has revealed unusual characteristics compatible with the carrier emission to the gate metal contact.

  8. All-optical relative intensity noise suppression method for the high precision fiber optic gyroscope

    NASA Astrophysics Data System (ADS)

    Zheng, Yue; Zhang, Chunxi; Li, Lijing; Song, Lailiang; Zhang, Yuhui

    2016-10-01

    The relative intensity noise (RIN) is a main factor that limits the detection accuracy of the high precision fiber optic gyroscope (FOG). The RIN spectrum is determined by the normalized autocorrelation of the optical spectrum of the broadband source and is intrinsically different from other fundamental noises. In this paper, we propose an all-optical technique to suppress the RIN. With the power addition of the optical waves from the signal optical path and the reference optical path, the RIN is effectively eliminated at the eigen frequency of the FOG, which is also the demodulation window for the rotation rate signal. Compared with the traditional optical configuration of the FOG, there is only one additional optical component. Experimental results show that, with this method, we can achieve a nearly 3-fold improvement in the angular random walk coefficient. The improved optical configuration for RIN suppression is simple to realize and suitable for engineering application.

  9. A web-based noise control prediction model for rooms using the method of images

    NASA Astrophysics Data System (ADS)

    Dance, Stephen

    2002-11-01

    Previous simple models could only predict sound levels in untreated rooms. Now, using the method of images, it has become possible to accurately predict the sound level in fitted industrial rooms from any computer on the Internet. Thus, a powerful tool in an acoustician's armory is available to all, while requiring only the minimal amount of input data to construct the model. This is only achievable if the scope of the model is reduced to one or two acoustic parameters. Now, two common noise control techniques have been implemented into the image source model: acoustic barriers and absorptive patches. Predictions using the model with and without noise control techniques will be demonstrated, so the advantages can be clearly seen in typical industrial rooms. The models are now available on the web, running directly inside Netscape or Internet Explorer.

  10. Single tracking location methods suppress speckle noise in shear wave velocity estimation.

    PubMed

    Elegbe, Etana C; McAleavey, Stephen A

    2013-04-01

    In ultrasound-based elastography methods, the estimation of shear wave velocity typically involves the tracking of speckle motion due to an applied force. The errors in the estimates of tissue displacement, and thus shear wave velocity, are generally attributed to electronic noise and decorrelation due to physical processes. We present our preliminary findings on another source of error, namely, speckle-induced bias in phase estimation. We find that methods that involve tracking in a single location, as opposed to multiple locations, are less sensitive to this source of error since the measurement is differential in nature and cancels out speckle-induced phase errors.

  11. An objective method and measuring equipment for noise control and acoustic diagnostics of motorcars. [acoustic diagnostics on automobile engines

    NASA Technical Reports Server (NTRS)

    Kacprowski, J.; Motylewski, J.; Miazga, J.

    1974-01-01

    An objective method and apparatus for noise control and acoustic diagnostics of motorcar engines are reported. The method and apparatus let us know whether the noisiness of the vehicle under test exceeds the admissible threshold levels given by appropriate standards and if so what is the main source of the excessive noise. The method consists in measuring both the overall noise level and the sound pressure levels in definite frequency bands while the engine speed is controlled as well and may be fixed at prescribed values. Whenever the individually adjusted threshold level has been exceeded in any frequency band, a self-sustaining control signal is sent.

  12. A Method for Estimating Noise from Full-Scale Distributed Exhaust Nozzles

    NASA Technical Reports Server (NTRS)

    Kinzie, Kevin W.; Schein, David B.

    2004-01-01

    A method to estimate the full-scale noise suppression from a scale model distributed exhaust nozzle (DEN) is presented. For a conventional scale model exhaust nozzle, Strouhal number scaling using a scale factor related to the nozzle exit area is typically applied that shifts model scale frequency in proportion to the geometric scale factor. However, model scale DEN designs have two inherent length scales. One is associated with the mini-nozzles, whose size do not change in going from model scale to full scale. The other is associated with the overall nozzle exit area which is much smaller than full size. Consequently, lower frequency energy that is generated by the coalesced jet plume should scale to lower frequency, but higher frequency energy generated by individual mini-jets does not shift frequency. In addition, jet-jet acoustic shielding by the array of mini-nozzles is a significant noise reduction effect that may change with DEN model size. A technique has been developed to scale laboratory model spectral data based on the premise that high and low frequency content must be treated differently during the scaling process. The model-scale distributed exhaust spectra are divided into low and high frequency regions that are then adjusted to full scale separately based on different physics-based scaling laws. The regions are then recombined to create an estimate of the full-scale acoustic spectra. These spectra can then be converted to perceived noise levels (PNL). The paper presents the details of this methodology and provides an example of the estimated noise suppression by a distributed exhaust nozzle compared to a round conic nozzle.

  13. Development of image processing method to detect noise in geostationary imagery

    NASA Astrophysics Data System (ADS)

    Khlopenkov, Konstantin V.; Doelling, David R.

    2016-10-01

    The Clouds and the Earth's Radiant Energy System (CERES) has incorporated imagery from 16 individual geostationary (GEO) satellites across five contiguous domains since March 2000. In order to derive broadband fluxes uniform across satellite platforms it is important to ensure a good quality of the input raw count data. GEO data obtained by older GOES imagers (such as MTSAT-1, Meteosat-5, Meteosat-7, GMS-5, and GOES-9) are known to frequently contain various types of noise caused by transmission errors, sync errors, stray light contamination, and others. This work presents an image processing methodology designed to detect most kinds of noise and corrupt data in all bands of raw imagery from modern and historic GEO satellites. The algorithm is based on a set of different approaches to detect abnormal image patterns, including inter-line and inter-pixel differences within a scanline, correlation between scanlines, analysis of spatial variance, and also a 2D Fourier analysis of the image spatial frequencies. In spite of computational complexity, the described method is highly optimized for performance to facilitate volume processing of multi-year data and runs in fully automated mode. Reliability of this noise detection technique has been assessed by human supervision for each GEO dataset obtained during selected time periods in 2005 and 2006. This assessment has demonstrated the overall detection accuracy of over 99.5% and the false alarm rate of under 0.3%. The described noise detection routine is currently used in volume processing of historical GEO imagery for subsequent production of global gridded data products and for cross-platform calibration.

  14. A Restoration of the Image Contaminated with the Photon Shot Noise by an M-Transform Method

    NASA Astrophysics Data System (ADS)

    Hoshino, Kazuhiro; Takaichi, Masato; Nishimura, Toshihiro

    We propose a novel approach for the photon shot noise reduction in image sensors inspired from an M-transform method. In our proposed method, the photon shot noise is transfered to small amplitude random signals. Then the small amplitude random signals are removed by the ε filter. The Sobel method was used for the edge detection and the edge was preserved by not applying the ε filter into the edge. After the noise reduction, the signals are restored to the image by a reverse M-transform. We compared our method with the smoothing filter, the median filter and the Wiener filter. In the photon shot noise according to the Poisson distribution, we changed the incidence number of photons and created the noise image by the simulation. In cases where the number of the maximum incidence photons was 128 pieces (illumination of about 2 lux), the proposal technique indicated the PSNR (Peak-Signal to Noise Ratio) value better than the Wiener filter. Furthermore, the proposal technique confirmed better than the smoothing filter subjectively according to the effect of edge preservation also under dark environment. As the result, our method is confirmed effective for the photon shot noise reduction.

  15. A rapid method to assess the stage differentiation in Leishmania donovani by flow cytometry.

    PubMed

    Dayakar, Alti; Chandrasekaran, Sambamurthy; Prajapati, Vijay Kumar; Veronica, Jalaja; Sundar, Shyam; Maurya, Radheshyam

    2012-12-01

    In this study we describe a rapid and novel method to assess the morphological stage differentiation in Leishmania donovani by flow cytometry (FCM). FCM is fast, accurate, and inexpensive to study the stage differentiation of promastigote into L. donovani axenic amastigote (LdAxAm). The non-flourimetric FCM method is easy to perform; with requirement of little expertise, and provides unambiguous results. It is an advanced tool, requires minimal time, and no fluorescent dyes. The gradual increase of differentiation and reduction in size from promastigote stage to LdAxAm leads to peak shifting from right to left on histogram. Earlier reports assessed the stage differentiation of Leishmania by studying the expression of stage specific markers like surface or secretory proteins and genes. For validation, conventional methods like microscopic analysis are used. These methods are quite expensive, laborious and time consuming. Non-flourimetric morphological parameters were further validated by conventional methods like optical and scanning electron microscopy. Additionally, differential expression of stage specific genes (e.g. upregulation of amastin and ATP binding cassette A3 (ABCA3) transporter gene transcripts) and differential activity of enzymes (down regulation of secretory acid phosphatase (SAcP) and 3'-nucleotidase enzyme activity) in LdAxAm suggest stage differentiation. Therefore, we believe that our method is an alternative tool for high reproducibility and reliability in assessment of stage differentiation.

  16. Discrete Data Qualification System and Method Comprising Noise Series Fault Detection

    NASA Technical Reports Server (NTRS)

    Fulton, Christopher; Wong, Edmond; Melcher, Kevin; Bickford, Randall

    2013-01-01

    A Sensor Data Qualification (SDQ) function has been developed that allows the onboard flight computers on NASA s launch vehicles to determine the validity of sensor data to ensure that critical safety and operational decisions are not based on faulty sensor data. This SDQ function includes a novel noise series fault detection algorithm for qualification of the output data from LO2 and LH2 low-level liquid sensors. These sensors are positioned in a launch vehicle s propellant tanks in order to detect propellant depletion during a rocket engine s boost operating phase. This detection capability can prevent the catastrophic situation where the engine operates without propellant. The output from each LO2 and LH2 low-level liquid sensor is a discrete valued signal that is expected to be in either of two states, depending on whether the sensor is immersed (wet) or exposed (dry). Conventional methods for sensor data qualification, such as threshold limit checking, are not effective for this type of signal due to its discrete binary-state nature. To address this data qualification challenge, a noise computation and evaluation method, also known as a noise fault detector, was developed to detect unreasonable statistical characteristics in the discrete data stream. The method operates on a time series of discrete data observations over a moving window of data points and performs a continuous examination of the resulting observation stream to identify the presence of anomalous characteristics. If the method determines the existence of anomalous results, the data from the sensor is disqualified for use by other monitoring or control functions.

  17. Methods and Tools for Monitoring and Prediction of the Large-Scale Environmental Impact of Railway Noise

    NASA Astrophysics Data System (ADS)

    ELBERS, F. B. J.

    2000-03-01

    Due to environmental impact regulations there is a demand for methods and tools to determine noise reception levels near railway lines. Currently, a wide variety of methods and tools is available. Fast computers now enable us to develop powerful tools that combine simplified prediction methods with GIS systems. These new systems allow the study of noise reception levels and environmental impact on a large-scale (complete network, national or international), while more detailed and labour-intensive methods and tools are used when demanded by law. This paper presents a brief overview of the noise prediction methods and tools used in the Netherlands. The focus is on the advantages and restrictions of the different methods. Finally, the paper gives an overview of the actual advantages and restrictions of the recently extended Gerano method Gerano98 (Geographic Railway Noise). Gerano was originally based on the “basic Dutch calculation rules for railway noise”. Gerano98 was extended using simplified prediction schemes for the most relevant parts of the “detailed Dutch calculation rules for railway noise”. This most recent calculation method, combined with geographic input features, provides the possibility of determining noise impact and the noise measures to be taken on both the medium and large scale. Examples of the application of the methods and tools to specific (medium- and large-scale) projects are provided. The medium-scale project presents the results of a selection of the prefered line between Amsterdam and Zwolle. The large-scale project (the complete Dutch railway network) shows the results of the comparison of noise measures at source with noise barriers or housing insulation. For both projects the applicability and the usefulness of the methods in these situations is discussed. In conclusion four developments of the Gerano concept are described which have recently been finished or will be so in the near future.

  18. Optical communication with two-photon coherent stages. I - Quantum-state propagation and quantum-noise reduction

    NASA Technical Reports Server (NTRS)

    Yuen, H. P.; Shapiro, J. H.

    1978-01-01

    To determine the ultimate performance limitations imposed by quantum effects, it is also essential to consider optimum quantum-state generation. Certain 'generalized' coherent states of the radiation field possess novel quantum noise characteristics that offer the potential for greatly improved optical communications. These states have been called two-photon coherent states because they can be generated, in principle, by stimulated two-photon processes. The use of two-photon coherent state (TCS) radiation in free-space optical communications is considered. A simple theory of quantum state propagation is developed. The theory provides the basis for representing the free-space channel in a quantum-mechanical form convenient for communication analysis. The new theory is applied to TCS radiation.

  19. Single-stage, low-noise, advanced technology fan. Volume 4: Fan aerodynamics. Section 1: Results and analysis

    NASA Technical Reports Server (NTRS)

    Sullivan, T. J.; Silverman, I.; Little, D. R.

    1977-01-01

    Test results at design speed show fan total pressure ratio, weight flow, and adiabatic efficiency to be 2.2, 2.9, and 1.8% lower than design goal values. The hybrid acoustic inlet (which utilizes a high throat Mach number and acoustic wall treatment for noise suppression) demonstrated total pressure recoveries of 98.9% and 98.2% at takeoff and approach. Exhaust duct pressure losses differed between the hardwall duct and treated duct with splitter by about 0.6% to 2.0% in terms of fan exit average total pressure (depending on operating condition). When the measured results were used to estimate pressure losses, a cruise sfc penalty of 0.68%, due to the acoustically treated duct, was projected.

  20. Proper orthogonal decomposition and wavelet methods for noise reduction in particle-based transport calculations

    NASA Astrophysics Data System (ADS)

    Nguyen van Ye, Romain; Del-Castillo-Negrete, Diego; Spong, D.; Hirshman, S.; Farge, M.

    2008-11-01

    A limitation of particle-based transport calculations is the noise due to limited statistical sampling. Thus, a key element for the success of these calculations is the development of efficient denoising methods. Here we discuss denoising techniques based on Proper Orthogonal Decomposition (POD) and Wavelet Decomposition (WD). The goal is the reconstruction of smooth (denoised) particle distribution functions from discrete particle data obtained from Monte Carlo simulations. In 2-D, the POD method is based on low rank truncations of the singular value decomposition of the data. For 3-D we propose the use of a generalized low rank approximation of matrices technique. The WD denoising is based on the thresholding of empirical wavelet coefficients [Donoho et al., 1996]. The methods are illustrated and tested with Monte-Carlo particle simulation data of plasma collisional relaxation including pitch angle and energy scattering. As an application we consider guiding-center transport with collisions in a magnetically confined plasma in toroidal geometry. The proposed noise reduction methods allow to achieve high levels of smoothness in the particle distribution function using significantly less particles in the computations.

  1. Interior Noise

    NASA Technical Reports Server (NTRS)

    Mixson, John S.; Wilby, John F.

    1991-01-01

    The generation and control of flight vehicle interior noise is discussed. Emphasis is placed on the mechanisms of transmission through airborne and structure-borne paths and the control of cabin noise by path modification. Techniques for identifying the relative contributions of the various source-path combinations are also discussed along with methods for the prediction of aircraft interior noise such as those based on the general modal theory and statistical energy analysis.

  2. The method of x-ray image intensifies pixel matching and noise suppression based on the CCD

    NASA Astrophysics Data System (ADS)

    Yu, Shengtao; Qin, Xulei; Li, Ye

    2016-11-01

    In the proximity of X-ray imaging systems based on X-ray image intensifier, pixel matching and noise suppression are important methods to improve image quality. This paper analyzes CCD parameters' impact on imaging quality and the relations with, proposes pixel matching degree is a critical factor to restrict the performance of imaging system, and verified by experiments, the CCD refrigeration can effectively suppress the image noise, which adopts the extension of integration time method and obtains favorable signal-to-noise ratio, it also provides a simple and low cost solution for high quality X-ray real-time imaging of static objects.

  3. Analysis of de-noising methods to improve the precision of the ILSF BPM electronic readout system

    NASA Astrophysics Data System (ADS)

    Shafiee, M.; Feghhi, S. A. H.; Rahighi, J.

    2016-12-01

    In order to have optimum operation and precise control system at particle accelerators, it is required to measure the beam position with the precision of sub-μm. We developed a BPM electronic readout system at Iranian Light Source Facility and it has been experimentally tested at ALBA accelerator facility. The results show the precision of 0.54 μm in beam position measurements. To improve the precision of this beam position monitoring system to sub-μm level, we have studied different de-noising methods such as principal component analysis, wavelet transforms, filtering by FIR, and direct averaging method. An evaluation of the noise reduction was given to testify the ability of these methods. The results show that the noise reduction based on Daubechies wavelet transform is better than other algorithms, and the method is suitable for signal noise reduction in beam position monitoring system.

  4. [The issue of medico-legal assessment of noise induced hearing loss: comparison of methods].

    PubMed

    Bosio, D; Coggiola, M; Baracco, A; Andreis, P; Perrelli, F

    2011-01-01

    Audiogram classification is crucial for hearing protection of workers occupationally exposed to noise. The methods that have been proposed are based on two principles: the morphological evaluation of the audiometric curve (eg. Merluzzi-Pira-Bosio--MPB) or the average hearing loss on different frequencies (eg. Albera-Beatrice--AB). The purpose of this study was to classify audiograms compatible with chronic acoustic trauma performed at the Occupational Medicine Outpatient Clinic of CTO Hospital in Turin from 2004 to 2011 with the methods outlined in Guidelines published by SIMLII. A substantial agreement among the methods was observed. While MPB is the most appropriate method for secondary prevention, the AB would seem more appropriate for the verification of a permanent weakening that has to be reported to the competent legal authorities.

  5. Apparatus, Method, and Computer Program for a Resolution-Enhanced Pseudo-Noise Code Technique

    NASA Technical Reports Server (NTRS)

    Li, Steven X. (Inventor)

    2015-01-01

    An apparatus, method, and computer program for a resolution enhanced pseudo-noise coding technique for 3D imaging is provided. In one embodiment, a pattern generator may generate a plurality of unique patterns for a return to zero signal. A plurality of laser diodes may be configured such that each laser diode transmits the return to zero signal to an object. Each of the return to zero signal includes one unique pattern from the plurality of unique patterns to distinguish each of the transmitted return to zero signals from one another.

  6. A Numerical Method of Calculating Propeller Noise Including Acoustic Nonlinear Effects

    NASA Technical Reports Server (NTRS)

    Korkan, K. D.

    1985-01-01

    Using the transonic flow fields(s) generated by the NASPROP-E computer code for an eight blade SR3-series propeller, a theoretical method is investigated to calculate the total noise values and frequency content in the acoustic near and far field without using the Ffowcs Williams - Hawkings equation. The flow field is numerically generated using an implicit three dimensional Euler equation solver in weak conservation law form. Numerical damping is required by the differencing method for stability in three dimensions, and the influence of the damping on the calculated acoustic values is investigated. The acoustic near field is solved by integrating with respect to time the pressure oscillations induced at a stationary observer location. The acoustic far field is calculated from the near field primitive variables as generated by NASPROP-E computer code using a method involving a perturbation velocity potential as suggested by Hawkings in the calculation of the acoustic pressure time-history at a specified far field observed location. the methodologies described are valid for calculating total noise levels and are applicable to any propeller geometry for which a flow field solution is available.

  7. Parametric Method for the Noise Risk Assessment of Professional Orchestral Musicians

    PubMed Central

    Bo, Matteo; Clerico, Marina; Pognant, Federica

    2016-01-01

    Background: The Occupational Health and Safety (OH&S) literature shows that noise could represent a risk factor for professional orchestral musicians. The continuative exposition to elevated noise levels and the particular nature of the activity make necessary an “atypical” OH&S approach, which was identified to be necessarily organizational. Materials and Methods: In this study, a parametric-based method for orchestral exposure assessment and management was developed. The goal was to achieve a predictive tool to involve safety in the decision making of concert season program. After setting the parameters, the project's hypothesis was defined and then validated through a yearly-scale monitoring on an important European symphonic orchestra. Moreover, workers’ exposure was assessed from the parametric study by a wide measurement campaign. Results: A general validation of the method was obtained by the verification of the main parameters’ (repertoire, headcount, and disposition) significant influence on the sound pressure levels produced by the orchestra. Exposure levels comparable to the trends in literature for symphonic orchestras were observed, with criticalities among brass musicians, which was the only group exceeding the upper exposure action values. Conclusion: This research has emphasized that the exposure condition of musicians can be critical and requires the implementation of improvement plans. The study has shown that the predictive analysis can be performed on parameters describing the concert's emissive characteristics. The future development of research currently under study will focus on the concert's pieces and the use of parameters as indicators of the exposure context. PMID:27991463

  8. A hybrid fault diagnosis method based on second generation wavelet de-noising and local mean decomposition for rotating machinery.

    PubMed

    Liu, Zhiwen; He, Zhengjia; Guo, Wei; Tang, Zhangchun

    2016-03-01

    In order to extract fault features of large-scale power equipment from strong background noise, a hybrid fault diagnosis method based on the second generation wavelet de-noising (SGWD) and the local mean decomposition (LMD) is proposed in this paper. In this method, a de-noising algorithm of second generation wavelet transform (SGWT) using neighboring coefficients was employed as the pretreatment to remove noise in rotating machinery vibration signals by virtue of its good effect in enhancing the signal-noise ratio (SNR). Then, the LMD method is used to decompose the de-noised signals into several product functions (PFs). The PF corresponding to the faulty feature signal is selected according to the correlation coefficients criterion. Finally, the frequency spectrum is analyzed by applying the FFT to the selected PF. The proposed method is applied to analyze the vibration signals collected from an experimental gearbox and a real locomotive rolling bearing. The results demonstrate that the proposed method has better performances such as high SNR and fast convergence speed than the normal LMD method.

  9. Efficient method for computing the maximum-likelihood quantum state from measurements with additive Gaussian noise.

    PubMed

    Smolin, John A; Gambetta, Jay M; Smith, Graeme

    2012-02-17

    We provide an efficient method for computing the maximum-likelihood mixed quantum state (with density matrix ρ) given a set of measurement outcomes in a complete orthonormal operator basis subject to Gaussian noise. Our method works by first changing basis yielding a candidate density matrix μ which may have nonphysical (negative) eigenvalues, and then finding the nearest physical state under the 2-norm. Our algorithm takes at worst O(d(4)) for the basis change plus O(d(3)) for finding ρ where d is the dimension of the quantum state. In the special case where the measurement basis is strings of Pauli operators, the basis change takes only O(d(3)) as well. The workhorse of the algorithm is a new linear-time method for finding the closest probability distribution (in Euclidean distance) to a set of real numbers summing to one.

  10. Method to Produce Flexible Ceramic Thermal Protection System Resistant to High Aeroacoustic Noise

    NASA Technical Reports Server (NTRS)

    Sawko, Paul M. (Inventor); Calamito, Dominic P. (Inventor); Jong, Anthony (Inventor)

    1997-01-01

    A method of producing a three dimensional angle interlock ceramic fiber which is stable to high aeroacoustic noise of about 170 decibels and to high temperatures of about 2500 F is disclosed. The method uses multiple separate strands of a ceramic fiber or ceramic tow suitable for weaving having multiple warp fibers and multiple fill fibers woven with a modified fly-shuttle loom or rapier shuttleless loom which has nip rolls, a modified fabric advancement mechanism and at least eight harnesses in connection with a Dobby pattern chain utilizing sufficient heddles for each warp fiber and a reed which accommodates at least 168 ends per inch. The method produces a multilayered top fabric, rib fabric and single-layered bottom fabric.

  11. Subcritical measurements using the /sup 252/Cf source-driven neutron noise analysis method

    SciTech Connect

    Mihalczo, J.T.; Blakeman, E.D.; Ragan, G.E.; Kryter, R.C.

    1985-01-01

    This paper describes recent measurements of the subcritical neutron multiplication factor using the /sup 252/Cf source-driven neutron noise analysis method. This work was supported by a program of collaboration between the United States Department of Energy and the Power Reactor and Nuclear Fuel Development Corporation of Japan related to the development of fast breeder technology. The experiment reported consists of a configuration of two interacting tanks of uranyl nitrate aqueous solution with different uranium concentrations in each tank. The /sup 252/Cf-source-driven neutron noise analysis method obtains the subcriticality from the signals of three detectors: the first, a parallel plate ionization chamber with /sup 252/Cf electroplated on one of its plates that is located in or near the system containing the fissile material, and produces an electrical pulse for every spontaneous fission that occurs and thereby serves as a timed source of fission neutrons; and the second and third detectors that are placed in or near the system containing fissile material and serve to detect particles from the fission chain multiplication process. 9 refs.

  12. Automated Method to Determine Two Critical Growth Stages of Wheat: Heading and Flowering

    PubMed Central

    Sadeghi-Tehran, Pouria; Sabermanesh, Kasra; Virlet, Nicolas; Hawkesford, Malcolm J.

    2017-01-01

    Recording growth stage information is an important aspect of precision agriculture, crop breeding and phenotyping. In practice, crop growth stage is still primarily monitored by-eye, which is not only laborious and time-consuming, but also subjective and error-prone. The application of computer vision on digital images offers a high-throughput and non-invasive alternative to manual observations and its use in agriculture and high-throughput phenotyping is increasing. This paper presents an automated method to detect wheat heading and flowering stages, which uses the application of computer vision on digital images. The bag-of-visual-word technique is used to identify the growth stage during heading and flowering within digital images. Scale invariant feature transformation feature extraction technique is used for lower level feature extraction; subsequently, local linear constraint coding and spatial pyramid matching are developed in the mid-level representation stage. At the end, support vector machine classification is used to train and test the data samples. The method outperformed existing algorithms, having yielded 95.24, 97.79, 99.59% at early, medium and late stages of heading, respectively and 85.45% accuracy for flowering detection. The results also illustrate that the proposed method is robust enough to handle complex environmental changes (illumination, occlusion). Although the proposed method is applied only on identifying growth stage in wheat, there is potential for application to other crops and categorization concepts, such as disease classification. PMID:28289423

  13. A Comparison of Computational Aeroacoustic Prediction Methods for Transonic Rotor Noise

    NASA Technical Reports Server (NTRS)

    Brentner, Kenneth S.; Lyrintzis, Anastasios; Koutsavdis, Evangelos K.

    1996-01-01

    This paper compares two methods for predicting transonic rotor noise for helicopters in hover and forward flight. Both methods rely on a computational fluid dynamics (CFD) solution as input to predict the acoustic near and far fields. For this work, the same full-potential rotor code has been used to compute the CFD solution for both acoustic methods. The first method employs the acoustic analogy as embodied in the Ffowcs Williams-Hawkings (FW-H) equation, including the quadrupole term. The second method uses a rotating Kirchhoff formulation. Computed results from both methods are compared with one other and with experimental data for both hover and advancing rotor cases. The results are quite good for all cases tested. The sensitivity of both methods to CFD grid resolution and to the choice of the integration surface/volume is investigated. The computational requirements of both methods are comparable; in both cases these requirements are much less than the requirements for the CFD solution.

  14. Signal-to-noise ratio comparison of encoding methods for hyperpolarized noble gas MRI

    NASA Technical Reports Server (NTRS)

    Zhao, L.; Venkatesh, A. K.; Albert, M. S.; Panych, L. P.

    2001-01-01

    Some non-Fourier encoding methods such as wavelet and direct encoding use spatially localized bases. The spatial localization feature of these methods enables optimized encoding for improved spatial and temporal resolution during dynamically adaptive MR imaging. These spatially localized bases, however, have inherently reduced image signal-to-noise ratio compared with Fourier or Hadamad encoding for proton imaging. Hyperpolarized noble gases, on the other hand, have quite different MR properties compared to proton, primarily the nonrenewability of the signal. It could be expected, therefore, that the characteristics of image SNR with respect to encoding method will also be very different from hyperpolarized noble gas MRI compared to proton MRI. In this article, hyperpolarized noble gas image SNRs of different encoding methods are compared theoretically using a matrix description of the encoding process. It is shown that image SNR for hyperpolarized noble gas imaging is maximized for any orthonormal encoding method. Methods are then proposed for designing RF pulses to achieve normalized encoding profiles using Fourier, Hadamard, wavelet, and direct encoding methods for hyperpolarized noble gases. Theoretical results are confirmed with hyperpolarized noble gas MRI experiments. Copyright 2001 Academic Press.

  15. Intercomparison of methods for image quality characterization. II. Noise power spectrum

    SciTech Connect

    Dobbins, James T. III; Samei, Ehsan; Ranger, Nicole T.; Chen Ying

    2006-05-15

    Second in a two-part series comparing measurement techniques for the assessment of basic image quality metrics in digital radiography, in this paper we focus on the measurement of the image noise power spectrum (NPS). Three methods were considered: (1) a method published by Dobbins et al. [Med. Phys. 22, 1581-1593 (1995)] (2) a method published by Samei et al. [Med. Phys. 30, 608-622 (2003)], and (3) a new method sanctioned by the International Electrotechnical Commission (IEC 62220-1, 2003), developed as part of an international standard for the measurement of detective quantum efficiency. In addition to an overall comparison of the estimated NPS between the three techniques, the following factors were also evaluated for their effect on the measured NPS: horizontal versus vertical directional dependence, the use of beam-limiting apertures, beam spectrum, and computational methods of NPS analysis, including the region-of-interest (ROI) size and the method of ROI normalization. Of these factors, none was found to demonstrate a substantial impact on the amplitude of the NPS estimates ({<=}3.1% relative difference in NPS averaged over frequency, for each factor considered separately). Overall, the three methods agreed to within 1.6%{+-}0.8% when averaged over frequencies >0.15 mm{sup -1}.

  16. Automatic Assessment and Reduction of Noise using Edge Pattern Analysis in Non-Linear Image Enhancement

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J.; Rahman, Zia-Ur; Woodell, Glenn A.; Hines, Glenn D.

    2004-01-01

    Noise is the primary visibility limit in the process of non-linear image enhancement, and is no longer a statistically stable additive noise in the post-enhancement image. Therefore novel approaches are needed to both assess and reduce spatially variable noise at this stage in overall image processing. Here we will examine the use of edge pattern analysis both for automatic assessment of spatially variable noise and as a foundation for new noise reduction methods.

  17. Noise prediction of a subsonic turbulent round jet using the lattice-Boltzmann method

    PubMed Central

    Lew, Phoi-Tack; Mongeau, Luc; Lyrintzis, Anastasios

    2010-01-01

    The lattice-Boltzmann method (LBM) was used to study the far-field noise generated from a Mach, Mj=0.4, unheated turbulent axisymmetric jet. A commercial code based on the LBM kernel was used to simulate the turbulent flow exhausting from a pipe which is 10 jet radii in length. Near-field flow results such as jet centerline velocity decay rates and turbulence intensities were in agreement with experimental results and results from comparable LES studies. The predicted far field sound pressure levels were within 2 dB from published experimental results. Weak unphysical tones were present at high frequency in the computed radiated sound pressure spectra. These tones are believed to be due to spurious sound wave reflections at boundaries between regions of varying voxel resolution. These “VR tones” did not appear to bias the underlying broadband noise spectrum, and they did not affect the overall levels significantly. The LBM appears to be a viable approach, comparable in accuracy to large eddy simulations, for the problem considered. The main advantages of this approach over Navier–Stokes based finite difference schemes may be a reduced computational cost, ease of including the nozzle in the computational domain, and ease of investigating nozzles with complex shapes. PMID:20815448

  18. The Prediction of Ducted Fan Engine Noise Via a Boundary Integral Equation Method

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Dunn, M. H.; Tweed, J.

    1996-01-01

    A computationally efficient Boundary Integral Equation Method (BIEM) for the prediction of ducted fan engine noise is presented. The key features of the BIEM are its versatility and the ability to compute rapidly any portion of the sound field without the need to compute the entire field. Governing equations for the BIEM are based on the assumptions that all acoustic processes are linear, generate spinning modes, and occur in a uniform flow field. An exterior boundary value problem (BVP) is defined that describes the scattering of incident sound by an engine duct with arbitrary profile. Boundary conditions on the duct walls are derived that allow for passive noise control treatment. The BVP is recast as a system of hypersingular boundary integral equations for the unknown duct surface quantities. BIEM solution methodology is demonstrated for the scattering of incident sound by a thin cylindrical duct with hard walls. Numerical studies are conducted for various engine parameters and continuous portions of the total pressure field are computed. Radiation and duct propagation results obtained are in agreement with the classical results of spinning mode theory for infinite ducts.

  19. Comparison of methods of predicting community response to impulsive and nonimpulsive noise

    NASA Technical Reports Server (NTRS)

    Fidell, Sanford; Pearsons, Karl S.

    1994-01-01

    Several scientific, regulatory, and policy-coordinating bodies have developed methods for predicting community response to sonic booms. The best known of these is the dosage-response relationship of Working Group 84 of the National Academy of Science's Committee on Hearing, Bioacoustics and Biomechanics. This dosage-response relationship between C-weighted DayNight Average Sound Level and the prevalence of annoyance with high energy impulsive sounds was derived from limited amounts of information about community response to regular, prolonged, and expected exposure to artillery and sonic booms. U.S. Army Regulation 201 adapts this approach to predictions of the acceptability of impulsive noise exposure in communities. This regulation infers equivalent degrees of effect with respect to a well known dosage-response relationship for general (nonimpulsive) transportation noise. Differences in prevalence of annoyance predicted by various relationships lead to different predictions of the compatibility of land uses with sonic boom exposure. An examination of these differences makes apparent several unresolved issues in current practice for predicting and interpreting the prevalence of annoyance due to sonic boom exposure.

  20. Noise prediction of a subsonic turbulent round jet using the lattice-Boltzmann method.

    PubMed

    Lew, Phoi-Tack; Mongeau, Luc; Lyrintzis, Anastasios

    2010-09-01

    The lattice-Boltzmann method (LBM) was used to study the far-field noise generated from a Mach, M(j)=0.4, unheated turbulent axisymmetric jet. A commercial code based on the LBM kernel was used to simulate the turbulent flow exhausting from a pipe which is 10 jet radii in length. Near-field flow results such as jet centerline velocity decay rates and turbulence intensities were in agreement with experimental results and results from comparable LES studies. The predicted far field sound pressure levels were within 2 dB from published experimental results. Weak unphysical tones were present at high frequency in the computed radiated sound pressure spectra. These tones are believed to be due to spurious sound wave reflections at boundaries between regions of varying voxel resolution. These "VR tones" did not appear to bias the underlying broadband noise spectrum, and they did not affect the overall levels significantly. The LBM appears to be a viable approach, comparable in accuracy to large eddy simulations, for the problem considered. The main advantages of this approach over Navier-Stokes based finite difference schemes may be a reduced computational cost, ease of including the nozzle in the computational domain, and ease of investigating nozzles with complex shapes.

  1. Efficient embryonic culture method for the Japanese striped snake, Elaphe quadrivirgata, and its early developmental stages.

    PubMed

    Matsubara, Yoshiyuki; Sakai, Atsushi; Kuroiwa, Atsushi; Suzuki, Takayuki

    2014-10-01

    The morphogenesis of snake embryos is an elusive yet fascinating research target for developmental biologists. However, few data exist on development of early snake embryo due to limited availability of pregnant snakes, and the need to harvest early stage embryos directly from pregnant snakes before oviposition without knowing the date of fertilization. We established an ex vivo culture method for early snake embryos using the Japanese striped snake, Elaphe quadrivirgata. This method, which we named "sausage-style (SS) culture", allows us to harvest snake embryos at specific stages for each experiment. Using this SS culture system, we calculated somite formation rate at early stages before oviposition. The average somite formation rate between 6/7 and 12/13 somite stages was 145.9 min, between 60/70 and 80/91 somite stages 42.4 min, and between 113-115 and 126/127 somite stages 71 min. Thus, somite formation rate that we observed during early snake embryogenesis was changed over time. We also describe a developmental staging series for E. quadrivirgata. This is the first report of a developmental series of early snake embryogenesis prior to oviposition by full-color images with high-resolution. We propose that the SS culture system is an easy method for treating early snake embryos ex vivo.

  2. Comparison between two methods for forward calculation of ambient noise H/V spectral ratios

    NASA Astrophysics Data System (ADS)

    Garcia-Jerez, A.; Luzón, F.; Sanchez-Sesma, F. J.; Santoyo, M. A.; Albarello, D.; Lunedei, E.; Campillo, M.; Iturrarán-Viveros, U.

    2011-12-01

    The analysis of horizontal-to-vertical spectral ratios of ambient noise (NHVSR) is a valuable tool for seismic prospecting, particularly if both a dense spatial sampling and a low-cost procedure are required. Unfortunately, the computation method still lacks of a unanimously accepted theoretical basis and different approaches are currently being used for inversion of the ground structure from the measured H/V curves. Two major approaches for forward calculation of NHVSRs in a layered medium are compared in this work. The first one was developed by Arai and Tokimatsu (2004) and recently improved by Albarello and Lunedei (2011). It consists of a description of the wavefield as generated by Far Surface point Forces (FSF method). The second one is based on the work of Sánchez-Sesma et al. (2011) who consider ambient noise as a Diffuse WaveField (DWF method), taking advantage of the proportionality between its Fourier-transformed autocorrelation (power spectrum) and the imaginary part of the Green function when source and receiver are the same. In both methods, the NHVSR is written as (PH/PV)1/2, where PH and PV are the horizontal and vertical power spectra. In the FSF method these quantities are given by PV∝⊙m(1+1/2χm2α2)(ARm/kRm)2 PH∝⊙m{(1+1/2χm2α2)(ARm/kRm)2χm2+1/2α2(ALm/kLm)2} where kRm, χm and ARm are wavenumber, ellipticity and medium response of the m-th Rayleigh wave mode; kLm and ALm correspond to the m-th Love wave mode and α is the horizontal-to-vertical load ratio of the ambient noise sources. Some common factors are omitted in the expressions of PV and PH. On the other hand, the DWF method deals with the full wavefield including both surface and body waves. In order to make the comparison easier, and taking into account that surface waves are often the dominant components in wide spectral ranges, body wave contributions are neglected here. In this case, the PH and PV power spectra for the DWF method are reduced to the simple expressions: PV

  3. A test of a vortex method for the computation of flap side edge noise

    NASA Technical Reports Server (NTRS)

    Martin, James E.

    1995-01-01

    Upon approach to landing, a major source location of airframe noise occurs at the side edges of the part span, trailing edge flaps. In the vicinity of these flaps, a complex arrangement of spanwise flow with primary and secondary tip vortices may form. Each of these vortices is observed to become fully three-dimensional. In the present study, a numerical model is developed to investigate the noise radiated from the side edge of a flap. The inherent three-dimensionality of this flow forces us to carefully consider a numerical scheme which will be both accurate in its prediction of the flow acoustics and also computationally efficient. Vortex methods have offered a fast and efficient means of simulating many two and three-dimensional, vortex dominated flows. In vortex methods, the time development of the flow is tracked by following exclusively the vorticity containing regions. Through the Biot-Savart law, knowledge of the vorticity field enables one to obtain flow quantities at any desired location during the flow evolution. In the present study, a numerical procedure has been developed which incorporates the Lagrangian approach of vortex methods into a calculation for the noise radiated by a flow-surface interaction. In particular, the noise generated by a vortex in the presence of a flat half plane is considered. This problem serves as a basic model of flap edge flow. It also permits the direct comparison between our computed results and previous acoustic analyses performed for this problem. In our numerical simulations, the mean flow is represented by the complex potential W(z) = Aiz(exp l/2), which is obtained through conformal mapping techniques. The magnitude of the mean flow is controlled by the parameter A. This mean flow has been used in the acoustic analysis by Hardin and is considered a reasonable model of the flow field in the vicinity of the edge and away from the leading and trailing edges of the flap. To represent the primary vortex which occurs near

  4. Expert Knowledge-Based Automatic Sleep Stage Determination by Multi-Valued Decision Making Method

    NASA Astrophysics Data System (ADS)

    Wang, Bei; Sugi, Takenao; Kawana, Fusae; Wang, Xingyu; Nakamura, Masatoshi

    In this study, an expert knowledge-based automatic sleep stage determination system working on a multi-valued decision making method is developed. Visual inspection by a qualified clinician is adopted to obtain the expert knowledge database. The expert knowledge database consists of probability density functions of parameters for various sleep stages. Sleep stages are determined automatically according to the conditional probability. Totally, four subjects were participated. The automatic sleep stage determination results showed close agreements with the visual inspection on sleep stages of awake, REM (rapid eye movement), light sleep and deep sleep. The constructed expert knowledge database reflects the distributions of characteristic parameters which can be adaptive to variable sleep data in hospitals. The developed automatic determination technique based on expert knowledge of visual inspection can be an assistant tool enabling further inspection of sleep disorder cases for clinical practice.

  5. An adaptive two-stage dose-response design method for establishing Proof of Concept

    PubMed Central

    Franchetti, Yoko; Anderson, Stewart J.; Sampson, Allan R.

    2013-01-01

    We propose an adaptive two-stage dose-response design where a pre-specified adaptation rule is used to add and/or drop treatment arms between the stages. We extend the multiple comparison procedures-modeling (MCP-Mod) approach into a two-stage design. In each stage, we use the same set of candidate dose-response models and test for a dose-response relationship or proof of concept (PoC) via model-associated statistics. The stage-wise test results are then combined to establish ‘global’ PoC using a conditional error function. Our simulation studies showed good and more robust power in our design method compared to conventional and fixed designs. PMID:23957520

  6. Generalized methods and solvers for noise removal from piecewise constant signals. I. Background theory

    PubMed Central

    Little, Max A.; Jones, Nick S.

    2011-01-01

    Removing noise from piecewise constant (PWC) signals is a challenging signal processing problem arising in many practical contexts. For example, in exploration geosciences, noisy drill hole records need to be separated into stratigraphic zones, and in biophysics, jumps between molecular dwell states have to be extracted from noisy fluorescence microscopy signals. Many PWC denoising methods exist, including total variation regularization, mean shift clustering, stepwise jump placement, running medians, convex clustering shrinkage and bilateral filtering; conventional linear signal processing methods are fundamentally unsuited. This paper (part I, the first of two) shows that most of these methods are associated with a special case of a generalized functional, minimized to achieve PWC denoising. The minimizer can be obtained by diverse solver algorithms, including stepwise jump placement, convex programming, finite differences, iterated running medians, least angle regression, regularization path following and coordinate descent. In the second paper, part II, we introduce novel PWC denoising methods, and comparisons between these methods performed on synthetic and real signals, showing that the new understanding of the problem gained in part I leads to new methods that have a useful role to play. PMID:22003312

  7. Generalized methods and solvers for noise removal from piecewise constant signals. I. Background theory.

    PubMed

    Little, Max A; Jones, Nick S

    2011-11-08

    Removing noise from piecewise constant (PWC) signals is a challenging signal processing problem arising in many practical contexts. For example, in exploration geosciences, noisy drill hole records need to be separated into stratigraphic zones, and in biophysics, jumps between molecular dwell states have to be extracted from noisy fluorescence microscopy signals. Many PWC denoising methods exist, including total variation regularization, mean shift clustering, stepwise jump placement, running medians, convex clustering shrinkage and bilateral filtering; conventional linear signal processing methods are fundamentally unsuited. This paper (part I, the first of two) shows that most of these methods are associated with a special case of a generalized functional, minimized to achieve PWC denoising. The minimizer can be obtained by diverse solver algorithms, including stepwise jump placement, convex programming, finite differences, iterated running medians, least angle regression, regularization path following and coordinate descent. In the second paper, part II, we introduce novel PWC denoising methods, and comparisons between these methods performed on synthetic and real signals, showing that the new understanding of the problem gained in part I leads to new methods that have a useful role to play.

  8. Method and apparatus for advanced staged combustion utilizing forced internal recirculation

    SciTech Connect

    Rabovitser, Iosif K.; Knight, Richard A.; Cygan, David F.; Nester, Serguei; Abbasi, Hamid A.

    2003-12-16

    A method and apparatus for combustion of a fuel in which a first-stage fuel and a first-stage oxidant are introduced into a combustion chamber and ignited, forming a primary combustion zone. At least about 5% of the total heat output produced by combustion of the first-stage fuel and the first-stage oxidant is removed from the primary combustion zone, forming cooled first-stage combustion products. A portion of the cooled first-stage combustion products from a downstream region of the primary combustion zone is recirculated to an upstream region of primary combustion zone. A second-stage fuel is introduced into the combustion chamber downstream of the primary combustion zone and ignited, forming a secondary combustion zone. At least about 5% of the heat from the secondary combustion zone is removed. In accordance with one embodiment, a third-stage oxidant is introduced into the combustion chamber downstream of the secondary combustion zone, forming a tertiary combustion zone.

  9. Modified periodogram method for estimating the Hurst exponent of fractional Gaussian noise.

    PubMed

    Liu, Yingjun; Liu, Yong; Wang, Kun; Jiang, Tianzi; Yang, Lihua

    2009-12-01

    Fractional Gaussian noise (fGn) is an important and widely used self-similar process, which is mainly parametrized by its Hurst exponent (H) . Many researchers have proposed methods for estimating the Hurst exponent of fGn. In this paper we put forward a modified periodogram method for estimating the Hurst exponent based on a refined approximation of the spectral density function. Generalizing the spectral exponent from a linear function to a piecewise polynomial, we obtained a closer approximation of the fGn's spectral density function. This procedure is significant because it reduced the bias in the estimation of H . Furthermore, the averaging technique that we used markedly reduced the variance of estimates. We also considered the asymptotical unbiasedness of the method and derived the upper bound of its variance and confidence interval. Monte Carlo simulations showed that the proposed estimator was superior to a wavelet maximum likelihood estimator in terms of mean-squared error and was comparable to Whittle's estimator. In addition, a real data set of Nile river minima was employed to evaluate the efficiency of our proposed method. These tests confirmed that our proposed method was computationally simpler and faster than Whittle's estimator.

  10. Modified periodogram method for estimating the Hurst exponent of fractional Gaussian noise

    NASA Astrophysics Data System (ADS)

    Liu, Yingjun; Liu, Yong; Wang, Kun; Jiang, Tianzi; Yang, Lihua

    2009-12-01

    Fractional Gaussian noise (fGn) is an important and widely used self-similar process, which is mainly parametrized by its Hurst exponent (H) . Many researchers have proposed methods for estimating the Hurst exponent of fGn. In this paper we put forward a modified periodogram method for estimating the Hurst exponent based on a refined approximation of the spectral density function. Generalizing the spectral exponent from a linear function to a piecewise polynomial, we obtained a closer approximation of the fGn’s spectral density function. This procedure is significant because it reduced the bias in the estimation of H . Furthermore, the averaging technique that we used markedly reduced the variance of estimates. We also considered the asymptotical unbiasedness of the method and derived the upper bound of its variance and confidence interval. Monte Carlo simulations showed that the proposed estimator was superior to a wavelet maximum likelihood estimator in terms of mean-squared error and was comparable to Whittle’s estimator. In addition, a real data set of Nile river minima was employed to evaluate the efficiency of our proposed method. These tests confirmed that our proposed method was computationally simpler and faster than Whittle’s estimator.

  11. Investigation of noise properties in grating-based x-ray phase tomography with reverse projection method

    NASA Astrophysics Data System (ADS)

    Bao, Yuan; Wang, Yan; Gao, Kun; Wang, Zhi-Li; Zhu, Pei-Ping; Wu, Zi-Yu

    2015-10-01

    The relationship between noise variance and spatial resolution in grating-based x-ray phase computed tomography (PCT) imaging is investigated with reverse projection extraction method, and the noise variances of the reconstructed absorption coefficient and refractive index decrement are compared. For the differential phase contrast method, the noise variance in the differential projection images follows the same inverse-square law with spatial resolution as in conventional absorption-based x-ray imaging projections. However, both theoretical analysis and simulations demonstrate that in PCT the noise variance of the reconstructed refractive index decrement scales with spatial resolution follows an inverse linear relationship at fixed slice thickness, while the noise variance of the reconstructed absorption coefficient conforms with the inverse cubic law. The results indicate that, for the same noise variance level, PCT imaging may enable higher spatial resolution than conventional absorption computed tomography (ACT), while ACT benefits more from degraded spatial resolution. This could be a useful guidance in imaging the inner structure of the sample in higher spatial resolution. Project supported by the National Basic Research Program of China (Grant No. 2012CB825800), the Science Fund for Creative Research Groups, the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant Nos. KJCX2-YW-N42 and Y4545320Y2), the National Natural Science Foundation of China (Grant Nos. 11475170, 11205157, 11305173, 11205189, 11375225, 11321503, 11179004, and U1332109).

  12. Autofilet.pro: An Improved Method for Automated Removal of Herring-bone Pattern Noise from CCD Data

    NASA Astrophysics Data System (ADS)

    Jansen, R. A.; Collins, N. R.; Windhorst, R. A.

    We present an improved method for the automatic removal of the highly variable pattern-noise that was introduced in HST/STIS CCD data when it was switched to its redundant (``Side-2'') electronics in July 2001. While mainly a cosmetic nuisance for work on bright objects, this ``herring-bone'' noise severely limits the sensitivity at optical wavelengths for projects that aim to push STIS to its design limits. We build on the Fourier filtering technique described by Brown (2001) and present a method to automatically find and remove the power associated with the noise patterns in frequency space, while avoiding the introduction of ringing (aliasing) around genuine astronomical signal--in particular around stellar images, spectroscopic (emission) lines, and cosmic ray hits. We implement this method as an IDL procedure and show several applications. Details of the method will be discussed in Jansen et al. 2003.

  13. A Semi-Empirical Noise Modeling Method for Helicopter Maneuvering Flight Operations

    NASA Technical Reports Server (NTRS)

    Greenwood, Eric; Schmitz, Fredric; Sickenberger, Richard D.

    2012-01-01

    A new model for Blade-Vortex Interaction noise generation during maneuvering flight is developed in this paper. Acoustic and performance data from both flight and wind tunnels are used to derive a non-dimensional and analytical performance/acoustic model that describes BVI noise in steady flight. The model is extended to transient maneuvering flight (pure pitch and roll transients) by using quasisteady assumptions throughout the prescribed maneuvers. Ground noise measurements, taken during maneuvering flight of a Bell 206B helicopter, show that many of the noise radiation details are captured. The result is a computationally efficient Blade-Vortex Interaction noise model with sufficient accuracy to account for transient maneuvering flight. The code can be run in real time to predict transient maneuver noise and is suitable for use in an acoustic mission-planning tool.

  14. The Discovery of Processing Stages: Extension of Sternberg’s Method

    PubMed Central

    Anderson, John R.; Zhang, Qiong; Borst, Jelmer P.; Walsh, Matthew M.

    2016-01-01

    We introduce a method for measuring the number and durations of processing stages from the electroencephalographic (EEG) signal and apply it to the study of associative recognition. Using an extension of past research that combines multivariate pattern analysis (MVPA) with hidden semi-Markov models (HSMMs), the approach identifies on a trial-by-trial basis where brief sinusoidal peaks (called bumps) are added to the ongoing EEG signal. We propose that these bumps mark the onset of critical cognitive stages in processing. The results of the analysis can be used to guide the development of detailed process models. Applied to the associative recognition task, the HSMM-MVPA method indicates that the effects of associative strength and probe type are localized to a memory retrieval stage and a decision stage. This is in line with a previously developed ACT-R process model of the task. As a test of the generalization of our method we also apply it to a data set on the Sternberg working memory task collected by Jacobs et al. (2006). The analysis generalizes robustly, and localizes the typical set size effect in a late comparison/decision stage. In addition to providing information about the number and durations of stages in associative recognition, our analysis sheds light on the ERP components implicated in the study of recognition memory. PMID:27135600

  15. A method to analyze low signal-to-noise ratio functional magnetic resonance imaging data.

    PubMed

    Zhu, Xi; Kayali, M Amin; Jansen, Ben H

    2015-09-01

    The current practice of using a single, representative hemodynamic response function (canonical HRF) to model functional magnetic resonance imaging (fMRI) data is questionable given the trial-to-trial variability of the brain's responses. In addition, the changes in blood-oxygenation level due to sensory stimulation may be small, especially when auditory stimuli are used. Here we introduce a correlation-based single trial analysis method for fMRI data analysis to deal with the low signal-to-noise (SNR) ratio and variability of the HRF in response to repeated, identical auditory stimuli. The correlation technique identifies the "active" trials, i.e., those showing a robust hemodynamic response among all single trials. Using data collected from 14 healthy subjects, it was found that the correlation method can find significant differences between brain areas and brain states in actual fMRI data. Also, the correlation-based method confirmed that the superior temporal gyrus (STG), inferior frontal gyrus (IFG), dorsolateral prefrontal cortex (DLPFC) and thalamus (THA) are involved in auditory information processing in general, and the involvement of the bilateral STG, right THA and left DLPFC in sensory gating. In contrast, conventional analysis failed to find any regions involved in sensory gating. The findings suggest that our single trial analysis method can increase the sensitivity of fMRI data analysis.

  16. Taking the Headaches out of Anesthetizing "Drosophila": A Cheap & Easy Method of Constructing Carbon Dioxide Staging

    ERIC Educational Resources Information Center

    Artiss, Thomas; Hughes, Bobby

    2007-01-01

    Carbon dioxide is an excellent alternative to conventional methods of anesthetizing fruit flies as it is non-flammable and odorless. We have devised a method of constructing carbon dioxide stages used to keep "Drosophila" immobilized cheaply and easily using empty micropipette tip containers. (Contains 6 figures.)

  17. An Ultrahigh Frequency Partial Discharge Signal De-Noising Method Based on a Generalized S-Transform and Module Time-Frequency Matrix

    PubMed Central

    Liu, Yushun; Zhou, Wenjun; Li, Pengfei; Yang, Shuai; Tian, Yan

    2016-01-01

    Due to electromagnetic interference in power substations, the partial discharge (PD) signals detected by ultrahigh frequency (UHF) antenna sensors often contain various background noises, which may hamper high voltage apparatus fault diagnosis and localization. This paper proposes a novel de-noising method based on the generalized S-transform and module time-frequency matrix to suppress noise in UHF PD signals. The sub-matrix maximum module value method is employed to calculate the frequencies and amplitudes of periodic narrowband noise, and suppress noise through the reverse phase cancellation technique. In addition, a singular value decomposition de-noising method is employed to suppress Gaussian white noise in UHF PD signals. Effective singular values are selected by employing the fuzzy c-means clustering method to recover the PD signals. De-noising results of simulated and field detected UHF PD signals prove the feasibility of the proposed method. Compared with four conventional de-noising methods, the results show that the proposed method can suppress background noise in the UHF PD signal effectively, with higher signal-to-noise ratio and less waveform distortion. PMID:27338409

  18. A new diagnostic method for separating airborne and structureborne noise radiated by plates with applications for propeller driven aircraft

    NASA Technical Reports Server (NTRS)

    Mcgary, Michael C.

    1988-01-01

    The anticipated application of advanced turboprop propulsion systems is expected to increase the interior noise of future aircraft to unacceptably high levels. The absence of technically and economically feasible noise source-path diagnostic tools has been a prime obstacle in the development of efficient noise control treatments for propeller-driven aircraft. A new diagnostic method that permits the separation and prediction of the fully coherent airborne and structureborne components of the sound radiated by plates or thin shells has been developed. Analytical and experimental studies of the proposed method were performed on an aluminum plate. The results of the study indicate that the proposed method could be used in flight, and has fewer encumbrances than the other diagnostic tools currently available.

  19. Observations from varying the lift and drag inputs to a noise prediction method for supersonic helical tip speed propellers

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.

    1984-01-01

    Previous comparisons between calculated and measured supersonic helical tip speed propeller noise show them to have different trends of peak blade passing tone versus helical tip Mach number. It was postulated that improvements in this comparison could be made first by including the drag force terms in the prediction and then by reducing the blade lift terms at the tip to allow the drag forces to dominate the noise prediction. Propeller hub to tip lift distributions were varied, but they did not yield sufficient change in the predicted lift noise to improve the comparison. This result indicates that some basic changes in the theory may be needed. In addition, the noise predicted by the drag forces did not exhibit the same curve shape as the measured data. So even if the drag force terms were to dominate, the trends with helical tip Mach number for theory and experiment would still not be the same. The effect of the blade shock wave pressure rise was approxmated by increasing the drag coefficient at the blade tip. Predictions using this shock wdave approximation did have a curve shape similar to the measured data. This result indicates that the shock pressure rise probably controls the noise at supersonic tip speed and that the linear prediction method can give the proper noise trend with Mach number.

  20. Observations from varying the lift and drag inputs to a noise prediction method for supersonic helical tip speed propellers

    NASA Astrophysics Data System (ADS)

    Dittmar, J. H.

    1984-09-01

    Previous comparisons between calculated and measured supersonic helical tip speed propeller noise show them to have different trends of peak blade passing tone versus helical tip Mach number. It was postulated that improvements in this comparison could be made first by including the drag force terms in the prediction and then by reducing the blade lift terms at the tip to allow the drag forces to dominate the noise prediction. Propeller hub to tip lift distributions were varied, but they did not yield sufficient change in the predicted lift noise to improve the comparison. This result indicates that some basic changes in the theory may be needed. In addition, the noise predicted by the drag forces did not exhibit the same curve shape as the measured data. So even if the drag force terms were to dominate, the trends with helical tip Mach number for theory and experiment would still not be the same. The effect of the blade shock wave pressure rise was approxmated by increasing the drag coefficient at the blade tip. Predictions using this shock wdave approximation did have a curve shape similar to the measured data. This result indicates that the shock pressure rise probably controls the noise at supersonic tip speed and that the linear prediction method can give the proper noise trend with Mach number.

  1. Wide-stripe noise removal method of hyperspectral image based on fusion of wavelet transform and local interpolation

    NASA Astrophysics Data System (ADS)

    Huang, Shiqi; Liu, Zhigang; Wang, Yiting; Wang, Rongrong

    2017-03-01

    The principle of hyperspectral imaging leads to a variety of stripe noise in hyperspectral images, especially the wide-stripe noise, which brings great obstacles to the interpretation and application of hyperspectral images. Aiming at the wide-stripe noise of hyperspectral images of two-level production data, considering from the effect of filtering noise and the ability of protecting detail, this paper proposed a fused wide-stripe removal method based on the wavelet transform and local interpolation (WTLI), called the WTLI algorithm. On one hand, it uses the wavelet transform to remove the stripe noise as much as possible; on the other hand, it uses the local interpolation to protect more geometric and detailed information, so as to achieve the purpose of removing noise and protecting the useful information. A series of comparative experiments were carried out with hyperspectral image data. Not only have good experimental results been obtained, but also this shows that the WTLI algorithm has better stability and universality.

  2. Two Simple Methods for the Collection of Individual Life Stages of Reniform Nematode, Rotylenchulus reniformis

    PubMed Central

    Ganji, Satish; Jenkins, Johnie Norton

    2013-01-01

    The sedentary semi-endoparasitic nematode Rotylenchulus reniformis, the reniform nematode, is a serious pest of cotton and soybean in the United States. In recent years, interest in the molecular biology of the interaction between R. reniformis and its plant hosts has increased; however, the unusual life cycle of R. reniformis presents a unique set of challenges to researchers who wish to study the developmental expression of a particular nematode gene or evaluate life stage–specific effects of a specific treatment such as RNA-interference or a potential nematicide. In this report, we describe a simple method to collect R. reniformis juvenile and vermiform adult life stages under in vitro conditions and a second method to collect viable parasitic sedentary females from host plant roots. Rotylenchulus reniformis eggs were hatched over a Baermann funnel and the resultant second-stage juveniles incubated in petri plates containing sterile water at 30°C. Nematode development was monitored through the appearance of fourth-stage juveniles and specific time-points at which each developmental stage predominated were determined. Viable parasitic sedentary females were collected from infected roots using a second method that combined blending, sieving, and sucrose flotation. Rotylenchulus reniformis life stages collected with these methods can be used for nucleic acid or protein extraction or other experimental purposes that rely on life stage–specific data. PMID:23833322

  3. Brief communication: a proposed osteological method for the estimation of pubertal stage in human skeletal remains.

    PubMed

    Shapland, Fiona; Lewis, Mary E

    2013-06-01

    Puberty forms an important threshold between childhood and adulthood, but this subject has received little attention in bioarchaeology. The new application of clinical methods to assess pubertal stage in adolescent skeletal remains is explored, concentrating on the development of the mandibular canine, hamate, hand phalanges, iliac crest and distal radius. Initial results from the medieval cemetery of St. Peter's Church, Barton-upon-Humber, England suggest that application of these methods may provide insights into aspects of adolescent development. This analysis indicates that adolescents from this medieval site were entering the pubertal growth spurt at a similar age to their modern counterparts, but that the later stages of pubertal maturation were being significantly delayed, perhaps due to environmental stress. Continued testing and refinement of these methods on living adolescents is still necessary to improve our understanding of their significance and accuracy in predicting pubertal stages.

  4. De-noising and retrieving algorithm of Mie lidar data based on the particle filter and the Fernald method.

    PubMed

    Li, Chen; Pan, Zengxin; Mao, Feiyue; Gong, Wei; Chen, Shihua; Min, Qilong

    2015-10-05

    The signal-to-noise ratio (SNR) of an atmospheric lidar decreases rapidly as range increases, so that maintaining high accuracy when retrieving lidar data at the far end is difficult. To avoid this problem, many de-noising algorithms have been developed; in particular, an effective de-noising algorithm has been proposed to simultaneously retrieve lidar data and obtain a de-noised signal by combining the ensemble Kalman filter (EnKF) and the Fernald method. This algorithm enhances the retrieval accuracy and effective measure range of a lidar based on the Fernald method, but sometimes leads to a shift (bias) in the near range as a result of the over-smoothing caused by the EnKF. This study proposes a new scheme that avoids this phenomenon using a particle filter (PF) instead of the EnKF in the de-noising algorithm. Synthetic experiments show that the PF performs better than the EnKF and Fernald methods. The root mean square error of PF are 52.55% and 38.14% of that of the Fernald and EnKF methods, and PF increases the SNR by 44.36% and 11.57% of that of the Fernald and EnKF methods, respectively. For experiments with real signals, the relative bias of the EnKF is 5.72%, which is reduced to 2.15% by the PF in the near range. Furthermore, the suppression impact on the random noise in the far range is also made significant via the PF. An extensive application of the PF method can be useful in determining the local and global properties of aerosols.

  5. A new method for the purification of the different stages of carrot embryoids.

    PubMed

    Giuliano, G; Rosellini, D; Terzi, M

    1983-08-01

    An easy method is presented for the purification of the different stages of carrot embryoids. This is based on a synchronization of the regenerating culture and on a filtration through filters of various pore sizes. A differential sedimentation was used for removing undifferentiated cells. At the end of the process, the different stages: globular, heart- and torpedo-shaped were obtained with a degree of purity that always exceeded 90%. This method can be used for the separation of relatively large numbers of embryoids (from thousands to a million) of haploid and diploid carrot lines and is very gentle on embryoids in that it does not affect their viability or further development.

  6. Noise characteristics of thermistors: Measurement methods and results of selected devices

    NASA Astrophysics Data System (ADS)

    Ryger, Ivan; Harber, Dave; Stephens, Michelle; White, Malcolm; Tomlin, Nathan; Spidell, Matthew; Lehman, John

    2017-02-01

    As part of the development of a spectrally uniform room-temperature absolute radiometer, we have studied the electrical noise of several bulk chip thermistors in order to estimate the noise floor and optical dynamic range. Understanding the fundamental limits of the temperature sensitivity leads inevitably to studying the noise background of the complex electro-thermal system. To this end, we employ a measurement technique based on alternating current synchronous demodulation. Results of our analysis show that the combination of a low-current noise Junction Field Effect Transistor (JFET) preamplifier together with chip thermistors is optimal for our purpose, yielding a root mean square noise temperature of 2.8 μK in the frequency range of 0.01 Hz to 1 Hz.

  7. Development of Novel Methods for the Reduction of Noise and Weight in Helicopter Transmissions

    NASA Astrophysics Data System (ADS)

    Dimofte, Florin; Keith, Theo G., Jr.

    2003-01-01

    Over the 70-year evolution of the helicopter, man's understanding of vibration control has greatly increased. However, in spite of the increased performance, the extent of helicopter vibration problems has not significantly diminished. Crew vibration and noise remains important factors in the design of all current helicopters. With more complex and critical demands being placed on aircrews, it is essential that vibration and noise not impair their performance. A major source of helicopter cabin noise (which has been measured at a sound pressure level of over 100 dB) is the gearbox. Reduction of this noise has been a goal of NASA and the U.S. Army. Gear mesh noise is typically in the frequency range of 1000 to 3000 Hz, a range important for speech. A requirement for U.S. Army/NASA Advanced Rotorcraft Transmission project has been a 10-dB reduction compared to current designs. A combined analytical/experimental effort has been underway, since the end of the 80's, to study effects of design parameters on noise production. The noise generated by the gear mesh can be transmitted to the surrounding media through the bearings that support the gear shaft. Therefore, the use of fluid film bearings instead of rolling element bearings could reduce the transmission noise by 10 dB. In addition, the fluid film bearings that support the gear shaft can change the dynamics of the gear assembly by providing damping to the system and by being softer than rolling element bearings. Wave bearings can attenuate, and filter, the noise generated by a machine component due to the dynamic stiffness and damping coefficients. The attenuation ratio could be as large as 35-40 dB. The noise components at higher frequencies than a synchronous frequency can be almost eliminated.

  8. Noise and blast

    NASA Technical Reports Server (NTRS)

    Hodge, D. C.; Garinther, G. R.

    1973-01-01

    Noise and blast environments are described, providing a definition of units and techniques of noise measurement and giving representative booster-launch and spacecraft noise data. The effects of noise on hearing sensitivity and performance are reviewed, and community response to noise exposure is discussed. Physiological, or nonauditory, effects of noise exposure are also treated, as are design criteria and methods for minimizing the noise effects of hearing sensitivity and communications. The low level sound detection and speech reception are included, along with subjective and behavioral responses to noise.

  9. Application of the discontinuous Galerkin method to study the source mechanisms for Love waves in ambient noise

    NASA Astrophysics Data System (ADS)

    Wenk, S.; Hadziioannou, C.; Igel, H.

    2012-12-01

    To produce detailed images of the crust using noise correlation studies and to understand the ocean - solid Earth interaction processes we investigate the behavior and distribution of ambient noise sources, especially focused on the relative contribution of Love waves to the ambient noise field. Therefore, we apply the discontinuous Galerkin (DG) method, which makes use of unstructured tetrahedral meshes combined with a time integration scheme solving the arbitrary high-order derivative (ADER) Riemann problem. The ADER-DG method is high-order accurate in space and time, beneficial for reliable simulations of high-frequency wavefields over long propagation distances. Due to the ease with which tetrahedral grids can be adapted to complex geometries, undulating topography of the Earth's surface and interior interfaces can be readily implemented in the computational domain.

  10. Evaluation of approximate methods for the prediction of noise shielding by airframe components

    NASA Technical Reports Server (NTRS)

    Ahtye, W. F.; Mcculley, G.

    1980-01-01

    An evaluation of some approximate methods for the prediction of shielding of monochromatic sound and broadband noise by aircraft components is reported. Anechoic-chamber measurements of the shielding of a point source by various simple geometric shapes were made and the measured values compared with those calculated by the superposition of asymptotic closed-form solutions for the shielding by a semi-infinite plane barrier. The shields used in the measurements consisted of rectangular plates, a circular cylinder, and a rectangular plate attached to the cylinder to simulate a wing-body combination. The normalized frequency, defined as a product of the acoustic wave number and either the plate width or cylinder diameter, ranged from 4.6 to 114. Microphone traverses in front of the rectangular plates and cylinders generally showed a series of diffraction bands that matched those predicted by the approximate methods, except for differences in the magnitudes of the attenuation minima which can be attributed to experimental inaccuracies. The shielding of wing-body combinations was predicted by modifications of the approximations used for rectangular and cylindrical shielding. Although the approximations failed to predict diffraction patterns in certain regions, they did predict the average level of wing-body shielding with an average deviation of less than 3 dB.

  11. Health condition identification of multi-stage planetary gearboxes using a mRVM-based method

    NASA Astrophysics Data System (ADS)

    Lei, Yaguo; Liu, Zongyao; Wu, Xionghui; Li, Naipeng; Chen, Wu; Lin, Jing

    2015-08-01

    Multi-stage planetary gearboxes are widely applied in aerospace, automotive and heavy industries. Their key components, such as gears and bearings, can easily suffer from damage due to tough working environment. Health condition identification of planetary gearboxes aims to prevent accidents and save costs. This paper proposes a method based on multiclass relevance vector machine (mRVM) to identify health condition of multi-stage planetary gearboxes. In this method, a mRVM algorithm is adopted as a classifier, and two features, i.e. accumulative amplitudes of carrier orders (AACO) and energy ratio based on difference spectra (ERDS), are used as the input of the classifier to classify different health conditions of multi-stage planetary gearboxes. To test the proposed method, seven health conditions of a two-stage planetary gearbox are considered and vibration data is acquired from the planetary gearbox under different motor speeds and loading conditions. The results of three tests based on different data show that the proposed method obtains an improved identification performance and robustness compared with the existing method.

  12. Determining skeletal maturation stage using cervical vertebrae: evaluation of three diagnostic methods.

    PubMed

    Jaqueira, Luci Mara Fachardo; Armond, Monica Costa; Pereira, Luciano José; Alcântara, Carlos Eduardo Pinto de; Marques, Leandro Silva

    2010-01-01

    The aim of the present study was to compare the use of three cervical vertebral evaluation methods (Hassel-Farman, Baccetti et al., and Seedat-Forsberg) for determinating skeletal maturation stage in orthodontic patients. Twenty-three radiographs were randomly selected from a private orthodontic practice. Each radiograph was analyzed on three separate occasions by four evaluators (one radiologist and three orthodontists), who determined the skeletal maturation stage using the references established by each of the three methods. Intraevaluator and interevaluator comparisons were performed, and the degree of agreement was established using the weighted Kappa coefficient (95% CI). Good agreement (Kappa between 0.61 and 0.80) was observed between the determinations of most of the evaluators. The three methods demonstrated clinical applicability. However, the method proposed by Baccetti et al. achieved the best results, followed by the Hassel-Farman and the Seedat-Forsberg methods.

  13. Noise Certification Predictions for FJX-2-Powered Aircraft Using Analytic Methods

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.

    1999-01-01

    Williams International Co. is currently developing the 700-pound thrust class FJX-2 turbofan engine for the general Aviation Propulsion Program's Turbine Engine Element. As part of the 1996 NASA-Williams cooperative working agreement, NASA agreed to analytically calculate the noise certification levels of the FJX-2-powered V-Jet II test bed aircraft. Although the V-Jet II is a demonstration aircraft that is unlikely to be produced and certified, the noise results presented here may be considered to be representative of the noise levels of small, general aviation jet aircraft that the FJX-2 would power. A single engine variant of the V-Jet II, the V-Jet I concept airplane, is also considered. Reported in this paper are the analytically predicted FJX-2/V-Jet noise levels appropriate for Federal Aviation Regulation certification. Also reported are FJX-2/V-Jet noise levels using noise metrics appropriate for the propeller-driven aircraft that will be its major market competition, as well as a sensitivity analysis of the certification noise levels to major system uncertainties.

  14. A Method for Simulation of Rotorcraft Fly-In Noise for Human Response Studies

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Christian, Andrew

    2015-01-01

    The low frequency content of rotorcraft noise allows it to be heard over great distances. This factor contributes to the disruption of natural quiet in national parks and wilderness areas, and can lead to annoyance in populated areas. Further, it can result in detection at greater distances compared to higher altitude fixed wing aircraft operations. Human response studies conducted in the field are made difficult since test conditions are difficult to control. Specifically, compared to fixed wing aircraft, the source noise itself may significantly vary over time even for nominally steady flight conditions, and the propagation of that noise is more variable due to low altitude meteorological conditions. However, it is possible to create the salient features of rotorcraft fly-in noise in a more controlled laboratory setting through recent advancements made in source noise synthesis, propagation modeling and reproduction. This paper concentrates on the first two of these. In particular, the rotorcraft source noise pressure time history is generated using single blade passage signatures from the main and tail rotors. These may be obtained from either acoustic source noise predictions or back-propagation of ground-based measurements. Propagation effects include atmospheric absorption, spreading loss, Doppler shift, and ground plane reflections.

  15. A method for determining internal noise criteria based on practical speech communication applied to helicopters

    NASA Technical Reports Server (NTRS)

    Sternfeld, H., Jr.; Doyle, L. B.

    1978-01-01

    The relationship between the internal noise environment of helicopters and the ability of personnel to understand commands and instructions was studied. A test program was conducted to relate speech intelligibility to a standard measurement called Articulation Index. An acoustical simulator was used to provide noise environments typical of Army helicopters. Speech material (command sentences and phonetically balanced word lists) were presented at several voice levels in each helicopter environment. Recommended helicopter internal noise criteria, based on speech communication, were derived and the effectiveness of hearing protection devices were evaluated.

  16. Methods for Predicting Potential Impacts of Pile-Driving Noise on Endangered Sturgeon During Bridge Construction.

    PubMed

    Krebs, Justin; Jacobs, Fred; Conway, Robert; Popper, Arthur N; Moese, Mark; Rollino, John; Racca, Roberto; Martin, Bruce; MacGillivray, Alexander

    2016-01-01

    The potential impacts of pile-driving noise on Hudson River sturgeon during construction of the New NY Bridge were predicted. Abundance data for shortnose and Atlantic sturgeon derived from fisheries sampling were combined with data about the spatial extent of pile-driving noise. This approach was used to calculate the number of sturgeon that could occur within sound level isopleths exceeding peak and cumulative noise criteria used by the National Marine Fisheries Service to determine the incidental take of sturgeon. The number of sturgeon subject to the potential onset of physiological effects during pile driving was predicted to be 35-41 fish for each species.

  17. Runoff nutrient transport as affected by land application method, swine growth stage, and runoff rate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to measure the effects of slurry application method, swine growth stage, and flow rate on runoff nutrient transport. Swine slurry was obtained from production units containing grower pigs, finisher pigs, or sows and gilts. The swine slurry was applied using broadcast, disk, ...

  18. An Overview of Markov Chain Methods for the Study of Stage-Sequential Developmental Processes

    ERIC Educational Resources Information Center

    Kapland, David

    2008-01-01

    This article presents an overview of quantitative methodologies for the study of stage-sequential development based on extensions of Markov chain modeling. Four methods are presented that exemplify the flexibility of this approach: the manifest Markov model, the latent Markov model, latent transition analysis, and the mixture latent Markov model.…

  19. A portable measurement system for subcriticality measurements by the Cf-source-driven neutron noise analysis method

    SciTech Connect

    Mihalczo, J.T.; Ragan, G.E.; Blakeman, E.D.

    1987-01-01

    A portable measurement system consisting of a personal computer used as a Fourier analyzer and three detection channels (with associated electronics that provide the signals to analog-to-digital (A/D) convertors) has been assembled to measure subcriticality by the /sup 252/Cf-source-driven neutron noise analysis method. 8 refs.

  20. [Denoising and assessing method of additive noise in the ultraviolet spectrum of SO2 in flue gas].

    PubMed

    Zhou, Tao; Sun, Chang-Ku; Liu, Bin; Zhao, Yu-Mei

    2009-11-01

    The problem of denoising and assessing method of the spectrum of SO2 in flue gas was studied based on DOAS. The denoising procedure of the additive noise in the spectrum was divided into two parts: reducing the additive noise and enhancing the useful signal. When obtaining the absorption feature of measured gas, a multi-resolution preprocessing method of original spectrum was adopted for denoising by DWT (discrete wavelet transform). The signal energy operators in different scales were used to choose the denoising threshold and separate the useful signal from the noise. On the other hand, because there was no sudden change in the spectra of flue gas in time series, the useful signal component was enhanced according to the signal time dependence. And the standard absorption cross section was used to build the ideal absorption spectrum with the measured gas temperature and pressure. This ideal spectrum was used as the desired signal instead of the original spectrum in the assessing method to modify the SNR (signal-noise ratio). There were two different environments to do the proof test-in the lab and at the scene. In the lab, SO2 was measured several times with the system using this method mentioned above. The average deviation was less than 1.5%, while the repeatability was less than 1%. And the short range experiment data were better than the large range. In the scene of a power plant whose concentration of flue gas had a large variation range, the maximum deviation of this method was 2.31% in the 18 groups of contrast data. The experimental results show that the denoising effect of the scene spectrum was better than that of the lab spectrum. This means that this method can improve the SNR of the spectrum effectively, which is seriously polluted by additive noise.

  1. Adaptive Kalman filtering methods for tracking GPS signals in high noise/high dynamic environments

    NASA Astrophysics Data System (ADS)

    Zuo, Qiyao; Yuan, Hong; Lin, Baojun

    2007-11-01

    GPS C/A signal tracking algorithms have been developed based on adaptive Kalman filtering theory. In the research, an adaptive Kalman filter is used to substitute for standard tracking loop filters. The goal is to improve estimation accuracy and tracking stabilization in high noise and high dynamic environments. The linear dynamics model and the measurements model are designed to estimate code phase, carrier phase, Doppler shift, and rate of change of Doppler shift. Two adaptive algorithms are applied to improve robustness and adaptive faculty of the tracking, one is Sage adaptive filtering approach and the other is strong tracking method. Both the new algorithms and the conventional tracking loop have been tested by using simulation data. In the simulation experiment, the highest jerk of the receiver is set to 10G m/s 3 with the lowest C/No 30dBHz. The results indicate that the Kalman filtering algorithms are more robust than the standard tracking loop, and performance of tracking loop using the algorithms is satisfactory in such extremely adverse circumstances.

  2. Method and apparatus for providing high bandwidth, low noise mechanical I/O for computer systems

    DOEpatents

    Rosenberg, Louis B.

    1998-01-01

    A method and apparatus for providing high bandwidth and low noise mechanical input and output for computer systems. A gimbal mechanism provides two revolute degrees of freedom to an object about two axes of rotation. A linear axis member is coupled to the gimbal mechanism at the intersection of the two axes of rotation. The linear axis member is capable of being translated along a third axis to provide a third degree of freedom. The user object is coupled to the linear axis member and is thus translatable along the third axis so that the object can be moved along all three degrees of freedom. Transducers associated with the provided degrees of freedom include sensors and actuators and provide an electromechanical interface between the object and a digital processing system. Capstan drive mechanisms transmit forces between the transducers and the object. The linear axis member can also be rotated about its lengthwise axis to provide a fourth degree of freedom, and, optionally, a floating gimbal mechanism is coupled to the linear axis member to provide fifth and sixth degrees of freedom to an object. Transducer sensors are associated with the fourth, fifth, and sixth degrees of freedom. The interface is well suited for simulations of medical procedures and simulations in which an object such as a stylus or a joystick is moved and manipulated by the user.

  3. Assessment of the Contrast to Noise Ratio in PET Scanners with Monte Carlo Methods

    NASA Astrophysics Data System (ADS)

    Michail, C. M.; Karpetas, G. E.; Fountos, G. P.; Valais, I. G.; Nikolopoulos, D.; Kandarakis, I. S.; Panayiotakis, G. S.

    2015-09-01

    The aim of the present study was to assess the contrast to noise ratio (CNR) of PET scanners through a thin layer chromatography (TLC) plane source. The source was simulated using a previously validated Monte Carlo model. The model was developed by using the GATE MC package and reconstructed images obtained with the STIR software for tomographic image reconstruction. The PET scanner simulated was the GE DiscoveryST. A plane source consisted of a TLC plate, was simulated by a layer of silica gel on aluminum (Al) foil substrates, immersed in 18F-FDG bath solution. Image quality was assessed in terms of the CNR. CNR was estimated from coronal reconstructed images of the plane source. Images were reconstructed by the maximum likelihood estimation (MLE)-OSMAPOSL. OSMAPOSL reconstruction was assessed by using various subsets (3, 15 and 21) and various iterations (2 to 20). CNR values were found to decrease when both iterations and subsets increase. Two (2) iterations were found to be optimal. The simulated PET evaluation method, based on the TLC plane source, can be useful in image quality assessment of PET scanners.

  4. Frequency-domain method for discrete frequency noise prediction of rotors in arbitrary steady motion

    NASA Astrophysics Data System (ADS)

    Gennaretti, M.; Testa, C.; Bernardini, G.

    2012-12-01

    A novel frequency-domain formulation for the prediction of the tonal noise emitted by rotors in arbitrary steady motion is presented. It is derived from Farassat's 'Formulation 1A', that is a time-domain boundary integral representation for the solution of the Ffowcs-Williams and Hawkings equation, and represents noise as harmonic response to body kinematics and aerodynamic loads via frequency-response-function matrices. The proposed frequency-domain solver is applicable to rotor configurations for which sound pressure levels of discrete tones are much higher than those of broadband noise. The numerical investigation concerns the analysis of noise produced by an advancing helicopter rotor in blade-vortex interaction conditions, as well as the examination of pressure disturbances radiated by the interaction of a marine propeller with a non-uniform inflow.

  5. The relative importance of noise level and number of events on human reactions to noise: Community survey findings and study methods

    NASA Technical Reports Server (NTRS)

    Fields, J. M.

    1980-01-01

    The data from seven surveys of community response to environmental noise are reanalyzed to assess the relative influence of peak noise levels and the numbers of noise events on human response. The surveys do not agree on the value of the tradeoff between the effects of noise level and numbers of events. The value of the tradeoff cannot be confidently specified in any survey because the tradeoff estimate may have a large standard error of estimate and because the tradeoff estimate may be seriously biased by unknown noise measurement errors. Some evidence suggests a decrease in annoyance with very high numbers of noise events but this evidence is not strong enough to lead to the rejection of the conventionally accepted assumption that annoyance is related to a log transformation of the number of noise events.

  6. Method for removal of random noise in eddy-current testing system

    DOEpatents

    Levy, Arthur J.

    1995-01-01

    Eddy-current response voltages, generated during inspection of metallic structures for anomalies, are often replete with noise. Therefore, analysis of the inspection data and results is difficult or near impossible, resulting in inconsistent or unreliable evaluation of the structure. This invention processes the eddy-current response voltage, removing the effect of random noise, to allow proper identification of anomalies within and associated with the structure.

  7. Noise Identification in a Hot Transonic Jet Using Low-Dimensional Methods

    DTIC Science & Technology

    2008-03-01

    gained considerable focus. To date, active flow control techniques for jet noise reduction have not yet provided enough consistency and cost-efficiency...the noise reduction capability provided by passive techniques . Ultimately, both active and passive flow control techniques could be complementary in...involving only terms of quadrupole nature, there existed a component of the pressure-density relationship more appropriately represented by dipole

  8. System and method for characterizing voiced excitations of speech and acoustic signals, removing acoustic noise from speech, and synthesizing speech

    DOEpatents

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2006-02-14

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  9. System And Method For Characterizing Voiced Excitations Of Speech And Acoustic Signals, Removing Acoustic Noise From Speech, And Synthesizi

    DOEpatents

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2006-04-25

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  10. System and method for characterizing voiced excitations of speech and acoustic signals, removing acoustic noise from speech, and synthesizing speech

    DOEpatents

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2004-03-23

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  11. System and method for characterizing voiced excitations of speech and acoustic signals, removing acoustic noise from speech, and synthesizing speech

    DOEpatents

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2006-08-08

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  12. Study on adjoint-based optimization method for multi-stage turbomachinery

    NASA Astrophysics Data System (ADS)

    Li, Weiwei; Tian, Yong; Yi, Weilin; Ji, Lucheng; Shao, Weiwei; Xiao, Yunhan

    2011-10-01

    Adjoint-based optimization method is a hotspot in turbomachinery. First, this paper presents principles of adjoint method from Lagrange multiplier viewpoint. Second, combining a continuous route with thin layer RANS equations, we formulate adjoint equations and anti-physical boundary conditions. Due to the multi-stage environment in turbomachinery, an adjoint interrow mixing method is introduced. Numerical techniques of solving flow equations and adjoint equations are almost the same, and once they are converged respectively, the gradients of an objective function to design variables can be calculated using complex method efficiently. Third, integrating a shape perturbation parameterization and a simple steepest descent method, a frame of adjoint-based aerodynamic shape optimization for multi-stage turbomachinery is constructed. At last, an inverse design of an annular cascade is employed to validate the above approach, and adjoint field of an Aachen 1.5 stage turbine demonstrates the conservation and areflexia of the adjoint interrow mixing method. Then a direct redesign of a 1+1 counter-rotating turbine aiming to increase efficiency and apply constraints to mass flow rate and pressure ratio is taken.

  13. Seismic noise in the shallow subsurface: Methods for using it in earthquake hazard assessment

    NASA Astrophysics Data System (ADS)

    Scott, James B.

    2007-12-01

    The primary focus of this work has been characterization of the shallow subsurface for seismic hazard using naturally occurring seismic noise. Three studies chronicle the further development of the refraction microtremor method for determining shear-wave velocity-depth structure, which is a predictor of earthquake shaking amplification. These studies present results from the first uses of the refraction microtremor method to determine earthquake hazard across entire urban basins. Improved field methods led to speed and efficiency in these deployments. These spatially dense geophysical measurements of shallow shear-wave velocity were conducted to broadly define shaking hazard and to determine the accuracy of earlier methods of prediction. The refraction microtremor method agrees well with borehole and other shear-velocity methods. In Chapter 2, I present results from the first long urban transect, 16 km across the Reno, Nevada basin. In 45 of the 55 (82%) measurements of shear velocity averaged to 30 m depth (Vs30) the result was above 360 m/s. The National Earthquake Hazards Reduction Program (NEHRP) defines Vs30 of 360 m/s as the boundary between site hazard class C and class D, with class C above 360 m/s. Mapped geologic and soil units are not accurate predictors of Vs30 on this transect, and would have predicted most of the transect as NEHRP-D. In Chapter 3, I present Vs30 results along a 13 km-long transect parallel to Las Vegas Blvd. (The Strip), along with borehole and surface-wave measurements of 30 additional sites. Again, our transect measurements correlate poorly against geologic map units, which do not predict Vs30 at any individual site with sufficient accuracy for engineering application. Two models to predict Vs30 were reported in this study. In Chapter 4, I present aggregate results from the Reno and Las Vegas transects and include results from our 60 km-long transect across the Los Angeles basin. Our statistical analyses suggest that the lateral

  14. Multi-stage classification method oriented to aerial image based on low-rank recovery and multi-feature fusion sparse representation.

    PubMed

    Ma, Xu; Cheng, Yongmei; Hao, Shuai

    2016-12-10

    Automatic classification of terrain surfaces from an aerial image is essential for an autonomous unmanned aerial vehicle (UAV) landing at an unprepared site by using vision. Diverse terrain surfaces may show similar spectral properties due to the illumination and noise that easily cause poor classification performance. To address this issue, a multi-stage classification algorithm based on low-rank recovery and multi-feature fusion sparse representation is proposed. First, color moments and Gabor texture feature are extracted from training data and stacked as column vectors of a dictionary. Then we perform low-rank matrix recovery for the dictionary by using augmented Lagrange multipliers and construct a multi-stage terrain classifier. Experimental results on an aerial map database that we prepared verify the classification accuracy and robustness of the proposed method.

  15. Structure-borne low-frequency noise from multi-span bridges: A prediction method and spatial distribution

    NASA Astrophysics Data System (ADS)

    Song, X. D.; Wu, D. J.; Li, Q.; Botteldooren, D.

    2016-04-01

    Structure-borne noise from railway bridges at far-field points is an important indicator in environmental noise assessment. However, studies that predict structure-borne noise tend to model only single-span bridges, thus ignoring the sound pressure radiating from adjacent spans. To simulate the noise radiating from multi-span bridges induced by moving vehicles, the vibrations of a multi-span bridge are first obtained from a three-dimensional (3D) vehicle-track-bridge dynamic interaction simulation using the mode superposition method. A procedure based on the 2.5-dimensional (2.5D) boundary element method (BEM) is then presented to promote the efficiency of acoustical computation compared with the 3D BEM. The simulated results obtained from both the single-span and multi-span bridge models are compared with the measured results. The sound predictions calculated from the single-span model are accurate only for a minority of near-field points. In contrast, the sound pressures calculated from the multi-span bridge model match the measured results in both the time and frequency domains for all of the near-field and far-field points. The number of bridge spans required in the noise simulation is then recommended related to the distance between the track center and the field points of interest. The spatial distribution of multi-span structure-borne noise is also studied. The variation in sound pressure levels is insignificant along the length of the bridge, which validates the finding that the sound test section can be selected at an arbitrary plane perpendicular to the multi-span bridge.

  16. Minimally Invasive Methods for Staging in Lung Cancer: Systematic Review and Meta-Analysis

    PubMed Central

    Aravena, Carlos; Ortega, Francisco; Arenas, Alex; Majid, Adnan; Folch, Erik; Jantz, Michael A.; Fernandez-Bussy, Sebastian

    2016-01-01

    Introduction. Endobronchial ultrasound (EBUS) is a procedure that provides access to the mediastinal staging; however, EBUS cannot be used to stage all of the nodes in the mediastinum. In these cases, endoscopic ultrasound (EUS) is used for complete staging. Objective. To provide a synthesis of the evidence on the diagnostic performance of EBUS + EUS in patients undergoing mediastinal staging. Methods. Systematic review and meta-analysis to evaluate the diagnostic yield of EBUS + EUS compared with surgical staging. Two researchers performed the literature search, quality assessments, data extractions, and analyses. We produced a meta-analysis including sensitivity, specificity, and likelihood ratio analysis. Results. Twelve primary studies (1515 patients) were included; two were randomized controlled trials (RCTs) and ten were prospective trials. The pooled sensitivity for combined EBUS + EUS was 87% (CI 84–89%) and the specificity was 99% (CI 98–100%). For EBUS + EUS performed with a single bronchoscope group, the sensitivity improved to 88% (CI 83.1–91.4%) and specificity improved to 100% (CI 99-100%). Conclusion. EBUS + EUS is a highly accurate and safe procedure. The combined procedure should be considered in selected patients with lymphadenopathy noted at stations that are not traditionally accessible with conventional EBUS. PMID:27818796

  17. Two-Stage Orthogonal Least Squares Methods for Neural Network Construction.

    PubMed

    Zhang, Long; Li, Kang; Bai, Er-Wei; Irwin, George W

    2015-08-01

    A number of neural networks can be formulated as the linear-in-the-parameters models. Training such networks can be transformed to a model selection problem where a compact model is selected from all the candidates using subset selection algorithms. Forward selection methods are popular fast subset selection approaches. However, they may only produce suboptimal models and can be trapped into a local minimum. More recently, a two-stage fast recursive algorithm (TSFRA) combining forward selection and backward model refinement has been proposed to improve the compactness and generalization performance of the model. This paper proposes unified two-stage orthogonal least squares methods instead of the fast recursive-based methods. In contrast to the TSFRA, this paper derives a new simplified relationship between the forward and the backward stages to avoid repetitive computations using the inherent orthogonal properties of the least squares methods. Furthermore, a new term exchanging scheme for backward model refinement is introduced to reduce computational demand. Finally, given the error reduction ratio criterion, effective and efficient forward and backward subset selection procedures are proposed. Extensive examples are presented to demonstrate the improved model compactness constructed by the proposed technique in comparison with some popular methods.

  18. Bias in estimating the causal hazard ratio when using two-stage instrumental variable methods.

    PubMed

    Wan, Fei; Small, Dylan; Bekelman, Justin E; Mitra, Nandita

    2015-06-30

    Two-stage instrumental variable methods are commonly used to estimate the causal effects of treatments on survival in the presence of measured and unmeasured confounding. Two-stage residual inclusion (2SRI) has been the method of choice over two-stage predictor substitution (2SPS) in clinical studies. We directly compare the bias in the causal hazard ratio estimated by these two methods. Under a principal stratification framework, we derive a closed-form solution for asymptotic bias of the causal hazard ratio among compliers for both the 2SPS and 2SRI methods when survival time follows the Weibull distribution with random censoring. When there is no unmeasured confounding and no always takers, our analytic results show that 2SRI is generally asymptotically unbiased, but 2SPS is not. However, when there is substantial unmeasured confounding, 2SPS performs better than 2SRI with respect to bias under certain scenarios. We use extensive simulation studies to confirm the analytic results from our closed-form solutions. We apply these two methods to prostate cancer treatment data from Surveillance, Epidemiology and End Results-Medicare and compare these 2SRI and 2SPS estimates with results from two published randomized trials.

  19. Analysis of helicopter blade-vortex interaction noise with application to adaptive-passive and active alleviation methods

    NASA Astrophysics Data System (ADS)

    Tauszig, Lionel Christian

    This study focuses on detection and analysis methods of helicopter blade-vortex interactions (BVI) and applies these methods to two different BVI noise alleviation schemes---an adaptive-passive and an active scheme. A standard free-wake analysis based on relaxation methods is extended in this study to compute high-resolution blade loading, to account for blade-to-blade dissimilarities, and dual vortices when there is negative loading at the blade tips. The free-wake geometry is still calculated on a coarse azimuthal grid and then interpolated to a high-resolution grid to calculate the BVI induced impulsive loading. Blade-to-blade dissimilarities are accounted by allowing the different blades to release their own vortices. A number of BVI detection criteria, including the spherical method (a geometric criterion developed in this thesis) are critically examined. It was determined that high-resolution azimuthal discretization is required in virtually all detection methods except the spherical method which detected the occurrence of parallel BVI even while using a low-resolution azimuthal mesh. Detection methods based on inflow and blade loads were, in addition, found to be sensitive to vortex core size. While most BVI studies use the high-resolution airloads to compute BVI noise, the total noise can often be due to multiple dominant interactions on the advancing and retreating sides. A methodology is developed to evaluate the contribution of an individual interaction to the total BVI noise, based on using the loading due to an individual vortex as an input to the acoustic code WOPWOP. The adaptive-passive BVI alleviation method considered in this study comprises of reducing the length of one set of opposite blades (of a 4-bladed rotor) in low-speed descent. Results showed that differential coning resulting from the blade dissimilarity increases the blade-vortex miss-distances and reduces the BVI noise by 4 dB. The Higher Harmonic Control Aeroacoustic Rotor Test (HART

  20. Applying the seismic interferometry method to vertical seismic profile data using tunnel excavation noise as source

    NASA Astrophysics Data System (ADS)

    Jurado, Maria Jose; Teixido, Teresa; Martin, Elena; Segarra, Miguel; Segura, Carlos

    2013-04-01

    In the frame of the research conducted to develop efficient strategies for investigation of rock properties and fluids ahead of tunnel excavations the seismic interferometry method was applied to analyze the data acquired in boreholes instrumented with geophone strings. The results obtained confirmed that seismic interferometry provided an improved resolution of petrophysical properties to identify heterogeneities and geological structures ahead of the excavation. These features are beyond the resolution of other conventional geophysical methods but can be the cause severe problems in the excavation of tunnels. Geophone strings were used to record different types of seismic noise generated at the tunnel head during excavation with a tunnelling machine and also during the placement of the rings covering the tunnel excavation. In this study we show how tunnel construction activities have been characterized as source of seismic signal and used in our research as the seismic source signal for generating a 3D reflection seismic survey. The data was recorded in vertical water filled borehole with a borehole seismic string at a distance of 60 m from the tunnel trace. A reference pilot signal was obtained from seismograms acquired close the tunnel face excavation in order to obtain best signal-to-noise ratio to be used in the interferometry processing (Poletto et al., 2010). The seismic interferometry method (Claerbout 1968) was successfully applied to image the subsurface geological structure using the seismic wave field generated by tunneling (tunnelling machine and construction activities) recorded with geophone strings. This technique was applied simulating virtual shot records related to the number of receivers in the borehole with the seismic transmitted events, and processing the data as a reflection seismic survey. The pseudo reflective wave field was obtained by cross-correlation of the transmitted wave data. We applied the relationship between the transmission

  1. Preservation of physical properties of stochastic Maxwell equations with additive noise via stochastic multi-symplectic methods

    SciTech Connect

    Chen, Chuchu Hong, Jialin Zhang, Liying

    2016-02-01

    Stochastic Maxwell equations with additive noise are a system of stochastic Hamiltonian partial differential equations intrinsically, possessing the stochastic multi-symplectic conservation law. It is shown that the averaged energy increases linearly with respect to the evolution of time and the flow of stochastic Maxwell equations with additive noise preserves the divergence in the sense of expectation. Moreover, we propose three novel stochastic multi-symplectic methods to discretize stochastic Maxwell equations in order to investigate the preservation of these properties numerically. We make theoretical discussions and comparisons on all of the three methods to observe that all of them preserve the corresponding discrete version of the averaged divergence. Meanwhile, we obtain the corresponding dissipative property of the discrete averaged energy satisfied by each method. Especially, the evolution rates of the averaged energies for all of the three methods are derived which are in accordance with the continuous case. Numerical experiments are performed to verify our theoretical results.

  2. A method of analyzing nonstationary ionic channel current fluctuations in the presence of an additive measurement noise.

    PubMed

    Mino, H

    1993-03-01

    A method of estimating the parameters of nonstationary ionic channel current fluctuations (NST-ICF's) in the presence of an additive measurement noise is proposed. The case is considered in which the sample records of NST-ICT's corrupted by the measurement noise are available for estimation, where the experiment can be repeated many times to calculate the statistics of noisy NST-ICF's. The conventional second-order regression model expressed in terms of the mean and variance of noisy NST-ICF's is derived theoretically, assuming that NST-ICF's are binomially distributed. Since the coefficients of the regression model are explicitly related to not only the parameters of NST-ICF's but also the measurement noise component, the parameters of NST-ICF's that are of interest can be estimated without interference from the additive measurement noise by identifying the regression coefficients. Furthermore, the accuracy of the parameter estimates is theoretically evaluated using the error-covariance matrix of the regression coefficients. The validity and effectiveness of the proposed method are demonstrated in a Monte Carlo simulation in which a fundamental kinetic scheme of Na+ channels is treated as a specific example.

  3. A non-contact, thermal noise based method for the calibration of lateral deflection sensitivity in atomic force microscopy

    SciTech Connect

    Mullin, Nic Hobbs, Jamie K.

    2014-11-15

    Calibration of lateral forces and displacements has been a long standing problem in lateral force microscopies. Recently, it was shown by Wagner et al. that the thermal noise spectrum of the first torsional mode may be used to calibrate the deflection sensitivity of the detector. This method is quick, non-destructive and may be performed in situ in air or liquid. Here we make a full quantitative comparison of the lateral inverse optical lever sensitivity obtained by the lateral thermal noise method and the shape independent method developed by Anderson et al. We find that the thermal method provides accurate results for a wide variety of rectangular cantilevers, provided that the geometry of the cantilever is suitable for torsional stiffness calibration by the torsional Sader method, in-plane bending of the cantilever may be eliminated or accounted for and that any scaling of the lateral deflection signal between the measurement of the lateral thermal noise and the measurement of the lateral deflection is eliminated or corrected for. We also demonstrate that the thermal method may be used to characterize the linearity of the detector signal as a function of position, and find a deviation of less than 8% for the instrument used.

  4. A general procedure to generate models for urban environmental-noise pollution using feature selection and machine learning methods.

    PubMed

    Torija, Antonio J; Ruiz, Diego P

    2015-02-01

    The prediction of environmental noise in urban environments requires the solution of a complex and non-linear problem, since there are complex relationships among the multitude of variables involved in the characterization and modelling of environmental noise and environmental-noise magnitudes. Moreover, the inclusion of the great spatial heterogeneity characteristic of urban environments seems to be essential in order to achieve an accurate environmental-noise prediction in cities. This problem is addressed in this paper, where a procedure based on feature-selection techniques and machine-learning regression methods is proposed and applied to this environmental problem. Three machine-learning regression methods, which are considered very robust in solving non-linear problems, are used to estimate the energy-equivalent sound-pressure level descriptor (LAeq). These three methods are: (i) multilayer perceptron (MLP), (ii) sequential minimal optimisation (SMO), and (iii) Gaussian processes for regression (GPR). In addition, because of the high number of input variables involved in environmental-noise modelling and estimation in urban environments, which make LAeq prediction models quite complex and costly in terms of time and resources for application to real situations, three different techniques are used to approach feature selection or data reduction. The feature-selection techniques used are: (i) correlation-based feature-subset selection (CFS), (ii) wrapper for feature-subset selection (WFS), and the data reduction technique is principal-component analysis (PCA). The subsequent analysis leads to a proposal of different schemes, depending on the needs regarding data collection and accuracy. The use of WFS as the feature-selection technique with the implementation of SMO or GPR as regression algorithm provides the best LAeq estimation (R(2)=0.94 and mean absolute error (MAE)=1.14-1.16 dB(A)).

  5. An overview of Markov chain methods for the study of stage-sequential developmental processes.

    PubMed

    Kapland, David

    2008-03-01

    This article presents an overview of quantitative methodologies for the study of stage-sequential development based on extensions of Markov chain modeling. Four methods are presented that exemplify the flexibility of this approach: the manifest Markov model, the latent Markov model, latent transition analysis, and the mixture latent Markov model. A special case of the mixture latent Markov model, the so-called mover-stayer model, is used in this study. Unconditional and conditional models are estimated for the manifest Markov model and the latent Markov model, where the conditional models include a measure of poverty status. Issues of model specification, estimation, and testing using the Mplus software environment are briefly discussed, and the Mplus input syntax is provided. The author applies these 4 methods to a single example of stage-sequential development in reading competency in the early school years, using data from the Early Childhood Longitudinal Study--Kindergarten Cohort.

  6. Automated fine structure image analysis method for discrimination of diabetic retinopathy stage using conjunctival microvasculature images

    PubMed Central

    Khansari, Maziyar M; O’Neill, William; Penn, Richard; Chau, Felix; Blair, Norman P; Shahidi, Mahnaz

    2016-01-01

    The conjunctiva is a densely vascularized mucus membrane covering the sclera of the eye with a unique advantage of accessibility for direct visualization and non-invasive imaging. The purpose of this study is to apply an automated quantitative method for discrimination of different stages of diabetic retinopathy (DR) using conjunctival microvasculature images. Fine structural analysis of conjunctival microvasculature images was performed by ordinary least square regression and Fisher linear discriminant analysis. Conjunctival images between groups of non-diabetic and diabetic subjects at different stages of DR were discriminated. The automated method’s discriminate rates were higher than those determined by human observers. The method allowed sensitive and rapid discrimination by assessment of conjunctival microvasculature images and can be potentially useful for DR screening and monitoring. PMID:27446692

  7. Advanced Methods for Aircraft Engine Thrust and Noise Benefits: Nozzle-Inlet Flow Analysis

    NASA Technical Reports Server (NTRS)

    Morgan, Morris H.; Gilinsky, Mikhail M.

    2001-01-01

    Three connected sub-projects were conducted under reported project. Partially, these sub-projects are directed to solving the problems conducted by the HU/FM&AL under two other NASA grants. The fundamental idea uniting these projects is to use untraditional 3D corrugated nozzle designs and additional methods for exhaust jet noise reduction without essential thrust lost and even with thrust augmentation. Such additional approaches are: (1) to add some solid, fluid, or gas mass at discrete locations to the main supersonic gas stream to minimize the negative influence of strong shock waves forming in propulsion systems; this mass addition may be accompanied by heat addition to the main stream as a result of the fuel combustion or by cooling of this stream as a result of the liquid mass evaporation and boiling; (2) to use porous or permeable nozzles and additional shells at the nozzle exit for preliminary cooling of exhaust hot jet and pressure compensation for non-design conditions (so-called continuous ejector with small mass flow rate; and (3) to propose and analyze new effective methods fuel injection into flow stream in air-breathing engines. Note that all these problems were formulated based on detailed descriptions of the main experimental facts observed at NASA Glenn Research Center. Basically, the HU/FM&AL Team has been involved in joint research with the purpose of finding theoretical explanations for experimental facts and the creation of the accurate numerical simulation technique and prediction theory for solutions for current problems in propulsion systems solved by NASA and Navy agencies. The research is focused on a wide regime of problems in the propulsion field as well as in experimental testing and theoretical and numerical simulation analysis for advanced aircraft and rocket engines. The F&AL Team uses analytical methods, numerical simulations, and possible experimental tests at the Hampton University campus. We will present some management activity

  8. Quantitative assessment of the log-log-step method for pattern detection in noise-prone environments.

    PubMed

    Gomez, Florian; Stoop, Ruedi

    2011-01-01

    Staircase-like structures in the log-log correlation plot of a time series indicate patterns against a noisy background, even under condition of strong jitter. We analyze the method for different jitter-noise-combinations, using quantitative criteria to measure the achievement by the method. A phase diagram shows the remarkable potential of this method even under very unfavorable conditions of noise and jitter. Moreover, we provide a novel and compact analytical derivation of the upper and lower bounds on the number of steps observable in the ideal noiseless case, as a function of pattern length and embedding dimension. The quantitative measure developed combined with the ideal bounds can serve as guiding lines for determining potential periodicity in noisy data.

  9. One-stage process of chromoaluminizing of gas turbine blades by the method of circulation

    NASA Astrophysics Data System (ADS)

    Simonov, V. N.; Shkretov, Yu. P.; Unchikova, M. V.

    2009-09-01

    The conditions of simultaneous mass transfer of chromium and aluminum to the surface of high-temperature alloy subjected to one-stage chromoaluminizing are determined. It is shown that the quality of such refractory coatings can be improved. The methods preventing formation of oxide inclusions in the coatings are determined. Results of comparative high-temperature strength tests of specimens after circulation and powder chromoaluminizing are presented.

  10. Comparative Proteomic Analysis of Cotton Fiber Development and Protein Extraction Method Comparison in Late Stage Fibers

    PubMed Central

    Mujahid, Hana; Pendarvis, Ken; Reddy, Joseph S.; Nallamilli, Babi Ramesh Reddy; Reddy, K. R.; Nanduri, Bindu; Peng, Zhaohua

    2016-01-01

    The distinct stages of cotton fiber development and maturation serve as a single-celled model for studying the molecular mechanisms of plant cell elongation, cell wall development and cellulose biosynthesis. However, this model system of plant cell development is compromised for proteomic studies due to a lack of an efficient protein extraction method during the later stages of fiber development, because of a recalcitrant cell wall and the presence of abundant phenolic compounds. Here, we compared the quality and quantities of proteins extracted from 25 dpa (days post anthesis) fiber with multiple protein extraction methods and present a comprehensive quantitative proteomic study of fiber development from 10 dpa to 25 dpa. Comparative analysis using a label-free quantification method revealed 287 differentially-expressed proteins in the 10 dpa to 25 dpa fiber developmental period. Proteins involved in cell wall metabolism and regulation, cytoskeleton development and carbohydrate metabolism among other functional categories in four fiber developmental stages were identified. Our studies provide protocols for protein extraction from maturing fiber tissues for mass spectrometry analysis and expand knowledge of the proteomic profile of cotton fiber development. PMID:28248216

  11. Advanced Methods for Aircraft Engine Thrust and Noise Benefits: Nozzle-Inlet Flow Analysis

    NASA Technical Reports Server (NTRS)

    Gilinsky, Mikhail; Morgan, Morris H.; Hardin, Jay C.; Mosiane, Lotlamoreng; Kaushal, Patel; Blankson, Isaiah M.

    2000-01-01

    In this project, we continue to develop the previous joint research between the Fluid Mechanics and Acoustics Laboratory (FM&AL) at Hampton University (HU) and the Jet Noise Team (JNT) at the NASA Langley Research Center (NASA LaRC). The FM&AL was established at Hampton University in June of 1996 and has conducted research under two NASA grants: NAG-1-1835 (1996-99), and NAG-1-1936 (1997-00). In addition, the FM&AL has jointly conducted research with the Central AeroHydrodynamics Institute (TsAGI, Moscow) in Russia under a Civilian Research and Development Foundation (CRDF) grant #RE2-136 (1996-99). The goals of the FM&AL programs are twofold: (1) to improve the working efficiency of the FM&AUs team in generating new innovative ideas and in conducting research in the field of fluid dynamics and acoustics, basically for improvement of supersonic and subsonic aircraft engines, and (2) to attract promising minority students to this research and training and, in cooperation with other HU departments, to teach them basic knowledge in Aerodynamics, Gas Dynamics, and Theoretical and Experimental Methods in Aeroacoustics and Computational Fluid Dynamics (CFD). The research at the HU FM&AL supports reduction schemes associated with the emission of engine pollutants for commercial aircraft and concepts for reduction of observables for military aircraft. These research endeavors relate to the goals of the NASA Strategic Enterprise in Aeronautics concerning the development of environmentally acceptable aircraft. It is in this precise area, where the US aircraft industry, academia, and Government are in great need of trained professionals and which is a high priority goal of the Minority University Research and Education (MUREP) Program, that the HU FM&AL can make its most important contribution. The main achievements for the reporting period in the development of concepts for noise reduction and improvement in efficiency for jet exhaust nozzles and inlets for aircraft engines

  12. Pile noise experiment in MINERVE reactor to estimate kinetic parameters using various data processing methods

    SciTech Connect

    Geslot, Benoit; Gruel, Adrien; Pepino, Alexandra; Di Salvo, Jacques; Izarra, Gregoire de; Jammes, Christian; Destouches, Christophe; Blaise, Patrick

    2015-07-01

    MINERVE is a two-zone pool type zero power reactor operated by CEA (Cadarache, France). Kinetic parameters of the core (prompt neutron decay constant, delayed neutron fraction, generation time) have been recently measured using various pile noise experimental techniques, namely Feynman-α, Rossi-α and Cohn-α. Results are discussed and compared to each other's. The measurement campaign has been conducted in the framework of a tri-partite collaboration between CEA, SCK.CEN and PSI. Results presented in this paper were obtained thanks to a time-stamping acquisition system developed by CEA. PSI performed simultaneous measurements which are presented in a companion paper. Signals come from two high efficiency fission chambers located in the graphite reflector next to the core driver zone. Experiments were conducted at critical state with a reactor power of 0.2 W. The core integral fission rate is obtained from a calibrated miniature fission chamber located at the center of the core. Other results obtained in two sub-critical configurations will be presented elsewhere. Best estimate delayed neutron fraction comes from the Cohn-α method: 747 ± 15 pcm (1σ). In this case, the prompt decay constant is 79 ± 0.5 s{sup -1} and the generation time is 94.5 ± 0.7 μs. Other methods give consistent results within the confidence intervals. Experimental results are compared to calculated values obtained from a full 3D core modeling with the CEA-developed Monte Carlo code TRIPOLI4.9 associated with its continuous energy JEFF3.1.1-based library. A very good agreement is observed for the calculated delayed neutron fraction (748.7 ± 0.4 pcm at 1σ), that is a difference of -0.3% with the experiment. On the contrary, a 10% discrepancy is observed for the calculated generation time (104.4 ± 0.1 μs at 1σ). (authors)

  13. Efficient dynamic unstructured methods and applications for transonic flows and hypersonic stage separation

    NASA Astrophysics Data System (ADS)

    Luo, Xiaobing

    Relative-moving boundary problems have a wide variety of applications. They appear in staging during a launch process, store separation from a military aircraft, rotor-stator interaction in turbomachinery, and dynamic aeroelasticity. The dynamic unstructured technology (DUT) is potentially a strong approach to simulate unsteady flows around relative-moving bodies, by solving time-dependent governing equations. The dual-time stepping scheme is implemented to improve its efficiency while not compromising the accuracy of solutions. The validation of the implicit scheme is performed on a pitching NACA0012 airfoil and a rectangular wing with low reduced frequencies in transonic flows. All the matured accelerating techniques, including the implicit residual smoothing, the local time stepping, and the Full- Approximate-Scheme (FAS) multigrid method, are resorted once a dynamic problem is transformed into a series of ``static'' problems. Even with rather coarse Euler-type meshes, one order of CPU time savings is achieved without losing the accuracy of solutions in comparison to the popular Runge-Kutta scheme. More orders of CPU time savings are expected in real engineering applications where highly stretched viscous-type meshes are needed. The applicability of DUT is also extended from transonic/supersonic flows to hypersonic flows through special measures in spatial discretization to simulate the staging of a hypersonic vehicle. First, the simulations in Mach 5 and Mach 10 flights are performed on the longitudinal symmetry plane. A network of strong shocks and expansion waves are captured. A prescribed two-degrees-of-freedom motion is imposed on the booster and the adapter to mimic the staging. Then, a 3-D static Euler solver with an efficient edge- based data structure is modified for time-accurate flows. The overall history of aerodynamic interference during the staging in Mach 5 flight is obtained by an animation method, consisting of six static solutions along the

  14. Implementation of a method to visualize noise-induced hearing loss in mass stranded cetaceans.

    PubMed

    Morell, Maria; Brownlow, Andrew; McGovern, Barry; Raverty, Stephen A; Shadwick, Robert E; André, Michel

    2017-02-06

    Assessment of the impact of noise over-exposure in stranded cetaceans is challenging, as the lesions that lead to hearing loss occur at the cellular level and inner ear cells are very sensitive to autolysis. Distinguishing ante-mortem pathology from post-mortem change has been a major constraint in diagnosing potential impact. Here, we outline a methodology applicable to the detection of noise-induced hearing loss in stranded cetaceans. Inner ears from two mass strandings of long-finned pilot whales in Scotland were processed for scanning electron microscopy observation. In one case, a juvenile animal, whose ears were fixed within 4 hours of death, revealed that many sensory cells at the apex of the cochlear spiral were missing. In this case, the absence of outer hair cells would be compatible with overexposure to underwater noise, affecting the region which transduces the lowest frequencies of the pilot whales hearing spectrum. Perfusion of cochlea with fixative greatly improved preservation and enabled diagnostic imaging of the organ of Corti, even 30 hours after death. This finding supports adopting a routine protocol to detect the pathological legacy of noise overexposure in mass stranded cetaceans as a key to understanding the complex processes and implications that lie behind such stranding events.

  15. Implementation of a method to visualize noise-induced hearing loss in mass stranded cetaceans

    PubMed Central

    Morell, Maria; Brownlow, Andrew; McGovern, Barry; Raverty, Stephen A.; Shadwick, Robert E.; André, Michel

    2017-01-01

    Assessment of the impact of noise over-exposure in stranded cetaceans is challenging, as the lesions that lead to hearing loss occur at the cellular level and inner ear cells are very sensitive to autolysis. Distinguishing ante-mortem pathology from post-mortem change has been a major constraint in diagnosing potential impact. Here, we outline a methodology applicable to the detection of noise-induced hearing loss in stranded cetaceans. Inner ears from two mass strandings of long-finned pilot whales in Scotland were processed for scanning electron microscopy observation. In one case, a juvenile animal, whose ears were fixed within 4 hours of death, revealed that many sensory cells at the apex of the cochlear spiral were missing. In this case, the absence of outer hair cells would be compatible with overexposure to underwater noise, affecting the region which transduces the lowest frequencies of the pilot whales hearing spectrum. Perfusion of cochlea with fixative greatly improved preservation and enabled diagnostic imaging of the organ of Corti, even 30 hours after death. This finding supports adopting a routine protocol to detect the pathological legacy of noise overexposure in mass stranded cetaceans as a key to understanding the complex processes and implications that lie behind such stranding events. PMID:28165504

  16. A method for predicting static-to-flight effects on coaxial jet noise

    NASA Astrophysics Data System (ADS)

    Bryce, William D.; Chinoy, Cyrus B.

    2016-08-01

    Previously-published work has provided a theoretical modelling of the jet noise from coaxial nozzle configurations in the form of component sources which can each be quantified in terms of modified single-stream jets. This modelling has been refined and extended to cover a wide range of the operating conditions of aircraft turbofan engines with separate exhaust flows, encompassing area ratios from 0.8 to 4. The objective has been to establish a basis for predicting the static-to-flight changes in the coaxial jet noise by applying single-stream flight effects to each of the sources comprising the modelling of the coaxial jet noise under static conditions. Relatively few experimental test points are available for validation although these do cover the full extent of the jet conditions and area ratios considered. The experimental results are limited in their frequency range by practical considerations but the static-to-flight changes in the third-octave SPLs are predicted to within a standard deviation of 0.4 dB although the complex effects of jet refraction and convection cause the errors to increase at low flight emission angles to the jet axis. The modelling also provides useful insights into the mechanisms involved in the generation of coaxial jet noise and has facilitated the identification of inadequacies in the experimental simulation of flight effects.

  17. Experimental method for reactor-noise measurements of effective beta. [LMFBR

    SciTech Connect

    Bennett, E.F.

    1981-09-01

    A variance-to-mean noise technique, modified to eliminate systematic errors from drifting of reactor power, has been used to infer integral values of effective beta for uranium and plutonium fueled fast reactor modk-ups. The measurement technique, including corrections for a finite detector-electrometer time response, is described together with preliminary beta measurement results.

  18. Implementation of a method to visualize noise-induced hearing loss in mass stranded cetaceans

    NASA Astrophysics Data System (ADS)

    Morell, Maria; Brownlow, Andrew; McGovern, Barry; Raverty, Stephen A.; Shadwick, Robert E.; André, Michel

    2017-02-01

    Assessment of the impact of noise over-exposure in stranded cetaceans is challenging, as the lesions that lead to hearing loss occur at the cellular level and inner ear cells are very sensitive to autolysis. Distinguishing ante-mortem pathology from post-mortem change has been a major constraint in diagnosing potential impact. Here, we outline a methodology applicable to the detection of noise-induced hearing loss in stranded cetaceans. Inner ears from two mass strandings of long-finned pilot whales in Scotland were processed for scanning electron microscopy observation. In one case, a juvenile animal, whose ears were fixed within 4 hours of death, revealed that many sensory cells at the apex of the cochlear spiral were missing. In this case, the absence of outer hair cells would be compatible with overexposure to underwater noise, affecting the region which transduces the lowest frequencies of the pilot whales hearing spectrum. Perfusion of cochlea with fixative greatly improved preservation and enabled diagnostic imaging of the organ of Corti, even 30 hours after death. This finding supports adopting a routine protocol to detect the pathological legacy of noise overexposure in mass stranded cetaceans as a key to understanding the complex processes and implications that lie behind such stranding events.

  19. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI.

    PubMed

    Behzadi, Yashar; Restom, Khaled; Liau, Joy; Liu, Thomas T

    2007-08-01

    A component based method (CompCor) for the reduction of noise in both blood oxygenation level-dependent (BOLD) and perfusion-based functional magnetic resonance imaging (fMRI) data is presented. In the proposed method, significant principal components are derived from noise regions-of-interest (ROI) in which the time series data are unlikely to be modulated by neural activity. These components are then included as nuisance parameters within general linear models for BOLD and perfusion-based fMRI time series data. Two approaches for the determination of the noise ROI are considered. The first method uses high-resolution anatomical data to define a region of interest composed primarily of white matter and cerebrospinal fluid, while the second method defines a region based upon the temporal standard deviation of the time series data. With the application of CompCor, the temporal standard deviation of resting-state perfusion and BOLD data in gray matter regions was significantly reduced as compared to either no correction or the application of a previously described retrospective image based correction scheme (RETROICOR). For both functional perfusion and BOLD data, the application of CompCor significantly increased the number of activated voxels as compared to no correction. In addition, for functional BOLD data, there were significantly more activated voxels detected with CompCor as compared to RETROICOR. In comparison to RETROICOR, CompCor has the advantage of not requiring external monitoring of physiological fluctuations.

  20. Anti-noise algorithm of lidar data retrieval by combining the ensemble Kalman filter and the Fernald method.

    PubMed

    Mao, Feiyue; Gong, Wei; Li, Chen

    2013-04-08

    The lidar signal-to-noise ratio decreases rapidly with an increase in range, which severely affects the retrieval accuracy and the effective measure range of a lidar based on the Fernald method. To avoid this issue, an alternative approach is proposed to simultaneously retrieve lidar data accurately and obtain a de-noised signal as a by-product by combining the ensemble Kalman filter and the Fernald method. The dynamical model of the new algorithm is generated according to the lidar equation to forecast backscatter coefficients. In this paper, we use the ensemble sizes as 60 and the factor δ(1/2) as 1.2 after being weighed against the accuracy and the time cost based on the performance function we define. The retrieval and de-noising results of both simulated and real signals demonstrate that our method is practical and effective. An extensive application of our method can be useful for the long-term determining of the aerosol optical properties.

  1. A Fast Multiple Sampling Method for Low-Noise CMOS Image Sensors With Column-Parallel 12-bit SAR ADCs.

    PubMed

    Kim, Min-Kyu; Hong, Seong-Kwan; Kwon, Oh-Kyong

    2015-12-26

    This paper presents a fast multiple sampling method for low-noise CMOS image sensor (CIS) applications with column-parallel successive approximation register analog-to-digital converters (SAR ADCs). The 12-bit SAR ADC using the proposed multiple sampling method decreases the A/D conversion time by repeatedly converting a pixel output to 4-bit after the first 12-bit A/D conversion, reducing noise of the CIS by one over the square root of the number of samplings. The area of the 12-bit SAR ADC is reduced by using a 10-bit capacitor digital-to-analog converter (DAC) with four scaled reference voltages. In addition, a simple up/down counter-based digital processing logic is proposed to perform complex calculations for multiple sampling and digital correlated double sampling. To verify the proposed multiple sampling method, a 256 × 128 pixel array CIS with 12-bit SAR ADCs was fabricated using 0.18 μm CMOS process. The measurement results shows that the proposed multiple sampling method reduces each A/D conversion time from 1.2 μs to 0.45 μs and random noise from 848.3 μV to 270.4 μV, achieving a dynamic range of 68.1 dB and an SNR of 39.2 dB.

  2. Unsteady Fast Random Particle Mesh method for efficient prediction of tonal and broadband noises of a centrifugal fan unit

    NASA Astrophysics Data System (ADS)

    Heo, Seung; Cheong, Cheolung; Kim, Taehoon

    2015-09-01

    In this study, efficient numerical method is proposed for predicting tonal and broadband noises of a centrifugal fan unit. The proposed method is based on Hybrid Computational Aero-Acoustic (H-CAA) techniques combined with Unsteady Fast Random Particle Mesh (U-FRPM) method. The U-FRPM method is developed by extending the FRPM method proposed by Ewert et al. and is utilized to synthesize turbulence flow field from unsteady RANS solutions. The H-CAA technique combined with U-FRPM method is applied to predict broadband as well as tonal noises of a centrifugal fan unit in a household refrigerator. Firstly, unsteady flow field driven by a rotating fan is computed by solving the RANS equations with Computational Fluid Dynamic (CFD) techniques. Main source regions around the rotating fan are identified by examining the computed flow fields. Then, turbulence flow fields in the main source regions are synthesized by applying the U-FRPM method. The acoustic analogy is applied to model acoustic sources in the main source regions. Finally, the centrifugal fan noise is predicted by feeding the modeled acoustic sources into an acoustic solver based on the Boundary Element Method (BEM). The sound spectral levels predicted using the current numerical method show good agreements with the measured spectra at the Blade Pass Frequencies (BPFs) as well as in the high frequency range. On the more, the present method enables quantitative assessment of relative contributions of identified source regions to the sound field by comparing predicted sound pressure spectrum due to modeled sources.

  3. ARSyN: a method for the identification and removal of systematic noise in multifactorial time course microarray experiments.

    PubMed

    Nueda, Maria J; Ferrer, Alberto; Conesa, Ana

    2012-07-01

    Transcriptomic profiling experiments that aim to the identification of responsive genes in specific biological conditions are commonly set up under defined experimental designs that try to assess the effects of factors and their interactions on gene expression. Data from these controlled experiments, however, may also contain sources of unwanted noise that can distort the signal under study, affect the residuals of applied statistical models, and hamper data analysis. Commonly, normalization methods are applied to transcriptomics data to remove technical artifacts, but these are normally based on general assumptions of transcript distribution and greatly ignore both the characteristics of the experiment under consideration and the coordinative nature of gene expression. In this paper, we propose a novel methodology, ARSyN, for the preprocessing of microarray data that takes into account these 2 last aspects. By combining analysis of variance (ANOVA) modeling of gene expression values and multivariate analysis of estimated effects, the method identifies the nonstructured part of the signal associated to the experimental factors (the noise within the signal) and the structured variation of the ANOVA errors (the signal of the noise). By removing these noise fractions from the original data, we create a filtered data set that is rich in the information of interest and includes only the random noise required for inferential analysis. In this work, we focus on multifactorial time course microarray (MTCM) experiments with 2 factors: one quantitative such as time or dosage and the other qualitative, as tissue, strain, or treatment. However, the method can be used in other situations such as experiments with only one factor or more complex designs with more than 2 factors. The filtered data obtained after applying ARSyN can be further analyzed with the appropriate statistical technique to obtain the biological information required. To evaluate the performance of the

  4. A prediction method for separating and quantifying noise contributions from casings and other plate like components in complex machines

    NASA Astrophysics Data System (ADS)

    Nejade, A.

    2012-11-01

    In the context of noise source identification in machines, sound intensity, pressure or velocity distributions on a plane in space are commonly provided by intensity or holography maps. These maps, however, are not capable of separating the sources that are located on different planes, e.g. machines' radiating casings versus internal noise sources. The method discussed in this paper has been developed to analyze such situations. It consists of multiple partially coherent inputs-single output modeling to predict the radiations generated by machine casings or other plate like components. A parallel analysis with intensity will then enable to separate the casing or plate contribution from those of the internal sources. The application of this technique must, however, be accompanied by tools that allow to check its validity. Several of such tools are suggested. The method applications and validity checks have been discussed for a grinder wheel guard and a panel saw's blade casing.

  5. Analysis of stress states in compression stage of high pressure torsion using slab analysis method and finite element method

    NASA Astrophysics Data System (ADS)

    Wang, Wenke; Song, Yuepeng; Gao, Dongsheng; Yoon, Eun Yoo; Lee, Dong Jun; Lee, Chong Soo; Kim, Hyoung Seop

    2013-09-01

    High pressure torsion (HPT) is useful for achieving substantial grain refinement to ultrafine grained/nanocrystalline states in bulk metallic solids. Most publications that analyzed the HPT process used experimental and numerical simulation approaches, whereas theoretical stress analyses for the HPT process are rare. Because of the key role of compression stage for the deformation of HPT, this paper aims to conduct a theoretical analysis and to establish a practical formula for stress and forming parameters of HPT process using the slab analysis method. Three equations were obtained via equations derivation to describe the normal stress states corresponding to the three zones of plastic deformation for HPT process as stick zone, drag zone and slip zone. As to the compression stage of HPT, the stress distribution results using the finite element method agree well with those using the slab analysis method. There are drag and stick zones on the contact surface of the HPT sample, as verified by the finite element method (FEM) and slab analysis method.

  6. Hybrid Analysis of Engine Core Noise

    NASA Astrophysics Data System (ADS)

    O'Brien, Jeffrey; Kim, Jeonglae; Ihme, Matthias

    2015-11-01

    Core noise, or the noise generated within an aircraft engine, is becoming an increasing concern for the aviation industry as other noise sources are progressively reduced. The prediction of core noise generation and propagation is especially challenging for computationalists since it involves extensive multiphysics including chemical reaction and moving blades in addition to the aerothermochemical effects of heated jets. In this work, a representative engine flow path is constructed using experimentally verified geometries to simulate the physics of core noise. A combustor, single-stage turbine, nozzle and jet are modeled in separate calculations using appropriate high fidelity techniques including LES, actuator disk theory and Ffowcs-Williams Hawkings surfaces. A one way coupling procedure is developed for passing fluctuations downstream through the flowpath. This method effectively isolates the core noise from other acoustic sources, enables straightforward study of the interaction between core noise and jet exhaust, and allows for simple distinction between direct and indirect noise. The impact of core noise on the farfield jet acoustics is studied extensively and the relative efficiency of different disturbance types and shapes is examined in detail.

  7. Handbook of noise ratings

    NASA Technical Reports Server (NTRS)

    Pearsons, K. S.; Bennett, R. L.

    1974-01-01

    The handbook was compiled to provide information in a concise form, describing the multitude of noise rating schemes. It is hoped that by describing the noise rating methods in a single volume the user will have better access to the definitions, application and calculation procedures of the current noise rating methods.

  8. Classification methods for noise transients in advanced gravitational-wave detectors II: performance tests on Advanced LIGO data

    NASA Astrophysics Data System (ADS)

    Powell, Jade; Torres-Forné, Alejandro; Lynch, Ryan; Trifirò, Daniele; Cuoco, Elena; Cavaglià, Marco; Heng, Ik Siong; Font, José A.

    2017-02-01

    The data taken by the advanced LIGO and Virgo gravitational-wave detectors contains short duration noise transients that limit the significance of astrophysical detections and reduce the duty cycle of the instruments. As the advanced detectors are reaching sensitivity levels that allow for multiple detections of astrophysical gravitational-wave sources it is crucial to achieve a fast and accurate characterization of non-astrophysical transient noise shortly after it occurs in the detectors. Previously we presented three methods for the classification of transient noise sources. They are Principal Component Analysis for Transients (PCAT), Principal Component LALInference Burst (PC-LIB) and Wavelet Detection Filter with Machine Learning (WDF-ML). In this study we carry out the first performance tests of these algorithms on gravitational-wave data from the Advanced LIGO detectors. We use the data taken between the 3rd of June 2015 and the 14th of June 2015 during the 7th engineering run (ER7), and outline the improvements made to increase the performance and lower the latency of the algorithms on real data. This work provides an important test for understanding the performance of these methods on real, non stationary data in preparation for the second advanced gravitational-wave detector observation run, planned for later this year. We show that all methods can classify transients in non stationary data with a high level of accuracy and show the benefits of using multiple classifiers.

  9. Method of flicker-noise spectroscopy of cosmic ray muon flux variations caused by non-stationary processes

    NASA Astrophysics Data System (ADS)

    Borog, V. V.; Dmitrieva, A. N.; Kovylyaeva, A. A.

    2017-01-01

    A new method of identifying signals in a statistically noisy non-stationary time series is presented. Unlike in the Fourier and wavelet analyses, in the processing of data no assumptions about the structure of analyzed signal is made. The proposed method of flicker-noise spectroscopy is illustrated with a real time series related to monitoring of solar and cosmic radiation during GLE#72 event using ground-level muon hodoscope. The method is applicable for the analysis of a wide range of various helio- and geophysical processes.

  10. Aerodynamic Optimization Design of Multi-stage Turbine Using the Continuous Adjoint Method

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Chen, Jiang

    2015-05-01

    This paper develops a continuous adjoint formulation for the aerodynamic shape design of a turbine in a multi-stage environment based on S2 surface governed by the Euler equations with source terms. First, given the general expression of the objective function, the adjoint equations and their boundary conditions are derived by introducing the adjoint variable vectors. Then, the final expression of the objective function gradient only includes the terms pertinent to the physical shape variations. The adjoint system is solved numerically by a finite-difference method with the Jameson spatial scheme employing first and third order dissipative flux and the time-marching is conducted by Runge-Kutta time method. Integrating the blade stagger angles, stacking lines and passage perturbation parameterization with the Quasi-Newton method of BFGS, a gradient-based aerodynamic optimization design system is constructed. Finally, the application of the adjoint method is validated through the blade and passage optimization of a 2-stage turbine with an objective function of entropy generation. The efficiency increased by 0.37% with the deviations of the mass flow rate and the pressure ratio within 1% via the optimization, which demonstrates the capability of the gradient-based system for turbine aerodynamic design.

  11. Methods for assessment of innovative medical technologies during early stages of development.

    PubMed

    Bartelmes, Marc; Neumann, Ulrike; Lühmann, Dagmar; Schönermark, Matthias P; Hagen, Anja

    2009-11-05

    Conventional Health Technology Assessment (HTA) is usually conducted at a point in time at which the development of the respective technology may no longer be influenced. By this time developers and/or purchasers may have misinvested resources. Thus the demand for Technology Assessment (TA) which incorporates appropriate methods during early development stages of a technology becomes apparent. Against this health political background, the present report describes methods for a development-accompanying assessment of innovative medical technologies. Furthermore, international research programmes set out to identify or apply such methods will be outlined. A systematic literature search as well as an extensive manual literature search are carried out in order to obtain literature and information. The greatest units of the identified methods consist of assessment concepts, decision support methods, modelling approaches and methods focusing on users and their knowledge. Additionally, several general-purpose concepts have been identified. The identified research programmes INNO-HTA and MATCH (Multidisciplinary-Assessment-of-Technology-Centre-for-Healthcare) are to be seen as pilot projects which so far have not been able to generate final results. MATCH focuses almost entirely on the incorporation of the user-perspective regarding the development of non-pharmaceutical technologies, whereas INNO-HTA is basically concerned with the identification and possible advancement of methods for the early, socially-oriented technology assessment. Most references offer only very vague descriptions of the respective method and the application of greatly differing methods seldom exceeds the character of a pilot implementation. A standardisation much less an institutionalisation of development-accompanying assessment cannot be recognized. It must be noted that there is no singular method with which development-accompanying assessment should be carried out. Instead, a technology and

  12. Coupled mutation finder: A new entropy-based method quantifying phylogenetic noise for the detection of compensatory mutations

    PubMed Central

    2012-01-01

    Background The detection of significant compensatory mutation signals in multiple sequence alignments (MSAs) is often complicated by noise. A challenging problem in bioinformatics is remains the separation of significant signals between two or more non-conserved residue sites from the phylogenetic noise and unrelated pair signals. Determination of these non-conserved residue sites is as important as the recognition of strictly conserved positions for understanding of the structural basis of protein functions and identification of functionally important residue regions. In this study, we developed a new method, the Coupled Mutation Finder (CMF) quantifying the phylogenetic noise for the detection of compensatory mutations. Results To demonstrate the effectiveness of this method, we analyzed essential sites of two human proteins: epidermal growth factor receptor (EGFR) and glucokinase (GCK). Our results suggest that the CMF is able to separate significant compensatory mutation signals from the phylogenetic noise and unrelated pair signals. The vast majority of compensatory mutation sites found by the CMF are related to essential sites of both proteins and they are likely to affect protein stability or functionality. Conclusions The CMF is a new method, which includes an MSA-specific statistical model based on multiple testing procedures that quantify the error made in terms of the false discovery rate and a novel entropy-based metric to upscale BLOSUM62 dissimilar compensatory mutations. Therefore, it is a helpful tool to predict and investigate compensatory mutation sites of structural or functional importance in proteins. We suggest that the CMF could be used as a novel automated function prediction tool that is required for a better understanding of the structural basis of proteins. The CMF server is freely accessible at http://cmf.bioinf.med.uni-goettingen.de. PMID:22963049

  13. A numerical method based on transfer function for removing the noise of water vapor from terahertz spectra

    NASA Astrophysics Data System (ADS)

    Huang, Yu; Zhang, Zheng; Jin, Chen; Xie, Yijun; Wang, Wenai; Sun, Ping

    2016-10-01

    The water vapor noise will affect the accuracy of the extracted optical parameters based on terahertz time domain spectroscopy technology. Because vapor noise has the characteristics of wide distribution and high intensity, the existing denoising methods cannot be effectively applied to the THz signal with vapor noise. In this paper, a numerical denoising method is presented. First, based on Van Vleck-Weisskopf lineshape function and the linear absorption spectrum of water molecules in the HITRAN database, we have simulated the water vapor absorption spectrum with line width, and the continuum effect of water vapor molecules are considered in the simulation. Then, the transfer function of different humidity is constructed by the calculation of the water vapor absorption coefficient and the real refractive index; Finally, based on the propagation factor formula of the mutual effects of THz wave and water vapor, the THz signal of the Lacidipine sample containing vapor noise in the continuous frequency domain of 0.3-1.8THz is denoised by using the constructed transfer function of the water vapor; the optical parameters of the sample signal before and after denoising can be extracted. It can be seen that the optical parameters extracted from the denoised signal are close to the optical parameters in the nitrogen environment, which proves the effectiveness of denoising. Under low humidity, this method can still accurately extract the optical parameters of samples without nitrogen filling, which saves the cost, enhances the convenience of the application of terahertz time domain spectroscopy in pharmaceutical production, safety inspection, imaging etc.

  14. Identifying P-phase arrivals with noise: An improved Kurtosis method based on DWT and STA/LTA

    NASA Astrophysics Data System (ADS)

    Li, Xibing; Shang, Xueyi; Wang, Zewei; Dong, Longjun; Weng, Lei

    2016-10-01

    A discrete wavelet transform (DWT) and short time average to long time average (STA/LTA)-based Kurtosis algorithm (W-S/L-K method) is proposed to pick the arrival time of the P-phase; this method advantageously combines the outstanding ability of retrieving the P-phase arrival information from wavelet coefficients at high resolutions with inherent reliability in obtaining the P-phase arrival time using the STA/LTA picking method. The W-S/L-K method uses local maximum amplitudes and local kurtosis onsets from the wavelet detail components to determine the P-phase arrival times reliably and accurately. It was tested and verified using microseismic data collected from the Yongshaba mine. The results show that the W-S/L-K method's rates of picking errors smaller than 5 ms, 10 ms, and 15 ms were 58%, 86%, and 97.5%, respectively, and the W-S/L-K method was able to pick higher quality P-phase arrival times than those determined using the Kurtosis, Skewness, STA/LTA, Kurtosis + STA/LTA, and Skewness + STA/LTA methods. The proposed method provides a reliable technique for accurately picking P-phase arrival times, especially for signals with low signal to noise ratios (SNRs), heavy tails, and spikes. Moreover, it is able to detect pure noise.

  15. A method for improving the signal-to-noise ratio in IUE high-dispersion spectra

    NASA Technical Reports Server (NTRS)

    Welty, Daniel E.

    1988-01-01

    The flat-fielding technique was used to reduce fixed pattern noise in high dispersion IUE spectra, producing improvements in S/N of typically 40 percent compared with un-flat-fielded summed spectra. Weak spectral features may be more reliably identified. Such improvements are noted for specially obtained multiply-exposed images and for singly-exposed images taken from the IUE archives. However it is unclear if the technique is usable or as effective for all spectra.

  16. Method and Apparatus for Reducing Noise from Near Ocean Surface Sources

    DTIC Science & Technology

    2001-10-01

    reducing the acoustic noise from near-surface 4 sources using an array processing technique that utilizes 5 Multiple Signal Classification ( MUSIC ...sources without 13 degrading the signal level and quality of the TOI. The present 14 invention utilizes a unique application of the MUSIC beamforming...specific algorithm that utilizes a 5 MUSIC technique and estimates the direction of arrival (DOA) of 6 the acoustic signal signals and generates output

  17. Aeroelastic Computations of a Compressor Stage Using the Harmonic Balance Method

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.

    2010-01-01

    The aeroelastic characteristics of a compressor stage were analyzed using a computational fluid dynamic (CFD) solver that uses the harmonic balance method to solve the governing equations. The three dimensional solver models the unsteady flow field due to blade vibration using the Reynolds-Averaged Navier-Stokes equations. The formulation enables the study of the effect of blade row interaction through the inclusion of coupling modes between blade rows. It also enables the study of nonlinear effects of high amplitude blade vibration by the inclusion of higher harmonics of the fundamental blade vibration frequency. In the present work, the solver is applied to study in detail the aeroelastic characteristics of a transonic compressor stage. Various parameters were included in the study: number of coupling modes, blade row axial spacing, and operating speeds. Only the first vibration mode is considered with amplitude of oscillation in the linear range. Both aeroelastic stability (flutter) of rotor blade and unsteady loading on the stator are calculated. The study showed that for the stage considered, the rotor aerodynamic damping is not influenced by the presence of the stator even when the axial spacing is reduced by nearly 25 percent. However, the study showed that blade row interaction effects become important for the unsteady loading on the stator when the axial spacing is reduced by the same amount.

  18. Numerical solution of first order initial value problem using 7-stage tenth order Gauss-Kronrod-Lobatto IIIA method

    NASA Astrophysics Data System (ADS)

    Ying, Teh Yuan; Yaacob, Nazeeruddin

    2013-04-01

    In this paper, a new implicit Runge-Kutta method which based on a 7-point Gauss-Kronrod-Lobatto quadrature formula is developed. The resulting implicit method is a 7-stage tenth order Gauss-Kronrod-Lobatto IIIA method, or in brief as GKLM(7,10)-IIIA. GKLM(7,10)-IIIA requires seven function of evaluations at each integration step and it gives accuracy of order ten. In addition, GKLM(7,10)-IIIA has stage order seven and being A-stable. Numerical experiments compare the accuracy between GKLM(7,10)-IIIA and the classical 5-stage tenth order Gauss-Legendre method in solving some test problems. Numerical results reveal that GKLM(7,10)-IIIA is more accurate than the 5-stage tenth order Gauss-Legendre method because GKLM(7,10)-IIIA has higher stage order.

  19. Numerical solution of first order initial value problem using 4-stage sixth order Gauss-Kronrod-Radau IIA method

    NASA Astrophysics Data System (ADS)

    Ying, Teh Yuan; Yaacob, Nazeeruddin

    2013-04-01

    In this paper, a new implicit Runge-Kutta method which based on a 4-point Gauss-Kronrod-Radau II quadrature formula is developed. The resulting implicit method is a 4-stage sixth order Gauss-Kronrod-Radau IIA method, or in brief as GKRM(4,6)-IIA. GKRM(4,6)-IIA requires four function of evaluations at each integration step and it gives accuracy of order six. In addition, GKRM(4,6)-IIA has stage order four and being L-stable. Numerical experiments compare the accuracy between GKRM(4,6)-IIA and the classical 3-stage sixth order Gauss-Legendre method in solving some test problems. Numerical results reveal that GKRM(4,6)-IIA is more accurate than the 3-stage sixth order Gauss-Legendre method because GKRM(4,6)-IIA has higher stage order.

  20. Advanced Methods for Aircraft Engine Thrust and Noise Benefits: Nozzle-Inlet Flow Analysis

    NASA Technical Reports Server (NTRS)

    Gilinsky, Mikhail; Morgan, Morris H.; Povitsky, Alex; Schkolnikov, Natalia; Njoroge, Norman; Coston, Calvin; Blankson, Isaiah M.

    2001-01-01

    The Fluid Mechanics and Acoustics Laboratory at Hampton University (HU/FM&AL) jointly with the NASA Glenn Research Center has conducted four connected subprojects under the reporting project. Basically, the HU/FM&AL Team has been involved in joint research with the purpose of theoretical explanation of experimental facts and creation of accurate numerical simulation techniques and prediction theory for solution of current problems in propulsion systems of interest to the NAVY and NASA agencies. This work is also supported by joint research between the NASA GRC and the Institute of Mechanics at Moscow State University (IM/MSU) in Russia under a CRDF grant. The research is focused on a wide regime of problems in the propulsion field as well as in experimental testing and theoretical and numerical simulation analyses for advanced aircraft and rocket engines. The FM&AL Team uses analytical methods, numerical simulations and possible experimental tests at the Hampton University campus. The fundamental idea uniting these subprojects is to use nontraditional 3D corrugated and composite nozzle and inlet designs and additional methods for exhaust jet noise reduction without essential thrust loss and even with thrust augmentation. These subprojects are: (1) Aeroperformance and acoustics of Bluebell-shaped and Telescope-shaped designs; (2) An analysis of sharp-edged nozzle exit designs for effective fuel injection into the flow stream in air-breathing engines: triangular-round, diamond-round and other nozzles; (3) Measurement technique improvement for the HU Low Speed Wind Tunnel; a new course in the field of aerodynamics, teaching and training of HU students; experimental tests of Mobius-shaped screws: research and training; (4) Supersonic inlet shape optimization. The main outcomes during this reporting period are: (l) Publications: The AIAA Paper #00-3170 was presented at the 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 17-19 June, 2000, Huntsville, AL. The AIAA

  1. Two-stage method of estimation for general linear growth curve models.

    PubMed

    Stukel, T A; Demidenko, E

    1997-06-01

    We extend the linear random-effects growth curve model (REGCM) (Laird and Ware, 1982, Biometrics 38, 963-974) to study the effects of population covariates on one or more characteristics of the growth curve when the characteristics are expressed as linear combinations of the growth curve parameters. This definition includes the actual growth curve parameters (the usual model) or any subset of these parameters. Such an analysis would be cumbersome using standard growth curve methods because it would require reparameterization of the original growth curve. We implement a two-stage method of estimation based on the two-stage growth curve model used to describe the response. The resulting generalized least squares (GLS) estimator for the population parameters is consistent, asymptotically efficient, and multivariate normal when the number of individuals is large. It is also robust to model misspecification in terms of bias and efficiency of the parameter estimates compared to maximum likelihood with the usual REGCM. We apply the method to a study of factors affecting the growth rate of salmonellae in a cubic growth model, a characteristic that cannot be analyzed easily using standard techniques.

  2. Cochlear implant optimized noise reduction.

    PubMed

    Mauger, Stefan J; Arora, Komal; Dawson, Pam W

    2012-12-01

    Noise-reduction methods have provided significant improvements in speech perception for cochlear implant recipients, where only quality improvements have been found in hearing aid recipients. Recent psychoacoustic studies have suggested changes to noise-reduction techniques specifically for cochlear implants, due to differences between hearing aid recipient and cochlear implant recipient hearing. An optimized noise-reduction method was developed with significantly increased temporal smoothing of the signal-to-noise ratio estimate and a more aggressive gain function compared to current noise-reduction methods. This optimized noise-reduction algorithm was tested with 12 cochlear implant recipients over four test sessions. Speech perception was assessed through speech in noise tests with three noise types; speech-weighted noise, 20-talker babble and 4-talker babble. A significant speech perception improvement using optimized noise reduction over standard processing was found in babble noise and speech-weighted noise and over a current noise-reduction method in speech-weighted noise. Speech perception in quiet was not degraded. Listening quality testing for noise annoyance and overall preference found significant improvements over the standard processing and over a current noise-reduction method in speech-weighted and babble noise types. This optimized method has shown significant speech perception and quality improvements compared to the standard processing and a current noise-reduction method.

  3. Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration--method and clinical examples.

    PubMed

    Jørgensen, Thomas Martini; Thomadsen, Jakob; Christensen, Ulrik; Soliman, Wael; Sander, Birgit

    2007-01-01

    Optical coherence tomography (OCT) has already proven an important clinical tool for imaging and diagnosing retinal diseases. Concerning the standard commercial ophthalmic OCT systems, speckle noise is a limiting factor with respect to resolving relevant retinal features. We demonstrate successful suppression of speckle noise from mutually aligning a series of in vivo OCT recordings obtained from the same retinal target using the Stratus system from Humphrey-Zeiss. Our registration technique is able to account for the axial movements experienced during recording as well as small transverse movements of the scan line from one scan to the next. The algorithm is based on a regularized shortest path formulation for a directed graph on a map formed by interimage (B-scan) correlations. The resulting image enhancement typically increases the contrast-to-noise ratio (CNR) with a factor of three or more and facilitates segmentation and quantitative characterization of pathologies. The method is currently successfully being applied by medical doctors in a number of specific retinal case studies.

  4. Systems and methods for cylindrical hall thrusters with independently controllable ionization and acceleration stages

    DOEpatents

    Diamant, Kevin David; Raitses, Yevgeny; Fisch, Nathaniel Joseph

    2014-05-13

    Systems and methods may be provided for cylindrical Hall thrusters with independently controllable ionization and acceleration stages. The systems and methods may include a cylindrical channel having a center axial direction, a gas inlet for directing ionizable gas to an ionization section of the cylindrical channel, an ionization device that ionizes at least a portion of the ionizable gas within the ionization section to generate ionized gas, and an acceleration device distinct from the ionization device. The acceleration device may provide an axial electric field for an acceleration section of the cylindrical channel to accelerate the ionized gas through the acceleration section, where the axial electric field has an axial direction in relation to the center axial direction. The ionization section and the acceleration section of the cylindrical channel may be substantially non-overlapping.

  5. A two-stage method for microcalcification cluster segmentation in mammography by deformable models

    SciTech Connect

    Arikidis, N.; Kazantzi, A.; Skiadopoulos, S.; Karahaliou, A.; Costaridou, L.; Vassiou, K.

    2015-10-15

    Purpose: Segmentation of microcalcification (MC) clusters in x-ray mammography is a difficult task for radiologists. Accurate segmentation is prerequisite for quantitative image analysis of MC clusters and subsequent feature extraction and classification in computer-aided diagnosis schemes. Methods: In this study, a two-stage semiautomated segmentation method of MC clusters is investigated. The first stage is targeted to accurate and time efficient segmentation of the majority of the particles of a MC cluster, by means of a level set method. The second stage is targeted to shape refinement of selected individual MCs, by means of an active contour model. Both methods are applied in the framework of a rich scale-space representation, provided by the wavelet transform at integer scales. Segmentation reliability of the proposed method in terms of inter and intraobserver agreements was evaluated in a case sample of 80 MC clusters originating from the digital database for screening mammography, corresponding to 4 morphology types (punctate: 22, fine linear branching: 16, pleomorphic: 18, and amorphous: 24) of MC clusters, assessing radiologists’ segmentations quantitatively by two distance metrics (Hausdorff distance—HDIST{sub cluster}, average of minimum distance—AMINDIST{sub cluster}) and the area overlap measure (AOM{sub cluster}). The effect of the proposed segmentation method on MC cluster characterization accuracy was evaluated in a case sample of 162 pleomorphic MC clusters (72 malignant and 90 benign). Ten MC cluster features, targeted to capture morphologic properties of individual MCs in a cluster (area, major length, perimeter, compactness, and spread), were extracted and a correlation-based feature selection method yielded a feature subset to feed in a support vector machine classifier. Classification performance of the MC cluster features was estimated by means of the area under receiver operating characteristic curve (Az ± Standard Error) utilizing

  6. A method of estimating conceptus doses resulting from multidetector CT examinations during all stages of gestation

    SciTech Connect

    Damilakis, John; Tzedakis, Antonis; Perisinakis, Kostas; Papadakis, Antonios E.

    2010-12-15

    Purpose: Current methods for the estimation of conceptus dose from multidetector CT (MDCT) examinations performed on the mother provide dose data for typical protocols with a fixed scan length. However, modified low-dose imaging protocols are frequently used during pregnancy. The purpose of the current study was to develop a method for the estimation of conceptus dose from any MDCT examination of the trunk performed during all stages of gestation. Methods: The Monte Carlo N-Particle (MCNP) radiation transport code was employed in this study to model the Siemens Sensation 16 and Sensation 64 MDCT scanners. Four mathematical phantoms were used, simulating women at 0, 3, 6, and 9 months of gestation. The contribution to the conceptus dose from single simulated scans was obtained at various positions across the phantoms. To investigate the effect of maternal body size and conceptus depth on conceptus dose, phantoms of different sizes were produced by adding layers of adipose tissue around the trunk of the mathematical phantoms. To verify MCNP results, conceptus dose measurements were carried out by means of three physical anthropomorphic phantoms, simulating pregnancy at 0, 3, and 6 months of gestation and thermoluminescence dosimetry (TLD) crystals. Results: The results consist of Monte Carlo-generated normalized conceptus dose coefficients for single scans across the four mathematical phantoms. These coefficients were defined as the conceptus dose contribution from a single scan divided by the CTDI free-in-air measured with identical scanning parameters. Data have been produced to take into account the effect of maternal body size and conceptus position variations on conceptus dose. Conceptus doses measured with TLD crystals showed a difference of up to 19% compared to those estimated by mathematical simulations. Conclusions: Estimation of conceptus doses from MDCT examinations of the trunk performed on pregnant patients during all stages of gestation can be made

  7. A Noise Reduction Method for Dual-Mass Micro-Electromechanical Gyroscopes Based on Sample Entropy Empirical Mode Decomposition and Time-Frequency Peak Filtering.

    PubMed

    Shen, Chong; Li, Jie; Zhang, Xiaoming; Shi, Yunbo; Tang, Jun; Cao, Huiliang; Liu, Jun

    2016-05-31

    The different noise components in a dual-mass micro-electromechanical system (MEMS) gyroscope structure is analyzed in this paper, including mechanical-thermal noise (MTN), electronic-thermal noise (ETN), flicker noise (FN) and Coriolis signal in-phase noise (IPN). The structure equivalent electronic model is established, and an improved white Gaussian noise reduction method for dual-mass MEMS gyroscopes is proposed which is based on sample entropy empirical mode decomposition (SEEMD) and time-frequency peak filtering (TFPF). There is a contradiction in TFPS, i.e., selecting a short window length may lead to good preservation of signal amplitude but bad random noise reduction, whereas selecting a long window length may lead to serious attenuation of the signal amplitude but effective random noise reduction. In order to achieve a good tradeoff between valid signal amplitude preservation and random noise reduction, SEEMD is adopted to improve TFPF. Firstly, the original signal is decomposed into intrinsic mode functions (IMFs) by EMD, and the SE of each IMF is calculated in order to classify the numerous IMFs into three different components; then short window TFPF is employed for low frequency component of IMFs, and long window TFPF is employed for high frequency component of IMFs, and the noise component of IMFs is wiped off directly; at last the final signal is obtained after reconstruction. Rotation experimental and temperature experimental are carried out to verify the proposed SEEMD-TFPF algorithm, the verification and comparison results show that the de-noising performance of SEEMD-TFPF is better than that achievable with the traditional wavelet, Kalman filter and fixed window length TFPF methods.

  8. A Noise Reduction Method for Dual-Mass Micro-Electromechanical Gyroscopes Based on Sample Entropy Empirical Mode Decomposition and Time-Frequency Peak Filtering

    PubMed Central

    Shen, Chong; Li, Jie; Zhang, Xiaoming; Shi, Yunbo; Tang, Jun; Cao, Huiliang; Liu, Jun

    2016-01-01

    The different noise components in a dual-mass micro-electromechanical system (MEMS) gyroscope structure is analyzed in this paper, including mechanical-thermal noise (MTN), electronic-thermal noise (ETN), flicker noise (FN) and Coriolis signal in-phase noise (IPN). The structure equivalent electronic model is established, and an improved white Gaussian noise reduction method for dual-mass MEMS gyroscopes is proposed which is based on sample entropy empirical mode decomposition (SEEMD) and time-frequency peak filtering (TFPF). There is a contradiction in TFPS, i.e., selecting a short window length may lead to good preservation of signal amplitude but bad random noise reduction, whereas selecting a long window length may lead to serious attenuation of the signal amplitude but effective random noise reduction. In order to achieve a good tradeoff between valid signal amplitude preservation and random noise reduction, SEEMD is adopted to improve TFPF. Firstly, the original signal is decomposed into intrinsic mode functions (IMFs) by EMD, and the SE of each IMF is calculated in order to classify the numerous IMFs into three different components; then short window TFPF is employed for low frequency component of IMFs, and long window TFPF is employed for high frequency component of IMFs, and the noise component of IMFs is wiped off directly; at last the final signal is obtained after reconstruction. Rotation experimental and temperature experimental are carried out to verify the proposed SEEMD-TFPF algorithm, the verification and comparison results show that the de-noising performance of SEEMD-TFPF is better than that achievable with the traditional wavelet, Kalman filter and fixed window length TFPF methods. PMID:27258276

  9. [Fractal dimension and histogram method: algorithm and some preliminary results of noise-like time series analysis].

    PubMed

    Pancheliuga, V A; Pancheliuga, M S

    2013-01-01

    In the present work a methodological background for the histogram method of time series analysis is developed. Connection between shapes of smoothed histograms constructed on the basis of short segments of time series of fluctuations and the fractal dimension of the segments is studied. It is shown that the fractal dimension possesses all main properties of the histogram method. Based on it a further development of fractal dimension determination algorithm is proposed. This algorithm allows more precision determination of the fractal dimension by using the "all possible combination" method. The application of the method to noise-like time series analysis leads to results, which could be obtained earlier only by means of the histogram method based on human expert comparisons of histograms shapes.

  10. Development of a Transient Acoustic Boundary Element Method to Predict the Noise Signature of Swimming Fish

    NASA Astrophysics Data System (ADS)

    Wagenhoffer, Nathan; Moored, Keith; Jaworski, Justin

    2015-11-01

    Animals have evolved flexible wings and fins to efficiently and quietly propel themselves through the air and water. The design of quiet and efficient bio-inspired propulsive concepts requires a rapid, unified computational framework that integrates three essential features: the fluid mechanics, the elastic structural response, and the noise generation. This study focuses on the development, validation, and demonstration of a transient, two-dimensional acoustic boundary element solver accelerated by a fast multipole algorithm. The resulting acoustic solver is used to characterize the acoustic signature produced by a vortex street advecting over a NACA 0012 airfoil, which is representative of vortex-body interactions that occur in schools of swimming fish. Both 2S and 2P canonical vortex streets generated by fish are investigated over the range of Strouhal number 0 . 2 < St < 0 . 4 , and the acoustic signature of the airfoil is quantified. This study provides the first estimate of the noise signature of a school of swimming fish. Lehigh University CORE Grant.

  11. Noise Emission from Laboratory Air Blowers

    ERIC Educational Resources Information Center

    Rossing, Thomas D.; Windham, Betty

    1978-01-01

    Product noise ratings for a number of laboratory air blowers are reported and several recommendations for reducing laboratory noise from air blowers are given. Relevant noise ratings and methods for measuring noise emission of appliances are discussed. (BB)

  12. Noise Reduction Techniques

    NASA Astrophysics Data System (ADS)

    Hallas, Tony

    There are two distinct kinds of noise - structural and color. Each requires a specific method of attack to minimize. The great challenge is to reduce the noise without reducing the faint and delicate detail in the image. My most-used and favorite noise suppression is found in Photoshop CS 5 Camera Raw. If I cannot get the desired results with the first choice, I will use Noise Ninja, which has certain advantages in some situations that we will cover.

  13. Psychoacoustic Analysis of Synthesized Jet Noise

    NASA Technical Reports Server (NTRS)

    Okcu, Selen; Rathsam, Jonathan; Rizzi, Stephen A.

    2013-01-01

    An aircraft noise synthesis capability is being developed so the annoyance caused by proposed aircraft can be assessed during the design stage. To make synthesized signals as realistic as possible, high fidelity simulation is required for source (e.g., engine noise, airframe noise), propagation and receiver effects. This psychoacoustic study tests whether the jet noise component of synthesized aircraft engine noise can be made more realistic using a low frequency oscillator (LFO) technique to simulate fluctuations in level observed in recordings. Jet noise predictions are commonly made in the frequency domain based on models of time-averaged empirical data. The synthesis process involves conversion of the frequency domain prediction into an audible pressure time history. However, because the predictions are time-invariant, the synthesized sound lacks fluctuations observed in recordings. Such fluctuations are hypothesized to be perceptually important. To introduce time-varying characteristics into jet noise synthesis, a method has been developed that modulates measured or predicted 1/3-octave band levels with a (<20Hz) LFO. The LFO characteristics are determined through analysis of laboratory jet noise recordings. For the aft emission angle, results indicate that signals synthesized using a generic LFO are perceived as more similar to recordings than those using no LFO, and signals synthesized with an angle-specific LFO are more similar to recordings than those synthesized with a generic LFO.

  14. Nitrogen Use Efficiency of Coffee at the Vegetative Stage as Influenced by Fertilizer Application Method.

    PubMed

    Salamanca-Jimenez, Alveiro; Doane, Timothy A; Horwath, William R

    2017-01-01

    Nitrogen (N) is the most limiting nutrient for coffee production in Colombia. An adequate supply is especially important during the vegetative period of growth, since any deficiency during this short period is known to have lasting effects on subsequent coffee bean production. Urea fertilizer is commonly applied on the soil surface since steep slopes hamper incorporation into soil, a practice which increases the risk of N volatilization. Little information is available on N recovery during early growth stages under different fertilizer application practices. The aim of this study was therefore to provide a comparison of (15)N uptake during the early vegetative growth stage under surface-applied and incorporation practices at two contrasting locations. The highest proportion of plant N derived from fertilizer (Ndff) occurred 60 days following application at the site with greater precipitation and soil organic matter, where surface application also increased the Ndff in roots and stems after 120 days. Although fertilizer N supplied approximately 20-29% of total plant N after 4 months, this fertilizer-derived N corresponded on average to only 5% of the total application, indicating that very little fertilizer (relative to how much is applied) reaches plants during this time. Apart from the difference in Ndff observed at the wetter site, there was no effect of application method on dry weight and macronutrient content in different plant components, root to shoot ratio, and leaf (13)C content. However, site effects were registered for most of these measurements, with the exception of total nutrient uptake. Similarly to Ndff trends, lower root/shoot ratio and higher concentrations of N, K, and Mg in aboveground biomass were found in the site with higher rainfall and soil organic matter, likely resulting from higher soil water and N availability. These findings provide new information useful as a direction for further research looking toward increasing NUE during the

  15. Nitrogen Use Efficiency of Coffee at the Vegetative Stage as Influenced by Fertilizer Application Method

    PubMed Central

    Salamanca-Jimenez, Alveiro; Doane, Timothy A.; Horwath, William R.

    2017-01-01

    Nitrogen (N) is the most limiting nutrient for coffee production in Colombia. An adequate supply is especially important during the vegetative period of growth, since any deficiency during this short period is known to have lasting effects on subsequent coffee bean production. Urea fertilizer is commonly applied on the soil surface since steep slopes hamper incorporation into soil, a practice which increases the risk of N volatilization. Little information is available on N recovery during early growth stages under different fertilizer application practices. The aim of this study was therefore to provide a comparison of 15N uptake during the early vegetative growth stage under surface-applied and incorporation practices at two contrasting locations. The highest proportion of plant N derived from fertilizer (Ndff) occurred 60 days following application at the site with greater precipitation and soil organic matter, where surface application also increased the Ndff in roots and stems after 120 days. Although fertilizer N supplied approximately 20–29% of total plant N after 4 months, this fertilizer-derived N corresponded on average to only 5% of the total application, indicating that very little fertilizer (relative to how much is applied) reaches plants during this time. Apart from the difference in Ndff observed at the wetter site, there was no effect of application method on dry weight and macronutrient content in different plant components, root to shoot ratio, and leaf 13C content. However, site effects were registered for most of these measurements, with the exception of total nutrient uptake. Similarly to Ndff trends, lower root/shoot ratio and higher concentrations of N, K, and Mg in aboveground biomass were found in the site with higher rainfall and soil organic matter, likely resulting from higher soil water and N availability. These findings provide new information useful as a direction for further research looking toward increasing NUE during the

  16. A Data-Driven Noise Reduction Method and Its Application for the Enhancement of Stress Wave Signals

    PubMed Central

    Feng, Hai-Lin; Fang, Yi-Ming; Xiang, Xuan-Qi; Li, Jian; Li, Guan-Hui

    2012-01-01

    Ensemble empirical mode decomposition (EEMD) has been recently used to recover a signal from observed noisy data. Typically this is performed by partial reconstruction or thresholding operation. In this paper we describe an efficient noise reduction method. EEMD is used to decompose a signal into several intrinsic mode functions (IMFs). The time intervals between two adjacent zero-crossings within the IMF, called instantaneous half period (IHP), are used as a criterion to detect and classify the noise oscillations. The undesirable waveforms with a larger IHP are set to zero. Furthermore, the optimum threshold in this approach can be derived from the signal itself using the consecutive mean square error (CMSE). The method is fully data driven, and it requires no prior knowledge of the target signals. This method can be verified with the simulative program by using Matlab. The denoising results are proper. In comparison with other EEMD based methods, it is concluded that the means adopted in this paper is suitable to preprocess the stress wave signals in the wood nondestructive testing. PMID:23213283

  17. The DEPFET Sensor-Amplifier Structure: A Method to Beat 1/f Noise and Reach Sub-Electron Noise in Pixel Detectors

    PubMed Central

    Lutz, Gerhard; Porro, Matteo; Aschauer, Stefan; Wölfel, Stefan; Strüder, Lothar

    2016-01-01

    Depleted field effect transistors (DEPFET) are used to achieve very low noise signal charge readout with sub-electron measurement precision. This is accomplished by repeatedly reading an identical charge, thereby suppressing not only the white serial noise but also the usually constant 1/f noise. The repetitive non-destructive readout (RNDR) DEPFET is an ideal central element for an active pixel sensor (APS) pixel. The theory has been derived thoroughly and results have been verified on RNDR-DEPFET prototypes. A charge measurement precision of 0.18 electrons has been achieved. The device is well-suited for spectroscopic X-ray imaging and for optical photon counting in pixel sensors, even at high photon numbers in the same cell. PMID:27136549

  18. STGSTK: A computer code for predicting multistage axial flow compressor performance by a meanline stage stacking method

    NASA Technical Reports Server (NTRS)

    Steinke, R. J.

    1982-01-01

    A FORTRAN computer code is presented for off-design performance prediction of axial-flow compressors. Stage and compressor performance is obtained by a stage-stacking method that uses representative velocity diagrams at rotor inlet and outlet meanline radii. The code has options for: (1) direct user input or calculation of nondimensional stage characteristics; (2) adjustment of stage characteristics for off-design speed and blade setting angle; (3) adjustment of rotor deviation angle for off-design conditions; and (4) SI or U.S. customary units. Correlations from experimental data are used to model real flow conditions. Calculations are compared with experimental data.

  19. Commercial aircraft noise

    NASA Astrophysics Data System (ADS)

    Smith, M. J.

    The history of aircraft noise control development is traced with an eye to forecasting the future. Noise control became imperative with the advent of the first generation of commercial jet aircraft, which were extremely loud. The steady increases in the size of turbofans have nearly matched the progress in noise reduction capabilities in recent years. Only 5 dB of reduction in fleet noise has been achieved since early standards were met. Current engine design is concentrated on increasing fuel efficiency rather than lowering noise emissions. Further difficulties exist because of continued flights with older aircraft. Gains in noise reduction have been made mainly by decreasing exhaust velocities from 600-700 m/sec to 300-400 m/sec. New techniques being explored comprise mixing the core and bypass flows, interaction tone control, reduction of broadband sources, development of acoustic liner technology and alterations in the number of fan blades and stage spacing.

  20. Fourth Aircraft Interior Noise Workshop

    NASA Technical Reports Server (NTRS)

    Stephens, David G. (Compiler)

    1992-01-01

    The fourth in a series of NASA/SAE Interior Noise Workshops was held on May 19 and 20, 1992. The theme of the workshop was new technology and applications for aircraft noise with emphasis on source noise prediction; cabin noise prediction; cabin noise control, including active and passive methods; and cabin interior noise procedures. This report is a compilation of the presentations made at the meeting which addressed the above issues.

  1. Centrifugal compressor surge detecting method based on wavelet analysis of unsteady pressure fluctuations in typical stages

    NASA Astrophysics Data System (ADS)

    Izmaylov, R.; Lebedev, A.

    2015-08-01

    Centrifugal compressors are complex energy equipment. Automotive control and protection system should meet the requirements: of operation reliability and durability. In turbocompressors there are at least two dangerous areas: surge and rotating stall. Antisurge protecting systems usually use parametric or feature methods. As a rule industrial system are parametric. The main disadvantages of anti-surge parametric systems are difficulties in mass flow measurements in natural gas pipeline compressor. The principal idea of feature method is based on the experimental fact: as a rule just before the onset of surge rotating or precursor stall established in compressor. In this case the problem consists in detecting of unsteady pressure or velocity fluctuations characteristic signals. Wavelet analysis is the best method for detecting onset of rotating stall in spite of high level of spurious signals (rotating wakes, turbulence, etc.). This method is compatible with state of the art DSP systems of industrial control. Examples of wavelet analysis application for detecting onset of rotating stall in typical stages centrifugal compressor are presented. Experimental investigations include unsteady pressure measurement and sophisticated data acquisition system. Wavelet transforms used biorthogonal wavelets in Mathlab systems.

  2. Comparing regression methods for the two-stage clonal expansion model of carcinogenesis.

    PubMed

    Kaiser, J C; Heidenreich, W F

    2004-11-15

    In the statistical analysis of cohort data with risk estimation models, both Poisson and individual likelihood regressions are widely used methods of parameter estimation. In this paper, their performance has been tested with the biologically motivated two-stage clonal expansion (TSCE) model of carcinogenesis. To exclude inevitable uncertainties of existing data, cohorts with simple individual exposure history have been created by Monte Carlo simulation. To generate some similar properties of atomic bomb survivors and radon-exposed mine workers, both acute and protracted exposure patterns have been generated. Then the capacity of the two regression methods has been compared to retrieve a priori known model parameters from the simulated cohort data. For simple models with smooth hazard functions, the parameter estimates from both methods come close to their true values. However, for models with strongly discontinuous functions which are generated by the cell mutation process of transformation, the Poisson regression method fails to produce reliable estimates. This behaviour is explained by the construction of class averages during data stratification. Thereby, some indispensable information on the individual exposure history was destroyed. It could not be repaired by countermeasures such as the refinement of Poisson classes or a more adequate choice of Poisson groups. Although this choice might still exist we were unable to discover it. In contrast to this, the individual likelihood regression technique was found to work reliably for all considered versions of the TSCE model.

  3. Exploiting continuous scanning laser Doppler vibrometry (CSLDV) in time domain correlation methods for noise source identification

    NASA Astrophysics Data System (ADS)

    Chiariotti, Paolo; Martarelli, Milena; Revel, Gian Marco

    2014-07-01

    This paper proposes the use of continuous scanning laser Doppler vibrometry (CSLDV) in time domain correlation techniques that aim at characterizing the structure-borne contributions of the noise emission of a mechanical system. The time domain correlation technique presented in this paper is based on the use of FIR (finite impulse response) filters obtained from the vibro-acoustic transfer matrix when vibration data are collected by laser Doppler vibrometry (LDV) exploited in continuous scan mode (CSLDV). The advantages, especially in terms of source decorrelation capabilities, related to the use of CSLDV for such purpose, with respect to standard discrete scan (SLDV), are discussed throughout the paper. To validate this approach, vibro-acoustic measurements were performed on a planetary gear motor for home appliances. The analysis of results is also supported by a simulation.

  4. The development and evaluation of a method for understanding the impact of transmission loss on the overall noise attenuation of finite barriers

    NASA Astrophysics Data System (ADS)

    Upasani, Ashwin Arvind

    The purpose of this study is to evaluate the impact of transmission loss on the overall noise reduction obtained from finite barriers. The noise attenuation ability of barriers is understood to be a consequence of sound waves diffracting around their edges. Although the presence of transmission loss is acknowledged, its significance in affecting noise attenuation is usually not considered a priority in barrier design. This study incorporates the Fresnel Number concept for predicting theoretical insertion loss of a finite barrier and compares these predictions to experimental observations. The experiments performed in this study offer a method to isolate the transmission loss component from diffraction based noise attenuation. This isolation allows the comparison of these two factors in the overall barrier performance. The influence of transmission loss is found to be significant and the findings encourage its consideration in designing solutions to modern noise control challenges.

  5. When stable-stage equilibrium is unlikely: integrating transient population dynamics improves asymptotic methods

    PubMed Central

    Tremblay, Raymond L.; Raventos, Josep; Ackerman, James D.

    2015-01-01

    Background and Aims Evaluation of population projection matrices (PPMs) that are focused on asymptotically based properties of populations is a commonly used approach to evaluate projected dynamics of managed populations. Recently, a set of tools for evaluating the properties of transient dynamics has been expanded to evaluate PPMs and to consider the dynamics of populations prior to attaining the stable-stage distribution, a state that may never be achieved in disturbed or otherwise ephemeral habitats or persistently small populations. This study re-evaluates data for a tropical orchid and examines the value of including such analyses in an integrative approach. Methods Six small populations of Lepanthes rubripetala were used as a model system and the R software package popdemo was used to produce estimates of the indices for the asymptotic growth rate (lambda), sensitivities, reactivity, first-time step attenuation, maximum amplification, maximum attenuation, maximal inertia and maximal attenuation. The response in lambda to perturbations of demographic parameters using transfer functions and multiple perturbations on growth, stasis and fecundity were also determined. The results were compared with previously published asymptotic indices. Key Results It was found that combining asymptotic and transient dynamics expands the understanding of possible population changes. Comparison of the predicted density from reactivity and first-time step attenuation with the observed change in population size in two orchid populations showed that the observed density was within the predicted range. However, transfer function analysis suggests that the traditional approach of measuring perturbation of growth rates and persistence (inertia) may be misleading and is likely to result in erroneous management decisions. Conclusions Based on the results, an integrative approach is recommended using traditional PPMs (asymptotic processes) with an evaluation of the diversity of dynamics

  6. A hybrid method for hydrodynamic-kinetic flow Part I: A particle-grid method for reducing stochastic noise in kinetic regimes

    SciTech Connect

    Alaia, Alessandro; Puppo, Gabriella

    2011-06-20

    In this work we present a hybrid particle-grid Monte Carlo method for the Boltzmann equation, which is characterized by a significant reduction of the stochastic noise in the kinetic regime. The hybrid method is based on a first order splitting in time to separate the transport from the relaxation step. The transport step is solved by a deterministic scheme, while a hybrid DSMC-based method is used to solve the collision step. Such a hybrid scheme is based on splitting the solution in a collisional and a non-collisional part at the beginning of the collision step, and the DSMC method is used to solve the relaxation step for the collisional part of the solution only. This is accomplished by sampling only the fraction of particles candidate for collisions from the collisional part of the solution, performing collisions as in a standard DSMC method, and then projecting the particles back onto a velocity grid to compute a piecewise constant reconstruction for the collisional part of the solution. The latter is added to a piecewise constant reconstruction of the non-collisional part of the solution, which in fact remains unchanged during the relaxation step. Numerical results show that the stochastic noise is significantly reduced at large Knudsen numbers with respect to the standard DSMC method. Indeed in this algorithm, the particle scheme is applied only on the collisional part of the solution, so only this fraction of the solution is affected by stochastic fluctuations. But since the collisional part of the solution reduces as the Knudsen number increases, stochastic noise reduces as well at large Knudsen numbers.

  7. Comparison of predicted engine core noise with current and proposed aircraft noise certification requirements

    NASA Technical Reports Server (NTRS)

    Vonglahn, U. H.; Groesbeck, D. E.

    1981-01-01

    Predicted engine core noise levels are compared with measured total aircraft noise levels and with current and proposed federal noise certification requirements. Comparisons are made at the FAR-36 measuring stations and include consideration of both full- and cutback-power operation at takeoff. In general, core noise provides a barrier to achieving proposed EPA stage 5 noise levels for all types of aircraft. More specifically, core noise levels will limit further reductions in aircraft noise levels for current widebody commercial aircraft.

  8. Effect of cantilever geometry on the optical lever sensitivities and thermal noise method of the atomic force microscope

    SciTech Connect

    Sader, John E.; Lu, Jianing; Mulvaney, Paul

    2014-11-15

    Calibration of the optical lever sensitivities of atomic force microscope (AFM) cantilevers is especially important for determining the force in AFM measurements. These sensitivities depend critically on the cantilever mode used and are known to differ for static and dynamic measurements. Here, we calculate the ratio of the dynamic and static sensitivities for several common AFM cantilevers, whose shapes vary considerably, and experimentally verify these results. The dynamic-to-static optical lever sensitivity ratio is found to range from 1.09 to 1.41 for the cantilevers studied – in stark contrast to the constant value of 1.09 used widely in current calibration studies. This analysis shows that accuracy of the thermal noise method for the static spring constant is strongly dependent on cantilever geometry – neglect of these dynamic-to-static factors can induce errors exceeding 100%. We also discuss a simple experimental approach to non-invasively and simultaneously determine the dynamic and static spring constants and optical lever sensitivities of cantilevers of arbitrary shape, which is applicable to all AFM platforms that have the thermal noise method for spring constant calibration.

  9. Effect of cantilever geometry on the optical lever sensitivities and thermal noise method of the atomic force microscope.

    PubMed

    Sader, John E; Lu, Jianing; Mulvaney, Paul

    2014-11-01

    Calibration of the optical lever sensitivities of atomic force microscope (AFM) cantilevers is especially important for determining the force in AFM measurements. These sensitivities depend critically on the cantilever mode used and are known to differ for static and dynamic measurements. Here, we calculate the ratio of the dynamic and static sensitivities for several common AFM cantilevers, whose shapes vary considerably, and experimentally verify these results. The dynamic-to-static optical lever sensitivity ratio is found to range from 1.09 to 1.41 for the cantilevers studied - in stark contrast to the constant value of 1.09 used widely in current calibration studies. This analysis shows that accuracy of the thermal noise method for the static spring constant is strongly dependent on cantilever geometry - neglect of these dynamic-to-static factors can induce errors exceeding 100%. We also discuss a simple experimental approach to non-invasively and simultaneously determine the dynamic and static spring constants and optical lever sensitivities of cantilevers of arbitrary shape, which is applicable to all AFM platforms that have the thermal noise method for spring constant calibration.

  10. Refinements to the method of epicentral location based on surface waves from ambient seismic noise: introducing Love waves

    USGS Publications Warehouse

    Levshin, Anatoli L.; Barmin, Mikhail P.; Moschetti, Morgan P.; Mendoza, Carlos; Ritzwoller, Michael H.

    2012-01-01

    The purpose of this study is to develop and test a modification to a previous method of regional seismic event location based on Empirical Green’s Functions (EGFs) produced from ambient seismic noise. Elastic EGFs between pairs of seismic stations are determined by cross-correlating long ambient noise time-series recorded at the two stations. The EGFs principally contain Rayleigh- and Love-wave energy on the vertical and transverse components, respectively, and we utilize these signals between about 5 and 12 s period. The previous method, based exclusively on Rayleigh waves, may yield biased epicentral locations for certain event types with hypocentral depths between 2 and 5 km. Here we present theoretical arguments that show how Love waves can be introduced to reduce or potentially eliminate the bias. We also present applications of Rayleigh- and Love-wave EGFs to locate 10 reference events in the western United States. The separate Rayleigh and Love epicentral locations and the joint locations using a combination of the two waves agree to within 1 km distance, on average, but confidence ellipses are smallest when both types of waves are used.

  11. Stage design

    DOEpatents

    Shacter, J.

    1975-12-01

    A method is described of cycling gases through a plurality of diffusion stages comprising the steps of admitting the diffused gases from a first diffusion stage into an axial compressor, simultaneously admitting the undiffused gases from a second diffusion stage into an intermediate pressure zone of said compressor corresponding in pressure to the pressure of said undiffused gases, and then admitting the resulting compressed mixture of diffused and undiffused gases into a third diffusion stage.

  12. The Two-Stage Examination: A Method to Assess Individual Competence and Collaborative Problem Solving in Medical Students

    PubMed Central

    Morton, David A.; Pippitt, Karly; Lamb, Sara; Colbert-Getz, Jorie M.

    2016-01-01

    Problem Effectively solving problems as a team under stressful conditions is central to medical practice; however, because summative examinations in medical education must test individual competence, they are typically solitary assessments. Approach Using two-stage examinations, in which students first answer questions individually (Stage 1) and then discuss them in teams prior to resubmitting their answers (Stage 2), is one method for rectifying this discordance. On the basis of principles of social constructivism, the authors hypothesized that two-stage examinations would lead to better retention of, specifically, items answered incorrectly at Stage 1. In fall 2014, they divided 104 first-year medical students into two groups of 52 students. Groups alternated each week between taking one- and two-stage examinations such that each student completed 6 one-stage and 6 two-stage examinations. The authors reassessed 61 concepts on a final examination and, using the Wilcoxon signed ranked tests, compared performance for all concepts and for just those students initially missed, between Stages 1 and 2. Outcomes Final examination performance on all previously assessed concepts was not significantly different between the one-and two-stage conditions (P = .77); however, performance on only concepts that students initially answered incorrectly on a prior examination improved by 12% for the two-stage condition relative to the one-stage condition (P = .02, r = 0.17). Next Steps Team assessment may be most useful for assessing concepts students find difficult, as opposed to all content. More research is needed to determine whether these results apply to all medical school topics and student cohorts. PMID:27049544

  13. ICESat Observations of Inland Surface Water Stage, Slope, and Extent: a New Method for Hydrologic Monitoring

    NASA Technical Reports Server (NTRS)

    Harding, David J.; Jasinski, Michael F.

    2004-01-01

    River discharge and changes in lake, reservoir and wetland water storage are critical terms in the global surface water balance, yet they are poorly observed globally and the prospects for adequate observations from in-situ networks are poor (Alsdorf et al., 2003). The NASA-sponsored Surface Water Working Group has established a framework for advancing satellite observations of river discharge and water storage changes which focuses on obtaining measurements of water surface height (stage), slope, and extent. Satellite laser altimetry, which can achieve centimeter-level elevation precision for single, small laser footprints, provides a method to obtain these inland water parameters and contribute to global water balance monitoring. Since its launch in January, 2003 the Ice, Cloud, and land Elevation Satellite (ICESat), a NASA Earth Observing System mission, has achieved over 540 million laser pulse observations of ice sheet, ocean surface, land topography, and inland water elevations and cloud and aerosol height distributions. By recording the laser backscatter from 80 m diameter footprints spaced 175 m along track, ICESat acquires globally-distributed elevation profiles, using a 1064 nm laser altimeter channel, and cloud and aerosol profiles, using a 532 nm atmospheric lidar channel. The ICESat mission has demonstrated the following laser altimeter capabilities relevant to observations of inland water: (1) elevation measurements with a precision of 2 to 3 cm for flat surfaces, suitable for detecting river surface slopes along long river reaches or between multiple crossings of a meandering river channel, (2) from the laser backscatter waveform, detection of water surface elevations beneath vegetation canopies, suitable for measuring water stage in flooded forests, (3) single pulse absolute elevation accuracy of about 50 cm (1 sigma) for 1 degree sloped surfaces, with calibration work in progress indicating that a final accuracy of about 12 cm (1 sigma) will be

  14. Methods for mitigating the effect of noise, interference, and model error on microwave breast imaging

    NASA Astrophysics Data System (ADS)

    Burfeindt, Matthew J.

    Microwave inverse scattering shows promise for meeting important clinical needs in breast imaging that arise due to drawbacks in traditional imaging technologies. The dielectric contrast between different breast tissue types, the 3-D nature of various inverse scattering algorithms, as well as microwave technology's relative safety and low cost motivate a microwave-based approach. However, challenges remain for this type of imaging technique, as it requires solving a linear system that is ill-posed and underdetermined, thus making it sensitive to noise, interference, and mismatch between the assumed and actual properties of the propagation environment. In this document, we report a series of studies performed with the goal of mitigating the effect of these types of signal errors on the imaging results. We conduct a numerical feasibility study to demonstrate the efficacy of microwave breast imaging using an enclosed array of miniaturized, multi-band patch antennas designed to account for the ill-posed nature of the imaging problem. We then conduct several experimental studies with an array prototype, wherein we characterize the sensitivity of the array to model error as well as create experimental reconstructions of both geometrically-simple objects and an MRI-derived 3-D-printed breast phantom. Lastly, we incorporate a beamforming-enhancement into the imaging algorithm with the goal of making it less sensitive to signal error.

  15. Low-frequency amphibious hearing in pinnipeds: methods, measurements, noise, and ecology.

    PubMed

    Kastak, D; Schusterman, R J

    1998-04-01

    Aerial low-frequency (100-6400 Hz) hearing thresholds were obtained for one California sea lion (Zalophus californianus), one harbor seal (Phoca vitulina), and one northern elephant seal (Mirounga angustirostris). Underwater thresholds over a similar frequency range (75-6300 or 6400 Hz) were obtained for these three animals in addition to another California sea lion. Such data are critical, not only for understanding mechanisms about amphibious hearing and relating them to pinniped ecology and evolution, but also for identifying species at risk to man-made noise in the marine environment. Under water, the elephant seal was most sensitive, followed by the harbor seal and the sea lions. In air, the harbor seal was most sensitive, followed by the older of the two sea lions and the elephant seal. The following trends emerged from comparisons of each subject's aerial and underwater thresholds: (a) the sea lion (although possessing some aquatic modifications) is adapted to hear best in air; (b) the harbor seal hears almost equally well in air and under water; and (c) the elephant seal's auditory system is adapted for underwater functioning at the expense of aerial hearing sensitivity. These differences became evident only when aerial and underwater thresholds were compared with respect to sound pressure rather than intensity. When such biologically relevant comparisons are made, differences in auditory sensitivity can be shown to relate directly to ecology and life history.

  16. The influence of noise on BOLD-mediated vessel size imaging analysis methods

    PubMed Central

    Germuska, Michael A; Meakin, James A; Bulte, Daniel P

    2013-01-01

    Vessel size imaging (VSI) is a magnetic resonance imaging (MRI) technique that aims to provide quantitative measurements of tissue microvasculature. An emerging variation of this technique uses the blood oxygenation level-dependent (BOLD) effect as the source of the imaging contrast. Gas challenges have the advantage over contrast injection techniques in that they are noninvasive and easily repeatable because of the fast washout of the contrast. However, initial results from BOLD-VSI studies are somewhat contradictory, with substantially different estimates of the mean vessel radius. Owing to BOLD-VSI being an emerging technique, there is not yet a standard processing methodology, and different techniques have been used to calculate the mean vessel radius and reject uncertain estimates. In addition, the acquisition methodology and signal modeling vary from group to group. Owing to these differences, it is difficult to determine the source of this variation. Here we use computer modeling to assess the impact of noise on the accuracy and precision of different BOLD-VSI calculations. Our results show both potential overestimates and underestimates of the mean vessel radius, which is confirmed with a validation study at 3T. PMID:23942365

  17. Combat aircraft noise

    NASA Astrophysics Data System (ADS)

    Sgarbozza, M.; Depitre, A.

    1992-04-01

    A discussion of the characteristics and the noise levels of combat aircraft and of a transport aircraft in taking off and landing are presented. Some methods of noise reduction are discussed, including the following: operational anti-noise procedures; and concepts of future engines (silent post-combustion and variable cycle). Some measurement results concerning the noise generated in flight at great speeds and low altitude will also be examined. Finally, the protection of the environment of French air bases against noise will be described and the possibilities of regulation examined.

  18. High resolution and stability roll angle measurement method for precision linear displacement stages

    NASA Astrophysics Data System (ADS)

    Jin, Tao; Xia, Guizheng; Hou, Wenmei; Le, Yanfen; Han, Sen

    2017-02-01

    A method for high resolution roll angle measurement of linear displacement stages is developed theoretically and tested experimentally. The new optical configuration is based on a special differential plane mirror interferometer, a wedge prism assembly, and a wedge mirror assembly. The wedge prisms assembly is used as a roll angle sensor, which converts roll angle to the changes of optical path. The special interferometer, composed a polarization splitter plane, a half wave plate, a beam splitter, a retro-reflector and a quarter wave plate, is designed for high resolution measurement of the changes of the optical path. The interferometric beams are a completely common path for the adoption of the centrosymmetrical measurement structure, and the cross talk of the straightness, yaw, and pitch errors is avoided. The angle measurement resolution of the proposed method is 3.5 μrad in theoretical with a phase meter which has a resolution of 2 π /512 . The experimental result also shows the great stability and accuracy of the present roll angle measurement system.

  19. Noise reduction methods applied to two-dimensional correlation spectroscopy (2D-COS) reveal complementary benefits of pre- and post-treatment.

    PubMed

    Foist, Rod B; Schulze, H Georg; Ivanov, Andre; Turner, Robin F B

    2011-05-01

    Two-dimensional correlation spectroscopy (2D-COS) is a powerful spectral analysis technique widely used in many fields of spectroscopy because it can reveal spectral information in complex systems that is not readily evident in the original spectral data alone. However, noise may severely distort the information and thus limit the technique's usefulness. Consequently, noise reduction is often performed before implementing 2D-COS. In general, this is implemented using one-dimensional (1D) methods applied to the individual input spectra, but, because 2D-COS is based on sets of successive spectra and produces 2D outputs, there is also scope for the utilization of 2D noise-reduction methods. Furthermore, 2D noise reduction can be applied either to the original set of spectra before performing 2D-COS ("pretreatment") or on the 2D-COS output ("post-treatment"). Very little work has been done on post-treatment; hence, the relative advantages of these two approaches are unclear. In this work we compare the noise-reduction performance on 2D-COS of pretreatment and post-treatment using 1D (wavelets) and 2D algorithms (wavelets, matrix maximum entropy). The 2D methods generally outperformed the 1D method in pretreatment noise reduction. 2D post-treatment in some cases was superior to pretreatment and, unexpectedly, also provided correlation coefficient maps that were similar to 2D correlation spectroscopy maps but with apparent better contrast.

  20. The implementation method of stage video monitoring system based on network

    NASA Astrophysics Data System (ADS)

    Li, Yihua; Zhang, Xiaodong; Feng, Zhicong; Luan, Zhenhui

    2016-01-01

    In view of the problems of inflexible saving and calling data and low reliability and being difficult to compatiable with other system for domestic stage video monitoring system, the authors proposed a video supervision and scheduling system of stage based on IP camera. Audio and video technology, multimedia technology and computer network technology were used in the stage video surveillance and scheduling system. The structure of the system were designed and the main functions of the system were tested. The results show that this system can satisfy the modern stage performance effect and monitoring requirements.

  1. Reduction of propeller noise by active noise control

    NASA Astrophysics Data System (ADS)

    Bschorr, O.; Kubanke, D.

    1992-04-01

    Active noise control, a method of cancelling noise by means of interference with a secondary anti-noise source, is now in full development. The first commercial application of this technique is in the case of active electronically controlled head sets. The next step will be the active noise cancellation in air ducts and in passenger cabins. The aim of this paper is to assess the possibilities of the anti-noise technique for reducing propeller noise. First, by a mathematical simulation the theoretical noise reduction on the ground was calculated and found to be promising for further investigations. In the case of the periodic engine and propeller noise, for example, with only a single anti-noise source, the noise foot prints of the lower propeller harmonics can be reduced by up to 10 dB. In laboratory tests the theoretical values will be confirmed experimentally. For cancellation of the periodic noise one can use synchronous anti-noise generators. Compared with the engine and propeller noise the reduction of jet noise by the anti-noise technique is much more difficult. Therefore a sensor and controlling unit are necessary because of the stochastic nature of jet noise. Since aircraft noise is a severe problem, all methods are to be considered.

  2. Technical Note: Measuring contrast- and noise-dependent spatial resolution of an iterative reconstruction method in CT using ensemble averaging

    SciTech Connect

    Yu, Lifeng Vrieze, Thomas J.; Leng, Shuai; Fletcher, Joel G.; McCollough, Cynthia H.

    2015-05-15

    Purpose: The spatial resolution of iterative reconstruction (IR) in computed tomography (CT) is contrast- and noise-dependent because of the nonlinear regularization. Due to the severe noise contamination, it is challenging to perform precise spatial-resolution measurements at very low-contrast levels. The purpose of this study was to measure the spatial resolution of a commercially available IR method using ensemble-averaged images acquired from repeated scans. Methods: A low-contrast phantom containing three rods (7, 14, and 21 HU below background) was scanned on a 128-slice CT scanner at three dose levels (CTDI{sub vol} = 16, 8, and 4 mGy). Images were reconstructed using two filtered-backprojection (FBP) kernels (B40 and B20) and a commercial IR method (sinogram affirmed iterative reconstruction, SAFIRE, Siemens Healthcare) with two strength settings (I40-3 and I40-5). The same scan was repeated 100 times at each dose level. The modulation transfer function (MTF) was calculated based on the edge profile measured on the ensemble-averaged images. Results: The spatial resolution of the two FBP kernels, B40 and B20, remained relatively constant across contrast and dose levels. However, the spatial resolution of the two IR kernels degraded relative to FBP as contrast or dose level decreased. For a given dose level at 16 mGy, the MTF{sub 50%} value normalized to the B40 kernel decreased from 98.4% at 21 HU to 88.5% at 7 HU for I40-3 and from 97.6% to 82.1% for I40-5. At 21 HU, the relative MTF{sub 50%} value decreased from 98.4% at 16 mGy to 90.7% at 4 mGy for I40-3 and from 97.6% to 85.6% for I40-5. Conclusions: A simple technique using ensemble averaging from repeated CT scans can be used to measure the spatial resolution of IR techniques in CT at very low contrast levels. The evaluated IR method degraded the spatial resolution at low contrast and high noise levels.

  3. A Method for Calculating the Area of Zostera marina Leaves from Digital Images with Noise Induced by Humidity Content

    PubMed Central

    Leal-Ramirez, Cecilia

    2014-01-01

    Despite the ecological importance of eelgrass, nowadays anthropogenic influences have produced deleterious effects in many meadows worldwide. Transplantation plots are commonly used as a feasible remediation scheme. The characterization of eelgrass biomass and its dynamics is an important input for the assessment of the overall status of both natural and transplanted populations. Particularly, in restoration plots it is desirable to obtain nondestructive assessments of these variables. Allometric models allow the expression of above ground biomass and productivity of eelgrass in terms of leaf area, which provides cost effective and nondestructive assessments. Leaf area in eelgrass can be conveniently obtained by the product of associated length and width. Although these variables can be directly measured on most sampled leaves, digital image methods could be adapted in order to simplify measurements. Nonetheless, since width to length ratios in eelgrass leaves could be even negligible, noise induced by leaf humidity content could produce misidentification of pixels along the peripheral contour of leaves images. In this paper, we present a procedure aimed to produce consistent estimations of eelgrass leaf area in the presence of the aforementioned noise effects. Our results show that digital image procedures can provide reliable, nondestructive estimations of eelgrass leaf area. PMID:24892089

  4. Aircraft noise prediction program theoretical manual, part 2

    NASA Technical Reports Server (NTRS)

    Zorumski, W. E.

    1982-01-01

    Detailed prediction methods for specific aircraft noise sources are given. These sources are airframe noise, combustion noise, fan noise, single and dual stream jet noise, and turbine noise. Modifications to the NASA methods which comply with the International Civil Aviation Organization standard method for aircraft noise prediction are given.

  5. Airport noise

    NASA Technical Reports Server (NTRS)

    Pendley, R. E.

    1982-01-01

    The problem of airport noise at several airports and air bases is detailed. Community reactions to the noise, steps taken to reduce jet engine noise, and the effect of airport use restrictions and curfews on air transportation are discussed. The adverse effect of changes in allowable operational noise on airport safety and altenative means for reducing noise pollution are considered. Community-airport relations and public relations are discussed.

  6. Combustion noise

    NASA Technical Reports Server (NTRS)

    Strahle, W. C.

    1977-01-01

    A review of the subject of combustion generated noise is presented. Combustion noise is an important noise source in industrial furnaces and process heaters, turbopropulsion and gas turbine systems, flaring operations, Diesel engines, and rocket engines. The state-of-the-art in combustion noise importance, understanding, prediction and scaling is presented for these systems. The fundamentals and available theories of combustion noise are given. Controversies in the field are discussed and recommendations for future research are made.

  7. Core Noise - Increasing Importance

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2011-01-01

    This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015, 2020, and 2025 timeframes; turbofan design trends and their aeroacoustic implications; the emerging importance of core noise and its relevance to the SFW Reduced-Perceived-Noise Technical Challenge; and the current research activities in the core-noise area, with additional details given about the development of a high-fidelity combustor-noise prediction capability as well as activities supporting the development of improved reduced-order, physics-based models for combustor-noise prediction. The need for benchmark data for validation of high-fidelity and modeling work and the value of a potential future diagnostic facility for testing of core-noise-reduction concepts are indicated. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Reduced-Perceived-Noise Technical Challenge aims to develop concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries. This reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic. Noise generated in the jet engine core, by sources such as the compressor, combustor, and turbine, can be a significant contribution to the overall noise signature at low-power conditions, typical of approach flight. At high engine power during takeoff, jet and fan noise have traditionally dominated over core noise. However, current design trends and expected technological advances in engine-cycle design as well as noise-reduction methods are likely to reduce non-core noise even at engine-power points higher than approach. In addition, future low-emission combustor

  8. New Method to Study the Vibrational Modes of Biomolecules in the Terahertz Range Based on a Single-Stage Raman Spectrometer

    PubMed Central

    2017-01-01

    The low-frequency vibrational (LFV) modes of biomolecules reflect specific intramolecular and intermolecular thermally induced fluctuations that are driven by external perturbations, such as ligand binding, protein interaction, electron transfer, and enzymatic activity. Large efforts have been invested over the years to develop methods to access the LFV modes due to their importance in the studies of the mechanisms and biological functions of biomolecules. Here, we present a method to measure the LFV modes of biomolecules based on Raman spectroscopy that combines volume holographic filters with a single-stage spectrometer, to obtain high signal-to-noise-ratio spectra in short acquisition times. We show that this method enables LFV mode characterization of biomolecules even in a hydrated environment. The measured spectra exhibit distinct features originating from intra- and/or intermolecular collective motion and lattice modes. The observed modes are highly sensitive to the overall structure, size, long-range order, and configuration of the molecules, as well as to their environment. Thus, the LFV Raman spectrum acts as a fingerprint of the molecular structure and conformational state of a biomolecule. The comprehensive method we present here is widely applicable, thus enabling high-throughput study of LFV modes of biomolecules. PMID:28393138

  9. The inversion method in measuring noise emitted by machines in opencast mines of rock material.

    PubMed

    Pleban, Dariusz; Piechowicz, Janusz; Kosała, Krzysztof

    2013-01-01

    The inversion method was used to test vibroacoustic processes in large-size machines used in opencast mines of rock material. When this method is used, the tested machine is replaced with a set of substitute sources, whose acoustic parameters are determined on the basis of sound pressure levels and phase shift angles of acoustic signals, measured with an array of 24 microphones. This article presents test results of a combine unit comprising a crusher and a vibrating sieve, for which an acoustic model of 7 substitute sources was developed with the inversion method.

  10. Task-specific noise exposure during manual concrete surface grinding in enclosed areas-influence of operation variables and dust control methods.

    PubMed

    Akbar-Khanzadeh, Farhang; Ames, April L; Milz, Sheryl A; Akbar-Khanzadeh, Mahboubeh

    2013-01-01

    Noise exposure is a distinct hazard during hand-held concrete grinding activities, and its assessment is challenging because of the many variables involved. Noise dosimeters were used to examine the extent of personal noise exposure while concrete grinding was performed with a variety of grinder sizes, types, accessories, and available dust control methods. Noise monitoring was conducted in an enclosed area covering 52 task-specific grinding sessions lasting from 6 to 72 minutes. Noise levels, either in minute average noise level (Lavg, dBA) or in minute peak (dBC), during concrete grinding were significantly (P < 0.01) correlated with general ventilation (GV: on, off), dust control methods (uncontrolled, wet, Shop-Vac, HEPA, HEPA-Cyclone), grinding cup wheel (blade) sizes of 4-inch (100 mm), 5-inch (125 mm) and 6-inch (150 mm), and surface orientation (horizontal, inclined). Overall, minute Lavg during grinding was 97.0 ± 3.3 (mean ± SD), ranging from 87.9 to 113. The levels of minute Lavg during uncontrolled grinding (98.9 ± 5.2) or wet-grinding (98.5 ± 2.7) were significantly higher than those during local exhaust ventilation (LEV) grinding (96.2 ± 2.8). A 6-inch grinding cup wheel generated significantly higher noise levels (98.7 ± 2.8) than 5-inch (96.3 ± 3.2) or 4-inch (95.3 ± 3.5) cup wheels. The minute peak noise levels (dBC) during grinding was 113 ± 5.2 ranging from 104 to 153. The minute peak noise levels during uncontrolled grinding (119 ± 10.2) were significantly higher than those during wet-grinding (115 ± 4.5) and LEV-grinding (112 ± 3.4). A 6-inch grinding cup wheel generated significantly higher minute peak noise levels (115 ± 5.3) than 5-inch (112 ± 4.5) or 4-inch (111 ± 5.4) cup wheels. Assuming an 8-hour work shift, the results indicated that noise exposure levels during concrete grinding in enclosed areas exceeded the recommended permissible exposure limits and workers should be protected by engineering control methods, safe

  11. A Small Leak Detection Method Based on VMD Adaptive De-Noising and Ambiguity Correlation Classification Intended for Natural Gas Pipelines.

    PubMed

    Xiao, Qiyang; Li, Jian; Bai, Zhiliang; Sun, Jiedi; Zhou, Nan; Zeng, Zhoumo

    2016-12-13

    In this study, a small leak detection method based on variational mode decomposition (VMD) and ambiguity correlation classification (ACC) is proposed. The signals acquired from sensors were decomposed using the VMD, and numerous components were obtained. According to the probability density function (PDF), an adaptive de-noising algorithm based on VMD is proposed for noise component processing and de-noised components reconstruction. Furthermore, the ambiguity function image was employed for analysis of the reconstructed signals. Based on the correlation coefficient, ACC is proposed to detect the small leak of pipeline. The analysis of pipeline leakage signals, using 1 mm and 2 mm leaks, has shown that proposed detection method can detect a small leak accurately and effectively. Moreover, the experimental results have shown that the proposed method achieved better performances than support vector machine (SVM) and back propagation neural network (BP) methods.

  12. A Small Leak Detection Method Based on VMD Adaptive De-Noising and Ambiguity Correlation Classification Intended for Natural Gas Pipelines

    PubMed Central

    Xiao, Qiyang; Li, Jian; Bai, Zhiliang; Sun, Jiedi; Zhou, Nan; Zeng, Zhoumo

    2016-01-01

    In this study, a small leak detection method based on variational mode decomposition (VMD) and ambiguity correlation classification (ACC) is proposed. The signals acquired from sensors were decomposed using the VMD, and numerous components were obtained. According to the probability density function (PDF), an adaptive de-noising algorithm based on VMD is proposed for noise component processing and de-noised components reconstruction. Furthermore, the ambiguity function image was employed for analysis of the reconstructed signals. Based on the correlation coefficient, ACC is proposed to detect the small leak of pipeline. The analysis of pipeline leakage signals, using 1 mm and 2 mm leaks, has shown that proposed detection method can detect a small leak accurately and effectively. Moreover, the experimental results have shown that the proposed method achieved better performances than support vector machine (SVM) and back propagation neural network (BP) methods. PMID:27983577

  13. A method for time-varying annoyance rating of aircraft noise.

    PubMed

    Dickson, Crispin

    2009-07-01

    The method of continuous judgment by category is used and evaluated to measure time-varying attributes in aircraft flyover sounds. The results are also used to estimate preference between the different experimental sounds. Jurors were asked to rate perceived annoyance on a Borg CR 100 scale continuously during the playback of 11 flyover sequences and the results showed differences in perception in the time segment where the sound had been modified. The method can be used to evaluate maximum perceived annoyance, threshold levels, duration of perceptual presence temporal integration in perception, and perceptual mixtures over time.

  14. Hot topics in noise

    NASA Astrophysics Data System (ADS)

    Stinson, Michael R.

    2003-10-01

    Our world continues to be a noisy place and the challenge to ``increase and diffuse knowledge of noise propagation, passive and active noise control, and the effects of noise'' remains. In the last several years, noise in the classroom has emerged as one of the hotter topics: Considerable progress has been made in the underpinning research, the formulation of recommendations, and the process of educating society on the social and personal impact of inadequate acoustical conditions in classrooms. The establishment of the ANSI S12.60-2002 standard for classroom acoustics was a milestone event. Noise in cities and the understanding of our soundscapes are subjects of ongoing significance. The development of standards and regulations is a continuing process, with urban community noise regulations, aviation noise, and the preservation of natural quiet in national parks being of current concern. New methods to reduce noise are under development and include passive and active methods of noise control, techniques for modeling the performance of noise barriers, and approaches for designing product sound quality.

  15. A method for the estimation of the significance of cross-correlations in unevenly sampled red-noise time series

    NASA Astrophysics Data System (ADS)

    Max-Moerbeck, W.; Richards, J. L.; Hovatta, T.; Pavlidou, V.; Pearson, T. J.; Readhead, A. C. S.

    2014-11-01

    We present a practical implementation of a Monte Carlo method to estimate the significance of cross-correlations in unevenly sampled time series of data, whose statistical properties are modelled with a simple power-law power spectral density. This implementation builds on published methods; we introduce a number of improvements in the normalization of the cross-correlation function estimate and a bootstrap method for estimating the significance of the cross-correlations. A closely related matter is the estimation of a model for the light curves, which is critical for the significance estimates. We present a graphical and quantitative demonstration that uses simulations to show how common it is to get high cross-correlations for unrelated light curves with steep power spectral densities. This demonstration highlights the dangers of interpreting them as signs of a physical connection. We show that by using interpolation and the Hanning sampling window function we are able to reduce the effects of red-noise leakage and to recover steep simple power-law power spectral densities. We also introduce the use of a Neyman construction for the estimation of the errors in the power-law index of the power spectral density. This method provides a consistent way to estimate the significance of cross-correlations in unevenly sampled time series of data.

  16. Development of Harmonic-Noise Reduction Technology in Diagnostic Method using AC Loss Current for Water Treed XLPE Cable

    NASA Astrophysics Data System (ADS)

    Tsujimoto, Tomiyuki; Nakade, Masahiko; Yagi, Yukihiro; Ishii, Noboru

    Water tree is one of the degradation aspects of XLPE cables used for under-ground distribution or transmission lines. We have developed the loss current method using 3rd harmonic in AC loss current for cable diagnosis. Harmonic components in loss current arise as a result of the non-linear voltage-current characteristics of water trees. We confirmed that the 3rd harmonic in AC loss current had good correlation with water tree growth and break down strength. After that, we have applied this method to the actual 66kV XLPE cable lines. Up to now, the number of the application results is more than 120 lines. In this method, it is sometimes said that the degradation signal (3rd harmonic in loss current) is affected by the 3rd harmonic in the test voltage. To indicate and solve this problem, we investigated the extent of influence by 3rd harmonic in the test voltage, and found the rule of the influence. As a result, we developed a new technique of harmonic-noise reduction in loss current method that enabled a more highly accurate diagnosis and confirmed the effectiveness of this new technique by simulations and experiments with actual cables.

  17. A research program to reduce interior noise in general aviation airplanes. [test methods and results

    NASA Technical Reports Server (NTRS)

    Roskam, J.; Muirhead, V. U.; Smith, H. W.; Peschier, T. D.; Durenberger, D.; Vandam, K.; Shu, T. C.

    1977-01-01

    Analytical and semi-empirical methods for determining the transmission of sound through isolated panels and predicting panel transmission loss are described. Test results presented include the influence of plate stiffness and mass and the effects of pressurization and vibration damping materials on sound transmission characteristics. Measured and predicted results are presented in tables and graphs.

  18. Staged Moduli: A Quantitative Method to Analyze the Complete Compressive Stress-Strain Response for Thermally Damaged Rock

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Xu, Jinyu; Liu, Shi

    2015-07-01

    The ultrasonic method and destructive test were combined to examine sandstone specimens taken from underground construction field in the Mount Taibai of Qinling Mountains, middle part of China. Staged moduli of the four stages during the uniaxial compression of sandstone after temperature varying from 25 to 1,000 °C were defined, through which the complete stress-strain curves of sandstone were studied quantitatively. Thermal damage of sandstone after different high temperatures was analyzed based on the thermal damage factor (TDF) defined by the modulus of compact stage. The temperature-sensitivity coefficient (TSC) was proposed to describe the sensitivity of TDF to temperature as temperature level varied. Research suggests that the compression process of thermally damaged sandstone is of prominent staged characteristic. The strain of compact stage increases significantly in a near-linear style as temperature rises up. For temperature above 400 °C, the ratio of compaction strain to peak strain increases to more than 50 percent. Changing rules of the four-staged moduli with temperature differs widely, among which the modulus of compact stage has a strong relativity with longitudinal wave velocity. The TDF defined by wave velocity loses sight of the change in density and Poisson's ratio, avoiding the defect of which, the defining method based on modulus of compact stage is of greater veracity. Within the range of 25-200 °C, the TSC is largest and the thermal damage of sandstone is more sensitive to temperature. The results of this article have some guiding significance to rock engineering in high-temperature environment.

  19. A noise source identification technique using an inverse Helmholtz integral equation method

    NASA Technical Reports Server (NTRS)

    Gardner, B. K.; Bernhard, R. J.

    1988-01-01

    A technique is developed which utilizes numerical models and field pressure information to characterize acoustic fields and identify acoustic sources. The numerical models are based on boundary element numerical procedures. Either pressure, velocity, or passive boundary conditions, in the form of impedance boundary conditions, may be imposed on the numerical model. Alternatively, if no boundary information is known, a boundary condition can be left unspecified. Field pressure data may be specified to overdetermine the numerical problem. The problem is solved numerically for the complete sound field from which the acoustic sources may be determined. The model can then be used to idenfify acoustic intensity paths in the field. The solution can be modified and the model used to evaluate design alternatives. In this investigation the method is tested analytically and verified. In addition, the sensitivity of the method to random and bias error in the input data is demonstrated.

  20. A method for predicting the noise levels of coannular jets with inverted velocity profiles

    NASA Technical Reports Server (NTRS)

    Russell, J. W.

    1979-01-01

    A coannular jet was equated with a single stream equivalent jet with the same mass flow, energy, and thrust. The acoustic characteristics of the coannular jet were then related to the acoustic characteristics of the single jet. Forward flight effects were included by incorporating a forward exponent, a Doppler amplification factor, and a Strouhal frequency shift. Model test data, including 48 static cases and 22 wind tunnel cases, were used to evaluate the prediction method. For the static cases and the low forward velocity wind tunnel cases, the spectral mean square pressure correlation coefficients were generally greater than 90 percent, and the spectral sound pressure level standard deviation were generally less than 3 decibels. The correlation coefficient and the standard deviation were not affected by changes in equivalent jet velocity. Limitations of the prediction method are also presented.

  1. A stochastic averaging method for analyzing vibro-impact systems under Gaussian white noise excitations

    NASA Astrophysics Data System (ADS)

    Gu, Xudong; Zhu, Weiqiu

    2014-04-01

    A new stochastic averaging method for predicting the response of vibro-impact (VI) systems to random perturbations is proposed. First, the free VI system (without damping and random perturbation) is analyzed. The impact condition for the displacement is transformed to that for the system energy. Thus, the motion of the free VI systems is divided into periodic motion without impact and quasi-periodic motion with impact according to the level of system energy. The energy loss during each impact is found to be related to the restitution factor and the energy level before impact. Under the assumption of lightly damping and weakly random perturbation, the system energy is a slowly varying process and an averaged Itô stochastic differential equation for system energy can be derived. The drift and diffusion coefficients of the averaged Itô equation for system energy without impact are the functions of the damping and the random excitations, and those for system energy with impact are the functions of the damping, the random excitations and the impact energy loss. Finally, the averaged Fokker-Plank-Kolmogorov (FPK) equation associated with the averaged Itô equation is derived and solved to yield the stationary probability density of system energy. Numerical results for a nonlinear VI oscillator are obtained to illustrate the proposed stochastic averaging method. Monte-Carlo simulation (MCS) is also conducted to show that the proposed stochastic averaging method is quite effective.

  2. Bootstrap Signal-to-Noise Confidence Intervals: An Objective Method for Subject Exclusion and Quality Control in ERP Studies

    PubMed Central

    Parks, Nathan A.; Gannon, Matthew A.; Long, Stephanie M.; Young, Madeleine E.

    2016-01-01

    Analysis of event-related potential (ERP) data includes several steps to ensure that ERPs meet an appropriate level of signal quality. One such step, subject exclusion, rejects subject data if ERP waveforms fail to meet an appropriate level of signal quality. Subject exclusion is an important quality control step in the ERP analysis pipeline as it ensures that statistical inference is based only upon those subjects exhibiting clear evoked brain responses. This critical quality control step is most often performed simply through visual inspection of subject-level ERPs by investigators. Such an approach is qualitative, subjective, and susceptible to investigator bias, as there are no standards as to what constitutes an ERP of sufficient signal quality. Here, we describe a standardized and objective method for quantifying waveform quality in individual subjects and establishing criteria for subject exclusion. The approach uses bootstrap resampling of ERP waveforms (from a pool of all available trials) to compute a signal-to-noise ratio confidence interval (SNR-CI) for individual subject waveforms. The lower bound of this SNR-CI (SNRLB) yields an effective and objective measure of signal quality as it ensures that ERP waveforms statistically exceed a desired signal-to-noise criterion. SNRLB provides a quantifiable metric of individual subject ERP quality and eliminates the need for subjective evaluation of waveform quality by the investigator. We detail the SNR-CI methodology, establish the efficacy of employing this approach with Monte Carlo simulations, and demonstrate its utility in practice when applied to ERP datasets. PMID:26903849

  3. A noise reduction method for quantifying nanoparticle light scattering in low magnification dark-field microscope far-field images

    PubMed Central

    Sun, Dali

    2016-01-01

    Nanoparticles have become a powerful tool for cell imaging, biomolecule and cell and protein interaction studies, but are difficult to rapidly and accurately measure in most assays. Dark-field microscope (DFM) image analysis approaches used to quantify nanoparticles require high-magnification near-field (HN) images that are labor intensive due to a requirement for manual image selection and focal adjustments needed when identifying and capturing new regions of interest. Low-magnification far-field (LF) DFM imagery is technically simpler to perform but cannot be used as an alternate to HN-DFM quantification, since it is highly sensitive to surface artifacts and debris that can easily mask nanoparticle signal. We now describe a new noise reduction approach that markedly reduces LF-DFM image artifacts to allow sensitive and accurate nanoparticle signal quantification from LF-DFM images. We have used this approach to develop a “Dark Scatter Master” (DSM) algorithm for the popular NIH image analysis program ImageJ, which can be readily adapted for use with automated high-throughput assay analyses. This method demonstrated robust performance quantifying nanoparticles in different assay formats, including a novel method that quantified extracellular vesicles in patient blood sample to detect pancreatic cancer cases. Based on these results, we believe our LF-DFM quantification method can markedly decrease the analysis time of most nanoparticle-based assays to impact both basic research and clinical analyses. PMID:28177210

  4. A handheld mid-infrared methane sensor using a dual-step differential method for additive/multiplicative noise suppression

    NASA Astrophysics Data System (ADS)

    Zheng, Yue; Dang, Peipei; Zheng, Chuantao; Ye, Weilin; Wang, Yiding

    2016-11-01

    A miniature mid-infrared (mid-IR) methane (CH4) sensor system was developed by employing a wide-band wire-source and a semi-ellipsoid multi-pass gas cell. A dual-step differential method instead of the traditional one-step differential method was adopted by this sensor to tune measuring range/zero point and to suppress the additive/multiplicative noise. This method included a first subtraction operation between the two output signals (including a detection signal and a reference signal) from the dual-channel detector and a second subtraction operation on the amplitudes of the first-subtraction signal and the reference signal, followed by a ratio operation between the amplitude of the second-subtraction signal and the reference signal. Detailed experiments were performed to assess the performance of the sensor system. The detection range is 0-50 k ppm, and as the concentration gets larger than 12 k ppm, the relative detection error falls into the range of -3% to +3%. The Allan deviation is about 4.65 ppm with an averaging time of 1 s, and such value can be further improved to 0.45 ppm with an averaging time of 124 s. Due to the cost-effective incandescence wire-source, the small-size ellipsoid multi-pass gas cell and the miniature structure of the sensor, the developed standalone device shows potential applications of CH4 detection under coal-mine environment.

  5. Application of optical methods to the study of jet noise and turbulence

    NASA Technical Reports Server (NTRS)

    Sava, P. G.; Haertig, J.

    1980-01-01

    Optical methods are generally applied in fluid mechanics for either visualization or measurement. The use of a laser anemometer to study flow velocity in a jet and its relaton to the sound radiated is described. The same acoustic emission phenomenon is also measued by combining the signals from four Schlieren systems with that from an interferometer. The use of an optical Fourier transformation approach with real time analysis to determine the spatio-temporal structure of a field of mass volume such as a waveguide or free jet is also examined.

  6. MRI noise estimation and denoising using non-local PCA.

    PubMed

    Manjón, José V; Coupé, Pierrick; Buades, Antonio

    2015-05-01

    This paper proposes a novel method for MRI denoising that exploits both the sparseness and self-similarity properties of the MR images. The proposed method is a two-stage approach that first filters the noisy image using a non local PCA thresholding strategy by automatically estimating the local noise level present in the image and second uses this filtered image as a guide image within a rotationally invariant non-local means filter. The proposed method internally estimates the amount of local noise presents in the images that enables applying it automatically to images with spatially varying noise levels and also corrects the Rician noise induced bias locally. The proposed approach has been compared with related state-of-the-art methods showing competitive results in all the studied cases.

  7. A study of methods to predict and measure the transmission of sound through the walls of light aircraft. Numerical method for analyzing the optimal performance of active noise controllers. Thesis

    NASA Technical Reports Server (NTRS)

    Mollo, Christopher G.; Bernhard, Robert J.

    1987-01-01

    An optimal active noise controller is formulated and analyzed for three different active noise control problems. The first problem formulated is the active control of enclosed or partially enclosed harmonic sound fields where the noise source strengths and enclosure boundary description are known. The enclosure boundary is described by either pressure, velocity, or impedance boundary conditions. The second problem formulated is the active control of the free field power radiated from a distributed noise source with a known time harmonic surface velocity. The third problem formulated is the active control of enclosed or partially enclosed harmonic sound field where the noise source strengths of enclosure boundary description may not be known. All three formulations are derived using an indirect boundary element technique. Formulation and verification of an indirect boundary element method is presented. The active noise controller formulations for enclosures are capable of analyzing systems with generalized enclosure shapes, point noise sources, and/or locally reacting impedance boundary conditions. For each formulation, representative results of optimal active noise controller case studies are presented, and some general conclusions are drawn.

  8. Three-stage sorption type cryogenic refrigeration systems and methods employing heat regeneration

    NASA Technical Reports Server (NTRS)

    Bard, Steven (Inventor); Jones, Jack A. (Inventor)

    1992-01-01

    A three-stage sorption type cryogenic refrigeration system, each stage containing a fluid having a respectively different boiling point, is presented. Each stage includes a compressor in which a respective fluid is heated to be placed in a high pressure gaseous state. The compressor for that fluid which is heated to the highest temperature is enclosed by the other two compressors to permit heat to be transferred from the inner compressor to the surrounding compressors. The system may include two sets of compressors, each having the structure described above, with the interior compressors of the two sets coupled together to permit selective heat transfer therebetween, resulting in more efficient utilization of input power.

  9. Community reactions to aircraft noise in the vicinity of airport: A comparative study of the social surveys using interview method

    NASA Technical Reports Server (NTRS)

    Osada, Y.

    1980-01-01

    A comparative study was performed on the reports of community reactions to aircraft noise. The direct and immediate reactions to aircraft noise such as perceived noisiness, interference with conversations, etc. and various emotional influences were most remarkable; indirect and long term influences such as disturbance of mental work and physical symptoms were less remarkable.

  10. Method and apparatus for linear low-frequency feedback in monolithic low-noise charge amplifiers

    DOEpatents

    DeGeronimo, Gianluigi

    2006-02-14

    A charge amplifier includes an amplifier, feedback circuit, and cancellation circuit. The feedback circuit includes a capacitor, inverter, and current mirror. The capacitor is coupled across the signal amplifier, the inverter is coupled to the output of the signal amplifier, and the current mirror is coupled to the input of the signal amplifier. The cancellation circuit is coupled to the output of the signal amplifier. A method of charge amplification includes providing a signal amplifier; coupling a first capacitor across the signal amplifier; coupling an inverter to the output of the signal amplifier; coupling a current mirror to the input of the signal amplifier; and coupling a cancellation circuit to the output of the signal amplifier. A front-end system for use with radiation sensors includes a charge amplifier and a current amplifier, shaping amplifier, baseline stabilizer, discriminator, peak detector, timing detector, and logic circuit coupled to the charge amplifier.

  11. Room-temperature quantum noise limited spectrometry and methods of the same

    DOEpatents

    Stevens, Charles G.; Tringe, Joseph W.; Cunningham, Christopher Thomas

    2014-08-26

    In one embodiment, a heterodyne detection system for detecting light includes a first input aperture adapted for receiving first light from a scene input, a second input aperture adapted for receiving second light from a local oscillator input, a broadband local oscillator adapted for providing the second light to the second input aperture, a dispersive element adapted for dispersing the first light and the second light, and a final condensing lens coupled to an infrared detector. The final condensing lens is adapted for concentrating incident light from a primary condensing lens onto the infrared detector, and the infrared detector is a square-law detector capable of sensing the frequency difference between the first light and the second light. More systems and methods for detecting light are described according to other embodiments.

  12. Room-temperature quantum noise limited spectrometry and methods of the same

    DOEpatents

    Stevens, Charles G; Tringe, Joseph W

    2014-12-02

    In one embodiment, a heterodyne detection system for detecting light includes a first input aperture adapted for receiving a first light from a scene input, a second input aperture adapted for receiving a second light from a local oscillator input, a broadband local oscillator adapted for providing the second light to the second input aperture, a dispersive element adapted for dispersing the first light and the second light, and a final condensing lens coupled to an infrared detector. The final condensing lens is adapted for concentrating incident light from a primary condensing lens onto the detector, and the detector is a square-law detector capable of sensing the frequency difference between the first light and the second light. More systems and methods for detecting light are disclosed according to more embodiments.

  13. Room-temperature quantum noise limited spectrometry and methods of the same

    DOEpatents

    Stevens, Charles G.; Tringe, Joseph W.; Cunningham, Christopher T.

    2016-08-02

    In one embodiment, a heterodyne detection system for detecting light includes a first input aperture configured to receive first light from a scene input, a second input aperture configured to receive second light from a local oscillator input, a broadband local oscillator configured to provide the second light to the second input aperture, a dispersive element configured to disperse the first light and the second light, and a final condensing lens coupled to an infrared detector. The final condensing lens is configured to concentrate incident light from a primary condensing lens onto the infrared detector, and the infrared detector is a square-law detector capable of sensing the frequency difference between the first light and the second light. More systems and methods for detecting light are described according to other embodiments.

  14. Community noise

    NASA Technical Reports Server (NTRS)

    Bragdon, C. R.

    1982-01-01

    Airport and community land use planning as they relate to airport noise reduction are discussed. Legislation, community relations, and the physiological effect of airport noise are considered. Noise at the Logan, Los Angeles, and Minneapolis/St. Paul airports is discussed.

  15. Protection from noise-induced hearing loss with Src inhibitors.

    PubMed

    Bielefeld, Eric C

    2015-06-01

    Noise-induced hearing loss is a major cause of acquired hearing loss around the world and pharmacological approaches to protecting the ear from noise are under investigation. Noise results in a combination of mechanical and metabolic damage pathways in the cochlea. The Src family of protein tyrosine kinases could be active in both pathways and Src inhibitors have successfully prevented noise-induced cochlear damage and hearing loss in animal models. The long-term goal is to optimize delivery methods into the cochlea to reduce invasiveness and limit side-effects before human clinical testing can be considered. At their current early stage of research investigation, Src inhibitors represent an exciting class of compounds for inclusion in a multifaceted pharmacological approach to protecting the ear from noise.

  16. Non-cavitating propeller noise modeling and inversion

    NASA Astrophysics Data System (ADS)

    Kim, Dongho; Lee, Keunhwa; Seong, Woojae

    2014-12-01

    Marine propeller is the dominant exciter of the hull surface above it causing high level of noise and vibration in the ship structure. Recent successful developments have led to non-cavitating propeller designs and thus present focus is the non-cavitating characteristics of propeller such as hydrodynamic noise and its induced hull excitation. In this paper, analytic source model of propeller non-cavitating noise, described by longitudinal quadrupoles and dipoles, is suggested based on the propeller hydrodynamics. To find the source unknown parameters, the multi-parameter inversion technique is adopted using the pressure data obtained from the model scale experiment and pressure field replicas calculated by boundary element method. The inversion results show that the proposed source model is appropriate in modeling non-cavitating propeller noise. The result of this study can be utilized in the prediction of propeller non-cavitating noise and hull excitation at various stages in design and analysis.

  17. Advanced Methods for Aircraft Engine Thrust and Noise Benefits: Nozzle-Inlet Flow Analysis

    NASA Technical Reports Server (NTRS)

    Morgan, Morris H.; Gilinsky, Mikhail; Patel, Kaushal; Coston, Calvin; Blankson, Isaiah M.

    2003-01-01

    The research is focused on a wide regime of problems in the propulsion field as well as in experimental testing and theoretical and numerical simulation analyses for advanced aircraft and rocket engines. Results obtained are based on analytical methods, numerical simulations and experimental tests at the NASA LaRC and Hampton University computer complexes and experimental facilities. The main objective of this research is injection, mixing and combustion enhancement in propulsion systems. The sub-projects in the reporting period are: (A) Aero-performance and acoustics of Telescope-shaped designs. The work included a pylon set application for SCRAMJET. (B) An analysis of sharp-edged nozzle exit designs for effective fuel injection into the flow stream in air-breathing engines: triangular-round and diamond-round nozzles. (C) Measurement technique improvements for the HU Low Speed Wind Tunnel (HU LSWT) including an automatic data acquisition system and a two component (drag-lift) balance system. In addition, a course in the field of aerodynamics was developed for the teaching and training of HU students.

  18. A method to filter out the effect of river stage fluctuation on groundwater level using time series models

    NASA Astrophysics Data System (ADS)

    Yoon, Heesung; Park, Eungyu; Yoon, Pilsun; Lee, Eunhee; Kim, Gyoo-Bum

    2016-04-01

    A method to filter out the effect of river stage fluctuations on groundwater level was designed using an artificial neural network-based time series model of groundwater level prediction. The designed method was applied to daily groundwater level data near the Gangjeong-Koryeong Barrage in the Nakdong river, South Korea. First, one-step ahead direct prediction time series models were successfully developed for both cases of before and after the barrage construction using past measurement data of rainfall, river stage, and groundwater level as inputs. The correlation coefficient values between observed and predicted data were over 0.97. Based on the direct prediction models, recursive prediction models for the simulation of groundwater level fluctuations were designed. The effect of river stage fluctuation on groundwater level data was filtered out by setting a constant value for river stage inputs of the recursive time series models. The hybrid water table fluctuation method was employed to estimate the groundwater recharge using the filtered data. The calculated ratios of groundwater recharge to precipitation before and after the barrage construction were 11.0% and 4.3%, respectively. It is expected that the proposed method can be a useful tool for groundwater level prediction and recharge estimation in the riverside area.

  19. Empirical evaluation of a new method for calculating signal-to-noise ratio for microarray data analysis.

    PubMed

    He, Zhili; Zhou, Jizhong

    2008-05-01

    Signal-to-noise-ratio (SNR) thresholds for microarray data analysis were experimentally determined with an oligonucleotide array that contained perfect-match (PM) and mismatch (MM) probes based upon four genes from Shewanella oneidensis MR-1. A new SNR calculation, called the signal-to-both-standard-deviations ratio (SSDR), was developed and evaluated, along with other two methods, the signal-to-standard-deviation ratio (SSR) and the signal-to-background ratio (SBR). At a low stringency, the thresholds of the SSR, SBR, and SSDR were 2.5, 1.60, and 0.80 with an oligonucleotide and a PCR amplicon as target templates and 2.0, 1.60, and 0.70 with genomic DNAs as target templates. Slightly higher thresholds were obtained under high-stringency conditions. The thresholds of the SSR and SSDR decreased with an increase in the complexity of targets (e.g., target types) and the presence of background DNA and a decrease in the compositions of targets, while the SBR remained unchanged in all situations. The lowest percentage of false positives and false negatives was observed with the SSDR calculation method, suggesting that it may be a better SNR calculation for more accurate determination of SNR thresholds. Positive spots identified by SNR thresholds were verified by the Student t test, and consistent results were observed. This study provides general guidance for users to select appropriate SNR thresholds for different samples under different hybridization conditions.

  20. Empirical Evaluation of a New Method for Calculating Signal to Noise Ratio (SNR) for Microarray Data Analysis

    SciTech Connect

    Zhou, Jizhong; He, Zhili; Zhou, Jizhong

    2008-03-06

    Signal-to-noise-ratio (SNR) thresholds for microarray data analysis were experimentally determined with an oligonucleotide array that contained perfect match (PM) and mismatch (MM) probes based upon four genes from Shewanella oneidensis MR-1. A new SNR calculation, called signal to both standard deviations ratio (SSDR) was developed, and evaluated along with other two methods, signal to standard deviation ratio (SSR), and signal to background ratio (SBR). At a low stringency, the thresholds of SSR, SBR, and SSDR were 2.5, 1.60 and 0.80 with oligonucleotide and PCR amplicon as target templates, and 2.0, 1.60 and 0.70 with genomic DNA as target templates. Slightly higher thresholds were obtained at the high stringency condition. The thresholds of SSR and SSDR decreased with an increase in the complexity of targets (e.g., target types), and the presence of background DNA, and a decrease in the composition of targets, while SBR remained unchanged under all situations. The lowest percentage of false positives (FP) and false negatives (FN) was observed with the SSDR calculation method, suggesting that it may be a better SNR calculation for more accurate determination of SNR thresholds. Positive spots identified by SNR thresholds were verified by the Student t-test, and consistent results were observed. This study provides general guidance for users to select appropriate SNR thresholds for different samples under different hybridization conditions.

  1. Speech communications in noise

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The physical characteristics of speech, the methods of speech masking measurement, and the effects of noise on speech communication are investigated. Topics include the speech signal and intelligibility, the effects of noise on intelligibility, the articulation index, and various devices for evaluating speech systems.

  2. Speech communications in noise

    NASA Astrophysics Data System (ADS)

    1984-07-01

    The physical characteristics of speech, the methods of speech masking measurement, and the effects of noise on speech communication are investigated. Topics include the speech signal and intelligibility, the effects of noise on intelligibility, the articulation index, and various devices for evaluating speech systems.

  3. A joint resonance frequency estimation and in-band noise reduction method for enhancing the detectability of bearing fault signals

    NASA Astrophysics Data System (ADS)

    Bozchalooi, I. Soltani; Liang, Ming

    2008-05-01

    The vibration signal measured from a bearing contains vital information for the prognostic and health assessment purposes. However, when bearings are installed as part of a complex mechanical system, the measured signal is often heavily clouded by various noises due to the compounded effect of interferences of other machine elements and background noises present in the measuring device. As such, reliable condition monitoring would not be possible without proper de-noising. This is particularly true for incipient bearing faults with very weak signature signals. A new de-noising scheme is proposed in this paper to enhance the vibration signals acquired from faulty bearings. This de-noising scheme features a spectral subtraction to trim down the in-band noise prior to wavelet filtering. The Gabor wavelet is used in the wavelet transform and its parameters, i.e., scale and shape factor are selected in separate steps. The proper scale is found based on a novel resonance estimation algorithm. This algorithm makes use of the information derived from the variable shaft rotational speed though such variation is highly undesirable in fault detection since it complicates the process substantially. The shape factor value is then selected by minimizing a smoothness index. This index is defined as the ratio of the geometric mean to the arithmetic mean of the wavelet coefficient moduli. De-noising results are presented for simulated signals and experimental data acquired from both normal and faulty bearings with defective outer race, inner race, and rolling element.

  4. Dosimetric evaluation of a simple planning method for improving intensity-modulated radiotherapy for stage III lung cancer

    PubMed Central

    Lu, Jia-Yang; Lin, Zhu; Zheng, Jing; Lin, Pei-Xian; Cheung, Michael Lok-Man; Huang, Bao-Tian

    2016-01-01

    This study aimed to evaluate the dosimetric outcomes of a base-dose-plan-compensation (BDPC) planning method for improving intensity-modulated radiotherapy (IMRT) for stage III lung cancer. For each of the thirteen included patients, three types of planning methods were applied to obtain clinically acceptable plans: (1) the conventional optimization method (CO); (2) a split-target optimization method (STO), in which the optimization objectives were set higher dose for the target with lung density; (3) the BDPC method, which compensated for the optimization-convergence error by further optimization based on the CO plan. The CO, STO and BDPC methods were then compared regarding conformity index (CI), homogeneity index (HI) of the target, organs at risk (OARs) sparing and monitor units (MUs). The BDPC method provided better HI/CI by 54%/7% on average compared to the CO method and by 38%/3% compared to the STO method. The BDPC method also spared most of the OARs by up to 9%. The average MUs of the CO, STO and BDPC plans were 890, 937 and 1023, respectively. Our results indicated that the BDPC method can effectively improve the dose distribution in IMRT for stage III lung cancer, at the expense of more MUs. PMID:27009235

  5. Inductively coupled plasma spectrometry: Noise characteristics of aerosols, application of generalized standard additions method, and Mach disk as an emission source

    SciTech Connect

    Luan, Shen

    1995-10-06

    This dissertation is focused on three problem areas in the performance of inductively coupled plasma (ICP) source. The noise characteristics of aerosols produced by ICP nebulizers are investigated. A laser beam is scattered by aerosol and detected by a photomultiplier tube and the noise amplitude spectrum of the scattered radiation is measured by a spectrum analyzer. Discrete frequency noise in the aerosol generated by a Meinhard nebulizer or a direct injection nebulizer is primarily caused by pulsation in the liquid flow from the pump. A Scott-type spray chamber suppresses white noise, while a conical, straight-pass spray chamber enhances white noise, relative to the noise seen from the primary aerosol. Simultaneous correction for both spectral interferences and matrix effects in ICP atomic emission spectrometry (AES) can be accomplished by using the generalized standard additions method (GSAM). Results obtained with the application of the GSAM to the Perkin-Elmer Optima 3000 ICP atomic emission spectrometer are presented. The echelle-based polychromator with segmented-array charge-coupled device detectors enables the direct, visual examination of the overlapping lines Cd (1) 228.802 nm and As (1) 228.812 nm. The slit translation capability allows a large number of data points to be sampled, therefore, the advantage of noise averaging is gained. An ICP is extracted into a small quartz vacuum chamber through a sampling orifice in a water-cooled copper plate. Optical emission from the Mach disk region is measured with a new type of echelle spectrometer equipped with two segmented-array charge-coupled-device detectors, with an effort to improve the detection limits for simultaneous multielement analysis by ICP-AES.

  6. A comprehensive method for preliminary design optimization of axial gas turbine stages. II - Code verification

    NASA Technical Reports Server (NTRS)

    Jenkins, R. M.

    1983-01-01

    The present effort represents an extension of previous work wherein a calculation model for performing rapid pitchline optimization of axial gas turbine geometry, including blade profiles, is developed. The model requires no specification of geometric constraints. Output includes aerodynamic performance (adiabatic efficiency), hub-tip flow-path geometry, blade chords, and estimates of blade shape. Presented herein is a verification of the aerodynamic performance portion of the model, whereby detailed turbine test-rig data, including rig geometry, is input to the model to determine whether tested performance can be predicted. An array of seven (7) NASA single-stage axial gas turbine configurations is investigated, ranging in size from 0.6 kg/s to 63.8 kg/s mass flow and in specific work output from 153 J/g to 558 J/g at design (hot) conditions; stage loading factor ranges from 1.15 to 4.66.

  7. Influence of phenological stages and method of distillation on Iranian cultivated Bay leaves volatile oil.

    PubMed

    Amin, Gh; Sourmaghi, M H Salehi; Jaafari, S; Hadjagaee, R; Yazdinezhad, A

    2007-09-01

    Leaves of Bay (Laurus nobilis L.) were collected in different phonological stages and air-dried. Volatile oil of the leaves were obtained using hydro- and steam distillation and the chemical composition were analyzed by GC and GC/Mass and identified in comparison with authentic compounds. The yield of essential oil were 0.8 to 1.5 v/w% and the major compounds were; 1,8 Cineol, alpha-terpinyl acetate and Sabinene. Because of the interesting yield of the oil and presence of 1,8-Cineol as the major compounds, the bearing ripe fruit stage in the mid of September is the best time for harvesting the Bay leaves in Iran.

  8. Simulation of the early stage of binary alloy decomposition, based on the free energy density functional method

    NASA Astrophysics Data System (ADS)

    L'vov, P. E.; Svetukhin, V. V.

    2016-07-01

    Based on the free energy density functional method, the early stage of decomposition of a onedimensional binary alloy corresponding to the approximation of regular solutions has been simulated. In the simulation, Gaussian composition fluctuations caused by the initial alloy state are taken into account. The calculation is performed using the block approach implying discretization of the extensive solution volume into independent fragments for each of which the decomposition process is calculated, and then a joint analysis of the formed second phase segregations is performed. It was possible to trace all stages of solid solution decomposition: nucleation, growth, and coalescence (initial stage). The time dependences of the main phase distribution characteristics are calculated: the average size and concentration of the second phase particles, their size distribution function, and the nucleation rate of the second phase particles (clusters). Cluster trajectories in the size-composition space are constructed for the cases of growth and dissolution.

  9. StageTip-based HAMMOC, an efficient and inexpensive phosphopeptide enrichment method for plant shotgun phosphoproteomics.

    PubMed

    Nakagami, Hirofumi

    2014-01-01

    Phosphopeptide enrichment is the most critical step for successful LC-MS/MS-based shotgun phosphoproteomics. Recent technological improvements have made selective phosphopeptide enrichment from non-fractionated whole cell lysate digests with a single-step procedure possible. Here, a handy protocol is described for phosphopeptide enrichment from plant materials using hydroxy acid-modified metal oxide chromatography (HAMMMOC) with a stop-and-go-extraction tip (StageTip).

  10. System and method for single-phase, single-stage grid-interactive inverter

    DOEpatents

    Liu, Liming; Li, Hui

    2015-09-01

    The present invention provides for the integration of distributed renewable energy sources/storages utilizing a cascaded DC-AC inverter, thereby eliminating the need for a DC-DC converter. The ability to segment the energy sources and energy storages improves the maintenance capability and system reliability of the distributed generation system, as well as achieve wide range reactive power compensation. In the absence of a DC-DC converter, single stage energy conversion can be achieved to enhance energy conversion efficiency.

  11. Train noise reduction scenarios for compliance with future noise legislation

    NASA Astrophysics Data System (ADS)

    Leth, S.

    2003-10-01

    The Technical Specification for Interoperability (TSI) for high-speed trains on the European market includes limits on noise emission. These and other future restrictions on exterior noise of high-speed and intercity trains will require that train manufacturers implement noise control measures early in the design phase. A fundamental problem faced by manufacturers during the design process is determining how much noise reduction is required for each of the various noise sources on the train in order to achieve an optimal balance. To illustrate this process, estimates are presented of the contributions from different sources on existing Bombardier trains, based on measured data, numerical calculations and empirical formulae. In addition, methods of achieving the required noise reductions for different sources are briefly discussed along with targets for future exterior noise emission. Measurement results presented demonstrate the importance of track quality in noise emission. Noise restrictions, including future legislation, must give proper recognition to this important parameter.

  12. Syngas production by two-stage method of biomass catalytic pyrolysis and gasification.

    PubMed

    Xie, Qinglong; Kong, Sifang; Liu, Yangsheng; Zeng, Hui

    2012-04-01

    A two-stage technology integrated with biomass catalytic pyrolysis and gasification processes was utilized to produce syngas (H(2)+CO). In the presence of different nickel based catalysts, effects of pyrolysis temperature and gasification temperature on gas production were investigated. Experimental results showed that more syngas and char of high quality could be obtained at a temperature of 750°C in the stage of pyrolysis, and in the stage of gasification, pyrolysis char (produced at 750°C) reacted with steam and the maximum yield of syngas was obtained at 850°C. Syngas yield in this study was greatly increased compared with previous studies, up to 3.29Nm(3)/kg biomass. The pyrolysis process could be well explained by Arrhenius kinetic first-order rate equation. XRD analyses suggested that formation of Mg(0.4)Ni(0.6)O and increase of Ni(0) crystallite size were two main reasons for the deactivation of nickel based catalysts at higher temperature.

  13. Estimation of Supersonic Stage Separation Aerodynamics of Winged-Body Launch Vehicles Using Response Surface Methods

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.; Deloach, Richard

    2008-01-01

    A collection of statistical and mathematical techniques referred to as response surface methodology was used to estimate the longitudinal stage separation aerodynamic characteristics of a generic, bimese, winged multi-stage launch vehicle configuration using data obtained on small-scale models at supersonic speeds in the NASA Langley Research Center Unitary Plan Wind Tunnel. The simulated Mach 3 staging was dominated by multiple shock wave interactions between the orbiter and booster vehicles throughout the relative spatial locations of interest. This motivated a partitioning of the overall inference space into several contiguous regions within which the separation aerodynamics were presumed to be well-behaved and estimable using cuboidal and spherical central composite designs capable of fitting full second-order response functions. The primary goal was to approximate the underlying overall aerodynamic response surfaces of the booster vehicle in belly-to-belly proximity to the orbiter vehicle using relatively simple, lower-order polynomial functions that were piecewise-continuous across the full independent variable ranges of interest. The quality of fit and prediction capabilities of the empirical models were assessed in detail, and the issue of subspace boundary discontinuities was addressed. The potential benefits of augmenting the central composite designs to full third order using computer-generated D-optimality criteria were also evaluated. The usefulness of central composite designs, the subspace sizing, and the practicality of fitting low-order response functions over a partitioned inference space dominated by highly nonlinear and possibly discontinuous shock-induced aerodynamics are discussed.

  14. Estimation of Supersonic Stage Separation Aerodynamics of Winged-Body Launch Vehicles Using Response Surface Methods

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2010-01-01

    Response surface methodology was used to estimate the longitudinal stage separation aerodynamic characteristics of a generic, bimese, winged multi-stage launch vehicle configuration at supersonic speeds in the NASA LaRC Unitary Plan Wind Tunnel. The Mach 3 staging was dominated by shock wave interactions between the orbiter and booster vehicles throughout the relative spatial locations of interest. The inference space was partitioned into several contiguous regions within which the separation aerodynamics were presumed to be well-behaved and estimable using central composite designs capable of fitting full second-order response functions. The underlying aerodynamic response surfaces of the booster vehicle in belly-to-belly proximity to the orbiter vehicle were estimated using piecewise-continuous lower-order polynomial functions. The quality of fit and prediction capabilities of the empirical models were assessed in detail, and the issue of subspace boundary discontinuities was addressed. Augmenting the central composite designs to full third-order using computer-generated D-optimality criteria was evaluated. The usefulness of central composite designs, the subspace sizing, and the practicality of fitting lower-order response functions over a partitioned inference space dominated by highly nonlinear and possibly discontinuous shock-induced aerodynamics are discussed.

  15. Aquifer response to stream-stage and recharge variations. II. Convolution method and applications

    USGS Publications Warehouse

    Barlow, P.M.; DeSimone, L.A.; Moench, A.F.

    2000-01-01

    In this second of two papers, analytical step-response functions, developed in the companion paper for several cases of transient hydraulic interaction between a fully penetrating stream and a confined, leaky, or water-table aquifer, are used in the convolution integral to calculate aquifer heads, streambank seepage rates, and bank storage that occur in response to streamstage fluctuations and basinwide recharge or evapotranspiration. Two computer programs developed on the basis of these step-response functions and the convolution integral are applied to the analysis of hydraulic interaction of two alluvial stream-aquifer systems in the northeastern and central United States. These applications demonstrate the utility of the analytical functions and computer programs for estimating aquifer and streambank hydraulic properties, recharge rates, streambank seepage rates, and bank storage. Analysis of the water-table aquifer adjacent to the Blackstone River in Massachusetts suggests that the very shallow depth of water table and associated thin unsaturated zone at the site cause the aquifer to behave like a confined aquifer (negligible specific yield). This finding is consistent with previous studies that have shown that the effective specific yield of an unconfined aquifer approaches zero when the capillary fringe, where sediment pores are saturated by tension, extends to land surface. Under this condition, the aquifer's response is determined by elastic storage only. Estimates of horizontal and vertical hydraulic conductivity, specific yield, specific storage, and recharge for a water-table aquifer adjacent to the Cedar River in eastern Iowa, determined by the use of analytical methods, are in close agreement with those estimated by use of a more complex, multilayer numerical model of the aquifer. Streambank leakance of the semipervious streambank materials also was estimated for the site. The streambank-leakance parameter may be considered to be a general (or lumped

  16. Forskolin improves the cryosurvival of in vivo-derived porcine embryos at very early stages using two vitrification methods.

    PubMed

    Gomis, J; Cuello, C; Sanchez-Osorio, J; Gil, M A; Parrilla, I; Angel, M A; Vazquez, J M; Roca, J; Martinez, E A

    2013-04-01

    This study was aimed to determine the effect of forskolin on the viability of in vivo-derived porcine embryos vitrified by the superfine open pulled straw (SOPS) or solid surface vitrification (SSV) methods at the 2-cell, 4-cell, and blastocyst stages. Zygotes, 2- to 4-cell embryos, and morulae were obtained from superovulated sows. After collection, embryos were cultured for 24h with 0 or 10 μM forskolin and then vitrified using the SOPS and SSV method, or not vitrified (fresh controls). Fresh and vitrified-warmed 2-cells, 4-cells, and blastocysts were cultured for additional 96 h, 72 h and 24 h, respectively. At the end of the culture, embryos were evaluated for progression to the blastocyst stage and total cell number. The vitrification method did not affect any of the parameters evaluated for any embryo stage. Forskolin increased (P<0.01) the blastocyst formation and the final developmental stage of vitrified 2- and 4-cell embryos. However, these embryos exhibited lower (P<0.003) blastocyst formation rates than their fresh counterparts. The total cell number and hatching rate were similar in both groups (vitrified and fresh) of 2- and 4-cell embryos. Vitrified blastocysts exhibited viabilities, final developmental stages, hatching rates, and total cell numbers that were similar to those of their fresh counterparts, regardless of the addition of forskolin. In conclusion, the SOPS and SSV methods are suitable for the cryopreservation of in vivo-derived 2- to 4-cell porcine embryos. Pre-treatment with forskolin for 24h before vitrification improves the cryotolerance of 2- and 4-cell porcine embryos.

  17. Acoustic Prediction Methodology and Test Validation for an Efficient Low-Noise Hybrid Wing Body Subsonic Transport

    NASA Technical Reports Server (NTRS)

    Kawai, Ronald T. (Compiler)

    2011-01-01

    This investigation was conducted to: (1) Develop a hybrid wing body subsonic transport configuration with noise prediction methods to meet the circa 2007 NASA Subsonic Fixed Wing (SFW) N+2 noise goal of -52 dB cum relative to FAR 36 Stage 3 (-42 dB cum re: Stage 4) while achieving a -25% fuel burned compared to current transports (re :B737/B767); (2) Develop improved noise prediction methods for ANOPP2 for use in predicting FAR 36 noise; (3) Design and fabricate a wind tunnel model for testing in the LaRC 14 x 22 ft low speed wind tunnel to validate noise predictions and determine low speed aero characteristics for an efficient low noise Hybrid Wing Body configuration. A medium wide body cargo freighter was selected to represent a logical need for an initial operational capability in the 2020 time frame. The Efficient Low Noise Hybrid Wing Body (ELNHWB) configuration N2A-EXTE was evolved meeting the circa 2007 NRA N+2 fuel burn and noise goals. The noise estimates were made using improvements in jet noise shielding and noise shielding prediction methods developed by UC Irvine and MIT. From this the Quiet Ultra Integrated Efficient Test Research Aircraft #1 (QUIET-R1) 5.8% wind tunnel model was designed and fabricated.

  18. Blown flap noise prediction

    NASA Technical Reports Server (NTRS)

    Reddy, N. N.

    1978-01-01

    Theoretical and experimental developments of flow-surface interaction noise with a particular emphasis on blown-flap noise were reviewed. Several blown-flap noise prediction methods were evaluated by comparing predicted acoustic levels, directivity, and spectra with a recently obtained data base. A prediction method was selected and a detailed step-by-step description of this method was provided to develop a computer module to calculate one-third octave band frequency spectra at any given location in the far-field for under-the-wing and upper surface blown configurations as a function of geometric and operational parameters.

  19. A two-stage adaptive stochastic collocation method on nested sparse grids for multiphase flow in randomly heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Liao, Qinzhuo; Zhang, Dongxiao; Tchelepi, Hamdi

    2017-02-01

    A new computational method is proposed for efficient uncertainty quantification of multiphase flow in porous media with stochastic permeability. For pressure estimation, it combines the dimension-adaptive stochastic collocation method on Smolyak sparse grids and the Kronrod-Patterson-Hermite nested quadrature formulas. For saturation estimation, an additional stage is developed, in which the pressure and velocity samples are first generated by the sparse grid interpolation and then substituted into the transport equation to solve for the saturation samples, to address the low regularity problem of the saturation. Numerical examples are presented for multiphase flow with stochastic permeability fields to demonstrate accuracy and efficiency of the proposed two-stage adaptive stochastic collocation method on nested sparse grids.

  20. Automatic estimation of sleep level for nap based on conditional probability of sleep stages and an exponential smoothing method.

    PubMed

    Wang, Bei; Wang, Xingyu; Zhang, Tao; Nakamura, Masatoshi

    2013-01-01

    An automatic sleep level estimation method was developed for monitoring and regulation of day time nap sleep. The recorded nap data is separated into continuous 5-second segments. Features are extracted from EEGs, EOGs and EMG. A parameter of sleep level is defined which is estimated based on the conditional probability of sleep stages. An exponential smoothing method is applied for the estimated sleep level. There were totally 12 healthy subjects, with an averaged age of 22 yeas old, participated into the experimental work. Comparing with sleep stage determination, the presented sleep level estimation method showed better performance for nap sleep interpretation. Real time monitoring and regulation of nap is realizable based on the developed technique.

  1. Analyzing nocturnal noise stratification.

    PubMed

    Rey Gozalo, Guillermo; Barrigón Morillas, Juan Miguel; Gómez Escobar, Valentín

    2014-05-01

    Pollution associated to traffic can be considered as one of the most relevant pollution sources in our cities; noise is one of the major components of traffic pollution; thus, efforts are necessary to search adequate noise assessment methods and low pollution city designs. Different methods have been proposed for the evaluation of noise in cities, including the categorization method, which is based on the functionality concept. Until now, this method has only been studied (with encouraging results) for short-term, diurnal measurements, but nocturnal noise presents a behavior clearly different on respect to the diurnal one. In this work 45 continuous measurements of approximately one week each in duration are statistically analyzed to identify differences between the proposed categories. The results show that the five proposed categories highlight the noise stratification of the studied city in each period of the day (day, evening, and night). A comparison of the continuous measurements with previous short-term measurements indicates that the latter can be a good approximation of the former in diurnal period, reducing the resource expenditure for noise evaluation. Annoyance estimated from the measured noise levels was compared with the response of population obtained from a questionnaire with good agreement. The categorization method can yield good information about the distribution of a pollutant associated to traffic in our cities in each period of the day and, therefore, is a powerful tool for town planning and the design of pollution prevention policies.

  2. Microwatt shot-noise measurement

    NASA Astrophysics Data System (ADS)

    Bacon, A. M.; Zhao, H. Z.; Wang, L. J.; Thomas, J. E.

    1995-08-01

    We report a simple scheme for sensitive measurements of optical-noise spectra. Optical noise is separated from electronic noise when the output of an analog spectrum analyzer is real-time squared and then lock-in detected. This method directly yields the desired mean-square noise voltage, i.e., the power spectrum of the optical noise on a linear scale. To demonstrate this technique, the mean-square shot noise of a laser beam is measured and found to vary linearly with the laser power from several milliwatts down to one microwatt, in excellent quantitative agreement with predictions.

  3. Noise Protection

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Environmental Health Systems puts forth an increasing effort in the U.S. to develop ways of controlling noise, particularly in industrial environments due to Federal and State laws, labor union insistence and new findings relative to noise pollution impact on human health. NASA's Apollo guidance control system aided in the development of a noise protection product, SMART. The basis of all SMART products is SMART compound a liquid plastic mixture with exceptional energy/sound absorbing qualities. The basic compound was later refined for noise protection use.

  4. Early life-stage toxicity test methods for gulf toadfish (Opsanus beta) and results using chlorpyrifos

    SciTech Connect

    Hansen, D.J.; Goodman, L.R.; Cripe, G.M.; Macauley, S.F.

    1986-02-01

    Gulf toadfish (Opsanus beta) were continuously exposed as embryos, sac fry, and juveniles to technical chlorpyrifos in two 49-day early life-stage toxicity tests. Survival was significantly (alpha = 0.05) reduced only in 150 micrograms/liter. However, toadfish exposed to chlorpyrifos concentrations from 3.7 to 150 micrograms/liter weighted significantly less than control fish: 9% lower in 3.7 micrograms/liter to 62% lower in 150 micrograms/liter. The 96-hr LC50 for juvenile fish was 520 micrograms/liter. Concentrations of chlorpyrifos in toadfish and bioconcentration factors increased with increasing exposure concentration, a condition not generally observed with other marine fishes and other test chemicals. These results demonstrated the procedures for, and the practicality of, early life-stage tests with this marine species. We recommend the use of the gulf toadfish for comparative toxicity testing and for evaluating the toxicity of substances in conjunction with ontogenetical, physiological, and histological investigations of this considerably studied genus. We do not recommend it for routine effects testing.

  5. A Noise-Robust Continuous Speech Recognition System Using Block-Based Dynamic Range Adjustment

    NASA Astrophysics Data System (ADS)

    Sun, Yiming; Miyanaga, Yoshikazu

    A new approach to speech feature estimation under noise circumstances is proposed in this paper. It is used in noise-robust continuous speech recognition (CSR). As the noise robust techniques in isolated word speech recognition, the running spectrum analysis (RSA), the running spectrum filtering (RSF) and the dynamic range adjustment (DRA) methods have been developed. Among them, only RSA has been applied to a CSR system. This paper proposes an extended DRA for a noise-robust CSR system. In the stage of speech recognition, a continuous speech waveform is automatically assigned to a block defined by a short time length. The extended DRA is applied to these estimated blocks. The average recognition rate of the proposed method has been improved under several different noise conditions. As a result, the recognition rates are improved up to 15% in various noises with 10 dB SNR.

  6. Noise contaminated transmittance

    SciTech Connect

    Zardecki, A.; McVey, B.D.; Nelson, D.H.

    1997-09-01

    The authors compare the efficiency of a classifier based on probabilistic neural networks and the general least squares method. Both methods must accommodate noise due to uncertainty in the measured spectrum at each wavelength. The evaluation of both methods is based on a simulated transmittance spectrum, in which the received signal is supplemented by an additive admixture of noise. To obtain a realistic description of the noise model, they generate several hundred laser pulses for each wavelength under consideration. These pulses have a predetermined correlation matrix for different wavelengths; furthermore, they are composed of three components accounting for the randomness of the observed spectrum. The first component is the correlated 1/f noise; the second component is due to uncorrelated 1/f noise; the third one is the uncorrelated white noise. The probabilistic neural network fails to retrieve the species concentration correctly for large noise levels; on the other hand, its predictions being confined to a fixed number of concentration bins, the network produces relatively small variances. To a large extent, the general least square method avoids the false alarms. It reproduces the average concentrations correctly; however, the concentration variances can be large.

  7. Calibration of the straightness and orthogonality error of a laser feedback high-precision stage using self-calibration methods

    NASA Astrophysics Data System (ADS)

    Kim, Dongmin; Kim, Kihyun; Park, Sang Hyun; Jang, Sangdon

    2014-12-01

    An ultra high-precision 3-DOF air-bearing stage is developed and calibrated in this study. The stage was developed for the transportation of a glass or wafer with x and y following errors in the nanometer regime. To apply the proposed stage to display or semiconductor fabrication equipment, x and y straightness errors should be at the sub-micron level and the x-y orthogonality error should be in the region of several arcseconds with strokes of several hundreds of mm. Our system was designed to move a 400 mm stroke on the x axis and a 700 mm stroke on the y axis. To do this, 1000 mm and 550 mm bar-type mirrors were adopted for real time Δx and Δy laser measurements and feedback control. In this system, with the laser wavelength variation and instability being kept to a minimum through environmental control, the straightness and orthogonality become purely dependent upon the surface shape of the bar mirrors. Compensation for the distortion of the bar mirrors is accomplished using a self-calibration method. The successful application of the method nearly eliminated the straightness and orthogonality errors of the stage, allowing their specifications to be fully satisfied. As a result, the straightness and orthogonality errors of the stage were successfully decreased from 4.4 μm to 0.8 μm and from 0.04° to 2.48 arcsec, respectively.

  8. Airframe noise prediction evaluation

    NASA Technical Reports Server (NTRS)

    Yamamoto, Kingo J.; Donelson, Michael J.; Huang, Shumei C.; Joshi, Mahendra C.

    1995-01-01

    The objective of this study is to evaluate the accuracy and adequacy of current airframe noise prediction methods using available airframe noise measurements from tests of a narrow body transport (DC-9) and a wide body transport (DC-10) in addition to scale model test data. General features of the airframe noise from these aircraft and models are outlined. The results of the assessment of two airframe prediction methods, Fink's and Munson's methods, against flight test data of these aircraft and scale model wind tunnel test data are presented. These methods were extensively evaluated against measured data from several configurations including clean, slat deployed, landing gear-deployed, flap deployed, and landing configurations of both DC-9 and DC-10. They were also assessed against a limited number of configurations of scale models. The evaluation was conducted in terms of overall sound pressure level (OASPL), tone corrected perceived noise level (PNLT), and one-third-octave band sound pressure level (SPL).

  9. Sounds Alive: A Noise Workbook.

    ERIC Educational Resources Information Center

    Dickman, Donna McCord

    Sarah Screech, Danny Decibel, Sweetie Sound and Neil Noisy describe their experiences in the world of sound and noise to elementary students. Presented are their reports, games and charts which address sound measurement, the effects of noise on people, methods of noise control, and related areas. The workbook is intended to stimulate students'…

  10. School Noise and Its Control

    ERIC Educational Resources Information Center

    Ikenberrgy, Larry D.

    1974-01-01

    Sources of noises affecting schools and their hindrance of learning are presented. Noise levels for different activities are tabled and possible methods for controlling such noises are suggested. Internal to the school, shop and music levels are the most severe. More care in site selection and design considerations are recommended. (LS)

  11. Assessment and evaluation of noise controls on roof bolting equipment and a method for predicting sound pressure levels in underground coal mining

    NASA Astrophysics Data System (ADS)

    Matetic, Rudy J.

    Over-exposure to noise remains a widespread and serious health hazard in the U.S. mining industries despite 25 years of regulation. Every day, 80% of the nation's miners go to work in an environment where the time weighted average (TWA) noise level exceeds 85 dBA and more than 25% of the miners are exposed to a TWA noise level that exceeds 90 dBA, the permissible exposure limit (PEL). Additionally, MSHA coal noise sample data collected from 2000 to 2002 show that 65% of the equipment whose operators exceeded 100% noise dosage comprise only seven different types of machines; auger miners, bulldozers, continuous miners, front end loaders, roof bolters, shuttle cars (electric), and trucks. In addition, the MSHA data indicate that the roof bolter is third among all the equipment and second among equipment in underground coal whose operators exceed 100% dosage. A research program was implemented to: (1) determine, characterize and to measure sound power levels radiated by a roof bolting machine during differing drilling configurations (thrust, rotational speed, penetration rate, etc.) and utilizing differing types of drilling methods in high compressive strength rock media (>20,000 psi). The research approach characterized the sound power level results from laboratory testing and provided the mining industry with empirical data relative to utilizing differing noise control technologies (drilling configurations and types of drilling methods) in reducing sound power level emissions on a roof bolting machine; (2) distinguish and correlate the empirical data into one, statistically valid, equation, in which, provided the mining industry with a tool to predict overall sound power levels of a roof bolting machine given any type of drilling configuration and drilling method utilized in industry; (3) provided the mining industry with several approaches to predict or determine sound pressure levels in an underground coal mine utilizing laboratory test results from a roof bolting

  12. Design and ergonomics. Methods for integrating ergonomics at hand tool design stage.

    PubMed

    Marsot, Jacques; Claudon, Laurent

    2004-01-01

    As a marked increase in the number of musculoskeletal disorders was noted in many industrialized countries and more specifically in companies that require the use of hand tools, the French National Research and Safety Institute (INRS) launched in 1999 a research project on the topic of integrating ergonomics into hand tool design, and more particularly to a design of a boning knife. After a brief recall of the difficulties of integrating ergonomics at the design stage, the present paper shows how 3 design methodological tools--Functional Analysis, Quality Function Deployment and TRIZ--have been applied to the design of a boning knife. Implementation of these tools enabled us to demonstrate the extent to which they are capable of responding to the difficulties of integrating ergonomics into product design.

  13. Robust statistical methods for impulse noise suppressing of spread spectrum induced polarization data, with application to a mine site, Gansu province, China

    NASA Astrophysics Data System (ADS)

    Liu, Weiqiang; Chen, Rujun; Cai, Hongzhu; Luo, Weibin

    2016-12-01

    In this paper, we investigated the robust processing of noisy spread spectrum induced polarization (SSIP) data. SSIP is a new frequency domain induced polarization method that transmits pseudo-random m-sequence as source current where m-sequence is a broadband signal. The potential information at multiple frequencies can be obtained through measurement. Removing the noise is a crucial problem for SSIP data processing. Considering that if the ordinary mean stack and digital filter are not capable of reducing the impulse noise effectively in SSIP data processing, the impact of impulse noise will remain in the complex resistivity spectrum that will affect the interpretation of profile anomalies. We implemented a robust statistical method to SSIP data processing. The robust least-squares regression is used to fit and remove the linear trend from the original data before stacking. The robust M estimate is used to stack the data of all periods. The robust smooth filter is used to suppress the residual noise for data after stacking. For robust statistical scheme, the most appropriate influence function and iterative algorithm are chosen by testing the simulated data to suppress the outliers' influence. We tested the benefits of the robust SSIP data processing using examples of SSIP data recorded in a test site beside a mine in Gansu province, China.

  14. Hydrophilic drug encapsulation in shell-core microcarriers by two stage polyelectrolyte complexation method.

    PubMed

    Dalmoro, Annalisa; Sitenkov, Alexander Y; Cascone, Sara; Lamberti, Gaetano; Barba, Anna Angela; Moustafine, Rouslan I

    2017-02-25

    In this study a protocol exploiting the combination of the ultrasonic atomization and the complexation between polyelectrolytes was developed to efficiently encapsulate a hydrophilic chemotherapeutic agent essentially used in the treatment of colon cancer, 5-fluorouracil, in enteric shell-core alginate-based microcarriers. The atomization assisted by ultrasound allowed to obtain small droplets by supplying low energy and avoiding drug degradation. In particular microcarriers were produced in a home-made apparatus where both the core (composed of alginate, drug, and Pluronic F127) and shell (composed of only alginate) feed were separately sent to the coaxial ultrasonic atomizer where they were nebulized and placed in contact with the complexation bulk. With the aim to obtain microstructured particles of alginate encapsulating 5-fluorouracil, different formulations of the first complexation bulk were tested; at last an emulsion made of a calcium chloride aqueous solution and dichloromethane allowed to reach an encapsulation efficiency of about 50%. This result can be considered very interesting considering that in literature similar techniques gave 5-fluorouracil encapsulation efficiencies of about 10%. Since a single complexation stage was not able to assure microcarriers gastroresistance, the formulation of a second complexation bulk was evaluated. The solution of cationic and pH-insoluble Eudragit® RS 100 in dichloromethane was chosen as bulk of second-stage complexation obtaining good enteric properties of shell-core microcarriers, i.e. a 5-FU cumulative release at pH 1 (simulating gastric pH) lower than 35%. The formation of interpolyelectrolyte complex (IPEC) between countercharged polymers and the chemical stability of 5-FU in microcarriers were confirmed by FTIR analysis, the presence of an amorphous dispersion of 5-FU in prepared microparticles was also confirmed by DSC. Finally, shell-core enteric coated microcarriers encapsulating 5-fluorouracil were used

  15. Evaluation of a Cubature Kalman Filtering-Based Phase Unwrapping Method for Differential Interferograms with High Noise in Coal Mining Areas.

    PubMed

    Liu, Wanli; Bian, Zhengfu; Liu, Zhenguo; Zhang, Qiuzhao

    2015-07-06

    Differential interferometric synthetic aperture radar has been shown to be effective for monitoring subsidence in coal mining areas. Phase unwrapping can have a dramatic influence on the monitoring result. In this paper, a filtering-based phase unwrapping algorithm in combination with path-following is introduced to unwrap differential interferograms with high noise in mining areas. It can perform simultaneous noise filtering and phase unwrapping so that the pre-filtering steps can be omitted, thus usually retaining more details and improving the detectable deformation. For the method, the nonlinear measurement model of phase unwrapping is processed using a simplified Cubature Kalman filtering, which is an effective and efficient tool used in many nonlinear fields. Three case studies are designed to evaluate the performance of the method. In Case 1, two tests are designed to evaluate the performance of the method under different factors including the number of multi-looks and path-guiding indexes. The result demonstrates that the unwrapped results are sensitive to the number of multi-looks and that the Fisher Distance is the most suitable path-guiding index for our study. Two case studies are then designed to evaluate the feasibility of the proposed phase unwrapping method based on Cubature Kalman filtering. The results indicate that, compared with the popular Minimum Cost Flow method, the Cubature Kalman filtering-based phase unwrapping can achieve promising results without pre-filtering and is an appropriate method for coal mining areas with high noise.

  16. Evaluation of a Cubature Kalman Filtering-Based Phase Unwrapping Method for Differential Interferograms with High Noise in Coal Mining Areas

    PubMed Central

    Liu, Wanli; Bian, Zhengfu; Liu, Zhenguo; Zhang, Qiuzhao

    2015-01-01

    Differential interferometric synthetic aperture radar has been shown to be effective for monitoring subsidence in coal mining areas. Phase unwrapping can have a dramatic influence on the monitoring result. In this paper, a filtering-based phase unwrapping algorithm in combination with path-following is introduced to unwrap differential interferograms with high noise in mining areas. It can perform simultaneous noise filtering and phase unwrapping so that the pre-filtering steps can be omitted, thus usually retaining more details and improving the detectable deformation. For the method, the nonlinear measurement model of phase unwrapping is processed using a simplified Cubature Kalman filtering, which is an effective and efficient tool used in many nonlinear fields. Three case studies are designed to evaluate the performance of the method. In Case 1, two tests are designed to evaluate the performance of the method under different factors including the number of multi-looks and path-guiding indexes. The result demonstrates that the unwrapped results are sensitive to the number of multi-looks and that the Fisher Distance is the most suitable path-guiding index for our study. Two case studies are then designed to evaluate the feasibility of the proposed phase unwrapping method based on Cubature Kalman filtering. The results indicate that, compared with the popular Minimum Cost Flow method, the Cubature Kalman filtering-based phase unwrapping can achieve promising results without pre-filtering and is an appropriate method for coal mining areas with high noise. PMID:26153776

  17. Automatic noise limiter-blanker

    NASA Technical Reports Server (NTRS)

    Burhans, R. W.

    1976-01-01

    A blanker system that may be used with audio noise limiters or automatic noise limiters was described. The system employs a pair of silicon diodes and two RC filters connected across the feedback impedance of an operational amplifier so as to counteract impulse noise interference caused by local spherics activity or 60 Hz harmonics radiated from ac motor control systems. The following information is given: circuit diagram and description, operating details, evaluation, discussion of other noise blanking methods.

  18. A portable measurement system for subcriticality measurements by the CF-source-driven neutron noise analysis method

    SciTech Connect

    Mihalczo, J.T.; Ragan, G.E.

    1987-01-01

    A portable system has been assembled that is capable of measuring the subcriticality of fissile materials using the /sup 252/CF-source-driven neutron noise analysis method. The measurement system consists of a parallel-plate ionization chamber containing /sup 252/CF, two /sup 3/He proportional counters with their associated electronics, and a small computer containing anti-aliasing filters and A/D convertors. The system Fourier analyzes the digitized data and forms the appropriate auto and cross-power spectral densities. These spectra are used to form a ratio of spectral densities, G/sub 12/G/sub 13//G/sub 11/G/sub 23/, where 1 refers to the ionization chamber, and 2 and 3 refer to the /sup 3/He counters, from which subcriticality can be determined. The chamber and detectors are located appropriately near the fissile material. The system is capable of sampling signals at rates of up to 80 kHz and processing these data at rates of 2 kHz to form the appropriate spectra. The presently configured system is a two-channel system, hence the measurement of G/sub 12/, G/sub 13/, and G/sub 23/ must be done sequentially before the ratio of spectral densities is obtained. Future improvements of the system will allow simultaneous measurement of all spectra and will further reduce size, thereby enhancing portability. This measurement system can provide reliable, cost effective, and convenient determination of the subcriticality of a wide variety of fissile materials and moderators.

  19. Analysis of the dominant vibration frequencies of rail bridges for structure-borne noise using a power flow method

    NASA Astrophysics Data System (ADS)

    Li, Q.; Wu, D. J.

    2013-09-01

    The use of concrete bridges in urban rail transit systems has raised many concerns regarding low-frequency (20-200 Hz) structure-borne noise due to the vibration of bridges when subjected to moving trains. Understanding the mechanism that determines the dominant frequencies of bridge vibrations is essential for both vibration and noise reduction. This paper presents a general procedure based on the force method to obtain the power flows within a coupled vehicle-track-bridge system, the point mobility of the system and the dynamic interaction forces connecting various components. The general coupling system consists of multi-rigid-bodies for the vehicles, infinite Euler beams representing the rails, two-dimensional or three-dimensional elements of the concrete bridges, and spring-dashpot pairs to model the wheel-rail contacts, the vehicle suspensions, the rail pads and the bridge bearings. The dynamic interaction of the coupled system is solved in the frequency domain by assuming the combined wheel-rail roughness moves forward relative to the stationary vehicles. The proposed procedure is first applied to a rail on discrete supports and then to a real urban rail transit U-shaped concrete bridge. The computed results show that the wheel-rail contact forces, the power flows to the rail/bridge subsystem and the accelerations of the bridge are primarily dominated by the contents around the natural frequency of a single wheel adhered to the elastically supported rail. If the ath node of the mth spring-dashpot pair and the bth node of the nth spring-dashpot pair are connected to the same rigid body, then δmnab(ω) can be expressed as δmnab(ω)=-{(}/{Mlω}, where Ml is the mass of the lth rigid body. If the ath node of the mth spring-dashpot pair and the bth node of the nth spring-dashpot pair are connected to the same infinite rail, δmnab(ω) can be expressed as [8] δmnab(ω)=-j{((e-je)}/{4EIk}, where xm and xn are the x-coordinates of the mth and nth spring

  20. Resolution and robustness to noise of the sensitivity-based method for microwave imaging with data acquired on cylindrical surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Yifan; Tu, Sheng; Amineh, Reza K.; Nikolova, Natalia K.

    2012-11-01

    The spatial resolution limit of a Jacobian-based microwave imaging algorithm and its robustness to noise are evaluated. The focus here is on tomographic systems where the wideband data are acquired with a vertically scanned circular sensor array and at each scanning step a 2D image is reconstructed in the plane of the sensor array. The theoretical resolution is obtained as one-half of the maximum-frequency wavelength with far-zone data and about two-thirds of the array radius with near-zone data. Validation examples are given using analytical electromagnetic models. The algorithm is shown to be robust to noise when the response data are corrupted by Gaussian white noise.