High-Speed Jet Noise Reduction NASA Perspective
NASA Technical Reports Server (NTRS)
Huff, Dennis L.; Handy, J. (Technical Monitor)
2001-01-01
History shows that the problem of high-speed jet noise reduction is difficult to solve. the good news is that high performance military aircraft noise is dominated by a single source called 'jet noise' (commercial aircraft have several sources). The bad news is that this source has been the subject of research for the past 50 years and progress has been incremental. Major jet noise reduction has been achieved through changing the cycle of the engine to reduce the jet exit velocity. Smaller reductions have been achieved using suppression devices like mixing enhancement and acoustic liners. Significant jet noise reduction without any performance loss is probably not possible! Recent NASA Noise Reduction Research Programs include the High Speed Research Program, Advanced Subsonic Technology Noise Reduction Program, Aerospace Propulsion and Power Program - Fundamental Noise, and Quiet Aircraft Technology Program.
Evaluation of the Advanced Subsonic Technology Program Noise Reduction Benefits
NASA Technical Reports Server (NTRS)
Golub, Robert A.; Rawls, John W., Jr.; Russell, James W.
2005-01-01
This report presents a detailed evaluation of the aircraft noise reduction technology concepts developed during the course of the NASA/FAA Advanced Subsonic Technology (AST) Noise Reduction Program. In 1992, NASA and the FAA initiated a cosponsored, multi-year program with the U.S. aircraft industry focused on achieving significant advances in aircraft noise reduction. The program achieved success through a systematic development and validation of noise reduction technology. Using the NASA Aircraft Noise Prediction Program, the noise reduction benefit of the technologies that reached a NASA technology readiness level of 5 or 6 were applied to each of four classes of aircraft which included a large four engine aircraft, a large twin engine aircraft, a small twin engine aircraft and a business jet. Total aircraft noise reductions resulting from the implementation of the appropriate technologies for each class of aircraft are presented and compared to the AST program goals.
NASA Technical Reports Server (NTRS)
Kumasaka, Henry A.; Martinez, Michael M.; Weir, Donald S.
1996-01-01
This report describes the methodology for assessing the impact of component noise reduction on total airplane system noise. The methodology is intended to be applied to the results of individual study elements of the NASA-Advanced Subsonic Technology (AST) Noise Reduction Program, which will address the development of noise reduction concepts for specific components. Program progress will be assessed in terms of noise reduction achieved, relative to baseline levels representative of 1992 technology airplane/engine design and performance. In this report, the 1992 technology reference levels are defined for assessment models based on four airplane sizes - an average business jet and three commercial transports: a small twin, a medium sized twin, and a large quad. Study results indicate that component changes defined as program final goals for nacelle treatment and engine/airframe source noise reduction would achieve from 6-7 EPNdB reduction of total airplane noise at FAR 36 Stage 3 noise certification conditions for all of the airplane noise assessment models.
NASA Noise Reduction Program for Advanced Subsonic Transports
NASA Technical Reports Server (NTRS)
Stephens, David G.; Cazier, F. W., Jr.
1995-01-01
Aircraft noise is an important byproduct of the world's air transportation system. Because of growing public interest and sensitivity to noise, noise reduction technology is becoming increasingly important to the unconstrained growth and utilization of the air transportation system. Unless noise technology keeps pace with public demands, noise restrictions at the international, national and/or local levels may unduly constrain the growth and capacity of the system to serve the public. In recognition of the importance of noise technology to the future of air transportation as well as the viability and competitiveness of the aircraft that operate within the system, NASA, the FAA and the industry have developed noise reduction technology programs having application to virtually all classes of subsonic and supersonic aircraft envisioned to operate far into the 21st century. The purpose of this paper is to describe the scope and focus of the Advanced Subsonic Technology Noise Reduction program with emphasis on the advanced technologies that form the foundation of the program.
NASA Technical Reports Server (NTRS)
Mathews, Douglas; Bock, Larry A.; Bielak, Gerald W.; Dougherty, R. P.; Premo, John W.; Scharpf, Dan F.; Yu, Jia
2014-01-01
Major airports in the world's air transportation systems face a serious problem in providing greater capacity to meet the ever increasing demands of air travel. This problem could be relieved if airports are allowed to increase their operating time, now restricted by curfews and by relaxing present limits on takeoffs and landings. The key operational issue in extending the present curfews is noise. In response to these increasing restrictive noise regulations, NASA has launched a program to validate through engine testing, noise reduction concepts and technologies that have evolved from the Advanced Subsonic Technologies (AST) Noise Reduction Program. The goal of this AST program was to develop and validate technology that reduces engine noise and improves nacelle suppression effectiveness relative to 1992 technology. Contract NAS3-97144 titled "Engine Validation of Noise Reduction Concepts" (EVNRC) was awarded to P&W on August 12, 1997 to conduct full scale noise reduction tests in two Phases on a PW4098 engine. The following Section 1.2 provides a brief description of the overall program. The remainder of this report provides a detailed documentation of Phase I of the program.
Relationship between Aircraft Noise Contour Area and Noise Levels at Certification Points
NASA Technical Reports Server (NTRS)
Powell, Clemans A.
2003-01-01
The use of sound exposure level contour area reduction has been proposed as an alternative or supplemental metric of progress and success for the NASA Quiet Aircraft Technology program, which currently uses the average of predicted noise reductions at three community locations. As the program has expanded to include reductions in airframe noise as well as reduction due to optimization of operating procedures for lower noise, there is concern that the three-point methodology may not represent a fair measure of benefit to airport communities. This paper addresses several topics related to this proposal: (1) an analytical basis for a relationship between certification noise levels and noise contour areas for departure operations is developed, (2) the relationship between predicted noise contour area and the noise levels measured or predicted at the certification measurement points is examined for a wide range of commercial and business aircraft, and (3) reductions in contour area for low-noise approach scenarios are predicted and equivalent reductions in source noise are determined.
Technologies for Aircraft Noise Reduction
NASA Technical Reports Server (NTRS)
Huff, Dennis L.
2006-01-01
Technologies for aircraft noise reduction have been developed by NASA over the past 15 years through the Advanced Subsonic Technology (AST) Noise Reduction Program and the Quiet Aircraft Technology (QAT) project. This presentation summarizes highlights from these programs and anticipated noise reduction benefits for communities surrounding airports. Historical progress in noise reduction and technologies available for future aircraft/engine development are identified. Technologies address aircraft/engine components including fans, exhaust nozzles, landing gear, and flap systems. New "chevron" nozzles have been developed and implemented on several aircraft in production today that provide significant jet noise reduction. New engines using Ultra-High Bypass (UHB) ratios are projected to provide about 10 EPNdB (Effective Perceived Noise Level in decibels) engine noise reduction relative to the average fleet that was flying in 1997. Audio files are embedded in the presentation that estimate the sound levels for a 35,000 pound thrust engine for takeoff and approach power conditions. The predictions are based on actual model scale data that was obtained by NASA. Finally, conceptual pictures are shown that look toward future aircraft/propulsion systems that might be used to obtain further noise reduction.
Technologies for Turbofan Noise Reduction
NASA Technical Reports Server (NTRS)
Huff, Dennis
2005-01-01
An overview presentation of NASA's engine noise research since 1992 is given for subsonic commercial aircraft applications. Highlights are included from the Advanced Subsonic Technology (AST) Noise Reduction Program and the Quiet Aircraft Technology (QAT) project with emphasis on engine source noise reduction. Noise reduction goals for 10 EPNdB by 207 and 20 EPNdB by 2022 are reviewed. Fan and jet noise technologies are highlighted from the AST program including higher bypass ratio propulsion, scarf inlets, forward-swept fans, swept/leaned stators, chevron nozzles, noise prediction methods, and active noise control for fans. Source diagnostic tests for fans and jets that have been completed over the past few years are presented showing how new flow measurement methods such as Particle Image Velocimetry (PIV) have played a key role in understanding turbulence, the noise generation process, and how to improve noise prediction methods. Tests focused on source decomposition have helped identify which engine components need further noise reduction. The role of Computational AeroAcoustics (CAA) for fan noise prediction is presented. Advanced noise reduction methods such as Hershel-Quincke tubes and trailing edge blowing for fan noise that are currently being pursued n the QAT program are also presented. Highlights are shown form engine validation and flight demonstrations that were done in the late 1990's with Pratt & Whitney on their PW4098 engine and Honeywell on their TFE-731-60 engine. Finally, future propulsion configurations currently being studied that show promise towards meeting NASA's long term goal of 20 dB noise reduction are shown including a Dual Fan Engine concept on a Blended Wing Body aircraft.
Results of the noise measurement program on a standard and modified OH-6A helicopter
NASA Technical Reports Server (NTRS)
Henderson, H. R.; Peegg, R. J.; Hilton, D. A.
1973-01-01
A field noise measurement program has been conducted on a standard OH-6A helicopter and one that had been modified by reducing the rotor speed, altering rotor tip shape, and treating the engine exhaust and inlet to reduce the external noise levels. The modifications consisted of extensive aircraft design changes resulting in substantial noise reductions following state-of-art noise reduction techniques. The purpose of this study was to document the ground noise characteristics of each helicopter during flyover, hover, landing, and take-off operations. Based on an analysis of the measured results, the average of the overall on-track noise levels of the final modified helicopter was approximately 14 db lower than that for the standard helicopter. Narrow-band-spectra data of the hovering helicopter show a reduction in the overall noise due to the reductions achieved for the lifting main and antitorque tail rotor, engine exhaust, and gear box noise for the modified helicopter. The noise results of the test program are found to correlate generally with noise measurements made previously on this type of aircraft.
40 CFR 211.207 - Computation of the noise -reduction rating (NRR).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Computation of the noise -reduction... (CONTINUED) NOISE ABATEMENT PROGRAMS PRODUCT NOISE LABELING Hearing Protective Devices § 211.207 Computation of the noise -reduction rating (NRR). Calculate the NRR for hearing protective devices by...
NASA's Subsonic Jet Transport Noise Reduction Research
NASA Technical Reports Server (NTRS)
Powell, Clemans A.; Preisser, John S.
2000-01-01
Although new jet transport airplanes in today s fleet are considerably quieter than the first jet transports introduced about 40 years ago, airport community noise continues to be an important environmental issue. NASA s Advanced Subsonic Transport (AST) Noise Reduction program was begun in 1994 as a seven-year effort to develop technology to reduce jet transport noise 10 dB relative to 1992 technology. This program provides for reductions in engine source noise, improvements in nacelle acoustic treatments, reductions in the noise generated by the airframe, and improvements in the way airplanes are operated in the airport environs. These noise reduction efforts will terminate at the end of 2001 and it appears that the objective will be met. However, because of an anticipated 3-8% growth in passenger and cargo operations well into the 21st Century and the slow introduction of new the noise reduction technology into the fleet, world aircraft noise impact will remain essentially constant until about 2020 to 2030 and thereafter begin to rise. Therefore NASA has begun planning with the Federal Aviation Administration, industry, universities and environmental interest groups in the USA for a new noise reduction initiative to provide technology for significant further reductions.
Airframe Noise Studies: Review and Future Direction
NASA Technical Reports Server (NTRS)
Rackl, Robert G.; Miller, Gregory; Guo, Yueping; Yamamoto, Kingo
2005-01-01
This report contains the following information: 1) a review of airframe noise research performed under NASA's Advanced Subsonic Transport (AST) program up to the year 2000, 2) a comparison of the year 1992 airframe noise predictions with those using a year 2000 baseline, 3) an assessment of various airframe noise reduction concepts as applied to the year 2000 baseline predictions, and 4) prioritized recommendations for future airframe noise reduction work. NASA's Aircraft Noise Prediction Program was the software used for all noise predictions and assessments. For future work, the recommendations for the immediate future focus on the development of design tools sensitive to airframe noise treatment effects and on improving the basic understanding of noise generation by the landing gear as well as on its reduction.
NASA Technical Reports Server (NTRS)
Bock, Larry A.; Hauser, Joseph E.; Mathews, Douglas C.; Topol, David A.; Bielak, Gerald W.; Lan, Justin H.; Premo, John W.
2014-01-01
This report presents results of the work completed in Phase 2 of the Engine Validation of Noise Reduction Concepts (EVNRC) contract. The purpose of the program is to validate, through engine testing, advanced noise reduction concepts aimed at reducing engine noise up to 6 EPNdB and improving nacelle suppression by 50 percent relative to 1992 technology. Phase 1 of the program is completed and is summarized in NASA/CR-2014-218088.
Noise reduction of a composite cylinder subjected to random acoustic excitation
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.; Beyer, T.
1989-01-01
Interior and exterior noise measurements were conducted on a stiffened composite floor-equipped cylinder, with and without an interior trim installed. Noise reduction was obtained for the case of random acoustic excitation in a diffuse field; the frequency range of interest was 100-800-Hz one-third octave bands. The measured data were compared with noise reduction predictions from the Propeller Aircraft Interior Noise (PAIN) program and from a statistical energy analysis. Structural model parameters were not predicted well by the PAIN program for the given input parameters; this resulted in incorrect noise reduction predictions for the lower one-third octave bands where the power flow into the interior of the cylinder was predicted on a mode-per-mode basis.
Fan Noise Reduction: An Overview
NASA Technical Reports Server (NTRS)
Envia, Edmane
2001-01-01
Fan noise reduction technologies developed as part of the engine noise reduction element of the Advanced Subsonic Technology Program are reviewed. Developments in low-noise fan stage design, swept and leaned outlet guide vanes, active noise control, fan flow management, and scarfed inlet are discussed. In each case, a description of the method is presented and, where available, representative results and general conclusions are discussed. The review concludes with a summary of the accomplishments of the AST-sponsored fan noise reduction research and a few thoughts on future work.
Engine Validation of Noise and Emission Reduction Technology Phase I
NASA Technical Reports Server (NTRS)
Weir, Don (Editor)
2008-01-01
This final report has been prepared by Honeywell Aerospace, Phoenix, Arizona, a unit of Honeywell International, Inc., documenting work performed during the period December 2004 through August 2007 for the NASA Glenn Research Center, Cleveland, Ohio, under the Revolutionary Aero-Space Engine Research (RASER) Program, Contract No. NAS3-01136, Task Order 8, Engine Validation of Noise and Emission Reduction Technology Phase I. The NASA Task Manager was Dr. Joe Grady of the NASA Glenn Research Center. The NASA Contract Officer was Mr. Albert Spence of the NASA Glenn Research Center. This report is for a test program in which NASA funded engine validations of integrated technologies that reduce aircraft engine noise. These technologies address the reduction of engine fan and jet noise, and noise associated with propulsion/airframe integration. The results of these tests will be used by NASA to identify the engineering tradeoffs associated with the technologies that are needed to enable advanced engine systems to meet stringent goals for the reduction of noise. The objectives of this program are to (1) conduct system engineering and integration efforts to define the engine test-bed configuration; (2) develop selected noise reduction technologies to a technical maturity sufficient to enable engine testing and validation of those technologies in the FY06-07 time frame; (3) conduct engine tests designed to gain insight into the sources, mechanisms and characteristics of noise in the engines; and (4) establish baseline engine noise measurements for subsequent use in the evaluation of noise reduction.
Implementation of noise budgets for civil airports
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bishop, D.E.
1982-01-01
An increasing number of airports are faced with the need for establishing a lid on the noise from aircraft operations and for developing programs for reducing airport noise on a year-to-year basis. As an example, the California Airport Noise Standard acts to impose such programs on a number of airports in California. Any airport faced with the need to establish a quantitative reduction of noise obviously wants to achieve this reduction with the least impact on numbers of operations and reduction in air transportation services to the community. A reduction in noise and an increase in operations usually can bemore » achieved only by encouraging use of the quietest aircraft available and, further adding incentives for operating procedures that minimize noise. One approach in administering airport noise reduction is to adopt an airport noise budget. As used in this paper, the noise budget concept implies that quantitative limits on the noise environment and on the noise contributions by major airport users will be established. Having methods for enforcing compliance with the airport budget for those airport users that exceed their budget will be established. Thus, the noise budget provides airport management, and major airport users, with quantitative measures for defining noise goals, and actual progress in achieving such goals.« less
Critical Low-Noise Technologies Being Developed for Engine Noise Reduction Systems Subproject
NASA Technical Reports Server (NTRS)
Grady, Joseph E.; Civinskas, Kestutis C.
2004-01-01
NASA's previous Advanced Subsonic Technology (AST) Noise Reduction Program delivered the initial technologies for meeting a 10-year goal of a 10-dB reduction in total aircraft system noise. Technology Readiness Levels achieved for the engine-noise-reduction technologies ranged from 4 (rig scale) to 6 (engine demonstration). The current Quiet Aircraft Technology (QAT) project is building on those AST accomplishments to achieve the additional noise reduction needed to meet the Aerospace Technology Enterprise's 10-year goal, again validated through a combination of laboratory rig and engine demonstration tests. In order to meet the Aerospace Technology Enterprise goal for future aircraft of a 50- reduction in the perceived noise level, reductions of 4 dB are needed in both fan and jet noise. The primary objectives of the Engine Noise Reduction Systems (ENRS) subproject are, therefore, to develop technologies to reduce both fan and jet noise by 4 dB, to demonstrate these technologies in engine tests, and to develop and experimentally validate Computational Aero Acoustics (CAA) computer codes that will improve our ability to predict engine noise.
NASA Technical Reports Server (NTRS)
Roskam, J.; Vandam, C. P. G.
1978-01-01
A prediction method is reported for noise reduction through a cavity-backed panel. The analysis takes into account only cavity modes in one direction. The results of this analysis were to find the effect of acoustic stiffness of a backing cavity on the panel behavior. The resulting changes in the noise reduction through the panel are significant.
Cabin noise and weight reduction program for the Gulfstream G200
NASA Astrophysics Data System (ADS)
Barton, C. Kearney
2002-11-01
This paper describes the approach and logic involved in a cabin noise and weight reduction program for an existing aircraft that was already in service with a pre-existing insulation package. The aircraft, a Gulfstream G200, was formally an IAI Galaxy, and the program was purchased from IAI in 2001. The approach was to investigate every aspect of the aircraft that could be a factor for cabin noise. This included such items as engine mounting and balancing criteria, the hydraulic system, the pressurization and air-conditioning system, the outflow valve, the interior shell and mounting system, antennae and other hull protuberances, as well as the insulation package. Each of these items was evaluated as potential candidates for noise and weight control modifications. Although the program is still ongoing, the results to date include a 175-lb weight savings and a 5-dB reduction in the cabin average Speech Interference Level (SIL).
Airport noise impact reduction through operations
NASA Technical Reports Server (NTRS)
Deloach, R.
1981-01-01
The airport-noise levels and annoyance model (ALAMO) developed at NASA Langley Research Center is comprised of a system of computer programs which is capable of quantifying airport community noise impact in terms of noise level, population distribution, and human subjective response to noise. The ALAMO can be used to compare the noise impact of an airport's current operating scenario with the noise impact which would result from some proposed change in airport operations. The relative effectiveness of number of noise-impact reduction alternatives is assessed for a major midwest airport. Significant reductions in noise impact are predicted for certain noise abatement strategies while others are shown to result in relatively little noise relief.
NASA Technical Reports Server (NTRS)
Hultgren, Lennart S.
2011-01-01
This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015, 2020, and 2025 timeframes; turbofan design trends and their aeroacoustic implications; the emerging importance of core noise and its relevance to the SFW Reduce-Perceived-Noise Technical Challenge; and the current research activities in the core noise area. Recent work1 on the turbine-transmission loss of combustor noise is briefly described, two2,3 new NRA efforts in the core-noise area are outlined, and an effort to develop CMC-based acoustic liners for broadband noise reduction suitable for turbofan-core application is delineated. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic. The Subsonic Fixed Wing Project's Reduce-Perceived-Noise Technical Challenge aims to develop concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries.
Small Engine Technology (SET). Task 33: Airframe, Integration, and Community Noise Study
NASA Technical Reports Server (NTRS)
Lieber, Lys S.; Elkins, Daniel; Golub, Robert A. (Technical Monitor)
2002-01-01
Task Order 33 had four primary objectives as follows: (1) Identify and prioritize the airframe noise reduction technologies needed to accomplish the NASA Pillar goals for business and regional aircraft. (2) Develop a model to estimate the effect of jet shear layer refraction and attenuation of internally generated source noise of a turbofan engine on the aircraft system noise. (3) Determine the effect on community noise of source noise changes of a generic turbofan engine operating from sea level to 15,000 feet. (4) Support lateral attenuation experiments conducted by NASA Langley at Wallops Island, VA, by coordinating opportunities for Contractor Aircraft to participate as a noise source during the noise measurements. Noise data and noise prediction tools, including airframe noise codes, from the NASA Advanced Subsonic Technology (AST) program were applied to assess the current status of noise reduction technologies relative to the NASA pillar goals for regional and small business jet aircraft. In addition, the noise prediction tools were applied to evaluate the effectiveness of airframe-related noise reduction concepts developed in the AST program on reducing the aircraft system noise. The AST noise data and acoustic prediction tools used in this study were furnished by NASA.
Refan program. Phase 1: Summary report
NASA Technical Reports Server (NTRS)
Sams, E. W.; Bresnahan, D. L.
1973-01-01
The Refan Program is aimed at a large reduction in aircraft approach and takeoff noise in the vicinity of airports caused by the JT3D-powered 707's and DC-8's and the JT8D-powered 727's, 737's and DC-9's. These aircraft represent a major part of the existing commercial fleet. The noise reductions can be achieved by engine and nacelle modifications in the form of aircraft retrofit kits. Engine turbomachinery noise is reduced by replacing the current two-stage fan with a larger single-stage fan and by nacelle acoustic treatment. Jet noise is reduced by the reduction on jet velocity caused by additional turbine work extraction to drive the larger bypass fan. The predicted net effect of these modifications on installed performance is large noise reductions on both approach and takeoff, increased takeoff thrust, decreased takeoff field length, and maintained or improved aircraft range depending on the amount of acoustic treatment included. The Refan Program is being conducted in two phases under contracts with one engine and two airframe companies. Results of the Phase I work are summarized in this report which describes the refan nacelle configurations studied, the airplane modifications required to install the nacelles, and the resulting airplane performance and noise reductions predicted for all five aircraft.
NASA Technical Reports Server (NTRS)
Navaneethan, R.; Streeter, B.; Koontz, S.; Roskam, J.
1981-01-01
Some 20 x 20 aluminum panels were studied in a frequency range from 20 Hz to 5000 Hz. The noise sources used were a swept sine wave generator and a random noise generator. The effect of noise source was found to be negligible. Increasing the pressure differential across the panel gave better noise reduction below the fundamental resonance frequency due to an increase in stiffness. The largest increase occurred in the first 1 psi pressure differential. The curved, stiffened panel exhibited similar behavior, but with a lower increase of low frequency noise reduction. Depressurization on these panels resulted in decreased noise reduction at higher frequencies. The effect of damping tapes on the overall noise reduction values of the test specimens was small away from the resonance frequency. In the mass-law region, a slight and proportional improvement in noise reduction was observed by adding damping material. Adding sound absorbtion material to a panel with damping material beneficially increased noise reduction at high frequencies.
NASA Technical Reports Server (NTRS)
Pennock, A. P.; Swift, G.; Marbert, J. A.
1975-01-01
Externally blown flap models were tested for noise and performance at one-fifth scale in a static facility and at one-tenth scale in a large acoustically-treated wind tunnel. The static tests covered two flap designs, conical and ejector nozzles, third-flap noise-reduction treatments, internal blowing, and flap/nozzle geometry variations. The wind tunnel variables were triple-slotted or single-slotted flaps, sweep angle, and solid or perforated third flap. The static test program showed the following noise reductions at takeoff: 1.5 PNdB due to treating the third flap; 0.5 PNdB due to blowing from the third flap; 6 PNdB at flyover and 4.5 PNdB in the critical sideline plane (30 deg elevation) due to installation of the ejector nozzle. The wind tunnel program showed a reduction of 2 PNdB in the sideline plane due to a forward speed of 43.8 m/s (85 kn). The best combination of noise reduction concepts reduced the sideline noise of the reference aircraft at constant field length by 4 PNdB.
NASA Technical Reports Server (NTRS)
1973-01-01
A program to reduce the community noise levels of commercial jet aircraft is summarized. The program objective is the development of three acoustically treated nacelle configurations for the 707, 727, and 737 series aircraft to provide maximum noise reduction with minimum performance loss, modification requirements, and economic impact. The preliminary design, model testing, data analyses, and economic studies of proposed nacelle configurations are discussed.
NASA Technical Reports Server (NTRS)
1973-01-01
Aircraft and airport noise reduction technology programs conducted by NASA are presented. The subjects discussed are: (1) effects of aircraft noise on individuals and communities, (2) status of aircraft source noise technology, (3) operational procedures to reduce the impact of aircraft noise, and (4) NASA relations with military services in aircraft noise problems. References to more detailed technical literature on the subjects discussed are included.
Recent Developments in U.S. Engine Noise Reduction Research
NASA Technical Reports Server (NTRS)
Bridges, James; Envia, Edmane; Huff, Dennis
2001-01-01
Aircraft engine noise research in the United States has made considerable progress over the past 10 years for both subsonic and supersonic flight applications. The Advanced Subsonic Technology (AST) Noise Reduction Program started in 1994 and will be completed in 2001 without major changes to program plans and funding levels. As a result, significant progress has been made toward the goal of reducing engine source noise by 6 EPNdB (Effective Perceived Noise level in decibels). This paper will summarize some of the significant accomplishments from the subsonic engine noise research performed over the past 10 years. The review is by no means comprehensive and only represents a sample of major accomplishments.
Chung, King; Nelson, Lance; Teske, Melissa
2012-09-01
The purpose of this study was to investigate whether a multichannel adaptive directional microphone and a modulation-based noise reduction algorithm could enhance cochlear implant performance in reverberant noise fields. A hearing aid was modified to output electrical signals (ePreprocessor) and a cochlear implant speech processor was modified to receive electrical signals (eProcessor). The ePreprocessor was programmed to flat frequency response and linear amplification. Cochlear implant listeners wore the ePreprocessor-eProcessor system in three reverberant noise fields: 1) one noise source with variable locations; 2) three noise sources with variable locations; and 3) eight evenly spaced noise sources from 0° to 360°. Listeners' speech recognition scores were tested when the ePreprocessor was programmed to omnidirectional microphone (OMNI), omnidirectional microphone plus noise reduction algorithm (OMNI + NR), and adaptive directional microphone plus noise reduction algorithm (ADM + NR). They were also tested with their own cochlear implant speech processor (CI_OMNI) in the three noise fields. Additionally, listeners rated overall sound quality preferences on recordings made in the noise fields. Results indicated that ADM+NR produced the highest speech recognition scores and the most preferable rating in all noise fields. Factors requiring attention in the hearing aid-cochlear implant integration process are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.
Perceived Noise Analysis for Offset Jets Applied to Commercial Supersonic Aircraft
NASA Technical Reports Server (NTRS)
Huff, Dennis L.; Henderson, Brenda S.; Berton, Jeffrey J.; Seidel, Jonathan A.
2016-01-01
A systems analysis was performed with experimental jet noise data, engine/aircraft performance codes and aircraft noise prediction codes to assess takeoff noise levels and mission range for conceptual supersonic commercial aircraft. A parametric study was done to identify viable engine cycles that meet NASAs N+2 goals for noise and performance. Model scale data from offset jets was used as input to the aircraft noise prediction code to determine the expected sound levels for the lateral certification point where jet noise dominates over all other noise sources. The noise predictions were used to determine the optimal orientation of the offset nozzles to minimize the noise at the lateral microphone location. An alternative takeoff procedure called programmed lapse rate was evaluated for noise reduction benefits. Results show there are two types of engines that provide acceptable range performance; one is a standard mixed-flow turbofan with a single-stage fan, and the other is a three-stream variable-cycle engine with a multi-stage fan. The engine with a single-stage fan has a lower specific thrust and is 8 to 10 EPNdB quieter for takeoff. Offset nozzles reduce the noise directed toward the thicker side of the outer flow stream, but have less benefit as the core nozzle pressure ratio is reduced and the bypass-to-core area ratio increases. At the systems level for a three-engine N+2 aircraft with full throttle takeoff, there is a 1.4 EPNdB margin to Chapter 3 noise regulations predicted for the lateral certification point (assuming jet noise dominates). With a 10 reduction in thrust just after takeoff rotation, the margin increases to 5.5 EPNdB. Margins to Chapter 4 and Chapter 14 levels will depend on the cumulative split between the three certification points, but it appears that low specific thrust engines with a 10 reduction in thrust (programmed lapse rate) can come close to meeting Chapter 14 noise levels. Further noise reduction is possible with additional reduction in takeoff thrust using programmed lapse rate, but studies are needed to investigate the practical limits for safety and takeoff regulations.
Engelmann, Carsten R; Neis, Jan Philipp; Kirschbaum, Clemens; Grote, Gudela; Ure, Benno M
2014-05-01
We assessed the impact of a noise-reduction program in a pediatric operating theatre. Adverse effects from noise pollution in theatres have been demonstrated. In 156 operations spatially resolved, sound levels were measured before and after a noise-reduction program on the basis of education, rules, and technical devices (Sound Ear). Surgical complications were recorded. The surgeon's biometric (saliva cortisol, electrodermal activity) and behavioral stress responses (questionnaires) were measured and correlated with mission protocols and individual noise sensitivity. Median noise levels in the control group versus the interventional group were reduced by -3 ± 3 dB(A) (63 vs 59 dB(A), P < 0.001) with a grossly decreased number of peaks greater than 70 dB(A) (Δn = -61/hour, P < 0.01). The intervention significantly reduced non-operation-related noise. The incidence of postoperative complications was significantly lower in patients of the intervention group (n = 10/56 vs 20/58 control; P < 0.05). "Responders," surgeons with an above-average noise sensitivity (correlation r = -0.6 for the work subscale of the NoiseQ questionnaire, P < 0.05), experienced improved intrateam communication, a decrease in disturbing conversations and sudden noise peaks (P < 0.05). Biometrically, the intervention decreased both the surgeon's pre- to postoperative rise in cortisol by approximately 20% and the surgeon's electrodermal potentials of greater than 15 μS, indicating severe stress by 60% (P > 0.05). Spontaneous noise during pediatric operations attains the magnitude of a lawn mower and peaks resemble a passing truck. The sound intensity could be reduced by 50% by specific measures. This reduction was associated with a significantly lowered number of postoperative complications. The surgeon's benefits are idiosyncratic with "responders" experiencing marked improvements.
Recent Progress in Engine Noise Reduction Technologies
NASA Technical Reports Server (NTRS)
Huff, Dennis; Gliebe, Philip
2003-01-01
Highlights from NASA-funded research over the past ten years for aircraft engine noise reduction are presented showing overall technical plans, accomplishments, and selected applications to turbofan engines. The work was sponsored by NASA's Advanced Subsonic Technology (AST) Noise Reduction Program. Emphasis is given to only the engine noise reduction research and significant accomplishments that were investigated at Technology Readiness Levels ranging from 4 to 6. The Engine Noise Reduction sub-element was divided into four work areas: source noise prediction, model scale tests, engine validation, and active noise control. Highlights from each area include technologies for higher bypass ratio turbofans, scarf inlets, forward-swept fans, swept and leaned stators, chevron/tabbed nozzles, advanced noise prediction analyses, and active noise control for fans. Finally, an industry perspective is given from General Electric Aircraft Engines showing how these technologies are being applied to commercial products. This publication contains only presentation vu-graphs from an invited lecture given at the 41st AIAA Aerospace Sciences Meeting, January 6-9, 2003.
State-of-the-art of turbofan engine noise control
NASA Technical Reports Server (NTRS)
Jones, W. L.; Groeneweg, J. F.
1977-01-01
The technology of turbofan engine noise reduction is surveyed. Specific topics discussed include: (1) new fans for low noise; (2) fan and core noise suppression; (3) turbomachinery noise sources; and (4) a new program for improving static noise testing of fans and engines.
Noise Reduction Technologies for Turbofan Engines
NASA Technical Reports Server (NTRS)
Huff, Dennis L.
2007-01-01
Significant progress continues to be made with noise reduction for turbofan engines. NASA has conducted and sponsored research aimed at reducing noise from commercial aircraft. Since it takes many years for technologies to be developed and implemented, it is important to have aggressive technology goals that lead the target entry into service dates. Engine noise is one of the major contributors to the overall sound levels as aircraft operate near airports. Turbofan engines are commonly used on commercial transports due to their advantage for higher performance and lower noise. The noise reduction comes from combinations of changes to the engine cycle parameters and low noise design features. In this paper, an overview of major accomplishments from recent NASA research programs for engine noise will be given.
Rapid transit system noise abatement program
DOT National Transportation Integrated Search
1972-01-01
This program plan describes a broad program for the reduction of noise and vibration in rapid transit systems, which impacts the patrons and inhabitants of the nearby commuity. An UMTA/TSC survey has provided data on the most urgent needs and state-o...
Airframe Noise Results from the QTD II Flight Test Program
NASA Technical Reports Server (NTRS)
Elkoby, Ronen; Brusniak, Leon; Stoker, Robert W.; Khorrami, Mehdi R.; Abeysinghe, Amal; Moe, Jefferey W.
2007-01-01
With continued growth in air travel, sensitivity to community noise intensifies and materializes in the form of increased monitoring, regulations, and restrictions. Accordingly, realization of quieter aircraft is imperative, albeit only achievable with reduction of both engine and airframe components of total aircraft noise. Model-scale airframe noise testing has aided in this pursuit; however, the results are somewhat limited due to lack of fidelity of model hardware, particularly in simulating full-scale landing gear. Moreover, simulation of true in-flight conditions is non-trivial if not infeasible. This paper reports on an investigation of full-scale landing gear noise measured as part of the 2005 Quiet Technology Demonstrator 2 (QTD2) flight test program. Conventional Boeing 777-300ER main landing gear were tested, along with two noise reduction concepts, namely a toboggan fairing and gear alignment with the local flow, both of which were down-selected from various other noise reduction devices evaluated in model-scale testing at Virginia Tech. The full-scale toboggan fairings were designed by Goodrich Aerostructures as add-on devices allowing for complete retraction of the main gear. The baseline-conventional gear, faired gear, and aligned gear were all evaluated with the high-lift system in the retracted position and deployed at various flap settings, all at engine idle power setting. Measurements were taken with flyover community noise microphones and a large aperture acoustic phased array, yielding far-field spectra, and localized sources (beamform maps). The results were utilized to evaluate qualitatively and quantitatively the merit of each noise reduction concept. Complete similarity between model-scale and full-scale noise reduction levels was not found and requires further investigation. Far-field spectra exhibited no noise reduction for both concepts across all angles and frequencies. Phased array beamform maps show inconclusive evidence of noise reduction at selective frequencies (1500 to 3000 Hz) but are otherwise in general agreement with the far-field spectra results (within measurement uncertainty).
Workshop on Jet Exhaust Noise Reduction for Tactical Aircraft - NASA Perspective
NASA Technical Reports Server (NTRS)
Huff, Dennis L.; Henderson, Brenda S.
2007-01-01
Jet noise from supersonic, high performance aircraft is a significant problem for takeoff and landing operations near air bases and aircraft carriers. As newer aircraft with higher thrust and performance are introduced, the noise tends to increase due to higher jet exhaust velocities. Jet noise has been a subject of research for over 55 years. Commercial subsonic aircraft benefit from changes to the engine cycle that reduce the exhaust velocities and result in significant noise reduction. Most of the research programs over the past few decades have concentrated on commercial aircraft. Progress has been made by introducing new engines with design features that reduce the noise. NASA has recently started a new program called "Fundamental Aeronautics" where three projects (subsonic fixed wing, subsonic rotary wing, and supersonics) address aircraft noise. For the supersonics project, a primary goal is to understand the underlying physics associated with jet noise so that improved noise prediction tools and noise reduction methods can be developed for a wide range of applications. Highlights from the supersonics project are presented including prediction methods for broadband shock noise, flow measurement methods, and noise reduction methods. Realistic expectations are presented based on past history that indicates significant jet noise reduction cannot be achieved without major changes to the engine cycle. NASA s past experience shows a few EPNdB (effective perceived noise level in decibels) can be achieved using low noise design features such as chevron nozzles. Minimal thrust loss can be expected with these nozzles (< 0.5%) and they may be retrofitted on existing engines. In the long term, it is desirable to use variable cycle engines that can be optimized for lower jet noise during takeoff operations and higher thrust for operational performance. It is also suggested that noise experts be included early in the design process for engine nozzle systems to participate in decisions that may impact the jet noise.
Chung, King
2012-01-01
The objectives of this study were: (1) to examine the effect of wide dynamic range compression (WDRC) and modulation-based noise reduction (NR) algorithms on wind noise levels at the hearing aid output; and (2) to derive effective strategies for clinicians and engineers to reduce wind noise in hearing aids. Three digital hearing aids were fitted to KEMAR. The noise output was recorded at flow velocities of 0, 4.5, 9.0, and 13.5 m/s in a wind tunnel as the KEMAR head was turned from 0° to 360°. Flow noise levels were compared between the 1:1 linear and 3:1 WDRC conditions, and between NR-activated and NR-deactivated conditions when the hearing aid was programmed to the directional and omnidirectional modes. The results showed that: (1) WDRC increased low-level noise and reduced high-level noise; and (2) different noise reduction algorithms provided different amounts of wind noise reduction in different microphone modes, frequency regions, flow velocities, and head angles. Wind noise can be reduced by decreasing the gain for low-level inputs, increasing the compression ratio for high-level inputs, and activating modulation-based noise reduction algorithms.
Analysis of helicopter noise data using international helicopter noise certification procedures
DOT National Transportation Integrated Search
1986-03-31
This report documents the results of a Federal Aviation Administration (FAA) noise measurement flight test program involving seven helicopters and established noise levels using the basic testing, reduction and analysis procedures specified by the In...
Core Noise: Overview of Upcoming LDI Combustor Test
NASA Technical Reports Server (NTRS)
Hultgren, Lennart S.
2012-01-01
This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Fixed Wing Project. The presentation covers: the emerging importance of core noise due to turbofan design trends and its relevance to the NASA N+3 noise-reduction goal; the core noise components and the rationale for the current emphasis on combustor noise; and the current and planned research activities in the combustor-noise area. Two NASA-sponsored research programs, with particular emphasis on indirect combustor noise, "Acoustic Database for Core Noise Sources", Honeywell Aerospace (NNC11TA40T) and "Measurement and Modeling of Entropic Noise Sources in a Single-Stage Low-Pressure Turbine", U. Illinois/U. Notre Dame (NNX11AI74A) are briefly described. Recent progress in the development of CMC-based acoustic liners for broadband noise reduction suitable for turbofan-core application is outlined. Combustor-design trends and the potential impacts on combustor acoustics are discussed. A NASA GRC developed nine-point lean-direct-injection (LDI) fuel injector is briefly described. The modification of an upcoming thermo-acoustic instability evaluation of the GRC injector in a combustor rig to also provide acoustic information relevant to community noise is presented. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic. The Quiet Performance Research Theme of the Fixed Wing Project aims to develop concepts and technologies to dramatically reduce the perceived community noise attributable to aircraft with minimal impact on weight and performance.
Active vibrations and noise control for turboprop application research program activities
NASA Technical Reports Server (NTRS)
Paonessa, A.; Concilio, A.; Lecce, Leonardo V.
1992-01-01
The objectives of this work include the following: (1) development of active noise control techniques to alleviate inefficiencies and drawbacks of passive noise control approach especially at low frequencies; (2) reduction of structurally radiated noise applying external forces to the vibrating structure by means of force actuators made of piezoelectric material; and (3) reduction of fuselage vibration levels in propeller driven aircraft by means of distributed piezoelectric actuators that are actively controlled.
Active vibrations and noise control for turboprop application research program activities
NASA Astrophysics Data System (ADS)
Paonessa, A.; Concilio, A.; Lecce, Leonardo V.
1992-07-01
The objectives of this work include the following: (1) development of active noise control techniques to alleviate inefficiencies and drawbacks of passive noise control approach especially at low frequencies; (2) reduction of structurally radiated noise applying external forces to the vibrating structure by means of force actuators made of piezoelectric material; and (3) reduction of fuselage vibration levels in propeller driven aircraft by means of distributed piezoelectric actuators that are actively controlled.
NASA Technical Reports Server (NTRS)
Stimpert, D. L.; Clemons, A.
1977-01-01
Sound data which were obtained during tests of a 50.8 cm diameter, subsonic tip speed, low pressure ratio fan were analyzed. The test matrix was divided into two major investigations: (1) source noise reduction techniques; and (2) aft duct noise reduction with acoustic treatment. Source noise reduction techniques were investigated which include minimizing second harmonic noise by varying vane/blade ratio, variation in spacing, and lowering the Mach number through the vane row to lower fan broadband noise. Treatment in the aft duct which includes flow noise effects, faceplate porosity, rotor OGV treatment, slant cell treatment, and splitter simulation with variable depth on the outer wall and constant thickness treatment on the inner wall was investigated. Variable boundary conditions such as variation in treatment panel thickness and orientation, and mixed porosity combined with variable thickness were examined. Significant results are reported.
NASA Technical Reports Server (NTRS)
1975-01-01
The NASA Refan Program included full-scale performance and noise ground tests of both a current production (JT8D-15) and a refanned (JT8D-115) engine. A description of the two ground tests including detailed propulsion, noise, and structural test results is presented. The primary objectives of the total test program were comparison of JT8D-15 and JT8D-115 overall propulsion system performance and noise characteristics and determination of incremental component noise levels. Other objectives of the test program included: (1) determination of acoustic treatment effectiveness; (2) measurement of internal sound pressure levels; (3) measurement of inlet and exhaust hardware performance; (4) determination of center-engine surge margin; and (5) evaluation of certain structural characteristics associated with the 727 refan center-engine inlet duct and JT8D refan engine exhaust system. The JT8D-15 and -115 tests were conducted during September 1974 and January to March 1975, respectively. Analyses of the test data indicated that the JT8D-115, as compared to the JT8D-15, demonstrates a 12.5 percent to 13.2 percent reduction in static specific fuel consumption, and a reduction of 6 to 7 PNdB in a weighted average value of static tone corrected perceived noise level. Separated into noise components, a significant reduction was shown for the inlet fan, aft fan, exhaust duct flow, turbine, and jet noises. However, core noise was increased. Photographs of test stands and test equipment are shown.
NASA Technical Reports Server (NTRS)
Elwell, Fred S
1953-01-01
The work reported was part of a program of experimentation with external noise reduction on light airplanes. This particular study was in effect a byproduct survey conceived to utilize already available equipment and personnel to further the findings of the original research and to determine reactions in populated neighborhoods to light aircraft with and without noise-reduction equipment. The findings indicate that at the 10 sites within and about metropolitan Boston the degree of noise reduction previously found to be aerodynamically and structurally feasible did eliminate substantially all neighborhood objections to noise per se. The evidence clearly suggests that, when the noise nuisance is minimized to the extent found feasible, the number and severity of other objections also diminish -- evidently because the flight operations are noticed less when heard less.
ERIC Educational Resources Information Center
Norlander, Torsten; Moas, Leif; Archer, Trevor
2005-01-01
The present study examined whether a short but regularly used program of relaxation, applied to Primary and Secondary school children, could (a) reduce noise levels (in decibels), (b) reduce pupils' experienced stress levels, and (c) increase the pupils' ability to concentrate, as measured by teachers' estimates. Noise levels in 5 classrooms (84…
Noise characteristics of upper surface blown configurations: Summary
NASA Technical Reports Server (NTRS)
Reddy, N. N.; Gibson, J. S.
1978-01-01
A systematic experimental program was conducted to develop a data base for the noise and related flow characteristics of upper surface blown configurations. The effect of various geometric and flow parameters was investigated experimentally. The dominant noise was identified from the measured flow and noise characteristics to be generated downstream of the trailing edge. The possibilities of noise reduction techniques were explored. An upper surface blown (USB) noise prediction program was developed to calculate noise levels at any point and noise contours (footprints). Using this noise prediction program and a cruise performance data base, aircraft design studies were conducted to integrate low noise and good performance characteristics. A theory was developed for the noise from the highly sheared layer of a trailing edge wake. Theoretical results compare favorably with the measured noise of the USB model.
Helicopter noise regulations: An industry perspective
NASA Technical Reports Server (NTRS)
Wagner, R. A.
1978-01-01
A review of helicopter noise measurement programs and noise reduction/economic studies of FAA is given along with a critique of a study which addresses the economic impact of noise reduction on helicopter noise. Modification of several helicopters to reduce noise and demonstrate the economic impact of the application of the current state-of-the-art technology is discussed. Specific helicopters described include Boeing Vertol 347 Helicopter, Hughes OH-6 Helicopter, and Hughes 269C Helicopter. Other topics covered include: (1) noise trends and possible noise limits; (2) accuracy of helicopter noise prediction techniques; (3) limited change possibilities of derivatives; and (4) rotor impulsive noise. The unique operational capabilities of helicopters and the implications relative to noise regulations and certification are discussed.
NASA Technical Reports Server (NTRS)
Low, John K. C.; Schweiger, Paul S.; Premo, John W.; Barber, Thomas J.; Saiyed, Naseem (Technical Monitor)
2000-01-01
NASA s model-scale nozzle noise tests show that it is possible to achieve a 3 EPNdB jet noise reduction with inwardfacing chevrons and flipper-tabs installed on the primary nozzle and fan nozzle chevrons. These chevrons and tabs are simple devices and are easy to be incorporated into existing short duct separate-flow nonmixed nozzle exhaust systems. However, these devices are expected to cause some small amount of thrust loss relative to the axisymmetric baseline nozzle system. Thus, it is important to have these devices further tested in a calibrated nozzle performance test facility to quantify the thrust performances of these devices. The choice of chevrons or tabs for jet noise suppression would most likely be based on the results of thrust loss performance tests to be conducted by Aero System Engineering (ASE) Inc. It is anticipated that the most promising concepts identified from this program will be validated in full scale engine tests at both Pratt & Whitney and Allied-Signal, under funding from NASA s Engine Validation of Noise Reduction Concepts (EVNRC) programs. This will bring the technology readiness level to the point where the jet noise suppression concepts could be incorporated with high confidence into either new or existing turbofan engines having short-duct, separate-flow nacelles.
Results of the flight noise measurement program using a standard and modified SH-3A helicopter
NASA Technical Reports Server (NTRS)
Pegg, R. J.; Henderson, H. R.; Hilton, D. A.
1973-01-01
A field noise measurement program has been conducted using both a standard SH-3A helicopter and an SH-3A helicopter modified to reduce external noise levels. Modifications included reducing rotor speed, increasing the number of rotor blades, modifying the blade-tip shapes, and acoustically treating the engine air intakes and exhaust. The purpose of this study was to document the noise characteristics recorded on the ground of each helicopter during flyby, hover, landing, and take-off operations. Based on an analysis of the measured results, the average of the overhead, overall, ontrack noise levels was approximately 4 db lower for the modified helicopter than for the standard helicopter. The improved in-flight noise characteristics, and associated small footprint areas and time durations, were judged to be mainly due to tail-rotor noise reductions. The noise reductions were obtained at the expense of required power increases at airspeeds greater than 70 knots for the modified helicopter.
Update on Supersonic Jet Noise Research at NASA
NASA Technical Reports Server (NTRS)
Henderson, Brenda
2010-01-01
An update on jet noise research conducted in the Fundamental Aeronautics and Integrated Systems Research Programs was presented. Highlighted research projects included those focused on the development of prediction tools, diagnostic tools, and noise reduction concepts.
Aircraft Engine Noise Research and Testing at the NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Elliott, Dave
2015-01-01
The presentation will begin with a brief introduction to the NASA Glenn Research Center as well as an overview of how aircraft engine noise research fits within the organization. Some of the NASA programs and projects with noise content will be covered along with the associated goals of aircraft noise reduction. Topics covered within the noise research being presented will include noise prediction versus experimental results, along with engine fan, jet, and core noise. Details of the acoustic research conducted at NASA Glenn will include the test facilities available, recent test hardware, and data acquisition and analysis methods. Lastly some of the actual noise reduction methods investigated along with their results will be shown.
NASA Glenn's Contributions to Aircraft Engine Noise Research
NASA Technical Reports Server (NTRS)
Huff, Dennis L.
2014-01-01
This presentation reviews engine noise research conducted at the NASA Glenn Research Center over the past 70 years. This report includes a historical perspective of the Center and the facilities used to conduct the research. Major noise research programs are highlighted to show their impact on industry and on the development of aircraft noise reduction technology. Noise reduction trends are discussed, and future aircraft concepts are presented. Since the 1960s, research results show that the average perceived noise level has been reduced by about 20 decibels (dB). Studies also show that, depending on the size of the airport, the aircraft fleet mix, and the actual growth in air travel, another 15 to 17 dB reduction will be required to achieve NASAs long-term goal of providing technologies to limit objectionable noise to the boundaries of an average airport.
NASA Glenn's Contributions to Aircraft Engine Noise Research
NASA Technical Reports Server (NTRS)
Huff, Dennis L.
2013-01-01
This report reviews all engine noise research conducted at the NASA Glenn Research Center over the past 70 years. This report includes a historical perspective of the Center and the facilities used to conduct the research. Major noise research programs are highlighted to show their impact on industry and on the development of aircraft noise reduction technology. Noise reduction trends are discussed, and future aircraft concepts are presented. Since the 1960s, research results show that the average perceived noise level has been reduced by about 20 decibels (dB). Studies also show that, depending on the size of the airport, the aircraft fleet mix, and the actual growth in air travel, another 15 to 17 dB reduction will be required to achieve NASA's long-term goal of providing technologies to limit objectionable noise to the boundaries of an average airport.
Perceived Noise Analysis for Offset Jets Applied to Commercial Supersonic Aircraft
NASA Technical Reports Server (NTRS)
Huff, Dennis L.; Henderson, Brenda S.; Berton, Jeffrey J.; Seidel, Jonathan A.
2016-01-01
A systems analysis was performed with experimental jet noise data, engine/aircraft performance codes and aircraft noise prediction codes to assess takeoff noise levels and mission range for conceptual supersonic commercial aircraft. A parametric study was done to identify viable engine cycles that meet NASA's N+2 goals for noise and performance. Model scale data from offset jets were used as input to the aircraft noise prediction code to determine the expected sound levels for the lateral certification point where jet noise dominates over all other noise sources. The noise predictions were used to determine the optimal orientation of the offset nozzles to minimize the noise at the lateral microphone location. An alternative takeoff procedure called "programmed lapse rate" was evaluated for noise reduction benefits. Results show there are two types of engines that provide acceptable mission range performance; one is a conventional mixed-flow turbofan and the other is a three-stream variable-cycle engine. Separate flow offset nozzles reduce the noise directed toward the thicker side of the outer flow stream, but have less benefit as the core nozzle pressure ratio is reduced. At the systems level for a three-engine N+2 aircraft with full throttle takeoff, there is a 1.4 EPNdB margin to Chapter 3 noise regulations predicted for the lateral certification point (assuming jet noise dominates). With a 10% reduction in thrust just after clearing the runway, the margin increases to 5.5 EPNdB. Margins to Chapter 4 and Chapter 14 levels will depend on the cumulative split between the three certification points, but it appears that low specific thrust engines with a 10% reduction in thrust (programmed lapse rate) can come close to meeting Chapter 14 noise levels. Further noise reduction is possible with engine oversizing and derated takeoff, but more detailed mission studies are needed to investigate the range impacts as well as the practical limits for safety and takeoff regulations.
NASA/ARMY/BELL XV-15 Tiltrotor Low-Noise Terminal Area Operations Flight Research Program
NASA Technical Reports Server (NTRS)
Edwards, Bryan D.; Conner, David A.; Decker, William A.; Marcolini, Michael A.; Klein, Peter D.
2001-01-01
To evaluate the noise reduction potential for tiltrotor aircraft, a series of three XV- 15 acoustic flight tests were conducted over a five-year period by a NASA/Army/Bell Helicopter team. Lower hemispherical noise characteristics for a wide range of steady-state terminal area type operating conditions were measured during the Phase I test and indicated that the takeoff and level flight conditions were not significant contributors to the total noise of tiltrotor operations. Phase I results were also used to design low-noise approach profiles that were tested later during the Phase 2 and Phase 3 tests. These latter phases used large area microphone arrays to directly measure ground noise footprints. Approach profiles emphasized noise reduction while maintaining handling qualities sufficient for tiltrotor commercial passenger ride comfort and flight safety under Instrument Flight Rules (IFR) conditions. This paper will discuss the weather, aircraft, tracking, guidance, and acoustic instrumentation systems, as well as the approach profile design philosophy, and the overall test program philosophy. Acoustic results are presented to document the variation in tiltrotor noise due to changes in operating condition, indicating the potential for significant noise reduction using the unique tiltrotor capability of nacelle tilt. Recommendations are made for a final XV-15 test to define the acoustic benefits of the automated approach capability which has recently been added to this testbed aircraft.
NASA Astrophysics Data System (ADS)
Lewy, Serge; Marze, Henri-James
The development of a 'silent helicopter' program in Europe, whose aim would be noise reduction for both commercial and military helicopters over the next five years, is discussed. Attention is given to acoustic constraints for helicopters and to noise reduction techniques (with particular reference to the main rotor, the rear rotor, and the engines). For commercial helicopters, the noise reduction over the next five years is projected to be at least down to 6 dB below the OACI norms; for military helicopters, the aim is a variable-frequency signature in near-tactical-flight conditions, with a factor-of-two reduction in the maximum impulsivity in the far field.
Small Engine Technology (SET) Task 24 Business and Regional Aircraft System Studies
NASA Technical Reports Server (NTRS)
Lieber, Lysbeth
2003-01-01
This final report has been prepared by Honeywell Engines & Systems, Phoenix, Arizona, a unit of Honeywell International Inc., documenting work performed during the period June 1999 through December 1999 for the National Aeronautics and Space Administration (NASA) Glenn Research Center, Cleveland, Ohio, under the Small Engine Technology (SET) Program, Contract No. NAS3-27483, Task Order 24, Business and Regional Aircraft System Studies. The work performed under SET Task 24 consisted of evaluating the noise reduction benefits compared to the baseline noise levels of representative 1992 technology aircraft, obtained by applying different combinations of noise reduction technologies to five business and regional aircraft configurations. This report focuses on the selection of the aircraft configurations and noise reduction technologies, the prediction of noise levels for those aircraft, and the comparison of the noise levels with those of the baseline aircraft.
NASA Technical Reports Server (NTRS)
Lameris, J.; Stevenson, S.; Streeter, B.
1982-01-01
The application of fiber reinforced composite materials, such as graphite epoxy and Kevlar, for secondary or primary structures developing in the commercial airplane industry was investigated. A composite panel program was initiated to study the effects of some of the parameters that affect noise reduction of these panels. The fiber materials and the ply orientation were chosen to be variables in the test program. It was found that increasing the damping characteristics of a structural panel will reduce the vibration amplitudes at resonant frequencies with attendant reductions in sound reduction. Test results for a dynamic absorber, a tuned damper, are presented and evaluated.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-21
... social, economic, and environmental effects and costs of the noise abatement measures. The SDOT must base... highway program (need, funding, environmental impacts, public involvement, etc.). Reduction of highway traffic noise should occur through a program of shared responsibility with the most effective strategy...
A Fan Concept to Meet the 2017 Noise Goals
NASA Technical Reports Server (NTRS)
Dittmar, James H.
1998-01-01
The National Aeronautics and Space Administration has established a goal of a 20 EPNdB reduction of aircraft noise by the year 2017. This paper proposes a fan concept for an engine that may meet this noise goal. The concept builds upon technology established during the Advanced Subsonic Technology Program which should show a 10 dB reduction potential. The new concept uses a two stage fan which allows low tip speed while still maintaining a reasonable total pressure rise across the two stages. The concept also incorporates many other noise reduction techniques in addition to low tip speed including a low number of exit guide vanes, swept and leaned guide vanes, a high subsonic Mach number inlet and syncrophased rotors to obtain active noise cancellation. The fan proposed in this paper is calculated to be able to achieve the 2017 noise goal.
NASA Technical Reports Server (NTRS)
Mixson, J. S.; Greene, G. C.; Dempsey, T. K.
1981-01-01
Source noise predictions are compared with measurements for conventional low-speed propellers, for new high speed propellers (propfans), and for a helicopter. Results from a light aircraft demonstration program are described, indicating that about 5-dB reduction of flyover noise can be obtained without significant performance penalty. Sidewall design studies are described for interior noise control in light general aviation aircraft and in large transports using propfan propulsion. The weight of the added acoustic treatment is estimated and tradeoffs between weight and noise reduction are discussed. A laboratory study of passenger response to combined broadband and tonal propeller like noise is described. Subject discomfort ratings of combined tone broadband noises are compared with ratings of broadband (boundary layer) noise alone, and the relative importance of the propeller tones is examined.
Space vehicle acoustics prediction improvement for payloads. [space shuttle
NASA Technical Reports Server (NTRS)
Dandridge, R. E.
1979-01-01
The modal analysis method was extensively modified for the prediction of space vehicle noise reduction in the shuttle payload enclosure, and this program was adapted to the IBM 360 computer. The predicted noise reduction levels for two test cases were compared with experimental results to determine the validity of the analytical model for predicting space vehicle payload noise environments in the 10 Hz one-third octave band regime. The prediction approach for the two test cases generally gave reasonable magnitudes and trends when compared with the measured noise reduction spectra. The discrepancies in the predictions could be corrected primarily by improved modeling of the vehicle structural walls and of the enclosed acoustic space to obtain a more accurate assessment of normal modes. Techniques for improving and expandng the noise prediction for a payload environment are also suggested.
40 CFR Appendix A to Part 211 - Compliance Audit Testing Report
Code of Federal Regulations, 2011 CFR
2011-07-01
... Appendix A to Part 211 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS PRODUCT NOISE LABELING Pt. 211, App. A Appendix A to Part 211—Compliance Audit Testing... 250 500 1000 2000 3150 4000 6300 8000 Noise Reduction Rating: If replacement hearing protector was...
Noise Impact Inventory of Elevated Structures in U.S. Urban Rail Rapid Transit Systems
DOT National Transportation Integrated Search
1980-09-01
This report presents the results of the third task of a five-task program dealing with the reduction of noise from elevated structures in use in U.S. rail rapid transit systems. This report is an inventory and impact assessment of the noise radiated ...
NASA Technical Reports Server (NTRS)
Hughes, Christoper E.; Gazzaniga, John A.
2013-01-01
A wind tunnel experiment was conducted in the NASA Glenn Research Center anechoic 9- by 15-Foot Low-Speed Wind Tunnel to investigate two new advanced noise reduction technologies in support of the NASA Fundamental Aeronautics Program Subsonic Fixed Wing Project. The goal of the experiment was to demonstrate the noise reduction potential and effect on fan model performance of the two noise reduction technologies in a scale model Ultra-High Bypass turbofan at simulated takeoff and approach aircraft flight speeds. The two novel noise reduction technologies are called Over-the-Rotor acoustic treatment and Soft Vanes. Both technologies were aimed at modifying the local noise source mechanisms of the fan tip vortex/fan case interaction and the rotor wake-stator interaction. For the Over-the-Rotor acoustic treatment, two noise reduction configurations were investigated. The results showed that the two noise reduction technologies, Over-the-Rotor and Soft Vanes, were able to reduce the noise level of the fan model, but the Over-the-Rotor configurations had a significant negative impact on the fan aerodynamic performance; the loss in fan aerodynamic efficiency was between 2.75 to 8.75 percent, depending on configuration, compared to the conventional solid baseline fan case rubstrip also tested. Performance results with the Soft Vanes showed that there was no measurable change in the corrected fan thrust and a 1.8 percent loss in corrected stator vane thrust, which resulted in a total net thrust loss of approximately 0.5 percent compared with the baseline reference stator vane set.
An Analytical Assessment of NASA's N+1 Subsonic Fixed Wing Project Noise Goal
NASA Technical Reports Server (NTRS)
Berton, Jeffrey J.; Envia, Edmane; Burley, Casey L.
2009-01-01
The Subsonic Fixed Wing Project of NASA's Fundamental Aeronautics Program has adopted a noise reduction goal for new, subsonic, single-aisle, civil aircraft expected to replace current 737 and A320 airplanes. These so-called 'N+1' aircraft - designated in NASA vernacular as such since they will follow the current, in-service, 'N' airplanes - are hoped to achieve certification noise goal levels of 32 cumulative EPNdB under current Stage 4 noise regulations. A notional, N+1, single-aisle, twinjet transport with ultrahigh bypass ratio turbofan engines is analyzed in this study using NASA software and methods. Several advanced noise-reduction technologies are analytically applied to the propulsion system and airframe. Certification noise levels are predicted and compared with the NASA goal.
A targeted noise reduction observational study for reducing noise in a neonatal intensive unit.
Chawla, S; Barach, P; Dwaihy, M; Kamat, D; Shankaran, S; Panaitescu, B; Wang, B; Natarajan, G
2017-09-01
Excessive noise in neonatal intensive care units (NICUs) can interfere with infants' growth, development and healing.Local problem:Sound levels in our NICUs exceeded the recommended levels by the World Health Organization. We implemented a noise reduction strategy in an urban, tertiary academic medical center NICU that included baseline noise measurements. We conducted a survey involving staff and visitors regarding their opinions and perceptions of noise levels in the NICU. Ongoing feedback to staff after each measurement cycle was provided to improve awareness, engagement and adherence with noise reduction strategies. After widespread discussion with active clinician involvement, consensus building and iterative testing, changes were implemented including: lowering of equipment alarm sounds, designated 'quiet times' and implementing a customized education program for staff. A multiphase noise reduction quality improvement (QI) intervention to reduce ambient sound levels in a patient care room in our NICUs by 3 dB (20%) over 18 months. The noise in the NICU was reduced by 3 dB from baseline. Mean (s.d.) baseline, phase 2, 3 and 4 noise levels in the two NICUs were: LAeq: 57.0 (0.84), 56.8 (1.6), 55.3 (1.9) and 54.5 (2.6) dB, respectively (P<0.01). Adherence with the planned process measure of 'quiet times' was >90%. Implementing a multipronged QI initiative resulted in significant noise level reduction in two multipod NICUs. It is feasible to reduce noise levels if QI interventions are coupled with active engagement of the clinical staff and following continuous process of improvement methods, measurements and protocols.
Use of Aqueous Foam to Reduce Shoulder-Launched Rocket Noise Level: Feasibility Investigation.
1981-07-01
1 tj~ * UNCLASSIFIED SECUflITY CLASSIFICATION OF THIS PAGE (**en Dese Entered) REPORT DOCUMENTATION PAGE BEFORE COOTRUTIONS I. REPORT NUMBER 2. GOVT...necessar and identify by block number) Military Operations in Urban Terrain (MOUT) Program noise signature reduction aqueous foam 20. ABSTRACT...Military Operations in Urban Terrain (MOUT) Program, a U.S. Marine Corps exploratory development effort under Naval Materiel Command Program Element
NASA Technical Reports Server (NTRS)
Hultgren, Lennart S.
2010-01-01
This presentation is a technical progress report and near-term outlook for NASA-internal and NASA-sponsored external work on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system level noise metrics for the 2015, 2020, and 2025 timeframes; the emerging importance of core noise and its relevance to the SFW Reduced-Noise-Aircraft Technical Challenge; the current research activities in the core-noise area, with some additional details given about the development of a high-fidelity combustion-noise prediction capability; the need for a core-noise diagnostic capability to generate benchmark data for validation of both high-fidelity work and improved models, as well as testing of future noise-reduction technologies; relevant existing core-noise tests using real engines and auxiliary power units; and examples of possible scenarios for a future diagnostic facility. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Reduced-Noise-Aircraft Technical Challenge aims to enable concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries. This reduction of aircraft noise is critical for enabling the anticipated large increase in future air traffic. Noise generated in the jet engine core, by sources such as the compressor, combustor, and turbine, can be a significant contribution to the overall noise signature at low-power conditions, typical of approach flight. At high engine power during takeoff, jet and fan noise have traditionally dominated over core noise. However, current design trends and expected technological advances in engine-cycle design as well as noise-reduction methods are likely to reduce non-core noise even at engine-power points higher than approach. In addition, future low-emission combustor designs could increase the combustion-noise component. The trend towards high-power-density cores also means that the noise generated in the low-pressure turbine will likely increase. Consequently, the combined result from these emerging changes will be to elevate the overall importance of turbomachinery core noise, which will need to be addressed in order to meet future noise goals.
Evaluation of Adaptive Noise Management Technologies for School-Age Children with Hearing Loss.
Wolfe, Jace; Duke, Mila; Schafer, Erin; Jones, Christine; Rakita, Lori
2017-05-01
Children with hearing loss experience significant difficulty understanding speech in noisy and reverberant situations. Adaptive noise management technologies, such as fully adaptive directional microphones and digital noise reduction, have the potential to improve communication in noise for children with hearing aids. However, there are no published studies evaluating the potential benefits children receive from the use of adaptive noise management technologies in simulated real-world environments as well as in daily situations. The objective of this study was to compare speech recognition, speech intelligibility ratings (SIRs), and sound preferences of children using hearing aids equipped with and without adaptive noise management technologies. A single-group, repeated measures design was used to evaluate performance differences obtained in four simulated environments. In each simulated environment, participants were tested in a basic listening program with minimal noise management features, a manual program designed for that scene, and the hearing instruments' adaptive operating system that steered hearing instrument parameterization based on the characteristics of the environment. Twelve children with mild to moderately severe sensorineural hearing loss. Speech recognition and SIRs were evaluated in three hearing aid programs with and without noise management technologies across two different test sessions and various listening environments. Also, the participants' perceptual hearing performance in daily real-world listening situations with two of the hearing aid programs was evaluated during a four- to six-week field trial that took place between the two laboratory sessions. On average, the use of adaptive noise management technology improved sentence recognition in noise for speech presented in front of the participant but resulted in a decrement in performance for signals arriving from behind when the participant was facing forward. However, the improvement with adaptive noise management exceeded the decrement obtained when the signal arrived from behind. Most participants reported better subjective SIRs when using adaptive noise management technologies, particularly when the signal of interest arrived from in front of the listener. In addition, most participants reported a preference for the technology with an automatically switching, adaptive directional microphone and adaptive noise reduction in real-world listening situations when compared to conventional, omnidirectional microphone use with minimal noise reduction processing. Use of the adaptive noise management technologies evaluated in this study improves school-age children's speech recognition in noise for signals arriving from the front. Although a small decrement in speech recognition in noise was observed for signals arriving from behind the listener, most participants reported a preference for use of noise management technology both when the signal arrived from in front and from behind the child. The results of this study suggest that adaptive noise management technologies should be considered for use with school-age children when listening in academic and social situations. American Academy of Audiology
Supersonic Transport Noise Reduction Technology Program - Phase 2. Volume 1
1975-09-01
transport aircraft . In addition, PNL and EPNL con- tributions made by each major engine component ( jet , turbine , combustor and compressor) were... Turbine noise was studied using a J85 engine with massive Inlet suppressor and open nozzle to unmask the turbine . Second-stage turbine blade /nozzle...17. Kty Words (Suggnted by Author(tl) Jet Noise, High Velocity Suppression, Aircraft Engine Suppression, Turbomachlnery Noise, Hybrid Inlet
Core Noise - Increasing Importance
NASA Technical Reports Server (NTRS)
Hultgren, Lennart S.
2011-01-01
This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015, 2020, and 2025 timeframes; turbofan design trends and their aeroacoustic implications; the emerging importance of core noise and its relevance to the SFW Reduced-Perceived-Noise Technical Challenge; and the current research activities in the core-noise area, with additional details given about the development of a high-fidelity combustor-noise prediction capability as well as activities supporting the development of improved reduced-order, physics-based models for combustor-noise prediction. The need for benchmark data for validation of high-fidelity and modeling work and the value of a potential future diagnostic facility for testing of core-noise-reduction concepts are indicated. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Reduced-Perceived-Noise Technical Challenge aims to develop concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries. This reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic. Noise generated in the jet engine core, by sources such as the compressor, combustor, and turbine, can be a significant contribution to the overall noise signature at low-power conditions, typical of approach flight. At high engine power during takeoff, jet and fan noise have traditionally dominated over core noise. However, current design trends and expected technological advances in engine-cycle design as well as noise-reduction methods are likely to reduce non-core noise even at engine-power points higher than approach. In addition, future low-emission combustor designs could increase the combustion-noise component. The trend towards high-power-density cores also means that the noise generated in the low-pressure turbine will likely increase. Consequently, the combined result from these emerging changes will be to elevate the overall importance of turbomachinery core noise, which will need to be addressed in order to meet future noise goals.
NASA Technical Reports Server (NTRS)
Kenny, Patrick
2004-01-01
The Acoustics Branch is responsible for reducing noise levels for jet and fan components on aircraft engines. To do this, data must be measured and calibrated accurately to ensure validity of test results. This noise reduction is accomplished by modifications to hardware such as jet nozzles, and by the use of other experimental hardware such as fluidic chevrons, elliptic cores, and fluidic shields. To insure validity of data calibration, a variety of software is used. This software adjusts the sound amplitude and frequency to be consistent with data taken on another day. Both the software and the hardware help make noise reduction possible. work properly. These software programs were designed to make corrections for atmosphere, shear, attenuation, electronic, and background noise. All data can be converted to a one-foot lossless condition, using the proper software corrections, making a reading independent of weather and distance. Also, data can be transformed from model scale to full scale for noise predictions of a real flight. Other programs included calculations of Over All Sound Pressure Level (OASPL), Effective Perceived Noise Level (EPNL). OASPL is the integration of sound with respect to frequency, and EPNL is weighted for a human s response to different sound frequencies and integrated with respect to time. With the proper software correction, data taken in the NATR are useful in determining ways to reduce noise. display any difference between two or more data files. Using this program and graphs of the data, the actual and predicted data can be compared. This software was tested on data collected at the Aero Acoustic Propulsion Laboratory (AAPL) using a variety of window types and overlaps. Similarly, short scripts were written to test each individual program in the software suite for verification. Each graph displays both the original points and the adjusted points connected with lines. During this summer, data points were taken during a live experiment at the AAPL to measure Nozzle Acoustic Test Rig (NATR) background noise levels. Six condenser microphones were placed in strategic locations around the dome and the inlet tunnel to measure different noise sources. From the control room the jet was monitored with the help of video cameras and other sensors. The data points were recorded, reduced, and plotted, and will be used to plan future modifications to the NATR. The primary goal to create data reduction test programs and provide verification was completed. As a result of the internship, I learned C/C++, UNIX/LINUX, Excel, and acoustic data processing methods. I also recorded data at the AAPL, then processed and plotted it. These data would be useful to compare against existing data. In addition, I adjusted software to work on the Mac OSX platform. And I used the available training resources.
An Analytical Assessment of NASA's N(+)1 Subsonic Fixed Wing Project Noise Goal
NASA Technical Reports Server (NTRS)
Berton, Jeffrey J.; Envia, Edmane; Burley, Casey L.
2010-01-01
The Subsonic Fixed Wing Project of NASA s Fundamental Aeronautics Program has adopted a noise reduction goal for new, subsonic, single-aisle, civil aircraft expected to replace current 737 and A320 airplanes. These so-called "N+1" aircraft--designated in NASA vernacular as such since they will follow the current, in-service, "N" airplanes--are hoped to achieve certification noise goal levels of 32 cumulative EPNdB under current Stage 4 noise regulations. A notional, N+1, single-aisle, twinjet transport with ultrahigh bypass ratio turbofan engines is analyzed in this study using NASA software and methods. Several advanced noise-reduction technologies are empirically applied to the propulsion system and airframe. Certification noise levels are predicted and compared with the NASA goal.
Revolutionary Concepts for Helicopter Noise Reduction: SILENT Program
NASA Technical Reports Server (NTRS)
Edwards, Bryan; Cox, Charles; Booth, Earl R., Jr. (Technical Monitor)
2002-01-01
As part of a NASA initiative to reduce helicopter main rotor noise, a Phase 1 study has been performed of candidate noise reduction concepts. Both conventional and novel design technologies have been analyzed that reduce the community impact of helicopter operations. In this study the noise reduction potential and design implications are assessed for conventional means of noise reduction, e.g., tip speed reduction, tip shapes and airfoil tailoring, and for two innovative design concepts: modulated blade spacing and x-force control. Main rotor designs that incorporate modulated blade spacing are shown to have reduced peak noise levels in most flight operations. X-force control alters the helicopter's force balance whereby the miss distance between main rotor blades and shed vortices can be controlled. This control provides a high potential to mitigate BVI noise radiation. Each concept is evaluated using best practice design and analysis methods, achieving the study's aim to significantly reduce noise with minimal performance degradation and no vibration increase. It is concluded that a SILENT main rotor design, incorporating the modulated blade spacing concept, offers significantly reduced noise levels and the potential of a breakthrough in how a helicopter's sound is perceived and judged. The SILENT rotor represents a definite advancement in the state-of-the-art and is selected as the design concept for demonstration in Phase 2. A Phase 2 Implementation Plan is developed for whirl cage and wind tunnel evaluations of a scaled model SILENT rotor.
Chung, King
2012-06-01
Wind noise reduction is a topic of ongoing research and development for hearing aids and cochlear implants. The purposes of this study were to examine spectral characteristics of wind noise generated by directional (DIR) and omnidirectional (OMNI) microphones on different styles of hearing aids and to derive wind noise reduction strategies. Three digital hearing aids (BTE, ITE, and ITC) were fitted to Knowles Electronic Manikin for Acoustic Research. They were programmed to have linear amplification and matching frequency responses between the DIR and OMNI modes. Flow noise recordings were made from 0° to 360° azimuths at flow velocities of 4.5, 9.0, and 13.5 m/s in a quiet wind tunnel. Noise levels were analyzed in one-third octave bands from 100 to 8000 Hz. Comparison of wind noise revealed that DIR generally produced higher noise levels than OMNI for all hearing aids, but it could result in lower levels than OMNI at some frequencies and head angles. Wind noise reduction algorithms can be designed to detect noise levels of DIR and OMNI outputs in each frequency channel, remove the constraint to switch to OMNI in low-frequency channel(s) only, and adopt the microphone mode with lower noise levels to take advantage of the microphone differences.
Propulsion technology challenges for turn-of-the-century commercial aircraft
NASA Technical Reports Server (NTRS)
Ziemianski, Joseph A.; Ball, Calvin L.
1993-01-01
This paper highlights the efforts being performed or sponsored by NASA, in cooperation with the U.S. civil aviation industry, to address the propulsion system technological challenges that must be met in order to ensure a viable future for the industry. Both the subsonic and supersonic aeropropulsion programs are considered. Subsonic transport propulsion program elements, including ultra-high-bypass-ratio turbofans with attendant noise reduction efforts, high-efficiency cores, and combustor emissions reductions are discussed in terms of goals, technical issues, and problem solutions. Similarly, the high-speed research propulsion efforts addressing a high-speed commercial transport are reviewed in terms of environmental barrier issues, such as oxides of nitrogen and noise reduction, and the related economic issues.
NASA Astrophysics Data System (ADS)
Garcea, Ralph; Leigh, Barry; Wong, R. L. M.
Reduction of interior noise in propeller-driven aircraft, to levels comparable with those obtained in jet transports, has become a leading factor in the early design stages of the new generation turboprops- and may be essential if these new designs are to succeed. The need for an analytical capability to predict interior noise is accepted throughout the turboprop aircraft industry. To this end, an analytical noise prediction program, which incorporates the SYSNOISE numerical acoustic analysis software, is under development at de Havilland. The discussion contained herein looks at the development program and how it was used in a design sensitivity analysis to optimize the structural design of the aircraft cabin for the purpose of reducing interior noise levels. This report also summarizes the validation of the SYSNOISE package using numerous classical cases from the literature.
Recent advances in active noise and vibration control at NASA Langley Research Center
NASA Astrophysics Data System (ADS)
Gibbs, Gary P.; Cabell, Randolph H.; Palumbo, Daniel L.; Silcox, Richard J.; Turner, Travis L.
2002-11-01
Over the past 15 years NASA has investigated the use of active control technology for aircraft interior noise. More recently this work has been supported through the Advanced Subsonic Technology Noise Reduction Program (1994-2001), High Speed Research Program (1994-1999), and through the Quiet Aircraft Technology Program (2000-present). The interior environment is recognized as an important element in flight safety, crew communications and fatigue, as well as passenger comfort. This presentation will overview research in active noise and vibration control relating to interior noise being investigated by NASA. The research to be presented includes: active control of aircraft fuselage sidewall transmission due to turbulent boundary layer or jet noise excitation, active control of interior tones due to propeller excitation of aircraft structures, and adaptive stiffening of structures for noise, vibration, and fatigue control. Work on actuator technology ranging from piezoelectrics, shape memory actuators, and fluidic actuators will be described including applications. Control system technology will be included that is experimentally based, real-time, and adaptive.
Overview of the Arizona Quiet Pavement Program
NASA Astrophysics Data System (ADS)
Donavan, Paul; Scofield, Larry
2005-09-01
The Arizona Quiet Pavement Pilot Program (QP3) was initially implemented to reduce highway related traffic noise by overlaying most of the Phoenix metropolitan area Portland cement concrete pavement with a one inch thick asphalt rubber friction coarse. With FHWA support, this program represents the first time that pavement surface type has been allowed as a noise mitigation strategy on federally funded projects. As a condition of using pavement type as a noise mitigation strategy, ADOT developed a ten-year, $3.8 million research program to evaluate the noise reduction performance over time. Historically, pavement surface type was not considered a permanent solution. As a result, the research program was designed to specifically address this issue. Noise performance is being evaluated through three means: (1) conventional roadside testing within the roadway corridor (e.g., far field measurements within the right-of-way) (2) the use of near field measurements, both close proximity (CPX) and sound intensity (SI); and (3) far field measurements obtained beyond the noise barriers within the surrounding neighborhoods. This paper provides an overview of the program development, presents the research conducted to support the decision to overlay the urban freeway, and the status of current research.
Sources, control, and effects of noise from aircraft propellers and rotors
NASA Technical Reports Server (NTRS)
Mixson, J. S.; Greene, G. C.; Dempsey, T. K.
1981-01-01
Recent NASA and NASA sponsored research on the prediction and control of propeller and rotor source noise, on the analysis and design of fuselage sidewall noise control treatments, and on the measurement and quantification of the response of passengers to aircraft noise is described. Source noise predictions are compared with measurements for conventional low speed propellers, for new high speed propellers (propfans), and for a helicopter. Results from a light aircraft demonstration program are considered which indicates that about 5 dB reduction of flyover noise can be obtained without significant performance penalty. Sidewall design studies are examined for interior noise control in light general aviation aircraft and in large transports using propfan propulsion. The weight of the added acoustic treatment is estimated and tradeoffs between weight and noise reduction are discussed. A laboratory study of passenger response to combined broadband and tonal propeller-like noise is described. Subject discomfort ratings of combined tone broadband noises are compared with ratings of broadband (boundary layer) noise alone and the relative importance of the propeller tones is examined.
DC-9 flight demonstration program with refanned JT8D engines. Volume 4: Flyover noise
NASA Technical Reports Server (NTRS)
1975-01-01
Flyover noise tests were conducted to determine the noise reductions achievable by modifying the engines and nacelles of DC-9-30 airplanes. The two stage fan of the JT8D-9 engine was replaced with a larger diameter, single stage fan and sound absorbing materials were incorporated in the engines and nacelles. The noise levels were determined to be 95.3 EPNdB at the sideline, 96.2 EPNdB for a full thrust takeoff, 87.5 EPNdB for takeoff with thrust cutback, and 97.4 EPNdB for landing approach. The noise reductions relative to the hardwall JT8D-9 were 8.2 EPNdB for takeoff with cutback and 8.7 EPNdB for landing. The 90 EPNdB noise contour areas were reduced by 40% for missions requiring maximum design takeoff and landing weights. For typical mission weights, the reductions were 19% for full thrust takeoff and 34% for takeoff with cutback. The 95 EPNdB contour areas were reduced by 50% for takeoff and 30% for takeoff with cutback for both missions.
Ejector Noise Suppression with Auxiliary Jet Injection
NASA Technical Reports Server (NTRS)
Berman, Charles H.; Andersen, Otto P., Jr.
1997-01-01
An experimental program to reduce aircraft jet turbulence noise investigated the interaction of small auxiliary jets with a larger main jet. Significant reductions in the far field jet noise were obtained over a range of auxiliary jet pressures and flow rates when used in conjunction with an acoustically lined ejector. While the concept is similar to that of conventional ejector suppressors that use mechanical mixing devices, the present approach should improve thrust and lead to lower weight and less complex noise suppression systems since no hardware needs to be located in the main jet flow. A variety of auxiliary jet and ejector configurations and operating conditions were studied. The best conditions tested produced peak to peak noise reductions ranging from 11 to 16 dB, depending on measurement angle, for auxiliary jet mass flows that were 6.6% of the main jet flow with ejectors that were 8 times the main jet diameter in length. Much larger reductions in noise were found at the original peak frequencies of the unsuppressed jet over a range of far field measurement angles.
High speed jet noise research at NASA Lewis
NASA Astrophysics Data System (ADS)
Krejsa, Eugene A.; Cooper, B. A.; Kim, C. M.; Khavaran, Abbas
1992-04-01
The source noise portion of the High Speed Research Program at NASA LeRC is focused on jet noise reduction. A number of jet noise reduction concepts are being investigated. These include two concepts, the Pratt & Whitney ejector suppressor nozzle and the General Electric (GE) 2D-CD mixer ejector nozzle, that rely on ejectors to entrain significant amounts of ambient air to mix with the engine exhaust to reduce the final exhaust velocity. Another concept, the GE 'Flade Nozzle' uses fan bypass air at takeoff to reduce the mixed exhaust velocity and to create a fluid shield around a mixer suppressor. Additional concepts are being investigated at Georgia Tech Research Institute and at NASA LeRC. These will be discussed in more detail in later figures. Analytical methods for jet noise prediction are also being developed. Efforts in this area include upgrades to the GE MGB jet mixing noise prediction procedure, evaluation of shock noise prediction procedures, and efforts to predict jet noise directly from the unsteady Navier-Stokes equation.
High speed jet noise research at NASA Lewis
NASA Technical Reports Server (NTRS)
Krejsa, Eugene A.; Cooper, B. A.; Kim, C. M.; Khavaran, Abbas
1992-01-01
The source noise portion of the High Speed Research Program at NASA LeRC is focused on jet noise reduction. A number of jet noise reduction concepts are being investigated. These include two concepts, the Pratt & Whitney ejector suppressor nozzle and the General Electric (GE) 2D-CD mixer ejector nozzle, that rely on ejectors to entrain significant amounts of ambient air to mix with the engine exhaust to reduce the final exhaust velocity. Another concept, the GE 'Flade Nozzle' uses fan bypass air at takeoff to reduce the mixed exhaust velocity and to create a fluid shield around a mixer suppressor. Additional concepts are being investigated at Georgia Tech Research Institute and at NASA LeRC. These will be discussed in more detail in later figures. Analytical methods for jet noise prediction are also being developed. Efforts in this area include upgrades to the GE MGB jet mixing noise prediction procedure, evaluation of shock noise prediction procedures, and efforts to predict jet noise directly from the unsteady Navier-Stokes equation.
ACOUSTIC INSULATION, *TURBOJET EXHAUST NOZZLES, *JET ENGINE NOISE, REDUCTION, JET TRANSPORT AIRCRAFT, THRUST AUGMENTATION , SUPERSONIC NOZZLES, DUCT...INLETS, CONVERGENT DIVERGENT NOZZLES, SUBSONIC FLOW, SUPERSONIC FLOW, SUPPRESSORS, TURBOJET INLETS, BAFFLES, JET PUMPS, THRUST , DRAG, TEMPERATURE
NASA Technical Reports Server (NTRS)
Hughes, Christopher E.
1999-01-01
With the advent of new, more stringent noise regulations in the next century, aircraft engine manufacturers are investigating new technologies to make the current generation of aircraft engines as well as the next generation of advanced engines quieter without sacrificing operating performance. A current NASA initiative called the Advanced Subsonic Technology (AST) Program has set as a goal a 6-EPNdB (effective perceived noise) reduction in aircraft engine noise relative to 1992 technology levels by the year 2000. As part of this noise program, and in cooperation with the Allison Engine Company, an advanced, low-noise, high-bypass-ratio fan stage design and several advanced technology stator vane designs were recently tested in NASA Lewis Research Center's 9- by 15-Foot Low-Speed Wind Tunnel (an anechoic facility). The project was called the NASA/Allison Low Noise Fan.
Aliabadi, Mohsen; Biabani, Azam; Golmohammadi, Rostam; Farhadian, Maryam
2018-05-28
Actual noise reduction of the earmuffs is considered as one of the main challenges for the evaluation of the effectiveness of a hearing conservation program. The current study aimed to determine the real world noise attenuation of current hearing protection devices in typical workplaces using a field microphone in real ear (FMIRE) method. In this cross-sectional study, five common earmuffs were investigated among 50 workers in two industrial factories with different noise characteristics. Noise reduction data was measured with the use of earmuffs based on the ISO 11904 standard, field microphone in real ear method, using noise dosimeter (SVANTEK, model SV 102) equipped with a microphone SV 25 model. The actual insertion losses (IL) of the tested earmuffs in octave band were lower than the labeled insertion loss data (p < 0.05). The frequency nature of noise to which workers are exposed has noticeable effects on the actual noise reduction of earmuffs (p < 0.05). The results suggest that the proportion of time using earmuffs has a considerable impact on the effective noise reduction during the workday. Data about the ambient noise characteristics is a key criterion when evaluating the acoustic performance of hearing protectors in any workplaces. Comfort aspects should be considered as one of the most important criteria for long-term use and effective wearing of hearing protection devices. FMIRE could facilitate rapid and simple measurement of the actual performance of the current earmuffs employed by workers during different work activities.
Full-Scale Turbofan Engine Noise-Source Separation Using a Four-Signal Method
NASA Technical Reports Server (NTRS)
Hultgren, Lennart S.; Arechiga, Rene O.
2016-01-01
Contributions from the combustor to the overall propulsion noise of civilian transport aircraft are starting to become important due to turbofan design trends and expected advances in mitigation of other noise sources. During on-ground, static-engine acoustic tests, combustor noise is generally sub-dominant to other engine noise sources because of the absence of in-flight effects. Consequently, noise-source separation techniques are needed to extract combustor-noise information from the total noise signature in order to further progress. A novel four-signal source-separation method is applied to data from a static, full-scale engine test and compared to previous methods. The new method is, in a sense, a combination of two- and three-signal techniques and represents an attempt to alleviate some of the weaknesses of each of those approaches. This work is supported by the NASA Advanced Air Vehicles Program, Advanced Air Transport Technology Project, Aircraft Noise Reduction Subproject and the NASA Glenn Faculty Fellowship Program.
Active Control of Aerodynamic Noise Sources
NASA Technical Reports Server (NTRS)
Reynolds, Gregory A.
2001-01-01
Aerodynamic noise sources become important when propulsion noise is relatively low, as during aircraft landing. Under these conditions, aerodynamic noise from high-lift systems can be significant. The research program and accomplishments described here are directed toward reduction of this aerodynamic noise. Progress toward this objective include correction of flow quality in the Low Turbulence Water Channel flow facility, development of a test model and traversing mechanism, and improvement of the data acquisition and flow visualization capabilities in the Aero. & Fluid Dynamics Laboratory. These developments are described in this report.
Source Identification and Location Techniques
NASA Technical Reports Server (NTRS)
Weir, Donald; Bridges, James; Agboola, Femi; Dougherty, Robert
2001-01-01
Mr. Weir presented source location results obtained from an engine test as part of the Engine Validation of Noise Reduction Concepts program. Two types of microphone arrays were used in this program to determine the jet noise source distribution for the exhaust from a 4.3 bypass ratio turbofan engine. One was a linear array of 16 microphones located on a 25 ft. sideline and the other was a 103 microphone 3-D "cage" array in the near field of the jet. Data were obtained from a baseline nozzle and from numerous nozzle configuration using chevrons and/or tabs to reduce the jet noise. Mr. Weir presented data from two configurations: the baseline nozzle and a nozzle configuration with chevrons on both the core and bypass nozzles. This chevron configuration had achieved a jet noise reduction of 4 EPNdB in small scale tests conducted at the Glenn Research Center. IR imaging showed that the chevrons produced significant improvements in mixing and greatly reduced the length of the jet potential core. Comparison of source location data from the 1-D phased array showed a shift of the noise sources towards the nozzle and clear reductions of the sources due to the noise reduction devices. Data from the 3-D array showed a single source at a frequency of 125 Hz. located several diameters downstream from the nozzle exit. At 250 and 400 Hz., multiple sources, periodically spaced, appeared to exist downstream of the nozzle. The trend of source location moving toward the nozzle exit with increasing frequency was also observed. The 3-D array data also showed a reduction in source strength with the addition of chevrons. The overall trend of source location with frequency was compared for the two arrays and with classical experience. Similar trends were observed. Although overall trends with frequency and addition of suppression devices were consistent between the data from the 1-D and the 3-D arrays, a comparison of the details of the inferred source locations did show differences. A flight test is planned to determine if the hardware tested statically will achieve similar reductions in flight.
Acoustic tests of duct-burning turbofan jet noise simulation
NASA Technical Reports Server (NTRS)
Knott, P. R.; Stringas, E. J.; Brausch, J. F.; Staid, P. S.; Heck, P. H.; Latham, D.
1978-01-01
The results of a static acoustic and aerodynamic performance, model-scale test program on coannular unsuppressed and multielement fan suppressed nozzle configurations are summarized. The results of the static acoustic tests show a very beneficial interaction effect. When the measured noise levels were compared with the predicted noise levels of two independent but equivalent conical nozzle flow streams, noise reductions for the unsuppressed coannular nozzles were of the order of 10 PNdB; high levels of suppression (8 PNdB) were still maintained even when only a small amount of core stream flow was used. The multielement fan suppressed coannular nozzle tests showed 15 PNdB noise reductions and up to 18 PNdB noise reductions when a treated ejector was added. The static aerodynamic performance tests showed that the unsuppressed coannular plug nozzles obtained gross thrust coefficients of 0.972, with 1.2 to 1.7 percent lower levels for the multielement fan-suppressed coannular flow nozzles. For the first time anywhere, laser velocimeter velocity profile measurements were made on these types of nozzle configurations and with supersonic heated flow conditions. Measurements showed that a very rapid decay in the mean velocity occurs for the nozzle tested.
In vivo evaluation of mastication noise reduction for dual channel implantable microphone.
Woo, SeongTak; Jung, EuiSung; Lim, HyungGyu; Lee, Jang Woo; Seong, Ki Woong; Won, Chul Ho; Kim, Myoung Nam; Cho, Jin Ho; Lee, Jyung Hyun
2014-01-01
Input for fully implantable hearing devices (FIHDs) is provided by an implantable microphone under the skin of the temporal bone. However, the implanted microphone can be affected when the FIHDs user chews. In this paper, a dual implantable microphone was designed that can filter out the noise from mastication. For the in vivo experiment, a fabricated microphone was implanted in a rabbit. Pure-tone sounds of 1 kHz through a standard speaker were applied to the rabbit, which was given food simultaneously. To evaluate noise reduction, the measured signals were processed using a MATLAB program based adaptive filter. To verify the proposed method, the correlation coefficients and signal to-noise ratio before and after signal processing were calculated. By comparing the results, signal-to-noise ratio and correlation coefficients are enhanced by 6.07dB and 0.529 respectively.
NASA Technical Reports Server (NTRS)
2014-01-01
On approach, next-generation aircraft are likely to have airframe noise levels that are comparable to or in excess of engine noise. ATA Engineering, Inc. (ATA) is developing a novel quiet engine air brake (EAB), a device that generates "equivalent drag" within the engine through stream thrust reduction by creating a swirling outflow in the turbofan exhaust nozzle. Two Phase II projects were conducted to mature this technology: (1) a concept development program (CDP) and (2) a system development program (SDP).
NASA Technical Reports Server (NTRS)
Anderton, D. A.
1982-01-01
Aeronautical research programs are discussed in relation to research methods and the status of the programs. The energy efficient aircraft, STOL aircraft and general aviation aircraft are considered. Aerodynamic concepts, rotary wing aircraft, aircraft safety, noise reduction, and aircraft configurations are among the topics included.
Soundscape elaboration from anthrophonic adaptation of community noise
NASA Astrophysics Data System (ADS)
Teddy Badai Samodra, FX
2018-03-01
Under the situation of an urban environment, noise has been a critical issue in affecting the indoor environment. A reliable approach is required for evaluation of the community noise as one factor of anthrophonic in the urban environment. This research investigates the level of noise exposure from different community noise sources and elaborates the advantage of the noise disadvantages for soundscape innovation. Integrated building element design as a protector for noise control and speech intelligibility compliance using field experiment and MATLAB programming and modeling are also carried out. Meanwhile, for simulation analysis and building acoustic optimization, Sound Reduction-Speech Intelligibility and Reverberation Time are the main parameters for identifying tropical building model as case study object. The results show that the noise control should consider its integration with the other critical issue, thermal control, in an urban environment. The 1.1 second of reverberation time for speech activities and noise reduction more than 28.66 dBA for critical frequency (20 Hz), the speech intelligibility index could be reached more than fair assessment, 0.45. Furthermore, the environmental psychology adaptation result “Close The Opening” as the best method in high noise condition and personal adjustment as the easiest and the most adaptable way.
Aircraft interior noise reduction by alternate resonance tuning
NASA Technical Reports Server (NTRS)
Bliss, Donald B.; Gottwald, James A.; Gustaveson, Mark B.; Burton, James R., III; Castellino, Craig
1989-01-01
Existing interior noise reduction techniques for aircraft fuselages perform reasonably well at higher frequencies, but are inadequate at lower, particularly with respect to the low blade passage harmonics with high forcing levels found in propeller aircraft. A method is being studied which considers aircraft fuselages lines with panels alternately tuned to frequencies above and below the frequency to be attenuated. Adjacent panels would oscillate at equal amplitude, to give equal source strength, but with opposite phase. Provided these adjacent panels are acoustically compact, the resulting cancellation causes the interior acoustic modes to become cut off and therefore be non-propagating and evanescent. This interior noise reduction method, called Alternate Resonance Tuning (ART), is currently being investigated both theoretically and experimentally. This new concept has potential application to reducing interior noise due to the propellers in advanced turboprop aircraft as well as for existing aircraft configurations. This program summarizes the work carried out at Duke University during the third semester of a contract supported by the Structural Acoustics Branch at NASA Langley Research Center.
NASA Technical Reports Server (NTRS)
Hauser, Joseph R.; Zysman, Steven H.; Barber, Thomas J.
2001-01-01
NASA Glenn Research Center supported a three year effort to develop the technology for reducing jet noise from low-bypass ratio engines. This effort concentrated on both analytical and experimental approaches using various mixer designs. CFD and MGB predictions are compared with LDV and noise data, respectively. While former predictions matched well with data, experiment shows a need for improving the latter predictions. Data also show that mixing noise can be sensitive to engine hardware upstream of the mixing exit plane.
Forced Mixer Nozzle Optimization
NASA Technical Reports Server (NTRS)
Sheoran, Yogi; Hoover, Robert; Schuster, William; Anderson, Morris; Weir, Donald S.
1999-01-01
Computational fluid dynamic (CFD) and computational acoustic analyses (CAA) were performed for a TFE731-40 compound nozzle, a TFE731-60 mixer nozzle and an Energy Efficient Engine (E(sup 3)) mixer nozzle for comparison with available data. The CFD analyses were performed with a three dimensional, Navier-Stokes solution of the flowfield on an unstructured grid using the RAMPANT program. The CAA analyses were performed with the NASA Glenn MGB program using a structured grid. A successful aerodynamic solution for the TFE731-40 compound nozzle operating statically was obtained, simulating an engine operating on a test stand. Analysis of the CFD results of the TFE731-40 with the MGB program produced predicted sound power levels that agree quite well with the measured data front full-scale static engine tests. Comparison of the predicted sound pressure with the data show good agreement near the jet axis, but the noise levels are overpredicted at angles closer to the inlet. The predicted sound power level for the TFE731-60 did not agree as well with measured static engine data as the TFE731-40. Although a reduction in the predicted noise level due to the mixed flow was observed, the reduction was not as significant as the measured data. The analysis of the V2 mixer from the E(sup 3) study showed that peak temperatures predicted in the mixer exit flowfield were within 5 percent of the values measured by the exit probes. The noise predictions of the V2 mixer nozzle tended to be 3-5 dB higher in peak noise level than the measurements. In addition, the maximum frequency of the noise was also overpredicted. An analysis of the 3 candidate mixer nozzle configurations demonstrated the feasibility of using centerbody lobes and porosity to improve mixing efficiency. A final configuration was designed with a predicted thermal mixing efficiency that was 5 percent higher than the 3 candidate mixers. The results of the MGB noise calculations show that the final design will exceed the design goal of a 3 dB reduction in noise as compared to the baseline TFE731-40.
A research program to reduce interior noise in general aviation airplanes
NASA Technical Reports Server (NTRS)
Peschier, T. D.; Andrews, D.; Henderson, T.
1977-01-01
The relevance of KU-FRL test results in predicting (theoretically or semi-empirically) interior noise levels in general aviation aircraft was studied. As a result of this study, it was decided to make a few additions to the program. These additions are: (1) to use three (instead of two) noise sources in the plane wave tube to evaluate the influence of excitation spectrum on panel response, (2) to use theoretical and experimental data obtained in the course of the project to develop more efficient noise reduction materials (or procedures to apply these), or to develop guidelines for the design of such materials for procedures, and (3) to use nonstructural materials in the collection of specimens to be tested in the KU-FRL plane wave tube.
Basic research in fan source noise: Inlet distortion and turbulence noise
NASA Technical Reports Server (NTRS)
Kantola, R. A.; Warren, R. E.
1978-01-01
A widely recognized problem in jet engine fan noise is the discrepancy between inflight and static tests. This discrepancy consists of blade passing frequency tones, caused by ingested turbulence that appear in the static tests but not in flight. To reduce the ingested distortions and turbulence in an anechoic chamber, a reverse cone inlet is used to guide the air into the fan. This inlet also has provisions for boundary layer suction and is used in conjunction with a turbulence control structure (TCS) to condition the air impinging on the fan. The program was very successful in reducing the ingested turbulence, to the point where reductions in the acoustic power at blade passing frequency are as high as 18 db for subsonic tip speeds. Even with this large subsonic tone suppression, the supersonic tip speed tonal content remains largely unchanged, indicating that the TCS did not appreciably attenuate the noise but effects the generation via turbulence reduction. Turbulence mapping of the inlet confirmed that the tone reductions are due to a reduction in turbulence, as the low frequency power spectra of the streamwise and transverse turbulence were reduced by up to ten times and 100 times, respectively.
High Speed Research Program Structural Acoustics Multi-Year Summary Report
NASA Technical Reports Server (NTRS)
Beier, Theodor H.; Bhat, Waman V.; Rizzi, Stephen A.; Silcox, Richard J.; Simpson, Myles A.
2005-01-01
This report summarizes the work conducted by the Structural Acoustics Integrated Technology Development (ITD) Team under NASA's High Speed Research (HSR) Phase II program from 1993 to 1999. It is intended to serve as a reference for future researchers by documenting the results of the interior noise and sonic fatigue technology development activities conducted during this period. For interior noise, these activities included excitation modeling, structural acoustic response modeling, development of passive treatments and active controls, and prediction of interior noise. For sonic fatigue, these activities included loads prediction, materials characterization, sonic fatigue code development, development of response reduction techniques, and generation of sonic fatigue design requirements. Also included are lessons learned and recommendations for future work.
1978-05-01
Measured Flight Effect for J85/ Aerotrain Conical Nozzle, 400 ft Sideline. 360 4-149. Comparison of Predicted and Measured Flight Velocity Exponent m for J85... Aerotrain Conical Nozzle. 362 4-150. Comparison of Measured and Predicted Flight Noise Spectra for J85/ Aerotrain Conical Nozzle, V = 2200 fps, 400 ft...Bertin Aerotrain simulated flight noise results which were obtained by Clapper, et al.( 72) in Task 4 of this program. Fig- ure 4-148 shows the
Effects of venting on wind noise levels measured at the eardrum.
Chung, King
2013-01-01
Wind noise can be a nuisance to hearing aid users. With the advent of sophisticated feedback reduction algorithms, people with higher degrees of hearing loss are fit with larger vents than previously allowed, and more people with lesser degrees of hearing loss are fit with open hearing aids. The purpose of this study was to examine the effects of venting on wind noise levels in the ear canal for hearing aids with omnidirectional and directional microphones. Two behind-the-ear hearing aids were programmed when they were worn on a Knowles Electronics Manikin for Acoustic Research. The hearing aid worn on the right ear was programmed to the omnidirectional microphone mode and the one on the left to the directional microphone mode. The hearing aids were adjusted to linear amplification with flat frequency response in an anechoic chamber. Gains below 10 dB were used to avoid output limiting of wind noise levels at low input levels. Wind noise samples were recorded at the eardrum location in a wind tunnel at wind velocities ranging from a gentle to a strong breeze. The hearing aids were coupled to #13 tubings (i.e., open vent), or conventional skeleton earmolds with no vent, pressure vents, or 3mm vents. Polar and spectral characteristics of wind noise were analyzed off-line using MatLab programs. Wind noise levels in the ear canals were mostly predicted by vent-induced frequency response changes in the conventional earmold conditions for both omnidirectional and directional hearing aids. The open vent condition, however, yielded the lowest levels, which could not be entirely predicted by the frequency response changes of the hearing aids. This indicated that a wind-related vent effect permitted an additional amount of sound reduction in the ear canal, which could not be explained by known vent effects. For the microphone location, form factor, and gain settings tested, open fit hearing aids yielded lower noise levels at the eardrum location than conventional behind-the-ear hearing aids.
Low-noise, high-strength, spiral-bevel gears for helicopter transmissions
NASA Technical Reports Server (NTRS)
Lewicki, David G.; Handschuh, Robert F.; Henry, Zachary S.; Litvin, Faydor L.
1993-01-01
Improvements in spiral-bevel gear design were investigated to support the Army/NASA Advanced Rotorcraft Transmission program. Program objectives were to reduce weight by 25 percent, reduce noise by 10 dB, and increase life to 5000 hr mean-time-between-removal. To help meet these goals, advanced-design spiral-bevel gears were tested in an OH-58D helicopter transmission using the NASA 500-hp Helicopter Transmission Test Stand. Three different gear designs tested included: (1) the current design of the OH-58D transmission except gear material X-53 instead of AISI 9310; (2) a higher-strength design the same as the current but with a full fillet radius to reduce gear tooth bending stress (and thus, weight); and (3) a lower-noise design the same as the high-strength but with modified tooth geometry to reduce transmission error and noise. Noise, vibration, and tooth strain tests were performed and significant gear stress and noise reductions were achieved.
Noise reduction experience at Hughes Helicopter, Inc.
NASA Astrophysics Data System (ADS)
Janakiram, D. S.
1982-07-01
Noise reduction is mostly limited to light helicopters whose noise signature is dominated by their tail rotors. It is primarily hardware oriented. Well known noise reduction techniques such as reduction of rotor speeds with an accompanying increase in solidity to maintain performance, engine noise reduction with the use of exhaust mufflers, and acoustic blanketing of transmission and engine compartment are used. The concept of blade phasing as a means of reducing tail rotor noise is also used. Engine noise (exhaust noise), power train noise and airframe noise becomes important at low rotor tip speeds and means must be found to reduce these noise sources if further noise reductions are desired. The use of a special test rig aids in isolating the various noise sources and arriving at the penalties (performance or payload) involved in quieting them. Significant noise reduction are achieved for the light helicopter with minimum performance or weight penalties because of the dominance of a single noise source (the tail rotor).
Noise reduction experience at Hughes Helicopter, Inc.
NASA Technical Reports Server (NTRS)
Janakiram, D. S.
1982-01-01
Noise reduction is mostly limited to light helicopters whose noise signature is dominated by their tail rotors. It is primarily hardware oriented. Well known noise reduction techniques such as reduction of rotor speeds with an accompanying increase in solidity to maintain performance, engine noise reduction with the use of exhaust mufflers, and acoustic blanketing of transmission and engine compartment are used. The concept of blade phasing as a means of reducing tail rotor noise is also used. Engine noise (exhaust noise), power train noise and airframe noise becomes important at low rotor tip speeds and means must be found to reduce these noise sources if further noise reductions are desired. The use of a special test rig aids in isolating the various noise sources and arriving at the penalties (performance or payload) involved in quieting them. Significant noise reduction are achieved for the light helicopter with minimum performance or weight penalties because of the dominance of a single noise source (the tail rotor).
Advanced Rotorcraft Transmission (ART) program
NASA Technical Reports Server (NTRS)
Heath, Gregory F.; Bossler, Robert B., Jr.
1993-01-01
Work performed by the McDonnell Douglas Helicopter Company and Lucas Western, Inc. within the U.S. Army/NASA Advanced Rotorcraft Transmission (ART) Program is summarized. The design of a 5000 horsepower transmission for a next generation advanced attack helicopter is described. Government goals for the program were to define technology and detail design the ART to meet, as a minimum, a weight reduction of 25 percent, an internal noise reduction of 10 dB plus a mean-time-between-removal (MTBR) of 5000 hours compared to a state-of-the-art baseline transmission. The split-torque transmission developed using face gears achieved a 40 percent weight reduction, a 9.6 dB noise reduction and a 5270 hour MTBR in meeting or exceeding the above goals. Aircraft mission performance and cost improvements resulting from installation of the ART would include a 17 to 22 percent improvement in loss-exchange ratio during combat, a 22 percent improvement in mean-time-between-failure, a transmission acquisition cost savings of 23 percent of $165K, per unit, and an average transmission direct operating cost savings of 33 percent, or $24K per flight hour. Face gear tests performed successfully at NASA Lewis are summarized. Also, program results of advanced material tooth scoring tests, single tooth bending tests, Charpy impact energy tests, compact tension fracture toughness tests and tensile strength tests are summarized.
Screening of Potential Landing Gear Noise Control Devices at Virginia Tech For QTD II Flight Test
NASA Technical Reports Server (NTRS)
Ravetta, Patricio A.; Burdisso, Ricardo A.; Ng, Wing F.; Khorrami, Mehdi R.; Stoker, Robert W.
2007-01-01
In support of the QTD II (Quiet Technology Demonstrator) program, aeroacoustic measurements of a 26%-scale, Boeing 777 main landing gear model were conducted in the Virginia Tech Stability Tunnel. The objective of these measurements was to perform risk mitigation studies on noise control devices for a flight test performed at Glasgow, Montana in 2005. The noise control devices were designed to target the primary main gear noise sources as observed in several previous tests. To accomplish this task, devices to reduce noise were built using stereo lithography for landing gear components such as the brakes, the forward cable harness, the shock strut, the door/strut gap and the lower truck. The most promising device was down selected from test results. In subsequent stages, the initial design of the selected lower truck fairing was improved to account for all the implementation constraints encountered in the full-scale airplane. The redesigned truck fairing was then retested to assess the impact of the modifications on the noise reduction potential. From extensive acoustic measurements obtained using a 63-element microphone phased array, acoustic source maps and integrated spectra were generated in order to estimate the noise reduction achievable with each device.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brady, S. L.; Yee, B. S.; Kaufman, R. A.
Purpose: This study demonstrates a means of implementing an adaptive statistical iterative reconstruction (ASiR Trade-Mark-Sign ) technique for dose reduction in computed tomography (CT) while maintaining similar noise levels in the reconstructed image. The effects of image quality and noise texture were assessed at all implementation levels of ASiR Trade-Mark-Sign . Empirically derived dose reduction limits were established for ASiR Trade-Mark-Sign for imaging of the trunk for a pediatric oncology population ranging from 1 yr old through adolescence/adulthood. Methods: Image quality was assessed using metrics established by the American College of Radiology (ACR) CT accreditation program. Each image quality metricmore » was tested using the ACR CT phantom with 0%-100% ASiR Trade-Mark-Sign blended with filtered back projection (FBP) reconstructed images. Additionally, the noise power spectrum (NPS) was calculated for three common reconstruction filters of the trunk. The empirically derived limitations on ASiR Trade-Mark-Sign implementation for dose reduction were assessed using (1, 5, 10) yr old and adolescent/adult anthropomorphic phantoms. To assess dose reduction limits, the phantoms were scanned in increments of increased noise index (decrementing mA using automatic tube current modulation) balanced with ASiR Trade-Mark-Sign reconstruction to maintain noise equivalence of the 0% ASiR Trade-Mark-Sign image. Results: The ASiR Trade-Mark-Sign algorithm did not produce any unfavorable effects on image quality as assessed by ACR criteria. Conversely, low-contrast resolution was found to improve due to the reduction of noise in the reconstructed images. NPS calculations demonstrated that images with lower frequency noise had lower noise variance and coarser graininess at progressively higher percentages of ASiR Trade-Mark-Sign reconstruction; and in spite of the similar magnitudes of noise, the image reconstructed with 50% or more ASiR Trade-Mark-Sign presented a more smoothed appearance than the pre-ASiR Trade-Mark-Sign 100% FBP image. Finally, relative to non-ASiR Trade-Mark-Sign images with 100% of standard dose across the pediatric phantom age spectrum, similar noise levels were obtained in the images at a dose reduction of 48% with 40% ASIR Trade-Mark-Sign and a dose reduction of 82% with 100% ASIR Trade-Mark-Sign . Conclusions: The authors' work was conducted to identify the dose reduction limits of ASiR Trade-Mark-Sign for a pediatric oncology population using automatic tube current modulation. Improvements in noise levels from ASiR Trade-Mark-Sign reconstruction were adapted to provide lower radiation exposure (i.e., lower mA) instead of improved image quality. We have demonstrated for the image quality standards required at our institution, a maximum dose reduction of 82% can be achieved using 100% ASiR Trade-Mark-Sign ; however, to negate changes in the appearance of reconstructed images using ASiR Trade-Mark-Sign with a medium to low frequency noise preserving reconstruction filter (i.e., standard), 40% ASiR Trade-Mark-Sign was implemented in our clinic for 42%-48% dose reduction at all pediatric ages without a visually perceptible change in image quality or image noise.« less
NASA Technical Reports Server (NTRS)
Kiser, J. Douglas; Bansal, Narottam P.; Szelagowski, James; Sokhey, Jagdish; Heffernan, Tab; Clegg, Joseph; Pierluissi, Anthony; Riedell, Jim; Wyen, Travis; Atmur, Steven;
2015-01-01
LibertyWorks®, a subsidiary of Rolls-Royce Corporation, first studied CMC (ceramic matrix composite) exhaust mixers for potential weight benefits in 2008. Oxide CMC potentially offered weight reduction, higher temperature capability, and the ability to fabricate complex-shapes for increased mixing and noise suppression. In 2010, NASA was pursuing the reduction of NOx emissions, fuel burn, and noise from turbine engines in Phase I of the Environmentally Responsible Aviation (ERA) Project (within the Integrated Systems Research Program). ERA subtasks, including those focused on CMC components, were being formulated with the goal of maturing technology from Proof of Concept Validation (Technology Readiness Level 3 (TRL 3)) to System/Subsystem or Prototype Demonstration in a Relevant Environment (TRL 6). LibertyWorks®, a subsidiary of Rolls-Royce Corporation, first studied CMC (ceramic matrix composite) exhaust mixers for potential weight benefits in 2008. Oxide CMC potentially offered weight reduction, higher temperature capability, and the ability to fabricate complex-shapes for increased mixing and noise suppression. In 2010, NASA was pursuing the reduction of NOx emissions, fuel burn, and noise from turbine engines in Phase I of the Environmentally Responsible Aviation (ERA) Project (within the Integrated Systems Research Program). ERA subtasks, including those focused on CMC components, were being formulated with the goal of maturing technology from Proof of Concept Validation (Technology Readiness Level 3 (TRL 3)) to System/Subsystem or Prototype Demonstration in a Relevant Environment (TRL 6). Oxide CMC component at both room and elevated temperatures. A TRL˜5 (Component Validation in a Relevant Environment) was attained and the CMC mixer was cleared for ground testing on a Rolls-Royce AE3007 engine for performance evaluation to achieve TRL 6.
Impact of Air Injection on Jet Noise
NASA Technical Reports Server (NTRS)
Henderson, Brenda; Norum, Tom
2007-01-01
The objective of this viewgraph presentation is to review the program to determine impact of core fluidic chevrons on noise produced by dual stream jets (i.e., broadband shock noise - supersonic, and mixing noise - subsonic and supersonic). The presentation reviews the sources of jet noise. It shows designs of Generation II Fluidic Chevrons. The injection impacts shock structure and stream disturbances through enhanced mixing. This may impact constructive interference between acoustic sources. The high fan pressures may inhibit mixing produced by core injectors. A fan stream injection may be required for better noise reduction. In future the modification of Gen II nozzles to allow for some azimuthal control: will allow for higher mass flow rates and will allow for shallower injection angles A Flow field study is scheduled for spring, 2008 The conclusions are that injection can reduce well-defined shock noise and injection reduces mixing noise near peak jet noise angle
Noise level in a pediatric intensive care unit.
Carvalho, Werther B; Pedreira, Mavilde L G; de Aguiar, Maria Augusta L
2005-01-01
The purpose of this study was to verify the noise level at a PICU. This prospective observational study was performed in a 10 bed PICU at a teaching hospital located in a densely populated district within the city of São Paulo, Brazil. Sound pressure levels (dBA) were measured 24 hours during a 6-day period. Noise recording equipment was placed in the PICU access corridor, nursing station, two open wards with three and five beds, and in isolation rooms. The resulting curves were analyzed. A basal noise level variation between 60 and 70 dBA was identified, with a maximum level of 120 dBA. The most significant noise levels were recorded during the day and were produced by the staff. The basal noise level identified exceeds International Noise Council recommendations. Education regarding the effects of noise on human hearing and its relation to stress is the essential basis for the development of a noise reduction program.
Supersonic jet noise - Its generation, prediction and effects on people and structures
NASA Technical Reports Server (NTRS)
Preisser, J. S.; Golub, R. A.; Seiner, J. M.; Powell, C. A.
1990-01-01
This paper presents the results of a study aimed at quantifying the effects of jet source noise reduction, increases in aircraft lift, and reduced aircraft thrust on the take-off noise associated with supersonic civil transports. Supersonic jet noise sources are first described, and their frequency and directivity dependence are defined. The study utilizes NASA's Aircraft Noise Prediction Program in a parametric study to weigh the relative benefits of several approaches to low noise. The baseline aircraft concept used in these predictions is the AST-205-1 powered by GE21/J11-B14A scaled engines. Noise assessment is presented in terms of effective perceived noise levels at the FAA's centerline and sideline measuring locations for current subsonic aircraft, and in terms of audiologically perceived sound of people and other indirect effects. The results show that significant noise benefit can be achieved through proper understanding and utilization of all available approaches.
NASA Technical Reports Server (NTRS)
Krejsa, Eugene A.; Cooper, Beth A.; Hall, David G.; Khavaran, Abbas
1990-01-01
Acoustic results are presented of a cooperative nozzle test program between NASA and Pratt and Whitney, conducted in the NASA-Lewis 9 x 15 ft Anechoic Wind Tunnel. The nozzle tested was the P and W Hypermix Nozzle concept, a 2-D lobed mixer nozzle followed by a short ejector section made to promote rapid mixing of the induced ejector nozzle flow. Acoustic and aerodynamic measurements were made to determine the amount of ejector pumping, degree of mixing, and noise reduction achieved. A series of tests were run to verify the acoustic quality of this tunnel. The results indicated that the tunnel test section is reasonably anechoic but that background noise can limit the amount of suppression observed from suppressor nozzles. Also, a possible internal noise was observed in the air supply system. The P and W ejector suppressor nozzle demonstrated the potential of this concept to significantly reduce jet noise. Significant reduction in low frequency noise was achieved by increasing the peak jet noise frequency. This was accomplished by breaking the jet into segments with smaller dimensions than those of the baseline nozzle. Variations in ejector parameters had little effect on the noise for the geometries and the range of temperatures and pressure ratios tested.
Core/Combustor Noise - Research Overview
NASA Technical Reports Server (NTRS)
Hultgren, Lennart S.
2017-01-01
Contributions from the combustor to the overall propulsion noise of civilian transport aircraft are starting to become important due to turbofan design trends and advances in mitigation of other noise sources. Future propulsion systems for ultra-efficient commercial air vehicles are projected to be of increasingly higher bypass ratio from larger fans combined with much smaller cores, with ultra-clean burning fuel-flexible combustors. Unless effective noise-reduction strategies are developed, combustor noise is likely to become a prominent contributor to overall airport community noise in the future. This presentation gives a brief overview of the NASA outlook on pertinent issues and far-term research needs as well as current and planned research in the core/combustor-noise area. The research described herein is aligned with the NASA Ultra-Efficient Commercial Transport strategic thrust and is supported by the NASA Advanced Air Vehicle Program, Advanced Air Transport Technology Project, under the Aircraft Noise Reduction Subproject. The overarching goal of the Advanced Air Transport Technology (AATT) Project is to explore and develop technologies and concepts to revolutionize the energy efficiency and environmental compatibility of fixed wing transport aircrafts. These technological solutions are critical in reducing the impact of aviation on the environment even as this industry and the corresponding global transportation system continue to grow.
NASA's High Speed Research Program - An introduction and status report
NASA Technical Reports Server (NTRS)
Wesoky, Howard L.; Prather, Michael J.; Kayten, Gerald G.
1990-01-01
NASA's High Speed Research Program (HSRP) gives attention to the potential environmental effects of a next-generation SST in three areas of concern: atmospheric pollution, airport community noise, and sonic boom. Research has accordingly been undertaken in such fields as the validation of ozone depletion predictions, the feasibility a 90-percent NO(x) emissions reduction to minimize ozone-layer impacts, economically viable compliance with FAR 36 Stage 3 airport community noise levels, and the comparative advantages of efficient subsonic flight over land masses or low-sonic-boom-optimized configurations. Interim HSRP milestones for 1991 and 1992 are noted.
NASA Technical Reports Server (NTRS)
Janardan, B. A.; Hoff, G. E.; Barter, J. W.; Brausch, J. F.; Gliebe, P. R.; Coffin, R. S.; Martens, S.; Delaney, B. R.; Dalton, W. N.; Mengle, V. G.
2000-01-01
This presentation discusses: Project Objectives, Approach and Goal; Baseline Nozzles and Test Cycle Definition; Repeatability and Baseline Nozzle Results; Noise Reduction Concepts; Noise Reduction Tests Configurations of BPR=5 Internal Plug Nozzle adn Acoustic Results; Noise Reduction Test Configurations of BPR=5 External Plug Nozzle and Acoustic Results; and Noise Reduction Tests Configurations of BPR=8 External Plug Nozzle and Acoustic Results.
Aircraft interior noise reduction by alternate resonance tuning
NASA Technical Reports Server (NTRS)
Gottwald, James A.; Bliss, Donald B.
1990-01-01
The focus is on a noise control method which considers aircraft fuselages lined with panels alternately tuned to frequencies above and below the frequency that must be attenuated. An interior noise reduction called alternate resonance tuning (ART) is described both theoretically and experimentally. Problems dealing with tuning single paneled wall structures for optimum noise reduction using the ART methodology are presented, and three theoretical problems are analyzed. The first analysis is a three dimensional, full acoustic solution for tuning a panel wall composed of repeating sections with four different panel tunings within that section, where the panels are modeled as idealized spring-mass-damper systems. The second analysis is a two dimensional, full acoustic solution for a panel geometry influenced by the effect of a propagating external pressure field such as that which might be associated with propeller passage by a fuselage. To reduce the analysis complexity, idealized spring-mass-damper panels are again employed. The final theoretical analysis presents the general four panel problem with real panel sections, where the effect of higher structural modes is discussed. Results from an experimental program highlight real applications of the ART concept and show the effectiveness of the tuning on real structures.
Experimental study of noise reduction for an unstiffened cylindrical model of an airplane fuselage
NASA Astrophysics Data System (ADS)
Willis, C. M.; Daniels, E. F.
1981-12-01
Noise reduction measurements were made for a simplified model of an airplane fuselage consisting of an unstiffened aluminum cylinder 0.5 m in diameter by 1.2 m long with a 1.6-mm-thick wall. Noise reduction was first measured with a reverberant field pink-noise load on the cylinder exterior. Next, noise reduction was measured by using a propeller to provide a more realistic noise load on the cylinder. Structural resonance frequencies and acoustic reverberation times for the cylinder interior volume were also measured. Comparison of data from the relatively simple test using reverberant-field noise with data from the more complex propeller-noise tests indicates some similarity in both the overall noise reduction and the spectral distribution. However, all of the test parameters investigated (propeller speed, blade pitch, and tip clearance) had some effect on the noise-reduction spectra. Thus, the amount of noise reduction achieved appears to be somewhat dependent upon the spectral and spatial characteristics of the flight conditions. Information is also presented on cyclinder resonance frequencies, damping, and characteristics of propeller-noise loads.
Design and Stress Analysis of Low-Noise Adjusted Bearing Contact Spiral Bevel Gears
NASA Technical Reports Server (NTRS)
Fuentes, A.; Litvin, F. L.; Mullins, B. R.; Woods, R.; Handschuh, R. F.; Lewicki, David G.
2002-01-01
An integrated computerized approach for design and stress analysis of low-noise spiral bevel gear drives with adjusted bearing contact is proposed. The procedure of computations is an iterative process that requires four separate procedures and provide: (a) a parabolic function of transmission errors that is able to reduce the effect of errors of alignment on noise and vibration, and (b) reduction of the shift of bearing contact caused by misalignment. Application of finite element analysis enables us to determine the contact and bending stresses and investigate the formation of the bearing contact. The design of finite element models and boundary conditions is automated and does not require intermediate CAD computer programs for application of general purpose computer program for finite element analysis.
Energy efficient engine component development and integration program
NASA Technical Reports Server (NTRS)
1981-01-01
The technology that will improve the energy efficiency of propulsion systems for subsonic commercial aircraft is investigated. A reduction of 14.4% in cruise installed sfc (0.572 versus 0.668 for the CF6-50C) and a direct operation cost reduction in excess of the 5% goal is projected. Noise and emissions projections are consistent with the established goals.
Sikorsky Aircraft Advanced Rotorcraft Transmission (ART) program
NASA Technical Reports Server (NTRS)
Kish, Jules G.
1993-01-01
The objectives of the Advanced Rotorcraft Transmission program were to achieve a 25 percent weight reduction, a 10 dB noise reduction, and a 5,000 hour mean time between removals (MTBR). A three engine Army Cargo Aircraft (ACA) of 85,000 pounds gross weight was used as the baseline. Preliminary designs were conducted of split path and split torque transmissions to evaluate weight, reliability, and noise. A split path gearbox was determined to be 23 percent lighter, greater than 10 dB quieter, and almost four times more reliable than the baseline two stage planetary design. Detail design studies were conducted of the chosen split path configuration, and drawings were produced of a 1/2 size gearbox consisting of a single engine path of the split path section. Fabrication and testing was then conducted on the 1/2 size gearbox. The 1/2 size gearbox testing proved that the concept of the split path gearbox with high reduction ratio double helical output gear was sound. The improvements were attributed to extensive use of composites, spring clutches, advanced high hot hardness gear steels, the split path configuration itself, high reduction ratio, double helical gearing on the output stage, elastomeric load sharing devices, and elimination of accessory drives.
Emerging Community Noise Reduction Approaches
NASA Technical Reports Server (NTRS)
Envia, Edmane
2012-01-01
An overview of the current NASA research portfolio in the area of aircraft noise reduction is presented. The emphasis of the research described herein is on meeting the aggressive near- and mid-term national goals for reducing aircraft noise emissions, which NASA internal studies have shown to be feasible using noise reduction technologies currently being developed in-house or in partnership with NASA s industry and academic partners. While NASA has an active research effort in airframe noise reduction, this overview focuses on propulsion noise reduction only.
NASA Astrophysics Data System (ADS)
Ikhwansyah; Mulia; Gunawan, S.; Lubis, R. D. W.
2018-02-01
The objective is to get the characteristics of noise reduction, noise reduction level, variety of measurement spaces, and knowing the process in making acoustic material of natural fiber becomes noise reduction on a car hood. The process of making noise reduction material used casting method and pressed by using molded press. The composition of noise reduction material consist of 50% roystonea regia by 32 mesh and 50% combined by gypsum and polyurethane. The result shows that the average result of noise reduction at X1- side is 5,7% and X2- side is 3,9%, X1+ side is 0,9% and X2+ side is 6,2%, Z1- side is 8,9% and Z2- side is 10,1%, Z1+ side is 9,7% and Z2+ side is 10,01%. The main conclusion of the study shows that a noise reduction which made of roystonea regia with 32 mesh mixed by matrix of polyurethane and gypsum is appropriate for noise reduction on car hood.
The effects of instructions, incentive, and feedback on a community problem: dormitory noise.
Meyers, A W; Artz, L M; Craighead, W E
A reinforcement system utilizing instructions, modelling, feedback, and group reinforcement was employed in an attempt to reduce disruptive noise on three university residence halls. A fourth hall received the same treatment program without the reinforcement component. Noise scores were determined by recording the number of discrete noise occurrences over a criterion decibel level. On all four residential floors, noise scores during treatment conditions were lower than initial and final baseline levels. Additionally, periods of noise reduction corresponded to the changing criterion multiple-baseline and reversal designs utilized. Pre- and posttreatment questionnaire responses from the three reinforcement floors paralleled changes in objective noise data. At posttreatment, residents reported less noise disturbance of study and sleep and more control over the noise situation and floor problems in general. These results indicated that a comprehensive behavior-modification treatment package was effective in reducing disruptive noise in university residence halls. Difficulties in data collection and anomalies in the data are discussed. Future directions for field-based behavior-modification research are outlined.
Identification and proposed control of helicopter transmission noise at the source
NASA Technical Reports Server (NTRS)
Coy, John J.; Handschuh, Robert F.; Lewicki, David G.; Huff, Ronald G.; Krejsa, Eugene A.; Karchmer, Allan M.
1987-01-01
Helicopter cabin interiors require noise treatment which is expensive and adds weight. The gears inside the main power transmission are major sources of cabin noise. Work conducted by the NASA Lewis Research Center in measuring cabin interior noise and in relating the noise spectrum to the gear vibration of the Army OH-58 helicopter is described. Flight test data indicate that the planetary gear train is a major source of cabin noise and that other low frequency sources are present that could dominate the cabin noise. Companion vibration measurements were made in a transmission test stand, revealing that the single largest contributor to the transmission vibration was the spiral bevel gear mesh. The current understanding of the nature and causes of gear and transmission noise is discussed. It is believed that the kinematical errors of the gear mesh have a strong influence on that noise. The completed NASA/Army sponsored research that applies to transmission noise reduction is summarized. The continuing research program is also reviewed.
Identification and proposed control of helicopter transmission noise at the source
NASA Technical Reports Server (NTRS)
Coy, John J.; Handschuh, Robert F.; Lewicki, David G.; Huff, Ronald G.; Krejsa, Eugene A.; Karchmer, Allan M.; Coy, John J.
1988-01-01
Helicopter cabin interiors require noise treatment which is expensive and adds weight. The gears inside the main power transmission are major sources of cabin noise. Work conducted by the NASA Lewis Research Center in measuring cabin interior noise and in relating the noise spectrum to the gear vibration of the Army OH-58 helicopter is described. Flight test data indicate that the planetary gear train is a major source of cabin noise and that other low frequency sources are present that could dominate the cabin noise. Companion vibration measurements were made in a transmission test stand, revealing that the single largest contributor to the transmission vibration was the spiral bevel gear mesh. The current understanding of the nature and causes of gear and transmission noise is discussed. It is believed that the kinematical errors of the gear mesh have a strong influence on that noise. The completed NASA/Army sponsored research that applies to transmission noise reduction is summarized. The continuing research program is also reviewed.
Noise reduction techniques in the design of a pneumatic-driven hand held power tool
NASA Astrophysics Data System (ADS)
Skinner, Christian M.
2005-09-01
Pneumatic-driven hand-held power tools generate noise in the workplace. Current legislation in Europe and the USA aims at protecting workers against noise exposure. In the United States, the Occupational Safety and Health Administration (OSHA) requires that employers create a hearing conservation program if the noise exposure exceeds 85 dB(A). In the European Community under the Directive 2003/10/EC, employers are required to provide hearing protection if the noise exposure within the working environment exceeds 80 dB(A) and must require hearing protection to be worn if the noise exposure exceeds 85 dB(A). This paper examines the sources of noise which contribute to the overall noise from a hand-held power tool. A test plan was developed to identify these individual sources of noise and to determine if structure-borne noise or airborne noise is the dominant source relative to the overall noise level. The measurements were performed per International Standards Organization (ISO) 15744. This paper will describe the methodology used to identify the noise sources and reduce the overall noise of a hand-held power tool.
Noise Transmission Studies of an Advanced Grid-Stiffened Composite Fairing
2007-10-01
increase in blanket thickness and weight [7]. The evolved expendable launch vehicle (EELV) programs have conducted research to ensure that their launch...uses an aluminum fairing that is 4 to 5 m in diameter. The Atlas V 500 and heavy lift vehicles use a fairing designed and built by Contraves , which...builds the Ariane V launch vehicle for the European Space Agency. Contraves developed an innovative acoustic blanket for fairing noise reduction that
Reductions in Multi-Component Jet Noise by Water Injection
NASA Technical Reports Server (NTRS)
Norum, Thomas D.
2004-01-01
An experimental investigation was performed in the NASA Langley Low Speed Aeroacoustics Wind Tunnel to determine the extent of jet exhaust noise reduction that can be obtained using water injection in a hot jet environment. The effects of water parameters such as mass flow rate, injection location, and spray patterns on suppression of dominant noise sources in both subsonic and supersonic jets were determined, and extrapolations to full-scale engine noise reduction were made. Water jets and sprays were injected in to the shear layers of cold and hot circular jets operating at both subsonic and supersonic exhaust conditions. Use of convergent-divergent and convergent nozzles (2.7in. D) allowed for simulations of all major jet noise sources. The experimental results show that water injection clearly disrupts shock noise sources within the jet plume, with large reductions in radiated shock noise. There are smaller reductions in jet mixing noise, resulting in only a small decrease in effective perceived noise level when projections are made to full scale. The fact that the measured noise reduction in the direction upstream of the nozzle was consistently larger than in the noisier downstream direction contributed to keeping effective perceived noise reductions small. Variations in the operation of the water injection system clearly show that injection at the nozzle exit rather than further downstream is required for the largest noise reduction. Noise reduction increased with water pressure as well as with its mass flow, although the type of injector had little effect.
Radially leaned outlet guide vanes for fan source noise reduction
NASA Technical Reports Server (NTRS)
Kazin, S. B.
1973-01-01
Two quiet engine program half scale fans one with a subsonic and the other with a supersonic fan tip speed at takeoff were run with 30 degree leaned and radial outlet guide vanes. Acoustic data at takeoff fan speed on the subsonic tip speed fan showed decreases in 200-foot sideline noise of from 1 to 2 PNdb. The supersonic tip speed fan a takeoff fan speed, however, showed noise increases of up 3 PNdb and a decrease in fan efficiency. At approach fan speed, the subsonic tip speed fan showed a noise decrease of 2.3 PNdb at the 200-foot sideline maximum angle and an increase in efficiency. The supersonic tip speed fan showed noise increase of 3.5 PNdb and no change in efficiency. The decrease in fan efficiency and the nature of the noise increase largely high frequency broadband noise lead to the speculation that an aerodynamic problem occurred.
Propulsion Noise Reduction Research in the NASA Advanced Air Transport Technology Project
NASA Technical Reports Server (NTRS)
Van Zante, Dale; Nark, Douglas; Fernandez, Hamilton
2017-01-01
The Aircraft Noise Reduction (ANR) sub-project is focused on the generation, development, and testing of component noise reduction technologies progressing toward the NASA far term noise goals while providing associated near and mid-term benefits. The ANR sub-project has efforts in airframe noise reduction, propulsion (including fan and core) noise reduction, acoustic liner technology, and propulsion airframe aeroacoustics for candidate conventional and unconventional aircraft configurations. The current suite of propulsion specific noise research areas is reviewed along with emerging facility and measurement capabilities. In the longer term, the changes in engine and aircraft configuration will influence the suite of technologies necessary to reduce noise in next generation systems.
Noise and Fuel Burn Reduction Potential of an Innovative Subsonic Transport Configuration
NASA Technical Reports Server (NTRS)
Guo, Yueping; Nickol, Craig L.; Thomas, Russell H.
2014-01-01
A study is presented for the noise and fuel burn reduction potential of an innovative double deck concept aircraft with two three-shaft direct-drive turbofan engines. The engines are mounted from the fuselage so that the engine inlet is over the main wing. It is shown that such an aircraft can achieve a cumulative Effective Perceived Noise Level (EPNL) about 28 dB below the current aircraft noise regulations of Stage 4. The combination of high bypass ratio engines and advanced wing design with laminar flow control technologies provide fuel burn reduction and low noise levels simultaneously. For example, the fuselage mounted engine position provides more than 4 EPNLdB of noise reduction by shielding the inlet radiated noise. To identify the potential effect of noise reduction technologies on this concept, parametric studies are presented to reveal the system level benefits of various emerging noise reduction concepts, for both engine and airframe noise reduction. These concepts are discussed both individually to show their respective incremental noise reduction potential and collectively to assess their aggregate effects on the total noise. Through these concepts approximately about 8 dB of additional noise reduction is possible, bringing the cumulative noise level of this aircraft to 36 EPNLdB below Stage 4, if the entire suite of noise reduction technologies would mature to practical application. In a final step, an estimate is made for this same aircraft concept but with higher bypass ratio, geared, turbofan engines. With this geared turbofan propulsion system, the noise is estimated to reach as low as 40-42 dB below Stage 4 with a fuel burn reduction of 43-47% below the 2005 best-in-class aircraft baseline. While just short of the NASA N+2 goals of 42 dB and 50% fuel burn reduction, for a 2025 in service timeframe, this assessment shows that this innovative concept warrants refined study. Furthermore, this design appears to be a viable potential future passenger aircraft, not only in meeting the regulatory requirements, but also in competing with aircraft of different advanced designs within this N+2 timeframe and goal framework.
Brockmeyer, Alison M; Potts, Lisa G
2011-02-01
Difficulty understanding in background noise is a common complaint of cochlear implant (CI) recipients. Programming options are available to improve speech recognition in noise for CI users including automatic dynamic range optimization (ADRO), autosensitivity control (ASC), and a two-stage adaptive beamforming algorithm (BEAM). However, the processing option that results in the best speech recognition in noise is unknown. In addition, laboratory measures of these processing options often show greater degrees of improvement than reported by participants in everyday listening situations. To address this issue, Compton-Conley and colleagues developed a test system to replicate a restaurant environment. The R-SPACE™ consists of eight loudspeakers positioned in a 360 degree arc and utilizes a recording made at a restaurant of background noise. The present study measured speech recognition in the R-SPACE with four processing options: standard dual-port directional (STD), ADRO, ASC, and BEAM. A repeated-measures, within-subject design was used to evaluate the four different processing options at two noise levels. Twenty-seven unilateral and three bilateral adult Nucleus Freedom CI recipients. The participants' everyday program (with no additional processing) was used as the STD program. ADRO, ASC, and BEAM were added individually to the STD program to create a total of four programs. Participants repeated Hearing in Noise Test sentences presented at 0 degrees azimuth with R-SPACE restaurant noise at two noise levels, 60 and 70 dB SPL. The reception threshold for sentences (RTS) was obtained for each processing condition and noise level. In 60 dB SPL noise, BEAM processing resulted in the best RTS, with a significant improvement over STD and ADRO processing. In 70 dB SPL noise, ASC and BEAM processing had significantly better mean RTSs compared to STD and ADRO processing. Comparison of noise levels showed that STD and BEAM processing resulted in significantly poorer RTSs in 70 dB SPL noise compared to the performance with these processing conditions in 60 dB SPL noise. Bilateral participants demonstrated a bilateral improvement compared to the better monaural condition for both noise levels and all processing conditions, except ASC in 60 dB SPL noise. The results of this study suggest that the use of processing options that utilize noise reduction, like those available in ASC and BEAM, improve a CI recipient's ability to understand speech in noise in listening situations similar to those experienced in the real world. The choice of the best processing option is dependent on the noise level, with BEAM best at moderate noise levels and ASC best at loud noise levels for unilateral CI recipients. Therefore, multiple noise programs or a combination of processing options may be necessary to provide CI users with the best performance in a variety of listening situations. American Academy of Audiology.
NASA Technical Reports Server (NTRS)
Hultgren, Lennart S.
2012-01-01
This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015 (N+1), 2020 (N+2), and 2025 (N+3) timeframes; SFW strategic thrusts and technical challenges; SFW advanced subsystems that are broadly applicable to N+3 vehicle concepts, with an indication where further noise research is needed; the components of core noise (compressor, combustor and turbine noise) and a rationale for NASA's current emphasis on the combustor-noise component; the increase in the relative importance of core noise due to turbofan design trends; the need to understand and mitigate core-noise sources for high-efficiency small gas generators; and the current research activities in the core-noise area, with additional details given about forthcoming updates to NASA's Aircraft Noise Prediction Program (ANOPP) core-noise prediction capabilities, two NRA efforts (Honeywell International, Phoenix, AZ and University of Illinois at Urbana-Champaign, respectively) to improve the understanding of core-noise sources and noise propagation through the engine core, and an effort to develop oxide/oxide ceramic-matrix-composite (CMC) liners for broadband noise attenuation suitable for turbofan-core application. Core noise must be addressed to ensure that the N+3 noise goals are met. Focused, but long-term, core-noise research is carried out to enable the advanced high-efficiency small gas-generator subsystem, common to several N+3 conceptual designs, needed to meet NASA's technical challenges. Intermediate updates to prediction tools are implemented as the understanding of the source structure and engine-internal propagation effects is improved. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Quiet-Aircraft Subproject aims to develop concepts and technologies to reduce perceived community noise attributable to aircraft with minimal impact on weight and performance. This reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic.
DART Core/Combustor-Noise Initial Test Results
NASA Technical Reports Server (NTRS)
Boyle, Devin K.; Henderson, Brenda S.; Hultgren, Lennart S.
2017-01-01
Contributions from the combustor to the overall propulsion noise of civilian transport aircraft are starting to become important due to turbofan design trends and advances in mitigation of other noise sources. Future propulsion systems for ultra-efficient commercial air vehicles are projected to be of increasingly higher bypass ratio from larger fans combined with much smaller cores, with ultra-clean burning fuel-flexible combustors. Unless effective noise-reduction strategies are developed, combustor noise is likely to become a prominent contributor to overall airport community noise in the future. The new NASA DGEN Aero0propulsion Research Turbofan (DART) is a cost-efficient testbed for the study of core-noise physics and mitigation. This presentation gives a brief description of the recently completed DART core combustor-noise baseline test in the NASA GRC Aero-Acoustic Propulsion Laboratory (AAPL). Acoustic data was simultaneously acquired using the AAPL overhead microphone array in the engine aft quadrant far field, a single midfield microphone, and two semi-infinite-tube unsteady pressure sensors at the core-nozzle exit. An initial assessment shows that the data is of high quality and compares well with results from a quick 2014 feasibility test. Combustor noise components of measured total-noise signatures were educed using a two-signal source-separation method an dare found to occur in the expected frequency range. The research described herein is aligned with the NASA Ultra-Efficient Commercial Transport strategic thrust and is supported by the NASA Advanced Air Vehicle Program, Advanced Air Transport Technology Project, under the Aircraft Noise Reduction Subproject.
NASA Technical Reports Server (NTRS)
Glaab, Louis J.; Riley, Donald R.; Brandon, Jay M.; Person, Lee H., Jr.; Glaab, Patricia C.
1999-01-01
As part of an effort between NASA and private industry to reduce airport-community noise for high-speed civil transport (HSCT) concepts, a piloted simulation study was initiated for the purpose of predicting the noise reduction benefits that could result from improved low-speed high-lift aerodynamic performance for a typical HSCT configuration during takeoff and initial climb. Flight profile and engine information from the piloted simulation were coupled with the NASA Langley Aircraft Noise Prediction Program (ANOPP) to estimate jet engine noise and to propagate the resulting source noise to ground observer stations. A baseline aircraft configuration, which also incorporated different levels of projected improvements in low-speed high-lift aerodynamic performance, was simulated to investigate effects of increased lift and lift-to-drag ratio on takeoff noise levels. Simulated takeoff flights were performed with the pilots following a specified procedure in which either a single thrust cutback was performed at selected altitudes ranging from 400 to 2000 ft, or a multiple-cutback procedure was performed where thrust was reduced by a two-step process. Results show that improved low-speed high-lift aerodynamic performance provides at least a 4 to 6 dB reduction in effective perceived noise level at the FAA downrange flyover measurement station for either cutback procedure. However, improved low-speed high-lift aerodynamic performance reduced maximum sideline noise levels only when using the multiple-cutback procedures.
A Bayesian nonparametric approach to dynamical noise reduction
NASA Astrophysics Data System (ADS)
Kaloudis, Konstantinos; Hatjispyros, Spyridon J.
2018-06-01
We propose a Bayesian nonparametric approach for the noise reduction of a given chaotic time series contaminated by dynamical noise, based on Markov Chain Monte Carlo methods. The underlying unknown noise process (possibly) exhibits heavy tailed behavior. We introduce the Dynamic Noise Reduction Replicator model with which we reconstruct the unknown dynamic equations and in parallel we replicate the dynamics under reduced noise level dynamical perturbations. The dynamic noise reduction procedure is demonstrated specifically in the case of polynomial maps. Simulations based on synthetic time series are presented.
Health-hazard evaluation report HETA 88-030-2109, Neiman Sawmills, Inc. , Hulett, Wyoming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tubbs, R.L.
1991-04-01
In response to a request from management, an evaluation was undertaken of possible hazardous working conditions as a result of excessive noise at the Neiman Sawmill facilities (SIC-2421), Hulett, Wyoming. The company produced several varieties of untreated boards and lumber products from pine logs. During this survey 108 workers were employed. Noise dosimetry readings revealed that 73% of the surveyed job descriptions (16 of 22) had time weighted average (TWA) noise levels in excess of 90 decibles-A (dBA). Only one job had TWA levels less than the NIOSH recommended limits of 85dBA. Engineering noise controls produced differing amounts of noisemore » reduction to the workers. An enclosure around the planer in the planer mill was found to be effective. However, the separation of the edger and trimmer operations to their own buildings was not an effective noise reduction technique. Hearing tests revealed that 72.5% of the employees exhibited some degree of hearing impairment at one or more audiometric test frequencies. The author concludes that a health hazard existed for workers. The author recommends that a comprehensive hearing conservation program should be implemented. Recommendations for engineering controls for the mills are included.« less
Analysis of Noise Exposure Measurements Made Onboard the International Space Station
NASA Technical Reports Server (NTRS)
Limardo, Jose G.; Allen, Christopher S.
2011-01-01
The International Space Station (ISS) is a unique workplace environment for U.S. astronauts and Russian cosmonauts to conduct research and live for a period of six months or more. Noise has been an enduring environmental physical hazard that has been a challenge for the U.S. space program since before the Apollo era. Noise exposure in ISS poses significant risks to the crewmembers, such as; hearing loss (temporary or permanent), possible disruptions of crew sleep, interference with speech intelligibility and communication, possible interference with crew task performance, and possible reduction in alarm audibility. Acoustic measurements are made aboard ISS and compared to requirements in order to assess the acoustic environment to which the crewmembers are exposed. The purpose of this paper is to describe in detail the noise exposure monitoring program as well as an assessment of the acoustic dosimeter data collected to date. The hardware currently being used for monitoring the noise exposure onboard ISS will be discussed. Acoustic data onboard ISS has been collected since the beginning of ISS (Increment 1, November 2000). Noise exposure data analysis will include acoustic dosimetry logged data from crew-worn during work and sleep periods and also fixed-location measurements from Increment 1 to present day. Noise exposure levels (8-, 16- and 24-hr), LEQ, will also be provided and discussed in this paper. Discussions related to hearing protection will also be included. Future directions and recommendations for the noise exposure monitoring program will be highlighted. This acoustic data is used to ensure a safe and healthy working and living environment for the crewmembers aboard the ISS.
Analysis of Noise Exposure Measurements Acquired Onboard the International Space Station
NASA Technical Reports Server (NTRS)
Limardo, Jose G.; Allen, Christopher S.
2011-01-01
The International Space Station (ISS) is a unique workplace environment for U.S. astronauts and Russian cosmonauts to conduct research and live for a period of six months or more. Noise has been an enduring environmental physical hazard that has been a challenge for the U.S. space program since before the Apollo era. Noise exposure in ISS poses significant risks to the crewmembers, such as; hearing loss (temporary or permanent), possible disruptions of crew sleep, interference with speech intelligibility and communication, possible interference with crew task performance, and possible reduction in alarm audibility. Acoustic measurements were made onboard ISS and compared to requirements in order to assess the acoustic environment to which the crewmembers are exposed. The purpose of this paper is to describe in detail the noise exposure monitoring program as well as an assessment of the acoustic dosimeter data collected to date. The hardware currently being used for monitoring the noise exposure onboard ISS will be discussed. Acoustic data onboard ISS has been collected since the beginning of ISS (Increment 1, November 2001). Noise exposure data analysis will include acoustic dosimetry logged data from crew-worn dosimeters during work and sleep periods and also fixed-location measurements from Increment 1 to present day. Noise exposure levels (8-, 16- and 24-hr), LEQ, will also be provided and discussed in this paper. Future directions and recommendations for the noise exposure monitoring program will be highlighted. This acoustic data is used to ensure a safe and healthy working and living environment for the crewmembers onboard the ISS.
Ares I Scale Model Acoustic Test Above Deck Water Sound Suppression Results
NASA Technical Reports Server (NTRS)
Counter, Douglas D.; Houston, Janice D.
2011-01-01
The Ares I Scale Model Acoustic Test (ASMAT) program test matrix was designed to determine the acoustic reduction for the Liftoff acoustics (LOA) environment with an above deck water sound suppression system. The scale model test can be used to quantify the effectiveness of the water suppression system as well as optimize the systems necessary for the LOA noise reduction. Several water flow rates were tested to determine which rate provides the greatest acoustic reductions. Preliminary results are presented.
Program for refan JT8D engine design, fabrication and test, phase 2
NASA Technical Reports Server (NTRS)
Glass, J. A.; Zimmerman, E. S.; Scaramella, V. M.
1975-01-01
The objective of the JT8D refan program was to design, fabricate, and test certifiable modifications of the JT8D engine which would reduce noise generated by JT8D powered aircraft. This was to be accomplished without affecting reliability and maintainability, at minimum retrofit cost, and with no performance penalty. The mechanical design, engine performance and stability characteristics at sea-level and altitude, and the engine noise characteristics of the test engines are documented. Results confirmed the structural integrity of the JT8D-109. Engine operation was stable throughout the airplane flight envelope. Fuel consumption of the test engines was higher than that required to meet the goal of no airplane performance penalty, but the causes were identified and corrected during a normal pre-certification engine development program. Compared to the baseline JT8D-109 engine, the acoustically treated JT8D-109 engine showed noise reductions of 6 PNdB at takeoff and 11 PNdB at a typical approach power setting.
Li, Junfeng; Yang, Lin; Zhang, Jianping; Yan, Yonghong; Hu, Yi; Akagi, Masato; Loizou, Philipos C
2011-05-01
A large number of single-channel noise-reduction algorithms have been proposed based largely on mathematical principles. Most of these algorithms, however, have been evaluated with English speech. Given the different perceptual cues used by native listeners of different languages including tonal languages, it is of interest to examine whether there are any language effects when the same noise-reduction algorithm is used to process noisy speech in different languages. A comparative evaluation and investigation is taken in this study of various single-channel noise-reduction algorithms applied to noisy speech taken from three languages: Chinese, Japanese, and English. Clean speech signals (Chinese words and Japanese words) were first corrupted by three types of noise at two signal-to-noise ratios and then processed by five single-channel noise-reduction algorithms. The processed signals were finally presented to normal-hearing listeners for recognition. Intelligibility evaluation showed that the majority of noise-reduction algorithms did not improve speech intelligibility. Consistent with a previous study with the English language, the Wiener filtering algorithm produced small, but statistically significant, improvements in intelligibility for car and white noise conditions. Significant differences between the performances of noise-reduction algorithms across the three languages were observed.
An assessment of propeller aircraft noise reduction technology
NASA Technical Reports Server (NTRS)
Metzger, F. Bruce
1995-01-01
This report is a review of the literature regarding propeller airplane far-field noise reduction. Near-field and cabin noise reduction are not specifically addressed. However, some of the approaches used to reduce far-field noise produce beneficial effects in the near-field and in the cabin. The emphasis is on propeller noise reduction but engine exhaust noise reduction by muffling is also addressed since the engine noise becomes a significant part of the aircraft noise signature when propeller noise is reduced. It is concluded that there is a substantial body of information available that can be used as the basis to reduce propeller airplane noise. The reason that this information is not often used in airplane design is the associated weight, cost, and performance penalties. It is recommended that the highest priority be given to research for reducing the penalties associated with lower operating RPM and propeller diameter while increasing the number of blades. Research to reduce engine noise and explore innovative propeller concepts is also recommended.
Industrial hearing conservation.
Glorig, A
1979-08-01
Hearing conservation programs, when appropriate in industry, are now a necessity. Even though one may not wish to adopt an altruistic attitude toward the conservation of hearing, one must, like it or not, initiate a hearing conservation program because of both federal and state regulations. Since industrial noise exposure produced more hearing loss in more people than all other causes of hearing loss combined, it is incumbent on all industries with noise makers to do something about protecting human hearing. The tragedy is that nearly all industrial hearing loss can be prevented with proper hearing conservation measures. The cost of hearing conservation is far less than the cost of hearing loss in terms of human suffering and dollars in the compensation courts. Proper education of both managment and labor can result in successful hearing conservation programs. The method of choice is reduction of the noise at the source, but in many cases this is infeasible both technically and economically and therefore protection at the ear must be used. Experience has shown that with proper supervision ear protection programs can prevent the majority of instances of hearing loss in the majority of individuals exposed.
A Comparison of Signal Enhancement Methods for Extracting Tonal Acoustic Signals
NASA Technical Reports Server (NTRS)
Jones, Michael G.
1998-01-01
The measurement of pure tone acoustic pressure signals in the presence of masking noise, often generated by mean flow, is a continual problem in the field of passive liner duct acoustics research. In support of the Advanced Subsonic Technology Noise Reduction Program, methods were investigated for conducting measurements of advanced duct liner concepts in harsh, aeroacoustic environments. This report presents the results of a comparison study of three signal extraction methods for acquiring quality acoustic pressure measurements in the presence of broadband noise (used to simulate the effects of mean flow). The performance of each method was compared to a baseline measurement of a pure tone acoustic pressure 3 dB above a uniform, broadband noise background.
SU-C-207B-02: Maximal Noise Reduction Filter with Anatomical Structures Preservation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maitree, R; Guzman, G; Chundury, A
Purpose: All medical images contain noise, which can result in an undesirable appearance and can reduce the visibility of anatomical details. There are varieties of techniques utilized to reduce noise such as increasing the image acquisition time and using post-processing noise reduction algorithms. However, these techniques are increasing the imaging time and cost or reducing tissue contrast and effective spatial resolution which are useful diagnosis information. The three main focuses in this study are: 1) to develop a novel approach that can adaptively and maximally reduce noise while preserving valuable details of anatomical structures, 2) to evaluate the effectiveness ofmore » available noise reduction algorithms in comparison to the proposed algorithm, and 3) to demonstrate that the proposed noise reduction approach can be used clinically. Methods: To achieve a maximal noise reduction without destroying the anatomical details, the proposed approach automatically estimated the local image noise strength levels and detected the anatomical structures, i.e. tissue boundaries. Such information was used to adaptively adjust strength of the noise reduction filter. The proposed algorithm was tested on 34 repeating swine head datasets and 54 patients MRI and CT images. The performance was quantitatively evaluated by image quality metrics and manually validated for clinical usages by two radiation oncologists and one radiologist. Results: Qualitative measurements on repeated swine head images demonstrated that the proposed algorithm efficiently removed noise while preserving the structures and tissues boundaries. In comparisons, the proposed algorithm obtained competitive noise reduction performance and outperformed other filters in preserving anatomical structures. Assessments from the manual validation indicate that the proposed noise reduction algorithm is quite adequate for some clinical usages. Conclusion: According to both clinical evaluation (human expert ranking) and qualitative assessment, the proposed approach has superior noise reduction and anatomical structures preservation capabilities over existing noise removal methods. Senior Author Dr. Deshan Yang received research funding form ViewRay and Varian.« less
NASA Technical Reports Server (NTRS)
Roskam, J.; Grosveld, F.
1980-01-01
Effect of panel curvature and oblique angle of sound incidence on noise reduction characteristics of an aluminum panel are experimentally investigated. Panel curvature results show significant increase in stiffness with comparable decrease of sound transmission through the panel in the frequency region below the panel/cavity resonance frequency. Noise reduction data have been achieved for aluminum panels with clamped, bonded and riveted edge conditions. These edge conditions are shown to influence noise reduction characteristics of aluminum panels. Experimentally measured noise reduction characteristics of flat aluminum panels with uniaxial and biaxial in-plane stresses are presented and discussed. Results indicate important improvement in noise reduction of these panels in the frequency range below the fundamental panel/cavity resonance frequency.
Transmission research activities at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Lewicki, D. G.
1990-01-01
A joint research program, to advance the technology of rotorcraft transmissions, consists of analytical and experimental efforts to achieve the overall goals of reducing transmission weight and noise, while increasing life and reliability. Recent activities in the areas of transmission and related component research are highlighted. Current areas include specific technologies in support of military rotary wing aviation, gearing technology, transmission noise reduction studies, a recent interest in gearbox diagnostics, and advanced transmission system studies. Results of recent activities are presented along with near term research plans.
Adaptive EMG noise reduction in ECG signals using noise level approximation
NASA Astrophysics Data System (ADS)
Marouf, Mohamed; Saranovac, Lazar
2017-12-01
In this paper the usage of noise level approximation for adaptive Electromyogram (EMG) noise reduction in the Electrocardiogram (ECG) signals is introduced. To achieve the adequate adaptiveness, a translation-invariant noise level approximation is employed. The approximation is done in the form of a guiding signal extracted as an estimation of the signal quality vs. EMG noise. The noise reduction framework is based on a bank of low pass filters. So, the adaptive noise reduction is achieved by selecting the appropriate filter with respect to the guiding signal aiming to obtain the best trade-off between the signal distortion caused by filtering and the signal readability. For the evaluation purposes; both real EMG and artificial noises are used. The tested ECG signals are from the MIT-BIH Arrhythmia Database Directory, while both real and artificial records of EMG noise are added and used in the evaluation process. Firstly, comparison with state of the art methods is conducted to verify the performance of the proposed approach in terms of noise cancellation while preserving the QRS complex waves. Additionally, the signal to noise ratio improvement after the adaptive noise reduction is computed and presented for the proposed method. Finally, the impact of adaptive noise reduction method on QRS complexes detection was studied. The tested signals are delineated using a state of the art method, and the QRS detection improvement for different SNR is presented.
Core Noise: Implications of Emerging N+3 Designs and Acoustic Technology Needs
NASA Technical Reports Server (NTRS)
Hultgren, Lennart S.
2011-01-01
This presentation is a summary of the core-noise implications of NASA's primary N+3 aircraft concepts. These concepts are the MIT/P&W D8.5 Double Bubble design, the Boeing/GE SUGAR Volt hybrid gas-turbine/electric engine concept, the NASA N3-X Turboelectric Distributed Propulsion aircraft, and the NASA TBW-XN Truss-Braced Wing concept. The first two are future concepts for the Boeing 737/Airbus A320 US transcontinental mission of 180 passengers and a maximum range of 3000 nm. The last two are future concepts for the Boeing 777 transpacific mission of 350 passengers and a 7500 nm range. Sections of the presentation cover: turbofan design trends on the N+1.5 time frame and the already emerging importance of core noise; the NASA N+3 concepts and associated core-noise challenges; the historical trends for the engine bypass ratio (BPR), overall pressure ratio (OPR), and combustor exit temperature; and brief discussion of a noise research roadmap being developed to address the core-noise challenges identified for the N+3 concepts. The N+3 conceptual aircraft have (i) ultra-high bypass ratios, in the rage of 18 - 30, accomplished by either having a small-size, high-power-density core, an hybrid design which allows for an increased fan size, or by utilizing a turboelectric distributed propulsion design; and (ii) very high OPR in the 50 - 70 range. These trends will elevate the overall importance of turbomachinery core noise. The N+3 conceptual designs specify the need for the development and application of advanced liners and passive and active control strategies to reduce the core noise. Current engineering prediction of core noise uses semi-empirical methods based on older turbofan engines, with (at best) updates for more recent designs. The models have not seen the same level of development and maturity as those for fan and jet noise and are grossly inadequate for the designs considered for the N+3 time frame. An aggressive program for the development of updated noise prediction tools for integrated core assemblies as well as and strategies for noise reduction and control is needed in order to meet the NASA N+3 noise goals. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Reduced-Perceived-Noise Technical Challenge aims to develop concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries. This reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic.
Aircraft Noise Reduction Subproject Overview
NASA Technical Reports Server (NTRS)
Fernandez, Hamilton; Nark, Douglas M.; Van Zante, Dale E.
2016-01-01
The material presents highlights of propulsion and airframe noise research being completed for the Advanced Air Transport Technology Project. The basis of noise reduction plans along with representative work for the airframe, propulsion, and propulsion-airframe integration is discussed for the Aircraft Noise reduction Subproject.
NASA Technical Reports Server (NTRS)
Grosveld, F.; Lameris, J.; Dunn, D.
1979-01-01
Experiments and a theoretical analysis were conducted to predict the noise reduction of inclined and curved panels. These predictions are compared to the experimental results with reasonable agreement between theory and experiment for panels under an oblique angle of sound incidence. Theoretical as well as experimental results indicate a big increase in noise reduction when a flat test panel is curved. Further curving the panel slightly decreases the noise reduction. Riveted flat panels are shown to give a higher noise reduction in the stiffness-controlled frequency region, while bonded panels are superior in this region when the test panel is curved. Experimentally measured noise reduction characteristics of flat aluminum panels with uniaxial in-plane stresses are presented and discussed. These test results indicate an important improvement in the noise reduction of these panels in the frequency range below the fundamental panel/cavity frequency.
Noise reduction for model counterrotation propeller at cruise by reducing aft-propeller diameter
NASA Technical Reports Server (NTRS)
Dittmar, James H.; Stang, David B.
1987-01-01
The forward propeller of a model counterrotation propeller was tested with its original aft propeller and with a reduced diameter aft propeller. Noise reductions with the reduced diameter aft propeller were measured at simulated cruise conditions. Reductions were as large as 7.5 dB for the aft-propeller passing tone and 15 dB in the harmonics at specific angles. The interaction tones, mostly the first, were reduced probably because the reduced-diameter aft-propeller blades no longer interacted with the forward propeller tip vortex. The total noise (sum of primary and interaction noise) at each harmonic was significantly reduced. The chief noise reduction at each harmonic came from reduced aft-propeller-alone noise, with the interaction tones contributing little to the totals at cruise. Total cruise noise reductions were as much as 3 dB at given angles for the blade passing tone and 10 dB for some of the harmonics. These reductions would measurably improve the fuselage interior noise levels and represent a definite cruise noise benefit from using a reduced diameter aft propeller.
1979-03-01
LSPFIT 112 4.3.5 SLICE 112 4.3.6 CRD 113 4.3.7 OUTPUT 113 4.3.8 SHOCK 115 4.3.9 ATMOS 115 4.3.10 PNLC 115 4.4 Program Usage and Logic 116 4.5 Description...number MAIN, SLICE, OUTPUT F Intermediate variable LSPFIT FAC Intermediate variable PNLC FC Center frequency SLICE FIRSTU Flight velocity Ua MAIN, SLICE...Index CRD J211 Index CRD K Index, also wave number MAIN, SLICE, PNLC KN Surrounding boundary index MAIN KNCAS Case counter MAIN KNK Surrounding
Airesearch QCGAT program. [quiet clean general aviation turbofan engines
NASA Technical Reports Server (NTRS)
Heldenbrand, R. W.; Norgren, W. M.
1979-01-01
A model TFE731-1 engine was used as a baseline for the NASA quiet clean general aviation turbofan engine and engine/nacelle program designed to demonstrate the applicability of large turbofan engine technology to small general aviation turbofan engines, and to obtain significant reductions in noise and pollutant emissions while reducing or maintaining fuel consumption levels. All new technology design for rotating parts and all items in the engine and nacelle that contributed to the acoustic and pollution characteristics of the engine system were of flight design, weight, and construction. The major noise, emissions, and performance goals were met. Noise levels estimated for the three FAR Part 36 conditions, are 10 t0 15 ENPdB below FAA requirements; emission values are considerably reduced below that of current technology engines; and the engine performance represents a TSFC improvement of approximately 9 percent over other turbofan engines.
NASA Technical Reports Server (NTRS)
Wagenknecht, C. D.; Bediako, E. D.
1985-01-01
Advanced Supersonic Transport jet noise may be reduced to Federal Air Regulation limits if recommended refinements to a recently developed ejector shroud exhaust system are successfully carried out. A two-part program consisting of a design study and a subscale model wind tunnel test effort conducted to define an acoustically treated ejector shroud exhaust system for supersonic transport application is described. Coannular, 20-chute, and ejector shroud exhaust systems were evaluated. Program results were used in a mission analysis study to determine aircraft takeoff gross weight to perform a nominal design mission, under Federal Aviation Regulation (1969), Part 36, Stage 3 noise constraints. Mission trade study results confirmed that the ejector shroud was the best of the three exhaust systems studied with a significant takeoff gross weight advantage over the 20-chute suppressor nozzle which was the second best.
X-wing noise data acquisition program
NASA Technical Reports Server (NTRS)
Healy, G. J.
1983-01-01
The X-wing circulation controlled rotor system model was tested for hover performance. During these performance tests, noise data from 12 microphones was recorded on magnetic tape for subsequent data reduction. The rotor system was operated at 4 tip speeds ranging from 529 to 650 ft./sec. (404 to 497 rpm), collective angles of attack fro 0 deg to 8.5 deg (maximum), and blade pressure ratios from 1.0 (no blowing) to a maximum of 2.1. The 12 microphones included 11 in the far field, and one in the transmission area. Following completion of the rotor and subsystem noise measurements, sound field calibration measurements were made of both the rotor 'bowl' and the loudspeaker system used in the 'bowl' calibration measurements. The location of 10 far field microphones was measured by a surveyor. Additionally, detailed tape logs were prepared for the six reels of tape used for the program.
Analysis of Wheel/Rail Force and Flange Force During Steady State Curving of Rigid Trucks
DOT National Transportation Integrated Search
1980-09-01
The wheel/rail dynamics interaction project being conducted as part of this program is directed toward reduction of maintenance costs and wheel/rail noise while providing acceptable ride quality and safety. This report describes the development of a ...
Helical Face Gear Development Under the Enhanced Rotorcraft Drive System Program
NASA Technical Reports Server (NTRS)
Heath, Gregory F.; Slaughter, Stephen C.; Fisher, David J.; Lewicki, David G.; Fetty, Jason
2011-01-01
U.S. Army goals for the Enhanced Rotorcraft Drive System Program are to achieve a 40 percent increase in horsepower to weight ratio, a 15 dB reduction in drive system generated noise, 30 percent reduction in drive system operating, support, and acquisition cost, and 75 percent automatic detection of critical mechanical component failures. Boeing s technology transition goals are that the operational endurance level of the helical face gearing and related split-torque designs be validated to a TRL 6, and that analytical and manufacturing tools be validated. Helical face gear technology is being developed in this project to augment, and transition into, a Boeing AH-64 Block III split-torque face gear main transmission stage, to yield increased power density and reduced noise. To date, helical face gear grinding development on Northstar s new face gear grinding machine and pattern-development tests at the NASA Glenn/U.S. Army Research Laboratory have been completed and are described.
Active Vibration Control for Helicopter Interior Noise Reduction Using Power Minimization
NASA Technical Reports Server (NTRS)
Mendoza, J.; Chevva, K.; Sun, F.; Blanc, A.; Kim, S. B.
2014-01-01
This report describes work performed by United Technologies Research Center (UTRC) for NASA Langley Research Center (LaRC) under Contract NNL11AA06C. The objective of this program is to develop technology to reduce helicopter interior noise resulting from multiple gear meshing frequencies. A novel active vibration control approach called Minimum Actuation Power (MAP) is developed. MAP is an optimal control strategy that minimizes the total input power into a structure by monitoring and varying the input power of controlling sources. MAP control was implemented without explicit knowledge of the phasing and magnitude of the excitation sources by driving the real part of the input power from the controlling sources to zero. It is shown that this occurs when the total mechanical input power from the excitation and controlling sources is a minimum. MAP theory is developed for multiple excitation sources with arbitrary relative phasing for single or multiple discrete frequencies and controlled by a single or multiple controlling sources. Simulations and experimental results demonstrate the feasibility of MAP for structural vibration reduction of a realistic rotorcraft interior structure. MAP control resulted in significant average global vibration reduction of a single frequency and multiple frequency excitations with one controlling actuator. Simulations also demonstrate the potential effectiveness of the observed vibration reductions on interior radiated noise.
Hybrid Wing Body Aircraft System Noise Assessment with Propulsion Airframe Aeroacoustic Experiments
NASA Technical Reports Server (NTRS)
Thomas, Russell H.; Burley, Casey L.; Olson, Erik D.
2010-01-01
A system noise assessment of a hybrid wing body configuration was performed using NASA s best available aircraft models, engine model, and system noise assessment method. A propulsion airframe aeroacoustic effects experimental database for key noise sources and interaction effects was used to provide data directly in the noise assessment where prediction methods are inadequate. NASA engine and aircraft system models were created to define the hybrid wing body aircraft concept as a twin engine aircraft with a 7500 nautical mile mission. The engines were modeled as existing technology high bypass ratio turbofans. The baseline hybrid wing body aircraft was assessed at 22 dB cumulative below the FAA Stage 4 certification level. To determine the potential for noise reduction with relatively near term technologies, seven other configurations were assessed beginning with moving the engines two fan nozzle diameters upstream of the trailing edge and then adding technologies for reduction of the highest noise sources. Aft radiated noise was expected to be the most challenging to reduce and, therefore, the experimental database focused on jet nozzle and pylon configurations that could reduce jet noise through a combination of source reduction and shielding effectiveness. The best configuration for reduction of jet noise used state-of-the-art technology chevrons with a pylon above the engine in the crown position. This configuration resulted in jet source noise reduction, favorable azimuthal directivity, and noise source relocation upstream where it is more effectively shielded by the limited airframe surface, and additional fan noise attenuation from acoustic liner on the crown pylon internal surfaces. Vertical and elevon surfaces were also assessed to add shielding area. The elevon deflection above the trailing edge showed some small additional noise reduction whereas vertical surfaces resulted in a slight noise increase. With the effects of the configurations from the database included, the best available noise reduction was 40 dB cumulative. Projected effects from additional technologies were assessed for an advanced noise reduction configuration including landing gear fairings and advanced pylon and chevron nozzles. Incorporating the three additional technology improvements, an aircraft noise is projected of 42.4 dB cumulative below the Stage 4 level.
Impact of Azimuthally Controlled Fluidic Chevrons on Jet Noise
NASA Technical Reports Server (NTRS)
Henderson, Brenda S.; Norum, Thomas D.
2008-01-01
The impact of azimuthally controlled air injection on broadband shock noise and mixing noise for single and dual stream jets was investigated. The single stream experiments focused on noise reduction for low supersonic jet exhausts. Dual stream experiments included high subsonic core and fan conditions and supersonic fan conditions with transonic core conditions. For the dual stream experiments, air was injected into the core stream. Significant reductions in broadband shock noise were achieved in a single jet with an injection mass flow equal to 1.2% of the core mass flow. Injection near the pylon produced greater broadband shock noise reductions than injection at other locations around the nozzle periphery. Air injection into the core stream did not result in broadband shock noise reduction in dual stream jets. Fluidic injection resulted in some mixing noise reductions for both the single and dual stream jets. For subsonic fan and core conditions, the lowest noise levels were obtained when injecting on the side of the nozzle closest to the microphone axis.
van den Tillaart-Haverkate, Maj; de Ronde-Brons, Inge; Dreschler, Wouter A; Houben, Rolph
2017-01-01
Single-microphone noise reduction leads to subjective benefit, but not to objective improvements in speech intelligibility. We investigated whether response times (RTs) provide an objective measure of the benefit of noise reduction and whether the effect of noise reduction is reflected in rated listening effort. Twelve normal-hearing participants listened to digit triplets that were either unprocessed or processed with one of two noise-reduction algorithms: an ideal binary mask (IBM) and a more realistic minimum mean square error estimator (MMSE). For each of these three processing conditions, we measured (a) speech intelligibility, (b) RTs on two different tasks (identification of the last digit and arithmetic summation of the first and last digit), and (c) subjective listening effort ratings. All measurements were performed at four signal-to-noise ratios (SNRs): -5, 0, +5, and +∞ dB. Speech intelligibility was high (>97% correct) for all conditions. A significant decrease in response time, relative to the unprocessed condition, was found for both IBM and MMSE for the arithmetic but not the identification task. Listening effort ratings were significantly lower for IBM than for MMSE and unprocessed speech in noise. We conclude that RT for an arithmetic task can provide an objective measure of the benefit of noise reduction. For young normal-hearing listeners, both ideal and realistic noise reduction can reduce RTs at SNRs where speech intelligibility is close to 100%. Ideal noise reduction can also reduce perceived listening effort.
Cartes, David A; Ray, Laura R; Collier, Robert D
2002-04-01
An adaptive leaky normalized least-mean-square (NLMS) algorithm has been developed to optimize stability and performance of active noise cancellation systems. The research addresses LMS filter performance issues related to insufficient excitation, nonstationary noise fields, and time-varying signal-to-noise ratio. The adaptive leaky NLMS algorithm is based on a Lyapunov tuning approach in which three candidate algorithms, each of which is a function of the instantaneous measured reference input, measurement noise variance, and filter length, are shown to provide varying degrees of tradeoff between stability and noise reduction performance. Each algorithm is evaluated experimentally for reduction of low frequency noise in communication headsets, and stability and noise reduction performance are compared with that of traditional NLMS and fixed-leakage NLMS algorithms. Acoustic measurements are made in a specially designed acoustic test cell which is based on the original work of Ryan et al. ["Enclosure for low frequency assessment of active noise reducing circumaural headsets and hearing protection," Can. Acoust. 21, 19-20 (1993)] and which provides a highly controlled and uniform acoustic environment. The stability and performance of the active noise reduction system, including a prototype communication headset, are investigated for a variety of noise sources ranging from stationary tonal noise to highly nonstationary measured F-16 aircraft noise over a 20 dB dynamic range. Results demonstrate significant improvements in stability of Lyapunov-tuned LMS algorithms over traditional leaky or nonleaky normalized algorithms, while providing noise reduction performance equivalent to that of the NLMS algorithm for idealized noise fields.
Methods for evaluating temporal trends in noise exposure
Neitzel, RL; Galusha, D; Dixon-Ernst, C; Rabinowitz, PM
2014-01-01
Objective Hearing conservation programs have been mandatory in many US industries since 1983. Since then, three program elements (audiometric testing, hearing protection, and training) have been the focus of much research. By comparison, little has been done on noise exposure evaluation. Design and study sample Utilizing a large dataset (>10,000 measurements over 20 years) from eight facilities operated by a multinational aluminum manufacturing company, we evaluated several approaches to assessing temporal trends in Time Weighted Average (TWA) exposures and the fraction of measurements exceeding 85 dBA by facility, by exposure group within facility, and by individual worker within facility. Results Overall, exposures declined across locations over the study period. Several facilities demonstrated substantial reductions in exposure, and the results of mean noise levels and exceedance fractions generally showed good agreement. The results of analyses at the individual level diverged with analyses by facility and exposure group within facility, suggesting that individual-level analyses, while challenging, may provide important information not available from coarser levels of analysis. Conclusions Validated metrics are needed to allow for assessment of temporal trends in noise exposure. Such metrics will improve our ability to characterize, in a standardized manner, efforts to reduce noise-induced hearing loss. PMID:24564696
Methods for evaluating temporal trends in noise exposure.
Neitzel, R L; Galusha, D; Dixon-Ernst, C; Rabinowitz, P M
2014-03-01
Hearing conservation programs have been mandatory in many US industries since 1983. Since then, three program elements (audiometric testing, hearing protection, and training) have been the focus of much research. By comparison, little has been done on noise exposure evaluation. Temporal trends in time weighted average (TWA) exposures and the fraction of measurements exceeding 85 dBA were evaluated by facility, by exposure group within facility, and by individual worker within facility. A large dataset (> 10 000 measurements over 20 years) from eight facilities operated by a multinational aluminum manufacturing company was studied. Overall, exposures declined across locations over the study period. Several facilities demonstrated substantial reductions in exposure, and the results of mean noise levels and exceedance fractions generally showed good agreement. The results of analyses at the individual level diverged with analyses by facility and exposure group within facility, suggesting that individual-level analyses, while challenging, may provide important information not available from coarser levels of analysis. Validated metrics are needed to allow for assessment of temporal trends in noise exposure. Such metrics will improve our ability to characterize, in a standardized manner, efforts to reduce noise-induced hearing loss.
NASA Technical Reports Server (NTRS)
Holland, C.; Brodie, I.
1985-01-01
A test stand has been set up to measure the current fluctuation noise properties of B- and M-type dispenser cathodes in a typical TWT gun structure. Noise techniques were used to determine the work function distribution on the cathode surfaces. Significant differences between the B and M types and significant changes in the work function distribution during activation and life are found. In turn, knowledge of the expected work function can be used to accurately determine the cathode-operating temperatures in a TWT structure. Noise measurements also demonstrate more sensitivity to space charge effects than the Miram method. Full automation of the measurements and computations is now required to speed up data acquisition and reduction. The complete set of equations for the space charge limited diode were programmed so that given four of the five measurable variables (J, J sub O, T, D, and V) the fifth could be computed. Using this program, we estimated that an rms fluctuation in the diode spacing d in the frequency range of 145 Hz about 20 kHz of only about 10 to the -5 power A would account for the observed noise in a space charge limited diode with 1 mm spacing.
Noise reduction in supersonic jets by nozzle fluidic inserts
NASA Astrophysics Data System (ADS)
Morris, Philip J.; McLaughlin, Dennis K.; Kuo, Ching-Wen
2013-08-01
Professor Philip Doak spent a very productive time as a consultant to the Lockheed-Georgia Company in the early 1970s. The focus of the overall research project was the prediction and reduction of noise from supersonic jets. Now, 40 years on, the present paper describes an innovative methodology and device for the reduction of supersonic jet noise. The goal is the development of a practical active noise reduction technique for low bypass ratio turbofan engines. This method introduces fluidic inserts installed in the divergent wall of a CD nozzle to replace hard-wall corrugation seals, which have been demonstrated to be effective by Seiner (2005) [1]. By altering the configuration and operating conditions of the fluidic inserts, active noise reduction for both mixing and shock noise has been obtained. Substantial noise reductions have been achieved for mixing noise in the maximum noise emission direction and in the forward arc for broadband shock-associated noise. To achieve these reductions (on the order of greater than 4 and 2 dB for the two main components respectively), practically achievable levels of injection mass flow rates have been used. The total injected mass flow rates are less than 4% of the core mass flow rate and the effective operating injection pressure ratio has been maintained at or below the same level as the nozzle pressure ratio of the core flow.
Comparison of Tone Mode Measurements for a Forward Swept and Baseline Rotor Fan
NASA Technical Reports Server (NTRS)
Heidelberg, Laurence J.
2003-01-01
A forward swept fan, designated the Quite High Speed Fan (QHSF), was tested in the NASA Glenn 9- by 15-foot Low Speed Wind Tunnel to investigate its noise reduction relative to a baseline fan of the same aerodynamic performance. The design objective of the QHSF was a 6 dB reduction in Effective Perceived Noise Level relative to the baseline fan at the takeoff condition. The design noise reduction was to be a result of lower levels of multiple pure tone noise due to the forward swept rotor, and lower rotor/stator interaction tone noise from a leaned stator. Although the design 6 dB reduction was observed in far-field measurements, the induct mode measurements revealed the reasons for goals. All of the noise reduction was from the blade passing tone and its harmonics and most of this was unexpectedly from rotor/strut interaction modes. The reason for large differences in rotor/strut noise sources could not be determined with certainty. The reductions in the multiple pure tone noise for the forward swept rotor were not observed. this reduction were not the ones related to the design
XV-15 Tiltrotor Low Noise Approach Operations
NASA Technical Reports Server (NTRS)
Conner, David A.; Marcolini, Michael A.; Decker, William A.; Cline, John H.; Edwards, Bryan D.; Nicks, Colby O.; Klein, Peter D.
1999-01-01
Acoustic data have been acquired for the XV-15 tiltrotor aircraft performing approach operations for a variety of different approach profile configurations. This flight test program was conducted jointly by NASA, the U.S. Army, and Bell Helicopter Textron, Inc. (BHTI) in June 1997. The XV-15 was flown over a large area microphone array, which was deployed to directly measure the noise footprint produced during actual approach operations. The XV-15 flew realistic approach profiles that culminated in IGE hover over a landing pad. Aircraft tracking and pilot guidance was provided by a Differential Global Positioning System (DGPS) and a flight director system developed at BHTI. Approach profile designs emphasized noise reduction while maintaining handling qualities sufficient for tiltrotor commercial passenger ride comfort and flight safety under Instrument Flight Rules (IFR) conditions. A discussion of the approach profile design philosophy is provided. Five different approach profiles are discussed in detail -- 3 deg., 6 deg., and 9 deg. approaches, and two very different 3 deg. to 9 deg. segmented approaches. The approach profile characteristics are discussed in detail, followed by the noise footprints and handling qualities. Sound exposure levels are also presented on an averaged basis and as a function of the sideline distance for a number of up-range distances from the landing point. A comparison of the noise contour areas is also provided. The results document the variation in tiltrotor noise due to changes in operating condition, and indicate the potential for significant noise reduction using the unique tiltrotor capability of nacelle tilt.
NASA Technical Reports Server (NTRS)
Van Zante, Dale; Suder, Kenneth
2015-01-01
The NASA Environmentally Responsible Aviation (ERA) program is maturing technologies to enable simultaneous reduction of fuel burn, noise and emissions from an aircraft engine system. Three engine related Integrated Technology Demonstrations (ITDs) have been completed at Glenn Research Center in collaboration with Pratt Whitney, General Electric and the Federal Aviation Administration. The engine technologies being matured are: a low NOx, fuel flexible combustor in partnership with Pratt Whitney; an ultra-high bypass, ducted propulsor system in partnership with Pratt Whitney and FAA; and high pressure ratio, front-stage core compressor technology in partnership with General Electric. The technical rationale, test configurations and overall results from the test series in each ITD are described. ERA is using system analysis to project the benefits of the ITD technologies on potential aircraft systems in the 2025 timeframe. Data from the ITD experiments were used to guide the system analysis assumptions. Results from the current assessments for fuel burn, noise and oxides of nitrogen emissions are presented.
NASA Technical Reports Server (NTRS)
Van Zante, Dale E.; Suder, Kenneth L.
2015-01-01
The NASA Environmentally Responsible Aviation (ERA) program is maturing technologies to enable simultaneous reduction of fuel burn, noise and emissions from an aircraft engine system. Three engine related Integrated Technology Demonstrations (ITDs) have been completed at Glenn Research Center in collaboration with Pratt Whitney, General Electric and the Federal Aviation Administration. The engine technologies being matured are a low NOx, fuel flexible combustor in partnership with Pratt Whitney, an ultra-high bypass, ducted propulsor system in partnership with Pratt Whitney FAA and high pressure ratio, front-stage core compressor technology in partnership with General Electric. The technical rationale, test configurations and overall results from the test series in each ITD are described. ERA is using system analysis to project the benefits of the ITD technologies on potential aircraft systems in the 2025 timeframe. Data from the ITD experiments were used to guide the system analysis assumptions. Results from the current assessments for fuel burn, noise and oxides of nitrogen emissions are presented.
NASA Technical Reports Server (NTRS)
Huston, R. J. (Compiler)
1982-01-01
The establishment of a realistic plan for NASA and the U.S. helicopter industry to develop a design-for-noise methodology, including plans for the identification and development of promising noise reduction technology was discussed. Topics included: noise reduction techniques, scaling laws, empirical noise prediction, psychoacoustics, and methods of developing and validing noise prediction methods.
Noise exposure and hearing loss among sand and gravel miners.
Landen, Deborah; Wilkins, Steve; Stephenson, Mark; McWilliams, Linda
2004-08-01
The objectives of this study were to describe workplace noise exposures, risk factors for hearing loss, and hearing levels among sand and gravel miners, and to determine whether full shift noise exposures resulted in changes in hearing thresholds from baseline values. Sand and gravel miners (n = 317) were interviewed regarding medical history, leisure-time and occupational noise exposure, other occupational exposures, and use of hearing protection. Audiometric tests were performed both before the work shift (following a 12-hour noise-free interval) and immediately following the work shift. Full shift noise dosimetry was conducted. Miners' noise exposures exceeded the Recommended Exposure Limit (REL) of the National Institute for Occupational Safety and Health (NIOSH) for 69% of workers, and exceeded the Mine Safety and Health Administration's action level for enrollment in a hearing conservation program for 41% of workers. Significantly higher noise exposures occurred among employees of small companies, among workers with a job classification of truck driver, among males, and among black workers. Hearing protection usage was low, with 48% of subjects reporting that they never used hearing protection. Hearing impairment, as defined by NIOSH, was present among 37% of 275 subjects with valid audiograms. Black male workers and white male workers had higher hearing thresholds than males from a comparison North Carolina population unexposed to industrial noise. Small but statistically significant changes in hearing thresholds occurred following full shift noise exposure among subjects who had good hearing sensitivity at baseline. In a logistic regression model, age and history of a past noisy job were significant predictors of hearing impairment. Overall, sand and gravel workers have excessive noise exposures and significant hearing loss, and demonstrate inadequate use of hearing protection. Well-designed hearing conservation programs, with reduction of noise exposure, are clearly needed.
Hu, Yi
2010-05-01
Recent research results show that combined electric and acoustic stimulation (EAS) significantly improves speech recognition in noise, and it is generally established that access to the improved F0 representation of target speech, along with the glimpse cues, provide the EAS benefits. Under noisy listening conditions, noise signals degrade these important cues by introducing undesired temporal-frequency components and corrupting harmonics structure. In this study, the potential of combining noise reduction and harmonics regeneration techniques was investigated to further improve speech intelligibility in noise by providing improved beneficial cues for EAS. Three hypotheses were tested: (1) noise reduction methods can improve speech intelligibility in noise for EAS; (2) harmonics regeneration after noise reduction can further improve speech intelligibility in noise for EAS; and (3) harmonics sideband constraints in frequency domain (or equivalently, amplitude modulation in temporal domain), even deterministic ones, can provide additional benefits. Test results demonstrate that combining noise reduction and harmonics regeneration can significantly improve speech recognition in noise for EAS, and it is also beneficial to preserve the harmonics sidebands under adverse listening conditions. This finding warrants further work into the development of algorithms that regenerate harmonics and the related sidebands for EAS processing under noisy conditions.
Wavelet median denoising of ultrasound images
NASA Astrophysics Data System (ADS)
Macey, Katherine E.; Page, Wyatt H.
2002-05-01
Ultrasound images are contaminated with both additive and multiplicative noise, which is modeled by Gaussian and speckle noise respectively. Distinguishing small features such as fallopian tubes in the female genital tract in the noisy environment is problematic. A new method for noise reduction, Wavelet Median Denoising, is presented. Wavelet Median Denoising consists of performing a standard noise reduction technique, median filtering, in the wavelet domain. The new method is tested on 126 images, comprised of 9 original images each with 14 levels of Gaussian or speckle noise. Results for both separable and non-separable wavelets are evaluated, relative to soft-thresholding in the wavelet domain, using the signal-to-noise ratio and subjective assessment. The performance of Wavelet Median Denoising is comparable to that of soft-thresholding. Both methods are more successful in removing Gaussian noise than speckle noise. Wavelet Median Denoising outperforms soft-thresholding for a larger number of cases of speckle noise reduction than of Gaussian noise reduction. Noise reduction is more successful using non-separable wavelets than separable wavelets. When both methods are applied to ultrasound images obtained from a phantom of the female genital tract a small improvement is seen; however, a substantial improvement is required prior to clinical use.
Noise, Turbulence, and Thrust of Subsonic Free Jets from Lobed Nozzles
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.; Wang, F. Y.
2002-01-01
A study of noise benefit, vis-a-vis thrust penalty, and its correlation to turbulence intensities was conducted for free jets issuing from lobed nozzles. Four convergent nozzles with constant exit area were used in the experiments. Three of these were of rectangular lobed configuration having six, ten and fourteen lobes; the fourth was a circular nozzle. Increasing the number of lobes resulted in a progressive reduction in the turbulence intensities as well as in the overall radiated noise. The noise reduction was pronounced at the low frequency end of the spectrum. However, there was an increase in the high frequency noise that rendered the overall benefit less attractive when compared on a scaled-up A-weighted basis. A reduction in noise was accompanied by a commensurate reduction in the turbulent kinetic energy in the flow field. As expected, increasing the number of lobes involved progressive reduction in the thrust coefficient. Among the cases studied, the six-lobed nozzle had the optimum reduction in turbulence and noise with the least thrust penalty.
Characteristics of noise-canceling headphones to reduce the hearing hazard for MP3 users.
Liang, Maojin; Zhao, Fei; French, David; Zheng, Yiqing
2012-06-01
Three pairs of headphones [standard iPod ear buds and two noise-canceling headphones (NCHs)] were chosen to investigate frequency characteristics of noise reduction, together with their attenuation effects on preferred listening levels (PLLs) in the presence of various types of background noise. Twenty-six subjects with normal hearing chose their PLLs in quiet, street noise, and subway noise using the three headphones and with the noise-canceling system on/off. Both sets of NCHs reduced noise levels at mid- and high-frequencies. Further noise reductions occurred in low frequencies with the noise canceling system switched on. In street noise, both NCHs had similar noise reduction effects. In subway noise, better noise reduction effects were found in the expensive NCH and with noise-canceling on. A two way repeated measures analysis of variance showed that both listening conditions and headphone styles were significant influencing factors on the PLLs. Subjects tended to increase their PLLs as the background noise level increased. Compared with ear buds, PLLs obtained from NCHs-on in the presence of background noise were reduced up to 4 dB. Therefore, proper selection and use of NCHs appears beneficial in reducing the risk of hearing damage caused by high music listening levels in the presence of background noise.
NASA Technical Reports Server (NTRS)
Bhat, R. B.; Mixson, J. S.
1978-01-01
Interior noise in the fuselage of a twin-engine, propeller-driven aircraft with two propellers rotating in opposite directions is studied analytically. The fuselage was modeled as a stiffened cylindrical shell with simply supported ends, and the effects of stringers and frames were averaged over the shell surface. An approximate mathematical model of the propeller noise excitation was formulated which includes some of the propeller noise characteristics such as sweeping pressure waves around the sidewalls due to propeller rotation and the localized nature of the excitation with the highest levels near the propeller plane. Results are presented in the form of noise reduction, which is the difference between the levels of external and interior noise. The influence of propeller noise characteristics on the noise reduction was studied. The results indicate that the sweep velocity of the excitation around the fuselage sidewalls is critical to noise reduction.
Noise Reduction with Microphone Arrays for Speaker Identification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, Z
Reducing acoustic noise in audio recordings is an ongoing problem that plagues many applications. This noise is hard to reduce because of interfering sources and non-stationary behavior of the overall background noise. Many single channel noise reduction algorithms exist but are limited in that the more the noise is reduced; the more the signal of interest is distorted due to the fact that the signal and noise overlap in frequency. Specifically acoustic background noise causes problems in the area of speaker identification. Recording a speaker in the presence of acoustic noise ultimately limits the performance and confidence of speaker identificationmore » algorithms. In situations where it is impossible to control the environment where the speech sample is taken, noise reduction filtering algorithms need to be developed to clean the recorded speech of background noise. Because single channel noise reduction algorithms would distort the speech signal, the overall challenge of this project was to see if spatial information provided by microphone arrays could be exploited to aid in speaker identification. The goals are: (1) Test the feasibility of using microphone arrays to reduce background noise in speech recordings; (2) Characterize and compare different multichannel noise reduction algorithms; (3) Provide recommendations for using these multichannel algorithms; and (4) Ultimately answer the question - Can the use of microphone arrays aid in speaker identification?« less
1981-05-21
The Dryden C-140 JetStar during testing of advanced propfan designs. Dryden conducted flight research in 1981-1982 on several designs. The technology was developed under the direction of the Lewis Research Center (today the Glenn Research Center, Cleveland, OH) under the Advanced Turboprop Program. Under that program, Langley Research Center in Virginia oversaw work on accoustics and noise reduction. These efforts were intended to develop a high-speed and fuel-efficient turboprop system.
NASA Technical Reports Server (NTRS)
Riley, Donald R.; Glaab, Louis J.; Brandon, Jay M.; Person, Lee H., Jr.; Glaab, Patricia C.
1999-01-01
A piloted simulation study was performed for the purpose of indicating the noise reduction benefits and piloting performance that could occur for a typical 4-engine high-Speed Civil Transport (HSCT) configuration during takeoff when a dual thrust-cutback procedure was employed with throttle operation under direct computer control. Two thrust cutbacks were employed with the first cutback performed while the vehicle was accelerating on the run-way and the second cutback performed at a distance farther downrange. Added vehicle performance improvements included the incorporation of high-lift increments into the aerodynamic database of the vehicle and the use of limited engine oversizing. Four single-stream turbine bypass engines that had no noise suppression of any kind were used with this configuration. This approach permitted establishing the additional noise suppression level that was needed to meet Federal Air Regulation Part 36 Stage 3 noise levels for subsonic commercial jet aircraft. Noise level results were calculated with the jet mixing and shock noise modules of the Aircraft Noise Prediction Program (ANOPP).
Jet Noise Reduction by Microjets - A Parametric Study
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.
2010-01-01
The effect of injecting tiny secondary jets (microjets ) on the radiated noise from a subsonic primary jet is studied experimentally. The microjets are injected on to the primary jet near the nozzle exit with variable port geometry, working fluid and driving pressure. A clear noise reduction is observed that improves with increasing jet pressure. It is found that smaller diameter ports with higher driving pressure, but involving less thrust and mass fraction, can produce better noise reduction. A collection of data from the present as well as past experiments is examined in an attempt to correlate the noise reduction with the operating parameters. The results indicate that turbulent mixing noise reduction, as monitored by OASPL at a shallow angle, correlates with the ratio of jet to primary jet driving pressures normalized by the ratio of corresponding diameters (p d /pjD). With gaseous injection, the spectral amplitudes decrease at lower frequencies while an increase is noted at higher frequencies. It is apparent that this amplitude crossover is at least partly due to shock-associated noise from the underexpanded jets themselves. Such crossover is not seen with water injection since the flow in that case is incompressible and there is no shock-associated noise. Centerline velocity data show that larger noise reduction is accompanied by faster jet decay as well as significant reduction in turbulence intensities. While a physical understanding of the dependence of noise reduction on p d /pjD remains unclear, given this correlation, an analysis explains the observed dependence of the effect on various other parameters.
NASA Technical Reports Server (NTRS)
Hoad, D. R.; Martin, R. M.
1985-01-01
Many open jet wind tunnels experience pulsations of the flow which are typically characterized by periodic low frequency velocity and pressure variations. One method of reducing these fluctuations is to install vanes around the perimeter of the jet exit to protrude into the flow. Although these vanes were shown to be effective in reducing the fluctuation content, they can also increase the test section background noise level. The results of an experimental acoustic program in the Langley 4- by 7-Meter Tunnel is presented which evaluates the effect on tunnel background noise of such modifications to the jet exit nozzle. Noise levels for the baseline tunnel configuration are compared with those for three jet exit nozzle modifications, including an enhanced noise reduction configuration that minimizes the effect of the vanes on the background noise. Although the noise levels for this modified vane configuration were comparable to baseline tunnel background noise levels in this facility, installation of these modified vanes in an acoustic tunnel may be of concern because the noise levels for the vanes could be well above background noise levels in a quiet facility.
Engine Conceptual Design Studies for a Hybrid Wing Body Aircraft
NASA Technical Reports Server (NTRS)
Tong, Michael T.; Jones, Scott M.; Haller, William J.; Handschuh, Robert F.
2009-01-01
Worldwide concerns of air quality and climate change have made environmental protection one of the most critical issues in aviation today. NASA's current Fundamental Aeronautics research program is directed at three generations of aircraft in the near, mid and far term, with initial operating capability around 2015, 2020, and 2030, respectively. Each generation has associated goals for fuel burn, NOx, noise, and field-length reductions relative to today's aircrafts. The research for the 2020 generation is directed at enabling a hybrid wing body (HWB) aircraft to meet NASA's aggressive technology goals. This paper presents the conceptual cycle and mechanical designs of the two engine concepts, podded and embedded systems, which were proposed for a HWB cargo freighter. They are expected to offer significant benefits in noise reductions without compromising the fuel burn.
2001 NASA Seal/secondary Air System Workshop, Volume 1. Volume 1
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M. (Editor); Hendricks, Robert C. (Editor)
2002-01-01
The 2001 NASA Seal/Secondary Air System Workshop covered the following topics: (i) overview of NASA's Vision for 21st Century Aircraft; (ii) overview of NASA-sponsored Ultra-Efficient Engine Technology (UEET); (iii) reviews of sealing concepts, test results, experimental facilities, and numerical predictions; and (iv) reviews of material development programs relevant to advanced seals development. The NASA UEET overview illustrates for the reader the importance of advanced technologies, including seals, in meeting future turbine engine system efficiency and emission goals. The NASA UEET program goals include an 8-to 15-percent reduction in fuel burn, a 15-percent reduction in CO2, a 70-percent reduction in NOx, CO, and unburned hydrocarbons, and a 30-dB noise reduction relative to program baselines. The workshop also covered several programs NASA is funding to investigate advanced reusable space vehicle technologies (X-38) and advanced space ram/scramjet propulsion systems. Seal challenges posed by these advanced systems include high-temperature operation, resiliency at the operating temperature to accommodate sidewall flexing, and durability to last many missions.
Full-Scale Turbofan-Engine Turbine-Transfer Function Determination Using Three Internal Sensors
NASA Technical Reports Server (NTRS)
Hultgren, Lennart S.
2011-01-01
Existing NASA/Honeywell EVNERT full-scale static engine test data is analyzed by using source-separation techniques in order to determine the turbine transfer of the currently sub-dominant combustor noise. The results are used to assess the combustor-noise prediction capability of the Aircraft Noise Prediction Program (ANOPP). Time-series data from three sensors internal to the Honeywell TECH977 research engine is used in the analysis. The true combustor-noise turbine-transfer function is educed by utilizing a new three-signal approach. The resulting narrowband gain factors are compared with the corresponding constant values obtained from two empirical acoustic-turbine-loss formulas. It is found that a simplified Pratt & Whitney formula agrees better with the experimental results for frequencies of practical importance. The 130 deg downstream-direction far-field 1/3-octave sound-pressure levels (SPL) results of Hultgren & Miles are reexamined using a post-correction of their ANOPP predictions for both the total noise signature and the combustion-noise component. It is found that replacing the standard ANOPP turbine-attenuation function for combustion noise with the simplified Pratt & Whitney formula clearly improves the predictions. It is recommended that the GECOR combustion-noise module in ANOPP be updated to allow for a user-selectable switch between the current transmission-loss model and the simplified Pratt & Whitney formula. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The Subsonic Fixed Wing Project's Reduce-Perceived-Noise Technical Challenge aims to develop concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries. The reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic.
Blade-Mounted Flap Control for BVI Noise Reduction Proof-of-Concept Test
NASA Technical Reports Server (NTRS)
Dawson, Seth; Hassan, Ahmed; Straub, Friedrich; Tadghighi, Hormoz
1995-01-01
This report describes a wind tunnel test of the McDonnell Douglas Helicopter Systems (MDHS) Active Flap Model Rotor at the NASA Langley 14- by 22-Foot Subsonic Tunnel. The test demonstrated that BVI noise reductions and vibration reductions were possible with the use of an active flap. Aerodynamic results supported the acoustic data trends, showing a reduction in the strength of the tip vortex with the deflection of the flap. Acoustic results showed that the flap deployment, depending on the peak deflection angle and azimuthal shift in its deployment schedule, can produce BVI noise reductions as much as 6 dB on the advancing and retreating sides. The noise reduction was accompanied by an increase in low frequency harmonic noise and high frequency broadband noise. A brief assessment of the effect of the flap on vibration showed that significant reductions were possible. The greatest vibration reductions (as much as 76%) were found in the four per rev pitching moment at the hub. Performance improvement cam results were inconclusive, as the improvements were predicted to be smaller than the resolution of the rotor balance.
NASA Technical Reports Server (NTRS)
Baber, H. T., Jr.
1979-01-01
Credence to systems weights and assurance that the noise study AST concept can be balanced were studied. Current titanium structural technology is assumed. A duct-burning turbofan variable stream control engine (VSCE), with noise reduction potential through use of a coannular nozzle was used. With 273 passengers, range of the AST-105-1 for a cruise Mach number of 2.62 is essentially transpacific. Lift-to-drag ratio is slightly higher than for previous AST configurations. It is trimmable over a center-of-gravity range of 4.7m (15.5 ft). Inherent high positive effective dihedral, typical of arrow-wing configurations in high-lift approach, would limit AST-105-1 to operating in crosswinds of 11.6 m/sec (22.4 kt), or less, with 75 percent of available lateral control. Normal power takeoff with cutback results in noise in excess of Federal Aviation Regulation Part 36 but less than for conventional procedure takeoff. Results of advanced (noncertificated) programmed throttle takeoff and approach procedures, not yet optimized, indicate that such can be an important additional method noise reduction.
NASA Technical Reports Server (NTRS)
Fasching, W. A.
1979-01-01
The short core exhaust nozzle was evaluated in CF6-50 engine ground tests including performance, acoustic, and endurance tests. The test results verified the performance predictions from scale model tests. The short core exhaust nozzle provides an internal cruise sfc reduction of 0.9 percent without an increase in engine noise. The nozzle hardware successfully completed 1000 flight cycles of endurance testing without any signs of distress.
Wind fence enclosures for infrasonic wind noise reduction.
Abbott, JohnPaul; Raspet, Richard; Webster, Jeremy
2015-03-01
A large porous wind fence enclosure has been built and tested to optimize wind noise reduction at infrasonic frequencies between 0.01 and 10 Hz to develop a technology that is simple and cost effective and improves upon the limitations of spatial filter arrays for detecting nuclear explosions, wind turbine infrasound, and other sources of infrasound. Wind noise is reduced by minimizing the sum of the wind noise generated by the turbulence and velocity gradients inside the fence and by the area-averaging the decorrelated pressure fluctuations generated at the surface of the fence. The effects of varying the enclosure porosity, top condition, bottom gap, height, and diameter and adding a secondary windscreen were investigated. The wind fence enclosure achieved best reductions when the surface porosity was between 40% and 55% and was supplemented by a secondary windscreen. The most effective wind fence enclosure tested in this study achieved wind noise reductions of 20-27 dB over the 2-4 Hz frequency band, a minimum of 5 dB noise reduction for frequencies from 0.1 to 20 Hz, constant 3-6 dB noise reduction for frequencies with turbulence wavelengths larger than the fence, and sufficient wind noise reduction at high wind speeds (3-6 m/s) to detect microbaroms.
Analyzing radiation absorption difference of dental substance by using Dual CT
NASA Astrophysics Data System (ADS)
Yu, H.; Lee, H. K.; Cho, J. H.; Yang, H. J.; Ju, Y. S.
2015-07-01
The purpose of this study was to evaluate the changes of noise and computer tomography (CT) number in each dental substance, by using the metal artefact reduction algorithm; we used dual CT for this study. For the study, we produced resin, titanium, gypsum, and wax that are widely used by dentists. In addition, we made nickel to increase the artefact. While making the study materials, we made sure that there is no difficulty when inserting the substances inside phantom. In order to study, we scanned before and after using the metal artefact reduction algorithm. We conducted an average analysis of CT number and noise, before and after using the metal artefact reduction algorithm. As a result, there was no difference in CT number and noise before and after using the metal artefact reduction algorithm. However, when it comes to the noise value in each substance, wax's noise value was the lowest whereas titanium's noise value was the highest, after applying the metal artefact reduction algorithm. In nickel, CT number and noise value from artefact area showed a decreased noise value when applying the metal artefact reduction algorithm. In conclusion, we assumed that we could increase the effectiveness of CT examination by applying dual energy's metal artefact reduction algorithm.
Survey of techniques for reduction of wind turbine blade trailing edge noise.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barone, Matthew Franklin
2011-08-01
Aerodynamic noise from wind turbine rotors leads to constraints in both rotor design and turbine siting. The primary source of aerodynamic noise on wind turbine rotors is the interaction of turbulent boundary layers on the blades with the blade trailing edges. This report surveys concepts that have been proposed for trailing edge noise reduction, with emphasis on concepts that have been tested at either sub-scale or full-scale. These concepts include trailing edge serrations, low-noise airfoil designs, trailing edge brushes, and porous trailing edges. The demonstrated noise reductions of these concepts are cited, along with their impacts on aerodynamic performance. Anmore » assessment is made of future research opportunities in trailing edge noise reduction for wind turbine rotors.« less
Kalra, Mannudeep K; Maher, Michael M; Blake, Michael A; Lucey, Brian C; Karau, Kelly; Toth, Thomas L; Avinash, Gopal; Halpern, Elkan F; Saini, Sanjay
2004-09-01
To assess the effect of noise reduction filters on detection and characterization of lesions on low-radiation-dose abdominal computed tomographic (CT) images. Low-dose CT images of abdominal lesions in 19 consecutive patients (11 women, eight men; age range, 32-78 years) were obtained at reduced tube currents (120-144 mAs). These baseline low-dose CT images were postprocessed with six noise reduction filters; the resulting postprocessed images were then randomly assorted with baseline images. Three radiologists performed independent evaluation of randomized images for presence, number, margins, attenuation, conspicuity, calcification, and enhancement of lesions, as well as image noise. Side-by-side comparison of baseline images with postprocessed images was performed by using a five-point scale for assessing lesion conspicuity and margins, image noise, beam hardening, and diagnostic acceptability. Quantitative noise and contrast-to-noise ratio were obtained for all liver lesions. Statistical analysis was performed by using the Wilcoxon signed rank test, Student t test, and kappa test of agreement. Significant reduction of noise was observed in images postprocessed with filter F compared with the noise in baseline nonfiltered images (P =.004). Although the number of lesions seen on baseline images and that seen on postprocessed images were identical, lesions were less conspicuous on postprocessed images than on baseline images. A decrease in quantitative image noise and contrast-to-noise ratio for liver lesions was noted with all noise reduction filters. There was good interobserver agreement (kappa = 0.7). Although the use of currently available noise reduction filters improves image noise and ameliorates beam-hardening artifacts at low-dose CT, such filters are limited by a compromise in lesion conspicuity and appearance in comparison with lesion conspicuity and appearance on baseline low-dose CT images. Copyright RSNA, 2004
Leng, Shuai; Yu, Lifeng; Fletcher, Joel G; McCollough, Cynthia H
2015-08-01
To determine the iodine contrast-to-noise ratio (CNR) for abdominal computed tomography (CT) when using energy domain noise reduction and virtual monoenergetic dual-energy (DE) CT images and to compare the CNR to that attained with single-energy CT at 80, 100, 120, and 140 kV. This HIPAA-compliant study was approved by the institutional review board with waiver of informed consent. A syringe filled with diluted iodine contrast material was placed into 30-, 35-, and 45-cm-wide water phantoms and scanned with a dual-source CT scanner in both DE and single-energy modes with matched scanner output. Virtual monoenergetic images were generated, with energies ranging from 40 to 110 keV in 10-keV steps. A previously developed energy domain noise reduction algorithm was applied to reduce image noise by exploiting information redundancies in the energy domain. Image noise and iodine CNR were calculated. To show the potential clinical benefit of this technique, it was retrospectively applied to a clinical DE CT study of the liver in a 59-year-old male patient by using conventional and iterative reconstruction techniques. Image noise and CNR were compared for virtual monoenergetic images with and without energy domain noise reduction at each virtual monoenergetic energy (in kiloelectron volts) and phantom size by using a paired t test. CNR of virtual monoenergetic images was also compared with that of single-energy images acquired with 80, 100, 120, and 140 kV. Noise reduction of up to 59% (28.7 of 65.7) was achieved for DE virtual monoenergetic images by using an energy domain noise reduction technique. For the commercial virtual monoenergetic images, the maximum iodine CNR was achieved at 70 keV and was 18.6, 16.6, and 10.8 for the 30-, 35-, and 45-cm phantoms. After energy domain noise reduction, maximum iodine CNR was achieved at 40 keV and increased to 30.6, 25.4, and 16.5. These CNRs represented improvement of up to 64% (12.0 of 18.6) with the energy domain noise reduction technique. For single-energy CT at the optimal tube potential, iodine CNR was 29.1 (80 kV), 21.2 (80 kV), and 11.5 (100 kV). For patient images, 39% (24 of 61) noise reduction and 67% (0.74 of 1.10) CNR improvement were observed with the energy domain noise reduction technique when compared with standard filtered back-projection images. Iodine CNR for adult abdominal CT may be maximized with energy domain noise reduction and virtual monoenergetic DE CT. (©) RSNA, 2015.
Summary of noise reduction characteristics of typical general aviation materials
NASA Technical Reports Server (NTRS)
Roskam, J.; Grosveld, F.; Van Aken, J.
1979-01-01
The paper presents the results of a large number of systematic tests to determine noise reduction characteristics of general aviation materials. Effects of material type (metallic and composite), thickness, panel stiffening, vibration damping materials, sound absorption materials and pressurization on noise reduction are included. Several promising methods for reducing cabin interior noise in light airplanes are discussed based on the results.
DOT National Transportation Integrated Search
1977-04-01
Noise reduction option development work was carried out on two inservice diesel powered IH trucks, consisting of a Cab-over model and a Conventional model with a baseline exterior noise level of 87 dB(A) each. Since no specific noise goals were set, ...
Okawa, S; Endo, Y; Hoshi, Y; Yamada, Y
2012-01-01
A method to reduce noise for time-domain diffuse optical tomography (DOT) is proposed. Poisson noise which contaminates time-resolved photon counting data is reduced by use of maximum a posteriori estimation. The noise-free data are modeled as a Markov random process, and the measured time-resolved data are assumed as Poisson distributed random variables. The posterior probability of the occurrence of the noise-free data is formulated. By maximizing the probability, the noise-free data are estimated, and the Poisson noise is reduced as a result. The performances of the Poisson noise reduction are demonstrated in some experiments of the image reconstruction of time-domain DOT. In simulations, the proposed method reduces the relative error between the noise-free and noisy data to about one thirtieth, and the reconstructed DOT image was smoothed by the proposed noise reduction. The variance of the reconstructed absorption coefficients decreased by 22% in a phantom experiment. The quality of DOT, which can be applied to breast cancer screening etc., is improved by the proposed noise reduction.
Comparing Binaural Pre-processing Strategies I: Instrumental Evaluation.
Baumgärtel, Regina M; Krawczyk-Becker, Martin; Marquardt, Daniel; Völker, Christoph; Hu, Hongmei; Herzke, Tobias; Coleman, Graham; Adiloğlu, Kamil; Ernst, Stephan M A; Gerkmann, Timo; Doclo, Simon; Kollmeier, Birger; Hohmann, Volker; Dietz, Mathias
2015-12-30
In a collaborative research project, several monaural and binaural noise reduction algorithms have been comprehensively evaluated. In this article, eight selected noise reduction algorithms were assessed using instrumental measures, with a focus on the instrumental evaluation of speech intelligibility. Four distinct, reverberant scenarios were created to reflect everyday listening situations: a stationary speech-shaped noise, a multitalker babble noise, a single interfering talker, and a realistic cafeteria noise. Three instrumental measures were employed to assess predicted speech intelligibility and predicted sound quality: the intelligibility-weighted signal-to-noise ratio, the short-time objective intelligibility measure, and the perceptual evaluation of speech quality. The results show substantial improvements in predicted speech intelligibility as well as sound quality for the proposed algorithms. The evaluated coherence-based noise reduction algorithm was able to provide improvements in predicted audio signal quality. For the tested single-channel noise reduction algorithm, improvements in intelligibility-weighted signal-to-noise ratio were observed in all but the nonstationary cafeteria ambient noise scenario. Binaural minimum variance distortionless response beamforming algorithms performed particularly well in all noise scenarios. © The Author(s) 2015.
Comparing Binaural Pre-processing Strategies I
Krawczyk-Becker, Martin; Marquardt, Daniel; Völker, Christoph; Hu, Hongmei; Herzke, Tobias; Coleman, Graham; Adiloğlu, Kamil; Ernst, Stephan M. A.; Gerkmann, Timo; Doclo, Simon; Kollmeier, Birger; Hohmann, Volker; Dietz, Mathias
2015-01-01
In a collaborative research project, several monaural and binaural noise reduction algorithms have been comprehensively evaluated. In this article, eight selected noise reduction algorithms were assessed using instrumental measures, with a focus on the instrumental evaluation of speech intelligibility. Four distinct, reverberant scenarios were created to reflect everyday listening situations: a stationary speech-shaped noise, a multitalker babble noise, a single interfering talker, and a realistic cafeteria noise. Three instrumental measures were employed to assess predicted speech intelligibility and predicted sound quality: the intelligibility-weighted signal-to-noise ratio, the short-time objective intelligibility measure, and the perceptual evaluation of speech quality. The results show substantial improvements in predicted speech intelligibility as well as sound quality for the proposed algorithms. The evaluated coherence-based noise reduction algorithm was able to provide improvements in predicted audio signal quality. For the tested single-channel noise reduction algorithm, improvements in intelligibility-weighted signal-to-noise ratio were observed in all but the nonstationary cafeteria ambient noise scenario. Binaural minimum variance distortionless response beamforming algorithms performed particularly well in all noise scenarios. PMID:26721920
2002 NASA Seal/Secondary Air System Workshop. Volume 1
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M. (Editor); Hendricks, Robert C. (Editor)
2003-01-01
The 2002 NASA Seal/Secondary Air System Workshop covered the following topics: (i) Overview of NASA s perspective of aeronautics and space technology for the 21st century; (ii) Overview of the NASA-sponsored Ultra-Efficient Engine Technology (UEET), Turbine-Based Combined-Cycle (TBCC), and Revolutionary Turbine Accelator (RTA) programs; (iii) Overview of NASA Glenn's seal program aimed at developing advanced seals for NASA's turbomachinery, space propulsion, and reentry vehicle needs; (iv) Reviews of sealing concepts, test results, experimental facilities, and numerical predictions; and (v) Reviews of material development programs relevant to advanced seals development. The NASA UEET and TBCC/RTA program overviews illustrated for the reader the importance of advanced technologies, including seals, in meeting future turbine engine system efficiency and emission goals. For example, the NASA UEET program goals include an 8- to 15-percent reduction in fuel burn, a 15-percent reduction in CO2, a 70-percent reduction in NOx, CO, and unburned hydrocarbons, and a 30-dB noise reduction relative to program baselines. The workshop also covered several programs NASA is funding to investigate advanced reusable space vehicle technologies (X-38) and advanced space ram/scramjet propulsion systems. Seal challenges posed by these advanced systems include high-temperature operation, resiliency at the operating temperature to accommodate sidewall flexing, and durability to last many missions.
The Noise of a Forward Swept Fan
NASA Technical Reports Server (NTRS)
Dittmar, James H.; Elliott, David M.; Fite, E. Brian
2003-01-01
A forward swept fan, designated the Quiet High Speed Fan (QHSF), was tested in the NASA Glenn 9-by 15-foot Low Speed Wind Tunnel to investigate its noise reduction relative to a baseline fan of the same aerodynamic performance. The objective of the Quiet High Speed Fan was a 6 decibel reduction in the Effective Perceived Noise relative to the baseline fan at the takeoff condition. The intent of the Quiet High Speed Fan design was to provide both a multiple pure tone noise reduction from the forward sweep of the fan rotor and a rotor-stator interaction blade passing tone noise reduction from a leaned stator. The tunnel noise data indicted that the Quiet High Speed Fan was quieter than the baseline fan for a significant portion of the operating line and was 6 dB quieter near the takeoff condition. Although reductions in the multiple pure tones were observed, the vast majority of the EPNdB reduction was a result of the reduction in the blade passing tone and its harmonics. The baseline fan's blade passing tone was dominated by the rotor-strut interaction mechanism. The observed blade passing tone reduction could be the result of either the redesign of the Quiet High Speed Fan Rotor or the redesigned stator. The exact cause of this rotor-strut noise reduction, whether from the rotor or stator redesign, was not discernable from this experiment.
Flight-Effects on Predicted Fan Fly-By Noise
NASA Technical Reports Server (NTRS)
Heidmann, M. F.; Clark, B. J.
1977-01-01
The impact on PNLT (Perceived Noise Level, Tone corrected) and Fly-by EPNL (Effective Perceived Noise Level) when forward motion reduces the noise generated by the bypass fan of an aircraft engine was studied. Calculated noise spectra for a typical subsonic tip speed fan designed for blade passage frequency (BPF) tone cutoff were translated in frequency by systematically varying the BPF from 0.5 to 8 kHz. Two cases of predicted flight-effects on fan source noises were considered: reduced BPF tone level of 8 db and reduced broadband noise level of about 2 db in addition to reduced tone level. The maximum reduction in PNLT of the noise as emitted from the fan occurred when the BPF was at 4 kHz where the reductions were 7.4 and 10.0 db. The maximum reduction in EPNL of the noise as received during a 500-foot altitude fly-by occurred when the BPF was at 2.5 kHz where the reductions were 5.0 and 7.8 db.
Application of Fast Multipole Methods to the NASA Fast Scattering Code
NASA Technical Reports Server (NTRS)
Dunn, Mark H.; Tinetti, Ana F.
2008-01-01
The NASA Fast Scattering Code (FSC) is a versatile noise prediction program designed to conduct aeroacoustic noise reduction studies. The equivalent source method is used to solve an exterior Helmholtz boundary value problem with an impedance type boundary condition. The solution process in FSC v2.0 requires direct manipulation of a large, dense system of linear equations, limiting the applicability of the code to small scales and/or moderate excitation frequencies. Recent advances in the use of Fast Multipole Methods (FMM) for solving scattering problems, coupled with sparse linear algebra techniques, suggest that a substantial reduction in computer resource utilization over conventional solution approaches can be obtained. Implementation of the single level FMM (SLFMM) and a variant of the Conjugate Gradient Method (CGM) into the FSC is discussed in this paper. The culmination of this effort, FSC v3.0, was used to generate solutions for three configurations of interest. Benchmarking against previously obtained simulations indicate that a twenty-fold reduction in computational memory and up to a four-fold reduction in computer time have been achieved on a single processor.
Truck Noise XI : Evaluation and Reduction of Heavy-Duty Truck Noise
DOT National Transportation Integrated Search
1976-09-01
This report describes the work performed to examine the noise sources on two common truck configurations manufactured by this company, and to evaluate the noise reduction effectiveness of retrofit hardware. The two trucks selected were Cab-Over-Engin...
Noise-reduction measurements of stiffened and unstiffened cylindrical models of an airplane fuselage
NASA Technical Reports Server (NTRS)
Willis, C. M.; Mayes, W. H.
1984-01-01
Noise-reduction measurements are presented for a stiffened and an unstiffened model of an airplane fuselage. The cylindrical models were tested in a reverberant-field noise environment over a frequency range from 20 Hz to 6 kHz. An unstiffened metal fuselage provided more noise reduction than a fuselage having the same sidewall weight divided between skin and stiffening stringers and ring frames. The addition of acoustic insulation to the models tended to smooth out the interior-noise spectrum by reducing or masking the noise associated with the structural response at some of the resonant frequencies.
Airfoil noise reductions through leading edge serrations
NASA Astrophysics Data System (ADS)
Narayanan, S.; Chaitanya, P.; Haeri, S.; Joseph, P.; Kim, J. W.; Polacsek, C.
2015-02-01
This paper provides an experimental investigation into the use of leading edge (LE) serrations as a means of reducing the broadband noise generated due to the interaction between the aerofoil's LE and impinging turbulence. Experiments are performed on a flat plate in an open jet wind tunnel. Grids are used to generate isotropic homogeneous turbulence. The leading edge serrations are in the form of sinusoidal profiles of wavelengths, λ, and amplitudes, 2h. The frequency and amplitude characteristics are studied in detail in order to understand the effect of LE serrations on noise reduction characteristics and are compared with straight edge baseline flat plates. Noise reductions are found to be insignificant at low frequencies but significant in the mid frequency range (500 Hz-8 kHz) for all the cases studied. The flat plate results are also compared to the noise reductions obtained on a serrated NACA-65 aerofoil with the same serration profile. Noise reductions are found to be significantly higher for the flat plates with a maximum noise reduction of around 9 dB compared with about 7 dB for the aerofoil. In general, it is observed that the sound power reduction level (ΔPWL) is sensitive to the amplitude, 2h of the LE serrations but less sensitive to the serration wavelength, λ. Thus, this paper sufficiently demonstrates that the LE amplitude acts as a key parameter for enhancing the noise reduction levels in flat plates and aerofoils.
Rotorcraft In-Plane Noise Reduction Using Active/Passive Approaches with Induced Vibration Tracking
NASA Astrophysics Data System (ADS)
Chia, Miang Hwee
A comprehensive study of the use of active and passive approaches for in-plane noise reduction, including the vibrations induced during noise reduction, was conducted on a hingeless rotor configuration resembling the MBB BO-105 rotor. First, a parametric study was performed to examine the effects of rotor blade stiffness on the vibration and noise reduction performance of a 20%c plain trailing edge flap and a 1.5%c sliding microflap. This was accomplished using a comprehensive code AVINOR (for Active VIbration and NOise Reduction). A two-dimensional unsteady reduced order aerodynamic model (ROM), using the Rational Function Approximation approach and CFD-based oscillatory aerodynamic load data, was used in the comprehensive code. The study identified a hingeless blade configuration with torsional frequency of 3.17/rev as an optimum configuration for studying vibration and noise reduction using on-blade control devices such as flaps or microflaps. Subsequently, a new suite of computational tools capable of predicting in-plane low frequency sound pressure level (LFSPL) rotorcraft noise and its control was developed, replacing the acoustic module WOPWOP in AVINOR with a new acoustic module HELINOIR (for HELIcopter NOIse Reduction), which overcomes certain limitations associated with WOPWOP. The new suite, consisting of the AVINOR/HELINOIR combination, was used to study active flaps, as well as microflaps operating in closed-loop mode for in-plane noise reduction. An alternative passive in-plane noise reduction approach using modification to the blade tip in the 10%R outboard region was also studied. The new suite consisting of the AVINOR/HELINOIR combination based on a compact aeroacoustic model was validated by comparing with wind tunnel test results, and subsequently verified by comparing with computational results. For active control, the in-plane noise reduction obtained with a single 20%c plain trailing edge flap during level flight at a moderate advance ratio was examined. Different configurations of far-field and near-field feedback microphone locations were examined to develop a fundamental understanding of the feedback microphone locations on the noise reduction process A near-field microphone located on the tip of a nose boom was found to produce a LFSPL reduction of up to 6dB. However, this noise reduction was accompanied by an out-of-plane noise increase of 18dB and 60% increase in vertical hub shear. For passive control, three tip geometries having sweep, dihedral, and anhedral, were considered. The tip dihedral reduced LFSPL by up to 2dB without a vibratory load penalty. However, this was accompanied by an increase in the mid frequency sound pressure levels (MFSPL). The tip sweep and tip anhedral produced an increase in in-plane LFSPL below the horizon. A comparison of the active and passive approaches indicated that active approaches implemented by a plain flap with a feedback microphone located on the nose boom is superior to the passive control approaches. However, there is a general trade-off between LFSPL reduction, MFSPL generation and vibratory hub loads induced by noise control.
DOT National Transportation Integrated Search
1977-04-01
Noise reduction option development work was carried out on two inservice diesel powered IH trucks, consisting of a Cab-over model and a Conventional model with a baseline exterior noise level of 87 dB(A) each. Since no specific noise goals were set, ...
NASA Technical Reports Server (NTRS)
Gliebe, P; Mani, R.; Shin, H.; Mitchell, B.; Ashford, G.; Salamah, S.; Connell, S.; Huff, Dennis (Technical Monitor)
2000-01-01
This report describes work performed on Contract NAS3-27720AoI 13 as part of the NASA Advanced Subsonic Transport (AST) Noise Reduction Technology effort. Computer codes were developed to provide quantitative prediction, design, and analysis capability for several aircraft engine noise sources. The objective was to provide improved, physics-based tools for exploration of noise-reduction concepts and understanding of experimental results. Methods and codes focused on fan broadband and 'buzz saw' noise and on low-emissions combustor noise and compliment work done by other contractors under the NASA AST program to develop methods and codes for fan harmonic tone noise and jet noise. The methods and codes developed and reported herein employ a wide range of approaches, from the strictly empirical to the completely computational, with some being semiempirical analytical, and/or analytical/computational. Emphasis was on capturing the essential physics while still considering method or code utility as a practical design and analysis tool for everyday engineering use. Codes and prediction models were developed for: (1) an improved empirical correlation model for fan rotor exit flow mean and turbulence properties, for use in predicting broadband noise generated by rotor exit flow turbulence interaction with downstream stator vanes: (2) fan broadband noise models for rotor and stator/turbulence interaction sources including 3D effects, noncompact-source effects. directivity modeling, and extensions to the rotor supersonic tip-speed regime; (3) fan multiple-pure-tone in-duct sound pressure prediction methodology based on computational fluid dynamics (CFD) analysis; and (4) low-emissions combustor prediction methodology and computer code based on CFD and actuator disk theory. In addition. the relative importance of dipole and quadrupole source mechanisms was studied using direct CFD source computation for a simple cascadeigust interaction problem, and an empirical combustor-noise correlation model was developed from engine acoustic test results. This work provided several insights on potential approaches to reducing aircraft engine noise. Code development is described in this report, and those insights are discussed.
Energy efficient engine component development and integration program
NASA Technical Reports Server (NTRS)
1982-01-01
The development of the technology to improve energy efficiency of propulsion systems for subsonic commercial aircrafts was examined. Goals established include: (1) fuel consumption, reduction in flight propulsion system; (2) direct operation cost; (3) noise, with provision for engine growth corresponding to future engine application; and (4) emissions, EPA new engine standards.
NASA Technical Reports Server (NTRS)
2004-01-01
This is a listing of recent unclassified RTO technical publications processed by the NASA Center for AeroSpace Information from July 1, 2004 through September 30, 2004 available on the NASA Aeronautics and Space Database. Topics covered include: military training; personal active noise reduction; electric combat vehicles.
Energy efficient engine flight propulsion system preliminary analysis and design report
NASA Technical Reports Server (NTRS)
Gardner, W. B.
1979-01-01
A flight propulsion system preliminary design was established that meets the program goals of at least a 12 percent reduction in thrust specific fuel consumption, at least a five percent reduction in direct operating cost, and one-half the performance deterioration rate of the most efficient current commercial engines. The engine provides a high probability of meeting the 1978 noise rule goal. Smoke and gaseous emissions defined by the EPA proposed standards for engines newly certified after 1 January 1981 are met with the exception of NOx, despite incorporation of all known NOx reduction technology.
Patino, Manuel; Fuentes, Jorge M; Hayano, Koichi; Kambadakone, Avinash R; Uyeda, Jennifer W; Sahani, Dushyant V
2015-02-01
OBJECTIVE. The objective of our study was to compare the performance of three hybrid iterative reconstruction techniques (IRTs) (ASiR, iDose4, SAFIRE) and their respective strengths for image noise reduction on low-dose CT examinations using filtered back projection (FBP) as the standard reference. Also, we compared the performance of these three hybrid IRTs with two model-based IRTs (Veo and IMR) for image noise reduction on low-dose examinations. MATERIALS AND METHODS. An anthropomorphic abdomen phantom was scanned at 100 and 120 kVp and different tube current-exposure time products (25-100 mAs) on three CT systems (for ASiR and Veo, Discovery CT750 HD; for iDose4 and IMR, Brilliance iCT; and for SAFIRE, Somatom Definition Flash). Images were reconstructed using FBP and using IRTs at various strengths. Nine noise measurements (mean ROI size, 423 mm(2)) on extracolonic fat for the different strengths of IRTs were recorded and compared with FBP using ANOVA. Radiation dose, which was measured as the volume CT dose index and dose-length product, was also compared. RESULTS. There were no significant differences in radiation dose and image noise among the scanners when FBP was used (p > 0.05). Gradual image noise reduction was observed with each increasing increment of hybrid IRT strength, with a maximum noise suppression of approximately 50% (48.2-53.9%). Similar noise reduction was achieved on the scanners by applying specific hybrid IRT strengths. Maximum noise reduction was higher on model-based IRTs (68.3-81.1%) than hybrid IRTs (48.2-53.9%) (p < 0.05). CONCLUSION. When constant scanning parameters are used, radiation dose and image noise on FBP are similar for CT scanners made by different manufacturers. Significant image noise reduction is achieved on low-dose CT examinations rendered with IRTs. The image noise on various scanners can be matched by applying specific hybrid IRT strengths. Model-based IRTs attain substantially higher noise reduction than hybrid IRTs irrespective of the radiation dose.
Data reduction of isotope-resolved LC-MS spectra.
Du, Peicheng; Sudha, Rajagopalan; Prystowsky, Michael B; Angeletti, Ruth Hogue
2007-06-01
Data reduction of liquid chromatography-mass spectrometry (LC-MS) spectra can be a challenge due to the inherent complexity of biological samples, noise and non-flat baseline. We present a new algorithm, LCMS-2D, for reliable data reduction of LC-MS proteomics data. LCMS-2D can reliably reduce LC-MS spectra with multiple scans to a list of elution peaks, and subsequently to a list of peptide masses. It is capable of noise removal, and deconvoluting peaks that overlap in m/z, in retention time, or both, by using a novel iterative peak-picking step, a 'rescue' step, and a modified variable selection method. LCMS-2D performs well with three sets of annotated LC-MS spectra, yielding results that are better than those from PepList, msInspect and the vendor software BioAnalyst. The software LCMS-2D is available under the GNU general public license from http://www.bioc.aecom.yu.edu/labs/angellab/as a standalone C program running on LINUX.
UHB Engine Fan Broadband Noise Reduction Study
NASA Technical Reports Server (NTRS)
Gliebe, Philip R.; Ho, Patrick Y.; Mani, Ramani
1995-01-01
A study has been completed to quantify the contribution of fan broadband noise to advanced high bypass turbofan engine system noise levels. The result suggests that reducing fan broadband noise can produce 3 to 4 EPNdB in engine system noise reduction, once the fan tones are eliminated. Further, in conjunction with the elimination of fan tones and an increase in bypass ratio, a potential reduction of 7 to 10 EPNdB in system noise can be achieved. In addition, an initial assessment of engine broadband noise source mechanisms has been made, concluding that the dominant source of fan broadband noise is the interaction of incident inlet boundary layer turbulence with the fan rotor. This source has two contributors, i.e., unsteady life dipole response and steady loading quadrupole response. The quadrupole contribution was found to be the most important component, suggesting that broadband noise reduction can be achieved by the reduction of steady loading field-turbulence field quadrupole interaction. Finally, for a controlled experimental quantification and verification, the study recommends that further broadband noise tests be done on a simulated engine rig, such as the GE Aircraft Engine Universal Propulsion Simulator, rather than testing on an engine statically in an outdoor arena The rig should be capable of generating forward and aft propagating fan noise, and it needs to be tested in a large freejet or a wind tunnel.
UHB engine fan broadband noise reduction study
NASA Astrophysics Data System (ADS)
Gliebe, Philip R.; Ho, Patrick Y.; Mani, Ramani
1995-06-01
A study has been completed to quantify the contribution of fan broadband noise to advanced high bypass turbofan engine system noise levels. The result suggests that reducing fan broadband noise can produce 3 to 4 EPNdB in engine system noise reduction, once the fan tones are eliminated. Further, in conjunction with the elimination of fan tones and an increase in bypass ratio, a potential reduction of 7 to 10 EPNdB in system noise can be achieved. In addition, an initial assessment of engine broadband noise source mechanisms has been made, concluding that the dominant source of fan broadband noise is the interaction of incident inlet boundary layer turbulence with the fan rotor. This source has two contributors, i.e., unsteady life dipole response and steady loading quadrupole response. The quadrupole contribution was found to be the most important component, suggesting that broadband noise reduction can be achieved by the reduction of steady loading field-turbulence field quadrupole interaction. Finally, for a controlled experimental quantification and verification, the study recommends that further broadband noise tests be done on a simulated engine rig, such as the GE Aircraft Engine Universal Propulsion Simulator, rather than testing on an engine statically in an outdoor arena The rig should be capable of generating forward and aft propagating fan noise, and it needs to be tested in a large freejet or a wind tunnel.
Identification of Noise Sources and Design of Noise Reduction Measures for a Pneumatic Nail Gun
Jayakumar, Vignesh; Zechmann, Edward
2015-01-01
An experimental-analytical procedure was implemented to reduce the operating noise level of a nail gun, a commonly found power tool in a construction site. The procedure is comprised of preliminary measurements, identification and ranking of major noise sources and application of noise controls. Preliminary measurements show that the impact noise transmitted through the structure and the exhaust related noise were found to be the first and second major contributors. Applying a noise absorbing foam on the outside of the nail gun body was found to be an effective noise reduction technique. One and two-volume small mufflers were designed and applied to the exhaust side of the nail gun which reduced not only the exhaust noise but also the impact noise. It was shown that the overall noise level could be reduced by as much as 3.5 dB, suggesting that significant noise reduction is possible in construction power tools without any significant increase of the cost. PMID:26366038
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukherjee, S; Farr, J; Merchant, T
Purpose: To study the effect of total-variation based noise reduction algorithms to improve the image registration of low-dose CBCT for patient positioning in radiation therapy. Methods: In low-dose CBCT, the reconstructed image is degraded by excessive quantum noise. In this study, we developed a total-variation based noise reduction algorithm and studied the effect of the algorithm on noise reduction and image registration accuracy. To study the effect of noise reduction, we have calculated the peak signal-to-noise ratio (PSNR). To study the improvement of image registration, we performed image registration between volumetric CT and MV- CBCT images of different head-and-neck patientsmore » and calculated the mutual information (MI) and Pearson correlation coefficient (PCC) as a similarity metric. The PSNR, MI and PCC were calculated for both the noisy and noise-reduced CBCT images. Results: The algorithms were shown to be effective in reducing the noise level and improving the MI and PCC for the low-dose CBCT images tested. For the different head-and-neck patients, a maximum improvement of PSNR of 10 dB with respect to the noisy image was calculated. The improvement of MI and PCC was 9% and 2% respectively. Conclusion: Total-variation based noise reduction algorithm was studied to improve the image registration between CT and low-dose CBCT. The algorithm had shown promising results in reducing the noise from low-dose CBCT images and improving the similarity metric in terms of MI and PCC.« less
On Noise Assessment for Blended Wing Body Aircraft
NASA Technical Reports Server (NTRS)
Guo, Yueping; Burley, Casey L; Thomas, Russell H.
2014-01-01
A system noise study is presented for the blended-wing-body (BWB) aircraft configured with advanced technologies that are projected to be available in the 2025 timeframe of the NASA N+2 definition. This system noise assessment shows that the noise levels of the baseline configuration, measured by the cumulative Effective Perceived Noise Level (EPNL), have a large margin of 34 dB to the aircraft noise regulation of Stage 4. This confirms the acoustic benefits of the BWB shielding of engine noise, as well as other projected noise reduction technologies, but the noise margins are less than previously published assessments and are short of meeting the NASA N+2 noise goal. In establishing the relevance of the acoustic assessment framework, the design of the BWB configuration, the technical approach of the noise analysis, the databases and prediction tools used in the assessment are first described and discussed. The predicted noise levels and the component decomposition are then analyzed to identify the ranking order of importance of various noise components, revealing the prominence of airframe noise, which holds up the levels at all three noise certification locations and renders engine noise reduction technologies less effective. When projected airframe component noise reduction is added to the HWB configuration, it is shown that the cumulative noise margin to Stage 4 can reach 41.6 dB, nearly at the NASA goal. These results are compared with a previous NASA assessment with a different study framework. The approaches that yield projections of such low noise levels are discussed including aggressive assumptions on future technologies, assumptions on flight profile management, engine installation, and component noise reduction technologies. It is shown that reliable predictions of component noise also play an important role in the system noise assessment. The comparisons and discussions illustrate the importance of practical feasibilities and constraints in aircraft system noise studies, which include aerodynamic performance, propulsion efficiency, flight profile limitation and many other factors. For a future aircraft concept to achieve the NASA N+2 noise goal it will require a range of fully successful noise reduction technology developments.
Reduced Perceived Noise Low Tip Speed Fans as a Result of Abandoning Cutoff Stator Vane Numbers
NASA Technical Reports Server (NTRS)
Dittmar, James
1998-01-01
As fan tip speeds are reduced, broadband noise is becoming more important in the calculation of perceived noise. Past experience indicates that lower vane number stators with either constant chord or constant solidity may be a way to reduce broadband noise caused by the interaction of the rotor wake turbulence with the stators. A baseline fan and a low blade number fan were investigated to determine if a noise reduction was possible. The low vane number fan showed a 2 PndB and a 1.5 PNLT noise reduction. These reductions show that this is a viable technique for reducing the perceived noise of low tip speed fans.
Noise filtering via electromagnetically induced transparency
NASA Astrophysics Data System (ADS)
Jeong, Taek; Bae, In-Ho; Moon, Han Seb
2017-01-01
We report on the intensity-noise reduction of pseudo-thermal light via electromagnetically induced transparency (EIT) in the Λ-type system of the 5S1/2-5P1/2 transition in 87Rb. Noise filtering of the pseudo-thermal probe light was achieved via an EIT filter and measured according to the degree of intensity noise of the pseudo-thermal probe light. Reductions in the intensity and spectral noise of the pseudo-thermal probe light with the EIT filter were observed using the direct intensity fluctuation and heterodyne detection technique, respectively. Comparison of the intensity noise of the pseudo-thermal probe light before and after passing through the EIT filter revealed a significant reduction in the intensity noise.
Computerized Design and Generation of Low-Noise Gears with Localized Bearing Contact
NASA Technical Reports Server (NTRS)
Litvin, Faydor L.; Chen, Ningxin; Chen, Jui-Sheng; Lu, Jian; Handschuh, Robert F.
1995-01-01
The results of research projects directed at the reduction of noise caused by misalignment of the following gear drives: double-circular arc helical gears, modified involute helical gears, face-milled spiral bevel gears, and face-milled formate cut hypoid gears are presented. Misalignment in these types of gear drives causes periodic, almost linear discontinuous functions of transmission errors. The period of such functions is the cycle of meshing when one pair of teeth is changed for the next. Due to the discontinuity of such functions of transmission errors high vibration and noise are inevitable. A predesigned parabolic function of transmission errors that is able to absorb linear discontinuous functions of transmission errors and change the resulting function of transmission errors into a continuous one is proposed. The proposed idea was successfully tested using spiral bevel gears and the noise was reduced a substantial amount in comparison with the existing design. The idea of a predesigned parabolic function is applied for the reduction of noise of helical and hypoid gears. The effectiveness of the proposed approach has been investigated by developed TCA (tooth contact analysis) programs. The bearing contact for the mentioned gears is localized. Conditions that avoid edge contact for the gear drives have been determined. Manufacturing of helical gears with new topology by hobs and grinding worms has been investigated.
Enabling propulsion materials for high-speed civil transport engines
NASA Technical Reports Server (NTRS)
Stephens, Joseph R.; Herbell, Thomas P.
1992-01-01
NASA Headquarters and LeRC have advocated an Enabling Propulsion Materials Program (EPM) to begin in FY-92. The High Speed Research Phase 1 program which began in FY-90 has focused on the environmental acceptability of a High Speed Civil Transport (HSCT). Studies by industry, including Boeing, McDonnell Douglas, GE Aircraft Engines, and Pratt & Whitney Aircraft, and in-house studies by NASA concluded that NO(x) emissions and airport noise reduction can only be economically achieved by revolutionary advancements in materials technologies. This is especially true of materials for the propulsion system where the combustor is the key to maintaining low emissions, and the exhaust nozzle is the key to reducing airport noise to an acceptable level. Both of these components will rely on high temperature composite materials that can withstand the conditions imposed by commercial aircraft operations. The proposed EPM program will operate in conjunction with the HSR Phase 1 Program and the planned HSR Phase 2 program slated to start in FY-93. Components and subcomponents developed from advanced materials will be evaluated in the HSR Phase 2 Program.
Engine Conceptual Design Studies for a Hybrid Wing Body Aircraft
NASA Technical Reports Server (NTRS)
Tong, Michael T.; Jones, Scott M.; Haller, William J.; Handschuh, Robert F.
2009-01-01
Worldwide concerns of air quality and climate change have made environmental protection one of the most critical issues in aviation today. NASA s current Fundamental Aeronautics Research program is directed at three generations of aircraft in the near, mid and far term, with initial operating capability around 2015, 2020, and 2030, respectively. Each generation has associated goals for fuel burn, NOx, noise, and field-length reductions relative to today s aircrafts. The research for the 2020 generation is directed at enabling a hybrid wing body (HWB) aircraft to meet NASA s aggressive technology goals. This paper presents the conceptual cycle and mechanical designs of the two engine concepts, podded and embedded systems, which were proposed for a HWB cargo freighter. They are expected to offer significant benefits in noise reductions without compromising the fuel burn.
Efficient laser noise reduction method via actively stabilized optical delay line.
Li, Dawei; Qian, Cheng; Li, Ye; Zhao, Jianye
2017-04-17
We report a fiber laser noise reduction method by locking it to an actively stabilized optical delay line, specifically a fiber-based Mach-Zehnder interferometer with a 10 km optical fiber spool. The fiber spool is used to achieve large arm imbalance. The heterodyne signal of the two arms converts the laser noise from the optical domain to several megahertz, and it is used in laser noise reduction by a phase-locked loop. An additional phase-locked loop is induced in the system to compensate the phase noise due to environmentally induced length fluctuations of the optical fiber spool. A major advantage of this structure is the efficient reduction of out-of-loop frequency noise, particularly at low Fourier frequency. The frequency noise reaches -30 dBc/Hz at 1 Hz, which is reduced by more than 90 dB compared with that of the laser in its free-running state.
NASA Technical Reports Server (NTRS)
Jeracki, Robert J. (Technical Monitor); Topol, David A.; Ingram, Clint L.; Larkin, Michael J.; Roche, Charles H.; Thulin, Robert D.
2004-01-01
This report presents results of the work completed on the preliminary design of Fan 3 of NASA s 22-inch Fan Low Noise Research project. Fan 3 was intended to build on the experience gained from Fans 1 and 2 by demonstrating noise reduction technology that surpasses 1992 levels by 6 dB. The work was performed as part of NASA s Advanced Subsonic Technology (AST) program. Work on this task was conducted in the areas of CFD code validation, acoustic prediction and validation, rotor parametric studies, and fan exit guide vane (FEGV) studies up to the time when a NASA decision was made to cancel the design, fabrication and testing phases of the work. The scope of the program changed accordingly to concentrate on two subtasks: (1) Rig data analysis and CFD code validation and (2) Fan and FEGV optimization studies. The results of the CFD code validation work showed that this tool predicts 3D flowfield features well from the blade trailing edge to about a chord downstream. The CFD tool loses accuracy as the distance from the trailing edge increases beyond a blade chord. The comparisons of noise predictions to rig test data showed that both the tone noise tool and the broadband noise tool demonstrated reasonable agreement with the data to the degree that these tools can reliably be used for design work. The section on rig airflow and inlet separation analysis describes the method used to determine total fan airflow, shows the good agreement of predicted boundary layer profiles to measured profiles, and shows separation angles of attack ranging from 29.5 to 27deg for the range of airflows tested. The results of the rotor parametric studies were significant in leading to the decision not to pursue a new rotor design for Fan 3 and resulted in recommendations to concentrate efforts on FEGV stator designs. The ensuing parametric study on FEGV designs showed the potential for 8 to 10 EPNdB noise reduction relative to the baseline.
NASA Technical Reports Server (NTRS)
Bridges, James
2002-01-01
As part of the Advanced Subsonic Technology Program, a series of experiments was conducted at NASA Glenn Research Center on the effect of mixing enhancement devices on the aeroacoustic performance of separate flow nozzles. Initial acoustic evaluations of the devices showed that they reduced jet noise significantly, while creating very little thrust loss. The explanation for the improvement required that turbulence measurements, namely single point mean and RMS statistics and two-point spatial correlations, be made to determine the change in the turbulence caused by the mixing enhancement devices that lead to the noise reduction. These measurements were made in the summer of 2000 in a test program called Separate Nozzle Flow Test 2000 (SFNT2K) supported by the Aeropropulsion Research Program at NASA Glenn Research Center. Given the hot high-speed flows representative of a contemporary bypass ratio 5 turbofan engine, unsteady flow field measurements required the use of an optical measurement method. To achieve the spatial correlations, the Particle Image Velocimetry technique was employed, acquiring high-density velocity maps of the flows from which the required statistics could be derived. This was the first successful use of this technique for such flows, and shows the utility of this technique for future experimental programs. The extensive statistics obtained were likewise unique and give great insight into the turbulence which produces noise and how the turbulence can be modified to reduce jet noise.
An MDOE Assessment of Nozzle Vanes for High Bypass Ratio Jet Noise Reduction
NASA Technical Reports Server (NTRS)
Henderson, Brenda; Norum, Thomas; Bridges, James
2006-01-01
The effect of airfoil-shaped vanes placed in the fan stream of a BPR 8 coannular nozzle model system on the resulting jet noise was investigated. The experiments used a Modern Design of Experiments approach to investigate the impact of a range of vane parameters on the noise reduction achieved at representative takeoff conditions. The experimental results showed that the installation of the vanes decreased low frequency noise radiation in the downstream peak-noise direction and increased high frequency noise in the upstream direction. Results also showed that improper selection of the vane configuration resulted in increased low frequency noise radiation in the upstream direction. Large angles of attack are shown to reduce noise near the peak jet noise angle and increase noise in the upstream direction. The MDOE analysis yields an optimum design that minimizes perceived noise levels. Limited data taken with a BPR 5 nozzle system showed that the vanes result in better effective perceived noise reduction for lower bypass ratio nozzles than for the BPR 8 model.
Advanced supersonic technology and its implications for the future
NASA Technical Reports Server (NTRS)
Driver, C.
1979-01-01
A brief overview of the NASA Supersonic Cruise Research (SCR) program is presented. The SCR program has identified significant improvements in the areas of aerodynamics, structures, propulsion, noise reduction, takeoff and landing procedures, and advanced configuration concepts. These improvements tend to overcome most of the problems which led to the cancellation of the National SST program. They offer the promise of an advanced SST family of aircraft which are environmentally acceptable, have flexible range-payload capability, and are economically viable. The areas of technology addressed by the SCR program have direct application to advanced military aircraft and to supersonic executive aircraft.
Infrasonic wind-noise reduction by barriers and spatial filters.
Hedlin, Michael A H; Raspet, Richard
2003-09-01
This paper reports experimental observations of wind speed and infrasonic noise reduction inside a wind barrier. The barrier is compared with "rosette" spatial filters and with a reference site that uses no noise reduction system. The barrier is investigated for use at International Monitoring System (IMS) infrasound array sites where spatially extensive noise-reducing systems cannot be used because of a shortage of suitable land. Wind speed inside a 2-m-high 50%-porous hexagonal barrier coated with a fine wire mesh is reduced from ambient levels by 90%. If the infrasound wind-noise level reductions are all plotted versus the reduced frequency given by f*L/v, where L is the characteristic size of the array or barrier, f is the frequency, and v is the wind speed, the reductions at different wind speeds are observed to collapse into a single curve for each wind-noise reduction method. The reductions are minimal below a reduced frequency of 0.3 to 1, depending on the device, then spatial averaging over the turbulence structure leads to increased reduction. Above the reduced corner frequency, the barrier reduces infrasonic noise by up to 20 to 25 dB. Below the corner frequency the barrier displays a small reduction of about 4 dB. The rosettes display no reduction below the corner frequency. One other advantage of the wind barrier over rosette spatial filters is that the signal recorded inside the barrier enters the microbarometer from free air and is not integrated, possibly out of phase, after propagation through a system of narrow pipes.
Technical note: Signal resolution increase and noise reduction in a CCD digitizer.
González, A; Martínez, J A; Tobarra, B
2004-03-01
Increasing output resolution is assumed to improve noise characteristics of a CCD digitizer. In this work, however, we have found that as the quantization step becomes lower than the analog noise (present in the signal before its conversion to digital) the noise reduction becomes significantly lower than expected. That is the case for values of sigma(an)/delta larger than 0.6, where sigma(an) is the standard deviation of the analog noise and delta is the quantization step. The procedure is applied to a commercially available CCD digitizer, and noise reduction by means of signal resolution increase is compared to that obtained by low pass filtering.
Interior noise reduction in a large civil helicopter
NASA Technical Reports Server (NTRS)
Howlett, J. T.; Clevenson, S. A.; Rypf, J. A.; Snyder, W. J.
1977-01-01
The results of an evaluation of the effectiveness of current noise reduction technology in attaining acceptable levels of interior noise in a large (about 20,000 kg) passenger-carrying helicopter are presented. The helicopter studied is a modified CH-53A with a specially designed, acoustically treated passenger cabin. The acoustic treatment reduced the average A-weighted interior noise levels from 115 db to 87 db. The study suggests selected improvements in the acoustic treatment which could result in additional reduction in cabin noise levels. The resulting levels would be only slightly greater than the interior noise levels of current narrow-body jet transports.
Broadband Shock Noise Reduction in Turbulent Jets by Water Injection
NASA Technical Reports Server (NTRS)
Kandula, Max
2008-01-01
The concept of effective jet properties introduced by the author (AIAA-2007-3 645) has been extended to the estimation of broadband shock noise reduction by water injection in supersonic jets. Comparison of the predictions with the test data for cold underexpanded supersonic nozzles shows a satisfactory agreement. The results also reveal the range of water mass flow rates over which saturation of mixing noise reduction and existence of parasitic noise are manifest.
The Airframe Noise Reduction Challenge
NASA Technical Reports Server (NTRS)
Lockard, David P.; Lilley, Geoffrey M.
2004-01-01
The NASA goal of reducing external aircraft noise by 10 dB in the near-term presents the acoustics community with an enormous challenge. This report identifies technologies with the greatest potential to reduce airframe noise. Acoustic and aerodynamic effects will be discussed, along with the likelihood of industry accepting and implementing the different technologies. We investigate the lower bound, defined as noise generated by an aircraft modified with a virtual retrofit capable of eliminating all noise associated with the high lift system and landing gear. However, the airframe noise of an aircraft in this 'clean' configuration would only be about 8 dB quieter on approach than current civil transports. To achieve the NASA goal of 10 dB noise reduction will require that additional noise sources be addressed. Research shows that energy in the turbulent boundary layer of a wing is scattered as it crosses trailing edge. Noise generated by scattering is the dominant noise mechanism on an aircraft flying in the clean configuration. Eliminating scattering would require changes to much of the aircraft, and practical reduction devices have yet to receive serious attention. Evidence suggests that to meet NASA goals in civil aviation noise reduction, we need to employ emerging technologies and improve landing procedures; modified landing patterns and zoning restrictions could help alleviate aircraft noise in communities close to airports.
Lobarinas, Edward; Spankovich, Christopher; Le Prell, Colleen G
2017-06-01
In animals, noise exposures that produce robust temporary threshold shifts (TTS) can produce immediate damage to afferent synapses and long-term degeneration of low spontaneous rate auditory nerve fibers. This synaptopathic damage has been shown to correlate with reduced auditory brainstem response (ABR) wave-I amplitudes at suprathreshold levels. The perceptual consequences of this "synaptopathy" remain unknown but have been suggested to include compromised hearing performance in competing background noise. Here, we used a modified startle inhibition paradigm to evaluate whether noise exposures that produce robust TTS and ABR wave-I reduction but not permanent threshold shift (PTS) reduced hearing-in-noise performance. Animals exposed to 109 dB SPL octave band noise showed TTS >30 dB 24-h post noise and modest but persistent ABR wave-I reduction 2 weeks post noise despite full recovery of ABR thresholds. Hearing-in-noise performance was negatively affected by the noise exposure. However, the effect was observed only at the poorest signal to noise ratio and was frequency specific. Although TTS >30 dB 24-h post noise was a predictor of functional deficits, there was no relationship between the degree of ABR wave-I reduction and degree of functional impairment. Copyright © 2016 Elsevier B.V. All rights reserved.
Acoustical and Perceptual Comparison of Noise Reduction and Compression in Hearing Aids
ERIC Educational Resources Information Center
Brons, Inge; Houben, Rolph; Dreschler, Wouter A.
2015-01-01
Purpose: Noise reduction and dynamic-range compression are generally applied together in hearing aids but may have opposite effects on amplification. This study evaluated the acoustical and perceptual effects of separate and combined processing of noise reduction and compression. Design: Recordings of the output of 4 hearing aids for speech in…
Noise Reduction by Signal Accumulation
ERIC Educational Resources Information Center
Kraftmakher, Yaakov
2006-01-01
The aim of this paper is to show how the noise reduction by signal accumulation can be accomplished with a data acquisition system. This topic can be used for student projects. In many cases, the noise reduction is an unavoidable part of experimentation. Several techniques are known for this purpose, and among them the signal accumulation is the…
Control of Jet Noise Through Mixing Enhancement
NASA Technical Reports Server (NTRS)
Bridges, James; Wernet, Mark; Brown, Cliff
2003-01-01
The idea of using mixing enhancement to reduce jet noise is not new. Lobed mixers have been around since shortly after jet noise became a problem. However, these designs were often a post-design fix that rarely was worth its weight and thrust loss from a system perspective. Recent advances in CFD and some inspired concepts involving chevrons have shown how mixing enhancement can be successfully employed in noise reduction by subtle manipulation of the nozzle geometry. At NASA Glenn Research Center, this recent success has provided an opportunity to explore our paradigms of jet noise understanding, prediction, and reduction. Recent advances in turbulence measurement technology for hot jets have also greatly aided our ability to explore the cause and effect relationships of nozzle geometry, plume turbulence, and acoustic far field. By studying the flow and sound fields of jets with various degrees of mixing enhancement and subsequent noise manipulation, we are able to explore our intuition regarding how jets make noise, test our prediction codes, and pursue advanced noise reduction concepts. The paper will cover some of the existing paradigms of jet noise as they relate to mixing enhancement for jet noise reduction, and present experimental and analytical observations that support these paradigms.
Effects of noise and working memory capacity on memory processing of speech for hearing-aid users.
Ng, Elaine Hoi Ning; Rudner, Mary; Lunner, Thomas; Pedersen, Michael Syskind; Rönnberg, Jerker
2013-07-01
It has been shown that noise reduction algorithms can reduce the negative effects of noise on memory processing in persons with normal hearing. The objective of the present study was to investigate whether a similar effect can be obtained for persons with hearing impairment and whether such an effect is dependent on individual differences in working memory capacity. A sentence-final word identification and recall (SWIR) test was conducted in two noise backgrounds with and without noise reduction as well as in quiet. Working memory capacity was measured using a reading span (RS) test. Twenty-six experienced hearing-aid users with moderate to moderately severe sensorineural hearing loss. Noise impaired recall performance. Competing speech disrupted memory performance more than speech-shaped noise. For late list items the disruptive effect of the competing speech background was virtually cancelled out by noise reduction for persons with high working memory capacity. Noise reduction can reduce the adverse effect of noise on memory for speech for persons with good working memory capacity. We argue that the mechanism behind this is faster word identification that enhances encoding into working memory.
Evaluation of the impact of noise metrics on tiltrotor aircraft design
NASA Technical Reports Server (NTRS)
Sternfeld, H.; Spencer, R.; Ziegenbein, P.
1995-01-01
A subjective noise evaluation was conducted in which the test participants evaluated the annoyance of simulated sounds representative of future civil tiltrotor aircraft. The subjective responses were correlated with the noise metrics of A-weighted sound pressure level, overall sound pressure level, and perceived level. The results indicated that correlation between subjective response and A-weighted sound pressure level is considerably enhanced by combining it in a multiple regression with overall sound pressure level. As a single metric, perceived level correlated better than A-weighted sound pressure level due to greater emphasis on low frequency noise components. This latter finding was especially true for indoor noise where the mid and high frequency noise components are attenuated by typical building structure. Using the results of the subjective noise evaluation, the impact on tiltrotor aircraft design was also evaluated. While A-weighted sound pressure level can be reduced by reduction in tip speed, an increase in number of rotor blades is required to achieve significant reduction of low frequency noise as measured by overall sound pressure level. Additional research, however, is required to achieve comparable reductions in impulsive noise due to blade-vortex interaction, and also to achieve reduction in broad band noise.
NASA Technical Reports Server (NTRS)
Pain, B.; Cunningham, T. J.; Hancock, B.; Yang, G.; Seshadri, S.; Ortiz, M.
2002-01-01
We present new CMOS photodiode imager pixel with ultra-low read noise through on-chip suppression of reset noise via column-based feedback circuitry. The noise reduction is achieved without introducing any image lag, and with insignificant reduction in quantum efficiency and full well.
Advanced supersonic propulsion study. [with emphasis on noise level reduction
NASA Technical Reports Server (NTRS)
Sabatella, J. A. (Editor)
1974-01-01
A study was conducted to determine the promising propulsion systems for advanced supersonic transport application, and to identify the critical propulsion technology requirements. It is shown that noise constraints have a major effect on the selection of the various engine types and cycle parameters. Several promising advanced propulsion systems were identified which show the potential of achieving lower levels of sideline jet noise than the first generation supersonic transport systems. The non-afterburning turbojet engine, utilizing a very high level of jet suppression, shows the potential to achieve FAR 36 noise level. The duct-heating turbofan with a low level of jet suppression is the most attractive engine for noise levels from FAR 36 to FAR 36 minus 5 EPNdb, and some series/parallel variable cycle engines show the potential of achieving noise levels down to FAR 36 minus 10 EPNdb with moderate additional penalty. The study also shows that an advanced supersonic commercial transport would benefit appreciably from advanced propulsion technology. The critical propulsion technology needed for a viable supersonic propulsion system, and the required specific propulsion technology programs are outlined.
Estimation of Broadband Shock Noise Reduction in Turbulent Jets by Water Injection
NASA Technical Reports Server (NTRS)
Kandula, Max; Lonerjan, Michael J.
2008-01-01
The concept of effective jet properties introduced by the authors (AIAA-2007-3645) has been extended to the estimation of broadband shock noise reduction by water injection in supersonic jets. Comparison of the predictions with the test data for cold underexpanded supersonic nozzles shows a satisfactory agreement. The results also reveal the range of water mass flow rates over which saturation of mixing noise reduction and existence of parasitic noise are manifest.
Energy efficient engine component development and integration program
NASA Technical Reports Server (NTRS)
1980-01-01
The design of an energy efficient commercial turbofan engine is examined with emphasis on lower fuel consumption and operating costs. Propulsion system performance, emission standards, and noise reduction are also investigated. A detailed design analysis of the engine/aircraft configuration, engine components, and core engine is presented along with an evaluation of the technology and testing involved.
Helicopter Flight Procedures for Community Noise Reduction
NASA Technical Reports Server (NTRS)
Greenwood, Eric
2017-01-01
A computationally efficient, semiempirical noise model suitable for maneuvering flight noise prediction is used to evaluate the community noise impact of practical variations on several helicopter flight procedures typical of normal operations. Turns, "quick-stops," approaches, climbs, and combinations of these maneuvers are assessed. Relatively small variations in flight procedures are shown to cause significant changes to Sound Exposure Levels over a wide area. Guidelines are developed for helicopter pilots intended to provide effective strategies for reducing the negative effects of helicopter noise on the community. Finally, direct optimization of flight trajectories is conducted to identify low noise optimal flight procedures and quantify the magnitude of community noise reductions that can be obtained through tailored helicopter flight procedures. Physically realizable optimal turns and approaches are identified that achieve global noise reductions of as much as 10 dBA Sound Exposure Level.
NASA Astrophysics Data System (ADS)
Uno, Takanori; Ichikawa, Kouji; Mabuchi, Yuichi; Nakamura, Atsushi; Okazaki, Yuji; Asai, Hideki
In this paper, we studied the use of common-mode noise reduction technique for in-vehicle electronic equipment in an actual instrument design. We have improved the circuit model of the common-mode noise that flows to the wire harness to add the effect of a bypass capacitor located near the LSI. We analyzed the improved circuit model using a circuit simulator and verified the effectiveness of the noise reduction condition derived from the circuit model. It was also confirmed that offsetting the impedance mismatch in the PCB section requires to make a circuit constant larger than that necessary for doing the impedance mismatch in the LSI section. An evaluation circuit board comprising an automotive microcomputer was prototyped to experiment on the common-mode noise reduction effect of the board. The experimental results showed the noise reduction effect of the board. The experimental results also revealed that the degree of impedance mismatch in the LSI section can be estimated by using a PCB having a known impedance. We further inquired into the optimization of impedance parameters, which is difficult for actual products at present. To satisfy the noise reduction condition composed of numerous parameters, we proposed a design method using an optimization algorithm and an electromagnetic field simulator, and confirmed its effectiveness.
Chung, King
2004-01-01
This review discusses the challenges in hearing aid design and fitting and the recent developments in advanced signal processing technologies to meet these challenges. The first part of the review discusses the basic concepts and the building blocks of digital signal processing algorithms, namely, the signal detection and analysis unit, the decision rules, and the time constants involved in the execution of the decision. In addition, mechanisms and the differences in the implementation of various strategies used to reduce the negative effects of noise are discussed. These technologies include the microphone technologies that take advantage of the spatial differences between speech and noise and the noise reduction algorithms that take advantage of the spectral difference and temporal separation between speech and noise. The specific technologies discussed in this paper include first-order directional microphones, adaptive directional microphones, second-order directional microphones, microphone matching algorithms, array microphones, multichannel adaptive noise reduction algorithms, and synchrony detection noise reduction algorithms. Verification data for these technologies, if available, are also summarized. PMID:15678225
Suh, Sungho; Itoh, Shinya; Aoyama, Satoshi; Kawahito, Shoji
2010-01-01
For low-noise complementary metal-oxide-semiconductor (CMOS) image sensors, the reduction of pixel source follower noises is becoming very important. Column-parallel high-gain readout circuits are useful for low-noise CMOS image sensors. This paper presents column-parallel high-gain signal readout circuits, correlated multiple sampling (CMS) circuits and their noise reduction effects. In the CMS, the gain of the noise cancelling is controlled by the number of samplings. It has a similar effect to that of an amplified CDS for the thermal noise but is a little more effective for 1/f and RTS noises. Two types of the CMS with simple integration and folding integration are proposed. In the folding integration, the output signal swing is suppressed by a negative feedback using a comparator and one-bit D-to-A converter. The CMS circuit using the folding integration technique allows to realize a very low-noise level while maintaining a wide dynamic range. The noise reduction effects of their circuits have been investigated with a noise analysis and an implementation of a 1Mpixel pinned photodiode CMOS image sensor. Using 16 samplings, dynamic range of 59.4 dB and noise level of 1.9 e(-) for the simple integration CMS and 75 dB and 2.2 e(-) for the folding integration CMS, respectively, are obtained.
Kawahito, Shoji; Seo, Min-Woong
2016-11-06
This paper discusses the noise reduction effect of multiple-sampling-based signal readout circuits for implementing ultra-low-noise image sensors. The correlated multiple sampling (CMS) technique has recently become an important technology for high-gain column readout circuits in low-noise CMOS image sensors (CISs). This paper reveals how the column CMS circuits, together with a pixel having a high-conversion-gain charge detector and low-noise transistor, realizes deep sub-electron read noise levels based on the analysis of noise components in the signal readout chain from a pixel to the column analog-to-digital converter (ADC). The noise measurement results of experimental CISs are compared with the noise analysis and the effect of noise reduction to the sampling number is discussed at the deep sub-electron level. Images taken with three CMS gains of two, 16, and 128 show distinct advantage of image contrast for the gain of 128 (noise(median): 0.29 e - rms ) when compared with the CMS gain of two (2.4 e - rms ), or 16 (1.1 e - rms ).
Kawahito, Shoji; Seo, Min-Woong
2016-01-01
This paper discusses the noise reduction effect of multiple-sampling-based signal readout circuits for implementing ultra-low-noise image sensors. The correlated multiple sampling (CMS) technique has recently become an important technology for high-gain column readout circuits in low-noise CMOS image sensors (CISs). This paper reveals how the column CMS circuits, together with a pixel having a high-conversion-gain charge detector and low-noise transistor, realizes deep sub-electron read noise levels based on the analysis of noise components in the signal readout chain from a pixel to the column analog-to-digital converter (ADC). The noise measurement results of experimental CISs are compared with the noise analysis and the effect of noise reduction to the sampling number is discussed at the deep sub-electron level. Images taken with three CMS gains of two, 16, and 128 show distinct advantage of image contrast for the gain of 128 (noise(median): 0.29 e−rms) when compared with the CMS gain of two (2.4 e−rms), or 16 (1.1 e−rms). PMID:27827972
Potential reduction of en route noise from an advanced turboprop aircraft
NASA Technical Reports Server (NTRS)
Dittmar, James H.
1990-01-01
When the en route noise of a representative aircraft powered by an eight-blade SR-7 propeller was previously calculated, the noise level was cited as a possible concern associated with the acceptance of advanced turboprop aircraft. Some potential methods for reducing the en route noise were then investigated and are reported. Source noise reductions from increasing the blade number and from operating at higher rotative speed to reach a local minimum noise point were investigated. Greater atmospheric attenuations for higher blade passing frequencies were also indicated. Potential en route noise reductions from these methods were calculated as 9.5 dB (6.5 dB(A)) for a 10-blade redesigned propeller and 15.5 dB (11 dB(A)) for a 12-blade redesigned propeller.
Supersonic Transport Noise Reduction Technology Program - Phase 2, Volume 2
1975-09-01
a J85 is shown on Figure 350. The J85 turbojet engine has an eight-stage compressor (with an air bleed system) and a two-stage turbine . Blade ...investigated in this program using a YJ85 engine . Both turbine second-stage spacing ( blade - vane ) and exhaust duct treatment were determined to be...using a J85 engine with massive Inlet suppressor and open nozzle to unmask the turbine . Second-stag« turbine blade /nozzle spacing and exhaust
Wind Noise Reduction in a Non-Porous Subsurface Windscreen
NASA Technical Reports Server (NTRS)
Zuckerwar, Allan J.; Shams, Qamar A.; Knight, H. Keith
2012-01-01
Measurements of wind noise reduction were conducted on a box-shaped, subsurface windscreen made of closed cell polyurethane foam. The windscreen was installed in the ground with the lid flush with the ground surface. The wind was generated by means of a fan, situated on the ground, and the wind speed was measured at the center of the windscreen lid with an ultrasonic anemometer. The wind speed was controlled by moving the fan to selected distances from the windscreen. The wind noise was measured on a PCB Piezotronics 3†electret microphone. Wind noise spectra were measured with the microphone exposed directly to the wind (atop the windscreen lid) and with the microphone installed inside the windscreen. The difference between the two spectra comprises the wind noise reduction. At wind speeds of 3, 5, and 7 m/s, the wind noise reduction is typically 15 dB over the frequency range of 0.1-20 Hz.
Effects of secondary loudspeaker properties on broadband feedforward active duct noise control.
Chan, Yum-Ji; Huang, Lixi; Lam, James
2013-07-01
Dependence of the performance of feedforward active duct noise control on secondary loudspeaker parameters is investigated. Noise reduction performance can be improved if the force factor of the secondary loudspeaker is higher. For example, broadband noise reduction improvement up to 1.6 dB is predicted by increasing the force factor by 50%. In addition, a secondary loudspeaker with a larger force factor was found to have quicker convergence in the adaptive algorithm in experiment. In simulations, noise reduction is improved in using an adaptive algorithm by using a secondary loudspeaker with a heavier moving mass. It is predicted that an extra broadband noise reduction of more than 7 dB can be gained using an adaptive filter if the force factor, moving mass and coil inductance of a commercially available loudspeaker are doubled. Methods to increase the force factor beyond those of commercially available loudspeakers are proposed.
Head-mounted active noise control system with virtual sensing technique
NASA Astrophysics Data System (ADS)
Miyazaki, Nobuhiro; Kajikawa, Yoshinobu
2015-03-01
In this paper, we apply a virtual sensing technique to a head-mounted active noise control (ANC) system we have already proposed. The proposed ANC system can reduce narrowband noise while improving the noise reduction ability at the desired locations. A head-mounted ANC system based on an adaptive feedback structure can reduce noise with periodicity or narrowband components. However, since quiet zones are formed only at the locations of error microphones, an adequate noise reduction cannot be achieved at the locations where error microphones cannot be placed such as near the eardrums. A solution to this problem is to apply a virtual sensing technique. A virtual sensing ANC system can achieve higher noise reduction at the desired locations by measuring the system models from physical sensors to virtual sensors, which will be used in the online operation of the virtual sensing ANC algorithm. Hence, we attempt to achieve the maximum noise reduction near the eardrums by applying the virtual sensing technique to the head-mounted ANC system. However, it is impossible to place the microphone near the eardrums. Therefore, the system models from physical sensors to virtual sensors are estimated using the Head And Torso Simulator (HATS) instead of human ears. Some simulation, experimental, and subjective assessment results demonstrate that the head-mounted ANC system with virtual sensing is superior to that without virtual sensing in terms of the noise reduction ability at the desired locations.
Aeroacoustics of Propulsion Airframe Integration: Overview of NASA's Research
NASA Technical Reports Server (NTRS)
Thomas, Russell H.
2003-01-01
The integration of propulsion and airframe is fundamental to the design of an aircraft system. Many considerations influence the integration, such as structural, aerodynamic, and maintenance factors. In regard to the acoustics of an aircraft, the integration can have significant effects on the net radiated noise. Whether an engine is mounted above a wing or below can have a significant effect on noise that reaches communities below because of shielding or reflection of engine noise. This is an obvious example of the acoustic effects of propulsion airframe installation. Another example could be the effect of the pylon on the development of the exhaust plume and on the resulting jet noise. In addition, for effective system noise reduction the impact that installation has on noise reduction devices developed on isolated components must be understood. In the future, a focus on the aerodynamic and acoustic interaction effects of installation, propulsion airframe aeroacoustics, will become more important as noise reduction targets become more difficult to achieve. In addition to continued fundamental component reduction efforts, a system level approach that includes propulsion airframe aeroacoustics will be required in order to achieve the 20 dB of perceived noise reduction envisioned by the long-range NASA goals. This emphasis on the aeroacoustics of propulsion airframe integration is a new part of NASA s noise research. The following paper will review current efforts and highlight technical challenges and approaches.
Electronic noise in CT detectors: Impact on image noise and artifacts.
Duan, Xinhui; Wang, Jia; Leng, Shuai; Schmidt, Bernhard; Allmendinger, Thomas; Grant, Katharine; Flohr, Thomas; McCollough, Cynthia H
2013-10-01
The objective of our study was to evaluate in phantoms the differences in CT image noise and artifact level between two types of commercial CT detectors: one with distributed electronics (conventional) and one with integrated electronics intended to decrease system electronic noise. Cylindric water phantoms of 20, 30, and 40 cm in diameter were scanned using two CT scanners, one equipped with integrated detector electronics and one with distributed detector electronics. All other scanning parameters were identical. Scans were acquired at four tube potentials and 10 tube currents. Semianthropomorphic phantoms were scanned to mimic the shoulder and abdominal regions. Images of two patients were also selected to show the clinical values of the integrated detector. Reduction of image noise with the integrated detector depended on phantom size, tube potential, and tube current. Scans that had low detected signal had the greatest reductions in noise, up to 40% for a 30-cm phantom scanned using 80 kV. This noise reduction translated into up to 50% in dose reduction to achieve equivalent image noise. Streak artifacts through regions of high attenuation were reduced by up to 45% on scans obtained using the integrated detector. Patient images also showed superior image quality for the integrated detector. For the same applied radiation level, the use of integrated electronics in a CT detector showed a substantially reduced level of electronic noise, resulting in reductions in image noise and artifacts, compared with detectors having distributed electronics.
Inflight source noise of an advanced full-scale single-rotation propeller
NASA Technical Reports Server (NTRS)
Woodward, Richard P.; Loeffler, Irvin J.
1991-01-01
Flight tests to define the far field tone source at cruise conditions were completed on the full scale SR-7L advanced turboprop which was installed on the left wing of a Gulfstream II aircraft. This program, designated Propfan Test Assessment (PTA), involved aeroacoustic testing of the propeller over a range of test conditions. These measurements defined source levels for input into long distance propagation models to predict en route noise. Inflight data were taken for 7 test cases. The sideline directivities measured by the Learjet showed expected maximum levels near 105 degrees from the propeller upstream axis. However, azimuthal directivities based on the maximum observed sideline tone levels showed highest levels below the aircraft. An investigation of the effect of propeller tip speed showed that the tone level of reduction associated with reductions in propeller tip speed is more significant in the horizontal plane than below the aircraft.
De Marco, Paolo; Origgi, Daniela
2018-03-01
To assess the noise characteristics of the new adaptive statistical iterative reconstruction (ASiR-V) in comparison to ASiR. A water phantom was acquired with common clinical scanning parameters, at five different levels of CTDI vol . Images were reconstructed with different kernels (STD, SOFT, and BONE), different IR levels (40%, 60%, and 100%) and different slice thickness (ST) (0.625 and 2.5 mm), both for ASiR-V and ASiR. Noise properties were investigated and noise power spectrum (NPS) was evaluated. ASiR-V significantly reduced noise relative to FBP: noise reduction was in the range 23%-60% for a 0.625 mm ST and 12%-64% for the 2.5 mm ST. Above 2 mGy, noise reduction for ASiR-V had no dependence on dose. Noise reduction for ASIR-V has dependence on ST, being greater for STD and SOFT kernels at 2.5 mm. For the STD kernel ASiR-V has greater noise reduction for both ST, if compared to ASiR. For the SOFT kernel, results varies according to dose and ST, while for BONE kernel ASIR-V shows less noise reduction. NPS for CT Revolution has dose dependent behavior at lower doses. NPS for ASIR-V and ASiR is similar, showing a shift toward lower frequencies as the IR level increases for STD and SOFT kernels. The NPS is different between ASiR-V and ASIR with BONE kernel. NPS for ASiR-V appears to be ST dependent, having a shift toward lower frequencies for 2.5 mm ST. ASiR-V showed greater noise reduction than ASiR for STD and SOFT kernels, while keeping the same NPS. For the BONE kernel, ASiR-V presents a completely different behavior, with less noise reduction and modified NPS. Noise properties of the ASiR-V are dependent on reconstruction slice thickness. The noise properties of ASiR-V suggest the need for further measurements and efforts to establish new CT protocols to optimize clinical imaging. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Yu, Xuchao; Liang, Wei; Zhang, Laibin; Jin, Hao; Qiu, Jingwei
2016-05-01
During the last decades, leak detection for natural gas pipeline has become one of the paramount concerns of pipeline operators and researchers across the globe. However, acoustic wave method has been proved to be an effective way to identify and localize leakage for gas pipeline. Considering the fact that noises inevitably exist in the acoustic signals collected, noise reduction should be enforced on the signals for subsequent data mining and analysis. Thus, an integrated acoustic noise reduction method based on DTCWT and SVD is proposed in this study. The method is put forward based on the idea that noise reduction strategy should match the characteristics of the noisy signal. According to previous studies, it is known that the energy of acoustic signals collected under leaking condition is mainly concentrated in low-frequency portion (0-100 Hz). And ultralow-frequency component (0-5 Hz), which is taken as the characteristic frequency band in this study, can propagate a relatively longer distance and be captured by sensors. Therefore, in order to filter the noises and to reserve the characteristic frequency band, DTCWT is taken as the core to conduct multilevel decomposition and refining for acoustic signals and SVD is employed to eliminate noises in non-characteristic bands. Both simulation and field experiments show that DTCWT-SVD is an excellent method for acoustic noise reduction. At the end of this study, application in leakage localization shows that it becomes much easier and a little more accurate to estimate the location of leak hole after noise reduction by DTCWT-SVD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christianson, O; Winslow, J; Samei, E
2014-06-15
Purpose: One of the principal challenges of clinical imaging is to achieve an ideal balance between image quality and radiation dose across multiple CT models. The number of scanners and protocols at large medical centers necessitates an automated quality assurance program to facilitate this objective. Therefore, the goal of this work was to implement an automated CT image quality and radiation dose monitoring program based on actual patient data and to use this program to assess consistency of protocols across CT scanner models. Methods: Patient CT scans are routed to a HIPPA compliant quality assurance server. CTDI, extracted using opticalmore » character recognition, and patient size, measured from the localizers, are used to calculate SSDE. A previously validated noise measurement algorithm determines the noise in uniform areas of the image across the scanned anatomy to generate a global noise level (GNL). Using this program, 2358 abdominopelvic scans acquired on three commercial CT scanners were analyzed. Median SSDE and GNL were compared across scanner models and trends in SSDE and GNL with patient size were used to determine the impact of differing automatic exposure control (AEC) algorithms. Results: There was a significant difference in both SSDE and GNL across scanner models (9–33% and 15–35% for SSDE and GNL, respectively). Adjusting all protocols to achieve the same image noise would reduce patient dose by 27–45% depending on scanner model. Additionally, differences in AEC methodologies across vendors resulted in disparate relationships of SSDE and GNL with patient size. Conclusion: The difference in noise across scanner models indicates that protocols are not optimally matched to achieve consistent image quality. Our results indicated substantial possibility for dose reduction while achieving more consistent image appearance. Finally, the difference in AEC methodologies suggests the need for size-specific CT protocols to minimize variability in image quality across CT vendors.« less
Mahan, Susan T; Harris, Marie S; Lierhaus, Anneliese M; Miller, Patricia E; DiFazio, Rachel L
Noise reduction headphones decrease the sound during cast removal. Their effectiveness in decreasing anxiety has not been studied. Compare pediatric patients' anxiety levels during cast removal with and without utilization of noise reduction headphones combined with use of a personal electronic device. Quality improvement project. Patients randomly assigned to noise reduction headphone group or standard care group during cast removal. Faces, Legs, Activity, Cry, and Consolability Scale and heart rate were evaluated prior to, during, and after cast removal. Data were compared across groups. Fifty patients were included; 25 per group. No difference detected between the 2 groups in Faces, Legs, Activity, Cry, and Consolability Scale score prior to (p = .05) or after cast removal (p = .30). During cast removal, the headphone group had lower FLACC Scale scores (p = .03). Baseline heart rate was lower in the headphone group prior to (p = .02) and after (p = .005) cast removal with no difference during cast removal (p = .24). Utilizing noise reduction headphones and a personal electronic device during the cast removal process decreases patient anxiety.
Experimental investigation of wavy leading edges on rod-aerofoil interaction noise
NASA Astrophysics Data System (ADS)
Chen, Weijie; Qiao, Weiyang; Tong, Fan; Wang, Liangfeng; Wang, Xunnian
2018-05-01
Experimental studies are performed to investigate the effect of wavy leading edges on rod-aerofoil interaction noise in an open-jet anechoic wind tunnel. NACA 0012 aerofoils with straight and wavy leading edges (denoted by SLE and WLE, respectively) are embedded in the wake of a circular rod. The WLEs are in the form of sinusoidal profiles of amplitude, A, and wavelength, W. Parametric studies of the amplitude and wavelength characteristics are conducted to understand the effect of WLEs on noise reduction. It is observed that the sound power reduction level is sensitive to both the amplitude and wavelength of the WLEs. The WLE with the largest amplitude and smallest wavelength can achieve the most considerable noise reduction effect of up to 4 dB. The influences of rod diameter, d, and free-stream velocity, U0, on the noise reduction effect of the WLEs are also investigated. In addition, a parametric study of the influence of separating rod-aerofoil distance on the acoustic radiation of the SLE case and on the sound power reduction level of the WLE cases is performed. It is found that a critical spacing exists where the acoustic radiation and noise reduction can be divided into two different "modes".
Upper surface blowing noise of the NASA-Ames quiet short-haul research aircraft
NASA Technical Reports Server (NTRS)
Bohn, A. J.; Shovlin, M. D.
1980-01-01
An experimental study of the propulsive-lift noise of the NASA-Ames quiet short-haul research aircraft (QSRA) is described. Comparisons are made of measured QSRA flyover noise and model propulsive-lift noise data available in references. Developmental tests of trailing-edge treatments were conducted using sawtooth-shaped and porous USB flap trailing-edge extensions. Small scale parametric tests were conducted to determine noise reduction/design relationships. Full-scale static tests were conducted with the QSRA preparatory to the selection of edge treatment designs for flight testing. QSRA flight and published model propulsive-lift noise data have similar characteristics. Noise reductions of 2 to 3 dB were achieved over a wide range of frequency and directivity angles in static tests of the QSRA. These noise reductions are expected to be achieved or surpassed in flight tests planned by NASA in 1980.
Acoustic Aspects of Active-Twist Rotor Control
NASA Technical Reports Server (NTRS)
Booth, Earl R., Jr.; Wilbur, Matthew L.
2002-01-01
The use of an Active Twist Rotor system to provide both vibration reduction and performance enhancement has been explored in recent analytical and experimental studies. Effects of active-twist control on rotor noise, however, had not been determined. During a recent wind tunnel test of an active-twist rotor system, a set of acoustic measurements were obtained to assess the effects of active-twist control on noise produced by the rotor, especially blade-vortex interaction (BVI) noise. It was found that for rotor operating conditions where BVI noise is dominant, active-twist control provided a reduction in BVI noise level. This BVI noise reduction was almost, but not quite, as large as that obtained in a similar test using HHC. However, vibration levels were usually adversely affected at operating conditions favoring minimum BVI noise. Conversely, operating conditions favoring minimum vibration levels affected BVI noise levels, but not always adversely.
Shen, Chong; Li, Jie; Zhang, Xiaoming; Shi, Yunbo; Tang, Jun; Cao, Huiliang; Liu, Jun
2016-01-01
The different noise components in a dual-mass micro-electromechanical system (MEMS) gyroscope structure is analyzed in this paper, including mechanical-thermal noise (MTN), electronic-thermal noise (ETN), flicker noise (FN) and Coriolis signal in-phase noise (IPN). The structure equivalent electronic model is established, and an improved white Gaussian noise reduction method for dual-mass MEMS gyroscopes is proposed which is based on sample entropy empirical mode decomposition (SEEMD) and time-frequency peak filtering (TFPF). There is a contradiction in TFPS, i.e., selecting a short window length may lead to good preservation of signal amplitude but bad random noise reduction, whereas selecting a long window length may lead to serious attenuation of the signal amplitude but effective random noise reduction. In order to achieve a good tradeoff between valid signal amplitude preservation and random noise reduction, SEEMD is adopted to improve TFPF. Firstly, the original signal is decomposed into intrinsic mode functions (IMFs) by EMD, and the SE of each IMF is calculated in order to classify the numerous IMFs into three different components; then short window TFPF is employed for low frequency component of IMFs, and long window TFPF is employed for high frequency component of IMFs, and the noise component of IMFs is wiped off directly; at last the final signal is obtained after reconstruction. Rotation experimental and temperature experimental are carried out to verify the proposed SEEMD-TFPF algorithm, the verification and comparison results show that the de-noising performance of SEEMD-TFPF is better than that achievable with the traditional wavelet, Kalman filter and fixed window length TFPF methods. PMID:27258276
Shen, Chong; Li, Jie; Zhang, Xiaoming; Shi, Yunbo; Tang, Jun; Cao, Huiliang; Liu, Jun
2016-05-31
The different noise components in a dual-mass micro-electromechanical system (MEMS) gyroscope structure is analyzed in this paper, including mechanical-thermal noise (MTN), electronic-thermal noise (ETN), flicker noise (FN) and Coriolis signal in-phase noise (IPN). The structure equivalent electronic model is established, and an improved white Gaussian noise reduction method for dual-mass MEMS gyroscopes is proposed which is based on sample entropy empirical mode decomposition (SEEMD) and time-frequency peak filtering (TFPF). There is a contradiction in TFPS, i.e., selecting a short window length may lead to good preservation of signal amplitude but bad random noise reduction, whereas selecting a long window length may lead to serious attenuation of the signal amplitude but effective random noise reduction. In order to achieve a good tradeoff between valid signal amplitude preservation and random noise reduction, SEEMD is adopted to improve TFPF. Firstly, the original signal is decomposed into intrinsic mode functions (IMFs) by EMD, and the SE of each IMF is calculated in order to classify the numerous IMFs into three different components; then short window TFPF is employed for low frequency component of IMFs, and long window TFPF is employed for high frequency component of IMFs, and the noise component of IMFs is wiped off directly; at last the final signal is obtained after reconstruction. Rotation experimental and temperature experimental are carried out to verify the proposed SEEMD-TFPF algorithm, the verification and comparison results show that the de-noising performance of SEEMD-TFPF is better than that achievable with the traditional wavelet, Kalman filter and fixed window length TFPF methods.
Aflatouni, Firooz; Hashemi, Hossein
2012-01-15
A wideband laser phase noise reduction scheme is introduced where the optical field of a laser is single sideband modulated with an electrical signal containing the discriminated phase noise of the laser. The proof-of-concept experiments on a commercially available 1549 nm distributed feedback laser show linewidth reduction from 7.5 MHz to 1.8 kHz without using large optical cavity resonators. This feed-forward scheme performs wideband phase noise cancellation independent of the light source and, as such, it is compatible with the original laser source tunability without requiring tunable optical components. By placing the proposed phase noise reduction system after a commercial tunable laser, a tunable coherent light source with kilohertz linewidth over a tuning range of 1530-1570 nm is demonstrated.
Nonlinear Time Series Analysis in the Absence of Strong Harmonics
NASA Astrophysics Data System (ADS)
Stine, Peter; Jevtic, N.
2010-05-01
Nonlinear time series analysis has successfully been used for noise reduction and for identifying long term periodicities in variable star light curves. It was thought that good noise reduction could be obtained when a strong fundamental and second harmonic are present. We show that, quite unexpectedly, this methodology for noise reduction can be efficient for data with very noisy power spectra without a strong fundamental and second harmonic. Not only can one obtain almost two orders of magnitude noise reduction of the white noise tail, insight can also be gained into the short time scale of organized behavior. Thus, we are able to obtain an estimate of this short time scale, which is on the order of 1.5 hours in the case of a variable white dwarf.
Design and Stress Analysis of Low-Noise Adjusted Bearing Contact Spiral Bevel Gears
NASA Technical Reports Server (NTRS)
Litvin, Faydor L.; Fuentes, Alfonso; Mullins, Baxter R.; Woods, Ron
2002-01-01
An integrated computerized approach for design and stress analysis of low-noise spiral bevel gear drives with adjusted bearing contact has been developed. The computation procedure is an iterative process, requiring four separate steps that provide: (a) a parabolic function of transmission errors that is able to reduce the effect of errors of alignment, and (b) reduction of the shift of bearing contact caused by misalignment. Application of finite element analysis permits the contact and bending stresses to be determined and investigate the formation of the bearing contact. The design of finite element models and boundary conditions is automated and does not require an intermediate CAD computer program. A commercially available finite element analysis computer program with contact capability was used to conduct the stress analysis. The theory developed is illustrated with numerical examples.
NASA Technical Reports Server (NTRS)
Jobson, Daniel J.; Rahman, Zia-Ur; Woodell, Glenn A.; Hines, Glenn D.
2004-01-01
Noise is the primary visibility limit in the process of non-linear image enhancement, and is no longer a statistically stable additive noise in the post-enhancement image. Therefore novel approaches are needed to both assess and reduce spatially variable noise at this stage in overall image processing. Here we will examine the use of edge pattern analysis both for automatic assessment of spatially variable noise and as a foundation for new noise reduction methods.
NASA Technical Reports Server (NTRS)
Mckinzie, D. J., Jr.; Burns, R. J.; Wagner, J. M.
1976-01-01
Noise data were obtained with a large-scale cold-flow model of a two-flap, under-the-wing, externally blown flap proposed for use on future STOL aircraft. The noise suppression effectiveness of locating a slot conical nozzle at the trailing edge of the second flap and of applying partial covers to the slots between the wing and flaps was evaluated. Overall-sound-pressure-level reductions of 5 db occurred below the wing in the flyover plane. Existing models of several noise sources were applied to the test results. The resulting analytical relation compares favorably with the test data. The noise source mechanisms were analyzed and are discussed.
Poisson-Gaussian Noise Analysis and Estimation for Low-Dose X-ray Images in the NSCT Domain.
Lee, Sangyoon; Lee, Min Seok; Kang, Moon Gi
2018-03-29
The noise distribution of images obtained by X-ray sensors in low-dosage situations can be analyzed using the Poisson and Gaussian mixture model. Multiscale conversion is one of the most popular noise reduction methods used in recent years. Estimation of the noise distribution of each subband in the multiscale domain is the most important factor in performing noise reduction, with non-subsampled contourlet transform (NSCT) representing an effective method for scale and direction decomposition. In this study, we use artificially generated noise to analyze and estimate the Poisson-Gaussian noise of low-dose X-ray images in the NSCT domain. The noise distribution of the subband coefficients is analyzed using the noiseless low-band coefficients and the variance of the noisy subband coefficients. The noise-after-transform also follows a Poisson-Gaussian distribution, and the relationship between the noise parameters of the subband and the full-band image is identified. We then analyze noise of actual images to validate the theoretical analysis. Comparison of the proposed noise estimation method with an existing noise reduction method confirms that the proposed method outperforms traditional methods.
Poisson–Gaussian Noise Analysis and Estimation for Low-Dose X-ray Images in the NSCT Domain
Lee, Sangyoon; Lee, Min Seok; Kang, Moon Gi
2018-01-01
The noise distribution of images obtained by X-ray sensors in low-dosage situations can be analyzed using the Poisson and Gaussian mixture model. Multiscale conversion is one of the most popular noise reduction methods used in recent years. Estimation of the noise distribution of each subband in the multiscale domain is the most important factor in performing noise reduction, with non-subsampled contourlet transform (NSCT) representing an effective method for scale and direction decomposition. In this study, we use artificially generated noise to analyze and estimate the Poisson–Gaussian noise of low-dose X-ray images in the NSCT domain. The noise distribution of the subband coefficients is analyzed using the noiseless low-band coefficients and the variance of the noisy subband coefficients. The noise-after-transform also follows a Poisson–Gaussian distribution, and the relationship between the noise parameters of the subband and the full-band image is identified. We then analyze noise of actual images to validate the theoretical analysis. Comparison of the proposed noise estimation method with an existing noise reduction method confirms that the proposed method outperforms traditional methods. PMID:29596335
A flight research program to develop airborne systems for improved terminal area operations
NASA Technical Reports Server (NTRS)
Reeder, J. P.
1974-01-01
The research program considered is concerned with the solution of operational problems for the approximate time period from 1980 to 2000. The problems are related to safety, weather effects, congestion, energy conservation, noise, atmospheric pollution, and the loss in productivity caused by delays, diversions, and schedule stretchouts. The terminal configured vehicle (TCV) program is to develop advanced flight-control capability. The various aspects of the TCV program are discussed, giving attention to avionics equipment, the piloted simulator, terminal-area environment simulation, the Wallops research facility, flight procedures, displays and human factors, flight activities, and questions of vortex-wake reduction and tracking.
Interior noise control prediction study for high-speed propeller-driven aircraft
NASA Technical Reports Server (NTRS)
Rennison, D. C.; Wilby, J. F.; Marsh, A. H.; Wilby, E. G.
1979-01-01
An analytical model was developed to predict the noise levels inside propeller-driven aircraft during cruise at M = 0.8. The model was applied to three study aircraft with fuselages of different size (wide body, narrow body and small diameter) in order to determine the noise reductions required to achieve the goal of an A-weighted sound level which does not exceed 80 dB. The model was then used to determine noise control methods which could achieve the required noise reductions. Two classes of noise control treatments were investigated: add-on treatments which can be added to existing structures, and advanced concepts which would require changes to the fuselage primary structure. Only one treatment, a double wall with limp panel, provided the required noise reductions. Weight penalties associated with the treatment were estimated for the three study aircraft.
NASA Technical Reports Server (NTRS)
Cooper, Beth A.
1995-01-01
NASA Lewis Research Center is home to more than 100 experimental research testing facilities and laboratories, including large wind tunnels and engine test cells, which in combination create a varied and complex noise environment. Much of the equipment was manufactured prior to the enactment of legislation limiting product noise emissions or occupational noise exposure. Routine facility maintenance and associated construction also contributes to a noise exposure management responsibility which is equal in magnitude and scope to that of several small industrial companies. The Noise Program, centrally managed within the Office of Environmental Programs at LRC, maintains overall responsibility for hearing conservation, community noise control, and acoustical and noise control engineering. Centralized management of the LRC Noise Program facilitates the timely development and implementation of engineered noise control solutions for problems identified via either the Hearing Conservation of Community Noise Program. The key element of the Lewis Research Center Noise Program, Acoustical and Noise Control Engineering Services, is focused on developing solutions that permanently reduce employee and community noise exposure and maximize research productivity by reducing or eliminating administrative and operational controls and by improving the safety and comfort of the work environment. The Hearing Conservation Program provides noise exposure assessment, medical monitoring, and training for civil servant and contractor employees. The Community Noise Program aims to maintain the support of LRC's neighboring communities while enabling necessary research operations to accomplish their programmatic goals. Noise control engineering capability resides within the Noise Program. The noise control engineering, based on specific exposure limits, is a fundamental consideration throughout the design phase of new test facilities, labs, and office buildings. In summary, the Noise Program addresses hearing conservation, community noise control, and acoustical and noise control engineering.
Molecular Filters for Noise Reduction.
Laurenti, Luca; Csikasz-Nagy, Attila; Kwiatkowska, Marta; Cardelli, Luca
2018-06-19
Living systems are inherently stochastic and operate in a noisy environment, yet despite all these uncertainties, they perform their functions in a surprisingly reliable way. The biochemical mechanisms used by natural systems to tolerate and control noise are still not fully understood, and this issue also limits our capacity to engineer reliable, quantitative synthetic biological circuits. We study how representative models of biochemical systems propagate and attenuate noise, accounting for intrinsic as well as extrinsic noise. We investigate three molecular noise-filtering mechanisms, study their noise-reduction capabilities and limitations, and show that nonlinear dynamics such as complex formation are necessary for efficient noise reduction. We further suggest that the derived molecular filters are widespread in gene expression and regulation and, particularly, that microRNAs can serve as such noise filters. To our knowledge, our results provide new insight into how biochemical networks control noise and could be useful to build robust synthetic circuits. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Occupational Noise Reduction in CNC Striping Process
NASA Astrophysics Data System (ADS)
Mahmad Khairai, Kamarulzaman; Shamime Salleh, Nurul; Razlan Yusoff, Ahmad
2018-03-01
Occupational noise hearing loss with high level exposure is common occupational hazards. In CNC striping process, employee that exposed to high noise level for a long time as 8-hour contributes to hearing loss, create physical and psychological stress that reduce productivity. In this paper, CNC stripping process with high level noises are measured and reduced to the permissible noise exposure. First condition is all machines shutting down and second condition when all CNC machine under operations. For both conditions, noise exposures were measured to evaluate the noise problems and sources. After improvement made, the noise exposures were measured to evaluate the effectiveness of reduction. The initial average noise level at the first condition is 95.797 dB (A). After the pneumatic system with leakage was solved, the noise reduced to 55.517 dB (A). The average noise level at the second condition is 109.340 dB (A). After six machines were gathered at one area and cover that area with plastic curtain, the noise reduced to 95.209 dB (A). In conclusion, the noise level exposure in CNC striping machine is high and exceed the permissible noise exposure can be reduced to acceptable levels. The reduction of noise level in CNC striping processes enhanced productivity in the industry.
Examination of Noise Management Approaches in the United States
1988-12-01
each asserting a legally or socially validated position. Finally, the idea of conflicting interests can be expanded on to recognize the often...often the by- product of some individually or socially desirable activity, complete reduction of the noise is usually not an acceptable or practicable...alternative. In between the two polar extremes, complete reduction of the noise and absolutely no reduction or .restriction, lies some socially
Intelligent Propulsion System Foundation Technology: Summary of Research
NASA Technical Reports Server (NTRS)
Williams, James C.
2004-01-01
The purpose of this cooperative agreement was to develop a foundation of intelligent propulsion technologies for NASA and industry that will have an impact on safety, noise, emissions and cost. These intelligent engine technologies included sensors, electronics, communications, control logic, actuators, and smart materials and structures. Furthermore this cooperative agreement helped prepare future graduates to develop the revolutionary intelligent propulsion technologies that will be needed to ensure pre-eminence of the U.S. aerospace industry. The program consisted of three primary research areas (and associated work elements at Ohio universities): 1.0 Turbine Engine Prognostics, 2.0 Active Controls for Emissions and Noise Reduction, and 3.0 Active Structural Controls.
Gallacher, Stuart; Enki, Doyo; Stevens, Sian; Bennett, Mark J
2017-10-17
Defining the association between excessive noise in intensive care units, sleep disturbance and morbidity, including delirium, is confounded by the difficulty of implementing successful strategies to reduce patient's exposure to noise. Active noise control devices may prove to be useful adjuncts but there is currently little to quantify their ability to reduce noise in this complex environment. Sound meters were embedded in the auditory meatus of three polystyrene model heads with no headphones (control), with headphones alone and with headphones using active noise control and placed in patient bays in a cardiac ICU. Ten days of recording sound levels at a frequency of 1 Hz were performed, and the noise levels in each group were compared using repeated measures MANOVA and subsequent pairwise testing. Multivariate testing demonstrated that there is a significant difference in the mean noise exposure levels between the three groups (p < 0.001). Subsequent pairwise testing between the three groups shows that the reduction in noise is greatest with headphones and active noise control. The mean reduction in noise exposure between the control and this group over 24 h is 6.8 (0.66) dB. The use of active noise control was also associated with a reduction in the exposure to high-intensity sound events over the course of the day. The use of active noise cancellation, as delivered by noise-cancelling headphones, is associated with a significant reduction in noise exposure in our model of noise exposure in a cardiac ICU. This is the first study to look at the potential effectiveness of active noise control in adult patients in an intensive care environment and shows that active noise control is a candidate technology to reduce noise exposure levels the patients experience during stays on intensive care.
Brady, Samuel L; Moore, Bria M; Yee, Brian S; Kaufman, Robert A
2014-01-01
To determine a comprehensive method for the implementation of adaptive statistical iterative reconstruction (ASIR) for maximal radiation dose reduction in pediatric computed tomography (CT) without changing the magnitude of noise in the reconstructed image or the contrast-to-noise ratio (CNR) in the patient. The institutional review board waived the need to obtain informed consent for this HIPAA-compliant quality analysis. Chest and abdominopelvic CT images obtained before ASIR implementation (183 patient examinations; mean patient age, 8.8 years ± 6.2 [standard deviation]; range, 1 month to 27 years) were analyzed for image noise and CNR. These measurements were used in conjunction with noise models derived from anthropomorphic phantoms to establish new beam current-modulated CT parameters to implement 40% ASIR at 120 and 100 kVp without changing noise texture or magnitude. Image noise was assessed in images obtained after ASIR implementation (492 patient examinations; mean patient age, 7.6 years ± 5.4; range, 2 months to 28 years) the same way it was assessed in the pre-ASIR analysis. Dose reduction was determined by comparing size-specific dose estimates in the pre- and post-ASIR patient cohorts. Data were analyzed with paired t tests. With 40% ASIR implementation, the average relative dose reduction for chest CT was 39% (2.7/4.4 mGy), with a maximum reduction of 72% (5.3/18.8 mGy). The average relative dose reduction for abdominopelvic CT was 29% (4.8/6.8 mGy), with a maximum reduction of 64% (7.6/20.9 mGy). Beam current modulation was unnecessary for patients weighing 40 kg or less. The difference between 0% and 40% ASIR noise magnitude was less than 1 HU, with statistically nonsignificant increases in patient CNR at 100 kVp of 8% (15.3/14.2; P = .41) for chest CT and 13% (7.8/6.8; P = .40) for abdominopelvic CT. Radiation dose reduction at pediatric CT was achieved when 40% ASIR was implemented as a dose reduction tool only; no net change to the magnitude of noise in the reconstructed image or the patient CNR occurred. © RSNA, 2013.
Experimental Study of Wake / Flap Interaction Noise and the Reduction of Flap Side Edge Noise
NASA Technical Reports Server (NTRS)
Hutcheson, Florence V.; Stead, Daniel J.; Plassman, Gerald E.
2016-01-01
The effects of the interaction of a wake with a half-span flap on radiated noise are examined. The incident wake is generated by bars of various widths and lengths or by a simplified landing gear model. Single microphone and phased array measurements are used to isolate the effects of the wake interaction on the noise radiating from the flap side edge and flap cove regions. The effects on noise of the wake generator's geometry and relative placement with respect to the flap are assessed. Placement of the wake generators upstream of the flap side edge is shown to lead to the reduction of flap side edge noise by introducing a velocity deficit and likely altering the instabilities in the flap side edge vortex system. Significant reduction in flap side edge noise is achieved with a bar positioned directly upstream of the flap side edge. The noise reduction benefit is seen to improve with increased bar width, length and proximity to the flap edge. Positioning of the landing gear model upstream of the flap side edge also leads to decreased flap side edge noise. In addition, flap cove noise levels are significantly lower than when the landing gear is positioned upstream of the flap mid-span. The impact of the local flow velocity on the noise radiating directly from the landing gear is discussed. The effects of the landing gear side-braces on flap side edge, flap cove and landing gear noise are shown.
The effect of training on noise reduction in neonatal intensive care units.
Calikusu Incekar, Mujde; Balci, Serap
2017-07-01
Noise, an environmental stimulus, is especially important in the neurobehavioral development of newborns and brain development of infants at high risk. Conditions in the neonatal intensive care units (NICUs) may cause certain sensory stimuli that are not appropriate for the development of newborns, especially preterm infants. This study was conducted in order to determine noise levels in the NICU and to evaluate the effect of training provided for noise control. This study was conducted as a pretest-posttest quasiexperimental design between September and November 2014 in a 30-bed NICU of a tertiary hospital in Istanbul. A sample group consisting of 30 people (26 nurses, 4 care workers). Noise measurement devices were used in the Training Program of Noise Control. Of the health professionals, 96.7% were women, 86.7% were nurses, and 63.3% were university graduates. Some 36.7% of the health professionals had worked within the unit for more than 5 years. Noise measurements of full implementations were made over three 24-h periods. Noise measurements were taken before and after the training on Monday, Friday, and Sunday. Noise levels after training diminished in all three measurements, and the decrease was found statistically significant (P < 0.01). Planned Noise Control Training for health professionals who work in NICUs is an effective way of reducing noise. We recommend that this training should be given to NICU health professionals and noise levels should be determined through measurements at specific times. © 2017 Wiley Periodicals, Inc.
Broadband Noise Reduction of a Low-Speed Fan Noise Using Trailing Edge Blowing
NASA Technical Reports Server (NTRS)
Sutliff, Daniel L.
2005-01-01
An experimental proof-of-concept test was conducted to demonstrate reduction of rotor-stator interaction noise through the use of rotor-trailing edge blowing. The velocity deficit from the viscous wake of the rotor blades was reduced by injecting air into the wake from a continuous trailing edge slot. Hollow blades with interior guide vanes create flow channels through which externally supplied air flows from the blade root to the trailing edge. A previous paper documented the substantial tonal reductions of this Trailing Edge Rotor Blowing (TERB) fan. This report documents the broadband characteristics of TERB. The Active Noise Control Fan (ANCF), located at the NASA Glenn Research Center, was used as the proof-of-concept test bed. Two-component hotwire data behind the rotor, unsteady surface pressures on the stator vane, and farfield directivity acoustic data were acquired at blowing rates of 1.1, 1.5, and 1.8 percent of the total fan mass flow. The results indicate a substantial reduction in the rotor wake turbulent velocity and in the stator vane unsteady surface pressures. Based on the physics of the noise generation, these indirect measurements indicate the prospect of broadband noise reduction. However, since the broadband noise generated by the ANCF is rotor-dominated, any change in the rotor-stator interaction broadband noise levels is barely distinguishable in the farfield measurements.
NASA Technical Reports Server (NTRS)
Mckinzie, D. J., Jr.
1980-01-01
Jet/flap interaction noise was measured and predicted for a small-scale model two-flap, under-the-wing, externally blown flap configuration equipped with and without noise suppression devices. The devices consisted of short spanwise fairings centered in relationship to the jet axis and positioned in the slots between the wing and flaps. The nozzle approximated that of the Quiet Clean Short-haul Experimental Engine (QCSEE). Takeoff noise reductions of 6 dB in the flyover and 5 dB in the sideline plane were obtained over a wide range of radiation angles. Approach noise reductions of about 5 dB were obtained only in the forward quadrant of the flyover plane; no reductions were obtained in the sideline plane. Models of several noise sources were combined analytically to form an overall noise prediction, the results from which compared favorably with the measured data. The aerodynamic performance characteristics for these configurations were substantially the same in the takeoff attitude. However, in the approach attitude, the suppressed configuration produced a 6 percent reduction in the flow turning efficiency.
Amplitude Noise Reduction of Ion Lasers with Optical Feedback
NASA Technical Reports Server (NTRS)
Herring, Gregory C.
2011-01-01
A reduction in amplitude noise on the output of a multi-mode continuous-wave Ar-ion laser was previously demonstrated when a fraction of the output power was retroreflected back into the laser cavity. This result was reproduced in the present work and a Fabry-Perot etalon was used to monitor the longitudinal mode structure of the laser. A decrease in the number of operating longitudinal cavity modes was observed simultaneously with the introduction of the optical feedback and the onset of the amplitude noise reduction. The noise reduction is a result of a reduced number of lasing modes, resulting in less mode beating and amplitude fluctuations of the laser output power.
Single and Multiple Microphone Noise Reduction Strategies in Cochlear Implants
Azimi, Behnam; Hu, Yi; Friedland, David R.
2012-01-01
To restore hearing sensation, cochlear implants deliver electrical pulses to the auditory nerve by relying on sophisticated signal processing algorithms that convert acoustic inputs to electrical stimuli. Although individuals fitted with cochlear implants perform well in quiet, in the presence of background noise, the speech intelligibility of cochlear implant listeners is more susceptible to background noise than that of normal hearing listeners. Traditionally, to increase performance in noise, single-microphone noise reduction strategies have been used. More recently, a number of approaches have suggested that speech intelligibility in noise can be improved further by making use of two or more microphones, instead. Processing strategies based on multiple microphones can better exploit the spatial diversity of speech and noise because such strategies rely mostly on spatial information about the relative position of competing sound sources. In this article, we identify and elucidate the most significant theoretical aspects that underpin single- and multi-microphone noise reduction strategies for cochlear implants. More analytically, we focus on strategies of both types that have been shown to be promising for use in current-generation implant devices. We present data from past and more recent studies, and furthermore we outline the direction that future research in the area of noise reduction for cochlear implants could follow. PMID:22923425
Forward sweep, low noise rotor blade
NASA Technical Reports Server (NTRS)
Brooks, Thomas F. (Inventor)
1994-01-01
A forward-swept, low-noise rotor blade includes an inboard section, an aft-swept section, and a forward-swept outboard section. The rotor blade reduces the noise of rotorcraft, including both standard helicopters and advanced systems such as tiltrotors. The primary noise reduction feature is the forward sweep of the planform over a large portion of the outer blade radius. The rotor blade also includes an aft-swept section. The purpose of the aft-swept region is to provide a partial balance to pitching moments produced by the outboard forward-swept portion of the blade. The noise source showing maximum noise reduction is blade-vortex interaction (BVI) noise. Also reduced are thickness, noise, high speed impulsive noise, cabin vibration, and loading noise.
On the role of the radiation directivity in noise reduction for STOL aircraft.
NASA Technical Reports Server (NTRS)
Gruschka, H. D.
1972-01-01
The radiation characteristics of distributed randomly fluctuating acoustic sources when shielded by finite surfaces are discussed briefly. A number of model tests using loudspeakers as artificial noise sources with a given broadband power density spectrum are used to demonstrate the effectiveness of reducing the radiated noise intensity in certain directions due to shielding. In the lateral direction of the source array noise reductions of 12 dB are observed with relatively small shields. The same shields reduce the backward radiation by approximately 20 dB. With the results obtained in these acoustic model tests the potentials of jet noise reduction of jet flap propulsion systems applicable in future STOL aircraft are discussed. The jet flap configuration as a complex aerodynamic noise source is described briefly.
NASA Astrophysics Data System (ADS)
Azarpour, Masoumeh; Enzner, Gerald
2017-12-01
Binaural noise reduction, with applications for instance in hearing aids, has been a very significant challenge. This task relates to the optimal utilization of the available microphone signals for the estimation of the ambient noise characteristics and for the optimal filtering algorithm to separate the desired speech from the noise. The additional requirements of low computational complexity and low latency further complicate the design. A particular challenge results from the desired reconstruction of binaural speech input with spatial cue preservation. The latter essentially diminishes the utility of multiple-input/single-output filter-and-sum techniques such as beamforming. In this paper, we propose a comprehensive and effective signal processing configuration with which most of the aforementioned criteria can be met suitably. This relates especially to the requirement of efficient online adaptive processing for noise estimation and optimal filtering while preserving the binaural cues. Regarding noise estimation, we consider three different architectures: interaural (ITF), cross-relation (CR), and principal-component (PCA) target blocking. An objective comparison with two other noise PSD estimation algorithms demonstrates the superiority of the blocking-based noise estimators, especially the CR-based and ITF-based blocking architectures. Moreover, we present a new noise reduction filter based on minimum mean-square error (MMSE), which belongs to the class of common gain filters, hence being rigorous in terms of spatial cue preservation but also efficient and competitive for the acoustic noise reduction task. A formal real-time subjective listening test procedure is also developed in this paper. The proposed listening test enables a real-time assessment of the proposed computationally efficient noise reduction algorithms in a realistic acoustic environment, e.g., considering time-varying room impulse responses and the Lombard effect. The listening test outcome reveals that the signals processed by the blocking-based algorithms are significantly preferred over the noisy signal in terms of instantaneous noise attenuation. Furthermore, the listening test data analysis confirms the conclusions drawn based on the objective evaluation.
Effective Jet Properties for the Prediction of Turbulent Mixing Noise Reduction by Water Injection
NASA Technical Reports Server (NTRS)
Kandula, Max; Lonergan, Michael J.
2007-01-01
A one-dimensional control volume formulation is developed for the determination of jet mixing noise reduction due to water injection. The analysis starts from the conservation of mass, momentum and energy for the control volume, and introduces the concept of effective jet parameters (jet temperature, jet velocity and jet Mach number). It is shown that the water to jet mass flow rate ratio is an important parameter characterizing the jet noise reduction on account of gas-to-droplet momentum and heat transfer. Two independent dimensionless invariant groups are postulated, and provide the necessary relations for the droplet size and droplet Reynolds number. Results are presented illustrating the effect of mass flow rate ratio on the jet mixing noise reduction for a range of jet Mach number and jet Reynolds number. Predictions from the model show satisfactory comparison with available test data on supersonic jets. The results suggest that significant noise reductions can be achieved at increased flow rate ratios.
Prediction of Turbulent Jet Mixing Noise Reduction by Water Injection
NASA Technical Reports Server (NTRS)
Kandula, Max
2008-01-01
A one-dimensional control volume formulation is developed for the determination of jet mixing noise reduction due to water injection. The analysis starts from the conservation of mass, momentum and energy for the confrol volume, and introduces the concept of effective jet parameters (jet temperature, jet velocity and jet Mach number). It is shown that the water to jet mass flow rate ratio is an important parameter characterizing the jet noise reduction on account of gas-to-droplet momentum and heat transfer. Two independent dimensionless invariant groups are postulated, and provide the necessary relations for the droplet size and droplet Reynolds number. Results are presented illustrating the effect of mass flow rate ratio on the jet mixing noise reduction for a range of jet Mach number and jet Reynolds number. Predictions from the model show satisfactory comparison with available test data on perfectly expanded hot supersonic jets. The results suggest that significant noise reductions can be achieved at increased flow rate ratios.
NASA Technical Reports Server (NTRS)
Levere, T. E.; Davis, N.
1977-01-01
The present research was concerned with whether or not a 15 dB(A) reduction in overall noise level would lessen the sleep disturbing properties of jet aircraft flyover noise and, if less disturbing, whether this would be subjectively appreciated by the sleeping individual. The results indicate that a reduction of 15 dB (A) does result in less sleep disruption but only during sleep characterized by fast-wave electroencephalographic activity. During sleep characterized by slow-wave electroencephalographic activity, such a reduction in the sleep-disturbing properties of jet aircraft noise has little effect. Moreover, even when effective during fast-wave sleep, the decreased arousal produced by the lower noise levels is not subjectively appreciated by the individual in terms of his estimate of the quality of his night's sleep. Thus, reducing the overall noise level of jet aircraft flyovers by some 15 dB(A), is, at best, minimally beneficial to sleep.
Empennage Noise Shielding Benefits for an Open Rotor Transport
NASA Technical Reports Server (NTRS)
Berton, Jeffrey J.
2012-01-01
NASA sets aggressive, strategic, civil aircraft performance and environmental goals and develops ambitious technology roadmaps to guide its research efforts. NASA has adopted a phased approach for community noise reduction of civil aircraft. While the goal of the near-term first phase focuses primarily on source noise reduction, the goal of the second phase relies heavily on presumed architecture changes of future aircraft. The departure from conventional airplane configurations to designs that incorporate some type of propulsion noise shielding is anticipated to provide an additional 10 cumulative EPNdB of noise reduction. One candidate propulsion system for these advanced aircraft is the open rotor engine. In some planned applications, twin open rotor propulsors are located on the aft fuselage, with the vehicle s empennage shielding some of their acoustic signature from observers on the ground. This study focuses on predicting the noise certification benefits of a notional open rotor aircraft with tail structures shielding a portion of the rotor noise. The measured noise of an open rotor test article--collected with and without an acoustic barrier wall--is the basis of the prediction. The results are used to help validate NASA s reliance on acoustic shielding to achieve the second phase of its community noise reduction goals. The noise measurements are also compared to a popular empirical diffraction correlation often used at NASA to predict acoustic shielding.
NASA Technical Reports Server (NTRS)
Miles, Jeffrey Hilton; Hultgren, Lennart S.
2015-01-01
The study of noise from a two-shaft contra-rotating open rotor (CROR) is challenging since the shafts are not phase locked in most cases. Consequently, phase averaging of the acoustic data keyed to a single shaft rotation speed is not meaningful. An unaligned spectrum procedure that was developed to estimate a signal coherence threshold and reveal concealed spectral lines in turbofan engine combustion noise is applied to fan and CROR acoustic data in this paper (also available as NASA/TM-2015-218865). The NASA Advanced Air Vehicles Program, Advanced Air Transport Technology Project, Aircraft Noise Reduction Subproject supported the current work. The fan and open rotor data were obtained under previous efforts supported by the NASA Quiet Aircraft Technology (QAT) Project and the NASA Environmentally Responsible Aviation (ERA) Project of the Integrated Systems Research Program in collaboration with GE Aviation, respectively. The overarching goal of the Advanced Air Transport (AATT) Project is to explore and develop technologies and concepts to revolutionize the energy efficiency and environmental compatibility of fixed wing transport aircrafts. These technological solutions are critical in reducing the impact of aviation on the environment even as this industry and the corresponding global transportation system continue to grow.
Engine-propeller power plant aircraft community noise reduction key methods
NASA Astrophysics Data System (ADS)
Moshkov P., A.; Samokhin V., F.; Yakovlev A., A.
2018-04-01
Basic methods of aircraft-type flying vehicle engine-propeller power plant noise reduction were considered including single different-structure-and-arrangement propellers and piston engines. On the basis of a semiempirical model the expressions for blade diameter and number effect evaluation upon propeller noise tone components under thrust constancy condition were proposed. Acoustic tests performed at Moscow Aviation institute airfield on the whole qualitatively proved the obtained ratios. As an example of noise and detectability reduction provision a design-and-experimental estimation of propeller diameter effect upon unmanned aircraft audibility boundaries was performed. Future investigation ways were stated to solve a low-noise power plant design problem for light aircraft and unmanned aerial vehicles.
NASA Technical Reports Server (NTRS)
Hayden, R. E.; Kadman, Y.; Chanaud, R. C.
1972-01-01
The feasibility of quieting the externally-blown-flap (EBF) noise sources which are due to interaction of jet exhaust flow with deployed flaps was demonstrated on a 1/15-scale 3-flap EBF model. Sound field characteristics were measured and noise reduction fundamentals were reviewed in terms of source models. Test of the 1/15-scale model showed broadband noise reductions of up to 20 dB resulting from combination of variable impedance flap treatment and mesh grids placed in the jet flow upstream of the flaps. Steady-state lift, drag, and pitching moment were measured with and without noise reduction treatment.
Low-frequency noise reduction of lightweight airframe structures
NASA Technical Reports Server (NTRS)
Getline, G. L.
1976-01-01
The results of an experimental study to determine the noise attenuation characteristics of aircraft type fuselage structural panels were presented. Of particular interest was noise attenuation at low frequencies, below the fundamental resonances of the panels. All panels were flightweight structures for transport type aircraft in the 34,050 to 45,400 kg (75,000 to 100,000 pounds) gross weight range. Test data include the results of vibration and acoustic transmission loss tests on seven types of isotropic and orthotropically stiffened, flat and curved panels. The results show that stiffness controlled acoustically integrated structures can provide very high noise reductions at low frequencies without significantly affecting their high frequency noise reduction capabilities.
NASA Technical Reports Server (NTRS)
Dittmar, J. H.; Woodward, R. P.; Mackinnon, M. J.
1984-01-01
The noise source caused by the interaction of the rotor tip flow irregularities (vortices and velocity defects) with the downstream stator vanes was studied. Fan flow was removed behind a 0.508 meter (20 in.) diameter model turbofan through an outer wall slot between the rotor and stator. Noise measurements were made with far-field microphones positioned in an arc about the fan inlet and with a pressure transducer in the duct behind the stator. Little tone noise reduction was observed in the forward arc during flow removal; possibly because the rotor-stator interaction noise did not propagate upstream through the rotor. Noise reductions were maded in the duct behind the stator and the largest decrease occurred with the first increment of flow removal. This result indicates that the rotor tip flow irregularity-stator interaction is as important a noise producing mechanism as the normally considered rotor wake-stator interaction.
Active Noise Control of Radiated Noise from Jets Originating NASA
NASA Technical Reports Server (NTRS)
Doty, Michael J.; Fuller, Christopher R.; Schiller, Noah H.; Turner, Travis L.
2013-01-01
The reduction of jet noise using a closed-loop active noise control system with highbandwidth active chevrons was investigated. The high frequency energy introduced by piezoelectrically-driven chevrons was demonstrated to achieve a broadband reduction of jet noise, presumably due to the suppression of large-scale turbulence. For a nozzle with one active chevron, benefits of up to 0.8 dB overall sound pressure level (OASPL) were observed compared to a static chevron nozzle near the maximum noise emission angle, and benefits of up to 1.9 dB OASPL were observed compared to a baseline nozzle with no chevrons. The closed-loop actuation system was able to effectively reduce noise at select frequencies by 1-3 dB. However, integrated OASPL did not indicate further reduction beyond the open-loop benefits, most likely due to the preliminary controller design, which was focused on narrowband performance.
NASA's Quiet Aircraft Technology Project
NASA Technical Reports Server (NTRS)
Whitfield, Charlotte E.
2004-01-01
NASA's Quiet Aircraft Technology Project is developing physics-based understanding, models and concepts to discover and realize technology that will, when implemented, achieve the goals of a reduction of one-half in perceived community noise (relative to 1997) by 2007 and a further one-half in the far term. Noise sources generated by both the engine and the airframe are considered, and the effects of engine/airframe integration are accounted for through the propulsion airframe aeroacoustics element. Assessments of the contribution of individual source noise reductions to the reduction in community noise are developed to guide the work and the development of new tools for evaluation of unconventional aircraft is underway. Life in the real world is taken into account with the development of more accurate airport noise models and flight guidance methodology, and in addition, technology is being developed that will further reduce interior noise at current weight levels or enable the use of lighter-weight structures at current noise levels.
Assessment of Soft Vane and Metal Foam Engine Noise Reduction Concepts
NASA Technical Reports Server (NTRS)
Jones, Michael G.; Parrott, Tony L.; Sutliff, Daniel L.; Hughes, Chris
2009-01-01
Two innovative fan-noise reduction concepts developed by NASA are presented - soft vanes and over-the-rotor metal foam liners. Design methodologies are described for each concept. Soft vanes are outlet guide vanes with internal, resonant chambers that communicate with the exterior aeroacoustic environment via a porous surface. They provide acoustic absorption via viscous losses generated by interaction of unsteady flows with the internal solid structure. Over-the-rotor metal foam liners installed at or near the fan rotor axial plane provide rotor noise absorption. Both concepts also provide pressure-release surfaces that potentially inhibit noise generation. Several configurations for both concepts are evaluated with a normal incidence tube, and the results are used to guide designs for implementation in two NASA fan rigs. For soft vanes, approximately 1 to 2 dB of broadband inlet and aft-radiated fan noise reduction is achieved. For over-the-rotor metal foam liners, up to 3 dB of fan noise reduction is measured in the low-speed fan rig, but minimal reduction is measured in the high-speed fan rig. These metal foam liner results are compared with a static engine test, in which inlet sound power level reductions up to 5 dB were measured. Brief plans for further development are also provided.
Active Chevrons for Jet Noise Reduction
NASA Technical Reports Server (NTRS)
Depuru-Mohan, N. K.; Doty, M. J.
2017-01-01
Jet noise is often a dominant component of aircraft noise, particularly at takeoff. To meet the stringent noise regulations, the aircraft industry is in a pressing need of advanced noise reduction concepts. In the present study, the potential of piezoelectrically-activated chevrons for jet noise reduction was experimentally investigated. The perturbations near the nozzle exit caused by piezoelectrically-activated chevrons could be used to modify the growth rate of the mixing layer and thereby potentially reduce jet noise. These perturbations are believed to increase the production of small-scale disturbances at the expense of large-scale turbulent structures. These large-scale turbulent structures are responsible for the dominant portion of the jet mixing noise, particularly low-frequency noise. Therefore, by exciting the static chevron geometry through piezoelectric actuators, an additional acoustic benefit could possibly be achieved. To aid in the initial implementation of this concept, several flat-faced faceted nozzles (four, six, and eight facets) were investigated. Among the faceted nozzles, it was found that the eight-faceted nozzle behaves very similarly to the round nozzle. Furthermore, among the faceted nozzles with static chevrons, the four-faceted nozzle with static chevrons was found to be most effective in terms of jet noise reduction. The piezoelectrically-activated chevrons reduced jet noise up to 2 dB compared to the same nozzle geometry without excitation. This benefit was observed over a wide range of excitation frequencies by applying very low voltages to the piezoelectric actuators.
NASA Astrophysics Data System (ADS)
Schulte-Werning, B.; Beier, M.; Degen, K. G.; Stiebel, D.
2006-06-01
One of the most prominent keywords relating to the environmental friendliness of railway traffic is noise reduction. Thus, the research and development programme "Low Noise Railway" of Deutsche Bahn (DB) is under way to treat the noise of the vehicles and infrastructure. The noise reduction of the trains and the rail/wheel system are being tackled within several projects. The direct noise experienced by railway-lineside residents due to train movements on the track can be reduced by minimising the sound radiation directly at the source. This is the first-choice solution, as it proves to be the most effective countermeasure regarding a cost-benefit relation. The limit values for the noise emission as specified in the technical specification for interoperability are an essential criterion to be confirmed during the procurement process of railway vehicles. A recently developed acoustical quality management scheme establishes systematic noise management to complete the vehicle procurement process in the phases of concept, design, construction and manufacturing. In freight traffic quiet railway wheels for block brake operation will play an important role in the future to meet the goal of a low-noise railway system. A first attempt to realise successfully the low-noise potential of such optimised wheels was performed, even if with mixed results. To show ways of reducing the noise of the cooling ventilation in locomotives, DB is a partner in a development project led by Siemens. A notable 8 dB(A) noise reduction was measured. Concerning bridge noise, a project was started based on an effective and cost-efficient combination of experiments and simulations in order to develop specifications for the construction of generic low-noise bridges.
Liu, Yu; Leng, Shuai; Michalak, Gregory J; Vrieze, Thomas J; Duan, Xinhui; Qu, Mingliang; Shiung, Maria M; McCollough, Cynthia H; Fletcher, Joel G
2014-01-01
To investigate whether the integrated circuit (IC) detector results in reduced noise in computed tomography (CT) colonography (CTC). Three hundred sixty-six consecutive patients underwent clinically indicated CTC using the same CT scanner system, except for a difference in CT detectors (IC or conventional). Image noise, patient size, and scanner radiation output (volume CT dose index) were quantitatively compared between patient cohorts using each detector system, with separate comparisons for the abdomen and pelvis. For the abdomen and pelvis, despite significantly larger patient sizes in the IC detector cohort (both P < 0.001), image noise was significantly lower (both P < 0.001), whereas volume CT dose index was unchanged (both P > 0.18). Based on the observed image noise reduction, radiation dose could alternatively be reduced by approximately 20% to result in similar levels of image noise. Computed tomography colonography images acquired using the IC detector had significantly lower noise than images acquired using the conventional detector. This noise reduction can permit further radiation dose reduction in CTC.
Comparison of noise reduction systems
NASA Astrophysics Data System (ADS)
Noel, S. D.; Whitaker, R. W.
1991-06-01
When using infrasound as a tool for verification, the most important measurement to determine yield has been the peak-to-peak pressure amplitude of the signal. Therefore, there is a need to operate at the most favorable signal-to-noise ratio (SNR) possible. Winds near the ground can degrade the SNR, thereby making accurate signal amplitude measurement difficult. Wind noise reduction techniques were developed to help alleviate this problem; however, a noise reducing system should reduce the noise, and should not introduce distortion of coherent signals. An experiment is described to study system response for a variety of noise reducing configurations to a signal generated by an underground test (UGT) at the Nevada Test Site (NTS). In addition to the signal, background noise reduction is examined through measurements of variance. Sensors using two particular geometries of noise reducing equipment, the spider and the cross appear to deliver the best SNR. Because the spider configuration is easier to deploy, it is now the most commonly used.
Jet noise and performance comparison study of a Mach 2.55 supersonic cruise aircraft
NASA Technical Reports Server (NTRS)
Mascitti, V. R.; Maglieri, D. J.
1979-01-01
Data provided by the manufacturer relating to noise and performance of a Mach 2.55 supersonic cruise concept employing a post 1985 technology level, variable cycle engine was used to identify differences in noise levels and performance between the manfacturer and NASA associated with methodology and groundrules. In addition, economic and noise information is provided consistent with a previous study based on an advanced technology Mach 2.7 configuration. The results indicate that the difference between the NASA's and manfacturer's performance methodology is small. Resizing the aircraft to NASA groundrules also results in small changes in flyover, sideline and approach noise levels. For the power setting chosen, engine oversizing resulted in no reduction in traded noise. In terms of summated noise level, a 10 EPNdB reduction is realized for an 8 percent increase in total operating costs. This corresponds to an average noise reduction of 3.3 EPNdB at the three observer positions.
External Acoustic Liners for Multi-Functional Aircraft Noise Reduction
NASA Technical Reports Server (NTRS)
Jones, Michael G. (Inventor); Czech, Michael J. (Inventor); Howerton, Brian M. (Inventor); Thomas, Russell H. (Inventor); Nark, Douglas M. (Inventor)
2017-01-01
Acoustic liners for aircraft noise reduction include one or more chambers that are configured to provide a pressure-release surface such that the engine noise generation process is inhibited and/or absorb sound by converting the sound into heat energy. The size and shape of the chambers can be selected to inhibit the noise generation process and/or absorb sound at selected frequencies.
Experimental Quiet Sprocket Design and Noise Reduction in Tracked Vehicles
1981-04-01
Track and Suspension Noise Reduction Statistical Energy Analysis Mechanical Impedance Measurement Finite Element Modal Analysis\\Noise Sources 2...shape and idler attachment are different. These differen- ces were investigated using the concepts of statistical energy analysis for hull generated noise...element r,’calculated from Statistical Energy Analysis . Such an approach will be valid within reasonable limits for frequencies of about 200 Hz and
Flow and Noise Control: Review and Assessment of Future Directions
NASA Technical Reports Server (NTRS)
Thomas, Russell H.; Choudhari, Meelan M.; Joslin, Ronald D.
2002-01-01
Technologies for developing radically new aerovehicles that would combine quantum leaps in cost, safety, and performance benefits with environmental friendliness have appeared on the horizon. This report provides both an assessment of the current state-of-the-art in flow and noise control and a vision for the potential gains to be made, in terms of performance benefit for civil and military aircraft and a unique potential for noise reduction, via future advances in flow and noise technologies. This report outlines specific areas of research that will enable the breakthroughs necessary to bring this vision to reality. Recent developments in many topics within flow and noise control are reviewed. The flow control overview provides succinct summaries of various approaches for drag reduction and improved maneuvering. Both exterior and interior noise problems are examined, including dominant noise sources, physics of noise generation and propagation, and both established and proposed concepts for noise reduction. Synergy between flow and noise control is a focus and, more broadly, the need to pursue research in a more concurrent approach involving multiple disciplines. Also discussed are emerging technologies such as nanotechnology that may have a significant impact on the progress of flow and noise control.
Flight Test Results for Uniquely Tailored Propulsion-Airframe Aeroacoustic Chevrons: Shockcell Noise
NASA Technical Reports Server (NTRS)
Mengle, Vinod G.; Ganz, Ulrich W.; Nesbitt, Eric; Bultemeier, Eric J.; Thomas, Russell H.; Nesbitt, Eric
2006-01-01
Azimuthally varying chevrons (AVC) which have been uniquely tailored to account for the asymmetric propulsion-airframe aeroacoustic interactions have recently shown significant reductions in jet-related community noise at low-speed take-off conditions in scale model tests of coaxial nozzles with high bypass ratio. There were indications that such AVCs may also provide shockcell noise reductions at high cruise speeds. This paper describes the flight test results when one such AVC concept, namely, the T-fan chevrons with enhanced mixing near the pylon, was tested at full-scale on a modern large twin-jet aircraft (777-300ER) with focus on shockcell noise at mid-cruise conditions. Shockcell noise is part of the interior cabin noise at cruise conditions and its reduction is useful from the viewpoint of passenger comfort. Noise reduction at the source, in the exhaust jet, especially, at low frequencies, is beneficial from the perspective of reduced fuselage sidewall acoustic lining. Results are shown in terms of unsteady pressure spectra both on the exterior surface of the fuselage at several axial stations and also microphone arrays placed inside the fuselage aft of the engine. The benefits of T-fan chevrons, with and without conventional chevrons on the core nozzle, are shown for several engine operating conditions at cruise involving supersonic fan stream and subsonic or supersonic core stream. The T-fan AVC alone provides up to 5 dB low-frequency noise reduction on the fuselage exterior skin and up to 2 dB reduction inside the cabin. Addition of core chevrons appears to increase the higher frequency noise. This flight test result with the previous model test observation that the T-fan AVCs have hardly any cruise thrust coefficient loss (< 0.05%) make them viable candidates for reducing interior cabin noise in high bypass ratio engines.
Helicopter Non-Unique Trim Strategies for Blade-Vortex Interaction (BVI) Noise Reduction
NASA Technical Reports Server (NTRS)
Malpica, Carlos; Greenwood, Eric; Sim, Ben W.
2016-01-01
An acoustics parametric analysis of the effect of fuselage drag and pitching moment on the Blade-Vortex Interaction (BVI) noise radiated by a medium lift helicopter (S-70UH-60) in a descending flight condition was conducted. The comprehensive analysis CAMRAD II was used for the calculation of vehicle trim, wake geometry and integrated air loads on the blade. The acoustics prediction code PSU-WOPWOP was used for calculating acoustic pressure signatures for a hemispherical grid centered at the hub. This paper revisits the concept of the X-force controller for BVI noise reduction, and investigates its effectiveness on an S-70 helicopter. The analysis showed that further BVI noise reductions were achievable by controlling the fuselage pitching moment. Reductions in excess of 6 dB of the peak BVI noise radiated towards the ground were demonstrated by compounding the effect of airframe drag and pitching moment simultaneously.
RANS Analyses of Turbofan Nozzles with Wedge Deflectors for Noise Reduction
NASA Technical Reports Server (NTRS)
DeBonis, James R.
2008-01-01
Computational fluid dynamics (CFD) was used to evaluate a promising concept for reducing the noise at take-off of dual-stream, turbofan nozzles. The concept, offset stream technology, reduces the jet noise observed on the ground by diverting (offsetting) the majority of the fan flow below the core flow, thickening this layer between the high velocity core flow and the ground observers. In this study a wedge placed in the internal fan stream is used as the diverter. Wind, a Reynolds Averaged Navier-Stokes (RANS) code, was used to analyze the flowfield of the exhaust plume and to calculate nozzle performance. Results showed that the wedge effectively diverts the fan flow and the turbulent kinetic energy on the observer side of the nozzle is reduced. The reduction in turbulent kinetic energy should correspond to a reduction in noise. The blockage due to the wedge reduces the fan massflow proportional to its blockage and the overall thrust is consequently reduced. The CFD predictions are in very good agreement with experimental data. This noise reduction concept shows promise for reduced jet noise at a small reduction in thrust. It has been demonstrated that RANS CFD can be used to optimize this concept.
Reduction of randomness in seismic noise as a short-term precursor to a volcanic eruption.
Glynn, C C; Konstantinou, K I
2016-11-24
Ambient seismic noise is characterized by randomness incurred by the random position and strength of the noise sources as well as the heterogeneous properties of the medium through which it propagates. Here we use ambient noise data recorded prior to the 1996 Gjálp eruption in Iceland in order to show that a reduction of noise randomness can be a clear short-term precursor to volcanic activity. The eruption was preceded on 29 September 1996 by a Mw ~5.6 earthquake that occurred in the caldera rim of the Bárdarbunga volcano. A significant reduction of randomness started occurring 8 days before the earthquake and 10 days before the onset of the eruption. This reduction was observed even at stations more than 100 km away from the eruption site. Randomness increased to its previous levels 160 minutes after the Bárdarbunga earthquake, during which time aftershocks migrated from the Bárdarbunga caldera to a site near the Gjálp eruption fissure. We attribute this precursory reduction of randomness to the lack of higher frequencies (>1 Hz) in the noise wavefield caused by high absorption losses as hot magma ascended in the upper crust.
Reduction of randomness in seismic noise as a short-term precursor to a volcanic eruption
Glynn, C. C.; Konstantinou, K. I.
2016-01-01
Ambient seismic noise is characterized by randomness incurred by the random position and strength of the noise sources as well as the heterogeneous properties of the medium through which it propagates. Here we use ambient noise data recorded prior to the 1996 Gjálp eruption in Iceland in order to show that a reduction of noise randomness can be a clear short-term precursor to volcanic activity. The eruption was preceded on 29 September 1996 by a Mw ~5.6 earthquake that occurred in the caldera rim of the Bárdarbunga volcano. A significant reduction of randomness started occurring 8 days before the earthquake and 10 days before the onset of the eruption. This reduction was observed even at stations more than 100 km away from the eruption site. Randomness increased to its previous levels 160 minutes after the Bárdarbunga earthquake, during which time aftershocks migrated from the Bárdarbunga caldera to a site near the Gjálp eruption fissure. We attribute this precursory reduction of randomness to the lack of higher frequencies (>1 Hz) in the noise wavefield caused by high absorption losses as hot magma ascended in the upper crust. PMID:27883050
NASA Astrophysics Data System (ADS)
Zaušková, Lucia; Czán, Andrej; Babík, Ondrej; Piešová, Marianna
2015-12-01
Article deals with the issue of reducing noise impact in real conditions of industrial production. The solution includes measurements and calculations of noise level the person is exposed to and developing proposals for effective reduction of noise levels at the specific workplace. When assessing noise levels and design to reduce it to an acceptable level we will consider the legal, safety and economic conditions.
Adaptive noise reduction circuit for a sound reproduction system
NASA Technical Reports Server (NTRS)
Engebretson, A. Maynard (Inventor); O'Connell, Michael P. (Inventor)
1995-01-01
A noise reduction circuit for a hearing aid having an adaptive filter for producing a signal which estimates the noise components present in an input signal. The circuit includes a second filter for receiving the noise-estimating signal and modifying it as a function of a user's preference or as a function of an expected noise environment. The circuit also includes a gain control for adjusting the magnitude of the modified noise-estimating signal, thereby allowing for the adjustment of the magnitude of the circuit response. The circuit also includes a signal combiner for combining the input signal with the adjusted noise-estimating signal to produce a noise reduced output signal.
Phase-Noise and Amplitude-Noise Measurement of Low-Power Signals
NASA Technical Reports Server (NTRS)
Rubiola, Enrico; Salik, Ertan; Yu, Nan; Maleki, Lute
2004-01-01
Measuring the phase fluctuation between a pair of low-power microwave signals, the signals must be amplified before detection. In such cases the phase noise of the amplifier pair is the main cause of 1/f background noise of the instrument. this article proposes a scheme that makes amplification possible while rejecting the close in 1/f (flicker) noise of the two amplifiers. Noise rejection, which relies upon the understanding of the amplifier noise mechanism does not require averaging. Therefore, our scheme can also be the detector of a closed loop noise reduction system. the first prototype, compared to a traditional saturated mixer system under the same condition, show a 24 dB noise reduction of the 1/f region.
Ka-band MMIC subarray technology program (Ka-Mist)
NASA Technical Reports Server (NTRS)
Pottenger, Warren
1995-01-01
The broad objective of this program was to demonstrate a proof of concept insertion of Monolithic Microwave Integrated Circuit (MMIC) device technology into an innovative (tile architecture) active phased array antenna application supporting advanced EHF communication systems. Ka-band MMIC arrays have long been considered as having high potential for increasing the capability of space, aircraft, and land mobile communication systems in terms of scan performance, data rate, link margin, and flexibility while offering a significant reduction in size, weight, and power consumption. Insertion of MMIC technology into antenna systems, particularly at millimeter wave frequencies using low power and low noise amplifiers in close proximity to the radiating elements, offers a significant improvement in the array transmit efficiency, receive system noise figure, and overall array reliability. Application of active array technology also leads to the use of advanced beamforming techniques that can improve beam agility, diversity, and adaptivity to complex signal environments.
Reduction of Helicopter Blade-Vortex Interaction Noise by Active Rotor Control Technology
NASA Technical Reports Server (NTRS)
Yu, Yung H.; Gmelin, Bernd; Splettstoesser, Wolf; Brooks, Thomas F.; Philippe, Jean J.; Prieur, Jean
1997-01-01
Helicopter blade-vortex interaction noise is one of the most severe noise sources and is very important both in community annoyance and military detection. Research over the decades has substantially improved basic physical understanding of the mechanisms generating rotor blade-vortex interaction noise and also of controlling techniques, particularly using active rotor control technology. This paper reviews active rotor control techniques currently available for rotor blade vortex interaction noise reduction, including higher harmonic pitch control, individual blade control, and on-blade control technologies. Basic physical mechanisms of each active control technique are reviewed in terms of noise reduction mechanism and controlling aerodynamic or structural parameters of a blade. Active rotor control techniques using smart structures/materials are discussed, including distributed smart actuators to induce local torsional or flapping deformations, Published by Elsevier Science Ltd.
Results from the Air Force Geophysics Laboratory survey catalog. [IR astronomy
NASA Technical Reports Server (NTRS)
Price, S. D.; Walker, R. G.
1977-01-01
Results of an IR survey program designed to obtain the spatial and brightness distributions of a representative sample of IR-emitting objects in the 3-30 micron range are analyzed. Small cryogenically cooled telescopes carried above the atmosphere on sounding rockets were employed in the research. Minimization of sky noise and photon background, experimental equipment, and data reduction techniques are discussed.
1978-05-01
controls and executes the jet plume flow field compu- tation. After each axial slice has been evaluated, the MAIN program calls subroutine SLICE to...input data; otherwise the execution is halted. 4.3.2 ARCCOS(X) This is a function subroutine which computes the principal value of the arc cosine of the... execution time available. Each successive case requires a title card (80 - character label in columns 1 - 80), followed by the INPUT NAMELIST. The data from
49 CFR 227.103 - Noise monitoring program.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Noise monitoring program. 227.103 Section 227.103..., DEPARTMENT OF TRANSPORTATION OCCUPATIONAL NOISE EXPOSURE Occupational Noise Exposure for Railroad Operating Employees. § 227.103 Noise monitoring program. (a) Schedule. A railroad shall develop and implement a noise...
Noise Pollution Control System in the Hospital Environment
NASA Astrophysics Data System (ADS)
Figueroa Gallo, LM; Olivera, JM
2016-04-01
Problems related to environmental noise are not a new subject, but they became a major issue to solve because of the increasing, in complexity and intensity, of human activities due technological advances. Numerous international studies had dealt with the exposure of critical patients to noisy environment such as the Neonatal Intensive Care Units; their results show that there are difficulties in the organization in the developing brain, it can damage the delicate auditory structures and can cause biorhythm disorders, specially in preterm infants. The objective of this paper is to present the development and implementation of a control system that includes technical-management-training aspects to regulate the levels of specific noise sources in the neonatal hospitalization environment. For this purpose, there were applied different tools like: observations, surveys, procedures, an electronic control device and a training program for a Neonatal Service Unit. As a result, all noise sources were identified -some of them are eliminable-; all the service stable staff categories participated voluntarily; environmental noise measurements yielded values between 62.5 and 64.6 dBA and maximum were between 86.1 and 89.7 dBA; it was designed and installed a noise control device and the staff is being trained in noise reduction best practices.
Reduction of Wake-Stator Interaction Noise Using Passive Porosity
NASA Technical Reports Server (NTRS)
Tinetti, Ana F.; Kelly, Jeffrey J.; Thomas, Russell H.; Bauer, Steven X. S.
2002-01-01
The present study was conducted to assess the potential of Passive Porosity Technology as a mechanism to reduce interaction noise in turbomachinery by reducing the fluctuating forces acting on the vane surfaces. To do so, a typical fan stator airfoil was subjected to the effects of a transversely moving wake; time histories of the primitive aerodynamic variables, obtained from Computational Fluid Dynamics (CFD) solutions, were then input into an acoustic prediction code. This procedure was performed on the solid airfoil to obtain a baseline, and on a series of porous configurations in order to isolate those that yield maximum noise reductions without compromising the aerodynamic performance of the stator. It was found that communication between regions of high pressure differential - made possible by the use of passive porosity - is necessary to significantly alter the noise radiation pattern of the stator airfoil. In general, noise reductions were obtained for those configurations incorporating passive porosity in the region between x/c is approximately 0.15 on the suction side of the airfoil and x/c is approximately 0.20 on the pressure side. Reductions in overall radiated noise of approximately 1.0 dB were obtained. The noise benefit increased to about 2.5 dB when the effects of loading noise alone were considered.
The relative importance of noise and vibration from railways.
Howarth, H V; Griffin, M J
1990-06-01
An experiment was conducted to determine the subjective equivalence of railway noise and railway-induced building vibration, and hence the relative importance of the two stimuli. Six magnitudes of whole-body, vertical (z-axis) vibration and six levels of noise were presented simultaneously to each of 30 subjects in all 36 possible paired combinations. The stimuli were reproductions of the noise and vibration recorded inside a house during the passage of a train. The subjects were asked to indicate, after each presentation, which of the two stimuli (noise and vibration) they would prefer to be reduced. A seven-point scale was employed to indicate the total annoyance produced by the two stimuli. A subjective equivalence contour was determined from the levels at which 50% of the subjects preferred the reduction of noise and 50% preferred the reduction of vibration. The contour may be described by the relation L(AE) = 29.3 log10 VDV + 89.2, where L(AE) is the sound exposure level and VDV is the vibration dose value. This relation may be used to determine whether a reduction of noise or a reduction of vibration would be more beneficial to residents near railways. The total annoyance due to simultaneous noise and vibration was shown to depend on the magnitude of both stimuli.
Potential for Landing Gear Noise Reduction on Advanced Aircraft Configurations
NASA Technical Reports Server (NTRS)
Thomas, Russell H.; Nickol, Craig L.; Burley, Casey L.; Guo, Yueping
2016-01-01
The potential of significantly reducing aircraft landing gear noise is explored for aircraft configurations with engines installed above the wings or the fuselage. An innovative concept is studied that does not alter the main gear assembly itself but does shorten the main strut and integrates the gear in pods whose interior surfaces are treated with acoustic liner. The concept is meant to achieve maximum noise reduction so that main landing gears can be eliminated as a major source of airframe noise. By applying this concept to an aircraft configuration with 2025 entry-into-service technology levels, it is shown that compared to noise levels of current technology, the main gear noise can be reduced by 10 EPNL dB, bringing the main gear noise close to a floor established by other components such as the nose gear. The assessment of the noise reduction potential accounts for design features for the advanced aircraft configuration and includes the effects of local flow velocity in and around the pods, gear noise reflection from the airframe, and reflection and attenuation from acoustic liner treatment on pod surfaces and doors. A technical roadmap for maturing this concept is discussed, and the possible drag increase at cruise due to the addition of the pods is identified as a challenge, which needs to be quantified and minimized possibly with the combination of detailed design and application of drag reduction technologies.
The fallacy of using NII in analyzing aircraft operations. [Noise Impact Index
NASA Technical Reports Server (NTRS)
Melton, R. G.; Jacobson, I. D.
1984-01-01
Three measures of noise annoyance (Noise Impact Index, Level-Weighted Population, and Annoyed Population Number) are compared, regarding their utility in assessing noise reduction schemes for aircraft operations. While NII is intended to measure the average annoyance per person in a community, it is found that the method of averaging can lead to erroneous conclusions, particularly if the population does not have uniform spatial distribution. Level-Weighted Population and Annoyed Population Number are shown to be better indicators of noise annoyance when rating different strategies for noise reduction in a given community.
NASA Astrophysics Data System (ADS)
Nagai, Yuichi; Kitagawa, Mayumi; Torii, Jun; Iwase, Takumi; Aso, Tomohiko; Ihara, Kanyu; Fujikawa, Mari; Takeuchi, Yumiko; Suzuki, Katsumi; Ishiguro, Takashi; Hara, Akio
2014-03-01
Recently, the double contrast technique in a gastrointestinal examination and the transbronchial lung biopsy in an examination for the respiratory system [1-3] have made a remarkable progress. Especially in the transbronchial lung biopsy, better quality of x-ray fluoroscopic images is requested because this examination is performed under a guidance of x-ray fluoroscopic images. On the other hand, various image processing methods [4] for x-ray fluoroscopic images have been developed as an x-ray system with a flat panel detector [5-7] is widely used. A recursive filtering is an effective method to reduce a random noise in x-ray fluoroscopic images. However it has a limitation for its effectiveness of a noise reduction in case of a moving object exists in x-ray fluoroscopic images because the recursive filtering is a noise reduction method by adding last few images. After recursive filtering a residual signal was produced if a moving object existed in x-ray images, and this residual signal disturbed a smooth procedure of the examinations. To improve this situation, new noise reduction method has been developed. The Adaptive Noise Reduction [ANR] is the brand-new noise reduction technique which can be reduced only a noise regardless of the moving object in x-ray fluoroscopic images. Therefore the ANR is a very suitable noise reduction method for the transbronchial lung biopsy under a guidance of x-ray fluoroscopic images because the residual signal caused of the moving object in x-ray fluoroscopic images is never produced after the ANR. In this paper, we will explain an advantage of the ANR by comparing of a performance between the ANR images and the conventional recursive filtering images.
Bai, Mingsian R; Pan, Weichi; Chen, Hungyu
2018-03-01
Active noise control (ANC) of headsets is revisited in this paper. An in-depth electroacoustic analysis of the combined loudspeaker-cavity headset system is conducted on the basis of electro-mechano-acoustical analogous circuits. Model matching of the primary path and the secondary path leads to a feedforward control architecture. The ideal controller sheds some light on the key parameters that affect the noise reduction performance. Filtered-X least-mean-squares algorithm is employed to implement the feedforward controller on a digital signal processor. Since the relative delay of the primary path and the secondary path is crucial to the noise reduction performance, multirate signal processing with polyphase implementation is utilized to minimize the effective analog-digital conversion delay in the secondary path. Ad hoc decimation and interpolation filters are designed in order not to introduce excessive phase delays at the cutoff. Real-time experiments are undertaken to validate the implemented ANC system. Listening tests are also conducted to compare the fixed controller and the adaptive controller in terms of noise reduction and signal tracking performance for three noise types. The results have demonstrated that the fixed feedforward controller achieved satisfactory noise reduction performance and signal tracking quality.
Brady, Samuel L.; Moore, Bria M.; Yee, Brian S.; Kaufman, Robert A.
2015-01-01
Purpose To determine a comprehensive method for the implementation of adaptive statistical iterative reconstruction (ASIR) for maximal radiation dose reduction in pediatric computed tomography (CT) without changing the magnitude of noise in the reconstructed image or the contrast-to-noise ratio (CNR) in the patient. Materials and Methods The institutional review board waived the need to obtain informed consent for this HIPAA-compliant quality analysis. Chest and abdominopelvic CT images obtained before ASIR implementation (183 patient examinations; mean patient age, 8.8 years ± 6.2 [standard deviation]; range, 1 month to 27 years) were analyzed for image noise and CNR. These measurements were used in conjunction with noise models derived from anthropomorphic phantoms to establish new beam current–modulated CT parameters to implement 40% ASIR at 120 and 100 kVp without changing noise texture or magnitude. Image noise was assessed in images obtained after ASIR implementation (492 patient examinations; mean patient age, 7.6 years ± 5.4; range, 2 months to 28 years) the same way it was assessed in the pre-ASIR analysis. Dose reduction was determined by comparing size-specific dose estimates in the pre- and post-ASIR patient cohorts. Data were analyzed with paired t tests. Results With 40% ASIR implementation, the average relative dose reduction for chest CT was 39% (2.7/4.4 mGy), with a maximum reduction of 72% (5.3/18.8 mGy). The average relative dose reduction for abdominopelvic CT was 29% (4.8/6.8 mGy), with a maximum reduction of 64% (7.6/20.9 mGy). Beam current modulation was unnecessary for patients weighing 40 kg or less. The difference between 0% and 40% ASIR noise magnitude was less than 1 HU, with statistically nonsignificant increases in patient CNR at 100 kVp of 8% (15.3/14.2; P = .41) for chest CT and 13% (7.8/6.8; P = .40) for abdominopelvic CT. Conclusion Radiation dose reduction at pediatric CT was achieved when 40% ASIR was implemented as a dose reduction tool only; no net change to the magnitude of noise in the reconstructed image or the patient CNR occurred. PMID:23901128
Mixing, Noise and Thrust Benefits Using Corrugated Designs
NASA Technical Reports Server (NTRS)
Morgan, Morris H., III; Gilinsky, Mikhail M.
2000-01-01
These projects are directed toward the analysis of several concepts for nozzle and inlet performance improvement and noise reduction from jet exhausts. Currently. The FM&AL also initiates new joint research between the HU/FM&AL, the Hyper-X Program Team at the LaRC, and the Central Institute of Aviation Motors (CIAM), Moscow, Russia in the field of optimization of fuel injection and mixing in air-breathing propulsion systems. The main results of theoretical, numerical simulation and experimental tests obtained in the previous research are in the papers and patents. The goals of the 14U/FM&AL programs are twofold: 1) to improve the working efficiency of the HU/FM&AL team in generating new innovative ideas and in conducting research in the field of fluid dynamics and acoustics, basically for improvement of supersonic and subsonic aircraft engines, and 2) to attract promising minority students to this research and training and, in cooperation with other HU departments, to teach them basic knowledge in Aerodynamics, Gas Dynamics, and Theoretical and Experimental Methods in Aeroacoustics and Computational Fluid Dynamics (CFD). The research at the HU/FM&AL supports reduction schemes associated with the emission of en 'ne pollutants for commercial aircraft and concepts for reduction of 91 observables for military aircraft. These research endeavors relate to the goals of the NASA Strategic Enterprise in Aeronautics concerning the development of environmentally acceptable aircraft. It is in this precise area, where the US aircraft industry, academia, and Government are in great need of trained professionals and which is a high priority goal of the Minority University Research and Education (MLTREP) Program, that the HU/FM&AL can make its most important contribution.
NASA Technical Reports Server (NTRS)
Janardan, B. A.; Hoff, G. E.; Barter, J. W.; Martens, S.; Gliebe, P. R.; Mengle, V.; Dalton, W. N.; Saiyed, Naseem (Technical Monitor)
2000-01-01
This report describes the work performed by General Electric Aircraft Engines (GEAE) and Allison Engine Company (AEC) on NASA Contract NAS3-27720 AoI 14.3. The objective of this contract was to generate quality jet noise acoustic data for separate-flow nozzle models and to design and verify new jet-noise-reduction concepts over a range of simulated engine cycles and flight conditions. Five baseline axisymmetric separate-flow nozzle models having bypass ratios of five and eight with internal and external plugs and 11 different mixing-enhancer model nozzles (including chevrons, vortex-generator doublets, and a tongue mixer) were designed and tested in model scale. Using available core and fan nozzle hardware in various combinations, 28 GEAE/AEC separate-flow nozzle/mixing-enhancer configurations were acoustically evaluated in the NASA Glenn Research Center Aeroacoustic and Propulsion Laboratory. This report describes model nozzle features, facility and data acquisition/reduction procedures, the test matrix, and measured acoustic data analyses. A number of tested core and fan mixing enhancer devices and combinations of devices gave significant jet noise reduction relative to separate-flow baseline nozzles. Inward-flip and alternating-flip core chevrons combined with a straight-chevron fan nozzle exceeded the NASA stretch goal of 3 EPNdB jet noise reduction at typical sideline certification conditions.
Aeroacoustic Improvements to Fluidic Chevron Nozzles
NASA Technical Reports Server (NTRS)
Henderson, Brenda; Kinzie, Kevin; Whitmire, Julia; Abeysinghe, Amal
2006-01-01
Fluidic chevrons use injected air near the trailing edge of a nozzle to emulate mixing and jet noise reduction characteristics of mechanical chevrons. While previous investigations of "first generation" fluidic chevron nozzles showed only marginal improvements in effective perceived noise levels when compared to nozzles without injection, significant improvements in noise reduction characteristics were achieved through redesigned "second generation" nozzles on a bypass ratio 5 model system. The second-generation core nozzles had improved injection passage contours, external nozzle contour lines, and nozzle trailing edges. The new fluidic chevrons resulted in reduced overall sound pressure levels over that of the baseline nozzle for all observation angles. Injection ports with steep injection angles produced lower overall sound pressure levels than those produced by shallow injection angles. The reductions in overall sound pressure levels were the result of noise reductions at low frequencies. In contrast to the first-generation nozzles, only marginal increases in high frequency noise over that of the baseline nozzle were observed for the second-generation nozzles. The effective perceived noise levels of the new fluidic chevrons are shown to approach those of the core mechanical chevrons.
Combination sound and vibration isolation curb for rooftop air-handling systems
NASA Astrophysics Data System (ADS)
Paige, Thomas S.
2005-09-01
This paper introduces the new Model ESSR Sound and Vibration Isolation Curb manufactured by Kinetics Noise Control, Inc. This product was specially designed to address all of the common transmission paths associated with noise and vibration sources from roof-mounted air-handling equipment. These include: reduction of airborne fan noise in supply and return air ductwork, reduction of duct rumble and breakout noise, reduction of direct airborne sound transmission through the roof deck, and reduction of vibration and structure-borne noise transmission to the building structure. Upgrade options are available for increased seismic restraint and wind-load protection. The advantages of this new system over the conventional approach of installing separate duct silencers in the room ceiling space below the rooftop unit are discussed. Several case studies are presented with the emphasis on completed projects pertaining to classrooms and school auditorium applications. Some success has also been achieved by adding active noise control components to improve low-frequency attenuation. This is an innovative product designed for conformance with the new classroom acoustics standard ANSI S12.60.
Current Research Activities in Drive System Technology in Support of the NASA Rotorcraft Program
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Zakrajsek, James J.
2006-01-01
Drive system technology is a key area for improving rotorcraft performance, noise/vibration reduction, and reducing operational and manufacturing costs. An overview of current research areas that support the NASA Rotorcraft Program will be provided. Work in drive system technology is mainly focused within three research areas: advanced components, thermal behavior/emergency lubrication system operation, and diagnostics/prognostics (also known as Health and Usage Monitoring Systems (HUMS)). Current research activities in each of these activities will be presented. Also, an overview of the conceptual drive system requirements and possible arrangements for the Heavy Lift Rotorcraft program will be reviewed.
NASA Astrophysics Data System (ADS)
Grieb, H.; Heinig, K.
1986-09-01
It is shown that noise reduction on high bypass ratio turbofans for civil airliners is well established. The noise levels achieved meet the internationally agreed regulations (FAR 36). The same holds true for large military transport aircraft. Helicopter noise is caused essentially by the main and tail rotors. Noise reduction on afterburner and dry engines for combat and strike aircraft, which represent the major noise annoyance to the public, is very difficult because: high specific thrust is mandatory for aircraft performance and effectiveness; jet noise with and without afterburning is predominant; and the design of the reheat section and final (variable) nozzle in practice precludes the application of known concepts for jet noise attenuation in dry and reheated operation.
Spriet, Ann; Van Deun, Lieselot; Eftaxiadis, Kyriaky; Laneau, Johan; Moonen, Marc; van Dijk, Bas; van Wieringen, Astrid; Wouters, Jan
2007-02-01
This paper evaluates the benefit of the two-microphone adaptive beamformer BEAM in the Nucleus Freedom cochlear implant (CI) system for speech understanding in background noise by CI users. A double-blind evaluation of the two-microphone adaptive beamformer BEAM and a hardware directional microphone was carried out with five adult Nucleus CI users. The test procedure consisted of a pre- and post-test in the lab and a 2-wk trial period at home. In the pre- and post-test, the speech reception threshold (SRT) with sentences and the percentage correct phoneme scores for CVC words were measured in quiet and background noise at different signal-to-noise ratios. Performance was assessed for two different noise configurations (with a single noise source and with three noise sources) and two different noise materials (stationary speech-weighted noise and multitalker babble). During the 2-wk trial period at home, the CI users evaluated the noise reduction performance in different listening conditions by means of the SSQ questionnaire. In addition to the perceptual evaluation, the noise reduction performance of the beamformer was measured physically as a function of the direction of the noise source. Significant improvements of both the SRT in noise (average improvement of 5-16 dB) and the percentage correct phoneme scores (average improvement of 10-41%) were observed with BEAM compared to the standard hardware directional microphone. In addition, the SSQ questionnaire and subjective evaluation in controlled and real-life scenarios suggested a possible preference for the beamformer in noisy environments. The evaluation demonstrates that the adaptive noise reduction algorithm BEAM in the Nucleus Freedom CI-system may significantly increase the speech perception by cochlear implantees in noisy listening conditions. This is the first monolateral (adaptive) noise reduction strategy actually implemented in a mainstream commercial CI.
ATP Interior Noise Technology and Flight Demonstration Program
NASA Technical Reports Server (NTRS)
Stephens, David G.; Powell, Clemans A.
1988-01-01
The paper provides an overview of the ATP (Advanced Turboprop Program) acoustics program with emphasis on the NASA technology program and the recent NASA/Industry demonstration programs aimed at understanding and controlling passenger cabin noise. Technology developments in propeller (source) noise, cabin noise transmission, and subjective acoustics are described. Finally, an overview of the industry demonstrator programs is presented.
Toki, Hiroshi; Sato, Kenji
2014-01-01
In modern life, we are surrounded by and filled with electromagnetic noise caused by the dominant use of energy in the form of electricity. This situation is brought about by the fact that the noise is not understood theoretically. A new practice of noise reduction was introduced for the construction of Heavy Ion Medical Accelerator in Chiba (HIMAC). The key concept is a symmetric three-line circuit that arranges power supplies, noise filters and magnets around a third central ground line. A continuous theoretical effort forced us to find a new circuit theory involving a multiconductor transmission-line system starting from Maxwell's equations without any approximation. We discuss the essence of all of these experimental and theoretical developments with the hope to remove unnecessary electromagnetic noise not only from power supplies, but also from all electric devices. The newly derived circuit theory of multiconductor transmission lines is universal, and establishes the validity of the practice of noise reduction.
TOKI, Hiroshi; SATO, Kenji
2014-01-01
In modern life, we are surrounded by and filled with electromagnetic noise caused by the dominant use of energy in the form of electricity. This situation is brought about by the fact that the noise is not understood theoretically. A new practice of noise reduction was introduced for the construction of Heavy Ion Medical Accelerator in Chiba (HIMAC). The key concept is a symmetric three-line circuit that arranges power supplies, noise filters and magnets around a third central ground line. A continuous theoretical effort forced us to find a new circuit theory involving a multiconductor transmission-line system starting from Maxwell’s equations without any approximation. We discuss the essence of all of these experimental and theoretical developments with the hope to remove unnecessary electromagnetic noise not only from power supplies, but also from all electric devices. The newly derived circuit theory of multiconductor transmission lines is universal, and establishes the validity of the practice of noise reduction. PMID:24522153
NASA Technical Reports Server (NTRS)
Petersen, R. H.; Barry, D. J.; Kline, D. M.
1975-01-01
A simplified method of analysis was used in which all flights at a 'simulated' airport were assumed to operate from one runway in a single direction. For this simulated airport, contours of noise exposure forecast were obtained and evaluated. A flight schedule of the simulated airport which is representative of the 23 major U. S. airports was used. The effect of banning night-time operations by four-engine, narrow-body aircraft in combination with other noise reduction options was studied. The reductions in noise which would occur of two- and three-engine, narrow-body aircraft equipped with a refanned engine was examined. A detailed comparison of the effects of engine cutback on takeoff versus the effects of retrofitting quiet nacelles for narrow-body aircraft was also examined. A method of presenting the effects of various noise reduction options was treated.
Airframe Noise Reduction Studies and Clean-Airframe Noise Investigation
NASA Technical Reports Server (NTRS)
Fink, M. R.; Bailey, D. A.
1980-01-01
Acoustic wind tunnel tests were conducted of a wing model with modified leading edge slat and trailing edge flap. The modifications were intended to reduce the surface pressure response to convected turbulence and thereby reduce the airframe noise without changing the lift at constant incidence. Tests were conducted at 70.7 and 100 m/sec airspeeds, with Reynolds numbers 1.5 x 10 to the 6th power and 2.1 x 10 to the 6th power. Considerable reduction of noise radiation from the side edges of a 40 deflection single slotted flap was achieved by modification to the side edge regions or the leading edge region of the flap panel. Total far field noise was reduced 2 to 3 dB over several octaves of frequency. When these panels were installed as the aft panel of a 40 deg deflection double slotted flap, 2 dB noise reduction was achieved.
NASA Technical Reports Server (NTRS)
Navaneethan, R.
1981-01-01
The experimental noise attenuation characteristics of flat, general aviation type, multilayered panels are discussed. Experimental results of stiffened panels, damping tape, honeycomb materials and sound absorption materials are presented. Single degree of freedom theoretical models were developed for sandwich type panels with both shear resistant and non-shear resistant core material. The concept of Helmholtz resonators used in conjunction with dual panel windows in increasing the noise reduction around a small range of frequency was tested. It is concluded that the stiffening of the panels either by stiffeners or by sandwich construction increases the low frequency noise reduction.
Noise control prediction for high-speed, propeller-driven aircraft
NASA Technical Reports Server (NTRS)
Wilby, J. F.; Rennison, D. C.; Wilby, E. G.; Marsh, A. H.
1980-01-01
An analytical study is described which explores add-on treatments and advanced concepts for the reduction of noise levels in three high-speed aircraft driven by propellers. Noise reductions of 25 to 28 dB are required to achieve a goal of an A-weighted sound level not greater than 80 dB. It is found that only a double-wall system, with a limp inner wall or trim panel, can achieve the required noise reductions. Weight penalties are estimated for the double-wall treatments. These penalties are 0.75% to 1.51% of the aircraft takeoff weight for the particular baseline designs selected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maurin, I.; Bramati, A.; Giacobino, E.
2005-09-15
Semiconductor lasers are particularly well suited for the implementation of pump-noise suppression, yielding a reduction of the intensity noise in the laser. In this simple picture, the maximal amount of squeezing is equal to the quantum efficiency. However, experimental results on intensity noise reduction by pump-noise suppression are usually above this limit. This discrepancy suggests that additional noise sources must be involved. Here we successful y interpret the full noise behavior of a single-mode laser diode far above threshold by considering two excess noise sources: the leakage current fluctuations across the laser and the Petermann excess noise. We have estimatedmore » the contribution of each noise source using the results of the correlations between the laser output intensity noise and the voltage fluctuations across the laser diode (light-voltage correlations) and obtained good agreement between our theory and experimental results.« less
Noise levels in an urban Asian school environment
Chan, Karen M.K.; Li, Chi Mei; Ma, Estella P.M.; Yiu, Edwin M.L.; McPherson, Bradley
2015-01-01
Background noise is known to adversely affect speech perception and speech recognition. High levels of background noise in school classrooms may affect student learning, especially for those pupils who are learning in a second language. The current study aimed to determine the noise level and teacher speech-to-noise ratio (SNR) in Hong Kong classrooms. Noise level was measured in 146 occupied classrooms in 37 schools, including kindergartens, primary schools, secondary schools and special schools, in Hong Kong. The mean noise levels in occupied kindergarten, primary school, secondary school and special school classrooms all exceeded recommended maximum noise levels, and noise reduction measures were seldom used in classrooms. The measured SNRs were not optimal and could have adverse implications for student learning and teachers’ vocal health. Schools in urban Asian environments are advised to consider noise reduction measures in classrooms to better comply with recommended maximum noise levels for classrooms. PMID:25599758
Noise levels in an urban Asian school environment.
Chan, Karen M K; Li, Chi Mei; Ma, Estella P M; Yiu, Edwin M L; McPherson, Bradley
2015-01-01
Background noise is known to adversely affect speech perception and speech recognition. High levels of background noise in school classrooms may affect student learning, especially for those pupils who are learning in a second language. The current study aimed to determine the noise level and teacher speech-to-noise ratio (SNR) in Hong Kong classrooms. Noise level was measured in 146 occupied classrooms in 37 schools, including kindergartens, primary schools, secondary schools and special schools, in Hong Kong. The mean noise levels in occupied kindergarten, primary school, secondary school and special school classrooms all exceeded recommended maximum noise levels, and noise reduction measures were seldom used in classrooms. The measured SNRs were not optimal and could have adverse implications for student learning and teachers' vocal health. Schools in urban Asian environments are advised to consider noise reduction measures in classrooms to better comply with recommended maximum noise levels for classrooms.
Noise reduction of a tilt-rotor aircraft including effects on weight and performance
NASA Technical Reports Server (NTRS)
Gibs, J.; Stepniewski, W. Z.; Spencer, R.; Kohler, G.
1973-01-01
Various methods for far-field noise reduction of a tilt-rotor acoustic signature and the performance and weight tradeoffs which result from modification of the noise sources are considered in this report. In order to provide a realistic approach for the investigation, the Boeing tilt-rotor flight research aircraft (Model 222), was selected as the baseline. This aircraft has undergone considerable engineering development. Its rotor has been manufactured and tested in the Ames full-scale wind tunnel. The study reflects the current state-of-the-art of aircraft design for far-field acoustic signature reduction and is not based solely on an engineering feasibility aircraft. This report supplements a previous study investigating reduction of noise signature through the management of the terminal flight trajectory.
Airframe self-noise: Four years of research. [aircraft noise reduction for commercial aircraft
NASA Technical Reports Server (NTRS)
Hardin, J. C.
1976-01-01
A critical assessment of the state of the art in airframe self-noise is presented. Full-scale data on the intensity, spectra and directivity of this noise source are evaluated in the light of the comprehensive theory developed by Ffowcs-Williams and Hawkins. Vibration of panels on commercial aircraft is identified as a possible additional source of airframe noise. The present understanding and methods for prediction of other component sources - airfoils, struts, and cavities - are discussed, and areas for further research as well as potential methods for airframe noise reduction are identified. Finally, the various experimental methods which have been developed for airframe noise research are discussed and sample results are presented.
Noise reduction by the application of an air-bubble curtain in offshore pile driving
NASA Astrophysics Data System (ADS)
Tsouvalas, A.; Metrikine, A. V.
2016-06-01
Underwater noise pollution is a by-product of marine industrial operations. In particular, the noise generated when a foundation pile is driven into the soil with an impact hammer is considered to be harmful for the aquatic species. In an attempt to reduce the ecological footprint, several noise mitigation techniques have been investigated. Among the various solutions proposed, the air-bubble curtain is often applied due to its efficacy in noise reduction. In this paper, a model is proposed for the investigation of the sound reduction during marine piling when an air-bubble curtain is placed around the pile. The model consists of the pile, the surrounding water and soil media, and the air-bubble curtain which is positioned at a certain distance from the pile surface. The solution approach is semi-analytical and is based on the dynamic sub-structuring technique and the modal decomposition method. Two main results of the paper can be distinguished. First, a new model is proposed that can be used for predictions of the noise levels in a computationally efficient manner. Second, an analysis is presented of the principal mechanisms that are responsible for the noise reduction due to the application of the air-bubble curtain in marine piling. The understanding of these mechanisms turns to be crucial for the exploitation of the maximum efficiency of the system. It is shown that the principal mechanism of noise reduction depends strongly on the frequency content of the radiated sound and the characteristics of the bubbly medium. For piles of large diameter which radiate most of the acoustic energy at relatively low frequencies, the noise reduction is mainly attributed to the mismatch of the acoustic impedances between the seawater and the bubbly layer. On the contrary, for smaller piles and when the radiated acoustic energy is concentrated at frequencies close to, or higher than, the resonance frequency of the air bubbles, the sound absorption within the bubbly layer becomes critical.
NASA N3-X with Turboelectric Distributed Propulsion
NASA Technical Reports Server (NTRS)
Felder, James L.
2014-01-01
Presentation summarizing the phase I study of the NASA N3-X turboelectric distributed propulsion power aircraft to the IMechE Disruptive Green Propulsion Technologies conference in London, UK November 16th and 17th, 2014. This presentation contains the results of a NASA internal study funded by the NASA Fixed Wing program to look at the application of turboelectric distributed propulsion to a long-range 300 seat aircraft. The reference aircraft is the Boeing 777-200LR. The N3-X reduced energy consumption by 70 compared to the 777-200LR, LTO NOx by 85 compared to the CAEP 6 limits, and noise by 32-64 EPNdB depending on engine placement compared to the stage 4 noise standards. This exceeded the N+3 metrics of reducing energy by 60, LTO NOx by 80, and noise by 52 EPNdB. Cruise NOx was not estimated, but likely meet the 80 reduction goal as well.
NASA Technical Reports Server (NTRS)
Cawthorn, J. M.; Brown, C. G.
1974-01-01
A study has been conducted of the future noise environment of Patric Henry Airport and its neighboring communities projected for the year 1990. An assessment was made of the impact of advanced noise reduction technologies which are currently being considered. These advanced technologies include a two-segment landing approach procedure and aircraft hardware modifications or retrofits which would add sound absorbent material in the nacelles of the engines or which would replace the present two- and three-stage fans with a single-stage fan of larger diameter. Noise Exposure Forecast (NEF) contours were computed for the baseline (nonretrofitted) aircraft for the projected traffic volume and fleet mix for the year 1990. These NEF contours are presented along with contours for a variety of retrofit options. Comparisons of the baseline with the noise reduction options are given in terms of total land area exposed to 30 and 40 NEF levels. Results are also presented of the effects on noise exposure area of the total number of daily operations.
NASA Technical Reports Server (NTRS)
Splettstoesser, Wolf R.; Schultz, KLAUS-J.; Kube, Roland; Brooks, Thomas F.; Booth, Earl R., Jr.; Niesl, Georg; Streby, Olivier
1991-01-01
Results are presented of a model rotor acoustics test performed to examine the benefit of higher harmonic control (HHC) of blade pitch to reduce blade-vortex interaction (BVI) impulsive noise. A dynamically scaled, four-bladed, rigid rotor model, a 40-percent replica of the B0-105 main rotor, was tested in the German Dutch Wind Tunnel. Noise characteristics and noise directivity patterns as well as vibratory loads were measured and used to demonstrate the changes when different HHC schedules were applied. Dramatic changes of the acoustic signatures and the noise radiation directivity with the HHC phase variations are found. Compared to the baseline conditions (without HHC), significant mid-frequency noise reductions of locally 6 dB are obtained for low-speed descent conditions where GVI is most intense. For other rotor operating conditions with less intense BVI there is less or no benefit from the use of HHC. LF noise and vibratory loads, especially at optimum noise reduction control settings, are found to increase.
Cardiovascular and stress responses to short-term noise exposures-A panel study in healthy males.
Walker, Erica D; Brammer, Anthony; Cherniack, Martin G; Laden, Francine; Cavallari, Jennifer M
2016-10-01
While previous epidemiological studies report adverse effects of long-term noise exposure on cardiovascular health, the mechanisms responsible for these effects are unclear. We sought to elucidate the cardiovascular and stress response to short-term, low (31.5-125Hz) and high (500-2000Hz) frequency noise exposures. Healthy male (n=10) participants were monitored on multiple visits during no noise, low- or high-frequency noise exposure scenarios lasting 40min. Participants were fitted with an ambulatory electrocardiogram (ECG) and blood pressure measures and saliva samples were taken before, during and after noise exposures. ECGs were processed for measures of heart rate variability (HRV): high-frequency power (HF), low-frequency power (LF), the root of the mean squared difference between adjacent normal heart beats (N-N) intervals (RMSSD), and the standard deviation of N-N intervals (SDNN). Systolic blood pressure (SBP), diastolic blood pressure (DPB), and pulse were reported and saliva was analyzed for salivary cortisol and amylase. Multivariate mixed-effects linear regression models adjusted for age were used to identify statistically significant difference in outcomes by no noise, during noise or after noise exposure periods and whether this differed by noise frequency. A total of 658, 205, and 122, HRV, saliva, and blood pressure measurements were performed over 41 person days. Reductions in HRV (LF and RMSSD) were observed during noise exposure (a reduction of 19% (-35,-3.5) and 9.1% (-17,-1.1), respectively). After adjusting for noise frequency, during low frequency noise exposure, HF, LF, and SDNN were reduced (a reduction of 32% (-57,-6.2), 34% (-52,-15), and 16% (-26,-6.1), respectively) and during high frequency noise exposure, a 21% (-39,-2.3) reduction in LF, as compared to during no noise exposure, was found. No significant (p<0.05) changes in blood pressure, salivary cortisol, or amylase were observed. These results suggest that exposure to noise, and in particular, to low-frequency noise, negatively impacts HRV. The frequencies of noise should be considered when evaluating the cardiovascular health impacts of exposure. Copyright © 2016 Elsevier Inc. All rights reserved.
Cardiovascular and Stress Responses to Short-Term Noise Exposures—A Panel Study in Healthy Males
Walker, Erica D; Brammer, Anthony; Cherniack, Martin G; Laden, Francine; Cavallari, Jennifer M
2016-01-01
Background While previous epidemiological studies report adverse effects of long-term noise exposure on cardiovascular health, the mechanisms responsible for these effects are unclear. We sought to elucidate the cardiovascular and stress response to short-term, low (31.5-125 Hz) and high (500 – 2000 Hz) frequency noise exposures. Methods Healthy male (n = 10) participants were monitored on multiple visits during no noise, low- or high-frequency noise exposure scenarios lasting 40 minutes. Participants were fitted with an ambulatory electrocardiogram (ECG) and blood pressure measures and saliva samples were taken before, during and after noise exposures. ECGs were processed for measures of heart rate variability (HRV): high-frequency power (HF), low-frequency power (LF), the root of the mean squared difference between adjacent normal heart beats (N-N) intervals (RMSSD), and the standard deviation of N-N intervals (SDNN). Systolic blood pressure (SBP), diastolic blood pressure (DPB), and pulse were reported and saliva was analyzed for salivary cortisol and amylase. Multivariate mixed-effects linear regression models adjusted for age were used to identify statistically significant difference in outcomes by no noise, during noise or after noise exposure periods and whether this differed by noise frequency. Results A total of 658, 205, and 122, HRV, saliva,and blood pressure measurements were performed over 41 person days. Reductions in HRV (LF and RMSSD) were observed during noise exposure (a reduction of 19%(−35,−3.5) and 9.1%(−17,−1.1), respectively). After adjusting for noise frequency, during low frequency noise exposure, HF, LF, and SDNN were reduced (a reduction of 32%(−57,−6.2), 34%(−52,−15), and 16%(−26,−6.1), respectively and during high frequency noise exposure, a 21%(−39,−2.3) reduction in LF, as compared to during no noise exposure was found. No significant (p>0.05) changes in blood pressure,salivary cortisol or amylase were observed. Conclusions These results suggest that exposure to noise, and in particular, to low-frequency noise negatively impacts HRV. The frequencies of noise should be considered when evaluating the cardiovascular health impacts of exposure. PMID:27371930
Interior noise prediction methodology: ATDAC theory and validation
NASA Technical Reports Server (NTRS)
Mathur, Gopal P.; Gardner, Bryce K.
1992-01-01
The Acoustical Theory for Design of Aircraft Cabins (ATDAC) is a computer program developed to predict interior noise levels inside aircraft and to evaluate the effects of different aircraft configurations on the aircraft acoustical environment. The primary motivation for development of this program is the special interior noise problems associated with advanced turboprop (ATP) aircraft where there is a tonal, low frequency noise problem. Prediction of interior noise levels requires knowledge of the energy sources, the transmission paths, and the relationship between the energy variable and the sound pressure level. The energy sources include engine noise, both airborne and structure-borne; turbulent boundary layer noise; and interior noise sources such as air conditioner noise and auxiliary power unit noise. Since propeller and engine noise prediction programs are widely available, they are not included in ATDAC. Airborne engine noise from any prediction or measurement may be input to this program. This report describes the theory and equations implemented in the ATDAC program.
Interior noise prediction methodology: ATDAC theory and validation
NASA Astrophysics Data System (ADS)
Mathur, Gopal P.; Gardner, Bryce K.
1992-04-01
The Acoustical Theory for Design of Aircraft Cabins (ATDAC) is a computer program developed to predict interior noise levels inside aircraft and to evaluate the effects of different aircraft configurations on the aircraft acoustical environment. The primary motivation for development of this program is the special interior noise problems associated with advanced turboprop (ATP) aircraft where there is a tonal, low frequency noise problem. Prediction of interior noise levels requires knowledge of the energy sources, the transmission paths, and the relationship between the energy variable and the sound pressure level. The energy sources include engine noise, both airborne and structure-borne; turbulent boundary layer noise; and interior noise sources such as air conditioner noise and auxiliary power unit noise. Since propeller and engine noise prediction programs are widely available, they are not included in ATDAC. Airborne engine noise from any prediction or measurement may be input to this program. This report describes the theory and equations implemented in the ATDAC program.
Jet Noise Reduction Potential from Emerging Variable Cycle Technologies
NASA Technical Reports Server (NTRS)
Henderson, Brenda; Bridges, James; Wernet, Mark
2012-01-01
Acoustic and flow-field experiments were conducted on exhaust concepts for the next generation supersonic, commercial aircraft. The concepts were developed by Lockheed Martin (LM), Rolls-Royce Liberty Works (RRLW), and General Electric Global Research (GEGR) as part of an N+2 (next generation forward) aircraft system study initiated by the Supersonics Project in NASA s Fundamental Aeronautics Program. The experiments were conducted in the Aero-Acoustic Propulsion Laboratory at the NASA Glenn Research Center. The exhaust concepts utilized ejectors, inverted velocity profiles, and fluidic shields. One of the ejector concepts was found to produce stagnant flow within the ejector and the other ejector concept produced discrete-frequency tones that degraded the acoustic performance of the model. The concept incorporating an inverted velocity profile and fluid shield produced overall-sound-pressure-level reductions of 6 dB relative to a single stream nozzle at the peak jet noise angle for some nozzle pressure ratios. Flow separations in the nozzle degraded the acoustic performance of the inverted velocity profile model at low nozzle pressure ratios.
Jet Noise Reduction Potential From Emerging Variable Cycle Technologies
NASA Technical Reports Server (NTRS)
2012-01-01
Acoustic and flow-field experiments were conducted on exhaust concepts for the next generation supersonic, commercial aircraft. The concepts were developed by Lockheed Martin (LM), Rolls-Royce Liberty Works (RRLW), and General Electric Global Research (GEGR) as part of an N+2 (next generation forward) aircraft system study initiated by the Supersonics Project in NASA s Fundamental Aeronautics Program. The experiments were conducted in the Aero-Acoustic Propulsion Laboratory at the NASA Glenn Research Center. The exhaust concepts utilized ejectors, inverted velocity profiles, and fluidic shields. One of the ejector concepts was found to produce stagnant flow within the ejector and the other ejector concept produced discrete-frequency tones that degraded the acoustic performance of the model. The concept incorporating an inverted velocity profile and fluid shield produced overall-sound-pressure-level reductions of 6 dB relative to a single stream nozzle at the peak jet noise angle for some nozzle pressure ratios. Flow separations in the nozzle degraded the acoustic performance of the inverted velocity profile model at low nozzle pressure ratios.
Combustion and Engine-Core Noise
NASA Astrophysics Data System (ADS)
Ihme, Matthias
2017-01-01
The implementation of advanced low-emission aircraft engine technologies and the reduction of noise from airframe, fan, and jet exhaust have made noise contributions from an engine core increasingly important. Therefore, meeting future ambitious noise-reduction goals requires the consideration of engine-core noise. This article reviews progress on the fundamental understanding, experimental analysis, and modeling of engine-core noise; addresses limitations of current techniques; and identifies opportunities for future research. After identifying core-noise contributions from the combustor, turbomachinery, nozzles, and jet exhaust, they are examined in detail. Contributions from direct combustion noise, originating from unsteady combustion, and indirect combustion noise, resulting from the interaction of flow-field perturbations with mean-flow variations in turbine stages and nozzles, are analyzed. A new indirect noise-source contribution arising from mixture inhomogeneities is identified by extending the theory. Although typically omitted in core-noise analysis, the impact of mean-flow variations and nozzle-upstream perturbations on the jet-noise modulation is examined, providing potential avenues for future core-noise mitigation.
Somiya, Kentaro
2009-06-12
Thermal noise of a mirror is one of the most important issues in high-precision measurements such as gravitational-wave detection or cold damping experiments. It has been pointed out that thermal noise of a mirror with multilayer coatings can be reduced by mechanical separation of the layers. In this Letter, we introduce a way to further reduce thermal noise by locking the mechanically separated mirrors. The reduction is limited by the standard quantum limit of control noise, but it can be overcome with a quantum-nondemolition technique, which finally raises a possibility of complete elimination of coating thermal noise.
Braubach, Matthias; Tobollik, Myriam; Mudu, Pierpaolo; Hiscock, Rosemary; Chapizanis, Dimitris; Sarigiannis, Denis A.; Keuken, Menno; Perez, Laura; Martuzzi, Marco
2015-01-01
Well-being impact assessments of urban interventions are a difficult challenge, as there is no agreed methodology and scarce evidence on the relationship between environmental conditions and well-being. The European Union (EU) project “Urban Reduction of Greenhouse Gas Emissions in China and Europe” (URGENCHE) explored a methodological approach to assess traffic noise-related well-being impacts of transport interventions in three European cities (Basel, Rotterdam and Thessaloniki) linking modeled traffic noise reduction effects with survey data indicating noise-well-being associations. Local noise models showed a reduction of high traffic noise levels in all cities as a result of different urban interventions. Survey data indicated that perception of high noise levels was associated with lower probability of well-being. Connecting the local noise exposure profiles with the noise-well-being associations suggests that the urban transport interventions may have a marginal but positive effect on population well-being. This paper also provides insight into the methodological challenges of well-being assessments and highlights the range of limitations arising from the current lack of reliable evidence on environmental conditions and well-being. Due to these limitations, the results should be interpreted with caution. PMID:26016437
Noise Reduction Techniques and Scaling Effects towards Photon Counting CMOS Image Sensors
Boukhayma, Assim; Peizerat, Arnaud; Enz, Christian
2016-01-01
This paper presents an overview of the read noise in CMOS image sensors (CISs) based on four-transistors (4T) pixels, column-level amplification and correlated multiple sampling. Starting from the input-referred noise analytical formula, process level optimizations, device choices and circuit techniques at the pixel and column level of the readout chain are derived and discussed. The noise reduction techniques that can be implemented at the column and pixel level are verified by transient noise simulations, measurement and results from recently-published low noise CIS. We show how recently-reported process refinement, leading to the reduction of the sense node capacitance, can be combined with an optimal in-pixel source follower design to reach a sub-0.3erms- read noise at room temperature. This paper also discusses the impact of technology scaling on the CIS read noise. It shows how designers can take advantage of scaling and how the Metal-Oxide-Semiconductor (MOS) transistor gate leakage tunneling current appears as a challenging limitation. For this purpose, both simulation results of the gate leakage current and 1/f noise data reported from different foundries and technology nodes are used.
Braubach, Matthias; Tobollik, Myriam; Mudu, Pierpaolo; Hiscock, Rosemary; Chapizanis, Dimitris; Sarigiannis, Denis A; Keuken, Menno; Perez, Laura; Martuzzi, Marco
2015-05-26
Well-being impact assessments of urban interventions are a difficult challenge, as there is no agreed methodology and scarce evidence on the relationship between environmental conditions and well-being. The European Union (EU) project "Urban Reduction of Greenhouse Gas Emissions in China and Europe" (URGENCHE) explored a methodological approach to assess traffic noise-related well-being impacts of transport interventions in three European cities (Basel, Rotterdam and Thessaloniki) linking modeled traffic noise reduction effects with survey data indicating noise-well-being associations. Local noise models showed a reduction of high traffic noise levels in all cities as a result of different urban interventions. Survey data indicated that perception of high noise levels was associated with lower probability of well-being. Connecting the local noise exposure profiles with the noise-well-being associations suggests that the urban transport interventions may have a marginal but positive effect on population well-being. This paper also provides insight into the methodological challenges of well-being assessments and highlights the range of limitations arising from the current lack of reliable evidence on environmental conditions and well-being. Due to these limitations, the results should be interpreted with caution.
2004 NASA Seal/Secondary Air System Workshop, Volume 1
NASA Technical Reports Server (NTRS)
2005-01-01
The 2004 NASA Seal/Secondary Air System workshop covered the following topics: (1) Overview of NASA s new Exploration Initiative program aimed at exploring the Moon, Mars, and beyond; (2) Overview of the NASA-sponsored Ultra-Efficient Engine Technology (UEET) program; (3) Overview of NASA Glenn s seal program aimed at developing advanced seals for NASA s turbomachinery, space, and reentry vehicle needs; (4) Reviews of NASA prime contractor and university advanced sealing concepts including tip clearance control, test results, experimental facilities, and numerical predictions; and (5) Reviews of material development programs relevant to advanced seals development. The NASA UEET overview illustrated for the reader the importance of advanced technologies, including seals, in meeting future turbine engine system efficiency and emission goals. For example, the NASA UEET program goals include an 8- to 15-percent reduction in fuel burn, a 15-percent reduction in CO2, a 70-percent reduction in NOx, CO, and unburned hydrocarbons, and a 30-dB noise reduction relative to program baselines. The workshop also covered several programs NASA is funding to develop technologies for the Exploration Initiative and advanced reusable space vehicle technologies. NASA plans on developing an advanced docking and berthing system that would permit any vehicle to dock to any on-orbit station or vehicle, as part of NASA s new Exploration Initiative. Plans to develop the necessary mechanism and androgynous seal technologies were reviewed. Seal challenges posed by reusable re-entry space vehicles include high-temperature operation, resiliency at temperature to accommodate gap changes during operation, and durability to meet mission requirements.
Jet transport energy management for minimum fuel consumption and noise impact in the terminal area
NASA Technical Reports Server (NTRS)
Bull, J. S.; Foster, J. D.
1974-01-01
Significant reductions in both noise and fuel consumption can be gained through careful tailoring of approach flightpath and airspeed profile, and the point at which the landing gear and flaps are lowered. For example, the noise problem has been successfully attacked in recent years with development of the 'two-segment' approach, which brings the aircraft in at a steeper angle initially, thereby achieving noise reduction through lower thrust settings and higher altitudes. A further reduction in noise and a significant reduction in fuel consumption can be achieved with the 'decelerating approach' concept. In this case, the approach is initiated at high airspeed and in a drag configuration that allows for low thrust. The landing flaps are then lowered at the appropriate time so that the airspeed slowly decelerates to V sub r at touchdown. The decelerating approach concept can be applied to constant glideslope flightpaths or segmented flightpaths such as the two-segment approach.
Objective Measures of Listening Effort: Effects of Background Noise and Noise Reduction
ERIC Educational Resources Information Center
Sarampalis, Anastasios; Kalluri, Sridhar; Edwards, Brent; Hafter, Ervin
2009-01-01
Purpose: This work is aimed at addressing a seeming contradiction related to the use of noise-reduction (NR) algorithms in hearing aids. The problem is that although some listeners claim a subjective improvement from NR, it has not been shown to improve speech intelligibility, often even making it worse. Method: To address this, the hypothesis…
NASA Astrophysics Data System (ADS)
Green, K. N.; van Alstine, R. L.
This paper presents the current performance levels of the SDG-5 gyro, a high performance two-axis dynamically tuned gyro, and the DRIRU II redundant inertial reference unit relating to stabilization and pointing applications. Also presented is a discussion of a product improvement program aimed at further noise reductions to meet the demanding requirements of future space defense applications.
NASA Technical Reports Server (NTRS)
Salikuddin, M.; Martens, S.; Shin, H.; Majjigi, R. K.; Krejsa, Gene (Technical Monitor)
2002-01-01
The objective of this task was to develop a design methodology and noise reduction concepts for high bypass exhaust systems which could be applied to both existing production and new advanced engine designs. Special emphasis was given to engine cycles with bypass ratios in the range of 4:1 to 7:1, where jet mixing noise was a primary noise source at full power takeoff conditions. The goal of this effort was to develop the design methodology for mixed-flow exhaust systems and other novel noise reduction concepts that would yield 3 EPNdB noise reduction relative to 1992 baseline technology. Two multi-lobed mixers, a 22-lobed axisymmetric and a 21-lobed with a unique lobe, were designed. These mixers along with a confluent mixer were tested with several fan nozzles of different lengths with and without acoustic treatment in GEAE's Cell 41 under the current subtask (Subtask C). In addition to the acoustic and LDA tests for the model mixer exhaust systems, a semi-empirical noise prediction method for mixer exhaust system is developed. Effort was also made to implement flowfield data for noise prediction by utilizing MGB code. In general, this study established an aero and acoustic diagnostic database to calibrate and refine current aero and acoustic prediction tools.
Aerodynamic Performance of Scale-Model Turbofan Outlet Guide Vanes Designed for Low Noise
NASA Technical Reports Server (NTRS)
Hughes, Christopher E.
2001-01-01
The design of effective new technologies to reduce aircraft propulsion noise is dependent on an understanding of the noise sources and noise generation mechanisms in the modern turbofan engine. In order to more fully understand the physics of noise in a turbofan engine, a comprehensive aeroacoustic wind tunnel test programs was conducted called the 'Source Diagnostic Test.' The text was cooperative effort between NASA and General Electric Aircraft Engines, as part of the NASA Advanced Subsonic Technology Noise Reduction Program. A 1/5-scale model simulator representing the bypass stage of a current technology high bypass ratio turbofan engine was used in the test. The test article consisted of the bypass fan and outlet guide vanes in a flight-type nacelle. The fan used was a medium pressure ratio design with 22 individual, wide chord blades. Three outlet guide vane design configurations were investigated, representing a 54-vane radial Baseline configuration, a 26-vane radial, wide chord Low Count configuration and a 26-vane, wide chord Low Noise configuration with 30 deg of aft sweep. The test was conducted in the NASA Glenn Research Center 9 by 15-Foot Low Speed Wind Tunnel at velocities simulating the takeoff and approach phases of the aircraft flight envelope. The Source Diagnostic Test had several acoustic and aerodynamic technical objectives: (1) establish the performance of a scale model fan selected to represent the current technology turbofan product; (2) assess the performance of the fan stage with each of the three distinct outlet guide vane designs; (3) determine the effect of the outlet guide vane configuration on the fan baseline performance; and (4) conduct detailed flowfield diagnostic surveys, both acoustic and aerodynamic, to characterize and understand the noise generation mechanisms in a turbofan engine. This paper addresses the fan and stage aerodynamic performance results from the Source Diagnostic Test.
Noise transmission and reduction in turboprop aircraft
NASA Astrophysics Data System (ADS)
MacMartin, Douglas G.; Basso, Gordon L.; Leigh, Barry
1994-09-01
There is considerable interest in reducing the cabin noise environment in turboprop aircraft. Various approaches have been considered at deHaviland Inc., including passive tuned-vibration absorbers, speaker-based noise cancellation, and structural vibration control of the fuselage. These approaches will be discussed briefly. In addition to controlling the noise, a method of predicting the internal noise is required both to evaluate potential noise reduction approaches, and to validate analytical design models. Instead of costly flight tests, or carrying out a ground simulation of the propeller pressure field, a much simpler reciprocal technique can be used. A capacitive scanner is used to measure the fuselage vibration response on a deHaviland Dash-8 fuselage, due to an internal noise source. The approach is validated by comparing this reciprocal noise transmission measurement with the direct measurement. The fuselage noise transmission information is then combined with computer predictions of the propeller pressure field data to predict the internal noise at two points.
The Dose Response Relationship between In Ear Occupational Noise Exposure and Hearing Loss
Rabinowitz, Peter M.; Galusha, Deron; Dixon-Ernst, Christine; Clougherty, Jane E.; Neitzel, Richard L.
2014-01-01
Objectives Current understanding of the dose-response relationship between occupational noise and hearing loss is based on cross-sectional studies prior to the widespread use hearing protection and with limited data regarding noise exposures below 85dBA. We report on the hearing loss experience of a unique cohort of industrial workers with daily monitoring of noise inside of hearing protection devices. Methods At an industrial facility, workers exhibiting accelerated hearing loss were enrolled in a mandatory program to monitor daily noise exposures inside of hearing protection. We compared these noise measurements (as time-weighted LAVG) to interval rates of high frequency hearing loss over a six year period using a mixed effects model, adjusting for potential confounders. Results Workers’ high frequency hearing levels at study inception averaged more than 40 dB hearing threshold level (HTL). Most noise exposures were less than 85dBA (mean LAVG 76 dBA, interquartile range 74 to 80 dBA). We found no statistical relationship between LAvg and high frequency hearing loss (p = 0.53). Using a metric for monthly maximum noise exposure did not improve model fit. Conclusion At-ear noise exposures below 85dBA did not show an association with risk of high frequency hearing loss among workers with substantial past noise exposure and hearing loss at baseline. Therefore, effective noise control to below 85dBA may lead to significant reduction in occupational hearing loss risk in such individuals. Further research is needed on the dose response relationship of noise and hearing loss in individuals with normal hearing and little prior noise exposure. PMID:23825197
Coupling of Helmholtz resonators to improve acoustic liners for turbofan engines at low frequency
NASA Technical Reports Server (NTRS)
Dean, L. W.
1975-01-01
An analytical and test program was conducted to evaluate means for increasing the effectiveness of low frequency sound absorbing liners for aircraft turbine engines. Three schemes for coupling low frequency absorber elements were considered. These schemes were analytically modeled and their impedance was predicted over a frequency range of 50 to 1,000 Hz. An optimum and two off-optimum designs of the most promising, a parallel coupled scheme, were fabricated and tested in a flow duct facility. Impedance measurements were in good agreement with predicted values and validated the procedure used to transform modeled parameters to hardware designs. Measurements of attenuation for panels of coupled resonators were consistent with predictions based on measured impedance. All coupled resonator panels tested showed an increase in peak attenuation of about 50% and an increase in attenuation bandwidth of one one-third octave band over that measured for an uncoupled panel. These attenuation characteristics equate to about 35% greater reduction in source perceived noise level (PNL), relative to the uncoupled panel, or a reduction in treatment length of about 24% for constant PNL reduction. The increased effectiveness of the coupled resonator concept for attenuation of low frequency broad spectrum noise is demonstrated.
Ultrasonic Measurement of Erosion/corrosion Rates in Industrial Piping Systems
NASA Astrophysics Data System (ADS)
Sinclair, A. N.; Safavi, V.; Honarvar, F.
2011-06-01
Industrial piping systems that carry aggressive corrosion or erosion agents may suffer from a gradual wall thickness reduction that eventually threatens pipe integrity. Thinning rates could be estimated from the very small change in wall thickness values measured by conventional ultrasound over a time span of at least a few months. However, measurements performed over shorter time spans would yield no useful information—minor signal distortions originating from grain noise and ultrasonic equipment imperfections prevent a meaningful estimate of the minuscule reduction in echo travel time. Using a Model-Based Estimation (MBE) technique, a signal processing scheme has been developed that enables the echo signals from the pipe wall to be separated from the noise. This was implemented in a laboratory experimental program, featuring accelerated erosion/corrosion on the inner wall of a test pipe. The result was a reduction in the uncertainty in the wall thinning rate by a factor of four. This improvement enables a more rapid response by system operators to a change in plant conditions that could pose a pipe integrity problem. It also enables a rapid evaluation of the effectiveness of new corrosion inhibiting agents under plant operating conditions.
Nieto-Sanjuanero, Adriana; Quero-Jiménez, José; Cantú-Moreno, Daniel; Rodríguez-Balderrama, Isaías; Montes-Tapia, Fernando; Rubio-Pérez, Nadina; Treviño-Garza, Consuelo; de la O-Cavazos, Manuel
2015-01-01
To determine the noise levels of different areas responsible for newborn care, develop intervention strategies to decrease the noise, and evaluate its effectiveness. Prospective, observational and longitudinal study carried out using a sonometer, measuring sound levels for three weeks in the neonatal intensive care unit (NICU), neonatal intermediate care unit (UCIREN), delivery (TOCO QX) and nursery (CUNERO) units. We implemented an intervention program and subsequent measurements were performed under the same initial conditions. When comparing the decibel levels in different areas during the three weeks, pre- and post-intervention, we found at the neonatal intensive care unit 59.9±4.8 vs. 56.4±4.7 dB (p<0.001), neonatal intermediate care unit 55.3±3.9 vs. 51.3±4.4 dB (p<0.001), delivery unit 57.3±4.6 vs. 57.3±5.5 dB (NS), and nursery unit 57.6±5.8 vs. 53.9±5.8 dB (p<0.001). There was a significant reduction in noise levels of 3.5 dB at the NICU, 4 dB at UCIREN and 3.7 dB at TOCO QX, so the intervention program was effective in these areas; however, the decibel levels registered continue above those recommended by international standards.
Alcoverro, Benoit; Le Pichon, Alexis
2005-04-01
The implementation of the infrasound network of the International Monitoring System (IMS) for the enforcement of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) increases the effort in the design of suitable noise reducer systems. In this paper we present a new design consisting of low impedance elements. The dimensioning and the optimization of this discrete mechanical system are based on numerical simulations, including a complete electroacoustical modeling and a realistic wind-noise model. The frequency response and the noise reduction obtained for a given wind speed are compared to statistical noise measurements in the [0.02-4] Hz frequency band. The effects of the constructive parameters-the length of the pipes, inner diameters, summing volume, and number of air inlets-are investigated through a parametric study. The studied system consists of 32 air inlets distributed along an overall diameter of 16 m. Its frequency response is flat up to 4 Hz. For a 2 m/s wind speed, the maximal noise reduction obtained is 15 dB between 0.5 and 4 Hz. At lower frequencies, the noise reduction is improved by the use of a system of larger diameter. The main drawback is the high-frequency limitation introduced by acoustical resonances inside the pipes.
Optimization and Modeling of Noise Reduction for Turbulent Jets with Induced Asymmetry
NASA Astrophysics Data System (ADS)
Rostamimonjezi, Sara
This project relates to the development of next-generation high-speed aircraft that are efficient and environmentally compliant. The emphasis of the research is on reducing noise from high-performance engines that will power these aircraft. A strong component of engine noise is jet mixing noise that comes from the turbulent mixing process between the high-speed exhaust flow of the engine and the atmosphere. The fan flow deflection method (FFD) suppresses jet noise by deflecting the fan stream downward, by a few degrees, with respect to the core stream. This reduces the convective Mach number of the primary shear layer and turbulent kinetic energy in the downward direction and therefore reduces the noise emitted towards the ground. The redistribution of the fan stream is achieved with inserting airfoil-shaped vanes inside the fan duct. Aerodynamic optimization of FFD has been done by Dr. Juntao Xiong using a computational fluid dynamics code to maximize reduction of noise perceived by the community while minimizing aerodynamic losses. The optimal vane airfoils are used in a parametric experimental study of 50 4-vane deflector configurations. The vane chord length, angle of attack, and azimuthal location are the parameters studied in acoustic optimization. The best vane configuration yields a reduction in cumulative (downward + sideline) effective perceived noise level (EPNL) of 5.3 dB. The optimization study underscores the sensitivity of FFD to deflector parameters and the need for careful design in the practical implementation of this noise reduction approach. An analytical model based on Reynolds Averaged Navier Stokes (RANS) and acoustic analogy is developed to predict the spectral changes from a known baseline in the direction of peak emission. A generalized form for space-time correlation is introduced that allows shapes beyond the traditional exponential forms. Azimuthal directivity based on the wavepacket model of jet noise is integrated with the acoustic analogy model. A physics-based definition of convective Mach number is proposed. The predicted noise reduction is in reasonable agreement with the experiments. The study underscores the importance of a proper definition of convective Mach number when modeling noise in the direction of peak emission.
Kol, Emine; Aydın, Perihan; Dursun, Oguz
2015-07-01
Noise is a substantial problem for both patients and healthcare workers in hospitals. This study aimed to determine the effectiveness of environmental strategies (creating single-patient rooms and reducing noise sources) in noise reduction in a pediatric intensive care unit. Noise measurement in the unit was conducted in two phases. In the first phase, measurements aimed at determining the unit's present level of noise were performed over 4 weeks in December 2013. During the month following the first measurement phase, the intensive care unit (ICU) was moved to a new location and noise-reducing strategies were implemented. The second phase, in May 2014, measured noise levels in the newly constructed environment. The noise levels before and after environmental changes were statistically significant at 72.6 dB-A and 56 dB-A, respectively (p < .05). Single-patient rooms and noise-reducing strategies can be effective in controlling environmental noise in the ICU. © 2015, Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Saiyed, Naseem H.; Mikkelsen, Kevin L.; Bridges, James E.
2000-01-01
The NASA Glenn Research Center recently completed an experimental study to reduce the jet noise from modern turbofan engines. The study concentrated on exhaust nozzle designs for high-bypass-ratio engines. These designs modified the core and fan nozzles individually and simultaneously. Several designs provided an ideal jet noise reduction of over 2.5 EPNdB for the effective perceived noise level (EPNL) metric. Noise data, after correcting for takeoff thrust losses, indicated over a 2.0-EPNdB reduction for nine designs. Individually modifying the fan nozzle did not provide attractive EPNL reductions. Designs in which only the core nozzle was modified provided greater EPNL reductions. Designs in which core and fan nozzles were modified simultaneously provided the greatest EPNL reduction. The best nozzle design had a 2.7-EPNdB reduction (corrected for takeoff thrust loss) with a 0.06-point cruise thrust loss. This design simultaneously employed chevrons on the core and fan nozzles. In comparison with chevrons, tabs appeared to be an inefficient method for reducing jet noise. Data trends indicate that the sum of the thrust losses from individually modifying core and fan nozzles did not generally equal the thrust loss from modifying them simultaneously. Flow blockage from tabs did not scale directly with cruise thrust loss and the interaction between fan flow and the core nozzle seemed to strongly affect noise and cruise performance. Finally, the nozzle configuration candidates for full-scale engine demonstrations are identified.
Impact of chevron spacing and asymmetric distribution on supersonic jet acoustics and flow
NASA Astrophysics Data System (ADS)
Heeb, N.; Gutmark, E.; Kailasanath, K.
2016-05-01
An experimental investigation into the effect of chevron spacing and distribution on supersonic jets was performed. Cross-stream and streamwise particle imaging velocimetry measurements were used to relate flow field modification to sound field changes measured by far-field microphones in the overexpanded, ideally expanded, and underexpanded regimes. Drastic modification of the jet cross-section was achieved by the investigated configurations, with both elliptic and triangular shapes attained downstream. Consequently, screech was nearly eliminated with reductions in the range of 10-25 dB depending on the operating condition. Analysis of the streamwise velocity indicated that both the mean shock spacing and strength were reduced resulting in an increase in the broadband shock associated noise spectral peak frequency and a reduction in the amplitude, respectively. Maximum broadband shock associated noise amplitude reductions were in the 5-7 dB range. Chevron proximity was found to be the primary driver of peak vorticity production, though persistence followed the opposite trend. The integrated streamwise vorticity modulus was found to be correlated with peak large scale turbulent mixing noise reduction, though optimal overall sound pressure level reductions did not necessarily follow due to the shock/fine scale mixing noise sources. Optimal large scale mixing noise reductions were in the 5-6 dB range.
Studies of blade-vortex interaction noise reduction by rotor blade modification
NASA Technical Reports Server (NTRS)
Brooks, Thomas F.
1993-01-01
Blade-vortex interaction (BVI) noise is one of the most objectionable types of helicopter noise. This impulsive blade-slap noise can be particularly intense during low-speed landing approach and maneuvers. Over the years, a number of flight and model rotor tests have examined blade tip modification and other blade design changes to reduce this noise. Many times these tests have produced conflicting results. In the present paper, a number of these studies are reviewed in light of the current understanding of the BVI noise problem. Results from one study in particular are used to help establish the noise reduction potential and to shed light on the role of blade design. Current blade studies and some new concepts under development are also described.
NASA Astrophysics Data System (ADS)
Damberg, W.; Floegel, K.; Sahm, A.
1983-02-01
A noise reduction device for pneumatic nailers was developed. Conditions of use, range of products available, market regulations and measuring methods were studied. Ease of operation, service life, functional reliability and maintenance capacity were studied. Results show that the essential noise sources of the device are the compressed air blasts of the working and relation phases and the impact of the piston on the bumper. Packages of measures implemented on a laboratory scale indicate noise reduction possibilities for nailers in the short, medium and long term. The sound level of a single shot can be reduced from 110 dB to 93 dB.
Economic Impact of Hearing Loss and Reduction of Noise-Induced Hearing Loss in the United States.
Neitzel, Richard L; Swinburn, Tracy K; Hammer, Monica S; Eisenberg, Daniel
2017-01-01
Hearing loss (HL) is pervasive and debilitating, and noise-induced HL is preventable by reducing environmental noise. Lack of economic analyses of HL impacts means that prevention and treatment remain a low priority for public health and environmental investment. This article estimates the costs of HL on productivity by building on established estimates for HL prevalence and wage and employment differentials between those with and without HL. We estimate that HL affects more than 13% of the working population. Not all HL can be prevented or treated, but if the 20% of HL resulting from excessive noise exposure were prevented, the economic benefit would be substantial-we estimate a range of $58 billion to $152 billion annually, with a core estimate of $123 billion. We believe this is a conservative estimate, because consideration of additional costs of HL, including health care and special education, would likely further increase the benefits associated with HL prevention. HL is costly and warrants additional emphasis in public and environmental health programs. This study represents an important first step in valuing HL prevention-in particular, prevention of noise-induced HL-where new policies and technologies appear promising.
NASA Astrophysics Data System (ADS)
Setlur Nagesh, S. V.; Khobragade, P.; Ionita, C.; Bednarek, D. R.; Rudin, S.
2015-03-01
Because x-ray based image-guided vascular interventions are minimally invasive they are currently the most preferred method of treating disorders such as stroke, arterial stenosis, and aneurysms; however, the x-ray exposure to the patient during long image-guided interventional procedures could cause harmful effects such as cancer in the long run and even tissue damage in the short term. ROI fluoroscopy reduces patient dose by differentially attenuating the incident x-rays outside the region-of-interest. To reduce the noise in the dose-reduced regions previously recursive temporal filtering was successfully demonstrated for neurovascular interventions. However, in cardiac interventions, anatomical motion is significant and excessive recursive filtering could cause blur. In this work the effects of three noise-reduction schemes, including recursive temporal filtering, spatial mean filtering, and a combination of spatial and recursive temporal filtering, were investigated in a simulated ROI dose-reduced cardiac intervention. First a model to simulate the aortic arch and its movement was built. A coronary stent was used to simulate a bioprosthetic valve used in TAVR procedures and was deployed under dose-reduced ROI fluoroscopy during the simulated heart motion. The images were then retrospectively processed for noise reduction in the periphery, using recursive temporal filtering, spatial filtering and a combination of both. Quantitative metrics for all three noise reduction schemes are calculated and are presented as results. From these it can be concluded that with significant anatomical motion, a combination of spatial and recursive temporal filtering scheme is best suited for reducing the excess quantum noise in the periphery. This new noise-reduction technique in combination with ROI fluoroscopy has the potential for substantial patient-dose savings in cardiac interventions.
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.
1990-01-01
The feasibility of predicting interior noise due to random acoustic or turbulent boundary layer excitation was investigated in experiments in which a statistical energy analysis model (VAPEPS) was used to analyze measurements of the acceleration response and sound transmission of flat aluminum, lucite, and graphite/epoxy plates exposed to random acoustic or turbulent boundary layer excitation. The noise reduction of the plate, when backed by a shallow cavity and excited by a turbulent boundary layer, was predicted using a simplified theory based on the assumption of adiabatic compression of the fluid in the cavity. The predicted plate acceleration response was used as input in the noise reduction prediction. Reasonable agreement was found between the predictions and the measured noise reduction in the frequency range 315-1000 Hz.
Network-based de-noising improves prediction from microarray data.
Kato, Tsuyoshi; Murata, Yukio; Miura, Koh; Asai, Kiyoshi; Horton, Paul B; Koji, Tsuda; Fujibuchi, Wataru
2006-03-20
Prediction of human cell response to anti-cancer drugs (compounds) from microarray data is a challenging problem, due to the noise properties of microarrays as well as the high variance of living cell responses to drugs. Hence there is a strong need for more practical and robust methods than standard methods for real-value prediction. We devised an extended version of the off-subspace noise-reduction (de-noising) method to incorporate heterogeneous network data such as sequence similarity or protein-protein interactions into a single framework. Using that method, we first de-noise the gene expression data for training and test data and also the drug-response data for training data. Then we predict the unknown responses of each drug from the de-noised input data. For ascertaining whether de-noising improves prediction or not, we carry out 12-fold cross-validation for assessment of the prediction performance. We use the Pearson's correlation coefficient between the true and predicted response values as the prediction performance. De-noising improves the prediction performance for 65% of drugs. Furthermore, we found that this noise reduction method is robust and effective even when a large amount of artificial noise is added to the input data. We found that our extended off-subspace noise-reduction method combining heterogeneous biological data is successful and quite useful to improve prediction of human cell cancer drug responses from microarray data.
Aerodynamic and acoustic tests of duct-burning turbofan exhaust nozzles
NASA Technical Reports Server (NTRS)
Kozlowski, H.; Packman, A. B.
1976-01-01
The static aerodynamic and acoustic characteristics of duct-burning turbofan (DBTF) exhaust nozzles are established. Scale models, having a total area equivalent to a 0.127 m diameter convergent nozzle, simulating unsuppressed coannular nozzles and mechanically suppressed nozzles with and without ejectors (hardwall and acoustically treated) were tested in a quiescent environment. The ratio of fan to primary area was varied from 0.75 to 1.2. Far field acoustic data, perceived noise levels, and thrust measurements were obtained for 417 test conditions. Pressure ratios were varied from 1.3 to 4.1 in the fan stream and from 1.53 to 2.5 in the primary stream. Total temperature varied from 395 to 1090 K in both streams. Jet noise reductions relative to synthesized prediction from 8 PNdB (with the unsuppressed coannular nozzle) to 15 PNdB (with a mechanically suppressed configuration) were observed at conditions typical of engines being considered under the Advanced Supersonic Technology program. The inherent suppression characteristic of the unsuppressed coannular nozzle is related to the rapid mixing in the jet wake caused by the velocity profiles associated with the DBTF. Since this can be achieved without a mechanical suppressor, significant reductions in aircraft weight or noise footprint can be realized.
The Dornier 328 Acoustic Test Cell (ATC) for interior noise tests and selected test results
NASA Technical Reports Server (NTRS)
Hackstein, H. Josef; Borchers, Ingo U.; Renger, Klaus; Vogt, Konrad
1992-01-01
To perform acoustic studies for achieving low noise levels for the Dornier 328, an acoustic test cell (ATC) of the Dornier 328 has been built. The ATC consists of a fuselage section, a realistic fuselage suspension system, and three exterior noise simulation rings. A complex digital 60 channel computer/amplifier noise generation system as well as multichannel digital data acquisition and evaluation system have been used. The noise control tests started with vibration measurements for supporting acoustic data interpretation. In addition, experiments have been carried out on dynamic vibration absorbers, the most important passive noise reduction measure for low frequency propeller noise. The design and arrangement of the current ATC are presented. Furthermore, exterior noise simulation as well as data acquisition are explained. The most promising results show noise reduction due to synchrophasing and dynamic vibration absorbers.
Design and Test of Fan/Nacelle Models Quiet High-Speed Fan Design
NASA Technical Reports Server (NTRS)
Miller, Christopher J. (Technical Monitor); Repp, Russ; Gentile, David; Hanson, David; Chunduru, Srinivas
2003-01-01
The primary objective of the Quiet High-Speed Fan (QHSF) program was to develop an advanced high-speed fan design that will achieve a 6 dB reduction in overall fan noise over a baseline configuration while maintaining similar performance. The program applies and validates acoustic, aerodynamic, aeroelastic, and mechanical design tools developed by NASA, US industry, and academia. The successful fan design will be used in an AlliedSignal Engines (AE) advanced regional engine to be marketed in the year 2000 and beyond. This technology is needed to maintain US industry leadership in the regional turbofan engine market.
NASA Astrophysics Data System (ADS)
Gilra, D. P.; Pwa, T. H.; Arnal, E. M.; de Vries, J.
1982-06-01
In order to process and analyze high resolution IUE data on a large number of interstellar lines in a large number of images for a large number of stars, computer programs were developed for 115 lines in the short wavelength range and 40 in the long wavelength range. Programs include extraction, processing, plotting, averaging, and profile fitting. Wavelength calibration in high resolution spectra, fixed pattern noise, instrument profile and resolution, and the background problem in the region where orders are crowding are discussed. All the expected lines are detected in at least one spectrum.
Optimization of the poro-serrated trailing edges for airfoil broadband noise reduction.
Chong, Tze Pei; Dubois, Elisa
2016-08-01
This paper reports an aeroacoustic investigation of a NACA0012 airfoil with a number of poro-serrated trailing edge devices that contain porous materials of various air flow resistances at the gaps between adjacent members of the serrated-sawtooth trailing edge. The main objective of this work is to determine whether multiple-mechanisms on the broadband noise reduction can co-exist on a poro-serrated trailing edge. When the sawtooth gaps are filled with porous material of low-flow resistivity, the vortex shedding tone at low-frequency could not be completely suppressed at high-velocity, but a reasonably good broadband noise reduction can be achieved at high-frequency. When the sawtooth gaps are filled with porous material of very high-flow resistivity, no vortex shedding tone is present, but the serration effect on the broadband noise reduction becomes less effective. An optimal choice of the flow resistivity for a poro-serrated configuration has been identified, where it can surpass the conventional serrated trailing edge of the same geometry by achieving a further 1.5 dB reduction in the broadband noise while completely suppressing the vortex shedding tone. A weakened turbulent boundary layer noise scattering at the poro-serrated trailing edge is reflected by the lower-turbulence intensity at the near wake centreline across the whole spanwise wavelength of the sawtooth.
Filtered-x generalized mixed norm (FXGMN) algorithm for active noise control
NASA Astrophysics Data System (ADS)
Song, Pucha; Zhao, Haiquan
2018-07-01
The standard adaptive filtering algorithm with a single error norm exhibits slow convergence rate and poor noise reduction performance under specific environments. To overcome this drawback, a filtered-x generalized mixed norm (FXGMN) algorithm for active noise control (ANC) system is proposed. The FXGMN algorithm is developed by using a convex mixture of lp and lq norms as the cost function that it can be viewed as a generalized version of the most existing adaptive filtering algorithms, and it will reduce to a specific algorithm by choosing certain parameters. Especially, it can be used to solve the ANC under Gaussian and non-Gaussian noise environments (including impulsive noise with symmetric α -stable (SαS) distribution). To further enhance the algorithm performance, namely convergence speed and noise reduction performance, a convex combination of the FXGMN algorithm (C-FXGMN) is presented. Moreover, the computational complexity of the proposed algorithms is analyzed, and a stability condition for the proposed algorithms is provided. Simulation results show that the proposed FXGMN and C-FXGMN algorithms can achieve better convergence speed and higher noise reduction as compared to other existing algorithms under various noise input conditions, and the C-FXGMN algorithm outperforms the FXGMN.
Pan, Feng; Yang, Lizhi; Xiao, Wen
2017-09-04
In digital holographic microscopy (DHM), it is undesirable to observe coherent noise in the reconstructed images. The sources of the noise are mainly the parasitic interference fringes caused by multiple reflections and the speckle pattern caused by the optical scattering on the object surface. Here we propose a noise reduction approach in DHM by averaging multiple holograms recorded with a multimode laser. Based on the periodicity of the temporal coherence of a multimode semiconductor laser, we acquire a series of holograms by changing the optical path length difference between the reference beam and object beam. Because of the use of low coherence light, we can remove the parasitic interference fringes caused by multiple reflections in the holograms. In addition, the coherent noise patterns change in this process due to the different optical paths. Therefore, the coherent noise can be reduced by averaging the multiple reconstructions with uncorrelated noise patterns. Several experiments have been carried out to validate the effectiveness of the proposed approach for coherent noise reduction in DHM. It is shown a remarkable improvement both in amplitude imaging quality and phase measurement accuracy.
Chen, Szi-Wen; Chen, Yuan-Ho
2015-01-01
In this paper, a discrete wavelet transform (DWT) based de-noising with its applications into the noise reduction for medical signal preprocessing is introduced. This work focuses on the hardware realization of a real-time wavelet de-noising procedure. The proposed de-noising circuit mainly consists of three modules: a DWT, a thresholding, and an inverse DWT (IDWT) modular circuits. We also proposed a novel adaptive thresholding scheme and incorporated it into our wavelet de-noising procedure. Performance was then evaluated on both the architectural designs of the software and. In addition, the de-noising circuit was also implemented by downloading the Verilog codes to a field programmable gate array (FPGA) based platform so that its ability in noise reduction may be further validated in actual practice. Simulation experiment results produced by applying a set of simulated noise-contaminated electrocardiogram (ECG) signals into the de-noising circuit showed that the circuit could not only desirably meet the requirement of real-time processing, but also achieve satisfactory performance for noise reduction, while the sharp features of the ECG signals can be well preserved. The proposed de-noising circuit was further synthesized using the Synopsys Design Compiler with an Artisan Taiwan Semiconductor Manufacturing Company (TSMC, Hsinchu, Taiwan) 40 nm standard cell library. The integrated circuit (IC) synthesis simulation results showed that the proposed design can achieve a clock frequency of 200 MHz and the power consumption was only 17.4 mW, when operated at 200 MHz. PMID:26501290
Chen, Szi-Wen; Chen, Yuan-Ho
2015-10-16
In this paper, a discrete wavelet transform (DWT) based de-noising with its applications into the noise reduction for medical signal preprocessing is introduced. This work focuses on the hardware realization of a real-time wavelet de-noising procedure. The proposed de-noising circuit mainly consists of three modules: a DWT, a thresholding, and an inverse DWT (IDWT) modular circuits. We also proposed a novel adaptive thresholding scheme and incorporated it into our wavelet de-noising procedure. Performance was then evaluated on both the architectural designs of the software and. In addition, the de-noising circuit was also implemented by downloading the Verilog codes to a field programmable gate array (FPGA) based platform so that its ability in noise reduction may be further validated in actual practice. Simulation experiment results produced by applying a set of simulated noise-contaminated electrocardiogram (ECG) signals into the de-noising circuit showed that the circuit could not only desirably meet the requirement of real-time processing, but also achieve satisfactory performance for noise reduction, while the sharp features of the ECG signals can be well preserved. The proposed de-noising circuit was further synthesized using the Synopsys Design Compiler with an Artisan Taiwan Semiconductor Manufacturing Company (TSMC, Hsinchu, Taiwan) 40 nm standard cell library. The integrated circuit (IC) synthesis simulation results showed that the proposed design can achieve a clock frequency of 200 MHz and the power consumption was only 17.4 mW, when operated at 200 MHz.
Numerical Prediction of Chevron Nozzle Noise Reduction using Wind-MGBK Methodology
NASA Technical Reports Server (NTRS)
Engblom, W.A.; Bridges, J.; Khavarant, A.
2005-01-01
Numerical predictions for single-stream chevron nozzle flow performance and farfield noise production are presented. Reynolds Averaged Navier Stokes (RANS) solutions, produced via the WIND flow solver, are provided as input to the MGBK code for prediction of farfield noise distributions. This methodology is applied to a set of sensitivity cases involving varying degrees of chevron inward bend angle relative to the core flow, for both cold and hot exhaust conditions. The sensitivity study results illustrate the effect of increased chevron bend angle and exhaust temperature on enhancement of fine-scale mixing, initiation of core breakdown, nozzle performance, and noise reduction. Direct comparisons with experimental data, including stagnation pressure and temperature rake data, PIV turbulent kinetic energy fields, and 90 degree observer farfield microphone data are provided. Although some deficiencies in the numerical predictions are evident, the correct farfield noise spectra trends are captured by the WIND-MGBK method, including the noise reduction benefit of chevrons. Implications of these results to future chevron design efforts are addressed.
Noise produced by the interaction of a rotor wake with a swept stator blade
NASA Astrophysics Data System (ADS)
Envia, E.; Kerschen, E. J.
1984-10-01
An analysis is developed for the noise generated by the interaction of rotor viscous wakes and a single swept stator vane. The stator vane spans a channel with infinite parallel walls which contains a uniform subsonic mean flow. High frequency wakes, for which the noise generation is concentrated at the vane leading edge, are considered. The general wake pattern is expanded in spanwise modes and solutions for each mode are derived using the Wiener-Hopf technique applied to the equations in the nonorthogonal coordinates. Closed form expressions for the acoustic farfield are obtained. The results of the analysis are used in parametric calculations of rotor viscous wake-stator vane interactions in order to study the effectiveness of sweep as a noise reduction mechanism. For the cases studied, moderate stator sweep angles produce sizeable reductions in the level of the farfield noise. The presence of rotor wake circumferential lean actually increases the noise reduction produced by moderate stator sweep angles.
Direct-to-digital holography reduction of reference hologram noise and fourier space smearing
Voelkl, Edgar
2006-06-27
Systems and methods are described for reduction of reference hologram noise and reduction of Fourier space smearing, especially in the context of direct-to-digital holography (off-axis interferometry). A method of reducing reference hologram noise includes: recording a plurality of reference holograms; processing the plurality of reference holograms into a corresponding plurality of reference image waves; and transforming the corresponding plurality of reference image waves into a reduced noise reference image wave. A method of reducing smearing in Fourier space includes: recording a plurality of reference holograms; processing the plurality of reference holograms into a corresponding plurality of reference complex image waves; transforming the corresponding plurality of reference image waves into a reduced noise reference complex image wave; recording a hologram of an object; processing the hologram of the object into an object complex image wave; and dividing the complex image wave of the object by the reduced noise reference complex image wave to obtain a reduced smearing object complex image wave.
NASA Technical Reports Server (NTRS)
Schmitz, F. H.; Allmen, J. R.; Soderman, P. T.
1994-01-01
The development of a large-scale anechoic test facility where large models of engine/airframe/high-lift systems can be tested for both improved noise reduction and minimum performance degradation is described. The facility development is part of the effort to investigate economically viable methods of reducing second generation high speed civil transport noise during takeoff and climb-out that is now under way in the United States. This new capability will be achieved through acoustic modifications of NASA's second largest subsonic wind tunnel: the 40-by 80-Foot Wind Tunnel at the NASA Ames Research Center. Three major items are addressed in the design of this large anechoic and quiet wind tunnel: a new deep (42 inch (107 cm)) test section liner, expansion of the wind tunnel drive operating envelope at low rpm to reduce background noise, and other promising methods of improving signal-to-noise levels of inflow microphones. Current testing plans supporting the U.S. high speed civil transport program are also outlined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukherjee, S; Yao, W
2015-06-15
Purpose: To study different noise-reduction algorithms and to improve the image quality of low dose cone beam CT for patient positioning in radiation therapy. Methods: In low-dose cone-beam CT, the reconstructed image is contaminated with excessive quantum noise. In this study, three well-developed noise reduction algorithms namely, a) penalized weighted least square (PWLS) method, b) split-Bregman total variation (TV) method, and c) compressed sensing (CS) method were studied and applied to the images of a computer–simulated “Shepp-Logan” phantom and a physical CATPHAN phantom. Up to 20% additive Gaussian noise was added to the Shepp-Logan phantom. The CATPHAN phantom was scannedmore » by a Varian OBI system with 100 kVp, 4 ms and 20 mA. For comparing the performance of these algorithms, peak signal-to-noise ratio (PSNR) of the denoised images was computed. Results: The algorithms were shown to have the potential in reducing the noise level for low-dose CBCT images. For Shepp-Logan phantom, an improvement of PSNR of 2 dB, 3.1 dB and 4 dB was observed using PWLS, TV and CS respectively, while for CATPHAN, the improvement was 1.2 dB, 1.8 dB and 2.1 dB, respectively. Conclusion: Penalized weighted least square, total variation and compressed sensing methods were studied and compared for reducing the noise on a simulated phantom and a physical phantom scanned by low-dose CBCT. The techniques have shown promising results for noise reduction in terms of PSNR improvement. However, reducing the noise without compromising the smoothness and resolution of the image needs more extensive research.« less
High Bypass Ratio Jet Noise Reduction and Installation Effects Including Shielding Effectiveness
NASA Technical Reports Server (NTRS)
Thomas, Russell H.; Czech, Michael J.; Doty, Michael J.
2013-01-01
An experimental investigation was performed to study the propulsion airframe aeroacoustic installation effects of a separate flow jet nozzle with a Hybrid Wing Body aircraft configuration where the engine is installed above the wing. Prior understanding of the jet noise shielding effectiveness was extended to a bypass ratio ten application as a function of nozzle configuration, chevron type, axial spacing, and installation effects from additional airframe components. Chevron types included fan chevrons that are uniform circumferentially around the fan nozzle and T-fan type chevrons that are asymmetrical circumferentially. In isolated testing without a pylon, uniform chevrons compared to T-fan chevrons showed slightly more low frequency reduction offset by more high frequency increase. Phased array localization shows that at this bypass ratio chevrons still move peak jet noise source locations upstream but not to nearly the extent, as a function of frequency, as for lower bypass ratio jets. For baseline nozzles without chevrons, the basic pylon effect has been greatly reduced compared to that seen for lower bypass ratio jets. Compared to Tfan chevrons without a pylon, the combination with a standard pylon results in more high frequency noise increase and an overall higher noise level. Shielded by an airframe surface 2.17 fan diameters from nozzle to airframe trailing edge, the T-fan chevron nozzle can produce reductions in jet noise of as much as 8 dB at high frequencies and upstream angles. Noise reduction from shielding decreases with decreasing frequency and with increasing angle from the jet inlet. Beyond an angle of 130 degrees there is almost no noise reduction from shielding. Increasing chevron immersion more than what is already an aggressive design is not advantageous for noise reduction. The addition of airframe control surfaces, including vertical stabilizers and elevon deflection, showed only a small overall impact. Based on the test results, the best overall nozzle configuration design was selected for application to the N2A Hybrid Wing Body concept that will be the subject of the NASA Langley 14 by 22 Foot Subsonic Tunnel high fidelity aeroacoustic characterization experiment. The best overall nozzle selected includes T-fan type chevrons, uniform chevrons on the core nozzle, and no additional pylon of the type that created a strong acoustic effect at lower bypass ratios. The T-fan chevrons are oriented azimuthally away from the ground observer locations. This best overall nozzle compared to the baseline nozzle was assessed, at equal thrust, to produce sufficient installed noise reduction of the jet noise component to enable the N2A HWB to meet NASA s noise goal of 42 dB cumulative below Stage 4.
Reducing environmental noise impacts: A USAREUR noise management program handbook
NASA Astrophysics Data System (ADS)
Feather, Timothy D.; Shekell, Ted K.
1991-06-01
Noise pollution is a major environmental problem faced by the U.S. Army in Europe. Noise-related complaints from German citizens can escalate into intense political issues in German communities. This in turn hampers efficient operation of military training and often times threatens the Army's mission. In order to remedy these problems, USAREUR has developed a noise management program. A successful noise management program will limit the impact of unavoidable noise on the populace. This report, a component of the noise management program, is a reference document for noise management planning. It contains guidelines and rules-of-thumb for noise management. This document contains procedures which operation and training level personnel can understand and apply in their day to day noise management planning. Noise mitigation tips are given. Basic technical information that will aid in understanding noise mitigation is provided along with noise management through land use planning. Noise management for specific components of the military community, (airfields, base operations, training areas, and housing and recreation areas) are addressed. The nature of noise generated, means of noise abatement at the source, path, and receiver (both physical and organizational/public relations methods), and a case study example are described.
Microphone directionality, pre-emphasis filter, and wind noise in cochlear implants.
Chung, King; McKibben, Nicholas
2011-10-01
Wind noise can be a nuisance or a debilitating masker for cochlear implant users in outdoor environments. Previous studies indicated that wind noise at the microphone/hearing aid output had high levels of low-frequency energy and the amount of noise generated is related to the microphone directionality. Currently, cochlear implants only offer either directional microphones or omnidirectional microphones for users at-large. As all cochlear implants utilize pre-emphasis filters to reduce low-frequency energy before the signal is encoded, effective wind noise reduction algorithms for hearing aids might not be applicable for cochlear implants. The purposes of this study were to investigate the effect of microphone directionality on speech recognition and perceived sound quality of cochlear implant users in wind noise and to derive effective wind noise reduction strategies for cochlear implants. A repeated-measure design was used to examine the effects of spectral and temporal masking created by wind noise recorded through directional and omnidirectional microphones and the effects of pre-emphasis filters on cochlear implant performance. A digital hearing aid was programmed to have linear amplification and relatively flat in-situ frequency responses for the directional and omnidirectional modes. The hearing aid output was then recorded from 0 to 360° at flow velocities of 4.5 and 13.5 m/sec in a quiet wind tunnel. Sixteen postlingually deafened adult cochlear implant listeners who reported to be able to communicate on the phone with friends and family without text messages participated in the study. Cochlear implant users listened to speech in wind noise recorded at locations that the directional and omnidirectional microphones yielded the lowest noise levels. Cochlear implant listeners repeated the sentences and rated the sound quality of the testing materials. Spectral and temporal characteristics of flow noise, as well as speech and/or noise characteristics before and after the pre-emphasis filter, were analyzed. Correlation coefficients between speech recognition scores and crest factors of wind noise before and after pre-emphasis filtering were also calculated. Listeners obtained higher scores using the omnidirectional than the directional microphone mode at 13.5 m/sec, but they obtained similar speech recognition scores for the two microphone modes at 4.5 m/sec. Higher correlation coefficients were obtained between speech recognition scores and crest factors of wind noise after pre-emphasis filtering rather than before filtering. Cochlear implant users would benefit from both directional and omnidirectional microphones to reduce far-field background noise and near-field wind noise. Automatic microphone switching algorithms can be more effective if the incoming signal were analyzed after pre-emphasis filters for microphone switching decisions. American Academy of Audiology.
NASA Technical Reports Server (NTRS)
Grosveld, F.; Vanaken, J.
1978-01-01
Sound pressure levels in the test facility were studied that are caused by varying: (1) microphone positions; (2) equalizer setting; and (3) panel clamping forces. Measurements were done by using a Beranek tube or this Beranek tube in combinations with an extension tube and a special test section. In all configurations tests were executed with and without a test panel installed. The influence of the speaker back panel and the back panel of the Beranek tube on the sound pressure levels inside the test tube were also investigated. It is shown that the definition of noise reduction is more useful in relation to this test facility than transmission loss.
Hybrid Active-Passive Systems for Control of Aircraft Interior Noise
NASA Technical Reports Server (NTRS)
Fuller, Chris R.; Palumbo, Dan (Technical Monitor)
2002-01-01
It was proposed to continue with development and application in the two active-passive areas of Active Tuned Vibration Absorbers (ATVA) and smart foam applied to the reduction of interior noise in aircraft. In general the work was focused on making both techniques more efficient, practical and robust thus increasing their application potential. The work was also concerned with demonstrating the potential of these two technologies under realistic implementations as well as understanding the fundamental physics of the systems. The proposed work consisted of a three-year program and was tightly coordinated with related work being carried out in the Structural Acoustics Branch at NASA LaRC. The work was supervised and coordinated through all phases by Prof Chris Fuller of Va Tech.
An Approach to Noise Reduction in Human Skin Admittance Measurements
2001-10-25
1966, 4, 439-449. [ 4] D. H. Gordon, "Triboelectric interference in the ECG", IEEE Trans., 1975, BME -22, 252-255. [ 5] J. C. Huhta and J. G...Webster, -Hz interference in electrocardiography", IEEE Trans., 1973, BME -20, 91-101. [ 6] S. Grimnes, "Electrovibration, cutaneous sensation of...this period he has published two textbooks about UNIX and Shell Programming, and concentrated at computer simulation and digital signal processing
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-31
... demonstrated noise benefit to noncompatible land uses exposed to noise levels in the yearly day/night average... provision of the Act to approve or disapprove the program within 180 days (other than the use of new or...-day period shall be deemed to be an approval of such program. The Noise Compatibility Program...
NASA Astrophysics Data System (ADS)
Leung, R. C. K.; So, R. M. C.; Tang, S. K.; Wang, X. Q.
2011-07-01
In-duct devices are commonly installed in flow ducts for various flow management purposes. The structural construction of these devices indispensably creates disruption to smooth flow through duct passages so they exist as structural discontinuities in duct flow. The presence of these discontinuities provides additional possibility of noise generation. In real practice, in-duct devices do not exist alone in any duct system. Even though each in-duct device would generate its own noise, it might be possible that these devices could be properly arranged so as to strengthen the interference between individual noise; thus giving rise to an overall reduction of noise radiation in the in-duct far field. This concept of passive noise control is investigated by considering different configurations of two structural discontinuities of simple form (i.e., a cavity) in tandem in an unconfined flow and in opposing setting within a flow duct. It is known that noise generated by a cavity in unconfined domain (unconfined cavity) is strongly dependent on flow-resonant behavior within the cavity so the interference it produces is merely aeroacoustic. The objective of the present study is to verify the concept of passive noise reduction through enhancement of aeroacoustic interference due to two cavities by considering laminar flow only. A two-dimensional approach is adopted for the direct aeroacoustic calculations using a direct numerical simulation (DNS) technique. The position and geometries of the cavities and the Mach number are varied; the resultant aeroacoustic behavior and acoustic power are calculated. The numerical results are compared with a single cavity case to highlight the effect of introducing additional cavities to the aeroacoustic problem. Resonant flow oscillations occur when two unconfined cavities are very close and the associated acoustic field is very intense with no noise reduction possible. However, for duct aeroacoustics, it is found that a 7.9 db reduction of acoustic power in the downstream side of the duct or a total reduction of ˜6 db is possible with opposing cavities having an offset of half a cavity length. In addition, the reduction is shown to be free from lock-on with trapped modes of the ducts with cavities.
NASA Astrophysics Data System (ADS)
Bragdon, C. R.
Airport and community land use planning as they relate to airport noise reduction are discussed. Legislation, community relations, and the physiological effect of airport noise are considered. Noise at the Logan, Los Angeles, and Minneapolis/St. Paul airports is discussed.
NASA Technical Reports Server (NTRS)
Bragdon, C. R.
1982-01-01
Airport and community land use planning as they relate to airport noise reduction are discussed. Legislation, community relations, and the physiological effect of airport noise are considered. Noise at the Logan, Los Angeles, and Minneapolis/St. Paul airports is discussed.
Noise reduction characteristics of general aviation type dual-pane windows
NASA Technical Reports Server (NTRS)
Grosveld, F.; Navaneethan, R.; Roskam, J.
1980-01-01
The noise reduction characteristics of general-aviation-type, dual-pane windows in various configurations have been experimentally investigated. The effects of inner and outer pane thickness, spacing between the panes, edge conditions, inclination of the inner pane and depressurization of the air in between the panes are presented. The space in between the two window panes is sealed airtight in all cases. Results show that increasing the mass of a 'floating' window pane does not increase the noise reduction below the fundamental resonance frequency. It is concluded that the concept of depressurization of the air between thin (1/8 in) Plexiglas panes and application of multiple-freedom edge conditions for the inner pane are promising to reduce noise levels in general aviation airplanes.
Analysis of de-noising methods to improve the precision of the ILSF BPM electronic readout system
NASA Astrophysics Data System (ADS)
Shafiee, M.; Feghhi, S. A. H.; Rahighi, J.
2016-12-01
In order to have optimum operation and precise control system at particle accelerators, it is required to measure the beam position with the precision of sub-μm. We developed a BPM electronic readout system at Iranian Light Source Facility and it has been experimentally tested at ALBA accelerator facility. The results show the precision of 0.54 μm in beam position measurements. To improve the precision of this beam position monitoring system to sub-μm level, we have studied different de-noising methods such as principal component analysis, wavelet transforms, filtering by FIR, and direct averaging method. An evaluation of the noise reduction was given to testify the ability of these methods. The results show that the noise reduction based on Daubechies wavelet transform is better than other algorithms, and the method is suitable for signal noise reduction in beam position monitoring system.
NASA Astrophysics Data System (ADS)
Furlong, Cosme; Pryputniewicz, Ryszard J.
2002-06-01
Effective suppression of speckle noise content in interferometric data images can help in improving accuracy and resolution of the results obtained with interferometric optical metrology techniques. In this paper, novel speckle noise reduction algorithms based on the discrete wavelet transformation are presented. The algorithms proceed by: (a) estimating the noise level contained in the interferograms of interest, (b) selecting wavelet families, (c) applying the wavelet transformation using the selected families, (d) wavelet thresholding, and (e) applying the inverse wavelet transformation, producing denoised interferograms. The algorithms are applied to the different stages of the processing procedures utilized for generation of quantitative speckle correlation interferometry data of fiber-optic based opto-electronic holography (FOBOEH) techniques, allowing identification of optimal processing conditions. It is shown that wavelet algorithms are effective for speckle noise reduction while preserving image features otherwise faded with other algorithms.
Hybrid feedforward-feedback active noise reduction for hearing protection and communication.
Ray, Laura R; Solbeck, Jason A; Streeter, Alexander D; Collier, Robert D
2006-10-01
A hybrid active noise reduction (ANR) architecture is presented and validated for a circumaural earcup and a communication earplug. The hybrid system combines source-independent feedback ANR with a Lyapunov-tuned leaky LMS filter (LyLMS) improving gain stability margins over feedforward ANR alone. In flat plate testing, the earcup demonstrates an overall C-weighted total noise reduction of 40 dB and 30-32 dB, respectively, for 50-800 Hz sum-of-tones noise and for aircraft or helicopter cockpit noise, improving low frequency (<100 Hz) performance by up to 15 dB over either control component acting individually. For the earplug, a filtered-X implementation of the LyLMS accommodates its nonconstant cancellation path gain. A fast time-domain identification method provides a high-fidelity, computationally efficient, infinite impulse response cancellation path model, which is used for both the filtered-X implementation and communication feedthrough. Insertion loss measurements made with a manikin show overall C-weighted total noise reduction provided by the ANR earplug of 46-48 dB for sum-of-tones 80-2000 Hz and 40-41 dB from 63 to 3000 Hz for UH-60 helicopter noise, with negligible degradation in attenuation during speech communication. For both hearing protectors, a stability metric improves by a factor of 2 to several orders of magnitude through hybrid ANR.
Method for simulating dose reduction in digital mammography using the Anscombe transformation.
Borges, Lucas R; Oliveira, Helder C R de; Nunes, Polyana F; Bakic, Predrag R; Maidment, Andrew D A; Vieira, Marcelo A C
2016-06-01
This work proposes an accurate method for simulating dose reduction in digital mammography starting from a clinical image acquired with a standard dose. The method developed in this work consists of scaling a mammogram acquired at the standard radiation dose and adding signal-dependent noise. The algorithm accounts for specific issues relevant in digital mammography images, such as anisotropic noise, spatial variations in pixel gain, and the effect of dose reduction on the detective quantum efficiency. The scaling process takes into account the linearity of the system and the offset of the detector elements. The inserted noise is obtained by acquiring images of a flat-field phantom at the standard radiation dose and at the simulated dose. Using the Anscombe transformation, a relationship is created between the calculated noise mask and the scaled image, resulting in a clinical mammogram with the same noise and gray level characteristics as an image acquired at the lower-radiation dose. The performance of the proposed algorithm was validated using real images acquired with an anthropomorphic breast phantom at four different doses, with five exposures for each dose and 256 nonoverlapping ROIs extracted from each image and with uniform images. The authors simulated lower-dose images and compared these with the real images. The authors evaluated the similarity between the normalized noise power spectrum (NNPS) and power spectrum (PS) of simulated images and real images acquired with the same dose. The maximum relative error was less than 2.5% for every ROI. The added noise was also evaluated by measuring the local variance in the real and simulated images. The relative average error for the local variance was smaller than 1%. A new method is proposed for simulating dose reduction in clinical mammograms. In this method, the dependency between image noise and image signal is addressed using a novel application of the Anscombe transformation. NNPS, PS, and local noise metrics confirm that this method is capable of precisely simulating various dose reductions.
Euler, André; Solomon, Justin; Marin, Daniele; Nelson, Rendon C; Samei, Ehsan
2018-06-01
The purpose of this study was to assess image noise, spatial resolution, lesion detectability, and the dose reduction potential of a proprietary third-generation adaptive statistical iterative reconstruction (ASIR-V) technique. A phantom representing five different body sizes (12-37 cm) and a contrast-detail phantom containing lesions of five low-contrast levels (5-20 HU) and three sizes (2-6 mm) were deployed. Both phantoms were scanned on a 256-MDCT scanner at six different radiation doses (1.25-10 mGy). Images were reconstructed with filtered back projection (FBP), ASIR-V with 50% blending with FBP (ASIR-V 50%), and ASIR-V without blending (ASIR-V 100%). In the first phantom, noise properties were assessed by noise power spectrum analysis. Spatial resolution properties were measured by use of task transfer functions for objects of different contrasts. Noise magnitude, noise texture, and resolution were compared between the three groups. In the second phantom, low-contrast detectability was assessed by nine human readers independently for each condition. The dose reduction potential of ASIR-V was estimated on the basis of a generalized linear statistical regression model. On average, image noise was reduced 37.3% with ASIR-V 50% and 71.5% with ASIR-V 100% compared with FBP. ASIR-V shifted the noise power spectrum toward lower frequencies compared with FBP. The spatial resolution of ASIR-V was equivalent or slightly superior to that of FBP, except for the low-contrast object, which had lower resolution. Lesion detection significantly increased with both ASIR-V levels (p = 0.001), with an estimated radiation dose reduction potential of 15% ± 5% (SD) for ASIR-V 50% and 31% ± 9% for ASIR-V 100%. ASIR-V reduced image noise and improved lesion detection compared with FBP and had potential for radiation dose reduction while preserving low-contrast detectability.
Effect of individual blade control on noise radiation
NASA Technical Reports Server (NTRS)
Swanson, S. M.; Jacklin, Stephen A.; Niesl, G.; Blaas, Achim; Kube, R.
1995-01-01
In a joint research program of NASA Ames Research Center, ZF Luftfahrttechnik, the German Aerospace Research Establishment (DLR), and EUROCOPTER Deutschland, a wind tunnel test was performed to evaluate the effects of Individual Blade Control (IBC) on rotor noise. This test was conducted in the 40x80 ft wind tunnel at NASA Ames Research Center, utilizing a full scale MBB-BO 105 four-bladed rotor system. Three microphones were installed for determination of the radiated noise, two of them on a moveable traverse below the advancing blade side and one in a fixed location below the retreating side. Acoustic results are presented for flight conditions with Blade-Vortex-Interaction (BVI) noise radiation. High noise level reductions were measured for single harmonic control inputs. In addition to the single harmonic inputs, multi-harmonic inputs were evaluated by superimposing 2/rev to 6/rev harmonics. For the first time the efficiency of sharp wavelets (60 deg and 90 deg width) on acoustic noise were measured. In order to achieve an adequate wavelet shape at the blade tip, corrections were made to account for the blade torsional behavior. In parallel with the acoustic measurements, vibratory loads were measured during the BVI flight condition to correlate the effects of IBC on noise and vibrations. It is shown how noise levels and vibrations are affected by specific IBC control inputs. In addition, correlations are made between noise levels and acoustic time histories with IBC phase and amplitude variations. For one IBC input mode with high noise reducing efficiency, a sweep of the moveable microphone traverse below the advancing side shows the effect on BVI noise directivity.
Reduction of CMOS Image Sensor Read Noise to Enable Photon Counting.
Guidash, Michael; Ma, Jiaju; Vogelsang, Thomas; Endsley, Jay
2016-04-09
Recent activity in photon counting CMOS image sensors (CIS) has been directed to reduction of read noise. Many approaches and methods have been reported. This work is focused on providing sub 1 e(-) read noise by design and operation of the binary and small signal readout of photon counting CIS. Compensation of transfer gate feed-through was used to provide substantially reduced CDS time and source follower (SF) bandwidth. SF read noise was reduced by a factor of 3 with this method. This method can be applied broadly to CIS devices to reduce the read noise for small signals to enable use as a photon counting sensor.
2018-05-15
The black circle inside the helmet on the right contains some of the new elements of a noise reduction headphone that is part of an Active Noise Reduction system. It helps pilots hear better and improve communication during flight research missions.
Study on Noise Prediction Model and Control Schemes for Substation
Gao, Yang; Liu, Songtao
2014-01-01
With the government's emphasis on environmental issues of power transmission and transformation project, noise pollution has become a prominent problem now. The noise from the working transformer, reactor, and other electrical equipment in the substation will bring negative effect to the ambient environment. This paper focuses on using acoustic software for the simulation and calculation method to control substation noise. According to the characteristics of the substation noise and the techniques of noise reduction, a substation's acoustic field model was established with the SoundPLAN software to predict the scope of substation noise. On this basis, 4 reasonable noise control schemes were advanced to provide some helpful references for noise control during the new substation's design and construction process. And the feasibility and application effect of these control schemes can be verified by using the method of simulation modeling. The simulation results show that the substation always has the problem of excessive noise at boundary under the conventional measures. The excess noise can be efficiently reduced by taking the corresponding noise reduction methods. PMID:24672356
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiedler, Paulo Eduardo Kirrian; Zannin, Paulo Henrique Trombetta, E-mail: paulo.zannin@pesquisador.cnpq.br
A study was made of some of the main traffic hubs in a Latin American metropolis, in order to determine the presence or absence of noise by means of noise measurements and acoustic mapping. To characterize noise in the evaluated road stretches, 232 measurements were taken at different points. The Predictor software package was used for the noise mapping calculations. Noise sensitive areas, e.g., hospitals, were identified in the evaluated road stretches. Noise maps were calculated for two hospitals, showing the current levels of noise that reach their facades. Hypothetical scenarios were simulated by making changes in the composition ofmore » traffic and total number of vehicles, and an assessment was made of the potential influence of these modifications in reducing the noise levels reaching the facades of the buildings in question. The simulations indicated that a 50% reduction in total traffic flow, or a 50% reduction in heavy vehicle traffic flow, would reduce the noise levels by about 3 dB(A). - Highlights: • Evaluation of noise pollution in urban traffic hubs • Street systems • Environmental noise impacts • Noise mapping.« less
Active Noise Control for Dishwasher noise
NASA Astrophysics Data System (ADS)
Lee, Nokhaeng; Park, Youngjin
2016-09-01
The dishwasher is a useful home appliance and continually used for automatically washing dishes. It's commonly placed in the kitchen with built-in style for practicality and better use of space. In this environment, people are easily exposed to dishwasher noise, so it is an important issue for the consumers, especially for the people living in open and narrow space. Recently, the sound power levels of the noise are about 40 - 50 dBA. It could be achieved by removal of noise sources and passive means of insulating acoustical path. For more reduction, such a quiet mode with the lower speed of cycle has been introduced, but this deteriorates the washing capacity. Under this background, we propose active noise control for dishwasher noise. It is observed that the noise is propagating mainly from the lower part of the front side. Control speakers are placed in the part for the collocation. Observation part of estimating sound field distribution and control part of generating the anti-noise are designed for active noise control. Simulation result shows proposed active noise control scheme could have a potential application for dishwasher noise reduction.
Bio-Inspired Control of Roughness and Trailing Edge Noise
NASA Astrophysics Data System (ADS)
Clark, Ian Andrew
Noise from fluid flow over rough surfaces is an important consideration in the design and performance of certain vehicles with high surface-area-to-perimeter ratios. A new method of noise control based on the anatomy of owls is developed and consists of fabric or fibrous canopies suspended above the surface. The method is tested experimentally and is found to reduce the total far-field noise emitted by the surface. The treatment also is found to reduce the magnitude of pressure fluctuations felt by the underlying surface by up to three orders of magnitude. Experimental investigations into the effects of geometric parameters of the canopies lead to an optimized design which maximizes noise reduction. The results obtained during the canopy experiment inspired a separate new device for the reduction of trailing edge noise. This type of noise is generated by flow past the wing of an aircraft or the blades of a wind turbine, and is a source of annoyance for those in surrounding communities. The newly developed treatment consists of small fins, or "finlets," placed near the trailing edge of an airfoil. The treatment is tested experimentally at near-full-scale conditions and is found to reduce the magnitude of far-field noise by up to 10 dB. Geometric parameters of the finlets are tested to determine the optimal size and spacing of the finlets to maximize noise reduction. Follow-up computational and experimental studies reveal the fluid mechanics behind the noise reduction by showing that the finlets produce a velocity deficit in the flow near the trailing edge and limit the magnitude and spanwise correlation lengthscale of turbulence near the trailing edge, factors which determine the magnitude of far-field noise. In a final experiment, the finlets are applied to a marine propeller and are found to reduce not only trailing edge noise, but also noise caused by the bluntness of the trailing edge. The results of this experiment show the potential usefulness of finlets to reduce noise from rotating systems, such as fans or propellers, as well as from structures which feature blunt trailing edges.
On the prediction of impact noise, V: The noise from drop hammers
NASA Astrophysics Data System (ADS)
Richards, E. J.; Carr, I.; Westcott, M.
1983-06-01
In earlier papers in this series, the concepts of "acceleration" and "ringing" noise have been studied in relation to impact machines, and values of radiation efficiency have been obtained for the various types of structural components. In the work reported in this paper the predicted and measured noise radiation from a drop hammer, both in full-scale and in {1}/{3}- scale model form, were examined. It is found that overall noise levels ( Leq per event) can be predicted from vibration measurements to within ± 1·5 dB, and to within ±2·5 dB in one-third octave bands. In turn this has permitted noise reduction techniques to be examined by studies of local component vibration levels rather than overall noise, a method which provides considerable enlightenment at the design stage. It is shown that on one particular drop hammer, the noise energy is shared surprisingly uniformly over four or five sources, and that when these have been reduced, the overall noise reduction is severely limited by the "acceleration" noise from the "tup" or "hammer" itself. As this is difficult to eliminate without a basic change in forging technology, it follows that "tup" enclosure or modification of the sharpness of the final "hard" impact are the only means available for any serious noise reduction. Also indicated is the reliability of using model techniques, suitably scaled in frequency and impulse magnitude, in developing machinery with impact characteristics.
Reduction of shock induced noise in imperfectly expanded supersonic jets using convex optimization
NASA Astrophysics Data System (ADS)
Adhikari, Sam
2007-11-01
Imperfectly expanded jets generate screech noise. The imbalance between the backpressure and the exit pressure of the imperfectly expanded jets produce shock cells and expansion or compression waves from the nozzle. The instability waves and the shock cells interact to generate the screech sound. The mathematical model consists of cylindrical coordinate based full Navier-Stokes equations and large-eddy-simulation turbulence modeling. Analytical and computational analysis of the three-dimensional helical effects provide a model that relates several parameters with shock cell patterns, screech frequency and distribution of shock generation locations. Convex optimization techniques minimize the shock cell patterns and the instability waves. The objective functions are (convex) quadratic and the constraint functions are affine. In the quadratic optimization programs, minimization of the quadratic functions over a set of polyhedrons provides the optimal result. Various industry standard methods like regression analysis, distance between polyhedra, bounding variance, Markowitz optimization, and second order cone programming is used for Quadratic Optimization.
Noise analysis for near field 3-D FM-CW radar imaging systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheen, David M.
2015-06-19
Near field radar imaging systems are used for several applications including concealed weapon detection in airports and other high-security venues. Despite the near-field operation, phase noise and thermal noise can limit the performance in several ways including reduction in system sensitivity and reduction of image dynamic range. In this paper, the effects of thermal noise, phase noise, and processing gain are analyzed in the context of a near field 3-D FM-CW imaging radar as might be used for concealed weapon detection. In addition to traditional frequency domain analysis, a time-domain simulation is employed to graphically demonstrate the effect of thesemore » noise sources on a fast-chirping FM-CW system.« less
Noise reduction methods for nucleic acid and macromolecule sequencing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuller, Ivan K.; Di Ventra, Massimiliano; Balatsky, Alexander
Methods, systems, and devices are disclosed for processing macromolecule sequencing data with substantial noise reduction. In one aspect, a method for reducing noise in a sequential measurement of a macromolecule comprising serial subunits includes cross-correlating multiple measured signals of a physical property of subunits of interest of the macromolecule, the multiple measured signals including the time data associated with the measurement of the signal, to remove or at least reduce signal noise that is not in the same frequency and in phase with the systematic signal contribution of the measured signals.
NASA Technical Reports Server (NTRS)
Harastaseanu, E.; Cristescu, G.; Mercea, F.
1974-01-01
The fans with which the conditioning and ventilation plants of weaving and spinning mills are equipped and the conditioning devices used in certain confection and knit wear departments of the textile industry generate loud noise. Solutions are presented for reducing the noise generated by the fans of ventilation and conditioning plants and transmitted to inhabited regions down to the admissible level, as well as the results obtained by experimental application of some noise reduction solutions in the conditioning plants of a spinning mill.
Directivity and noise reduction in hearing aids: speech perception and benefit.
Quintino, Camila Angélica; Mondelli, Maria Fernanda Capoani Garcia; Ferrari, Déborah Viviane
2010-01-01
Hearing aid. To compare the performance, benefit and satisfaction of users of ITE, CIC and BTE digital hearing aid with noise reduction and omnidirectional and directional microphones. 34 users of hearing aid were evaluated by means of speech perception in noise tests and APHAB and IOI self assessment questionnaires. Prospective study. Better results were obtained by users of ITE, CIC and directional hearing aids, however, no statistical significance was found between the groups. Directivity improved speech perception in noise and benefit in daily life situations.
Road traffic noise abatement scenarios in Gothenburg 2015 - 2035.
Ögren, Mikael; Molnár, Peter; Barregard, Lars
2018-07-01
Exposure to high levels of road traffic noise at the most exposed building facade is increasing, both due to urbanization and due to overall traffic increase. This study investigated how different noise reduction measures would influence the noise exposure on a city-wide scale in Gothenburg, a city in Sweden with approximately 550,000 inhabitants. Noise exposure was estimated under several different scenarios for the period 2015-2035, using the standardized Nordic noise prediction method together with traffic flow measurements and population statistics. The scenarios were based on reducing speed limits, reducing traffic flows, introducing more electrically powered vehicles and introducing low-noise tires and pavements. The most effective measures were introducing low-noise tires or pavements, which in comparison to business as usual produced between 13% and 29% reduction in the number of inhabitants exposed above 55 dB equivalent level. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Noise abatement technology options for conventional turboprop airplanes. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galloway, W.J.; Wilby, J.F.
1981-06-01
The practical application of noise control technology to new and derivative conventional turboprop airplanes likely to come into service in the 1980's has been analyzed with a view to determining noise control cost/benefits. The analysis identifies feasible noise control methods, applies them to four study airplanes, and presents the noise reductions in terms of the equivalent perceived noise level at takeoff, sideline and approach locations, and the effect on the area within selected EPNL contours. Noise reductions of up to 8.3 dB for takeoff and 10.7 dB for approach are calculated for the study airplanes but, for most cases, themore » changes are less than 5 dB. Weight and cost increases associated with the noise control treatments are determined under the assumption there they are no changes to airplane performance or fuel consumption.« less
Advanced rotorcraft transmission program
NASA Technical Reports Server (NTRS)
Bill, Robert C.
1990-01-01
The Advanced Rotorcraft Transmission (ART) program is an Army-funded, joint Army/NASA program to develop and demonstrate lightweight, quiet, durable drivetrain systems for next generation rotorcraft. ART addresses the drivetrain requirements of two distinct next generation aircraft classes: Future Air Attack Vehicle, a 10,000 to 20,000 lb. aircraft capable of undertaking tactical support and air-to-air missions; and Advanced Cargo Aircraft, a 60,000 to 80,000 lb. aircraft capable of heavy life field support operations. Both tiltrotor and more conventional helicopter configurations are included in the ART program. Specific objectives of ART include reduction of drivetrain weight by 25 percent compared to baseline state-of-the-art drive systems configured and sized for the next generation aircraft, reduction of noise level at the transmission source by 10 dB relative to a suitably sized and configured baseline, and attainment of at least a 5000 hr mean-time-between-removal. The technical approach for achieving the ART goals includes application of the latest available component, material, and lubrication technology to advanced concept drivetrains that utilize new ideas in gear configuration, transmission layout, and airframe/drivetrain integration. To date, candidate drivetrain systems were carried to a conceptual design stage, and tradeoff studies were conducted resulting in selection of an ART transmission configuration for each of the four contractors. The final selection was based on comparative weight, noise, and reliability studies. A description of each of the selected ART designs is included. Preliminary design of each of the four selected ART transmission was completed, as have mission impact studies wherein comparisons of aircraft mission performance and life cycle costs are undertaken for the next generation aircraft with ART and with the baseline transmission.
ERIC Educational Resources Information Center
Pittman, Andrea
2011-01-01
Purpose: To determine the rate of word learning for children with hearing loss (HL) in quiet and in noise compared to normal-hearing (NH) peers. The effects of digital noise reduction (DNR) were examined for children with HL. Method: Forty-one children with NH and 26 children with HL were grouped by age (8-9 years and 11-12 years). The children…
Effect of Bypass Capacitor in Common-mode Noise Reduction Technique for Automobile PCB
NASA Astrophysics Data System (ADS)
Uno, Takanori; Ichikawa, Kouji; Mabuchi, Yuichi; Nakamura, Atushi
In this letter, we studied the use of common mode noise reduction technique for in-vehicle electronic equipment, each comprising large-scale integrated circuit (LSI), printed circuit board (PCB), wiring harnesses, and ground plane. We have improved the model circuit of the common mode noise that flows to the wire harness to add the effect of by-pass capacitors located near an LSI.
Application of a TiO2 nanocomposite in earplugs, a case study of noise reduction.
Ibrahimi Ghavamabadi, Leila; Fouladi Dehaghi, Behzad; Hesampour, Morteza; Ahmadi Angali, Kambiz
2018-03-13
Use of hearing protection devices (HPDs) has become necessary when other control measures cannot reduce noise to a safe and standard level. In most countries, more effective hearing protection devices are in demand. The aim of this study was to examine the effects of titanium dioxide (TiO 2 ) nanoparticles on noise reduction efficiency in a polyvinyl chloride (PVC) earplug. An S-60 type PVC polymer as main matrix and TiO 2 with 30 nm size were used. PVC/TiO 2 nanocomposite was mixed at a temperature of 160 °C and 40 rounds per minute (rpm) and the samples were prepared with 0, 0.2 and 0.5 wt% of TiO 2 nanoparticle concentrations. Earplug samples with PVC/TiO 2 (0.2, 0.5 wt%) nanoparticles, when compared with raw earplugs, showed almost equal noise attenuation at low frequencies (500- 125 Hz). However, at high frequencies (2-8 kHz), the power of noise reduction of earplugs containing TiO 2 nanoparticles was significantly increased. The results of the present study showed that samples containing nanoparticles of TiO 2 had more noticeable noise reduction abilities at higher frequencies in comparison with samples without the nanoparticles.
Airport noise impact reduction through operations
NASA Technical Reports Server (NTRS)
Deloach, R.
1981-01-01
The effects of various aeronautical, operational, and land-use noise impact reduction alternatives are assessed for a major midwestern airport. Specifically, the relative effectiveness of adding sound absorbing material to aircraft engines, imposing curfews, and treating houses with acoustic insulation are examined.
High Speed Research Noise Prediction Code (HSRNOISE) User's and Theoretical Manual
NASA Technical Reports Server (NTRS)
Golub, Robert (Technical Monitor); Rawls, John W., Jr.; Yeager, Jessie C.
2004-01-01
This report describes a computer program, HSRNOISE, that predicts noise levels for a supersonic aircraft powered by mixed flow turbofan engines with rectangular mixer-ejector nozzles. It fully documents the noise prediction algorithms, provides instructions for executing the HSRNOISE code, and provides predicted noise levels for the High Speed Research (HSR) program Technology Concept (TC) aircraft. The component source noise prediction algorithms were developed jointly by Boeing, General Electric Aircraft Engines (GEAE), NASA and Pratt & Whitney during the course of the NASA HSR program. Modern Technologies Corporation developed an alternative mixer ejector jet noise prediction method under contract to GEAE that has also been incorporated into the HSRNOISE prediction code. Algorithms for determining propagation effects and calculating noise metrics were taken from the NASA Aircraft Noise Prediction Program.
Storm, Lance; Tressoldi, Patrizio E; Di Risio, Lorenzo
2010-07-01
We report the results of meta-analyses on 3 types of free-response study: (a) ganzfeld (a technique that enhances a communication anomaly referred to as "psi"); (b) nonganzfeld noise reduction using alleged psi-enhancing techniques such as dream psi, meditation, relaxation, or hypnosis; and (c) standard free response (nonganzfeld, no noise reduction). For the period 1997-2008, a homogeneous data set of 29 ganzfeld studies yielded a mean effect size of 0.142 (Stouffer Z = 5.48, p = 2.13 x 10(-8)). A homogeneous nonganzfeld noise reduction data set of 16 studies yielded a mean effect size of 0.110 (Stouffer Z = 3.35, p = 2.08 x 10(-4)), and a homogeneous data set of 14 standard free-response studies produced a weak negative mean effect size of -0.029 (Stouffer Z = -2.29, p = .989). The mean effect size value of the ganzfeld database was significantly higher than the mean effect size of the standard free-response database but was not higher than the effect size of the nonganzfeld noise reduction database [corrected].We also found that selected participants (believers in the paranormal, meditators, etc.) had a performance advantage over unselected participants, but only if they were in the ganzfeld condition.
Computer program to predict noise of general aviation aircraft: User's guide
NASA Technical Reports Server (NTRS)
Mitchell, J. A.; Barton, C. K.; Kisner, L. S.; Lyon, C. A.
1982-01-01
Program NOISE predicts General Aviation Aircraft far-field noise levels at FAA FAR Part 36 certification conditions. It will also predict near-field and cabin noise levels for turboprop aircraft and static engine component far-field noise levels.
Telesmanich, Morgan E; Jensen, Corey T; Enriquez, Jose L; Wagner-Bartak, Nicolaus A; Liu, Xinming; Le, Ott; Wei, Wei; Chandler, Adam G; Tamm, Eric P
2017-08-01
To qualitatively and quantitatively compare abdominal CT images reconstructed with a newversion of model-based iterative reconstruction (Veo 3.0; GE Healthcare Waukesha, WI) utilizing varied presetsof resolution preference, noise reduction and slice optimization. This retrospective study was approved by our Institutional Review Board and was Health Insurance Portability and Accountability Act compliant. The raw datafrom 30 consecutive patients who had undergone CT abdomen scanning were used to reconstructfour clinical presets of 3.75mm axial images using Veo 3.0: 5% resolution preference (RP05n), 5%noise reduction (NR05) and 40% noise reduction (NR40) with new 3.75mm "sliceoptimization," as well as one set using RP05 with conventional 0.625mm "slice optimization" (RP05c). The images were reviewed by two independent readers in a blinded, randomized manner using a 5-point Likert scale as well as a 5-point comparative scale. Multiple two-dimensional circular regions of interest were defined for noise and contrast-to-noise ratio measurements. Line profiles were drawn across the 7 lp cm -1 bar pattern of the Catphan 600 phantom for evaluation of spatial resolution. The NR05 image set was ranked as the best series in overall image quality (mean difference inrank 0.48, 95% CI [0.081-0.88], p = 0.01) and with specific reference to liver evaluation (meandifference 0.46, 95% CI [0.030-0.89], p = 0.03), when compared with the secondbest series ineach category. RP05n was ranked as the best for bone evaluation. NR40 was ranked assignificantly inferior across all assessed categories. Although the NR05 and RP05c image setshad nearly the same contrast-to-noise ratio and spatial resolution, NR05 was generally preferred. Image noise and spatial resolution increased along a spectrum with RP05n the highest and NR40the lowest. Compared to RP05n, the average noise was 21.01% lower for NR05, 26.88%lower for RP05c and 50.86% lower for NR40. Veo 3.0 clinical presets allow for selection of image noise and spatial resolution balance; for contrast-enhanced CT evaluation of the abdomen, the 5% noise reduction preset with 3.75 mm slice optimization (NR05) was generally ranked superior qualitatively and, relative to other series, was in the middle of the spectrum with reference to image noise and spatial resolution. Advances in knowledge: To our knowledge, this is the first study of Veo 3.0 noise reduction presets and varied slice optimization. This study provides insight into the behaviour of slice optimization and documents the degree of noise reduction and spatial resolution changes that users can expect across various Veo 3.0 clinical presets. These results provide important parameters to guide preset selection for both clinical and research purposes.
Adaptive Suppression of Noise in Voice Communications
NASA Technical Reports Server (NTRS)
Kozel, David; DeVault, James A.; Birr, Richard B.
2003-01-01
A subsystem for the adaptive suppression of noise in a voice communication system effects a high level of reduction of noise that enters the system through microphones. The subsystem includes a digital signal processor (DSP) plus circuitry that implements voice-recognition and spectral- manipulation techniques. The development of the adaptive noise-suppression subsystem was prompted by the following considerations: During processing of the space shuttle at Kennedy Space Center, voice communications among test team members have been significantly impaired in several instances because some test participants have had to communicate from locations with high ambient noise levels. Ear protection for the personnel involved is commercially available and is used in such situations. However, commercially available noise-canceling microphones do not provide sufficient reduction of noise that enters through microphones and thus becomes transmitted on outbound communication links.
A review on equivalent magnetic noise of magnetoelectric laminate sensors
Wang, Y. J.; Gao, J. Q.; Li, M. H.; Shen, Y.; Hasanyan, D.; Li, J. F.; Viehland, D.
2014-01-01
Since the turn of the millennium, multi-phase magnetoelectric (ME) composites have been subject to attention and development, and giant ME effects have been found in laminate composites of piezoelectric and magnetostrictive layers. From an application perspective, the practical usefulness of a magnetic sensor is determined not only by the output signal of the sensor in response to an incident magnetic field, but also by the equivalent magnetic noise generated in the absence of such an incident field. Here, a short review of developments in equivalent magnetic noise reduction for ME sensors is presented. This review focuses on internal noise, the analysis of the noise contributions and a summary of noise reduction strategies. Furthermore, external vibration noise is also discussed. The review concludes with an outlook on future possibilities and scientific challenges in the field of ME magnetic sensors. PMID:24421380
Vibration and noise characteristics of an elevated box girder paved with different track structures
NASA Astrophysics Data System (ADS)
Li, Xiaozhen; Liang, Lin; Wang, Dangxiong
2018-07-01
The vibration and noise of elevated concrete box girders (ECBGs) are now among the most concerned issues in the field of urban rail transit (URT) systems. The track structure, belonging to critical load-transfer components, directly affects the characteristics of loading transmission into bridge, as well as the noise radiation from such system, which further determines the reduction of vibration and noise in ECBGs significantly. In order to investigate the influence of different track structures on the vibration and structure-borne noise of ECBGs, a frequency-domain theoretical model of vehicle-track coupled system, taking into account the effect of multiple wheels, is firstly established in the present work. The analysis of track structures focuses on embedded sleepers, trapezoidal sleepers, and steel-spring floating slabs (SSFS). Next, a vibration and noise field test was performed, with regard to a 30 m simple supported ECBG (with the embedded-sleeper track structure) of an URT system. Based on the tested results, two numerical models, involving a finite element model for the vibration analysis, as well as a statistical energy analysis (SEA) model for the prediction of the noise radiation, are established and validated. The results of the numerical simulations and the field tests are well matched, which offers opportunities to predict the vibration and structure-borne noise of ECBGs by the proposed modelling methodology. From the comparison between the different types of track structures, the spatial distribution and reduction effect of vibration and noise are lastly studied. The force applied on ECBG is substantially determined by both the wheel-rail force (external factor) and the transmission rate of track structure (internal factor). The SSFS track is the most effective for vibration and noise reduction of ECBGs, followed in descending order by the trapezoidal-sleeper and embedded-sleeper tracks. The above result provides a theoretical basis for the vibration and noise reduction design of urban rail transit systems.
77 FR 14461 - Approval of Noise Compatibility Program for W.K. Airport, Battle Creek, MI
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-09
... Program for W.K. Airport, Battle Creek, MI AGENCY: Federal Aviation Administration, DOT. ACTION: Notice....K. Kellogg Airport noise compatibility program. All of the recommendations of the program were... Noise Compatibility Program for W.K. Kellogg Airport is February 16, 2012. FOR FURTHER INFORMATION...
Active noise control in a duct to cancel broadband noise
NASA Astrophysics Data System (ADS)
Chen, Kuan-Chun; Chang, Cheng-Yuan; Kuo, Sen M.
2017-09-01
The paper presents cancelling duct noises by using the active noise control (ANC) techniques. We use the single channel feed forward algorithm with feedback neutralization to realize ANC. Several kinds of ducts noises including tonal noises, sweep tonal signals, and white noise had investigated. Experimental results show that the proposed ANC system can cancel these noises in a PVC duct very well. The noise reduction of white noise can be up to 20 dB.
Oshiro, Thomas; Sinha, Usha; Lu, David; Sinha, Shantanu
2002-01-01
MRI has been used increasingly in the recent past for the guidance and monitoring of minimally invasive interventional procedures, using typically radiofrequency (RF) and laser energy, cryoablation, and percutaneous ethanol. RF energy has been used over the last 30 years for the ablation of tissues. Its use in conjunction with MRI for monitoring is limited, however, because of the electronic noise produced by the RF generators, which can significantly deteriorate image quality. The objective of this work was to devise methods by which this noise can be reduced to an acceptable level to allow simultaneous acquisition of MR images for monitoring purposes with the application of RF energy. Three different methods of noise reduction were investigated in a 0.2 T MR scanner: filtration using external hardware circuitry, MR scanner software-controlled filtration, and keyholing. The last two methods were unable by themselves to suppress the noise to an acceptable degree. Hardware filtration, however, provides excellent suppression of RF noise and is able to withstand up to 12 W of RF energy. When all the three approaches are combined, significant reduction of RF noise is achieved. The feasibility of creating an RF lesion of about 1.2 cm diameter in vivo in a porcine model simultaneously with temperature-sensitive MRI with adequate noise suppression is demonstrated.
Mixing noise reduction for rectangular supersonic jets by nozzle shaping and induced screech mixing
NASA Technical Reports Server (NTRS)
Rice, Edward J.; Raman, Ganesh
1993-01-01
Two methods of mixing noise modification were studied for supersonic jets flowing from rectangular nozzles with an aspect ratio of about five and a small dimension of about 1.4 cm. The first involves nozzle geometry variation using either single (unsymmetrical) or double bevelled (symmetrical) thirty degree cutbacks of the nozzle exit. Both converging (C) and converging-diverging (C-D) versions were tested. The double bevelled C-D nozzle produced a jet mixing noise reduction of about 4 dB compared to a standard rectangular C-D nozzle. In addition all bevelled nozzles produced an upstream shift in peak mixing noise which is conducive to improved attenuation when the nozzle is used in an acoustically treated duct. A large increase in high frequency noise also occurred near the plane of the nozzle exit. Because of near normal incidence, this noise can be easily attenuated with wall treatment. The second approach uses paddles inserted on the edge of the two sides of the jet to induce screech and greatly enhance the jet mixing. Although screech and mixing noise levels are increased, the enhanced mixing moves the source locations upstream and may make an enclosed system more amenable to noise reduction using wall acoustic treatment.
DOT National Transportation Integrated Search
2003-08-01
It is now known that tire/road interaction noise is the major contributor to exterior automobile noise and establishes the background noise level in many environments. Thus, the reduction of tire/road noise is a major environmental noise issue today....
Optimization of actuator arrays for aircraft interior noise control
NASA Technical Reports Server (NTRS)
Cabell, R. H.; Lester, H. C.; Mathur, G. P.; Tran, B. N.
1993-01-01
A numerical procedure for grouping actuators in order to reduce the number of degrees of freedom in an active noise control system is evaluated using experimental data. Piezoceramic actuators for reducing aircraft interior noise are arranged into groups using a nonlinear optimization routine and clustering algorithm. An actuator group is created when two or more actuators are driven with the same control input. This procedure is suitable for active control applications where actuators are already mounted on a structure. The feasibility of this technique is demonstrated using measured data from the aft cabin of a Douglas DC-9 fuselage. The measured data include transfer functions between 34 piezoceramic actuators and 29 interior microphones and microphone responses due to the primary noise produced by external speakers. Control inputs for the grouped actuators were calculated so that a cost function, defined as a quadratic pressure term and a penalty term, was a minimum. The measured transfer functions and microphone responses are checked by comparing calculated noise reductions with measured noise reductions for four frequencies. The grouping procedure is then used to determine actuator groups that improve overall interior noise reductions by 5.3 to 15 dB, compared to the baseline experimental configuration.
Acoustic-noise-optimized diffusion-weighted imaging.
Ott, Martin; Blaimer, Martin; Grodzki, David M; Breuer, Felix A; Roesch, Julie; Dörfler, Arnd; Heismann, Björn; Jakob, Peter M
2015-12-01
This work was aimed at reducing acoustic noise in diffusion-weighted MR imaging (DWI) that might reach acoustic noise levels of over 100 dB(A) in clinical practice. A diffusion-weighted readout-segmented echo-planar imaging (EPI) sequence was optimized for acoustic noise by utilizing small readout segment widths to obtain low gradient slew rates and amplitudes instead of faster k-space coverage. In addition, all other gradients were optimized for low slew rates. Volunteer and patient imaging experiments were conducted to demonstrate the feasibility of the method. Acoustic noise measurements were performed and analyzed for four different DWI measurement protocols at 1.5T and 3T. An acoustic noise reduction of up to 20 dB(A) was achieved, which corresponds to a fourfold reduction in acoustic perception. The image quality was preserved at the level of a standard single-shot (ss)-EPI sequence, with a 27-54% increase in scan time. The diffusion-weighted imaging technique proposed in this study allowed a substantial reduction in the level of acoustic noise compared to standard single-shot diffusion-weighted EPI. This is expected to afford considerably more patient comfort, but a larger study would be necessary to fully characterize the subjective changes in patient experience.
DOE Office of Scientific and Technical Information (OSTI.GOV)
ZHANG, H; Huang, J; Ma, J
2014-06-15
Purpose: To study the noise correlation properties of cone-beam CT (CBCT) projection data and to incorporate the noise correlation information to a statistics-based projection restoration algorithm for noise reduction in low-dose CBCT. Methods: In this study, we systematically investigated the noise correlation properties among detector bins of CBCT projection data by analyzing repeated projection measurements. The measurements were performed on a TrueBeam on-board CBCT imaging system with a 4030CB flat panel detector. An anthropomorphic male pelvis phantom was used to acquire 500 repeated projection data at six different dose levels from 0.1 mAs to 1.6 mAs per projection at threemore » fixed angles. To minimize the influence of the lag effect, lag correction was performed on the consecutively acquired projection data. The noise correlation coefficient between detector bin pairs was calculated from the corrected projection data. The noise correlation among CBCT projection data was then incorporated into the covariance matrix of the penalized weighted least-squares (PWLS) criterion for noise reduction of low-dose CBCT. Results: The analyses of the repeated measurements show that noise correlation coefficients are non-zero between the nearest neighboring bins of CBCT projection data. The average noise correlation coefficients for the first- and second- order neighbors are about 0.20 and 0.06, respectively. The noise correlation coefficients are independent of the dose level. Reconstruction of the pelvis phantom shows that the PWLS criterion with consideration of noise correlation (PWLS-Cor) results in a lower noise level as compared to the PWLS criterion without considering the noise correlation (PWLS-Dia) at the matched resolution. Conclusion: Noise is correlated among nearest neighboring detector bins of CBCT projection data. An accurate noise model of CBCT projection data can improve the performance of the statistics-based projection restoration algorithm for low-dose CBCT.« less
Stacked competitive networks for noise reduction in low-dose CT
Du, Wenchao; Chen, Hu; Wu, Zhihong; Sun, Huaiqiang; Liao, Peixi
2017-01-01
Since absorption of X-ray radiation has the possibility of inducing cancerous, genetic and other diseases to patients, researches usually attempt to reduce the radiation dose. However, reduction of the radiation dose associated with CT scans will unavoidably increase the severity of noise and artifacts, which can seriously affect diagnostic confidence. Due to the outstanding performance of deep neural networks in image processing, in this paper, we proposed a Stacked Competitive Network (SCN) approach to noise reduction, which stacks several successive Competitive Blocks (CB). The carefully handcrafted design of the competitive blocks was inspired by the idea of multi-scale processing and improvement the network’s capacity. Qualitative and quantitative evaluations demonstrate the competitive performance of the proposed method in noise suppression, structural preservation, and lesion detection. PMID:29267360
NASA Astrophysics Data System (ADS)
Gliebe, P. R.; Brausch, J. F.; Majjigi, R. K.; Lee, R.
1991-08-01
The objectives of this chapter are to review and summarize the jet noise suppression technology, to provide a physical and theoretical model to explain the measured jet noise suppression characteristics of different concepts, and to provide a set of guidelines for evolving jet noise suppression designs. The underlying principle for all jet noise suppression devices is to enhance rapid mixing (i.e., diffusion) of the jet plume by geometric and aerothermodynamic means. In the case of supersonic jets, the shock-cell broadband noise reduction is effectively accomplished by the elimination or mitigation of the shock-cell structure. So far, the diffusion concepts have predominantly concentrated on jet momentum and energy (kinetic and thermal) diffusion, in that order, and have yielded better noise reduction than the simple conical nozzles. A critical technology issue that needs resolution is the effect of flight on the noise suppression potential of mechanical suppressor nozzles. A more thorough investigation of this mechanism is necessary for the successful development and design of an acceptable noise suppression device for future high-speed civil transports.
Experimental clean combustor program, phase 1
NASA Technical Reports Server (NTRS)
Bahr, D. W.; Gleason, C. C.
1975-01-01
Full annular versions of advanced combustor designs, sized to fit within the CF6-50 engine, were defined, manufactured, and tested at high pressure conditions. Configurations were screened, and significant reductions in CO, HC, and NOx emissions levels were achieved with two of these advanced combustor design concepts. Emissions and performance data at a typical AST cruise condition were also obtained along with combustor noise data as a part of an addendum to the basic program. The two promising combustor design approaches evolved in these efforts were the Double Annular Combustor and the Radial/Axial Combustor. With versions of these two basic combustor designs, CO and HC emissions levels at or near the target levels were obtained. Although the low target NOx emissions level was not obtained with these two advanced combustor designs, significant reductions were relative to the NOx levels of current technology combustors. Smoke emission levels below the target value were obtained.
NASA Technical Reports Server (NTRS)
Greene, G. C.
1980-01-01
The research in propeller noise prediction, noise/performance optimization, and interior reduction is described. Selected results are presented to illustrate the status of the technology and the direction of future research.
Suppression of tonal noise in a centrifugal fan using guide vanes
NASA Astrophysics Data System (ADS)
Paramasivam, Kishokanna; Rajoo, Srithar; Romagnoli, Alessandro
2015-11-01
This paper presents the work aiming for tonal noise reduction in a centrifugal fan. In previous studies, it is well documented that tonal noise is the dominant noise source generated in centrifugal fans. Tonal noise is generated due to the aerodynamic interaction between the rotating impeller and stationary diffuser vanes. The generation of tonal noise is related to the pressure fluctuation at the leading edge of the stationary vane. The tonal noise is periodic in time which occurs at the blade passing frequency (BPF) and its harmonics. Much of previous studies, have shown that the stationary vane causes the tonal noise and generation of non-rotational turbulent noise. However, omitting stationary vanes will lead to the increase of non-rotational turbulent noise resulted from the high velocity of the flow leaving the impeller. Hence in order to reduce the tonal noise and the non-rotational noise, guide vanes were designed as part of this study to replace the diffuser vanes, which were originally used in the chosen centrifugal fan. The leading edge of the guide vane is tapered. This modification reduces the strength of pressure fluctuation resulting from the interaction between the impeller outflow and stationary vane. The sound pressure level at blade passing frequency (BPF) is reduced by 6.8 dB, the 2nd BPF is reduced by 4.1 dB and the 3rd BPF reduced by about 17.5 dB. The overall reduction was 0.9 dB. The centrifugal fan with tapered guide vanes radiates lower tonal noise compared to the existing diffuser vanes. These reductions are achieved without compromising the performance of the centrifugal fan. The behavior of the fluid flow was studied using computational fluid dynamics (CFD) tools and the acoustics characteristics were determined through experiments in an anechoic chamber.
Real-time speckle reduction in optical coherence tomography using the dual window method.
Zhao, Yang; Chu, Kengyeh K; Eldridge, Will J; Jelly, Evan T; Crose, Michael; Wax, Adam
2018-02-01
Speckle is an intrinsic noise of interferometric signals which reduces contrast and degrades the quality of optical coherence tomography (OCT) images. Here, we present a frequency compounding speckle reduction technique using the dual window (DW) method. Using the DW method, speckle noise is reduced without the need to acquire multiple frames. A ~25% improvement in the contrast-to-noise ratio (CNR) was achieved using the DW speckle reduction method with only minimal loss (~17%) in axial resolution. We also demonstrate that real-time speckle reduction can be achieved at a B-scan rate of ~21 frames per second using a graphic processing unit (GPU). The DW speckle reduction technique can work on any existing OCT instrument without further system modification or extra components. This makes it applicable both in real-time imaging systems and during post-processing.
1969-01-21
The Fan Noise Test Facility built at the Lewis Research Center to obtain far-field noise data for the National Aeronautics and Space Administration (NASA) and General Electric Quiet Engine Program. The engine incorporated existing noise reduction methods into an engine of similar power to those that propelled the Boeing 707 or McDonnell-Douglas DC-8 airliner. The new the low-bypass ratio turbofan engines of the 1960s were inherently quieter than their turbojet counterparts, researchers had a better grasp of the noise generation problem, and new acoustic technologies had emerged. Lewis contracted General Electric in 1969 to build and aerodynamically test three experimental engines with 72-inch diameter fans. The engines were then brought to Lewis and tested with an acoustically treated nacelle. This Fan Noise Test Facility was built off of the 10- by 10-Foot Supersonic Wind Tunnel’s Main Compressor and Drive Building. Lewis researchers were able to isolate the fan’s noise during these initial tests by removing the core of the engine. The Lewis test rig drove engines to takeoff tip speeds of 1160 feet per second. The facility was later used to test a series of full-scale model fans and fan noise suppressors to be used with the quiet engine. NASA researchers predicted low-speed single-stage fans without inlet guide vanes and with large spacing between rotors and stators would be quieter. General Electric modified a TF39 turbofan engine by removing the the outer protion of the fan and spacing the blade rows of the inner portion. The tests revealed that the untreated version of the engine generated less noise than was anticipated, and the acoustically treated nacelle substantially reduced engine noise.
Noise characteristics of the O-1 airplane and some approaches to noise reduction
NASA Technical Reports Server (NTRS)
Connor, A. B.; Hilton, D. A.; Copeland, W. L.; Clark, L. R.
1975-01-01
A brief study of the O-1A airplane to determine possible means for reducing the aircraft aural detection distance was conducted. This effort involved measuring the noise signature of the basic airplane, devising methods to attenuate the noise, and then estimating the effect of several selected modifications on the aural detection distance of the aircraft. A relatively simple modification utilizing a 6.5 ft diameter, six-blade propeller and including a muffler having a volume of 0.725 cu ft is indicated to reduce the aural detection distance of the O-1 aircraft from about 6 miles at an altitude of 1,000 ft and 2 to 3 miles at an altitude of 300 ft to approximately half these values. The flyover noise data suggest that routing the exhaust stacks up and over the wing would provide immediate noise reduction of about 5 dB with an attendant reduction in detection distance. Furthermore, all these studies confirm the work of other investigators that the 1/3 octave band (center frequency=125 cps) is the most critical in reducing aural detection distance.
Potential Subjective Effectiveness of Active Interior Noise Control in Propeller Airplanes
NASA Technical Reports Server (NTRS)
Powell, Clemans A.; Sullivan, Brenda M.
2000-01-01
Active noise control technology offers the potential for weight-efficient aircraft interior noise reduction, particularly for propeller aircraft. However, there is little information on how passengers respond to this type of interior noise control. This paper presents results of two experiments that use sound quality engineering practices to determine the subjective effectiveness of hypothetical active noise control (ANC) systems in a range of propeller aircraft. The two experiments differed by the type of judgments made by the subjects: pair comparisons based on preference in the first and numerical category scaling of noisiness in the second. Although the results of the two experiments were in general agreement that the hypothetical active control measures improved the interior noise environments, the pair comparison method appears to be more sensitive to subtle changes in the characteristics of the sounds which are related to passenger preference. The reductions in subjective response due to the ANC conditions were predicted with reasonable accuracy by reductions in measured loudness level. Inclusion of corrections for the sound quality characteristics of tonality and fluctuation strength in multiple regression models improved the prediction of the ANC effects.
Validation of no-reference image quality index for the assessment of digital mammographic images
NASA Astrophysics Data System (ADS)
de Oliveira, Helder C. R.; Barufaldi, Bruno; Borges, Lucas R.; Gabarda, Salvador; Bakic, Predrag R.; Maidment, Andrew D. A.; Schiabel, Homero; Vieira, Marcelo A. C.
2016-03-01
To ensure optimal clinical performance of digital mammography, it is necessary to obtain images with high spatial resolution and low noise, keeping radiation exposure as low as possible. These requirements directly affect the interpretation of radiologists. The quality of a digital image should be assessed using objective measurements. In general, these methods measure the similarity between a degraded image and an ideal image without degradation (ground-truth), used as a reference. These methods are called Full-Reference Image Quality Assessment (FR-IQA). However, for digital mammography, an image without degradation is not available in clinical practice; thus, an objective method to assess the quality of mammograms must be performed without reference. The purpose of this study is to present a Normalized Anisotropic Quality Index (NAQI), based on the Rényi entropy in the pseudo-Wigner domain, to assess mammography images in terms of spatial resolution and noise without any reference. The method was validated using synthetic images acquired through an anthropomorphic breast software phantom, and the clinical exposures on anthropomorphic breast physical phantoms and patient's mammograms. The results reported by this noreference index follow the same behavior as other well-established full-reference metrics, e.g., the peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM). Reductions of 50% on the radiation dose in phantom images were translated as a decrease of 4dB on the PSNR, 25% on the SSIM and 33% on the NAQI, evidencing that the proposed metric is sensitive to the noise resulted from dose reduction. The clinical results showed that images reduced to 53% and 30% of the standard radiation dose reported reductions of 15% and 25% on the NAQI, respectively. Thus, this index may be used in clinical practice as an image quality indicator to improve the quality assurance programs in mammography; hence, the proposed method reduces the subjectivity inter-observers in the reporting of image quality assessment.
PIV Measurements of Chevrons on F400-Series Tactical Aircraft Nozzle Model
NASA Technical Reports Server (NTRS)
Bridges, James; Wernet, Mark P.; Frate, Franco C.
2011-01-01
Reducing noise of tactical jet aircraft has taken on fresh urgency as core engine technologies allow higher specific-thrust engines and as society become more concerned for the health of its military workforce. Noise reduction on this application has lagged the commercial field as incentives for quieting military aircraft have not been as strong as in their civilian counterparts. And noise reduction strategies employed on civilian engines may not be directly applicable due to the differences in exhaust system architecture and mission. For instance, the noise reduction technology of chevrons, examined in this study, will need to be modified to take into account the special features of tactical aircraft nozzles. In practice, these nozzles have divergent slats that are tied to throttle position, and at take off the jet flow is highly overexpanded as the nozzle is optimized for cruise altitude rather than sea level. In simple oil flow visualization experiments conducted at the onset of the current test program flow barely stays attached at end of nozzle at takeoff conditions. This adds a new twist to the design of chevrons. Upon reaching the nozzle exit the flow shrinks inward radially, meaning that for a chevron to penetrate the flow it must extend much farther away from the baseline nozzle streamline. Another wrinkle is that with a variable divergence angle on the nozzle, the effective penetration will differ with throttle position and altitude. The final note of realism introduced in these experiments was to simulate the manner in which bypass flow is bled into the nozzle wall in real engines to cool the nozzle, which might cause very fat boundary layer at exit. These factors, along with several other issues specific to the application of chevrons to convergent-divergent nozzles have been explored with particle image velocimetry measurements and are presented in this paper.
Zhu, Peijuan; Ding, Wei; Tong, Wei; Ghosal, Anima; Alton, Kevin; Chowdhury, Swapan
2009-06-01
A retention-time-shift-tolerant background subtraction and noise reduction algorithm (BgS-NoRA) is implemented using the statistical programming language R to remove non-drug-related ion signals from accurate mass liquid chromatography/mass spectrometry (LC/MS) data. The background-subtraction part of the algorithm is similar to a previously published procedure (Zhang H and Yang Y. J. Mass Spectrom. 2008, 43: 1181-1190). The noise reduction algorithm (NoRA) is an add-on feature to help further clean up the residual matrix ion noises after background subtraction. It functions by removing ion signals that are not consistent across many adjacent scans. The effectiveness of BgS-NoRA was examined in biological matrices by spiking blank plasma extract, bile and urine with diclofenac and ibuprofen that have been pre-metabolized by microsomal incubation. Efficient removal of background ions permitted the detection of drug-related ions in in vivo samples (plasma, bile, urine and feces) obtained from rats orally dosed with (14)C-loratadine with minimal interference. Results from these experiments demonstrate that BgS-NoRA is more effective in removing analyte-unrelated ions than background subtraction alone. NoRA is shown to be particularly effective in the early retention region for urine samples and middle retention region for bile samples, where the matrix ion signals still dominate the total ion chromatograms (TICs) after background subtraction. In most cases, the TICs after BgS-NoRA are in excellent qualitative correlation to the radiochromatograms. BgS-NoRA will be a very useful tool in metabolite detection and identification work, especially in first-in-human (FIH) studies and multiple dose toxicology studies where non-radio-labeled drugs are administered. Data from these types of studies are critical to meet the latest FDA guidance on Metabolite in Safety Testing (MIST). Copyright (c) 2009 John Wiley & Sons, Ltd.
Low-power low-noise mixed-mode VLSI ASIC for infinite dynamic range imaging applications
NASA Astrophysics Data System (ADS)
Turchetta, Renato; Hu, Y.; Zinzius, Y.; Colledani, C.; Loge, A.
1998-11-01
Solid state solutions for imaging are mainly represented by CCDs and, more recently, by CMOS imagers. Both devices are based on the integration of the total charge generated by the impinging radiation, with no processing of the single photon information. The dynamic range of these devices is intrinsically limited by the finite value of noise. Here we present the design of an architecture which allows efficient, in-pixel, noise reduction to a practically zero level, thus allowing infinite dynamic range imaging. A detailed calculation of the dynamic range is worked out, showing that noise is efficiently suppressed. This architecture is based on the concept of single-photon counting. In each pixel, we integrate both the front-end, low-noise, low-power analog part and the digital part. The former consists of a charge preamplifier, an active filter for optimal noise bandwidth reduction, a buffer and a threshold comparator, and the latter is simply a counter, which can be programmed to act as a normal shift register for the readout of the counters' contents. Two different ASIC's based on this concept have been designed for different applications. The first one has been optimized for silicon edge-on microstrips detectors, used in a digital mammography R and D project. It is a 32-channel circuit, with a 16-bit binary static counter.It has been optimized for a relatively large detector capacitance of 5 pF. Noise has been measured to be equal to 100 + 7*Cd (pF) electron rms with the digital part, showing no degradation of the noise performances with respect to the design values. The power consumption is 3.8mW/channel for a peaking time of about 1 microsecond(s) . The second circuit is a prototype for pixel imaging. The total active area is about (250 micrometers )**2. The main differences of the electronic architecture with respect to the first prototype are: i) different optimization of the analog front-end part for low-capacitance detectors, ii) in- pixel 4-bit comparator-offset compensation, iii) 15-bit pseudo-random counter. The power consumption is 255 (mu) W/channel for a peaking time of 300 ns and an equivalent noise charge of 185 + 97*Cd electrons rms. Simulation and experimental result as well as imaging results will be presented.
General aviation aircraft interior noise problem: Some suggested solutions
NASA Technical Reports Server (NTRS)
Roskam, J.; Navaneethan, R.
1984-01-01
Laboratory investigation of sound transmission through panels and the use of modern data analysis techniques applied to actual aircraft is used to determine methods to reduce general aviation interior noise. The experimental noise reduction characteristics of stiffened flat and curved panels with damping treatment are discussed. The experimental results of double-wall panels used in the general aviation industry are given. The effects of skin panel material, fiberglass insulation and trim panel material on the noise reduction characteristics of double-wall panels are investigated. With few modifications, the classical sound transmission theory can be used to design the interior noise control treatment of aircraft. Acoustic intensity and analysis procedures are included.
NASA Astrophysics Data System (ADS)
Wang, Shu-tao; Yang, Xue-ying; Kong, De-ming; Wang, Yu-tian
2017-11-01
A new noise reduction method based on ensemble empirical mode decomposition (EEMD) is proposed to improve the detection effect for fluorescence spectra. Polycyclic aromatic hydrocarbons (PAHs) pollutants, as a kind of important current environmental pollution source, are highly oncogenic. Using the fluorescence spectroscopy method, the PAHs pollutants can be detected. However, instrument will produce noise in the experiment. Weak fluorescent signals can be affected by noise, so we propose a way to denoise and improve the detection effect. Firstly, we use fluorescence spectrometer to detect PAHs to obtain fluorescence spectra. Subsequently, noises are reduced by EEMD algorithm. Finally, the experiment results show the proposed method is feasible.
Discrete filtering techniques applied to sequential GPS range measurements
NASA Technical Reports Server (NTRS)
Vangraas, Frank
1987-01-01
The basic navigation solution is described for position and velocity based on range and delta range (Doppler) measurements from NAVSTAR Global Positioning System satellites. The application of discrete filtering techniques is examined to reduce the white noise distortions on the sequential range measurements. A second order (position and velocity states) Kalman filter is implemented to obtain smoothed estimates of range by filtering the dynamics of the signal from each satellite separately. Test results using a simulated GPS receiver show a steady-state noise reduction, the input noise variance divided by the output noise variance, of a factor of four. Recommendations for further noise reduction based on higher order Kalman filters or additional delta range measurements are included.
Reduction and analysis of data from the plasma wave instruments on the IMP-6 and IMP-8 spacecraft
NASA Technical Reports Server (NTRS)
Gurnett, D. A.; Anderson, R. R.
1983-01-01
The primary data reduction effort during the reporting period was to process summary plots of the IMP 8 plasma wave data and to submit these data to the National Space Science Data Center. Features of the electrostatic noise are compared with simultaneous observations of the magnetic field, plasma and energetic electrons. Spectral characteristics of the noise and the results of this comparison both suggest that in its high frequency part at least the noise does not belong to normal modes of plasma waves but represents either quasi-thermal noise in the non-Maxwellian plasma or artificial noise generated by spacecraft interaction with the medium.
Reduction of CMOS Image Sensor Read Noise to Enable Photon Counting
Guidash, Michael; Ma, Jiaju; Vogelsang, Thomas; Endsley, Jay
2016-01-01
Recent activity in photon counting CMOS image sensors (CIS) has been directed to reduction of read noise. Many approaches and methods have been reported. This work is focused on providing sub 1 e− read noise by design and operation of the binary and small signal readout of photon counting CIS. Compensation of transfer gate feed-through was used to provide substantially reduced CDS time and source follower (SF) bandwidth. SF read noise was reduced by a factor of 3 with this method. This method can be applied broadly to CIS devices to reduce the read noise for small signals to enable use as a photon counting sensor. PMID:27070625
Minimizing noise in fiberglass aquaculture tanks: Noise reduction potential of various retrofits
Davidson, J.; Frankel, A.S.; Ellison, W.T.; Summerfelt, S.; Popper, A.N.; Mazik, P.; Bebak, J.
2007-01-01
Equipment used in intensive aquaculture systems, such as pumps and blowers can produce underwater sound levels and frequencies within the range of fish hearing. The impacts of underwater noise on fish are not well known, but limited research suggests that subjecting fish to noise could result in impairment of the auditory system, reduced growth rates, and increased stress. Consequently, reducing sound in fish tanks could result in advantages for cultured species and increased productivity for the aquaculture industry. The objective of this study was to evaluate the noise reduction potential of various retrofits to fiberglass fish culture tanks. The following structural changes were applied to tanks to reduce underwater noise: (1) inlet piping was suspended to avoid contact with the tank, (2) effluent piping was disconnected from a common drain line, (3) effluent piping was insulated beneath tanks, and (4) tanks were elevated on cement blocks and seated on insulated padding. Four combinations of the aforementioned structural changes were evaluated in duplicate and two tanks were left unchanged as controls. Control tanks had sound levels of 120.6 dB re 1 ??Pa. Each retrofit contributed to a reduction of underwater sound. As structural changes were combined, a cumulative reduction in sound level was observed. Tanks designed with a combination of retrofits had sound levels of 108.6 dB re 1 ??Pa, a four-fold reduction in sound pressure level. Sound frequency spectra indicated that the greatest sound reductions occurred between 2 and 100 Hz and demonstrated that nearby pumps and blowers created tonal frequencies that were transmitted into the tanks. The tank modifications used during this study were simple and inexpensive and could be applied to existing systems or considered when designing aquaculture facilities. ?? 2007 Elsevier B.V. All rights reserved.
Prieve, Kurt; Rice, Amanda; Raynor, Peter C
2017-08-01
The aims of this study were to evaluate sound levels produced by compressed air guns in research and development (R&D) environments, replace conventional air gun models with advanced noise-reducing air nozzles, and measure changes in sound levels to assess the effectiveness of the advanced nozzles as engineering controls for noise. Ten different R&D manufacturing areas that used compressed air guns were identified and included in the study. A-weighted sound level and Z-weighted octave band measurements were taken simultaneously using a single instrument. In each area, three sets of measurements, each lasting for 20 sec, were taken 1 m away and perpendicular to the air stream of the conventional air gun while a worker simulated typical air gun work use. Two different advanced noise-reducing air nozzles were then installed. Sound level and octave band data were collected for each of these nozzles using the same methods as for the original air guns. Both of the advanced nozzles provided sound level reductions of about 7 dBA, on average. The highest noise reductions measured were 17.2 dBA for one model and 17.7 dBA for the other. In two areas, the advanced nozzles yielded no sound level reduction, or they produced small increases in sound level. The octave band data showed strong similarities in sound level among all air gun nozzles within the 10-1,000 Hz frequency range. However, the advanced air nozzles generally had lower noise contributions in the 1,000-20,000 Hz range. The observed decreases at these higher frequencies caused the overall sound level reductions that were measured. Installing new advanced noise-reducing air nozzles can provide large sound level reductions in comparison to existing conventional nozzles, which has direct benefit for hearing conservation efforts.
NASA Technical Reports Server (NTRS)
1975-01-01
The retrofit of JT8D-109 (refan) engines are evaluated on a 727-200 airplane in terms of airworthiness, performance, and noise. Design of certifiable hardware, manufacture, and ground testing of the essential nacelle components is included along with analysis of the certifiable airplane design to ensure airworthiness compliance and to predict the in-flight performance and noise characteristics of the modified airplane. The analyses confirm that the 727 refan airplane is certifiable. The refan airplane range would be 15% less that of the baseline airplane and block fuel would be increased by 1.5% to 3%. However, with this particular 727-200 model, with a brake release gross weight of 172,500 lb (78,245 kg), it is possible to operate the airplane (with minor structural modifications) at higher gross weights and increase the range up to 15% over the 727-200 (baseline) airplane. The refan airplane FAR Part 36 noise levels would be 6 to 8 EPNdB (effective perceived noise in decibels) below the baseline. Noise footprint studies showed that approach noise contour areas are small compared to takeoff areas. The 727 refan realizes a 68% to 83% reduction in annoyance-weighted area when compared to the 727-200 over a range of gross weights and operational procedures.
Initial Development of a Spatially Separated Speech-in-Noise and Localization Training Program
Tyler, Richard S.; Witt, Shelley A.; Dunn, Camille C.; Wang, Wenjun
2010-01-01
Objective This article describes the initial development of a novel approach for training hearing-impaired listeners to improve their ability to understand speech in the presence of background noise and to also improve their ability to localize sounds. Design Most people with hearing loss, even those well fit with hearing devices, still experience significant problems understanding speech in noise. Prior research suggests that at least some subjects can experience improved speech understanding with training. However, all training systems that we are aware of have one basic, critical limitation. They do not provide spatial separation of the speech and noise, therefore ignoring the potential benefits of training binaural hearing. In this paper we describe our initial experience with a home-based training system that includes spatially separated speech-in-noise and localization training. Results Throughout the development of this system patient input, training and preliminary pilot data from individuals with bilateral cochlear implants were utilized. Positive feedback from subjective reports indicated that some individuals were engaged in the treatment, and formal testing showed benefit. Feedback and practical issues resulted from the reduction of an eight-loudspeaker to a two-loudspeaker system. Conclusions These preliminary findings suggest we have successfully developed a viable spatial hearing training system that can improve binaural hearing in noise and localization. Applications include, but are not limited to, hearing with hearing aids and cochlear implants. PMID:20701836
Noise reduction with complex bilateral filter.
Matsumoto, Mitsuharu
2017-12-01
This study introduces a noise reduction technique that uses a complex bilateral filter. A bilateral filter is a nonlinear filter originally developed for images that can reduce noise while preserving edge information. It is an attractive filter and has been used in many applications in image processing. When it is applied to an acoustical signal, small-amplitude noise is reduced while the speech signal is preserved. However, a bilateral filter cannot handle noise with relatively large amplitudes owing to its innate characteristics. In this study, the noisy signal is transformed into the time-frequency domain and the filter is improved to handle complex spectra. The high-amplitude noise is reduced in the time-frequency domain via the proposed filter. The features and the potential of the proposed filter are also confirmed through experiments.
A parametric study of transonic blade-vortex interaction noise
NASA Technical Reports Server (NTRS)
Lyrintzis, A. S.
1991-01-01
Several parameters of transonic blade-vortex interactions (BVI) are being studied and some ideas for noise reduction are introduced and tested using numerical simulation. The model used is the two-dimensional high frequency transonic small disturbance equation with regions of distributed vorticity (VTRAN2 code). The far-field noise signals are obtained by using the Kirchhoff method with extends the numerical 2-D near-field aerodynamic results to the linear acoustic 3-D far-field. The BVI noise mechanisms are explained and the effects of vortex type and strength, and angle of attack are studied. Particularly, airfoil shape modifications which lead to noise reduction are investigated. The results presented are expected to be helpful for better understanding of the nature of the BVI noise and better blade design.
Emissions and Noise Pervasive Panel
NASA Technical Reports Server (NTRS)
Henderson, Brenda; Lee, Chi
2008-01-01
Objectives include: Provide interagency coordination of technology development, aimed at engine noise reduction. a) Provide recommendations to the Steering Committee on potential areas of interagency technology collaboration to maximize the use of government investments in noise reduction. b) Serve as a forum for information and technology exchange in order to coordinate gas turbine engine environmental strategies and policies among the member agencies and industry; c) Coordinate activities across panel representatives; and d) Communicate progress to VAATE steering committee.
Control of Acoustics and Store Separation in a Cavity in Supersonic Flow
2005-02-01
laser -based flow visualization experiments on the FSU cavity for different microjet pressures. The details of the experiments are given in Zhuang, et. al...developed that rigorously explains the role of leading edge microjets in cavity noise suppression and predicts the magnitude of noise reduction for a...given control input (that is the steady pressure at which the microjets are fired). The model is validated through comparison of its noise reduction
Bell Helicopter Advanced Rotocraft Transmission (ART) program
NASA Technical Reports Server (NTRS)
Henry, Zachary S.
1995-01-01
Future rotorcraft transmissions require key emerging material and component technologies using advanced and innovative design practices in order to meet the requirements for a reduced weight to power ratio, a decreased noise level, and a substantially increased reliability. The specific goals for the future rotorcraft transmission when compared with a current state-of-the-art transmission (SOAT) are: (1) a 25 percent weight reduction; (2) a 10 dB reduction in the transmitted noise level; and (3) a system reliability of 5000 hours mean-time-between-removal (MTBR) for the transmission. This report summarizes the work conducted by Bell Helicopter Textron, Inc. to achieve these goals under the Advanced Rotorcraft Transmission (ART) program from 1988 to 1995. The reference aircraft selected by BHTI for the ART program was the Tactical Tiltrotor which is a 17,000 lb gross weight aircraft. A tradeoff study was conducted comparing the ART with a Selected SOAT. The results showed the ART to be 29 percent lighter and up to 13 dB quieter with a calculated MTBR in excess of 5000 hours. The results of the following high risk component and material tests are also presented: (1) sequential meshing high contact ratio planetary with cantilevered support posts; (2) thin dense chrome plated M50 NiL double row spherical roller planetary bearings; (3) reduced kinematic error and increased bending strength spiral bevel gears; (4) high temperature WE43 magnesium housing evaluation and coupon corrosion tests; (5) flexure fatigue tests of precision forged coupons simulating precision forged gear teeth; and (6) flexure fatigue tests of plasma carburized coupons simulating plasma carburized gear teeth.
Study of noise reduction characteristics of double-wall panels
NASA Technical Reports Server (NTRS)
Navaneethan, R.; Quayle, B.; Stevenson, S.; Graham, M.
1983-01-01
The noise reduction characteristics of general aviation type, flat, double-wall structures were investigated. The experimental study was carried out on 20-by-20 inch panels with an exposed area of 18 by 18 inches. A frequency range from 20 to 5000 Hz was covered. The experimental results, in general, follow the expected trends. At low frequencies the double-wall structures are no better than the single-wall structures. However, for depths normally used in the general aviation industry, the double-wall panels are very attractive. The graphite-spoxy skin panels have higher noise reduction at very low frequencies ( 100 Hz) than the Kevlar skin panels. But the aluminum panels have higher noise reduction in the high frequency region, due to their greater mass. Use of fiberglass insulation is not effective in the low frequency region, and at times it is even negative. But the insulation is effective in the high-frequency region. The theoretical model for predicting the transmission loss of these multilayered panels is also discussed.
Study of noise reduction characteristics of double-wall panels
NASA Astrophysics Data System (ADS)
Navaneethan, R.; Quayle, B.; Stevenson, S.; Graham, M.
1983-05-01
The noise reduction characteristics of general aviation type, flat, double-wall structures were investigated. The experimental study was carried out on 20-by-20 inch panels with an exposed area of 18 by 18 inches. A frequency range from 20 to 5000 Hz was covered. The experimental results, in general, follow the expected trends. At low frequencies the double-wall structures are no better than the single-wall structures. However, for depths normally used in the general aviation industry, the double-wall panels are very attractive. The graphite-spoxy skin panels have higher noise reduction at very low frequencies ( 100 Hz) than the Kevlar skin panels. But the aluminum panels have higher noise reduction in the high frequency region, due to their greater mass. Use of fiberglass insulation is not effective in the low frequency region, and at times it is even negative. But the insulation is effective in the high-frequency region. The theoretical model for predicting the transmission loss of these multilayered panels is also discussed.
Jet noise reduction via dispersed phase injection
NASA Astrophysics Data System (ADS)
Greska, Brent; Krothapalli, Anjaneyulu; Arakeri, Vijay
2001-11-01
A recently developed hot jet aeroacoustics facility at FMRL,FAMU-FSU College of Engineering has been used to study the far field noise characteristics of hot supersonic jets as influenced by the injection of a dispersed phase with low mass loading.The measured SPL from a fully expanded Mach 1.36 hot jet shows a peak value of about 139 dB at 40 deg from the jet axis.By injecting atomized water,the SPL are reduced in the angular region of about 30 deg to 50 deg with the maximum reduction being about 2 dB at 40 deg.However,with the use of non atomized aqueous polymer solution as a dispersed phase the noise levels are reduced over all angular positions by at least 1 dB with the maximum reduction being about 3 dB at 40 deg.The injection of a dispersed phase readily kills the screech; the initial results show promise and optimization studies are underway to find methods of further noise reduction.
Noise reduction in plasmonic amplifiers
NASA Astrophysics Data System (ADS)
Vyshnevyy, Andrey A.; Fedyanin, Dmitry Yu.
2018-06-01
Surface plasmon polaritons amplification give the possibility to overcome strong absorption in metals and design truly nanoscale devices for on-chip photonic circuits. However, the process of stimulated emission in the gain medium is inevitably accompanied by spontaneous emission, which greatly increases the noise power. Herein we present an efficient strategy for noise reduction in plasmonic amplifiers,which is based on gain redistribution along the amplifier. We show that even a very small gain redistribution (∼3%) makes it possible to increase the signal-to-noise ratio by ∼100% and improve the bit error ratio by orders of magnitude.
Shen, Junlin; Du, Xiangying; Guo, Daode; Cao, Lizhen; Gao, Yan; Yang, Qi; Li, Pengyu; Liu, Jiabin; Li, Kuncheng
2013-01-01
Objectives To evaluate the clinical value of noise-based tube current reduction method with iterative reconstruction for obtaining consistent image quality with dose optimization in prospective electrocardiogram (ECG)-triggered coronary CT angiography (CCTA). Materials and Methods We performed a prospective randomized study evaluating 338 patients undergoing CCTA with prospective ECG-triggering. Patients were randomly assigned to fixed tube current with filtered back projection (Group 1, n = 113), noise-based tube current with filtered back projection (Group 2, n = 109) or with iterative reconstruction (Group 3, n = 116). Tube voltage was fixed at 120 kV. Qualitative image quality was rated on a 5-point scale (1 = impaired, to 5 = excellent, with 3–5 defined as diagnostic). Image noise and signal intensity were measured; signal-to-noise ratio was calculated; radiation dose parameters were recorded. Statistical analyses included one-way analysis of variance, chi-square test, Kruskal-Wallis test and multivariable linear regression. Results Image noise was maintained at the target value of 35HU with small interquartile range for Group 2 (35.00–35.03HU) and Group 3 (34.99–35.02HU), while from 28.73 to 37.87HU for Group 1. All images in the three groups were acceptable for diagnosis. A relative 20% and 51% reduction in effective dose for Group 2 (2.9 mSv) and Group 3 (1.8 mSv) were achieved compared with Group 1 (3.7 mSv). After adjustment for scan characteristics, iterative reconstruction was associated with 26% reduction in effective dose. Conclusion Noise-based tube current reduction method with iterative reconstruction maintains image noise precisely at the desired level and achieves consistent image quality. Meanwhile, effective dose can be reduced by more than 50%. PMID:23741444
Speckle reduction in optical coherence tomography by adaptive total variation method
NASA Astrophysics Data System (ADS)
Wu, Tong; Shi, Yaoyao; Liu, Youwen; He, Chongjun
2015-12-01
An adaptive total variation method based on the combination of speckle statistics and total variation restoration is proposed and developed for reducing speckle noise in optical coherence tomography (OCT) images. The statistical distribution of the speckle noise in OCT image is investigated and measured. With the measured parameters such as the mean value and variance of the speckle noise, the OCT image is restored by the adaptive total variation restoration method. The adaptive total variation restoration algorithm was applied to the OCT images of a volunteer's hand skin, which showed effective speckle noise reduction and image quality improvement. For image quality comparison, the commonly used median filtering method was also applied to the same images to reduce the speckle noise. The measured results demonstrate the superior performance of the adaptive total variation restoration method in terms of image signal-to-noise ratio, equivalent number of looks, contrast-to-noise ratio, and mean square error.
A Laplacian based image filtering using switching noise detector.
Ranjbaran, Ali; Hassan, Anwar Hasni Abu; Jafarpour, Mahboobe; Ranjbaran, Bahar
2015-01-01
This paper presents a Laplacian-based image filtering method. Using a local noise estimator function in an energy functional minimizing scheme we show that Laplacian that has been known as an edge detection function can be used for noise removal applications. The algorithm can be implemented on a 3x3 window and easily tuned by number of iterations. Image denoising is simplified to the reduction of the pixels value with their related Laplacian value weighted by local noise estimator. The only parameter which controls smoothness is the number of iterations. Noise reduction quality of the introduced method is evaluated and compared with some classic algorithms like Wiener and Total Variation based filters for Gaussian noise. And also the method compared with the state-of-the-art method BM3D for some images. The algorithm appears to be easy, fast and comparable with many classic denoising algorithms for Gaussian noise.
Reducing flicker noise in chemical vapor deposition graphene field-effect transistors
NASA Astrophysics Data System (ADS)
Arnold, Heather N.; Sangwan, Vinod K.; Schmucker, Scott W.; Cress, Cory D.; Luck, Kyle A.; Friedman, Adam L.; Robinson, Jeremy T.; Marks, Tobin J.; Hersam, Mark C.
2016-02-01
Single-layer graphene derived from chemical vapor deposition (CVD) holds promise for scalable radio frequency (RF) electronic applications. However, prevalent low-frequency flicker noise (1/f noise) in CVD graphene field-effect transistors is often up-converted to higher frequencies, thus limiting RF device performance. Here, we achieve an order of magnitude reduction in 1/f noise in field-effect transistors based on CVD graphene transferred onto silicon oxide substrates by utilizing a processing protocol that avoids aqueous chemistry after graphene transfer. Correspondingly, the normalized noise spectral density (10-7-10-8 μm2 Hz-1) and noise amplitude (4 × 10-8-10-7) in these devices are comparable to those of exfoliated and suspended graphene. We attribute the reduction in 1/f noise to a decrease in the contribution of fluctuations in the scattering cross-sections of carriers arising from dynamic redistribution of interfacial disorder.
Multielement suppressor nozzles for thrust augmentation systems.
NASA Technical Reports Server (NTRS)
Lawrence, R. L.; O'Keefe, J. V.; Tate, R. B.
1972-01-01
The noise reduction and nozzle performance characteristics of large-scale, high-aspect-ratio multielement nozzle arrays operated at low velocities were determined by test. The nozzles are selected for application to high-aspect-ratio augmentor suppressors to be used for augmentor wing airplanes. Significant improvements in noise characteristics for multielement nozzles over those of round or high-aspect-ratio slot nozzles are obtained. Elliptical noise patterns typical of slot nozzles are presented for high-aspect-ratio multielement nozzle arrays. Additional advantages are available in OASPL noise reduction from the element size and spacing. Augmentor-suppressor systems can be designed for maximum beam pattern directivity and frequency spectrum shaping advantages. Measurements of the nozzle wakes show a correlation with noise level data and frequency spectrum peaks. The noise and jet wake results are compared with existing prediction procedures based on empirical jet flow equations, Lighthill relationships, Strouhal number, and empirical shock-induced screech noise effects.
Noise and performance calibration study of a Mach 2.2 supersonic cruise aircraft
NASA Technical Reports Server (NTRS)
Mascitti, V. R.; Maglieri, D. J.
1979-01-01
The baseline configuration of a Mach 2.2 supersonic cruise concept employing a 1980 - 1985 technology level, dry turbojet, mechanically suppressed engine, was calibrated to identify differences in noise levels and performance as determined by the methodology and ground rules used. In addition, economic and noise information is provided consistent with a previous study based on an advanced technology Mach 2.7 configuration, reported separately. Results indicate that the difference between NASA and manufacturer performance methodology is small. Resizing the aircraft to NASA groundrules results in negligible changes in takeoff noise levels (less than 1 EPNdB) but approach noise is reduced by 5.3 EPNdB as a result of increasing approach speed. For the power setting chosen, engine oversizing resulted in no reduction in traded noise. In terms of summated noise level, a 6 EPNdB reduction is realized for a 5% increase in total operating costs.
Measured noise reductions resulting from modified approach procedures for business jet aircraft
NASA Technical Reports Server (NTRS)
Burcham, F. W., Jr.; Putnam, T. W.; Lasagna, P. L.; Parish, O. O.
1975-01-01
Five business jet airplanes were flown to determine the noise reductions that result from the use of modified approach procedures. The airplanes tested were a Gulfstream 2, JetStar, Hawker Siddeley 125-400, Sabreliner-60 and LearJet-24. Noise measurements were made 3, 5, and 7 nautical miles from the touchdown point. In addition to a standard 3 deg glide slope approach, a 4 deg glide slope approach, a 3 deg glide slope approach in a low-drag configuration, and a two-segment approach were flown. It was found that the 4 deg approach was about 4 EPNdB quieter than the standard 3 deg approach. Noise reductions for the low-drag 3 deg approach varied widely among the airplanes tested, with an average of 8.5 EPNdB on a fleet-weighted basis. The two-segment approach resulted in noise reductions of 7 to 8 EPNdB at 3 and 5 nautical miles from touchdown, but only 3 EPNdB at 7 nautical miles from touchdown when the airplanes were still in level flight prior to glide slope intercept. Pilot ratings showed progressively increasing workload for the 4 deg, low-drag 3 deg, and two-segment approaches.
Survey of Traffic Noise Reduction Products, Materials, and Technologies.
DOT National Transportation Integrated Search
2008-12-01
Noise is one of the most pervasive forms of environmental pollution. It is everywhere and affects our lives at : home, work and play. By definition, noise is any unwanted or excessive sound. Highway traffic noise is a : major issue for transportation...
DOT National Transportation Integrated Search
2014-01-01
Noise is an important issue in freight delivery. In the implementation of the Off-Hour Delivery (OHD) : Project, the noise problem became increasingly prominent. Effective noise control not only facilitates : OHD, it also improves the community envir...